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Abstract Structural health monitoring techniques aim at providing an automated
solution to the threat of unsurveilled aging of structures that can have tremendous
consequences in terms of fatalities, environmental pollution, and economic loss.
To assess the state of damage of a complex structure, this paper proposes to fully
characterize its behavior under multiple environmental and operational scenarios and
compare new sensor measurements with the baseline behavior. However, the repeated
simulations of a nonlinear, time-dependent structural model with high-dimensional
input parameters represent a severe computational bottleneck for large-scale engi-
neering assets. This chapter presents how to use efficient reduced-order modeling
techniques to mitigate the computational effort of many-query simulations without
jeopardizing the accuracy. To compare new sensor measurements with the natural
behavior of synthetic solutions, the proposed methodology uses hierarchical semi-
supervised learning algorithms on a small amount of extracted damage-sensitive
features, thus allowing one to assess the state of damage in real time. Using the inex-
pensive simulations, one can also optimally place sensors to maximize the observabil-
ity of discriminant features. The all-round methodology is validated on a numerical
example.
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1 Introduction

Many existing private and public assets, such as civil engineering infrastructures,
buildings, or aircraft, require reliable damage detection techniques to be safely used,
especially during their inevitable aging. When monitoring a structure over its lifecy-
cle, its deterioration and damages represent a great concern and the early detection of
critical decay might prevent failures that can cause sudden shutdowns or even catas-
trophes with severe life-safety and economic repercussions [1]. To prevent these
critical failures from happening, techniques of structural health monitoring (SHM)
have been developed in recent studies with applications to civil and aerospace engi-
neering, as well as to the conservation of cultural heritage structures. SHM refers
to automated monitoring procedures that seek to provide reliable information on the
performance and integrity of a structure in real time. In the context of SHM, the
combination of sensor measurements, numerical models simulating the underlying
behavior of a structure of interest under different environmental and operational con-
ditions, and machine learning techniques has led to the design of structural digital
twins [2].

The focus of this work is on wave propagation approaches to data-driven, predic-
tive SHM, which aim to detect damages by examining the distortions in propagating
elastic waves as a result of reflections and amplitude attenuations when intersecting
the damage boundary. Featuring a data-driven nature, these approaches, sometimes
called simulation-based SHM [3-7], are decomposed into an offline phase and an
online phase. In the former, a database of synthetic signals is built to represent the
structural behavior under different conditions, while in the latter real experimen-
tal time signals, collected from sensors placed on a structure, are compared with
those simulated offline using a classifier that discriminates between damaged and
undamaged states.

Toward an efficient and robust scheme of data-driven predictive monitoring,
reduced-order modeling techniques are integrated into a wave propagation approach
with cutting-edge machine learning tools. The data-driven SHM setting corresponds
to a multiquery problem, where one has to solve high-dimensional, time-dependent,
parametric equations, which results in great demands for computational resources.
To overcome such a computational burden, model order reduction is employed to
project the original full-order system onto a reduced space with a significantly lower
dimensionality. In this way, a robust dataset of approximated sensor measurements
is generated. In SHM, the task of damage detection is typically reduced to a super-
vised learning process relying on a fully labeled dataset, obtained from both healthy
and damaged structures (either generated with computer-aided procedures or col-
lected experimentally). However, gathering an exhaustive collection of configuration
classes anticipating all types of damages is typically unrealistic and the number of
different classification labels may grow rapidly. Instead, this work relies on semi-
supervised learning techniques, also called one-class classification methods, which
learn the common features among labeled data belonging to the normal class in the
training phase. Unlabeled data from both classes are then used in the test phase to



Predictive Monitoring of Large-Scale Engineering Assets ... 187

identify abnormal data which deviate from the normal mode. One-class algorithms
allow to locate the damage and estimate its severity by training a different model
for each sensor location. Finally, guided by an appropriate indicator of the damage
detection performance, a modified sparse Gaussian process method is applied to the
synthetic dataset of healthy configurations to systematically place a fixed number of
sensors on a structure of interest.

Following the introduction, a model problem for sensor measurements governed
by the acoustic-elastic equation is briefly reviewed in Sect.2. Basic techniques of
reduced-order modeling, which can be used for the multiquery simulations in SHM,
are introduced in Sect.3. A local semi-supervised method is used for automatic
anomaly detection in Sect. 4, and the variational sparse Gaussian process model is
utilized for optimal sensor placement in Sect. 5. In Sect. 6, the all-round methodology
is demonstrated by a numerical example. Finally, conclusions are drawn in Sect.7.

2 A Model for Sensor Measurements

This section introduces the model problem for sensor measurements, including its
governing equations and parametric discrete formulations.

2.1 Governing Equation

Let Q C R% be a polygonal physical domain with piece-wise smooth boundary 9<2,
where dg = 2, 3 is the spatial dimension, and let [0, T'], with T € R, be a suitable
time interval. Here, Q2 represents a structure of interest and [0, T'] a suitable time
window to observe the response of a structure undergoing a predefined excitation (i.e.,
the effect of an active or passive source) through sensor measurements. Moreover,
let P C R% be a suitable parameter domain, where d,, indicates the number of input
parameters required to describe the healthy variations that a structure may undergo
during its life time, and let @ = (u1, .. ., j1q,) be a parameter vector representing one
possible healthy variation of the environmental and operational conditions, i.e., i;
may relate to the material properties, the boundary conditions, the initial conditions,
or the source function for 1 <i <d,,.

Let u=u(x,t;0) : Q2 x[0,T] x P — R% be a vector-valued displacement
field, solution of the acoustic-elastic equation equipped with suitable boundary and
initial conditions:

p(i +nu)—V -0 =h(t; wb(x; p) inQ
u-n=0, (60-n)-t=ty on a2, (D)
ul;=0= uo, Ul;=0= Vo in Q
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where ii = 3%u /01> and it = du/dt are the acceleration and velocity fields. Here, p is
the density coefficient, 7 is a dimensionless damping coefficient,
h:[0,T]xP — Randb: Q2 x P — R are two source functions depending on
time and space, respectively, & = o (u; p) is the stress tensor, 7 and 7 are the outward
normal and tangential (unit) vectors to 9€2, respectively, £y = ¢y(x, #; p) is the trac-
tion vector used in the definition of the free-slip boundary conditions, ug = uo(x; p)
and vy = vo(x; p) describe the initial displacement and velocity in space, respec-
tively.

The ultimate goal is to emulate the real sensor response at m given sensor locations
x; € Qforl <i <m.Todoso,letl : R% x P — R% be an input—output function
and g; : [0, T] x P — R% a (parametric) output of interest, i.e., an approximation
of the sensor response at time ¢ and location x;:

gty ) =Lu(x;, t;p);p), 1=i=m. 2

Before proceeding with classic discretization techniques such as the finite ele-
ment method, consider the vector space V = {w € [H'()]% : w-n=00ndQ},
equipped with a suitable inner product (-, -)y and the corresponding induced norm
I-|lv. Moreover, consider a parametrized linear form f : V x P — R where the
linearity is with respect to the first argument, and the parametrized bilinear forms
m:VxV—-Randa:V xVxP — R, where the bilinearity is with respect to
the first two arguments. Then, the acoustic-elastic problem in abstract form reads:
givent € [0, T]and u € P, find u = u(t; p) € V such that

p (mGi, ) + nm@@, ¥)) +a(@, ¥; p) = h(t; ) f(Y; p) Yy €V, 3)
ut=0p) =0, ut=0;p) =0,
with
)= [uve s = [bw-ve
a(u,¥; p) = / [H(p) :e(w)] : e(¥) R,
Q

in which H is the Hooke’s stiffness tensor and &(-) = %[V - +(V-)T] is the operator
of Cauchy strain. Note that, for the sake of simplicity, homogeneous boundary and
initial conditions in (3) are considered, i.e., ug = 0, vo = 0, and £y = 0.

2.2 Parametric Discrete Problem

This section introduces a discrete approximation space V;, C V as well as a dis-
cretization of the time interval [0, 7'] in which the approximate solution is sought. The
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approximation space V), is here constructed by a standard finite element method based
on piece-wise linear basis functions and a triangulation of €2, i.e., non-overlapping
triangles (dg = 2) or tetrahedra (dg, = 3) whose union perfectly coincides with .
Alternative discretization strategies include spectral methods or higher-order finite
elements. Let V), be equipped with a basis {¢ ;(x) € R"ﬂ} et where N;, = dim(V},)
is the number of degrees of freedom (DOFs). Moreover divide the time interval [0, T']
into N, subintervals of equal length At = = and define " = nAt, 0 <n < N,.

The discrete problem with finite element discretization seeks to find
uy(t; p) € Vy,, which can be expressed as u;, (¢; ) = ZN” (un(t; p)) j@ ;(x) where
(uy,); denotes the jth entry of the solution vector u; € RM:. With an additional
discretization over time, one can retrieve the solution vector at the nth time step,
denoted by uj(m) =u,(t"; p), n=1,..., N;. Moreover, let vj(pn) € RN+ and
aj(p) € RN be the velocity and the acceleration vectors, respectively, such that
their elements are the multiplicative coefficients of the following expressions:
() = YN (0 () j0;(x) and iy () = Y0 (a) () j@; (x), respectively.

Once the acoustic-elastic equation is spatially discretized by finite elements, the
corresponding algebraic formulation is written as follows for a given u € P and
tel[0,T]

oM, ity () + niey ()] 4+ Ap(uy, (p) = h(t; w) f,(1), )

where M), € RV>*Ni jg the mass matrix, Aj,(n) € RN»*Ni the parametrized stiffness
matrix, and f,(#) € RV the parametrized right-hand side vector with entries

(Mp)ij =m(@;, 9), (An(p)ij =a(e;, ¢;; 1),

. (6)
and (f,(w)i = feiim), 1=1i,j=<N.

A classic Newmark method is then applied to the temporal discretization and the

governing equation becomes: given u € P, find the acceleration vector ajf (u) € RV

forn =1,..., N; such that

[p(1 + g AHM), + B(AD*Ap(w)] @) (k) = h(t"s ) fr(w) — g} (), (7)

in which § and ¢ are two constant parameters, here chosen as { = 28 = 2, which
corresponds to a popular second-order method [8, 9], while qZ_l (m) € RM: is given

as
) =An(wu) (1) + (onMy, + AtA, () v (p)

®)
+ (o1 =AMy + LA A W) @ ().

Finally, the displacement solution vector u} (p) is obtained using the updating rule
of the implicit Newmark method, introduced in [10] and defined as:
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wp(w) = wy~ ) + Ao~ () (Bag () + e () ©)
Vi) = v () + At (Cal(p) + (1 - Oa) (W), (10)

Problem (7) is denoted as the truth problem and uj (u) as the truth solution at n-th
time step, which, in principle, can be achieved with as high accuracy as desired.
However, many degrees of freedom may be involved in the problem, thus leading to
a computationally expensive method due to inversion of the Nj;-dimensional matrix
in the left-hand side of (7). In addition, to fully represent the healthy variations of
the structure, one needs to estimate an approximation to the output of interest (2)
for many input parameter values {§;, i,, . ..} over the whole discrete time window
0=1%¢", ..., N =T,ie,

g =g m), s, G ], k=12, (D)

evaluated at all the sensor locations x;, 1 < i < m. For each input parameter value ft,,
the total computational cost involves the resolution of &, linear systems of dimension
Nj.

3 Techniques of Reduced-Order Modeling

When the dimensionality of a full-order system, defined as N, in Sect. 2, is large, the
repeated solution of such a time-dependent problem with varying input parameters
can result in great demands on both CPU time and memory, which is often computa-
tionally prohibitive. To reduce the computational cost without significantly compro-
mising the overall accuracy, reduced-order models (ROMs) have been developed. In
general, reduced-order modeling seeks to find a low-dimensional representation of
the full-order solution manifold and hence reduce the dimensionality by projecting
the original governing equations onto a low-dimensional space.

The reduced basis (RB) method [11, 12] is a typical projection-based approach
to ROMs and features an offline—online framework. With a significantly smaller
dimension than the full-order model, a reduced space is spanned by a set of RB modes
that are extracted offline from a collection of full-order snapshots at several time-
parameter locations. Once the RB space is constructed, the approximate solution for
an unseen parameter value is recovered online in the reduced space. Conventionally,
a Galerkin projection is adopted to determine the combination coefficients associated
with the RB, yielding the reduced-order solutions during the online stage.

For time-dependent problems, due to the traveling-wave behavior of the solution,
classic projection-based ROM strategies [13] may pose several challenges, e.g., the
manifold of all possible solutions can often not be compressed to a small reduced
basis. Furthermore, the sampling strategy is more complicated since it has to com-
bine the solution at different time instants and for different values of the parameter.
For example, the readers can refer to the POD-greedy sampling strategy [14] and the
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randomized SVD algorithms [15]. Recent efforts have been made in the direction
of space—time approaches, where projection in space and time is performed simul-
taneously, see, e.g., [16]. A different effective strategy is to replace the time domain
formulation with a frequency domain formulation and to apply a ROM method to
replace the full-order problem in frequency domain. In this way, the number of time
instances N; where one expects to solve a linear system equivalent to (7) is reduced
to a number of principal frequencies N, with N, <« N;. In addition, recurring to
a ROM strategy reduces the number of degrees of freedom of each linear system
to the size of reduced basis, i.e., from N, to r, with r < N;,. Without going in too
much detail, the reader are referred to [5, 17], where the authors, motivated by the
interest of studying the transient response of damaged structures under the effect
active sources, construct a reduced-order model of the acoustic-elastic equation in
the Laplace domain.

The goal here is to provide a brief introduction to several basic elements of the RB
method, which lay the foundation for more advanced techniques. In particular, after
introducing a general formulation of the proper orthogonal decomposition (POD)
in Sect. 3.1, the construction of RB from full-order snapshots using the POD is also
described. The technique to retrieve the RB solution, an approximation of the high-
fidelity solution, is ultimately presented in Sect.3.2.

3.1 Proper Orthogonal Decomposition

General formulation of the POD

In a vector space X, equipped with an inner product (-, -)x, consider a collection of
snapshot vectors, denoted by {p1, ..., pn,} C X. A correlation matrix C € RN:>*Ns
of the snapshots is formed as

Cij=(pi,pj)x, 1=<i,j=<Ns. (12)
The eigenvalue problem of such a correlation matrix C is then written as
2" =199, 1<i<N,, (13)

in which AV > ... > A > 0. By taking
Ny
¢i=y p;(?),/Va0, 1<i<rwithN <N, (14)
=1

an orthonormal basis is formed, i.e., (¢;,¢;) =6;;, 1 <i,j<r, and an r-
dimensional subspace is then constructed as X, = span{¢y, ..., ¢} C X. The pro-
jection onto this subspace, denoted by Py[-] : X — X, is thus defined as
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r

PLf1=agminllf — €% =) (/. ¢)xdi, [ X (15)

i=1

It can be shown that the projection error of the snapshots only depends on the trun-
cated eigenvalues, written as

NT NS
lpi = Ppilli =Y A9, (16)
i=1 i=r+1
In addition, X, is the optimal subspace of S = span{py, ..., py,} that minimizes the
projection error, i.e.,
A Ny
 — Ppillx = i i —E|% L. 17
2”,,, Pl Ubemgargggpms{;gg I esnx} (17
1= 1=

Construction of RB using the POD

At the algebraic level, the solution space for the full-order discrete system (5) is
RM, ie., X = R, and it is correspondingly equipped with the Euclidean inner
product. To construct an RB space, one has to collect the solution snapshots of N,
time instances {t°, ¢!, ..., tV} at N, parameter locations {g, i,, ..., By, ) ie.
(pide, ={ul(m) : 1 <n<N,1<k<N,} and N, = N,N,. Let S € RVN>*N:
denote the snapshot matrix collecting all the N, snapshot vectors as columns.
Using the POD, r basis vectors are obtained and collected in a matrix V. € RNwxr
whose i-th column, i.e., the i-th basis vector, corresponds to the i-th eigenvalue A0
of the correlation matrix C = STS ,1 <i < r.Infact, given the SVD of the snapshot
matrix S, written as
S=UXZ", (18)

the basis vectors in V. are the first » columns of U, ie., V, =U[:;,0:r — 1]
in a Python notation, and ¥ is a diagonal matrix of singular values, i.e.,
¥ = diag(v/AD, VA, ... V/AM)). Especially when the singular values decay
fast, a small number of basis vectors can achieve a small projection error according
to (16).

In this way, a reduced basis V, is obtained, reducing the Nj,-dimensional, full-
order solution space R to an r-dimensional, reduced space Col(V,), Col repre-
senting the column space. With a rapid decay of singular values, the dimensionality
reduction is significant (r < N;,) but the accuracy is still under control.
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3.2 Reduced-Order Solutions

The discrete solution is approximated as a linear combination of RB vectors V.,
written as u;, ~ V,q, with ¢, € R” denoting the RB coefficients, and project the
full-order system (5) onto the reduced space Col(V,). A reduced-order system is
thus obtained as

oM, [, () +ng,(w)] + A, (g, (1) = h(t; B f.(R), (19)

in which the reduced-size matrices M, € R"™*", A, € R™ and f, € R" are defined
as M, = V,TM;, V., A = V,TA;, V, and f, = V,Tfh, respectively. Such an r-
dimensional reduced system is solved in the online stage for any new parameter
value u.

If the full-size, parameter-dependent stiffness matrix A;(u) and source term
vector f,(p) can be expressed as a linear combination of parameter-independent
matrices/vectors with scalar-valued, parameter-dependent coefficients, often referred
to as an affine form, i.e., Ay(p) =) ; @§(W)A; and f,(n) =3, a){(u)fj, one
can evaluate their reduced-size counterparts offline as A,; =V} A;V, and
fri= foj, j=1,2,..., and the online assembly only requires linear combi-
nations A, (p) = Zj @j(WA; and f.(p) = Zj a){(u,)f,,j, respectively. In this
case, the online assembly is conducted in the reduced dimensionality and guarantees
a good online efficiency. However, if an affine form of the full-size matrix/vector is
not available, one has to recall the them during the reduced-size assembly, which
can often compromise the online efficiency. To overcome the difficulties stemming
from the non-affinity, hyper-reduction techniques have been developed to recover an
affine approximation of the non-affine operators, see [18, 19] for example.

An alternative approach to recover reduced-order solutions is through non-
intrusive surrogate modeling. In addition to the construction of an RB space using
the POD, one has to train a regression model to approximate ¢, :]0, T] x P — R’,
(t, p) — Vfuh (t; p), mapping the time-parameter inputs to the projection coeffi-
cients onto the RB. The training data of input—output pairs are derived from a set
of collected full-order snapshots. Gaussian process regression has been used for the
non-intrusive, reduced-order surrogate modeling in [20-23].

4 Automatic Anomaly Detection with Unbalanced Datasets

This section presents a data-driven technique to detect, localize, and estimate the
severity of structural anomalies by observing healthy configurations only. One-class
classification learning methods offer the possibility of training a set of samples all
belonging to the same class and test if a new sample is abnormal, i.e., it belongs
to a different class with respect to the training data. Typical one-class classifica-
tion methods, sometimes called semi-supervised methods, include one-class support
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vector machines (oc-SVMs), isolation forests, and local outlier factors. During the
offline phase, these methods learn a description of the salient features that the train-
ing data have in common to ultimately detect if a previously unseen object reflects
this description by means of an online anomaly (or novelty) score. If the new unseen
sample is associated with an anomaly score close to the ones observed in the training
phase, the new object is classified as healthy, otherwise it is classified as damaged.
The crucial part is to define what close fo means from a mathematical standpoint.
Let x be an unseen object, then the outcome of all one-class classification methods
can be summarized as follows:

score(x) > 6 damaged/outlier 20)
score(x) < 6 healthy/inlier

where score(x) is the anomaly score associated with x and 6 is an ad hoc threshold
to be estimated by observing the anomaly score value of healthy data only. From
a practical perspective, in the semi-supervised context, 6 is heuristically chosen by
observing the highest anomaly score value in the training data, i.e., 6 should be equal
to the anomaly score of the most outlier sample among all the inliers. Consider D
the dataset of healthy measurements and ¢ € R, then the threshold value is fixed as

6 = max score(x) + &, 201
xeD

where a positive value of ¢ indicates the user accepts a higher false alarm rate, while
a negative value implies a higher miss detection rate. The trade-off between false
positive and false negative errors should guide the choice of ¢ and ultimately of 6.
It becomes clear that to choose an effective threshold value, the training set has to
be the most comprehensive as possible, covering several healthy environmental and
operational scenarios.

An alternative approach to detect anomalies is to include sensor measurements
belonging to damaged structures in the training set, which leads to using traditional
two-class supervised learning methods to distinguish healthy scenarios from dam-
aged ones. In this approach, the choice of the threshold value benefits form the
availability of two (or more) classes in the training phase. However, an increasing
trend toward the assumption that it would be unreasonable to describe all types of
damages is observed in the literature; as a consequence, representing only some
damaged configurations would lead to a bias toward certain types and therefore to
possible misdetections with high probability (see, e.g., [5, 24]). For this reason, in
this chapter, one-class classification methods are used instead.

The general one-class approach is introduced in Sect. 4.1 and explain the need for
feature selection in subsection 4.2. For a detailed description of the classic one-class
models, the reader is referred to [25, 26] for the oc-SVMs, [27] for the isolation forest
and [28] for the local outlier factor. A Python implementation of these methods can
be found for example in scikit-learn library [29].
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4.1 Local Semi-supervised Method

Considering that the time signals, i.e., the output of interests (2), are collected at mul-
tiple sensor locations, one has to decide on how to best aggregate these data. There
exists two typical approaches in the literature to combine sensor data: decision-level
fusion or feature-level fusion. The latter combines data after feature extraction and
considers one global classifier (sensor independent), thus exploiting the correlations
across sensors. On the other hand, in decision-level fusion, the signals are classified
for each sensor location by a local classifier (sensor dependent) and the results are
then combined into a decision output. The two strategies are summarized in Fig. 1.
While the superiority of one method over the other one depends strongly on the
problem at hand, to exploit the local aspect of the data the authors propose to use
the decision-level fusion approach which facilitates the use of a hierarchical classi-
fication approach where increasing levels of damage identification can be defined to
ultimately gain information on the existence, localization, and severity of the damage.
In a decision-level fusion approach, one has to train as many one-class algorithms
as the number of sensor locations. Thus, the global classification model (20) is
replaced with m local detection models, where m is the number of sensors:

score; (x) > 6; damage in the proximity of the i’ sensor, 22)
score; (x) < 6; health in the proximity of the i'" sensor,

for 1 <i < m.From a computational cost point of view, note that the process can be
run in parallel since the local models are independent. Moreover, in the feature-based
fusion approach, aggregating the local features leads to high-dimensional input data,
while the dimensionality of the input data for the classifiers in the decision-based

2 . [ . TR
..

0.0 EA. .
’.

o Anomaly Final
. ’ dECiSion

‘ Classifier 2

23 - 9 - B3 - 00 - 5

‘ Anomaly .
score Final
- decision

Fig. 1 Flowchart to compare the feature-level (fop) and the decision-level (botrom) fusion
approaches for the semi-supervised damage detection strategy with multidimensional training data
captured by m sensors
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strategy remains small. As further explained in Sect. 4.2, high-dimensional data may
lead to overfitting, a well-known problem in machine learning.

4.2 Damage-Sensitive Features

Overfitting refers to the phenomenon observed when the model performs well on
training data, but fails to generalize well to new observation. An overfitted model
is described by more parameters than can be justified by the data and is typically
associated with high-dimensional input data. While sometimes adding more training
samples may be a remedy to overfitting, a more effective solution to prevent this
behavior is to reduce the dimensionality of the data, i.e., to perform what is called
feature selection.

Recall that the input data correspond to N, -dimensional sensor signals, with N, the
number of time steps, which may be very large. Therefore, one needs to express these
high-dimensional time signals by means of few variables, extracted from the signals
themselves. Ideal features should be sensitive to damage and, at the same time, robust
toward noise and healthy variations. Common choices for the engineering-based,
damage-sensitive features can be found for example in [24, 30]. When studying
the acoustic-elastic equation, i.e., in the context of guided-waves, relevant features
are the crest factor, which indicates how extreme the peaks are in a waveform, the
maximum and minimum values of the time response, the corresponding arrival times,
i.e., the onset, and the number of peaks and troughs in the signals. Without further
detail, the reader is referred to [5] and references therein for a thorough description
of damage-sensitive features for a guided-wave monitoring approach.

Finally, note that autoencoders, a particular type of neural networks, trained to
attempt to copy their inputs to their outputs, have gained particular interest in the
framework of anomaly detection, see, e.g., [31-33]. The main advantage of using
autoencoders for anomaly detection is that specific engineering-based damage indi-
cator features do not need to be specified by the user, different from classic one-
class methods. Instead, by learning the features which suffice to describe and recon-
struct the input, autoencoders provide a purely data-driven feature extraction method.
Hence, raw measurements such as sensor time signals can be used directly.

5 Finding Optimal Sensor Locations Using Gaussian
Processes

Until this point, this work has covered the problem of how to best detect damages
given a fixed network of sensors. The specular research question is how to choose the
location (and the number) of sensors in order to best detect defaults. Sensor placement
strategies are extremely important to optimally equip structures, whose monitoring
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performance depends critically on the quality of the information collected by sensors.
Hence, it is no surprise that this problem has been extensively addressed in the SHM
literature, see, e.g., the thorough review [34] and references therein. For most of the
sensor placement strategies, the objective is to optimize a suitable cost function with
respect to some operational parameters, e.g., the candidate sensor locations and the
available number of sensors. However, classic cost functions are usually formulated
in terms of damage detectability, which poses a problem when one wishes to make
no assumption on the potential damages. Thus, a procedure to place a fixed budget
of sensors in the context of anomaly detection is proposed, i.e., when only healthy
scenarios are included in the training phase. The proposed strategy relies on sparse
Gaussian process to identify the spacial positions that minimize the reconstruction
error of an output of interest at all “unsensed” locations. The quantity of interest that
defines the cost function for the sensor placement optimization algorithm is the same
quantity used to train the anomaly detection classifier, i.e., the damage-sensitive fea-
tures extracted from the synthetic sensor measurements (11), as described in Sect. 4.
As such, the proposed placement strategy is based on an appropriate indicator of the
damage detection performance of a given network. Note that, while this approach
requires the number and type of sensors to be fixed, it can be easily extended to help
the user to identify the minimum number of sensors to achieve a preset coverage.

This section presents the sensor placement strategy introduced in [35], to which
the reader is referred for a more in-depth discussion. In particular, after a brief
introduction to Gaussian process (GP) regression and sparse GP in Sect.5.1, the
description of how to leverage this technique to systematically place sensors on a
structure of interest is provided in Sect.5.2.

5.1 (Sparse) Gaussian Process Regression

A GP is a collection of random variables, any finite number of which obeys a joint
Gaussian distribution. In Gaussian process regression (GPR), the prior of regression
function is assumed to be a GP corrupted by an independent Gaussian noise term,
i.e., for (x,x') € Q x Q with Q@ C R% denoting the domain of regression,’

fx) ~GPO,k(x,x"), y=f(x)+e, e~N(O,x>. (23)

There are many different options for the covariance/kernel functionx : Q x Q — R,
a typical form of which is written as

K(x,x') =a*p(r), (24)

1 Here f denotes a generic regression function and should not be confused with the linear functional
f(; p) in Sect. 2.



198 C. Bigoni et al.

where ¢ (-) is a radial basis function and > can be defined as

r=|x—x'||/t or r=

the former for a stationary kernel with isotropic lengthscale £, while the latter for an
automatic relevance determination (ARD) kernel that considers an individual corre-
lated lengthscale ¢, for each input dimension and allows for differentiated relevances
of input features to the regression.

Given a finite number of training input locations in the domain €2, a prior joint
Gaussian is defined for the corresponding outputs:

YIX ~N@©,K,), K,=cov[y|X]=«(X,X)+ x*In, (25)

where y = {1, y2, ..., yu} T, X = [x1|x2] - - - |xy]T, I 4 is the M-dimensional unit
matrix, and M is the number of training samples.

The goal of a regression model is to predict the noise-free output f*(s)
at any new, unseen input location s € Q. By the standard Bayesian rule
p(f*)IX,y) = p(f*, yls, X)/p(y|X), the posterior distribution conditioned on
the training data (X, y) can be obtained as a new GP:

fr®IX, y ~ GP(m*(s), c*(s, s)),

m*(s) =x(s, X\)K'y, c*(s.8") =«(s,s) — (s, \)K;'k(X,5), (26
The values of hyperparameters @ = {€or(¢,, ..., £4), 0%, x>} make significant dif-
ference on the predictive performance. In this chapter, an empirical Bayesian
approach of maximizing marginal likelihood is adopted to determine a set of optimal
values of the parameters. Using a standard gradient-based optimizer, the optimal
hyperparameters #* can be estimated via the maximization problem as follows:

0" =arg rnoax log p(y|X, 0) = arg m()ax log [N(yIO, Ky(O))]

1., 1 M @7
:argm(;ax —Ey Ky (0)y—510g}Ky(0)’—710g(27r) ,

where p(y|X, 0) is the density function of y given X under hyperparameters 6,
considered as the marginal likelihood p(y|X,0) = [ p(y|f. X,0)p(f|X.0)f.

It is important to remark that the computational complexity of generating a GP
model is O(M?) and the associated storage requirement O(M?), which becomes
intractable for large datasets. To overcome the computational limitation, the cor-
responding sparse methods rely on a small set of m < M points, called inducing

2 Here r denotes a (scaled) radius and should not be confused with the reduced dimensionality in
Sect. 3.



Predictive Monitoring of Large-Scale Engineering Assets ... 199

points, to facilitate the information gain of the whole dataset, thus allowing for a com-
plexity reduction, i.e., O(Mm?). An overview of well-known sparse GP regression
methods can be found for example in [36], where each sparse method is described
as an exact inference with a specific approximated prior, different from the true GP
prior (23). A different approach is presented in [37], where both the m inducing
points, indicated as D = [d,|d;|- - - |d,,]7, and the hyperparameters # are consid-
ered as variational parameters to be estimated by minimizing the Kullback—Leibler
(KL) divergence between the true posterior (26) and a variational posterior. This is
equivalent to maximize the following variational lower bound:

(D*, 6™) = argmax L(D, 0)
D,

= arg max {log [N(le, o(D,0) + XZIM)] - %Tr(K(X, X)— O(D,0)},
D0 2x
(28)
where Q = «(X, D)(k(D, D)) 'k(D, X) is the Nystrom approximation of the true
prior covariance. Note that the trace term in (28) acts as a regularization term of the
marginal log likelihood, which can be viewed as an accuracy indicator of how well
the inducing points summarize the overall statistics.

5.2 Variational Approximation for Systematic Sensor
Placement

The aforementioned variational sparse GP model together with the numerical
approach defined in the previous sections can be used to systematically place a
network of sensors on a structure of interest. Following the description in Sect. 4.2,
lety ={yi,..., ¥ dof}T be the damage-sensitive features extracted from the synthetic
time signals (11), collected at the n4. points of a coarse mesh of the input domain €2,
which is denoted as X = [x{|x3]|--- |x,,M]T, where ngot < Ny,. Given m the number
of sensors that the user wishes to place on the structure, one can apply the variational
sparse GP strategy to this collection of data, with m being the number of desired
inducing points. Ultimately, one can identify the sought sensor locations with the
inducing points obtained by variational inference.

Although the procedure is quite simple, some remarks ought to be made. First
of all, observe that the hyperparameters and the inducing inputs are estimated by
maximizing the variational lower bound (28), which is in general an unconstrained,
non-convex optimization problem. This may be problematic because one needs to
impose some locality constraints on the inducing points to prevent them from being
outside the input domain, especially when this is non-convex. Therefore, the standard
variational approximation should be replaced with a constrained optimization:

(D*,0%) = arg max L(D,#9), (29)
De, .0
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where Q2; C Q indicates the admissible domain for sensor locations and, with a
slight abuse of notation, D € ; means that each inducing point d;, 1 <i <m is
constrained to belong to €2;. For real-world problems, the complexity of the domain
may be such that the boundaries of €2; cannot be easily specified analytically and, in
such cases, it may be worth to replace €2; with a discrete counterpart. If that is the
case, instead of gradient-based optimization techniques, one could opt for discrete
optimization methods such as the genetic algorithm [38].

A second point to notice is that the output of interest y is in general parame-
ter dependent, i.e., y = y(u). Hence, choosing the sensor locations as the optimal
inducing points obtained for one specific input configuration may not be optimal
for another context, described by a different parameter. To overcome this, this work
proposes to apply the variational sparse GP approach to N,, outputs of interest y(u;),
with p; € P for 1 <i < N,. To summarize the information from the so-obtained
N, m inducing points, the K-medoids algorithm, a well-known unsupervised cluster-
ing technique, is employed to find m clusters and their corresponding centers, called
centroids. As a last step, the desired sensor locations will be chosen as the clusters’
centers.

To quantify the quality of the placements, the simplest choice is to compare
the relative reconstruction error of the high-fidelity quantity of interest at unsensed
locations with respect to the mean of the posterior distribution of the sparse model
based on the estimated variational parameters. Alternatively, the pointwise relative
variance reduction, defined as

i, D*)(k(D*, D*))" 'k (D*, x;
V= K (x ) (K ( )k ( X )’ forl <i < nge, (30)
(X, X;)

provides an indicator on how much variance reduction can be achieved by including
x; to the set of selected sensor locations. When the relative variance reduction is
close to one, it means that the inducing variables alone can well reproduce the full
GP prediction.

6 Numerical Example

In this section, a numerical problem in 2D is used to illustrate the results in terms
of damage detection and sensor placement. Similar results for more complex 3D
problems can be found in [5, 35].

Damage detection

The first step consists in generating a synthetic database of sensor observations.
Apply (1) with homogeneous free slip boundary conditions and homogeneous ini-
tial conditions, i.e., uy = vg = £y = 0, to the healthy geometry illustrated in Fig.2a
and equipped with m = 15 sensors. The high-fidelity numerical solutions are com-
puted using the FE approximation with IP; elements over a discretized domain with
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Fig. 2 Summary of the one-class SVMs classification results for one healthy geometry (a) and 5
damaged ones (b—f)

a total of N, = 30’912 degrees of freedom, while for the RB solver the model
relies on 267 basis. The natural variations are described by d,, = 3 parameters, i.e.,
= (E, v, k) e P=1[0.999,1.001] x [0.329, 0.331] x [1.9, 2.1], where E is the
Young’s modulus and v the Poisson’s ratio, defining the stress tensor o, while & is a
parameter representing the number of cycles before attenuation of the source impulse.
The position of the active source as well as the density and damping coefficients are
fixed, i.e., p = 1, n = 0.1, respectively.

For each sensor location, one should follow the pipeline introduced in Sect. 4 and
generate a training dataset of Ny, = 1000 samples, obtained by extracting a few
damage-sensitive features from the discrete time signal (11), in their turn obtained
with a suitable reduced-order modeling approach, as described in Sect.3. Then,
one has to train m separate one-class SVM models to learn the common traits of
the local healthy features and test the results on sensor measurements belonging to
both healthy and damaged geometries. In this example, the test signals are generated
synthetically using the high-fidelity model. Different from the training set, to approx-
imate experimental measurements, a Gaussian noise term &; ~ N (0, yiz) is added to
the test time signal (11), with y being the 0.01% of the maximum amplitude of 30
randomly chosen training healthy signals in the training set. Damages are obtained
by modifying the geometry of the structure to include discontinuities, as shown in
Fig.2b—f. The crack-modeling approach is a common choice in the literature, see,
e.g., [39] where artificial damages on the blade of a wind turbine are implemented
via a trailing edge opening. Anomaly detection results are shown in Fig. 2, where for



202 C. Bigoni et al.

each geometry the average outcome of the oc-SVM for 10 simulations (i.e., for 10
different input parameters) is presented. For each damaged scenario, at least one sen-
sor is classified as damaged, while for the healthy scenario all sensors are classified
as healthy. Moreover, for most of the damaged scenarios, one can observe a certain
level of proximity between the cracks and the sensors classified as damaged, thus
guiding the localization of damages. An exception corresponds to the geometry in
Fig. 2c, where almost all sensors are classified as damaged, thus preventing localiza-
tion. This issue is attributable to the relative position of the source and the crack, i.e.,
to localize damage (c) the source should be placed differently. A reasonable solu-
tion is to consider different locations for the active source, for example by defining
an additional input parameter in the model. This approach is already employed in
SHM with Lamb wave propagation where piezoelectric transducers are used as both
sensors and actuators (see e.g., [40]).

Sensor placement

To identify the optimal sensor locations, one has to create a new database of
N,, = 100 synthetic observations sampled from a Sobol’s sequence [41]. Keep the
same parameters as in the previous paragraph, but, instead of computing the syn-
thetic time signals at few predefined points in space (the sensor locations), collect the
measurements at all the nodes of a new coarse mesh of €2, for a total of ngos = 360
degrees of freedom. Following the description given in Sect. 5.2, for each one of the
N, time signals, one has to perform the constrained variational approximation (29)
with an ARD-Exponential kernel over 2, = Q2 \ 92 to obtain a set of m inducing
points D*(p;) for 1 <i < N,,. Figure3 sketches the clustering results obtained for
different values of N,. Observe that the centroids tend to stabilize already after con-
sidering a cluster of 10 samples, especially when the sensor budget is high, i.e., for
large m values. This can be explained by noticing that when m is small, the algorithm
is trying to reconstruct a non-trivial quantity of interest over a complex domain with
only a few points, which may lead the sparse model to get stuck in a local mini-
mum without reaching convergence. Finally, the relative variance reduction (30) is
used to evaluate the quality of the estimated locations whose results are shown in
Fig.4, where one can observe a variance reduction almost equal to 1 near the sensor
locations and a general reduction above 0.7 for all the unsensed locations even for
m = 4, thus indicating a good sensor placement.

7 Conclusion

This chapter presents how a model-based numerical approach can be integrated with
different data-driven techniques in the context of predictive maintenance. A peculiar-
ity of this work is that the authors make no assumption on the type of damages that a
structure may undergo during its lifetime, while modeling many environmental and
operational healthy scenarios. From a technical point of view, this work describes
how reduced-order modeling techniques can be leveraged to generate large and robust
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Fig.3 Comparison of the centroids obtained with the K-medoids clustering algorithm for different
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Fig. 4 Relative variance reduction obtained using m centroids and averaged over N, = 100 sam-
ples. Each plot shows a fixed number m of inducing points, which increases from left to right.
Values close to 1 indicate a good placement quality

datasets of synthetic sensor measurements and it explains how such datasets can be
used to learn the salient features that healthy scenarios have in common to ultimately
detect damages. The same damage-sensitive features are also used to guide an auto-
mated data-driven sensor placement strategy to increase the detection accuracy for
a given budget of sensors.

Although a simple 2D example is used to validate the proposed method, the gen-
eralization to more complex, possibly nonlinear problems is possible. Note however
that for real-world engineering problems the parameter space describing healthy vari-
ations is expected to be high dimensional, thus requiring a high computational effort
to elaborate the synthetic time signals. To this end, sensitivity analysis techniques
such as the variance-based global sensitivity indices [42] or the derivative-based
global sensitivity measures (DGSM) [43] are two popular choices to identify a few
parameters that influence the output of interest the most. Finally, note that while
the proposed method can be used for real-time predictions thanks to the offline and
online decomposition of tasks, a filtering technique to integrate the evolution of the
structure and update the model would be a valuable addition.
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