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Foreword

One can speculate that there has been an interest in detecting damage in engineered
systems since man has used tools. Over time, early ad hoc qualitative damage detec-
tion procedures, many of which were vibration-based, evolved into more refined
approaches that became what we know today as non-destructive evaluation (NDE)
methods. One drawback of most NDE methods is that the system being inspected
must be taken out of service and often disassembled before such methods can be
used. Structural health monitoring (SHM) attempts to address this shortcoming by
developing more continuous, automated in situ damage detection capabilities that
strives to minimize the human-in-loop aspect of the assessment process.

The term structural health monitoring begins to appear regularly in the tech-
nical literature around the late 1980s and early 1990s. These early studies focused
primarily on deterministic, inverse physics-based modeling approaches that identi-
fied the presence, location, and extent of damage.When researchers and practitioners
attempted to apply such methods to in situ structures, various limitations were iden-
tified including difficulties handling the mismatch between measured and analytical
degrees of freedom, the almost exclusive use of linear models when simulating both
the undamaged and damaged system response, and the inability to handle the opera-
tional and environmental variability that all real-world systems experience. The latter
limitation associated with the fact that operational and environmental variability will
cause changes in the SHM system sensor readings and these changes must be distin-
guished from changes in sensor reading caused by damage has proven to be one of the
most significant challenges associated with transitioning SHM research to practice.

In the late 1990s and early 2000s, various research groups started to recog-
nize that SHM is not a deterministic problem. Instead, they proposed to address
SHM through more data-driven approaches based on general statistical-pattern-
recognition-basedmethodologies.Althoughmany variations of this statistical pattern
recognition approachhavebeenproposed in different SHMstudies; almost all encom-
pass three common components: 1. A deployed sensing system typically monitoring
kinematic response quantities; 2. the extraction of damage-sensitive features from
the raw sensor data; and 3. the statistical classification of those features into damage
and undamaged categories. A common misconception with these approaches is that
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vi Foreword

they preclude the use of physics-based models when, in fact, the pattern recognition
will always be improved when it is based on knowledge of the physics governing the
system response in both its undamaged and damaged states.

This paradigm shift from inverse deterministic modeling to statistical-pattern-
recognition-based SHM began the process of adopting many data-driven algorithms
from disparate fields such as radar and sonar detection, machine learning, speech-
pattern recognition, statistical decision theory and econometrics to the SHMproblem.
In aggregate, these fields represent components of the more general field referred to
as data science. This focus on applying elements of data science to SHM has mostly
replaced the earlier deterministic inverse modeling approaches. Furthermore, data
science offers approaches that can better address the random and systematic changes
in sensor measurements caused by operational and environmental variability and can
produce a quantified probability of detection measure. Both attributes are essential
for the adaptation of SHM by asset owners and regulatory agencies.

Currently, all scientific and engineering fields are benefitting from the rapid
advances in data science and the associated availability of general software tools
for implementing these algorithms. The field of structural health monitoring is one
such beneficiary. However, as in other technical fields, innovation and application-
specific knowledge are required to effectively adapt these general tools to domain-
specific problems. This book provides numerous examples from aerospace, civil, and
mechanical engineering applications that demonstrate how SHM researchers have
taken the tools of data science and creatively adapted them to address many prob-
lems that have been limiting the more widespread adaptation of SHM by industry.
The chapters in this book show the breadth of data science methodologies that can
be applied to SHM. Furthermore, these chapters demonstrate that advances in data
science can impact every aspect of a SHM process. As such, this book will provide
experienced researchers new to the data science field an overview of how such tools
can be used in a damage detection context. Additionally, this book will provide those
just beginning their technical careers with ideas for new research and application
directions to pursue and the associated technologies they will need to learn that will
be the foundation for making future advances in SHM.

Dr. Charles Farrar
Los Alamos National Laboratory
Los Alamos, New Mexico, USA



Preface

Structural health monitoring (SHM)may be defined as the general process of making
an assessment, based on appropriate analyses of in situ measured data, about the
current ability of a structural component or system to perform its intended design
function(s) successfully. A successful SHM strategy may enable significant owner-
ship cost reduction in a life cycle perspective through maintenance optimization,
performance maximization during operation, unscheduled downtime minimization,
and/or enable significant life safety advantage through catastrophic failuremitigation.
Broadly speaking, SHM strategies for most applications necessarily integrate real-
time data acquisition, feature extraction from the acquired data, statistical modeling
of the features, and classification of the features to make informed decisions; the ulti-
mate global goal of SHM systems is to direct economically efficient and/or safety-
maximized structural health decision making for the general purpose of long-term
effective life cycle management.

An explosion of approaches that address some or part of this overall SHM strategy
has occurred in recent years, across many different structural applications ranging
from civil to aerospace to industrial/mechanical systems. A significant fraction of
this growth has been fueled by ubiquitous “Internet of Things (IoT)” data streams
from diverse sources, advances in computing such as cloud computing, and the
adoption and development of advanced analytics techniques drawn from machine
learning and data science. This domain of advancement in SHM can address some
of the paramount challenges in long-term monitoring of civil structures such as,
but not limited to, (i) structural complexity, (ii) operational and environmental vari-
ability (e.g., loading conditions, operating environment), (iii) complex, intercon-
nected degradation and failure modes, (iv) challenges in monitoring very large-scale
structures with potentially localized failure modes (e.g., pitting corrosion), and (v)
data reliability and security, including long-term functionalities of sensor networks.

Damage identification as well as continuous condition monitoring are among the
most important aspects related toproper operationof structural systems to ensure their
integrity, safety, and desirable operational properties. In recent years, an exponential
development of damage identification methods as well as condition monitoring has
been observed. The degradation process of structural systems is usually due to a
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viii Preface

combination of reasons, such as materials aging, ineffective maintenance, design or
constructive issues, unexpected loading events, natural hazards (e.g., earthquakes),
and more.

Most damage identification strategies are developed primarily based on the signals
monitored over time, often seeking for an effective fusion between heterogeneous
sensor data, such as, history of structural accelerations, displacements, strains, time
series of environmental parameters, andmore.However,with the evolution of compu-
tational and information technologies, remarkable improvements are being observed
in data acquisition systems, which, in turn, demand further development of structural
monitoring tools and techniques to deal with large volumes of data. Hence, analyses
that were earlier performed incipiently with a reduced number of variables, i.e., by
means of modal and/or probability/statistical analyses, now are being automatically
carried out with the aid of powerful machine learning methods, such as artificial
neural networks and support vector machines.

One observes, however, that some key aspects still play major roles on the
performance of damage identification algorithms applied to large-scale structural
systems: (i) the high dimensionality of the parameters monitored; (ii) environ-
mental/operational factors, such as temperature, humidity, and traffic; (iii) structural
complexity; (iv) reliability of the measured data; (v) low sensitivity of global struc-
tural response to local damage; and (vi) the need to integrate physical/engineering
knowledge in machine learning algorithms enabling an effective SHM data to
decisions process.

This book has 22 chapters and contains a representative collection of actual
uses of data science in SHM, ranging from civil to mechanical/aerospace system
applications. Chapters 1–3 cover different Bayesian-based strategies for structural
damage detection. Chapters 4–8 address the use of data-driven techniques and
their aptness for real-time structural condition assessment, especially considering
raw vibration measurements as inputs. Chapters 9 and 10 continue this discus-
sion by bringing physics-based and reduced order modeling aspects into the SHM
paradigm. Chapter 11 discusses how deep learning can assist image processing
for increasing safety in construction sites. Chapters 12–15 consider the influence
of both environmental and operational effects and present strategies to circumvent
them when it comes to structural damage detection. Chapters 16–20 explore some
recent concepts regarding explainable artificial intelligence, physics-informed and
interpretable machine learning, as well as novel developments involving population-
based SHM. Chapters 21 and 22 conclude this book with an overview of structural
damage detection via remotely sensed data and with a discussion about new designs
for SHM systems.
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In summary, this book is addressed to scientists, engineers, designers, technicians,
stakeholders, and contractors who seek an up-to-date view of the recent advances in
the field of data science applied to SHM.

Juiz de Fora, Brazil
Porto, Portugal
Perugia, Italy
La Jolla, USA

Alexandre Cury
Diogo Ribeiro

Filippo Ubertini
Michael D. Todd
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Vibration-Based Structural Damage
Detection Using Sparse Bayesian
Learning Techniques

Rongrong Hou , Xiaoyou Wang , and Yong Xia

Abstract Vibration-based structural damage detection constantly involves uncer-
tainties, including measurement noise, methodology, and modeling errors. Bayesian
inference provides a rigorous framework to consider uncertainties and obtain prob-
abilistic solutions. In recent decades, sparse Bayesian learning (SBL) and the
closely related automatic relevance determinationmodel have been extensively used,
resulting in sparse solution. Given that damage typically occurs in limited sections
or members, particularly at the early stage of structural failure, the SBL method is
developed for structural damage detection using vibration data. However, analytical
posterior probability density function is unavailable owing to the high-dimensional
integral in the evidence and nonlinear relationship between the measured modal
and structural parameters. Therefore, a range of techniques are utilized to obtain
solutions based on analytical approximations or numerical sampling, including the
expectation–maximization, Laplace approximation, variational Bayesian inference,
and delayed rejection adaptive metropolis techniques. Numerical and experimental
examples demonstrate that the proposed SBL method can accurately locate and
quantify sparse damage. In addition, the mechanisms, advantages, and limitations of
different analytical and numerical techniques are described and compared, and the
corresponding suggestions for their applications are proposed.

Keywords Vibration-based structural damage detection · Uncertainties · Sparse
Bayesian learning · Analytical approximations · Numerical sampling

R. Hou · X. Wang · Y. Xia (B)
The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
e-mail: ceyxia@polyu.edu.hk

R. Hou
e-mail: rongrong.hou@connect.polyu.hk

X. Wang
e-mail: xiaoyou.wang@connect.polyu.hk

R. Hou
Harbin Institute of Technology, Harbin, China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Cury et al. (eds.), Structural Health Monitoring Based on Data Science Techniques,
Structural Integrity 21, https://doi.org/10.1007/978-3-030-81716-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81716-9_1&domain=pdf
http://orcid.org/0000-0002-3099-9658
http://orcid.org/0000-0002-4588-2460
http://orcid.org/0000-0001-5319-5858
mailto:ceyxia@polyu.edu.hk
mailto:rongrong.hou@connect.polyu.hk
mailto:xiaoyou.wang@connect.polyu.hk
https://doi.org/10.1007/978-3-030-81716-9_1


2 R. Hou et al.

1 Sparse Bayesian Learning for Structural Damage
Detection

Structural damage detection constantly involves uncertainties, which may be cate-
gorized as modeling errors, methodology errors, and measurement noise [1–3].
Moreover, operational and environmental variations cause significant changes in the
identified modal parameters [4, 5]. Numerous studies have proposed probabilistic
approaches to address the uncertainties in structural damage detection. Represen-
tative approaches include perturbation techniques [3, 6], Monte Carlo simulation
[7], statistical pattern recognition [8], and Bayesian methods [9–13]. Among these
methods, Bayesian inference has attracted considerable attention since the 1990s [9].

In practice, structural damage commonly appears in a few sections or members
only, particularly at the early stage. Therefore, structural damage possesses spar-
sity compared with the numerous elements of the entire structure. Sparse Bayesian
learning (SBL) is effective in promoting sparsity in the inferred predictors, which
treats the sparse feature as the prior [14]. SBL is widely applied to sparse signal
reconstruction and compressed sensing [15, 16] and has been developed for struc-
tural damage detection in recent years [17–22]. However, the application of the
SBL framework to the damage detection of real structures suffers from the common
limitation. For the majority of problems, an analytical posterior probability density
function (PDF) is not available owing to the computationally prohibited integration
in the evidence, which is the result of the high-dimension and nonlinear relationship
between the measured modal data and structural parameters [23]. Analytical and
numerical techniques have been developed to circumvent this difficulty.

The analyticalmethods include hierarchicalmodelling and asymptotic techniques.
Huang et al. [17, 18] proposed a hierarchical Bayesian model (HBM) by expanding
the nonlinear eigenvalue problem as the product of a series of coupled hierar-
chical linear PDFs, thereby simplifying the calculation and making the posterior
PDF analytically tractable. However, HBM is of low efficiency given the need to
estimate a series of additional parameters introduced by hyper-priors. Moreover,
the successful application of HBM requires proper assumptions of all hyper-priors,
which is not guaranteed owing to the demand for sufficient information on individual
hyper-parameter. Given that the uncertainties of the posterior are directly related to
the variance of the prior [24], the inappropriate assumptions of hyper-priors tend to
increase the uncertainties of the prior, further reduce the robustness of the model,
and lead to a decrease in the sensitivity of the posterior PDF to the prior information.
This phenomenon worsens with the increase of hierarchical layers.

The numerical techniques include the expectation–maximization (EM) technique
and sampling techniques, such as Markov chain Monte Carlo (MCMC) simula-
tion. With MCMC, samples consistent with the posterior probability distribution
can be generated [25, 26]. Thereafter, the asymptotic solution of the posterior PDF
is obtained from these samples. One advantage of the MCMC approach is that it
can provide a full characterization of the posterior PDF instead of merely focusing
on the most probable values (MPVs) [25]. However, the basic MCMC technique
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is extraordinarily time-consuming for models containing numerous parameters or
involving partial differential equations [26]. To improve computational efficiency,
the Metropolis–Hastings algorithm and Gibbs sampling (GS) technique, as special
cases of MCMC, have been developed to deal with multi-dimensional problems.
Huang et al. [19] applied the GS technique to provide a full treatment of the posterior
PDFs of uncertain parameters for structural damage assessment. However, GS is only
applicable to standard distributions and converges slowly for numerous hierarchical
models [24].

In this regard, this chapter will introduce three techniques based on analytical
approximations or numerical sampling to improve the efficiency, accuracy, and
feasibility of the aforementioned algorithms.

2 Bayesian Probabilistic Framework

2.1 Structural Model Class

The structural model class M is based on a set of linear structural models, in
which each model has a known mass matrix M and uncertain stiffness matrix K
parameterized by the stiffness parameters as follows:

K =
n∑

i=1

αiKi , (1)

where Ki is the ith element stiffness matrix that can be obtained from the finite
element model of a structure, αi is the ith element stiffness parameter to be updated
according to the observed data, and n is the number of structural elements. The
change in mass is assumed to be negligible when damage occurs.

Suppose that the element stiffness parameter reduces to αi , the stiffness reduction
factor (SRF) is defined as follows [27]:

θi = αi − αi

αi
. (2)

SRF, as the damage index, indicates damage location and damage severity. Given
that structural damage typically occurs at several sections or members only, θ is a
sparse vector with only several nonzero components at the damaged locations.

The rth structural eigenvalue and the corresponding mode shape are governed by
the following eigenvalue equation:

(K − λrM)φr = 0. (3)
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Suppose that Nm modes of vibration have been identified from modal testing, the
identified eigenvalues and mode shapes can be expressed as follows:

λ̂ =
{
λ̂1, λ̂2, . . . , λ̂Nm

}
, (4)

ψ̂ =
[
φ̂1, φ̂2, . . . , φ̂Nm

]
, (5)

where φ̂r ∈ RNp denotes the identified mode shape of the rth mode at the Np

measurement points. A set of modal data is expressed as follows:

D =
[
λ̂, ψ̂
]
. (6)

2.2 Bayesian Model Updating Framework

Bayes’ theorem is used to develop a PDF for the damage indexes θ , conditional on
the measured modal data and chosen class of models [28]:

p(θ |D,M) = c−1 p(D|θ,M)p(θ |M), (7)

where p(θ |D,M) is the posterior PDF of the damage indexes given themodal dataD
and model classM; c = p(D|M) is a normalizing constant referred to as evidence;
p(D|θ,M) is the likelihood function representing the PDF of modal data given the
damage indexes; and p(θ |M) is the prior PDF of the damage indexes. To simplify
the notation, the dependence of the PDF on M is dropped thereafter.

2.3 Likelihood Function for Structural Modal Parameters

According to the axioms of probability, PDF of the modal data p(D|θ) in Eq. (7)
can be expressed as follows [28]:

p(D|θ) =
Nm∏

r=1

p
(
λ̂r |θ
)
p
(
φ̂r |θ
)
. (8)

Given the damage index, the modal parameters are deemed independent mode by
mode.

Themeasurement errors εr and er are assumed to follow the Gaussian distribution
with a zero mean and diagonal variance matrix [29], which are, respectively, given
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as follows:

εr = λ̂r − λr

λ̂r

∼ N
(
0, β−1

)
, (9)

er = φ̂r − φr ∼ N
(
0, γ −1 I

)
, (10)

where the hyper-parametersβ and γ equal the reciprocal of the variance, representing
the precision of the measured eigenvalue and mode shapes, respectively.

The resulting likelihood function of θ based on the measured eigenvalues λ̂ and
φ̂ are given as follows:

p
(
λ̂|θ, β

)
=
(

β

2π

) Nm
2

exp

⎧
⎨

⎩−β

2

Nm∑

r=1

[
λ̂r − λr (θ)

λ̂r

]2⎫⎬

⎭, (11)

p
(
φ̂|θ, γ

)
=
( γ

2π

) Np ·Nm
2

exp

{
−γ

2

Nm∑

r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2

}
. (12)

2.4 Prior PDF of the Damage Indexes

In the Bayesian framework, the damage indexes θ are assigned with a prior distribu-
tion according to engineering judgments and knowledge.Moreover, the suggestion is
to adopt the conjugate prior to simplify the calculation. SBL proposes to use the auto-
matic relevance determination (ARD) prior to incorporate a preference for sparser
parameters [17, 18, 30]. ARD prior following the Gaussian distribution is conjugated
to the likelihood function in this study and adopted as the prior, which is expressed
as follows:

p(θ |α) =
n∏

i=1

p(θi |αi ) =
(

1

2π

) n
2

n∏

i=1

[
α

1
2
i exp

{
−1

2
αiθ

2
i

}]
, (13)

where the individual hyper-parameter αi represents the precision of the associated
damage index θi .

2.5 Posterior PDF of the Damage Indexes

From Eq. (7), the posterior PDF of the damage indexes θ is expressed as follows:
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p
(
θ |λ̂, ψ̂,α, β, γ

)
= c−1 p

(
λ̂, ψ̂ |θ , β, γ

)
p(θ |α)

= c−1 p
(
λ̂|θ , β

)
p
(
ψ̂ |θ , γ

)
p(θ |α)

= c−1

(
β

2π

) Nm
2 ( γ

2π

) Np ·Nm
2

(
1

2π

) n
2

(
n∏

i=1

α
1
2
i

)

exp

⎧
⎨

⎩−β

2

Nm∑

r=1

[
λ̂r − λr (θ)

λ̂r

]2
− γ

2

Nm∑

r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2
− 1

2

n∑

i=1

(
αiθ

2
i

)
}

,

(14)

with the distributions on the right-hand side as defined by Eqs. (11), (12), and (13).

The evidence is calculated by integrating p
(
λ̂, ψ̂, θ |α, β, γ

)
with respect to θ :

c = p
(
λ̂, ψ̂ |α, β, γ

)
=
∫

p
(
λ̂, ψ̂, θ |α, β, γ

)
dθ . (15)

The maximum posterior (MAP) estimate of the damage indexes θ̃ in Eq. (14) can

be calculated by maximizing ln p
(
θ |λ̂, ψ̂,α, β, γ

)
, or equivalently minimizing the

following objective function:

J (θ) = β

Nm∑

r=1

[
λ̂r − λr (θ)

λ̂r

]2
+ γ

Nm∑

r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2
+

n∑

i=1

(
αiθ

2
i

)
. (16)

The items unrelated with θ are omitted in the preceding equation. Note that
Eq. (16) is similar to the regularization technique, in which the first two terms are
equivalent to the data-fitting terms with different weights and the third term to the
regularization term with α as the regularization parameter. We will demonstrate that
Eq. (16) closely resembles the l0 regularization (Refer to Eq. 20).

The minimization of Eq. (16) cannot be directly obtained because parameters
{α, β, γ } are unknown. MPVs of the hyper-parameters {α, β, γ } can be calculated

by maximizing p
(
α, β, γ |λ̂, ψ̂

)
. In particular,

p
(
α, β, γ |λ̂, ψ̂

)
=

p
(
λ̂, ψ̂ |α, β, γ

)
p(α, β, γ )

p
(
λ̂, ψ̂
) ∝ p

(
λ̂, ψ̂ |α, β, γ

)
, (17)

where we assume that p(α, β, γ ) is uniformly distributed as hyper-prior informa-
tion is unknown. Consequently, the hyper-parameters {α, β, γ } can be estimated

by maximizing p
(
λ̂, ψ̂ |α, β, γ

)
(i.e., evidence defined in Eq. 15). However, the

computation of the integral in Eq. (15) is intractable because the frequencies and
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mode shapes are in nonlinear relations with θ . Therefore, analytical and numerical
techniques are required. In the following sections, EM, Laplace’s approximation
and variational Bayesian inference (VBI), and delayed rejection adaptive metropolis
(DRAM) algorithm will be introduced to solve this problem.

3 Bayesian Inference Using the EM Algorithm

The EM algorithm is proposed to maximize the natural log evidence

ln p
(
λ̂, ψ̂ |α, β, γ

)
iteratively. This algorithm alternates between performing an

expectation (E) step andmaximization (M) step. In particular, θ is regarded as a latent

variable, and
{
θ , λ̂, ψ̂

}
is referred to as the complete data set. The complete-data

natural log likelihood function is expressed as follows:

ln p
(
θ , λ̂, ψ̂ |α, β, γ

)
= ln p

(
λ̂|θ, β

)
+ ln p

(
ψ̂ |θ, γ

)
+ ln p(θ |α). (18)

Given the difficulty of direct maximization of ln p
(
λ̂, ψ̂ |α, β, γ

)
with respect to

{α, β, γ }, the EM algorithm proposes to maximize the expectation of the complete-

data E
[
ln p
(
θ , λ̂, ψ̂ |α, β, γ

)]
instead [31, 32], such that:

E
[
ln p
(
θ , λ̂, ψ̂ |α, β, γ

)]
= Nm

2
ln

(
β

2π

)
− β

2
E

⎧
⎨

⎩

Nm∑

r=1

[
λ̂r − λr (θ)

λ̂r

]2⎫⎬

⎭

+ NpNm

2
ln
( γ

2π

)
− γ

2
E

[
Nm∑

r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2

]

+ n

2
ln

(
1

2π

)
+ 1

2

n∑

i=1

ln αi − 1

2

n∑

i=1

αi E
(
θ2
i

)
. (19)

In practice, the complete data set is not available, and the latent variable θ is given

by the posterior distribution p
(
θ |λ̂, ψ̂,α, β, γ

)
. In the E step, given the current

values of the hyper-parameters {α, β, γ }old, the posterior distribution of θ given by

p
(
θ |λ̂, ψ̂,αold, βold, γ old

)
is used to determine the expectation of the complete-data

E
[
ln p
(
θ , λ̂, ψ̂ |α, β, γ

)]
. In the subsequentM step, the new estimate {α, β, γ }new is

obtained by maximizing the expectation with respect to {α, β, γ }. By differentiating
Eq. (19) with respect to α, β, and γ , and setting these derivatives to zero thereafter,
the hyper-parameters are solved as follows:
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αi = 1

Eθ

(
θ2
i

) , (20)

β = Nm

Eθ

{∑Nm
r=1

[
λ̂r−λr (θ)

λ̂r

]2} , (21)

γ = Np · Nm

Eθ

[∑Nm
r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2

] , (22)

where Eθ denotes an expectation with respect to the posterior distribution of θ using
the current estimates of the hyper-parameters {α, β, γ }old.

3.1 Posterior Sampling

Posterior sampling is conducted to approximate the expectations in Eqs. (20), (21),

and (22). We first approximate the conditional posterior PDF p
(
θ |λ̂, ψ̂,α, β, γ

)
for

stiffness parameter θ in (14) by a multivariate Gaussian distribution using Laplace
approximation [9]. The mean of the Gaussian distribution is the MAP estimate θ̃ ,
which is calculated by minimizing the objective function in Eq. (16). The covariance
matrix 	θ of the Gaussian distribution is equal to the inverse of the Hessian matrix
calculated at θ̃ , where the (i, j) components of the Hessian matrix is given as follows:

Hi j

(
θ̃
)

= ∂2 J (θ)

∂θ i∂θ j

∣∣∣∣
θ=θ̃

. (23)

We calculate the variance for each damage index θi independently [28]. There-

after, we generate samples from the posterior PDF p
(
θ |λ̂, ψ̂,α, β, γ

)
, and the

probabilistic information encapsulated in p
(
θ |λ̂, ψ̂,α, β, γ

)
is characterized by

the posterior samples θ (k), k = 1, . . . , K . The expectations in Eqs. (20), (21), and
(22) are eventually approximated by Eqs. (24), (25), and (26), respectively:

Eθ

(
θ2
i

) =
∫

θ2
i p
(
θi |λ̂, ψ̂,α, β, γ

)
dθi ≈ 1

K

K∑

k=1

(
(θi )

(k)
)2

, (24)

Eθ

⎧
⎨

⎩

Nm∑

r=1

[
λ̂r − λr (θ)

λ̂r

]2⎫⎬

⎭ =
∫ Nm∑

r=1

[
λ̂r − λr (θ)

λ̂r

]2
p
(
θi |λ̂, ψ̂,α, β, γ

)
dθ
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≈ 1

K

K∑

k=1

Nm∑

r=1

[
λ̂r − λr

(
θ (k))

λ̂r

]2
, (25)

Eθ

[
Nm∑

r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2

]
=
∫ Nm∑

r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2
p
(
θi |λ̂, ψ̂,α, β, γ

)
dθ

≈ 1

K

Nm∑

r=1

∥∥∥φ̂r − φr

(
θ (k))
∥∥∥
2
. (26)

3.2 Likelihood Sampling

Given the complexity of the posterior PDF p
(
θ |λ̂, ψ̂,α, β, γ

)
, which may not be

Gaussian, another sampling method is based on the likelihood function of θ . N s sets

of modal data D j =
[
λ̂

( j)
, ψ̂

( j)
]
( j = 1, 2, . . . , Ns) are generated according to the

measured modal data following Gaussian distribution. The mean of the Gaussian
distribution is equal to the measured modal data with assigned variance. For each
data set, given the current estimates of the hyper-parameters {α, β, γ }, the MAP
estimate θ̃ is calculated by minimizing the objective function in Eq. (16). Thereafter,
the expectation is taken with respect to the MAP values of θ as follows:

Eθ̃

(
θ2
i

) = E
(
θ̃2
i

)
, (27)

Eθ̃

⎧
⎨

⎩

Nm∑

r=1

[
λ̂r − λr (θ)

λ̂r

]2⎫⎬

⎭ = E

⎧
⎪⎨

⎪⎩

Nm∑

r=1

⎡

⎣
λ̂r − λr

(
θ̃
)

λ̂r

⎤

⎦
2
⎫
⎪⎬

⎪⎭
, (28)

Eθ̃

[
Nm∑

r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2

]
= E

(
Nm∑

r=1

∥∥∥φ̂r − φr

(
θ̃
)∥∥∥

2

2

)
. (29)

3.3 Summary

Each iteration uses the estimates of {α, β, γ } to determine the posterior distribution of
the latent variable θ . The current distribution of θ is utilized to improve the estimates
of {α, β, γ }. The proposed EM algorithm is implemented as follows:

1. Initialize the hyper-parameters {α, β, γ }(0) and latent variable θ (0).
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2. At the jth iteration,

E step: Compute theMAP estimates of θ̃
( j)

throughminimizing J (θ) in Eq. (16)
given hyper-parameters {α, β, γ }( j−1); calculate the expectations in Eqs. (20)–
(22) using Eqs. (24)–(26) for the posterior sampling, and Eqs. (27)–(29) for the
likelihood sampling;

M step: Through maximization of E
[
ln p(θ , λ̂, ψ̂ |α, β, γ )

]
with respect to α,

β, and γ , update the hyper-parameters to {α, β, γ }( j) according to Eqs. (20),

(21), and (22), given θ̃
( j)
.

3. Repeat Step 2 for the (i + 1)th iteration until the convergence criterion is met

(i.e., ‖θ̃ ( j) − θ̃
( j−1)‖2/‖θ̃ ( j)‖2 ≤ Tol).

Posterior sampling is conducted after E step once θ̃
( j)

is obtained at each iteration
step. By contrast, likelihood sampling is conducted at the initialization stage only.

4 Bayesian Inference Based on the Laplace Approximation

The system is assumed to be globally identifiable based on the measurements. By

employing the Laplace approximation, p
(
λ̂, ψ̂, θ |α, β, γ

)
, which is to be integrated

in Eq. (15), can be approximated as a Gaussian distribution [31]:

p
(
λ̂, ψ̂, θ |α, β, γ

) ∼= p
(
λ̂, ψ̂, θ̃ |α, β, γ

)
exp

{
−1

2

(
θ − θ̃

)T
A
(
θ − θ̃

)}
, (30)

where θ̃ represents the mode of p
(
λ̂, ψ̂, θ |α, β, γ

)
and is equivalent to the MAP

estimate calculated using Eq. (16). Matrix A denotes the inverse of the variance,
which equals the Hessian matrix at θ̃ and is defined as follows:

A = −∇∇ ln p
(
λ̂, ψ̂, θ |α, β, γ

)∣∣∣
θ=θ̃

= ∂2 J (θ)

∂θ i∂θ j

∣∣∣∣
θ=θ̃

= W + βH + γP. (31)

The Hessian matrix is decomposed into three items (i.e., W is a diagonal matrix
with entries Wi i = αi ), and H and P are given as follows:

Hi j = ∂

∂θi∂θ j

1

2

Nm∑

r=1

⎡

⎣
λ̂r − λr

(
θ̃
)

λ̂r

⎤

⎦
2

=
Nm∑

r=1

1

λ̂2
r

·
∂λr

(
θ̃
)

∂θi
·
∂λr

(
θ̃
)

∂θ j
−

Nm∑

r=1

⎡

⎣
λ̂r − λr

(
θ̃
)

λ̂r

⎤

⎦ · 1

λ̂r

·
∂λr

(
θ̃
)

∂θi∂θ j
, (32)
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Pi j = ∂

∂θi∂θ j

1

2

Nm∑

r=1

Np∑

k=1

[
φ̂k,r − φk,r

(
θ̃
)]2

=
Nm∑

r=1

Np∑

k=1

∂φk,r

(
θ̃
)

∂θi
·
∂φk,r

(
θ̃
)

∂θ j
−

Nm∑

r=1

Np∑

k=1

[
φ̂k,r − φk,r

(
θ̃
)]

·
∂φk,r

(
θ̃
)

∂θi∂θ j
. (33)

The derivatives of the eigenvalues and eigenvectors with respect to the stiffness
parameter can be calculated using the Nelson’s method [33] or the substructural
approach [34].

Given that the integral of a normalizedGaussian distribution equals 1, the evidence

p
(
λ̂, ψ̂ |α, β, γ

)
can be solved as follows:

p
(
λ̂, ψ̂ |α, β, γ

)
=
∫

p
(
λ̂, ψ̂, θ |α, β, γ

)
dθ

∼= p
(
λ̂, ψ̂, θ̃ |α, β, γ

)
·
∫

exp

{
−1

2

(
θ − θ̃

)T
A
(
θ − θ̃

)}
dθ

= p
(
λ̂, ψ̂, θ̃ |α, β, γ

) (2π)n/2

|A|1/2 , (34)

In this way, the asymptotic analytical expression of the evidence is obtained. For
convenience of calculation, the logarithm form is used and shown as follows:

ln p
(
λ̂, ψ̂ |α, β, γ

)
= ln p

(
λ̂, ψ̂, θ̃ |α, β, γ

)
+ n

2
ln(2π) − 1

2
ln|A|

= ln p
(
λ̂|θ̃ , β

)
ln p
(
λ̂|θ̃ , β

)
+ ln p

(
ψ̂|θ̃ , γ

)

+ ln p
(
θ̃ |α
)

+ n

2
ln(2π ) − 1

2
ln|A|

= Nm

2
ln

(
β

2π

)
+ NpNm

2
ln
( γ

2π

)
+ n

2
ln

(
1

2π

)

+ 1

2

n∑

i=1

ln αi − 1

2

n∑

i=1

(
αi θ̃

2
i

)
− β

2

Nm∑

r=1

⎡

⎣
λ̂r − λr

(
θ̃
)

λ̂r

⎤

⎦
2

− γ

2

Nm∑

r=1

∥∥∥φ̂r − φr

(
θ̃
)∥∥∥

2

2
+ n

2
ln(2π) − 1

2
ln|A|. (35)

MPVs of {α, β, γ } can be estimated by maximizing p
(
λ̂, ψ̂ |α, β, γ

)
. From

Eq. (35), setting the derivative of p
(
λ̂, ψ̂ |α, β, γ

)
with respect to α, β, γ equal

to zero results in the following equations:
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αi = 1

θ̃2
i + [(W+βH + γP)−1

]
i i

, (36)

β = Nm

∑Nm
r=1

[
λ̂r−λr

(
θ̃
)

λ̂r

]2
+∑n

i=1

[
(W+βH + γP)−1H

]
i i

, (37)

γ = NmNp

∑Nm
r=1

∑Np

k=1

[
φ̂k,r − φk,r

(
θ̃
)]2 +∑n

i=1

[
(W+βH + γP)−1P

]
i i

. (38)

Note that the solutions of θ̃ (Eq. 16) and {α, β, γ } are coupled. Therefore, they
can be determined from an iterative process of Eqs. (16) and (36)–(38).

The preceding formulations can be summarized as follows:

1. Initialize the hyper-parameters {α, β, γ }(0) and θ (0).

2. For j = 1, 2, . . ., update θ̃
( j)

using Eq. (16) with α( j−1), β( j−1), γ ( j−1).

3. Update α
( j)
i using Eq. (36) with θ̃

( j)
, β( j−1), γ ( j−1).

4. Update β( j) using Eq. (37) with θ̃
( j)

, α
( j)
i , γ ( j−1).

5. Update γ ( j) using Eq. (38) with θ̃
( j)

, α
( j)
i , β( j).

6. Let j = j + 1, repeat Steps 2–5 until the convergence criterion is satisfied (i.e.,

‖θ̃ ( j) − θ̃
( j−1)‖2/‖θ̃ ( j)‖2 ≤ Tol).

5 Bayesian Inference Based on the VBI-DRAM Algorithm

5.1 VBI

The mechanism of VBI is to propose a tractable PDF to approximate the target PDF

(i.e., posterior PDF p
(
θ |λ̂, ψ̂,α, β, γ

)
) [31].

The evidence can be calculated as follows:

c = p
(
λ̂, ψ̂ |α, β, γ

)
=

p
(
λ̂, ψ̂, θ |α, β, γ

)

p
(
θ |λ̂, ψ̂,α, β, γ

) . (39)

Taking the logarithm of the two sides in Eq. (39), the formulation changes as
follows:

ln p
(
λ̂, ψ̂ |α, β, γ

)
= ln

p
(
λ̂, ψ̂, θ |α, β, γ

)

Q
− ln

p
(
θ |λ̂, ψ̂,α, β, γ

)

Q
, (40)
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where Q(θ ,α, β, γ ) is the proposed PDF to approximate p
(
θ |λ̂, ψ̂,α, β, γ

)
, which

is simplified as Q.

Given that lnp
(
λ̂, ψ̂ |α, β, γ

)
is irrelevant to θ , taking the expectation of the two

sides in Eq. (40) with respect to Q yields the following equations:

lnp
(
λ̂, ψ̂ |α, β, γ

)
= L(Q) + DKL

{
Q||p
(
θ |λ̂, ψ̂,α, β, γ

)}
, (41)

L(Q) = EQ

⎡

⎣ln
p
(
λ̂, ψ̂, θ |α, β, γ

)

Q

⎤

⎦, (42)

DKL

{
Q||p
(
θ |λ̂, ψ̂,α, β, γ

)}
=
∫

Q ln
Q

p
(
θ |λ̂, ψ̂,α, β, γ

)dθ , (43)

where L(Q) represents the lower bound of Q and DKL is the KL divergence [32]

between Q and posterior PDF p
(
θ |λ̂, ψ̂,α, β, γ

)
.

Moreover, DKL ≥ 0 has been proven [31]. DKL = 0 when Q =
p
(
θ |λ̂, ψ̂,α, β, γ

)
. Therefore, increasing the proximity of Q to the posterior PDF

is equivalent to minimizing DKL. Given that the posterior PDF p
(
θ |λ̂, ψ̂,α, β, γ

)

is unknown, DKL cannot be calculated directly. According to Eq. (41), minimizing
DKL is equivalent to maximize L(Q) [31]. To obtain the independent posterior PDF
of the damage index and parameters, Q is factorized into two components based on
mean field theory [35] as follows:

Q(θ ,α, β, γ ) = q(θ)q(α, β, γ ). (44)

The maximization of L(Q) can be achieved by optimizing each factor in turn

through solving the expectation of the numerator p
(
λ̂, ψ̂, θ |α, β, γ

)
in L(Q)

with respect to other factors [31]. Therefore, factor q(α, β, γ ) can be derived by

calculating the expectation of lnp
(
λ̂, ψ̂, θ |α, β, γ

)
with respect to θ :

ln q(α, β, γ ) = Eθ

[
ln p
(
λ̂, ψ̂, θ |α, β, γ

)]
+ const. (45)

Parameters {α, β, γ } are assumed to be independent from each other, leading to
the following factorization:

q(α, β, γ ) = q(α)q(β)q(γ ), (46)
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q(α) =
n∏

i=1

q(αi ). (47)

Therefore,

ln q(α, β, γ ) =
n∑

i=1

ln q(αi ) + ln q(β) + ln q(γ ). (48)

According to Eqs. (19) and (45), the logarithm of the posterior PDF of the
individual parameter is obtained thereafter, and all parameters follow the gamma
distribution:

q(αi ) ∝ (αi )
1
2 · exp

{
−αi

2
Eθ

(
θ2
i

)}
, (49)

q(β) ∝ (−β)
Nm
2 · exp

⎧
⎨

⎩−β

2
Eθ

⎛

⎝
Nm∑

r=1

[
λ̂r − λr (θ)

λ̂r

]2⎞

⎠

⎫
⎬

⎭, (50)

q(γ ) ∝ (γ )
NpNm

2 · exp
{

−γ

2
Eθ

[
Nm∑

r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2

]}
. (51)

Therefore, the mean and variance of each parameter are calculated as follows:

E(αi ) = 3

E
(
θ2
i

) ; Var(αi ) = 6
[
E
(
θ2
i

)]2 , (52)

E(β) = Nm + 2

Eθ

(∑Nm
r=1

[
λ̂r−λr (θ)

λ̂r

]2) ; Var(β) = 2Nm + 4
{
Eθ

(∑Nm
r=1

[
λ̂r−λr (θ)

λ̂r

]2)}2 , (53)

E(γ ) = NpNm + 2

Eθ

[∑Nm
r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2

] ; Var(γ ) = 2NpNm + 4
{
Eθ

[∑Nm
r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2

]}2 .

(54)

Factor q(θ) can be similarly derived by calculating the expectation of

lnp
(
λ̂, ψ̂, θ |α, β, γ

)
with respect to {α, β, γ }:

ln q(θ) = Eα,β,γ

[
lnp
(
λ̂, ψ̂, θ |α, β, γ

)]
+ const, (55)

where the items independent with θ are merged into the constant item. Therefore,
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q(θ) ∝ exp

⎧
⎨

⎩− E(β)

2

Nm∑

r=1

[
λ̂r − λr (θ)

λ̂r

]2

− E(γ )

2

Nm∑

r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2
−

n∑

i=1

[
E(αi )

2
· θ2

i

]}
. (56)

Equations (52)–(54) and (56) are coupled and should be iteratively calculated.
The iterations are corresponding to the variational Bayesian EM step [31]. Given
that VBI does not guarantee to converge to the global optimum, the parameters are
initialized differently at the beginning of the iteration. The iterative process requires

the calculation of three expectations, namely E
(
θ2
i

)
, Eθ

(∑Nm
r=1

[
λ̂r−λr (θ)

λ̂r

]2)
, and

Eθ

[∑Nm
r=1

∥∥∥φ̂r − φr (θ)

∥∥∥
2

2

]
, which is a full Bayesian analysis that considers poste-

rior uncertainties of θ . However, the specific distribution of θ cannot be directly
recognized from Eq. (56) because of the nonlinear relationship between θ and the
modal parameters. In the next subsection, the numerical DRAM algorithm is used
to obtain the statistical distribution of θ .

5.2 DRAM Algorithm

The DRAM algorithm is a combination of the DR and AM algorithms and is appli-
cable to standard and nonstandard probabilistic distributions, provided that the prob-
ability proportional to the target PDF is available [36]. This algorithm is considerably
efficient when applied to high-dimensional problems [37].

The DRAM algorithm is used to generate samples of θ using Eq. (56). A two-
layer DR is used for simplicity and efficiency. That is, if the secondary sample is
rejected, then the new sample is set equal to the previous sample, and a third-layer
sampling is no longer performed. A Gaussian distribution N (μ,C) is adopted as
the proposed PDF. To accelerate the convergence and shorten the burn-in period of
the DRAM algorithm, the mean μ of the Gaussian distribution is initially set as θ̃ ,
which is calculated by minimizing the objective function in Eq. (16). The mean μ

and covariance matrix C are adjusted with the progress of sampling. The DRAM
algorithm is described as follows.

Given the proposed sampling PDFN (μ,C), sample θ (1), scale factor ρ to reduce
the covariance (ρ < 1), bound Nt, trivial constant ε, and number of samples Ns,

1. Generate the candidate sample x1 ~ N (μ,C).
2. Calculate the acceptance ratio of the candidate sample,

ξ j1
(
θ ( j), x1

) = min
{
1,

q(x1)Nθ( j) (x1,C)

q(θ ( j))Nx1(θ
( j),C)

}
.

3. Randomly generate μ from uniform distribution U(0, 1).
4. If μ < ξ j1

(
θ ( j), x1

)
, θ ( j+1) = x1, then go to Step 8; otherwise, go to Step 5.
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5. Generate the secondary candidate sample x2 ~ N (μ, ρC).
6. Calculate the acceptance ratio of the secondary candidate sample,

ξ21(x2, x1) = min
{
1,

q(x1)Nx2 (x1,C0)

q(x2)Nx1 (x2,C0)

}
.

ξ j2
(
θ( j), x2

) = min
{
1,

q(x2)Nx1 (x2,C)N
θ( j) (x2,C)[1−ξ21(x2,x1)]

q(θ( j))Nx1(θ
( j),C)Nx2(θ

( j),C)[1−ξ j1(θ( j),x1)]

}
.

7. If μ < ξ j2
(
θ ( j), x2

)
, then θ ( j+1) = x2. Else, θ

( j+1) = θ ( j).
8. Adjust the sampling covariance

C =
{

C, j + 1 < Nt

Sd cov
(
θ (1), θ (2), . . . , θ ( j+1))+ Sdε Id, j + 1 > Nt

.

9. Let μ = θ ( j+1).
10. Let j = j + 1, repeat Steps 1–8 until j = (ns − 1).
11. The samples following the posterior PDF of θ is obtained,(

θ (1), θ (2), . . . , θ (Ns)
)
. The most probable value and uncertainty of θ are

calculated from the samples.

5.3 Summary

The damage index θ is sampled using the DRAM sampling technique according
to Eqs. (16) and (56), and MPVs θ are calculated from the obtained samples. The
parameters {α, β, γ } are updated according to Eqs. (52)–(54). The proposed VBI-
DRAM algorithm is implemented as follows:

1. Initialize the hyper-parameters {α, β, γ }(0) and latent variable θ (0).
2. At the jth iteration,

Solve θ̃ by minimizing J (θ) in Eq. (16);
Let μ0 = θ (1) = θ̃ , generate ns samples of θ

(
θ (1) ∼ θ (Ns)

)
based on the DRAM

algorithm according to Eq. (56), and identify θ
( j)
MAP;

Based on the generated samples, calculate E(αi )
( j) andVar(αi )

( j) fromEq. (52);
Calculate E(β)( j) and Var(β)( j) from Eq. (53);
Calculate E(γ )( j) and Var(γ )( j) from Eq. (54).

3. Repeat Step 2 for the (j + 1)th iteration until the convergence criterion is met
(i.e., ‖θ ( j)

MAP − θ
( j−1)
MAP ‖2/‖θ ( j)

MAP‖2 ≤ Tol).

6 Numerical Example

6.1 Model Description

As shown in Fig. 1, a cantilever beam is first utilized as a numerical preliminary study.
The mass density and Young’s modulus are 7.67× 103 kg/m3 and 7.0 × 1010 N/m2,
respectively. Thebeam ismodeledwith 45 equalEuler–Bernoulli beamelements (i.e.,
n = 45), 20-mm long each. Damage is simulated by the reduction of the bending
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Fig. 1 Geometric configuration of the beam structure (unit: mm)

stiffness while mass remains unchanged. Element 1 at the clamped end and Element
23 at the mid-span (Fig. 1) are damaged by 50% (i.e., SRF(1) = SRF(23) = −50%).

6.2 Damage Identification

Natural frequencies are used for damage detection. Items associated with mode
shapes are excluded, and the objective function in Eq. (16) is simplified as follows:

J1(θ) = β

Nm∑

r=1

[
λ̂r − λr (θ)

λ̂r

]2
+

n∑

i=1

(
αiθ

2
i

)
. (57)

The first six natural frequencies of the beam before and after damage are listed in
Table 1.

Damage index and hyper-parameters should be initialized first. Modal experiment
experiences have shown that natural frequenciesmay comprise 1%noise [38]. There-
fore, a noise level of 1% is assigned to the frequencies (i.e., β(0) = 1/(1%)2 = 1 ×
104). The uncertainty level of damage index is assumed as 10% of the exact damage
index. In particular, the initial value α

(0)
i = 1/(10%)2 = 100 (i = 1, 2, . . . , 45).

Initial damage indexes are set as θ (0) = {0, . . . , 0}T, indicating a lack of damage.
The convergence criterion for the iteration process is set as Tol = 0.01. Identification
error δ is defined as follows:

Table 1 Frequencies of the beam in the undamaged and damaged states

Mode No. Undamaged freq. (Hz) Damaged freq. (Hz) Change ratio (%)

1 6.02 5.75 −4.56

2 37.75 35.67 −5.50

3 105.73 102.44 −3.11

4 207.25 197.69 −4.61

5 342.70 333.96 −2.55

6 512.07 492.45 −3.83

Average of frequency change (%) −4.03
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a. EM algorithm b. Laplace approximation c. VBI-DRAM algorithm
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Fig. 2 Damage identification results of the beam

δ =

√√√√
∥∥∥θ̃ − θ

∥∥∥
2

2

n
, (58)

where θ denotes the actual damage indexes.
For the EMalgorithm using the likelihood sampling, 50 sets of natural frequencies

are generated (i.e., Ns = 50) with Gaussian distribution having a zero mean and
1% standard deviation of the true values. Within EM, each set of sampled natural
frequencies results in one set of MAP values of the damage indexes, from which the
expectations are calculated according to Eqs. (27)–(29). Damage indexes converge
after four iterations only. The mean of the MAP values of θ in the final iteration is
shown in Fig. 2a. The actual damaged elements are correctly located and quantified.

The proposed Laplace approximation algorithm in Sect. 4 is applied to detect
damage. Random noise following the normal distribution with a zero mean and
variance of 1% is directly added to the natural frequencies. After four iterations, the
results converge and the two damaged elements are accurately detected (Fig. 2b).

The noisy natural frequencies used in the Laplace approximation algorithm were
used in the VBI-DRAM algorithm for damage identification. In particular, θ̃ is first
solved according to Eq. (57), and the DRAM algorithm is used thereafter to sample
θ according to the target PDF Eq. (56). In the DRAM algorithm, the covariance
matrix C in Step 1 is assumed as a diagonal matrix with the entry equal to 0.05
and subsequently adjusted according to Step 8. Scale factor ρ is set to 0.01, and
Sd = 2.42/d (d is the dimension of θ , 45 here). Bound Nt is set to 1000, and ε is
set to 10−8 to ensure that the covariance is positive and semidefinite. The number of
samples Ns is set to 5000. Convergence is achieved after four iterations. The actual
damaged elements are correctly identified upon convergence, as shown in Fig. 2c.

The identification errors of the EM technique, Laplace approximation, and VBI-
DRAM algorithm are 0.41%, 0.45%, and 0.42%, respectively. The corresponding
computation times are 5082, 116, and 319 s, respectively, which are obtained using
a PC with Intel Core I7-8700 CPU and 20 GB RAM. Laplace approximation costs
the least computational time because no sampling is required. The EM technique
requires more extensive computational time than that of the VBI-DRAM algorithm.
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The reason is that the numerical sampling of the damage index in the VBI-DRAM
algorithm is directly conducted on PDF (Eq. 56).

7 Experimental Study

7.1 Model Description

Hou et al. [39] tested a three-story steel frame (Fig. 3). Each story is 0.5 m high,
and the span is 0.5 m. Beams and columns have the same cross-section dimension of
75.0 mm × 5.0 mm. The Young’s modulus of the steel is 2.0 × 1011 N/m2, and mass
density is 7.92 × 103 kg/m3. The frame was excited with an instrumented hammer.
The structure was impacted eight times and each impact lasted for 30 s. The eight
signals were averaged to improve the modal identification accuracy. Measurement
points were chosen every 100 mm, resulting in a total of 39 measurement points.
Bruel & Kjaer accelerometers with a magnetic base were firmly mounted on the
frame to measure the vertical acceleration of the beam and horizontal acceleration
of the column. Sampling frequency was set as 2000 Hz.

The frame is divided into 225 Euler–Bernoulli beam elements, with each
measuring 20-mm long. Two cuts were introduced to the frame model. Cuts 1 and 2
were located at the column end and beam/column joint, corresponding to elements
1 and 176, respectively. Saw cuts have the same length of 20 mm and depth of
22.5 mm, leading to a reduction in the moment of inertia of the cut sections by 60%

Fig. 3 Configuration of the
experimental frame (unit:
mm)
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Table 2 Measured modal
data of the frame in
undamaged and damaged
states

Mode No. Undamaged freq.
(Hz)

Damaged freq.
(Hz)

MAC

1 4.23 4.08 (−3.53) 95.78

2 14.03 13.45 (−4.11) 97.49

3 25.45 25.13 (−1.23) 99.01

4 44.81 44.69 (−0.27) 97.59

5 58.12 57.28 (−1.44) 91.46

6 68.36 66.11 (−3.29) 88.14

7 72.27 71.42 (−1.18) 85.80

Average (%) (−2.32) 93.61

Note Values in parentheses are the frequency change ratios (%)
between the damaged and undamaged states. MAC = modal
assurance criterion

(i.e., SRF(1)= SRF(176)= −60%). The measured first seven frequencies andMAC
of the frame structure before and after damage are listed in Table 2.

7.2 Damage Identification

Natural frequencies and mode shapes are used for damage identification. Given
that natural frequencies can be measured more accurately than mode shapes, their
uncertainty levels are set as 1% and 5%, respectively. Thus, the hyper-parameters
are initialized as β(0) = 1 × 104, γ (0) = 400 and α

(0)
i = 100 (i = 1, 2, . . . , 225).

The initial damage indexes and convergence criterion are the same as those in the
numerical example.

EM Algorithm. Given that only one set of measurement modal data is available,
50 sets of modal data D j = [λ̂( j), ψ̂ ( j)] ( j = 1, 2, . . . , 50) are generated through

numerical simulation λ̂
( j)
r ∼ N

(
λ̂r , (0.01λ̂r )

2
)
and φ̂

( j)
r ∼ N

(
φ̂r , (0.05)2 I

)
. MPVs

of the damage indexes are calculated byminimizing the objective function in Eq. (16)
iteratively using the likelihood sampling. The process converges after five iterations,
and only the results in the last iteration are shown in Fig. 4a for brevity. The two
damaged elements are located successfully, while the severity of the damage at
column end is larger than the true value (i.e., with 60% reduction).

Laplace Approximation. Following the iterative procedures summarized in Sect. 4,
the proposed Laplace approximation algorithm is applied to detect damage of the
frame. Convergence is achieved within five iterations, and the results are shown in
Fig. 4b. Upon convergence, two damaged elements are accurately detected with no
false identifications.
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Fig. 4 Damage identification results of the frame, a EM algorithm, b Laplace approximation,
c VBI-DRAM algorithm

VBI-DRAM Algorithm. In the DRAM algorithm, bound Nt is set to 1000 and ε

is set to 10−8 to ensure that the covariance is positive and semidefinite. All other
parameters are the same as the numerical example. Convergence is achieved after
four iterations. The actual damaged elements are correctly identified, as shown in
Fig. 4c.

During the iteration, the hyper-parameters also change continuously. Variations
of α1 and α100 for the Laplace approximation are shown in Fig. 5. Although αi of
all elements are initialized identically as 100, their values upon convergence vary
remarkably. This sparse mechanism of the ARD model involves each variable being
assigned with an individual hyper-parameter. In particular, α100 corresponding to the
undamaged elements becomes significantly large. Therefore, the associated items are
penalized considerably in the optimization (see Eq. 16), forcing the damage indexes
θi to zero and realizing sparse damage detection.

The identification errors of the EM technique, Laplace approximation, and VBI-
DRAM algorithm are 1.71%, 1.29%, and 1.73%, respectively. The corresponding
computation times are 657, 246, and 73 min, respectively. The three techniques have
good accuracy even though damage identification errors increase compared with
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Fig. 5 Variation of hyper-parameters during the iterative process for the Laplace approximation

those in the numerical example. The possible reason is that the number of unknowns
in the experimental example is substantially larger than that in the numerical one.
Similarly, the EM technique requires the most computational time. However, the
VBI-DRAM algorithm is more efficient than the Laplace approximation for this
case because the calculation of the large-scale Hessian matrix is extremely time-
consuming.

8 Comparison and Discussions

From the theoretical aspect, the posterior uncertainties of hyper-parameters are
considered in the VBI-DRAM algorithm, while the other two techniques do not
consider these uncertainties. Laplace approximation assumes that posterior PDF
follows the standard distribution, which may not be realistic in practice. Moreover,
the accuracy of the approximation depends on the dimension of the parameter vector.
If the number of measurements is considerably fewer than the number of model
parameters, then the corresponding results may be inaccurate.

From the computational perspective, the EM technique requires calculating the
Hessian matrix in the posterior sampling or assuming the variance empirically in the
likelihood sampling; both are extremely time-consuming. For the Laplace approx-
imation, solutions of the hyper-parameters are expressed in a closed form. Thus,
damage indexes and hyper-parameters are solved directly without sampling. In VBI,
the calculation of the Hessian matrix is avoided. The numerical sampling of the
damage index is directly conducted on the derived PDF, which is proportional to
its posterior PDF. However, the VBI-DRAM algorithm requires the selection of
numerous parameters to ensure the convergence and stability of the algorithm.

The numerical and experimental examples show that the damage detection results
using the three techniques are accurate. The EM technique is the least efficient.
Laplace approximation is markedly efficient for low-dimensional problems because
no sampling is required. The VBI-DRAM algorithm is substantially efficient in
dealing with high-dimensional problems. Therefore, the VBI-DRAM algorithm is
recommended for large-scale structures with thousands of elements, in which case
substructuring methods may be combined.
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In summary, the main advantages of the EM algorithm are its simplicity and ease
of implementation. Laplace approximation is the most efficient for low-dimensional
problem. The VBI-DRAM algorithm can provide a full characterization of the poste-
rior PDF instead of merely focusing on MPVs. The EM technique and VBI-DRAM
algorithm are suitable for standard and nonstandard probability distributions. Thus,
they are widely applicable.

9 Conclusions

This study proposes anSBLmodel for probabilistic structural damage detection using
modal parameters. Sparsity of structural damage is exploited as an important prior
information from the Bayesian perspective. Analytical approximation and numer-
ical sampling techniques are introduced to deal with the computationally prohibited
integration in the evidence.

A numerical cantilever beam and an experimental three-story frame are utilized
to verify their effectiveness. The results show that damage location and severity can
be accurately detected using the three techniques, even when the measurement data
are considerably fewer than the damage indexes. Comparative studies indicate that
each algorithm has its own advantages.
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Abstract Amachine learning approach to damage detection is presented for a bridge
structural healthmonitoring (SHM) system. Themethod is validated on the renowned
Z24 bridge benchmark dataset where a sensor instrumented, three-span bridge was
monitored for almost a year before being deliberately damaged in a realistic and
controlled way. Several damage cases were successfully detected, making this a
viable approach in a data-based bridge SHM system. The method addresses directly
a critical issue in most data-based SHM systems, which is that the collected training
data will not contain all natural weather events and load conditions. A SHM system
that is trained on such limited datamust be able to handle uncertainty in its predictions
to prevent false damage detections. ABayesian autoencoder neural network is trained
to reconstruct raw sensor data sequences, with uncertainty bounds in prediction. The
uncertainty-adjusted reconstruction error of an unseen sequence is compared to a
healthy-state error distribution, and the sequence is accepted or rejected based on
the fidelity of the reconstruction. If the proportion of rejected sequences goes over a
predetermined threshold, the bridge is determined to be in a damaged state. This is
a fully operational, machine learning-based bridge damage detection system that is
learned directly from raw sensor data.
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1 Background

Damaged bridges are not a thing of the past. On August 1, 2007, the I-35W bridge
in Minneapolis collapsed, killing 13 and injuring 145. On August 14, 2018, a major
bridge in Genoa, Italy, partially collapsed, killing 43 people. One can wonder if a
modern, data-based structural healthmonitoring system alongside strict maintenance
monitoring could have prevented these events.

This chapter presents an end-to-end method of detecting damage in a real-life
bridge using only sensor measurements, based on the previous work of [1–3]. Even
though the results are a promising step into a more modern structural health moni-
toring of bridges, we believe that we are far from being able to replace standardmoni-
toring methods of bridges. Using the presented method as a replacement for standard
bridge inspection could be dangerous and possibly life-threatening.What this chapter
presents is amethod that could complement standard procedure and possibly improve
the speed and accuracy of damage detection. If the method confidently predicts a
damaged state, the prediction will have to be confirmed manually.

1.1 Structural Health Monitoring

There are two main approaches for structural health monitoring (SHM) of bridges: a
model-based approach and a data-based approach. In both cases, sensors of different
kinds are attached to the structure to measure its response to external stimulation. In
a model-based approach, a finite element analysis is done specifically for each bridge
which is calibrated with the sensor data. This analysis produces a baseline for values
of displacement, strain, and vibration at each point. The real sensor measurements
are then compared to the calibrated finite element model, and damage is assessed.
In a data-based approach, only the sensor data is used for damage assessment. One
aspect that data-based approaches to SHM have in common is a comparison of
a current state to a baseline state. Sensor data is collected over a certain period,
considered to be the structurally healthy baseline, and deviations from the baseline
are assessed as structural damage. One of the biggest challenges of bridge SHM is the
natural environmental response. Significant changes in a bridge’s natural frequency
and stiffness can occur due to temperature changes, making a modal approach to
SHM impractical [4, 5]. This variability calls for more complexmodeling. Vibration-
based methods address some weaknesses of traditional modal methods and can be
more robust to environmental variability and more sensitive to damage [6–8]. The
use of artificial intelligence for SHM has recently shown great promise in many
different applications [9], and machine learning methods are becoming established
as an efficient alternative approach to classical modeling techniques in structural
engineering [10].

Gonzalez and Karoumi [2] use bridge vibrational data and a specialized bridge
weigh inmotion system that records the bridges’ load position,magnitude, and speed.
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A neural network was trained to predict the bridges’ vibrations at each time step. A
Gaussian process was then used to characterize the prediction errors. Neves et al. [3]
extend this idea from [2] without the specialized weigh in motion system.

There is a prominent need for addressing uncertainty in a data-based approach to
SHM [11]. The value of addressing uncertainty has been shown as being more robust
than plain neural networks for damage detection in a composite airfoil structure [10].
Uncertainty is therefore a central theme of this chapter.

1.2 Machine Learning

Here, some fundamental concepts are reviewed from the field of machine learning
that will be useful to understand the method section.

Linear regression is the most basic building block of a neural network, a linear
combination of D + 1-dimensional input variables X = x0, . . . , xD and weight
parameters w = w0, . . . , wD . A bias term x0 is added to the D-dimensional input,
which makes the input into the model D + 1-dimensional. The output prediction ŷ
is on the form of a matrix dot product, Eq. (1).

ŷ = wTX (1)

Given N observations of (X, y) pairs, there exists a closed form solution to the w
that minimizes the error function. For linear regression, the error function is usually
themean squared error functionwhich corresponds to amaximum likelihood solution
if the error is assumed to be normally distributed with zero mean.

Logistic regression is very similar in form, except that the output prediction is a
binary classification. A nonlinear activation function σ(x) outputs a value between
0 and 1 that can be interpreted as the probability of a class being 1, Eq. (2).

ŷ = σ
(
wTX

)
(2)

A feed-forward neural network is a composite of many logistic regression blocks.
The blocks are often grouped together in layers, and some of the layers are not
observed and therefore often called hidden (Fig. 1). Optimizing themodel parameters
in this case requires more sophisticated methods. The most common methods are
based on back-propagation [12–14] using variations of stochastic gradient descent
[15, 16].

A neural network with many hidden layers is often called a deep neural network.
A neural network can theoretically approximate any continuous function [17, 18].
In practice, there is a balance between the width and the depth of the hidden layers.
By increasing the width and depth, the neural network can approximate functions of
higher complexity. Recently, focusing on increasing the depth has been shown to be
effective [19–21]. The cascading effect of a deep neural network presents a way to
represent multiple levels of abstraction [22] as the model output ŷ can be interpreted
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Fig. 1 A single forward pass of a neural network with ReLU activation function and dropout 0.5,
where a node connection is randomly dropped with 50% probability. Dropped nodes are depicted
as dotted, and observable nodes are shaded gray

as a composite of simpler functions gi ().

ŷ = g4(g3(g2(g1(X))) (3)

An autoencoder (Fig. 2) is a neural network that is trained to reconstruct a given
input, through the constraints of a lower-dimensional bottleneck layer. This can
be seen as an unsupervised method since there is no requirement of labeled data.
The main features of an autoencoder are the encoder, the code, and the decoder.
The encoder maps the input to a lower-dimensional code representation [23]. The
decoder then reconstructs the original input from the low-dimensional code.

Formany problems, the ability to represent uncertainty is crucial. Neural networks
have been successful in certain areas, but they do not output model uncertainty by
default. Bayesian neural networks [24, 25], however, take uncertainty into account
in a principled manner.

Gal and Ghahramani [26] presented an interpretation of dropout [27] as approx-
imate Bayesian inference in deep Gaussian processes [28]. This method allows to
obtain model uncertainty from any standard neural networks using dropout [27].
Usually, dropout is used during training of neural networks to reduce overfitting, but
for prediction no dropout is used. Each unit is dropped with probability p, making
the final network more robust; see Fig. 1.When this method is applied to a deep feed-
forward neural network, it approximates a deepGaussian process [28], and themodel
is both deep and can handle uncertainty in prediction. Gal andGhahramani [26]make
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Fig. 2 An example of an autoencoder network that encodes the six-dimensional input to a two-
dimensional code. This compact representation is then decoded to reconstruct the original six-
dimensional input. This example has three hidden layers, and ReLU activation function and the
encoder and decoder have a mirrored structure

a theoretically grounded observation of averaging many stochastic forward passes
with dropout, to achieve a prediction with uncertainty. Training a neural network
with dropout can be seen as training a collection of clipped networks with extensive
weight sharing. Averaging many dropout forward passes is an approximation of a
deep Gaussian process posterior [29], referred to as MC dropout [26]. The mean of
the predictions is simply the predictive mean, and the variance of the predictions
is the uncertainty. The method is theoretically grounded, easy to implement, and
computationally efficient. One of the challenges of MC dropout is to achieve well-
calibrated uncertainty estimates, and some extensions have been made [30, 31] to
address this issue.

2 Method

The need for uncertainty in SHM is explained in Fig. 3. The collected training data
for bridge structural health monitoring cannot be truly complete in a reasonable time
frame, due to potentially large variations in regular environmental variables. Such a
complete recording could possibly take many years. Therefore, a predictive model
is nearly always going to be trained on a limited healthy-state dataset. It is important
to note that a healthy state can still contain old damages even though this base state
is considered as undamaged. It is of course not possible to detect damages induced
in the bridge before the sensors were installed.
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Fig. 3 A central theme of
this chapter. The presented
method addresses the
problem of differentiating
between data points B and C

A crucial observation is what happens when the model is faced with unfamiliar
input data, depicted as points B and C in Fig. 3. The predictive error for test point
A close to the training dataset should be lower than for a point B far away. Using
only high predictive error for damage detection would likely falsely flag point B as
damaged. By including model uncertainty, the reconstruction of point B will have
large error, but the model should be able to explain the large error by having large
uncertainty and therefore not label the large error as anomalous. If the true values
fall outside the predictive uncertainty bounds of the model as in point C, the model
cannot explain the large difference between real and predicted values and therefore
correctly reject test point C.

Themethod to detect change in structural condition presented in this chapter builds
upon the work of [1–3]. A Bayesian deep autoencoder is trained on the collected
healthy bridge vibrational and environmental sensor data to reconstruct the given
healthy-state input data. The autoencoder neural network reconstructs the input data
with an uncertainty interval by using MC dropout. The reconstruction error of the
unseen healthy-state data is then quantified, and a 95th percentile rejection threshold
is determined. If the total sequence reconstruction error of a sequence in an unknown
state falls outside the determined rejection threshold, then the sequence is rejected.
If enough sequences are rejected, the bridge is determined to be in a damaged state.

2.1 Assumptions

A model is a set of assumptions about the data, and the following are the most
important assumptions of the modeling. Some of them are limiting, and some make
the problemmore feasible. These assumptions are general enough so the method can
be applied to a similar bridge in structure, and no assumption was created specifically
to match the particular Z24 bridge structure.

Vibration sensor data is correlated.

Since the sensors are all connected to the same continuous bridge structure, it is
reasonable to assume that the sensor recordings are correlated. When one sensor
is detecting high vibration, it is assumed that the other sensors are detecting high
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vibrations too. The assumption that the vibration sensor data is correlated makes
the prediction problem easier than if they were uncorrelated, the model will learn
the interplay of the sensors and how the sensors react to stimulation in unison in a
healthy state. If the bridge is damaged near a particular sensor, the interplay between
the sensors will change, with higher error rates, and thereforemakes it easier to detect
damage. Due to this assumption, it is important that the input to the model contains
data of all sensors simultaneously on the bridge. This type of input is referred to
as a sliding window input in time. The sliding window input needs to contain the
simultaneous sensor measurements of all the sensors. If each sensor measurement
would be reconstructed separately, this critical information of how the sensors react
in unison to stimulation would be lost.

Enough information is contained within a short time frame.

The chosen neural network model architecture can only take a fixed, limited size
input. A reasonable input to the model would be a sliding window of sensor data
in the order of seconds. This is a limitation to the model since the true behavior
could possibly not be captured in such a short time frame. To address this issue,
multiple consecutive sliding window inputs are reconstructed. This is referred to as a
sequence, and the total summed reconstruction error is used to either accept or reject
a sequence. The sequence size is in the order of minutes. Note that more complex
recurrent neural network architectures exist that can take the full sequence as input
by using internal state to model the temporal dynamic behavior.

Vibrations are dependent on environmental variables.

Environmental variables such as air temperature, soil temperature, humidity, wind
speed, as well as vehicle passing have a big impact on the response of a bridge. It
is therefore very important to include these variables as an input to the predictive
model.

The vibration data is hierarchical.

The nature of a deep neural network is in the cascading composition of simpler
elements, as described above. The vibrations of a bridge are the result of many
interplaying variables such as weather, winds, and loads. It is therefore assumed that
the data is inherently compositional, and a deep neural network would be a good fit
for this problem.

A vibration sensor measures local condition.

One of the pillars of bridge structural healthmonitoring is the localization of damage.
To address this, it is assumed that if the real sensor values for a given sensor are far
away from the model’s predictive uncertainty of that sensor, the bridge is damaged
in the region of the physical location of the sensor. This assumption holds in many
damage scenarios, but for a damage in a main longitudinal load carrying beam can
also be seen in sensors located far from the damage location compared to a damage
of a secondary load carrying member such as a crossbeam which will only influence
local measurements. This is out of the reach of the suggested approach.
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Damage determination is not instant.

A damaged bridge generally behaves in a more complex manner than an undam-
aged bridge. Damage results in more vibration, higher damping, and more complex
nonlinear behavior. It is therefore assumed that after damage is present, it will contin-
uously affect the behavior of the bridge. Note that in real life this is not always the
case. Due to this assumption, multiple sequences are needed to determine bridge
state. It is not reasonable that the model can determine if the bridge is in a damaged
state by only looking at reconstruction error from a sensor input of a few seconds. A
more reasonable approach is to look at the total reconstruction error from multiple
long, continuous sequences.

2.2 The Damage Detection Algorithm

For the damage detection, three algorithms are presented. Note that all three algo-
rithms use the exact same trained model. This makes it possible to deploy all three
in a real-time system without significant increase in computational load. All three
methods reconstruct a given 10-min-long sensor sequence, in a succession of non-
overlapping 2 s sliding window inputs, with the autoencoder neural network trained
on the healthy-state data. The reconstruction error for the whole sequence is summed
and compared to the distribution of total sequence error for the healthy-state test data.
If the total reconstruction error of the given sequence is over the 95% cutoff rejection
threshold, the sequence is rejected. If more than 5% of sequences are rejected, the
bridge is determined to be in a damaged state.

The standard method reconstructs the input in one single forward pass of
the neural network. The method does not take into consideration any notion of
uncertainty. This is a standard way of prediction in a neural network.

The mean method usesMC Dropout [26] to stochastically reconstruct the input
100 times and to use the mean of the 100 reconstructions as the final prediction. This
method gives a Maximum A Posteriori estimation.

The uncertainty method usesMCDropout [26] to stochastically reconstruct the
input 100 times. True values that fall within 2 standard deviations from the mean of
the predictions are then considered to have 0 error. Only values that fall outside the
uncertainty range are taken into the reconstruction error sum. The reasoning behind
this approach is to be able to disregard reconstruction error that falls within the range
of expected values. This method therefore only reports errors that are considerably
different from the true values.
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Fig. 4 Dataset visualized. Only the healthy bridge state data is used to train the models. The best
model is picked by performance on the validation data. The errors are quantified on the unseen test
data. The true damage detection performance is then assessed

2.3 Validation

To prevent a biasedmodel being picked, amodel hyperparameter search is performed
on the training set and validated on the validation set. Multiple models are trained
on the training set using random search for hyperparameter optimization [32]. The
modelwith the lowestmean error on the validation set is then picked as the finalmodel
used for damage detection. Note that the damage cases are never seen or validated
during the training, so all model parameters are determined from a healthy-state data.
See Fig. 4 for a visual representation of the dataset split.

2.4 Determining the Sequence Error Threshold

The central idea in this method is to reject a small part of the healthy-state sequences
to obtain a rejection criterion. The sequences with the highest reconstruction error
are used as a benchmark for comparison sequences of a bridge in an unknown state.
This threshold is chosen to be the nth percentile value, where n is chosen to be one
of 95th, 99th, or 99.9th. The chosen percentile is not optimized in this study to find
the n with the best damage detection performance, to reflect how this method would
be used in a real-life SHM scenario where you do not have any damaged state data.

If significantly more sequences than the chosen percentile value in an unknown
state are rejected, it is assumed that the state of the bridge has changed and therefore
it is determined to be damaged. The higher the chosen percentile value, the more
sequences are needed to make a statistically significant determination of the bridge
state. Due to limitations of the chosen dataset of the Z24 bridge, namely the small
number of sequences in each damaged state, we chose to use the 95th percentile as
our rejection threshold to be able to confidently assess each bridge state.

Sequences with reconstruction error above the 95th percentile are rejected in
the healthy-state test set. This threshold gives a baseline of comparison of summed
sequence error of a bridge in an unknown state. By doing so, we know that 5% of



36 D. S. Ásgrímsson et al.

never seen, healthy-state sequences are rejected. If a significantly higher portion than
5%of sequences of a bridge in an unknown state are rejected, the bridge is considered
to be damaged. An example of the determined threshold can be seen in the Results
chapter (Fig. 6).

3 Experiments

3.1 Z24 Benchmark

One of the challenges of a machine learning-based bridge SHM is that there are very
few datasets that contain data of a bridge in a healthy state and in a damaged state.
The Z24 bridge benchmark [33, 34] has sensor recordings of a real full-sized bridge
that was monitored for almost a year before being deliberately damaged in a realistic
and controlled way. The damage was introduced in 15 steps, each step damaging the
bridge further in a realistic manner. This is useful to assess the model’s sensitivity, to
see at what stage themodel can determine a damage state. The Z24 bridgewas built in
1963—a typical posttensioned box girder highway bridge (Fig. 5) with a main span
of 30 m over an underlying road and two connecting side spans of 14 m [33]. Bridge
sensor measurements were recorded such as bridge vibrations, air temperature, soil
temperature, humidity, wind speed, and vehicle passing. Most of the environmental
sensors measured temperature. Ten-minute samples with a sampling rate of 100 Hz
were recorded by seven accelerometers.

The Z24 benchmark contains data when the temperature drops below freezing,
which has a big effect on the behavior of the bridge [4]. It is a challenge to assess
environmental effects versus damage events, as bridges can present drastic seasonal
changes [35]. In this method, events such as freezing temperatures receive no special
treatment. These events are included in the training and test datasets, and there-
fore included in the 95% rejection threshold. The dataset presents an opportunity to
determine amodel’s ability able to assess such events and better assess environmental
changes versus damage cases. The Z24 bridge data is split into two parts, long-term
continuous sensor monitoring for a period of one year and a short-term progressive

Fig. 5 Side view of a three-span highway beam bridge, where the main span goes over a road. For
a more detailed view of the Z24 bridge, refer to [33]
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Fig. 6 Distribution of healthy-state test set summed sequence errors, showing the determined 95%
rejection threshold for the uncertainty method model

damage with much higher spatial resolution instrumentation. The presented method
only uses data from the long-term sensor measurements.

3.2 Training

The healthy bridge state data is cut up into 10-min-long sequences. The sequences
are randomly sampled without substitution so that 70% belong to the training set,
15% to the validation set, and 15% to the test set. See Fig. 4 for a visualization of
the dataset split.

A feed-forward autoencoder neural network with ReLU activation function
(Fig. 2) is trained using dropout [27] on the healthy-state test dataset to reconstruct
the healthy-state bridge sensor data. The autoencoder reconstructs vibration sensor
data from all sensors at once. Environmental sensor data is also included in the input.
The model is trained on non-overlapping sliding time window inputs corresponding
to a 2 s time interval. The Adam optimizer [16] is used to train the model. The model
was trained on a cloud computer with 16 CPUs, 50 GB memory, and a 16 GB GPU
NVIDIA Tesla P100. The full training data was around 50 GB. The final parameters
of the trained model after hyperparameter search can be seen in Table 1.



38 D. S. Ásgrímsson et al.

Table 1 Final parameters of
the trained autoencoder
neural network

Parameter Value

Input size 1458

Encode layer width 256

Z code layer width 128

Decode layer width 256

Dropout 0.1

Learning rate 0.0003

4 Results

The main results can be seen in Table 2. Each row in the table represents a damage
case. Gray cells mark when over 5% of the 10-min sequences are rejected and there-
fore the bridge is determined to be in a damage state. Since there are varying number
of sequences available for each damage case, the results must be interpreted care-
fully. For example, damage case 2 had over 100 recorded sequences, and damage
case 13 had only 10.

The presented method can confidently detect damage cases 5–7, 9–11, and 13–
14, where all three methods determine the state to be damaged. Note that the three
different methods of detecting damage are all using the same trained model. The
sequence in Fig. 7 shows a comparison of the three presented reconstructionmethods
for a healthy and damaged state.

Table 2 Percentage of rejected sequences of the different damage cases
Damage 
Case Description 

Sequences 
[#]

Uncertainty 
[%]

Mean 
[%] 

Standard 
[%] 

0 Healthy state (randomly 
sampled) 103 1.9 1.0 1.0 

1 Lowering of pier, 20 mm 35 5.7 14.3 51.4 
2 Lowering of pier, 40 mm 110 0.9 6.4 24.5 
3 Lowering of pier, 80 mm 24 4.2 4.2 29.2
4 Lowering of pier, 95 mm 20 5.0 5.0 45.0

5 Lifting of pier, tilt of foun-
dation 22 13.6 18.2 50.0 

6 Spalling of concrete at sof-
fit, 12 m2 24 17.4 17.4 30.4 

7 Spalling of concrete at sof-
fit, 24 m2 20 20.0 25.0 35.0 

8 Landslide of 1m at abutment 88 1.1 3.4 6.8 
9 Failure of concrete hinge 44 6.8 9.1 15.9 

10 Failure of 2 anchor heads 24 20.8 29.2 37.5 
11 Failure of 4 anchor heads 73 8.2 11.0 12.3 
12 Rupture of 2/16 tendons 15 0.0 0.0 6.7
13 Rupture of 4/16 tendons 10 10.0 10.0 10.0
14 Rupture of 6/16 tendons 27 11.1 14.8 22.2 

Grayed cells mark where the bridge state is determined to be damaged, since over 5% of sequences
are classified as damaged
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Fig. 7 All three model methods compared for a given input. The plotted data only shows one
sensor and a 50-ms window for clarity. Damage state 7 below, healthy state above. Take note of the
increasing uncertainty in the damage scenario. The true values in the damage scenario fall outside
the 2 standard deviation ranges of the predictions at around 20 and 40 ms

5 Discussion

Themethod of using the samemodel in several ways is a novel approach to structural
health monitoring, utilizing the trained model to a fuller extent. The standard method
is more performant in detecting damage, while the uncertainty method is much more
cautious in the damage assessment. The standard method is much better at detecting
damage, but it does not take uncertainty into account in any way. Therefore, in an
extreme weather event that is not present in the training data, this model would more
likely wrongly determine the bridge to be in a damage state. This is a known issue in
SHM, false damage detection.When the uncertaintymethod determines the bridge to
be in a damaged state, it is a more certain determination. This is important in real-life
usage of a structural health monitoring system to reduce false damage classification.

An interesting result is that being better at reconstruction does not equal being
better at detecting damage. The mean method achieves lower reconstruction error
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than the standard method in all cases, healthy or damaged. This does not mean that
the mean method is better at detecting damage; in fact, it is the opposite that is true.
The standard method reconstructs healthy sequences adequately, but reconstructs
damaged sequences poorly and is therefore better at detecting the difference. This
does not mean that the standard method overfitted on the training data, since it does
not achieve remarkably lower reconstruction error on the training dataset compared to
the testing and validation datasets. Themeanmodel and uncertaintymodel generalize
better to the damaged sequences and therefore achieve worse damage detection.

Why is the method failing for certain damage cases? As seen in Table 2, the
damage detection did not confidently reject cases 1–4, 8, and 12. Note that the
standard method rejected all damage cases, but the uncertainty was too great for the
uncertainty method to reject these cases.

The lowering of the pier is a rare occurrence in a real-life situation, but not unheard
of. The severity of such an event depends on the specific design of the structure. In a
three-span bridge with reasonable stiffness and length, as the Z24 bridge, a ~40 mm
lowering will not induce a significant damaging force. The lowering of a pier could
still be a dangerous scenario, but this will be heavily dependent on the structural
design of the bridge. The damage detection does not confidently reject this scenario.

It is interesting to note that the damage detection confidently rejects cases 6–7,
spalling of concrete at soffit. Such events are very common and are not immediately
dangerous as they do not directly affect the bearing capacity of the concrete deck. It
is possible that the sensors were located closely to the affected area, and therefore
the damage detection was more sensitive to the changes.

The method does not confidently reject damage case 8, “landslide of 1 m at abut-
ment.” Such an event will have a specific effect on the bridge response in particular
cases since the landfill supports the bridge only in a certain load scenario. During
the damage cases, the bridge was closed to passing traffic. This could explain that
the damage was not detected, since the agitation of the bridge was only coming from
traffic passing under the bridge which is not as substantial.

Damage case 12, “rupture of 2/16 tendons,” was not rejected confidently. The
rupture of tendons is rare and possibly dangerous but is very hard to detect from
standard visual inspection. Therefore, it might be more common than we think. The
main reason that this damage scenario was not detected is that there were very few
sequences, only 10—corresponding to only 120 min. It is therefore reasonable to say
that the damage detection could have been more accurate given a greater number of
sequences.

5.1 Damage Sensitivity

The presentedmethod faces awell-known challenge in bridge structural healthmoni-
toring that damage is best assessed when the bridge is actively vibrating. This is
clearly shown in Fig. 8, where the reconstruction error drops during the night when
the bridge is in low use.
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Fig. 8 Reconstruction error of a healthy-state data. Here, it is clearly shown that the reconstruction
error is dependent on activity, as the error drops notably down overnight

The healthy-state training data was captured, while the bridge was in full use.
Vehicles could drive over the bridge and under.When the bridge was damaged, it was
closed for traffic. For every damage case, the bridge was only excited by underneath
traffic which results in much lower vibration levels. Therefore, the damage detection
is even more challenging and requires a more sensitive damage detection.

The timescale of damage detection is more nuanced since the damage detection is
based on evaluating multiple sequences. The damage sensitivity is also dependent on
bridge activity. In the case of considerable damage, themodelwould start rejecting the
10-min sequences in succession. For themodel to assess damagewithmore certainty,
it would needmultiple 10-min sequences. Therefore, the timescale of reliable damage
detection is in the order of hours, possibly days.

6 Conclusion

The results are promising for the field of bridge structural health monitoring. The
autoencoder neural network model trained on the complete sensor data was able to
detect several realistic damage cases on the Z24 bridge benchmark [34], which has
been used in research for over 20 years. Due to the size of the full data and compu-
tational limitations, few researchers have presented methods of structural health
monitoring on the full data. To our knowledge, this is the first time a model has been
trained on the full healthy-state data and successfully detected damage cases while
taking no special care of freezing temperature variations of the healthy-state data.

The method is performant and is a prominent step toward modern infrastructure.
The methods’ ability to detect damage in realistic damage scenarios of a real bridge
has many economic, social, and ethical aspects. Such a system could possibly detect
damage before a traditional bridge inspector could and prevent a costly repair. The
model can reconstruct a full 10-min sequence and classify it in the order of seconds,
on a standard modern personal computer. This means that it is computationally very
fast and can be used in real time. The training of the model on the other hand requires
considerable computing power.

Acknowledgements WethankDr.EdwinReynders atKULeuven for providing theZ24benchmark
dataset; without the contribution, this work would not have been possible.
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Diagnosis, Prognosis, and Maintenance
Decision Making for Civil Infrastructure:
Bayesian Data Analytics and Machine
Learning
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Abstract Due to the aging of civil infrastructure and the associated economic
impact, there is an increasing need to continuously monitor structural and non-
structural components for system life-cycle management, including maintenance
prioritization. For complex infrastructure, this monitoring process involves different
types of data sources collected at different timescales and resolutions, including but
not limited to abstracted rating data from human inspections, historical failure record
data, uncertain cost data, high-fidelity physics-based simulation data, and online
high-resolution structural health monitoring (SHM) data. The heterogeneity of the
data sources poses challenges to implementing a diagnostic/prognostic framework
for decision making for life-cycle actions such as maintenance. Using quoin blocks
components of a miter gate as an example, this chapter presents a holistic Bayesian
data analytics and machine learning (ML) framework to demonstrate how to inte-
grate various data sources using Bayesian and ML methods for effective SHM, and
Prognostics and Health Management (PHM). In particular, this chapter discusses
how Bayesian data analytics and ML methods can be applied to (1) diagnosis of
bearing loss-of-contact degradation in quoin blocks; (2) optimized sensor placement
for SHM on the gate; (3) fusion of various data sources for effective PHM; and
(4) deciding maintenance strategies by considering the behavioral aspect of human
decision making under uncertainty.
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1 Introduction

Advances in sensing technologies, accelerated by the “Internet of things,” have
allowed collection of large amounts of data about our civil infrastructure, which
includes complex transportation networks both over land and through our inland
waterway navigation corridors. Among the most important reasons for this data
collection are damage/state diagnostics and predictions of future state performance.
Such assessments can lead to improved life-cycle management of civil infrastruc-
ture systems, which is critical to keep these systems continuously operational under
increasingly constrained budgets. Figure 1 shows an overview of the association
between diagnosis, prognosis, and maintenance decision making for civil infrastruc-
ture; more detail can be found in [1]. In a general sense, Fig. 1 shows the fundamental
workflow of a “digital twin” for structural asset life-cycle diagnosis and prognosis.

For damage diagnosis, engineers can rely on supervised learning algorithmswhen
sufficient life-cycle data is available [2–4]. On the other hand, when life-cycle data is
limited, engineers typically rely on physics-based modeling (such as finite element
(FE) models) and model updating techniques to estimate the unknown parameters
required to infer the current state of the system as shown in Fig. 1.

Prognostics and Health Management (PHM) is the notion of augmenting current
structural state diagnostic information gleaned by inspections or SHM to make
predictions of the future state and reliability of the system based on degradation
models or historic degradation/failure data [5]. When such prior data is available

Fig. 1 Diagnosis, prognosis, and maintenance decision-making framework for civil infrastructure
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(not very common in the civil infrastructure domain), a data-driven degradation
model is possible, but more commonly physics-based approaches [6, 7] or empirical
approaches to build the model [8–10] are required.

Additionally, PHM uses its prediction capabilities to inform life-cycle manage-
ment,which targets optimization of a desired systemperformance criterion (e.g., cost,
availability, reliability, etc.). For life-cyclemanagement,maintenance approaches can
be roughly classified into two categories, namely time-based maintenance (TBM)
and condition-based maintenance (CBM). This term is closely related to condi-
tion monitoring (CM), which usually refers to implementation of state diagnostics
applied to rotating machinery [11]. When applied to civil and aerospace systems,
CM is referred to as SHM, so these terms are used interchangeably in a general
sense. When information from an SHM (equivalent, a CM) process is used to trigger
maintenance decisions, a CBM decision policy arises. TBM and CBM approaches
have been benefited by advances in various fields such as data analytics, machine
learning, computational mechanics, Bayesian statistics, and reliability engineering.

As stated before, diagnostic and prognostic approaches are either physics-based
(e.g., FE model updating) [12–14] or data-driven [15–18]. For some engineering
systems, hybrid approaches that combine the physics-based approach with data-
driven approach to improve the CBM predictive capabilities are useful. However,
the study of hybrid approaches [19, 20] has been very limited, and even more
limited for large civil infrastructure. Other limitations that occur, for example,
are that the monitoring process sometimes involves different types of data sources
collected at different timescales and resolutions, such as abstracted rating data from
human inspections, historical failure record data, uncertain cost data, high-fidelity
physics-based simulation data, and online high-resolution structural health moni-
toring (SHM) data. The heterogeneity of the data sources poses challenges to the
diagnostic/prognostic implementation of decision making for maintenance.

This chapter presents a holistic framework for diagnosis, prognosis, and main-
tenance decision making for civil infrastructure using Bayesian data analytics and
machine learning methods. It combines a physics-based approach for diagnosis with
data-driven approaches using various data sources for prognostics. In summary, this
chapter discusses how to: (1) fuse various data sources using Bayesian methods;
(2) perform damage diagnostics and prognosis using Bayesian data analysis and
machine learning; (3) optimize maintenance strategies; and (4) apply these concepts
to a real-world problem using a miter gate example, drawn from a navigation lock
system used in the inland waterways navigation corridor.
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Fig. 2 FEM modeling of a leaf of a miter gate including gap length deterioration

2 Summary of Data Sources

2.1 Physics-Based Simulation Data

For civil systems, the approach is usually carried out by using a physics-based model
(e.g., finite element (FE) model) of the structure [2–4]. It is fundamentally an inverse
problem because the system parameters are estimated frommeasured response quan-
tities. Generally, a physics-based model is a “forward” problem where the system
responses (e.g., FE output response) are predicted as a function of the (known) system
parameters (e.g., FE inputs). Synthetic system parameters may be used to obtain the
FE system response, whose responses can be compared to the “true” system as shown
in Fig. 2.

2.2 Inspection Data

Regular condition assessments are conducted in critical structures such as bridges
and offshore structures. These assessments are obtained from an inspection process,
which can be part of a periodic or non-periodic inspection policy.Onemay reasonably
hypothesize that these inspections should reflect a deterioration state. These states
can be in a continuous or discrete form, e.g., an inspection assignment of A, B, C,
D, F, CF, such as is utilized for hydraulic structures owned by the US Army Corps
of Engineers (USACE). Inspections can be performed by inspectors, drones [21], or
even robots [22]. The resulting data format is usually highly abstracted in the format
of ratings as mentioned above.
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In [23], the failure condition in critical components is estimated using a transition
matrix built from the discrete inspection ratings. The following is an example of a
transition matrix built from the reported six damage ratings:
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The above transition matrix obtained from inspection data can be used to estimate
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may be either obtained from current inspections or using SHM data.

2.3 Human Errors

Human error can greatly affect the reliability of the inspection assessment. For
example, human psychology influences inspectors to make conservative or non-
conservative assessment that can greatly influence maintenance decisions. Bench-
mark data may be available to account for the accuracy of the assessment given the
inspector qualification, training, and certification [24]. A human observation error
matrix can be obtained/estimated as follows to probabilistically measure the human
error
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in which Ph
ik = Pr{Xobs

i,t |X tr
j,t } is the probability that the reported OCA rating is k

given that the true OCA rating is i.
An example of a conservative human error matrix is given as below

Phuman =
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The abovePhuman models the behavior of an inspector that regularly tends to assess
a component to be in a better condition than reality. Accounting for Phuman allows to
estimate the Ptrue and P

(
Xtr

k

)
from PReport as will be discussed in Sect. 4.2. The terms

Ptrue and P
(
Xtr

k

)
are the true transition matrix and the true condition probabilities,

respectively, at the current time.

2.4 SHM Data

SHM data involves periodically sampled response measurements from spatially
distributed sensors, extraction of damage-sensitive features from thesemeasurements
and damage diagnosis using these features with either an inverse-problem approach
or a data-driven approach.

As stated earlier, SHM diagnostic capabilities can inform the current state of
the structure. However, SHM data inevitably will contain noise due to a variety of
stochastic influences, not the least ofwhich result fromenvironmental andoperational
variability. In this chapter, the sensor monitoring data (i.e., strain measurement data
for the miter gate example) at time step ti is defined as si = [

si1, si2, . . . , si NS

]
,

where NS is the number of sensors. Also, s1:n � {s1, s2, . . . , sn} defines the sensor
measurements collected up to tn .

Next, the following section will discuss how to utilize the above data sources for
the damage diagnostics, prognostics, and maintenance planning using Bayesian data
analytics and machine learning.
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3 Damage Diagnostics Using Bayesian Data Analysis
and Machine Learning

In this section, a summary of how to perform damage diagnostics using simulation
data and SHM data based on machine learning and recursive Bayesian updating is
presented.

3.1 Surrogate Modeling for Physics-Based Models Using
Machine Learning

For damage diagnosis with limited SHM data, inverse modeling via physics-based
models such as finite element (FE) models have been used with data from SHM
systems to estimate parameters that infer some form of damage state. A fast, efficient
simulationof complexFEmodels is essential for appropriately fast damagediagnosis.
Depending on the dimension space of the inputs and outputs of interest, different
machine learning techniques can be chosen to build “cheap” yet accurate surrogate
models of the physics-based FE model. Two of the commonly used techniques,
artificial neural networks and Gaussian process regression, are briefly summarized
as below.

Artificial Neural Network (ANN). ANNs are an attractive option for surrogate
emulation of FE models. This type of supervised learning model works well with
classification (for discrete classes) and regression (for continuous processes) prob-
lems. However, ANNs are effective when a large amount of data is available, and
they are built to create point estimates rather than probabilistic estimates. Some
researchers [25–28] have used Bayesian inference to estimate the ANN’s weight and
model parameters, which has been referred to as Bayesian neural networks (BNN).
BNNs are good for high-dimensional spaces and better handle the issue of limited
data availability.

Gaussian Process Regression (GP). GP (or Kriging) models are an attractive option
for surrogate architectures because they are built to quantify the uncertainty in the esti-
mations rather than simply point-based estimates, as most other supervised learning
models (e.g., ANNs, support vector machines) do. Several researchers useGP regres-
sion to build Bayesian prediction models for civil engineering structures [23, 29]. A
GP surrogate model, γ̂ j = ĝ j (x) is defined as

γ̂ j = ĝ j (x) = f(x)Tα + Z(x), (5)

where α, f(x)T, and Z(x) ∼ N
(
0, σ 2

GPρ(·, ·)) are the coefficients of the trend
function, the trend function, and a stationary Gaussian process, respectively.

The stationary Gaussian process uses a correlation function ρ(·, ·) to quantify the
correlation between responses at any two points as below
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where NV is the number of variables, and ω = (ω1, . . . , ωNV)
T is the vector of

roughness parameters.
Furthermore, the aforementioned GP hyper-parameters υ = (

α, σ 2
GP,ω

)
are esti-

mated using the maximum likelihood estimation method. After the estimation of the
hyper-parameters υ for any given inputs x, the GP prediction is given by

γ̂ j = ĝ j (x) ∼ N
(
μ j (x), σ 2

j (x)
)
, ∀ j = 1, 2, . . . , r, (7)

whereμ j (x) andσ 2
j (x) are themean and variance of the prediction of γ j , respectively,

for the input x.
In applications such as the miter gate presented in this chapter, the output space

of the simulation or the sensors available (e.g., hundreds or thousands of nodes in
the FE model) can be large. Also, it is known that sensors located close to each other
may contain highly correlated information. Therefore, dimension reduction tech-
niques are usually used in conjunction with GP models or ANNs to build surrogate
models for the physics-based FE model. A commonly used technique is singular
value decomposition (SVD). SVD is a linear algebra technique used to transform
high-dimensional matrices into a reduced dimensional space preserving most of the
original information. Figure 3 presents a generalize procedure of surrogate modeling
based on a GPmodel and dimension reductionmethods for a model with inputs x and

Fig. 3 Building surrogate model for FEM model using GP and dimension reduction
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Fig. 4 Prediction using GP surrogate modeling and dimension reduction

Fig. 5 Testing accuracy of
Kriging model

θ . Following that, Fig. 4 shows the prediction process using the trainedKrigingmodel
for given FEM input parameters and features obtained from dimension reduction.

The proposed framework explained in this work is based on a surrogate model
using a Kriging model combined with SVD to develop a fast emulator of the FEM.
Figure 5 shows the testing accuracy obtained at 46 sensors installed in the Greenup
miter gate at a particular point in time, which shows how close ML-based surrogate
model emulates the original FE model.

3.2 Damage Diagnostics Using Recursive Bayesian Updating

Given the SHMdata and aML-based surrogatemodel of the physics-based FEmodel,
damage diagnosis can be performed usingBayesian estimation of parameters, an , that
directly relate to a damagemode (e.g., cracks, gap, thickness loss due to corrosion, etc.
See Fig. 2 for examples). Bayesian estimation of this parameters can be performed
based on the following state-space equation

State equation: an = h(an−1) + εh,

Measurement equation: sn = ĝ(an, xn) + εn,
(8)
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where h(an−1) is the state equation that describes the evolution of an over time, εh
is the process noise, ĝ(an, xn) is the ML surrogate model built in Sect. 3.1 where xn
represents the known/measurable input variables to the physics-based model (e.g.,
loads, geometry, material properties, etc.), and sn is the observations from SHM
system as discussed in Sect. 2.4.

Note that the state equation given in Eq. (8) may be unknown due to a lack
of understanding of the damage evolution mechanism. In that situation, a random
walk type equation can be used as the state equation with large process noise as
discussed in [23]. Assume there are NS strain sensors installed in a structure such as
the miter gate and the damage parameter, an , to infer at time step tn is the extent of the
loss of bearing contacting (i.e., gap length). Then, the posterior probability density
function of the gap length an at time step tn conditioned on strain measurements s1:n
is estimated using Bayesian inference method recursively as follows

f (an|s1:n) = f (sn|an) f (an|s1:n−1)∫
f (sn|an) f (an|s1:n−1)dan

∝ f (sn|an) f (an|s1:n−1), (9)

which f (an|s1:n−1) is defined as follows

f (an|s1:n−1) =
∫

f (an|an−1) f (an−1|s1:n−1)dan−1, (10)

in which f (sn|an) is the likelihood function, obtained from the measurement equa-
tion, of observing sn for given an at time step tn , and the term f (an|an−1) represents
the probability distribution of an for a given an−1 obtained using the state equation,
which describes the damage evolution over time.

The recursive Bayesian updating of Eqs. (9) and (10) is analytically intractable.
In practical application, various filtering methods, such as particle filtering [30],
extended Kalman filter [31], and unscented Kalman filter [32], have been developed
to approximate recursive updating process.

Figure 6 presents an illustrative example of strain measurement data sn of 10
sensors (NS = 10) over a certain time period of interest. After that, Fig. 7 shows the
damage diagnostics results of gap length of miter gate (i.e., the gap damage in the
miter gate as shown in Fig. 2) over time using recursive Bayesian updating and the
ML-based surrogate models. It shows that the recursive Bayesian inference method
can effectively perform damage diagnostics by fusing the information from physics-
based simulation model and SHM data. More details of the integration of ML-based
surrogate model and SHM observation data using Bayesian recursive updating for
damage diagnostics are available in [23].
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Fig. 6 Strain measurement from ten sensors over time

Fig. 7 Gap length diagnostics result using Bayesian method and ML surrogate model (note that
gap here refers to the damage mode shown in Fig. 2)

3.3 Sensor Placement Optimization for Damage Diagnostics
Using Machine Learning

Sensor placement optimization (SPO) plays a critical role in improving the effec-
tiveness of the SHM system for damage diagnostics (see Eqs. 9 and 10). Designing
an optimal sensor network is very challenging in practice since the observations are
not available in the design stage. In that case, the physics-based simulation model
needs to be employed to provide information on how to properly allocate the sensors.
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The physics-based model, moreover, is computationally very demanding. Machine
learning techniques play a vital role in overcoming the challenges in SPO.

A SPO model can be generalized as follows

d∗ = argmax
d∈�d

{�(d)},
s.t. C(d) ≤ Ce,

(11)

where d is a sensor network design, �d is the sensor design domain, �(d) is a cost
function, C(d) is the total cost of the sensor network, and Ce is the allowable budget.

The cost function �(d) may be formulated from different perspectives. For
example, probability of detection [33], Bayes risk [34], and information gain [35]
have been used as cost functions in sensor placement design optimization. Taking the
information gain measured by the Kullback–Leibler (KL) divergence as an example,
�(d) is formulated as

�(d) =
∫

θ

∫

s|θ
fθ (θ) fs|θ ,d(s|θ,d)DKL(d, s)dsdθ , (12)

where DKL(d, s) = ∫
θ
fθ |s,d(θ |s,d)log

[
fθ |s,d(θ |s,d)/ fθ (θ)

]
dθ is the KL divergence

(e.g., relative entropy) for given observations s and sensor placement design d,
whichmeasures the difference (i.e., information gain) between the prior and posterior
distributions of damage state variables θ .

Solving the sensor placement optimization model given in Eq. (11) is extremely
challenging due to the high computational effort required in the repeated evaluations
of Eq. (12). Bayesian data analytics and machine learning techniques are essential
to overcome the challenge. First, ML models and Bayesian inference methods as
discussed in Sects. 3.1 and 3.2 enable for the efficient estimation of the posterior
distributions of the damage states variables. More importantly, ML-based optimiza-
tion methods make it possible to solve the model given in Eq. (11) when a large
number of sensors need to be allocated to a large civil infrastructure.

For example, when sensors need to be placed on the miter gate to detect the
“gap” of the gate due to damage, the dimension of the design variables given in
Eq. (11) will be very large. Assuming that 20 sensors need to be placed, the number
of design variables will be 60, if the three-dimensional coordinates of each sensor
are considered as design variables. In that case, directly solving the optimization
model of Eq. (11) will be computationally prohibitive. Alternatively, a greedy-based
framework can be employed to place the sensor one-by-one. In order to identify
the optimal placement of the ith sensor, the optimization model given in Eq. (11) is
re-formulated as

d∗
i = argmax

di∈�d

{
�

(
di ,d∗

1:i−1

)}
,

s.t. C(d) ≤ Ce and d = {
di ∪ d∗

1:i−1

}
,

(13)
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where d∗
1:i−1 are the coordinates of the previous i − 1 sensors and di are the

coordinates of the ith sensor.
Through the formulation of the model in Eq. (13), the dimension of the design

variables is reduced to 3 in each iteration of the greedy optimization scheme. Even
for the three-dimensional optimization model, the global optimization of Eq. (13)
is still computationally challenging. Bayesian optimization method, which is also
known as the efficient global optimization method, can be employed to efficiently
solve the optimization model by leveraging the prediction capability of the Gaussian
process model [36, 37]. GP-based Bayesian optimization is a process of adaptively
training a GP surrogate model for the objective function of an optimization model. In
each iteration of the adaptive training of the GP, training data are identified as those
design locations which have the highest probability of being themaximum/minimum
design point. The key to the GP-based optimization is the definition of the expected
improvement function (EIF)

EIF(d) = (
μ(d) − ϕ∗)


(
μ(d) − ϕ∗

σ(d)

)
+ σ(d)φ

(
μ(d) − ϕ∗

σ(d)

)
, (14)

whereφ(·) and
(·) are, respectively, the probability density function and cumulative
distribution function of a standard normal random variable, ϕ∗ is the current best
values in the training dataset, μ(d) and σ(d) are the mean and standard deviation of
the GP surrogate model prediction.

By maximizing the EIF in Eq. (14), new training points may be identified to
adaptively refine the GP surrogate model to approach the optimal value. Figure 8
shows an illustrative example of Bayesian optimization using GP.

As shown in Fig. 8, an initial GP surrogate model is trained first. Based on the
trained GP surrogate model, the EIF values over the design space are computed as
shown inFig. 8a.Bymaximizing theEIF, a new training point is identified, and theGP
model is retrained in the second iteration as shown in Fig. 8b. After a few of iterations,
as shown in Fig. 9, the maximum point can be identified. These iterations show that
the GP-based optimization needs very few evaluations of the objective function to
identify the global optimization, which is much more efficient than the other global
optimization algorithms, such as genetic algorithm and simulated annealing.

The ML-based optimization method allows us to effectively allocate the optimal
sensors and thereby increases the effectiveness of damage diagnostics as discussed
in Sect. 3.2. Note that the greedy algorithm-based sensor placement design is an
approximation of the original model. It may not find the “true” globally optimized
sensor network. This limitation can also be mitigated using other ML methods, such
as the reinforcement learning method, which may be better suited for dynamic opti-
mization problems. Figure 10 presents an example of sensor placement optimization
results of miter gate obtained using themethod presented in this section.More details
are available in [38].
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Fig. 8 An illustrative example of optimization using GP-based Bayesian optimization, a first
iteration; b second iteration

Fig. 9 An illustrative example of optimization using GP after converges
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Fig. 10 An example of sensor placement optimization results using machine learning

4 Failure Prognostics Using Bayesian Data Analysis
and Machine Learning

Failure prognostics is a process of predicting the end of life (EOL) of civil infrastruc-
tures to inform life-cycle management. Based on the state estimation from failure
diagnostics as discussed in Sect. 3, the state of the system from the current time to a
future time is obtained to predict the potential failure time or estimate the remaining
useful life (RUL) of the system. Figure 11 shows a schematic of how to use the
predictions to calculate the EOL and RUL distributions.

An essential part of the failure prognostics or RUL estimation is the degrada-
tion modeling since it is required to perform the projection of the state into future.
To build such degradation models for prognosis purposes, researchers have tried to
model the evolution/degradation of damage using physical degradation models such
as applications in fatigue crack growth [39–41] and corrosion growth [6, 7]. These
physical degradation models are developed based on the understanding of the phys-
ical behavior and are usually validated by experiments. On the other hand, empirical
degradation models are used when the evolution/degradation of damage is not well
understood either due to the limited understanding of the physical phenomenon or
when the damage state cannot be measured continuously but rather occasionally.
Approaches that combine physics-based approaches with data-driven methods have
also been developed in recent years and lead to a group of hybrid approaches. A
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Fig. 11 RUL estimation based on failure prognostics

comprehensive review of prognostics approaches for rotating machine is available
in [42].

For prognostics of civil infrastructure, however, the challenges come from the
abstracted data sources and the lack of a degradation model. For example, the inspec-
tion data are highly abstracted ratings as discussed in Sect. 2.2 and the ratings may
be polluted by human errors as presented in Sect. 2.3. This section presents how
to perform failure prognostics in this situation through three different approaches,
namely

• Failure prognostics based on inspection data
• Failure prognostics using a continuous degradation model mapped from inspec-

tion data
• Integrated failure diagnostics and prognostics using dynamic Bayesian networks

(DBN).

In the following sections, the aforementioned three approaches are explained in
detail.

4.1 Failure Prognostics Based on Inspection Data

Asbeendiscussed inSect. 2.2, inspectiondata contains somedegradation information
of civil infrastructures even though they are highly abstracted. Since the damage state
estimated fromSHM is in continuous form, the continuous state can be converted into
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Fig. 12 Failure prognostics using inspection data

inspection data in discrete state through certain protocols. Taking the gap damage of
a miter gate given in Fig. 2 as example, as shown in Fig. 12, the estimated gap length
can be converted into gap state, which can then be used for failure prognostics using
the gap state transition matrix given in Sect. 2.2.

More specifically, a certain protocol is usually needed to map the continuous
damage state to the abstracted discrete state of inspection data. For instance, the gap
length at of a miter gate (see Fig. 2) can be mapped into a gap state Xi,t based on an
engineering protocol as follows

R = hOCA(at , β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

X1,t = A, at ∈ [0, β1]
X2,t = B, at ∈ [β1, β2]
X3,t = C, at ∈ [β2, β3]
X4,t = D, at ∈ [β3, β4]
X5,t = F, at ∈ [β4, β5]
X6,t = CF, at ∈ [β5,∞)

, (15)

where β = [β1, . . . , β5] are protocol parameters defined by the field engineers.
Based on the mapping defined in the above equation, SHM data s1:n can be used

to estimate the gap state at current time step (i.e., highly abstracted inspection data)
as follows

P(Xi,n|s1:n) = Pr
{
Xn = Xi,n|s1:n

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βi∫

βi−1

f (an|s1:n)dan, if i ≤ 5

∝∫

βi−1

f (an|s1:n)dan, otherwise
, ∀i = 1, . . . , 6, (16)

where the PDF f (an|s1:n) of damage parameter an , is estimated using the Bayesian
updating method presented in Sect. 3.2.

Once the gap state at current time step is estimated, the damage state of the failure
m time steps into the future is obtained through the transitionmatrix given in Sect. 2.2
as
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P(Xn+m |s1:n) = P(Xn|s1:n) · Pm
Report, (17)

in which PReport and P(Xn|s1:n) are, respectively, given in Eqs. (1) and (16).
Using Eq. (17), the RUL for the system based on the current damage state and the

future failure state can be estimated. Details on such predictions can be found in [23].
This approach assumes that the transition matrix PReport can accurately represent the
underlying degradation pattern of the structure. However, this assumption is usually
not true since the abstracted ratings are often biased by human errors as discussed
in Sect. 2.3. To tackle this issue, an approach has been proposed in [10] to map
the reported transition matrix to a more useful transition matrix that has eliminated
some of the effects of the human errors. In order to map the reported rating transition
matrix PReport to the underlying “true” transition matrix PTrue, the underlying true
transition rating is defined at time t as X tr

t and that at t + 1 as X tr
t+1. Similarly, the

reported ratings from field engineers are defined at time t as Xobs
t and that at time t

+ 1 as Xobs
t+1. Based on these definitions and using the human error matrix given in

Eq. (3), PReport can then be mapped into PTrue by following the procedure shown in
Fig. 13. More details of Fig. 13 are available in [1]. Once PTrue is obtained, it can be
used to substitute PReport in Eq. (17) to get more accurate failure prognostics results.

In addition, a Bayesianmethod has also been developed in [23] to update the errors
in the transition matrix using SHM data. The advantage of the approach presented
here is that it requires minimal information for failure prognostics. The disadvan-
tage is that there is very large uncertainty in the obtained RUL estimation results.
Alternatively, a stochastic continuous degradation model can be built to improve the
confidence of such predictions of the damage parameters which leads to better failure
prognostics.

Fig. 13 Mapping between reported transition matrix to compensated/true transition matrix
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4.2 Mapping Inspection Data into Continuous Degradation
Model for Failure Prognostics

Using the gap growth of miter gate as an example, as shown in Fig. 14, an alternative
approach to perform failure prognostics is to map the abstracted inspection data into
a degradation model in continuous space and then perform failure prognostics in the
continuous space. It is expected that prognostics in continuous space can increase
the confidence of RUL estimation.

For a transition matrix PReport given in Sect. 2.2 or PTrue obtained in Sect. 4.1 after
mitigating human error bias, a continuous degradationmodel can be obtained through
Bayesian or optimization-based calibration.More details of themapping from inspec-
tion data to a degradation model are available in [10]. Here, a brief summary of
the major steps is presented. When optimization-based method is employed, the
optimization model is given by

gopt(θ;PTrue) =
∥∥
∥P̂(θ) − PTrue2

∥∥
∥, (18)

where P̂(θ) is the simulated transition matrix for a given degradation model with
parameters θ .

The most critical part is how to estimate θ for given PTrue. To do that, P̂(θ)

is calibrated for any given θ . The degradation model is modeled as a multi-stage
degradation model as follows

da(t)

dt
= exp

(
σ j (t)U (t)

)
Q j (t)(a(t))w j (t), ∀ j = 1, . . . , Nd , (19)

where a(t) is the gap length at time t, Qi and wi are stage-dependent degradation
parameters, σi is a standard deviation variable of degradation stage i, and U (t) is a
stationary standard Gaussian process with autocorrelation function given by

cov(U (t1),U (t2)) = exp(−ζ |t2 − t1|), (20)

Fig. 14 Failure prognostics in continuous space by mapping inspection data into a degradation
model
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in which ζ is a correlation length parameter.
For the above degradation model and given degradation model parameters, a

large number of realizations of the degradation curves is simulated using the Monte
Carlo simulation method. The obtained realizations of the degradation curves in the
continuous space can then be converted into ratings in the discrete states as follows

Xn = Xstage(an) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

X1,n, an ∈ [e0, e1)
X2,n, an ∈ [e1, e2)
X3,n, an ∈ [e2, e3)
X4,n, an ∈ [e3, e4)
X5,n, an ∈ [e4, e5)
X6,n, an ≥ e5

, (21)

where e j , ∀ j = 1, . . . , 5 are parameters that govern the transition between different
stages of degradations in the continuous space.

After the simulated degradation curves are converted into degradation ratings
using Eq. (21), the simulated transition matrix P̂(θ) can be obtained. For the above
degradation model, the parameters of the degradation model, θ , can therefore be
summarized as follows

θ � (θ1, θ2, θ3, θ4, θ5, e1, e2, e3, e4, σ ), where
θ j �

{
σ j , ζ j , Q j , w j , j = 1, 2, . . . 5

}
.

(22)

Then, the degradation model can be estimated as follows using the optimization
model given in Eq. (18). Figure 15 summarizes the overall procedure of estimating
P̂(θ) for a given degradation model and model parameters θ .

Fig. 15 Overview of obtaining simulated transition matrix for given θ
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Fig. 16 Comparison of RUL
estimates using discrete
degradation model
(Sect. 4.1) and piecewise
continuous degradation
model (Sect. 4.2)

Once the degradation model is available, it can be used for failure prognostics in
the continuous space as illustrated in Fig. 11. This procedure, however, is not limited
to the model given in Eq. (19). It is also applicable to other degradation models
and can be integrated into a Bayesian framework. More detailed discussions of this
approach can be found in [10].

Figure 16 shows a comparison of theRULestimates obtained using the approaches
presented in Sect. 4.1 (denoted as TMmean prediction, TMConf. limit) and Sect. 4.2,
respectively. It shows that mapping inspection data into a continuous degradation
model can significantly increase the confidence of the failure prognostics results.

4.3 Integrated Failure Diagnostics and Prognostics Using
Dynamic Bayesian Networks

Failure diagnostics and prognostics of civil infrastructure usually require the usage of
multiplemodels including degradationmodel [39–41] and physics-basedmodel [12–
14], as discussed earlier. In addition to various analysis models, heterogeneous data
and uncertainty sources are involved in the process of diagnostics and prognostics. A
flexible tool that can be used to tackle the challenges in diagnostics and prognostics
caused by the heterogeneity of model and data sources is Bayesian networks (BN).

A BN, which is also called probabilistic graphic model, is a directed acyclic
graph that connects different variables in a probabilistic way. It allows for the flexible
integration of multi-type of models and information sources in a systematic Bayesian
framework, and thereby enable decision makers to update information and reduce
uncertainty in a holistic manner [43]. Due to its capability of fusing information and
data sources, BN plays a vital role in building digital twins for SHM in various assets,
from aerospace engineering to civil and mechanical engineering [40, 44].
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Fig. 17 An example of
dynamic Bayesian network

For n random variables (nodes), X1, X2, . . ., and Xn , BN represents the joint
probability density function p(X) as follows

p(X) = p(X1, X2, . . . , Xn) =
n∏

i=1

p(Xi |πi ), (23)

where πi is a set of parent nodes of Xi , p(Xi |πi ) is the conditional probability mass
(CPM) function or conditional probability density (CPD) function, and nodeswithout
parent nodes are called root nodes. For root nodes, assume p(Xi |πi ) = p(Xi ).

A type of widely used BN in failure diagnostics and prognostics is the dynamic
Bayesian network (DBN). Figure 17 shows a simple example of DBN. As shown
in this figure, the DBN consists of state variable denoted by at and measurement
variable represented by st . The CPD function f (at |at−1) describes the transition of
the state variable at over time and h(st−1|at−1) models the probabilistic relation-
ship between the state variable and measurement variable. When the state variables
are variables related to the failure modes or degradation stages of the civil infras-
tructure, the measurements collected from measurement variable st can be used for
failure diagnostics using Bayesian inference methods. Based on the failure diagnos-
tics or estimation of damage related state variables, failure prognostics may then be
performed according the transition of state variables over time, which is governed
by the CPD function f (at |at−1).

In practical engineering applications, the node in the DBN can be a mathematical
model, a finite element model, or a data-driven machine learning model. The DBN
used for failure diagnostics and prognostics can be constructed using physics-based
method [12–14], Bayesian network learning method [44], or a hybrid of physics and
data-driven methods [19, 20].

Figure 18 shows a schematic dynamic Bayesian network at one time instant for
the failure diagnostics and prognostics of a miter gate (see Fig. 2), which is used an
example to explain the presented approaches in this chapter. Note that, for the sake
of simplification, the transient BN is not depicted. As shown in this figure, the DBN
connects variables of a degradation model with variables of a strain analysis model
of the miter gate. For example, the parent nodes of node e1 in Fig. 18 are nodes σe

and μ1. The CPDs in the DBN can be derived according to the approaches discussed
in Sects. 3.2 and 4.2 of this chapter. Using the strain measurement collected from
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Fig. 18 A schematic Bayesian network of a miter gate at one time instant for diagnostics and
prognostics

SHM system, the uncertain variables of the degradation model can be updated. The
updated degradationmodel can then be used to estimate RUL of the gate dynamically
over time.

Figure 19 shows an illustrative example of the posterior distribution updating of
parameter w1 over time using the strain measurements of the miter gate. Following
that, Fig. 20 shows the RUL estimation of the miter gate over time. It shows that the
confidence of RUL estimation increases over time as more and more measurements
are collected. Additionally, it is worth mentioning that the degradation model and
strain analysis model are updated in an integrated manner in the DBN-based frame-
work. This example illustrates the flexibility of DBN in connecting multiple models
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Fig. 19 An illustrative example of updating posterior distribution of a degradationmodel parameter
using DBN over time

Fig. 20 RUL estimation over time of the miter gate

for failure diagnostics and prognostics. A good application of DBN for the failure
diagnostics and prognostics is available in [45].

Moreover, the degradationmodel parameters obtained in Sect. 4.2 using optimiza-
tion or Bayesian-based method can be used as prior information for the DBN-based
method.

In summary, this section presents three different approaches for failure diagnostics
using Bayesian data analytics and machine learning. The advantage of the approach
presented in Sect. 4.1 requires minimal information for failure prognostics. The
advantages of the approaches presented in Sects. 4.2 and 4.3 are that they can provide
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prediction results with less uncertainty. Next, the maintenance planning based on
failure diagnostics and prognostics is briefly introduced.

5 Optimization of Maintenance Strategy

As mentioned in Sect. 1, there are two types of maintenance strategies, namely
TBM and CBM. TBM (also known as periodic-based maintenance) assumes that
the estimated failure behavior is statistically or experientially known [46]. Statistical
modeling, such as Weibull analysis [47], is widely used in TBM to identify failure
characteristics of a component or system. The goal of TBM models is to find the
optimal policy that minimize a cost function. TBM approaches have been developed
for both repairable or non-repairable systems [48]. The complexity of a TBMmodel
depends on the targeted system such as single-system, multi-systems, parallel and
series structure. A more extensive review of TBM applications can be found here
[49]. For example, in miter gates, historical data is available in the form of discrete
ratings.

Figure 21 shows a TBM approach using the transition matrix given in Sect. 2.2,
whose goal is to estimate the optimal maintenance time based on a well-known cost
function [48], which weight the probability of failure, F(t), with the preventive, Cp,
and unscheduled (or emergency), Cu, maintenance costs.

CBM is the most modern and popular maintenance technique among researchers
and industry. CBMhas gained increasing attention recently as a preferred approach to
TBM. CBM is a maintenance approach that combines data-driven reliability models
and information froma conditionmonitoring process. Based on the underlying degra-
dation model, CBM models can be categorized into two subgroups: (1) models that
assume discrete-state deterioration (such as in Sect. 4.1) and (2) models that assume

Fig. 21 TBM approach using discrete ratings
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continuous state deterioration (such as in Sects. 4.2 and 4.3). A most extensive list
of CBM application can be found in here [50–53]. Most of the CBM applications
available in the literature are for mechanical systems, aerospace systems, or manu-
facturing systems. For large civil engineering infrastructure, most of the applications
have been applied to bridge engineering [54–56]. In CBM, maintenance schedules
are predicted based on the results from diagnosis and prognosis, as discussed in
Sects. 3 and 4. For diagnosis and prognosis, CBM approaches can be classified into
physics-based approach [12–14], data-driven approach [15–18], and hybrid approach
[19, 20]. The approaches presented in this book chapter can be classified as hybrid
approaches since they combine physics-based approach with data-driven approach
to improve CBM predictive capabilities.

6 Conclusion

This chapter presents comprehensive failure diagnostics, prognostics, and mainte-
nance planning approaches using machine learning, Bayesian data analysis, compu-
tational mechanics, and reliability engineering. The presented framework is aimed
to allow real-time assessments of civil structures that have different forms of avail-
able data. The challenge of heterogeneity of the data sources has been successfully
overcome to provide diagnostic/prognostic capabilities to the structure of interest.
Additional steps have been discussed to improve these capabilities such as optimal
sensor design and accounting for human error. Currently, the features used to update
the models used in this work have been based on SHM data and human inspections.
However, this framework can be adapted to work with more advanced data sources
enhanced with supervised learning algorithms such images captured from drones or
robots.
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Real-Time Machine Learning for
High-Rate Structural Health Monitoring
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Abstract Advances in science and engineering are empowering high-rate dynamic
systems, such as hypersonic vehicles, advanced weaponries, and active shock and
blast mitigation strategies. The real-time estimation of the structural health of high-
rate systems, termed high-rate structural health monitoring (HRSHM), is critical
in designing decision mechanisms that can ensure structural integrity and perfor-
mance. However, this is a difficult task, because three aspects uniquely characterize
these systems: (1) large uncertainties in the external loads; (2) high levels of non-
stationarities and heavy disturbances; and (3) unmodeled dynamics generated from
changes in system configurations. In addition, because these systems are experi-
encing events of high amplitudes (often beyond 100g) over short durations (under
100 ms), a successful feedback mechanism is one that can operate under 1 ms. A
solution to the unique system characteristics and temporal constraint is the design
and application of real-time learning algorithms. Here, we review and discuss a real-
time learning algorithm for HRSHM applications. In particular, after introducing
the HRSHM challenge, we explore fast real-time learning for time series prediction
using conventional and deep neural networks and discuss a path to rapid real-time
state estimation.
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1 Introduction

High-rate systems are engineering systems experiencing high-amplitude dynamic
events (often beyond 100g) over short durations (under 100 ms). Examples include
structures exposed to blast, high-impact car crashes, hypersonic vehicles, and
advanced weaponries. The development and implementation of feedback, decision,
and reactionmechanisms in high-rate systems could dramatically improve their func-
tionality and safety. For example, it could enable active blast mitigation strategies
[23], smart airbag deployments [18], and damage-based decision for hypersonic sys-
tems [16]. Yet, the implementation of these feedback mechanisms is a difficult task
due to the complexity of the dynamics and extreme time constraints under consider-
ation.

In particular, the dynamics of high-rate systems has the following unique char-
acteristics, defined in the introductory paper on high-rate state estimation [11]. The
characteristics are:

1. large uncertainties in the external loads;
2. high levels of non-stationarities and heavy disturbances; and
3. unmodeled dynamics generated from changes in system configurations.

First, the external loads, for example, those caused by blasts and ballistic impacts,
are largely uncertain and thus difficult to predict and estimate. Second, the dynamics,
especially which follow the high-amplitude impact, results in high non-stationarities
and large uncertainties in the system. Third, the impact will likely result in significant
unmodeled dynamics generated from changes in system configurations, for instance
changes in structure or boundary conditions. An example of signals of a high-rate
system acquired from laboratory experimentations is illustrated in Fig. 1. The system
(Fig. 1a) consists of an electronic unit housing circuit boards equipped with high-
g accelerometers (Fig. 1a, right), securely held in a fixture (Fig. 1a, center), and
impacted using an MTS-66 accelerated droptower (Fig. 1a, left). A section of the
recorded time series signal from accelerometer “accel 1” following five consecutive
tests is plotted in Fig. 1b. The following high-rate characteristics are: (1) the response
is of high amplitude, in the thousands of g-force (1kgn = 9810m/s2 = 32,200 ft/s2); (2)
the dynamics has high nonlinearities; (3) the response is altered after each test, which
could be attributed to the whipping of cables, damage of the electronics assembly,
and/or change of the internal boundary conditions of the electronics; and (4) the
change in dynamics occurs in the sub-millisecond range.

It follows that these unique dynamic characteristics complicate physical modeling
in the formulation of a feedback decision system. In addition, the rapid changes in
dynamics exert important constraints on the close-loop time scales. The terminology
for these short time scale are defined as [7]:

1. under 1 ms for high rate (HR)
2. under 100 µs for very high rate (VHR); and
3. under 1 µs for ultra high rate (UHR).
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Fig. 1 Example of high-rate system: a experimental setup; and b time series signals from five
consecutive tests

Of interest to this chapter are algorithms enabling high-rate feedback. Work in
state estimation often uses convergence speed and computing time as key metrics
to define performance of an algorithm. Convergence speed is the time taken for an
estimation to stabilize within a given threshold of the true value. It usually influences
the quality of decision, and increases with the increasing complexity of the dynamic
system under consideration. Computing time is the time it takes for the algorithm
to process data and produce an estimate. In real-time applications, as it is desirable
for feedback systems, the computing time must remain under the feedback decision
rate. Similar to the convergence time, the computing time is expected to increase
with the complexity of the dynamics. Early work in 1995 on state estimation for
induction motors using observers reported 73 ms computing time using backward
difference [4]. With technological progress in computing, more recent work reported
magnitude faster algorithms, with 19µs and 86µs using respectively a sliding mode
observer and an extended Kalman filter [24], and 5 µs using a Luenberger or sliding
mode observer [26].

While these computation times are impressive, a key limitation is in their limited
applicability to the high-rate problem due to the required level of physical knowledge
or linearity. It was argued in [11] that, given the unique dynamic characteristics of
high-rate systems, the use of adaptive algorithms was critical in generating success-
ful decision strategies. However, adaptive algorithms are known to require longer
computing times, which also limits their applicability to high-rate mechanisms. Yet,
being able to create fast adaptive algorithms with adequate convergence could open
new possibilities empowering high-rate systems through the real-time estimation of
their structural health, here termed high-rate structural health monitoring (HRSHM).

There have been some efforts in enabling HRSHM through the generation of
algorithms with convergence times approaching the high-rate time scales. An exper-
imental testbed, the Dynamic Reproduction of Projectiles in Ballistic Environments
for Advanced Research (DROPBEAR), was used to generate data to test various
HRSHM algorithms and is described in more detail later in this chapter [14]. Some
methods based on model reference adaptive systems (MRASs) have shown promise.



78 S. Laflamme et al.

For example, an MRAS was applied to the DROPBEAR to identify the position of a
moving cart mimicking some high-rate features. The algorithm identified the posi-
tion of the cart online through the estimation of the system’s fundamental frequency
using a sliding mode observer [14]. The authors in [25] used MRAS to estimate the
stiffness of the samemoving cart in real time, also leveraging slidingmode theory. An
average computing time of 93 µs was reported. DROPBEAR was used in [8], where
the authors proposed to estimate the cart position by matching extracted frequen-
cies to pre-generated finite element models. The authors implemented the real-time
algorithm in a field-programmable gate array and evaluated experimentally, with a
reported 4.04 ms computing time with minimum error and an improved iteration
time minimizing errors and computation time of 0.83 ms to match the pre-generated
models.

Other work was conducted on data generated from the droptower tests shown
in Fig. 1. The authors in [12] proposed a wavelet neural network to conduct signal
estimations. A particularity of the algorithm was its on-the-edge learning capability,
without pre-training, provided by a self-organizing input mechanism that permitted
adaptation of the neuro inputs to local stationarities. While the algorithm showed
promise for online applications, its computing time was not suitable for high-rate
applications. Inspired by this work, a fast deep learning algorithm was proposed in
[1], but with real-time HRSHM applicability. An average computing time of 25 µs
was reported.

In this chapter, opportunities and limitations in using real-time learning for
HRSHM are discussed, with an emphasis on physics-informed methods that care-
fully craft the input of the representation enabling time series feature extraction.
The discussion starts by reviewing opportunities in crafting the input space [10] for
accelerating convergence speed in estimating non-stationary time series. After, the
deep learning strategy developed in [1] for fast real-time applications is presented.
Lastly, a path in conducting rapid real-time state estimation is discussed.

2 Opportunities in the Input Space

On a simplistic perspective, one can initially view the problem of HRSHM as one of
non-stationary time series estimation and forecast. A critical challenge in building
a black-box representation for a non-stationary system is in the time-varying nature
of dynamic characteristics, whereas representative features are expected to evolve
with time. Somemachine learning techniques lend themselves to characterizing time
series signals, in particular recurrent neural networks (RNNs) that can learn tempo-
ral dependencies, and their infamous long short-term memory (LSTM) architecture
capable of preserving long-term knowledge. However, machine learning techniques
typically heavily rely on pre-training, and curated training data related to high-rate
system are highly limited due to the important costs involved in experimentation and
highly uncertain dynamic environment. A successful machine learning algorithm for
HRSHM is one that can be trained on these very limited datasets, and with strong
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Fig. 2 Pure on-the-edgemachine learning algorithm (“smooth trans VIO”) versus hybrid algorithm
(“hybrid”): a overall time series; and b zoom on the first section of the time series

on-the-edge learning capabilities. In addition, the algorithm must be lean in order to
yield fast computing, yet capable of representing important dynamics to ensure fast
convergence.

Physical knowledge can be integrated with the machine learning technique to
ameliorate convergence and computing performance. An obvious choice is the uti-
lization of an approximate physical representation that runs in parallel, where the
machine learning algorithm focuses on mapping the unmodeled dynamics. Such a
technique is popular, because it can yield a significant increase in estimation accu-
racy [13] and convergence speed. For example, Fig. 2 plots the time series estimation
of a dataset from the droptower experiment (Fig. 1), where time series data from
accel 1 were mapped to time series data from accel 2. The figure compares results
from the pure on-the-edge learning algorithm (“smooth trans VIO”) presented in
[12] and discussed later, against those obtained from the same algorithm but using a
six degrees-of-freedom approximation of the system running in parallel (“hybrid”).
It can be observed that the use of physical knowledge substantially increases the
quality of the estimation.

While this parallel architecture has merit, it does not necessarily affect the com-
puting speed of the learning algorithm. A solution is to inject physical knowledge
directly into the machine learning algorithm in order to accelerate both its conver-
gence and computing time. The authors have studied opportunities in doing so at
the input space level, by manipulating what set of features goes into the black-box
model. Intuitively, by selecting features that preserve the essential dynamics of the
time series of interest, the representation would be leaner and more efficient.

There exists a multitude of techniques that can be used in analyzing a non-
stationary time series and extracting appropriate features [15]. A method of interest
to the authors is based on the embedding theory, based on the celebrated Takens
embedding theorem [22]. The theorem states that the phase space of an autonomous
system can be reconstructed topologically using a vector of delayed measurements
called delay vector ν, with
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ν = [ y(t) y(t − τ) · · · y(t − (d − 1)τ ) ] (1)

where y(t) is a measurement taken at time t , τ the time delay, and d the embedding
dimension. In other words, there exists a delayed vector that preserves the essential
dynamics of the system. While originally developed for autonomous systems, the
theorem has been extended to non-autonomous systems with deterministic forcing
[20], state-dependent forcing [5], and stochastic forcing [21].

The embedding theorem does not apply to non-stationary systems. It was demon-
strated in [10] that, while using ν constructed based on the embedding theorem to
estimate a non-stationary systemdid yield adequate performance, themethod showed
greatly unstable with respect to the choice of τ and d, where a mere over-embedding
by one dimension could result in close to 100% underperformance in accuracy and
convergence. Yet, the authors in [17] proposed one such application for neurocontrol.
The idea was to use a sliding window through the time series measurement to extract
the delayed feature vectors (i.e., τ and d), assuming that each time series window
was stationary, and use these features as the input to the representation. Thus, for
each new window, new features were extracted and the input space adapted accord-
ingly. This algorithm was termed “self-organizing input space.” Results yielded a
leaner neuro-representation, computationally faster, and of better convergence com-
pared with the same representation built with the best non-variable input space (i.e.,
ν constant) found through brute force.

The method was used by the authors in [12] to evaluate its promise for HRSHM
applications. This was done by constructing an observer equipped with such self-
organizing input space, termed “variable input observer” or VIO. The architecture of
the VIO is illustrated in Fig. 3, where the τ and d parameters are sequentially selected
by analyzing the dynamics of the local time series and are used to construct ν that
serves as the input delay vector to the wavelet network. Here, the wavelet network
has self-adaptive capabilities (i.e., nodal weights, bandwidths, and centers), and the
adaptation is conducted using the estimation error as the cost function.

Numerical simulations using the VIO were conducted on the droptower dataset
(Fig. 1), and results also compared against those obtained from a non-variable input
space found through brute force. Results showed that the use of the VIO yielded a
neuro-representation that was approximately 50% leaner (i.e., fewer nodes), showed
a reduction of approximately 50% in the root mean square error (RMSE), and an
approximate 20% improvement in convergence speed. Conclusions of the study
pointed toward important opportunities in the input space, similar to conclusions

Fig. 3 Architecture of the VIO
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drew in [10] that also demonstrated that the selection of the wrong input space for
a high-rate system could have strong negative consequence on the quality of the
representation. Nevertheless, the VIO had two important limitations impeding its
application to HRSHM. Firstly, the architecture of the representation was incapable
of convergence given the constantly changing input space. Secondly, the computing
time used in finding the optimal input space features was quite significant. Based on
these findings, the authors developed a deep learning strategy specifically crafted for
HRSHM applications, presented in what follows.

3 Deep Learning Strategy for HRSHM

Opportunities and limitations identified in the research on the VIO led to a deep
learning algorithm to build a stable predictor for non-stationary time series [1]. The
strategy consists of utilizing n RNNs organized in parallel, termed ensemble of
RNNs, each i th RNN associated with an input space νi constructed with a unique
combination of τ and d (i.e., τi and di ). The architecture of the proposed ensemble
of RNNs is illustrated in Fig. 4. The selection of the n delay vectors will be discussed
later in this section. The outputs of each RNNs are assembled through an attention
layer that assigns weights to each output and passed through an linear neural to yield
the prediction. The combination of the attention layer and linear neuron forms the
function that maps the feature vectors h to the prediction. The RNNs are constructed
with short-sequence LSTM cells to better cope with non-stationarities and empower
faster computing. Here, the pure on-the-edge capabilities constraint assigned to the
VIO is relaxed. Yet, it is assumed that only limited training data is available, and
that the available training data does not represent most of the dynamics that could
be experienced by the system. Thus, transfer learning is utilized to train the LSTM
cells in real-time, using the one-step ahead prediction error for the cost function.

Using a discrete time k notation for simplicity, the i th delay vector at time k is
written

Fig. 4 Architecture of the ensemble of LSTMs
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Fig. 5 Unfolder architecture of the i th RNN

νi
k = [yk+1−di τi yk+1−(di−1)τi · · · yk+1−2τi yk+1−τi ] (2)

where τ is a positive integer. The role of each LSTM cell is to recursively update a
hidden state vector h. Here, these hidden states represent features extracted from the
time series, and these extracted features are mapped to the prediction. This process
is illustrated in Fig. 5 for the i th RNN that maps the i th delay vector νi

k to the
step ahead prediction ŷi + k + 1 as a function f of the last extracted feature vector
hid . The role of the attention layer is to combine all the individual predictions to
compute the ensemble prediction ŷk+1. Remark that, as implicitly shown in Eq.2, the
algorithm predicts the k + 1 output ŷk+1, consisting of the one-step ahead prediction.
For multiple steps ahead, the one-step ahead prediction is iterated using predicted
values as synthetic measurements. Formal equations characterizing LSTM networks
can be found in [9]. The physics-informed input space νi is the corner stone of the
algorithm, enabling more targeted feature extraction and thus improved prediction
accuracy and horizon for non-stationary time series. Its construction is discussed in
what follows.

3.1 Physics-Informed Input Space

The construction of the input space is based on physical knowledge and is conducted
in two steps. The first step is the extraction of data structure from the training time
series through principal component analysis (PCA). The strategy is to decompose
the signal into principal components (PCs), and to keep the first PCs that represent
most of the signal. For a time series dataset, PCA is typically conducted by a singular
value decomposition of the signal’s autocorrelationmatrix. See [2] for amathematical
description of the process. Here, the first n PCs that account for 95% of the signal are
taken, and n different input space are constructed, given raise to n RNNs running in
parallel. As an example, consider test data generated from the droptower shown in
Fig. 1a taken from accelerometer 1 (test 1—TS1). Figure6 shows 95% of the signal
reconstructed with only the first five PCs that are individually plotted in Fig. 7.
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Fig. 6 Reconstructed time series TS1 using the first five PCs

Fig. 7 Individual PCs used in reconstructing the signal

Once the data structure is extracted through PCA, the topology of the i th PC (Fig. 7
for instance) is investigated to select parameters τi and di thatwill be used to construct
νi . This is done through well-established numerical techniques, in particular the
mutual information (MI) test [3] to select τ , and the false nearest neighbors (FNN)
test [12] to select d. The MI tests is based on information theory and is a measure of
the nonlinear dependence ofmeasurements for different sampling periods and selects
a delay value that adds most information to the sequence. The FNN test searches
for the embedding dimension d that minimizes the number of false neighbors when
altering the dimension.

Once constructed, the delay vectors are used to train the RNNs. The RNNs are
trained individually, on the full training dataset, using the associated delay vector
(Fig. 5). After, the trained LSTM cell is extracted and becomes the feature extractor
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that will map νi
k to hi (Fig. 4). During the real-time prediction phase, the neuro-

paremeters are sequentially updated based on a cost function based on the one-step
ahead prediction error.

3.2 Numerical Demonstration

A numerical demonstration is conducted on the droptower dataset. The training data
(i.e., source domain) is a single time series measurement taken from accelerometer
1 (test 1—TS1). The target domain are five different time series measurements taken
from accelometer 2 during five consecutive tests (tests 1–5, TS2). Using the strategy
discussed in the last subsection, here termed “PCA inputs,” five distinct input spaces
are constructed. Performance of the algorithm is compared against that with five
other input spaces selected through brute force such that the root mean square error
(RMSE) of the one-step ahead prediction is minimized, here termed grid search or
“GS inputs.” The parameters used to construct each input spaces are listed in Table1.

The performance is the algorithm at predicting the time series over an horizon of
q discrete time steps is investigated using four performance metrics. The first metric
is the RMSE. The second metric is the mean absolute error (MAE). The third metric
is the naive prediction length, consisting of the total length of naive predictions that
are defined as predicted value taken as approximately equal to the last prediction.
The fourth metric is the similarity between the extracted features and target domain
measured using dynamic time warping (DTW).

Figure8 plots the RMSE and MAE metrics as a function of the prediction hori-
zon q (in discrete time steps). Results also show the line of indifference (LOI) that
corresponds to the performance using the mean value of the time series as the pre-
diction, and the performance of the VIO reported in [12] obtained for a one-step
ahead prediction horizon. Results show that the GS strategy outperforms the PCA
over short prediction horizons, which is expected given the procedure in selecting
the input space. Nevertheless, the PCA strategy quickly starts to outperform GS after
approximately five prediction steps, and remains below the LOI over a much longer

Table 1 Input space hyper-parameters selected using the “GS inputs” and “PCA inputs” techniques

LSTM GS inputs PCA inputs

τ d τ d

1 14 8 25 5

2 11 10 15 6

3 8 12 11 8

4 5 14 7 12

5 4 15 5 15
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Fig. 8 a RMSE; and b MAE as a function of prediction horizon q

horizon, where the PCA strategy shows to outperform the LOI up to 34 steps ahead
with respect to the RMSE, and 29 steps head with respect to the MAE.

Figure9 plots the naive prediction length and DTW metrics as a function of
the prediction horizon q. A study of the naive prediction length shows that the
prediction by the PCA strategy is more stable and richer in information compared
with the GS strategy. This can also be observed through the DTW plot where the
PCA strategy significantly outperforms the GS strategy over mid- and long-term
prediction horizons, demonstrating that the proposed physics-informed technique
generates features (h) that are well representative of the non-stationary time series,
thus explaining the better quality of predictions over long prediction horizons.

Overall, through this numerical demonstration, we demonstrated that a deep learn-
ing tool with a physics-informed input space could be used to quickly learn and
predict a non-stationary time series. Hand-coded in Python and without leveraging
a parallel processing architecture for the RNNs, the average computing time of the
algorithm was 25 µs per time step. With the 1MHz sampling rate used in acquiring
data on the droptower test, this is equivalent to 25 steps (q = 25). This would govern
what should be the minimum data sampling rate, unless the algorithm is coded in
a way that step ahead predictions could be processed in parallel. Remark that it is
anticipated that hardware implementation of the algorithm along with parallel pro-
cessing of the RNNs themselves will significantly increase computing speed, thus
improving performance with respect to the minimal sampling rate and/or required
prediction horizon for HRSHM applications.

4 Path to Rapid State Estimation

The algorithm presented in the previous section showed direct applicability to
HRSHM through adequate prediction and computing performance. However, a key
limitation is that time series predictions cannot be used directly as actionable data. It
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Fig. 9 a Naive prediction horizon; and b DTW as a function of prediction horizon q

follows that a complete HRSHM algorithm is one that yields information that can be
used within a feedback system to make rapid decisions. A simple application of time
series prediction to decision making is the detection of prediction errors to detect
changes in dynamics, although this method is limited to a binary output “change”
versus “no change” that is difficult to integrate in a decision system. Often, state
estimation rather than measurement prediction is preferred, whereas physical prop-
erties such as stiffness and damping are estimated and can be used as a direct way
to detect, localize, and quantify changes in dynamics (e.g., damage). For example,
work presented in [6] proposed an algorithm for online estimation of bridge stiffness
over a series of discrete elements in order to localize and quantify damage, where
the estimated stiffness values can be used in a decision loop to detect the presence



Real-Time Machine Learning for High-Rate Structural … 87

Fig. 10 MRAS-based algorithm for high-rate state estimation

of important damage post-seismic events and decide upon urgent inspections and/or
bridge closure.

State estimation inherently relies on physical representations, which complicates
the task in the high-rate dynamics realm given the lack of physical knowledge com-
binedwith the complexity of the dynamics. As discussed in the introduction, attempts
have been made in HRSHM using MRAS approaches, in particular in [25] where
the authors showed that the position of a moving cart could be identified with an
average computing time of 93 µs. The algorithm is schematized in Fig. 10. It con-
sists of an adaptive model running in parallel with a reference model (i.e., “real”
system). The adaptive model is used to generate synthetic measurements, and the
errors on measurements are used to update the uncertain parameters of the adaptive
model. A critical contribution of the work is that it integrates the notion of concurrent
learning to cope with the lack of persistent excitation, as it is often the case for high-
rate events consisting of impulse loads. Concurrent learning consists of concurrently
using real-time measurements augmented with a temporally limited historical data
set to guarantee exponential convergence.

In this section, we summarize the demonstration of the algorithm on experimen-
tal data acquired on the DROPBEAR testbed found in [25]. After introducing the
experimental methodology that includes the construction the MRAS algorithm, we
present and discuss key results that show rapid state estimation capabilities and con-
clude by discussing how this method could be integrated with our proposed deep
learning approach.

4.1 Methodology

The DROPBEAR testbest, shown in Fig. 11, was designed to validate online param-
eter estimation algorithms for high-rate dynamic systems. It is discussed in detail in
[14]. Briefly, it consists of a 505mm cantilever steel beam equipped with a sliding
cart to produce a gradual or sudden change in stiffness, along with a mass attached
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Fig. 11 DROPBEAR testbed: a picture; and b schematic

Fig. 12 a Frequency response functions (FRFs) for the beam with mass at various fixed cart
positions; and b wavelet transfer for the beam without mass with the moving cart

at the tip using an electromagnet to produce a sudden change in mass. An impact
hammer is used to excite the beam.

The experiment consisted of moving the cart along the beam at different fixed
locations: 50mm, 100mm, 150mm, and 200mmaway from the clam, andmoving the
cart back and forth from 50mm to 200mm away from the clamp. Data were acquired
using an accelerometer sampled at 25 kHz. Figure12a plots the frequency response
functions (FRFs) obtained under the fixed cart positions of interest (the mass is
attached), showing a dominating frequency between 17.7Hz (at 50mm) and 31.0Hz
(at 200mm). Figure12b shows the wavelet transform of the signal under the moving
cart experiment (themass is not attached), showing the dominating frequencymoving
approximately between 20 and 35Hz. The peaks in frequency contents correspond
to times when the beam was hit by an impact hammer. Note that the cart location
can be approximated through a linear relationship with the measured dominating
frequency, whereas the testbed is typically utilized as a starting point to benchmark
algorithms in terms of computing speed to conduct high-rate state estimation.

The first step in formulating the MRAS algorithm is in constructing a reduced
order representation. Here, this is done through the system equivalent reduction
expansion process [6, 19] to find a state-space representation that mimics the modal
properties of the system based on the sensor placement strategy. Thus, because only
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Fig. 13 Estimation versus reference with and without CL: a displacement z1; and b displacement
error z̃1

one sensor is utilized in the experimental setup, the reduced order representation only
has one degree-of-freedom.After, the adaptive dynamic parameters of the state-space
representation, which consist of the equivalent mass, stiffness, and damping, are
updated sequentially during the acquisition of measurements. This is done through
sliding mode theory. As discussed above, a key issue in using impact loads is the lack
of persistent excitation, where the adaptive dynamic parameters are not expected to
converge. Concurrent learning is used as a solution, where only a short sequence
representative of the input, termed history stack, is used in the adaptive mechanism.
At each time step, the algorithm investigates whether the new input adds information
to the history stack, and if it does, the new input replaces the less informative value
in the sequence. Figure13 demonstrates the use of concurrent learning on a toy
single degree-of-freedom example, plotting the estimation of displacement z1 and
its estimation error z̃1 over time. Results show that without concurrent learning, the
estimation does not converge to the reference value.

4.2 Numerical Demonstration

Results from the fixed cart experiment are first described, where five tests were
conducted under each cart location. Under these tests, the mass was taken as known,
and both the stiffness and damping properties estimated, with both values taken
initially as null. Figure14a, b plot typical results for the estimation of stiffness and
damping, respectively, under each cart location, with the blue vertical line showing
the convergence point. Results show that both the stiffness and damping converge
with the stiffness converging to its real value and damping to an adequate value
(the real value of damping was unknown). Average results are tabulated in Fig. 14c,
where the estimated frequency computed from the estimated stiffness shows a great
match. It can also be observed that the convergence time decreases significantly with
the increasing frequency of the system. Also, while the convergence time appears
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Fig. 14 Key results from fixed cart experiments: a typical results for stiffness estimation; b typical
results for damping estimation; and c average frequency estimate per series of tests and convergence
time

important in terms of HRSHM, it is attributable to the initial conditions on the
dynamic parameters (i.e., null) that start far from the real values.

After the verification of the algorithm on the fixed cart experiments, we evalu-
ated the capability of the algorithm at tracking the cart position. The beam was hit
with four impulses during the experiments, as shown in Fig. 15c. Figure15a, b plot
the performance of the algorithm at estimating the displacement z1 along with the
estimation error z̃1. Results show that the algorithm converges quickly, with higher
errors at the time of impulse and while the cart is moving. Figure15d plots the cart
position tracking through the frequency estimation, assuming a direct mapping to
the position. Results show good agreement with the real position (black line), with
large errors at the time of impulses. There is also high chattering during movement
of the cart, which may be attributed to the lack of excitation input. The algorithm
appears to converge faster when the cart is close to 200mm (higher frequency) than
when it is getting closer to 50mm (lower frequency), consistent with the results from
the fixed cart experiment.
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Fig. 15 a Displacement z1 estimation versus reference during cart movement; b error on displace-
ment estimation z̃1; c impulse load inputs; and d cart position estimation (red-dashed line) versus
real (black line)

4.3 Discussion

State estimation (i.e., cart position) of themoving cart was conductedwith an average
computing time per step of 95 µs using MATLAB. This compares well with results
obtained from Downey et al. [8], where the authors reported an average computing
time per step of 4.04 ms using a Fourier transform to identify the fundamental
frequency and conduct model matching. Analogous to the deep learning algorithm,
we anticipate that hardware implementation would significantly decrease computing
time and thus increase HRSHM applicability.

While both this work and the one on the ensemble of RNNs discussed in the
previous section are yet to be combined, we view the use of the MRAS-based tech-
nique as a path to providing rapid state estimation for HRSHM. An obvious method
to combine both methods would be to produce time series predictions and train
the MRAS algorithm on the predictions, thus enabling predictive capabilities on
the cart position. Alternatively, the MRAS algorithm could be integrated in parallel
with the ensemble of RNNs to yield a physics-informed machine learning approach,
where the deep learning algorithmwould learn and leverage a physical representation
to improve predictive performance. As compared with purely data-driven machine
learning models, the resulting physics-informed machine learning models would
likely generalize better to scenarios unseen during model training, especially those
that are not well represented by the training data.

Obviously, there exists a vast number of different algorithms and hybrid permuta-
tions that could be used to enable rapid state estimation for HRSHM. Regardless of
the selected algorithms, computing speed is a critical metric enabling real-time appli-
cations, and convergence speed will define the accuracy of the algorithm. As briefly
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Table 2 Comparison of convergence time after second, third, and fourth impulse under J = 10,
30, and 50, along with average computation time per sample

J Convergence time (ms) Computation

Second impulse Third impulse Fourth impulse time/sample (µs)

10 161 432 327 64

30 144 289 264 95

50 131 249 136 112

discussed in the introduction, computing time and convergence speed will often be
conflicting goals. As an example, Table2 lists the performance of the MRAS algo-
rithm on the moving cart experiments as a function of the length of data kept in the
history stack J̄ . While the convergence time after each impulse decreases with J̄
increasing, the average computing time per sample increases, showing the important
trade-off between computing time and accuracy. It follows that the minimum com-
puting time in an HRSHM application will be governed by the required accuracy,
which itself will depend on the required performance of the feedback system through
the quality of closed-loop decisions.

5 Conclusion

In this chapter, we have introduced the problem of high-rate structural health mon-
itoring (HRSHM) and discussed the use of real-time machine learning to empower
rapid state estimation, in the sub-millisecond realm. We have started by defining the
HRSHM challenge, where the dynamics of interest are importantly characterized by
(1) large uncertainties in the external loads; (2) high non-stationarities and heavy
disturbance; and (3) unmodeled dynamics generated from changes in system config-
urations, and argued that a successful HRSHM algorithm is one capable of leading to
closed-loop decisions under 1 ms. Given the complexity of the dynamics, we found
that adaptive mechanisms are well suited for the problem, as long as they are capable
of fast convergence and short computation time. This can be done through the proper
design of machine learning algorithms.

Among solutions, we reviewed opportunities in crafting the input space to yield
lean and effective representations. In particular, it was discussed that being capable
of adapting the inputs to the local dynamics could dramatically improve performance
of the algorithm. We presented a machine learning algorithm based on an ensemble
of recurrent neural networks (RNNs) that leveraged the idea of adaptive input spaces
and demonstrated that a physics-informed selection of inputs yielded significant
improvement in predictive performance. Importantly, the algorithm was capable of
time series predictions in with an average computation time of 25 µs.
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After, in an effort to produce more actionable quantities using real-time learning
mechanisms, we presented a model reference adaptive system (MRAS) algorithm
capable of conducting state estimation with an average computation time of 95 µs.
Physical knowledge was used to generate and adapt a reduced order representation of
the system of interest. While the algorithm was applied to a much simpler dynamics
compared to the ensemble of RNNs, results showed that it was possible to quickly
conduct state estimation for HRSHM. A path to rapid state estimation for more
representative high-rate dynamic systems was discussed. It consisted of integrating
the MRAS with the ensemble of RNN algorithm to improve the level of physical
information present in the machine learning algorithm. We ended the discussion
by warning of the conflict between convergence and computation time, where the
accuracy of a given HRSHM algorithm will come at the expense of computation
time.
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Development and Validation
of a Data-Based SHMMethod
for Railway Bridges

Ana Cláudia Neves, Ignacio González, and Raid Karoumi

Abstract Despite several successful applications, structural health monitoring
(SHM) of bridges is still in its exploratory phase and, despite the increase in research,
many challenges remain in order for it to become a commonplace practice in civil
engineering. New SHM approaches have emerged sparked by the massive amount of
acquired experimental monitoring data and breakthroughs in technology, computing
capability and data storage solutions. To this end, the data-based approaches, mostly
by resorting to machine learning techniques, have shown to be promising. This work
proposes an unsupervised learning approach based on feedforward artificial neural
networks for damage identification and condition monitoring of railway bridges. The
inputs and output of the algorithm typically consist of measured accelerations in the
bridge deck due to train passages, measurements which can be acquired easily with
few installed sensors. Based only on data and statistical analysis, alarms with refer-
ence to early damage in the bridge can be triggered by the deployed SHM system.
The implementation of the proposed approach is demonstrated and validated with
both numerical and experimental case studies, where different aspects with relevance
to SHM are as explored.

Keywords Artificial neural network · Data-based method · Unsupervised
learning · Damage detection

1 Introduction

The concerns about maintenance and monitoring of structures have become a big
challenge for engineers, researchers, and the civil engineering community. There
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has never been a more appropriate time to develop robust and reliable structural
damage detection systems as aging civil engineering structures, specifically bridges,
continue to be used past their life expectancy and well beyond their original design
load capacity. The increasing monetary pressure on bridge authorities to extend
the life span of the existing structures as far as possible is mainly driven by the
considerable expenses associated with building a completely new bridge. In addition
to this are also the costs associated with the physical removal of the old bridge and
consequent costs fromwithdrawing the bridge from service, which affects passengers
and freight transportation in several different ways. The reasonable thing to do is to
keep the present structures in operation while ensuring public and structural safety at
minimumcost. Concurrently, this requiresmanagers and decisionmakers to prioritize
rehabilitation and replacement programs. The problem is that when a significant
damage to the structure is discovered, the deterioration has often already progressed
far, and required repair is substantial and costly. One way to tackle this issue is
by defining clever maintenance strategies that make use of structural monitoring in
real time, thus enabling the detection of damage in its earliest stage and providing
accurate remaining life predictions.

Structural healthmonitoring (SHM) aims at providing support for these strategies,
through the collection of reliable data on the real condition of a bridge, the observation
of its evolution over time, and characterization of the degradation. By permanently
installing a number and variety of sensors, which continuously measure structural
and environmental parameters, it is possible to obtain a real-time representation of
the structure’s current state. However, this information is only useful to the decision-
making process if it is not misleading. This can be avoided by assuring that reliable
SHM systems, methods for data analysis, and statistics tools are put into place.

2 Non-destructive Evaluation, Physics-Based
and Data-Based Methods in SHM and Damage Detection
in Bridges

Non-destructive evaluation (NDE) methods, commonly integrated with visual
inspections, can be an effective tool for the inspection of bridge structures. NDE
is particularly advantageous for evaluating bridges in service, since these can remain
intact and open to traffic under the evaluation period. However, these methods can
only be applied locally and may require the access to specific components of the
structure that are not easy to reach. Besides, the results are usually subjective. A
means to alleviate these drawbacks has emerged with advanced sensor and mate-
rials technologies, allowing sensors to be integrated into structural components for
continued long-term use.

The methods used in the assessment of structural health can be said to be split into
two main classes, according to their approach. The classical physics-based approach
to damage detection in bridges typically presupposes the development of a finite
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element (FE) model of the target structure. These models are often of gradually
increasing complexity during the development stage, so as to make sure that the
measured responses can be reproduced as accurately as possible by the FE model.
The well-known vibration-based damage identification (VBDI) methods consist of
measuring and evaluating the dynamic behavior of the structure often by comparing
it to the behavior simulated by numerical models, for instance FE models. Natural
frequencies are the most fundamental vibration parameter, and methods directly
measuring shifts in natural frequency can be used for identifying damage. Since
many algorithms of damage detection are based on the difference between themodels
before and after occurrence of damage (Axiom II of SHM [1]), problems such as
parameter identification and damage detection are closely related to model updating.
Over the recent years, a second approach has emerged sparked by themassive amount
of acquired experimental SHM data and breakthroughs in technology, computing
capability, and storage solutions. The data-based approach is free of geometrical
and material information, allowing to circumvent the burden of having to develop
a detailed FE model of the target structure. With this approach, time series anal-
ysis, often along with signal processing techniques, is employed to extract damage-
sensitive features from measured signals. In these regards, choosing an appropriate
damage feature is crucial for the success of damage detection as these features are
used to establish baseline statistics and to monitor changes in the normal structural
behavior. This procedure makes the data-based approach well suited for permanent
automated long-term monitoring.

Machine learning (ML) is an application of AI that provides systems the ability
to automatically learn and improve from experience without explicitly programming
them to do so. The idea behind using the data-based approach for SHM, and more
specifically for damage detection, is to use the data sets of signals obtained from a
structure over time and to use soft computing methods to warn about damage and
its characteristics. Pattern recognition is a particularly useful branch, wherein labels,
such as “healthy” or “damaged,” are assigned to a given input value with the help of
an algorithm. The type of learning performed by the computer usually falls into two
major categories—supervised and unsupervised learning—depending on what type
of data is used. In the context of damage detection, supervised learning implies that
both data from the undamaged (reference) and damaged (novel) conditions of the
structure are provided to the algorithm. Since prior knowledge about possible damage
scenarios is available, classification and regression analysis can be carried out. This
approach thus allows to characterize damage up to the level 3 [2] of damage iden-
tification (i.e., quantification of damage). On the other hand, unsupervised learning
implies that only data from the undamaged (reference) condition of the structure is
provided to the algorithm. This means that the data is not labeled, and therefore, it is
only possible to group and interpret data based on input data. It is at most possible
to reach level 2 [2] of damage identification (i.e., localization of damage) with this
approach, the main goal being to carry out novelty detection and eventually also
clustering and dimensionality reduction. In this manner, a reference condition of the
structure is first established by the algorithm based on appropriate features extracted
from data, which can be either measured or obtained from a numerical model of the
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Fig. 1 Seven-step closed loop cycle of the proposed data-based approach to bridge SHM

structure. Afterward and through a process of statistical pattern recognition, features
extracted from newly acquired data over time are compared with the ones observed
in the reference condition. If there are significant deviations, the algorithm is said to
indicate novelty.

Based on the aforementioned advantages, it would be reasonable to choose super-
vised over unsupervised learning for training the algorithm for damage detection.
However, due to the nature of civil engineering structures, it is unlikely that the
damaged data is readily available. It is also impractical to introduce damage to a
seemingly healthy structure in operation in order to acquire the damaged data. Even
if it is possible, the structures being dealt with are fundamentally unique, making
it difficult to use the previous experience and knowledge gathered from even seem-
ingly similar structures. For these reasons, ML algorithms used for SHM of civil
engineering structures often rely on unsupervised learning approaches. In line with
this, a seven-step unsupervised learning approach [3] based on feedforward ANN
for damage identification and condition monitoring of railway bridges (Fig. 1) is
proposed in the next section, followed by case studies where the respective findings
and results are presented.

3 An Unsupervised Data-Based Approach to SHM Based
on Feedforward ANN

ANNs are among the most common ML techniques used for novelty and damage
detection, as well as to solve classification and regression problems. The ANN has
the capability of modeling and predicting [4] the behavior of intricate linear and
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nonlinear systems exclusively based on data. For this reason, even the most basic
feedforward ANN has shown to be a suitable method for predicting the behavior of
civil engineering structures, as demonstrated by plenty of research works [3, 5–10].

When creating the ANNmodel, the total amount of train data is divided into three
data subsets (Fig. 2), each to be used at different stages of the training process. The
first data subset corresponds to the training subset, in which a number of examples
are used to fit the parameters (primarily weights of connections between neurons)
of the ANN model. The second data subset corresponds to the validation subset,
which provides an unbiased evaluation of the model fit to the training subset while
tuning the hyperparameters of the model. The last data subset corresponds to the
testing subset, which provides an unbiased evaluation of the final model fit to the
training dataset. In the context of damage detection, a portion of the recorded healthy
acceleration data sets during train passages are used as train data for the ANN. Since
the train data stems from one single state of the structure, learning can be said to be
carried out in an unsupervised manner. After the ANN is trained, new acceleration
data relating to healthy and damaged states can be used for testing the performance
of the network.

A portion of the available healthy acceleration data sets recorded during train
passages will be used as the damage-sensitive feature to train an ANN. For simpli-
fication, only part of the recorded acceleration time history of a train passage with
duration T is plotted in Figs. 3 and 4.

During the training process, inputs (i) andmatching targets (t) are assignedwithin
each sample (train passage) of the training subset. After the training process is
completed, the ANNwill be asked tomake predictions in the form of outputs (o). The
inputs, targets, and outputs correspond to the discrete acceleration values registered
by one sensor at any given time instant n. Training can be conducted, for example,
by giving four accelerations {in−4, in−3, in−2, in−1} ( ) as input accelerations to

Fig. 2 Flowchart representing the data partition for the ANNmodel designed for damage detection
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Fig. 3 Generic made-up
graphic example of the input,
target, and predicted
accelerations when
acceleration at time instant n
is being predicted

Fig. 4 Generic made-up
graphic example showing the
target, and predicted
accelerations for all time
instants within part of the
recorded acceleration time
history

the target acceleration tn ( ) as depicted in Fig. 3. Once the ANN is trained to
learn the relationship between inputs and target, the output acceleration on ( )
can be predicted based on the inputs of the test data. Ideally, target and predicted
output would coincide if the condition of the structure does not change over time.
However, predictions are not perfect and hence the discrepancy ( )
observed between and for all time instants (Fig. 4), even for the reference state.
These discrepancies are expected to become much larger once damage appears in
the structure.

For each train passage p with duration T and sampling period dt , giving a total
amount of samples N = T/dt , the total error—root mean square error (RMSE)—is
given in Eq. (1) based on the difference between target and predicted output at every
time instant n according to

RMSEprediction =
√∑N−Nw

n=1 (on − tn)
2

N − Nw

, (1)
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where Nw are the very first four accelerations (in this example) for which the predic-
tions cannot be calculated, and hence, the average is made for N − Nw. According
to a detection threshold that is defined for the system, the damage detection process
consists in verifying Eq. (2),

RMSEprediction < threshold = healthy → no alarm,

RMSEprediction ≥ threshold = damaged → alarm. (2)

The information coming from each sensor individually may be more or less reli-
able depending on the sensor characteristics and their location on the structure, but
when the information coming from all sensors is combined, the reliability of the
detection method is expected to increase. A damage index (DI) provides a tool to
combine the information obtained from multiple sensors into one single number,
which works as a detection threshold set for the system as a whole. One possible
way to carry out this combination is through theMahalanobis distance, a covariance-
weighted distance metric shown to successfully allow for condition discrimination in
several damage detection studies [11]. The distance between a point P and a distribu-
tionD is measured in standard deviations. Each newly obtained DI point is compared
to the cloud of DI points that is considered as the reference. For each train passage
p, the damage index DIp is formulated according to Eq. (3) as

DIp =
√(

RMSEprediction − μ
)T

.C−1.
(
RMSEprediction − μ

)
, (3)

where RMSEprediction (obtained according to Eq. (1)) is the prediction error in any
state,μ is the mean prediction error of the distribution within the reference state, and
C is the covariance matrix of the distribution within the reference state.

Naturally, since reality ismuchmore complex, this binary discrimination reliant on
a hard threshold can lead to instances of false diagnostics (Table 1). In a way, damage
detection can be said to be based on hypothesis testing where the null hypothesis
states that the structure is healthy. Incorrect diagnosis comprises False Positives (FPs)
and False Negatives (FNs), where a healthy structure is perceived to be damaged and
where existing damage in a structure goes undetected, respectively. On the other

Table 1 Damage detection hypothesis test inference matrix

Damage detection hypothesis test inference
matrix

Reality

H0—null hypothesis
Bridge is not damaged

H1—alternative
hypothesis
Bridge is damaged

Inference Bridge is not damaged TN
No error

FN
Type II error

Bridge is damaged FP
Type I error

TP
No error
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hand, correct diagnosis comprises True Positives (TPs) and True Negatives (TNs),
where a damaged structure and a healthy structure are properly assessed, respectively.
FPs and FNs are also commonly recognized as Type I and Type II errors and are to be
avoided: FP could be linked to extra inspections or unnecessary repairs. FN could be
linked to particularly undesired consequences due to the continuous accumulation of
undetected damage and ensuing failure of the structure, with life-threatening safety
implications and casualties to society. Figure 5 shows the information contained in
Table 1 in a graphical form. Given a chosen detection threshold ( ) for the
system, the obtained data sample errors from the ANN in light of healthy ( ) and
damaged ( ) data according to Eq. (1) can be classified into FP, TP, TN, and FN.

The receiver operating characteristic (ROC) curve is an easily interpretable two-
dimensional graphic that illustrates the performance of a binary classifier system as a
function of an adjustable threshold. The area under the curve (AUC), whichmeasures
the entire two-dimensional area underneath the entire ROC curve, is routinely used
to compare the classifiers’ accuracy and hence its usefulness. For instance, in Fig. 6,
system is the ideal system with AUC = 1.0, whereas system is the worst with

Fig. 5 Classification of data
sample errors
(RMSE predi ct i on) into FP,
TP, TN, and FN in relation to
a threshold: healthy data,
damaged data

Fig. 6 Generic ROC curves:
excellent, typical,
worthless classifier. The

depicted chosen threshold (
) for a typical

classifier yields TP = 77%
and FP = 32%
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AUC = 0.5. The green hatched area ( ) represents the AUC for an average ROC
curve that is more likely to occur for real systems . In a ROC curve, the TP rate is
plotted against the FP rate for all possible values of detection threshold, the points
along which the curve is drawn. It is understandable that a very high threshold (strict
threshold) will result in 0% of FPs and TPs. On the contrary, a very low threshold
(lenient threshold) will result in 100% of FPs and TPs. It is important to define
the detection threshold that finds a balance between the two types of error, as it is
impossible to minimize them simultaneously. It is important to stress that the ROC
curves cannot generally be obtained in practice. Firstly because it requires the data
fromdamaged condition to also be available. Second because the true condition of the
structure at any moment has to be known, which is precisely the point of employing
the monitoring system. Nonetheless, ROC curves can become very useful in the
developmental stage of methods for damage detection as their performances can be
compared on the same grounds.

4 A Numerical Case Study

A numerical 3D finite element (FE) model of a single-track railway bridge was
developed using the FEM software ABAQUS. The bridge consists of longitudinal
steel beams that support the concrete deck and steel cross bracings that connect the
girders. The deck and the girder beams were modeled using shell elements, and the
cross bracings were modeled using truss elements. All the elements of the bridge are
assumed to be rigidly connected to each other. The relevant material and geometric
properties of the structural parts are given in Tables 2 and 3 in [8].

Table 2 Possible types of
input features and values for
the different ANN
configurations

Possible parameters Possible values

Input features Acceleration, strain, temperature, train
speed

Decimation factor None, 1.5, 2, 3

Times steps 20, 40, 60, 80

Hidden neurons 10, 20, 30, 40

Table 3 Time periods for each state of the structure

2018 2019

Nov
… 

Mar
Apr May Jun

… 
Sep

Oct

before-
train

before-
test

during-
test

after-
test
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Damage in the bridge is simulated considering two damage scenarios. In damage
case 1 (DC1), a section of the bottom flange of one steel beam is removed by some
length l (Fig. 3 in [8]), in an attempt to represent a damage situation where a fatigue
crack exists. In damage case 2 (DC2), one cross bracing is malfunctioning (Fig. 4
in [8]), which equivalently corresponds to reducing to approximately zero its elastic
modulus in the model. The measurement setup is made of accelerometers that are
installed on the top of the bridge deck: three aligned with the railway track and three
aligned with the steel beam in which damage in DC1 takes place.

The proposed method for structural assessment is intended to detect existing
damage from the measured vibration (vertical accelerations) of the bridge. The most
common dynamic loads come from traffic, which is expected to be continuous while
the bridge is in service. Therefore, traffic-induced vibration was generated by simu-
lating the passage trains with a certain constant configuration, crossing the bridge
at speeds ranging between [70–100] km/h, in increments of 0.1 km/h. Data was
collected at a sampling frequency of about 130 Hz during 4 s and for a total of 300
different train passages. The moving axle loads were modeled as a series of impulse
forces with short time increments conforming to vehicle motion. The properties of
the train can be found in [8]. The trainmodel was based on the high-speed loadmodel
(HSLM) train with two assumptions: the train has the dimensional properties (coach
length, D, and bogie axle spacing, d) of the HSLM-A4 train but is composed of only
two intermediate coaches (N ) instead of the fifteen accordingly to [12]; maintaining
the train configuration just described, three different axle loads [170 180 190] kN
were assumed.

TheANNswere developed and trained [8] bymeans of the neural network toolbox
available in MATLAB. The total amount of available data was, for this study, gener-
ated and collected from simulations of the FE model above described for 300 train
passages. In an initial trial, the data from 150 train passages was used for training
the network, and the 150 remaining ones were used for testing and validation of the
trained network. Themeasured signal is in reality distorted by various sources of error
and, to consider that fact, Gaussian white noise with a constant standard deviation of
0.0005 m/s2 was added to the uncorrupted acceleration time histories obtained from
the FE model, before these were used to train the ANN. Despite appearing little,
considering the acceleration magnitude under the moving load, this level of noise is
actually substantial. This level of noise corresponds to approximately 2% of the stan-
dard deviation of the measured signals, a value that is commonly considered for such
analysis. Another measurement uncertainty considered was the axle load magnitude
and, in that sense, 5% random oscillations of the axle loadwere considered. A limited
number of ANNs groups were trained with controlled variation of input variables.
To better evaluate the neural network’s performance and attempt its optimization, the
authors recommend the use of validation techniques such as K-fold cross-validation
[13]. In each group, six different networks were trained, ANNn with n ∈ {1, . . . , 6},
each predicting for one of the six sensors. The chosen training algorithm was the
Levenberg–Marquardt backpropagation algorithm. The following configuration of
the neural network was explored and proved to work out well:
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• 49 input neurons: The number of neurons equals the number of features, which
are the 30 accelerations ant−i registered by the 6 sensors n ∈ {1, . . . , 6} in the last
5 samplings i ∈ {1, . . . , 5}, the 18 axle loads and 1 axle position relative to a
reference point;

• 30 neurons for the hidden layer based on empirical rules-of-thumb [14];
• 1 output neuron: the current acceleration ant at time t predicted by sensor n.

All the input parameters were assembled into one single-input matrix. The only
input variable that remained present in all the trials of ANN configurations was the
acceleration. Any other deemed relevant parameter can also be given as input. What
the network does is to predict a new acceleration at a certain instant in time based on
previous accelerations ( ) as shown in Figs. 3 and 4. The number of delays has to
be chosen before the training phase. Perceptibly, it cannot be a small number as that
will give little information for the training of the network, and it cannot be a large
number since that leads to the increase in computation time. In this case study, the
five previous accelerations {in−5, in−4, in−3, in−2, in−1} preceding the acceleration
to be predicted on were chosen as the time window for the input matrix.

One way of evaluating the performance of the trained network is by determining
the deviation in the predictions. The use of the root mean squared error (RMSE) is
very common and makes an outstanding general purpose error metric for numerical
predictions. For each sensor and for each train passage (or each speed), in a similar
way for both healthy and damaged scenarios, one can estimate the RMSE prediction

as expressed in Eq. (1). Figure 7 illustrates the RMSE of the predicted accelerations
by the six sensors, in the presence of an undamaged structure ( ) and for a damaged

Fig. 7 RMSE against increasing speed of the train. DC1: damage extension of 0.9×0.4m2. Data
from healthy structural condition; Data from damaged structural condition
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structure ( ) in DC 1 with a 0.9× 0.4m2 section reduction. An axle load of 180 kN
was considered, and the train passages in the x-axis are ordered by increasing speed.

There seems to be a tendency for the error to increase with increasing train speed.
Moreover, for the highest speeds in the considered range, it seems like even the
response of the bridge in the reference structural condition is poorly predicted (large
RMSE). This could be justified by the fact that the maximum considered speeds
excite the structure to frequencies close to its natural frequencies. Also noticeable
is that the sensors situated closer to the geometric middle of the bridge (sensors 2
and 5) seem to be associated with networks that yield a better separation between
structural states, while sensors placed nearby the end supports (sensors 1 and 4) are
not as efficient. This may be due to the fact that the response of the structure is
more prominent in the middle of the span than in its extremities, favoring a clearer
distinction between different states. It should also be noted that the nonlinear input–
output relating function that the network uses can be quite complex and for that reason
training an ANN that covers all the train load cases and speeds is unmanageable.
Thankfully, many bridges are routinely crossed by trains of the same configuration,
with similar axle loads and within a restricted range of speeds. Therefore, the ANN
is trained for those circumstances.

Even if the bridge is found to be in its original condition, the recorded dynamic
responses will be different for each train passage, depending on the speed of the
train for instance. Hence, the distribution of errors within the reference condition
should be characterized stochastically, and it is the errors that significantly depart
from this distribution that will work as an indication of damage. The prediction errors
from 150 randomly selected train passages in the healthy condition of the bridge are
used to fit a statistical distribution (Fig. 8) that will work as a baseline for each
sensor. The Gaussian process (GP) [15] consists in assigning a normally distributed
random variable to every point in some continuous domain. For each train speed,
the associated predicted errors are normally distributed, and the mean ( ) and two
standard deviations ( ) of the error can be different for each speed. The idea is
to compute discordancy measures for data and then compare the discordancy with
a threshold, from which one is able to discriminate between healthy and damaged
structural condition (Eq. (2)).

Once the DIs for different train passages are determined according to Eq. (3), the
ROC curves corresponding to different damage extents within DC1 can be obtained
as shown in Fig. 9. In the manifestation of such a damage scenario, for example, a
fixed FPr of 8% has an associated TPr of 86%, 90.7%, 92%, 96%, and 99.3% with
damage severities of 20 cm, 40 cm, 70 cm 100 cm, and 160 cm, respectively. The
ROC curve associated with DC2 can be found in [8].

The enhancement in detection capability with increasing damage, as expected, is
mostly but not always verified. For instance, one can see in Fig. 9 that the performance
of the classifier for very low values of FPr is worse in the presence of the largest
damage ( 160 cm), since it is related to a lower TPr, when compared with any
other smaller damage. The fact that some ROC curves regarding different extents of
damage intersect each other at certain points makes it more difficult to choose the
optimal threshold. Furthermore, the process encompasses statistical reasoning, thus
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Fig. 8 Gaussian Process fitted by prediction errors against increasing train speed. Here, a log-
normal distribution of the error is considered. Mean; Standard deviation; Data to fit the GP;
Data fromhealthy condition; Data fromdamaged condition, consideringDC1with a 0.9×0.4m2

section

Fig. 9 ROC curves for
different damage extensions l
of DC1: damage resulting
from cutting off a section of
extension l from the bottom
flange of one girder beam:

20 cm; 40 cm;
70 cm; 100 cm;
160 cm

yielding slightly different results every time a ROC is regenerated. In any case, the
desired virtues of a good model such as reliability and robustness are proven by the
above-presented ROC curves. The model is considered reliable if damage is early
detected with a high probability of detection, i.e., if small damage can be identified.
The model is considered robust if two conditions are satisfied: the probability of
detection increaseswith increasing damage severity, and changing an input parameter
by a small amount does not lead to failure or unacceptable variation of the outcome
but rather to proportional small changes.
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5 A Field Case Study

The railway bridge KW51 (Fig. 10) is a steel bowstring bridge on railway line
L36N located in Leuven, Belgium. The 115 m long bridge enables the crossing
of the Leuven Mechelen canal and is only used by passenger trains with an imposed
maximum speed of 160 km/h. The railway line consists of two tracks, hereafter
referred to as track A at the north-side and track B at the south-side. At the crossing
of the bridge, both tracks are curved. The monitoring campaign started on October 2,
2018, and under the period May 15 to September 14, 2019, the bridge was retrofitted
(Fig. 11) to solve a construction error noticed during inspection. The retrofitting
consisted of strengthening the connections between the diagonals and the arches and
the bridge deck.

The sampling frequency is 1651 Hz. Regarding the data processing, the strain
signals are low-pass filtered with an eighth-order Chebyshev Type I filter with 0.1 dB
of passband ripple and a cut-off frequency of 16Hz. The acceleration signals are high-
pass filtered with a fourth-order Butterworth filter with cut-off frequency of 0.5 Hz.
Themeasurements include acceleration and strainmeasurements on the bridge, strain
measurements on the rails, and temperature and relative humidity measurements.
Detailed information about the measurement setup can be found in [16]. Although
not all sensors are used for this study, they are here mentioned for completeness.

The optimal selection of the ANN training and architectural parameters can be an
exhaustive process. Judging which input (damage sensitive) features are relevant is

Fig. 10 Railway bridge KW51
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Fig. 11 Bridge with scaffolding during retrofitting

an open problem as well, and finding the optimal ANNmodel turns out to be a trial–
error process. Nonetheless, some empirical rules exist, and these can be followed
as a starting point for suggesting reasonable models and ad-hoc parameters. Table
2 [17] lists relevant ANN key parameters to be defined, such as input features, the
number of neurons in the hidden layer, the training algorithm, et cetera.

Several ANN configurations were tested, and each was obtained from different
combinations of the parameters as presented in Table 2. The ideal hyperparam-
eter search procedure would consist in searching all possible combinations of influ-
encing features. Realistically, this would be impractical due to major computational
resources and the curse of dimensionality [18]. This being said that the objec-
tive of this work is to provide some sort of check list for the implementation of
the proposed method for SHM of railway bridges. As such, a limited number of
different manually selected configurations are studied where, for each, the effects
of making changes within one hyperparameter/feature while keeping the remaining
constant are analyzed. Two aspects are kept invariable throughout all configurations:
only one hidden layer is used and the training function is the Levenberg–Marquardt
backpropagation algorithm.

The idea is to start simple by defining an ANN that has, for example, 10 neurons
in the hidden layer and that uses the 20 previous raw accelerations from sensor A
as input (e.g., a1A to a20A in m/s2) to predict the current acceleration (e.g., a21A in
m/s2). In other words, the dataset is broken into windows of size 20. Progressively,
more complex ANNs (Fig. 12) are then defined and tested. For example, increasing
the amount of training data so that the ANN uses the 30 previous (e.g., a1A to a30A
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Fig. 12 A more complex input matrix and output vector for ANN

in m/s2) but also the 30 posterior (e.g., a32A to a61A in m/s2) raw accelerations from
sensor A as input to predict the current acceleration (a31A in m/s2). Additionally,
the ANN can also consider strains from sensor B (e.g., s1B to s60B), temperature
from sensor C (t31C in °C), and average train speed (v in m/s) as inputs. It is to be
noted that the matrix and vector presented in Fig. 12 are related with one input data
corresponding to one train passage, but training of the ANN is carried out by looking
at many train passages.

In the followingfigures in this and in next section, the represented prediction errors
for each train passage p are normalized relative to the RMS of the target response
signal. The chronological dates of the train passages are presented in Table 3. The
labels “before-,” “during-,” and “after-” that appear in this and following sections
concern the structural states in reference to retrofitting. The data sets collected under
the different states are labeled according to Table 4. If optimization is the goal, the

Table 4 Number of samples
and labels for data points
collected under different
states and uses

State Datasets Label Number samples (j)

Before retrofitting train 84

test 28

During retrofitting test 93

After retrofitting test 40
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authors recommend the use of validation techniques (e.g., K-fold) to evaluate which
data sets from the “before-retrofitting” period are better used as training and test data
sets; however, this process was left out of the scope of this case study.

In this case study, two criteria are used to evaluate the performance of the algo-
rithm: accuracy and sensitivity. The first concerns comparing the magnitude of the
prediction errors between train and test data in the reference state (before-retrofitting);
the second concerns comparing the magnitude of the prediction errors between test
data in the reference state (before-retrofitting) and test data in other states (during-
and after-retrofitting). The accuracy criterion is a reflection of howgood of an approx-
imator the ANN. But in the end, it is all the more important that a novel state of the
structure (e.g., damage) is distinguishable from the reference one, which is expressed
by the sensitivity criterion. Even if the prediction errors in the reference state are high,
it is sufficient that the prediction errors in the novel state result even higher.

The following results focus on the prediction errors related to accelerometer 3.
Furthermore, the prediction errors represented in Figs. 13, 14, 15, and 16 concern the
average normalized prediction errors [19] for all the considered train passages within
each of the structural states (Table 3). The errors in the just mentioned figures are
represented in relation to the train samples (before-retrofitting) errors: for example,
a small ε means that the taken test sample yields prediction errors with the same
order of magnitude of the ones obtained for the train samples. The general thinking
adopted when visualizing these figures is that the smaller the error for before-test

Fig. 13 Different natures of
input data: prediction errors
in linear scale

Fig. 14 Different amounts
of down sampling of input
data
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Fig. 15 Different time steps
of input data

Fig. 16 Different number of
hidden neurons

and the larger the error for during-test and after-test the better the performance of
the system.

Even though themonitoring spans over periods of ambient, free, and forced vibra-
tions, only the forced vibration part of the signal in which the train is on the bridge
was used. Not only because the bridge vibration activated by the crossing vehicle can
produce higher response amplitudes that can ease the interpretation of results but also
because the use of higher amplitude loads may be required in order to detect some
types of damage (e.g., cracks in concrete). Moreover, the ANN is trained and tested
for a specific loading that is frequent for this bridge, a 52-axle train. The information
regarding the train configuration (e.g., number of axles) was derived from the strain
measurements on the rails. The axle loads for this type of train are accepted to vary
within a relatively limited range of values. Therefore, including them as an input for
the feature is thought to yield little to no improvement of the ANN performance, as
shown in [8]. Furthermore, it was assumed that there is only one train on the bridge
at a time. Giving data collected with deck accelerometers 1–6 as input to train the
ANN and then asking it to predict for accelerometer 3 seems to lead to similar results
if only the input of accelerometer 3 is given to train the ANN. This suggests that
only the data collected by accelerometer 3 seems to be necessary as input to train
the ANN to predict to said sensor. The same reasoning is followed for the remaining
sensors, and accordingly, six different ANNs, one for each sensor, were trained.

Besides acceleration data, which alonewas used as the original input for theANN,
strain, temperature, and average speed of the train were also added to see if these
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improved the ANN. Nearly no improvements are perceived (Fig. 13) if strain data
is added. Strain gauges are not normally used in high frequency applications, and
it may be necessary to further down sample the original signal (1651 Hz) since the
strains only exceed the noise floor below 10 Hz. Adding temperature or train speed
data, however, seems to increase the sensitivity of the ANN. However, it may not
be worth the effort required to have the extra sensors in the bridge, especially given
that the ANN is performing well without that extra information. Therefore, the input
matrix used for training the ANNs can comprise solely accelerations.

Measuring, processing, and storing of massive amounts of data can provide valu-
able information in order to manage structures [20]. At the same time, the sampling
frequency with which the input data is given to the ANN (i.e., the amount of data)
affects the ANN’s performance. As such, different versions of ANNs were trained
by having the input data sampled with the original sampling frequency and also by
down sampling it by a factor of 1.5, 2, and 3. Resampling is performed by using
a polyphaser anti-aliasing filter. The advantage with down sampling is the reduced
amount of resultant input data and thus faster training process of the ANN. On the
other hand, by doing so, less information is fed into the ANN during the training
process. That seems to reflect in higher prediction errors within test data collected
under the reference state but also in the reduced ability of the ANN to distinguish
between the different states (Fig. 14). Therefore, input data collected at the original
frequency was preferred.

Different configurations of ANNswere tried where theminimum number of given
previous acceleration data points to predict the current one starts at 10. Increasing
the number of total time steps from 10 to 20 and from 20 to 40 seems to significantly
improve the results (Fig. 15). Increasing the number of time steps from 40 to 60
marginally improves the results and over that the improvement is negligible. There-
fore, to save in computational effort spent on training, 60 time steps are deemed
as the most suitable for this case study. The 60 chosen time steps correspond to
giving 30 previous and 30 posterior acceleration data points to calculate the current
acceleration. Providing not only earlier accelerations as input but also the following
accelerations to the time step to be predicted seems to yield both a more accurate
and discriminative ANN.

A compromise must be reached for the number of neurons in the hidden layers.
Twomain problems can arise fromhaving too few and toomany neurons in the hidden
layer(s): underfitting and overfitting, respectively. The former occurs when there are
too few neurons in the hidden layers to adequately detect the signals in a complex data
set. The latter occurs when the ANN has so much information processing capacity
that the limited amount of information enclosed in the training set is not enough
to train all of the hidden neurons. In light of the present case study, increasing the
number of hidden neurons from 10 to 20 seems to significantly improve the results,
whereas increasing it from 20 to 30 or even 30 to 40 produces no changes in the
results (Fig. 16). Therefore, 20 hidden neurons are reasoned as adequate for this case
study.

Figure 17 depicts the distribution of normalized prediction errors εp (Eq. 4) asso-
ciated with accelerometer 3 against each train passage p ordered chronologically
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Fig. 17 Prediction errors for
sensor 3 VS date:
before-retrofitting train ( ),
before-retrofitting test ( ),
during-retrofitting test ( ),
and after-retrofitting test (
). All available number of

samples j within each state
are plotted

(Table 3). The data sets collected under the different states of the structure are labeled
according to Table 4. It is possible to see with the naked eye that most of the lowest
prediction errors correspond to the before-retrofitting period. That conclusion is
more obvious by looking at the mean of the prediction errors (μ) for each period (

) and how they compare to each other. The dashed lines ( )
represent the boundaries obtained by summing the mean with the two standard devi-
ations of the prediction errors for each data set, i.e., [μ−2σ,μ+2σ ], which delimit
the colored areas , , and . Additionally, it is possible to perceive the progres-
sive retrofitting taking place with the gradual increase of the prediction errors within
the duration of the retrofitting period ( ). That also explains the larger variance of
errors within the period. In the after-retrofitting period, any interventions come to
an end and the scaffolding and necessary equipment are removed from the bridge.
The new condition of the bridge is noticeably different from the reference one as the
ANN predicts consistently worse.

The ROC curves associated with a system made up of accelerometer 3 alone (
) are depicted in Fig. 18. It is obvious that such a simple damage detection

system robustly identifies the new states of the structure. The same outstanding
performance may not persist for other sensors, for example if accelerometer 6 alone
constitutes the damage detection system ( ). The ROC curves ( ) that are

Fig. 18 ROC curves
associated with different
systems: one that considers
only sensor 3, one that
considers only sensor 6 and
one that considers all sensors
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obtained when the information from all the 6 accelerometers placed under the bridge
deck is combined, according to Eq. (3).

6 Conclusions

The work here presented aims at contributing to an enhanced understanding of the
possibilities, implications, and limitations of using a data-based approach for SHM
in bridges. The following conclusions can be made based on the results obtained
from two case studies:

• If the train is the main source of bridge excitation and the data is recorded during
train passages, the speed of the train seems to have a significant influence on the
predictions by the ANN. Ideally, the interval of observed speeds should be narrow
and the speeds that can cause resonance of the bridge should be excluded from
analysis. Similarly it may be important to consider variations in the environmental
conditions, namely temperature, during the training phase of the algorithm.

• Most SHM systems are centered on measuring accelerations and strains, which
makes it reasonable to use them as the principal sources of data. However, in the
second case study, adding the features directly drawn from strain time series in
the training phase seem to not improve the performance of an ANN. The authors
want to stress that this conclusion is nevertheless case specific and that strains
can help in the process of damage detection depending on aspects such as the
localization of the strain gauges, the sampling frequency, et cetera.

• If damage detection is the goal and it is performed in a novelty detection fashion,
good performance of the ANN in terms of the sensitivity criterion (how much
larger the prediction errors are in damaged condition compared to healthy condi-
tion) is in principle preferred over the accuracy criterion (the magnitude of the
prediction errors in healthy condition).

• Even though the monitoring is realized by several sensors, results show that it
is sufficient to train one ANN for each sensor, only with input data provided by
itself. Only in the final stage, after establishing a predictive model for each ANN
and describing their performance with a ROC curve, the information from all
sensors should be combined through a damage index.
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Real-Time Unsupervised Detection
of Early Damage in Railway Bridges
Using Traffic-Induced Responses

Andreia Meixedo, Diogo Ribeiro, João Santos, Rui Calçada,
and Michael D. Todd

Abstract This chapter addresses unsupervised damage detection in railway bridges
by presenting a novel AI-based SHM strategy using traffic-induced dynamic
responses. To achieve this goal a hybrid combination of wavelets, PCA, and cluster
analysis is implemented. Damage-sensitive features from train-induced dynamic
responses are extracted and allow taking advantage not only of the repeatability
of the loading, but also, of its large magnitude, thus enhancing sensitivity to small-
magnitude structural changes. The effectiveness of the proposed methodology is
validated in a long-span bowstring-arch railway bridge with a permanent structural
monitoring system installed. A digital twin of the bridge was used, along with exper-
imental values of temperature, noise, trains loadings, and speeds, to realistically
simulate baseline and damage scenarios. The methodology proved highly sensitive
in detecting early damage, even in case of small stiffness reductions that do not
impair structural safety, as well as highly robust to false detections. The ability to
identify early damage, imperceptible in the original signals, while avoiding observ-
able changes induced by environmental and operational variations, is achieved by
carefully defining the modelling and fusion sequence of the information. A damage
detection strategy capable of characterizing multi-sensor data while being sensitive
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to identify local changes is proposed as a tool for real-time structural assessment of
bridges without interfering with the normal service condition.

Keywords Railway bridges · Structural health monitoring · Traffic-induced
dynamic responses · Damage detection · Unsupervised learning · Data-driven ·
Artificial intelligence

1 Introduction

Modern societies are critically dependent upon transport infrastructure such as
roadway or railway bridges and tunnels, which has motivated active research to
reduce the costs of inspection andmaintenance.A large number of bridges are nearing
the end of their life cycle, and since these infrastructures cannot be economically
replaced, techniques for damage detection are being developed and implemented so
that their safe operation may be extended beyond the design basis for service life.
Structural health monitoring (SHM) based on artificial intelligence (AI) represents a
promising strategy in this ongoing challenge of achieving sustainable infrastructural
systems since it has the potential to identify structural damage before it becomes
critical, enabling early preventive actions to be taken to minimize costs. The main
goal of SHM should not be to replace the traditional inspection techniques but to
complement them with quantitative information. Proactive conservation strategies
based on long-term monitoring are increasingly recommended for special structures
such as long-span bridges. In fact, disruption or even the collapse of a bridge can lead
to important and irreversible negative consequences for society and the economy. In
short, SHM offers economical, efficient and intelligent technologies to manage the
operation and maintenance of infrastructure, thereby improving safety, increasing
longevity, and reducing maintenance (Fig. 1).

SHM techniques can follow model-updating or data-driven approaches for
damage detection. Model updating consists of fitting a numerical model to experi-
mental data to infer damage-related information that cannot be directly measured on
site. Despite their reported accuracy, these techniques have an inherent computational
complexity, and the need for user judgement makes them less suitable for real-time
SHM[1, 2].On the other hand, data-driven approaches rely ondatamining techniques
to extract meaningful information from time-series acquired on site. The computa-
tional simplicity of these approaches renders them more attractive and cost-effective
to implement online damage detection in large-scale structures.

Damage detection strategies have been widely classified by the literature within a
five-level hierarchy [3] (i) damage detection, (ii) localization, (iii) type, (iv) severity,
and (v) lifetime prediction. The present chapter addresses the first level of the afore-
mentioned hierarchy through data-driven methods based on train-induced dynamic
responses. To fulfil this goal, four main operations need to be employed after the
acquisition of data: (i) feature extraction, (ii) feature modelling, (iii) data fusion, and
(iv) feature classification.
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Fig. 1 Structural health monitoring cycle and its advantages

Feature extraction refers to the process of transforming the time-series acquired
on site into an alternative information, where the correlation with the damage is
more readily observed. Modal or modal-based features are the most common in the
literature [4] due to the advantage of being directly associatedwith themass and,more
importantly, with structural stiffness, which is expected to change in the presence
of damage. Nevertheless, operational modal analysis (OMA)-based information can
also be considered not sensitive to early damage due to the need of identifying high
order modes shapes, which proves very challenging for real structure monitoring.
Symbolic data [5], Continuous Wavelet Transform (CWT) [6], and autoregressive
models (AR) [7] are examples of techniques successfully applied as extractors of
damage-sensitive features for both static and dynamic monitoring.

Effective SHM techniques for damage detection face the challenge of distin-
guishing the measured effects caused by environmental and operational variations
(EOVs) from those triggered by damage [8]. Hence, SHM methods that can over-
come this issue must necessarily resort to feature modelling. This operation is crucial
for false alarm prevention since environmental (such as temperature) and operational
effects (like trains crossing at different speeds) may impose greater variations than
those due to damage. Two approaches are generally found in the literature and in the
practice of feature modelling: (i) input–output, based on regression methods such
as multiple linear regression (MLR) [9] or (ii) output-only, based on latent vari-
able methods such as principal component analysis (PCA) [10]. The first removes
the effects of the EOVs, establishing relationships between measured actions (e.g.
temperature, traffic, wind) and measured structural responses. When monitoring
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systems do not include the measurement of EOVs, latent variable methods can be
employed. These methods can suppress independent actions using only structural
measurements.

Data fusion focuses on reducing the volume of data while preserving its most
relevant information. The fusion process may combine features from a single sensor,
and features from spatially distributed sensors or even heterogeneous data types. The
Mahalanobis distance has been thoroughly used in this context due to its capacity to
describe the variability in multivariate datasets [11].

Feature classification aims at discriminating the features into healthy or damaged.
It can be divided into supervised or unsupervised learning algorithms [12]. When
training data is available from both undamaged and damaged structures, supervised
learning algorithms can be used, such as statistical process control [6] or MLP neural
networks [13]. Since data obtained from damaged structures is rare or inexistent,
unsupervised learning algorithms have been increasingly observed in the literature.
Novelty detection methods are the primary class of algorithms used in this situation.
This type of algorithm is a two-class problem that indicates if the acquired data comes
from normal operating conditions or not. Due to its simplicity and effectiveness,
outlier analysis is a broadly implemented damage detection technique [14]. In spite
of the SHM feature classification resorting to clustering methods has been reported
mainly following the supervised strategy of pre-defining cluster partitions to describe
one or more known structural behaviours, and subsequently compare them with
new ones, and this type of techniques have an unsupervised nature [15]. The major
advantage of cluster-based strategies, over those previously described, consists of the
greater sensitivity exhibited by these algorithms, which is related to their capacity to
analyses data compactness and separation instead of defining boundaries between or
around data objects. The works describing cluster-based classification for damage
detection refer its high sensitivity to structural changes and associate it with the
ability of these methods to analyses compactness and separation within feature sets.

While most of SHM works rely on responses derived from ambient vibrations or
static responses, recent works have also been using the structural responses generated
by traffic on bridges to take advantage of the repeatability of these actions, their
known behaviour, and their large magnitude, which imposes a greater excitation of
the bridge in a short time, when compared with ambient or static loads [16, 17].
However, robust and effective implementations of SHM in bridges based on traffic-
induced dynamic responses are still scarce. In most damage detection methodologies
that have been proposed, the EOVs in the structural response is often disregarded, the
type of damages is limited, or the loading scenarios are very specific, which limits
their usability in real and complex bridges.

In this context, the present research work aims at implementing and validating
a real-time unsupervised data-driven SHM strategy for early damage detection in
railway bridges using traffic-induced dynamic responses.
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2 SHM Procedure for Early Damage Detection

The process of implementing a damage detection strategy involves the observation
of a structure over a period of time using periodically spaced measurements, the
extraction of features from these measurements, and the analysis of these features to
determine the current state of health of the system [18].

A schematic representation of the proposed SHM strategy for early damage detec-
tion followed in this chapter is depicted in Fig. 2. The first step to develop a SHM
strategy is performing an operational evaluation and defining a data acquisition
system for the selected structure to set limitations on what will be monitored and how
the monitoring will be accomplished. In this research work, a long-span bowstring-
arch railway bridge was selected as case study. Section 3 details the bridge, the
monitoring system installed, and the undamaged and damaged scenarios considered.

In order to accomplish, a fully autonomous and real-time SHM system the
following four main steps regarding damage detection are implemented in Sect. 4:
(i) Feature extraction, (ii) Feature modelling, (iii) Data fusion, and (iv) Feature
classification.

The feature extraction is accomplished implementing a hybrid combination of
CWT and PCA to the vibration-based measurements acquired by the monitoring
system installed in the railway bridge. During this step, data compression is achieved
by transforming the thousands of points from each dynamic response of the structure
into a few hundreds of features. Subsequently, feature modelling is performed to
reduce the influence of operational and environmental conditions. A latent variable
method (PCA) is implemented to remove EOVs influence without measuring the
actions, that is, based on structural measurements alone. To enhance sensitivity, a
pattern-level data fusion is performed afterwards by implementing a Mahalanobis
distance to merge the features without losing damage-related information. Finally,

Fig. 2 Schematic representation of the SHM strategy for early damage detection
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feature classification is performed as a data-driven approach and implementing
unsupervised machine learning algorithms, namely cluster analyses.

As data-driven approaches are usually less computationally complex, they are
better suited for early damage detection. Moreover, in civil engineering structures
the most important question to answer is if there is or not a damage. The questions
about location and severity are usually less important in this type of structures since
the simple existence of damage will trigger other management procedures. For those
reasons, data-driven approaches are followed in the present research with the aim of
detecting damage (level 1). However, finite element models can be used to simulate
damage scenarios that are not possible to obtain in any other way. These data can
be then used to test the validity and robustness of the methodologies proposed for
damage detection. This approach was followed, and a progressive numerical model
validation of the railway bridge over the Sado River was performed, in order to, after-
wards, simulate damage scenarios and demonstrate the efficiency of the developed
strategy.

3 Data Acquisition from a Bowstring-Arch Railway Bridge

3.1 The Railway Bridge Over the Sado River

A bowstring-arch railway bridge over the Sado River was selected as the case study
used throughout this researchwork. It is located on the southern line of the Portuguese
railway network that establishes the connection between Lisbon andAlgarve (Fig. 3).
The bridge is prepared for conventional and tilting passenger trains with speeds up
to 250 km/h, as well as for freight trains with a maximum axle load of 25 t. Even
though the bridge accommodates two rail tracks, only the upstream track is currently
in operation. The bridge has a total length of 480 m and is divided into 3 continuous
spans of 160 m each. The bridge deck is suspended by three arches connected to
each span of the deck by 18 hangers distributed over a single plane on the axis of the
structure. The superstructure is composed of a steel–concrete composite deck, while

Fig. 3 Overview of the bridge over the Sado River
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the substructure, which includes the piers, the abutments, and the pile foundations,
is built with reinforced concrete. The deck is fixed on pier P1, whereas on piers
P2, P3, and P4 only the transverse movements of the deck are restrained, while the
longitudinal movements are constrained by seismic dampers.

3.2 SHM Monitoring System

The structural health condition of the railway bridge over the Sado River has been
controlled with a comprehensive autonomous online monitoring system, as detailed
in Fig. 4a, since the beginning of its life cycle. This monitoring system was defined
based on an operational evaluation and allowed the acquisition of data necessary to
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implement the strategy for early damage detection (Fig. 2). To identify each train that
crosses the bridge and compute its speed, two pairs of optical sensors are installed
at both ends of the bridge (Fig. 4b). The structural temperature action is measured
using PT100 thermometers and NTC thermistors. Three sections of the arch were
instrumented with twelve NTC thermistors. Additionally, four NTC thermistors are
fixed to the steel box girder and three PT100 thermometers are embedded in the
concrete slab (Fig. 4d). To control the behaviour of the bearing devices, the responses
from longitudinal displacement transducers are obtained from eight sensors, each
adjacent to a bearing device (Fig. 4b). The set of sensors also includes one vertical
piezoelectric accelerometer fixed at the mid-span of the concrete slab, two triaxial
force balance accelerometers at the thirds of themid-span steel box girder, and twelve
vertical force balance accelerometers fixed along each span of the steel box girder
(Fig. 4c). Four longitudinal MEMS DC accelerometers are also installed at the top
of each pier (Fig. 4b). Data acquisition is carried out continuously, at a sampling rate
of 2000 Hz, by a locally deployed industrial computer to save the time history during
the passage of the trains.

3.3 Baseline and Damage Scenarios Simulation

A realistic simulation of healthy and damage scenarios was conducted to test and
validate the strategies proposed herein since it was not possible to simulate damage
scenarios experimentally. After a successful validation of the methodology, it can
be directly applied to experimental data from different types of bridges, where a
baseline scenario is defined, and further experimental data can be tested to detect the
occurrence of eventual structural changes.

For this purpose, a 3D finite element (FE) numerical model of the bridge is devel-
oped in ANSYS software [19] and fully validated with experimental data (Fig. 5).
Among the modelled structural elements, those defined as beam finite elements
consist of piers, sleepers, ballast-containing beams, rails, arches, hangers, transverse
stiffeners, diaphragms, and diagonals. Shell elementswere used tomodel the concrete
slab and the steel box girder, while the pads, the ballast layer, and the foundations
weremodelled using linear spring-dashpot assemblies. Themass of the non-structural
elements and the ballast layer was distributed along the concrete slab. Concentrated
mass elements were used to reproduce the mass of the arches’ diaphragms and the
mass of the sleepers, which were simply positioned at their extremities. The connec-
tion between the concrete slab and the upper flanges of the steel box girder, as well
as the connection between the deck and the track, were performed using rigid links.
Special attention was paid to the bearings supports, as they can strongly influence the
performance of the bridge. Hence, in order to simulate the sliding behaviour of the
bearings, nonlinear contact elements were applied. Moreover, constraint elements
located between the bearings were used to restrict the transversal movement in each
pier, and the longitudinal and transversal movements in the case of the first pier.
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Fig. 5 Numerical modelling and validation: a 3D FE numerical model of the bridge over the Sado
River, b agreement between numerical and experimental modal frequencies, c static validation of
the displacements measured on pier P4, d dynamic validation of longitudinal accelerations at pier
P2 with the AP at 216 km/h, and e dynamic validation of vertical accelerations at the concrete slab
(Ac1) with the AP at 216 km/h

To ensure that the numerical model accurately simulates the structural behaviour
of the bridge, the responses obtained from modal, static, and dynamic analyses were
compared with those measured by the SHM system [20]. The numerical natural
frequencies were compared with those obtained experimentally during an ambient
vibration test [21]. Figure 5b shows a very high coefficient of determination (R2 =
0.9993) between the numerical and the experimental results. To validate the static
behaviour of the numerical model, the response of the structure to the action of
temperature was studied. The structural static behaviour of the bridge was simu-
lated in the FE model by running a time-history analysis using experimental data
as input. The simulation procedure consisted of using the temperatures acquired
every hour on site over the course of one year. Figure 5c presents a very good
agreement between the numerical and experimental displacements of pier P4 for
the temperature measured on site between November 2015 and November 2016.
Regarding the dynamic behaviour, numerical simulations were conducted consid-
ering the Portuguese Alfa Pendular (AP) train as a set of moving loads crossing the
bridge over the Sado River at a speed of 216 km/h. Figure 5d, e shows a very good
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agreement between the experimental and numerical responses, in terms of the longi-
tudinal accelerations measured on pier P2, and the vertical accelerations acquired on
the concrete slab at the second mid-span (Ac1), respectively. Before the comparison,
the time-series were filtered based on a low-pass digital filter with a cut-off frequency
equal to 15 Hz. A detailed description of the numerical model and its validation com
be found in Meixedo et al. [20].

The dynamic numerical simulations implemented in the present research work
aimed at replicating the structural quantities measured in the exact locations of the
23 accelerometers installed on site (Fig. 4) during the passage of a train in the bridge.
To correctly reproduce these structural responses, the temperature action measured
precisely during the passage of each train was introduced as input in the numerical
model. The measurements of the optical sensors’ setup were used to obtain the train
speed and axle configuration, as well as the type of train [22]. The dynamic analyses
mentioned hereafter were carried out for two of the passenger trains that typically
cross the bridge over the Sado River, namely the AP train and the Intercity (IC) train.
Their frequent speeds on the bridge are 220 km/h for the AP train and 190 km/h for
the IC train. The nonlinear problem was solved based on the full Newton–Raphson
method, and the dynamic analyseswere performed by theNewmark direct integration
method, using a methodology of moving loads [9]. The integration time step (�t)
used in the analyses was 0.005 s.

Figure 6a summarizes the 100 simulations of the baseline (undamaged) condi-
tion that aim at reproducing the responses of the bridge taking into account the
variability of temperature, speed, loading schemes (LS), and type of train. These
baseline scenarios compose the training dictionary and do not include any damage
on any location. During each simulation, real temperatures measured by the SHM
system were introduced in the elements of the bridge. The average values for each
season were 21 °C for spring, 30 °C for summer, 16 °C for autumn, and 10 °C for
winter, but the dispersion across the structure was considered bymeasuring and using
temperature values in all elements of the bridge. The simulations included the AP
and IC trains crossing the bridge with ten different loading schemes, according to
the experimental observations previously made by Pimentel et al. [23]. Three train
speeds were considered for each type of train, as observed in Fig. 6, thus resulting in
100 time-history simulations for the baseline condition, each taking approximately
10 h on a 4.2 GHz Quad-Core desktop with 32.0 GB of RAM.

On the other hand, the damage scenarios were chosen based on possible vulner-
abilities identified for the type of structural system, taken into account its materials,
behaviour, loadings, and connections. As shown in Fig. 6b, damage scenarios were
simulated according to different groups: (i) damage in the bearing devices (type
D1), (ii) damage in the concrete slab (type D2), (iii) damage in the diaphragms
(type D3), and (iv) damage in the arches (type D4). Each scenario was simulated
considering only one damage location. Nevertheless, if, by any chance, two or more
damage scenarios in different locations are observed at the same time, the effects
from multiple damage locations are expected to superimpose, and the influence on
the features extracted from the data will be greater. Therefore, the multiple damage
scenario will be more observable than the scenarios tested here. Regarding the group
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b types of damages and their location on the bridge over the Sado River

of type D1, four severities of damage were included, namely increases of the fric-
tion coefficient from a reference value of 1.5% to 1.8%, 2.4%, 3.0%, as well as
to a full restrain of the movements between the pier and the deck. The remaining
damage scenarios consisted of 5%, 10%, and 20% stiffness reductions in the chosen
sections of the bridge (Fig. 6b) on the concrete slab (D2), the diaphragms (D3),
and arches (D4). These structural changes were simulated by reducing the modulus
of elasticity of concrete (type D2) and of steel (types D3 and D4). A total of 114
damage scenarios were simulated for AP train crossings at 220 km/h and adding as
input the temperatures measured on site during a summer day. Additional damage
scenarios could have been simulated for different combinations of EOVs. However,
as observed in Sect. 4.2, the proposed methodology is effective in removing these
effects and keeping only those generated by structural changes.

The time-series illustrated in Fig. 7 are examples of simulated responses for
baseline and damage conditions, acquired from the accelerometer Ac1.

To obtain the most reliable reproduction of the real SHM data, the noise measured
on site by each accelerometer was added to the corresponding numerical output.
These noise distributionswere acquiredwhile no trainswere travellingover the bridge
and under different ambient conditions. Each simulationwas corruptedwith different
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damage time-series considering friction increase D1 (P2), and b2 damage time-series considering
stiffness reduction D2 (m2)

noise signals acquired at different days, thus ensuring the most representative
validation for the techniques developed herein.

The variations associated with different train types, loading schemes and train
speeds are shown in Fig. 7a1, a2. A clear distinction between the bridge responses
for the IC (Fig. 7a1) train and the AP train (Fig. 7a2) passages can be observed,
thus displaying the necessity of considering different train types for implementing
damage detection strategies. Contrariwise, Fig. 7a1 allows observing that different
LS generate smaller changes in the dynamic responses. The train speed also has an
important influence in the structural response induced by trains crossing the bridge,
as shown in Fig. 7a2.

The influence of damage scenarios in the signal obtained for the train crossings
appears to be much smaller than that observed for EOVs, even when regarding
sensors adjacent to the damages and for the biggest magnitudes considered (20%
stiffness reductions). This conclusion can be easily observed in Fig. 7b1, b2, where
the bridge responses considering friction increments in the bearing devices of pier
P2 and stiffness reductions in the concrete slab are, respectively, presented.
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4 Strategy for Early Damage Detection Using
Train-Induced Responses

4.1 Features Extraction Based on CWT and PCA

The first step of the strategy is to extract damage-sensitive features based on the
hybrid combination of Continuous Wavelet Transform (CWT) and principal compo-
nent analysis (PCA). After extracting the wavelets coefficients by applying a CWT
to the acceleration measurements, a PCA is performed to significantly compress
information.

Wavelet functions are composed of a family of basic functions that can describe
a signal in localized time (or space) and frequency (or scale) domain. The main
advantage achieved by using wavelets is the ability to perform local analysis of a
signal, i.e. zooming on any interval of time or space. Signal-based damage detection
techniques that involve wavelet analysis take advantage of this to be capable of
revealing some hidden aspects of measured signals [24].

The CWT is a well-established method of implementing multiscale signal anal-
ysis. This technique will only be introduced here, and the reader is referred to Cohen
and Ryan [25], amongst others, for a more detailed mathematical explanation. The
CWT decomposes the analysed signal into a set of coefficients in two dimensions,
shift and scale, where scale is approximately inversely proportional to frequency. A
basis function is translated (shift) and stretched (scale), and compared against the
signal. High coefficients represent a good match between signal and wavelet at a
particular instant in time and related frequency [26]. Hereupon, the CWT provides
variable resolution and delivers a map of the energy content of the signal in time and
frequency.

Let f (t) be the acceleration response of the system, where t denotes time. The
wavelet coefficients are described as the inner product of the function f and the
wavelet ψa,b corresponding to parameters a (scale) and b (shift) [26]:

Wψ f (a, b) = 〈
f, ψa,b

〉 = 1√
a

+∞∫

−∞
f (t)ψ∗

(
t − b

a

)
dt for a > 0 (1)

In the previous equation, ψ(t) is the mother wavelet, in which the superscript
asterisk indicates complex conjugation.Thewavelet functionsψa,b(t) are constructed
by a translated and dilated version of the mother wavelet, using the two parameters
a and b (Eq. 2). The parameter b localizes the basis function at t = b and its neigh-
bourhood by windowing over a certain temporal stretch depending on the parameter,
a.

ψa,b(t) = 1√
a

ψ

(
t − b

a

)
for a, ba, b ∈ R+ (2)



130 A. Meixedo et al.

The frequency content can be controlled by varying the parameter a, as shown
by the Fourier transform of the wavelet function (Eq. 3). Therefore, the wavelet
transform coefficient for any particular a and b characterizes the contribution to the
function f (t) in the neighbourhood of t = b and in the frequency band corresponding
to the dilation factor of a.

ψ̂a,b(ω) = √
aψ̂(aω)eiωb (3)

Usually, the wavelet coefficients are shown in terms of scale a. However, it is
common in engineering practice to work in the frequency domain. Since there is not
a direct relationship between scale and frequency, the results illustrated herein are
given in terms of pseudo-frequency. A pseudo-frequency f that corresponds to the
scale a can be defined by Eq. (4) where �t is the sampling period of the analysed

signal and fc is the centre frequency given by the maximizer of
∣∣∣ψ̂

∣∣∣ [26, 27].

f = fc
a�t

(4)

Considering a vector of 2112 acceleration measurement points, the present anal-
ysis used the Morlet mother wavelet [28] to extract matrices of 2112-by-82 features
(wavelets coefficients) for each of the 23 sensors and for each of the 214 structural
conditions. To illustrate the feature extraction procedure, Fig. 8 shows thesematrices,
plotted as images with scaled colours, for two different sensors: (1) AL-P2—longi-
tudinal accelerometer located in pier P2, (2) Ac1—vertical accelerometer in the mid-
span section of the concrete slab; and for four structural conditions: (a) undamaged
scenario AP|220 km/h|AUT—the AP train crossing the bridge at 220 km/h during
an autumn day, (b) undamaged scenario IC|190 km/h|SPR—the IC train crossing the
bridge at 190 km/h in a spring day, (c) damaged scenario D1 (P2: restrained)—the
full restraint of the bearing devices in pier P2, and (d) damaged scenario D2 (e2:
20%)—the 20% stiffness reduction in a section of the concrete slab aligned with pier
P2.

In Fig. 8 is possible to clearly observe different energy concentrations depending
on the sensor. Sensor AL-P2 seems to be more sensitive to the different structural
conditions analysed since the CWT coefficients from this sensor (Fig. 8a1, b1, c1,
d1) provide a much clearer image of the evolution of the energy content from the
undamaged scenarios to the damaged scenarios. On the contrary, the energy concen-
tration on the images from sensor Ac1 seems to be very similar between the undam-
aged scenario AP|220 km/h|AUT (Fig. 8a2) and both damage scenarios D1 and D2
(Fig. 8c2, d2). The main variation in frequency values is observed for the undamaged
scenario IC|190 km/h|SPR (Fig. 8b2), which indicates that the influence of varying
environmental and operational conditions (such as different temperature, train, and
speed) may be greater than the damage occurrence. These results also show that
different sensors can store different information about the bridge structural condition,
thus combining this information may enhance the features sensitiveness.
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PCA is amultivariate statisticalmethod that produces a set of linearly uncorrelated
vectors called principal components, from a multivariate set of vector data [29]. This
operation intends to extract damage-sensitive features from the CWT coefficients
while performing important data compression. Considering an n-by-mmatrix X with
the wavelets coefficients obtained after the CWT implementation, being in this case
study n = 2112 and m = 82, a transformation to another set of m coefficients,
Y, designated principal components or scores, can be achieved by the following
equation:

Y = X · T (5)

whereT is anm-by-m orthonormal linear transformationmatrix that applies a rotation
to the original coordinate system. The covariance matrix of the coefficients, C, is
related to the covariance matrix of the scores, �, as follows:

C = T · � · T T (6)

in which T and � are matrixes obtained by the singular value decomposition of
the covariance matrix C. The columns of T are the eigenvectors, and the diagonal
matrix � comprises the eigenvalues of the matrix C in descending order. Hence, the
eigenvalues stored in � are the variances of the components of Y and express the
relative importance of each principal component in the entire dataset variation [30].

To allow data compression, four statistical parameters, namely the root mean
square (RMS), the standard deviation, the Skewness, and the Kurtosis, are afterwards
extracted from the scores, Y. Thereby, the information presented in a matrix of 2112-
by-82 is transformed into amatrix of4-by-82. A total of 328 features are thus extracted
from each of the 23 accelerometers. This operation is implemented for each of the
214 structural conditions.

Four of the 328 features (12, 47, 116, and 323) obtained for two of the 23 sensors,
AL-P2 and Ac1, are represented in Fig. 9. These features are divided according to the
structural condition in two main groups: baseline (first 100 simulations) and damage
(subsequent 114 simulations). The main changes in the amplitudes of the features
are induced by the type and speed of the trains. In addition, for each speed value,
the changes observed in the amplitude of the statistical parameters are generated by
changes in the structural temperature values (chosen for autumn, spring, summer, or
winter). The different LS (the seven symbols in a row in the case of the AP and three
symbols in a row in the case of the IC) considered for each train type and speed, and
each temperature, are the operational factorswith the smallest influence on the feature
variability regarding the baseline simulations. The analysis of the features shown in
Fig. 9 that allows drawing some conclusions about the difficulty in distinguishing
undamaged and damage scenarios since the variations caused by environmental and
operational effects result in similar or greater changes in the parameters.
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Fig. 9 Amplitude of four of the 328 statistical features extracted based on CWT and PCA, for all
214 structural conditions and from two of the 23 sensors: a longitudinal accelerometer located on
pier P2 (AL-P2), b vertical accelerometer located in the mid-span section of the concrete slab (Ac1)
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4.2 Features Modelling Based on PCA

The analysis of the features is presented in Fig. 9 that revealed the necessity to
adequately model these statistical parameters to remove the changes generated by
EOVs and highlight those generated by damage. Assuming that environmental condi-
tions has a linear effect on the identified features, the implementation of a latent vari-
able method as PCA to the extracted features may efficiently remove environmental
and operational effects, without need to measure these actions [11, 30].

Considering now an n-by-mmatrixX with the features extracted from the dynamic
responses, where n is the number of structural conditions and m is the number
of features from all the sensors (i.e. 328), a transformation to another set of m
parameters, Y, can be achieved by applying Eq. (5).

As demonstrated by Santos et al. [10], the PCA is able to cluster meaningful
information related to EOVs in the first components, while variations related to other
small-magnitude effects, such as early damage,may be retained in latter components.
Since the purpose of the present research work is to detect damage, which has gener-
ally a local character, the featuremodelling operation consists of eliminating themost
important principal components (PCs) from the features and retaining the rest for
subsequent statistical analysis. Bearing this inmind, thematrix� fromEq. (6) can be
divided into a matrix with the first e eigenvalues and a matrix with the remainingm-e
eigenvalues. Defining the number of e components remains an open question with
regard to the representation of the multivariate data; although several approaches
have been proposed, there is still no definitive answer. In this work, the value of e
(or the number of PCs to discard) is determined based on a rule of thumb in which
the cumulative percentage of the variance reaches 80% [31]. After choosing e, the
m-e components of the matrix Y can be calculated using Eq. (5) and a transformation
matrix T̂ built with the remaining m-e columns of T. Those m-e components can be
remapped to the original space using the following:

FPCA = X · T̂ · T̂ T (7)

where FPCA is the n-by-m matrix of CWT-double PCA-based features, expected to
be less sensitive to environmental and operational actions and to be more sensitive
to the damage scenarios. This procedure is repeated for each sensor.

Since the cumulative percentage of the variance of the sum of the first nine prin-
cipal components was higher than 80% for different structural conditions, these nine
PCs were discarded during the modelling process (i.e. e = 9). Figure 10 shows the
series of four features (12, 47, 116, and 323) across the 214 scenarios obtained for
AL-P1 and Ac1 accelerometers, after the application of the double PCA. The direct
comparison of these action-free damage-sensitive features with those shown before
the feature modelling (Fig. 9) allows observing that, in fact, the feature modelling
enabled removing the variations generated by the temperature, as well as by the type
and speed of the train, but not those generated by damage. Moreover, the features
sensitivity to the damage scenarios was increased.
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Fig. 10 Amplitude of four of the 328 features modelled based on PCA, for all 214 structural
conditions and from two of the 23 sensors: a longitudinal accelerometer located on pier P2 (AL-P2),
b vertical accelerometer located in the mid-span section of the concrete slab (Ac1)
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4.3 Features Fusion

To improve the features’ discrimination sensitivity, data fusion was performed. A
Mahalanobis distance was implemented to the modelled features in order to describe
their variability and allowing their effective fusion.

TheMahalanobis distancemeasures the distance between the baseline features and
the damage-sensitive features to express the similarities between them, with shorter
distances representing greater similarities. The Mahalanobis distance is generic
enough to be used to detect any damage scenario, while providing a weighting that is
entirely unsupervised, and therefore independent of human intervention, the type of
structure, and the actions imposed on it. It consists of a weighted damage indicator
in which the weights are determined by the covariance structure. In addition, and
more importantly, the weighting proportional to the covariance structure provides
an additional layer of feature modelling which, when defined for regular actions,
allows outlining with high sensitivity those that were not used for the definition of
the covariance structure. The analytical expression of the Mahalanobis distance for
each simulation i, denoted as MDi , is the following:

MDi =
√

(xi − x) · S−1
x · (xi − x)T (8)

where xi is a vector of m features representing the potential damage/outlier, x is the
matrix of the means of the features estimated in the baseline simulations, and Sx is
the covariance matrix of the baseline simulations.

The Mahalanobis distance is computed for each simulation and each sensor
resulting in a matrix with n Mahalanobis distances for k sensors, where n is the
total number of structural conditions. When data from a structural state that differs
from the baseline is tested, the MD value is expected to increase substantially.

Hence, the Mahalanobis distance allowed transforming, for each sensor and train
crossing, the 328 features into one single feature (a distance in the feature space),
which exhibits higher values for different structural conditions and null (or near-null)
values for identical structural scenarios. The outcome of this procedure is a vector
of 214-by-1, of distances, one for each of the 23 sensors.

Figure 11 shows the results achieved for two of the 23 sensors (AL-P2 and Ac1).
The two plots in Fig. 11 clearly show the difference in sensitivity for different sensors
in each structural condition. The longitudinal accelerometer on pier P2 (Fig. 11a) is
more sensitive to damages on the bearing devices of piers P3 and P4. Conversely, the
accelerometer located at the second mid-span of the concrete slab (Fig. 11b) exhibits
an important global sensitivity to damage since there is a distinction between the
baseline simulations and the damage scenarios, but it is not efficient in distinguish
the different types of simulated damages.
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considering the responses from accelerometers: a AL-P2, b Ac1

4.4 Clustering-Based Classification

Time-series analysis and distance measures can help perform data analysis and
suggest the existence of different structural behaviours within a dataset, as shown in
the previous sections. However, the development of real-time SHM strategies should
resort to machine learning algorithms that can autonomously decide whether one or
more distinct structural behaviours are being observed from patterns in the features.
Hence, feature discrimination is addressed herein using unsupervised classification
algorithms.

Cluster analysis was the data mining technique chosen to address feature classi-
fication. The aim of the clustering process is to divide a dataset into groups, which
must be as compact and separate as possible. This can be mathematically posed
as an attempt to minimize the dissimilarity between features assigned to the same
cluster (within-cluster distance), which, consequently, maximizes the dissimilarity
between the features assigned to different clusters (between-cluster distance) [15].
Considering a given partition containing K clusters, Pk = {C1, . . . ,Ck}, the overall
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within-cluster dissimilarity W (Pk) and the overall dissimilarity OD can be defined
as:

W (Pk) = 1

2

K∑

k=1

∑

c(i)=k

∑

c( j)=k

di j (9)

OD = 1

2

N∑

i=1

N∑

j=1

di j (10)

in which the between cluster dissimilarity is given by the subtraction B(Pk) = OD−
W (Pk). Here, N is the total number of features and c(i) is a many-to-one allocation
rule that assigns feature i to cluster k, based on a dissimilarity measure di j defined
between each pair of features i and j. The best-known clustering algorithm is iterative
and called k-means [32]. The k-means requires that the number of K < N clusters be
initially defined alongwith a randomly defined set ofK clusters’ prototypes. This task
is called initialization. Afterwards, each iteration starts by allocating the features to
the clusters according to an allocation rule, c(i), that assigns each feature to the least
dissimilar (closest) cluster prototype. The second step of each k-means’ iteration is
called representation and consists of defining the centroids of the K clusters as their
prototypes and assuming that each feature belongs to the cluster whose prototype
is closest. These two steps, allocation and representation, are subsequently repeated
until an objective function, which depends on the compactness and separation of
the cluster, reaches its global minimum value. The k-means considers the squared
within-cluster dissimilarity measured across the K clusters as an objective function
[32]. Clusters’ dissimilarities are generally defined as distancemetrics. Among these,
the Euclidean (square root of the sum-of-squares) is used here.

As previously mentioned, the k-means clusteringmethod requires that the number
of clusters is defined in advance and provided as input (in the initialization phase).
For damage detection, there is no way of knowing this number in advance, which
requires that multiple partitions, comprising different numbers of clusters, be tested
and their outcomes analysed using cluster validity indices [32]. Numerous validity
indices have been proposed and tested, not only in specific literature but also in
SHM applications. Herein, the global silhouette index (SIL) is used since it revealed
a superior performance in previous studies [33], in which its formulation is carefully
described.

The application of the k-means along with the SIL index is exemplified here
using the features extracted from the sample time-series. For the present work, it is
important to note that, among the K tested, the partition that generates the highest
SIL value is the one that is expected to best describe the analysed feature set and
should, therefore, be considered for SHM purposes. Using the CWT-double PCA-
based features after fusion from all sensors installed on site, the SIL indices extracted
from five cluster partitions, shown with ‘o’ marks in Fig. 12a, exhibit a maximum for
k = 2 clusters. The corresponding features’ allocationswere automatically generated
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Fig. 12 Allocation of damage-sensitive features into clusters: a silhouette index (SIL), b clusters
defined for all structural conditions and their centroids for three of the 23 sensors

by the k-means method and are shown in Fig. 12b for three of the 23 sensors: (i)
AL-P2, (ii) Ac1, and (iii) AsV4. These plots demonstrate that the clustering method
can divide the features without any human interaction or input. In Fig. 12b can be
observed the dissimilarity between the two centroids of three different combinations
of sensors, while the plots in the diagonal of this figure show that the two clusters
found for each couple of sensors are compact over time and separated when the
simulated damages start. This result undeniably shows that the k-means method is
capable of analysing the feature set and, in a fully automated manner, separating it
according to the structural conditions observed on site. Also, it is demonstrated that
the clusters have de advantage of allowing a multidimensional representation of the
features, which, in this case study, led to a classification without false detections.

After the definition of the baseline, which can be promptly achieved after one day
of trains crossings, each new train crossing can be used to test the bridge structural
condition based on the proposed strategy.
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5 Conclusions

This research presents a data-driven AI-based SHM strategy for conducting real-
time unsupervised early damage detection in railway bridge vibration response
from traffic-induced excitation, applying time-series analysis and machine learning
techniques. The strategy consists of fusing sets of acceleration measurements to
improve sensitivity and combines: (i) CWT and PCA for feature extraction, (ii)
PCA for feature modelling, (iii) Mahalanobis distance for feature fusion, and (iv)
clustering algorithms for feature classification. A comprehensive dataset of baseline
and damaged scenarios was simulated using a highly reliable digital twin of the
Sado Bridge tuned with experimentally obtained actions as input, namely tempera-
ture, train loadings, and speeds. Damage severities of 5%, 10%, and 20% stiffness
reductions in the concrete slab, diaphragm, and arches were simulated, as well as
friction increases in the movements of the bearing. The damage-sensitive features
were extracted from the bridge accelerations induced by train crossings by combining
CWT with PCA. The wavelets coefficients were first extracted from the time-series.
Afterwards, PCAwas implemented to the wavelets coefficients and statistical param-
eters were extracted from the PCs to allow data compression. The study of the
wavelet-PCA-based features extracted from different structural conditions allowed
drawing conclusions about the supremacy of the EOVswhen comparedwith damage,
proving the importance of feature modelling. Moreover, the information obtained
from each feature was different depending on the sensor location and the statis-
tical parameter. PCA was once again implemented to modelling the features. This
latent variable method proved its importance and effectiveness in removing observ-
able changes induced by variations in train speed or temperature without the need
to measure them and without losing sensitivity to damage. To describe the vari-
ability present in the modelled features, a Mahalanobis distance was implemented
to the 328 features extracted from each sensor signal. This implementation allowed
corroborated that different sensors have greater or lesser sensitivity, depending on
the location of the damage. Moreover, this step proved to be crucial to achieve the
highest possible level of information fusion and to obtain a clear distinction between
undamaged and damaged conditions. In order to automatically detect the presence of
damage, a clustering-based classification was performed. The robustness and effec-
tiveness of the proposed strategy were demonstrated by automatically detecting the
damage scenarios as different from those belonging to undamaged structural condi-
tions. Using featuresmodelled based only on structural responses, no false detections
occurred. An additional important conclusion obtained from this work is that, even
with an SHM system not capable of measuring EOVs, it is possible to successfully
detect different types of damage using the bridge’s responses to train crossings. This
achievement renders the strategy the ability to be less dependent on spatial actions
very difficult to characterize, thus contributing for the normalization of SHM proce-
dures. This strategy also has the advantages of minimizing the number of sensors
that need to be installed and, consequently, the cost of the SHM system, as well as
allowing for a more automatic and straightforward implementation.
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Fault Diagnosis in Structural Health
Monitoring Systems Using Signal
Processing and Machine Learning
Techniques

Henrieke Fritz, José Joaquín Peralta Abadía, Dmitrii Legatiuk,
Maria Steiner, Kosmas Dragos, and Kay Smarsly

Abstract Smart structures leverage intelligent structural health monitoring (SHM)
systems, which comprise sensors and processing units deployed to transform sensor
data into decisions. Faulty sensors may compromise the reliability of SHM systems,
causing data corruption, data loss, and erroneous judgment of structural conditions.
Fault diagnosis (FD) of SHM systems encompasses the detection, isolation, iden-
tification, and accommodation of sensor faults, aiming to ensure the reliability of
SHM systems. Typically, FD is based on “analytical redundancy,” utilizing corre-
lated sensor data inherent to the SHM system. However, most analytical redundancy
FD approaches neglect the fault identification step and are tailored to specific types
of sensor data. In this chapter, an analytical redundancy FD approach for SHM
systems is presented, coupling methods for processing any type of sensor data and
two machine learning (ML) techniques, (i) an ML regression algorithm used for
fault detection, fault isolation, and fault accommodation, and (ii) an ML classifi-
cation algorithm used for fault identification. The FD approach is validated using
an artificial neural network as ML regression algorithm and a convolutional neural
network asML classification algorithm.Validation is performed through a real-world

H. Fritz (B) · M. Steiner
Computing in Civil Engineering, Bauhaus University Weimar, Weimar, Germany
e-mail: henrieke.fritz@uni-weimar.de

M. Steiner
e-mail: maria.steiner@uni-weimar.de

J. J. Peralta Abadía · K. Dragos · K. Smarsly
Institute of Digital and Autonomous Construction, Hamburg University of Technology, Hamburg,
Germany
e-mail: joaquin.peralta@tuhh.de

K. Dragos
e-mail: kosmas.dragos@tuhh.de

K. Smarsly
e-mail: kay.smarsly@tuhh.de

D. Legatiuk
Applied Mathematics, Bauhaus University Weimar, Weimar, Germany
e-mail: dmitrii.legatiuk@uni-weimar.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Cury et al. (eds.), Structural Health Monitoring Based on Data Science Techniques,
Structural Integrity 21, https://doi.org/10.1007/978-3-030-81716-9_7

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81716-9_7&domain=pdf
mailto:henrieke.fritz@uni-weimar.de
mailto:maria.steiner@uni-weimar.de
mailto:joaquin.peralta@tuhh.de
mailto:kosmas.dragos@tuhh.de
mailto:kay.smarsly@tuhh.de
mailto:dmitrii.legatiuk@uni-weimar.de
https://doi.org/10.1007/978-3-030-81716-9_7


144 H. Fritz et al.

SHM system in operation at a railway bridge. The results demonstrate the suitability
of the FD approach for ensuring reliable SHM systems.

Keywords Structural health monitoring (SHM) · Fault diagnosis (FD) · Machine
learning (ML) · Artificial neural network (ANN) · Convolutional neural network
(CNN) · Signal processing · Wavelet transform

1 Introduction

Structural health monitoring (SHM) is a nondestructive evaluation strategy that uses
data obtained by sensors to assess the condition of structures over time. In recent
advancements of SHM, smart SHM systems that automatically make decisions and
take actions based on the structural response have become popular [1]. However,
the reliability and accuracy of sensors in SHM systems may be compromised by
sensor faults, caused by hardwaremalfunctions, battery exhaustion, or environmental
impacts [2].

A sensor fault can be defined as a defect of a sensor, leading to an error [3] that
may result in failure of an SHM system. Failures are detectable in sensor data and
vary according to the type of sensor fault. In general, fault diagnosis (FD) includes
the following tasks [4]:

1. Fault detection: Recognizing the adverse operation of the system,
2. Fault isolation: Specifying the exact location of the fault,
3. Fault identification: Determining the type (or nature) of the fault, and
4. Fault accommodation: Compensating for the effects of the fault.

Fault diagnosis in SHM systems has been a topic of ongoing research for more
than 40 years [5]. FD approaches usually build upon either physical redundancy or
analytical redundancy. Physical redundancy approaches base fault detection on the
comparison between sensor data collected by SHM systems and readings of “redun-
dant” sensors collocated with the sensors of SHM systems. In analytical redundancy
approaches, virtual sensor data is calculated based on inherent correlations of struc-
tural response data obtained fromdifferent sensors on the structure [6]. For effectively
mapping these correlations, the full length of sets of sensor data is utilized, only part
of which is normally used for SHM-related objectives, the rest being characterized
as “redundant.” As a result, FD relies on residuals between virtual and actual sensor
data, which is typically structural response data [7].

Theoretically, if the structural properties are known, physics-based models can
be used for calculating virtual data. However, creating physics-based models for real
structures is largely based on assumptions on structural properties, which are likely
to introduce epistemic uncertainty to virtual data and compromise the FD approach.
Therefore, data-driven models, based on machine learning (ML) techniques, have
becomepopular for FD in recent years.Because of the ability to recognize and classify
patterns in large data sets, ML techniques are of increasing interest in SHM-related
research. Machine learning helps SHM systems to adapt to new circumstances (e.g.,
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changes in environmental conditions) byprocessing and analyzingdata, extrapolating
patterns, and making predictions [8].

Several data-driven ML techniques have been applied to FD problems [9]. Arti-
ficial neural networks as ML regression algorithms, for example, have been widely
used for fault detection, fault isolation, and fault accommodation in different engi-
neering fields, e.g., in wind turbine structures [10], aircraft engines [11], fossil-fuel
power plants [12], flight control systems [13], unmanned airborne vehicles [14],
and robotic systems [15]. Feed forward neural networks also have been employed
for fault accommodation [16]. Furthermore, a decentralized approach toward fault
detection and fault isolation inwireless SHM systems using artificial neural networks
for predicting virtual data in the time domain has been presented [7]. The aforemen-
tioned approach has been extended to the frequency domain, i.e., using correlations
between the Fourier amplitude of peaks at resonant frequencies [3]. Various topolo-
gies of artificial neural networks for detecting process failures, including sensor
faults, have been tested in [17]. Furthermore, a distributed recurrent artificial neural
network (ANN) has been employed for sensor fault detection [18], while some
researchers have applied (bidirectional) recurrent neural networks accounting for
both the spatial and the temporal correlation among sensor data [19]. Apart from
artificial neural network, other ML techniques have been applied for FD in SHM.
For example, support vector regression has been used for fault detection and isolation
[20], and support vector machines based on chaos particle swarm optimization have
been proposed for FD in SHM systems [21]. Finally, fault identification also has
been studied by applying support vector machines [22].

Most FD approaches focus on detecting, isolating, and accommodating sensor
faults in SHM systems. However, identifying (i.e., classifying) fault types is essential
in FD, as fault types, in general, are related to the origin of faults in SHM systems. For
fast maintenance, fault types should be automatically identified by FD approaches,
indicating possible reasons for malfunctions in SHM systems. Furthermore, most FD
approaches proposed so far have been developed only for one type of sensor data,
mostly accelerations, which significantly limits the applicability of FD approaches.

To provide a general FD approach, including sensor fault identification, this
chapter presents a generalization and extension of the work proposed in [3], repre-
senting a novel approach toward autonomous FDbased on analytical redundancy. For
fault detection and fault isolation, a ML regression algorithm is used for predicting
virtual sensor data of each sensor, based on correlations with data from neighboring
sensors, which is used as input data to theML regression algorithm. Then, the virtual
data is compared to the actual sensor data, and if the deviation between the virtual and
the actual sensor data is greater than a pre-defined threshold, a sensor alert is triggered,
and fault identification and fault accommodation are initiated. Fault accommodation
is performed using the virtual data of the faulty sensors calculated by the ML regres-
sion algorithm. For fault identification, patterns in sensor data representing sensor
fault types are used, which in this approach are exposed by a wavelet transform.
For autonomous fault identification, patterns of wavelet-transformed sensor data are
used as input to a ML classification algorithm, classifying the sensor fault types. For
validation, an ANN as ML regression algorithm and a convolutional neural network
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(CNN) as an ML classification algorithm are applied. Validation of the approach is
performed by showcasing the ability of the FD approach to work with real-world
data recorded by an SHM system in operation on a railway bridge.

The remainder of this chapter is structured as follows: First, the background
of fault identification through signal processing and ML techniques is illuminated.
Subsequently, themethodology and implementation of the FD approach proposed are
described, and validation tests are performed. Finally, the results of the FD approach
are discussed, and an outlook on potential future work is provided.

2 Fault Identification Through Signal Processing
and Machine Learning

In SHM systems, generally, seven basic sensor fault types occur, which are depicted
in Fig. 1 together with formal descriptions as functions over time. Bias is a deviation
by a constant value between sensor data and actual structural response. Drift is the
incrementing deviation between sensor data and actual structural response over time.
In the case of a gain, sensor data is scaled by a constant value; while in precision
degradation, sensor data is contaminated with white noise. For a complete failure,
sensor data consists of a constant value or noise regardless of changes in the actual
structural response. Outliers are isolated, non-continuous changes (“dropouts”) of
the signal at individual points in time, with signals returning to their real values after
each single dropout.

Table 1 presents an overview of studies available in literature analyzing reasons
for the occurrence of individual sensor fault types in SHM systems focusing only on
failures in the sensing mechanism and not on failures coming from synchronization
faults. In addition to the causes in Table 1, it should be noted that the mechanism
and recurrence frequency of individual sensor fault types are highly dependent on
the physical design of the sensors as well as the environmental conditions.

Fault identification of sensors deployed in SHM systems is a crucial step toward
FD, as fault types may allow inferring causes of sensor faults in SHM systems. For
autonomous fault identification, ML provides promising classification algorithms.
ML generally represents learning processes of computer systems, often described as
the conversion of experience into expertise or knowledge [37]. ML algorithms may
help analyze large amounts of data, recognize data patterns, and adapt to the patterns
autonomously. Compared to traditional algorithms (such as expert systems), ML
algorithms offer two advantages, (i) ML algorithms work with previously unknown
(i.e., new) data for which the system has not been trained, and (ii) ML algorithms
can adapt to environmental conditions and resulting changes in the data.

Theoretically, automatic identification of sensors faults can be performed by using
ML classification algorithms with raw sensor data as input. However, because raw
sensor data typically contains noise and random components that may introduce
aleatory uncertainties, patterns in the data indicative of sensor fault types (“fault
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Fig. 1 Basic sensor fault types in SHM systems

patterns”) may remain undetected when applying ML classification algorithms to
raw sensor data. Therefore, most ML classification algorithms use pre-processing
techniques on raw sensor data to enhance fault patterns or, if not visible before, to
unveil fault patterns existing in the sensor data. This pre-processing of raw sensor
data is typically done using techniques of signal processing.

The techniques employed for signal processing for analyzing one-dimensional
time-dependent signals (representing sets of sensor data) can be categorized into
two groups, (i) time-domain techniques and (ii) frequency-domain techniques. The
choice of technique depends on the signals and varies from problem to problem.
For example, a common approach for analyzing signals with a dynamic frequency
spectrum is the wavelet transform. In contrast to classical Fourier transform, wavelet
transform has a high resolution in both the time domain and the frequency domain



148 H. Fritz et al.

Table 1 Sensor fault types and causes

Fault type Cause Source

Bias • Degradation, corrosion, or breakage of junction [23]

• Incorrect calibration [23]

• Physical changes in the sensor system (e.g.,
temperature variations that lead to changes in the
mechanical properties of sensors)

[23, 24]

• Partial loss of connectivity of the sensor to the
structure

[25, 26]

• A short-circuit (or degradation) in the lead wires [27]

• Changes in resistance due to surface stresses [23]

Complete failure (constant) • Loss of contact with the lead wires over time (e.g.,
due to fatigue or shock)

[23]

• Battery failure [28]

• Sensitive core insulation resistance of sensor,
drops, or damage

[26]

Complete failure (noise) • Stray magnetic fields (particularly strong fields) [23]

• Weather conditions, external attacks, and unstable
wireless connection

[28]

Drift • Inhomogeneous changes in composition of the
material (e.g., due to long exposures to high
temperatures or fatigue of the material)

[27, 29, 30]

• Aging of the sensor (node) [31]

• A short (or degradation) in the lead wires [27]

• Strain on resistive wire based on shock and
vibration, chemical reactions of sensing materials,
transmission issues (e.g., deformation), and
weather changes (temperature, humidity)

[26, 28, 37]

Gain • Debonding on the interface between sensor and
surface

[23, 32]

• Unstable voltage supply or nonlinearity of the
sensor

[26]

• Electrical and mechanical fatigue [24]

• Short (or degradation) in the lead wires [27]

• Cracking of the material of sensors due to fatigue
or shock causes

[33]

• Changes in the orientation of induced magnetic
fields in sensors

[23]

Precision degradation • Stray magnetic fields (particularly strong fields) [23]

• Electrical noise through the power supply system

• Seismic radiates from an outside source (e.g.,
airplane)

(continued)
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Table 1 (continued)

Fault type Cause Source

Outliers • Mechanisms such as heavy-tailed distributions or
data that are coming from different kinds of
distributions

[34]

• Environmental variations (e.g., cold temperature
influence)

[35]

• Low battery supply, loose electrical contact, and
sensor saturations

[36]

[38]. The wavelet transform uses a series of functions, the so-called wavelets, each
with a different scale. Since wavelets are localized in time, the wavelet transform
can extract coupled time–frequency information from a signal.

Definition 1 Let u, ψ ∈ L2(R,R). For b ∈ R and a > 0, the wavelet transform of
u with ψ is defined by

Lψu(a, b) :=
∫

R

u(t)
1√
a

ψ

(
t − b

a

)
dt, (1)

where a is a scale parameter, b is a spatial parameter, and ψ is the mother wavelet.
Depending on the choice of ψ , wavelet transforms with different properties can be
constructed. Figure 2 shows wavelet transforms of an artificial signal of the form

f (t) = sin π t + sin 2π t + sin 5π t, (2)

representing a multicomponent periodic signal. The output of the wavelet transform
of function (2) is exemplarily shown, forming a matrix of wavelet coefficients on
different scales.

When transforming the fault types of Fig. 1 through wavelets, all sensor fault
types, except outliers, are recognizable because of unique patterns the fault types
follow. The reason outliers are not identified is that they correspond to point singu-
larities in a continuous signal, which are, in general, not detectable by standard
integral transforms. However, outliers can be easily detected and removed from the
original signal by thresholding, and therefore, outlier identification is not critical to
the complete FD approach. Thus, outliers will not be considered in this work.

After pre-processing faulty sensor data, ML algorithms may be used to allow
automatic identification of sensor faults. To integrate fault identification into the
overall FD process, built upon the wavelet transform, a generalized FD approach is
proposed in the following section.
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3 Fault Diagnosis Based on Signal Processing and Machine
Learning Techniques

This section presents the methodology for the autonomous FD using wavelet trans-
form and machine learning. The methodology for autonomous FD presented in this
chapter is realized via two ML algorithms, (i) a ML regression algorithm for fault
detection, fault isolation, and fault accommodation, and (ii) aML classification algo-
rithm for fault identification. The ML approach for fault detection and isolation has
already been introduced in previous work [3] and is generalized herein. For training
the ML regression algorithm, correlations among sensor data at non-faulty sensor
operation are exploited. Correlations between sensor data may occur as a result of
sensor placement on the structure and may be readily visible in the raw data or
exposed through data-pre-processing (e.g., for acceleration data through using the
Fourier amplitudes of correlated sensor data in the frequency domain). Fault isolation
is accomplished by designing a separate instance of the ML regression algorithm for
each sensor. For theML classification algorithm of the FD approach, patterns indica-
tive of faulty sensor data, as described in the previous section, is used to automate the
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fault identification process. The algorithmic representation of the proposed approach
combining the two ML algorithms can be defined as follows:

1. Use the sensor data fSj (t) of correlated sensors j = 1, . . . , k at non-faulty
sensor operation as input data for the ML regression algorithm of sensor i .

2. For sensor i , approximate sensor data fSi (t) by the output of the ML regression
algorithm in the form of virtual data f̂ Si (t).

3. Perform fault detection and fault isolation by calculating the deviation between
f̂ Si (t) and fSj (t)

(a) If the deviation between f̂ Si (t) and fSi (t) is smaller than a pre-defined
threshold a, trigger a sensor alert and initiate fault identification and fault
accommodation.
(i) Perform fault accommodation by replacing faulty sensor data fSi (t)

with virtual data f̂ Si (t).
(ii) Perform fault identification by calculating the wavelet transforms

Lψ fSi (t) and classify the results using the ML classification
algorithm.

(b) If the deviation between f̂ Si (t) and fSi (t) is greater or equal to the
threshold a, repeat steps 1–3.

A conceptual implementation framework is presented in Fig. 3.

Fig. 3 Implementation
framework for the FD
approach

Sensor i

Sensor alert

Measuring

Measurement f t

Approximation t

Fault classification

Fault accommodation

t f t a

yes

no

Pre-processing
ML regression

algorithm for sensor i

ML classification
algorithm

Wavelet transform of
f t

Comparison

Fault detection
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4 Validation Tests

In this section, validation tests are performed to showcase the ability of the FD
approach to diagnose sensor faults reliably and accurately on real-world data recorded
by an SHM system in operation on a railway bridge. First, the ML algorithms used
in the validation tests are briefly described. Next, the railway bridge is presented.
Then, the data pre-processing and the determination of ML algorithms parameters
are explained. Finally, the validation test results of the FD approach are shown and
discussed.

4.1 Description of the Machine Learning Algorithms

The validation tests are performed using an ANN as aML regression algorithm and a
CNN as a ML classification algorithm. In this subsection, the ANN and the CNN are
briefly described, with emphasis on how each algorithm is applied to the respective
FD tasks.

Fault detection, fault isolation, and fault accommodation using artificial neural
networks. The ANN employed for the validation tests of this study performs fault
detection, fault isolation, and fault accommodation. The ANN concept is based on
the function of biological neurons, which “fire” (become activated) upon receiving
stimuli. Mathematically, the activation (i.e., output) of neuron M is described as
follows [39]

NM := f

(
K∑
i=1

wi x
i + b

)
, (3)

which takes the input xi (components of some input vector x), makes the summation
with weights wi , adds a bias b, and passes it with a transfer function f . Typically,
“sigmoid” functions (e.g., hyperbolic tangent) are used as activation functions. The
overall ANN output is then obtained as a weighted combination of activations of
individual neurons organized in layers, constituting an input layer, one (or more)
hidden layer(s) and an output layer, see [39] for details. Further information on the
concept of artificial neural networks for fault detection and fault isolation used in
this study may be found in [3].

Figure 4 shows the topology of an ANN for fault detection and isolation in sensor
i. As mentioned above, to achieve fault isolation, one ANN model is created for
each sensor. As for fault detection, the ANN model for sensor i goes through three
phases, the training phase, the testing phase, and the application phase. In the training
phase, a training data set is formed in a SHM system state designated as “non-faulty,”
comprising both data of sensor i (target output) and corresponding (i.e., at the same
time points) sensor data correlated with the data of sensor i (input data), collected
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Fig. 4 ANN for FD of sensor i

from 1, . . . , k—usually neighboring—sensors of the SHM system. Since one ANN
instance is created for each sensor, the output layer of the ANN contains one neuron
that produces virtual data f̂ Si (t), for sensor i . The ANN weights are defined based
on the training data set, with training being considered complete once the deviation
between the target output and the virtual data is at a minimum. In the testing phase,
a testing data set is formed and used in a similar way as in the training data set,
albeit with new sensor data independent from the training data set. The purpose of
the testing phase is to verify that the ANN has been properly trained in terms of
weights defined. Based on the quality reached in the testing phase, the threshold
for the detection phase is defined. In contrast to Dragos and Smarsly [3], no signal
characteristics applicable to specific types of sensor data are used as input data to
the ANN; rather, sensor data is used directly with only rudimentary pre-processing
(e.g., scaling), thus making the approach applicable for different types of sensor
data (e.g., strains and temperatures). The nonlinear relationship between the inputs
and the output, drawing from the ANN theory, is accounted for through use of at
least one hidden layer. In the application phase, sensor data from sensors 1, . . . , k
corresponding to an unknown SHM system state (i.e., faulty, or non-faulty) are fed
to the ANN instance to produce virtual outputs f̂ Si (t), and the existence of sensor
faults is judged upon comparing virtual outputs with the actual sensor data of sensor
i .

Themeasurand for comparing the deviation between the actual sensor data fSi
(
t j

)
and the virtual data f̂ Si

(
t j

)
for all time steps t j in an observation period T is the

coefficient of determination R2 [40]. The coefficient of determination describes the
part of the variation of a function f that can bemapped by an approximation function
f̂ and is given by:

R2 = 1 −
∑

j ( f (t j ) − f̂ (t j ))2∑
j ( f (t j ) − f )2

(4)
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where f denotes the mean value of f
(
t j

)
for t j ∈ T . Typically, values of R2 lie

between 0 and 1, with values close to 1 indicating a good approximation quality.
Values less than zero are possible when the approximation function fits the data
worse than themean value of the data. A sensor fault detection alert is issued if the R2

value differs more than a tolerance ε from the threshold already defined at the testing
phase. For differentiating between sensor faults and structural damage, the virtual
data of ANN instances of several sensors need to be analyzed collaboratively. Fault
detection alerts issued by the majority of sensors may indicate structural damage.

If a sensor fault alert is issued, fault identification and fault accommodation are
initiated. In case of a faulty sensor, for fault accommodation, the faulty sensor data
fSi (t) is replaced by the virtual data f̂ Si (t).

Fault identification using convolutional neural networks. In what follows,
autonomous fault identification is implemented through a CNN, representing the
supervised ML classification algorithm in this study, for the sensor fault types
presented in Sect. 2. Convolutional neural networks represent a class of ML algo-
rithms for classification problems, commonly applied to image and pattern recog-
nition [41]. In contrast to artificial neural networks, convolutional neural networks
combine three characteristics, making CNN algorithms suitable for classification:

• Local receptive fields, allowing the first layer to extract features from segments
of the input data by means of filters. The subsequent layers combine the features
extracted, detecting higher-order abstractions.

• Sharedweights, which derive from the idea that filters can be used across the entire
input data to extract features irrespective of the section of the input data. The exact
location of a feature is not important, as only its relative position to other features
is relevant. Thus, by applying the weights of a filter to different sections of the
input data, a feature map is generated. Input data of the same type may by roughly
different; but, if the relative position of the features is approximately the same, a
CNN is capable of classifying the input data as belonging to the same type.

• Subsampling, reducing the spatial resolution of a filter and the sensitivity of the
output to variations, shifts, and noise.

The concept of using a CNN for fault identification is presented in Fig. 5. A CNN
takes as input a signal x(u), which is here an image obtained after awavelet transform
of the faulty sensor data. Neuron values for x j for layer j are computed from values of

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

.. ...
OutputInput

Bias; Gain, Drift, Precision
degradation; Complete
failure (constant, and noise)

Fig. 5 Fault identification using a CNN
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the previous layer x j−1 by applying a linear operatorWj and a pointwise nonlinearity
rectifier ρ, see [42] for details:

x j = ρWj x j−1. (5)

Details on the parameters of the CNN used in the validation tests are given below.
By help of (5), a higher abstraction of the wavelet transforms is obtained (“abstracted
wavelet transforms”), generalizing the main features of the different fault types, as
indicated in Fig. 5. The complete CNN is then obtained by constructing a cascade of
several convolutions of the form (5). Additionally, the abstracted wavelet transforms
are flattened, generating a one-dimensional vector that is interpretable by the final
output layer of the CNN. The output layer returns a percentage for every possible
fault type, representing the probability of the abstracted wavelet transform to belong
to each fault type. Thus, the CNN is able to classify the abstracted wavelet transforms
into each fault type, based on the highest percentage obtained from the activation
function.

The six fault types that, as previously mentioned, are considered in this study
constitute six classes for the ML classification. It is important to note that a seventh
class for non-faulty data is not required, because non-faulty data is sieved out by the
ANN on the fault detection step of the FD approach proposed in this paper. If the
accuracy of the ANN in the FD process is not sufficient for application, the seventh
class of “non-faulty” datamay be added to the CNN, for avoiding error accumulation.

4.2 Description of the Structure Used for Validation

The validation is performed using sensor data recorded by an SHM system installed
on a reinforced concrete railway bridge that includes monitoring data of one year,
collected as part of a previous research project [43]. The bridge is a double-track
railway overpass. The bridge deck consists of ten spans each resting on four piers
with circular cross-sections, which are monolithically connected to the deck. The
piers are founded on bored piles, whose heads are connected with rigid beams (pile
head beams), and the sensors of the SHM system are installed in the pile head beam.
The data set contains sensor data from one data acquisition unit of one pile head
beam of the bridge comprising 11 sensors, whose types and labels are listed in Table
2. The top view of the pile head beam and the sensor positions of sensor S1–S11 are
illustrated in Fig. 6. Further figures and information of the validation structure and
the monitoring data may be found in [43].

The data set contains data from eight strain sensors and three temperature sensors
from the year 2017, each data point being collected every 10 min, i.e., at a sampling
frequency of 1.7 MHz, corresponding to n = 52,560 data points per sensor. The
validation of the FD approach proposed is shown for faults artificially injected into
the sensor data of strain gauge S1.
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Table 2 Sensor types,
measuring units, and sensor
labels of the selected sensors

Sensor type Measuring unit Label

Strain gauges on steel
reinforcement

mV/V S1, S2, S3, S4

Strain gauges on
concrete

mV/V S5, S6, S7, S8

Temperature sensor °C S9, S10, S11

Fig. 6 Top view of the pile
head beam showing the
positions of the selected
measuring unit and sensors
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4.3 Data Preparation and Determination of the Machine
Learning Algorithm Parameters

Prior to training the ANN, the Pearson correlation coefficients, as shown in Fig. 7,
are calculated to unveil correlations between sensor data, in particular between the
temperature sensors and the strain gauges on the steel reinforcement. Not all sensor
data in the data acquisition unit is correlated. If sufficient training data is available,
a lack of correlation in the training data between the input layer and the output layer
does not degrade the precision of the ANN. However, when having limited training
data, only correlated sensor data should be used.

Before training, the sensor data serving as input to the ANN (i.e., sensor data from
sensors S2–S11) is normalized because the magnitude of the values of the sensor
data is different from sensor to sensor due to the different types (e.g., temperature
values are much higher than strain values). The ANN topology as well as the neuron
activation functions are defined through trial-and-error, as listed in Table 3. The input
layer of the ANN consists of ten neurons, representing data points at time step t j for
sensors S2–S11. The output layer of the ANN has one neuron, which yields virtual
data at time step t j for sensor S1. The activation function selected for the input layer
and the hidden layers is the rectified linear unit (ReLU). For the output layer, the
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linear activation function is used. Each ANN is trained in 15 “epochs” (complete
training cycles using the entire training data set), with a “batch size” (number of
data points propagated through the ANN before updating the weights) of 32 and the
“Adam” gradient-descent optimization algorithm for updating the weights [44].

For training the CNN for fault identification, sensor data from one year is split into
one-day-sensor data sets (each containing 144 data points). Instances of each fault
type, following the equations of the fault types from Sect. 2, are simulated and
introduced (with variable magnitude) in the middle of the signal and transformed
through wavelet transform as presented in Sect. 2. In this work, the classicalMexican
hat wavelet, which is the second derivative of a Gaussian function, has been used:

ψ(t) = 2

π
1
4

√
3σ

(
t2

σ 2
− 1

)
e− t2

2σ2 (6)
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Table 3 ANN and CNN topology for validation

ANN CNN

Input layer 10 neurons, ReLU activation One image (39 × 144), ReLU activation

Hidden layer Layer 1: 32 neurons, ReLU activation
Layer 2: 64 neurons, ReLU activation
Layer 3: 256 neurons, ReLU activation

Layer 1 (Convolution): 16 filters, 5 × 5
kernel size, ReLU activation
Layer 2 (Pooling): 2 × 2 pool size, 1 ×
1 strides
Layer 3 (Convolution): 32 filters, 3 × 3
kernel size, ReLU activation
Layer 4 (Pooling): 2 × 2 pool size, 2 ×
2 strides
Layer 5 (Convolution): 256 filters, 5 ×
5 kernel size, ReLU activation
Layer 6 (Pooling): 2 × 2 pool size, 2 ×
2 strides
Layer 7 (Convolution): 64 filters, 3 × 3
kernel size, ReLU activation
Layer 8 (Pooling): 2 × 2 pool size, 2 ×
2 strides, dropout = 0.2%
Layer 9 (Flattening)

Output layer One neuron, linear activation Six neurons, Softmax activation, L2
quadratic regularizer = 0.01

Epochs 15 20

Optimizer Adam optimizer Adam optimizer

Batch size 32 32

setting parameter σ = 40. Exemplarily, a one-day sensor data set used for training
the CNN is presented in Fig. 8a. The strain curve of the one-day-sensor data set
exhibits fluctuations due to the changes in ambient temperature.

Bored pile

Pile
S1

S5

S3

S7

S4 S8S2 S6

S9-11

Data acquisition unit

Top view pile head beam

Fig. 8 a Example sensor data of sensor S1 and b corresponding wavelet transforms
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Each input for the CNN in the training process is one 2D image of wavelet-
transformed one-day sensor data of faulty signals, as exemplarily shown in Fig. 8b.
In total, a number of n = 5000 training images per fault type are fed to the CNN.
The hyperparameters and properties of the CNN, selected through trial-and-error,
are listed in Table 3, namely the network topology (the number of neurons per layer)
and the neuron behavior (the activation functions). The ReLU activation function is
used for the input and intermediate layers; while for the output layer, the “softmax”
activation function is selected. “Pool size” refers to the factor by which pooling
layers reduce the feature map, and “strides” represent the frame size with which the
filters of convolution layers “convolve” around their input. Finally, “dropout” is a
probability value below which neurons of a layer are ignored (“dropped”).

It should be noted that since the ANN is able to adapt to the condition of
the monitored structure, the ANN properties are case-specifically defined for the
validation tests presented herein, i.e., the ANN properties depend on the char-
acteristics of the monitored structure and on the SHM system setup. The CNN,
however, due to identifying artificial faults within a wide range of fault magnitudes
is measurement-independent.

4.4 Validation Tests and Results

For the validation tests, the fault types previously mentioned (bias, drift, gain, preci-
sion degradation, and complete failure) are simulated and injected into the sensor
data of sensor S1. Faulty data is characterized by function f̃ defined by the faults
compromising non-faulty data f . Tests are performed by varying the magnitude of
the faults and observing the change in the coefficient of determination. The results
of the ANN performance with increasing fault magnitudes are shown in Table 4. The
ANN for sensor S1 is trained with n = 20,000 data points as training data. In the
testing phase, using a testing set of n = 2000 data points, the high precision of the
training is showcased through the coefficient of determination equal to R2 = 0.992.
The magnitude of sensor faults b is based on the mean value x̄ of the data set to be
tested. Since the training precision of the ANN is high, the threshold for indicating
a fault is accordingly set high to a = 0.98.

Furthermore, tests have been performed to identify above which percentage of a
faulty signal the ANN is capable of detecting faults. Here, three percentage levels
of faulty data are considered, 1%, 3%, and 5%. For all fault types, except drift, it is
possible to detect the fault within under 1% of faulty data. Since drift requires time
to fully manifest, detecting drift with 5% of faulty data is not possible. With 30% of
faulty data in the sensor data, a drift is detectable (marked with * in Table 5).

For validating the CNN, a “confusion matrix” is calculated, as presented in Table
6. The confusion matrix presents the classification outputs of the CNN for the test
data. The CNN classifies correctly most of the fault types, achieving an accuracy of
99.39%. Furthermore, Table 7 presents the evaluation of the CNN during testing. For
each fault type, precision, recall, and F1-score are presented. Precision represents the
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Table 4 Comparison results
of the validation examples of
the sensor faults

Fault type Fault parameter Comparison result R2

Non-faulty f (t) 0.992

Bias
f̃ = f (t) + b

b = 0.01x 0.856

b = 0.02x 0.618

b = 0.05x 0.085

b = 0.10x −0.323

Gain
f̃ = b · f (t)

b = 1.01x 0.851

b = 1.05x 0.072

b = 1.10x −0.333

Drift
f̃ = f (t) + b · t

b = 0.01x 0.938

b = 0.02x 0.805

b = 0.05x 0.404

b = 0.10x 0.030

Precision degradation
(PD)

f̃ = f (t) + w(t)

σ 2 = 0.02 0.473

σ 2 = 0.05 0.125

σ 2 = 0.1 0.037

Complete failure

(a) Noise f̃ = w(t) σ 2 = 0.1 −1.066

(b) Constant f̃ = b b = 0x −1.087

Table 5 Prediction results of
the ANN depending on
percentage of faulty data

1% faulty data
(*10%)

3% faulty data
(*30%)

5% faulty data
(*50%)

Bias (b =
0.01)

R2 = 0.625 R2 = 0.442 R2 = 0.383

Drift (b =
0.1)*

R2* = 0.973 R2* = 0.818 R2* = 0.608

Gain (b = 1.1) R2 = 0.617 R2 = 0.434 R2 = 0.375

PD (σ 2 = 0.1) R2 = 0.557 R2 = 0.321 R2 = 0.232

Complete
failure

(a) Noise (σ 2

= 0.1)
R2 = −0.036 R2 = −0.063 R2 = −0.088

(b) Constant
(b = 0)

R2 = −0.031 R2 = −0.064 R2 = −0.089

ratio between correctly predicted fault types and the total predictions of the fault type.
Recall represents the ratio between correctly predicted fault types and the actual total
observations of the fault type. Finally, the F1-score represents the weighted average
of precision and recall. For example, the bias fault has 394 correctly predicted fault
types, eight incorrectly predicted fault types as drift, and one observation incorrectly
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Table 6 Confusion matrix of the CNN

Bias Gain Drift PD CF a CF b

Bias 394 0 8 0 0 0

Gain 0 383 0 0 0 0

Drift 0 0 371 0 0 4

PD 0 0 0 369 1 0

CF a 0 0 0 0 403 0

CF b 1 0 0 0 0 376

Table 7 Evaluation of the
CNN during testing

Fault type Precision (%) Recall (%) F1-score (%)

Bias 99.74 98.00 98.86

Drift 97.89 98.93 98.41

Gain 100.00 100.00 100.00

PD 100.00 99.73 99.86

CF a 99.75 100.00 99.87

CF b 98.94 99.73 99.33

classified as bias. Therefore, bias has a precision of 99.74%, a recall of 98.00%, and
a F1-score of 98.86%. It can be observed that the evaluation of CNN gives results
close to 100% in all scores, thus denoting reliable results.

5 Summary and conclusions

Reliable operation of SHM systems is of increasing importance, as sensor faults
may compromise the quality of monitoring. To ensure reliable operation of SHM
systems, this chapter has proposed a novel approach toward autonomous FD using
signal processing and ML techniques.

An ML regression algorithm has been proposed for fault detection and isola-
tion that uses structural response data from correlated sensors of SHM systems as
input and predicts virtual sensor data. In the case of discrepancies between virtual
and actual sensor data, a sensor alert is issued, and fault identification and fault
accommodation are initiated. Fault accommodation has been performed using the
virtual sensor data of the ML regression algorithm, providing reliable results for the
sensor failure duration. Through wavelet transform, as a signal processing technique,
patterns indicative of sensor faults has been analyzed. To identify the sensor fault
types autonomously, an ML classification algorithm has been proposed that uses
faulty sensor data, analyzed with wavelet transform, as input and classifies the corre-
sponding sensor fault type. Validation tests of the FD approach have been conducted
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using an ANN as ML regression algorithm and a CNN as ML classification algo-
rithm. The validation tests have been performed using real-world data from a SHM
system in operation on a railway bridge. The results have demonstrated the ability
of the ANN to predict virtual sensor data and the ability of the CNN to identify
(classify) sensor faults correctly.

In summary, the FD approach proposed in this chapter enables autonomous sensor
FD in SHMsystems by performing fault detection, fault isolation, fault identification,
and fault accommodation, ensuring reliable operation of sensors in SHM systems.
Further research will focus on embedding the FD approach into sensor nodes of
wireless SHM systems for decentralized FD.
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A Self-adaptive Hybrid
Model/data-Driven Approach to SHM
Based on Model Order Reduction
and Deep Learning

Luca Rosafalco, Matteo Torzoni, Andrea Manzoni, Stefano Mariani,
and Alberto Corigliano

Abstract Aging of structures and infrastructures urges new approaches to ensure
higher safety levels without service interruptions. Structural health monitoring
(SHM) aims to cope with this need by processing the data continuously acquired
by pervasive sensor networks, handled as vibration recordings. Damage diagnosis
of a structure consists of detecting, localizing, and quantifying any relevant state of
damage. Deep learning (DL) can provide an effective framework for data processing,
regression, and classification tasks used for the aforementioned damage diagnosis
purposes. Within this framework, we propose an approach that exploits a deep con-
volutional neural network (NN) architecture. The training of the NN is carried out by
exploiting a dataset, numerically built through a physics-based model of the struc-
ture to be monitored. Parametric model order reduction (MOR) techniques are then
exploited to reduce the computational burden related to the dataset construction.
Within the proposed approach, whenever a damage state is detected, the physical
model of the structure is adaptively updated, and the dataset is enriched to retrain
the NN, allowing for the previously detected damage state as the new baseline.
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1 Introduction

Civil infrastructures are crucial in our digital and smart society. However, they are
exposed to aging and to a progressive accumulation of damage, also caused by
exceptional loading conditions. As a prompt detection of structural damage can
prevent catastrophic events, SHM is becoming more and more an active field of
research [8]. Global damage detection methods are looked for, to be robust against
operational (e.g., in terms of the load amplitude) and environmental (e.g., due to
varying thermal and hygrometric conditions) variability.

Customary vibration-based monitoring techniques rely on the fact that modal
parameters, and therefore, the overall dynamic response of a structure depends on
its mass and stiffness properties. Any change in their values due to the inception of
a structural damage accordingly affects the dynamic response of the structure [15].
Within such a perspective, through the SHM system the observations in time (e.g.,
acceleration recordings shaped as multivariate time series) recorded by a sensor net-
work are analyzed to extract some damage-sensitive features able to discriminate
virgin and damaged states. Signal processing is to be carried out via effective pro-
cedures, able to handle the raw vibration signals, and retrieve the aforementioned
damage-sensitive features (from now on simply referred to as features), to allow the
SHM procedure to detect damage.

Local damage detection methods, based on visual inspections or non-destructive
testings, are widespread in civil engineering; however, they require some a-priori
knowledge on the position of damage, so a proper expertise [12]. Thanks to the recent
advancements in sensor technology, global monitoring techniques based on contin-
uous vibration measurements are now more often used. Among the vibration-based
techniques, two main approaches can be distinguished: the model-based approach
and the data-driven approach. Within a model-based approach, the discrepancy
between data and model output is minimized via a model update procedure, e.g., by
means of Kalman filters [9, 10]. Exploiting the measurements from real structures,
damage localization, and quantification can be achieved. However, a model-based
approach may be affected in its accuracy and efficacy when a large amount of noisy
data has to be processed. Moreover, the associated inverse problem to be solved for
damage identification is usually ill-posed. On the other hand, a data-driven approach
[11] does not typically rely upon any physics-informed model. Because of its ability
to also handle big data acquired on-the-fly through deployed sensors, this approach is
increasingly attracting interest. Within a standard implementation, damage-sensitive
features are extracted from raw vibration signals by exploiting their statistical char-
acteristics. According to the statistical pattern recognition paradigm [12], the SHM
task can be arranged into four sequential steps: operational evaluation, data acquisi-
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tion, features extraction, and statistical modeling for features discrimination. Since
civil structures are always subject to varying operational and environmental condi-
tions, potentially hampering the monitoring task, the SHM strategy should account
for such variability within the dataset or exploit data normalization techniques [22]
to distinguish the effects of the aforementioned variability from those due to damage.

The pattern recognition paradigm is well suited for implementation through
machine learning algorithms. Indeed, machine learning allows to statistically handle
data by learning the functional link between the damage-sensitive features and the
structural states. Recently, DL algorithms have been allowed to further empower the
approach; thanks to DL, it is possible to accomplish features extraction and discrim-
ination in one single shot. DL algorithms can deal with high dimensional data to
automatically catch temporal and spatial correlations, within and across time record-
ings. This allows to extract and exploit damage-sensitive features in an end-to-end
efficient way.

According to Rytter [21], damage identification consists of four levels of increas-
ing complexity: damage detection, localization, quantification, and prognosis. Data-
driven approaches can work within a supervised [25, 27] or unsupervised [14, 17]
setting. Unsupervised methods exploit unlabeled data relevant to a reference condi-
tion, often the damage-free baseline, to test the current state and basically accomplish
early damagedetection.Vice versa, supervisedmethods exploit labeled data related to
both undamaged anddamage scenarios, to bepossibly undergoneby the structure, and
are therefore well suited to accomplish also damage localization and quantification.

When dealing with civil structures, data related to damage conditions are often
unavailable. To solve this drawback, a commonly adopted paradigm is the simulation-
based classification [1, 20, 24], which aims to fuse the model-based and the data-
driven approaches into a hybrid one. With this novel paradigm, real data are replaced
by the output of numerical experiments where the effect of damage on the structural
response is simulated through a physics-based model of the structure. Accordingly,
the inception and subsequent growth of damage can be framed in a way similar to
model update, wherein the tuning/training of the model itself is not carried out to
allow for epistemic uncertainties, but to track the time-varying health of the structure.
In this work, we propose a NN-based, mixed offline-online SHM procedure aiming
to first detect and localize damage, and then quantify it in a dynamic environment,
so as to promptly react in case of detection of any variation of the structural state.

The remainder of this chapter is organized as follows. In Sect. 2, the proposed
procedure is detailed to highlight the features of the mixed offline–online strategy,
together with the potentiality offered by transfer learning (TL). In Sect. 3, dataset
assembling is addressed together with the adopted MOR strategy. In Sect. 4, two
NN architectures are discussed for, respectively, simultaneous damage detection and
localization, and damage quantification. The capability of the proposed method to
track damage evolution is assessed in Sect. 5. In Sect. 6, conclusions on the present
work and future developments are finally discussed.



168 L. Rosafalco et al.

2 Monitoring Procedure

We propose a supervised data-driven SHM approach, tailored to provide outcomes
regarding damage detection, localization, and also quantification. The procedure is
routed by a damage localization tool followed by a damage quantification tool and
is able to self-adapt under time-evolving damage states.

The damage detection/localization algorithm relies on a deepNN-based classifica-
tionmodel [18], throughwhich damage, if present, is localized within a classification
scheme. Structural damage patterns are modeled as local stiffness reductions; hence,
the initial baseline is allowed for an additional (damage-free) structural configura-
tion. Varying operational and environmental conditions are accounted for through a
suitable parametrization of the structural model [23]. Vibration signals mimicking
the recordings of a sensor network are obtained from the numerical simulations as
time histories of nodal displacements and/or accelerations. These data are exploited
to train the NN offline, to link any response with the corresponding damage condition
(considered as a categorical label). A second deep NN is used to perform a regres-
sion on the damage level, quantified in terms of stiffness reduction, to the associated
damage condition. The same data are used to detect and localize the damage and
therefore to perform the training of this further NN.

The entire procedure consists of offline and online stages, as reported in Fig. 1. In
the preliminary offline phase, the pseudo-experimental dataset is generated by col-
lecting synthetic vibration recordings under different combinations of operational
and damage conditions. Each damage condition is characterized by a magnitude
assigned within a pre-defined range, held constant within the observation time inter-
val; accordingly, damage growth does not need to be numerically modeled. The two
NNs are then trained to handle both the damage classification and quantification
tasks. In the online phase, every time new measurements are acquired, they are first
processed by the classification model, which provides the localization of damage, if
any, and gives a label to the current structural state. If a (new) damage is identified,
the monitoring system generates a first warning and the measurements are passed
onto the regression model, which aims at estimating on-the-fly the associated stiff-
ness reduction. The procedure accordingly self-adapts on the basis of the identified
damage condition, keeping in mind that only low damage evolution rates are of inter-
est. The baseline model is finally updated based on the identified damage state, and
the procedure is restarted to process the new incoming measurements.

The computational costs associated with the proposed procedure are mainly
related to the simulations to obtain the pseudo-experimental dataset, and to the train-
ing of theNNs. The simulations required for the datasetmust ensure a fine exploration
of the parametric space of the model input, and a good trade-off between the amount
of training data and NNs parameters to be tuned, to avoid overfitting of the same data.
By relying upon a finite element (FE) model of the system, the reduced basis method
[16] is adopted as a parametric MOR strategy. The high-fidelity full-order model
(FOM) is thus replaced by a less resource-demanding, yet accurate reduced-order
model (ROM) to speedup the dataset construction.
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Fig. 1 Methodology flowchart

The two NNs share the same fully convolutional network (FCN) architecture,
already successfully adopted, e.g., in [18, 20, 25]. This class of NNs has been
reported to be powerful in detecting hierarchical patterns in the data, being also
computationally efficient thanks to their shared-weights architecture. By adopting
the same architecture for the classification and the regression tasks, TL [4, 7, 13] can
be exploited too. TL takes advantage of the knowledge gained during the training
of a NN, to train another NN aimed at solving a different task. The present scenario
is known as inductive transfer learning, which assumes that labeled data for related
but different tasks are available. This framework allows reducing both the training
time and the amount of training data, without compromising the performance of the
procedure.

3 Numerical Modeling

In the following, the procedure to build a FOM of civil structures or buildings is first
described; then, we specify the features of the dataset used to train the NNs; finally,
we discuss how to speedup the dataset construction, exploiting a MOR technique.
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3.1 Full-Order Model

Resting on a linearized kinematics assumption, the monitored structure is modeled
as a continuum and discretized in space via a FE triangulation. The semi-discretized
form of the elasto-dynamic problem then reads:

⎧
⎪⎨

⎪⎩

Mv̈(t) + K(g, δ)v(t) = f(η) , t ∈ (0,Tf )

v(0) = v0
v̇(0) = v̇0

(1)

where t ∈ (0,Tf ) denotes time; v = v(t) ∈ R
M is the nodal displacement vector, with

M denoting the number of degrees of freedom (dofs); v̈ is the vector of nodal accel-
erations; M ∈ R

M×M is the mass matrix; K(g, δ) ∈ R
M×M is the stiffness matrix,

with g and δ the parameters providing its dependence on damage as specified below;
f(η) ∈ R

M is the vector of external loads; η is the vector of parameters ruling the
operational conditions; v0 and v̇0 are the initial conditions, in terms of nodal dis-
placements and velocities at t = 0. Due to the small relevance of damping in the
identification of continuously excited systems [6], dissipation effects have been dis-
regarded.

Damage is modeled as a local stiffness reduction, assumed frozen within the time
interval (0,Tf ) of interest. This assumption involves a timescale separation between
damage growth and health assessment; the considered scenarios are thus character-
ized by a low damage evolution rate and allow keeping the linear structural response
valid. According with the classification framework, only a finite set of damage states
are considered: those have to be preliminary determined in order to allow covering
relevant structural failure modes. For the problem at hand, G damage conditions
g ∈ {1, . . . ,G} have been then accounted for, in addition to the undamaged one
g = 0. Each condition is characterized by a damage in the corresponding subdomain
�g , wherein the stiffness reduction has a time-invariant magnitude taking value in a
specified range for δ.

3.2 Dataset Assembly

Synthetic vibration recordings can be built starting from the dynamic response of the
model through nodal displacements mimicking the SHM sensing network output.
Regarding the optimal location of sensors, even in the present pseudo-experimental
setting, to understand how tomaximize the sensitivity ofmeasurements to the damage
scenarios to be detected, readers are referred to [5]. Themonitoring system is assumed
to consist of Nu sensors recording the structural displacements un(t), n = 1, . . . ,Nu.
Each recording un(t) consists on its own of LM data points, which are gathered
in the matrix U(η, g, δ) = [u1, . . . , uNu ] ∈ R

LM ×Nu . Next, data are corrupted with a
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Gaussian noise featuring a specific signal-to-noise ratio, in order to mimic the sensor
self-noise that inevitably affects the experimental data.

The dataset, denoted by D, is built by assembling I instances according to:

D =
⎧
⎨

⎩

U1(η1, g1, δ1) , UI (ηI , gI , δI )
g1 , . . . gI
δ1 , δI

⎫
⎬

⎭
. (2)

Each instance in D is composed of recordings Ui(ηi, gi, δi), i = 1, . . . , I , alongside
the associated labels gi and δi, which are the corresponding damage condition and
damage level. During the training of the NNs, Itr instances are effectively employed
for the learning process, while Ival = I − Itr instances are used to validate it.

The parametric space, namely the input space for the model, is defined by com-
bining {η, g, δ}. Each entry is characterized by a uniform probability distribution
function, being continuous for η and δ, and discrete for g. The Latin hypercube sam-
pling rule is adopted to efficiently explore the parametric space by means of the I
instances. In the present work, I = 10, 000 instances, with a ratio 80 : 20 between Itr
and Ival , have been collected in order to train and validate the two NNs. To simplify
the notation, the index i will be dropped in the following.

3.3 Parametric Model Order Reduction for Dataset
Generation

To speedup the generation ofD, the number of dofs in Eq. (1) can be reduced through
MOR techniques for parametrized problems [1, 20]. The reduced basis method is
here adopted to also control the approximation error.

The FOM solution v = v(t, η, g, δ) is approximated as v ≈ WvR, by linearly
combining W � M basis functions ww ∈ R

M , w = 1, . . . ,W collected into W =
[w1, . . . , wW ] ∈ R

M×W , where W has to be set to attain the target accuracy. vR =
vR(t, η, g, δ) thus becomes the vector gathering the ROM dofs.

To build W, the proper orthogonal decomposition (POD), see, e.g., [16], is
adopted. POD provides the projection bases via a singular value decomposition of
the snapshot matrix S = [v1, . . . , vS ] ∈ R

M×S , collecting S snapshots of the FOM,
according to:

S = P�Z�, (3)

where P = [p1, . . . , pM ] ∈ R
M×M is an orthogonal matrix, whose columns are the

left singular vectors of S; � ∈ R
M×S is a pseudo-diagonal matrix collecting the

singular values of S, arranged so that σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0, r = min (S,M ) being
the rank of S; Z = [z1, . . . , zS ] ∈ R

S×S is an orthogonal matrix, whose columns are
the right singular vectors of S.
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By retaining thefirstW ≤ r left singular vectors, thePODbasesW = [p1, . . . , pW ]
are obtained. The dimension W can be set by prescribing the reconstruction error in
reducing the order of the problem from M to W , to be smaller than a tolerance ε

according to:
∑W

l=1(σl)
2

∑r
l=1(σl)2

≥ ε. (4)

Through a Galerkin projection of the FOM onto the space spanned by W, we
obtain: ⎧

⎪⎨

⎪⎩

MRv̈R(t) + KR(g, δ)vR(t) = fR(η) , t ∈ (0,Tf )

vR(0) = W�v0

v̇R(0) = W�v̇0

(5)

where

MR ≡ W�MW , KR(g, δ) ≡ W�K(g, δ)W, fR(η) ≡ W�f(η). (6)

Once integrated in time, the reduced order solution VR = [vR
1 , . . . , vR

LM
] ∈ R

W×LM ,
can be back-projected to recover the FOM solution at each time instant.

4 Deep Learning

In this section, we aim at detailing the twoNNs used to perform the damage detection
and localization first, and the damage quantification next.We describe howTL can be
exploited to speedup and also improve the training of the NN adopted in the second
stage of the procedure.

The two NNs aim at approximating a target function, in our case linked to the
structural response to the external loading, respectively, mapping U onto the discrete
set g of damage patterns for the joint detection and localization task (working as a
classificationmodel), and onto the damage level δ for the quantification task (working
as a regression model).

4.1 Damage Detection and Localization

The supervised training of a NN concretely consists of a tuning of the network
parameters, usually performedvia gradient-descent algorithms in an iterativemanner,
tominimize the discrepancy between the network output and the datasetD, processed
a certain number of times or epochs. At each iteration, B instances, called mini-
batches, are simultaneously processed; in the present analysis, we have assumed
B = 32.
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Fig. 2 FCN classification model architecture

As anticipated, training aims at minimizing a so-called loss function, to tune the
weights that rule the (nonlinear) mappings performed by the NN. For the classifica-
tion model, the loss function Cc that quantifies the classification error is given by the
cross-entropy:

Cc (�,�) = − 1

B

B∑

b=1

G∑

g=0

ϕbglog
(
ψbg

)
(7)

between ϕbg ∈ {0, 1}, stating if the g-th damage class has to be associated with the b-
th instanceUb of the processedmini-batch, andψbg ∈ [0, 1], providing the confidence
by which the b-th instance Ub is associated with g. The values of ϕbg and ψg are
collected in the matrices � ∈ {0, 1}B×(G+1) and � ∈ [0, 1]B×(G+1), respectively.

In Fig. 2, a schematic representation of the classification model is reported. To
compute �, B input instances are processed by three convolutional units (CUs),
featuring, respectively, N1 = 32, N2 = 64 and N3 = 32 kernel filters, followed by a
global average pooling (GAP) layer and by a linear projection whose output is the
score matrix � = (ϑ0, . . . ,ϑG) ∈ R

B×(G+1). � is next handled as the argument of
a softmax function in the following form:

ψbg = eϑbg

∑G
g=0 e

ϑbg
(8)

to finally obtain the matrix� associated with the input mini-batch. Each CU consists
of a convolutional layer L, a rectified linear unit (ReLU) activation layer, and batch
normalization (BN) layer. Readers are referred to, e.g., [18, 20, 25], for further details
on how CUs and GAP perform signal processing and feature extraction.
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Fig. 3 FCN regressor architecture

4.2 Damage Quantification

Toperformdamage quantification, the FCNarchitecture shown in Fig. 3 is employed.
Its part carrying out features extraction is identical to the one employed for classifi-
cation; the most important difference is represented by the linear projection operated
after theGAP,whose outcome is the predicted damage level δr = [δr1, . . . , δrB] ∈ R

B

for the processed mini-batch. The adopted loss function Cr , according to the discus-
sion in [19] regarding regression, is the mean square error (mse), so that:

Cr (δr, δ) = 1

B

B∑

b=1

(δrb − δb)
2 , (9)

where δ = [δ1, . . . , δB] ∈ R
B are the target damage levels associated with the pro-

cessed mini-batch instances.
It is to note that the information regarding damage localization is not allowed for

by the regression model. Running several tests, we have figured out that this choice
has no impact on the procedure performance in the present case; anyhow, we cannot
exclude that, for more complex applications, allowing for the outcome of damage
localization as a further input to the damage quantification stage may be beneficial.



A Self-adaptive Hybrid Model/Data-Driven Approach … 175

4.3 Transfer Learning

The weights of the regression model can be randomly initialized or, alternatively,
their initialization can account for the weights of the trained classification model. In
thisway, the regressionmodel can exploit the signal processing and feature extraction
capacity of the classification model. Indeed, features are synthetic descriptions of
data obtained for a specific task, but they may be also adopted for other tasks if there
is redundancy across the learnt and new tasks, see [26].

Two benefits are expected by the use of TL: speeding up of training; reduction
of the data required for training. All these outcomes will be investigated next with
reference to a specific case test.

5 Results

To assess the capability and the performance of the proposed SHM procedure, we
apply here our strategy to the case study as shown in Fig. 4 and referred to a two-
dimensional portal frame.

The adopted FEmesh shown in Fig. 4a contains 1884 dofs. The frame is perfectly
clamped at the bases and has a thickness of 0.1 m. It is assumed to be made of con-
crete, whose mechanical properties are: Young’s modulus E = 30 GPa, Poisson’s
ratio ν = 0.2, and density ρ = 2500 kg/m3. The structure is excited by seven differ-
ent loading conditions C ∈ {1, . . . , 7}, obtained by combining the three distributed
loads qk , k = 1, 2, 3 as shown in Fig. 4b. Each load qk varies in time according to
qk(t) = Qk sin (2π fk t), where Qk and fk are the relevant amplitude and frequency
that vary in the ranges [10−50 kPa] and [50−95 Hz], respectively. These parame-
ters, which embody the variability of the operational conditions, are collected in the
vector η = {C,Q1,Q2,Q3, f1, f2, f3}�.

The G = 4 damageable regions �g are shaded in Fig. 4b. The considered dam-
age scenarios are built by assuming that stiffness reduction can vary in each domain
within the range δ ∈ [10−25%]. In the same Fig. 4b, also the Nu = 7 sensed dis-
placements un(t) are shown. The sensors are scheduled to gather the measurements
with a sampling frequency of 200 Hz; this allows avoiding aliasing regarding the first
7 vibration modes of the structure. The signal-to-noise ratio of such measurements
is assumed to be equal to 80.

Y = 400 samples of {η, g, δ} have been adopted to assemble S; for each sample,
the solutions at X = 121 time instants have been collected. Therefore, a total of S =
X × Y = 48,400 snapshots are handled. By prescribing an error tolerance ε = 10−3,
W = 70 POD bases get selected, to replace the original 1884 dofs of the FOM: the
first ten of such bases are sketched in Fig. 5.

As far as damage detection and localization are concerned, the evolution of the loss
function Cc and the prediction accuracy during the training of the NN are reported
in Fig. 6 against the number of epochs, both for training and validation. The training
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is stopped either when a maximum number of epochs has been attained, or when the
loss Cc does not decrease during 15 epochs in a row. The loss function plot shows
that the minimization of Cc is successfully carried out; this assures the increasing
accuracy of classification, which represents the percentage of instances for which
the damage is correctly detected and localized. The training has been early stopped
and overfitting is shown to be avoided, since the outcomes regarding the training and
the validation datasets are very similar. Once trained, the classification model has
been tested by employing another dataset collecting pseudo-experimental instances
simulated through the FOM. The relevant classification outcome is reported in the
confusion matrix of Fig. 7, which shows an overall accuracy of around 99%, with
just a few misclassification errors. The mentioned misclassification errors affect the
damage localization task, while damage detection, to distinguish the undamaged
state g = 0 from all the other scenarios, is perfectly accomplished.

As far as damage quantification is instead concerned, Fig. 8 provides the evolution
of the loss Cr against the training epochs. The training has been early stopped after
5 epochs without a decrease of the loss on the validation set. The plot highlights a
consistent reduction of such loss, especially in the first stage of training. By com-
paring the evolutions relevant to the training and validation sets, it can be stated that
overfitting is avoided again.

The trained regression model has been next adopted to perform damage quantifi-
cation on a test set provided as before by the FOM. The relevant outcomes are shown
in Fig. 9, in terms of a parity plot to compare the NN predictions (reported along
the vertical axis) and the target damage levels (reported instead along the horizontal
axis), and in terms of the corresponding prediction errors. The reported values of the
damage level are distributed in a rather narrow range around the line bisecting the
quadrant, to testify the NN generalization capacity for unseen instances generated
by the FOM. In the bar chart, the counts are proportional to the number of instances
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Fig. 4 Portal frame. a Geometry, FE discretization and applied loads; b subdomains {�1, . . . , �4}
where damage may occur, and sensed displacement components.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5 Portal frame—first ten POD bases

Fig. 6 Evolution across
epochs a of the loss Cc and b
of the global accuracy of the
classification model

(a)

(b)
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Fig. 7 Confusion matrix
relevant to the classification
model testing
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epochs of the loss Cr of the
regression model

for which a certain prediction error has been observed a-posteriori; a Gaussian-like
distribution of the mentioned prediction error can be seen. This outcome is actually
connected to the definition of Cr: when the mse is employed as the loss function,
the regression model tries to predict the expected value E [δb|Ub] of the sequence δb,
with b = 1, . . . ,B, conditioned on Ub, see [3]; due to the central limit theorem, the
distribution asymptotically tends to a Gaussian one if the number of samples grows
to infinity. Accordingly, the prediction errors tend to inherit a Gaussian distribution
too.

Regarding the exploitation of TL, from the results reported in Fig. 10 it is possible
to appreciate the induced speedup of the learning process: the number of training
epochs turns out to be more than halved than that necessary for the case without
TL, as shown in Fig. 8. The reduced number of epochs is obtained together with a
reduction of the training time, as reported in Fig. 11. In the same plot, the training
time required when the training dataset is halved is also reported; by halving the
dimension of D, we aimed at assessing if TL may enable the use of a smaller dataset,
assuring the same or similar performances of the NN. TL is expected to enhance the
NN performance because it eases the training procedure, via a better initialization
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(a) (b)

Fig. 9 Regression outcomes in terms of damage level: a Parity plot comparing the predicted values
to the ground truth ones; b histogram of the relevant prediction errors

Fig. 10 Evolution of the loss
Cr (or mse) of the regression
model when TL is exploited

of the weights, and therefore allows obtaining optimal results even if D is narrowed.
The performance improvement can be qualitatively assessed through Fig. 12, and
specifically comparing the prediction error distribution with that reported in Fig. 9:
the error results to be smaller if TL is employed.

A quantitative assessment of the effect of TL on the regression performance is
reported in Table1, by adopting the mean absolute error (mae) on the test set as the
evaluation metric. TL leads to an improvement of the regression performance when
the entire datasetD is considered. The same improvement has not been obtainedwhen
the dimension of D has been halved, as an almost identical mae value is obtained for
the analyses with and without TL. On the other hand, in all the cases TL provides
a considerable speedup of training, with a reduction of the number of epochs from
46 to 21 for the entire dataset, and from 79 to 25 for the halved one. In this table,
the mean μ and standard deviation ς of the prediction error, as evaluated on the
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Fig. 11 Comparison among the training times of the three adopted models, at varying number of
instances in the processed dataset

(a) (b)

Fig. 12 Regression outcomes when TL is exploited, in terms of damage level: a Parity plot com-
paring the predicted values to the ground truth ones; b histogram of the relevant prediction errors

test set, are also reported. Having adopted the mse as loss function, these statistic
features are employed to assess the performance of the regression model, as they
fully characterize a Gaussian distribution. The error mean μ shows a small bias in
the prediction of δ, probably because the solution has got entrapped into a local
minimum during the optimization procedure. The greater accuracy of the regression
model trained by exploiting TL is highlighted by the smaller values of ς in both the
analyses.

The proposed classification and regression models are finally adopted to track
the evolution of the damage level δ, under the loading conditions detailed in Table2.
In the same Table, also the time-evolving value of δ to be identified on-the-fly is
reported. During the analysis, each time damage is detected and localized by the
classification model, and the regression model is plugged in to predict its magnitude.
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Table 1 Regression model: comparison of the performances if TL is exploited or not, and if dataset
is reduced in size, in terms of training time, generalization capability, and mean μ and standard
deviation ς of the prediction error

Model Dataset (%) Training
epochs

Mae (test set) μ ς

Regression 100 46 0.80 0.26 0.98

Regression 50 79 0.79 0.14 1.06

Regression (TL) 100 21 0.70 0.22 0.92

Regression (TL) 50 25 0.81 −0.27 1.02

Table 2 Data regarding the damage level and damage class, and output of the evolutionary clas-
sification model. The considered test case features: g = 1, Q1 = Q3 = 0, Q2 = 20 kPa, f2 = 60
Hz

Damage level (%) Output class Target class

5 0 1

6 0 1

7 0 1

8 0 1

9 1 1

10 1 1
.
.
.

.

.

.
.
.
.

25 1 1

At this point, the dataset D is updated by dropping the instances featuring a value
of δ in the domains where damage has been localized, smaller than the identified
one, and by adding new instances featuring a value of δ larger than or equal to the
previously mentioned one.Within the present approach, those instances are provided
by the FOM to keep the accuracy of the online identification task the highest possible
and avoid a bias in the estimations.

Regarding the time necessary to update the baseline, generate new data and re-
train the NNs every time damage grows, some results are provided next as obtained
with a laptop featuring an Intel Core i5 CPU @ 2.6GHz and 8 GB RAM. The
CPU time required by each ROM analysis is 0.2 s, and by each FOM analysis is
1.3 s, respectively. The duration of the subsequent training of the classifier amounts
to around 10min, while that of the regressor amounts to 4min if TL is exploited.
Overall, the update stage requires less than 1h of outage for the SHM procedure. If
the FOM analyses become too time-taking for baseline update to be handled close
to online, techniques for the dynamic update of the ROM bases may be exploited.
This duration can be obviously (by far) reduced if a more powerful computer is used
to run the procedure.
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Fig. 13 Regression outcome
in terms of step-wise damage
growth: comparison between
predicted evolution and
groud-truth data

As shown in Fig. 13, the proposed procedure is able to self-adapt and to track
damage evolution. For the sake of brevity, results are shown for this damage case
only, but the present framework can be successfully applied also to other cases
characterized by different damage patterns.

6 Conclusions

In this work, we have proposed a self-adaptive, evolutionary-like procedure to detect,
localize and quantify a growing damage in structural systems. According to a super-
vised learning strategy, a full-order numerical model is assumed to play the role of a
digital-twin of the structure, allowing to parametrize the loading conditions and the
damage state.

A dataset of pseudo-experimental vibration recordings, assumed to be sensed by
a monitoring system, is simulated via a reduced-order model built upon the full
order one through the reduced basis method. The dataset is used to train offline first
a NN-based classification model for damage detection and localization and then a
NN-based regression model for damage quantification. Transfer learning has been
exploited to improve and speedup the training of the regressionmodel, by allowing for
the tuned parameters of the NN obtained for the classification model. Once trained,
the two models have been adopted to track the evolution of damage in the monitored
structure, showing an extremely good capability to allow an online update of the
estimates while damage is growing.

In future activities, we aim to address the optimal placement of sensors in the
network, as studied, e.g., in [2, 5], since the relevant outcomes can positively affect
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the accuracy of the NN-based approach and allow reducing the amount of data
required to attain the sought accuracy. The environmental variability is going to be
also allowed for. The procedure will be then applied to real experimental settings.

Acknowledgements M. T. acknowledges the financial support by Politecnico di Milano through
the interdisciplinary Ph.D.Grant “Physics-informed deep learning for structural healthmonitoring.”
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Predictive Monitoring of Large-Scale
Engineering Assets Using Machine
Learning Techniques and
Reduced-Order Modeling

Caterina Bigoni, Mengwu Guo, and Jan S. Hesthaven

Abstract Structural health monitoring techniques aim at providing an automated
solution to the threat of unsurveilled aging of structures that can have tremendous
consequences in terms of fatalities, environmental pollution, and economic loss.
To assess the state of damage of a complex structure, this paper proposes to fully
characterize its behavior under multiple environmental and operational scenarios and
compare new sensormeasurementswith the baseline behavior. However, the repeated
simulations of a nonlinear, time-dependent structural model with high-dimensional
input parameters represent a severe computational bottleneck for large-scale engi-
neering assets. This chapter presents how to use efficient reduced-order modeling
techniques to mitigate the computational effort of many-query simulations without
jeopardizing the accuracy. To compare new sensor measurements with the natural
behavior of synthetic solutions, the proposed methodology uses hierarchical semi-
supervised learning algorithms on a small amount of extracted damage-sensitive
features, thus allowing one to assess the state of damage in real time. Using the inex-
pensive simulations, one can also optimally place sensors tomaximize the observabil-
ity of discriminant features. The all-round methodology is validated on a numerical
example.
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1 Introduction

Many existing private and public assets, such as civil engineering infrastructures,
buildings, or aircraft, require reliable damage detection techniques to be safely used,
especially during their inevitable aging. When monitoring a structure over its lifecy-
cle, its deterioration and damages represent a great concern and the early detection of
critical decay might prevent failures that can cause sudden shutdowns or even catas-
trophes with severe life-safety and economic repercussions [1]. To prevent these
critical failures from happening, techniques of structural health monitoring (SHM)
have been developed in recent studies with applications to civil and aerospace engi-
neering, as well as to the conservation of cultural heritage structures. SHM refers
to automated monitoring procedures that seek to provide reliable information on the
performance and integrity of a structure in real time. In the context of SHM, the
combination of sensor measurements, numerical models simulating the underlying
behavior of a structure of interest under different environmental and operational con-
ditions, and machine learning techniques has led to the design of structural digital
twins [2].

The focus of this work is on wave propagation approaches to data-driven, predic-
tive SHM, which aim to detect damages by examining the distortions in propagating
elastic waves as a result of reflections and amplitude attenuations when intersecting
the damage boundary. Featuring a data-driven nature, these approaches, sometimes
called simulation-based SHM [3–7], are decomposed into an offline phase and an
online phase. In the former, a database of synthetic signals is built to represent the
structural behavior under different conditions, while in the latter real experimen-
tal time signals, collected from sensors placed on a structure, are compared with
those simulated offline using a classifier that discriminates between damaged and
undamaged states.

Toward an efficient and robust scheme of data-driven predictive monitoring,
reduced-order modeling techniques are integrated into a wave propagation approach
with cutting-edge machine learning tools. The data-driven SHM setting corresponds
to a multiquery problem, where one has to solve high-dimensional, time-dependent,
parametric equations, which results in great demands for computational resources.
To overcome such a computational burden, model order reduction is employed to
project the original full-order system onto a reduced space with a significantly lower
dimensionality. In this way, a robust dataset of approximated sensor measurements
is generated. In SHM, the task of damage detection is typically reduced to a super-
vised learning process relying on a fully labeled dataset, obtained from both healthy
and damaged structures (either generated with computer-aided procedures or col-
lected experimentally). However, gathering an exhaustive collection of configuration
classes anticipating all types of damages is typically unrealistic and the number of
different classification labels may grow rapidly. Instead, this work relies on semi-
supervised learning techniques, also called one-class classification methods, which
learn the common features among labeled data belonging to the normal class in the
training phase. Unlabeled data from both classes are then used in the test phase to
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identify abnormal data which deviate from the normal mode. One-class algorithms
allow to locate the damage and estimate its severity by training a different model
for each sensor location. Finally, guided by an appropriate indicator of the damage
detection performance, a modified sparse Gaussian process method is applied to the
synthetic dataset of healthy configurations to systematically place a fixed number of
sensors on a structure of interest.

Following the introduction, a model problem for sensor measurements governed
by the acoustic-elastic equation is briefly reviewed in Sect. 2. Basic techniques of
reduced-order modeling, which can be used for the multiquery simulations in SHM,
are introduced in Sect. 3. A local semi-supervised method is used for automatic
anomaly detection in Sect. 4, and the variational sparse Gaussian process model is
utilized for optimal sensor placement in Sect. 5. In Sect. 6, the all-roundmethodology
is demonstrated by a numerical example. Finally, conclusions are drawn in Sect. 7.

2 A Model for Sensor Measurements

This section introduces the model problem for sensor measurements, including its
governing equations and parametric discrete formulations.

2.1 Governing Equation

Let� ⊂ R
d� be a polygonal physical domain with piece-wise smooth boundary ∂�,

where d� = 2, 3 is the spatial dimension, and let [0, T ], with T ∈ R+, be a suitable
time interval. Here, � represents a structure of interest and [0, T ] a suitable time
window to observe the response of a structure undergoing a predefined excitation (i.e.,
the effect of an active or passive source) through sensor measurements. Moreover,
let P ⊂ R

dμ be a suitable parameter domain, where dμ indicates the number of input
parameters required to describe the healthy variations that a structure may undergo
during its life time, and letμ = (μ1, . . . , μdμ

) be a parameter vector representing one
possible healthy variation of the environmental and operational conditions, i.e., μi

may relate to the material properties, the boundary conditions, the initial conditions,
or the source function for 1 ≤ i ≤ dμ.

Let u = u(x, t;μ) : � × [0, T ] × P → R
d� be a vector-valued displacement

field, solution of the acoustic-elastic equation equipped with suitable boundary and
initial conditions:

⎧
⎪⎨

⎪⎩

ρ(ü + ηu̇) − ∇ · σ = h(t;μ)b(x;μ) in �

u · n = 0, (σ · n) · τ = tN on ∂�

u|t=0= u0, u̇|t=0= v0 in �

, (1)
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where ü = ∂2u/∂t2 and u̇ = ∂u/∂t are the acceleration and velocity fields. Here,ρ is
the density coefficient, η is a dimensionless damping coefficient,
h : [0, T ] × P → R and b : � × P → R

d� are two source functions depending on
time and space, respectively, σ = σ (u;μ) is the stress tensor, n and τ are the outward
normal and tangential (unit) vectors to ∂�, respectively, tN = tN (x, t;μ) is the trac-
tion vector used in the definition of the free-slip boundary conditions, u0 = u0(x;μ)

and v0 = v0(x;μ) describe the initial displacement and velocity in space, respec-
tively.

The ultimate goal is to emulate the real sensor response atm given sensor locations
xi ∈ � for 1 ≤ i ≤ m. To do so, let � : Rd� × P → R

dg be an input–output function
and gi : [0, T ] × P → R

dg a (parametric) output of interest, i.e., an approximation
of the sensor response at time t and location xi :

gi (t;μ) = �(u(xi , t;μ);μ), 1 ≤ i ≤ m. (2)

Before proceeding with classic discretization techniques such as the finite ele-
ment method, consider the vector space V = {w ∈ [H 1(�)]d� : w · n = 0 on ∂�},
equipped with a suitable inner product 〈·, ·〉V and the corresponding induced norm
‖·‖V. Moreover, consider a parametrized linear form f : V × P → R where the
linearity is with respect to the first argument, and the parametrized bilinear forms
m : V × V → R and a : V × V × P → R, where the bilinearity is with respect to
the first two arguments. Then, the acoustic-elastic problem in abstract form reads:
given t ∈ [0, T ] and μ ∈ P , find u = u(t;μ) ∈ V such that

{
ρ

(
m(ü,ψ) + ηm(u̇,ψ)

) + a(u,ψ;μ) = h(t;μ) f (ψ;μ) ∀ψ ∈ V,

u(t = 0;μ) = 0, u̇(t = 0;μ) = 0,
(3)

with

m(u,ψ) =
∫

�

u · ψ �, f (ψ;μ) =
∫

�

b(μ) · ψ �,

a(u,ψ;μ) =
∫

�

[H(μ) : ε(u)] : ε(ψ)�,

(4)

in which H is the Hooke’s stiffness tensor and ε(·) = 1
2 [∇ · +(∇·)T] is the operator

of Cauchy strain. Note that, for the sake of simplicity, homogeneous boundary and
initial conditions in (3) are considered, i.e., u0 = 0, v0 = 0, and tN = 0.

2.2 Parametric Discrete Problem

This section introduces a discrete approximation space Vh ⊂ V as well as a dis-
cretization of the time interval [0, T ] inwhich the approximate solution is sought. The
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approximation spaceVh is here constructed by a standardfinite elementmethodbased
on piece-wise linear basis functions and a triangulation of �, i.e., non-overlapping
triangles (d� = 2) or tetrahedra (d� = 3) whose union perfectly coincides with �.
Alternative discretization strategies include spectral methods or higher-order finite
elements. Let Vh be equipped with a basis {ϕ j (x) ∈ R

d�}Nh
j=1, where Nh = dim(Vh)

is the number of degrees of freedom (DOFs).Moreover, divide the time interval [0, T ]
into Nt subintervals of equal length �t = T

Nt
and define tn = n�t, 0 ≤ n ≤ Nt .

The discrete problem with finite element discretization seeks to find
uh(t;μ) ∈ Vh , which can be expressed as uh(t;μ) = ∑Nh

j=1(uh(t;μ)) jϕ j (x)where
(uh) j denotes the j th entry of the solution vector uh ∈ R

Nh . With an additional
discretization over time, one can retrieve the solution vector at the nth time step,
denoted by un

h(μ) = uh(tn;μ), n = 1, . . . , Nt . Moreover, let vn
h(μ) ∈ R

Nh and
anh(μ) ∈ R

Nh be the velocity and the acceleration vectors, respectively, such that
their elements are the multiplicative coefficients of the following expressions:
u̇n
h(μ) = ∑Nh

j=1(v
n
h(μ)) jϕ j (x) and ün

h(μ) = ∑Nh
j=1(a

n
h(μ)) jϕ j (x), respectively.

Once the acoustic-elastic equation is spatially discretized by finite elements, the
corresponding algebraic formulation is written as follows for a given μ ∈ P and
t ∈ [0, T ]:

ρMh [üh(μ) + ηu̇h(μ)] + Ah(μ)uh(μ) = h(t;μ) f h(μ), (5)

where Mh ∈ R
Nh×Nh is the mass matrix, Ah(μ) ∈ R

Nh×Nh the parametrized stiffness
matrix, and f h(μ) ∈ R

Nh the parametrized right-hand side vector with entries

(Mh)i j = m(ϕ j ,ϕi ), (Ah(μ))i j = a(ϕ j ,ϕi ;μ),

and ( f h(μ))i = f (ϕi ;μ), 1 ≤ i, j ≤ Nh .
(6)

A classic Newmark method is then applied to the temporal discretization and the
governing equation becomes: givenμ ∈ P , find the acceleration vector anh(μ) ∈ R

Nh

for n = 1, . . . , Nt such that

[
ρ(1 + ηζ�t)Mh + β(�t)2Ah(μ)

]
anh(μ) = h(tn;μ) f h(μ) − qn−1

h (μ), (7)

in which β and ζ are two constant parameters, here chosen as ζ = 2β = 2, which
corresponds to a popular second-order method [8, 9], while qn−1

h (μ) ∈ R
Nh is given

as
qn−1
h (μ) =Ah(μ)un−1

h (μ) + (ρηMh + �t Ah(μ))vn−1
h (μ)

+
(
ρη(1 − ζ )�tMh + 1−2β

2 (�t)2Ah(μ)
)
an−1
h (μ).

(8)

Finally, the displacement solution vector un
h(μ) is obtained using the updating rule

of the implicit Newmark method, introduced in [10] and defined as:
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un
h(μ) = un−1

h (μ) + �tvn−1
h (μ)

(
βanh(μ) + 1−2β

2 an−1
h (μ)

)
(9)

vn
h(μ) = vn−1

h (μ) + �t
(
ζ anh(μ) + (1 − ζ )an−1

h (μ)
)
, (10)

Problem (7) is denoted as the truth problem and un
h(μ) as the truth solution at n-th

time step, which, in principle, can be achieved with as high accuracy as desired.
However, many degrees of freedom may be involved in the problem, thus leading to
a computationally expensive method due to inversion of the Nh-dimensional matrix
in the left-hand side of (7). In addition, to fully represent the healthy variations of
the structure, one needs to estimate an approximation to the output of interest (2)
for many input parameter values {μ1,μ2, . . . } over the whole discrete time window
0 = t0, t1, . . . , t Nt = T , i.e.,

gki = [
gi (t

0;μk), gi (t
1;μk), . . . , gi (t

Nt ;μk)
]
, k = 1, 2, . . . , (11)

evaluated at all the sensor locations xi , 1 ≤ i ≤ m. For each input parameter valueμk ,
the total computational cost involves the resolution of Nt linear systems of dimension
Nh .

3 Techniques of Reduced-Order Modeling

When the dimensionality of a full-order system, defined as Nh in Sect. 2, is large, the
repeated solution of such a time-dependent problem with varying input parameters
can result in great demands on both CPU time and memory, which is often computa-
tionally prohibitive. To reduce the computational cost without significantly compro-
mising the overall accuracy, reduced-order models (ROMs) have been developed. In
general, reduced-order modeling seeks to find a low-dimensional representation of
the full-order solution manifold and hence reduce the dimensionality by projecting
the original governing equations onto a low-dimensional space.

The reduced basis (RB) method [11, 12] is a typical projection-based approach
to ROMs and features an offline–online framework. With a significantly smaller
dimension than the full-ordermodel, a reduced space is spanned by a set of RBmodes
that are extracted offline from a collection of full-order snapshots at several time-
parameter locations. Once the RB space is constructed, the approximate solution for
an unseen parameter value is recovered online in the reduced space. Conventionally,
a Galerkin projection is adopted to determine the combination coefficients associated
with the RB, yielding the reduced-order solutions during the online stage.

For time-dependent problems, due to the traveling-wave behavior of the solution,
classic projection-based ROM strategies [13] may pose several challenges, e.g., the
manifold of all possible solutions can often not be compressed to a small reduced
basis. Furthermore, the sampling strategy is more complicated since it has to com-
bine the solution at different time instants and for different values of the parameter.
For example, the readers can refer to the POD-greedy sampling strategy [14] and the
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randomized SVD algorithms [15]. Recent efforts have been made in the direction
of space–time approaches, where projection in space and time is performed simul-
taneously, see, e.g., [16]. A different effective strategy is to replace the time domain
formulation with a frequency domain formulation and to apply a ROM method to
replace the full-order problem in frequency domain. In this way, the number of time
instances Nt where one expects to solve a linear system equivalent to (7) is reduced
to a number of principal frequencies Nz , with Nz � Nt . In addition, recurring to
a ROM strategy reduces the number of degrees of freedom of each linear system
to the size of reduced basis, i.e., from Nh to r , with r � Nh . Without going in too
much detail, the reader are referred to [5, 17], where the authors, motivated by the
interest of studying the transient response of damaged structures under the effect
active sources, construct a reduced-order model of the acoustic-elastic equation in
the Laplace domain.

The goal here is to provide a brief introduction to several basic elements of the RB
method, which lay the foundation for more advanced techniques. In particular, after
introducing a general formulation of the proper orthogonal decomposition (POD)
in Sect. 3.1, the construction of RB from full-order snapshots using the POD is also
described. The technique to retrieve the RB solution, an approximation of the high-
fidelity solution, is ultimately presented in Sect. 3.2.

3.1 Proper Orthogonal Decomposition

General formulation of the POD
In a vector spaceX, equippedwith an inner product 〈·, ·〉X, consider a collection of

snapshot vectors, denoted by {p1, . . . , pNs } ⊂ X. A correlation matrix C ∈ R
Ns×Ns

of the snapshots is formed as

C i j = 〈pi , p j 〉X, 1 ≤ i, j ≤ Ns . (12)

The eigenvalue problem of such a correlation matrix C is then written as

Cz(i) = λ(i)z(i), 1 ≤ i ≤ Ns, (13)

in which λ(1) ≥ · · · ≥ λ(Ns ) ≥ 0. By taking

φi =
Ns∑

j=1

p j
(
z(i)

)

j /
√

λ(i), 1 ≤ i ≤ rwith N ≤ Ns, (14)

an orthonormal basis is formed, i.e., 〈φi , φ j 〉 = δi j , 1 ≤ i, j ≤ r , and an r -
dimensional subspace is then constructed as Xr = span{φ1, . . . , φN } ⊂ X. The pro-
jection onto this subspace, denoted by PN [·] : X → Xr , is thus defined as
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Pr [ f ] = arg min
ξ∈Xr

‖ f − ξ‖2
X

=
r∑

i=1

〈 f, φi 〉Xφi , f ∈ X. (15)

It can be shown that the projection error of the snapshots only depends on the trun-
cated eigenvalues, written as

Ns∑

i=1

‖pi − Pr [pi ]‖2X =
Ns∑

i=r+1

λ(i). (16)

In addition,Xr is the optimal subspace of S = span{p1, . . . , pNs } that minimizes the
projection error, i.e.,

Ns∑

i=1

‖pi − Pr [pi ]‖2X = min
U being a subspace of S

{
Ns∑

i=1

min
ξ∈U

‖pi − ξ‖2
X

}

. (17)

Construction of RB using the POD

At the algebraic level, the solution space for the full-order discrete system (5) is
R

Nh , i.e., X = R
Nh , and it is correspondingly equipped with the Euclidean inner

product. To construct an RB space, one has to collect the solution snapshots of Nt

time instances {t0, t1, . . . , t Nt } at Nμ parameter locations {μ1,μ2, . . . ,μNμ
}, i.e.,

{pi }Ns
i=1 = {un

h(μk) : 1 ≤ n ≤ Nt , 1 ≤ k ≤ Nμ} and Ns = Nt Nμ. Let S ∈ R
Nh×Ns

denote the snapshot matrix collecting all the Ns snapshot vectors as columns.
Using the POD, r basis vectors are obtained and collected in amatrix V r ∈ R

Nh×r ,
whose i-th column, i.e., the i-th basis vector, corresponds to the i-th eigenvalue λ(i)

of the correlation matrix C = STS, 1 ≤ i ≤ r . In fact, given the SVD of the snapshot
matrix S, written as

S = U�ZT, (18)

the basis vectors in V r are the first r columns of U , i.e., V r = U[:, 0 : r − 1]
in a Python notation, and � is a diagonal matrix of singular values, i.e.,
� = diag(

√
λ(1),

√
λ(2), . . . ,

√
λ(Ns )). Especially when the singular values decay

fast, a small number of basis vectors can achieve a small projection error according
to (16).

In this way, a reduced basis V r is obtained, reducing the Nh-dimensional, full-
order solution space R

Nh to an r -dimensional, reduced space Col(V r ), Col repre-
senting the column space. With a rapid decay of singular values, the dimensionality
reduction is significant (r � Nh) but the accuracy is still under control.
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3.2 Reduced-Order Solutions

The discrete solution is approximated as a linear combination of RB vectors V r ,
written as uh ≈ V rqr with qr ∈ R

r denoting the RB coefficients, and project the
full-order system (5) onto the reduced space Col(V r ). A reduced-order system is
thus obtained as

ρMr
[
q̈r (μ) + ηq̇r (μ)

] + Ar (μ)qr (μ) = h(t;μ) f r (μ), (19)

in which the reduced-size matrices Mr ∈ R
r×r , Ar ∈ R

r×r and f r ∈ R
r are defined

as Mr = VT
r MhV r , Ar = VT

r AhV r and f r = VT
r f h , respectively. Such an r -

dimensional reduced system is solved in the online stage for any new parameter
value μ.

If the full-size, parameter-dependent stiffness matrix Ah(μ) and source term
vector f h(μ) can be expressed as a linear combination of parameter-independent
matrices/vectorswith scalar-valued, parameter-dependent coefficients, often referred
to as an affine form, i.e., Ah(μ) = ∑

j ω
a
j (μ)A j and f h(μ) = ∑

j ω
f
j (μ) f j , one

can evaluate their reduced-size counterparts offline as Ar, j = VT
r A jV r and

f r, j = VT
r f j , j = 1, 2, . . ., and the online assembly only requires linear combi-

nations Ar (μ) = ∑
j ω

a
j (μ)Ar, j and f r (μ) = ∑

j ω
f
j (μ) f r, j , respectively. In this

case, the online assembly is conducted in the reduced dimensionality and guarantees
a good online efficiency. However, if an affine form of the full-size matrix/vector is
not available, one has to recall the them during the reduced-size assembly, which
can often compromise the online efficiency. To overcome the difficulties stemming
from the non-affinity, hyper-reduction techniques have been developed to recover an
affine approximation of the non-affine operators, see [18, 19] for example.

An alternative approach to recover reduced-order solutions is through non-
intrusive surrogate modeling. In addition to the construction of an RB space using
the POD, one has to train a regression model to approximate qr :]0, T ] × P → R

r ,
(t,μ) �→ VT

r uh(t;μ), mapping the time-parameter inputs to the projection coeffi-
cients onto the RB. The training data of input–output pairs are derived from a set
of collected full-order snapshots. Gaussian process regression has been used for the
non-intrusive, reduced-order surrogate modeling in [20–23].

4 Automatic Anomaly Detection with Unbalanced Datasets

This section presents a data-driven technique to detect, localize, and estimate the
severity of structural anomalies by observing healthy configurations only. One-class
classification learning methods offer the possibility of training a set of samples all
belonging to the same class and test if a new sample is abnormal, i.e., it belongs
to a different class with respect to the training data. Typical one-class classifica-
tion methods, sometimes called semi-supervised methods, include one-class support
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vector machines (oc-SVMs), isolation forests, and local outlier factors. During the
offline phase, these methods learn a description of the salient features that the train-
ing data have in common to ultimately detect if a previously unseen object reflects
this description by means of an online anomaly (or novelty) score. If the new unseen
sample is associated with an anomaly score close to the ones observed in the training
phase, the new object is classified as healthy, otherwise it is classified as damaged.
The crucial part is to define what close to means from a mathematical standpoint.
Let x be an unseen object, then the outcome of all one-class classification methods
can be summarized as follows:

{
score(x) ≥ θ damaged/outlier

score(x) < θ healthy/inlier
, (20)

where score(x) is the anomaly score associated with x and θ is an ad hoc threshold
to be estimated by observing the anomaly score value of healthy data only. From
a practical perspective, in the semi-supervised context, θ is heuristically chosen by
observing the highest anomaly score value in the training data, i.e., θ should be equal
to the anomaly score of the most outlier sample among all the inliers. Consider D
the dataset of healthy measurements and ε ∈ R, then the threshold value is fixed as

θ = max
x∈D

score(x) + ε, (21)

where a positive value of ε indicates the user accepts a higher false alarm rate, while
a negative value implies a higher miss detection rate. The trade-off between false
positive and false negative errors should guide the choice of ε and ultimately of θ .
It becomes clear that to choose an effective threshold value, the training set has to
be the most comprehensive as possible, covering several healthy environmental and
operational scenarios.

An alternative approach to detect anomalies is to include sensor measurements
belonging to damaged structures in the training set, which leads to using traditional
two-class supervised learning methods to distinguish healthy scenarios from dam-
aged ones. In this approach, the choice of the threshold value benefits form the
availability of two (or more) classes in the training phase. However, an increasing
trend toward the assumption that it would be unreasonable to describe all types of
damages is observed in the literature; as a consequence, representing only some
damaged configurations would lead to a bias toward certain types and therefore to
possible misdetections with high probability (see, e.g., [5, 24]). For this reason, in
this chapter, one-class classification methods are used instead.

The general one-class approach is introduced in Sect. 4.1 and explain the need for
feature selection in subsection 4.2. For a detailed description of the classic one-class
models, the reader is referred to [25, 26] for the oc-SVMs, [27] for the isolation forest
and [28] for the local outlier factor. A Python implementation of these methods can
be found for example in scikit-learn library [29].
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4.1 Local Semi-supervised Method

Considering that the time signals, i.e., the output of interests (2), are collected at mul-
tiple sensor locations, one has to decide on how to best aggregate these data. There
exists two typical approaches in the literature to combine sensor data: decision-level
fusion or feature-level fusion. The latter combines data after feature extraction and
considers one global classifier (sensor independent), thus exploiting the correlations
across sensors. On the other hand, in decision-level fusion, the signals are classified
for each sensor location by a local classifier (sensor dependent) and the results are
then combined into a decision output. The two strategies are summarized in Fig. 1.
While the superiority of one method over the other one depends strongly on the
problem at hand, to exploit the local aspect of the data the authors propose to use
the decision-level fusion approach which facilitates the use of a hierarchical classi-
fication approach where increasing levels of damage identification can be defined to
ultimately gain information on the existence, localization, and severity of the damage.

In a decision-level fusion approach, one has to train as many one-class algorithms
as the number of sensor locations. Thus, the global classification model (20) is
replaced with m local detection models, where m is the number of sensors:

{
scorei (x) ≥ θi damage in the proximity of the i th sensor,

scorei (x) < θi health in the proximity of the i th sensor,
, (22)

for 1 ≤ i ≤ m. From a computational cost point of view, note that the process can be
run in parallel since the local models are independent. Moreover, in the feature-based
fusion approach, aggregating the local features leads to high-dimensional input data,
while the dimensionality of the input data for the classifiers in the decision-based

Fig. 1 Flowchart to compare the feature-level (top) and the decision-level (bottom) fusion
approaches for the semi-supervised damage detection strategy with multidimensional training data
captured by m sensors
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strategy remains small. As further explained in Sect. 4.2, high-dimensional data may
lead to overfitting, a well-known problem in machine learning.

4.2 Damage-Sensitive Features

Overfitting refers to the phenomenon observed when the model performs well on
training data, but fails to generalize well to new observation. An overfitted model
is described by more parameters than can be justified by the data and is typically
associated with high-dimensional input data. While sometimes adding more training
samples may be a remedy to overfitting, a more effective solution to prevent this
behavior is to reduce the dimensionality of the data, i.e., to perform what is called
feature selection.

Recall that the input data correspond to Nt -dimensional sensor signals, with Nt the
number of time steps, whichmay be very large. Therefore, one needs to express these
high-dimensional time signals by means of few variables, extracted from the signals
themselves. Ideal features should be sensitive to damage and, at the same time, robust
toward noise and healthy variations. Common choices for the engineering-based,
damage-sensitive features can be found for example in [24, 30]. When studying
the acoustic-elastic equation, i.e., in the context of guided-waves, relevant features
are the crest factor, which indicates how extreme the peaks are in a waveform, the
maximum andminimumvalues of the time response, the corresponding arrival times,
i.e., the onset, and the number of peaks and troughs in the signals. Without further
detail, the reader is referred to [5] and references therein for a thorough description
of damage-sensitive features for a guided-wave monitoring approach.

Finally, note that autoencoders, a particular type of neural networks, trained to
attempt to copy their inputs to their outputs, have gained particular interest in the
framework of anomaly detection, see, e.g., [31–33]. The main advantage of using
autoencoders for anomaly detection is that specific engineering-based damage indi-
cator features do not need to be specified by the user, different from classic one-
class methods. Instead, by learning the features which suffice to describe and recon-
struct the input, autoencoders provide a purely data-driven feature extractionmethod.
Hence, raw measurements such as sensor time signals can be used directly.

5 Finding Optimal Sensor Locations Using Gaussian
Processes

Until this point, this work has covered the problem of how to best detect damages
given a fixed network of sensors. The specular research question is how to choose the
location (and the number) of sensors in order to best detect defaults. Sensor placement
strategies are extremely important to optimally equip structures, whose monitoring
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performance depends critically on the quality of the information collected by sensors.
Hence, it is no surprise that this problem has been extensively addressed in the SHM
literature, see, e.g., the thorough review [34] and references therein. For most of the
sensor placement strategies, the objective is to optimize a suitable cost function with
respect to some operational parameters, e.g., the candidate sensor locations and the
available number of sensors. However, classic cost functions are usually formulated
in terms of damage detectability, which poses a problem when one wishes to make
no assumption on the potential damages. Thus, a procedure to place a fixed budget
of sensors in the context of anomaly detection is proposed, i.e., when only healthy
scenarios are included in the training phase. The proposed strategy relies on sparse
Gaussian process to identify the spacial positions that minimize the reconstruction
error of an output of interest at all “unsensed” locations. The quantity of interest that
defines the cost function for the sensor placement optimization algorithm is the same
quantity used to train the anomaly detection classifier, i.e., the damage-sensitive fea-
tures extracted from the synthetic sensor measurements (11), as described in Sect. 4.
As such, the proposed placement strategy is based on an appropriate indicator of the
damage detection performance of a given network. Note that, while this approach
requires the number and type of sensors to be fixed, it can be easily extended to help
the user to identify the minimum number of sensors to achieve a preset coverage.

This section presents the sensor placement strategy introduced in [35], to which
the reader is referred for a more in-depth discussion. In particular, after a brief
introduction to Gaussian process (GP) regression and sparse GP in Sect. 5.1, the
description of how to leverage this technique to systematically place sensors on a
structure of interest is provided in Sect. 5.2.

5.1 (Sparse) Gaussian Process Regression

A GP is a collection of random variables, any finite number of which obeys a joint
Gaussian distribution. In Gaussian process regression (GPR), the prior of regression
function is assumed to be a GP corrupted by an independent Gaussian noise term,
i.e., for (x, x′) ∈ � × � with � ⊂ R

d� denoting the domain of regression,1

f (x) ∼ GP(0, κ(x, x′)), y = f (x) + ε, ε ∼ N (0, χ2). (23)

There aremany different options for the covariance/kernel function κ : � × � → R,
a typical form of which is written as

κ(x, x′) = σ 2φ(r), (24)

1 Here f denotes a generic regression function and should not be confused with the linear functional
f (·; μ) in Sect. 2.
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where φ(·) is a radial basis function and r 2 can be defined as

r = ‖x − x′‖/� or r =
√
√
√
√

d�∑

k=1

(xk − x ′
k)

2

�2k
,

the former for a stationary kernel with isotropic lengthscale �, while the latter for an
automatic relevance determination (ARD) kernel that considers an individual corre-
lated lengthscale �k for each input dimension and allows for differentiated relevances
of input features to the regression.

Given a finite number of training input locations in the domain �, a prior joint
Gaussian is defined for the corresponding outputs:

y|X ∼ N (0, K y), K y = cov[ y|X] = κ(X, X) + χ2 IM , (25)

where y = {y1, y2, . . . , yM }T, X = [x1|x2| · · · |xM ]T, IM is the M-dimensional unit
matrix, and M is the number of training samples.

The goal of a regression model is to predict the noise-free output f ∗(s)
at any new, unseen input location s ∈ �. By the standard Bayesian rule
p( f ∗(s)|X, y) = p( f ∗, y|s, X)/p( y|X), the posterior distribution conditioned on
the training data (X, y) can be obtained as a new GP:

f ∗(s)|X, y ∼ GP(m∗(s), c∗(s, s′)),

m∗(s) =κ(s, X)K−1
y y, c∗(s, s′) = κ(s, s′) − κ(s, X)K−1

y κ(X, s′),
(26)

The values of hyperparameters θ = {�or(�1, . . . , �d), σ 2, χ2} make significant dif-
ference on the predictive performance. In this chapter, an empirical Bayesian
approach of maximizing marginal likelihood is adopted to determine a set of optimal
values of the parameters. Using a standard gradient-based optimizer, the optimal
hyperparameters θ∗ can be estimated via the maximization problem as follows:

θ∗ = argmax
θ

log p( y|X, θ) = argmax
θ

log
[N ( y|0, K y(θ))

]

= argmax
θ

{

−1

2
yTK−1

y (θ) y − 1

2
log

∣
∣K y(θ)

∣
∣ − M

2
log(2π)

}

,
(27)

where p( y|X, θ) is the density function of y given X under hyperparameters θ ,
considered as the marginal likelihood p( y|X, θ) = ∫

p( y| f , X, θ)p( f |X, θ) f .
It is important to remark that the computational complexity of generating a GP

model is O(M3) and the associated storage requirement O(M2), which becomes
intractable for large datasets. To overcome the computational limitation, the cor-
responding sparse methods rely on a small set of m � M points, called inducing

2 Here r denotes a (scaled) radius and should not be confused with the reduced dimensionality in
Sect. 3.
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points, to facilitate the information gain of thewhole dataset, thus allowing for a com-
plexity reduction, i.e., O(Mm2). An overview of well-known sparse GP regression
methods can be found for example in [36], where each sparse method is described
as an exact inference with a specific approximated prior, different from the true GP
prior (23). A different approach is presented in [37], where both the m inducing
points, indicated as D = [d1|d1| · · · |dm]T, and the hyperparameters θ are consid-
ered as variational parameters to be estimated by minimizing the Kullback–Leibler
(KL) divergence between the true posterior (26) and a variational posterior. This is
equivalent to maximize the following variational lower bound:

(D∗, θ∗) = argmax
D,θ

L(D, θ)

= argmax
D,θ

{

log
[
N ( y|0, Q(D, θ) + χ2 IM )

]
− 1

2χ2 Tr(κ(X, X) − Q(D, θ))

}

,

(28)
where Q = κ(X, D)(κ(D, D))−1κ(D, X) is the Nystrom approximation of the true
prior covariance. Note that the trace term in (28) acts as a regularization term of the
marginal log likelihood, which can be viewed as an accuracy indicator of how well
the inducing points summarize the overall statistics.

5.2 Variational Approximation for Systematic Sensor
Placement

The aforementioned variational sparse GP model together with the numerical
approach defined in the previous sections can be used to systematically place a
network of sensors on a structure of interest. Following the description in Sect. 4.2,
let y = {y1, . . . , yndof}T be the damage-sensitive features extracted from the synthetic
time signals (11), collected at the ndof points of a coarse mesh of the input domain�,
which is denoted as X = [x1|x2| · · · |xndof ]T, where ndof � Nh . Givenm the number
of sensors that the user wishes to place on the structure, one can apply the variational
sparse GP strategy to this collection of data, with m being the number of desired
inducing points. Ultimately, one can identify the sought sensor locations with the
inducing points obtained by variational inference.

Although the procedure is quite simple, some remarks ought to be made. First
of all, observe that the hyperparameters and the inducing inputs are estimated by
maximizing the variational lower bound (28), which is in general an unconstrained,
non-convex optimization problem. This may be problematic because one needs to
impose some locality constraints on the inducing points to prevent them from being
outside the input domain, especially when this is non-convex. Therefore, the standard
variational approximation should be replaced with a constrained optimization:

(D∗, θ∗) = arg max
D∈�s ,θ

L(D, θ), (29)
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where �s ⊂ � indicates the admissible domain for sensor locations and, with a
slight abuse of notation, D ∈ �s means that each inducing point d i , 1 ≤ i ≤ m is
constrained to belong to �s . For real-world problems, the complexity of the domain
may be such that the boundaries of �s cannot be easily specified analytically and, in
such cases, it may be worth to replace �s with a discrete counterpart. If that is the
case, instead of gradient-based optimization techniques, one could opt for discrete
optimization methods such as the genetic algorithm [38].

A second point to notice is that the output of interest y is in general parame-
ter dependent, i.e., y = y(μ). Hence, choosing the sensor locations as the optimal
inducing points obtained for one specific input configuration may not be optimal
for another context, described by a different parameter. To overcome this, this work
proposes to apply the variational sparse GP approach to Nμ outputs of interest y(μi ),
with μi ∈ P for 1 ≤ i ≤ Nμ. To summarize the information from the so-obtained
Nμm inducing points, the K-medoids algorithm, a well-known unsupervised cluster-
ing technique, is employed to find m clusters and their corresponding centers, called
centroids. As a last step, the desired sensor locations will be chosen as the clusters’
centers.

To quantify the quality of the placements, the simplest choice is to compare
the relative reconstruction error of the high-fidelity quantity of interest at unsensed
locations with respect to the mean of the posterior distribution of the sparse model
based on the estimated variational parameters. Alternatively, the pointwise relative
variance reduction, defined as

Vi = κ(xi , D∗)(κ(D∗, D∗))−1κ(D∗, xi )
κ(xi , xi )

, for 1 ≤ i ≤ ndof, (30)

provides an indicator on how much variance reduction can be achieved by including
xi to the set of selected sensor locations. When the relative variance reduction is
close to one, it means that the inducing variables alone can well reproduce the full
GP prediction.

6 Numerical Example

In this section, a numerical problem in 2D is used to illustrate the results in terms
of damage detection and sensor placement. Similar results for more complex 3D
problems can be found in [5, 35].

Damage detection

The first step consists in generating a synthetic database of sensor observations.
Apply (1) with homogeneous free slip boundary conditions and homogeneous ini-
tial conditions, i.e., u0 = v0 = tN = 0, to the healthy geometry illustrated in Fig. 2a
and equipped with m = 15 sensors. The high-fidelity numerical solutions are com-
puted using the FE approximation with P1 elements over a discretized domain with
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(a) (b) (c)

(d) (e) (f)

Healthy Damaged Source

Fig. 2 Summary of the one-class SVMs classification results for one healthy geometry (a) and 5
damaged ones (b–f)

a total of Nh = 30′912 degrees of freedom, while for the RB solver the model
relies on 267 basis. The natural variations are described by dμ = 3 parameters, i.e.,
μ = (E, ν, k) ∈ P = [0.999, 1.001] × [0.329, 0.331] × [1.9, 2.1], where E is the
Young’s modulus and ν the Poisson’s ratio, defining the stress tensor σ , while k is a
parameter representing the number of cycles before attenuation of the source impulse.
The position of the active source as well as the density and damping coefficients are
fixed, i.e., ρ = 1, η = 0.1, respectively.

For each sensor location, one should follow the pipeline introduced in Sect. 4 and
generate a training dataset of Ntrain = 1000 samples, obtained by extracting a few
damage-sensitive features from the discrete time signal (11), in their turn obtained
with a suitable reduced-order modeling approach, as described in Sect. 3. Then,
one has to train m separate one-class SVM models to learn the common traits of
the local healthy features and test the results on sensor measurements belonging to
both healthy and damaged geometries. In this example, the test signals are generated
synthetically using the high-fidelitymodel. Different from the training set, to approx-
imate experimental measurements, a Gaussian noise term εi ∼ N (0, γ 2

i ) is added to
the test time signal (11), with γ being the 0.01% of the maximum amplitude of 30
randomly chosen training healthy signals in the training set. Damages are obtained
by modifying the geometry of the structure to include discontinuities, as shown in
Fig. 2b–f. The crack-modeling approach is a common choice in the literature, see,
e.g., [39] where artificial damages on the blade of a wind turbine are implemented
via a trailing edge opening. Anomaly detection results are shown in Fig. 2, where for
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each geometry the average outcome of the oc-SVM for 10 simulations (i.e., for 10
different input parameters) is presented. For each damaged scenario, at least one sen-
sor is classified as damaged, while for the healthy scenario all sensors are classified
as healthy. Moreover, for most of the damaged scenarios, one can observe a certain
level of proximity between the cracks and the sensors classified as damaged, thus
guiding the localization of damages. An exception corresponds to the geometry in
Fig. 2c, where almost all sensors are classified as damaged, thus preventing localiza-
tion. This issue is attributable to the relative position of the source and the crack, i.e.,
to localize damage (c) the source should be placed differently. A reasonable solu-
tion is to consider different locations for the active source, for example by defining
an additional input parameter in the model. This approach is already employed in
SHMwith Lamb wave propagation where piezoelectric transducers are used as both
sensors and actuators (see e.g., [40]).

Sensor placement

To identify the optimal sensor locations, one has to create a new database of
Nμ = 100 synthetic observations sampled from a Sobol’s sequence [41]. Keep the
same parameters as in the previous paragraph, but, instead of computing the syn-
thetic time signals at few predefined points in space (the sensor locations), collect the
measurements at all the nodes of a new coarse mesh of �, for a total of ndof = 360
degrees of freedom. Following the description given in Sect. 5.2, for each one of the
Nμ time signals, one has to perform the constrained variational approximation (29)
with an ARD-Exponential kernel over �s = � \ ∂� to obtain a set of m inducing
points D∗(μi ) for 1 ≤ i ≤ Nμ. Figure3 sketches the clustering results obtained for
different values of Nμ. Observe that the centroids tend to stabilize already after con-
sidering a cluster of 10 samples, especially when the sensor budget is high, i.e., for
largem values. This can be explained by noticing that whenm is small, the algorithm
is trying to reconstruct a non-trivial quantity of interest over a complex domain with
only a few points, which may lead the sparse model to get stuck in a local mini-
mum without reaching convergence. Finally, the relative variance reduction (30) is
used to evaluate the quality of the estimated locations whose results are shown in
Fig. 4, where one can observe a variance reduction almost equal to 1 near the sensor
locations and a general reduction above 0.7 for all the unsensed locations even for
m = 4, thus indicating a good sensor placement.

7 Conclusion

This chapter presents how a model-based numerical approach can be integrated with
different data-driven techniques in the context of predictive maintenance. A peculiar-
ity of this work is that the authors make no assumption on the type of damages that a
structure may undergo during its lifetime, while modeling many environmental and
operational healthy scenarios. From a technical point of view, this work describes
how reduced-ordermodeling techniques can be leveraged to generate large and robust
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N N N N

m = 4 m = 9 m = 16 m = 25

Fig. 3 Comparison of the centroids obtained with the K-medoids clustering algorithm for different
sizes of clusters Nμ. Each plot shows a fixed number m of inducing points, which increases from
left to right

Fig. 4 Relative variance reduction obtained using m centroids and averaged over Nμ = 100 sam-
ples. Each plot shows a fixed number m of inducing points, which increases from left to right.
Values close to 1 indicate a good placement quality

datasets of synthetic sensor measurements and it explains how such datasets can be
used to learn the salient features that healthy scenarios have in common to ultimately
detect damages. The same damage-sensitive features are also used to guide an auto-
mated data-driven sensor placement strategy to increase the detection accuracy for
a given budget of sensors.

Although a simple 2D example is used to validate the proposed method, the gen-
eralization to more complex, possibly nonlinear problems is possible. Note however
that for real-world engineering problems the parameter space describing healthy vari-
ations is expected to be high dimensional, thus requiring a high computational effort
to elaborate the synthetic time signals. To this end, sensitivity analysis techniques
such as the variance-based global sensitivity indices [42] or the derivative-based
global sensitivity measures (DGSM) [43] are two popular choices to identify a few
parameters that influence the output of interest the most. Finally, note that while
the proposed method can be used for real-time predictions thanks to the offline and
online decomposition of tasks, a filtering technique to integrate the evolution of the
structure and update the model would be a valuable addition.
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Unsupervised Data-Driven Methods
for Damage Identification
in Discontinuous Media

Rebecca Napolitano, Wesley Reinhart, and Branko Glisic

Abstract Before investing in long-term monitoring or reinforcement of struc-
tures, it is essential to understand underlying damage mechanisms and conse-
quences for structural stability. Approaches combining nondestructive evaluation
and finite element modeling have been successful in producing qualitative diag-
noses for damage to existing structures. However, the real-world impact of such
methods will hinge upon a reduced computational burden and improved accuracy
of comparison between models and physical infrastructure. This chapter describes
a new approach based on unsupervised learning to perform quantitative damage
state inversion from sparse datasets. Discrete element modeling was used to simu-
late the response of masonry walls and other structures under settlement loading.
Point cloud representations of the structures, consistent withmodern computer vision
pipelines used for documentation, were used to generate a low-dimensional mani-
fold based on the Wasserstein metric. This manifold is used to train a Gaussian
process model which can then be interrogated to infer loading conditions from the
damage state. This method is shown to quantitatively reproduce the loading condi-
tions formasonry structures andwas validated against laboratory-scale, experimental
masonry walls. Although the approach is demonstrated here for settlement-induced
cracking, it has important implications for the broader field of data-driven diagnostics
for discontinuous media.
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1 Introduction

1.1 Motivation and Background

Continued advances in computational, networking, and sensor technologies have
begun to bring urban-scale structural health monitoring and prognostics into the
realm of possibility [1]. The field is starting to address how events can not only
impact single buildings, but also how a city can operate as a network of sensors and
how urban-scale digital twins can be leveraged to develop smart, sustainable cities.
Urban-scale digital twin will be able to provide unprecedented understanding of the
state of our communities and predict how they will behave in the future. In that city-
scale digital twin however, aging infrastructure introduces a myriad of unknowns
such as material condition [2, 3], load paths [4, 5], and so forth [6].

Consider someone developing a digital twin for already existing physical infras-
tructure with sensors on it; since the structure has a history that might not be entirely
known, they can make a digital replica which is only a “best guess.” But that does not
guarantee that the digital replica and the physical infrastructure will act the same [7–
9]. The role of the digital twin is to make the digital replica more than just a model, it
should help the model to converge on reality by having it “synchronized” with phys-
ical infrastructure. It does this by testing hypotheses about how the structure came
to be in its current state. This is paired with physics-based modeling which can then
be used to update the model so that the response of the digital replica matches with
that of the physical structure. This can then be used to make intelligent interventions
on the structure to help predictions and interventions be more accurate [10]. Addi-
tionally, this can be used for forecasting analysis once the digital replica has been
calibrated. But the crux of the smart interventions and forecasting is on the digital
replica. A schematic representation of a digital twin, which combines physics-based
and data-driven modeling for diagnostics, prognostics, and long-term management
of infrastructure, is shown in Fig. 1.

An open issue of how can different events that could have caused damages can be
distinguished. To address this, the present chapter discusses state-of-the-art method-
ologies for implementing the method of multiple working hypotheses (MMWH)
[11] for diagnostics of masonry structures. Masonry structures were selected due
to their material complexity, but a similar framework can be applied for structures
built of other construction materials. In current approaches, the causative load case
is generally assumed; however, this can lead to bias. To reduce bias, MMWH can be
applied by laying out the plausible hypotheses, examining the evidence for each, and
evaluating which hypotheses can be disregarded and which can remain. This chapter
focuses on cracks as they are a symptom of a myriad of problems: moisture, thermal
stress, earthquakes, gravity loads, settlement, etc. [10, 12]. For cracks, it is important
that the correct cause of damage is determined as that can lead to different monitoring
and repair strategies. If repairs are carried out without proper diagnostics, then only
the symptoms could be addressed and leave the underlying problem an open issue.
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Fig. 1 Schematic of the digital twin constructed with hybrid physics-based and data-driven
modeling

1.2 Prior Work

Current crack diagnostic techniques are limited as they are based onmanual synthesis
of data, structural intuition, and manual crack mapping. Combining methods for
acoustic emissions, flat jack tests, and finite element modeling, Anzani et al. [13]
assessed the existing damage on a history masonry tower. In that study, quantitative
comparisons were made between the results of acoustic monitoring and the time of
seismic events; only qualitative comparison was used to compare the finite element
model with existing damage; furthermore, only one potential cause of the damage
was hypothesized and therefore simulated [11]. Continuing this trend, Alessandri
et al. [14] combined structural health monitoring and numerical methods, but again
only qualitatively compared cracks on the existing structure to the results of a single
hypothesized simulation. Similarly, when Milani et al. [15] used numerical methods
to evaluate the origins of crack patterns on the narthex of the Church of the Nativity
in Bethlehem, the existing conditions were only qualitatively compared to a single
load case simulation.

The concept of using qualitative methods to compare existing crack patterns to
simulations based on singular load cases is ubiquitous in the literature [7, 16–20] even
though assuming only one specific load is culpable increases bias in the results [11].
Maps of cracks on an existing structure do not record underlying problems, rather
they capture symptoms of these problems. This can pose issues for diagnostics and
rehabilitation as damage may have already been stabilized and not be related to
current risks [21]. Therefore, understanding how cracks on a structure could have
evolved is vital to understanding the structures potential for future stability [21].
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1.3 Research Aim and Scope

The aim of this work is to create workflow for inferring the cause of deformed (i.e.,
damaged) regions of masonry structures using automated methods. As a proof of
concept, consider only settlement-induceddamage fromaknown initial state and seek
to determine a parametric representation of the settlement condition quantitatively.
Thus, the proposed workflow may require additional expansions to be successful on
a wide range of damage or loading conditions which differ qualitatively. Here the
earth mover’s distance (EMD) is used to quantify similarity between a library of
known damage states and Gaussian process regression (GPR) to accurately interpo-
late between them to identify themost likely cause of deformation.Manifold learning
strategies are also considered to handle extending the method to higher-dimensional
spaces, a challenge which must be overcome in order to address real-world struc-
tural health monitoring scenarios where damage states cannot be parameterized in a
simplified manner.

2 Methods

2.1 Supervised Gaussian Process Regression

This first step in creating the workflow is to develop a metric for how different
scenarios will be compared. This step is schematically represented in Fig. 2. Since
theproposedworkflow involves numerous steps, a conceptual summaryof themethod
is provided first. First, a point cloud representing an existing structure is acquired.
Based on historical record or expert knowledge about the construction and history
of the structure, a hypothetical undamaged or native state is produced (i.e., manually
using CAD) and supplied to the algorithm in the form of a triangulated mesh (state P
in Fig. 2). Then, a library of damaged conditions (statesQl in Fig. 2) for the structure

Fig. 2 Illustration of the supervised learning concept. A referencemodel is compared to a library of
deformed structureswith knowndamage conditions to determine themost likely damagemechanism
for the observed case
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is generated by applying known damage conditions to the original structure using
DEM simulation. A point cloud is extracted from each of these damage simulations
and clustered into discrete segments. The shape of these segments is compared to
equivalent segments of the native structure by computing a dissimilarity metric. For
each such segment, the likelihood of the damage being caused in the hypothesized
way can be evaluated quantitatively as the reciprocal of the dissimilaritymetric. Then
the exact damage condition can be inferred by interpolating with Gaussian process
within the library of simulated states. In this way, an estimate for the likelihood of
every possible hypothesis is obtained in a smooth and continuous parameter space.
Here a point cloud P representing the surface of the existing structure is considered
to be an input, with the assumption that it has been deformed compared to its native,
as-built state. The point cloud could be obtained from one of a variety of standard
methods such as photogrammetry and laser scanning [22–24].

In the experimental case discussed in Sect. 4.1, P corresponds to the centroids of
the bricks extracted from an orthorectified image captured during laboratory work
(details provided in [25]). Next an entirely synthetic case is discussed in Sect. 4.2
so that known conditions can be used as ground truth and compared to the results of
the method. In that example, P corresponds to the centroid of each simulated brick
after a settlement event has occurred. In present methods, found in literature, damage
states are not commonly separated out and linked to individual causes [26, 27]. In
efforts to optimize preservation, rehabilitation, and monitoring efforts, each damage
state should be diagnosed individually.

This chapter outlines an automated method for separating large models (from
here on point clouds) which encompass multiple damage states into smaller ones
which capture individual damage locations. By doing this, each segment of Pi can be
analyzed independently which thereby decreases the computational cost by reducing
the O(

N 3
)
calculation associated with solving the optimal transport problem into

several smaller problems, O(
n × N 3

i

)
. Here N is the number of points from the

original point cloud, whereas n and Ni are the number of segments and number
of points per segment, respectively. This reduction of a cubic complexity enables
significant cost savings for Ni < N . While the larger point cloud is being segmented,
the following mapping is generatedm(P) → {Pi }. After computing this mapping, it
is used to compare between native point cloud P and damaged point cloud Q such
that segments Pi and Qi reference the same local geometry.

By imposing this mapping system, a correspondence table between P and Q can
be established when they share 1:1 correspondence or bounding volumes can be
used when the point clouds may have different numbers of points. In this method,
the Hungarian algorithm is utilized to obtain the correspondence since P and Q from
the brick centroids were generated with the same number of bricks. Mini-Batch K-
Means (MBKM) [28]was used to segment the point clouds. The only input parameter
was the number of segments which is a user preference since the segmentation is
only needed to separate out individual diagnoses. As detailed later in this chapter,
the workflow was found to be robust to various choices of segmentation when both
number of segments and algorithm applied were varied.
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For this work, the individual bricks were assumed to behave as rigid bodies. This
should enable a good approximation to the behavior of the masonry walls since
cracking at the masonry joints frequently dominates any fracturing of the individual
brick elements.Ahypothetical undamaged state,U, composedof a triangulatedmesh,
and the parameterized damage conditions, c = (x, y, a), were used as input to the
DEM simulation, where x and y define the coordinate of the settlement event and a
defines the amplitude of the settlement. By comparing each damaged state, Q, to the
observed structure, P, the true damage c0 can be identified which describes how the
structure came to be damaged. To understand how well each hypothesis, Q, matches
the true conditions, P, the earth mover’s distance (EMD) is used which measures
the distance d between probability distributions [29–31] (see Fig. 2). To expedite
the EMD calculation over the parameter space, Gaussian process regression (GPR),
a Bayesian method for model selection and updating, to approximate the distance
field, is applied [32]; this approach is commonly found in the literature [33–35], the
scikit-learn implementation [36] is used here. Thus, in this method GPR interpolates
for continuously varying damage conditions from a discrete set of damage conditions
to mitigate the computational burden of EMD. To create a weighting system which
would strongly illustrate regions where the distance between P and Q is low, and
thus the guess is good, L = d−1 is interpolated. By taking this inversion, the GPR
estimated field corresponds to the likelihood (measured in units of m−1) that the
guessed damage condition is the true one.

2.2 Unsupervised Manifold Learning

The starting point for themanifold learning strategy (illustrated in Fig. 3) is the stored
image of the displaced structure and a feature vector which conveys information
about how the structure was damaged. For this work, the feature vector consisted of
the length of different settlement regions, the depth of different settlement regions,
earthquake magnitude, earthquake orientation, point load, point load application
range, and the total sum of all settlement depths. The first step in the process is the
hashing of the stored image into a 2-D discrete cosine transform (DCT) [37]. Once
each image has been hashed this way, the Euclidean distance between each image
can be calculated.

Fig. 3 Schematic illustration of the unsupervised manifold learning procedure
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Having computed the distances, the coordinates of each simulation in the low-
dimensional manifold can be computed. This is achieved by non-linear manifold
learningusing the diffusionmaps approach [38]. In short, this approachuses a spectral
decomposition of an affinity matrix (i.e., the reciprocal of the pairwise distances)
to determine collective variables. Then, the dominant eigenvectors can be used to
visualize a low-dimensional space (manifold) which contains the most significant
collective variables within the data.

2.3 Experiments

To test if the proposed workflow, along with presented methods, could be used
to diagnose existing crack patterns in masonry structures, a single-leaf, dry-joint
masonry test wall was constructed, and cracking was induced in a controlled manner,
as shown in Fig. 4 The test wall had a fixed base (cinder blocks) and region of
settlement (jack). Geometry and definition of variables used in experimental setup
are shown in Fig. 5. The dimensions and parameters for each brick are shown in Table
1. The settlement width was slightly smaller than the width of two bricks (190%
brick length), and the depth was 0.021 ± 0.001 m. Before and after the settlement

Fig. 4 Photographs of masonry walls used for experimental case studies. a Undeformed wall and
b Deformed wall, after settlement is applied in lower right corner

Fig. 5 Geometry and
definition of variables used
in experimental setup
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Table 1 Measured
dimensions of bricks used in
experimental walls

Parameter Value

Length (m) 0.193 m ± 0.001

Width (m) 0.090 ± 0.001

Height (m) 0.055 ± 0.001

ρ (kg/m3) 2508.67 ± 10

Fig. 6 Estimate of the likelihood field (c) obtained from the experimental wall. The black cross
indicates ground truth settlement condition

events, photogrammetry models were generated using best practices [39–41] and
orthographic photographs were taken.

3 Results and Discussion

3.1 Experimental Results

A library of 256 Q� was generated by selecting c� from a uniform nonrandom
distribution on the domain x ∈ [0, 1.54], w ∈ [0, 1.4], a ∈ [0, 0.04] (see Fig. 6).
The settlements were imposed in the shape of a Gaussian kernel with dispersion
σ = 0.5m. The EMD between the full point clouds was computed as d(P, Q�);
it generated a continuous estimate of the likelihood field by applying GPR to the
inverted distances L. The results are illustrated in Fig. 6. Since the likelihood field
is a continuous quantity in (x, w, a) the values of the field were rendered at five
discrete slices in a. The brighter values (yellow) correspond to (x, y) settlement
centers, which most probably caused the damage on the target structure. The ground
truth damage, as realized in test, is illustrated as a black cross. In this case, the highest
likelihood is obtained very near to this experimental ground truth.

3.2 Demonstration with Synthetic Structure

Basedon the success of the simple experimental case above, amore complex synthetic
structure (Fig. 7) was considered. Synthetic data is useful for demonstrating the
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Fig. 7 (left)Geometry of syntheticmasonry structure including individual brick dimensions. (right)
Displacement magnitude of each brick in the synthetic structure due to two different settlement
events

efficacy of the method. On the right of Fig. 7, the damaged synthetic structure with
9633 distinct elements can be seen having incurred two Gaussian settlement loads
(one (x, y, a) at (1.63, − 1.73, 0.157) and a second at (0.62, 3.22, 0.157). Since two
independent damage eventswere considered for this synthetic case, this demonstrates
the applicability of the method to more realistic scenarios where multiple damage
states are present. A library of 256 damage states was generated by selecting damage
cases from a uniform random distribution where the domain was x ∈ [−0.39, 4.94], y
∈ [−2.80, 5.13], and a ∈ [0.00, 0.30]. EMDwas calculated between the ground truth
model and each simulated damage state without segmentation; then, a continuous
likelihood field was generated by applying GPR to the inverted distances (Fig. 8).

Considering the two bright, yellow areas which indicate a high likelihood of being
the location and depth of settlement, the highest likelihood of 68.7 m−1 was found
at c = (0.51, 3.28, 0.198). When evaluating the likelihood at the true locations of
settlement, it is found that they have values of 58.6 and 64.6 m−1 and an average

Fig. 8 Estimate of the likelihood field (c) obtained from full point cloud P. Field rendered over (x,
y) slices for discrete amplitudes a as listed in each panel. Yellow color indicates greater likelihood
(in units of m−1). Black crosses indicate the two components of cz. White lines are centroids of
bricks to illustrate the position of the structure relative to the position of settlement centers
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Fig. 9 Segmented point
cloud for 3D structure

field value of 33.3 m−1. This means that when comparing the average to the true
locations, the true locations are twice as likely to be the cause of the damage. So,
while there is good qualitative agreement in Fig. 8, the quantitative specificity of the
result is relatively weak. To bolster the strength of the method, the damaged structure
and the library of potential damages were segmented into eight different point clouds
(shown in Fig. 9) using MBKM where each likelihood field corresponds to a single
point cloud segment. It can be seen in a subsequent section that the method is not
sensitive to the number of clusters selected in this step.

Segment 0, which is blue in Fig. 9, corresponds to the segment which covers
the parts of the structure around one of the settlement events. Figure 10 presents
the likelihood plot at discrete depths to understand what the possible cause of the
damage in this region of the structure could be. While the true settlement occurs
with a likelihood of 558 m−1 at c = (1.63, − 1.73, 0.157), the highest likelihood
is 575 m−1 at (1.79, − 1.65, 0.156). Since the average likelihood is 105 m−1, this
indicates that the results are more decisive than what was previously shown in Fig. 8.

The likelihood field for Segment 7, which is gray in Fig. 9, is shown in Fig. 11.
This segment lies directly over the second settlement event (and is separated from the
first settlement event). The algorithm predicts the most likely settlement parameters
to be (0.67, 3.28, 0.204), with a likelihood of 679 m−1 and the average of 94 m−1.

Fig. 10 Estimate of the likelihood field (c) obtained from P0 which is the blue section of the point
cloud in Fig. 9
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Fig. 11 Estimate of the likelihood field (c) obtained from P7 which is the gray section of the point
cloud in Fig. 9

Compared to the result for Segment 0, the likelihood is more concentrated in the
x − y plane and more diffuse in a. This is probably due to the delocalized nature
of the settlement compared to the wall, such that certain combinations of (x, y, a)

parameters induce equivalent damage states in the wall itself.

3.3 Sensitivity to Segmentation

To understand how the number of segments could affect the results of this method,
segmentation was performed for the complex, synthetic structure, where the user
selected 7, 8, and 9 clusters. This was repeated five times using random seeds to
understand if relationships were robust. Figure 12 illustrates all 15 of the different
segmentations which were carried out. Based on the broad range of high likelihood
values, there is significant uncertainty in the optimal value for this parameter. This
is not surprising as the peak likelihood values normally are within a concentrated
region of other relatively high likelihood values compared to other locations. Since
all 15 of the segmentations selected damage conditions corresponded well with the
ground truth, the results are assumed to be reasonably insensitive to the number of
segments selected.

3.4 Sensitivity to Noise

Since the complex example was carried out on a synthetic dataset where no noise
was present, this section sought to understand how robust the method would be if the
point clouds were more realistic and noise was included. Thus, noise on the order
of millimeters was introduced to the synthetic dataset; random noise was added to
every point in P from a uniform distribution over [−δ, + δ] in each of (x, y, z). The
analysis was repeated for Segment 7 (i.e., P7) as outlined above. For each increase
in noise, the Z-score was recorded, z = (L(cz) − μ)/σ , where μ and σ are the mean
and standard deviation of L(c) over all c in the investigated space, and error was
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Fig. 12 Illustration of random segmentations from theMBKMsegmentationwhile varying number
of segments and random number seed. Mean and standard deviation are reported for each case.
The computed maximum likelihood condition from the corresponding surrogate model is reported
alongside each image

measured as the Euclidean distance between the location of peak likelihood and true
cause of damage. Calculated Z-score and error are presented in Fig. 13. As onewould
expect, by adding noise to the point cloud, the Z-score decreased, and the prediction
error increased. An encouraging result is that the magnitude of noise expected from
typical point cloud acquisition methods (on the order of 10−3 m) does not appear to
impede the method; the prediction error did not increase between 10−4 and 10−3 m.
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Fig. 13 Effects of noise magnitude δ (logarithmic scale in graphs) on a the Z-score and b error
between peak likelihood and true value

Fig. 14 Effects of the
library size (in number of
simulations) on the error
between peak likelihood and
true value. Black line
indicates median value,
while upper and lower blue
lines indicate 75th and 25th
percentiles, respectively
(from 10 samples at each
size)

3.5 Sensitivity to Library Size

To evaluate how the number of available simulations (hypotheses) affects the quality
of the surrogate model, a sensitivity study to the library size was also performed.
Simulations were randomly selected from the full library of 256 simulations, and
a new model was constructed based on this sub-sample. The accuracy of the peak
likelihood value versus the ground truth value was computed and reported in Fig. 14
as a function of the sample size. The accuracy clearly improves with more simula-
tions available, but the improvement is most noticeable for libraries of less than 100
simulations.

3.6 Manifold Learning

A key limitation of the GPR-based approach is interpolation in a high-dimensional
parameter space. For instance, in the cases presented above only a few discrete
settlement events parameterized by a single location and depth were considered. If
additional parameters such as the shape of the Gaussians (i.e., covariance matrix)
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and extended the analysis to include many Gaussians (i.e., representing an arbitrary
surface as a Gaussian mixture model) were added, the system may have hundreds
of parameters instead of only a handful. Each additional dimension in the param-
eter space makes the space sparser and mandates additional simulations to effec-
tively interpolate using the Gaussian process. This makes it unlikely for the GPR
approach to be tractable for complex problems. Here a method for combining numer-
ical methods and manifold learning to reduce the number of physics-based models
needed for diagnosis is outlined.

The starting point for the manifold learning strategy is the stored image of the
displaced structure and a feature vector which conveys information about how the
structure was damaged. For this work, the feature vector consisted of 12 total numer-
ical features including the length of different settlement regions, the depth of different
settlement regions, earthquake magnitude, earthquake orientation, point load, point
load application range, and the total sum of all settlement depths. The first step in the
process is the hashing of the stored image into a 2-D discrete cosine transform [37].
Once each image has been converted to a discrete cosine transform, the Euclidean
distance between each image can be calculated.

For convenience of visualization, a two-dimensional manifold was constructed
by taking the dominant eigenvectors ψ2 and ψ3 (comprised of one scalar value per
observation) as shown in Fig. 15. It is important to note that the algorithm never sees
the raw input feature vectors; collective variables are derived from only the distances
between observed feature vectors. However, knowing what the input features can
help a user to understand physical meanings behind the different eigenvectors and
start to see how the latent space is related to the physical input parameters.

To see how each of the 12 input features was related to the manifold, the points
on the manifold were colored by that feature. For instance, in the case of earthquake
magnitude, feature 7, dark blue indicates that there was no earthquake while yellow
indicates an earthquake with a magnitude of 0.3 g. As shown in Fig. 15, there is a

Fig. 15 Diffusion map colored by specific features. The first is colored by earthquake magnitude
(gs), the second is colored by settlement width (m), and third by settlement depth (m). Third panel
is zoomed in to show detail of bottom cluster only
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correlation between feature 7 and where the points fall on the manifold. The simula-
tions with lowerψ3 values seem to not have experienced an earthquake at all, so those
could be purely point load or purely settlement. And across ψ2 there is a gradient
from the very high-magnitude earthquakes at a low ψ2, to the lesser earthquakes at
higher values of ψ2.

Not all features show these types of correlations with the eigenvectors, however.
For instance, in the case of feature 1 (settlement amplitude on the left side of thewall),
there does not seem to be any robust clustering possible. This indicates that this input
feature did not dominate the manifold space (at least in the first two eigenvectors).
Based on known information about feature 7, the bottom cluster of dark blue points
in Fig. 15 is the point that did not experience any earthquake. If only the overall
settlement experienced by the wall, feature 12, is considered, there are clear clusters
developing. The sections where there is a lot of settlement have the highest ψ3 and
the lowest ψ2, then the middle settlement cases have middle range ψ2, and lastly the
cases where there was little to no settlement have the highest values of ψ2.

Based on a systematic analysis of themanifold topology, the featureswhich exhib-
ited the strongest correlations to the datasets were: (1) feature 7 depicted in red
dominant colors representing earthquake magnitude, (2) feature 8 in green domi-
nant colors representing earthquake orientation, and (3) feature 12 in blue dominant
colors representing the total amount of settlement. These features could then be used
to interpret the manifold; Figure 16 shows the annotated manifold based on these
results. As ψ3 increases, the earthquake magnitude increases, as ψ2 increases the
earthquake orientation changes, and as ψ2 decreases, the overall settlement in the
system gets larger. Thus, it would seem that ψ2 is a latent variable encompassing
information about both settlement and earthquake orientation. The samples of simu-
lation images on the right are colored by the same conventions.Wall 630 experienced
less settlement than wall 749 which is why it has less blue (RGB = 0, 0.5, 0.5) than
749 (RGB = 0, 0.5, 0.8).

Once a user has created a manifold of possible damage mechanisms, the damaged
wall in question can be added to the set of inputs and tracked to see where in the
manifold it ends up. Based on patterns intuited through clustering the feature-colored
manifold, a user can evaluate where their damaged wall fits in with the rest of the
manifold to understand what could have caused existing damages. In future work,
this method should be validated against the experimental testing data such as those
presented in preceding sections.

4 Conclusions and Future Directions

4.1 Summary

Here a workflow to diagnose observed damage states in masonry structures through
statistical inference has been described. The approach is powered by a hybrid
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modeling strategy which incorporates both physics-based and data-driven tech-
niques. Discrete element modeling (DEM) was employed to simulate the deforma-
tion of masonry under hypothesized loads and settlements. The MBKM clustering
approach was used to split the entire structure into discrete segments to support the
detection of independent, localized damage mechanisms. EMD was used to deter-
mine a quantitative similarity score between hypothesized and observed damage
states, which allowed interpolation in a continuous hypothesis space using GPR. By
testing the method on synthetic data, for which a ground truth was known, the perfor-
mance of the method in inferring the cause of two different settlements affecting the
masonry structure at the same time was validated.

Furthermore, the same method was applied to experimental data through a case
study on a laboratory-scale masonry wall. Settlements were systematically intro-
duced to the wall to induce cracking across the structure which could be captured
with conventional photography (or photogrammetry). To evaluate the robustness
of the method in the presence of real-world variance, controlled sensitivity studies
were performed on the synthetic data (again, because ground truth was known).
These studies showed quantitatively that the method is relatively insensitive to noisy
point clouds and randomness associated with the segmentation procedure. They
furthermore quantified the number of hypotheses needed to obtain accurate results.
Compared to prior work with similar objectives, this new method performed up to
105 times faster and required substantially less human input.

With many DEM results in hand, nonlinear manifold learning was employed to
reduce the dimensionality of the damage feature space. While this manifold did not
know the unique features, which caused the damages seen in the simulations, it
intuited its own variables based on a spectral decomposition of an affinity matrix.
This is a powerful approach because a user can see if there are trends in the damage
patterns which are similar despite having disparate origins. Once amanifold has been
created based on all the hypotheses for how the damage could have occurred, a user
can see where their existing structure falls in the space. This will enable them to see
the most probable origins of their damage patterns. This approach can be generalized
to other physics-based modeling methods so long as an informative feature vector
can be described.

4.2 Future Directions

The proof of concept shown here uses a static library of simulations drawn from
a single hypothesized native state. There are several ways in which this could be
extended to make it more robust. First, more sophisticated approaches are possible
using iterative Bayesian optimization rather than a predetermined library of damage
hypotheses. In this case, simulations would be generated one at a time or in
small batches based on an acquisition function computed from prior observations.
This enables intelligent navigation of the parameter space and allocates simulation
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resources to only those hypotheses which provide the maximal amount of new infor-
mation. Second, the hypothesis space could be extended to include different native
states. This would be motivated by the reality that the native state of a structure is
not always known. Instead, several different native states could be postulated, and
the likelihood calculations could determine the most plausible one.

As already described, while the GPR approach provides high accuracy in deter-
mining damage conditions, it is unlikely to scale efficiently to very large param-
eter spaces. Conversely, the manifold learning strategy described here provides a
qualitative understanding of many variables without yielding reliable quantitative
information about the damage conditions. The combination of these approaches
may provide the advantages of each while mitigating their shortcomings. Another
promising approach is topology optimization based on adjoint simulations. While
this has historically been intractable for complex problems such as DEM, modern
hardware and software developed for training deep learning models can provide
gradients for very large and sophisticated transformations of data. Thus, a combina-
tion of data-driven and physics-based approaches will unlock new opportunities in
structural health monitoring.
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Applications of Deep Learning
in Intelligent Construction

Yang Zhang and Ka-Veng Yuen

Abstract Smart construction site is the concrete embodiment of the concept of
smart city in the construction industry. It provides all-round, three-dimensional, and
real-time supervision of construction sites with intelligent systems of controllability,
data, and visualization. In particular, it is common to install many cameras in smart
construction sites. These cameras only play the role of visualization, and further
analysis is necessary to extract information from the images/videos and to provide
safety warning signals. With the development of deep learning in the field of image
processing, automatic deep feature extraction of images is possible for construction
safetymonitoring. This chapter summarizes the development and application of deep
learning in construction safety, such as bolt loosening damage, structural displace-
ment, and worker behavior. Finally, the application scenarios of deep learning in
smart construction sites are further discussed.

Keywords Smart construction site · Deep learning · Construction safety ·
Computer vision

1 Introduction

Construction safety is an important issue for the society. There are many hidden
dangers in construction sites, such as various types of workers, large construction
machinery and complex environment. In the process of dynamic construction, the
load of building structure is time-varying, and various support structures interact
among themselves, leading to the stability risk of the entire construction. Buildings
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and structures under construction are prone to collapse, overturning and other acci-
dents due to the influence of natural conditions, construction level, and construction
quality. In addition, workers suffer from injuries caused by construction machinery,
such as blow or collision. Therefore, the construction safety monitoring is necessary.

In order to improve the construction level of engineering projects and reduce
the incidence of accidents, the concept of smart construction site was proposed [1].
Smart construction site is the concrete embodiment of the concept of smart city in the
construction industry. It provides all-round, three-dimensional, and real-time super-
vision of construction sites with intelligent systems of controllability, data, and visu-
alization. At present, the development of smart construction site is still in the initial
stage, i.e., the perception stage. It uses advanced sensing technologies to monitor
workers, machineries, and structures, and then identifies and locates the potential
hazards. Building information modeling (BIM) takes the three-dimensional graphics
of buildings as the carrier to further integrate all types of building information. The
parameterized model can be used to realize construction simulation, collision detec-
tion, and other applications. Hu et al. used network analysis to improve collision
detection. A component network centered on conflicting objects was constructed
to represent the dependencies of components. This method can effectively identify
the irrelevant conflicts and reduce the number of irrelevant conflicts by 17% [2].
Mirzaei et al. developed a novel 4D-BIM dynamic conflict detection and quantifica-
tion system for the identification of spatiotemporal conflicts [3]. 3D laser scanning
technology uses the principle of laser ranging to scan objects and quickly obtain
3D models. There have been many attempts in building inspection, cultural relics
protection and other methods. Yang et al. [4] used terrestrial laser scanning to detect
the deformation of the arch structure. The surface approximation method was used to
cover the blank of measurement area, and the uncertainty of surface of different order
was studied. Valenca et al. [5] proposed an automatic crack assessment method based
on image processing and terrestrial laser scanning (TLS) technology. The geometric
information measured by TLS was used to correct the captured image. It improved
the identification accuracy of structural cracks. The combination of 3D laser scanning
technology and BIM can realize the detection of structural quality and deformation.
Ham et al. [6] proposed a structural safety diagnosis method based on laser scanning
and BIM. The laser scanning data and BIM model were compared and analyzed to
determine the deformation degree of pipe support. Chen et al. [7] proposed a point-
to-point comparisonmethod for deviation detection between automatic scanning and
BIM.When there is a deviation between BIM and point clouds, it will be highlighted
to remind users for further investigation.

Sensor networks can detect the deformation of high formwork support, tower
crane, and bridge by different sensor nodes. Kifouche et al. [8] developed and
deployed a sensor network that could collect data frommultiple types of sensors. The
data was transferred to a server for visualization and real-time processing. Kuang
et al. [9] used fiber-optic sensors to monitor the deflection and cracks of beams.
The results showed that it was possible to detect fine crack and final failure crack
by optical fiber. Casciati et al. [10] used GPS to detect the displacement of steel
structures in real time. The accuracy was of the order of subcentimeters. With the
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continuous upgrading of camera equipment, camera measurement technology has
also been substantially developed. Cameras can be used to detect the deformation
and vibration of structures in a close distance. Feng et al. [11] demonstrated the
potential of low-cost visual displacement sensors for structural health monitoring.
Meanwhile, experimental results showed that vision sensors have high precision in
the full-field displacement measurement. Harvey et al. [12] used visual sensors to
measure interlayer drift in real time. The dynamic characteristics were extracted to
detect structural damage.

Artificial intelligence has accelerated its development, presenting new features
such as deep learning, cross-border integration, human–machine collaboration, open
intelligence, and autonomous control [13]. It has great potential in the field of
construction safety monitoring. Deep convolutional neural networks have achieved
remarkable results in the field of image processing. Compared with traditional
machine learning methods, deep learning does not need to manually extract features
and has a strong ability of autonomous feature extraction. Therefore, deep learning
has been widely applied in various research fields [14–16].

With the rapid development of smart construction site, many cameras have been
installed on construction sites. These cameras provide a lot of real-time data for
construction safety detection.However, it is still an important research topic to deeply
understand the image and to provide more accurate and timely monitoring results for
construction safety. As one of the non-contact detection techniques, camerameasure-
ment has attracted much attention in the field of structural health monitoring. Some
researchers have tried to combine deep learning with machine vision for construc-
tion safety monitoring. According to the construction characteristics, the detection
content can be roughly divided into structure, worker, and mechanical operation
safety. Section 2 introduces several kinds of deep learning algorithms commonly
used in the field of construction safety monitoring. Section 3 presents the structural
safety monitoring using deep learning. Section 4 focuses on worker safety manage-
ment based on deep learning. Section 5 describes safety management of construction
machinery using deep learning in the construction process. Section 6 summarizes
the current situation and development of deep learning in the field of construction
safety monitoring.

2 Related Deep Learning Algorithms

Convolutional neural network is the cornerstone for deep learning to achieve break-
through achievements in the field of computer vision in recent years. Convolutional
neural network uses convolutional layers to replace fully connected (FC) layers
for effective feature extraction. A convolutional neural network usually consists of
multiple convolutional modules. The front convolution layer has a small receptive
field, which can capture local and detailed information of an image. The receptive
field of the latter convolution layer is gradually enlarged to capture more complex
and abstract information in the image. At first, deep convolutional neural network
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Fig. 1 Faster R-CNN

was used to perform image classification tasks and determine object categories in
the image. After AlexNet was concerned by researchers, some image classification
networks were produced, such as VGGNet, GoogLeNet, and ResNet. The recogni-
tion accuracy of these networks in the image classification task has almost reached the
human level. However, image classification is a very crude task. Objects in an image
need not only to be classified, but also to be positioned. Some algorithms combine
candidate regions with image classification networks to achieve target location based
on bounding boxes, such as region-based convolutional neural networks (R-CNN),
Fast R-CNN, single-shot multibox detector (SSD), you only look once (YOLO),
Faster R-CNN, and so on. The overall architecture of Faster R-CNN is shown in
Fig. 1. Image classification network is used to extract features, and region proposal
network (RPN) is used to generate candidate regions [17]. It further improves the
accuracy and positioning accuracy of object recognition.

Although bounding boxes can locate objects in an image, the bounding box
contains not only the target object, but also the background and other content. In
order to achieve more precise recognition of objects in images, semantic segmenta-
tion and instance segmentation are proposed. These two types of algorithms belong
to the pixel-level object recognition algorithm. Segmentation algorithms mostly
adopt code-decoding structures [18–20], such as fully convolutional networks (FCN),
SegNet, U-Net, and DeepLab. The overall architecture of FCN is shown in Fig. 2.
Multiple convolutional layers are used as encoding structures for down-sampling,
and multiple deconvolutional layers are used as decoding structures for up-sampling.

Human pose recognition is a special object detection task. Key point detection
of human body is very important to describe human posture and predict human
behavior. Action classification, abnormal behavior detection, and other tasks can be
accomplished by estimating the key points of human body.MaskR-CNN, an instance
segmentation algorithm, can not only identify targets at pixel level, but also estimate
the key points of human body. In addition, network structures such as DensePose,
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Fig. 2 FCN

OpenPose, AlphaPose, and DeepPose have also achieved remarkable effects in the
field of human pose estimation.

3 Structural Safety Monitoring

3.1 Bolted Joints

In the process of dynamic construction, structural stability is poor, which can easily
cause accidents. Therefore, it is necessary to monitor the status of structures under
construction. Steel structures are often used in construction sites, such as steel trusses,
steel columns, and support structures. Bolted joints have the advantages of simple
structure, convenient installation, and strong reliability. These reasons have made
bolts the preferred fastener. Under the influence of dynamic and static loads, bolts
may be loosened and fallen off. In order to avoid interference with construction, non-
contact monitoring methods can be preferred. The combination of machine vision
and deep learning can quickly detect and count the state of bolts in steel structures. A
camera or smartphone can quickly capture images of bolts. Faster R-CNN was used
to identify and locate bolts in images. The image of each bolt is extracted on the basis
of the localization information. Then, the edge lines of bolts in the image are extracted
by using binarization and Hough transform. The detection result is shown in Fig. 3a.
According to the change of edge information, the looseness angle could be recognized
[21]. The head of the shoulder bolt is a regular hexagon, so this method could detect
looseness angle within 60°. Grades of fastener appear on the head of each bolt. The
“bolt” and “num” were identified and located simultaneously by SSD, as shown in
Fig. 3b. According to the localization information, the looseness angle within 180°
could be recognized [22]. When the bolt looseness angle is greater than 180°, the
above method cannot effectively detect bolt looseness angle. A bolt to be loosen
when the loosening is evident in a geometric change, which may even be visible to
naked eyes. Therefore, Faster R-CNN can be used to directly detect large looseness
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Fig. 3 Bolt damage detection

damage of bolts, as shown in Fig. 3c. This method has strong robustness even under
the influence of structural vibration, illumination, and other environmental factors
[23]. Deep learning is a data-driven recognition algorithm, and a large amount of data
is the basic condition to ensure the recognition accuracy and generalization ability of
model. 3D simulation software can quickly producemany bolt images. The detection
model based on the simulation image still can accurately identify and locate bolts in
a real image [24]. Although the simulation software cannot produce bolt images in
a complex scene, this method provides a new idea for data augmentation.

Fig. 4 Displacement monitoring based on semantic segmentation
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3.2 Structural Displacement

During the construction process, the deformation and displacement of structures
should be strictly controlled within the allowable range. With the development of
high-rise and super high-rise buildings, high-support formwork and deep founda-
tion pit appear more frequently in the construction process of building structures.
These two types of structures, which have more potential hazards and high acci-
dent frequency, are the core parts of construction safety monitoring. The height of
high-support formwork is more than five meters. Once it collapses, the impact and
economic loss will be very serious. During the procedure of pouring concrete, the
load borne by high-support formworks increase sharply, causing large deformation
or even partial collapse and overall overturning. The foundation pit, located in the
urban areas area, is not surrounded by sufficient space, so it is generally constructed
by vertical excavation. Meanwhile, the depth of deep foundation pit is more than five
meters, so it is very easy to collapse the side wall of the foundation pit. Therefore, it is
necessary to monitor the displacement of high-support formwork and deep founda-
tion pit. Deep learning can identify and locate target in an image at the pixel level. It
provides the possibility for displacement monitoring. Portable devices such as smart-
phones are used to photograph artificial targets, which are identified and located by
Mask R-CNN. Some parameters of target can be easily extracted from segmentation
results. These parameters can be used to calculate the target displacement. Zhang
et al. verified the feasibility of this method through static and dynamic experiments,
respectively [25]. However, the proposed method can only monitor the short-range
displacements. To achieve remote displacement monitoring, they installed a 22×
optical zoom lens on a smartphone, as shown in Fig. 4a. The lens improves the
ability of smartphones to photograph long-range targets. However, this method is
limited by the lens, and it can only monitor the longitudinal one-point displace-
ment. In order to monitor the displacement of deep foundation pit, Zhang et al. [26]
proposed a longitudinal multipoint displacement monitoring method using FCN and
smartphone. They used Huawei P30 Pro as the acquisition equipment, which has a
high-performance camera with a 50× optical zoom. The detection result is shown in
Fig. 4b. It can be used to detect the displacement of four longitudinal points within
10 m. This method does not require an external lens and is more portable.

Compared with the above method, the optical flow estimation-based method
detects small motions without the use of paints or markers on the structure surface.
However, the complex calculation process limits its real-time inference capacity.
Deep learning can estimate optical flow with fewer parameters. With the help of
GPU-accelerated computation, the optical flow method based on deep learning can
be used for real-time monitoring [27]. The full-field optical flow and homography
matrix were used to obtain the full-field structural displacement. Theoretically, the
displacement of any point of structures can be obtained according to the full-field
structural displacement diagram. Nevertheless, the optical flow estimation is affected
by the background clutter. Dong et al. [28] proposed a full-field optical flow estima-
tion algorithm based on deep learning. It reduces manual manipulation and provides
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more accurate measurements with less computation time. Subpixel subdivision tech-
nology can make up for the shortage of hardware and improve image resolution.
Luan et al. propose a deep learning approach based on CNN to extract full-field
high-resolution displacements at subpixel levels [29]. The results showed that the
trained network can identify the pixels with sufficient texture contrast as well as their
subpixel motions.

3.3 Structural Surface Quality

Construction quality evaluation is an important part of construction quality manage-
ment. Once forms are removed, concrete surfaces may appear void, pockmarked
surface, crack, and other damage. Deep convolutional neural network can identify
and extract structural surface damage, it can improve the efficiency and accuracy
of manual inspection. To locate surface damage in an image, sliding window algo-
rithm cropped the image into several small images, which are fed into convolutional
neural networks for classification [30]. In order to improve the speed of sliding
window detector, various object recognition algorithms based on candidate regions
are proposed, such as Faster R-CNN and YOLO. The identification result is shown
in Fig. 5. Deng et al. [31] used YOLO to identify and locate cracks in images and
compared the recognition effect with Faster R-CNN.

Object detection algorithms can locate surface damages through bounding box,
which cannot be used to extract damage area, width, length, and other parameters.
Semantic segmentation algorithm can identify and locate targets in an image at pixel
level. For example, SegNet and FCN can be used for pixel-level recognition of cracks
in images [32, 33]. Compared with object detection, the result of semantic segmenta-
tion is more precise. The identification result using semantic segmentation is shown
in Fig. 6. Lee et al. [34] proposed crack width estimation method based on shape-
sensitive kernels and semantic segmentation. Firstly, SegNet was used to identify
cracks at pixel level. Then, the maximum width of the crack is measured based on

Fig. 5 Crack identification based on bounding box
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Fig. 6 Crack identification based on semantic segmentation

the identification results. A practical detection method should consider not only the
detection accuracy, but also the detection speed. Cha et al. [35] proposed a real-time
crack segmentation network, which has a great improvement in detection accuracy
and speed. The model processes in real-time images at 1025 × 512 pixels, which is
46 times faster than in a recent work. According to the results of semantic segmen-
tation, the parameters such as length, width, and area of damages can be obtained
more conveniently. However, semantic segmentation requires pixel-level annotation
data, and the annotation cost is very large. Meanwhile, semantic segmentation model
is difficult to train and requires high computational performance.

To reduce the detection costs, object detection and traditional methods are
combined to achieve crack refined detection. Object detection can identify and locate
cracks accurately and quickly by bounding box. The positioningmethod based on the
bounding box cannot quantitatively analyze the parameters of cracks. Some image
processing methods such as binarization and filtering can be used to extract cracks
in the bounding box at the pixel level. The identification result is shown in Fig. 7.
Jiang et al. [36] proposed a real-time crack evaluation system based on deep learning
and wall-climbing UAV. Firstly, SSD was used to identify and locate cracks in the

Fig. 7 Crack identification based on bounding box and image processing
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images transmitted by UAV. Then, the images in bounding box were converted into
binary image.Thegrayscale imageswere transformed into binary image throughOtsu
threshold segmentation, and morphological processing was applied to ensure conti-
nuity of cracks. These are image-based identificationmethods, which can only obtain
two-dimensional spatial parameters of damage. Deep convolutional neural networks
have also achieved remarkable results in the field of 3D point cloud segmentation.
Beckman et al. [37] combined convolutional neural network with depth camera to
detect the volume of concrete surface damages.

4 Worker Safety Management

A large number of workers on construction sites and the crosscutting of jobs are
the main reasons for the higher casualty rate in construction industry than in any
other industry. There aremany potential hazards in the construction sites andworkers
should be vigilant of their surroundings. Therefore, it is desirable to track the number
and status of workers in the construction site in real time. Object detection algorithms
such as FasterR-CNNcan identify and locateworkers in different scenes and postures
[38], as shown in Fig. 8. It can quickly count the number and location of workers in
a large scene, providing a new possibility for construction worker detection.

Heavy equipment may lead to serious worker injuries, and equipment operators’
view is easily obscured. Thus, it is necessary to detect workers near the equip-
ment to provide safety warning for operators. In order to improve visibility, heavy
equipment manufacturers install cameras on each side of the equipment (i.e., front,
right, left, and rear) to provide a comprehensive view of the area around the equip-
ment. However, this monitoring system cannot automatically extract information
from images. Son et al. [39] proposed a real-time warning system using visual data
and Faster R-CNN. This system used monocular cameras to estimate worker’s posi-
tion in three dimensions. In addition, some support structures without guardrails
are also one of the important hazards. During the construction of an engineering

Fig. 8 Identification of worker
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structure, workers tend to take shortcuts by crossing supports to perform daily activ-
ities and save time. However, crossing the support is very dangerous and forbidden.
Fang et al. [40] used instance segmentation to detect workers crossing structural
supports during the construction of a project. First, workers and structural supports
are identified at the pixel level by theMaskR-CNN.Then, the positioning relationship
between the structural support and theworkers could beused to determinewhether the
worker is passing through the support. The proposedmethod could obtain the distance
between workers and hazard sources, thus providing safety warning for managers
and performing the correct behavior. At construction sites, workers are always in
dynamic walking positions. Predicting workers’ trajectories has great potential to
improve workplace safety. Object identification-based tracking methods only rely on
entity operation information and donotmake full use of context information.Cai et al.
[41] proposed a context-augmented long short-term memory approach for worker
trajectory prediction. Compared with the traditional one-step prediction method, the
proposed method could predict multistep trajectory to avoid error accumulation and
effectively reduce final displacement error by 70%.

Workers should be vigilant of potential hazards. However, personal protection of
workers is also very necessary. Safety helmets play an important role in protecting
construction workers from accidents. Nevertheless, workers sometimes do not wear
safety helmets for convenience. For the safety of construction workers, a high-
precision and strong robustness helmet detection algorithm is urgently needed.Object
detection algorithms such asFasterR-CNN,SSD, andYOLOcandetect safety helmet
in an image [42–44], as shown in Fig. 9. The recognition accuracy of detection algo-
rithms based on deep learning depends on a large number of sample data. To evaluate
the performance of Faster R-CNN, more than 100,000 image frames of construction
workers were randomly selected from surveillance videos of 25 construction sites
over a period of more than one year. The experimental results showed that this
method has high accuracy, high recall rate, and fast speed, and could effectively
detect non-helmet-use in different construction sites. It is conducive to improving
the safety inspection and supervision level. Besides safety helmet and protective
clothing, safety harness is the main protective equipment for workers working at
height. Workers often forget or deliberately do not wear seat harness. This is a very

Fig. 9 Identification of safety helmet
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dangerous behavior and is one of the main causes of falling from heights. Fang et al.
[45] developed a visual-based automated approach that uses two convolutional neural
networks to determine whether a worker is wearing a safety harness. First, Faster
R-CNN was used to detect workers in an image, and the image in bounding box
was cropped. Then, these cropped images were fed into a multilayer convolutional
neural network to determine whether the workers wear seat harness. The accuracy
rate and recall rate of the Faster R-CNN model were 99 and 95%, respectively, and
the accuracy rate and recall rate of the CNN model were 80 and 98%, respectively.

Human body is very flexible, and posture can be used to identify worker behavior.
Roberts et al. [46] proposed an activity analysis framework based on vision and deep
learning that could estimate and track the posture of worker. Firstly, YOLO was
used to identify and locate workers in an image, and the image in bounding box was
cropped. Then, the cropped images were fed into a 2D skeleton detection network to
estimate each joint coordinates of the worker. Posture estimation of worker is shown
in Fig. 10. Finally, the pose of the same construction worker in different video frames
was tracked. The proposed method was used to identify different worker activities
(bricklaying and plastering), and the results showed that this method had the poten-
tial to evaluate individual worker activities. A 3D skeleton estimation network can
directly determine the spatial position of human. The distance between workers can
be used to estimate severity of crowding inworking environment.High crowdingmay
lead to dangerous working conditions and negative worker behavior. Yan et al. [47]
proposed a vision-based crowd detection technology. First, Faster R-CNN was used
to identify and locate workers in complex environment, and the image in bounding
box was cropped. Then, the cropped images were fed into the 3D skeleton detection
network to estimate each joint coordinates of the worker. Finally, according to the
result of human skeleton estimation, the spatial position of eachworkerwas obtained.
Experimental results showed that this method could estimate the distance between
two workers with an error of 0.45 m in three-dimensional space.

At present, worker status monitoring methods based on the fixed camera have
some limitations, such as the perceptual mixing, occlusion, and illumination. Mean-
while, there is no camera inside the buildings under construction. Somemobile robots
autonomously inspect indoor work sites and find potentially dangerous anomalies.

Fig. 10 Posture estimation of worker
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Lee et al. [48] applied the perception module based on deep learning and simul-
taneous localization and mapping (SLAM) to target recognition and navigation of
mobile robots. The proposed method could identify abnormal behaviors of some
workers, such as not wearing safety helmets, standing on top of ladders, or falling.
Identification of danger is only the first step of construction safety management. It
is necessary to timely and accurately convey risk information to managers. Tang
et al. [49] proposed a language-image framework that aims at understanding and
detecting semantic roles of activities mentioned in safety rules. This framework
includes semantic parsing of safety rules, construction object detectors using SSD
and Faster R-CNN, and semantic role detectors. The experimental results showed
that this framework can preliminarily describe the dangerous scene in an image in
the form of language.

5 Construction Machinery Management

In order to improve construction efficiency, various machineries are used in the
construction process, such as excavator, dump truck, bulldozer, scraper, crane, etc.
However, safety accidents often occur with these construction machineries. There-
fore, it is necessary to identify the position and status of construction machinery
in real time. Object detection algorithms such as Faster R-CNN and R-FCN can
identify and locate construction machinery in an image [50], as shown in Fig. 11.
Kim et al. used R-FCN to identify five types of vehicles: dump truck, excavator,
loader, cement mixer, and road roller [51]. The experimental results showed that the
average accuracy of this method was 96.33%. Meanwhile, the synthesized image

Fig. 11 Identification of construction machinery
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data could be used for data augmentation, which can improve the vehicle detec-
tion performance [52]. The identification and location information of construction
machinery can providemanagerswith the type, quantity, and distribution of construc-
tionmachinery. Identifying and tracking constructionmachines also can avoid poten-
tial collisions and other accidents. Firstly, convolutional neural network was used to
detect and track vehicles. Then, the tracking trajectory was fed into a hiddenMarkov
model (HMM) that automatically discovers and assigns activity labels to objects.
Roberts et al. [53] performed activity analysis of machineries based on the object
detection results. The accuracy of activity analysis was found to be 86.8% for exca-
vators and 88.5% for dump trucks. Of all construction machinery, tower cranes are
the largest in size. The tower crane operator is far from the ground and cannot clearly
observe the surrounding environment of lifting objects. High-definition cameras built
into Unmanned Aerial Vehicles (UAVs) could help solve this problem. Roberts et al.
[54] used SSD to identify and locate tower cranes in an image, which is photographed
by UAVs.

All the aforementioned identified bounding box-based construction machinery
recognition methods use horizontal detection algorithms for detection. However,
construction machinery can be in any direction and position, and they are not neces-
sarily horizontal or vertical.When constructionmachinery is densely parked together,
rotated bounding box can be more accurately fitted to the machinery region in terms
of the orientation. Guo et al. [55] proposed a construction machinery identifica-
tion method based on orientation-aware feature (OAF) fusion convolutional neural
network. The proposed OAF-SSD could be applied not only to the construction
vehicle detection, but also to the detection problem of dense multiple objects in civil
engineering, which can also identify the orientation of target objects (more useful
for motion tracking and estimation).

In the similar fashion as human body, the posture and movements of construc-
tion machinery need to be estimated automatically. This has a significant impact on
construction safety and the use of the machinery itself. Excavator is one of the most
used construction equipment. Its operation is complicated, and its posture changes
more. Hence, it is more difficult to evaluate the full body posture of excavators than
other equipment. Liang et al. [56] proposed a vision-based marker-less pose esti-
mation system for estimating the joints and components of excavators. This system
adopted and improved the advanced convolutional network, namely the stack hour-
glass network for pose estimation. The results showed that this system could estimate
excavator boom, stick, and bucket joint positions but had higher estimation error for
the bucket location due to the occlusion issue. Luo et al. [57] built an integratedmodel
based on stacked hourglass and stacked pyramid network to estimate the posture of
excavators in an image. This model evaluated the posture of excavators by identi-
fying six key points of excavators, as shown in Fig. 12. Occlusion can significantly
interfere with the detection results of this method. Compared to the activity identi-
fication of construction workers, research on activity identification of construction
machinery is very limited, mainly because of the lack of construction machinery
actions datasets. Zhang et al. [58] produced a comprehensive video dataset of 2064
clips, which included five actions (digging, swinging, dumping, moving forward,



Applications of Deep Learning in Intelligent Construction 241

Fig. 12 Posture estimation
of construction machinery

and moving backward) of excavators and dump trucks. CNN is used to extract image
features, and long short-term memory (LSTM) is used to extract time characteristics
from video frame sequences. These two types of features were used to identify these
five actions.

6 Conclusion

Deep learning has been growing rapidly in the field of image processing. Some
new network structures promote the development of construction safety monitoring
using machine vision. On construction sites, structure, worker, and machinery are
the three potential hazard sources, which are the most likely to cause accidents.
Machine vision-based detectionmethod is a non-contact detection technology, which
can detect hazard sources without affecting the normal construction. At present,
deep learning networks applied in the field of construction safety monitoring can be
roughly divided into three categories: object detection, semantic segmentation, and
pose estimation.

(1) Object detection using neural network is the simplest and most used detec-
tion method. Faster R-CNN, SSD, YOLO, R-FCN, and other object detection
networks were used to identify and locate workers, machineries, and structural
components. This type of detection method mainly relies on bounding box to
identify and locate hazard sources. It can only complete detection tasks with
low positioning accuracy.
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(2) Comparedwith object detection, semantic segmentation has higher positioning
accuracy and can achieve pixel-level object recognition. FCN, SegNet, U-Net,
and other networks are used to locate targets, components, and workers with
high precision. However, the disadvantages of this approach are also obvious.
The training cost of semantic segmentation is high, and the detection speed is
slow.

(3) Pose estimation networks recognize human posture through key point esti-
mation. It can be used to detect different types of workers and assess worker
activities.Meanwhile, it can also be used to locate the key points of construction
machinery and identify the working status of machinery.

Many researchers have studied construction safety with deep learning and
proposed many effective detection methods. However, from the perspective of smart
construction site, the research on construction safety monitoring using deep learning
is still in the initial stage. These detection techniques are far from being intelligent,
and only identify and locate multiple targets on construction sites. In addition, the
current detection technology also has some common problems. Deep learning is a
data-driven algorithm. There is a lack of large image datasets for different construc-
tion scenes. Therefore, how to train a robust andhigh-precision detectionmodel is still
a difficult problem. Most importantly, visual detection method is easily affected by
illumination, background, occlusion, and other factors. Nowmore andmore complex
construction site environment, some targets are often blocked, which is fatal to visual
detection methods. A single type of sensor data often has great limitations, so the
fusion ofmultitype sensor datamay be amore feasible scheme for construction safety
monitoring.
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Integrated SHM Systems: Damage
Detection Through Unsupervised
Learning and Data Fusion

Enrique García-Macías and Filippo Ubertini

Abstract One of the most daunting challenges of modern structural engineering
concerns the management and maintenance of ageing infrastructure. The technical
response to this challenge falls within the framework of structural health monitoring
(SHM), which pursues the automated diagnosis and prognosis of structures from
continuously acquired sensor data. In the last years, particular attention has been
devoted in the literature to ambient vibration-based SHM owing to its minimal intru-
siveness and global damage identification capabilities. Nevertheless, the sheer variety
of failure mechanisms that large-scale civil engineering structures may experience,
someofwhichmaybe of local nature, compels the use of integratedSHMsystems and
data fusion for comprehensive damage identification. As a result, such systems must
deal with extensive databases of heterogeneous monitoring data, being the selec-
tion of critical features a key step to link signals to decisions. This chapter presents
an overview of some of the most recent statistical pattern recognition, data fusion,
feature extraction and damage detection techniques for integrated SHM systems.
Under an application-oriented philosophy, the theoretical basis and implementation
details of these techniques are illustrated through real case studies of Italian historic
buildings.
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1 Introduction

The vast socio-economic impacts stemming from the retrofitting, replacement or
failure of structurally deficient constructions have recently fostered outstanding
developments in the field of SHMwith a considerable number of infield applications.
In the broadest sense, SHM exploits long-term monitoring data to track anomalies in
the structural performance caused by damage and, desirably, to predict damage evolu-
tion and structural life expectancy [1]. Ambient vibration-based SHM systems have
become particularly widespread owing to their non-destructive nature and minimum
intrusiveness, without requiring heavy and costly excitation devices. Such techniques
have proven proficiency to correctly assess global damage, although their ability to
detect local defects with minimal effect upon the overall stiffness is rather limited
(e.g. freezing/thawing cycles, chemical attack, corrosion) [2]. In this regard, static
monitoring such as the assessment of crack widths, displacements or tilts is typically
more effective [3].Moreover, it is often convenient to alsomonitor the environmental
and operational conditions (EOC) of structures to facilitate the discrimination of
damage from normal operational conditions. In this light, it follows that the use of
integratedmonitoring systems encompassing diverse sensing solutions results crucial
to attain effective local/global damage detection capabilities. The implementation of
such systems comprising dense sensor networks is becoming economically viable
in engineering practice thanks to the major advances and progressive cheapening of
sensor technology in recent years. Under these circumstances, the integration of all
these monitoring data turns the damage identification task into a big data problem
where the use of data science and machine learning becomes increasingly necessary.

The comprehensive approach to SHM through the pattern recognition paradigm
has been particularly successful. This framework was first formalized by Farrar et al.
[4] around the idea that one can learn how to assign damage states or classes to
monitoring data through the study of relations or patterns in the response of the
monitored structure. The general methodology comprises four stages as sketched in
Fig. 1:

(1) Operational Evaluation: The first stage sets boundaries to the problem and
aids at tailoring the subsequent damage identification process by addressing
four questions. These include the motivation and economic justification for
the implementation of an SHM system, the definition of the different sources
of damage that may arise in the structure to be monitored, EOC in which

Fig. 1 Statistical pattern recognition paradigm for SHM
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the system may operate, and the data acquisition limitations under operating
conditions.

(2) Data acquisition/normalization and cleansing: The data acquisition process
concerns the selection of suitable excitation methods, sensor types and
coverage (number and location), and data acquisition/storage/transmission.
Data normalization regards the ability of separating changes in sensor readings
caused by damage from those caused by varying EOC. Finally, data cleansing
regards the process of phasing out corrupted or uninformative data from the
feature selection process.

(3) Feature extraction and information condensation: This stage relates the iden-
tification of data features that allow one to distinguish between the undamaged
and damaged conditions. Inherent in the feature selection process, the infor-
mation condensation step deals with the minimization of redundant features
and dimensionality reduction.

(4) Statistical model development: This last stage concerns the implementation of
statistical models mapping between the extracted features and the diagnosis,
that is to say, the class or tag assignment. Such models are thus intended to
enable the discrimination between features related to undamaged and damaged
classes. Generally, statistical models are classified in three categories: unsu-
pervised learning, supervised learning and semi-supervised learning as an
intermediate solution. A pattern recognition model can be trained in a super-
vised learning fashion when data are available from both the undamaged
and damaged structures. Conversely, when no information is available on
the damaged structure, the algorithms fall into the category of unsupervised
learning. In semi-supervised learning, a minimum amount of tagged training
data (data labelled as “damaged”) is available, but not sufficient for a full
supervised learning. In this regard, transfer learning is a popular alternative
to supervised learning, where tagged data are generated through a digital twin
of the structure (virtual damage scenarios). In either way, statistical pattern
recognition models analyse statistical distributions of the measured or derived
featureswith the aimof performingdamage identification. Thedamage identifi-
cation process is commonly organized in a hierarchical structure of increasing
complexity discussed by Rytter [5]: Level I: Detection; Level II: Localiza-
tion; Level III: Classification; Level IV: Extension; and Level IV: Prognosis.
All things considered, the final outcome of the paradigm of statistical pattern
recognition is a set of classes from which decisions can be made, closing the
data to decision (D2D) chain.

Within the paradigm of SHM as a statistical pattern recognition problem, this
chapter presents a journey through the different stages involved in the damage detec-
tion process by means of integrated SHM and unsupervised learning. Motivated by
an application-oriented philosophy, the presented theoretical concepts are illustrated
with real experimental data acquired from three different case studies of Italian
historic constructions: the Consoli Palace in Gubbio, the San Pietro bell-tower in
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Perugia and the Basilica of Santa Maria degli Angeli in Assisi. These three construc-
tions are being currently monitored with long-term integrated SHM systems, and
the monitoring data are continuously processed for damage detection purposes in
real time and remotely in the Laboratory of Structural Dynamics of the University
of Perugia. For a detailed description of the monitoring sites, sensor layouts and
monitoring conditions, readers may refer to [6–9].

The reason for focusing on unsupervised learning techniques is their more exten-
sive application and development in the realm of historic constructions. Note that
data from every conceivable damage scenario must be available to effectively apply
supervised learning. Collecting such data is always a challenging task, through either
modelling or experiments. This is particularly critical when dealing with historic
constructions, where making copies of the structure to induce controlled damage is
simply unfeasible.Modelling approaches such as finite elementmodelling also repre-
sent a formidable problem, since historic constructions are usually characterized by
geometrical and material complexities. The modelling of damage itself is even more
intricate, being possible to find multiple damage mechanisms with highly nonlinear
behaviours, not to mention the frequent existence of previous damage with uncer-
tain origin, extension and evolution. A major drawback of unsupervised learning is
that it usually limits to damage detection, and damage can only be located to some
extent in some particular cases. Nonetheless, level 1 diagnostic often suffices for the
maintenance of historic constructions, whose invaluable architectural and economic
value justifies the execution of in situ inspections every time any fault is detected. In
this light, the statistical pattern recognition paradigm previously depicted in Fig. 1 is
particularized for the integrated SHM of historic constructions in Fig. 2. The general
workflow is organized into hardware and software components:

• Hardware component: The hardware part is generally composed of a hetero-
geneous sensor network, a data transmission system (wired or wireless) and a
data acquisition (DAQ) system that permanently collects the monitoring data.
Computer files containing records of certain time duration are locally processed
or sent through the Internet or another transmission system to a server or the cloud.

• Software component: This component comprises a sequence of pattern recogni-
tion algorithms designed to translate the signals acquired by the sensing interface
into condition classes (damaged or undamaged). The computer implementation
follows the statistical pattern recognition paradigm previously sketched in Fig. 1:
(i) signal processing; (ii) feature Extraction; (iii) statistical pattern recognition;
and (iv) damage detection.

The remaining of the chapter focuses on the software component from feature
extraction todamagedetection.Note that the software structure furnished inFig. 2 can
be readily scripted in a sequential fashion, enabling real-time damage assessment and
minimizing the need for the intervention of qualified technicians. Readers interested
in more specific details on the computational implementation are referred to [10].
There, the authors reported about the architecture and algorithms included in two
proprietary software programs named MOVA and MOSS. These software codes are
currently being used in the Laboratory of Structural Dynamics of the University of
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Fig. 2 General workflow of the SHM of historic constructions under the paradigm of statistical
pattern recognition

Perugia for the SHM of several historic constructions, including the case studies
presented herein.

2 Feature Extraction

In the fields of statistics andmachine learning, feature selection and extraction are two
approaches for dimension reduction aimed at producing the possible most informa-
tive, distinctive and compact set of features to improve the success of data storage and
processing applications [11]. On the one hand, feature selection relates the process
of selecting the most relevant attributes of a database, overlooking redundant or non-
informative features. On the other hand, feature extraction creates low-dimensional
data sets by functional mapping of the original features. In the realm of SHM, feature
extraction relates the identification process of certain physical signatures or vari-
ables that are sensitive to the appearance of damage from the raw measurements
[12]. The effectiveness of the adopted feature extraction approach largely determines
the success of the damage assessment and the subsequent decision-making process,
since it is a fundamental axiom of SHM that sensors cannot directly measure damage
[13]. The design of the feature extraction strategy is conditioned by the operational
evaluation. This includes aspects such as the employed sensing technology, acces-
sibility limitations, the specific structural typology and engineering materials and,
most importantly, the damage mechanisms of concern in the particular monitored
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system. The ideal outcome is a low-dimensional feature set that is highly sensitive
to the condition of the structure. Such a selection is often not a trivial task, being
necessary to combine robust signal processing techniques with a priori statistics and
engineering judgement. A wide variety of damage-sensitive features can be found
in the literature such as simple signal statistics, frequency spectra, time–frequency
analysis features, or modal properties and derived signatures (e.g. mode shape curva-
ture, modal strain energy or flexibility) [12, 14, 15]. Model updating [1, 16] and time
seriesmodelling [17]methods represent other useful approaches formodel-based and
data-driven feature extraction, respectively. In essence, these techniques construct (or
learn) a physics- or data-based model of the monitored structure by exploiting moni-
toring data. Then, the model parameters or the residuals between new experimental
data and the model predictions can be used as damage-sensitive features [12].

In the context of vibration-based SHM systems, it is common to employ modal
properties (resonant frequencies, damping ratios and mode shapes) as damage-
sensitive features. To do so, a variety of automated operationalmodal analysis (OMA)
techniques has been proposed in the literature [18, 19]. These techniques allow
to automatically extract estimates of modal signatures from continuously recorded
ambient vibrations of sufficient time duration. Subsequently, the time series of modal
features are obtained by so-called frequency tracking techniques. A common practice
is to define a reference list or baseline modal properties extracted from a separate
ambient vibration test (AVT). Once defined, the time series of modal features are
traced by exploiting similarities between the reference modes and all the identified
sets of modal characteristics. To illustrate this, Fig. 3a furnishes the natural frequen-
cies identified by automated covariance-driven stochastic subspace identification
(COV-SSI) of the Consoli Palace from July to December 2020. The adopted auto-
mated OMA procedure analyses sets of stabilization diagrams obtained by varying
the order of the underlying state-space model and the number of blocks in the asso-
ciated correlation Toeplitz matrix [10]. Afterwards, a sequential procedure involving
noisemode elimination and hierarchical clustering is applied to discriminate between
spurious and physical modes [18]. On this basis, a frequency tracking approach was

Fig. 3 Identified resonant frequencies by automated OMAof the Consoli Palace (a) and time series
of meaningful resonant frequencies obtained by frequency tracking (b)
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adopted to extract the time series of physically meaningful and consistently iden-
tifiable modes as shown in Fig. 3b. Specifically, a set of ten natural frequencies in
the frequency broadband of 2–10 Hz were identified in a separate AVT and selected
as baseline modal characteristics (see [6] for further details). Then, the frequency
tracking method seeks for the most similar modes amongst all the identified ones in
terms of resonant frequencies andmodal assurance criterion (MAC) values. To do so,
similarity thresholds in terms of resonant frequencies and MAC values are defined
to pair modes from different data sets. In this particular case, maximum relative
differences of 5% (modes 1–9) and 10% (mode 10) are defined in terms of resonant
frequencies, while minimum MAC values of 0.8 are set up for all the modes.

Itmaybe alsouseful to utilizemode shapes as damage-sensitive features. These are
usually less affected by environmental conditions compared to resonant frequencies,
although the number of sensors required for their correct characterization is usually
larger. This motivates the use of mode shape components for damage detection,
particularly during the first months of monitoring when acquired data are not enough
for cleansing time series of natural frequencies from environmental effects. Mode
shapes can be characterized using several metrics, although the use of MAC values
between the identified modes and the reference ones is the most common approach.
This statistical indicator appraises the coherence or similarity between two arbitrary
complex mode shapes
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where the asterisk denotes the complex conjugate.AMACvalue of 1 indicates perfect
correlation between the mode shapes, while a value of 0 evidences no correlation.
The assessment of MAC values may be also used as a diagnostic tool to detect faulty
sensors, whose effect is often not so evident in terms of resonant frequencies. To
illustrate this, Fig. 4a furnishes the time series of MAC values of the modes of the
Consoli Palace previously reported in Fig. 3b. It is noted in this figure that a sudden
drop in the MAC values was found between 30 August and 20 October 2020. During
in situ inspections, it was found out that the slot of channel 6 in the acquisitionmodule
of accelerometers had been damaged during a storm event, although it was working
in an apparently normal way. This was confirmed by a statistical analysis of the
mode shapes as shown in Fig. 4b. In this figure, the modal components (normalized
to a maximum amplitude of 1) of the 12 channels of the SHM system are analysed
during three different stages; Stage 1 17 July–29 August 2020 (before fault), Stage
2 29 August–20 October 2020 (faulty period) and Stage 3 20 October–16 November
2020 (after fault). Substantial differences in the modal components of channel 6 are
noted between Sets 1 and 2. Once the slot was repaired in Set 3, themodal component
of channel 6 went back to its correct value. This analysis allowed us to disregard
the acceleration records of channel 6 during the faulty period as a feature selection
procedure for the subsequent pattern recognition steps.
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Fig. 4 Time series of MAC values (a) and analysis of the modal components of the fundamental
mode (b) in the Consoli Palace. The shaded areas in (b) represent the 95% confidence level of the
modal amplitudes

3 Data Normalization, Cleansing and Fusion

3.1 Statistical Models for Data Normalization

Data normalization constitutes the process of eliminating the variability in the
selected features due to variations in EOC [12]. Such variations may attain a leading
role in the variance of the selected features, exceeding in many cases the effects
caused by damage, especially at initial stages. For instance, Peeters and De Roeck
[20] found variations up to 18% in the first four resonant frequencies of the well-
known case study of the Z24 bridge. In the context of historic structures, positive
correlations between environmental temperature and resonant frequencies are often
observed in masonry structures, which is usually ascribed to thermal-induced crack
closure phenomena [9]. This is, for instance, the case of the Basilica of Santa Maria
degli Angeli as shown in Fig. 5a. It is noted in this figure that the resonant frequen-
cies of the first three modes exhibit both daily and seasonal fluctuations. Specifically,
mean variation ranges of 11.0, 14.3 and 17.3% are found per year for Modes 1, 2
and 3, respectively. A similar behaviour can be also observed in Fig. 5b in terms of
displacements measured by two linear variable displacement transducers (LVDTs)
bridging the crack faces of twomajor cracks of the Basilica. Both magnitudes exhibit
a similar positive correlation with the environmental temperature as shown in Fig. 6.
However, completely different correlations can be found in practice as shown in the
work by Gentile et al. [21] on the SHM of the Milan Cathedral in Italy. Their results
showed a negative correlation between resonant frequencies and temperature, which
was ascribed to the actions exerted by metallic tie rods in the building. Such nega-
tive correlations are also common in reinforced concrete and steel structures due
to decreases in the material Young’s modulus with increasing temperature [22, 23],
such as asphalt concrete pavements in roadway bridges. In general, many different
situations can be found depending on the specific structural typology, solar radiation
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Fig. 5 Time series of resonant frequencies and crack displacements of the Basilica of Santa Maria
degli Angeli from 2017 until 2020

Fig. 6 Correlation analysis
of the time series of ambient
temperature, crack
displacements and
fundamental frequency of the
Basilica of Santa Maria degli
Angeli from 2017 until 2020

and thermal capacitance, as well as other environmental factors such as humidity,
wind, snow or rain, or operational actions like traffic or human–structure interactions.
These effects translate into daily and seasonal fluctuations in the selected features
that may mask the appearance of damage, whereby their elimination represents a
crucial step to ensure the effectiveness of the damage identification.

Generally, two different strategies can be employed for data normalization: when
monitoring data of EOC are available (input–output) and when not (output only).
A wide variety of statistical models can be found for each category, amongst which
some of the most commonly used ones are listed below:
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Fig. 7 Flow chart of data normalization through statistical pattern recognition

• Input–output regression models: Multiple linear regression (MLR) [9], autore-
gressive with exogenous input model (ARX) [24], artificial neural networks [25],
support vector regression [26].

• Output only regressionmodels: Principal component analysis (PCA) [9], kernel
PCA (KPCA) [27], factor analysis (FA) [28], autoassociative neural networks
(AANNs) [29], time series models [30], cointegration (CI) [31].

The general workflow of the data normalization process is sketched in Fig. 7.
In general terms, statistical models for data normalization attempt to reproduce an
observation matrix Y ∈ R

N×n containing n features and N observations. Once
trained, the predictions of the model Y can be used to phase out the variance due to
EOC from Y forming the so-called residual error matrix E ∈ R

N×n , that is:

E = Y − Y. (2)

The statistical model must be trained using a set of tp feature samples defining
a baseline in-control population, often referred to as the training period. This base-
line data set must statistically represent the healthy state of the structure under
all the possible EOC, being a one-year period often adopted. When the system
remains healthy, matrix Y reproduces the part of the variance of the features driven
by EOC, while E only contains the residual variance stemming from modelling
errors. Conversely, if a certain damage develops, this only affects the data contained
in Y, while matrix Y remains unaltered. Therefore, matrix E concentrates the
damage-induced variance and is apt for being used for damage identification.

Given the widespread use of MLR and PCA as input–output and output only
statistical models for the elimination of EOC in engineering structures, respectively,
a concise overview and some exemplary numerical results are reported hereafter.
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Additionally, an overview of the use of clustering techniques for nonlinear data
normalization is also presented.

Multiple linear regression: MLR models exploit linear correlations between n
features (estimators) and a set of p independent exploratory variables (predictors),
which are typically taken from monitoring data of EOC. The predictions by MLR of
matrix Y are obtained as:

Y = Zβ, (3)

where Z ∈ R
N×(p+1) is an observation matrix composed of an N × 1 vector of ones

and an N × p matrix containing the time series of the p selected predictors, while
β ∈ R

(p+1)×n is a matrix of regression weights composed of intercept terms in the
first row and linear regression coefficients in the remaining p rows. The ordinary
least squares estimate of β reads:

β = (
ZTZ

)−1
ZTY. (4)

As an example, Fig. 8 shows the results ofMLR analysis of the resonant frequency
of the fourth mode of vibration (second flexural mode) of the San Pietro bell-tower
from 2018 until 2020. In the analysis, the ambient temperature measurements by
two thermocouples installed at the base of the cusp of the tower (T1 indoor and T2
outdoor) are used as predictors. Note that the model must be linear in its coefficients
contained in matrix β, while arbitrary nonlinear transformations such as exponential
or logarithmic functions can be applied to the predictors. As an example, the results of

Fig. 8 Multiple linear
regression analysis of the
resonant frequency of the
fourth mode of vibration of
the San Pietro bell-tower
from 2018 until 2020. Filled
blue circle experimental
data, open red circleMLR,
y = 4.91− 0.44T1 + 1.20T2,
open orange circleMLR,
y = 4.91−1.91T1+1.05T2+
1.65(T1)2 + 0.02(T2)2
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Fig. 9 Analysis of residuals of the statistical predictions by MLR of the fundamental frequency
of the San Pietro bell-tower from 2018 until 2020. Models accounting for linear (a) and quadratic
(b) temperature values

the MLRmodel using both linear and quadratic temperature values are also depicted
in Fig. 8. Ideally, the obtained residuals should be normally distributed; thereby,
statistical tests assessing the Gaussianity of the residuals can be used to evaluate the
quality of a statisticalmodel for data normalization. To this aim, a variety of statistical
metrics can be used from simple statistics to dedicated normality tests such as the
Kolmogorov–Smirnov or the Shapiro–Wilk tests. For illustrative purposes, Fig. 9
shows the analysis of the residuals obtained from the results in Fig. 8. It is noted that,
although the standard deviation of the residuals decreases when quadratic terms are
involved in the MLR, the kurtosis of the distribution of the residuals moves away
from 3 (theoretical value for an ideal Gaussian distribution) compared to the model
with linear terms, which indicates some overfitting degree.

Principal Component Analysis: PCA is a dimensionality reduction technique used
to transformdatabases into lower-dimensional subspaceswithout significant losses in
data variance.Mathematically, PCA is defined as an orthogonal linear transformation
that converts the data to a new coordinate system where the greatest variance of the
data lies on the first coordinate (called the first principal component), the second
greatest variance on the second coordinate and so on. Principal components (PCs) are
the eigenvectors of the covariance matrix of the original data; thereby, PCs constitute
an orthogonal basis of uncorrelated components. Denoting by Yn the normalized
version of matrix Y (i.e. the feature time series are transformed to have zero mean
and unit variance) and �Y ∈ R

n×n its covariance matrix, the PCs can be obtained by
the eigenvalue–eigenvector decomposition of �Y = YT

nYn/(N − 1) as:

�YU = US2, (5)
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where the eigenvectors of �Y are the columns of U (loading matrix) and represent
the PCs, and the eigenvalues are the diagonal terms of S2. The PCs are sorted in
descending order according to the diagonal terms of S2, which represent the propor-
tion of total variance in Y (i.e. tr(�Y) = n) explained by the PCs. The transformed
data matrix T ∈ R

N×n (scores matrix) is the projection of the original data in Yn

over the space spanned by the PCs in U:

T = YnU. (6)

In the realm of SHM, PCs providing the largest contributions to the variance are
assumed to encapsulate the effects of EOC on the features matrix Y. In this light,
matrix Y can be estimated by mapping back the reduced subset of PCs onto the
original data space. Specifically, if only the first l columns of matrix U are collected
into a reduced matrix U

∧

∈ R
n×l , matrix Yn (normalized) can be obtained as:

Yn = Yn

(
U
∧

U
∧T)

. (7)

The number l of PCs to be retained must be chosen according to their relative
contributions to the variance in the data. If this dimension is too small, part of the
EOCwill not be properly captured,while an excessively large number of retained PCs
will make the model suffer from overfitting with the subsequent loss of generality.
As an example, Fig. 10 shows the results of the PCA of six resonant frequencies
of the San Pietro bell-tower identified in the frequency broadband of 1–12 Hz. It is
noted that three PCs suffice to explain more than 90% of the variance in the resonant
frequencies. The comparison of the experimental identification results of the first
two resonant frequencies of the tower and the predictions by PCA using three PCs is
depicted in Fig. 11. It is noted that the PCA model can reproduce both the seasonal
and the daily fluctuations in the resonant frequencies induced by EOC.

Clustering for local statistical pattern recognition: Results such as those previ-
ously reported in Figs. 6 and 8 evidence that EOC may induce some nonlinear

Fig. 10 Principal component analysis of the resonant frequencies of the San Pietro bell-tower.
Principal components (a) and variance analysis (b). Resonant frequencies are reported in normalized
values
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Fig. 11 Comparison between experimental data and predictions by PCA of the first two resonant
frequencies of the San Pietro bell-tower. Filled red circle experimental data and filled blue circle
PCA

effects upon the selected features. A remarkable example of this circumstance is
when air temperature falls below zero, which leads to abrupt changes in the static
and dynamic response of structures due to the formation of ice crystals in thematerial
microporosity. A common approach to tackle such nonlinear correlations is the use
of nonlinear PCA through the implementation of AANNs. An alternative and more
general approach consists of the use of clustering techniques. Clustering is a tech-
nique from the field of data mining used to divide data sets into groups or clusters in
such a manner that the data points that are similar lie together in one cluster. In the
context of SHM, the idea is to separate the selected features into clusters exhibiting
differentiated EOC effects, in such a way that the overall nonlinear correlation can
be assumed to be cluster-wise linear. On this basis, piecewise extensions of any of
the previously mentioned statistical models can be constructed to handle nonlinear
correlations by leveraging the separation of features into clusters. A wide variety of
clustering techniques for big data analytics can be found in the literature (see, e.g.,
[32]), although Gaussian mixture models (GMMs) have proved particularly efficient
in the field of SHM. This approach assumes that the probability density function
p(Y) of the data set in the training period Y (in general, non-normally distributed)
can be represented as a linear superposition of K Gaussian components as:

p(Y) =
K∑

k=1

πkN
(
Y|μk,�k

)
. (8)

Each component of themixture is defined as aGaussian distributionN (
Y|μk,�k

)

withmean and covariancematrix denoted byμk and�k , respectively. The parameters
π = [π1, . . . , πK ]T in Eq. (3) are called the mixing coefficients, and they range
between 0 and 1 (0 ≤ πk ≤ 1) and sum to one (

∑K
k=1 πk = 1). Themodel parameters,

μ, � and π, are fitted by minimizing the log-likelihood function:
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lnp(Y|π,μ,�) =
tp∑

n=1

ln

{
K∑

k=1

πkN
(
Y|μk,�k

)
}

. (9)

The maximum likelihood solution for the parameters (μ, � and π) is estimated
using the iterative expectation–maximization (EM) algorithm. In the expectation (E)
step, the parameters (initial guess at the beginning) are held fixed and the posterior
probability of assigning xn to the k’s cluster is given by the so-called responsibilities
γ (znk) as:

γ (znk) = πkN
(
Yn|μk,�k

)

∑K
j=1 π jN

(
Yn|μ j ,� j

) , (10)

where znk is an element of a K -dimensional binary random variable z with a 1-of-
K representation. Only one element in z is equal to 1, and all other elements are
0. Then, in the maximization (M) step, the parameters are re-estimated using the
posterior probability calculated in the previous E step as follows:

μnew
k =

tp∑

n=1

γ (znk)Yn,�
new
k =

tp∑

n=1

γ (znk)
(
Yn − μnew

k

)(
Yn − μnew

k

)T
(11)

πnew
k = Nk

N
, Nk =

tp∑

n=1

γ (znk). (12)

The log-likelihood in Eq. (3) can then be evaluated. Convergence of either the
parameters of the log-likelihood is checked, and if the criteria are not satisfied, the
process is iterated using the updated data values until the criteria are met. Once the K
clusters have been defined in the training period, new data samples can be assigned
to the cluster with the least Mahalanobis distance.

3.2 Data Cleansing and Residual Analysis

Outliers are always present to a certain degree in every feature set in SHM, being the
result of manifold sources such as noise, identification errors, faulty sensors, imper-
fect mounting of sensors and more. The presence of such outliers in the training data
set has twomajor pernicious effects. On the one hand, outliers affect the effectiveness
of statistical models for pattern recognition, biasing the model parameters. On the
other hand, the ability of damage classification methods based upon novelty analysis
to detect early-stage damage is also affected by outliers. As it will be discussed in
Sect. 5, novelty analysis techniques heavily rely on the determination of statistical
moments of the damage-sensitive features in the training population. The presence of
outliers will bias suchmoments, reducing the damage sensitivity of the classification.
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An extensive variety of methodologies for outlier elimination can be found in
the literature, including statistical, clustering, graph, ensemble and learning methods
(refer to [33] for a comprehensive overview). In this chapter, we focus on a simple
but effective methodology based upon the minimum covariance determinant (MCD)
method. The MCD method [34] is a common technique in statistical analysis used
to obtain robust estimates of the sample covariance of a data population. The MCD
method seeks a sample subsetwithin amultivariate data set thatminimizes the covari-
ance matrix. Consider a training population of featuresY containing tp samples, and
let H1 ⊂ {

1, . . . , tp
}
be an h-subset, that is, |H1| = h. Beingμ1 and�1 the empirical

mean and covariance matrix of the data in H1, the Mahalobis distances of all the data
samples in the training population read (det(�1) �= 0):

d1(i) =
√

(Yi − μ1)
T�−1

1 (Yi − μ1) for i = 1, . . . , d (13)

Now take H2 another h-subset such that {d1(i); i ∈ H2} = {(d1)1:d , . . . , (d1)h:d}
where (d1)1:d ≤ (d1)2:d ≤ · · · ≤ (d1)d:d are the ordered distances, and compute
μ2 and �2 based on H2. Then, det(�2) ≤ det(�1) holds with equality if and only
if μ2 = μ1 and �2 = �1. This process, also known as C-step, can be iteratively
repeated. If det(�2) = 0 or det(�2) = det(�1), the algorithm stops; otherwise,
anotherC-step is run yielding det(�3) and so on. The sequence det(�1) ≥ det(�3) ≥
det(�4) ≥ . . . is nonnegative and hence convergent, so there must be an index s
such that det(�s) = 0 or det(�s) = det(�s−1). An application example is shown
in Fig. 13 for the resonant frequencies of the San Pietro bell-tower between 2019
and 2020. The dimension h of the subsets has been selected as 0.8d, and once
the algorithm converged, one per cent of the samples with the largest Mahalanobis
distances with respect to the converged sample subset is considered as outliers.

3.3 Data Fusion

Data fusion is the integration of information from multiple sources into a new
database to enhance the observability and identifiability of a system [12]. This
new database is intended to be more informative, reducing uncertainties in the
damage identification by increasing the information completeness and enhancing the
decision-making. In general, data fusion can be achieved in three levels, namely data
level, feature level and decision level [35]. In data-level fusion, the rawmeasurements
frommultiple sensors are directly combined before further processing. Feature-level
fusion directly operates on statistical features or signatures of heterogeneous nature.
Finally, in decision-level fusion, decision-making is performed by integrating the
decisions achieved from different data sources through particular combination rules.
Some common data fusion techniques are data registration, Bayesian probabilistic
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approaches, Dempster–Shafer (DS) evidential approach, fuzzy reasoning, state esti-
mation, machine learning algorithms and weighted combinations. For a comprehen-
sive review on data fusion techniques applied to SHM, readers may consult reference
[36].Within the framework of unsupervised SHM, feature-level fusion is particularly
well suited. Note that the statistical models presented in Sect. 3.1. work on arbitrary
sets of estimators and predictors, irrespectively of the nature of the sensor system
used for their extraction. Therefore, it is possible to use feature sets combining data
of very diverse nature and fuse themwithin the novelty analysis presented in the next
section, constructing hybrid control charts. For instance, it is possible to use static
data to eliminate the effect of EOC over dynamic features and vice versa.

4 Damage Detection Using Control Charts

Damage detection through unsupervised statistical pattern recognition is commonly
performed by novelty analysis. The main idea is that, since the data normalization
algorithm is trained using data characterizing the healthy condition of the structure,
it is possible to establish the structural diagnosis based on the analysis of deviations
between the predictions of the algorithm and newly acquired data. If an anomaly is
detected, this implies that the system has deviated from its normal condition, possibly
due to the appearance of damage. As anticipated when discussing the implications of
unsupervised learning, novelty analysis is a two-class problem; that is to say, features
are only classified as damaged or undamaged.Methods for novelty detection include:
outlier analysis, kernel densitymethods, AANNs, Kohonen networks, growing radial
basis function networks and control charts [37]. The use of statistical process control
charts is particularly popular in unsupervised SHM due to their relative simplicity
and direct automation. As sketched in Fig. 14a, control charts furnish in time a certain
statistical distance accounting for nonconformities in the distribution of the residuals
in E from Eq. (2) with respect to the healthy baseline [12]. On this basis, out-of-
control processes, possibly associated with damage, are detected in the shape of data
points violating an in-control region. A wide variety of control charts is available in
the literature, amongst which the most popular ones are the Shewhart, cumulative
sum (CUSUM), exponentially weighted moving average (WEMA) and Hotelling’s
T 2 control charts.

Hotelling’s T 2 control chart has proved proficient in a number of vibration-based
SHMapplications. The plotted statistic T 2 (squaredMahalanobis distance) is defined
as [38]:

T 2
i = r

(
E− =

E
)T

�−1
0

(
E− =

E
)
, i = 1, 2, . . . , N/r (14)

where r is an integer parameter referred to as subgroup size, E is the mean of

the residuals in the subgroup or the last r observations, while
=
E and �0 are the

mean vector and covariance matrix of the residuals in the in-control training period.



264 E. García-Macías and F. Ubertini

Considering sample estimations of
=
E and �0, the upper control limit (UCL) can be

derived as [38]:

UCL = n(k + 1)(r − 1)

k(r − 1) + 1 − n
F1−α;n,kr−k−n+1 (15)

where the term F1−α;n,kr−k−n+1 denotes (1 − α)100%confidence level of the F distri-
butionwithn and kr−k−n+1degrees of freedom.The definition ofUCL has a strong
influence on the sensitivity of a control chart to detect damage; a too low value will
lead to an excessive number of false alarms, while a too high value may not be able
to detect damage. In order to optimally select UCL, as well as to compare the effec-
tiveness of different statistical models, the analysis of simulated or synthetic damage
scenarios is particularly helpful. For instance, a common approach is to include shifts
in the mean values of the time series of estimators (e.g. resonant frequency decays
obtained through a nonlinear modal analysis of a finite element model) and simu-
late control charts under different damage scenarios. As an example, Fig. 15a shows
Hotelling’s control charts of the residuals obtained using MLR and PCA for the data
normalization of the first eight resonant frequencies of the Basilica of Santa Maria
degli Angeli. Ambient temperature measurements (outdoor and indoor) are used as
statistical predictions for the MLR model, while 2 PCs explaining more than 90%
of the total variance in the resonant frequencies were used for the PCA model. To
evaluate the effectiveness of the statistical models for damage detection, an artificial
damage scenario was introduced after 1 January 2020. The artificial damage consists
in a constant shift in the time series of the fundamental frequency of 0.5% of its
mean value in the training period. Then, the quality of the damage classification
can be appraised through the analysis of the confusion matrix, including receiver
operating characteristic (ROC) curves, precision–recall curves, Youden’s indexes or
F1-scores. Figure 12 shows an example of a ROC curve and the determination of
the optimal UCL as the cut-off threshold yielding the maximum vertical distance
between the ROC curve and the diagonal curve (line of no discrimination). The area
under the ROC curves (AUC) is a simple metric often used to evaluate the quality
of the classification and compare different statistical pattern recognition approaches.
From the particular examples shown in Fig. 15a, the resulting ROC curves are shown
in Fig. 15b. It is noted that the MLR model slightly outperforms the PCA model,
with AUC values of 0.87 and 0.85, respectively. These differences are also notice-
able in the control charts in Fig. 15a, where two UCLs corresponding to confidence
levels of 99% (danger) and 95% (warning) are represented. Text inserts indicate
the proportion of data points between the 95 and 99% UCLs and above the 99%
UCL. For instance, it is noted that the proportion of outliers in the assessment period
varies from 4 to 9.48% and to 7.65% for the PCA and the MLR models, respec-
tively. Interestingly, although at first glance the PCA model may seem to provide
better damage identification reporting a higher proportion of outliers in the damaged
period, the number of false alarms in the undamaged period is larger compared to
those obtained using MLR. Global metrics such as the AUC of the ROC curves
englobe the performance of a statistical pattern recognition model for minimizing
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the number of false alarms while offering high discrimination capabilities of true
out-of-control processes.

Fig. 12 Clustering results using aGMM(a) and statistical predictions using a cluster-wise extension
of the MLR model of the fourth resonant frequency of the San Pietro bell-tower (b)

Fig. 13 Outlier identification in the database of the first six resonant frequencies in the San Pietro
bell-tower between 2019 and 2020 using the MCD method. Filled blue circle experimental data
and filled red circle outliers
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Fig. 14 Schematic representation of damage detection using control charts (a) and quality
assessment through ROC curves (b)

Fig. 15 Hotelling’s control charts of the residuals of the first eight resonant frequencies of the
Basilica of SantaMaria degli Angeli consideringMLR and PCA (2 PCs) (a), and quality assessment
in terms of ROC curves (b)

5 Conclusions and Final Remarks

This chapter has gone through the main stages in damage detection through unsuper-
vised integrated SHM according to the most recent literature, and the effectiveness
of the presented techniques has been illustrated with real field applications. Overall,
the advanced state of development of damage detection through novelty analysis has
been evidenced, being possible to completely automate thewhole process. Clustering
techniques have been presented as a general and effective approach for accommo-
dating nonlinear environmental effects, and the use of outlier removal techniques
along with the analysis of ROC curves has been shown suitable for the optimal defi-
nition of statistical process control charts. Most pressing open problems in the field
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relate to the extension of these techniques to higher diagnostic levels, specifically
to local/global multiclass damage identification. Researchers have the challenge of
effectively blending the injection of engineering/physics knowledge into the learning
and decision phases with advanced artificial intelligence techniques. In this regard,
the combination of integrated long-term SHM with digital twins within a transfer
learning framework renders a promising direction for future developments.
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Environmental Influence on Modal
Parameters: Linear and Nonlinear
Methods for Its Compensation
in the Context of Structural Health
Monitoring

Carlo Rainieri

Abstract Modal-based structural health monitoring (SHM) detects damage and
degradation phenomena from the variations of the modal parameters over time.
However, the modal parameter estimates are also influenced by environmental and
operational variables (EOVs) whose effects have to be compensated. Modeling the
influence of EOVs on modal parameters is very challenging, so black-box models,
such as regression models, are often adopted as an alternative. However, in many
applications, the set of measured EOVs is incomplete or the factors influencing the
estimates cannot be identified or measured. In these conditions, output-only tech-
niques for compensation of environmental and operational effects are an attractive
alternative. Different linear as well as nonlinear methods for the compensation of
the environmental and operational influence on modal parameters in the context of
modal-based SHM are reviewed in the present paper. Real datasets collected from
vibration-based monitoring systems are analyzed, and the results are presented and
discussed to illustrate the applicative perspectives and possible drawbacks of the
selected methods.

Keywords Modal-based SHM · Environmental influence · Regression model ·
Principal component analysis · Kernel PCA · Second-order blind identification

1 Introduction

The safety of civil engineering structures may be affected to a large extent by degra-
dation phenomena due to aging, severe environment or fatigue, as well as by damage
induced by hazardous events, such as earthquakes, fire or explosions. Thus, peri-
odic structural assessment and maintenance become critical, above all in the case of
strategic structures, such as bridges and hospitals, or densely occupied structures.
Structural survey as well as destructive and non-destructive investigations are the
conventional approaches usually applied to support the structural safety assessment.
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However, the local nature of tests, issues related to the subjectivity of the expert
judgment and limited frequency of inspections and the costs of detailed structural
assessment have raised the interest toward alternative approaches that are able to
automatically provide information about the structural health and performance in
near real-time to a remote user. In this context, the modern structural health moni-
toring (SHM) technologies are very appealing because of the opportunity to carry
out timely damage detection. Modal-based SHM, in particular, is currently a very
active field of research even if the original idea dates back to a few decades ago.
SHM basically assumes that any change of the structure that adversely affects its
functionality or load bearing capacity can be referred to as damage [1]. In modal-
based SHM, the relationship between the physical properties of the structure (i.e.,
mass, stiffness, damping) and itsmodal parameters is exploited for damage detection.
In fact, changes in the structural response associated to variations of stiffness due
to cracking in concrete or masonry structures of external (soil settlements) and/or
internal restraints (loosening of tightening force in bolts of steel structures) or ofmass
may suggest an anomalous structural behavior. Taking into account the relationship
between mass and stiffness on one hand, and modal properties on the other hand,
the latter are used as damage-sensitive features in the context of modal-based SHM,
and remote damage detection is based on the analysis of the variations of damage-
sensitive features defined in terms of modal parameters. In spite of the increasing
interest about this technology in civil engineering, practical applications to civil
structures are still quite limited because of some shortcomings affecting the general
applicability and reliability of the technology.

Two major approaches can be identified in the field of modal-based SHM: model-
based and data-driven techniques [1]. Model-based techniques require the solution
of an inverse problem to identify damage by updating a numerical model [2, 3]; as a
consequence, a high degree of engineering knowledge and heavy hardware and soft-
ware resources are usually needed. The main drawback is related to the uncertainties
associated to the setting and refinement of the numericalmodel,while themain advan-
tage with these techniques is the potential to cover all levels of SHM, from damage
detection to damage prognosis [4]. Data-driven techniques, on the contrary, set data-
driven models to characterize the operational response of the structure under healthy
conditions so that anomalies are identified from changes in the damage-sensitive
features with respect to the reference (baseline) condition [5]. They are character-
ized by lower requirements in terms of engineering knowledge and hardware and
software resources, so they better fit the needs of continuous monitoring and near
real-time damage detection. However, their effectiveness is limited to damage detec-
tion and damage location [1]. Nevertheless, these techniques currently appear as
fairly mature to make the transition from research to engineering practice.

The main obstacles to the wide application of data-driven SHM systems are the
availability of automated procedures for automatic feature extraction and robust
anomaly detectors [4]. The first element still represents a challenge in research, even
if a number of automated data processing procedures have been developed in recent
years to extract the most widely-used features (eigen frequencies and mode shapes)
from vibrationmeasurements (the interested reader can refer to [6, 7] for an extensive
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review). The second element, instead, usually exploits approaches borrowed from
statistics and machine learning for anomaly detection (the interested reader can refer
to [1] for an extensive review).

Different damage-sensitive features based onmodal parameters have been defined
and tested over the years [1, 8], but the possibility of getting accurate estimates even in
the presence of a few installed sensors [9] makes natural frequencies very appealing
as damage sensitive features. The most significant drawback with the use of natural
frequencies for damage detection is their high sensitivity to damage as well as to
the influence of environmental and operational variables (EOVs) [10–15]. Since
EOVs yield changes in natural frequency estimates that are often of the same order
of magnitude of those due to damage, an effective compensation of the influence
of EOVs on natural frequency estimates plays a crucial role in the development of
reliable modal-based SHM systems that are able to minimize the occurrence of false
or missed alarms.

The nonlinear relationship with the mechanical properties of materials and the
boundary conditions and the usually large thermal inertia of structures make direct
modeling of the influence of EOVs (and, in particular, temperature) on the modal
properties of a structure very challenging. This is the reason why black-box models
are usually adopted as the preferred alternative. If experimental measurements of the
EOVs influencing the selected damage features are available, a model able to map
the changes of the features with the EOVs can be set [14, 16–18]. As an example, a
linear regression model can be developed to this aim [14], even if more sophisticated
modeling techniques, such as neural networks and support-vector machines [17, 19],
have been also applied to this aim. While these alternative approaches show high
prediction capabilities, they are more computational demanding than the simple
regression models [14]. In any case, it is worth mentioning that since the developed
black-box model does not refer to physical laws, its applicability is restricted to
the structure whose monitoring data have been used for its setting. Another common
drawbackwith the abovemethods concerns the identification of the EOVs tomeasure
and the selection of the positions of the corresponding sensors. The latter might be
very challenging in the case of full-scale structures because the EOVs are often
not uniform and time dependent [9, 20]. If there is a single relevant environmental
variable, it might be not constant along the structure. This is the case, for instance, of
the temperature. In fact, differences occur among temperature of air, indoor surfaces
and outdoor surfaces of the monitored structure as a result of solar radiation and
thermal inertia [5, 9, 20].Whenmultiple EOVs [9, 14] are responsible for the changes
of the dynamic properties, multicollinearity problems associated to the selection of
regressors may also occur [14].

In order to circumvent all the above-mentioned issues, methods not requiring
EOVmeasurements [5, 10, 13, 15] are often adopted as an alternative to the previous
ones. The basic idea behind those methods is that the EOV influence on the selected
damage feature lies in a subspace which can be identified from the time histories of
the damage feature itself and that the effect of damage lies in a different subspace.
As a result, the effects of EOVs on one hand and damage on the other hand can
be effectively discriminated as long as the variations of the modal properties due to
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damage are in some way orthogonal or uncorrelated to those caused by the EOVs
[10]. However, the effectiveness of such methods often depends on the dimension
of the vector of monitored features that must be large enough to make possible
the identification of the subspace which the effects of EOVs belong to. In other
words, multivariate data with enough redundancy to remove the unwanted effects
using the data correlation structure must be available, and the training data in the
healthy condition of the structure should include measurements under a wide range
of environmental or operational conditions [21].

Most of the models assume linear correlation between the measured variables or
features. However, the environmental or operational variations often cause nonlinear
effects. For example, as the temperature falls below zero, its influence on the natural
frequencies can change abruptly. This often results also in nonlinear correlation
between the features, especially if the data dimensionality is low [22]. On the other
hand, a linear model may be sufficient with a large data dimensionality, because the
correlation structure may become linear [21]. As an alternative, when the dimen-
sion of the feature vector is insufficient, nonlinear methods can be applied. They
rely on the identification of a nonlinear manifold instead of a linear subspace [23]
and, as such, they are usually more complex and computational demanding. The
potential of nonlinear approaches for the effective compensation of EOV influence
on modal parameters is confirmed by the increasing number of studies on this topic
reported in the literature. Different approaches have been tested to this aim. The
use of autoassociative neural network is described in [24], while the application of
Gaussian mixture model (GMM) for the compensation of nonlinear environmental
or operational effects without the measurement of the underlying variables is illus-
trated in [22]; in a similar way, kernel principal component analysis (kPCA) has
been applied for the compensation of EOV influence on natural frequencies [25] and
mode shapes [26].

The primary role of techniques for compensation of environmental and operational
influence on damage-sensitive features in the context ofmodal-based SHMmotivates
the present paper, aimed at illustrating the applicative perspectives and possible
drawbacks of selected linear aswell as nonlinearmethods for the compensation of the
influence of EOVs on modal parameters. The theoretical background of the selected
methods is summarized in Sect. 2, while Sect. 3 illustrates and discusses relevant
results obtained from their application to real datasets collected from vibration-based
monitoring systems.

2 Methods for EOV Influence Compensation

The literature review reported in the previous section remarks how the compen-
sation of the influence of EOVs on damage-sensitive features (and, in particular,
natural frequency estimates) has been carried out by applying a variety of methods,
depending also on the application. While promising results have been obtained in
many cases, large computational efforts characterize some of the applied procedures.
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This might represent a limitation to their extensive application in the context of data-
driven SHM, when large volumes of data become available and need to be processed
in a relatively short time for timely damage detection. As a result, in this paper,
attention is focused on selected linear as well as nonlinear procedures for compen-
sation of EOV effects on modal parameter estimates: only methods characterized
by limited computational burden even in the presence of relatively large amounts of
data (typically, some months of monitoring data) are herein considered.

This section briefly presents the theoretical background of the methods used in
this study, pointing out relevant details specifically related to removal of the EOV
influence on natural frequency estimates. Among the linear methods for compensa-
tion of EOV effects, multiple linear regression (MLR), principal component analysis
(PCA), and second-order blind identification (SOBI) are considered, while kernel
PCA (kPCA) is applied as nonlinear compensation method.

2.1 Multiple Linear Regression

MLR [5] can be referred to as an input–output technique for compensation of the
influence of EOVs on modal parameter estimates. When applied to this aim, MLR
requires measurements of the EOVs in order to formulate the mathematical model
establishing how the modal properties vary with the selected EOVs. Univariate as
well as multivariate MLRmodels can be defined.With univariate models the relation
between a single dependent variable and several independent variables, the predic-
tors, is set to predict future values of the dependent variable when only the predictors
are known.

However, the variability of the natural frequencies of different modes often
depends on the same predictors R, so multivariate MLR can be applied:

f = RB + E (1)

where f , B, and E hold the natural frequencies of the monitored modes, the coeffi-
cients of theMLRmodel, and the prediction errors associated to the analyzed modes,
respectively.

The objective of regression analysis is the estimation of the model coefficients
so that the best fit between model predictions and observations is obtained. They
are usually obtained through the least squares method. Regression models can be
also classified as static or dynamic. The former assume that the value of the output
variable at a given time instant depends only on the values of the predictors at the
same time instant. The latter, on the contrary, assume that the output variable at the
current time instant also depends on the values of the predictors at previous time
instants. Dynamic regression is often used to model phenomena characterized by
delayed effects, such as heating and cooling processes in the presence of relevant
thermal inertia.
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In the context of modal-based SHM, the natural frequencies predicted by the
regression model at the measured EOV values and those experimentally estimated
are compared in order to compensate the environmental and operational influence. In
fact, assuming that the regression model completely describes the variations of the
natural frequency estimates with varying environmental and operational conditions,
the increase in the prediction error is an indicator of the deviation of the structure
from its normal operating condition.

2.2 Principal Component Analysis

Output-only compensation methods are an attractive alternative to MLR and other
methods based on direct measurements of relevant EOVs. In fact, it often happens
that direct measurements of the EOVs influencing the dynamic properties of the
monitored structure are not available. PCA [13] is currently awell-established output-
only method for compensation of EOV effects in the context of modal-based SHM.
Given a multivariate dataset, the standard PCA makes a linear projection of the data
aimed at expressing the covariance structure of the original set of variables as a linear
combination of the variables themselves. In the framework of modal-based SHM,
the compensation of environmental effects by PCA starts by turning the observed
natural frequencies f into a new set of uncorrelated variables z:

z = T f (2)

where the transformation matrix T is obtained from the singular values decomposi-
tion of the correlation matrix of f . Once the reference transformation matrix Tref is
computed from data referring to the healthy state of the monitored structure, Eq. (2)
can be applied again to obtain the principal components for the current dataset; they
can be remapped afterwards in the original space as follows:

f
∧

= T re f
T T f (3)

where the superscript T denotes transpose. If only the first principal components,
accounting for most of the variance in the data, are retained, a dimensionality reduc-
tion is achieved by applying Eqs. (2) and (3). As a result, the factors responsible
for most of the variability in the data (such as temperature, and other significant
EOVs) are retained, while secondary effects, such as those due to random errors
in the identification of the natural frequencies, are neglected. On the analogy with
MLR, the prediction error between the observed and the remapped frequencies E
can be computed:

E = f − f
∧

(4)
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Such residues are insensitive to the environmental and operational factorsmodeled
by the retained principal components, so they can vary only as a result of damage
and, as such, they can be used as damage sensitive features.

2.3 Second Order Blind Identification

The use of SOBI for compensation of environmental and operational effects on
natural frequencies in the context of modal-based SHM has been recently proposed
[27]. SOBI is a Blind Source Separation technique [28] and, as such, it aims at
recovering the so-called sources, that is to say, an underlying set of signals from
records of their mixture only. In the context of the present application, the sources
are estimates of the unknown EOVs obtained from the time series of observed natural
frequencies varying under the influence of those EOVs. A significant assumption of
the method is that the natural frequencies are linearly related to the unknown EOVs
as follows:

f (t) = As(t) + e(t) (5)

where both the mixing matrix A and the sources s are obtained from the natural
frequency time series. Some noise e can be also present in the data. Under the
assumption of uncorrelation of the sources among them and with the noise, the
eigenvalue decomposition of the zero-lag covariance matrix allows the estimation of
the whitening matrix from the largest eigenvalues and the corresponding eigenvec-
tors, and of the noise variance from the remaining ones. Multiplying the measured
data by the whitening matrix, the whitened data are obtained and used to compute the
covariance matrix at different time lags. Applying the joint approximate diagonal-
ization [29] to a number of time-shifted matrices, the mixing matrix and the sources
are extracted from the measured data by exploiting their time coherence.

In the context of modal-based SHM, the compensation of environmental and
operational effects by SOBI starts by estimating the reference mixing matrix Aref
from a set of natural frequency estimates collected when the monitored structure
is healthy. Once additional datasets are collected, the corresponding mixing matrix
and sources are estimated; combining the sources associated to the current dataset
with Aref allows predicting how the natural frequencies vary because of the EOVs
represented by the identified sources. However, when setting the model of the envi-
ronmental variability of natural frequencies, multiplying the referencemixingmatrix
by the sources estimated from the current dataset is not sufficient. Since the blind
identification problem is solved up to a scaling and a permutation, the variances of the
identified sources remain unknown, and the sources are, by convention, normalized
to have unit variance. This circumstance implies the application of an appropriate
scaling factor to avoid bias. It can be obtained as the ratio between the first singular
value of the referencemixingmatrix and that of themixingmatrix estimated from the
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current dataset [27]. Once the model f
∧

(t) of the environmental variability of natural
frequencies is set, subtracting the predicted natural frequency time series f

∧

(t) from
the measured data f (t) yields residues, which are independent of the environmental
and operational factors represented by the sources and, as such, can vary only as a
result of damage. As a consequence, they can be used as damage sensitive features
in the context of modal-based SHM.

Two relevant aspects in the practical application ofSOBI for compensationof envi-
ronmental effects concern the estimation of the number of sources, which cannot be
larger than the number of analyzed natural frequency time series, and the possibility
of estimating also the pattern of the unknown EOVs [27].

The number of sources that are responsible for the variability of the measured
natural frequencies can be estimated as the number of non-zero eigenvalues of the
zero-lag covariancematrix of themeasured data [27]. The influence ofmultiple EOVs
determining the variability of natural frequency estimates can be modeled [27]. In
addition, the estimation of the patterns of the unknown EOVs gives the opportunity
to gain a fundamental insight in the causes of that variability. In fact, the ability
of SOBI to trace the patterns of the EOVs up to a scaling and an offset provides a
fundamental informative support to the analysis of the operational response of the
monitored structure, and it may circumvent the problem of their measure when they
cannot be identified in advance or when the most appropriate sensor location cannot
be predicted. The interested reader can refer to [27] for more details.

2.4 Kernel PCA

The effect of EOVs on the modal properties of structures might be nonlinear and
it can affect the monitored features in different ways. Thus, the use of nonlinear
data processing procedures, such as kPCA, for modal-based SHM under changing
environmental conditions may be advantageous. In the context of the present study,
kPCA has been selected among other nonlinear methods for compensation of the
influence of EOVs on natural frequencies because it is robust and computationally
efficient; moreover, the type of nonlinearity has not to be explicitly defined. However,
it requires the setting of two parameters, which influence the quality of the results,
as explained in the following.

The compensation of environmental and operational effects on natural frequencies
by kPCA follows the approach described in [25].Anonlinear relationship of the form:

�
(
f k

) = H0uk + ek (6)

is assumed between the selected damage features f k (the natural frequency esti-
mates in the present case) and the unknown EOVs uk, where the operator � denotes
the nonlinear mapping of damage features onto a high-dimensional feature space,
and the residue vector ek holds the information about the misfit between measured
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data and model predictions; by taking advantage of the Mercer’s theorem [30], the
kernel function k:

k
(
f i , f j

) = �
(
f i

)T
�

(
f j

)
(7)

can be specified instead of the nonlinear mapping �. Solving the following
eigenvalue problem:

KV = V� (8)

the eigenvector matrix V can be obtained, and it can be partitioned as follows:

V = [V 1V 2], V 2 ⊂ Rnt×(nt−nu) (9)

to evaluate the error norm in the feature space as:

‖ek‖2 = K T
test V 2V T

2 K test (10)

where K is the nt × nt kernel matrix computed on the training dataset, and Ktest

is the nt × ns kernel matrix computed between the training samples and the entire
dataset. The quantities nt, ns, and nu denote the number of training samples, the total
number of samples, and the number of principal components in the feature space,
respectively. The superscript T denotes transpose.

The Gaussian radial basis function (RBF) is applied as kernel function in agree-
ment with [25]. It is a general-purpose kernel mostly applied in the absence of prior
knowledge [31]. Such a kernel function implicitly defines an infinite-dimensional
mapped feature space by setting a single positive parameter σ:

k
(
f i , f j

) = e− ‖ f i− f j ‖2
2σ2 (11)

The misfit in the feature space can be computed once the parameters nu and σ

have been set. Their values are set in the following in agreement with the approach
reported in [25] and here summarized. The number of principal components nu is
set so that a given fraction of the normal variability (usually, 99%) is accounted for.
This ensures that the resulting value of nu is large enough to account for the normal
variability of the estimates due to EOVs but also small enough to be sensitive to
anomalies. The value of σ is instead selected as the one maximizing the Shannon’s
information entropy [32]. The interested reader can refer to [25] for more details
about the theoretical background of the method.
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3 Applications

3.1 Pre-stressed Steel Cable

The first case study under analysis concerns the compensation of the environmental
influence on the fundamental frequencies of a pre-stressed steel cable: the analyzed
natural frequency time histories were collected by a monitoring system over a period
of about two months [7].

The monitored pre-stressed steel cable connected the heads of two columns
supporting one of the steel arches of the structure of the University Sports Hall
in Campobasso, Southern Italy. Figure 1 shows the steel arches and the monitored
steel cable (on the right in the picture). The cable was equipped with a monitoring
system consisting of four piezoelectric accelerometers (10 V/g sensitivity, ± 0.5 g
full-scale range), a thermocouple for temperature measurements and a 24-bit data
acquisition system.

The analyzed dataset holds the natural frequencies of the three fundamentalmodes
of the cable. The reduced number of monitored modes is, in principle, unfavorable
to the application of linear PCA and SOBI, because those methods require a number
of monitored modes larger than the number of (unknown) factors responsible for the
variations of the natural frequencies. However, previous studies have shown that the
natural frequency variations were due to temperature only [7]. In addition, while the

Fig. 1 Outdoor view of the University Sports Hall in Campobasso, Southern Italy, and of the
monitored pre-stressed steel cable (on the right in the picture)
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relationship between thenatural frequencies and the cable temperature is theoretically
not linear, the experimental measurements have shown that, at least for the range of
temperatures recorded during the monitoring period, this relation is approximately
linear, so linear methods for compensation of EOV influence can be applied [27].

The details of application of MLR, PCA and SOBI to this dataset are reported
elsewhere [27]. Themost relevant results are summarized here and elaborated further
to highlight advantages and drawbacks of the different approaches.

Basic statistical analyses of the data have shown that the temperature yields up to
4.5% of variation of natural frequencies with respect to the corresponding average
values [27]. Thus, the large environmental variability of natural frequencies can
prevent early damage detection [11], and its effective compensation is fundamental
to enhance the reliability of SHM.

When setting the models for prediction of the environmental variability of natural
frequencies, the dataset has been divided into two parts of equal length. The first part
has been used to train the model, while the second part has been used to assess the
predictive performance and, as a consequence, the capability of the different methods
of compensating the temperature influence on natural frequency estimates.

MLR requires explicit temperature measurements to be applied. The recorded
temperature over the considered monitoring period is plotted in Fig. 2; this shows
how the temperature range in the testing period was approximately the same as in
the training period, with the only exception of the data collected at the beginning of
the testing period when the temperature went below 0 °C for some days due to an
exceptional snowfall.
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Fig. 2 Pre-stressed cable: recorded local temperature (in blue, the first half of the time series
representing the measured temperature in the training period)
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Figure 3 shows the residues obtained by comparing the frequencies predicted by
MLRand SOBIwith themeasured values as per Eq. (4), and the control limits defined
in the two cases. Results obtained from linear PCA are not reported, but they are
similar to those obtained from SOBI. The plots in Fig. 3 remark that SOBI (and PCA)
were effective in compensating the temperature influence on natural frequencies. On
the contrary, some patterns are still present in the residues obtained from MLR
(Fig. 3 left). The control limits are also quite different in the two cases as a result
of the different performance of the methods. Moreover, in spite of the larger control
limits, the results obtained from MLR are stably outside the limits at the beginning
of the testing period. In a real monitoring application, this might lead to problems of
false alarm.

The residues obtained fromSOBI (and PCA), instead, do not show any pattern that
can be correlated to EOVs (and temperature, in particular); moreover, the residues in
the training phase and testing phase are very similar, with individual outliers going
out of the control limits from time to time.
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Fig. 3 Pre-stressed cable: residues from MLR (left) and SOBI (right)
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The poorer performance ofMLRwith respect to SOBI (and PCA) can be ascribed
to the well-known difficulty of measuring temperature values representative of the
temperature of the cable along its full extension. In particular, direct sun radiation
effects as well as persistent shadow on portions of the cable jeopardized the repre-
sentativity of the temperature measurements and the predictive performance of the
MLR model. When SOBI (and PCA) have been applied, on the contrary, an effec-
tive compensation of temperature influence was achieved even in the presence of
just three monitored modes. This occurred because only one source (or principal
component) was sufficient to describe about 99% of the variability in the data.

3.2 Hospital’s Buildings

The influence of temperature on the natural frequencies of two closely spaced
buildings belonging to the Campobasso’s main hospital is discussed in this section
starting from the experimental data collected by a monitoring system operating on
the structure, albeit intermittently, for some months in between 2016 and 2017.

Themain hospital in Campobasso consists of a number of high-rise as well as low-
rise reinforced concrete buildings designed and built according to outdated seismic
design codes. The vibration responses of two closely spaced structures hosting the
inpatient wards (Fig. 4a) have been monitored [33]. The overall dimensions of the
monitored structures are about 78 m × 14 m in plan and 30 m in elevation. They are
separated by a narrow structural joint (Fig. 4b).

The vibration response of the structures in operational conditions was acquired
by sixteen force-balance accelerometers (±0.5 g full scale range, 20 V/g sensitivity).
These were installed at two upper levels along two orthogonal directions and at oppo-
site corners of the building plans so that observability of fundamental translational as
well as torsional modes was ensured. The accelerometers were wired to a centralized
data acquisition system with built-in antialiasing filter and 16 bit ADC resolution.
Data were sampled at 100 Hz and stored into a local MySQL database. The funda-
mental modal parameters were automatically extracted from the vibration records
by an automated OMA procedure [7]. Sample results are shown in Fig. 5.

The first four identified modes can be described as:

• global bending of the two buildings in the transverse direction;
• global bending of the two buildings in the longitudinal direction;
• global torsion involving the two buildings;
• torsion with counter rotating buildings.

Systematic swings of the fundamental natural frequencies occurring every day
can be observed, with a reduction in the night and a gradual increase in the morning
until the maximum value, which is usually reached in the early afternoon. This
circumstance confirms that temperature significantly affects the natural frequencies,
and its effect has to be compensated in view of the development of effective modal-
based SHM strategies. Plotting the (normalized) sample data of Fig. 5 in the form
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(a) 

(b) 

Fig. 4 View of the closely spaced monitored hospital’s buildings (source maps.google.it) (a) and
the separation joint (b)
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Fig. 5 Hospital’s buildings—sample monitoring results: natural frequency time series of the first
four modes

of histograms provides a further insight in the nature of such variations. Figure 6,
indeed, shows that the distribution of data is asymmetric, with longer right tail with
respect to the left one.

Taking into account that the natural frequencies increase with the temperature, the
obtainedmonitoring results can be addressed to the influence of the very narrow joint
that divides the two structures (Fig. 4b), and to direct sun radiation that mainly affects
the buildings along the predominant longitudinal extension. The thermal expansion
affects the infill panels as well as the relative distance between the buildings. In
particular, when the temperature increases, the resulting interlocking increases the
overall stiffness and, as a consequence, it yields non-symmetric distributions of the
natural frequencies and their general increase with the temperature. Following these
considerations, the nonlinearities in the structural response induced by temperature
have to be taken into account in the compensation of the environmental influence.
Nevertheless, linear (SOBI) as well as nonlinear (kPCA) methods are applied to
comparatively assess their performance.

The time histories of the fundamental natural frequencies have been analyzed by
SOBI first. The presence of a single dominant value among the eigenvalues of the
zero-lag correlation matrix and the analysis of the source pattern [27] confirmed that
a single source, the temperature, was responsible for most of the variability of the
estimates. However, the residues still show some patterns (Fig. 7).

Results from application of kPCA confirm its higher effectiveness in compen-
sating environmental effects in this case with respect to linear methods (Fig. 8): in
fact, while the magnitude of misfit is similar in the training phase and testing phase,
evident patterns which can push the data outside control limits cannot be detected.
This is relevant to avoid possible false identification of damage.
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Fig. 6 Hospital’s
buildings—histograms of
monitored frequencies: mode
I (a), II (b), III (c), IV (d)
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Fig. 7 Hospital’s buildings: sample residues after compensation of the environmental influence by
SOBI
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Fig. 8 Hospital’s buildings: error norm from application of kPCA to the entire dataset

Repeating the analysis on a subset of the entire dataset, the influence of unmea-
sured conditions in the training phase on the quality of predictions can be assessed.
Figure 9 shows the results obtained from application of kPCA to the data collected
in the period April 1st–July 2nd, 2016. The dataset has been divided into two parts of
equal number of samples, of which the first part has been used for training. Figure 9
also shows the evolution of the average local temperature, as measured by a nearby
meteorological station, in the same period.
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Fig. 9 Hospital’s buildings: results from application of kPCA to a subset of the entire dataset;
temperature evolution over time is denoted by the red dash dot line; the horizontal dash dot and
dashed lines represent the average and maximum temperature in the training period, respectively

Comparing the temperature values in the training period with those in the testing
period allows noting that the average daily temperature (red dash dot line in Fig. 9)
is in between 5 and 22 °C—with a mean value of 15.6 °C—in the training period
(from April 1st to May 17th, 2016), and it increases up to 29 °C in the testing period
(fromMay 18th to July 2nd, 2016). This is probably the reason of the large values of
the misfit that can be observed in the testing period (Fig. 9) in the days characterized
by very high average daily temperature, when this goes out of the range considered
in the training period. The discrete nature of the occurrence of large misfit values,
on the other hand, seems to confirm the assumption that, when the temperature rises,
the dynamic response of the structure abruptly changes as a result of the interlocking
between the two buildings through the narrow separation joint, and if this effect was
not adequately monitored in the training phase, the results in terms of prediction
error are affected also by the occurrence of this phenomenon.

4 Conclusions

Different linear as well as nonlinear methods for the compensation of the influence
of EOVs on natural frequencies in the context of modal-based SHM have been
reviewed in the present paper and applied to real datasets collected from vibration-
basedmonitoring systems. Based on the achieved results, the applicative perspectives
and possible drawbacks of the selected methods, namely MLR, PCA, SOBI and
kPCA, have been assessed. The following conclusions can be drawn.
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The prediction accuracy of methods, such asMLR, requiringmeasures of relevant
EOVsaffecting the dynamic response of themonitored structuremight be jeopardized
by the difficulties of identifying in advance and appropriatelymeasuring those EOVs.

Output-only methods represent an attractive alternative for compensation of envi-
ronmental and operational effects on damage-sensitive features in the context of
modal-based SHM since their results do not depend on the prior identification of all
relevant EOVs influencing the structural response and on the effective measure of
such EOVs.

Nonlinear compensation techniques might play a relevant role in enhancing the
reliability of modal-based SHM in the presence of nonlinear influence of EOVs on
the monitored modal parameters.

Finally, the results obtained from the analyzed case studies confirm the importance
of extensive training in order to cover as much as possible the range of environmental
and operational conditions the monitored structure can operate in.
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Vibration-Based Damage Feature
for Long-Term Structural Health
Monitoring Under Realistic
Environmental and Operational
Variability

Francescantonio Lucà, Stefano Manzoni, and Alfredo Cigada

Abstract Many vibration-based damage detection approaches proposed in the liter-
ature for civil structures rely on features related to modal parameters, since these are
sensitive to structural properties variations. The influence of environmental and oper-
ational variability on modal parameters sets limits to unsupervised learning strate-
gies in real-world applications, especially for long-time series. The chapter shows
an example of unsupervised learning damage detection in a realistic environment,
over a long-time period. Two damage features are compared: one from operational
modal analysis and the other from autoregressive models. To start with a real though
simple structure, a series of tie-rods has been considered; these are slender axially
tensioned beams, widely used in both historical and modern buildings, to balance
lateral forces in arches. Since the axial load is heavily influenced by temperature and
eventually by other disturbances, even small changes in the environmental conditions
cause dramatic changes in the dynamic tie-rod features. To investigate this problem,
a set of nominally identical full-scale structures have been continuously monitored
for several months under different environmental and operational conditions. It is
shown how the combination of vibration-based damage features and multivariate
statistics can be successfully used to detect damage in structures working under real
environmental conditions.

Keywords Long-term monitoring · Damage detection · Environmental and
operational variations · Vibration-based features · Multivariate statistics

1 Introduction

Civil structures are subject to degradation during their long-term service, mainly due
to materials ageing or deterioration. For this reason, it is important to assess whether
the safety requirement for proper operation is always met. In most cases, human
inspections are still used to monitor the health of a structure: in these situations, a
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judgement is provided by an expert after visual inspection. This approach comeswith
different limitations, such as the evaluation subjectivity and the qualitative content of
the retrieved information. Furthermore, not all the components of a complex structure
can be accessible and thus inspected. Human inspections are also characterized by
being intermittent in time, with the obvious risk that if damage occurs between two
timed inspections, a prompt maintenance intervention cannot always be carried out.

The development of new sensors, networks, information technology, including
computing and storage capabilities, is increasing attention towards condition-based
maintenance, which relies on long-term continuous monitoring. In this context, a key
role is played by structural health monitoring (SHM), which is a multidisciplinary
research field aiming at the definition of automatic damage detection strategies for
civil, mechanical and aerospace structures [1]. All the possible approaches of SHM
can be roughly divided into two families: model-based and data-driven approaches
[2, 3].

In the first case, a physics-based or law-based model of the monitored structure
is required. The inverse problem technique is used to calibrate numerical models,
commonly finite element ones, and damage is detected by relating the measured
data from the structures to the estimated data from the models. However, it is not
always possible to have resources allowing one to create a complete structural model.
Furthermore, an accurate model of a real structure is made difficult by the many
uncertainties about materials, geometries and boundary conditions, making every
structure one-of-a-kind. Moreover, in case of complex structures, it is not possible
to simulate all the possible damage conditions.

For the above-mentioned reasons, the SHMcommunity ismore andmore focusing
on unsupervised learning data-driven approaches, where damage is detected through
a statistical comparison between data referring to the structure in the current state
(unknown) and a reference scenario, where the structure is assumed to be in a healthy
state.

In this case, the crucial aspect is the definition of a damage-sensitive quantity
or parameter that can be directly related to the health state of the structure. This
quantity is commonly referred to as “damage feature”. A damage feature may be
defined starting from any physical quantity that can be sensitive to changes in any
structural properties. Vibration-based approaches are thosemost commonly adopted,
starting from the observation that changes in a structural system caused by damage
manifest themselves as changes in mass, stiffness and energy dissipation. These
changes reflect in changes of the dynamic response characteristics: for this reason,
damage features extracted from vibration data are potentially sensitive to damage
[2].

Modal parameters have been largely used in the literature to define damage
features [4]: natural frequencies, mode shapes are those most commonly used, while
modal damping is less used because of the difficulty of its identification [5]. In many
cases, modal parameters can provide a physical interpretation that can help under-
standing the nature of damage. Low-frequency modes are more easily identified,
thus very commonly adopted for damage detection algorithms. Since low-frequency
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modes capture the global response of the structure, they are less sensitive to local
changes and this can lead to a late damage detection [6].

Another important family of approaches comes from the statistical time series
methods, where time series models are fitted to the measured vibration data and
model parameters are used to define damage features. Autoregressive (AR) [7, 8],
autoregressive with exogenous input (ARX) [9] and autoregressive with moving
average (ARMA) [10, 11] models are commonly used to fit the measured data.
These models are suitable for SHM applications because they inherently account
for uncertainty and do not depend on physical models; thus, they are suitable for
automated damage detection. In the literature, there are several applications, where
either the coefficients or the residuals of the models are used to define effective
damage features [5].

When either modal-based or autoregressive-based damage features are adopted
for unsupervised learning damage detection, one of the main challenges is repre-
sented by the fact that vibration-based approaches are influenced by the effect of
environmental and operational conditions [12]. This happens because the structural
response varies under different environmental conditions, particularly temperature,
causing changes in thematerial properties and boundary conditions. These variations
determine changes in the structural responses that could be higher than those caused
by damage, at least at an early stage [13].

In the literature, there are not so many applications on real structures, under
realistic environmental conditions. In this chapter, a case study has been selected
to test the effectiveness of a vibration-based damage detection approach based on
AR models, in a challenging realistic scenario. The case study consists of damage
detection of axially loaded beam-type structures (or tie-rods)which are representative
of common structural elements such as braces of truss girders, struts and ties of space
trussed structure, tie-rods of arches and vaults. In operation, both the properties of
the beam and those of the structure vary, due to the changes in the environmental
conditions, mainly temperature. Two nominally identical tie-rods have been installed
in a laboratory and continuously monitored, in a weakly controlled environment,
simulating a real permanent SHM system. The environment was characterized by
temperature variations and a number of working operations, such as the presence of
human activities and the presence of testing machines nearby. It is worth noting that
the experimental set-up allowed for the possibility of measuring the environmental
and operational variables but none of themhas been intentionally controlled, to create
a realistic and challenging data set.

This chapter is organized as follows: in Sect. 2, the experimental set-up is
described, along with the chosen instrumentation. Experimental data are presented,
to show the effects of temperature on the tie-rod axial load. The adopted damage
detection approach is described in Sect. 3, where a brief theoretical background
of simple autoregressive models, model order selection and Mahalanobis squared
distance (MSD) is provided. The experimental results are presented and discussed
in Sect. 4. In the end, the conclusions are drawn in Sect. 5.
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2 Case Study Description

A brief introduction to the key points of the theory on vibrations in axially loaded
beams is provided to better understand the reasons behind the choice of tie-rods as an
interesting SHMcase study. The reader is redirected to [14] for the complete theory of
vibrations on tensioned beams, while the analytical expressions for eigenfrequencies
and mode shapes for different support conditions can be found in [15].

Tie-rods eigenfrequencies and mode shapes are function of the following
parameters:

• Geometrical properties (cross section, momentum of inertia of the section and
length of the beam): while in most cases the properties of the section can be
directly measured, the length of the beam is difficult to be estimated because the
side clamps may create uncertain links.

• Material properties (Young’s modulus of elasticity and density): especially for
ancient structures, the characteristics of the material can be roughly estimated
unless some specific material tests are carried out.

• Boundary conditions (stiffness of the constraints): boundary conditions depend
on different variables such as the clamping systems, the material to which the
tie-rod is fixed and its deterioration.

• Loading conditions (axial load): in most cases, direct in-situ measurements are
difficult and methods for an indirect tension estimation are required. Several
attempts to obtain indirect estimate of the axial load can be found in the literature
[16–18] showing the complexity of the problem in detail.

In a real context, detecting damage through changes in modal parameters is a
complex task, since the above-mentioned parameters are subject to high uncertainty
and may also change with time. A clear example is the effect of temperature, whose
daily and long-term trends cause changes in the material properties that reflect in
daily and long-term trends in the modal parameters. For this reason, an effective
damage detection strategy must be able to separate the effects of damage from those
of environmental variations.

To investigate this topic, an experimental set-up composed of two nominally iden-
tical tie-rods made of aluminium has been designed and installed in the laboratories
of the Department of Mechanical Engineering at Politecnico di Milano. The tie-rods
are characterized by a cross section of 15 × 25 mm2 and a length L = 4000 mm.
The geometrical characteristics are representative of tie-rods that are commonly used
in civil structures to balance lateral forces of arches and vaults. The static scheme
that has been reproduced is a clamped–clamped configuration, where both ends of
the beam are fixed. The constraints have been realized with a structure composed of
three parts (see Fig. 1a).

During the tensioning procedure, where the axial load has been applied to each
of the two tie-rods, the bolted joints of clamp 1 (see Fig. 1b) were tightened-up
while those of clamp 2 (see Fig. 1c) were left loose, so that the beam was not fully
constrained along the axial direction. A load cell has been installed between clamp
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Fig. 1 Layout of the experimental set-up (a); detail of clamp 1 (b); detail of clamps 2 and 3 (c)

2 and clamp 3, and an axial load of 8 kN has been applied using a tensioner. Each
tie-rod is instrumented with strain gauges composing a full Wheatstone bridge (thus
with temperature compensation, see Fig. 2b) that has been calibrated during this
phase to measure tension all through the monitoring phase.

After the strain gauge bridge calibration, the bolted joints in clamp 2 have been
tightened-up and the load cell between clamp 2 and clamp 3 has been removed. Right
after the tensioning procedure, a preliminary experimental modal analysis has been
carried out to identify the modal parameters. The natural frequencies related to the
first six vibration modes are reported in Table 1.

Fig. 2 Accelerometer PCB 603C01 (a); strain gauges (b)
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Table 1 Eigenfrequencies of
the two tie-rods, identified
during the preliminary phase
(October 2019)

Vibration mode Eigenfrequencies [Hz]

Tie-rod 1 Tie-rod 2

1 13.89 14.17

2 30.98 31.64

3 53.36 54.46

4 81.82 83.24

5 116.55 118.66

6 157.95 160.40

Each tie-rod has been equipped with four piezoelectric industrial accelerometers
PCB 603C01 (Fig. 2a). These accelerometers have a sensitivity of 100 mV/g, full-
scale ±50g and spectral noise up to 10 Hz of 6.2 × 103

(
μm
s2

)2
/Hz. The choice for

industrial accelerometers has been intentionally made to test the proposed procedure
also in case of sensors with expected lower sensitivity and signal-to-noise ratio if
compared to laboratory ones, but also much cheaper, as for a real field application.

The sensor placement has been carried out taking into account the possibility to
detect the first six vibration modes. The autoMAC matrix [19] has been adopted
for many possible layouts, in the end selecting the one represented in Fig. 3, where
dimensions are expressed as a fraction of the entire tie-rod length L (i.e., 1/20 means
that the distance between the first accelerometer starting from left and the clamp 1
is L/20 = 200 mm).

Even if multiple sensors are available on each tie-rod, a strategy that relies only
on one accelerometer has been developed in this work. This choice was made taking
into account a real application, where the adoption of a high number of sensors to
monitor a single tie-rod may not always be possible, for economic reasons.

The acquisition system is composed of three NI9234 modules, with anti-aliasing
filters on-board. The sampling frequency has been set to 256 Hz on a total of 11
channels: eight IEPE channels to acquire the signals coming from the piezoelectric
accelerometers, two channels dedicated to the acquisition of the strain gauge full-
bridges, thus providing a continuous measurement of the axial load, and one channel
to acquire the signal coming from a thermocouple, thus providing a measurement
of the environmental temperature. The choice for the sampling frequency aims at
finding a compromise between the need to detect a sufficient number of modes and
the need to limit the amount of acquired data.

Fig. 3 Accelerometers layout
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Axial load and temperature have been stored to have an additional information
about the experimental conditions, but, as it will be explained in the following, these
variables are not strictly required by the proposed damage detection strategy. The
trends in time of the axial load for one of the two tie-rods and temperature are reported
in Fig. 4a, for a period of approximately 5 months. As it is possible to see, both daily
and long-term trends can be observed, with daily average axial load reaching values
of 13 kN in the coldest days of the year, where the daily average temperature in the
laboratory is 11 °C.

By zooming in on a shorter time window and comparing the trends of the axial
load with that of temperature, it is possible to notice that the two variables are highly
correlated (see Fig. 4b), with the axial load changes around 700–800 N/°C.

Fig. 4 Axial load and temperature trends in the period between 8thOctober 2019 and 27th February
2020 (a); axial load and temperature trends in the period 11th–18th October 2019 (b)
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Considering the variability of the environmental conditions for the considered case
study, a data-driven approach not relying on modal parameters has been developed.
The damage detection strategy, which combines time series analysis (AR models)
and multivariate outlier detection (Mahalanobis squared distance), is presented in
the following section.

3 Methodology

The first step of the proposed damage detection strategy requires the extraction of
AR coefficients from vibration data. AR models are time series models born in the
field of econometrics to describe time-varying processes where the output variable
linearly depends on its previous values and a stochastic term. These models can be
adopted in a SHM context to represent the dynamic response of structures. In this
work, autoregressive models are exploited to process only the output of a system,
to accurately obtain the dynamic response of the linear system, forced by a random
input.

The first order AR model AR(1) can be defined as it follows [7, 20]:

Xt = φ1Xt−1 + at (1)

where Xt and Xt−1 are two consecutive samples of the system output, φ1 is the
autoregressive coefficient, and at is the residual term. This latter is aGaussian process
with zero mean and variance σ 2

a . It can be demonstrated that the coefficient φ1 is
related to the eigenvalues of the first-order linear dynamic system [20].

For systems of order n, with n > 1, the autoregressive moving average model of
order n, or ARMA (n, n − 1), must be used [20]:

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φn Xt−n + at
− θ1at−1 − · · · − θn−1at−n+1 (2)

where φi are the autoregressive parameters and at is the residual at time t using the
same syntax of Eq. (1). In addition, there is the moving average (MA) part, which is
composed by the residuals at previous times (from t − 1 to t − n + 1), weighted by
the coefficients θi , with i = 1, . . . , n − 1.

Starting from the coefficients of the autoregressive part (φ j with j = 1, . . . , n),
ARMAmodels may be used to obtain the natural frequencies of the system [20, 21].

A critical point is that to estimate the coefficients θi related to the MA part, a
nonlinear least square approach is required [22] that can be subject to convergence
and local minima problems, and high computational cost [23]. In order to avoid such
problems, an alternative approach may be the adoption of an AR (q), with q � n,
that provides and approximation of the ARMA (n, n − 1) model. In this case, the
model is defined by the following equation:



Vibration-Based Damage Feature for Long-Term Structural … 297

Xt =
q∑

j=1

φ j Xt− j + at (3)

As it is possible to see, the difference between AR (q) and ARMA (n, n − 1) is
that the former only considers the residual at time t . In case the AR (q) model is
considered, the linear least square minimization algorithm can be adopted to obtain
the coefficients φ j , with obvious calculation convenience. It is important to notice
that by adopting an order q higher than that of the system n, to obtain a good
approximation of the ARMA (n, n−1)model, spurious eigenvalues will be obtained.
Generally, both the order of the mechanical system and the suitable AR to describe
the system output are unknown a priori. The choice of the order has consequences on
the description of the system response and on the performance of damage detection
too [24].

Generally speaking, higher-order models may better fit the data but may not
generalize well to other data sets (overfitting), while a low-order model will not
necessarily capture the underlying physical system dynamics (underfitting). In the
literature, different approaches are suggested, such as Akaike’s information criterion
(AIC), the partial autocorrelation function (PAF) and Bayesian Information Criterion
(BIC) [25]. The last in the above list has been adopted in this work; some insights on
the model selection carried out for this case study are provided in the next section.

3.1 Pre-processing and Model Order Selection

Before discussing the details about the model order estimate, some pre-processing
choices are briefly discussed. First of all, data continuously acquired by the moni-
toring system are processed every 60s, and thus the q coefficients of the AR(q) model
will be estimated every 60s. This choice starts from the observation that the labo-
ratory environment is frequently characterized by the presence of short time events
(transients, harmonic excitations, impulsive forces). These can result in autoregres-
sive coefficients which are different from those obtained when the structure is excited
only by random noise. By evaluating the coefficients every 60s, a correct clustering
of those records considered outliers is more easily obtained, helping in a better
interpretation of results.

The time histories are initially normalized by removing their mean value and
dividing them by their standard deviation. This step is carried out to allow for a
comparison of AR models referring to different system conditions. Indeed the AR
models are only poles functions that do not depend on the amplitude of the system
input [26].

The BIC has been adopted to select the model order, which is more appropriate
to describe all the possible data acquired during the tie-rods long-time monitoring.
The BIC is defined as:
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Fig. 5 AR model order selection

BIC(q) = q log(N ) − 2 log
(
L
(
φ
))

(4)

where N is the sample size, q is the number of parameters, and φ is the set of all

parameters. L
(
φ
)
is the model likelihood, given the data, evaluated at the maximum

likelihood values of φ. Comparing models with the BIC involves calculating this
parameter for each model and choosing the one with the lowest BIC.

In this work, a set of 200 randomly chosen time records picked from the baseline
set (see Sect. 4) have been considered. For each record, the BIC has been evaluated
for q = 1, . . . , qmax, selecting the first order that satisfied the condition:

BIC(q) < toll · |BIC(1) − BIC(qmax)| (5)

With qmax = 100 and toll = 0.05. The results of this process are reported in
Fig. 5.

Finally, a model order q = 45 has been selected so that all the possible considered
records could be correctly described (an example about the fitting quality will be
presented later and discussed in Sect. 4).

3.2 Damage Feature and Outlier Detection

Every time a time history is fitted to an AR (45) model, 45 coefficients are evaluated
through a linear least square minimization. Thus, the damage feature can be defined
as it follows:
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φ
i
=

⎡

⎢⎢
⎣

φ1

φ2

. . .

φTOT

⎤

⎥⎥
⎦ (6)

where the suffix “i” means that the coefficients refer to the time record number i .
In order to carry out unsupervised damage detection, a reference scenario must

be considered. A number Nref of time histories have been considered as a reference,
and thus, Nref observations of the damage feature may be obtained and arranged in
a matrix [φ]ref, defined as it follows:

[φ]ref =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

φT
1

φT
2

. . .

φT
i

. . .

φT
Nref

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

Nref×q

(7)

where the symbol “T” means transpose. The matrix [φ]ref is characterized by
multivariate mean vector μ

ref
(size q × 1) and covariance matrix [�ref] (size q × q).

Considering a new observation of data for which the health state is unknown, it
is again possible to fit an AR (45) model and arrange the 45 coefficients into a new
vector φ

new
.

The Mahalanobis squared distance (MSD) can be used to perform an outlier
detection. The MSD between φ

new
and the reference set [φ]ref can be calculated with

the following expression to define the damage index DI:

DI = MSD
(
φ
new

, [φ]ref
)

=
(
φ
new

− μ
ref

)
[�ref]

−1
(
φ
new

− μ
ref

)T
(8)

The result of this operation provides a scalar measuring the compatibility between
the new observation φ

new
and the reference set [φ]ref. Thus, by setting a threshold

level, when DI is above the threshold, the new observation can be labelled as an
outlier with respect to the reference condition, possibly pointing out an eventual
damage. As from the literature, the MSD can filter out environmental effects if the
training set contains a full range of environmental conditions [27].

A threshold can be set by following the procedure described in [28], once the size
of the training set has been defined. The procedure is aMonte Carlo simulation made
up of the following steps:

1. Build amatrix of size Nref×q, where every element is a randomnumber sampled
from a zero mean and unit standard deviation normal distribution.

2. Calculate the MSD between each row of the matrix and the matrix itself and
store the maximum MSD value.



300 F. Lucà et al.

3. Repeat the process for a high number of trials (i.e. 1000 times), obtaining an
array containing all the largestMahalanobis squared distances and then organize
them in a decreasing magnitude order. The critical values for 5 and 1% tests
of discordancy for a q-dimensional sample of Nref observations are then given
by the Mahalanobis squared distances, in the array above which 5 and 1% of
the trials occur. This threshold, called t1, refers to a situation where the baseline
set also contains observations related to the outliers (i.e. damage features related
to the damaged structure are in the baseline set).

4. If the baseline does not contain outliers, the threshold must be set according to
the following expression:

t2 =
(
Nref − 1

)(
Nref + 1

)2
t1

Nref

(
N 2
re f − (

Nref + 1
)
t1

) (9)

4 Results and Discussion

In this section, results obtained through the application of the proposed damage
detection strategy are presented. The effect of damage has been simulated on one
of the two tie-rods (named T 1) by the addition of concentrated masses, to alter the
dynamic response in a reversibleway, according to a strategy very commonly adopted
in literature [29–31]. Two different positions have been selected: one very close to
the clamped ends (L/10) and one at the beam mid span (L/2). Also, two different
masses have been used: 3 and 5% of the total mass of the beam. While tie-rod T 1

was subject to the addition of concentrated masses, the second tie-rod (named T 2)
was always kept in the same structural condition; i.e. no masses have been applied to
T 2. In the following, the presented graphs will refer to sensors placed at L/3 on both
tie-rods, while some final remarks regarding results obtained with the other sensors
will be presented in the conclusions.

The data included in the analysis can be divided into 5 sets and labelled according
to the content of Table 2. It is worth recalling that every record contains the infor-
mation related to a 60s vibration data record, acquired with a sampling rate of
256 Hz.

The sets labelled as “Baseline 1” and “Baseline 2” contain data representing the
reference condition, i.e. no mass added to T 1. Both T 1 and T 2 were only subject to
the effect of environmental and operational variations. The two baseline sets come
from two non-consecutive periods, to provide a wider range of environmental (see
Fig. 6a) and operational conditions (see Fig. 6b). Into details, for every considered
sample, Fig. 6a shows the corresponding average temperature and Fig. 6b shows
the corresponding root mean square (RMS) of the accelerations, normalized to the
maximum observed RMS. Set “V 1” is consecutive to “Baseline 1” and set “V 2” is
consecutive to “Baseline 2”; “V 1” and “V 2” are used for validation; i.e. they have
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Table 2 Description of the
data sets

Label # Samples Simulated
damage on T1

Mass position

Baseline 1 10,792 (∼180 h) No simulated
damage

–

V1 3597 (∼60 h) No simulated
damage

–

Baseline 2 9007 (∼150 h) No simulated
damage

–

V2 3002 (∼50 h) No simulated
damage

–

M5 5605 (∼93 h) 5% of the total
mass

L/10

M3c 5898 (∼98 h) 3% of the total
mass

L/2

M5c 9908 (∼165 h) 5% of the total
mass

L/2

been recorded in the same conditions as the baseline but they are not included in
[φ]ref (see Sect. 3.2).

The first step of the analysis consists of fitting an AR (45) model to the data.
Figure 7a shows a good correspondence between the original data and the result
of the autoregressive fitting on a short time window. The point-by-point difference
between the experimental and fitted data is the residual, which is given in Fig. 7b.

The quality of the fitting is also confirmed by the quantile–quantile (QQ) plot of
the residuals in comparison with the standard normal distribution, reported in Fig. 8.
It is possible to observe a good agreement with the standard normal distribution in
the range of ± 2σ.

By fitting the data with the AR (45) model, it is possible to represent the response
of the structure with 45 coefficients every 60s: the time trend of the coefficients for
tie-rod T1 is shown in Fig. 9.

The coefficients show a daily cyclical trend that should be related to the envi-
ronmental and operational conditions [32]. Furthermore, the coefficients show a
different scatter in different portions of the plot. This behaviour is mainly related to
the variability of the excitation sources which are part of the input to the structure:
transients, impulses or harmonic forces are often present during the day, due to the
working activities taking place in the surroundings, while they are reduced or nulled
at night (cyclical trends in Fig. 6b). Consequently, coefficients are more scattered
during working hours rather than during night hours.

At this stage, this representation does not allow for the identification of different
behaviours between data sets “M5”, “M3c” and “M5c” and the baseline. For this
purpose, the damage index DI can be evaluated calculating the MSD between each
sample and the baseline set (composed by both “Baseline 1” and “Baseline 2”), as
explained in 0.
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Fig. 6 Average temperature (a) and normalized RMS (b) for considered samples

In order to allow for a more clear representation, a moving average of 60 samples
with overlap of 30 samples has been applied to each of the 45 autoregressive
coefficients, before calculating the damage index: the result is shown in Fig. 10.

The vertical lines represent the limits between sets. As it is possible to see by
comparing the red points (referring to T 1) and the blue points (referring to T 2), the
method seems to be capable to detect the presence of damage. Indeed, even if both T 1

and T 2 are always subject to the same operational and environmental variations, the
two trends are overlapped for data sets “Baseline 1”, “V 1”, “Baseline 1” and “V 2”,
while a separation can be observed in the samples referring to conditions “M5”,
“M3c” and “M5c”.
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Fig. 7 Comparison between the experimental data and the AR fitting (a); residuals (b)

By only considering the points referring to T 1, it is possible to see that when the
same mass is added to the structure, its effect on the damage index is dependent on
the application position. Indeed, red points in data set “M5c” (mass added at the
centre of the tie-rod) are higher than those of data set “m5” (mass added close to
the end clamps). Furthermore, when the same position is taken into account, the
damage index is sensitive to the amount of the simulated damage, as can be seen by
comparing red points in “M5c” and “M3c” zones.

The threshold obtained by following the steps described in 0 is represented by a
black dashed line in Fig. 10. In an automatic damage detection perspective, when
the damage index is above the threshold for a given sample, an outlier is detected.
In this sense, red points referring to conditions “M5”, “M3c” and “M5c” are always
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Fig. 8 QQ plot of the
residuals in comparison with
the standard normal
distribution

Fig. 9 Coefficients of the AR (45) model for tie-rod T1

above the threshold; thus, no false negatives (associated with type II error, i.e., the
tie-rod is damaged but the index is below the threshold) are observed.

On the contrary, some false positives (associated with type I error, i.e., the tie-
rod is not damaged but the index is above the threshold) are already detected in
validation data sets “V 1” and “V 2” for both tie-rods, and in data sets “M5”, “M3c”
and “M5c” for tie-rod T 2 with blue points that are scattered around the black dashed
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Fig. 10 Damage index calculated on AR coefficients filtered with a moving average of 60 samples
with overlap of 30 samples

Table 3 Percentages of
correct classifications, type I
and type II errors for damage
detection on T1

Correct classifications Type I error Type II error

90.3% 41.1% 0%

line. Indeed, by looking at Fig. 6a and b, it is possible to notice that environmental
and operational conditions of sets “M5”, “M3c” and “M5c” are not totally included
in those observed in “Baseline1′′ and “Baseline2′′. This observation suggests that the
performances of the algorithm (which are reported in Table 3 in terms of percentages
of correct classifications, type I and type II errors for T 1) can be improved by the
adoption of a wider baseline that may include a full range of environmental and
operational conditions.

5 Conclusions

This paper showed an application of a vibration-based data-driven approach to data
collected in a realistic environment, under the presence of uncontrolled operational
and environmental variations. A test-case consisting of two nominally identical tie-
rods has been continuouslymonitored for a long time and damage has been simulated
through the addition of masses. The environmental variations caused wide fluctua-
tions of the axial load and consequently of dynamic properties of the structure. This
aspect makes it hard to detect damage on modal parameters in a real application,
where the tension is usually unknown. For this reason, a data-driven approach based
on coefficients of an AR model and MSD has been adopted. The method showed to
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be potentially capable to separate effects of damage from those due to environmental
variations, even if the performances showed a dependency on the range of environ-
mental and operational variations observed in the baseline. Finally, the same analysis
has been extended to all the sensors installed on the tie-rods. Similar performances
have been observed for sensors placed at L/2 and L/3, while chances to achieve
a good identification get lower for sensors close to the fixed ends, where signal-to-
noise ratio is worse. A future development will be the introduction of real damage,
to test for the sensitivity of the method.
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On Explicit and Implicit Procedures
to Mitigate Environmental
and Operational Variabilities
in Data-Driven Structural Health
Monitoring

David García Cava, Luis David Avendaño-Valencia, Artur Movsessian,
Callum Roberts, and Dmitri Tcherniak

Abstract Vibration-based Structural Health Monitoring (VSHM) is becoming one
of themost commonly usedmethods for damage diagnosis and long termmonitoring.
In data-driven VSHM methods, Damage Sensitive Features (DSFs) extracted from
vibration responses are compared with referencemodels of the healthy state for long-
termmonitoring and damage identification of the structure of interest. However, data-
driven VSHM faces a crucial problem - the DSFs are not only sensitive to damage
but also to Environmental and Operational Variabilities (EOV). Machine learning
and related methods, enabled by the availability of large monitoring datasets, can
be used for mitigation of EOV in DSFs. EOV mitigation methods can be grouped
into implicit and explicit methods. In the former, EOVs are compensated solely
on the basis of the patterns identified in DSFs in the reference state. While the
latter utilize measurements of the EOVs in addition to DSFs to build a cause-effect
model, typically in the form of a regression. In this chapter, these two methods are
discussed and illustrated via two different approaches: an artificial neural network
for metric learning (implicit) and a multivariate nonlinear regression (explicit). The
rationale and limitations of both methods are studied on an operating wind turbine
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where different damage scenarioswere introduced. Additionally, the best practices of
each procedure are presented through a comprehensive discussion of their potential
advantages and drawbacks.

Keywords Damage detection · Environmental and operational variations ·
Artificial neural networks · Multivariate non-linear regression · Structural health
monitoring

1 Introduction

In recent years, research on Structural Health Monitoring (SHM) seeks for solutions
to close the loop between designing, manufacturing, building, andmaintaining struc-
tures driven by continuous measurements of structural data. Integrated continuous
monitoring systems allow learning from the past to decide in the present about the
structural integrity, and to predict in the future the remaining useful life as well as
improve new designs, all of this backed by experimental evidence [1]. Vibration-
based SHM (VSHM) methods, namely those SHM methods employing measured
structural vibration, have emerged as an attractive alternative with successful devel-
opments in the last decade across different fields of engineering. VSHM methods
operate on the premise that any change in a structure, including damage, introduces
a change in its vibratory behavior. These utilize Damage Sensitive Features (DSFs)
extracted from vibration responses to monitor the status of the structure of interest
[2]. This is done with the help of a baseline model, which provides a reference value
for the DSFs. The baseline model can be derived either from the physics of the struc-
ture, from measured data, or a combination thereof. This chapter is focused on the
data-driven VSHM approach, namely methods based solely on data measured from
the structure. This does not mean that subsequent modeling is necessarily performed
by disregarding the physics of the structure. Instead, physics often drives the selec-
tion of models and may also be used as constraints to build more realistic data-driven
representations [1].

One of the main challenges in the development of VSHM methods relates to the
sensitivity of DSFs to Environmental and Operational Variabilities (EOV), which
hampers the algorithm’s sensitivity to damage [3]. Indeed, damage in the struc-
tural components introduces local changes in its physical properties and/or boundary
conditions. In turn, these changes also modify the structure’s vibrational response,
eventually permeating into the DSFs. However, other types of events unrelated to
damage also influence the properties of the structure, introducing benign changes
in DSFs, which are easily confused with damage. These events can be grouped into
three main categories:

(1) Variations imposed by the operational conditions of the structure, which
modify the way the structure operates over an extended period. Examples
include set-point variables, such as the rotational speed of a rotor system [4],
or the payload of a vehicle [5]. In this case, the structural dynamics exhibit
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instantaneous changes that remain until the set-point is modified. Similarly,
DSFs display changes of regime as the structure does. Often, the external
variables related to this kind of variation are known or can be measured [6].

(2) Variations imposed by transient events, causing transient changes in the vibra-
tion response characteristics due to instantaneous or unexpected environmental
and/or operational regimen variations [7]. This is the case of extreme meteoro-
logical conditions or earthquakes, which in short intervals introduce rare (and
probably more complex) dynamic characteristics into the structural response.
These events are infrequent and appear randomly due to the exposition of the
structure to its natural environment. Likewise, the transition periods between
operational regimes can also trigger such changes. During these transient
events, DSFs will display outliers or small separate clusters.

(3) Variations imposed by the sensitivity of the physical properties of the struc-
ture to environmental factors [8]. For instance, the stiffness or damping prop-
erties of many materials are temperature-dependent [9]. Likewise, aerody-
namic structures like wind turbine blades or bridge decks are characterized
by damping properties which are a function of the incoming wind field char-
acteristics [10]. In this case, the variations in the structural properties evolve
smoothly over time, as the environmental conditions do. In turn, DSFs evidence
smooth changes correlated with the external variables causing this behavior.
Whereas in most cases the external variables can be measured, often noisy or
partial measurements are available. For instance, in a large structure, a single
temperature measurement may not be representative of the temperature gradi-
ents along the structure. Still, in those cases, it is possible to capture an overall
tendency with a single or a small number of measurements.

Due to the significance of the problem of EOV in VSHM, a considerable part
of the recent research efforts has been devoted in this direction. The main objective
then is to minimize or control the effect of EOV in DSFs, while maximizing their
sensitivity to damage. In a purely data-driven framework, enabled by the availability
of large monitoring datasets, this objective can be accomplished with the help of
machine and statistical learning techniques [11].

While the main scope of this chapter is not to give a complete overview of these
techniques, our main objective is to postulate and analyze two fundamental method-
ological procedures exemplify them through respective salient techniques, and to
provide a discussion on their applicability from a practical perspective. We hope that
the reader can achieve a critical perspective of the different types of methods avail-
able for mitigation of EOV in damage detection problems, and so become capable
of reaching opportune decisions for their own VSHM applications.

This document is organized as follows. Section 2 presents the problem statement
that is discussed in this work. Section 3 introduces an approach where the mitigation
of EOVs is done byDSFnormalization, namely explicit procedure. Section 4 presents
an alternative approach that uses a pattern recognition of the selected features as
technique for EOVs mitigation, namely implicit procedure. Section 5 provides a
description of the experimental campaign of the WTB monitoring system. Section 6
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includes the results and discussions where both of the procedures are presented.
Section 7 provides a comprehensive discussion and best practices for both methods,
while Sect. 8 summarizes the main conclusions.

2 Problem Statement

Robust and reliable long-termmonitoring is a must in data-driven VSHM systems. A
data-driven VSHM method can be considered effective when the outputs correctly
differentiate observations from undamaged and damaged states of the structure under
consideration, regardless of the operational uncertainty. In practice, this is achieved
by developing methodologies that consider, directly or indirectly (i.e. explicitly or
implicitly), the influence of EOV in damage detection [12]. In the VSHM literature,
these methods have been collectively referred to as data normalization methods [3,
13]. Based on this premise, the problem to be discussed in this chapter is to answer
the following question: How can data-driven VSHM methods mitigate the effect of
the EOVs to build robust and reliable long-term monitoring systems?

This challenge can be addressed by two different approaches considering (i)
explicit and (ii) implicit procedures as it has been studied and investigated in recent
years within the VSHM community (see Fig. 1).

Fig. 1 Illustration of VSHM with integrated explicit and/or implicit procedure
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2.1 Explicit Procedures

Explicit procedures rely on direct compensation of the trend observed in DSFs by
reconstruction of the functional relationship with EOV through measurable Envi-
ronmental and Operational Parameters (EOPs). Therefore, measurable EOPs are
treated as input variables –covariates–, which, to a certain extent, explain the vari-
ability on DSFs. Explicit procedures are based on the fact that a cause, namely EOV,
has an effect on the DSFs. Hence, these are also named cause-effect approaches
[14]. Explicit procedures are especially effective in the case of variations originating
from continuous EOPs (e.g. temperature or rotation speed). However, it cannot be
guaranteed that the measured EOPs completely explain the variability in DSFs.

The main challenge on the application of explicit procedures is to find simple and
informative manners to reconstruct these relationships. Here, the adjective informa-
tive refers to the property of a model to explain the root causes for a change in the
monitored variables. Reconstruction of the underlying relationship between EOPs
and DSFs can be achieved via deterministic and/or stochastic functional dependence
models solved via various regression procedures. Both modeling approaches are
discussed in further detail below and illustrated in Fig. 2.

Deterministicmodels attempt at capturing a deterministic trend inDSFs by selec-
tion of a function family, which is subsequently fit to the available observations. The
model prediction error or likelihood are then optimized to achieve the best fit based
on the selected function family [15]. These models are simpler to optimize and can
be used for predictions compared to the stochastic models explained in the sequel.
Examples include classical linear regression and different types of nonlinear regres-
sion, such as polynomial regression, neural networks, and regression trees [7, 12,
16–19]. These methods, though, are also sensitive to outliers and prone to over-
fitting, and may not be the most suitable for compensation of DSFs in practical
applications. Regularization methods, where constraints to the size of the regression
coefficients are enforced, can help alleviate these problems. Ultimately, a trade-off
between the minimization of the estimation error and the compliance to the coeffi-
cient restrictions must be achieved, aided by an adjustment parameter selected by
the user. Popular regularized regression schemes include ridge and lasso regressions,
elastic net regularization (a combination of ridge and lasso), and dilution/drop-out in
neural networks [20, Sec. 3.4]. Support Vector Regression (SVR) stands out as one
of the most powerful methods in the deterministic class, which combines ridge regu-
larization with kernel methods to produce a method robust to outliers and overfitting
[21].

Stochastic models, beyond representing the trends in the output data, also aim
at capturing the uncertainty caused by noise and model misspecification (choosing
an incorrect model for the data). Many of these methods may be easily described
in a Bayesian framework, where the probability of a model given observations –the
posterior– is the quantity used to obtain a regression model [14, 22]. In turn, the
posterior probability is proportional to the product of the data-fit probability –the
likelihood– times a probability describing our original beliefs on the model –the
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Fig. 2 Graphical
representation of different
data normalization methods
in VSHM

prior–. As may be inferred, Bayesian regression schemes operate on a similar prin-
ciple as regularization in the deterministic case, with terms penalizing modeling
errors and constraining the model coefficients. In fact, in some limit cases, Bayesian
regression is identical to ridge or lasso regression [20, pp. 69–73]. Nonetheless, the
main difference of the Bayesian framework with traditional regularization schemes,
is that it provides analytical procedures to adjust the regularization parameters, which
appears as hyperparameters in the Bayesian context [22]. Such procedures include
non-informative priors, and hierarchical and empirical Bayes methods. After hyper-
parameter adjustment, predictions can be calculated with the help of the posterior
predictive distribution, which has the property of summarizing the complete uncer-
tainty due to the model choices given the available training data. Likewise, the
Bayesian framework facilitates the comparison of different competing hypotheses,
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which is useful for model selection but also for damage diagnosis [22]. Perhaps the
most recognized method in this group corresponds to the Relevance Vector Machine
(RVM) [23], which may be deemed as a probabilistic interpretation of SVR, while
equally powerful versions of Bayesian nonlinear regressions are also available. In
addition, Gaussian Process Regressions (GPR) comprise a complete probabilistic
perspective into the regression problem, where predictions are calculated on the
basis of their conditional probability given the training data, under the assumption
of a joint multivariate normal probability distribution.

Another important type of stochastic model is formed by ensemble methods,
where predictions are basedon apool ofmodels obtained after adding small variations
in the training data. These variations introduce some sort of randomness into the
obtainedmodels, which ultimately is reflected in themodel predictions. For instance,
bagging, or bootstrap aggregating, involves training a pool of models after randomly
sampling different training subsets from the complete training data set. Boosting
and stacking are other methods used to reach a similar effect. Models with small
variations, which produce a variety of different predictions, comprise the resulting
model pool. The ensemble prediction then corresponds to some sort of consensus
achieved among the individual model predictions. In addition, the variations in the
individual predictions also provide a measure of the uncertainty in the ensemble
prediction, in a similar way as the posterior predictive distribution does for Bayesian
regressions.

2.2 Implicit Procedures

Implicit procedures rely on capturing the behavior of the DSFs in a reference state
of the structure, by recognizing all its different possible patterns within the target
state under EOV. Once the patterns are learnt, new observations are assessed by their
similarity to the reference patterns. These procedures are performed exclusively on
the basis of DSFs, and thus are referred to as effect-only approaches. In turn, implicit
procedures may follow any of the ensuing philosophies:

Projectionmethods. In these methods, DSFs are projected into a space where the
influence of EOV might be removed or mitigated to some extent [24]. Factor anal-
ysis, Principal Component Analysis (PCA), Singular Spectrum Analysis and their
non-linear counterparts are examples of these methods [25–29]. Upon transforma-
tion, the obtained variables are sorted according to their sensitivity to EOV. In PCA,
the principal components with larger principal values are presumed to be the most
affected by EOV, and thus are removed. However, there are not specific criteria that
can help guiding the selection of the number of features to remove. More impor-
tantly, since these projections are calculated in an unsupervised or semi-supervised
manner (with only information about the healthy state), it is difficult to guarantee
the separability of EOV from damage effects in the transformed space. Therefore,
it is possible that the variables judged as EOV sensitive may also carry information
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on damage characteristics. Hence, while these methods may reduce the sensitivity
to EOV, it may also significantly diminish the damage detection accuracy.

Time-series methods. In these methods, DSFs are treated as time series, whose
structure are modeled to capture non-stationary temporal patterns (trends or season-
ality) taking part of the normal state. Cointegration analysis is one of the best known
method for this task. It is based on the representation of DSFs as a modified vector
autoregressive model referred to as Vector Error Correction Model (VECM). Some
of the VECM properties indicate the presence of trends or seasonality patterns in
the time-series data, and upon detection, the VECM can be used to project out those
patterns [30, 31]. As a result, a stationary residual time series is obtained, which is
expected to be free of the influence of EOV. Extensions of the original cointegra-
tion analysis algorithm have been proposed to deal with heteroscedastic variables
(variables with time dependent variance) [32], and changes of regime in the DSFs
[33].

Manifold learning methods. As explained in the previous section, DSFs hold
functional dependencies with external variables associated with EOV. Explicit
methods attempt at capturing these dependencies with the aid of measurable EOPs.
Manifold learning methods, on the other hand, try to do so without the availability
of EOPs and instead attempt at reconstructing the manifold in which the DSFs are
embedded, solely on their multivariate characteristics. Although numerous methods
can be applied for this purpose, some of the most recognizable in the VSHM context
are non-linear PCA in its different versions (locally linear embeddings [34], kernel
PCA [35], ANN [36], deep NN [37, 38]), and different clustering methods [39–41].
Metric learning methods follow a similar philosophy, but instead of directly learning
the underlying manifold, metric learning methods attempt at capturing the patterns
of the distances measured in the manifold [8, 36].

3 Multivariate Nonlinear Approach as an Explicit
Procedure

3.1 Main Definition

The essence of explicit procedures consists of capturing the variations in DSFs with
the help of measured EOPs. In this section, the explicit approach is illustrated by
means of a multivariate nonlinear regression, which represents the DSF vector α p as
a deterministic function of EOPs as shown next:

α p = WT · f
(
ξ p

) + up, up ∼ N (0,�u) (1)

f
(
ξ p

) = f 1
(
ξp,1

) ⊗ f 2
(
ξp,2

) ⊗ . . . ⊗ f l
(
ξp,l

) ⊗ . . . ⊗ f L
(
ξp,L

)
(2)
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where W ∈ R
L×K is the coefficient matrix of the regression model, f

(
ξ p

)
is a

multivariate functional basis of the EOPs constructed by Kronecker products of
univariate basis functions according to Eq. (2), and up is a zero mean normal and
independently distributed random vector with covariance�u , which accounts for the
variability not attributable to EOVs. In Eq. (2), ξp,l represents the individual l-EOP
affecting to the p-observation, so that ξ p = [

ξp,1 · · · ξp,L
] ∈ R

L denotes a vector
with all the EOPs, and f l(·) represents the functional basis associated to the l-EOP
with length determined by product of the number of the basis assigned to each EOP.

Given a set of input EOPs X = [
ξ 1 ξ 2 . . . ξ p . . . ξ PT

] ∈ R
L×PT and their corre-

sponding DSFs A = [
α1 α2 . . . α p . . . αPT

] ∈ R
K×PT , a standard least squares

method is used to estimate the coefficient matrix of the regression model and the
innovation covariance matrix, as follows:

Ŵ = [
F(X)FT (X)

]−1
F(X)AT (3)

�̂u = 1

PT

[
A −

(
ŴTF(X)

)][
A −

(
ŴTF(X)

)]T
(4)

where F(X) = [
f
(
ξ 1

)
f
(
ξ 2

)
. . . f

(
ξ p

)
. . . f

(
ξ PT

) ] ∈ R
L×PT is the overall

training multivariate functional basis and (·)T is the transpose.
To maximize the generalization performance and avoid overfitting, a Leave-One-

Out Cross Validation (LOOCV) method is used to assess different model structures.
The LOOCV method uses a single observation from the training set to calculate the
prediction error (validation), while the remaining ones are used for model estimation
(training). The process is repeated until all the instances in the training set are used
for validation. In the case of the multivariate non-linear regression, the LOOCV
error can be calculated efficiently with the help of the hat matrix, based on a single
calculation on the complete training set, as explained in [20, Sec.7.10].

The compensated DSF vector. An estimate of the DSFs can be obtained based
on the obtained estimates of the coefficient matrix. Then, it is possible to obtain a
corrected DSF α̃ p by subtracting the estimated DSF vector α̂ p = ŴT · f (ξ) from
the original DSF α p as shown in Eq. (5).

α̃ p = α p − α̂ p = α p − ŴT · f (ξ) (5)

3.2 Outlier Analysis

The corrected DSFs are used to assess the current state of the structure by a novelty
index method obtained with the squared Mahalanobis distance (MD):
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d2
(
α̃ p, �̂u

)
= α̃T

p �̂
−1
u α̃ p (6)

where α̃ p is the corrected DSF vector observation from Eq. (5) and �̂u corresponds
to the covariancematrix estimate in Eq. (4). A basic damage diagnosis method can be
made by comparing the above definedMDwith a thresholdϑ > 0.Anewobservation
is then classified according to:

H1 : d2
(
α̃ p, �̂u

)
≤ ϑ → Healthy (7a)

H2 : d2
(
α̃ p, �̂u

)
> ϑ → Damaged (7b)

4 Metric Learning Approach as an Implicit Procedure

4.1 Main Definition

Due to their universal function approximation capabilities, ANNs have been
frequently considered for SHM and damage detection applications. Here, ANNs are
used to reconstruct the relationship between DSFs and a MD-based novelty index,
thus corresponding to a metric learning configuration. To start with, an MD-based
novelty index is computed from the raw DSFs, as follows:

d2
(
f p,F

) = (
f p − μF

)T
�−1

F

(
f p − μF

)
(8)

where f p is the DSF vector, with mean μF and covariance �F.
The aim is to identify a variability pattern in theMD-based novelty index after the

novelty index is computed. For this, a two-layer feedforward ANNmodel is adopted.
This structure has been identified to approximate nonlinear relationships in several
studies [42]. The 2-layer feedforward ANN architecture is defined as follows:

g2
(
f p,Z

) = σ

(
L∑

l=1

z(2)
pl h

(
R∑

r=1

z(1)
lr f p

r + z(1)
r0

)

+ z(2)
p0

)

(9)

where g2
(
f p,Z

)
represents the estimatedMDforDSFs f p. The output layer consists

of the weights z(2)
pl and bias z(2)

p0 , while z
(1)
lr and z(1)

r0 indicate the weights and the bias
for the hidden layer. A hyperbolic sigmoid activation function σ(·) is applied in
the hidden layer and a linear identity transfer function h(·) for the output layer. The
weightsZ are trained byminimizing the least-square solution for ED which is defined
as follow:
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ED = 1

PT

PT∑

p=1

(
d2

(
f p, F

) − g2
(
f p,Z

))2
(10)

where ED is the mean squared error between the calculated and the predicted ANN
estimate of the MD-based novelty index.

4.2 Outlier Analysis

The ANN is trained on observations from the healthy structure (i.e.PT observations),
subsequently, damage detection is pursued upon calculation of a new novelty index.
The proposed ANN-based novelty index is calculated by the relationship between
MD d2

(
f p,F

)
and the estimated MD g2

(
f p,Z

)
by the ANN and is defined as

follows:

d̂2
p =

∣∣∣∣∣
log

g2
(
f p,Z

) + ε

d2
(
f p,F

) + ε

∣∣∣∣∣
(11)

where ε is a small scalar value introduced to avoid mathematical inconsistency. In
this study ε = 10−2. The ANN learns a unique relationship between the DSFs and
the MD, thus if DSFs are obtained from a structure with damage the prediction
error is expected to increase. Then, a new observation is classified according to the
hypotheses test outlined below.

H1 : d̂2
p ≤ θ → Healthy (12a)

H2 : d̂2
p > θ → Damaged (12b)

5 Experimental Campaign of Wind Turbine Blade
Monitoring

5.1 The Test Rig, Data Collection and Artificial Damage

The presented study is based on the data collected during the measurement campaign
conducted on aVestas V27wind turbine duringwinter 2014–2015. Though its design
is relatively old, this 225 kW rated power, 27 m rotor diameter, upwind, pitch regu-
lated, horizontal axis wind turbine is representative of many modern wind turbines.
In contrast to modern wind turbines, its blades are relatively stiff, and it has only two
speed-regimes: 32 and 43 rpm.
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a) b)

Fig. 3 a) Picture of the V27 wind turbine with the measurement equipment. b) Schematic
representation of the instrumented wind turbine blade

The vibration data was collected from a single instrumented blade, which was
excited by an electro-mechanical actuator. The actuator was mounted on the outer
surface of the blade, about 1 m from the blade root and resembles an automatic
hammer that, due to an electrical pulse, impacts the blade. The actuator was
programmed to impact the blade every 5 min. The vibrational response of the blade
was picked up by an array of 11 monoaxial accelerometers mounted in three rows
along the blade, about 2 m from each other (Fig. 3). The synchronously sampled
vibration signals were collected by the data acquisition system located inside the
rotor spinner. Simultaneously, the data from the pitch sensor and two DC accelerom-
eters were recorded. The latter allowed us to estimate the rotor azimuth angle and
rotor rotational speed. From the data acquisition system, the data was transmitted
wirelessly to a measurement computer located inside the wind turbine tower and
stored in its hard drive as raw data time series.

Simultaneously (but not synchronously), the weather data (temperature, wind
speed, wind direction, etc.) from the nearby weather mast was collected.

The measurement campaign started on Nov. 28, 2014, and finished on Mar. 12,
2015. During the campaign, the wind turbine was governed by its control system,
and it was in one of its three operational modes: idle, 32 rpm, and 43 rpm. During
the 104 days of the campaign, the structure of the instrumented blade was taken to
five different states including: the intact blade, three artificially induced damages in
the form of an opening of the trailing edge of 15, 30 and 45 cm, and the repaired
blade. A more detailed description of the test campaign can be found in [22].

Data set. To illustrate how the selected explicit and implicit methods operate in a
simple and comprehensive form, data corresponding only to the 43 rpm operational
condition is considered. Additionally, the repaired state of the blade is selected as the
reference (healthy) state, due to the longer data availability and further exposition
to EOV. Also, only the accelerometers located on the leading and trailing edges are
considered, leading to a number of M = 8 sensors. The number of observations is
detailed in Table 1. The observations measured on the repaired blade (considered as
healthy) are randomly divided into two groups. Then, 3456 observations are used to
build the reference state (training), while 900 observations are used to evaluate the
model performance (validation). Although the data set is the same in both methods,
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Table 1 Number of observations on each scenario

Healthy* Damage

Training Testing 15 cm 30 cm 45 cm

3456 900 258 194 254

*Healthy data set is built from the observations on the repaired state

the DSFs extracted from the vibration responses are different. This is explained in
the sections below.

6 Results and Discussions

6.1 Application Example with an Explicit Procedure

In this section, the results of the application of an explicit procedure implemented
via multivariate nonlinear approach described in Sect. 3 are presented. The vibra-
tion responses are subsequently transformed to the frequency domain by use of the
discrete Fourier transform. The real and imaginary parts are concatenated in a large
vector per accelerometer response. All the observations used for the training data set
(see Table 1) are considered to construct a large matrix with all observations from
the same accelerometer. As the vibration responses are high dimensional and highly
correlated, PCA is applied to reduce the dimension of this large matrix. Finally,
a DSF, α p, is constructed by concatenating all the vibration responses from the
accelerometers under consideration. For more detail about the DSF see [43].

Modelling the DSF dependencies with the EOPs. In this analysis only 5 EOPs
were considered; temperature (°C), wind speed (ms−1), azimuth angle (◦), and stan-
dard deviation and maximum amplitude (ms−2) from the vibration response on the
accelerometer closest to the actuator. Hermite polynomials were used to build the
relationships. Moreover, each EOP was evaluated from 1–5 model orders with every
combination across all the 5 EOPs, so that a total of 55 combinations were tested.
The one with the lowest LOOCV error was chosen to be the model for the corre-
sponding feature. Figure 4 displays feature α1 as a function of temperature (Fig. 4a)
and feature α3 as a function of the standard deviation of the actuator signal (Fig. 4b)
before and after compensation from the obtained multivariate nonlinear regression
model. From Fig. 4a it can be concluded that α1 has a substantial dependency on
the temperature. This can be expected as the first PCA variable represents the largest
variance component. Therefore, it is expected to be highly sensitive to temperature,
which in turn has a significant influence on the blade stiffness. Another example can
be seen when modelling the dependence of the actuator hit and feature α3. This is
visualized in Fig. 4b where the actuator response standard deviation correlates with
the variations in α3. The regressionmodels are created, with each individual EOP and
then all combined, to model the dependencies of each individual feature variable of
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a) b)

Fig. 4 Explicit method. Distribution of the feature variable a) Original α1 and corrected α̃1 against
temperature, b) Original α3 and corrected α̃3 against actuator standard deviation

the DSF vector to all the EOPs. Once the multivariate regression models are defined,
DSF vectors are easily estimated by projecting the EOPs data as shown in Eq. (5).
These new estimated DSFs describe the expected dependencies with their corre-
sponding EOPmeasurements. To this end, corrected DSF vectors are then calculated
by subtracting the estimated DSF from the actual DSF vectors. Thus, now the new
DSFs are corrected upon consideration of the EOP influence. This can be observed in
Fig. 4a where the corrected feature variable α̃1 seems to be released from its temper-
ature dependency. It can clearly be seen that the trend on α1 previously observed in
Fig. 4a is now removed in the new feature. Additionally, this correction can be also
observed on α̃3 where the effects of the actuator hit is now corrected (see Fig. 4b).

Assessing the damage detectability. A comparison between the damage
detectability obtained when using the original features α p (before compensation)
and the corrected DSF vectors α̃ p is now presented. This is conducted by imple-
menting the outlier analysis, described in Sect. 3.2, on the DSF vectors obtained
before and after compensation. The damage detection threshold is defined as the
value where 98% of the training data (i.e. PT = 3456 observations) lies according to
a chi-squared distribution with degrees of freedom equal to the length of the corre-
sponding DSF vector. Figure 5 presents the obtained control charts in both DSF
vectors (i.e., before and after the compensation) based only on the first PC from each
sensor. Therefore, the dimension of the DSF vectors is K = 8 with (i.e. Nr = 1
and M = 8). In both cases, the damages at different levels are detectable. However,
several observations remain undetected when the uncorrected DSF vectors are used
(see Fig. 5a).

Otherwise, after correction of the DSFs, an increase in the distance between the
healthy and damaged cases is observed, while all the damaged cases appear outside
of the selected threshold. Nonetheless, the false positive rate slightly increases within
the testing set after compensation.
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a) b)

Fig. 5 Explicit method. Damage detection control chart for the wind turbine blade with only the
first principal vector retained (K = 8) for a) non-corrected DSF vectors α p and b) corrected DSF
vectors α̃ p

A similar analysis is conducted using the first three principal vectors on each
sensor (i.e. K = 24 with Nr = 3 and M = 8). Before correction (Fig. 6a), some
of the damaged cases remain undetected, while after correction (Fig. 6b), all the
damaged observations are clearly detected on expense of a small increment of false
positives. Comparing the results obtainedwith K = 8 (Fig. 5b) and K = 24 (Fig. 6b),
it is observed that all damages can be successfully detected in both cases, while
a slight increment of false positives is observed when more principal vectors are
retained (K = 24). In addition, it is evident that in the present case the first principal
component is critical towards damage detectability.

a) b)

Fig. 6 Explicit method. Damage detection control chart for the wind turbine blade with only the
first principal vector retained (K = 24) for a) non-corrected DSF vectors α p and b) corrected DSF
vectors α̃ p
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Moreover, for both analyses, it could be seen that when the DSF vectors were
compensated, some observations from the testing set move above the threshold, thus
increasing the number of false positives. One reason for this could be that the EOVs
experienced for these observations did not exist in the training set and, as such, are not
modelledwell in themultivariate regressionmodel. However, as the distance between
the damage and healthy increases, it opens the possibility to raise the threshold and
reduce the number of outliers without affecting the detection rate of the damage.

6.2 Application Example with an Implicit Procedure

In this section, the results of the application of an implicit procedure implemented via
the metric learning approach described in Sect. 4 are presented. As in the application
of the explicit method, the data is split according to Table 1. This includes using 80%
of the data for training and defining the threshold for outliers. The DSF vector in this
application example relates the correlation matrix calculated among the considered
accelerometers. The DSF vector f p is then formed by organizing the elements of
the upper diagonal of the acceleration correlation matrix into a single column vector.
For more details about the DSF see [44].

The novelty index obtained by calculating the MD defined in Eq. (8), with mean
and covariance calculated on the elements of the training set (PT = 3456) is observed
in Fig. 7. The threshold corresponding to a 2% false alarm rate is also displayed. As
the DSFs are not pre-processed to mitigate the effects of EOPs, a large number of
instances from the healthy state of the blade, both in the training and validation sets,
are overlapping with the instances from the damaged state.

First, the novelty index when solely using the MD with PT = 3456 is observed
in Fig. 7. As the DSFs are not pre-processed to mitigate the effects of EOPs, the
majority of the 2% allowed false alarms are overlapping with the 15 cm damage.

Fig. 7 Implicit method.
Damage detection control
chart for the wind turbine
blade based on the MD of
the correlation-based DSF
vectors
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a) b)

Fig. 8 Implicit method. a) Comparison of the calculated and ANN-predicted MDs of the
correlation-based DSF vector. b) Damage detection control chart for the wind turbine blade based
on the predicted error between the calculated and ANN-predicted MDs

Building the reference state. The ANN regression model presented in Eq. (9) is
trained with PT = 3456 DSFs and the corresponding g2

(
f p, Z

)
prediction target.

To calculate the MD-based novelty index as the prediction target for the ANN in
Eq. (9), the number of observations is reduced to 2000. The reduced number hinders
pre-normalization of the novelty index and allows the ANN to learn the existing
patterns. Figure 8a shows the computed and predicted MD-based novelty index.
It can be observed that the model can effectively predict new observations in the
validation set from the healthy state of the structure. Moreover, it is evident that the
prediction error increases after the onset of damage.

The new novelty index presently corresponds to the prediction error calculated
by Eq. (11), which is displayed in Fig. 8b. It is noticed that the distance between
the healthy and damaged instances has increased considerably, effectively reducing
the number of false positives. However, the number of missed alarms (undetected
damage instances) has also increased. This can happen when the DSFs from the
damaged state follow a similar pattern to that of the healthy state. This indicates that
there is an overlap between the manifolds of the healthy and damaged states of the
structure. As no further information regarding the EOVs is presented to algorithm,
there is no way to resolve the indeterminacy.

7 Comprehensive Discussion and Best Practices

This section is devoted to present the best practices of each procedure, explicit and
implicit, through a comprehensive discussion of their potential advantages and draw-
backs. However, we do not aim at making a direct performance comparison between
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the methods discussed in the sections above. Instead, we aim to discuss how these
procedures could be integrated within a VSHM methodology.

Explicit procedures. Additional EOP measurements are required to reconstruct
the functional relationship with corresponding DSFs. Consequently, this type of
procedures requires large datasets of different natures, which in turn calls for extra
computational resources and accurate merging/synchronization of data streams.
Nonetheless, in many structures of interest this information is already available.
Explicit procedures introduce a controlled environment aided by EOV information,
facilitating a better interpretability of the results is achieved. Thereupon, a better
understanding of the monitored structure might be achieved. Also, since DSFs are
associated to EOPs, then it is easy to trace back the cause for any variation in DSFs.

Regardless of their increased complexity, regularized and stochastic regressions
are preferable for the EOV compensation task, due to their increased robustness
towards overfitting and reduced sensitivity to outliers. Moreover, stochastic models
also facilitate the calculation of uncertainty bounds and model comparison [22].

When constructing regressions, it is useful to be able to identify the variables that
effectively influence the output variables, while rejecting those that are irrelevant or
correlated to others. Irrelevant and correlated variables may, in the best case, add
unnecessary complexity to the model, while in the worst case act as confounding
variables, harming the performance of the regression model. In the present context,
this problem has a special significance as the number of potentially influencing vari-
ables can be very large. This is especially true for structures equipped with Super-
visory Control and Data Acquisition (SCADA) systems, which provide hundreds of
different variables and descriptive statistics, many of them of a similar nature (e.g.,
temperatures at different locations). Hence, a good practice is to preprocess the input
data to produce a set of independent variables to be used as inputs in the regression
model. To this end, Principal Component, Factor, or Independent Component Anal-
ysis as well as Singular SpectrumAnalysis are amenable methods. Nonetheless, such
transformations come at the price of a reduced physical interpretation of the input
variables. A subsequent step is to remove inputs within the model optimization loop,
aided by sensitivity measures and related techniques [43].

Some types of structures will exhibit large variations in the dynamic characteris-
tics while changing between operational regimes. For instance, wind turbines have
dramatic changes on their dynamics when changing from idling condition to power
production mode. In those cases, independent regression models should be built for
each one of the identified operational modes.

Other aspects to consider relate to the multivariate nature of DSFs. Nonetheless,
most regression methods are designed for a single output, so typically, indepen-
dent regression models are fit to single DSFs. While the predictive accuracy of this
approach is not harmed in any way, the efficiency of the optimization process and
of the obtained model is sub-optimal. Otherwise, considering the multivariate nature
of DSFs will provide a more efficient model, which at the same time, can provide
further understanding into the problem. For instance, collinearity between predicted
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variables or a latent structure in the DSFs can be unveiled. For this purpose, polyno-
mial regressions in a deterministic or Bayesian context can be easily upgraded to the
multiple output case [22], while similar extensions for GPRs are also available [45].

In practice, explicit procedures need data from EOPs and their associated DSFs
froma representative set of environmental andoperational conditions to achieve accu-
rate models. This implies large instrumentation equipment, an efficient synchroniza-
tion between different measurement systems (e.g., SCADA and vibration measure-
ment systems), and a sufficiently long initial monitoring period. Overlooking any of
these aspectswillmost certainly impair the achievable accuracy of the final regression
model.

Implicit procedures.Fromone hand, implicit procedures are conceptually simpler,
as no extra variables beyond DSFs are required, thus eliminating the concerns for
measuring, synchronization andmerging of data streams. On the other hand, this lack
of information is translated either into a reducedperformanceor higher computational
complexity. Moreover, if extra variables are already available (as is often the case),
why not use this information to potentially enhance the sensitivity to damage?

Implicit procedures learn patterns in DSFs without any contextual or prior knowl-
edge. This implies a potential reduction in damage sensitivity, as the manifolds
obtained in healthy and damages may overlap, especially for early damage stages.
However, the overlapping sections could be resolved with the help of any EOPs.

In practice, implicit procedures need large sets of DSFs to gain as much infor-
mation on the variability of DSFs as possible. In addition, when dimensionality
reduction is involved, it is important to select the correct dimensionality to preserve
maximum sensitivity to damages without adding unwanted confounding features.
These considerations might have negative consequences if overlooked, and they are
generally case-dependent based on the complexity of the problem and quality of the
data measured.

In general. A large number of observations are required to learn the complex
patterns ofDSFs. If the dimensionality ofDSFs is also large (as in the case of spectra),
then an increased computational complexity is attained. Dimensionality reduction
methods could be integrated to alleviate this issue, but at the same time introduce the
problem of resolving the amount of information to keep/discard without affecting the
sensitivity to damage. It is important to build the reference state(s) by considering a
representative subset of EOVs to the best possible extent. Otherwise, there will be a
higher risk of false positives stemming from unexpected events not accounted for at
the training phase. While often overlooked, the selection of the model structure has
a massive impact on the final performance of the method. This includes the selection
of the model type, function family, structural complexity (or model order), and so
on. A wrong model selection will lead to a bias in the damage indices, as the trends
in the data will be misrepresented.
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8 Conclusions

This chapter has been devoted to the contextualization and discussion of different
procedures formitigation ofEOV in damage detection. The core of this discussion has
been focused on two main philosophies: explicit and implicit procedures. A compre-
hensive review has been presented in both cases, aiming to explain the necessity and
scope of each one of them. In short, explicit procedures consider information about
EOV to reconstruct the cause-effect relationship with corresponding DSFs. Mean-
while, implicit procedures do not use a direct information of the EOVs but attempt
at learning the patterns characterizing DSFs or damage indices in a baseline state.
These procedures have been illustrated in the context of a wind turbine in-operation
where different damage scenarios were introduced. The procedures were exemplified
via two machine learning methods: a multivariate nonlinear regression to illustrate
the explicit procedure; and a metric learning method assisted by an artificial neural
network to illustrate the implicit procedure. A detailed discussion of the perfor-
mance of each method has been presented, where their capabilities for accounting
and mitigating EOVs for damage detection in wind turbine blades in-operation are
described. Finally, the advantages and drawbacks of each procedure are also detailed
in order to present a comprehensive best practice guideline. In general, both proce-
dures will require a large number of observations, whether the aim is to learn the
complex patterns of the DSFs or build the relationship with their corresponding
EOVs for constructing a robust SHM methodology. On the other hand, both proce-
dures provide benefits for their implementation. Implicit proceduresmight be simpler
as they require only information from the DSFs but explicit procedures introduce a
controlled environment aided by EOV information. In terms of future development,
we believe that a holistic approach comprising explicit and implicit compensation
procedures should be considered, as it will facilitate the mitigation of measurable
and unmeasurable effects, while introducing interpretability of the outcomes in a
SHM framework.
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Explainable Artificial Intelligence
to Advance Structural Health Monitoring

Daniel Luckey, Henrieke Fritz, Dmitrii Legatiuk,
José Joaquín Peralta Abadía, Christian Walther, and Kay Smarsly

Abstract In recent years, structural health monitoring (SHM) applications have
significantly been enhanced, driven by advancements in artificial intelligence (AI)
and machine learning (ML), a subcategory of AI. Although ML algorithms allow
detecting patterns and features in sensor data thatwould otherwise remain undetected,
the generally opaque inner processes and black-box character of ML algorithms are
limiting the applicationofML toSHM. Incomprehensible decision-makingprocesses
often result in doubts and mistrust in ML algorithms, expressed by engineers and
stakeholders. In an attempt to increase trust in ML algorithms, explainable artificial
intelligence (XAI) aims to provide explanations of decisions made by black-boxML
algorithms. However, there is a lack of XAI approaches that meet all requirements of
SHM applications. This chapter provides a review of ML and XAI approaches rele-
vant to SHM and proposes a conceptual XAI framework pertinent to SHM applica-
tions. First, ML algorithms relevant to SHM are categorized. Next, XAI approaches,
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such as transparent models and model-specific explanations, are presented and cate-
gorized to identifyXAI approaches appropriate for being implemented in SHMappli-
cations. Finally, based on the categorization ofML algorithms and the presentation of
XAI approaches, the conceptual XAI framework is introduced. It is expected that the
proposed conceptual XAI framework will provide a basis for improving ML accep-
tance and transparency and therefore increase trust in ML algorithms implemented
in SHM applications.

Keywords Artificial intelligence (AI) ·Machine learning (ML) · Structural health
monitoring (SHM) · Explainable artificial intelligence (XAI)

1 Introduction

Facilitating non-destructive condition assessment of civil infrastructure based on
sensor data, structural health monitoring (SHM) has become a useful instrument to
advance infrastructure maintenance, rehabilitation, and repair. Thus, SHM enhances
safety and cost-efficient operation of infrastructure [1]. Unlike visual inspections
that are performed periodically, SHM can be conducted continuously, in real-time,
and at locations that may be difficult to physically reach [2]. Depending on type
and location of the sensors, SHM provides both local and global monitoring, while
visual inspections are restricted to localized areas [3]. The long-term systematic use
of reliable sensors and measurement techniques, as well as appropriate data analysis
methods, in SHM helps (i) to evaluate and ensure structural health, (ii) to repair
damage duly, and (iii) to calculate financial expenses of structural maintenance [4].

Representing a rapidly growing and innovative research field, SHM is increas-
ingly advanced by artificial intelligence (AI). Recent technological developments in
AI have enabled SHM systems to become “smart” SHM systems, also referred to
as “smart monitoring systems”, allowing SHM processes to be conducted (almost)
autonomously. Common AI approaches introduced in SHM for solving domain-
specific problems through learning and adaption are based onmachine learning (ML),
a subcategory of AI. Machine learning represents the learning processes of computer
systems, often described as the transformation of experience into expertise or knowl-
edge [5]. Using ML algorithms for SHM purposes has shown to be promising, as
ML algorithms can process large amounts of data and recognize patterns that may
serve as a basis for condition assessment of civil infrastructure.

Concerning AI-related approaches, detection and quantification of structural
damage are the main research fields of ML in SHM, applying, e.g., support vector
machines [6] or convolutional neural networks [7]. Furthermore, support vector
machines, artificial neural networks and Gaussian naïve Bayes techniques have been
used for condition assessment using SHM systems [8]. Aiming at life-time predic-
tion based on SHM, principal component analysis and partial least square regression
have been applied [9]. An overview of the variety of ML algorithms implemented in
SHM systems can be found in [10].
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Because of the complex structure of ML algorithms, most ML algorithms have
a black-box character, i.e. the results computed by the algorithms cannot easily
be traced through the internal processes of the algorithms. As a result, engineers
and stakeholders have been expressing mistrust in black-box ML algorithms and
have been reluctant in the widespread adoption of ML in SHM. In recent years,
the research area of so-called “explainable artificial intelligence” (XAI) has gained
growing interest [11]. XAI aims to increase acceptance of and transparency in the
results ofMLalgorithms by providing explanation and interpretation, i.e. reasoning,
for the algorithm output (see Sect. 3.1 for details) [12]. While explanation can
be considered as a collection of interpretable features, interpretation focuses on
mapping abstract concepts. Since critical infrastructure has been in operation for
many decades, and has therefore been subjected to gradual changes that may require
the prediction accuracy and reliability of ML algorithms to be effectively detected, it
is imperative to introduce explainableML algorithms tomodern smart SHMsystems.
However, there is a lack of XAI approaches in SHM applications. By reviewing ML
algorithms for SHM, this chapter provides an overview of ML algorithms for SHM
usage suitable for XAI. Furthermore, this chapter generalizes the requirements and
present possibilities for explainable ML algorithms for SHM applications.

In this chapter, a categorization of AI andML algorithms is given to illuminate the
relation between AI andML. Subsequently, ML algorithms for SHM are reviewed to
illustrate the variety of approaches relevant to SHM. The categorization of ML and
the review of ML algorithms for SHM serve as a basis to highlight the possibilities
of introducing XAI approaches to ML for SHM. Thereupon, an introduction to XAI
and a conceptual XAI framework for SHM are presented, in an attempt to advance
SHM practice. Finally, conclusions drawn from the results achieved in this study are
presented and potential future work is suggested.

2 Machine Learning Algorithms for Structural Health
Monitoring

This section provides the basics on AI and presents a categorization of AI and ML.
Next, reviews of ML for SHM are discussed. Finally, current ML algorithms used in
SHM are reviewed and summarized.

2.1 Artificial Intelligence and Machine Learning

Artificial intelligence has been a subject of constant development over the last
decades. As AI covers a broad field of research and industrial applications, it does
not seem possible to formulate a single, generally valid definition. Nonetheless,
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Fig. 1 Categorization of artificial intelligence and machine learning

general concepts of AI developed in each field of research and industry share simi-
larities, identified as four characteristics: (i) perception of a complex environment,
(ii) acquisition and interpretation of data, (iii) autonomous response to change, and
(iv) automatic achievement of predefined goals [13].

For the purpose of automatic achievement of predefined goals, various AI algo-
rithms have been designed to realize intelligent problem-solving strategies [14].
Furthermore,AI algorithms have been developed for applications in different fields of
engineering and thus cover a wide spectrum of tasks, such as audio-visual perception
of the surrounding environment [15], reproducibility of AI decisions [16], automatic
data interpretation and decisionmaking [17], and evaluation of robustness to changes
in datasets [18]. AI can be broadly categorized in natural language processing, auto-
mated reasoning, ML, knowledge representation, and computer vision as shown in
Fig. 1.

Machine learning is referred to as a process that improves the performance of a
functional unit by new knowledge or skill acquisition or by existing knowledge or
skill reorganization [19]. Designing ML algorithms requires large datasets to learn
how to automate tasks and involves two steps, training and testing. During training,
ML algorithms use datasets, ideally covering the entire possible range of values to
which some meaning can be assigned, to “learn” patterns in the data. Some ML
algorithms also accept incomplete or inconsistent datasets, exhibiting an acceptable
level of robustness. A specific instance of a ML algorithm that is trained to solve
a specific problem is referred to as a ML model. During testing, the ML model
obtained during the training step is given new unknown data, with which the overall
performance of the ML model is tested.

In general, ML can be divided into three different learning processes:

i. supervised learning,
ii. unsupervised learning, and
iii. reinforcement learning [20].

For supervised learning, the datasets used to train a ML model contain not only
the input data from which patterns will be learned but also a target feature, such
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Fig. 2 Within supervised learning, the model (e.g. an ANN) is trained and tested for automatic
labeling of data

as labels in classification problems and numerical continuous values in regression
problems. Figure 2 presents a flow chart of the process of training a ML model.
Apart from identifying patterns in the training step, some ML algorithms require to
split the input data stochastically into training data and validation data. Validation
data is then used to calculate the accuracy and error in the predictions of the ML
model being trained, which helps to adjust and optimize the learning process. Upon
completing the training step and producing the ML model adapted to the problem
being solved, e.g. in the form of an artificial neural network (ANN), the ML model
is tested, and if its predictions are accurate, the ML model is ready to be used in
real-world applications.

For unsupervised learning, theML algorithm is trained only on input data without
a target feature. Therefore, unsupervised ML algorithms attempt to identify relation-
ships and similarities in the input data during the training processwithout a predefined
or expected output. Unsupervised learning methods include clustering and dimen-
sionality reduction algorithms (Fig. 1) and are often used for anomaly detection
and outlier detection. By applying clustering, automatic separation of input data
into groups of similar and correlated data is performed. Dimensionality reduction
usually pursues the transformation of original data from a high-dimensional space
to a low-dimensional space, while maintaining the main meaning of the data.

Representing a hybrid form, in semi-supervised learning, parts of the input data
are labeled, thus combining supervised and unsupervised learning. Finally, in rein-
forcement learning, the training dataset is not fixed and is continuously updated
with new data. As such, through an iterative learning process, the ML algorithm is
continuously adapted, improving the relation between input and output data.

Due to the differences in the three learning processes and the variety of ML
algorithms available for use in SHM, it may be confusing to identify which learning
process andML algorithm should be used to solve a problem in SHM. Therefore, the
following subsection presents a description of reviews of ML applications in SHM.
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2.2 Machine Learning in Structural Health Monitoring

Several studies have been published reviewing the application of ML to solve SHM
problems. Mitra and Gopalakrishnan [21] have presented a literature review on
guided-wave-based SHM, including statistical methods and ML algorithms, for
damage prediction and estimation. The authors have identified challenges in using
ML for guided-wave-based SHM, such as scarcity of training data and the presence
of noise and outliers. Bao et al. [22] have reviewed the state of the art of data science
engineering in SHM by focusing on deep learning (DL) algorithms and compressive
sampling.

An overview of recent research of DL approaches for SHM of civil infrastructures
has been accomplished by Ye et al. [23], demonstrating history, frameworks, and
datasets for DL, in addition to structural damage detection and condition assessment
applications. Furthermore, the authors have indicated challenges and future trends
of DL-based SHM, concluding that DL-based SHMwill witness developments with
new algorithms and enhanced frameworks, sufficient datasets, and computing power.
Azimi et al. [24] have introduced a review of DLmethods in SHM. The authors have
covered vibration-based and vision-based SHM through DL, as well as applications
of unmanned aerial vehicles and smartphones for DL-based SHM.

Flah et al. [25] have studied the deployment of AI approaches in SHM for damage
detection of structures. The authors have introduced SHM applications utilizing AI
algorithms, and have elaborated on types of structures being employed in these
applications, advantages, limitations, and recommendations.

2.3 Applications of Machine Learning Algorithms
in Structural Health Monitoring

Although several reviews addressing applications ofML in SHMhave been proposed
in recent years, a general review of ML algorithms for SHM from the point of view
of XAI is lacking. Therefore, the aim of this subsection is to present a review of
ML approaches in SHM keeping in mind their possible use in an XAI context. The
literature collection involves studies indexed in the Web of Science Core Collection
aswell as conference papers indexed in the Scopus database.A representative number
of papers dealing with ML and SHM published between 2016 and 2019 is selected.

The application of ML algorithms in SHM depends on the problem to be solved.
As described earlier, one of the main tasks in SHM is to assess the condition of and
to identify possible damage in structures. For example, Abdeljaber et al. [7] have
studied structural damage detection using an one-dimensional convolutional neural
network (1-D CNN), overcoming the limitation posed by the need of a large amount
of measurements to train the 1-D CNN algorithms, particularly for large structures.
Joshuva and Sugumaran [26] have studied the combination of ML algorithms for
condition assessment of wind turbine blades using vibration signals. Das et al. [27]
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have used clustering and support vector machines to classify crack modes from
unlabeled acoustic emission waveform features.

The studies reviewed herein have used supervised learning (SL), unsupervised
learning (UL), and semi-supervised learning (Semi-SL) algorithms. Reinforcement
learning (RL) algorithms have not been used in the studies reviewed. Therefore,
based on the categorization and description of learning processes presented in subsec-
tion 2.1 and omittingRL, Table 1 presents a summary ofMLalgorithms used in SHM,
grouped by SL, UL, and Semi-SL. Furthermore, since SL algorithms may be used
for classification and regression tasks, subgroups are added in the SL group. It is
observed that mainly SL algorithms are being used in SHM, followed by UL algo-
rithms.Moreover, most algorithms in the SL subgroups are classification algorithms,
revealing a possible focus of XAI approaches towards SL classification algorithms.

Regarding SL algorithms, support vector machine algorithms have been used for
damage detection in built infrastructure [28, 29]. Moreover, Pan et al. [30] have used
support vector machines for structural diagnosis and damage detection in large-scale
cable-stayed bridges. Vitola et al. [31] have used k-nearest neighbors (k-NN) for
damage classification, in combination with principal component analysis (PCA) for
feature extraction from signals representing dynamic responses of structures. Artifi-
cial neural networks have been used for predicting accelerations to be compared with
damage indices, in combination with Gaussian process algorithms, discriminating
between damaged and undamaged structural conditions [32].

As for UL algorithms, a damage detection methodology based on strain field
pattern recognition using clustering and PCA has been presented in [33]. In addi-
tion, Diez et al. [34] have performed damage detection on bridges via clustering for
grouping substructures with similar behavior.

Finally, with respect to the hybrid form of semi-SL algorithms, Sarkar et al. [35]
have used a deep auto-encoder for detection and annotation of cracks on images. At
the end of Table 1, a group of references containing comparative studies of different
ML algorithms has been added for providing a better overview to readers interested
not only in specific applications ofML in SHM, but also in comparative performance
of various ML algorithms.

As shown in Table 1, SL classification algorithms have been used themost in SHM
systems. Since many of these SL classification algorithms are black-box, raising
trust issues regarding their outputs, the explainability and interpretability aspects
of XAI may help increase the transparency and acceptance of the SL classification
algorithms in SHM practice. As a result, the following section presents a conceptual
XAI framework, i.e. a concept towards explainable artificial intelligence, as a solution
to help explain and interpret the reasons behind the predictions of SL classification
algorithms.
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Table 1 Review of ML algorithms in SHM

ML in
SHM

SL/UL/Semi-SL Prob. class Algorithm References

SL Classification Support vector
machine

[6, 8, 27–30, 36–39]

k-nearest
neighbors

[31, 38–43]

Convolutional
neural network

[7, 40, 44–46]

Artificial neural
network

[37, 38, 47]

Naïve Bayes [8, 36, 40]

Decision trees [38–40]

Long short-term
memory

[40, 44]

Classification
learner toolbox
from Matlab

[48]

Nearest-mean
classifier

[38]

Regression Artificial neural
network

[32, 49–51]

Gaussian process [32, 52, 53]

Partial least
square regression

[9]

Support vector
regression

[54]

Bayesian neural
network

[44]

Kernel ridge
regression

[36]

UL Principal
component
analysis

[9, 31, 33, 42, 55–57]

Clustering [27, 34, 55]

Gaussian mixture
modeling

[27, 58]

Deep autoencoder [35]

Fast independent
component
analysis

[56]

Optimal baseline
selection

[33]

(continued)
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Table 1 (continued)

Fuzzy cognitive
map

[59]

Semi-SL Deep autoencoder [60, 61]

Manifold adaptive
experimental
design algorithm

[62]

Comparative studies [8, 9, 28, 30, 36–38, 40]

3 Design of a Conceptual XAI Framework

Explainable artificial intelligence provides a set of techniques that produce explain-
able ML algorithms while maintaining a high level of learning performance. By
incorporating explanations, ML algorithms increase expressiveness, improve human
understanding, and advance confidence in decision making [12]. As mentioned
previously, XAI may be divided into two parts:

• the explanation part, which can be seen as meta information added to ML algo-
rithms, generated either by external algorithms or by a ML algorithm itself, for
example features contributing to the output of ML algorithms, and

• the interpretation part, which aims to find a suitable domain-specific interpreta-
tion of themeta information identified in the explanation part of XAI, for example,
by linking the most relevant features to mechanical quantities from structural
dynamics.

It is worth mentioning that some ML algorithms, such as decision trees and rule-
based methods, are explainable by design without any need for XAI. However, as
shown in Table 1, several ML algorithms employed in SHM applications are not
explainable (black-box), and therefore require XAI for reliable use in engineering
practice.

3.1 Overview and Existing XAI Approaches

According to Adadi et al. [63], AI can be divided into three different categories:

1. Accurate AI, including AI systems primarily exhibiting high accuracy in
decision making,

2. ExplainableAI, comprising advanced or newly designedAI systems exhibiting,
in addition to high accuracy, a very high degree of explainability and inter-
pretability in decision making, and

3. Responsible AI, encompassing future AI systems that will act and decide in
a transparent, fair, and comprehensible manner, considering legal, social, and
ethical aspects.
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From the point of view of explainability, accurate AI represents the classical use
of AI and ML algorithms in various fields of applications, and is not explainable in
general, except for algorithms being transparent by design, such as decision-trees
and rule-based methods. The other two categories, explainable AI and responsible
AI, support transparency. Before discussing different XAI approaches proposed in
recent years, it is necessary to underline the distinction between interpretation and
explanation, which are defined according to [64] as follows:

Definition 1 An interpretation is themapping of an abstract concept (e.g. a predicted
class) into a domain of which humans can make sense.

Definition 2 An explanation is the collection of features of the interpretable domain
that have contributed to a given problem in producing a decision (e.g. classification
or regression).

From these definitions, it follows that the interpretation is problem-specific
because the target domain to which the abstract concept is mapped is defined by
the problem that needs to be solved using ML. In practical terms, interpretation
implies that some parameters of a ML algorithm are linked to engineering quantities
and are easily interpretable by engineers. By contrast, explanation is solely related
to algorithms, aiming to find the dominant features contributing to the result. The
problem-agnostic nature of explanation allows for flexibility in applying XAI to
SHM applications, as explanation algorithms can be used for different SHM tasks,
and only the interpretation part must be adapted to specific applications.

In recent years, several XAI approaches have been introduced that can be divided
into two main groups [65]:

(i) Transparent models. Explainability is provided directly by the model or by
the model structure. This group includes ML models such as decision trees,
rule-based learners, general additive models, Bayesian models, models for
k-nearest neighbors, and models for logistic or linear regression.

(ii) Post-hoc explainability.This group is divided intomodel-agnostic andmodel-
specific methods, enabling subsequent explainability of ML models. Model-
agnosticmethods, such as visual interpretation and feature space interpretation,
provide explanation bygeneral tools and are applicable to a large number ofML
algorithms. By contrast, model-specific methods are designed for providing
explanations of results obtained by specific ML algorithms, and are therefore
applicable only to a limited number of algorithms, such as artificial neural
networks and support vector machines.

It should be mentioned that the problem formulation for using ML algorithms
in civil engineering has a direct influence on applications of XAI approaches. As
discussed in [10], the application of ML algorithms in civil engineering may be
distinguished into (i) ML algorithms used to solve problems of data analysis, such
as classification problems, and (ii) ML algorithms used for substituting conven-
tional algorithms, i.e. for surrogate modeling. From an XAI perspective, problems
addressed by surrogate models do not require explanation even if black-box ML
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algorithms, such as deep learning algorithms, are used. The reason is the nature
of surrogate modeling: Because ML algorithms are used as substitutes of conven-
tional algorithms, the relation between input and output is always clear, despite
being nontransparent from an algorithmic point of view. By contrast, classification
problems require using XAI approaches for the ML algorithms, as explained in the
conceptual XAI framework proposed in the next subsection.

3.2 Conceptual XAI Framework

A conceptual XAI framework for adding transparency to the results provided by
ML algorithms in SHM applications is proposed in this subsection. The frame-
work reflects a general strategy towards using XAI approaches in SHM applications.
Drawing from the previous discussion on ML algorithms and XAI approaches, as
well as from ML applications in SHM, the conceptual XAI framework consists of
the following steps:

Step 1. Preprocessing of the problem
The goal of this step is to clearly formulate the problem, which is intended to be
solved byML algorithms, and to analyze the problemwith respect to the necessity
of using XAI. Therefore, this step contains the following sub-steps:

1. Formulation of the SHM task, e.g. damage detection, to be solved using ML
algorithms.

2. Analysis of the task with respect to the need of XAI. Here, it must be decided
if the use ofML falls into the category of classification problems or surrogate
modeling. For classification problems, usingXAI is justified, otherwise there
is no need for explanation, as discussed above.

3. Formulation of the SHM task as a classification problem to be solved using
ML algorithms.

Step 2. Application of ML algorithms
The goal of this step is to solve the classification problem formulated in Step 1
by one or several ML algorithm(s).
Step 3. Explanation
The goal of this step is to provide the explanation of the classifier decisions
from Step 2 in the sense of Definition 2. Thus, the most relevant data features
influencing the classifier decision are to be identified in this step. A generic form
of explanation is: The input has been classified to category A because it has the
set of features Ω

Step 4. Interpretation
The final step in the framework aims at mapping the most relevant data features
identified in Step 3 to the problem-specific domain of SHM. For example, in the
damage identification context, the interpretation may look as follows: The set
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Fig. 3 XAI conceptual framework

of features Ω indicating damage contains three parameters interpreted as first
eigenfrequency, peak acceleration, and peak displacement.

Uponperforming the4 steps described above, anXAImodel is constructed containing
a list of the most relevant features for the classification problem (explanation part),
and a list of problem-specific-domain terminology linked to the most relevant
features (interpretation part). The flowchart in Fig. 3 summarizes the conceptual
XAI framework for SHM applications.

4 Summary, Conclusions, and Future Work

Structural health monitoring is a key component for achieving reliable, resilient,
and cost-efficient – in terms of structural maintenance – infrastructure. Machine
learning algorithms are frequently used in SHM to automatically analyze and detect
patterns in sensor data. Despite being efficient in analyzing sensor data, the black-
box nature of ML algorithms raises doubts and mistrust by engineers, thus hindering
the exploitation of the ML full potential in SHM practice. Representing an emerging
paradigm in data science, explainable artificial intelligence is expected to enhance
the transparency of ML algorithms and, eventually, increase the acceptance of ML
algorithms by SHM practitioners.

Drawing from current trends in ML applications applied to SHM, this chapter has
presented a step towards introducing XAI to SHM. First, ML algorithms commonly
deployed in SHM applications have been reviewed. Specifically, ML-based SHM
applications, including tasks such as damage detection and damage localization,
have been categorized according to the learning process, i.e. into supervised, unsu-
pervised, and reinforcement learning approaches. From the categorization of ML-
based SHM applications, it has been observed that most applications are associated
with supervised learning classification problems.

Second, XAI approaches have been presented, indicating that the necessity of
using XAI in SHM applications depends on the formulation of the problem that
is intended to be solved using ML. In case ML algorithms substitute classical engi-
neering algorithms, i.e.ML algorithms serve as surrogatemodels, XAI is not required
because the reasoning behind the results obtained by ML is readily clear from the
problem formulation. By contrast, classification problems solved by ML algorithms



Explainable Artificial Intelligence to Advance Structural Health Monitoring 343

require the use of XAI because classifier decisions are generally not traceable. Given
that tasks in most ML-based SHM applications are formulated as classification prob-
lems, a conceptual framework towards adopting XAI in SHM has been proposed,
including four steps: (i) formulating the problem and confirming that the ML algo-
rithms are used as classifiers, (ii) applying the ML algorithms, (iii) explain the ML
algorithms outputs, and (iv) interpret the ML algorithms outputs within an SHM
context.

From the results of this study, it can be concluded that introducing XAI can
enhance the quality of ML-based SHM applications. Furthermore, it is concluded
that ML algorithms require different levels of explanation, based on the purpose of
using ML and the human individuals to which the explanation is addressed. Future
work may be conducted towards an in-depth analysis of explainability and levels of
explanation for ML algorithms to advance SHM and smart monitoring systems.
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Abstract The use of machine learning in structural health monitoring is becoming
more common, as many of the inherent tasks (such as regression and classification)
in developing condition-based assessment fall naturally into its remit. This chapter
introduces the concept of physics-informed machine learning, where one adapts
ML algorithms to account for the physical insight an engineer will often have of
the structure they are attempting to model or assess. The chapter will demonstrate
how grey-box models, that combine simple physics-based models with data-driven
ones, can improve predictive capability in an SHM setting. A particular strength
of the approach demonstrated here is the capacity of the models to generalize, with
enhanced predictive capability in different regimes. This is a key issuewhen life-time
assessment is a requirement, or when monitoring data do not span the operational
conditions a structure will undergo. The chapter will provide an overview of physics-
informed ML, introducing a number of new approaches for grey-box modelling in
a Bayesian setting. The main ML tool discussed will be Gaussian process regres-
sion, and wewill demonstrate how physical assumptions/models can be incorporated
through constraints, through the mean function and kernel design, and finally in a
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1 Introduction

As performance and monitoring data from our structures become more abundant, it
is natural for researchers to turn to methods from the machine learning community
to help with analysis and construction of diagnostic/prognostic algorithms. Indeed,
within the SHM research field, use of neural networks, support vector machines and
Gaussian processes for regression and classification problems has become common
place [1]. Thesemethods bring the opportunity to learn complex relationships directly
fromdata, without a requirement of in-depth knowledge of the system.As an example
from the authors’ own work, in [2] we employed a Gaussian process (GP) regression
to predict strain on a landing gear from measured accelerations across the aircraft.
Use of a suitably trained GP circumvents the need to build complex physics-based
models of the gear for fatigue life calculations. This kind of model is often referred
to as a ‘black-box’ model to reflect the fact the data drives the structure of the model
rather than knowledge of the physics at work.

At the other end of the spectrum the term ‘white-box’ model can be used to
describe a model purely constructed from knowledge of physics, (e.g. differential
equations and finite element models). Physics-based modelling and updating were
common early themes in the structural health monitoring research field [3]. However,
for large or critical engineering structures that operate in (often extreme) dynamic
environments, such as wind turbines, aircraft and gas turbines, predictive modelling
from a white-box perspective presents particularly difficult challenges. Loading is
often unknown and unmeasured, and dynamic behaviour during operation needs to
be fully captured by a computational model, but is sensitive to small changes in (or
disturbances to) the structure. Validation and updating of large complexmodels bring
their own challenges and remain active research areas [4–7].

Due to the availability of monitoring data, the inherent challenges of the physics-
based approach and the promise of machine learning methods, it is fair to say that the
data-driven approach toSHMhasbecomedominant in the researchfield.A significant
issue with the use of any machine learning method in an engineering application,
however, is the availability of suitable data with which to train the algorithm. As the
model learns from the data, it is only able to accurately predict behaviour present
in the data on which it was trained. As an example, Fig. 1 shows a black-box model
trained to predict the bending strain on an aircraft wing during different manoeuvres
to inform an in-service fatigue assessment. This data set comprises of 84 flights,
five of which are used for model training. The trained model is able to generalize
well with a very low prediction error for the majority of the flights—Fig. 1a shows a
typical strain prediction for a flight not included in the training set (normalizedmean-
squared error1 (nMSE)=0.29%across thewholeflight).However, for theflight shown
in Fig. 1b, the model is unable to predict the strain as accurately (nMSE 4.20% across

1

nMSE = 100
nσ 2

y

∑
(yi − fi )

2 (1)

where yi and fi are the measurements and predictions, respectively, i = 1 . . . n.
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Fig. 1 Example of difficulty predicting behaviour outside of normal operation conditions—strain
prediction on an aircraft wing during manoeuvres—see [8, 9] for more details

the whole flight)—this flight was atypical in terms of operating conditions—it was a
low-altitude sortie over ground, characterized by the turbulent response one can see
in the figure. These conditions are different from those included in the training set
and the model is unable to generalize and predict the strain as well in this case.

In general, but especially because of the inherent flexibility inmany of themachine
learning models commonly used, extrapolation should not be attempted in this set-
ting. For an SHM application, this will generally mean that training data are required
from all possible operating conditions that the structure will see. For many applica-
tions, this is currently infeasible, although as data collection becomesmore common-
place, the situation will improve somewhat. Where a supervised approach is needed,
this problem is exacerbated by the general lack of access to data from structures in
a damaged state which remains a large barrier to effective diagnosis and prognosis
[10].

Currently a programme of work by the authors is pursuing a physics-informed
machine learning approach to attempt to address some of these issues in a structural
dynamics setting. The aim is to bring together the flexibility and power of state-
of-the-art machine learning techniques with more structured and insightful physics-
based models derived from domain expertise. This reflects a natural wish that any
inferences over our structures will be informed by both our engineering knowledge
and relevant monitoring data available.

The potential means of combining physics-based models and data-driven algo-
rithms are many, ranging from employingMLmethods for parameter estimation [11,
12], to using them as surrogates or emulators [13–15]. Of interest here are methods
where the explanatory power of a model is shared between physics-based and data-
driven components. We will often refer to these approaches as ‘grey-box’ models (a
combination of white and black-box components), but the term ‘hybrid modelling’
is equally applicable. The philosophy followed in our work is to embed fundamental
physical insight into a machine learning algorithm. In doing so, our aim is that the
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role of the machine learner is one of augmenting the explanatory power of the model
rather than being employed to correct any potential error or bias in the physical foun-
dation. This chapter will explore this idea in a Bayesian setting, introducing a number
of different approaches and demonstrating their usefulness in an SHM setting.

2 Grey-Box Models, Overview and Literature

The term ‘grey-box model’ is perhaps most familiar to those from a control engi-
neering background. Sohlberg [16, 17] provides a useful review and overview of
grey-box models in this context.2 Figure2 attempts to capture and summarise some
of the currently available modelling approaches relevant for challenges in structural
health monitoring on the white to black spectrum. Note that the ‘degree of greyness’
of the models in the middle region will change according to implementation and
application.

At the whiter end of the spectrum are modelling approaches where data are used
for parameter estimation or model form selection, (with the buoyant field of equation
discovery fitting in here, see [18, 19]). See also [20]. Residual models are those that
use a data-driven approach to account for the observed difference between a physics-
based model and measurements, with general form

y = f (x)︸︷︷︸
White−box

+ δ(x) + ε︸ ︷︷ ︸
Black−box

(2)

where f (x) is the output of the physical model, δ(x) is the model discrepancy and
ε is the process noise (see for example [21–24]). The discrepancy term is often
used to correct a misspecified physical model, giving rise to the term ‘bias correc-
tion’. Residual-based approaches have proven effective across a range of SHM tasks
including damage detection [25] and modal identification [26]. Here, we are inter-
ested in residual modelling in the context of compensation for uncaptured/missing
behaviours in the physics-based model (discussed further in Sect. 3).

The term hybrid architectures reflects the wider possibilities for combinations of
white and black models (which could include the summation form of (2)). Section5
will demonstrate one such example of combining data-driven and physics-based
models in a state-space setting.

The remainder of the spectrum contains models with structures that are data-
driven/black-box in nature. Sohlberg [16]) describes semi-physical modelling as
when features are subject to a nonlinear transformation before being used as inputs
to a black-box model, we also refer to this as input augmentation, see [8, 27, 28]

2 The use of grey-boxmodels within the control community is undergoing somewhat of a revival and
a good snap-shot of this can be gained by looking at the contributions to the most recent Nonlinear
System Identification Benchmarks Workshop (http://www.nonlinearbenchmark.org).

http://www.nonlinearbenchmark.org
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Fig. 2 Some modelling
approaches on the
white-black spectrum

for more examples. We place these examples under the heading of manipulation of
black-box inputs.

Section4of this chapterwill discuss constraints formachine learning algorithms—
these are methods that allow one to constrain the predictions of a machine learner
so that they comply with physical assumptions. Excellent examples for Gaussian
process regression are [29–31] and will be discussed in greater detail later.

The final grouping of grey-box approaches mentioned here are physics-guided
black-box learners. These aremethods that use physical insight to attempt to improve
model optimisation and include the construction of physics-guided loss functions and
the use of physics-guided initialization. These will not be discussed further in this
chapter but see e.g. [32–35] for more details.

2.1 Grey-Box Models for SHM

The remainder of the chapter will showcase some of the work of the authors on devel-
oping physics-informed machine learning approaches for SHM tasks. The develop-
ments here fall in the domain of residual and hybrid models (Sects. 3 and 5), and
constrained machine learners (Sect. 4). In order to provide an overview, a variety of
methods and results are presented, however, the implementation details given here are
necessarily very brief andwe refer readers to the referenced papers and our webpage3

for specific details and more in-depth analysis. Reflecting the philosophy discussed
in the introduction section, the approaches presented generally incorporate simple

3 https://drg-greybox.github.io/.

https://drg-greybox.github.io/.
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physics-based models or assumptions and rely on the machine learner for enhanced
explanatory power and flexibility (i.e. we are operating towards the blacker end of
the scale).

The machine learning approach used in the work shown here will be Gaussian
process (GP) regression throughout. GPs have been shown to be a powerful tool for
regression tasks [36] and are becoming common in SHM applications (see for exam-
ple [2, 37–40]). Their use here and throughout the work of the authors is due to their
(semi)non-parametric nature, their ability to function with a small number of training
points, and most importantly, the Bayesian framework within which they naturally
work. The Gaussian process formulation provides a predictive distribution rather
than a single prediction point, allowing confidence intervals to be calculated and
uncertainty to be propagated forward into any following analysis (see [9] for exam-
ple). As the use of GPs is now quite common, their fundamental formulation will not
be introduced here, but the mathematical machinery required is briefly summarized
in the Appendix—we refer unfamiliar readers to [36].

In the first examples shown here, the use of priors in the Bayesian framework
is exploited as an appropriate and intuitive means of incorporating physical insight
into a machine learning algorithm. In later sections, we consider the construction of
constraints for GPs and, separately, their incorporation into a state-space formulation
(this latter example relies more heavily on physics-based machinery than the other
examples).

3 Be More Bayes

ABayesian philosophy is one that employs evidence from data to update prior beliefs
or assumptions, and has been widely adopted across disciplines, including SHM.
However, most commonly, uninformative priors are utilized that do not reflect the
knowledge that we have as engineers of the systems we are interested in modelling.

The formulation of a Gaussian process regression requires the selection of a mean
and covariance functionwhich form the prior process. The process is then conditioned
with training data to provide a posteriormean and covariance as themodel prediction.
In the standard approach, no prior knowledge is assumed; a zero mean function is
selected alongside a generic covariance function such as a squared-exponential or
one from the Matérn class which provide a flexible process to fit to most data.

In this section,wewill first employ simple physicalmodels as priormean functions
to a GP and show how they may improve the extrapolative capability of the model.
This simple means of incorporating prior knowledge is equivalent to using a GP with
a zeromean prior tomodel the difference between themeasured data and the physical
model prediction and hence can be classed as a residual approach (see Sect. 2). At
the end of this section, we will show how some knowledge of a system may be used
to derive useful covariance functions in a regression setting.



Physics-Informed Machine Learning for Structural Health Monitoring 353

3.1 Prior Mean Functions—Residual Modelling

3.1.1 Performance Monitoring of a Cable-Stayed Bridge

The Tamar bridge is a cable-supported suspension bridge connecting Saltash and
Plymouth in the South West of England which has been monitored by the Vibration
Engineering Section at the University of Exeter [41]. The interest here is in the
development of a model to predict bridge deck deflections that can be used as a
performance indicator (see [42, 43]). The variation in deck deflections are driven by
a number of factors, includingfluctuating temperature and loading from traffic (which
are included as inputs to the model). Figure3a shows the regression target considered
in this example, which is a longitudinal deflection. The monitoring period shown is
from September (Autumn) to January (Winter). In this figure, one can see short-
term fluctuations (daily) and a longer-term trend which is seasonal and driven by the
increased hogging of the bridge deck as the ambient temperature decreases into the
winter months. Tomimic the situationwhere only a limited period ofmonitoring data
is available for the establishment of an SHM algorithm, data from the initial month
of the monitoring period is used to establish a GP regression model for deflection
prediction (see [44] for more details).

A GP prediction, using the standard approach of a zero mean prior, is shown in 3b.
Here one can see exactly the behaviour that is expected; the model is able to predict
the deck deflections well in and around the training period, but is unable to predict
the deflections in colder periods towards the end of the time series. The confidence
intervals widen to reflect that the inputs to the model towards the end of the period
are different from those in the training set—this demonstrates the usefulness of the
GP approach, as one knows to place less trust in the predictions from this period.

To formulate a grey-box model for this scenario, a physics-informed prior mean
function is adopted that encodes the expected linear expansion behaviour of stay-
cables with temperature [45]. Figure3c shows the GP prediction with a linear prior
mean function, where one can see a significant enhancement of predictive capability
across the monitoring period. Where temperatures are at their lowest, the model pre-
dictions fall back on the prior mean function allowing some extrapolative capability.
The prediction error is significantly smaller for the grey-box model in this case;
the ‘black-box’ nMSE is 68.65, whereas the GP with the physics-informed mean
function has an nMSE of 7.33.

3.1.2 Residual Modelling for Wave Loading Prediction

In this example, we follow a similar approach of adopting a physics-informed mean
function, this time with a dynamic Gaussian process formulation, a GP-NARX [46],
to enhance predictive capability for a wave loading assessment. The monitoring or
prediction of the loads a structure experiences in service is an important ingredient
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Fig. 3 Model for bridge deck deflections; a shows the training and test datasets for the GPs, b
is a GP prediction with a zero mean function prior and c shows the prediction when a simple
physics-informed mean function is incorporated. See [44] for more details

for health assessment, particularly where one wishes to infer, e.g. fatigue damage
accrued.

The implementation of residualmodelling ismost effectivewhere the assumptions
and limitations of thewhite-boxmodel are well understood. As awidely usedmethod
for wave loading prediction, Morison‘s equation [47] is employed here as a physics-
informed mean function. This empirical law is known to simplify the behaviour of
wave loading, not accounting for effects such as vortex shedding or other complex
behaviours [48] and will typically have residual errors in the region of 20%[49].
Here we consider the addition of a data-based GP-NARX to a simplified version
of Morison’s Equation in an attempt to account for these missing phenomena. The
model used is:
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Fig. 4 A comparison of wave loading predictionmodel NMSEs versus test set coverage. Increasing
coverage of the test set by the training and validation sets results in an increased level of model
interpolation. See [50] for more details

yt = C ′
dUt |Ut | + C ′

mU̇t︸ ︷︷ ︸
Morison’s Equation

+ f ([ut , ut−1, ..., ut−lu , yt−1, yt−2, ..., yt−ly ]) + ε
︸ ︷︷ ︸

GP-NARX

(3)

where yt is the wave force, C ′
d is the drag coefficient, C ′

m is the inertia coefficient,
U is the wave velocity, U̇ is the wave acceleration, ut :t−lu are lagged exogeneous
inputs and yt−1:t−lu are the lagged wave force, see [50] for more details (this paper
also shows an example of an input augmentation model, where Morison‘s equation
is used as an additional input to the GP-NARX).

The Christchurch bay dataset is used here as an example to demonstrate the
approach [51]. To explore the generalization capability with and without the physics-
informedmean, different training sets for theGP-NARX are consideredwith increas-
ing levels of coverage of the input space. A comparison of model errors (nMSE) with
different training datasets is shown in Fig. 4. The coverage level is indicated as a per-
centage of the behaviour observed in the testing set that is also encountered in the
training set [50].

As in the Tamar Bridge example, the model structure offers a significant improve-
ment in extrapolation, where testing conditions are different from those in training
dataset. Following this approach allows predictions to be informed by the prior mean
in the absence of evidence from data. Clearly the prior specification is very important
in this case and a misspecified prior could do more harm than good. Once again we
advocate the use of simple and well founded physics-based models in an attempt to
avoid this issue.
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3.2 Physics-Derived Covariance Functions

As discussed above, in a standard approach to GP regression, a generic covariance
function such as a squared-exponential or one from the Matérn class is selected
as a prior. In the posterior GP, the mean is a weighted sum of observations in the
training set (see Appendix), with the weightings provided by the covariance function
and associated matrix. These commonly used functions encode that the covariance
between points with similar inputs will be high and this allows the model to be
data-driven in nature.

In the case where one has some knowledge of a process of interest, it is possible
to derive a covariance function that reflects this. As an example, in [52], a composite
covariance function is designed to reflect the characteristics of the guided waves
being modelled.

For some stochastic processes, the (auto) covariance can be directly derived from
the equation of motion of a system. An example relevant for vibration-based SHM
is the single degree of freedom (SDOF) oscillator

mÿ(t) + cẏ(t) + ky(t) = F(t) (4)

withmass, damping and stiffness parameters,m, c, k, respectively, drivenby a forcing
process F(t). In the case where the forcing is Gaussian white noise, the response Y
is a Gaussian process with (auto)covariance

φY (τ ) = E[Y (t1)Y (t2)] = σ 2

4m2ζωn
3 e

−ζωn |τ |(cos(ωdτ) + ζωn

ωd
sin(ωd |τ |)) (5)

where standard notation has been used; ωn = √
k/m, the natural frequency, ζ =

c/2
√
km, the damping ratio, ωd = ωn

√
1 − ζ 2, the damped natural frequency. See

[53] and also [54, 55].
This covariance function can be readily used in the regression context and provides

a useful prior process for oscillatory systems with a response dominated by a single
frequency. This form of covariance function can be described as expressive [56] and
proves useful even when the equation of motion of the system of interest differs from
an SDOF linear assumption.

Figure5 shows an example of a GP regression for a system with a cubic nonlin-
earity. Here the linear prior provides an appropriate structure for the regression and
is flexible enough to incorporate the nonlinearity in the response. This is a simu-
lated example with the GP training data shown with crosses in the figure (every 8th
point)—here the nMSE is 8.09. For comparison, a GP with a squared-exponential
(SE) covariance function is established with the same training data. The SE process
smooths through the data as expected (nMSE= 66.7), whereas the derived covariance
provides structure through the prior, resulting in good prediction during interpolation.
The hyperparameters in the SDOF covariance function are physically interpretable,
we are, therefore, able to guide their optimisation by providing the likely ranges for
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Fig. 5 Acomparison of aGP regression using derived and squared-exponential covariance function.
See [53] for more details

the system of interest. Here the benefit of being able to prescribe the likely frequency
content of the system within the prior is clear and provides much advantage over the
black-box approach—see [53] for more details.

4 Constrained Gaussian Processes

In scenarios where one lacks significant knowledge of the governing equations and
solutions, grey-box methods that tend towards the black end of the spectrum can be
particularly useful. An example of such approaches are constrainedmachine learners,
which, very generally, aim to embed physical constraints into the learning procedure
such that predictions made by the black-box model then adhere to these constraints.

In the context of Gaussian process regression, there are a number of ways of
constraining predictions, the simplest of which is to include data from boundaries
within the model training. Other methods rely on applying constraints to the covari-
ance function in amultiple output setting (see e.g. [29–31] and [57] where we employ
derivative boundaries for beam deflection predictions).

Here we show an example of building known boundaries (geometry) into a GP
regression via a sparse approximation of the covariance function. The approximation
method relies on an eigendecomposition of the Laplace operator of a fixed domain
[58]:

k(x, x′) ≈
m∑

i

S(
√

λi )φi (x)φi (x′), (6)
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Fig. 6 Test structure
schematic with sensor
locations, recreated from
[61]

with φi and λi the eigenfunctions and values, and S the spectral density of the
covariance function. If one chooses the fixed domain to reflect the geometry of the
problem of interest, then inference with this model is appropriately bounded (see
[59, 60] for more details).

As an example here we employ constraints for a crack localisation problem via
measurement of Acoustic emission (AE). The localization approach taken is to use
artificial source excitations and an interpolating GP to provide a map of the differ-
ences in times of arrival (
T ) of AE sources to fixed sensor pairings across the
surface of the structure [61, 62]. Once constructed, the map can be used to assess the
most likely location of any new AE sources. The bounded GP approximation allows
one to build in the geometry of the structure under consideration.

To investigate the predictive capability of the constrained GP, a case study using
a plate with a number of holes in is adopted. The holes, as shown in Fig. 6, provide
complexity to the modelling challenge, introducing several complex phenomena
such as wave mode conversion and signal reflection. Depending on the location of
the source and sensor, the holes may also shield a direct propagation path to the
receiver [61], adding further complication.

Neumann boundaries are imposed here around each hole and at the edge of
the plate. To compare the performance of the standard and bounded GPs, differing
amounts/coverage of artificial source excitations were used for model training. The
initial characterization of a structure via artificial source excitation can be expensive
and time consuming, for structures in operation it may also be infeasible to access
all areas/components. To mimic the scenario where it is not possible to collect arti-



Physics-Informed Machine Learning for Structural Health Monitoring 359

Fig. 7 Comparison between
models errors for standard
and bounded GPs for AE
source localization study.
The nMSE is averaged across
all sensor pair models for
each training set considered

ficial source excitations across a whole structure, here we restrict the training grid
to excitation points in the middle of the plate. Figure7 compares the performance
of the standard and bounded GPs with training sets of varying grid densities. For
each training set, the prediction error (nMSE) on the test set is averaged across every
sensor pair (there are 8 sensors).

From Fig. 7 one can see that as the training set size reduces, the constrained GP
consistently outperforms the standard full GP. This is particularly encouraging as
the bounded GP remains a sparse approximation. As is consistent with our earlier
observations, the inbuilt physical insight aids inference where training data are fewer.
Figure8 shows the difference in prediction error across the plate for the standard and
bounded GPs for the 20 mm spacing training case and a single sensor pairing. In
this case, the squared error of the full GP is subtracted from the squared error of
the constrained GP, i.e. positive values indicate a larger error in the full GP, while a
negative value expresses a larger error in the constrained GP.

The figure highlights the locations on the plate where the constrained GP more
accurately predicts the true 
T values. As expected, the locations at which this
effect is most prominent are those that move further away from the training points,
and particularly towards the extremities of the domain. At these locations, it is clear
that the additional physical insight provided by the constrained GP is able to enhance
the predictive performance in comparison with the pure black-box model.

5 Gaussian Processes in a State-Space Approach

One of the canonical forms for dynamic models, in structural mechanical systems
and beyond, is the state-space representation of the behaviour of interest.
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Fig. 8 Mapping of the difference between the full GP squared error and the constrained GP squared
error across the test set for sensor pair 4–8

In the context of this work, the state-space model (SSM) is considered to be a
probabilistic object defined by two key probability densities; a transition density
p (xt+1 | xt ,ut ) and observation density p (yt | xt ,ut ). The transition density relates
the hidden states at a given time xt+1 to their previous possible values,4 x0:t and pre-
vious external inputs to the system, e.g. forcing, u0:t . The observation model relates
available measurements yt to the hidden states xt , which may also be dependent on
the external inputs at that time ut .

The state-space formulation can be used to properly account for measurement
noise (filtering and smoothing) and is commonly used for parameter estimation (the
well-known Kalman filter is a closed form solution for linear and Gaussian systems).
Use of the state-space models as a grey-box formulation in this setting is common
within the control community [63, 64].

Here, we are interested in the case where we only have partial knowledge of a
system—this could take the form of missing or incorrect physics in the equations
of motion, or could be a lack of access to key measurements such as the force
a system undergoes. In Sect. 3, we considered a GP-NARX formulation for wave
loading prediction, with the ultimate aim of informing a fatigue assessment. The
state-space formulation shown here offers an alternative means for load estimation
which simultaneously provides parameter and state estimation in a Bayesian setting.

4 The notation subscript a : b is used to denote values in that range inclusively, e.g. x0:t is the value
of the states x at all times from t = 0 to t = t .
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Fig. 9 Force estimation for MDOF simulation under Christchurch bay loading time history[40]

Joint input-state and input-state-parameter problems have seen growing interest
in recent years, see, for example [65–69]. The approach shown here is one that
considers a representation of a Gaussian process within a state-space formulation
to model the unknown forcing (following [70, 71]). This is achieved by deriving
the transfer function of a Matérn kernel (via its spectral density), which provides a
flexible model component to account for the unmeasured behaviour. Inference over
the state-space model is via Markov chain Monte Carlo to provide distributions for
parameter and hyperparameter estimations.

Figure9 shows an example of force recovery for a simulated multidegree of free-
dom system excited by a forcing time history from the Christchurch bay example
discussed in Sect. 3. Here one can see that the force has been accurately inferred, the
nMSE in this case is 1.15. For more details and analysis see [40].

The inference problem becomes significantly more challenging for nonlinear sys-
tems, and even more so if our knowledge of that nonlinearity is incomplete. Recently
[72] has attempted this extension for the input-state estimation case for a known non-
linearity. The difficulty in inference is met there by employing a methodology based
on Sequential Monte Carlo, specifically particle Gibbs with ancestor sampling, to
allow recovery of the states and the hyperparameters of the GP.

In the face of an unknown nonlinearity, this framework may also be employed,
where the GP may be used to account for missing behaviours from the assumed
equations of motion. In [73], it is shown how this approach can be applied to a
Duffing oscillator to learn the unknown cubic component of the model in a Bayesian
manner without requiring prior knowledge of the nonlinear function. There are two
particular advantages to this approach, the first is that it allows nonlinear system
identification with a linear model, the Kalman filter and RTS smoother, which has
significant computational advantages and arguablymakes “fully Bayesian” inference
industrially feasible. The second benefit is that it allows a user to apply very weak
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prior knowledge about the nonlinearity; in the language of grey-box models, there is
a strong white box component (the second-order linear system) but the form of the
nonlinearity is the very flexible nonparametric GP. Contrast this approach with the
purely black-box alternative of the GP-SSM, see [74], which suffers from significant
nonindentifiability and computational challenges.

6 Conclusions

This chapter has introduced and demonstrated physics-informed machine learning
methods suitable for SHM problems and inference in structural dynamics more gen-
erally. The methods allow the embedding of one’s physical insight of a structure or
system into a data-driven assessment. The resulting models have proven to be partic-
ularly useful in situations where training data are not available across the operational
envelope—a common occurrence in structural monitoring campaigns.

The Bayesian approach adopted in Sect. 3 allows predictions to fall back on a prior
physicalmodel in the absence of evidence fromdata. This pragmatic approach proved
useful in the examples shown here but does rely on trusting the physical model in
extrapolation. The ability to constrain the Gaussian process prior to known boundary
conditions shown in Sect. 4 requires less physical insight and gives both an improved
modelling performance, as well as providing the guarantee that predictions made
adhere to known underlying physical laws of the system under consideration. At the
whiter end of the spectrum, the state-space examples discussed in Sect. 5 provide a
principledmeans of inference over structureswith unknown forcing or nonlinearities.
Some examples of where the presented methodology may be of benefit could include
better understanding of fatigue damage accrual and parameter identification for, e.g.
novelty/damage detection.

As well as providing an enhanced predictive capability, the models introduced
here have the benefit of being more readily interpretable than their purely black-box
counterparts. In the past, a barrier to the uptake of SHM technology has been the lack
of trust owners and operators have in so-called black-box models. Perhaps naturally,
there is a hesitancy to adopt algorithms not derived from physics-based models, but
this may also be due, in part, to their misuse in the past. We hope that this will be
ameliorated by more interpretable models which also have the benefit of being more
easily optimized (Sect. 3 shows an example where the hyperparameters in the GP
regression take on physical meaning).

Physics-informed machine learning is rapidly becoming a popular research field
in its own right, with many promising results and avenues for investigation. This
review paper [35] currently on arXiv has 300 references largely populated by papers
from the last two years. It is likely that many of the emerging methods will prove
useful in SHM.Thework here has focussed on aGaussian process framework, clearly
the use of neural networks provide an alternative grey-box route, as these are also
commonly used in our field. We look forward to seeing how these may be adopted
for SHM tasks.
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7 Gaussian Process Regression

Here we follow the notation used in [36]; k(xp, xq) defines a covariance matrix Kpq ,
with elements evaluated at the points xp and xq , where xi may be multivariate.

Assuming a zero-mean function, the joint Gaussian distribution between mea-
surements/observations y with inputs X and unknown/testing targets y∗ with inputs
X∗ is [

y
y∗

]
∼ N

(
0,

[
K (X, X) + σ 2

n I K (X, X∗)
K (X∗, X) K (X∗, X∗)

])
(7)

The distribution of the testing targets y∗ conditioned on the training data (which is
what we use for prediction) is also Gaussian:

y∗|X∗, X, y ∼ N (K (X∗, X)(K (X, X) + σ 2
n I )

−1y,

K (X∗, X∗) − K (X∗, X)(K (X, X) + σ 2
n I )

−1K (X, X∗))
(8)

See [36] for the derivation. The mean and covariance here are that of the posterior
Gaussian process. In this work, covariance function hyperparameters are sought by
maximizing the marginal likelihood of the predictions

log p(y|X, θ) = −1

2
yT K−1y − 1

2
log |K | − n

2
log 2π (9)

via a particle swarm optimisation5 [75].
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Abstract Machine learning may complement physics-based methods for structural
health monitoring (SHM), providing higher accuracy, among other benefits. How-
ever, many resulting systems are opaque, making them neither interpretable nor
trustworthy. Interpretablemachine learning (IML) is an active new direction intended
to match algorithm accuracy with transparency, enabling users to understand their
systems. This chapter overviews existing IML work and philosophy, and discusses
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candidates from SHM to exemplify and substantiate IML.Multidisciplinary research
has been making strides toward providing end users of shallow sigmoidal artificial
neural networks (ANNs)with the tools and knowledge for engineering these systems.
Notoriously opaque ANNs are made transparent as linear-in-the-weight parameter-
ization tools by using domain knowledge to determine appropriate basis functions.
With a small number of hidden nodes to activate these basis functions, the modeling
capability of sigmoidal ANNs is systematically revealed without relying on training.
The novelty is in ANN initialization theory and practical procedures that can be inter-
preted via domain knowledge. A rich repository of direct (non-iterative) techniques
and reusable ANN prototypes can then be aggregated as the basis functions needed
for specific problems, leading to interpretable ANNs as well as improved training
performance and generalization as validated by simulated and real-world data.

1 Introduction

Machine learning (ML) is an approach to artificial intelligence (AI) in which algo-
rithms develop models based on data. Interpretable machine learning (IML), in
which machine learning models are designed to be inherently understandable [50],
can make valuable contributions to structural health monitoring (SHM) by com-
bining the accuracy of machine learning with the interpretability of physics-based
modeling, as depicted in Fig. 1.

In this section, we introduce our approach to IML for SHM through the use of
interpretable artificial neural networks (ANNs) for SHM function approximation
problems. We introduce function approximation as a domain problem (Sect. 1.1),
explain the need for IML in this domain (Sect. 1.2), outline our approach (Sect. 1.3),
and present the structure of this chapter (Sect. 1.4).

Fig. 1 Interpretable
machine learning provides
the benefits of both
physics-based models and
traditional, opaque ML
nonlinear dynamics models
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1.1 Function Approximation as Domain Problem

Function approximation plays an important role in AI and is essential for nonlinear
control, state estimates and predictors, and more (“From Backpropagation to Brain-
Like CyberInfrastructure: A Ladder of Universal Designs” on www.werbos.com).
Artificial neural networks, which are variously considered components of AI or
soft computing, have a long history of use in engineering mechanics and SHM,
e.g., [6, 10, 12, 14, 21] including for function approximation due to their universal
approximation capabilities [8, 20]. However, training sigmoidal neural networks
(multilayer feedforward neural networks, FFNNs) to approximate nonlinear static
functions is known to be computationally intractable [4, 24, 25]. Thus, we focus on
a subset of all possible nonlinear target functions.

For example, when we use data in SHM, the input could represent the states of
a nonlinear dynamical system while the output could be the underlying restoring
force of this system, i.e., an internal force that restores a moving mass to its neutral
position. We adopt the force-state mapping formulation [33, 38] where a single-
degree-of-freedom (SDOF, as an example) restoring force is represented as r(x)with
the system’s states x = [x, ẋ]T . See Fig. 2, where force-state mapping is formulated
for translational motion (as an example). The nonlinear dynamics then becomes

ẋ(t) = f (x, r(x), u(t), t) (1)

where u(t) is excitation force. We use ANN to approximate r(x).
In the work to be reviewed, we study the approximation of nonlinear static func-

tions using a sigmoidal neural network, i.e., the universal approximator [8, 20]
employing a logistic sigmoidal activation function (a feedforward neural network
with one vector input, one hidden layer, and one scalar output). We focus on answer-
ing these two key questions concerning initialization:

1. determination of the number of hidden nodes, and
2. determination of the initial values for weights and biases.

These fundamental questions were raised at least as early as 1992 [15, 52] but still
have not been adequately addressed.

Fig. 2 a All normalized
University of Southern
California (USC) AF2
datasets including for both
training and validation under
the force-state mapping for
translational motion, and b
the corresponding contour
plots of the outputs of the
trained FFNNs using all
normalized data. From [41]
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The force-state mapping formulation has proven to be one of the most powerful
methods to model nonlinear dynamical systems for aerospace, mechanical, and civil
engineering, and many bio-mechanical systems, e.g., [11, 21, 26] thus being useful
to SHM. Nonetheless, nonlinear restoring forces can be very complex especially
when involving hysteresis (i.e., history/path-dependency) and when time varying
(e.g., caused by deteriorating system properties due to aging or damage). Further-
more, multi-component systems involving multi-degrees-of-freedom (MDOF) can
be extremely challenging. All this indicates the need of going beyond sigmoidal neu-
ral networks. The first step is to make sigmoidal neural networks interpretable for
force-state mapping, and a small subset of nonlinear static function approximation,
as reviewed herein.

1.2 The Need for IML

IML emphasizes using domain constraint/knowledge to develop machine learning.
Engineering disciplines enjoy scientific theories, mathematical education, and quan-
titative practice that are as objective and repeatable as possible in a well-organized
manner. This is the case in engineering mechanics where graduate-level training
normally includes advanced mechanics of materials, finite element modeling and
numerical methods, when engineering mechanics researchers gain experience with
taking datameasurements, processing them and analyzing the result. Soft computing,
artificial intelligence, machine learning, and more have gradually entered engineer-
ing mechanics graduate-level training (often through multidisciplinary coursework
and research practice) and are poised to become a newway of thinking with different
jargons, routines, explanations, and technical challenges. Experience has shown that
engineering mechanics (including SHM) researchers have the following concerns:

Concern 1 Why should AI be considered as an option in research at all? Or, what
can AI offer to us that other existing options cannot offer? This concern
could be first addressed practically because there are indeed significant
problems that cannot be handled (effectively) by traditional approaches.
Our selection of the topic of modeling nonlinear dynamics (especially
hysteresis) is one such significant problem. This concern could be next
addressed theoretically [2, 3] and validated numerically.

Concern 2 The reluctant attitude stems from the fact that AI does not appear to be
connected with existing engineering tools. This manifests the need for
IML with the goal of making the user of AI feel comfortable [17, 19,
50].

Concern 3 The use of AI itself involves subjective issues that engineering research
practice, in general, tries to minimize or avoid. As reviewed elsewhere
[39, 42, 45], numerous subjective issues can be encountered in the initial
design and training of neural networks, and in interpretation of trained
results. Among them, the two key questions are prominent, thus remain-
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ing the focus in our work. Variations in trained weights and biases from
using different sets of training data sets can hardly be related to changes
of the system [34]. Injecting interpretability into the initial design, we
believe, would help alleviate this challenge for damage detection in
SHM.

1.3 Overview of How We Address the Need

As explained in a classic work on interpretability in neural networks for pattern
classification, “…the first layer partitions the input space into a number of cells.
…The sole function of additional layers is then to group these cells into decision
regions. …For nets with sigmoidal nonlinearities, one can still benefit by thinking
about the problem in terms of hyperplanes in the first layer which divide the input
space into cells, and that higher layers simply group these cells into different regions”
[32]. This is such a powerful fundamental idea that one canfind it in deep learning [29]
and explainable AI (XAI) [17]. This fundamental idea is what we have been adhering
to and making transparent in sigmoidal neural networks for function approximation,
pioneering this approach for engineering mechanics.

We have been carrying out a series of studies that now form a small collection
aimed at providing interpretability to the user of sigmoidal neural networks for a spe-
cific function approximation application in engineering mechanics [39–48]. Tech-
niques A to G have been developed by us to construct sigmoidal neural network
prototypes (see more explanation later in this section) to approximate a range of
useful functions/features as summarized in Table1.

To address Concern 1, we use theoretical work that justifies the efficiency of sig-
moidal neural networks [2, 3]. When phenomenological representations (see Sect. 3
for explanation) are not available/adequate, and commonly-used fixed basis functions
(e.g., polynomial fitting) are not parsimonious and hard to adapt to data, sigmoidal
neural networks stand out.

To answer Concern 2, we leverage the concept of “linear parameterization.” This
view of basis functions is very helpful, first, because the adaptivity of the basis
functions to data in sigmoidal neural networks is superb, and second, because linear
parameterization connects polynomial fitting, Fourier series expansion, and wavelet
decomposition to sigmoidal neural networks, making sigmoidal neural networks
more interpretable.

Being a universal approximator [8, 20], sigmoidal neural networks are very power-
ful computational machines with the capability of accomplishing what other compu-
tational machines are devised to achieve. Finding such an equivalent solution would
not only overcome the doubt to sigmoidal neural networks, but also offer a possible
starting point for their adaptivity. Unfortunately, the universal approximator theorem
is not constructive. Therefore, we started from scratch to approximate systematically
the following basic operations using sigmoidal neural networks under Techniques
A & B:
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Table 1 Summaryof techniques andnonlinear functions approximated bypredetermined sigmoidal
neural networks called prototypes

Technique ID &
References

Technique name Target nonlinear function example

A in [39, 44] Taylor series expansion of
sigmoidal function

Polynomials, summation,
subtraction, and multiplication

B in [48] Higher-order partial derivatives
of sigmoidal function

Sinc, Gaussian, and Mexican hat
function

C in [40] Direct use of the three prototypes The ten types, absolute value and
reciprocal function

D in [40] Decomposition Harmonics, swept sine, and some
hysteresis loops

E in [39, 42, 43] Geometric capabilities of
sigmoidal function

Hardening, softening, Coulomb,
clearance

F in [47, 48] Layer condensation Velocity squared damping, division,
the “Bouc-Wen” term

G in [46] Quasi-decomposition Unsymmetrical concrete constitutive
curve, SDOF Frequency response
function (FRF)

1. the four basic arithmetic operations [48], and
2. polynomial terms, p0, p1, p2, p3, p1 p2, p21 p2, and polynomial fitting involving

these terms [39, 44].

Toward addressing Concern 3, we developed constructive methods to address
the two key questions for the initialization of sigmoidal neural networks under
Techniques C to G by building on the outcomes of Techniques A & B. This will be
elaborated in Sect. 3. As a quick example, some existing simple damping models are
given in Table2. We establish how to set up a sigmoidal neural network to approxi-
mate each one of them because we have known how to approximate polynomials and
multiplication under Techniques A & B as well as the signum (sgn) and absolute
value function under Technique C (see Table1).

IML encourages sparse learning. We develop a dictionary by asking and answer-
ing the following questions: (a) What are the useful behaviors/responses in terms of
input-output? See the ten types of 1-Dnonlinearities under Technique C illustrated in
Fig. 3, and (b)What are the sigmoidal neural network prototypes that we can develop
for each useful feature? See Prototypes 1–3 (and their variants a to c) illustrated else-
where [40] that are developed to approximate these ten types of nonlinearities indi-
vidually or combinatorially, which will be directly adopted as a “hint book” in Fig. 4.

Prototypes and their variants are predetermined neural networks that are not
obtained from an inverse formulation of training from datasets. Instead, they are
constructed in advance from a forward formulation based on either the algebraic
or geometric capabilities of linear sums of sigmoidal functions to capture some
dominating features of the nonlinear function to be approximated in the specified
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Table 2 Dampingmodels from [22] and recommended sigmoidal neural networks for initialization
(with initial values for weights and biases obtained but not presented here)

Type Formula Source Sigmoidal neural
network

Linear viscous c · ẋ Slow fluid 1 layer with 2 nodes

Air α · sgn(ẋ)ẋ2 Fast fluid 2 layers with (3 + 4)
and 8 nodes

Coulomb β · sgn(ẋ) Sliding friction 1 layer with 3 nodes

Displacement-squared d · sgn(ẋ)x2 Material damping 2 layers with (3 + 4)
and 8 nodes

Solid, or structural b · sgn(ẋ)|x | Internal damping 2 layers with (3 + 4)
and 8 nodes

The notation (m + n) indicates an ANN layer with two separate components ofm and n nodes, from
two separate prototypes for multiplicand and multiplier; the 8 nodes in a layer is for multiplication
(see Table4)

Fig. 3 Illustration of the ten
types of 1-D nonlinearities,
the neural network
prototypes to fulfill them,
and training success rates
using Nguyen-Widrow
initialization [37] in contrast
to 100% training success rate
using the initial values of
weights and biases from our
work, together with the
number of hidden nodes

I. Linear 
II. Cubic  
stiffness  
and more 

III. Bilinear 
stiffness 
and more 

IV. Multi- 
slope 

V. Frac- 
tional  
power 

VI. Soften- 
ing cubic  
and more 

VII. Clear- 
ance (dead 
space 

VIII. Hard 
saturation 

IX. Satu- 
ration 

X. Stiction 

2 4 4 5 3, 4 2 4 3 5 4 

Number of hidden nodes needed for a successful approximation under the proposed methodology

65.00% 76.11% 100.00% 98.33% 87.22% 45.56% 98.89% 91.67% 93.89% 70.56% 

Success rate of neural networks initialized using the Nguyen-Widrow scheme 

Prototype 1a, 1b, 1c Prototype 2a, 2b, 2c Prototype 3a, 3b, 3c Prototype 1b + 1c Prototype 1b  +  2a 

Recommended prototype for a successful approximation under the proposed methodology

applications. Preparing prototypes and variants takes time, but can be done in a for-
ward problem fashion by following a clear procedure. The resulting prototypes and
variants are generic; i.e., they can be used for numerous individual training tasks
through proper transformations leading to a high overall efficiency in addition to the
built-in rationality and transparency in this proposed initialization methodology.

To complete sparse learning, we implement user-in-the-loop for feature extraction
from the data, match each dominant feature with a sigmoidal neural network proto-
type before concatenating them within a hidden layer (and sometimes, between two
hidden layers) for the backpropagation to be applied without weight freezing. This
growing technique allows for iterations, especially automated iterations for future
work to put in place, among other major improvements to capture more salient fea-
tures and reveal more inner-workings through theoretical work and visualization.



376 J.-S. Pei et al.

1.4 Novelty and Structure of This Chapter

Overall, in engineering mechanics, there exists a rich body of domain knowledge—
outside of ML, yet calling for new knowledge in the era of smart technologies.
Intentionally and explicitlymaking a connectionwith this existingbodyof knowledge
provides the opportunity forML to be understood, justified, accepted, and productive.
Our fundamental way of thinking concerning how to accomplish IML in terms of
sigmoidal neural networks follows.

Useful basis functions and features identified according to domain knowledge
are approximated by sigmoidal neural networks beforehand for reuse in initializa-
tion, where the modeling capabilities of sigmoidal neural networks are explored and
exploited. An individual function approximation problem is considered an assembly
of these useful basis functions and/or features leading to, often times, the growth
of the width of the hidden layer of a sigmoidal neural network and realizations of
possible initial values for all weights and biases in initialization.

This way of thinking enables us to use domain knowledge to directly and system-
atically decide the architecture and initial values for weights and biases when the
training algorithm is for localminimization. Interpretability using domain knowledge
shows up in two aspects: (1) Domain knowledge in engineering mechanics suggests
possibly useful basis functions and/or dominant features in the data, and (2) domain
knowledge in applied mathematics suggests the modeling capabilities of sigmoidal
neural networks.

To complement the insights to the interpretability, the data-driven nature shows
up in two different aspects: (1) Data would possibly reveal dominant features that
could validate those suggested by domain knowledge in engineering mechanics or
otherwise, and (2) a greater success in neural network training can be found in
the balance between global and local search involved in training. Selecting a good
initial point for neural network training is critical because the training process will
normally result in trained values that are still in the neighborhood of their initial
values. If domain knowledge could be used to influence neural network initialization,
then training would more likely converge to the global minimum instead of just a
local minimum, making the trained neural network more accurate and meaningful.
(Note that careful weight initialization is often not considered crucial for learning
in deep neural networks because their great redundancy generally allows for one of
many possible low-error representations to be learned [29]. However, that approach
precludes the possibility of using the interpretability method proposed herein.) This
is the philosophical justification for our proposed initialization to fulfill IML.

IML is enabled by the modeling capability of sigmoidal neural networks that we
have started to understand, but we are merely scratching the surface. This is shared
in Sect. 2, which justifies and explains Techniques A & B. This section explains
why it is important to systematically explore the modeling capabilities of sigmoidal
neural networks in order to use them for IML, then shows how to use sigmoidal
neural networks to approximate basic functions/operations. Section3 presents the
procedures of the proposed IML that underlie Techniques C to G, while Sect. 4
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offers one case study for a sigmoidal neural network to illustrate the procedures
coveringUSCAF2 data, and another for a nonlinear autoregressive exogenousmodel
(NARX) to demonstrate a possible extension of the proposed IML covering NASA
Jet Propulsion Laboratory (JPL) pyroshock data. Section5 addresses justifications
for this work in addition to the benefits provided by IML, while Sect. 6 discusses
future work. Section7 provides concluding remarks.

2 Modeling Capability of Sigmoidal Neural Networks

Herein, we elucidate an identified research need for the “approximation capabilities
of sigmoidal neural networks.” Foundational work [2, 3] proposes a complexity
measure C f for a target function f . C f is defined as the first absolute moment of the
Fourier F magnitude distribution of f as

C f =
∫

Rd

|ω|
∣∣∣ f̃ (ω)

∣∣∣ dω (2)

where we have

f̃ (ω) � F ( f (p)) �
+∞∫

−∞
f (p)e−iωpdp. (3)

C f plays an important role to optimize the number of hiddennodes andquantifying
the approximation error bound [2, 3]. However, it has been questioned if C f is
sufficient from a computational point of view [51]. In our work, we question why
C f alone may not be a sufficient complexity measure for constructive methods by
examining the set of target functions

f (p, w, b) = σ(wp + b) = 1

1 + e−(wp+b)
(4)

with b ≡ 0, w > 0, and p ∈ [−a, a]. We have shown that

C f = |w|
∫ +∞

−∞

∣∣∣∣∣∣∣∣∣
F

(
dσ

dz

)
︸ ︷︷ ︸

independent ofw and a

�
2 sin(waω)

ω︸ ︷︷ ︸
dependent onwa

∣∣∣∣∣∣∣∣∣
dω (5)

where z = wp + b and � stands for convolution [47]. This means that C f can be w-
dependent. This contradicts our common sense that the actual complexity of approx-
imating this family of target functions is the same: One logistic sigmoidal function
would achieve zero approximation error. For the sake of constructive methods, C f
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perhaps tells only half of the story. The other half of the story, perhaps, is to know
what is considered complex for sigmoidal neural networks and what is considered
not, the so-called “modeling capabilities” of sigmoidal neural networks.

We have started to systematically explore the capabilities of sigmoidal neural
networks algebraically with Techniques A & B and geometrically with Techniques
C to G. Herein, we demonstrate one technique using algebra.

We utilize Taylor series expansion of a sigmoidal function to approximate poly-
nomials. For example, two sigmoidal functions following Eq. (4) are chosen, f1 and
f2, with w1 = −w2 and b1 = b2 = 0. The Taylor series expansion of both functions
at the origin x = 0 to the second power can be written as

f1 = 1

2
+ w1

4
p + 1

2! (w1)
2 Q2 (−w1ξ1) p

2

f2 = 1

2
− w1

4
p + 1

2! (w1)
2 Q2 (+w1ξ2) p

2.

The constant term can be eliminated by taking the difference of the above two
functions. For a non-zero w1, one then has

z = 2

w1
( f1 − f2) = p + w1 [Q2 (−w1ξ1) − Q2 (+w1ξ2)] p

2. (6)

One may choose z to mimic the first power of input p. It can be seen that the
error bound is determined by values of w1 and p. Using this approach as detailed
elsewhere [39, 44], Table3 gives the derived (not trained) number of hidden nodes,
weights, and biases for the approximation of p0, p1, and p2 terms, while their error
bounds are likewise given elsewhere [44]. See Table4 for the derived (not trained)
number of hidden nodes, weights, and biases for the four basic arithmetic operations,
with details given elsewhere [48].

A basic tenet of soft computing is to avoid “hard computing” methods, i.e., con-
ventional computing methods, even for items as basic as the four arithmetic oper-
ations. Although the implementation of these basic operations draws attention in
other settings such as hardware implementation required in embedded systems (e.g.,
[7]), the same topic has not been studied sufficiently in neural networks. When the
“mapping” of basic items into neural networks cannot be understood, the acclaimed
superiority of neural networks in approximating unknown functions becomes harder
to accept even given some prior studies on this (e.g., [23, 28, 30, 31]). A systematic
solution (not random trial-and-error) based on the governing nonlinear dynamics of
neural network learning, approximation capabilities of sigmoidal neural networks
and features of target functions would greatly benefit numerous applications in non-
linear system identification in addition to advancing fundamental research in neural
computation.

There are other techniques for other basic target functions. Our effort in approxi-
mating a sinusoidal term [40, 48] and certain wavelet-like functions [48] is scattered
and without error bounds estimated.
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Table 3 Derived weights and biases in approximating polynomials from the the zeroth to second
power—general results. From [44]

Target Function Weights in Input
layer, IW

Biases in Input
layer, b

Weights in Output layer, LW

p0 w[0]
1 =[
w

[0]
1,1

−w
[0]
1,1

] b[0] =
[
0

0

]
w[0]
2 =

[
1 1

]

p1 w[1]
1 =[
w

[1]
1,1

−w
[1]
1,1

] b[1] =
[
0

0

]
w[1]
2 =

[
+ 2

w
[1]
1,1

− 2
w

[1]
1,1

]

p2 w[2]
1 =⎡

⎢⎢⎢⎣

w
[2]
1,1

−w
[2]
1,1

w
[2]
1,3

−w
[2]
1,3

⎤
⎥⎥⎥⎦

b[2] =

⎡
⎢⎢⎢⎣

b[2]
1

b[2]
1

0

0

⎤
⎥⎥⎥⎦ w[2]

2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
1+eb

[2]
1

]3
(
w

[2]
1,1

)2
eb

[2]
1

[
−1+eb

[2]
1

]
[
1+eb

[2]
1

]3
(
w

[2]
1,1

)2
eb

[2]
1

[
−1+eb

[2]
1

]

−
2

[
1+eb

[2]
1

]2
(
w

[2]
1,1

)2
eb

[2]
1

[
−1+eb

[2]
1

]

−
2

[
1+eb

[2]
1

]2
(
w

[2]
1,1

)2
eb

[2]
1

[
−1+eb

[2]
1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

3 Procedure for IML

In engineering mechanics, a phenomenological representation of a mechanical sys-
tem is a commonly used constructive method. In that representation, an engineer-
ing mechanics researcher starts a model with elements as basic as a linear spring
and dashpot because these basic elements represent unambiguous static or dynamic
responses under any designated cause. By connecting these basic elements in series
or in parallel, and by introducing advanced versions of these basic elements (e.g.,
simple forms of nonlinear springs and dashpots), and more advanced elements (e.g.,
a slide element, and other specific forms of damping or hysteresis), the engineer-
ing mechanics researcher has a complete grasp of how the model works. In other
words, the model is totally transparent and interpretable. The principle of superposi-
tion in linear system analysis, decompositions in time series analysis, and a general
approach of tackling a complex problem by transforming it into an assembly of less
challenging sub-problems all follow the same way of thinking.

To directly learn the spirit from this interpretable modeling methodology that is
well accepted by engineering mechanics researchers, we wonder about three aspects
in building a sigmoidal-neural-network-based interpretable modeling framework,
which coincides with IML, that we label interpretability elements (IE).
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Table 4 Derived weights and biases in approximating p1 + p2, p1 − p2, p1 × p2, and p1 ÷
(100p2) with p ∈ [−1,+1] using feedforward neural networks with one hidden layer. From [48]

Target Function Weights in Input
layer, IW

Biases in Input
layer, b

Weights in Output layer, LW

p1 + p2

⎡
⎢⎢⎢⎣

0.1 0

−0.1 0

0 0.1

0 −0.1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

20

−20

20

−20

⎤
⎥⎥⎥⎦

T

p1 − p2

⎡
⎢⎢⎢⎣

0.1 0

−0.1 0

0 0.1

0 −0.1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

20

−20

−20

20

⎤
⎥⎥⎥⎦

T

p1 × p2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0.1

−0.1 −0.1

1 1

−1 −1

0.1 −0.1

−0.1 0.1

1 −1

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10

−10

0

0

−10

−10

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.5076165 × 105

5.5076165 × 105

−50.006810

−50.006810

−5.5076165 × 105

−5.5076165 × 105

50.006810

50.006810

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

p1 ÷ (100p2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5

−0.5 −0.5

5 5

−5 −5

0.5 −0.5

−0.5 0.5

5 −5

−5 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10

−10

0

0

−10

−10

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.5076165 × 105

5.5076165 × 105

−50.006810

−50.006810

−5.5076165 × 105

−5.5076165 × 105

50.006810

50.006810

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

IE 1 What are the behaviors/responses in mechanics that these basic modeling ele-
ments ought to capture/approximate? We introduce an ever-growing list of
useful basis functions and features in our work as in Table2 and Fig. 3.

IE 2 What are the sigmoidal neural networkmodeling components as basic/essential
as springs and dampers? Here, we introduce neural network prototypes pro-
posed and constructed by us.

IE 3 What are the steps that make a general initial design procedure to answer the
two key questions? We introduce the following three steps:

Step 1 Decompose an unknown target function into a linear combination of
dominant features or basis functions as in IE 1.
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Step 2 Use neural network prototypes from IE 2 directly or through concate-
nation to construct sub-sigmoidal neural networks for each dominant
feature or basis function.

Step 3 Concatenate all sub-sigmoidal neural networks to approximate the
unknown target function.

IE 1, the hints, directly calls for domain knowledge. Sigmoidal neural networks
are indeed used to approximate unknown functions; however, engineeringmechanics
researchers, given their domain knowledge, perhaps anticipate certain nonlinearities
from the data. Alternatively, engineering mechanics researchers may observe some
dominant features of the data under certain domain knowledge-based formulations.
These hints do not need to be precise but can help significantly as shown in our
work (see the loose matching of the features in Fig. 4a, b with those in the hint book
in Fig. 4c). We are finding ways to identify and exploit these hints for the benefit
of initializing sigmoidal neural networks—hence “what to expect when you are
expecting.” We examine a domain where existing knowledge has been under active
development for hundreds of years. Comprehensively, systematically, and effectively
representing and connectingwith the rich domain knowledge indeed needs long-term
study. Figure3 illustrates a very small subset of useful features (following [53]).

IE 2, how we act on each hint in terms of answering the two key questions
regarding (I) the number of hidden nodes, and (II) the initial weights and biases,
embodies our main technical work in terms of Techniques A to G as in Table1. In
Fig. 3, we present the usefulness of Prototypes 1 to 3 and their combinations.

The three steps under IE 3 are simple, fast, clear, and fruitful as validated in our
work [39–48].

Note that IE 1 and IE 2 are prepared outside of and before any actual data pro-
cessing. IE 2 can be theoretical derivations without involving training at all, e.g., the
approximation of p1 given under Sect. 2. The quality of IE 2 could be evaluated by its
reusability. Intuitively, Step 1 involves user-in-the-loop when the identification and
selection of features are not automated. Step 2 echoes strongly with unsupervised
pre-training that is critical to the success of deep learning [9, 18] and calls for a
continuous expansion and improvement of reusability. Step 3 is a way of increas-
ing network width but not depth. These three steps are consistent with the layered
representation for classical pattern classification [32], deep learning [29], and XAI
[17].

4 Case Studies

Prior work uses training examples to demonstrate the three steps under IE 3 with two
carefully collected laboratory datasets [41, 47]. Here, we briefly review the dataset
labeled AF2 that was previously given in Fig. 2. Figure4 illustrates the three steps.

The Lipschitz condition for the ODE in Eq. (1) requires the approximation of r(x)

to be bounded. The specified application has further requirements (or preferences)
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Fig. 4 A step-by-step
procedure to explain the
proposed neural network
initialization for FFNN-5 in
[41], when the two key
questions are
answered—Prototypes 2a
and 1c for the restoring force
vs. displacement, and
restoring force vs. velocity,
respectively, denoted as
Prototype 2a + 1c. Slightly
adapted from [47]

−1 0 1

−1

−0.5

0

0.5

1

Normalized displacement

N
or

m
al

ize
d 

re
st

or
ing

 fo
rc

e

−1 0 1

−1

−0.5

0

0.5

1

Normalized displacement

N
or

m
al

ize
d 

re
st

or
ing

 fo
rc

e

I. Linear
II. Cubic 
stiffness

and more

III. Bilinear
stiffness

and more

IV. Multi-
slope

V. Frac-
tional
power

VI. Soften-
ing cubic
and more

VII. Clear-
ance (dead

space

VIII. Hard
saturation

IX. Satu-
ration

X. Stiction

Prototype #1 Prototype #2 Prototype #3 Prototype #1b + #1c Prototype #1b    #2+-

−1 0 1

−1

−0.5

0

0.5

1

Normalized velocity

N
or

m
al

ize
d 

re
st

or
ing

 fo
rc

e

for restoring force 
vs. velocity

for restoring force 
vs. displacement

(a) (b1) (b2)

  -1  -0.5 0 0.5 1
 -1

 -0.5

0

0.5

1

Variant  a

Variant  b

Variant  c

Prototype #1

  -1  -0.5 0 0.5 1
 -1

 -0.5

0

0.5

1

Variant  a

Variant  b

Variant  c

Prototype #2

(d)

(c)

(e)

Σ

Σ

Σ

Σ

Σ

Σ

Σ

displace-
ment

velocity

restoring
force

Σ

Fig. 5 Experimental data
for validation (in black)
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AF2. From [41] with one
label corrected

on sigmoidal neural networks: (i) fast training convergence, (ii) reasonable accuracy,
(iii) great generalization capabilities, (iv) small or modest computational resources in
terms of network size and learning time (e.g., forwireless structural healthmonitoring
and intelligent control systems), and (v) constructive and insightful methods (i.e.,
not treating neural networks as “black-boxes,” a goal that we are striving for here).
Prior work demonstrates all these aspects [41], while Fig. 5 contrasts the proposed
with Nguyen-Widrow initialization in terms of computational stability.
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Fig. 6 Shock simulation test
setup for a sample tube-like
structure and predicted
sample time histories of
Run J by Run I
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Spacecraft often subjected to high-frequency large-amplitude shock loads during
flight. Shock loads are experimentally simulated using ordnance/explosive devices
and shock simulation systems. These test campaigns are usually expensive, time
consuming, and can potentially impose damage to sensitive electronic boxes. This is
a challenge for SHM in the aerospace industry. Currently, there is a paucity of reliable
computational tools to accurately model the response of complex flight systems
subjected to pyroshock loads. JPL engineers have rich experiences in conducting
high-quality pyroshock tests [27, 35]. Prior work launched an effort of using system
identification to directly benefit pyroshock response prediction [5]. Following the
same test setup, we exercised NARX using IML in a follow-up study; another effort
of applying IML beyond FFNNs is to exercise tapped delay line neural networks
[41].

Three pairs of datasets are in the follow-up study. Each pair contains two real-
izations, called runs, from the same test configuration. In system identification and
as a starting point, we question if we can learn from the first run in order to predict
the second. Similarly, we ask if we can learn from the second run in order to predict
the first. See Fig. 6, where we consider the inputs as follows by incorporating input
delays tu :
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u(t − tu) =
{
ux (t), uy(t), uz(t), ux (t − 1

2 tu), uy(t − 1
2 tu), uz(t − 1

2 tu),

ux (t − tu), uy(t − tu), uz(t − tu)
}T

.
(7)

Input delay has been witnessed to play a significant role for both performance
improvement and inner-working interpretation. When there is no data measurement,
a very rough estimate for the longest input delay using the nominal sound speed in
aluminum, the specimen material, yields

1 meter

6320 m/s
× 103 = 0.1582 ms. (8)

Estimates using the experimental data are compatible with this number leading
to the adoption of tu = 0.1667 ms in Fig. 6.

5 Justifications Beyond IML

We are able to gather supporting evidence/viewpoints from sources beyond IML to
justify the work reviewed here:

Optimization: Aid “local search” to balance “global search” (e.g., [36]). In the
process of minimizing approximation error, we conduct a global search. Unfortu-
nately, our training method normally does a local search. Therefore, influencing
the initial point is important as has been our sole focus here. This might not be a
significant issue for deep learning [29] if interpretability is not an issue.

Cognitive/Neural Theory: Have “top-down expectation” to interact with “bottom-
up input” as in Adaptive Resonance Theory [16]. Clearly, we inject our expecta-
tions of types of nonlinearities, and prepare predetermined neural network pro-
totypes to anticipate these nonlinear types before applying the training data. The
injection and preparation, to realize the “top-down expectation” and to interact
with “bottom-up input,” are carried out through Steps 1, and 2 and 3 under IE 3,
respectively.

Statistical Learning: “Purposefully introduce bias” to circumvent the bias/variance
dilemma [13], which states that, “Important properties must be built-in or ‘hard-
wired,’ perhaps to be tuned later by experience, but not learned in any statistically
meaningful way.…It strikes us, however, that identifying the right ‘preconditions’
is the substantial problem in neural modeling.” Indeed, it takes us nontrivial effort
to hard-wire the preconditions in terms of deriving neural network prototypes.

Bayesian Statistical Learning: Provide model classes and prior PDF for model
parameters. The initial neural networks obtained through concatenating neural
network prototypes lead to the prior with interpretability. Bayesian learning could
take off from here by focusing on the data-driven aspect.



Interpretable Machine Learning for Function Approximation … 385

6 Future Work

Following the layered representation framework in deep learning [29] and XAI [17],
we may use the neural network prototypes in the layer for basic features/simple
shapes. This layer is treated as pre-trained; thework reviewed here provides solutions
that have been obtained in an interpretable manner. We may introduce additional
layer(s) to aggregate the features. We should also introduce additional layers to
devise and automate feature definition, detection, and selection, eventually leading
to a deep neural network in an interpretable manner.

Neuromanifolds could be a productive path to provide new visualization ideas
thus achieving interpretability in deep learning. When minimizing approximation
error, state-of-the-art optimization techniques often seek insights into the underlying
geometry of an error surface in a parameter space for effective numerical iterative
solutions (e.g., training algorithms). Nonetheless, the geometry in this inverse prob-
lem context can be far more challenging than that in a forward problem defined by
well-behaved functions. As typified by sigmoidal neural networks [1], the geome-
try of an error surface has a singular structure proven to exist mathematically but
is obscure to end users of machine learning, who mine the data for a model but
constantly encounter slow convergence without seeing the singular structure and
knowing the roots for the so-called local minima. For IML, it is proposed to create
a new capability for effectively visualizing the geometry of an error surface as the
approximation error being generated on the fly. This is equivalent to creating and
exploring an imaginary and unknown world of an often high-dimensional parameter
space, whose terrains are determined and altered at every move in the numerical
process of conducting an inverse problem where the data and user interact.

Philosophically, the body of knowledge has been developed, verified, and val-
idated long before AI in the specified domain. Thus, AI could yield a very small
portion of this body of knowledge. With this said, it would be rational to explain why
AI makes sense to the existing body of knowledge, rather than the other way around.
Along the same line, it is important to emphasize that AI should play a secondary
rather than primary role when there is a significant existing body of knowledge in
a specific application domain. Cross validating and merging the knowledge from
these two different sources could eventually become possible in such an application
domain. Physics-informed NN may be one such direction [49].

7 Summary

This review of a long-term focused effort in AI is limited to sigmoidal neural net-
workswith a sole concentration on interpretability supported by a specific application
in SHM. There is a huge existing body of knowledge in the specified domain, pos-
ing a legitimate question as to why and how the application of AI can/should be
carried out. A humble and an effective approach has turned out to be taking a big
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step back first to study how to replicate what existing/traditional methods can do
but by using sigmoidal neural networks. This backward step allows for the introduc-
tion of interpretability that can then be carried forward. For the specified function
approximation application, we then identify dominant/basic features as constituents
by using either domain knowledge or visualization of data, and devise sigmoidal
neural networks (called prototypes) to approximate these features in predetermined
settings. We finally rely on human-in-the-loop to select from the prototypes for a
complete neural network design solution including the obtained number of hidden
nodes and initial weight and bias values. This constructive method is transparent and
interpretable to users and has the potential of directly benefiting deep learning and
other IML applications.
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Abstract The cost of labelling data by engineer inspections remains a significant
issue for performance and health monitoring. In many cases, this is because the
actual data annotation process is expensive (e.g. non-destructive testing) or it is sim-
ply infeasible to label all the measurements (e.g. lack of access). Often, however,
it is possible to provide a small number of budget-restricted labels, to describe the
measurements. In these scenarios, methods for partially supervised learning are
proposed. Active learning, semi-supervised learning, and transfer learning are sum-
marised here—demonstrated with simulated monitoring examples. Each family of
algorithms is shown to significantly improve conventional methods for data-driven
monitoring.
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1 Limited Labels in Data-driven Performance and Health
Monitoring

When monitoring engineering systems via measured signals [23], data labelling to
describe the operational, performance, or health state can be difficult to obtain for a
number of reasons; for example:

• There is some high-cost associated with the data labelling process itself—e.g.
expert inspection via non-destructive testing or evaluation procedures.

• It is infeasible to inspect the structure because of difficulty in access—e.g. for
offshore wind farms.

• Some high cost is associated with downtime—e.g. suspending turning operations
to inspect the cutting tool in a lathe during high-value manufacturing.

In these scenarios, providing descriptive labels for all measured data is economically
infeasible or impractical. This problem renders many conventional data-driven clas-
sification models inapplicable, as they require fully labelled or supervised training
data; in other words, each measurement vector xi ∈ R

d must have its own descriptive
(scalar) label yi ∈ R, to define a training set,

Dl = {xi, yi}ni=1

where n is the number of training samples used to learn the classifier f (xi) = yi
which monitors the system.

The absence of complete labelling {yi}ni=1 will typically force a dependence on
unsupervised learning, i.e. data-driven models learnt from the unlabelled measure-
ments x̃i only; thus, the training data are

Du = {x̃i}mi=1

wherem is the number of unlabelled training samples.While unsupervised techniques
have proved successful inmany applications, they can limit monitoring procedures to
novelty detection [23]: in other words, an indication of normal or abnormal operation
only.

In many cases, however, it is often feasible to label a small number of measure-
ments, given a budget determined by the performance/health monitoring regime, for
example:

• The cutting tool in a lathe could be inspected between turning operations.
• Or a wind turbine could be inspected during scheduled maintenance trips.

In these scenarios, there are two sets of data to consider in training: the supervised
set Dl and the unsupervised set Du. Because of budget restrictions, the number of
labelled data will generally be much smaller than the number of unlabelled data; i.e.
m � n.
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With both labelled and unlabelled data, itwould be illogical to learn a classification
algorithmgiven onlyDl , while ignoring information in the larger setDu; likewise, the
converse is true. Instead, data-drivenmodels should utilise the labelled and unlabelled
data in a combined approach, such that the union of both sets is considered,

D = Du ∪ Dl

Conveniently, there are statistical and machine learning tools designing for learning
from partly labelled data; these are referred to as partially supervised learning [51].

Partially supervised learning is used here as an umbrella term, to refer to methods
of leaning from fewer labelled examples1 [47]. Here, a brief introduction is provided
for:

• Active learning,
• Semi-supervised learning, and
• Transfer learning.

Many related techniques exist, some of which are outlined in Sect. 6. Each method
is applied here to a simulated SHM data set. Results for applications to operational
data (from previous publications) are also provided.

2 Inspection Management: Active Learning

Thefirst family ofmethods considered here are active learners [53]. Themain premise
is to improve the predictive performance of the mapping f (xi) = yi while querying
(i.e. requesting labels) as little as possible [47]. In most scenarios, queries are taken
from the unlabelled data in Du to automatically extend the labelled setDl .

In general, there are two main approaches: stream-based and pool-based. In
stream-based methods, the data in Du arrive incrementally (in real-time), and the
active learner must determine whether to query or not. On the other hand, pool-
based methods iteratively select the most informative datum from a static set of
unlabelled examples.

Intuitively, active learning has the potential to manage the inspection budget in
SHM.The learner can automatically suggest themeasurements for which inspections
appear necessary, to improve (or maintain) the predictive performance of f . A critical
step, therefore, is determiningwhich data should be investigated and labelled. A brief
review of some probabilistic approaches to active learning is provided.

1 It also includes methods of learning from weakly labelled data.
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2.1 Simulated Data

For the first active learning examples, a simulated (vibration-based) data set is con-
sidered, based on an eight-degree-of-freedombenchmark systemdesigned by the Los
Alamos National Laboratory [23]. Following identification of the system parameters
via modal analysis, time series data were simulated for six conditions. Each health
state represents progressive damage, approximated via reductions in the stiffness of
the system (a common assumption in the literature [23]):

• [yi = 1] normal (system parameters unchanged),
• [yi = 2] damage 1: spring five stiffness 97%,
• [yi = 3] damage 2: spring five stiffness 93%,
• [yi = 4] damage 3: spring five stiffness 88%,
• [yi = 5] damage 4: spring five stiffness 82%,
• [yi = 6] damage 5: spring five stiffness 70%.

From the simulated time series, eight-second windows were converted to the fre-
quency domain (transmissibilities) to define 100 frequency-domain observations per
class, according to the procedure in [10]. Of these data, two-thirds are set aside for
training (D = Dl ∪ Du) and one-third are held out as an independent test set D∗.
To visualise the data set and active learning models, the frequency-domain features
are projected via principal component analysis onto two dimensions, as plotted in
Fig. 1.

2.2 Query Schemes: Uncertainty Sampling

Perhaps, the most obvious way to query data is to select instances that appear uncer-
tain, given the current model [7]; this procedure is known as uncertainty sampling
[53]. That is, starting from a small number of labelled data, further points can be
queried according to those that appear ‘uncertain’ based on various statistics.

To demonstrate, a Gaussian mixture model (GMM) is learnt for the data presented
in Fig. 1, estimating the parameters in a Bayesian manner [46]. This involves fitting
a Gaussian distribution to each class-conditional density2 p(xi|yi = k) (where k ∈
{1, . . . , 6}) given some small initial labelled set Dl (i.e. leading to six clusters of
data). The GMM resulting from 3% labelled data is visualised by ellipses, one for
each class-conditional, also in Fig. 1.

Given the current GMM and the unlabelled data, observations in Du that appear
most uncertain can be queried. Two measures of uncertainty are considered in this
first example: high entropy and low-likelihood.

2 Herein, probability distribution functions (mass or density) will be denoted p(·).
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Fig. 1 Six-class, progressive
damage simulated data.
Colours represent labelled
training data Dl , and small
black markers represent
unlabelled data Du. Ellipses
(two-sigma) visualise the
(supervised) GMM learnt for
3% labelled data

2.2.1 Maximum Entropy Sampling (MES)

Entropy can be used to query observations whose predicted labels appear to be the
most ‘confused’ or ‘conflicted’ [54]. Specifically,measurementswhose classification
into all states is equally likely have the highest predictive entropy [5].

Typically, the Shannon entropy of the posterior predictive distribution over the
unobserved labels ỹi is used3,

H (ỹi) = −
K∑

k=1

p(ỹi = k | x̃i,Dl) log p(ỹi = k | x̃i,Dl) (1)

The result of querying labelswithmaximumentropy is to select those data that appear
at the boundaries between existing classes. To visualise, a heat-map of the predictive
entropy over the feature space4 is presented in Fig. 2; unlabelled data lying in dark
red regions would be queried by the learner.

2.2.2 Lowest Likelihood Sampling

An alternative measure of uncertainty considers data x̃i that appear unlikely given
the current classification model. These ideas align with that of least confident sam-
pling [53], although least confident samples consider the distribution over yi, as
opposed to xi. In contrast to MES, lowest likelihood samples select data that appear
in the extremities of themodel, rather than at class boundaries. Considering theGMM
example, low-likelihood measurements are those with a low (marginal) likelihood,

3 That is, the averaged Shannon information content [42] of the possible label outcomes k ∈
{1, . . . ,K}, where K = 6 for the simulated data.
4 Given the model and data from Fig. 1.
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Fig. 2 Maximum entropy
sampling: darker regions
represent areas in which data
would be queried. Queries
are preferred at the
boundaries between existing
clusters; i.e. data that are
confused given the GMM
predictive distribution over yi

Fig. 3 Lowest likelihood
sampling: darker regions
represent areas in which data
would be queried (colour
map corresponds to the
log-likelihood). Queries are
preferred at the extremities
of the model; i.e. data that
appear unlikely given the
GMM

p(x̃i|Dl) =
K∑

k=1

p(x̃|ỹi = k,Dl) p(ỹi = k|Dl) (2)

Low-likelihood regions are represented by dark blue areas in Fig. 3. These queries are
useful in discovering new classes of data, as they sample measurements that appear
novel given the model (rather than confused). As such, these queries are arguably
most useful in novelty detection—when applying active learning to streaming data,
for example [7].
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2.3 Query Schemes: Information-Theoretic Active Learning

Another view of active learning considers a Bayesian experimental design perspec-
tive [31]. The goal is to select data that appear to improve the model as quickly as
possible. [41] proposed a querying scheme by selecting observationswhose labels are
expected to lead to the greatest reduction in entropy of the posterior distribution over
the parameters. In other words, those labels that provide the most information about
the model (via θ ) when queried5. This process is typically formalised by defining a
utility for querying a point x̃i,

U (xi) = H (p(θ |Dl)) − Ep(ỹi |x̃i,Dl )[H(p(θ |D, {x̃i, ỹi}))] (3)

(whereEA[p(·)] is the expected value of the distribution p(·)with respect toA). Unlike
expression (1), this utility is focussed on the entropy of the posterior distribution
over the parameters p(θ |D)—rather than the predictive distribution over the labels
p(ỹi|x̃i,Dl). In practice, however, (3) can also be rewritten in terms of the predictive
distribution, as (3) is usually intractable for complex models in the above form [32].

An advantage of the information-theoretic approach is that it takes both measure-
ment and parameter uncertainty into account; this prevents the learner from select-
ing only ‘the most confused’ labels [46]—particularly for discriminative classifiers.
Variation in the sampling procedure is useful to prevent training data from becoming
unrepresentative of the underlying distribution of data—a recognised issue for active
learning methods, referred to as sampling bias [33, 53] (Fig. 4).

2.3.1 A Note on Sampling Bias

While the reasoning behind active learning is intuitive, the performance of active
learners can sometimes prove to be worse than conventional (passive) learning [20,
58]. Specifically, problems occur if sampling becomes too focussed on specific
queries, such that the training data become poorly representative of the underly-
ing distribution, i.e. sampling bias [33, 53]. As such, queries should not focus too
much on specific regions of the feature space—the cluster boundaries, for example.
To avoid sampling bias, various methods have been proposed: combining different
query methods [33] or more ‘adaptive’ query schemes [32].

2.4 Application Examples

The querymethods summarised here are applied to the eight-degree-of-freedomdata.
Initiatingwith a small (random) sample of labels, the unlabelled data inD are queried
sequentially, as if each point were the last (i.e.myopic active learning [31]). The three

5 For the GMM, the random vector θ contains cluster centres and covariances.
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Fig. 4 Information-theoretic
active learning: darker
regions represent areas in
which data would be
queried. Similar to Fig. 2,
queries are preferred at the
boundaries between existing
clusters; however, in this
case, the parameter
uncertainty for each cluster
is taken into account

Fig. 5 Averaged
classification accuracy for
active learning methods
compared to conventional
(passive) learning, for 400
repeats

query methods—maximum entropy sampling (MES), low-likelihood sampling, and
information-theoretic sampling—are compared to conventional passive learning, that
is, querying data by random sampling.

The classification accuracy for an increasing number of queries is presented in
Fig. 5 (until all of the data are labelled). Each of the active query schemes outperforms
passive learning in this example, with information-theoretic sampling providing the
best accuracy. Low-likelihood queries lead to the smallest performance increase; as
aforementioned, these queries are arguably more suited to streaming data, which
might explain the reduced improvements.
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2.5 Query Schemes: Value of Information

It may be desirable to apply active learning to develop a classifier with a decision
process, as well as the classifier. In the context of health/performance monitoring,
an operations and maintenance (O&M) example might involve the selection of a
maintenance action based on a prediction of the state of the monitored system [35].
In this setting, one can consider the value of information as a potential query measure
[36].

In decision theory, the expected value of perfect information (EVPI) is understood
to be the amount of utility (or resource) a decision-maker is willing to expend to gain
access to the ground truth of an uncertain or unknown state. More formally, EVPI
can be defined as [39]

EVPI(d |yi) := MEU(Iyi→d ) − MEU(I) (4)

where EVPI(d |yi) is the expected value of querying an incipient point {x̃i, ỹi} to
obtain the labelled observation {xi, yi}, with perfect information, before making a
future decision d . In Eq. (4), MEU(I) denotes the maximum expected utility of a
decision processI involving the randomvariables {x̃i, ỹi} and a decision d . Similarly,
MEU(Iyi→d ) denotes the maximum expected utility of a modified decision process
Iyi→d , in which yi is obtained prior to decision d being made. Note that the EVPI
is strictly non-negative, and EVPI(d |yi) = 0 if and only if the optimal policy for d
in I remains optimal for d in Iyi→d . That is, value of information only arises when
labelling has the potential to result in a change in optimal policy.

For stream-based active learning, the EVPI of an incipient data point can be used
to form a convenient heuristic for triggering inspection. Simply, an inspection is
mandated if the following criterion is satisfied,

EVPI(d |yi) > Cinsp (5)

where Cinsp can be interpreted as the ‘cost’ of inspection. For pool-based (myopic)
active learning, candidate data can be ranked according to their EVPI and queried
preferentially.

2.5.1 Application Example

A value-of-information scheme is demonstrated for a numerical data set, originally
presented in [36]. Thedata include anundamaged state and three damaged states, each
with increasing severity. Importantly, the most advanced damage state is associated
with a costly mode of failure: it is the goal of a decision-maker to avoid this failure
mode via preventative maintenance. Details of the probabilistic models and utility
functions can be found in [36].
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Fig. 6 Value-of-information active learning

Fig. 7 Mean decision
accuracy for a given number
of queries for an agent
utilising a classifier trained
using (i) EVPI-based
querying and (ii) random
sampling (passive learning).
Dashed lines show ±1
standard deviation

Similar to the previous examples, a GMM is used as the predictive model. Given
a small sample of labelled data, a heat-map of the EVPI over the feature space is
shown in Fig. 6a, with clusters corresponding to increasing damage from left to right.
Figure 6b shows the EVPI once the GMMhas been updated via value-of-information
queries. Comparing Fig. 6a, b, the region of high EVPI becomes more pronounced
between the two far-right clusters. This occurs, as queries are preferred in areas
between clusters corresponding to high-severity and lower-severity health states,
for which there are differing optimal decision policies. Thus, Fig. 6 highlights that
the value-of-information method queries data that strengthen more ‘costly’ decision
boundaries.

Figure 7 is provided to demonstrate that the performance of a decision-making
agent can be improved via value-of-information sampling. Again, for details of the
decision process, the reader is directed to [36].
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It would be remiss to fail to highlight the assumptions in this EVPI-based example.
Notably, to evaluate EVPI as presented here, it is necessary to assume that the number
of classes (i.e. health states of interest) is known a priori, to attribute utilities to each.
Additionally, it is assumed that perfect information of the health state can be obtained
via inspection. An alternative approach to decision-theoretic active learning, which
relaxes assumptions of perfect information, is summarised in [47].

3 Combining Labelled and Unlabelled Data:
Semi-supervised Learning

Another partially supervised technique suited to performance/health monitoring is
semi-supervised learning [16, 51]. The focus of these methods is to actually use the
remaining unlabelled data inDu to help infer the parameters of the classifier. In other
words, the model f (xi) is learnt from the union set of labelled and unlabelled data
D = {Du ∪ Dl} within a unifying training scheme6.

These models have potential in monitoring applications as a small set of labelled
data (annotated by the engineer) can be combined with the larger sets of unla-
belled measurements. Unsurprisingly, there are numerous ways to enforce semi-
supervision. Arguably, the most interpretable is self-training (also self-labelling and
pseudo-labelling) [16, 47]. In simple terms, the predicted labels for x̃i are used as
pseudo-labels to train the algorithm in subsequent learning. Returning to themes of
entropy, self-labelling implicitly encourages models with low-entropy predictions
(i.e. confident label predictions) [47].

3.1 Entropy Minimisation

Formally, entropyminimisation techniques [30]minimise the following loss function
for the unlabelled data [47],

L = −
m∑

i=1

K∑

k=1

p(ỹi = k|x̃i) log p(ỹi = k|x̃i) (6)

One notices similarities to the entropy expression for active learning (1), and that (6)
is minimised when points are assigned to a single class of data with unit probability.
In simple terms, the parameters of the model θ are adjusted such that the unlabelled
data are classified with the maximum possible confidence.

6 This is in contrast to active methods, whereby unlabelled instances are only sampled from to
extend the labelled training set.
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A special case can be implemented via expectationmaximisation (EM), originally
proposed by [48], such that the expected joint log-likelihood is maximised [16],

L(θ |D) = L(θ |Du,Dl) ∝
m∑

i=1

log
K∑

k=1

p (x̃i | ỹi = k, θ) p(ỹi = k | θ)

︸ ︷︷ ︸
Du

. . .

+
n∑

i=1

log
[
p (xi | yi = k, θ) p(yi = k | θ)

]

︸ ︷︷ ︸
Dl

+ log p(θ) (7)

For details of how (7) relates to an entropy minimisation viewpoint, refer to [1, 30].
Expression (7) implies that the full joint log-likelihood of the model is maximised,
considering both the labelled (term one) and unlabelled data (term two).

3.1.1 Application Example

To demonstrate improvements via semi-supervised learning, a Gaussian mixture
model (GMM)—learnt from the eight-degree-of-freedom data—is shown before
and after semi-supervised updates in Fig. 8. These results were originally presented
in [10]. Figure 8 visually highlights the improvements to density estimation when
considering both labelled and unlabelled data to infer the parameters, i.e. using the
information in large sets of unlabelledmeasurements to support learning from a small
set of inspected data.

Figure 9 is provided to quantify model improvements as the proportion of labelled
data is increased. In the same test scheme as Sect. 2.4, the semi-supervised model is
learnt while increasing the number of labelled data until all of the training data inD
are labelled, i.e.Du = ∅. In these tests, themodel is compared to standard supervised
learning, whereby inference only considers the labelled set Dl while ignoring the
unlabelled dataDu. For the range of label proportions, there is a notable decrease in
the classification error when implementing semi-supervised updates.

3.1.2 Considerations for Semi-supervised Learning

During semi-supervised learning, incorporating unlabelled signals has the potential
to decrease the predictive performance if the structure imposed by classifier proves
inappropriate [16]. This can be particularly problematic for generative methods [20],
such as theGMMpresented here.Additionally,when self-training, if amodel initially
categorises the data poorly, it will (iteratively) retrain on incorrect predictions. These
errors can propagate, until the classifier returns an invalid solution—a phenomenon
termed confirmation bias [47].
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Fig. 8 Black ellipses represent the supervised and semi-supervised GMMs (the blue ellipse rep-
resents the prior of the class-conditionals). Coloured markers correspond to the labelled set, while
black markers are unlabelled. Improvements to density estimation via semi-supervised learning are
clear

Fig. 9 Averaged
classification error for
semi-supervised learning,
compared to conventional
supervised learning, for 50
repeats [10]
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4 Transfer Learning: Transferring Labels Between
Similar Domains

The final family of methods summarised here are transfer learners [49]. In this
setting, the labelled and unlabelled data are split across two or more domains, rather
being generated by the same underlying distribution. This implies that labelled data
from one domain might be used to aid a task in another unlabelled domain, where
the data are generated by different (but similar) processes.

In the context of health and performance monitoring, the ideas of transfer imply
that labelled data from one structure might help annotate the unsupervised mea-
surements from another. Alternatively, the labelled data generated by some model
or simulation might prove useful to annotate in-the-field measurements. Critically,
in these examples, conventional machine learning cannot be applied, as the data
are generated by different distributions for each case: either different structures or
models.

When modelling data from two or more structures, these ideas align with that of
population-based SHM—an emergent field in the SHM literature [9, 26, 29]. An
example of the population-based framework to match labels between structures is
visualised in Fig. 10.

4.1 Concepts for Transfer

Typically, one considers the transfer of information between two domains at a
time7 [49]. Some common terminology is useful in this setting:

• The source domain is associated with finite set of observations and corresponding
labels, i.e. Ds = {xi, yi}ni=1 where {xi ∈ Xs, yi ∈ ys}.

• The target domain is associated with observations and (in this example) unknown
labels, i.e. Dt = {x̃i, ỹi}mi=1 where {x̃i ∈ X̃t, ỹi ∈ ỹt}.

At this stage, it is interesting to highlight how transfer ideas are somewhat analogous
to semi-supervised learning (when target domain labels are unknown). That is, a lim-
ited set of labelled data inDs are used to support a task—characterised by f (·)—in an
unlabelled domainDt . However, there is a critical difference: semi-supervised learn-
ing assumes the labelled and unlabelled data are generated by the same underlying
distribution, whereas transfer learning allows for changes in this distribution.

7 However, multi-domain methods also exist [21].
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Fig. 10 Separation of
normal and novel data via
transfer learning. Normal

data are and novel
data are Labelled and
unlabelled data sets are
represented by solid and
dashed lines, respectively

X

H

4.2 Application Example

For demonstration, domain adaptation [50] is applied as a form of transductive trans-
fer [2]. Transductive transfer is appropriate when a model f (·) will not generalise
between the source and target domains because of differences in the distributions
p(xi) and p(x̃i) [28]. In other words, the source and target tasks are the same (clas-
sification), while the domains (feature space and measurements) are different.

To demonstrate, consider simulated data from two three-degree-of-freedom sys-
tems. The pair of systems can be considered to represent a pair of multi-storey civil
structures, similar to those presented in [12]. The first three natural frequencies are
used as features to monitor the health/environmental states of each structure. Both of
the three-degree-of-freedom systems (S1 and S2) are identical, other than an increase
in the mass at the top floor of the second structure (S2). In practice, this mass change
could represent operational variations or a difference in design.

For systems S1 and S2, two classes of data are simulated:

• [yi = 1] the normal condition (S1: 100 training points, S2: 50 training points).
• [yi = 2] environmental effects—increased stiffness in the beams of the structure8

(S1: 75 training points and S2: 30 training points).

(There are 1000 test observations from each class, in each domain.) Importantly, only
the data from S1 are labelled, while the data from S2 are unlabelled; this implies that
S1 is associated with the source domainDs = {xi, yi}ni=1, while S2 is associated with
the target domainDt = {x̃i}mi=1. The common task across both domain structure pairs
is classifying observations as normal [yi = 1] or environmental effects [yi = 1].

To visualise why domain adaptation is necessary, the data from both structures
can be stacked and then projected onto two dimensions via principal component
analysis (PCA)—shown in Fig. 11. Clearly, the data from systems S1 and S2 are

8 Stiffness changes due to temperature effects are a typical assumption in the literature [23].
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Fig. 11 Principal component subspace (X ) for the source and target data (filled circle andopen circle
markers, respectively). The labelled source data are associated with structure S1; the unlabelled
target data are associated with structure S2. The source and target data appear to be sampled from
distinct (bi-modal) distributions; (three-sigma) ellipses represent the GMM learnt from the source
data. Test data are shown by light · markers

sampled from different (bi-modal) distributions. As such, a two-class GMM learnt
from the supervised S2 data (visualised by the ellipses) would generalise poorly to
the S1 data. It would be useful, therefore, to define some formal/robust way of using
the supervised data from S1 to model and label the data from S2.

4.2.1 Transfer Component Analysis

As the data in each domain have a similar structure, transfer component analysis
(TCA) [50] can be applied to match source and target distributions in a shared latent
space. Distribution matching is achieved using a projection ψ(·) such that the distri-
butions can be considered approximately equivalent,

p (ψ (xi)) ≈ p (ψ (x̃i)) (8)

In brief terms, ψ(·) defines a nonlinear projection9 that minimises the distance
between the source and target distributions in the subspace,

Dist

[
p (ψ (Xs)) , p

(
ψ

(
X̃t

)) ]
(9)

9 A linear projection on a kernel, similar to kernel PCA [46].
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Fig. 12 Transfer component subspace (H ) for the source and target data (filled circle and open circle
markers, respectively). The labelled source data are associated with structure S1; the unlabelled
target data are associated with structure S2. The source and target data appear to be sampled from
the same (bi-modal) distributions; (three-sigma) ellipses represent the GMM learnt from the source
data. Test data are shown by light · markers

Thus, in the latent space, a shared model (f = fs = ft) can be learnt from the super-
vised data in S1, to classify and label the S2 target data: in some sense, this step can
be considered similar to self-training for semi-supervised learners.

The TCA subspace10 for the data from S1 and S2 is shown in Fig. 12, where the
distributions have been (approximately) matched using ψ(·). In consequence, the
GMM classifier learnt fromDs (represented by ellipses) can be seen to generalise to
Dt ; in other words, a single model can be shared between the structures,

f ≈ fs ≈ ft

Thus, the labels should propagate (more reliably) from the source to the target data.

4.2.2 A Note on Negative Transfer

It is critical to consider whether the application of transfer learning is appropriate
before attempting to transfer information between domains. If the source and target
domains are not related—measurements from a boat and an aeroplane, for example—
there would be a high risk that the source domain actually decreases the performance
in the target domain [49]. This phenomenon is referred to as negative transfer; a
visual example of how classes might be confused in a monitoring context is shown
in Fig. 13.

10 To be comparable with PCA, a linear kernel is used here.



406 L. A. Bull et al.

Fig. 13 A visualisation of
negative transfer. Labelled
and unlabelled data sets are
represented by solid and
dashed lines, respectively.
The normal data ( )
and novel data ( ) are
confused between the
labelled and unlabelled
domains/structures

X

H

5 A Brief Review of SHM Applications

Increasingly, methods for partially supervised learning are being applied in the per-
formance and health monitoring literature. In particular, transfer learning has been
investigated quite frequently, in a range of settings. Some examples are provided for
each of the topics discussed.

Transfer learning:

The majority of literature concerning transfer learning for SHM focusses on image
classification using convolutional neural networks (CNNs), e.g. [13, 22, 25, 37].
Typically, applications consider crack detection [22, 25, 37] and fine-tuning the
parameters of a CNN trained on a source domain to aid generalisation in a target
domain. Generally, fine-tuning does not aim to transfer label knowledge from source
to target domains; instead, it focusses on repurposing expensive-to-train ‘deep’ neural
networks [28].

In addition to fine-tuning, neural networks have been applied for domain adapta-
tion within SHM, for example [40, 55, 57]. These techniques use a neural network
to define the mapping from the domain data into a shared latent space, where a clas-
sification model is learnt. An interesting study is presented by [45], demonstrating
domain adaptation for condition monitoring, applied to a fleet of power plants.

Besides neural networks, a paper by [14] applies a probabilistic method for trans-
fer learning by defining an objective function such that information in the source
and target domains is considered jointly. This application focusses on the important
issue of sensor coverage (for a single structure) rather than transferring information
between similar systems.

Domain adaptation has been discussed in an SHM context by [27, 28], consider-
ing methods for knowledge transfer between a simulated source and target domain,
as well as a simulated source and experimental target structure. Additionally, transfer
component analysis has been applied to a group of tailplane structures (i.e. experi-
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mental data) to transfer damage detectors betweenmembers of a population for SHM
[11].

Semi-supervised learning:

In the context of bridge monitoring, Chen et al. introduced a graph-based approach
for label propagation [18, 19]. The objective function of a multi-resolution classi-
fier [17, 43] is modified such that the weighting parameters are optimised over the
labelled and the unlabelled data. Another graph-based application considers fault
diagnosis for condition monitoring of bearings and pumps [56]. On the other hand,
label propagation within hierarchical clustering has been investigated with experi-
mental aircraft data [6] and pipe monitoring [52]. Generative mixture models have
also been adapted for probabilistic applications of semi-supervised monitoring with
vibration-based aircraft data [10].

Further examples consider applications of K-means [4], Dirichlet processes, and
fuzzy C-means [34] clustering for semi-supervised heuristics. Huang et al. [34]
use fuzzy C-means within an online SHM strategy; the proposed method becomes
partially supervised during a label-matching step, where the unsupervised clusters
are compared to known classes from the supervised data. Bouzenad et al. [4] define a
similar online heuristic using K-means; in this case, new clusters are created when a
distance-based threshold is brokenwithin the unsupervised algorithm.Thesemethods
can be considered as simple form of clustering with constraints [16], whereby partial
supervision is introduced via constraints on an unsupervised algorithm. (However,
in the examples referenced here, partial supervision is enforced within the SHM
framework, rather than the algorithm.)

Active learning:

Active learning is somewhat less explored in performance and health monitoring
applications. Existing studies include generative mixture models for (batch) online
clustering in tool wear [8] and bridge monitoring regimes [7]. Neural networks
have been applied with uncertainty sampling to classify images of defects in a data
set concerning civil structures [24]. Martinez Arellano and Ratchev [44] propose a
Bayesian convolutional neural network for tool-monitoring, usingmaximum entropy
sampling. Additionally, an adaptive probabilistic framework is proposed in [15] for
active data selection to aid a particle filter-based damage-progression model.

6 Concluding Remarks

Emerging technologies for learning from fewer labelled data in performance and
healthmonitoring have been summarised anddemonstrated.Collectively, thesemeth-
ods are termed partially supervised learning. Because of the inherent cost associated
with labelling data in monitoring regimes, it is the authors’ opinion that these algo-
rithmswill prove critical in developing structural health monitoring, while ultimately
aiding its transition into standard practice in industry.
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Active learning, semi-supervised learning, and transfer learning have been pro-
posed as examples here:

• Active learning can be used as a technique to guide/automate system inspections.
• Semi-supervised learning can be used to combine these inspection results with
large volumes of unlabelled data.

• Transfer learning is proposed to transfer label information between similar systems
(or monitoring regimes).

As with most data-driven monitoring, care must be taken to ensure that any model
assumptions are appropriate; the caveats for each method have been highlighted
throughout. When implemented correctly, however, partially supervised learning
has the potential to significantly improve performance and health monitoring frame-
works.

Considering the foundations in information theory [42] (particularly active and
semi-supervised learning), there are various related problems, in particular: Bayesian
experimental design [38], Bayesian optimisation, and model updating [3]. There are
also related tools from the machine learning literature, including: meta learning, few
shot learning, and data augmentation [47], all of which indicate interesting avenues
of future work.
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Abstract One of the dominant challenges in data-based structural health monitor-
ing (SHM) is the scarcity of measured data corresponding to different damage states
of the structures of interest. A new arsenal of advanced technologies is described
here that can be used to solve this problem. This new generation of methods is able
to transfer health inferences and information between structures in a population-
based environment—population-based SHM (PBSHM). In the category of homoge-
nous populations (sets of nominally identical structures), the idea of a Form can
be utilised, as it encodes information about the ideal or typical structure, together
with information about variations across the population. In the case of sets of differ-
ent structures and thus heterogeneous populations, technologies of transfer learning
are described as a powerful tool for sharing inferences (technologies that are also
applicable in the homogeneous case). In order to avoid negative transfer and assess
the likelihood of a meaningful inference, an abstract representation framework for
spaces of structures will be analysed as it can capture similarities between structures
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via the framework of graph theory. This chapter presents and discusses all of these
very recent developments and provides illustrative examples.

Keywords Population-based structural health monitoring (PBSHM) · Machine
learning · Graph theory · Complex networks · Transfer learning · Forms

1 Population-Based Structural Health Monitoring

Despite significant successes in data-based approaches to structural health monitor-
ing (SHM) [6], several limitations have prevented wide-scale adoption of these tech-
niques in industry. One of these limitations that prevent data-based approaches from
progressing beyond novelty detection is a scarcity of measured data corresponding
to the damage states of interest for the structures in question. This sparsity of labelled
health-state data means that supervised (and even semi-supervised) techniques are
limited in their effectiveness, unable to classify observations on a structure that cor-
respond to a health state not previously seen on the structure (unless inspections are
performed for the particular observation in question). As a consequence, conven-
tional data-based approaches that are developed for individual structures are often
limited in industrial applications to performing novelty detection (in the absence of
labelled health-state data), where these techniques typically are not only sensitive
to damage, but detect novelty for a variety of reasons, such as due to confounding
influences and other benign effects [18].

In the light of these challenges, population-based structural health monitoring
(PBSHM) [4, 8, 9, 19, 21] provides a variety of tools that seek to expand the avail-
able data for performing SHM, by considering observations from a population of
structures. By utilising data from multiple structures, observations of health states
from across the population can be shared in diagnosing different members of the
population. A population-based viewpoint therefore overcomes problems associated
with a scarcity of health-state (or usually, damage-state) labelled data and enables
diagnostic predictions from the start of an SHM campaign. This chapter introduces
key concepts for PBSHM, such as population types and the tools most applicable for
each type, with the focus of this chapter being on learning for PBSHM.

It is helpful at this stage to provide an illustration of a typical industrial setting for
PBSHM. Imagine a scenario in which an asset manager of a wind farm is interested
in performing SHM for each wind turbine in the farm, as shown in Fig. 1. Each
wind turbine in the farm is of the same model type and can be considered nominally
identical—this type of population is termed a homogeneous population [4, 8, 9].
During the complete operational phase, each structure may transition from its normal
operating condition to a different health state; however, it is unlikely that any one
turbine will observe all health states of interest to the asset manager (particularly
as these structures are designed for low failure rates). The lack of observed labelled
health states for eachwind turbinemeans that conventional data-basedSHMis limited
to novelty detection. In fact, even observing the complete normal condition for any
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onewind turbinemay not be possible for a variety of reasons, such as local differences
in weather, local interactions between structures and different operational patterns.
Despite the fact that some wind turbines may have limited or no labelled health-state
data, the asset manager is still tasked with maintaining and monitoring the complete
population. The asset manager therefore requires a population-based approach to
SHM,where the information across the population is used to create amachine learner
that will both generalise across the population and will allow label information to be
transferred to any wind turbine in the farm, allowing robust health diagnostics for
all wind turbines in the population. Figure 1 demonstrates this process, where data
from across the farm are mapped into some space where a data-based model can be
constructed utilising the population-level information.

The above example describes a scenario involving a homogeneous population
where the structures are nominally identical. A second category of population also
exists, termed a heterogeneous population, where every structure in the population is
different for various reasons, broadly categorised as geometric, material and topolog-
ical differences [4, 8, 9]. Staying with the wind farm illustration, imagine the asset
manager is tasked with overseeing multiple wind farms situated around the world,
with each farm containing wind turbines of different model types. A population-
based approach can be extended to consider a larger population, covering all the
wind turbines in the portfolio. However, more care must be taken in scenarios where
the differences between structures in a population are large. For example, the asset
manager must consider the physics of the structures that are grouped into a popu-
lation; are there common failure types that each turbine will experience such that
labelled data can be shared, are there sub-systems or components that are common
across the population? To answer these questions, it will be necessary to demonstrate
an abstract representation framework for spaces of structures, as this will allow an
engineer to quantify and capture similarities between structures via the framework
of graph theory.

A key component of population-based SHMconcerns how learning algorithms are
constructed in a population setting. Clearly, data from one structure cannot naively
be used to classify data from another structure, without some mapping to harmonise
datasets, as the generative distributions from each member of the population will be
different. In the context of population types, this chapter outlines two key technology
types for performing population-based SHM, the concept of a Form and transfer
learning. Each are suited to different problem types in PBSHM, which are discussed
within the chapter. Briefly, a Form seeks to capture the essence of a population,
typically by defining a data-based model that captures the expected normal condition
as well as the variability across the population. By contrast, transfer learning seeks to
leverage information from source structures where label information is known and
transfer this knowledge via somemapping to partially or unlabelled target structures.
These types of learning are outlined in the context of each population type along with
illustrative examples.
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Fig. 1 A typical population-based structural health monitoring scenario. The scenario depicts a
population of wind turbines ({S1,S2,S3}) where different types of damage have been observed for
each wind turbine over their operational phase (N—normal condition, Dh—damage to the rotor
hub, Db—damage to a blade, Dt—damage on the tower). Population-based SHM methods seek
to define some model that captures information from across the population, generally via some
mapping φ
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2 Homogeneous Populations

2.1 The Concept of a Form

As discussed, homogeneous populations are groups of structures that can be con-
sidered nominally identical [4]. Some examples include samemodel vehicle fleets, or
turbineswithin awind farm. In this special case, a general and shared representation—
referred to as the Form—may be be used to monitor the collected group of systems.

The concept of the Form for PBSHM is motivated by the work of Plato. Initially
in Meno [15] and later The Republic [16], Plato considers Forms to be the essence
of things, existing as abstract entities: eternal, immutable and representative of the
highest level of reality. Ordinary objects derive their nature and properties by ‘par-
ticipating’ in the Forms. For example, all cats in the world are recognisable as such
because they participate in the Form of cat.

To apply Plato’s Form to a group of structures for monitoring purposes, an exten-
sion is needed: not only to capture the essence of things, but the extent of variations
in their participants [4]. For example, consider a specific model of vehicle; one could
argue that the essential nature of the vehicle is captured in the complete design spec-
ification; in reality, variations will occur over the production run: manufacturing
tolerances, changes in operating environments, as well as other inconsistencies.

Herein, the term form will be used in a mathematical sense to denote a model,
in some feature space, of an object (the uncapitalised form distinguishes the model
from the conceptual Form). The model attempts to capture the two ingredients of
the extended Form: the essential nature of the object and the variations encountered
when the object is embodied in the real world. The object of interest need not be
the structure itself, but rather a feature or measurement vector—which represents the
structure for SHM purposes. The feature, therefore, is part of the description of the
form.

2.1.1 A Motivating Example: Wind Turbine Power Curves

For a specific model of turbine, the power curve captures the relationship between
wind speed and power output; the associated function can be used as a indicator of
performance [14, 22]. For a wind farm consisting of identical turbines, this trend
should be relatively consistent across the group. Variations in the power curve can
exist for an array of reasons; the results of operator control, or shadowing and wake
effects from other turbines [2], for example.

Intuitively, the power curve defines a convenient object (i.e. feature) to consider
as the form for a wind farm. This relationship captures the essential nature of power
production, while also the variations across the group. To demonstrate, operational
power-curve data (SCADA [22]) from a wind farm are presented in Fig. 2a. A regres-
sion of these data should generalise to future measurements, given optimal power
generation for turbines within the farm.
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Fig. 2 Wind farm power curves (normalised)

In practice, however, only a subset of measurements or turbines would be approx-
imated by a form modelled on the data in Fig. 2a. This is because, in actuality,
power-curtailments will appear as additional functional components; that is, further
variations in the form. An example of operational data including curtailments is
shown in Fig. 2b; here, three trends can be observed in the power data: (i) the ideal
power curve (ii) ≈50%-limited output and (iii) zero-limited output. Curtailments
usually correspond to the output being controlled (or limited) by the operator for
various reasons; e.g. responding to requirements of the electrical grid [20] or the
mitigation of loading/wake effects [2]. As a result, the form object is multi-valued,
differing significantly from the ideal curve. However, as these data capture impor-
tant variations that are expected in practice, they should be useful to model a more
complete form for the wind farm.

2.1.2 The Power Curve Form as a Mixture of Gaussian Processes

As the functional feature (Fig. 2b) is multi-valued, conventional regression would
prove inappropriate for this expression of the form. The work in [5] proposes that an
overlapping mixture of probabilistic regression models (Gaussian processes) is used
to approximate the power-curve relationship.

Specifically, the overlapping mixture of regression models (introduced by [11])
assumes that there are K latent functions to approximate the form,

y(k)
i = {

f (k)(xi ) + εi
}K
k=1 (1)

i.e. the power yi at each input xi (wind speed) is found by evaluating one of K latent
functions f (k)(xi ) with additive noise εi . From the power-curve data, it should be
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Fig. 3 Wind farm form as an overlapping mixture of Gaussian processes

clear that an appropriate number of components is K = 3: (i) ideal, (ii) 50% limited,
and (iii) zero power.

Labels to assign each observation {xi , yi } to function k are unknown, so a latent
variable is introduced to the model, Z; this is a binary indicator matrix, such that
Z[i, k] �= 0 indicates that observation i was generated by function k. There is only
one nonzero entry per row in Z (each observation is found by evaluating one function
only). Therefore, for N data, the likelihood of the model is [11],

p
(
y | {

f (k)}K
k=1 , Z, x

)
=

N ,K∏

i,k=1

p
(
yi | f (k)(xi )

)Z[i,k]
(2)

AGaussianprocess (GP) is associatedwith eachof the (three) latent functions f (k).
Briefly, each GP can be described by its mean and kernel function [17], which can be
specified for power-curve modelling; for details, refer to [5]. Unlike a conventional
GP, the computation of the posterior distribution p

(
Z, { f (k)} | D)

is intractable; thus,
methods for approximate inference are implemented to infer the latent variables and
functions—avariational inference and expectationmaximisation (EM) approachwas
proposed in [1]. Additionally, input-dependent noise is approximated according to
the scheme [10]. The resulting form is shown in Fig. 3.

2.1.3 The Form for Wind Farm Performance Monitoring

To demonstrate the form as a performance-monitoring (or diagnostic) tool, themodel
can be compared to future (test) data from all turbines within the population. As such,
the form is treated as a general model and used to make predictions across the wind
farm.
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Fig. 4 Weekly datasets, compared to the form in [4]

In the experiments presented in [4], a similar power-curve model was used to
inform outlier analysis, by measuring the deviation of future data from the form (via
the combined predictive-likelihood of the mixture model). Examples of (weekly)
data (from across the wind farm) that appeared as inlying or outlying with respect to
the form are shown in Fig. 4. In other words, data that appear likely or unlikely when
compared to the currently modelled population form respectively. The examples are
sampled at random from the most extreme inlying and outlying weeks of data in the
test set [4].

Specifically, Fig. 4b resembles a typical sub-optimal power curve [14]. On the
other hand, the inlying example in Fig. 4a resembles one of the permitted normal
conditions associated with the form—in this case, the ideal curve.

2.1.4 Form Difficulties: Increased Population Variance

As variation across individuals increases, variation in the population data is also
likely to increase; thus, it becomes progressively difficult to approximate the form.
In particular, when the underlying distributions of data vary dramatically between
individuals, more involved techniques are required to infer a shared model. An idea
presented in [3] suggests that dissimilar population data might be projected into
a shared and more consistent space, where the form can then be inferred. These
concepts align closely with those of transfer learning.

2.2 Transfer Learning for Homogeneous Populations

Transfer learning—a branch of machine learning—provides an alternative viewpoint
to the concept of a form. Rather than seeking to capture the essence and variation
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of a population, transfer learning seeks to leverage label information from source
structures in aiding classification of unlabelled (or partially-labelled) target struc-
tures. Transfer learning is applicable across a variety of PBSHM scenarios, includ-
ing homogeneous populations, where the data vary too greatly to be modelled by
the form framework in the previous section, preventing a learner trained on one (or
more) structure(s) from generalising to another.

Two objects are required to formally define transfer learning,

• A domainD = {X, p(X)} consists of a feature spaceX and amarginal probability
distribution p(X) over the feature data X = {xi }Ni=1 ∈ X, a finite sample from X.

• A task T = {Y, f (·)} consists of a label space Y and a predictive function f (·)
which can be inferred from training data {xi , yi }Ni=1 where xi ∈ X and yi ∈ Y.

Using these objects, transfer learning between a single source domain and single
target domain is defined as [13],

Definition 1 Transfer learning is the process of improving the target prediction
function f (·) in the target task Tt using knowledge from a source domain Ds and a
source task Ts (and a target domainDt ), whilst assumingDs �= Dt and/or Ts �= Tt .

Within the field of transfer learning, domain adaptation arguably offers one of the
most useful tools for PBSHM and is defined as,

Definition 2 Domain adaptation is the process of improving the target prediction
function f (·) in the target task Tt using knowledge from a source domain Ds and
a source task Ts (and a target domain Dt ), whilst assuming Xs = Xt and Ys = Yt ,
but that p(Xs) �= p(Xt ) and typically that p(Ys | Xs) �= p(Yt | Xt ).

Domain adaptation is appropriate for scenarios where a classifier will not generalise
across domains because of differences in the underlying data distributions, such
as the example outlined in Fig. 1. For this reason, the transfer learning methods
demonstrated in this chapter are therefore all forms of domain adaptation.

To contextualise transfer learning for homogeneous populations, a case study is
provided. The case study considers a special case of the homogeneous population
type, when the source and target structure are exactly equivalent; i.e. they are the
same structure. Even in this context, PBSHM provides a useful framework for over-
coming challenges with data-based SHM; in this particular instance, the problem of
structural repairs and how they change the underlying data distribution of a system.
Structural repairs introduce modifications that change (even if locally) the mass,
stiffness and damping of the structure, causing shifts in the underlying generating
distributions andmanifest as drift in the output feature space. This dataset shift means
that a data-based model trained on pre-repair labelled data will not generalise to the
post-repair structure because the distributions of the dataset in training and testing
are not the same. The implication of this dataset shift is that a new labelling campaign
would be required every time structural repairs are made. Instead, a PBSHM view-
point can be taken by treating the two datasets as coming from a population of two
homogeneous structures. The following case study considers two datasets from the
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Fig. 5 A representative
schematic of the Gnat
aircraft starboard wing (not
to scale), depicting
inspection panel,
accelerometer and
transmissibility path
locations. Recreated from
[12]
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same Gnat trainer aircraft, before and after the inspection panels have been removed
and reattached (simulating a repair scenario).

The Gnat aircraft dataset was collected as part of an experimental campaign in
which a network of uni-axial accelerometers were used to obtain transmissibility
features (under white noise excitation) from the starboard wing of a Gnat trainer
aircraft in situ [12]. During the experiments, psuedo-damage was introduced into the
structure by removing individual inspection panels—the locations of which are rep-
resented in Fig. 5. The sensor network was designed such that each transmissibility
path targeted a specific inspection panel (i.e. the transmissibility targeting panel 1
(P1), denoted T1, is computed from the reference accelerometer AR and response
A1), with each transmissibility covering a frequency range of 1024–2048Hz con-
taining 1024 spectral lines, with the magnitudes being utilised as the feature data.
In the following analysis, the feature data are seven stacked transmissibilities (i.e.
R

1024×7) covering panels {P1, P2, P4, P5, P7, P8, P9} where the label space is
Y ∈ {1, 2, 4, 5, 7, 8, 9} (with only the panels with a large surface area being consid-
ered in this analysis). For more details about the experiments, the reader is referred
to [12].

The dataset simulates a repair scenario, because the experimental sequence
(removing all panels one-by-one and replacing them on the structure with the same
applied torque on the fasteners) was repeated twice. In fact, the maintenance process
on the Gnat aircraft wing typically involves removing and reattaching inspection
panels. In order to visualise the problem caused by the repair action, Figures 6 and 7
present two depictions of the dataset. Figure 6 demonstrates the changes in the first
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Fig. 6 A comparison of T1
for the pre- (red) and
post-repair (blue) scenarios;
top and bottom sub-panels
depict the normal condition
and the removal of Panel One

Fig. 7 Visualisation of the
pre- and post-repair datasets;
the first two principal
components of the pre-repair
(•) and post-repair (+)
datasets

transmissibility path before (show in red) and after (depicted in blue) repairs had
taken place for two health states, the undamaged normal condition (top sub-panel)
and when Panel One has been removed (bottom sub-panel). It is clear from this figure
that there are larger changes due to the repair action than due to damage (e.g. the
large differences around 200–400 spectral lines between pre- and post-repair trans-
missibilities), and hence, a classifier will not generalise from the pre- to post-repair
scenarios. Figure 7 shows the first two principal components of the complete feature
space, demonstrating that the data distributions have changed significantly between
the pre- and post-repair structural states, and hence p(Ys, Xs) �= p(Yt , Xt ) (where
the pre-repair data has been denoted as the source domain, subscript s , and the post-
repair data is denoted as the target domain, subscript t ), so domain adaptation is
applicable.

In order to harmonise the pre- and post-repair datasets, such that label information
from the pre-repair dataset can be used to diagnose the unlabelled post-repair data,
a domain adaptation algorithm has been applied. The algorithm, metric-informed
joint domain adaptation [7], seeks to find a mapping Z = KW ∈ R

(Ns+Nt×k), by
learning some weight matrix W ∈ R

(Ns+Nt×k) that projects a kernel matrix, formed
from the joint dataset K ∈ R

(Ns+Nt×Ns+Nt ), onto a k-dimensional space. The weight
matrix is inferred by minimising the distances between the joint distributions from
the source and target data, formed as an optimisation problem that minimises the
maximum mean discrepancy distance between the marginal and class conditional
distributions (for more information about the algorithm, the reader is referred to [7]).
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Fig. 8 Transfer components
of the pre-repair (•) and
post-repair (+) from the
metric-informed joint
domain adaptation approach

Fig. 9 Comparison of
classification accuracy given
feature spaces with no
transfer learning (Data and
PCA) and the feature space
after transfer learning
(M-JDA)

The projected space, defined by a set of transfer components, where k = 2, is shown
in Fig. 8, where the algorithm has matched the joint distributions in the projected
space. In this space, label data from the pre-repair state can be used to classify the
post-repair data, transferring the label information. A k-nearest neighbour classifier
was trained on the pre-repair data from three different feature spaces, the original
transmissibilities (Data), the principal components of the transmissibilities (PCA)
and the transfer components (M-JDA). The classification results in Fig. 9 show that
domain adaptation has allowed for label information to be successfully transferred
to the target domain, signified by classification accuracies in the target domain of
100%, and that, because of differences in between the pre- and post-repair datasets, a
classifier trained on either the pre-repair transmissibilities or principal components,
does not generalise to the post-repair data.
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3 Heterogeneous Populations

3.1 Transfer Learning for Heterogeneous Populations

In the field of population-based SHM, heterogeneous populations provide a more
complex set of challenges for transfer learning. The reason for this increased diffi-
culty is that transfer learning assumes that there is some shared commonality between
the source and target domains. Heterogeneous population push these assumptions
towards their limits, and as structures in a population become more dissimilar, the
risk of negative transfer increases. The term negative transfer describes the scenario
where transfer learning incorrectly maps information from one domain onto another,
reducing the performance of the learner (discussed in more detail in Sect. 3.2). It
is therefore important in heterogeneous populations to understand and quantify the
level of similarity between structures, such that transfer learning is only attempted in
contexts where transfer will be successful and beneficial. Later on in this chapter, an
approach for assessing the similarities between structures (before attempting trans-
fer learning) is introduced. Briefly, the approach converts structures into an abstract
representation, called irreducible element models, where a graph theory framework
can be used to quantity similarities. The remainder of this section looks at illustrat-
ing transfer learning in the context of heterogeneous populations via two example
populations of n-storey buildings.

The first example considers a population of two n-storey structures, a three-storey
structure where the feature data are labelled, denoted the source structure, and a four-
storey target structure, where the feature data is unlabelled. The two structures form
a heterogeneous population as they have different topologies—with their nominal
geometries and material properties being the same. Each structure is modelled as a
lumped-mass model, shown in Fig. 10, where the spring stiffness between each floor
is modelled as four springs in parallel. The SHM problem is that of locating damage,
in the form of open cracks at one of the beams at a particular floor using lateral
bending natural frequencies of the whole structure as features.

In this example, the PBSHM problem is that of transferring localisation labels
from the three-storey structure to the four-storey structure. An interesting challenge
arises in the context of a heterogeneous population when performing a localisa-
tion task between structures with different topology, namely that the labels spaces
between the two structure are not exactly equivalent, termed label inconsistency.
This phenomenon means that care must be taken when transferring information
between members of a heterogeneous population. In this example, both structures
have an undamaged condition (Y = 1) and can be damaged at floors one to three
(Y = {2, 3, 4}, respectively). As a result, the complete label set from the three-storey
structure can be transferred to the four-storey structure, where the algorithm should
not try to pair data points relating to damage at the fourth floor (Y = 5) of the tar-
get structure with data from the source structure. This type of PBSHM problem is
termed an L + 1-problem, as there is one more class label in the target domain than
in the source domain (i.e. Ys ∈ {1, 2, 3, 4} and Yt ∈ {1, 2, 3, 4, 5}. Furthermore, most
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Fig. 10 Schematic of the
n-storey building structures
lumped-mass models, panel
(a), and beam component,
panel (b)

Fig. 11 A visualisation of
the first two natural
frequencies (in Hz) from the
three- (•) and four (+) storey
structures

domain adaptation techniques require that both the source and target feature spaces
to be of the same dimension, such that negative transfer is minimised. In this exam-
ple, the feature spaces are the first three bending natural frequencies such that both
feature spaces are R3, with Fig. 11 presenting a visualisation of the first two natural
frequencies for each structure.

The approach taken to solve this particular L + 1-problem is outlined next. Firstly,
an unsupervised clustering method (namely a Gaussian mixture model) is used to
identify and group the unlabelled target domain feature data. Once unlabelled target
clusters are identified, each target cluster is removed iteratively from the domain
adaptation training dataset. A mapping, in the form of Z = KW ∈ R

(Ns+Nt×k), is
subsequently identified from the (complete) source dataset to the particular target
dataset (where one cluster has been removed),where the domain adaptation algorithm
uses themaximummeandiscrepancy as a cost function and k = 2. The algorithm then
selects themapping that produces the smallest distance between the source and target
training datasets. Thismethodology is based on a naive form ofmanifold assumption;
i.e. it is expected that the manifold of the source and target clusters is the ‘same’.
Figure 12 presents the ‘optimal’ mapping, where the correct target clusters were used
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Fig. 12 Transfer learning results for the three- to four-storey example. Panel a displays the trans-
fer components for the three- (•) and four-storey (+) structures, with panel b demonstrating the
maximummean discrepancy (MMD) distances in the transformed space when one cluster has been
removed from the target domain

in training, and the distance—in the form of a maximum mean discrepancy distance
(MMD)—between the mappings with different target clusters removed. It can be
seen that the ‘optimal’ mapping is selected by this approach, as the smallest MMD
distance is produced when the target cluster corresponding to Y = 5 (i.e. damage at
the fourth storey) is removed in training. A classifier trained on the source domain
data in the transfer component space in Fig. 12 can be shown to classify the target
structure with 100% accuracy using a semi-supervisedGaussianmixturemodel. This
case study demonstrates the challenges heterogeneous populations cause for transfer
learning techniques, with care being needed in order to minimise negative transfer.

The second example involves a heterogeneous population comprised of a numeri-
cal physics-based model and an experimental structure, as shown in Fig. 13. The aim
in this example is to transfer damage-extent label information from an unvalidated
(and in this case a deliberately poor-performing) numerical model to unlabelled data
from an experimental structure. This case demonstrates the flexibility of a PBSHM
approach in which a variety of sources of label information can be utilised, and
shows a significant advantage of the PBSHM viewpoint, namely that damage-state
data can be generated in a cost-effective manner from physics-based models, even
when computer model validation is challenging. The numerical model, constructed
using the approach in Fig. 10 as a three degree-of-freedom lumped-mass model, was
formed using themeasured dimensions of the experimental structure andwith typical
material properties that matched those from the structure.

The SHM problem was to classify the extent of damage, in the form of open
cracks from 0 to 20mm, where label Y = 1 denotes the undamaged condition, Y = 2
refers to a 5mm crack, Y = 3 for a 10mm crack, etc. Again, it is reiterated that the
numerical model has been oversimplified such that the example demonstrates the
effectiveness of domain adaptation in utilising physics-based models in labelling
real world structures. The simplified physics-based model therefore reflects that
physics-based models are challenging to validate in SHM contexts and may not fully



428 P. Gardner et al.

Fig. 13 Experimental
three-storey building
structure [8]

Fig. 14 The transfer
components from the
numerical (·) and
experimental (• predicted
label and © true label)
datasets

agree with observational data, because of model form-errors. The feature data in this
example were the first three lateral bending natural frequencies of the system.

Domain adaptation was applied such that a mapping in the form of Z = KW ∈
R

(Ns+Nt×k) could be identified (where k = 2), using anMMD-based cost function [8].
The inferred mapping is visualised in Fig. 14 where it can be seen that the numerical
and experimental data have been aligned.A k-nearest neighbour classifierwas trained
using the numerical model data, both before and after the transfer mapping. The
classifier trained on the untransformed data produced a testing accuracy in the target
domain of 48%; this is compared to a testing accuracy 88% from the classifier
trained on the transfer components. This result demonstrates the effectiveness and
applicability of utilising both physics-basedmodels and observational datasetswithin
a PBSHM framework.

Both of these case studies highlight the potential of PBSHM beyond populations
of nominally similar structures. Of course, there are a number of research questions
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that are posed by considering the full extent of heterogeneous populations. It is
therefore important to explore similarities between structures and datasets, and to
form groupings of PBSHM problems that address each scenario, while monitoring
the potential for negative transfer.

3.2 The Problem of Negative Transfer

Negative transfer has beenmentioned several times in this chapter because of the risk
it poses to making inferences of health states in a PBSHM approach. As previously
stated, negative transfer occurs when class data from a source domain has been
incorrectly and confidently paired with class data from a target domain, i.e. Class
One in the source domain is mapped onto Class Two in the target domain. Generally,
negative transfer is any scenario where transfer learning reduces the performance
on a classifier when compared to not performing any transfer. Negative transfer is a
particular concern for a PBSHM viewpoint, as typically there are no labelled data
points in the target domain that can be used to validate the inferred transfer mapping.
As such, it is important to quantify how related the source and target structures are
and to only perform transfer when positive transfer is likely. This is a significant
and open research question, with the following section outlining one approach to
identified the similarities between members of a population.

To illustrate the effect of negative transfer, the three- to four-storey example is
reintroduced. The problem in this example was to transfer localisation labels from
the three-storey source structure to the unlabelled four-storey target structure. The
problem is an L + 1-problem, meaning that there is one more class label in the
target domain than in the source domain, and that all other class labels exist in
both domains. Figure 15 shows the identified mapping when data corresponding to
classes Ys ∈ {1, 2, 3, 4} andYt ∈ {1, 2, 4, 5}were used to train the domain adaptation
mapping—this gave the second smallest distance in Fig. 15 and therefore was not
selected as the optimal mapping, but will be useful for this discussion. Of particular
note, negative transfer has occurred between the source data for class Y = 3 and the
target data for class Y = 4. This is interesting, as source data for class Y = 4 were
used in training, but the domain adaptation algorithm, given no label information
about the target, has inferred a mapping that incorrectly pairs these classes. Negative
transfer has also occurred between class Y = 4 in the source domain and Y = 5 in
the target, which arises as the cost function in the domain adaptation approach only
considers a mapping with the smallest distance between the two domains.

In this example, it should be clear that the risk of negative transfer was high, as
the data from the source and target domains did not correspond to the same classes
in training. However, it is worth noting that negative transfer can occur in scenarios
where both the source and target training data do refer to the same classes, and
where the two datasets are more dissimilar than can be accounted for given the
assumptions and adaptation method (i.e. the type of mapping) used in the transfer
learning algorithm. For PBSHM to be appliedwith confidence using transfer learning
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Fig. 15 An example of negative transfer between the three- and four-storey structures. Panel a
shows the first two natural frequencies of the source domain data (•) used in training, panel b shows
the first two natural frequencies of the training target data (+), and panel c shows the inferred
transfer components after domain adaptation, where negative transfer has occurred

approaches, it will be important to estimate the probability of negative transfer from
an algorithm, such that the risk of negative transfer is always a minimum, and if
possible, zero.

3.3 Abstract Representation Framework for Spaces of
Structures

The abstract representation mentioned previously in this chapter is a method for
describing engineering structures systematically in a way that lends itself to compar-
ison. This abstract representation focusses on three areas believed to be important
for avoiding negative transfer in an SHM context: geometry, material properties and
topology. This abstract representation is known as an irreducible element (IE) model.
The irreducible elements which give the modelling approach its name describe the
constituent parts of a given structure. In a simplified example describing a wind
turbine, these elements could be considered to be the blades, the hub, the nacelle,
the tower and the foundations (Fig. 16). These elements possess attributes which
describe their geometry and material properties.

These elements are connected by joints, labelled with numerals in Fig. 16. Joints
describe the physical connections between elements. Describing the physical con-
nections between elements requires a description of which elements are connected
by a particular joint, as well as the nature of a particular connection; for example,
whether a connection is welded or bolted. Combining the joints with the elements
within a structure allows one to determine the topology of the structure.

Boundary conditions, describing how a structure interacts with its environment,
are also included in the IE model. The boundary conditions constitute an element-
joint pair (element 1 and joint 7 in Fig. 16), where a special element describes the
nature of the boundary, for example, the ground, and the joint describes the nature of
the connection between the structure and the boundary. Together, the element-joint
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Fig. 16 A simple illustrative example of how a wind turbine (a) may be conceptualised as a series
of elements (b). These elements then form the nodes in a graph representation of the structure (c),
with the physical connections between elements represented by the edges in said graph

pair fully describes the effect of the boundary condition on the behaviour of the
structure.

Isomorphic to the information within the IE model is the attributed graph (AG)
representation of the physical structure; that is, the representations in panel (b) and (c)
within Fig. 16 contain the same physical structural information. One could consider
that the AG provides a more structured form of the data describing an IE model,
and as such facilitates the storage and creation of IE models within a database. The
formal data structure of an AG also facilitates the use of graph-matching algorithms
to find similar physical structures within said database.

In PBSHM, IE models can be used to compare two structures to determine the
overall level of similarity. If twomodels are sufficiently similar, then transfer between
the two structures should be possible. What ‘sufficiently similar’ means however,
is a complicated question; one way of determining this is to examine the largest
substructure common to two structures. If the largest common substructure is in fact
as large as the two structures in question, then the two structures can be said to
be homogeneous. In which case, as discussed, not only should transfer learning be
possible, but in some cases may not even be required. Of course, for the majority of
comparisons between structures, this situation will not be the case, with the largest
substructure only representing only a small part of the overall structure. In this case,
transfer learningmaybepossiblewithin the substructure. For example, in Figs. 17 and
18, which show the AGs for two different beam and slab bridges, the intermediate
pier is topologically identical in both. If upon further examination, the attributes
show that this pier is identical in terms of geometrical and material properties, then
it would seem that some form of information transfer should be possible between
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Fig. 17 A graph representation of a beam and slab bridge, located near Castledawson in Northern
Ireland. This bridge features a deck supported by four longitudinal beams, as well as columns at
the North and South abutments

the intermediate piers within these two bridges, making allowances for the influence
from the rest of the structure. At the very least, the label spaces would be consistent
between the two.

A more complex problem would be transferring between the deck and parapet
sections for the two bridges, since in Fig. 18 there is an additional support beam.
Here the label spaces are not consistent if one were to attempt a damage localisation
problem. However, in theory, both deck sections should still exhibit some similar
behaviour, since both are plate type elements supported with longitudinal beams for
support and intermediate piers and so some physics should be common to the two
decks. Therefore, there would be an expectation that some information could be
transferred from a classifier trained on one bridge to another.

The largest common substructure found for the two bridges in fact involves not
only the intermediate pier, but also the four longitudinal beams within the deck
structure, the parapets, the deck itself and associated boundary conditions, as well as
the cap beams linking the deck to either the supports or foundations. This situation
creates a problem where there is still a label mismatch between the substructure
and the original substructure, as shown in Fig. 18. How to cope with these issues and
how to performmeaningful similarity comparisons within a transfer learning context
remain open research questions.

A definition of similarity for PBSHM needs to be designed with transfer learning
in mind and will likely vary depending on the SHM problem in question. A set
of criteria informed by cases where negative transfer is likely to occur would be a
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Fig. 18 A graph representation of a slightly different beam and slab bridge, located near Randal-
stown in Northern Ireland. This bridge features a deck supported by five longitudinal beams, and
the cap beams sit directly on top of the foundations at either abutment

useful thing to have. Currently, it is hoped that by ensuring material, geometric and
topological similarity, the criteria for transfer learning yielding improved classifier
performance are met.

4 Conclusions and Future Directions

Clearly, the subject of PBSHM is in its infancy. While there have been scattered
papers on SHM in systems-of-systems or on fleet-basedmaintenance, etc., the formal
framework presented in this chapter has only the theoretical foundations established
[4, 8, 9, 19, 21]. This situation means that the scope for ‘future work’ is very open
indeed; however, to bring a little focus to the discussion, it will be suggested here
that there are three main areas in which research is needed.

The general framework is based on knowledge transfer in populations, where the
structures of the population are represented in an abstract representation space; this
suggest the three areas for development. In the first case, the abstract representation
of the structures requires research. There will need to be rules for building IE models
with consistency and for developing the theory of the representation space in which
the structures are embedded. Perhaps most important is that the representation space
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should have a metric (or metrics), so that structures can be compared; transfer of
knowledge will be contingent on structures being ‘close together’ in some sense, so
that negative transfer is avoided.

The second main area for research is on transfer. As discussed in the main body
of this chapter, transfer learning has only recently been considered for PBSHM; the
problems which arise are difficult. In the worst case scenario, different structures will
have different label spaces and current technology cannot be appliedwith confidence.
New transfer learning algorithms are needed, perhaps informed by physics, as a great
deal is known about the dynamics of structures.

Finally, in order to transfer knowledge, one must have knowledge. Data for diag-
nostics can come from sensors on the structures or frommodel predictions; these data
should be optimised for diagnostics across populations, and this produces demands
and constraints that have not been seen before in conventional SHM. In particular,
the role of physics-based models is very interesting in PBSHM. Because the main
algorithms will come from transfer learning, it will not be necessary that models
conform perfectly to their physical counterparts (although digital twin technology
may offer prospects in terms of high-fidelity representation); it will only be required
that transfer is possible. In fact, the way that models of structures will be embedded in
populations means that they are not distinct from real structures. PBSHM therefore
offers the prospect of a final convergence of model-based and data-based SHM.
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Machine Learning-Based Structural
Damage Identification Within
Three-Dimensional Point Clouds

Mohammad Ebrahim Mohammadi and Richard L. Wood

Abstract Damage identification via remotely sensed data amid routine structural
inspections or assessments in the aftermath of extreme events has been the subject
of intensive research in recent years. By analyzing remotely sensed data, these
tasks can be performed rapidly, safely, and economically while maintaining high
accuracy and objectivity. Therefore, many methods have been proposed to detect
damage from remotely sensed point clouds of the civil structures. These methods
use various feature extraction techniques based on geometry and other spectral infor-
mation and classification based on supervised or unsupervised learning algorithms.
However, the proposed solutions are typically optimized to detect particular types of
damage or group various types of damage as a single class, limiting the application of
these methods. This article proposes an advanced workflow to identify damage from
point clouds by extracting semantic information using supervised and unsupervised
learning methods. The supervised learning method is comprised of a deep learning
model developed based on both voxel- and index-based data structures to segment
the point cloud data into various objects semantically. An unsupervised learning
algorithm classifies the segmented scene into instances for damage detection into
various damage states and handles rare cases of damage instances.

Keywords Damage identification · Point clouds · 3D Machine learning ·
Imbalance dataset classification · Semantic segmentation

1 Introduction

Damage assessment from civil infrastructure following extreme events (e.g., a
tornadic event) is a primary task of civil and structural engineers. While this task
was traditionally conducted through site visits and visual inspection, with the rapid
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development of remote sensing technologies, various remote sensing platforms have
improved and complemented these data collection and reconnaissance efforts. As one
of the emerging remote sensing platforms, an unpiloted aerial system (UAS) has been
increasingly utilized to collect aerial images following extreme events due to its ease
of deployment, operation, and data collection efficiency.UASs enabled researchers to
document perishable damage data of the affected areas, which improves and informs
emergency management and recovery operations, facilitates forensic analyses, and
allows forecasting and characterizing the hazard risks.Ultimately, the damage assess-
ment results will provide a baseline or validation dataset for resiliency models and
numerical simulations [1].

UAS platforms can collect a large number of images in a short time, which makes
manual processing of the images inefficient. Therefore, preprogrammed processes
are required to categorize and analyze the collected images for various applications.
While images provide rich texture or potentially other spectral information that can
be used to detect and localize the damaged areas, the damage analyses based on
images can be limited due to the lack of depth information. In other words, while
the damaged areas can be observed and detected in images, if the observed damage
is part of an intact or damaged structure, it is not observable directly or reliably.
Therefore, to evaluate the integrity of a structure and its current damaged state, more
complete geometric and depth information is required. The collected aerial images
can be processed through the structure-of-motion (SfM) technique to extract depth
information and ultimately reconstruct the three-dimensional (3D) point cloud repre-
sentation of the surveyed area. As a result, the damage analysis can be performed
using 3D point clouds that incorporate the depth information and other textual infor-
mation. This manuscript aims to propose an advanced workflow to analyze the UAS-
SfM-derived 3D point clouds of affected areas following an extreme event for the
task of damage detection and assessment. Damage detection is essentially a classifi-
cation task using an imbalanced dataset, where the damaged data can be the minority
class.

Moreover, the damaged data has random and unique patterns. The proposedwork-
flow aims to semantically classify the point cloud data by using supervised and unsu-
pervised learning algorithms. The workflow includes a combination of a 3D fully
convolutional network (3DFCN), the k-means clustering algorithm, and 3D convo-
lutional neural network (CNN). The workflow tags each vertex (or point) within
the point cloud dataset into ten classes, including vehicles, debris, water bodies,
roads, healthy trees, destroyed structures, severely damaged structures, moderately
damaged structures, minorly damaged structures, and undamaged structures. Within
this study, various damage states are obtained based on the field observations dataset
conducted by anNSF-sponsoredStructural ExtremeEventsReconnaissance (StEER)
field assessment team following the March 2020 Tornado outbreak in northern
Tennesee [2].
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2 Background

Many research studies have proposed workflows based on machine learning
approaches to detecting damage from 2D images of civil structures. Early studies
used traditional machine learning methods to detect damage, where a series of
features are initially extracted from the given set of images, and then the damage
areas within each image are detected through analyzing the extracted features by
a learning algorithm. Vetrivel et al. [3] introduced one such method by evaluating
the support vector machine (SVM) and random forest (RF) learning algorithms.
To identify the damaged areas within this study, the off-nadir aerial images were
initially collected by UAS from the city of Mirabello, Italy, that sustained damaged
following the 2012 Emilia earthquakes. Then, the features were extracted from the
images based on the histogram of gradients (HOG) and Gabor wavelet techniques.
Afterward, the learning algorithm detects the damaged areas within the images inde-
pendently based on each set of features, which results in an accuracy of 65 to 72%.
The study reported that the proposed method for feature extraction could reach an
overall accuracy of 80%.Duarte et al. [4] investigated the application of CNNmodels
with residual connections and dilated convolutions to classify satellite, piloted, and
unpiloted aerial images for the task of building damage detection. The aerial images
used within this study were collected following the 2010 Haiti and 2012 Emilia
earthquakes, while satellite images belonged to the 2016 central Italy earthquakes.
Duarte et al. [4] proposed three network architectures that are developed based on
multi-resolution images and compared the results to two benchmark networks trained
only on the satellite image. The final feature maps were generated from airborne and
satellite image samples. Duarte et al. reported that networks trained using multi-
resolution images demonstrated a 4% overall improvement compared to models
developed based on only satellite images. Spencer et al. introduced a workflow to
create a color-coded 3D representation of damaged areas based on detected damage
from UAS collected images in the aftermath of the 2017 Central Mexico Earthquake
[5]. In this study, a model with FCN and a residual network architecture were initially
used to semantically segment the images for damage detection. Afterward, the color-
coded images were used to reconstruct the 3D scene. The authors have reported that
the proposed workflow reached an average accuracy of 91%. Gao and Mosalam [6]
introduced a model developed based on transfer learning from VGGNet introduced
in 2015 [7]. Gao and Mosalam [6] investigated the application of transfer learning
through fine-tuning and transfer learning through feature extractions to develop the
model. The developedmodel can detect the type of structure that was being inspected
(e.g., bridge, wall, or building) if the analyzed image contains any visible spalling,
the damage level, and the type of damage. The authors reported while the model
was able to identify the type of structure with an accuracy of 88.8%, it detected
spalling with an accuracy of 85%, damage level with an accuracy of 77.0%, and type
of damage with an accuracy of 57.7%. More recently, Tilon et al. [8] developed a
damage detectionmodel based on generative adversarial network (GAN) architecture
that is trained only on pre-event images. As a result, the damaged data were detected
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as anomaly instances, which accounts for the imbalanced nature of the damage. The
GAN model generator architecture consisted of U-net encoder-decoder model, and
the discriminator architecture consisted of a series of convolutional layers [9]. To
test the model, the authors used post-disaster images following a volcanic eruption
took place. Tilon et al. [8] reported the developed model could detect damaged areas
within images with recall and precision of 59 and 97%, respectively.

Similar to images, 3D point clouds have been investigated to address various
tasks within civil infrastructure assessments. One of the popular workflows to detect
damage and changes within the area of interest (ROI) is through change detection
analysis. As one of the early studies, Olsen [10] introduced a workflow to detect
spatial changes for a given ROI through change detection analysis. Within this
study, the point cloud of an ROI at two different epochs are collected and registered
through the georeferencing process. Afterward, the point clouds were segmented
into a series of cell based on selected gird sizes, and the points within the corre-
sponding gird are compared to detect changes and potentially damaged areas. Tran
et al. [11] introduced a machine learning-based change detection analysis of point
clouds collected by aerial laser scanners (ALS).Within this study, initially, each point
cloud dataset collected at different epochs were analyzed to extract four classes of
features, including point distribution, normalized height, ALS-based features per
each dataset, and the localized changes between dataset per each point. Afterward,
these features were analyzed by a learning algorithm to predict the changes. The
developed model based on the designed features could detect changes as accurately
as 90%. While change detection analysis is affected by the imbalance dataset clas-
sification issues, it relies on the availability of a baseline dataset. Its accuracy is the
function of the registration of point clouds collected at two different epochs. In addi-
tion, to change detection-based workflows, a series of studies followed a traditional
classification workflowwhere a series of features were identified through engineered
features, and then the points are classified based on the extracted features through
a classifier. As one of the early studies, Axia et al. [12] used the normal vector as
the extracted feature and studied the normal vectors variation of a large point cloud
dataset to a global reference vector to identify damaged regions. The dataset utilized
within this study was collected following the 2010 Haiti earthquake and covered a
1.5 km by 1.5 kmwide area of Port-au-Prince, Haiti. The damages areas were identi-
fied if the deviation of points’ normal vector exceeds the predefined threshold value.
While the proposedmethod could be programmed to analyze point clouds rapidly, the
authors reported that this approach could classify partially damaged structures and
undamaged areas. He et al. [13] used a series of 3D shape descriptors to detect roof
damage from aerial point clouds of Haiti’s National Palace, Port-au-Prince, Haiti,
which is collected in the aftermath of 2010 Haiti. Within the proposed method, the
scene’s point cloud representation was initially processed into a digital elevation
model (DEM). Then, the point cloud data and created DEM were further processed
to identify the building locations, and the 3D shape descriptors were computed for
each building. The proposed solution then classified the buildings’ point clouds into
damaged and undamaged classes by thresholding the contour shapes based on the
jaggedness. The authors reported that the proposed workflow resulted in an overall
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accuracy of 89%, while the recall and precision values were 89 and 58%, respec-
tively. Axel and van Aardt [14] improved the damage detection method based on
normal vector variations by introducing preprocessing steps to eliminate the points
representing vegetation and ground surfaces based on above the ground (AGL) height
and surface roughness. To detect damaged structures, Axel and van Aardt [14] used
ALS-based point cloud data of damaged areas following the 2010 Haiti earthquake
and utilize region growing approach to detect and separate structures from the rest of
the scene and then analyzed the structures for damage through evaluating the varia-
tion of normal vectors and height analysis. The proposed method resulted in overall
detection accuracy of 93% and damage classification of 78.9%.

In addition to the studies that focused on detecting damaged areas from point
clouds, multiple studies have also investigated the task of semantic segmentation
from point clouds. Hackel et al. [15] introduced a fast semantic segmentation method
to classify lidar point clouds to a series of semantic objects. Similar to previous
studies, the proposedmethod started by extracting features frompoint clouds directly;
however, Hackel et al. [15] relied on the geometric features extracted from a point
and its selected neighboring points at various distances based on principal compo-
nent analysis (PCA) and approximating the three-dimensional shape context features
using histogram-based descriptors. The study has reported that the proposed method
can be predicted and classified points with an overall accuracy of 90.3%.

Besides change detection analysis and traditional methods to detect damage or
semantically classify the point clouds into various objects, various research studies
have focused on investigating the application of deep learning to analyze point
cloud datasets. Here, deep learning corresponds to the learning algorithms that learn
features during the training process. As 3D data can be represented based on various
structures, various deep learning-based solutions based on these 3D representations
are introduced. The first group of studies that are reviewed here developed deep
learning models based on volume element (voxel) grid representations of the 3D
point clouds. Prokhorov [16] was an early study to use voxel representations to
develop a model to classify 3D point cloud data. Prokhorov proposed a model with
an architecture similar to that of CNN to classify various objects’ point clouds.
The developed model had one 3D convolutional layer, one 3D pooling layer, and two
fully connected layers, which is followed by 2-class output later. The training strategy
used within the study includes pretraining the parameters within the convolutional
layer based on lobe component analysis. Maturana and Scherer [17] expanded the
model proposed by Prokhorov [16] for the task of object recognition with a new
training strategy and method to create voxel models, which is known as Voxnet. The
proposed model had two tandem 3D convolutional layers, one max-pooling layer,
and one fully connected layer, which was followed by the output layer. In contrast
to the study conducted by Prokhorov [16], Maturana and Scherer [17] did not pre-
trained the developed network while the model resulted in a performance on par or
better than the network proposed by Prokhorov [16], which could be attributed to
the training strategy and optimization process.

As voxel representation of point clouds requires a larger memory footprint
compared to the raw point cloud representations, multiple studies have investigated
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other data structures that require smaller memory to store data. As one of the main
studies, Qi et al. [18] developed a deep learning model using raw point cloud data
as input instances, known as PointNet. Within this model, a multi-linear percep-
tron (MLP) was applied on each input file point, and these MLPs are combined to
extract a signature for the input instance. However, the PointNet architecture did
not account for the local geometric features. To address this matter, Qi et al. [19]
proposed a hierarchical model that applies the PointNet model in a recursive pattern
on point cloud segments that were created by sampling and grouping layers, known
as PointNet++ . Recently, Can et al. [20] utilized PointNet++ to classify the UAS-
SfM-derived point clouds of large urban areas and reported an overall accuracy
and IOU score of 82 and 45.3%. While the PointNet++ took the local geometric
information of point clouds into account, this model’s input size was limited to a
predefined number of points, and the model could not use color or other spectral
information to improve the classification. Kolkov and Lempitsky [21] introduced a
deep learningmodel based on kd-tree representations of point clouds, which is named
kd-network. The computational graph was created using the kd-tree structure, and
the model shares similarities to CNN models, including sharing learnable parame-
ters and learning the first-order features, and combining the learned features with
higher-order extracted features to analyze point clouds. Kolkov and Lempitsky [21]
compared the developed model’s performance on the Shape-Net-core dataset with
the Voxnet and PointNet and reported that while the kd-network performed 3% better
than Voxnet on average, it demonstrated similar performance to PointNet. Similarly,
Riegler et al. [22] proposed a deep learning model based on the octree representa-
tion of point clouds known as OctNet. The developed model used the octree spatial
partitioning method to create a computational graph, and similar to CNNs, OctNet
utilizes a convolution operation to extract and combine features. Riegler et al. [22]
tested the developed model to semantically segment the façade of a structure and
reported an overall accuracy and IOU score of 81.5 and 59.2%, respectively. Unlink
PointNet, the kd-network, and OctNet models could use the local geometric infor-
mation; however, only OctNet demonstrated the potentials to accept color and other
spectral information along with geometric information. More recently, Wen et al.
[23] introduced a model by combining the graph-based attention layers and CNNs
to analyze raw point cloud representations based on global and local geometric
information, known as GACNN. The developed model contained a graph attention
module and encoder-decoder network. The graph attention module accepted raw
point clouds and identified the kd-tree representation of the input instance. Then, the
model analyzed the data based on a series of MLPs and two attention layers, namely
global and local attention layers, each of which was constructed by a series MLPs. In
the encoder-decoder model with skip connections, the encoder network downsam-
pled the input and used the graph attention module to analyze the parameters. The
decoder interpolated the data and used the graph attention module to compute the
parameters. Wen et al. [23] utilized the model to segment the scene into nine classes
semantically, included powerlines, low vegetation, impervious surfaces, car, fence,
roof, façade, shrub, and tree. The study had concluded that the developed model
could semantically segment the scene with overall precision and recall values of 74
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and 70%, respectively. However, it was noted that the model could only detect some
of the classes (e.g., impervious surfaces that represent road or sidewalks) with high
accuracy compared to models that are developed based on PointNet architecture.

While the previous studies have demonstrated various methods to detect damage
from aerial point clouds, most machine learning-based solutions that were proposed
to analyze the point clouds did not focus on the task of damage detection and damage
state classification. This manuscript aims to introduce a new approach to analyzing
the UAS-SfM-derived point cloud data of large areas after an extreme event (e.g.,
hurricanes or tornadic events) to identify damaged areas semantically segment the
point cloud representations. As a result, a workflow based on 3D fully convolutional
network (3D FCN), k-means clustering algorithm, and 3D CNN model were devel-
oped to semantically segment the UAS-SfM point clouds for the task of damage
identification. The 3D FCN and 3DCNNmodels within this study are independently
trained to learn the features based on the training instances. The developed workflow
learns each class based on the 3D geometry of input instances and the color informa-
tion collected during the data collection. Ultimately, this method allows the analyst
to perform a damage assessment of built-up areas directly.

3 Dataset

On March 3, 2020, a tornado impacted northern Tennessee and the Nashville metro
area as anEF3with estimated peakwind speeds of approximately 265 kph (165mph).
It was reported that the tornado remained on the ground over 60 miles, making it
the longest tornado path officially recorded since 1950 (the earliest documentation
of path length), and resulted in five fatalities and 220 injuries [24]. Following the
event, a team on behalf of NSF-StEER conducted a series of field assessments along
the tornado path to document the distribution and intensity of the damage within the
affected areas. The StEER team reconnaissance focus included door-to-door (d2d)
assessment, aerial surveys via UASs, and vehicle-mounted street view imaging to
document damaged areas and buildings’ performance during the event [2].

One of the surveyed areas included the Lockland Springs neighborhood, as shown
in Fig. 1, (approximately at a latitude of 36.17501 and a longitude of − 86.72643)
[2]. The aerial images were collected using a DJI Mavic Pro 2 platform at an altitude

Fig. 1 Lockland Spring dataset (unit in meters)
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of approximately 74 m (243 ft) AGL. A total of 11 flights were conducted, which
resulted in a total of 5293 images. Due to the time and site access limitations, no
ground control was available. As a result, the geolocation and scale for the UAS-
SfM point cloud data of the site were approximated by the onboard GNSS on the
UAS platform. The collected images were then processed using the Pix4Dmapper
software to reconstruct the 3D point cloud representation of the site. The final point
cloud resulted in an average ground sampling distance (GSD), or the distance between
pixel centers measured on the ground, approximately 2.2 cm (0.88 in).

The resulted point cloud datasetwas segmentedmanually into one of the following
14 classes: boats, cars, debris, fallen trees, healthy trees, water bodies, road-
ways, terrain, poles, destroyed structures, severely damaged structures, moderately
damaged structures, minorly damaged structures, and undamaged structures. This
was done to create training and testing instances. Figures 2 and 3 demonstrate an
example instance for each class. The boat classification contains any marine vessel
that can be propelled on water. The car classification broadly consists of anything
used to transport people or goods, such as an all-terrain vehicle (ATVs), passenger
car (or sedan), van, sport utility vehicle, truck, cart, recreational vehicle (RV), trailer,
and construction vehicle (e.g., excavators). The debris class is comprised of both
human-made and untouched debris, including tree branches and other vegetation;
however, the debris classification does not include a collapsed structure. The fallen
tree class is restricted to tree trunks that have been uprooted or snapped at their base.
Healthy trees consist of single trunks or multiple thin trunks. The water bodies clas-
sification includes swimming pools, ponds, or creeks. Roadways are comprised of

(a) Undamaged structure (b) Minorly damaged structure 

(c) Moderately damaged structure (d) Severely damaged structure 

(e) Destroyed structure 

Fig. 2 Examples of various structure instances existing in the Lockland dataset
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Fig. 3 Examples of various
objects except structures
existing in the Lockland
dataset
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paved roads, sidewalks, bridges, parking driveways, and gravel roads or driveways
that are regularly used for vehicle movements. The terrain class contains grasslands,
bushes, utility boxes, postboxes, fences, chairs, and patio furniture. The poles class
consists of transmission poles and wires supporting a variety of services, including
power, telephone, and data.

To classify structures, five different categories are selected based on the StEER
d2d ratings included destroyed structures, severely damaged structures, moderately
damaged structures, minorly damaged structures, and undamaged structures [2].
A structure is considered destroyed if more than 15% or higher percentage of the
structure’s roof or walls is failed, or more than 25% roof deck is damaged. The
severely damaged structure classification comprises structures that sustained 50%
or more damage within the roof covering or walls, lost between 5 and 25% of their
roof sheathing, or lost 15% or less of the roof structure. The moderately damaged
structure classification comprises structures that either 15–50% of the roof covering
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Table 1 Summary of number
points for each class

Instance Number of points
(Thousands)

Percentage of the
total (%)

Boat 31 0.01

Debris 14,432 3.54

Destroyed structure 4258 1.04

Fallen tree 49,2523 12.07

Healthy tree 54,789 13.42

Minorly damaged
structure

10,171 2.49

Moderately
damaged structure

7765 1.90

Pole 1362 0.33

Roadway 44,521 10.91

Severely damaged
structure

5769 1.41

Terrain 196,515 48.15

Undamaged
structure

14,474 3.55

Vehicle 3880 0.95

Water body 938 0.23

or walls sustained damage or less than 5% of their substructure is failed. The minorly
damaged structure classification includes the structures that have been damaged at
15% or less in terms of roof cover or wall damage. Lastly, only structures that do not
exhibit any visible damage are considered undamaged structures. Table 1 summarizes
the number of points that were segmented for the Lockland Spring area dataset.

4 Data Classification Methodology

The classification of UAS-SfM point clouds for the task of damage detection intro-
duces a unique set of challenges. While the color, geometry, and point density vary
between objects of the same class, these variations combined with random and
unique geometric damage patterns existing within the point clouds make the task
of damage detection more difficult than the semantic segmentation of the scene.
Mohammadi et al. [25] and Liao et al. [26] presented deep learning models based on
3DFCN to detect damage from UAS-SfM-derived point clouds. While the 3DFCN
models introduced in those studies were able to learn and predict the geometry input
instances (e.g., terrain class), the overall precision and recall values for damaged and
undamaged instances were limited and only between 10 and 20%, respectively. This
manuscript expands on this earlier work and introduces a new workflow based on the
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fusion of multiple deep learning approaches. This includes 3DFCN, k-means clus-
tering algorithm, and 3DCNN to detect damaged areas from the UAS-SfM derived
point clouds. The main idea behind the introduced workflow is that the damaged
instances can be detected with higher accuracy within the pre-segmented point cloud
data compared to classifying the entire scene for damaged areas and other classes.

The developed workflow initially classifies the point cloud data into seven general
classes including vehicles (includes boats and cars), debris (includes debris and fallen
trees), water bodies, roadways, healthy trees (includes health trees and poles), terrain,
and structures (at various damage states, including destroyed, severely damaged,
moderately damaged, minorly damaged, and undamaged structures). Once the point
cloud data are segmented into these seven classes, only points that are classified
as structures are analyzed by the k-means clustering algorithm to detect each indi-
vidual structure, and lastly, the 3DCNN network evaluates each structure class and
further classify it into five damage states (or classes) of destroyed, severely damaged,
moderately damaged, minorly damaged, and undamaged (or no damage) structures.
This section initially describes the data preparation and transformation process to
convert raw point cloud data into 3D voxels used within this workflow, then presents
the developed network architecture, and finally reviews the training strategy used
to develop the two models. The 3DFCN and 3DCNN presented in this study were
implemented in TensorFlow. The k-means clustering algorithm was implemented
through the Scikit learn library.

4.1 Voxel Transformation

Theprocess to create instanceswithin this study is similar to the approachproposedby
Mohammadi et al. [25],which is brieflydescribedhere.As stated, the process to create
the training and testing instances are initiated bymanually segmenting the UAS-SfM
point clouds into the 14 classes. Afterward, a label corresponding to each segmented
object was assigned to all its points. Then, all the labeled objects are compiled into a
single file. Lastly, the compiled file is divided into 10m× 10m (32 ft× 32 ft) parts to
create segments of equal dimensions consisting of multiple objects that can be used
for semantic segmentation. The selected dimensions here permit the user to control
each instance point-to-point spacing or resolution. In thefirst step, theminimumvalue
for each instance point coordinates is computed.Then, the values are subtracted by the
identified minimum values for each component (i.e., X, Y, and Z) to transfer the data
into positive ordinates. In the next step, the positive coordinates are downsampled
based on the selected voxel dimensions. Within this study, a voxel dimension of
64 is used, which results in a sampling of roughly 16 cm (6.2 in). The sampling
rate of 16 cm results in an acceptable voxel representation for building damage
assessment following windstorms [27]. In the last step, the voxel coordinate values
are multiplied by the selected dimension for the voxel representations, normalized
based on coordinates computed ranges, and rounded. Lastly, as each voxel model has
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a number of empty arrays or cells and occupied arrays, an extra label corresponding
to empty space is added to the training labels known as neutral class.

4.2 3DFCN Model

The 3DFCN developed for this study is inspired by the previous work of Long et al.
[28], which introduced the FCN architecture to analyze 2D images (Fig. 4). The
developed model has an input layer that accepts three 3D voxels with 643 cells
matching the three RGB channels and comprises encoding and decoding parts. The
encoder part has a total of six convolutional layers with linear rectifier units, and
the decoder part has a total of six transpose convolutional layers with linear rectifier
units. Thenetwork architecture contains skip connections that allow the convolutional
layers to copy their input into transpose convolutional layers. This allows the latter
layers to learn new information but retain the initial knowledge learned by previous
layers, minimizes the potential gradient vanishing issues [9]. The kernel sizes in the
convolutional and transpose convolutional layers had a size of 3, and in each layer, a
total of 32 kernels existed. Furthermore, the stride parameter was set to a value of 1
for these layers. In the last layer of the network, each kernel also has a self-attention
module that is comprised of two multilayer perceptrons with 32 nodes. These self-
attention layers enabled the model to restore the labels at a higher rate. Lastly, the
output layer is a single voxel with a size similar to input size, each of which cells
represent the label of the input point cloud instance. The model was trained based
on the minibatch size of 64 using an Adam optimizer and an L2 regularization with
the lambda of 0.0005 to reduce the overfitting potential during training.

Fig. 4 Developed 3D fully convolutional network (3DFCN)
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4.3 K-Means Clustering Algorithm

Once the point clouddata is classified into seven classes by the 3DFCNmodel, a query
search initially collects all the points classified as structure, and a statistical outlier
removal (SOR)minimizes the number of sparse pointswithin building segments [29].
Afterward, the k-means clustering algorithm categorizes the points that represent
structures into individual buildings. The k-means clustering algorithm here requires
two input parameters, including the number of clusters and a threshold value. The
first parameter, the number of clusters, in this study is determined by double the
number of buildings within the ROI that are being analyzed. The second parameter,
the threshold value, was estimated based on the minimum distance between two
structures. Within this study, the threshold value was set to the value of 0.20 m.

4.4 3DCNN Model

The 3D CNN model developed within this study was inspired by Voxnet [17]. The
developed model, similar to 3DFCN, has an input layer that accepts three 3D voxels
with 643 cells matching to RGB channels, two convolution layers followed by a
pooling layer, and two fully connected layers or multilayer perceptrons. Lastly,
the network has five nodes within its classification layer, as shown in Fig. 5. The
convolutional layers have linear rectifier units with stride parameters of 1 for both
convolutional layers, respectively.Within this model, a max-pooling approach with a
stride parameter of 2 was utilized to reduce the number of parameters and introduce
invariance to translations. The network utilizes the SoftMax function to determine
the class of the inputted voxel instance within its classification layer. Like 3DFCN,
the model was trained based on the minibatch size of 32 using an Adam optimizer
and an L2 regularization with a lambda of 0.001 to reduce the overfitting potential
during training.

Fig. 5 Developed 3D convolutional neural network (3DCNN)
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5 Results and Discussion

The hyperparameter search and the developed 3DFCN and 3DCNN models were
primarily conducted on the GPU resources at the Holland Computing Center, located
at the University of Nebraska-Lincoln. The testing and part of the training process of
3DCNN were conducted locally on a workstation with Nvidia RTX A6000 GPU. To
evaluate the developedmodels, the confusionmatrix and three performancemeasures
(precision, recall, and IOU)were calculated for both training and testing phases. Both
3DFCN and 3DCNNmodels were trained on roughly half of the instances and tested
on the rest of the data to investigate the learning transformability of the proposed
workflow. To prepare the training dataset for 3DFCN and to increase the number of
instances, a total of 8677 unique 10m× 10m segmentswere augmented by randomly
rotating each instance two times around its vertical axis. This results in a total of
approximately 17,000 training instances. As for 3DCNN, all the structure classes
were augmented by randomly rotating each structure instance ten times around its
vertical axis resulted in a total of approximately 9000 instances.

5.1 3DFCN Model Training and Testing

The 3DFCN model was trained for a total of approximately 1600 epochs prior to
testing. To identify a set of optimized parameters, multiple networks were initially
trained through a factorial design process, in which the L1 and L2 regularization
lambdas learning rates, and the number of kernels per layer varied. Through this
hyperparameter tuning study, the network with a total of 32 kernels per layer, L1

regularization lambda of 0, L2 regularization lambda of 0.0005, and a learning rate
of 0.0015 proven to be the most successful model. The most successful model was
identified through evaluating model performance measures, including precision and
recall, as well as training mean square error values. As a result, this model was
selected for the extended training process. Table 2 presents the performancemeasures
for the training and testing sets, where the model was able to detect instances with
average precision, recall, and IOU of 51, 52, and 38%, respectively. Moreover, Fig. 6
demonstrates the confusion matrix for the training and testing phases. As shown,
the model was able to learn all instances with precision and recall value of 40% or
higher except for classeswater bodies, vehicles, and roadways. However, it was noted
that these three classes represent the lowest number of instances within the training
dataset, making it difficult for the model to learn. The testing results demonstrate
a trend in performance measures where an average value of 47, 43, and 33% was
observed for precision, recall, and IOU metrics, respectively. Due to a large number
of learnable parameters within 3DFCN and continued performance improvement
of the model on the testing dataset, it is believed that further training will result in
improved testing results. However, the current model was able to learn and predict
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Table 2 Performance measures for training and testing datasets of 3DFCN

Instance Train (%) Test (%)

Precision Recall IOU Precision Recall IOU

Neutral 100 97 97 100 100 100

Vehicles 0 2 0 0 1 0

Debris 72 41 35 47 27 20

Healthy trees 55 60 41 53 45 32

Water bodies 3 37 3 0 16 0

Roadways 24 55 20 26 57 21

Terrain 82 68 59 71 59 48

Structures 76 52 45 76 35 31

Fig. 6 3DFCN confusion matrix for a training and b testing results

the correct labels of the neutral, terrain, debris, and structure classes which were
subsequently used within the k-means clustering and 3DCNN workflows (Fig. 7).

5.2 3DCNN Model Training and Testing

The 3DCNN model was trained on the created training dataset for only a total of 15
epochs prior to testing, unlike 3DFCN to avoid overfitting informed based on evalua-
tion results of the validation set. Multiple networks were initially trained through the
factorial design process to identify a set of optimized parameters similar to 3DFCN.
The L1 and L2 regularization lambdas, learning rate values, number of kernels in
convolutional layers, and number of nodes in the fully connected layers were varied.
Through the factorial design process, the networkwith a total of 32 kernels per convo-
lutional layer, L1 regularization lambda of 0, L2 regularization lambda of 0.005, the
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Fig. 7 3DCNN confusion matrix for a training and b testing results

Table 3 Performance measures for training and testing datasets of 3DCNN

Instance Train (%) Test (%)

Precision Recall IOU Precision Recall IOU

Destroyed structure 96 95 91 76 67 55

Severely damaged structure 95 94 90 63 68 49

Moderately damaged structure 94 94 89 68 63 48

Minorly damaged structure 95 96 91 61 74 50

Undamaged structure 95 95 90 73 65 53

learning rate of 0.001, and 256 nodes for fully connected layer proven to be the most
successful model. The best model was identified through assessing the performance
measures, included precision and recall, as well as training-based mean square error
values. Table 3 presents the performance measures for training and testing results
where the model was able to detect instances with average accuracy and recall of 95,
94, and 90%, respectively. In addition, Fig. 8 demonstrates the confusion matrix for
the training and testing processes. As shown, themodel was able to learn all instances
with precision, recall, and IOU score values of 68, 67, and 67%, respectively, which
demonstrates significant improvement over previous studies presented by Liao et al.
[25], where a single 3DFCN model was only able predicted damaged areas with
precision and recall value of 34 and 32%, respectively.

The performance of the proposed workflow is further demonstrated by analyzing
a 70 by 70-m point cloud segment. Figure 8 depicts the final semantic segmentation
results for the 3DFCNmodel. As illustrated, the 3DFCNmodel learned and classified
the points pertained to the terrain and roadways classificationwith an acceptable level
of accuracy. In addition, while the points corresponding to the structure class were
detected within the test segment, it was noted that not all the points representing
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 (a) RGB colored point cloud (b) Ground truth labels (c) 3DFCN segmentation results 

 

Fig. 8 Demonstration of the developed 3DFCN on the part of the dataset

the structures were classified correctly and instead were classified as terrain, which
matches the test results of the confusion matrix presented in Fig. 6. Misclassification
of the points representing the structure class with the terrain class was observed in
both training and testing data. As the training process demonstrates that the model
can learn to distinguish the points within these two classifications, it is expected
that further training improves the classification points that represent these classes.
Once the 3DFCN model segmented the point cloud into seven classes, the workflow
then transforms the voxel representation into the raw point cloud representation
by applying the inverse process described in Sect. 4.1. Afterward, the workflow
runs a query to collect the points with structure classification, as shown in Fig. 9a.
Then, the workflow utilizes the SOR filter to eliminate the sparse points and uses
a k-means clustering algorithm to segment the structures into individual segments.
As shown in Fig. 9b, the algorithm eliminated most of the sparse points using a
neighboring number of 31 and standard deviation factors of 0.25. The clustering
algorithm uses six clusters (double the number of observed structures in the selected
ROI) and a threshold of 0.20 m to segment the structures. The final result of k-
means clustering segmentation results is shown in Fig. 9b. Once the segments are
identified, the workflow converts these segments into the voxel representation, which
the trained 3DCNN model then analyzes. Figure 10 demonstrates the results of the
3DCNN model, where 50% of segments were classified correctly. Figure 11 depicts
the results of the classification.

 

(a) Points that represent structure class based on 
3DFCN prediction 

(b) Segmented point cloud where each color repre-
sents one cluster 

Fig. 9 Demonstration of the k-means clustering algorithm
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(a) RGB colored point cloud (b) Ground truth labels (c) 3DCNN segmentation results 

Fig. 10 Demonstration of the developed 3DCNN on the part of the dataset

Fig. 11 Demonstration of the overall prediction for the developed workflow

6 Conclusions

This manuscript presented a new workflow that combines three distinct machine
learning algorithms, including 3DFCN, k-means clustering, and 3DCNN. The devel-
oped workflow was developed based on UAS-SfM-derived point clouds to classify
post-tornado scenes for damage assessment semantically. The UAS-SfM point cloud
of built-up areas sustained damage following the March 2020 tornadic windstorm
event in northern Tennessee was used to train and test the workflow. Each point
within this dataset was segmented manually to have a label to match the door-to-
door assessments performed by a ground team of investigators. Afterward, the point
cloud data were divided into two parts for testing and training segments. Initially, the
labeled point cloud was segmented into 10 m × 10 m (32 ft × 32 ft) parts to create
training and testing instances. Then, the 643 voxel representation of the segments
was created, which resulted in a sampling rate of 16 cm (6.2 in). The 3DFCN was
trained based on these voxel models, and the 3DCNNwas trained based on structure
voxels.

The developed models were evaluated based on precision, recall, and IOU
that are computed from the confusion matrix. As illustrated by the performance
measures presented for training results, the developed models are optimized to learn
the features; however, the convergence was shown to be slower in the 3DFCN
model, primarily due to the number of learnable parameters. The 3DFCN model
learned and predicted the correct labels of the neutral, terrain, and structure classes
that are essential to the workflow’s success. However, it demonstrated a lower
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precision and recall for objects with much smaller frequency within the dataset
(e.g., vehicle). The 3DCNN model learned all structure classes and demonstrated
significant improvement over the 3DFCN model in detecting damaged structures
[26].
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Abstract The progress in the world of new sensors is running fast, offering good
performances, and reliable solutions with initial costs orders of magnitude lower
than those faced only a few years ago. The spread of new electronic devices, like
microcontrollers, the increasing power of the networks for data transmission and
management and in the end the availability of the new data-driven approaches have
created a revolution in SHM approaches, not yet fully mastered. The way to design
a SHM system is going to be deeply revised in an industrial perspective, within
a complex framework in which everything has to be planned into details since the
beginning, including the development of ametrological culture, the personnel educa-
tion, the need of spare parts, re-calibration, …. This also means a revolution in data
management: huge data flows not only create hardware problems related to their
transfer; the software too requires a great deal of effort to compress data, also due
to the actual cost of cloud resources. All these facts, accounting for the real metro-
logical performances of the best MEMS sensors available at present, also require
simplified data analyses, as software complexity is now mainly transferred to the
network management. A trade-off must be looked for between the big redundancy
offered by the actual networks and the need of a simple and prompt information,
granting the structure safety: That is why as the data rates increase, the algorithms
to be adopted must be simple, reliable, eventually adapted to edge computing at the
sensor level, where hardware power is now present though at a reduced scale. The
chapter shows such an approach in a real case from the system design, its birth, and
its proper use for damage detection, up to the detection of a structural failure.
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1 Introduction

The world of structural health monitoring (SHM) is going through a sort of destruc-
turing, due to the completely new approaches to structural sensing. The new Internet
of Things tools have created a revolution in the way measurements are being carried
out, not just for machines, but also for structures, pushing hard toward the idea of
dense sensing, often translated into that of smart structures.

As often discussed, the general idea of SHM is to mimic the human behavior [1]:
This does not just mean having distributed sensors, but also an efficient network and
an improved data management capability, to provide fast and reliable evaluations. A
measurement system, pretending to act as a human, must be designed with a clear
idea about its final aim, so it has to be deeply understood which functions can be
transferred to the computer throughmodels or data science approaches andwhich are
still under the specialist’s supervision. In addition, until recent days, the huge effort
on SHM has been mainly carried out on the research side, yielding to a relatively
poor number of routine industrial approaches [2].

Thementioned destructuring of SHMapproaches is facing new problems, moving
the most critical implementation phases toward new aspects, different from the past.

If new sensors are considered, they have different performances with respect
to those commonly adopted today for monitoring applications, mainly consisting
in laboratory instrumentation for short-term dynamic testing. In general, the new
cheaper devices have slightly lower output quality, though this gap is narrowing;
a huge difference remains if costs are addressed. The new sensors are often less
expensive than those commonly adopted for SHM: this also means that a trade-
off must be looked for between the available budget and the need for quality in
measurements. Given a fixed budget, the higher number of allowed sensors and
the availability of some redundancy, can help recovering a more than acceptable
information content; at the same time, the new solution allows for a better hope to
be closer to an eventual damage onset, for prompt operation.

Another revolution is offered by the possibility to couple each sensor to a micro-
controller: this unit is a sort of tiny and cheap computer, programmed to work on
simple software-defined operations. Thus, they allow to manage essential functions
like data acquisition or communication to a supervising unit, but they are also capable
of performing simple data analysis like the fast Fourier transform (FFT) or a running
root mean square (RMS) at the sensor level, making the system cleverness distributed
and, therefore, getting closer to the idea of a smart system: however, this implies the
risk of an information jam, which has to be properly managed.

The mentioned destructuring also brings in new problems: in such monitoring
systems with distributed intelligence, each sub-system lives a life on its own within
its time framework, given by its internal clock, unless complex synchronization
tools are applied: This does not just mean abandoning those approaches to damage
detection requiring a single clock shared among all the sensors in the same network
(for example, a loss of synchronization makes traditional modal analysis a harder
task); rather this means changing the strategy to achieve the final result.
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Even if sensors are now less expensive, it is not possible to assess the same for the
complete network. In case of a wired solution, a more complex layout comes from
the higher number of connections among sensors and supervising units, and this also
implies the need to both provide power supply to all nodes and bring the data back
to a gateway or more generally to a network.

It has to be considered that, in view of a complete description of what’s going on to
get a structure health check, data fusion approaches are often adopted, merging quite
different data kinds, with diverse aims, generated by a large variety of sensors, each
having its own output impedance, sampling rate, output range, etc. Wireless, often
offered as the solution to every kind of problems, is not yet reliable enough when
big data streams have to be managed, or when safety comes into play. The reverse
applies to static data, where wireless can be an interesting option, as the reduced
data flow allows to send a data packet again in case it gets lost over the network. At
this point, the main bottlenecks appear to be those related to the data flux over the
sensor network: this stream is getting bigger and bigger, harder to manage, especially
if in the end a single synthetic piece of information has to be given to the structure
manager, or if an alarm has to be promptly generated.

The new IoT tools for sensor networks are sometimes not really fit for SHM
applications: a powerful protocol like LoRaWAN [3], widely adopted for smart city
projects, due to its power to transmit over long distances, gives each sensor a very
short time to transmit data. This solution is, therefore, not suitable for continuous
data streaming, as in the case of accelerometers, having a higher sampling rate: new
solutions like the narrowband IoT [4, 5] are helping to mitigate these problems. A
high innovation rate is also seen for cabled solution, remaining the majority among
SHM systems: interesting solutions point at the use of industrial protocols for data
transmission, as these have proven to be robust and allow to transfer medium to high
data rates even over complex and busy networks [6].

The preliminary design of the monitoring system becomes the main challenge
[7]; once the aims are properly defined, density of measurements in both time and
space are key issues. The designer has to define beforehand how many sensors are
to be used, their location on the structure, and for how long measurements have to
be taken; this resolves the risks of losing meaningful events in a trade-off against the
need to keep the network not too busy and to store a reasonable though meaningful
amount of data.

In the end, some issues are seldom addressed, and again they belong to the already
mentioned industrial management of SHM. Maintenance of monitoring systems has
costs which are a substantial part of the initial investment; sensors need periodical
checks on their calibration, and this can be a difficult task, especially if they are not
easily reached; a stock of spare parts has to be kept, as electronics systems undergo
a very fast aging, not comparable to the life of the structure. In the end, the technical
staff, taking care of the measurement systems, is asked to follow a proper training,
which has to be strongly multi-disciplinary, also including a plan to take decisions
over the different scenarios which can be depicted by the monitoring system.
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All these aspects make clear that a monitoring system is not just installing sensors
on a structure and getting data, this is only a part in a more complex framework, a
process which requires proper design and awareness [8–10].

If on one hand the recent advances in electronics make new monitoring system
hardware more accessible to everyone, on the other hand it must not be forgotten how
many factors still constitute a problem for these approaches: one above the others
is the required multi-disciplinary approach, needing experts in many different areas,
from civil engineering to data sciences, to electronics, to metrology, to telecom,
mathematics, and so on: all these skills are hardly found in a single professional and
require a trained staff.

Under these principles, the present chapter will go through a list of specifications
to develop a complete industrial project; a path among the others is laid, relying on
the up to date innovation in electronics, networks, communication, datamanagement,
and above all the possibility to give back a prompt and synthetic evaluation about
the structure health.

2 System Design

The approach developed by the authors of this paper aims at a pervasive sensing
of structures. Providing a dense sensing in both time and space means managing
impressive data flows, but it also means designing and realizing a new sensing
infrastructure.

The new approach is shortly summarized in Fig. 1: a traditional SHM system
consists in a number of sensors placed over the structure: their cost usually allows

Fig. 1 Traditional (left) and the new (right) structure of SHM systems
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Fig. 2 Sensor node (left) and twoexamples of sensor nodes formeasurements in tunnels (centre) and
on bridges (right)

for a limited number of sensing points; the measurement chain is completed by
cables sending data to a single central unit (or a number of data acquisition units,
governed by a supervisor). This unit has the tasks of checking the system fundamental
functions and data storage, managing issues like the needed redundancies to avoid
any data loss. Any algorithm working on the data can start from this point, as this
architecture does not offer any other chance to have “distributed cleverness.” For
most applications, a remotely controlled supervision computer can be enough to
manage the data volumes.

The new SHM structure has to manage huge data flows, as cheaper and more
numerous sensors are part of the same network: due to this reason, the mentioned
“cleverness” has to be distributed, and the data streaming has to be compressed as
much as possible, also in spite of helping a final evaluation which has to be synthetic,
effective and fast.

Instead of having just the sensors, the new system has “sensor nodes” (Fig. 2),
units made up of a board carrying some sensors (in spite of standardization, the suite
is always the same and every application works on a chosen subset). A stabilization
device for power supply is present, together with a microcontroller, a tag to iden-
tify all the on-board features, a NFC radio for an immediate check of the sensor
output, and a connection with the rest of the network. For purpose of generality, the
node can also accept inputs from external sensors, needed to complete the specific
setup, if not already present on the board. The microcontroller, apart from super-
vising the node activities, can already perform some basic operation and send only
the fundamental ones in case the network is too busy. Then, as the important data
generation cannot be managed locally by a computer or even by a server, the power
of a cloud infrastructure is often required. This means some device to locally manage
the sensor network, collect data, and send them to the cloud. This task is performed
by the gateways, gaining higher attention by the semiconductor industry, due to their
growing importance. As technology develops, these devices have also added storage
capability and also the chance to perform tasks similar to those working on the cloud,
of course with a more limited power and memory. They further reduce, if possible,
the amount of data traveling over the networks toward the cloud. Therefore, the real
revolution consists in the possibility to distribute the system intelligence, increasing
its smartness.
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To develop a standardized and efficient monitoring system applicable to various
structures and to different diagnostics aims, the SHM design process should consider
some key aspects grouped in four main clusters:

• Hardware

– Sensor node (metrology issues)
– Network (node synchronization, data transfer, gateway tasks)

• Software

– Sensor node (microcontroller functions)
– Gateway (pre-processing routines)

• Cloud

– Architecture
– Data analytics (post-processing)

• Structural diagnostics and health evaluation

– Sensor layout optimization
– Health evaluation: alerts, thresholds, and communication systems.

In the following paragraphs, each feature is presented into details.

2.1 Hardware

The hardware design turns around the kind of sensors to be adopted for monitoring.
If dense sensing is the main requirement, a deep study about the target performances
and those made available by the chosen sensors is a needed prerequisite.

Micro-Electro-Mechanical-System (MEMS) sensors are considered the most
popular solution when the chosen solution aims at reconstructing a structure kine-
matics due to some external excitation. MEMS sensors are cheap; therefore, wemust
assess the proper trade-off between the available budget for measurements and the
desired information. As these systems belong to the world of traditional electronics
and semiconductor industry, they are easily scalable, to include different sensor kinds
and possible network integration.

Fiber optic sensing, the other widely adopted solution today for SHM, has not
been chosen for the monitoring systems described in this chapter, having different
requirements and analysis procedures, and in addition a specific network design and
a completely different economic impact [11, 12].

The hardware analysis presented below is focused on both the sensor level and
the network level.
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Sensor-Node: Metrology Issues

A first point is about metrology issues: very often MEMS sensors already provide
a digital output. This makes harder to qualify the sensor performances alone, as
the output comes from a system already including the analog-to-digital conversion.
Some main problems faced in the past are not always solved in a satisfactory way,
even today, like the lack of a sufficiently constant sampling rate, sometimes different
from the nominal one [13]. The experimenter is, therefore, forced to adopt solutions
like resampling or some hardware periodic re-alignment of all the clocks belonging
to the same network: sending the timestamp together with every sample can be an
option not always feasible when the network is already busy due to the big amount
of transmitted data, and it is a waste of resources.

The same clock problems can be experienced at the microcontroller level.
Provided the clock rate is at least constant in time, some techniques for damage
detection can anyway be adopted, as for example, the detection of a local behavior
change with respect to the past.

Remaining in the area of metrological qualification, another issue is sensitivity to
temperature or anyother environmental parameter affecting the output. If temperature
is considered, the clock frequencydepends upon its changes: that iswhy the capability
to properly filter out its effect is one of the main concerns in proper data management
[14]. Changes in temperature do not just alter the integrated circuit behavior, and
they also have effects on all the mechanical interfaces among the sensor itself and
the structure surface to be monitored, including the fixing clamps. A hard task is
separating the parasitic effects, like those listed above, from some temperature effects
which have to be preserved, namely those directly acting on the structure, attaining
to its real behavior and providing useful information also for damage detection.

Resolution for MEMS sensors has to be properly tuned to the sensor noise floor
and to the performances of the A/D converter: if this resolution is too fine, both the
network and the memory are going to be overloaded, to store what most probably is
meaningless electronic noise; for battery powered devices, this means higher energy
consumption for both data storage and wireless transmission, if present. On the other
side, it might happen that the sensor performances are not well exploited due to a
too coarse A/D resolution and to the desire to spare memory energy and money.

Reading a number does not necessarilymeans that the number reallymakes sense:
only the meaningful ones have to be managed. This is another difference among
industrial continuous monitoring approaches and a simple dynamic test, when a
limited number of sensors and a shorter testing time allow to possibly waste some
resources. In case of dynamic tests, with a limited number of sensors working for a
limited time, even wasting memory space, by oversampling or by the use of a high
A/D converter bit number, is not considered a big issue.

One among the recognized problems in the use of MEMS sensors is their
higher noise floor with respect to laboratory instrumentation: this means a harder
detectability of a structure dynamic performances, in case of low amplitude signals,
as these can remain buried below the noise threshold (a clear example is given in
Fig. 3).
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Fig. 3 Noise floor of MEMS accelerometers in comparison to piezo accelerometers

A positive aspect related to the use of cheap sensors is the possibility to implement
new strategies oriented at reducing the effects of noise, such as using redundant or
repeated measurements. Some preliminary attempts in the design phase of the new
units have tried to use four inertial sensors on the same boards, both clinometers and
accelerometers, with different aims. If one considers the same acceleration sensed by
four sensors, then uncorrelated noise gets halved by a classical uncertainty analysis
in case of “in band uncorrelated noise” [15]. In case of clinometers, the difference
of the outputs from a twin configuration in which the two sensors are put close
to each other with opposite sensing axis provides an amplification of the rotation
output, at the same time deleting the effects of temperature; this only works if the
sensitivity to this parameter on each MEMS component is the same. As pointed out
in the introduction, this new strategy is allowed by the low overall cost increment,
due to the increased number of bare sensors, but it has to be framed into an industrial
approach, in which reliability of a new and complex system comes into play as the
main need. A preliminary testing campaign has proven that the sensitivity of most
MEMS sensors to temperature varies between each device, also for integrated circuits
obtained from the same slice; that is why the clinometer temperature compensation
is not always guaranteed or at least it is not always really achieved. At the same
time, halving the accelerometer noise floor, by combining the output of four sensors,
measuring the same quantity, has not been considered enoughmost structures provide
a good enough S/N ratio, overcoming this problem; all the same some redundancy on
the board design has been preserved. As in an industrial perspective, many devices
have to be deployed at the same time, and an additional issue has been the need for
proper calibration of a meaningful number of sensors together. The possibility to
use static calibration also for accelerometers, ruled by international standards [16,
17], has been the adopted solution, provided a preliminary check against dynamic
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Fig. 4 Calibration of MEMS accelerometers (a), of MEMS clinometers (b, c), sensitivity to
temperature in a temperature controlled room (d)

tests have been carried out too (see Fig. 4). Of course, a different strategy can also
be implemented, with respect to traditional approaches, as continuous cross checks
among redundant close sensors is a new possible approach to be developed in order
to easily detect any device bad functioning or drift from good operation.

The clinometer calibration proved to be an easier task, as standard back-to-back
approaches against a calibrated reference are an affordable and fast procedure [18].
In this case, careful attention has been paid to define a meaningful resolution limit,
as the number of layers between the structure surface and the sensor has required a
long and burdensome evaluation of any parasitic effect due to temperature. This has
allowed to detect and account for any possible interference on measurements given
by the behavior of glues, resins, plastic, and mechanical fixtures, used to transfer the
rotation information through the mentioned intermediate layers.

Network: Node Synchronization

Each sensor node is also expected to manage the connections with the adjacent nodes
and with all the rest of the network. A first issue has already been mentioned about
the synchronization of nodes, allowing one to define different damage detection
scenarios, if working on a single node or on the comparison among nodes.

Tools are available for at least a rough node synchronization, ranging from GPS
to NTP protocols. These can be considered effective especially for some civil engi-
neering applications, since the dynamics of interest for structures is usually confined
in the low frequency range: even a not perfect synchronization does not alter the vibra-
tion mode detection in a meaningful way, as the percentage phase error is limited. By
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now, it has been stated not to implement such protocols, to avoid added complexity
to the existing firmware governing the microcontroller: the adopted solutions have
been considered in relation to the record lengths to be analyzed, with the possibility
to periodically restart the recording and so realign the clocks over the network.

Network: Data Transfer

Another issue is the meaningful amount of data to be transferred, due to the presence
of many sensors in the network: many solutions have been explored to make this
traffic lighter. A first option is to implement the data elaboration at the sensor level
(edge computing); another solution can be to trigger an immediate data transfer, in
case of significant events, or possibly to store data locally and send them later to the
cloud when the network is not so busy.

In our real case studies, we also tried new approaches. When the data streaming
came mainly from static transducers like clinometers or temperature sensors,
requiring a limited transfer rate, we opted for the use of power line solutions, so
that the same cable bringing the power supply to the peripheral nodes could be also
used to take measurements back (see Fig. 4).

In case of higher data flow rates, the typical case of acceleration measurements,
the need to have robust, and reliable systems has led again to look for industrial
solutions. Among the others, the use of field bus solutions, like the CAN bus, typical
of the automotive industry, has been considered a winning asset, as protocols are
already available, at the same time preventing from the risk of losing data (Fig. 5).
As already pointed out, for such measurements, wireless solutions, though tempted
several times in smaller networks, have not yet been considered reliable enough,
especially when safety issues come into play.

Network: Gateway Tasks

The continuous improvement of electronics is rapidly making available to the market
new devices to collect data in a smart way: Gateways are the heart of the new

Fig. 5 Cabled network
installed on a bridge: a CAN
bus connects the sensor
nodes
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monitoring systems, being capable at the same time to collect the big data streaming
rates from the sensor nodes, to order and organize them, in the end to send them to a
cloud server for any further processing. Gateways need to manage both cabled and
wireless connections: in most monitoring systems, we are managing right now, i.e.,
bridges along highways crossing mountain areas, a stable and reliable connection to
send data from the gateway to the cloud can be a challenging hazard. Problems here
are mainly transferred to telecom networks, also requiring a detailed design in terms
of the number of installed gateways to ensure that all data are properly collected,
packed, and sent.

Another very important function, which has been intensively studied with the
progress offered by new gateways, has been the development of “fog computing”
approaches. The need to face SHM as an industrial process has forced to look for
economically sustainable solutions. The cost of cloud resources is still high, espe-
cially if a wide number of sensors, having high data rates, is considered: that is why,
the possibility to store data, at least temporarily, at the gateway level, seems to be
more than attractive, also to guarantee some redundancy at least on the short term.
The gateway can further perform some pre-analysis reducing the amount of data to
be stored, also offering the chance to have a prompt response in case of anomalies:
This is one of the most important trends for the close future.

Data processing at the gateways is an ongoing major technological trend, and
cloud providers are offering solutions to load data processing SW components into
such edge devices. This customer and application driven business logic often comes
in the form of software “containers” that run in an isolated and secured environment.
The gateway software architecture is such that important data are cached locally so
that no information is lost even when Internet connectivity is temporarily unavailable
(Fig. 5).

2.2 Software

Sensor Node: Microcontroller Functions

The selection of the functions to be transferred to the microcontroller has been the
object of a long study.

As a conclusion of the optimization process, only some basic operations were
designed to be performed at the sensor node level, the main function remaining the
management of the data stream towards the gateways.

An accurate analysis must be carried out before any new software development.
A reasonable compromise has to be reached between sensor performances and infor-
mation required for a proper evaluation of the structure health status. In this respect,
parameters have to be optimized considering the type of structure to bemonitored and
the physical phenomena under analysis. Sampling frequency, for example, should be
customized based on the structure being monitored.
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In case of structures like bridges, both sudden/brittle and slow/ductile events
could happen, resulting in different requirements in terms of static and dynamic data
processing. Moreover, modal parameter estimation is a key aspect of the structural
identification that highly influences the data rate. For this reason, a relatively high
sampling frequency is required, and the optimal value must be chosen in agreement
with the structure eigenfrequencies. If tunnels are considered, these are subjected
to deformation phenomena evolving slowly, and the interest is on the static rather
than the dynamic behavior. In this case, a large amount of data is not necessary,
and sampling frequency can be set to lower values: Specifically, the sensor output
is sampled at 100 Hz, up to filling the available microcontroller memory. At this
point average, standard deviation, maxima, and minima are evaluated and sent to the
supervising unit.

Concerning acceleration measurements, the sensor node system is not provided
with anti-aliasing filters; the risk of such phenomenon, due to undesired local effects,
is always present. The microcontroller does not have problems in sampling at very
fast rates; however, all these data cannot be managed in the network: that’s why
after sampling at 25.6 kHz at each sensor node, for sure preventing from aliasing,
a filtering+down-sampling task is implemented on the sensor node, bringing the
sampling frequency down to 100 Hz, considered suitable for most civil engineering
applications and allowing for a continuous stream from three-axis accelerometers
over industrial buses like CAN bus, provided a careful planning has been made. In
fact, the aim is to find the best trade-off between the cable lengths and the required
sensor data throughput.

In any case, if necessary, the network connection to the cloud allows one to
remotely reprogram the sensor node firmware without the need to be on site.

This approach enables transferring data from all sensors to one or more gateways,
where suitable processing can take place. The decision about which information
needs to be sent to the cloud must often be taken on a case-by-case basis.

The basic info, like the peak values, the mean or the RMS, all of them calculated
every second, have the value of a synthetic information content to be immediately
evaluated at the sensor node, also providing some important diagnostic tools to assess
good working conditions of the sensors and the electronics.

Gateway: Pre-processing Routines

The choice of which data need to be transmitted across the layers of our architecture
and where they need to be processed is key success factors for the effectiveness and
cost efficiency of the overall monitoring system. One peculiarity of such IoT systems
is the need to operate on vectorial data (e.g., acceleration) on top of scalar ones (tilt,
temperature), also requiring different data rates. As processing power at the edge
(i.e., at the sensor level) is poised to increase exponentially, both microcontrollers in
the sensor nodes and microprocessors in the gateways microcontrollers contribute
to the transformation of raw data into meaningful information. Machine learning
techniques are often used at the edge to perform inference tasks, such as recognizing
anomalies or classifying different types of structure behavior. The accuracy of these
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tasks must kept under control even after system installation, and it is critical to be
able to retrain a neural network or a machine learning task in field.

Another important aspect of these edge processing tasks is that they must be
documented, replicable, and auditable because they act as the first data filtering
stage, and any misbehavior may result in important or even critical information to
be lost. This is why caution must be taken, and, as soon as an anomaly is suspected,
raw data should always be sent upstream in the architecture up to where they can be
analyzed more carefully and deeply.

As the sampling frequency may differ for each structure, the collected data quan-
tity is variable. In any case, to guarantee a minimum of system redundancy, a larger
amount of data are usually acquired, leading to problems in transmission, storage, and
post-processing analysis, increasing costs and decreasing processing speed. Again,
the challenge is finding the right balance between system capacity and information
needed for structural characterization and health assessment. One possible solution
could be to limit sensors acquisition only to time intervals in which the structure is
really loaded, avoiding periods with no or too low external excitation (accounting
for the sensors noise floor). In this way, selected datasets will always have a suffi-
cient energy content, allowing for the evaluation of both long-term and short-term
processes, the correct estimation of modal parameters and ensuring data acquisition
during extreme events.

To implement this kind of smart acquisition, several issues have to be considered
and fixed. Firstly, features able to drive data selection have to be identified, and these
features should, at the same time, consist in simple functions, so that they can be
performedby the gatewayor even by the justmentioned sensormicrocontroller. Then,
thresholds have to be calculated for the chosen parameters: the idea is that when a
certain number of sensors simultaneously exceed these values, data acquisition starts.

Groups of sensors designed to be responsible of starting the acquisition are another
key point to be carefully considered. They are essential to give robustness and relia-
bility to the system, avoiding the storage of redundant information, and guaranteeing
data collection for all the significant scenarios.

For this reason, groups are various; their size is different and function of the
expected phenomenon: in case of global events, such as an earthquake, for example,
all the structure will be involved, and almost all sensors will detect it; conversely,
when a local damage occurs, only sensors installed on the interested structural
element or in its proximity will show anomalous values, so allowing, by means
of procedures of modal shape identification, to localize with an acceptable approxi-
mation the region in which the local damage intervened. Furthermore, a robust cloud
architecture should support an effective and reliable alert system (see Sect. 2.3).
Once different alerts statuses have been defined, with related control parameters and
threshold values, false alarmsmust be prevented, limiting the alerts in case of extreme
events, when groups of sensors exceed the limit values.
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2.3 Cloud

Architecture

The design of a cloud architecture that can scale and support large amounts of
heterogeneous SHM systems has been based on the following principles: (1) data of
different customers need to be kept isolated at all times, (2) real-time alerts should
be handled in the minimum amount of time and clearly notified to interested staff,
(3) cloud should support all the supply chain involved in the design, provisioning,
production, testing, calibration, and installation of full SHM systems, (4) computing
resources necessary to calculate slowly evolving structure trends onmassive amounts
of data are allocated dynamically and take advantage of the most advanced algo-
rithm parallelization techniques, to minimize processing time and associated costs,
(5) dependencies to cloud provider specific services has to be minimized.

For each SHM installation, gateway and device provisioning are part of the SHM
design process; their configuration parameters are stored in a database to drive the
production and testing process in the fab. After installation, sensor data are ingested
by using an IoT platform and saved into S3 buckets as parquet files with Hive parti-
tioning to ease later retrieval [19]. Real-time anomalies are detected during data
ingestion, while slowly evolving phenomena and alarm thresholds are checked and
adapted by running parallel Spark jobs in a Kubernetes cluster. This cluster runs pods
for remote gateway control, a LoRaWAN network server, and other housekeeping
tasks that are active 24/7. Once a day, the dimension of the cluster is increased to
launch parallel jobs that query S3 buckets for each structure, run structure dependent
algorithms, and store analysis results that can be visualized for the engineering staff.

Since an important part of sensor data processing needs to take place in the
gateway, a solution derived from OpenStack has been developed; it enables its full
remote control through a combination ofweb-sockets andMQTT, including injecting
signed Python code, remapping/exporting service ports, and storing one week of full
sensor data locally. If an anomaly is suspected after analysis in the cloud and more
sensor data are needed, it can be obtained by querying the gateway within the one-
week time buffer. At the present stage, no data cryptography has been implemented
yet, though it is considered a fundamental next step.

Data Analytics (Post-processing)

As civil infrastructures are naturally subject to a gradual aging process, induced by
the progressive physical deterioration or accidental actions, there is a specific need
to make the damage evolution controllable and predictable over time through an
effective diagnostic system that allows an adequate asset management and sched-
uled maintenance. Thus, the data collection, selection, and pre-processing must be
followed by a thorough,more detailed, and comprehensive analysis process, inwhich
the engineering judgment plays a key role in assessing the structural state of health
and conservation.Model updating procedures based on sensors acquisitions, detailed
modal analysis, and reliability evaluation are needed to explore critical scenarios,
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identify threshold limits, and develop algorithms to perform long-term data interpre-
tation to support subsequent decision-making processes. The SHM system should
be generally designed to display data that have been processed and synthesized to a
simple, meaningful format, to guide the structural engineer and/or the asset owner
to clearly understand and handle potential risks (ref. Sect. 2.4).

2.4 Structural Diagnostics and Health Evaluation

Sensor Layout Optimization

The idea of dense sensing creates a dramatic revolution in the approaches to SHM.
The desire to standardize a product, relying on a strong information redundancy, has
not yet forced the system designer to find algorithms for the best optimization in the
sensor positioning and in their number, although this is a common practice widely
addressed in literature [20]. The best preferred solution is to have a single type of
sensing device, the already mentioned sensor node, with all the needed sensors on-
board, then choosing only those sensors needed for the specific application, according
to the specifications and requirements provided by the expert in charge of the struc-
ture evaluation (the other sensors on the board are shut down). In the end, as the
sensor node chains should be as standard as possible to reduce costs; it is preferred
to have redundant nodes, rather than tailoring a different system for any new struc-
ture, if possible. All the same, preliminary design is needed for an effective synthesis
about the structure health; this is a very sensitive aspect, as sensors are to be placed
according to the evaluation plan designed in advance and not the opposite. Again, an
industrial approach to SHM leads to specific requirements: the system needs some
flexibility and scalability, but an effort towards? a standard which can be easily repli-
cated on different structures is a very strong link. Sometimes the ease of installation
and maintenance is privileged with respect to the best position, and this is quite
important for systems needing to work for years.

Sensors are typically grouped according to the overall monitoring objective first,
and then according to structural or technological constraints. The grouping and place-
ment of sensors are a design activity that takes place early in the monitoring planning
and are subjected to optimization in terms of redundancy and cost tradeoffs. Sensors
that belong to the same group typically share key parameters such as sampling
frequencies, alert thresholds, and processing tasks to be applied to raw data.

Health Evaluation: Alerts, Thresholds, and Communication Systems

Anomaly conditions may be detected by individual sensors and reported to the
gateway. Here, anomalous events coming from different sensors may be correlated
(in space and time) to increase reliability of this type of inference. A trivial remark,
at this point, is that the capability to distinguish among anomalies that may be due to
sensor mechanical degradation, and real structural changes are the key in avoiding
false positives. Alerts are propagated to the cloudwith an estimated severitymetadata
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attached, so that they can be handled with the appropriate urgency. As stated before,
an alert should always come with raw data attached, so that an in-depth analysis can
be done to confirm or deny the event. Similarly, the frequency of alerts and their
correlation with other critical factors (weather conditions, time, season) should be
kept under control and subject to periodical audit.

The complexity of such monitoring systems coupled to the need to provide a fast
and correct assessment has pushed toward a “back to basics” evaluation of simple
and robust approaches. Given the performances of the new sensors and networks,
cheaper and denser, a careful review of the commonly adopted feature detection
strategies is still running to explore their real effectiveness and capability to provide
satisfactory health evaluations, accounting for the new process uncertainties.

The need of standardization required by the industrial approach is often winning
over the requirements of optimization, also due to the need to guarantee a high
redundancy level in case of sensor failures.

3 A Case Study on a Large Scale SHM System

The SHM system developed by Sacertis, including new sensor nodes, cloud, data
analytics, and diagnostics, as outlined in the previous paragraphs, has been designed,
physically realized, and it is currently active on more than 40 bridges and tunnels
within the Italian road network. These infrastructures are equipped to provide contin-
uous assessment of structural integrity, essential to detect the occurrence of structural
changes, or the evolution of damage that could affect the performance and safety of a
structure. In the present chapter, a case study on large-scale SHMsystem is presented,
to highlight the effectiveness of an innovative, affordable, and minimally invasive
monitoring system in the perspective of damage detection, structural diagnostics,
and proactive asset maintenance.

Data analysis has been carried out following two quite different methods: a data
processing technique related to the industrial approach to SHM, based on simple
features and a complex cross check on the data reliability, whichmust provide simple
and prompt information, helping the bridge manager with safety issues (Sect. 3.2);
a second, more scientific approach, implements unsupervised learning techniques
to track any eventual damage (Sect. 3.3). Having recognized a real damage during
monitoring, a supervised approach could be implemented too; but, as a single failure
was measured, this event was considered without real statistical relevance, therefore
not suitable for classical classification tools. The two methods have been considered
in a benchmark approach, one as the reference for the other. The first proved to be
more robust and reliable to support an automatic alert and notification system; the
second provided promising results, however, not yet at a technology readyness level
(TRL) allowing it to be delivered as a final product. As mentioned earlier, the sensor
output quality and the will to work with edge computing, to compress the data flow,
has forced to favor the implementation of simplified approaches.
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3.1 Long-Term Damage Detection Strategies on Bridge
External Tendons

This section describes the application of MEMS accelerometers in a high perfor-
mance, cost-effective, and fully automated SHM system installed on a highway
concrete bridge located in a central region of Italy. The need to set-up a monitoring
system was originated after the failure of one of the external tendons located in
the hollow section of the box girder of the concrete bridge, due to an incorrect grout
composition and consequent tendons corrosion, only two years after the construction
completion. The final aim of the SHM system was to develop an effective long-term
damage detection process to early identify further signs of the corrosion progression
in time and check the behavior of the other tendons as well as the overall bridge.
The use of external pre-stressing is increasing in motorway bridge structures due
to the considerable construction time reduction. In this specific case, internal and
external steel tendons are one of the main load-carrying components; as such, the
integrity of these elements has to be controlled and guaranteed through the moni-
toring system, to avoid damage that could lead to catastrophic consequences for the
entire structure [21–23]. The progressive collapse of each of the strands composing
the cable proceeds until the tendon break is reached: The monitoring system has
the aim to promptly detect the evolution of the phenomenon as corrosion proceeds.
The installation of a real-time monitoring system also responds well to the arduous
accessibility of the structure to carry out visual inspections, limiting any closer site
observations and human interventions in case of any change of the monitored key
structural performance indicators.

Description of the Structure and the Monitoring System

The monitored bridge has a total length of about 624 m and is characterized by a
counterweight span of 30 m, four hyperstatic spans of 120 m, a hyperstatic span
of 71 m, and an isostatic one of 43 m (see Fig. 6). The structural box girder cross-
section height varies from 6.0 m (at the bearings) to 3.0 m (at the span centerline).
The usual monitoring approach is to sense the deck with a number of devices capable
of describing the bridge dynamics; if cables are the elements eventually damaged,
the possibility to quickly and effectively sense a problem is given with some delay
and uncertainty, being far from the damage onset. The new monitoring structure has
allowed for a completely different plan: once recognized that the problem was the
external tendons, each one has been instrumented with 2 three-axis accelerometer,
also including additional sensors to get the environmental conditions inside the bridge
deck, giving the occasion to practice on all the aspects mentioned earlier, up to the
big data analysis [24–26].

The external bridge tendons have been instrumented with a total of 88 tri-axial
accelerometers, 2 for each monitored tendon, installed at the fixed ends. Each tendon
is made of 27 strands, and it is protected by an external polyethylene duct filled with
injected grout. Due to a problem in the grout composition, the strands experienced a
quick and extensive corrosion process that resulted in some tendon failures: luckily,
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Fig. 6 Structural drawings of the bridge: (a) bridge cross-section; (b) bridge images after and
during construction; (c) plan view of the highway bridge; (d) longitudinal section of a span, with
sensor positioning

the bridge could survive even without some tendons, but these had to be substituted.
The application of MEMS accelerometers on the ducts, so as close as possible to any
possible damage, gave the structure owner a prompt and detailed warning about the
real damage position, providing a measure of the fundamental properties necessary
to predict the long-term performance of the bridge and foresee any potential further
damages induced by the corrosion of the strands. Of course the price was a huge data
flow, an important test bed for automatic early warning to detect damage.

The monitoring system includes (Fig. 7):

• the sensor nodes, comprehensive of tri-axial MEMS accelerometers (full scale ±
2.5 g, bandwidth of 50, 100 Hz sampling rate), temperature and humidity sensors,
and a microcontroller used for data sampling. This choice complies with the need
to save space, at the same time keeping some basic information: the band 0–50 Hz
already includes some cable natural frequencies and, thus, fits for the application
of several damage detection approaches.

• TheCANbus network to transfer the data from the end nodes to the local gateways
(as the bridge is long and both the network and the data streaming could not be
managed by a single unit, in this case, we had two at the bridge ends).

• The IoT gateway, where the data are collected, pre-preprocessed, and filtered to
send a selection of significant information to the cloud for further analyses.

• The cloud, where data are stored and more complex data analytics can be
performed.

The SHM system is active since September 20, 2017, and therefore, several years
of data have been stored and analyzed, and the developed damage detection strategy
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Fig. 7 Monitoring system overview

has been validated through a continuous long-term study, proving to be an effective
tool for an efficient structural proactive maintenance (Fig. 7).

3.2 Approach 1: Damage Detection Strategies and Results

This monitoring strategy reflects the network structure and responds to need of
providing both a quick and reliable near-real-time analysis to detect fragile and
sudden anomalies (local abrupt structural damages, earthquakes vibrations,…) as
well as the identification of long-term damage developed in a longer time-frame (as
corrosion effects).

The choice has been directed toward a system based on two alarm levels:

• Level 1: alarm characterized by a check over the RMS (over 60 s), immediately
estimated and verified at the IoT gateway level, with the aim to highlight the
presence of anomalous vibration levels in the tendon dynamic responses under
external loads.

• Level 2: alarm characterized by a check on a physical parameter, the natural
frequencies of the cables, performed on the cloud platform and activated only
if the first one is exceeded. This approach, among the many possible, has been
considered for its ease of implementation, also due to the general high innovation
and complexity of the whole system.

The Level 1 type of alert highlights the occurrence of anomalous vibrations of
the tendons through the evaluation of the RMS level of each sensor over a sampling
windowof 60 s. The release of high energy levels, corresponding to impulses detected
by the accelerometers, may be induced by random actions or to the brittle failure of
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Fig. 8 Threshold values for all the 88 sensors—directions x, y, z

single strands. The RMS is compared to a threshold limit, in real-time, at the gateway
level. The thresholds have been estimated for each sensor over a trainingdataset repre-
sentative of the standard behavior of the tendon under external loads (traffic, wind,
thermal loads, …). With the increase of the monitoring period, the thresholds have
been recalculated over a longer training set until reaching a convergence (stabiliza-
tion of statistical indicators), obtaining a robust alert level. The thresholds levels for
each sensor and for each of the three measurement directions x, y, and z are shown
in Fig. 8.

In case Level 1 thresholds are exceeded in a group of nearby sensors, a more
complex data processing in the frequency domain is performed at the cloud level,
based on a physical interpretation of the vibration data. The power spectral density is
evaluated by averaging over a window duration of 200 s, (66% of overlap, Hanning
window). If a strand collapses, the cross-section of the tendon is suddenly reduced,
causing a series of complex phenomena in which the overall load is differently
distributed inside each single tendon and among nearby tendons, anyway producing
a natural frequencies drop; to identify a shift in the natural frequency of the tendons,
the frequency domain decomposition (FDD) has been adopted. In case a change
in the natural frequencies is detected (in this case detected over short times, so
hardly depending upon environmental parameters), the second-level alert alarm is
produced. In this section, two main events are described, occurred over the 4-year
monitoring period, respectively, during November and December 2017, showing the
effectiveness of the two-level alert approach. As shown in Fig. 9, on 11/19/2017, the
RMS threshold was exceeded by all the accelerometers of the bridge, pointing at an
anomaly occurring to the entire structure simultaneously. As per the alert procedure,
the second-level analysis was triggered, confirming that the natural frequency of the
tendons did not experience any variation. The sudden increase of the vibration levels
was caused by an earthquake. The SHM system correctly pointed out the anomalous
condition, proving its reliability and robustness, and confirmed the structural integrity
with the second-level check.

In December 2017, instead, the first level threshold was exceeded by a limited
number of sensors, all of them installed in the first span of the bridge. Again, the
second-level analysis was automatically activated for all the sensors that exceeded
the first threshold. As shown in Fig. 10, one of the tendons installed in the first span
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Fig. 9 (a) Level 1 and (b) Level 2 check on the earthquake excitation on the 19/11/2017

of the monitored bridge also exceeded the second threshold level, experiencing a
frequency reduction caused by the failure of one of the strands, and a partial loss of
prestress force in the structural element. This reduction in the stress distribution is a
function of the severity of the tendon damage (the number of broken strands) and of
the damage location. The energy released when the strand broke was recorded as a
dynamic input also by the nearby sensors.

During the 4 years monitoring period, Sacertis system automatically detected the
failure of strands on other 3 tendons, providing a clear overview of the pre-stressing
status of the structure, and significantly improving the maintenance schedule of the
bridge.
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Fig. 10 (a) Level 1 and (b) Level 2 check on the 12/21/2017 event

3.3 Approach 2: An Unsupervised Method with Auto
Regressive Models and PCA

The choice adopted for a data-driven approach, to detect damage through synthetic
features, has relied on an unsupervised strategy consisting in a proper mix of autore-
gressivemodelsAR [27] and principal component analysis PCA [28]. The underlying
ideawas to separate the effect of environmental quantities out of the dynamic features
pointing at damage.

Given Xt , the value of the time record X at time t and Xt− j , at time t − j , it is
possible to define the autoregressive model of order p, namely AR(p), thanks to the
well-known expression:



New Sensor Nodes, Cloud, and Data Analytics … 479

Xt =
p∑

j=1

φ j Xt− j + at (1)

Specific interest is devoted to the weights φ j for the p preceding steps used to
get the actual value in the time series and to the residual at , expected to belong to a
random Gaussian distribution with zero mean μa = 0 and variance σ 2

a .
A first step in the effort to compress information has consisted in the optimiza-

tion for the p value: the adopted tool has been the Bayesian Information Criterion
(BIC) [29], consisting in a likelihood method including a penalty as the number of
autoregressive coefficients increases, avoiding overfitting.

The founding steps of both AR and PCA are well known in damage detection: the
novelty here is their combined use.We chose to focus on implementation aspects and
on the main results. In the following, attention is devoted to a single sensor (1S33)
over a period betweenOctober 2017 andApril 2018; this is considered representative
of the whole sensor set: the cloud resources had to be shared between ordinary
analysis, routinely performed on all sensors to provide real-time alarms, and the
present application.

Each record stored on the cloud consists of 200 s sampled at 100 Hz: the bridge is
always very busy, subject to a continuous random and high-level input excitation; the
AR approach has been applied to records of the same length as the file length. As the
accelerometers are g-sensitive, the average value has been high pass filtered. A data
normalization is considered a good practice, as the AR coefficients are representative
of the poles and not of the zeroes: the input data X̃ to AR models is:

X̃ = Xorig − μXorig

σXorig

(2)

being μXorig e σXorig the mean and standard deviation of the original data Xorig.
For the considered data, we have precious information about the ongoing damage,

occurring at subsequent steps; although the monitoring system has been installed on
a bridge already in service, we have considered the first dataset, up to the first known
damage event, as a healthy baseline.

The Bayesian Information Criterion (BIC) has been applied to a relevant quantity
of data: an example is given in Fig. 11, showing the estimated maximum order of
the AR model evaluated over 200 records belonging to the training set, in which the
bridge is assumed under reference undamaged conditions.

Although some scattering, the mean has been considered a reasonable compro-
mise.

To prove the quality of the adopted approach, Fig. 12 provides an original record
and its reconstruction given by the AR (34) model. A further confirmation about the
goodness of fit is proved by the Gaussian distribution of residuals. The next step has
then consisted in modeling every record of the training set by means of an AR (34)
model. Figure 13 provides the 34 φ coefficients evaluated over the period between
10/1/2017 and 4/7/2018 for the selected accelerometer, vertical axis.
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Fig. 11 BIC evaluation over
200 baseline undamaged
records

Fig. 12 Original (top) and
reconstructed (bottom) time
record

Fig. 13 Trend over time
of 34 AR coefficients

The 34 coefficients are not yet a synthetic damage feature; that iswhy a further step
consisted in compressing the available information in a lower number of coefficients
m� p. Once evaluated the PCA over the whole AR coefficient set, the comparison of
each eigenvalue of the covariance matrix against their sum (the variance of the whole
set) provides the histogram in Fig. 14: the first three principal component values
provide around 97% of the total data variability. Instead of the 34 AR coefficients;
these three components are a much more compressed information set, allowing one
to preserve most of the desired information content (Fig. 15).
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Fig. 14 Percentage of total
variability accounted for by
each of the first five principal
components of the AR
coefficients

Fig. 15 Trend over time of the first three principal components of the autoregressive coefficients

Fig. 16 Score plot of the second and third principal components of the autoregressive coefficients
(November 2017, December 2017, February 2018, April 2018)

As an example, the first three principal component coefficients are represented
in Fig. 16: they refer to the already mentioned accelerometer, spanning a period
from 1/10/2017 to the cable complete failure, in April 2018.

All the three principal components show a marked discontinuity on December
11, 2017, when the analyses of Sect. 3.2 detected an anomaly. A similar approach
carried out for a nearby tendon, considered healthy and close to the damaged one,
does not show any discontinuity.

As the process is mainly described by three PCA coefficients, their representation
in a 3D space or the projection over a plane can have an immediate and effective visual
meaning. It is interesting to plot the projection on the Component 2 / Component
3 plane, during the considered period (Fig. 16). The point cloud changes its shape
moving from a circular contour toward an elliptical one, denoting a change in one
of the features describing the tendon behavior: December appears to be the month
in which the transition occurs.

A further step consisted in trying to filter the environmental effects (mainly
temperature) out of the considered dataset. To better describe the situation, a zoom
over a shorter time interval has been carried out in Fig. 17 for the three considered
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Fig. 17 Trend over time of the first three principal components of the autoregressive coeffi-
cients (from 10/01/2017 to 10/15/2017)

PCA coefficients, respectively (data collected from 10/01/2017 to 10/15/2017): data
have been averaged every hour. All coefficients show a clear daily trend; the first
principal component also shows a weekly trend: Oct 1st, Oct 8th, and Oct 14th are
Sundays, and the corresponding peaks are lower. The same is not happening for
the other two components, having similar peak-to-peak value, independent from the
considered day of the week.

This suggests linking the first principal component to traffic, lowering during
the night and also during the weekend, while the second PCA coefficient, having
a similar daily trend, but independent from the day of the week, can be linked to
temperature. As the principal components are by definition uncorrelated, this fact
offers a way to filter out the effects of any environmental quantity. This study offers
a challenging perspective, and it is still being carried out; as the database gets richer
and richer, at the moment, an extensive benchmarking is being carried out to assess
the bridge health status without the support and results confirmation offered by other
methods.

4 Conclusions

This chapter aims at demonstrating how an industrial approach to SHM implies
a completely new design of SHM systems, requiring contemporary innovation in
several fields. Data analytics is a fundamental part within a complex framework in
which new sensors, new network designs, digital twins, and final evaluation criteria
have to interact since the system preliminary design, to create a sustainable and
effective process for structural health control. In the end, a real application shows the
feasibility of the proposed approaches. Further methods and systems improvements
are yet to come, as the monitoring field develops over time. The uncertainties related
to the new approaches, richer in information content, cheaper but with performances
still to be fully understood, should be progressively identified and dealt with, as well
as checking the applicability of traditional damage features to the new networks. The
final aim is to review the whole process under the light of risk-based and value of
information analyses, to get to the best design of the new monitoring systems.
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