
Algorithmics

Richard Bird1, Jeremy Gibbons1, Ralf Hinze2, Peter Höfner3, Johan Jeuring4,
Lambert Meertens1, Bernhard Möller5, Carroll Morgan6(B), Tom Schrijvers7,

Wouter Swierstra4, and Nicolas Wu8

1 University of Oxford, Oxford, UK
{bird,jeremy.gibbons}@cs.ox.ac.uk, lambert@kestrel.edu

2 Technische Universität Kaiserslautern, Kaiserslautern, Germany
ralf-hinze@cs.uni-kl.de

3 Australian National University, Canberra, Australia
peter.hoefner@anu.edu.au

4 Utrecht University, Utrecht, Netherlands
{j.t.jeuring,w.s.swierstra}@uu.nl

5 Universität Augsburg, Augsburg, Germany
bernhard.moeller@informatik.uni-augsburg.de

6 University of New South Wales and Data61 (CSIRO), Sydney, Australia
carroll.morgan@unsw.edu.au
7 KU Lueven, Lueven, Belgium
tom.schrijvers@cs.kuleuven.be

8 Imperial College London, London, England
n.wu@imperial.ac.uk

Abstract. Algorithmics is the study and practice of taking a high-level
description of a program’s purpose and, from it, producing an executable
program of acceptable efficiency. Each step in that process is justified by
rigorous, careful reasoning at the moment it is taken; and the repertoire
of steps allowed by that rigour, at each stage, guides the development of
the algorithm itself.

IFIP’s Working Group 2.1 [i] has always been concerned with Algo-
rithmics: both the design of its notations and the laws that enable its
calculations. ALGOL 60 had already shown that orthogonality, simplic-
ity and rigour in a programming language improves the quality of its
programs.

Our Group’s title “Algorithmic Languages and Calculi” describes our
activities: the discovery of precise but more general rules of calculational
reasoning for the many new styles of programming that have developed
over the 60 years since IFIP’s founding. As our contribution to the birth-
day celebrations, we outline how we have tried to contribute during those
decades to the rigorous and reliable design of computer programs of
all kinds—to Algorithmics. (Roman-numbered references like [i] in this
abstract refer to details given in Sect. 10.)

Keywords: Working groups · Algorithmic programming · Calculi

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
M. Goedicke et al. (Eds.): Advancing Research in Information and Communication Technology,
IFIP AICT 600, pp. 59–98, 2021. https://doi.org/10.1007/978-3-030-81701-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81701-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-81701-5_3

60 R. Bird et al.

1 Introduction

WG2.1 is one of the the first Working Groups of IFIP, and the oldest extant: it
was founded at the request of TC2, which had begun its own very first meeting
only two days before [ii]. Initially the “IFIP Working Group 2.1 on ALGOL”, it
is now known as the

IFIP Working Group 2.1 on Algorithmic Languages and Calculi. [iii]

The Group has always focused on methods for systematic program construc-
tion; and our goal is to make the methods steadily more powerful and more
general. For example, the formalisation of the inductive assertion method [iv]
led to a logical method based on pre- and postconditions [v], and then to a
strongly calculational goal-directed method [vi]. Generalising programs to spe-
cial cases of specifications [vii] led to the Mathematics of Program Construction.
And a program-algebraic approach evolved from that: the “Laws of Program-
ming” [viii].

Mathematics (of program construction or otherwise) can be carried out with
pencil and paper. For programs, however, there are more significant advantages
in automation than for mathematics generally; thus the Group has always paid
attention to program transformation systems [ix]—but their design should be
based on the ‘by hand’ calculations that preceded them.

Language design, including the advancement of ALGOL, remained a main
interest for many years, focussing for a period specifically on a more advanced
language called “Abstracto”. Abstracto generalised what ‘programming’ lan-
guages actually should be: rather than just for programming or writing exe-
cutable code, they should also be able to describe algorithms in an abstract way.
They should allow expressing (initially vague) ideas about an algorithm’s high-
level structure and, after transformations adding details, reach a level from which
the final step to ‘real’ programming-language code is simple enough to minimise
the risk of transcription errors. In sum, Abstracto was supposed to support and
codify our Algorithmics activity: but our activity itself outgrew that.

ALGOL 60 and 68 were languages more oriented to programmers’ thoughts
than to computers’ hardware. In their ‘successor’ Abstracto, we wanted [xi]

. . . a programming language some of whose features we know:

1. It is very high level, whatever that means.
2. It is suitable for expressing initial thoughts on construction of a program.
3. It need not be (and probably is not) executable. . .

(1)

Abstracto was to be an algorithmic language: one for describing the algorithmic
steps in a computation, not just the input-output relation or similar behavioural
specification. But it was still intended to be a ‘tool of thought’, rather than
primarily an implementation language.

But the Abstracto approach was itself soon abstracted by abandoning the
imperative ALGOL-like language structures, switching to a more functional pre-
sentation [xii] in which there was an algebra of programs themselves, rather than

Algorithmics 61

say an algebra of statements about programs. The framework for this became
known as the “Bird–Meertens Formalism”, a very concise notation in which
algorithmic strategies can be expressed and transformed (Sect. 2). That exposed
many general algorithmic patterns and calculational laws about them that had,
until then, been obscured by the earlier imperative control structures.

A similar abstracting approach was applied to data structures in the form
of a hierarchy –the Boom hierarchy– leading from sets through multisets (bags)
and lists to (binary) trees [xiii] (Subsect. 2.3, Sect. 3). The insight was that all
these structures had a common pattern of constructors (an empty structure,
a singleton constructor, and a binary combiner). They were distinguished from
each other not by the signatures of their operations, but rather by the algebraic
laws imposed on the constructors: the fewer laws, the more structure in the
generated elements.

A further abstraction was to allow the constructors to vary, i.e. to have an
even more general approach in which one could say rigorously “Sum the integers
in a structure, no matter what its shape.” and then reason effectively about it,
for example that “Square all the integers in a structure, and then add them up.”
is the same as “Sum the squares of all the integers in that structure.” This led
to generic programming (Sect. 3). Genericity was achieved by using elementary
concepts from algebra and category theory — functors, initial and final algebras,
and the various kinds of morphisms on them [xiv] (Sect. 4). Programs taking
advantage of this are called “polytypic”, i.e. allowing many kinds of type struc-
tures, in the same way that polymorphic programs allow many kinds of type
values within a single class of structures.

Unfortunately, the kind of specification that most polytypic languages sup-
port in their type signatures is very limited. Type theory [xv] however showed
how any specification expressible in predicate logic could serve as the type of a
program. That enables programmers to capture arbitrary invariants and speci-
fications of their programs, such as balanced trees or sorted lists, simply as part
of the program’s type. Since types are checked at compile-time, any type-correct
program will never violate those specifications at runtime. This is supported by
dependently typed programming languages (Sect. 5).

Besides the activities around data structures there was also a branch of work
dealing with the task of mimicking imperative structures, as, e.g., necessary to
describe interaction with the environment, in a purely functional context. Mon-
ads, applicative functors, and algebraic effects have provided a mathematically
solid account that could be formulated in a way that allowed program-algebraic
calculation after all (Sect. 6).

The investigations into data structures and generic algorithms on them were
mainly carried out around (quotients of) tree-like structures. However, there are
numerous more general (graph-like) structures which are not easily represented
in that framework. As these should be approachable by calculations as well, our
activities have therefore also dealt with relational or relationally based struc-
tures, which is their natural mathematical representation. Abstracting relations
to algebraic structures such as Kleene algebras provides notions well suited for

62 R. Bird et al.

Fig. 1. Abstracto 84 [xx]

describing not only data structures but also control structures of various kinds
(Sect. 7). This approach also links nicely to the predicate transformer approaches
[vi] and the “Laws of Programming” [viii].

Systematic program construction benefits greatly from program construc-
tion systems — tools to support the work of the program constructor. This work
involves reasoning about programs, which can be shallow and tedious; automated
tools are less error-prone than humans at such activities. Moreover, programs
are usually much longer than formal expressions in other contexts, such as in
traditional mathematics; so tool support is also a convenience. Finally, a system
can record the development history, producing automatically the software doc-
umentation that allows a replay, upon a change of specification, or an audit if
something goes wrong. The Group has always worked on design and engineering
of transformation systems in parallel with the work on the underlying transfor-
mation calculi; our survey therefore concludes with a more detailed account of
corresponding tool support (Sect. 8).

Generally, the Group’s pattern has always been to expand the concepts that
enable rigorous construction of correct programs, then streamline their applica-
tion, and finally simplify their presentation. And then. . . expand again.

As the trajectory in this section has described (with the benefit of hind-
sight) the Group has always had diverse interests that arise from our program-
calculational ‘mindset’ applied to other computer-science interest areas and even
real-world contemporary problems [xvi].

2 From ALGOL, via Abstracto. . . to Squiggol

2.1 Abstracto: the first move towards algorithmics

After the completion of the Revised Report on ALGOL68 [xix], the Group set
up a Future Work subcommittee to decide how to progress. This subcommit-
tee in turn organised two public conferences on New Directions in Algorith-
mic Languages [xi], after which the Group focussed again on specific topics.
The Chair highlighted two foci: programming languages for beginners [xvii], and
“Abstracto”. The first led to the development of the beginner’s language ABC
and hence eventually to Python [xviii]; the other was Abstracto, and was

. . . not a specification language as such since it is still concerned with how to
do things and not just what is to be done, but [allowing] the expression of the
‘how’ in the simplest and most abstract possible way. [xi]

A representative example of Abstracto is shown in Fig. 1. It is part of the
development of a ‘fast exponentiation’ algorithm: given natural numbers X and

Algorithmics 63

Fig. 2. The oldest inhabitant, in Abstracto [136]

Y , compute z = XY using only O(log2 Y) iterations. The program on the left
shows a ‘while’ loop, with invariant z × xy = XY , variant y, and guard y �= 0.
The program on the right factors out r = y mod 2, refining the nondeterminism
in the first program to a deterministic loop. Thus our vision for Abstracto was
as a kind of ‘refinement calculus’ for imperative programs [xxi].

2.2 The Bird–Meertens Formalism (BMF): A Higher-Level
Approach

Although the Abstracto approach was successful, in the sense that it could be
used to solve the various challenge problems that the Group worked on, after
some time it was realised that the transformation steps needed were too low
level — and so a key insight was to lift the reasoning to a higher level [xxii],
namely to abandon the imperative ALGOL-like style and the corresponding
refinement-oriented approach of Abstracto, and to switch instead to a more
algebraic, functional presentation.

It made a big difference. Consider for example the two programs in Fig. 2
[xx], where the problem is to find the (assumed unique) oldest inhabitant of the
Netherlands. The data is given by a collection dm of Dutch municipalities, and an
array mr [−] of municipal registers of individuals, one register per municipality.
The program on the left combines all the municipal registers into one national
register; the program on the right finds the oldest inhabitant of each municipal-
ity, and then findest the oldest among those ‘local Methuselahs’. Provided that
no municipality is uninhabited, the two programs have equivalent behaviour.
However, one cannot reasonably expect that precise transformation, from the
one to the other, to be present in any catalogue of transformations. Instead, the

64 R. Bird et al.

Fig. 3. The maximum segment sum problem [xxiv]

development should proceed by a series of simpler steps that, because of their
simplicity, can feasibly be collected in a smaller and more manageable catalogue
of general-purpose transformations.

The equivalent higher-level transformation is this one: [xxii]

Its left-hand side takes the oldest in the union of the
registers of each of the municipalities, and the right-
hand side takes the oldest among those local Methuse-
lahs. The “⊕/” reduces a collection using binary opera-
tor ⊕; the “+” is binary union; the “↑f” chooses which
of two arguments has the greater f -value; the “g∗”
maps function g over a collection; and finally, func-
tion composition is indicated by juxtaposition. The
functional presentation is clearly an order of magni-
tude shorter than the Abstracto one. It is also eas-
ier to see what form the small general-purpose trans-
formation steps should take—simple equations such as “reduce promotion”
(⊕/ +/ = ⊕/ ⊕/∗) and “map fusion” (f∗ g∗ = (f g)∗) [xxiii]. The notation
evolved further through the 1980s [xxiv], and came to be known as “Squiggol”.
It was later given the more respectable name “Bird–Meertens Formalism” [xxv],
and inspired the Group’s further efforts in rigorous, concise program develop-
ment.

Another example of concise calculation is given in Fig. 3.

2.3 The Boom Hierarchy of Data Structures

The operators and transformation rules of Squiggol/BMF apply equally to lists,
bags, and sets. And those three datatypes are conceptually linked by their com-
mon signature of constructors (an empty structure, a singleton constructor, and
a binary combination) but satisfying different laws (associativity, commutativ-
ity, and idempotence of the binary combination, with the empty structure as a

Algorithmics 65

unit). Moreover, the core operations (maps, filters, and reductions) are homo-
morphisms over this algebraic structure.

Crucially, each datatype is the free algebra on that common signature, with
a given set of equations, generated from a domain of individual elements; that
is, there exists a unique homomorphism from the datatype to any other algebra
of the same kind. For example, writing “[]” for the empty structure, “[x]” for a
singleton, “++” for the binary combination, and given a binary operator ⊕ with
unit e, the three equations

⊕/[] = e
⊕/[a] = a
⊕/(x ++ y) = ⊕/x ⊕ ⊕/y

determine the reduction operator ⊕/ uniquely: provided that ⊕ is associative,
these three equations have as their unique solution the aggregation function from
lists. But if we add the assumption that ⊕ is also commutative, then there is a
unique function from bags; and if we add idempotence, then there is a unique
function from sets.

If out of curiosity we assert no equations of the binary operator alone, only
that the empty structure is its unit, then we obtain a fourth member of the
family, a peculiar sort of binary tree. The four members form a hierarchy, by
adding the three equations one by one to this tree type. The resulting hierarchy
of data structures was called the “Boom” hierarchy [xiii]. Its connections to the
Eindhoven quantifier notation [xxvi] greatly simplified the body of operators and
laws needed for a useful theory.

3 Generic Programming: Function Follows Form

The Boom hierarchy is an example of how we can use algebras and homomor-
phisms to describe a collection of datatypes, together with a number of basic
operations on those datatypes. In the case of the Boom hierarchy, the construc-
tors of the algebra are fixed, and the laws the operators satisfy vary. Another
axis along which we can abstract is the constructors of a datatype: we realised
that concepts from category theory can be used to describe a large collection
of datatypes as initial algebras or final coalgebras of a functor [xiv]. The action
of the initial algebra represents the constructors of the datatype it models. And
it has the attractive property that any homomorphism on the functor algebra
induces a unique function from the initial algebra. Such a function was called
a catamorphism [xxvii]. A catamorphism captures the canonical recursive form
on a datatype represented by an initial algebra. In the functional programming
world, a catamorphism is called a fold, and in object-oriented programming lan-
guages the concept corresponds closely to visitors. Typical examples are func-
tions like map, applying an argument function to all elements in a value of
a datatype, and size, returning the number of elements in a value of a (con-
tainer) datatype. Catamorphisms satisfy a nice fusion property, which is the
basis of many laws in programming calculi. This work started a line of research

66 R. Bird et al.

Fig. 4. A PolyP program to flatten a container to a list [xxix]

on datatype-generic programming [xxviii], capturing various forms of recursion
as morphisms, more about which in Sect. 4.

The program calculus thus developed could be used to calculate solutions
to many software problems. As a spin-off, the theory described programs that
could be implemented in a standard, but different, way on datatypes that can
be described as initial functor-algebras. No general-purpose programming lan-
guage supported such typed, generic functions, so these functions had to be
implemented over and again for different datatypes.

Using the structure of polynomial functors, the language PolyP was designed
that extended the lazy, higher-order functional programming language Haskell
[xxix]. In PolyP, a generic function is defined by means of induction on the
structure of functors. Using this programming language it was possible to define
not only the recursive combinators from the program calculus, such as folds
and unfolds, but also to write generic programs for unification, term rewriting,
pattern matching, etc. Figure 4 shows an example of a polytypic program.

PolyP supported the definition of generic functions on datatypes that can be
described as initial functor-algebras but do not involve mutual recursion. While
sufficient for proof-of-concept demonstration purposes, this last restriction was
a severe limitation on practical applicability. Generic programming is particu-
larly attractive in situations with large datatypes, such as the abstract syntax
of programming languages, and such datatypes are usually mutually recursive.
Generic Haskell was developed to support generic functions on sets of mutually
recursive datatypes [xxx]. Generic functions defined in Generic Haskell can be
applied to values of almost any datatype definable in Haskell. Figure 5 shows
how a generic equality function is implemented in Generic Haskell.

The approach of defining generic functions in Generic Haskell can also be
used to define type-indexed (or generic) datatypes. A type-indexed datatype is
a data type that is constructed in a generic way from an argument data type.
For example, in the case of digital searching, we have to define a search tree type

Algorithmics 67

Fig. 5. A generic Haskell program for equality [xxx]

by induction on the structure of the type of search keys. Generic Haskell also
supports the possibility of defining type-indexed datatypes [xxxi]. The func-
tional programming language Haskell now supports a light-weight variant of
type-indexed datatypes through type families.

The fixed-point structure of datatypes is lost in Generic Haskell, however,
and with it the capability of defining the generic fold function. It was then dis-
covered how to obtain a fixed-point representation of possibly mutually recursive
datatypes, bringing the generic fold function back into the fold [xxxii]. Thus we
can define the fold function for the abstract syntax of a programming language,
bringing generic programming within reach of compiler writers.

Meanwhile, Haskell –or, more precisely, compilers supporting various Haskell
extensions– evolved considerably since PolyP and Generic Haskell were devel-
oped. With respect to types, GHC, the Glasgow Haskell Compiler, now supports
multiple-parameter type classes, generalised algebraic datatypes (gadts), type
families, etc. Using these extensions, it is now possible to define generic functions
in Haskell itself, using a library for generic programming. Since 2000, tens of such
libraries have been developed world-wide [xxxiii]. Since –from a generic program-
ming perspective– the expressiveness of these libraries is almost the same as the
special-purpose language extensions, and since such libraries are much easier
to develop, maintain, and ship, these libraries make generic programming more
generally available. Indeed, these libraries have found their way to a wider audi-
ence: for example, Scrap Your Boilerplate has been downloaded almost 300,000
times, and Generic Deriving almost 100,000 times [xxxiii].

4 Morphisms: Suddenly They Are Everywhere

In Sect. 3 we identified catamorphisms as a canonical recursive form on a
datatype represented by an initial algebra: in functional-programming parlance,
a fold. From there, however, further work [xxxiv] led to a rich research agenda
concerned with capturing the pattern of many other useful recursive functions

68 R. Bird et al.

that did not quite fit that scheme, that were not quite ‘catamorphic’. Indeed,
it gave rise to a whole zoo of morphisms: mutumorphisms, zygomorphisms,
histomorphisms, generalised folds, and generic accumulations [xxxv]. Just as
with catamorphisms, those recursion schemes attracted attention because they
made termination or progress manifest (no need to prove or check it) and they
enjoyed many useful and general calculational properties — which would other-
wise have to be established afresh for each new application.

4.1 Diversification

Where while-loops are governed by a predicate on the current state, and for loops
by an incrementing counter, structured recursion schemes such as catamorphisms
take a more restricted approach where it is the structure of the input data itself
that controls the flow of execution (“function follows form”).

As a simple example, consider how a list of integers is summed: a catamor-
phism simply recurses over the structure of the list. No for-loop index variable,
and no predicate: when the list is empty the sum is zero, and when the list
contains at least one number it should be added to the sum of the residual list.
While-loops could easily encode such tasks, but their extra expressive power is
also their weakness: we know that it is not always tractable to analyse loops
in general. With catamorphisms, the analysis is much simpler — the recursion
scheme is simply induction over a datatype.

The analogy with induction goes further. Number theorists have long stud-
ied computable functions on natural numbers, and an important class are the
primitive recursive functions, which provide the recursive step with the original
argument as well as the result of recursing on that argument. Such functions are
an instance of the paramorphism [xxxvi], which is an interchangeable variation
on the catamorphism.

Further still, an attractive variant of induction is strong induction, where
the inductive step can rely on all the previous steps. Its parallel as a recursion
scheme is the histomorphism and, just as strong induction and induction are
interchangeable, histomorphisms are encodable as catamorphisms. The utility of
these schemes –the point of it all– is however to make it convenient to describe
programs that would otherwise be difficult to express, and to derive others from
them. In the case of histomorphisms (strong recursion), for example, it is the
essence of simple dynamic programming programs such as the knapsack prob-
lem, or counting the number of possible bracketings, that was captured. More
complex dynamic programming problems, such as the multiplication of a chain of
matrices, requires a slightly more nuanced recursion scheme, the dynamorphism,
where an intermediate data structure is generated.

We recall that the exploitation of various forms of duality revolutionalised
the field of physics; algorithmics similarly benefits from an important form of
input-output duality. Each recursion scheme features a dual scheme: while one
focuses on consuming the input, the other emphasizes producing the output. To
illustrate, consider how insertion sort deconstructs a list by extracting numbers
one at a time (input), inserting them appropriately into a sorted list (output).

Algorithmics 69

Whereas the deconstruction of the original list is another catamorphism, the con-
struction of the sorted list exemplifies an anamorphism—it is the dual situation.
Thus expressing insertion sort in terms of recursion schemes allows us to dualize
the algorithm to obtain another sorting algorithm for free: selection sort. This
works by constructing a sorted list (an anamorphism), and at each step performs
a selection that deconstructs the unsorted list to extract the smallest element (a
paramorphism).

Another way to understand a catamorphism is that it applies a strategy that
takes subsolutions and conquers them (with a so-called algebra) to provide a
final solution. Dually, an anamorphism applies a strategy that takes a problem
and splits it up into subproblems (with a so-called coalgebra). Those can be
understood as the two components of a divide-and-conquer strategy, and the
combination is known as a hylomorphism, depicted in the diagram below:

problem solution

Sub problem Sub solution

hylomorphism

program

solve problem

conqueralgebradivide coalgebra

Sub program

solve sub-problems recursively

Catamorphisms are then the special case of this diagram where the dividing step
simply deconstructs a data structure, and anamorphisms the special case where
the conquering step constructs a data structure.

4.2 Unification

The multitude of generalisations of catamorphisms and their duals is bewildering.
Many of them were defined as adaptations of catamorphisms, but in most

cases showing that those corresponded directly to catamorphisms required care-
ful calculation. And with so many different variations, a natural question is
whether there is some underlying commonality that unifies them all. Indeed
there is.

The unification was achieved by borrowing some slightly more sophisticated
machinery from category theory. A first attempt was to use comonads, which
allow access to contextual information [xxxvii], to organise the structure of recur-
sive calls. Another attempt used adjunctions instead as the common thread
[xxxviii]. That resulted in so-called “adjoint” folds, which show how a catamor-
phism in one category can give rise to a different recursion scheme in another.
Although the two methods were initially thought to be disjoint, later work
revealed recursion schemes from comonads to be a special case of adjoint folds
with an appropriate distributive law.

Each of these two unifications of recursion schemes treated generalizations of
catamorphisms separately to their dual counterparts of anamorphisms. But both

70 R. Bird et al.

are special cases of hylomorphisms; and so the next step was to generalise all
inductive and coinductive recursion schemes within the single unifying theme of
conjugate hylomorphisms — or ‘the mother of all recursion schemes’. Naturally,
the Group named it the mamamorphism. This time, the more sophisticated cat-
egorical techniques were used to extend the work on adjoint folds with conjugate
distributive laws to connect pairs of adjunctions.

All in all, the unifying work on recursion schemes benefitted greatly from the
unifying power of category theory — which is what category theory is for.

5 Dependent Types: Types You Can Depend on

Datatype-generic programming explores how to define functions and datatypes
by induction over the structure of algebraic types. This line of research within the
Group sparked further interest in the exploration of how to use static type infor-
mation in the construction of programs. In particular, emerging programming
languages with dependent types offered new opportunities for program verifica-
tion, program transformation, program calculation and type-directed program
development.

5.1 What Are Dependent Types?

The idea of programming with dependent types dates back at least as far as
the 1970’s, when it became increasingly clear that there was a deep connection
between constructive mathematics and computer programming [xxxix]. In the
late 20th century, a number of new programming languages emerged, exploring
these ideas [xl]. Those languages, and their implementations, enabled the further
exploration of the possibilities that statically typed languages with dependent
types offered. Each of them adopted the Curry-Howard correspondence [xli],
connecting programming languages and mathematical logic, as the guiding prin-
ciple of program language design. The terms of each language correspond to
both programs and proofs; a type can equally well be read as a specification or
a proposition. To ensure the logic underlying a language’s type system is sound,
all functions must be total, disallowing partial incomplete pattern matching and
diverging functions. The benefit of this disciplined approach to software devel-
opment is that these languages provide a unified setting for both programming
and program verification. Given the strong traditions of program calculation
and functional programming within the Group, for instance, using the Bird–
Meertens Formalism to perform equational reasoning about Haskell programs,
there was a clear interest in these new languages. Furthermore, the richer lan-
guage of algebraic data types offered the ability to enforce invariants during a
program’s construction.

5.2 Dependent Types

At the beginning of the 21st century, the relation between dependently typed pro-
gramming and datatype generic programming was clearly emerging [xlii] leading

Algorithmics 71

to several influential PhD theses on this topic. The interest in dependent types
from members of the Group dates back to the late 80’s [xliii].

The new languages based on type theory reinvigorated some of the past
research that members of the Group have done on the derivation of correct pro-
grams. Following the Agda tutorial at Meeting #63 [xliv], the work on relational
program calculation, for example, was shown to be possible within dependently
typed languages. Similarly, the refinement calculus, used to derive a program
from its specification, could be embedded in a proof assistant, enabling pen and
paper proofs to be machine-checked. Program calculation in the style of Dijk-
stra using predicate transformer semantics could be modelled using type theory,
rather than the traditional impredicative set theory. Types and proof assistants
based on type theory became a central tool in the calculation of correct pro-
grams [xlv].

At that point, an influx of new members broadened the Group’s interest to
novel application areas for dependently typed programming [xlvi], such as sci-
entific computation, decision problems, and even the study of climate change.
Combinator parsing, previously studied in the context of functional program-
ming (see Subsect. 6.2), was implemented in a total language with dependent
types [xlvii].

The new languages with dependent types also enabled new opportunities to
exploit static type information to guide program development [xlviii] — in the
same spirit as the research on datatype generic programming. Types can be read
as a (partial) specification. The discovery of a type-correct program can arise
from a dialogue with the type checker, helping establish a program’s correctness
as it is written. There are numerous domain-specific languages and data types
designed to enforce certain correctness properties by construction.

Dependently typed programming languages marry constructive logic and pro-
gramming in a manner unfamiliar to most programmers. To ensure that the type
system is sound, all programs must be total. Yet any mainstream language relies
on numerous effects, such as general recursion, mutable state, concurrency, or
exceptions, each of which break the promise of totality. To address this, there
has been a line of research on how to incorporate effects in dependently typed
program languages [xlix]. This, in turn, led to renewed interest from the Group
on how to program safely and robustly in the presence of arbitary side-effects in
any language, resulting in the study of algebraic effects (see Sect. 6).

6 Computational Effects: Beyond the Functional

When the Group switched to a purely functional presentation of programs [xxii],
that is from Abstracto to Squiggol (Sect. 2), at first this also meant doing away
with a group of programming-language features known collectively as “effects”.

6.1 Effects and Monads

Effects cover all behavioural aspects of a computational function that go beyond
the input-output behaviour of mathematical functions. It includes interaction

72 R. Bird et al.

of a program with its environment (the file system and operating system, other
processes, human operators, distant servers, . . .), mechanisms for structuring the
internal control flow (partiality and exceptions, backtracking, nondeterminism
and probability, delimited control, . . .), and implicit dataflows (mutable state
and global variables).

While some of these effects are indeed symptoms of a low-level imperative
encoding, such as local mutable state, others are essential in real-world programs
that interact with the environment. And they can be important for structuring
programs compositionally: examples are exceptions and backtracking.

Fortunately, it turned out that useful effects need not be abandoned in a
purely functional setting [l]—the ‘doing away with’ was only temporary. Effects
can after all be modelled with pure functions. Here are some examples:

a → b a pure function
a → 1 + b a partial function
a → e + b a function with exceptions e
a → b+ a nondeterministic function
a → b∗ . . . which might also fail
a → b × o∗ a function that sends o’s to its environment
a → μx.((i → x) + b) a function that reads i’s from its environment
a → (s → (b × s)) a function with implicit state s

...

(where b+ denotes non-empty sequences of b’s, and b∗ possibly empty sequences).
It turned out that all those different types of functions with effects are ‘Kleisli’

arrows for appropriately structured monads [li]. The utility of the monad was
that it handled calculation, in particular composition, of the types above in a
single unified way. Whereas two functions of types a→ b and b→ c are easily
composed to make a single function of type a→ c, it is not clear at first how to
compose a→ e+b and b→ e+c to a→ e+c, or for that matter a→ b+ and b→ c+

to a→ c+. And even when the (in retrospect) obvious definitions are adopted,
one for each, the challenge is then to see those definitions as instances of a single
generalised composition. That’s what Kleisli composition achieves.

6.2 Functions Too Weak, Monads Too Strong: Applicative
Functors? Just Right

Once monads had brought effects back in the purview of purely functional reason-
ing, the Group turned its attention to reasoning about such programs—‘effectful’
programs. One fruitful example has been the study of recursive descent parsers
[lii]. They lend themselves to a combinator style of programming. Moreover, the
combinators fall neatly out of the observation that the datatype of parsers that
return a parsed value is another monad, a combination of implicit state and
nondeterminism with failure: the Kleisli arrows are of the form

a → (Σ∗ → (b × Σ∗)∗)

where the alphabet of symbols is Σ or, in verse [liii],

Algorithmics 73

A parser for things
is a function from strings
to lists of pairs
of things and strings.

But the monadic presentation makes static analysis difficult: the interface allows
earlier inputs to determine the parser used for later inputs, which is both more
expressive than necessary (because few applications require such configurable
syntax) and too expressive to analyse (because the later parser is not statically
available). A weaker interface for effects turns out to be nearly as expressive,
and much more amenable to analysis. The essence of this weaker interface was
abstracted as an ‘applicative functor’, and has served as the foundation of sig-
nificant subsequent work [liv].

6.3 Algebraic Effects and Handlers

But how to reason about effectful programs, such as applicative parsers, nonde-
terministic functions, and programs that perform I/O? A first step is to treat the
effectful operations as an abstract datatype, provide a purely functional specifi-
cation of that data abstraction, prove the program correct with respect to the
algebraic specification, but run the program against the ‘real’ implementation
that incurs actual effects such as I/O. In fact, one could consider the algebraic
specification as the interface in the first place, and incorporate its axioms into
traditional equational reasoning; it is then the responsibility of the implementer
of the effect to satisfy the axioms. This approach is cleanly formalized in the
notion of algebraic effects and handlers, whereby a pure functional program
assembles a term describing the effects to be performed, and a complementary
environment handles the term, by analogy with handling an exception [lv]. In
fact, that term is a value of a type captured as the free monad on the signature
of the effect operations, a datatype-generic notion (see Sect. 3).

7 Lifting the Game: A Purely Algebraic
View of Algorithms and Languages

The systematic construction of algorithms –or, more generally, of computer
programs– needs languages that are precise, effective, and that allow calcula-
tional reasoning. Previous sections showed how the Group discovered the striking
similarities between derivations from quite different areas, such as path problems
and regular languages [lvi]. Using algebra in its purest form, i.e. starting with
a collection of postulated axioms and carrying out (program) derivations based
on those laws alone, therefore enables an extremely abstract treatment: those
derivations are then valid in any programming model that satisfies the axioms.

Calculi based on the algebra of binary relations [lvii] were prime candidates
for that, since they allow a natural treatment of directed graphs—and they
abstract and unify data structures (e.g. trees), transition systems and many
more concepts.

74 R. Bird et al.

semiring (program interpretation) relation algebra

+ (nondeterministic) choice ∪ union
· sequential composition ; relational composition
≤ refinement ⊆ subset
0 abort ∅ empty relation
1 skip I identity relation

Fig. 6. Operators of semirings and relation algebras

Also, relations are intimately connected with predicates and hence can
be used to describe (by pre- and postconditions) and calculate input-output
behaviour. In particular, they cover principles of algorithm design such as
dynamic programming, greedy algorithms etc. [lvi]

Relation Algebras make relations, i.e. sets of argument-value pairs, ‘first-class
citizens’ by viewing them as algebraic elements subject to operators that treat
them as a whole without looking at their internal structure. The ‘point-free’ app-
roach that this enables often admits considerable concision. The basic relational
operators (Fig. 6, right) are simply set union, intersection and complement, sup-
plemented by sequential composition.

Although a relation-algebraic approach already allows the unified treatment
of different instances of graph problems [lviii], replacing sets of pairs (single
relations) by other entities yields further models of the same algebraic signature,
known as (idempotent) semirings. Figure 6 (left) shows the operators common
to semirings.

And those structures have applications in programming languages, algo-
rithms, logic and software engineering:

– Classical logic is a well known simple semiring, in which choice corresponds to
disjunction, composition to conjunction, 0 to false and 1 to true. To subsume
classical logic fully, however, one requires negation — i.e. a Boolean algebra.

– When elements of a semiring are interpreted as (arbitrary) programs, the
basic operators represent nondetermistic choice and sequential composition;
0 corresponds to the program abort and 1 to skip. Equations such as 1 ·
x = x = x · 1 and 0 · x = 0 = x · 0 form the basis of algebraic reasoning,
including program transformations. The equations describe the facts that
any program x composed with skip is identical to the program itself, and
that any program composed with abort is identical to abort. This allows the
expression of programs and specifications in the same framework. A program
P satisfies a specification S if P ≤ S, where ≤ expresses refinement, which is
the canonical order available in every idempotent semiring. (In other styles of
program calculation, that would be written S � P .) This simple formulation
of program correctness enables a wide range of methods for calculational
program derivation and program verification [lix].

– Using partial maps as algebraic elements allows treating data structures with
pointers. This usage was inspired by Squiggol (Sect. 2) [lx].

Algorithmics 75

– When the underlying structure reflects the memory cells (heaps), the algebraic
framework provides an abstract version of separation logic [lxi].

– When the algebraic elements are interpreted as sets of sets or sets of lists it is
possible to derive aspects of feature-oriented software development, including
the formal characterisation of product families and of feature interactions
[lxii].

– Graphs are often equipped with edge labels representing weights, capacities
or probabilities; likewise automata and labelled transition systems carry extra
edge information in addition to source and target. Those can be treated by
generalising Boolean matrices to matrices over other algebras. For classical
graph algorithms, such as shortest-path algorithms, the max-plus algebra and
the min-plus algebra are useful as underlying structure—here, min/max play
the roles of (biased) choice, and plus is the operator for sequential composition
(that is, adding path lengths/costs).

– Probabilistic aspects can be represented by matrices with real values between
0 and 1, and fit into the very same algebraic framework. Applications include
calculational derivations of fuzzy algorithms.

– Fundamental concepts of programming-language semantics, including concur-
rent programs and termination, can be handled algebraically as well. Beyond
the areas mentioned above, the Group has also applied this algebra in several
areas, included object-oriented programming, data processing, game analysis
and routing in mobile networks [lxii].

But semirings can be extended: and those extensions are used to capture addi-
tional concepts from data structures, program logics and program transforma-
tion. Here are some examples.

Kleene algebras, generalising the algebra of regular expressions, offer the addi-
tional operator ∗ of arbitrary finite iteration. Algebraically, the loop while p do
x becomes (p ·x)∗ · ¬p, which is the least fixed-point of the function λy. if p then
x · y else skip [lxiii].

Here p is a specific element, called a test, representing a predicate on the state
space. The set of tests offers a negation operator ¬ and hence forms a Boolean
algebra [lxiv]. In the interpretation where algebraic elements are programs, a
test p corresponds to an assert statement. For tests p, q and program element x
the inequation p · x ≤ x · q algebraically expresses the Hoare triple {p}x{q} [lxi].

Furthermore, in certain Kleene algebras, known as quantales, the principle
of fixed-point fusion [lxv] is a theorem, i.e. it can be derived from the axioms.
This illustrates once again the powers of ‘algebraic unification’. Fusion, shown in
Sects. 2 and 3 to be an extremely practical law for transforming functional pro-
grams, is now available for many other kinds of program too. Examples include
merging of programs with the same loop structure, or ‘deforestation’, i.e. avoid-
ing the generation of a large intermediate data structure that afterwards is ‘con-
sumed’ again, in favour of ‘generation and consumption on the fly’. This is also
known as “virtual” data structures [lxvi].

76 R. Bird et al.

Omega algebras [lxvii], which offer an operator ω for infinite iteration, allow
the description and analysis of systems or programs with potentially never-
ending behaviour, such as operating systems.

In algebras with finite and infinite behaviour, some algebraic laws of sequen-
tial composition need to be adapted by separating the finite and the infinite
traces of a program x into the disjoint sets finx and infx. While the above law
x ·1 = x still holds for all elements, the property x ·0 = 0 no longer holds when x
contains infinite traces; it weakens to (finx) · 0 = 0. The intuitive explanation is
that infinite traces do not terminate, and therefore a possible successor, includ-
ing abort, can never be ‘executed’. Therefore the while-loop now has the more
general behaviour

(p · x)∗ · ¬p = (p · finx)∗ · (¬p + p · infx) ,

which means that after a finitely many finite traces from x the loop either ter-
minates by not satisfying the test p any longer, or an infinite trace from x takes
over, leading to overall non-termination. When x is purely finite, i.e., satisfies
infx = 0, this reduces to the expression given previously.

Like the operators of semirings, the operators of finite and infinite iterations
(and many of their combinations) satisfy a common set of laws, and thus algebra
helps to unify their treatment including the derivation of program transforma-
tions and refinement theorems. Applications range from termination in classical
programs, via protocols, to dynamic and hybrid systems [lxvii].

Omega algebras are also used to develop a unified framework for various
logics, including the temporal logics LTL, CTL and CTL∗, neighbourhood logic
and separation logic [lxi].

To sum up: algebraic characterisations have helped to express (and prove)
new notions and results and to unify concepts and identify the above-mentioned
similarities. The Group has developed a coherent view on algorithms and lan-
guages from an algebraic perspective, and applies the same algebraic techniques
to tackle modern technology, including the analysis of protocols and quantum
computing. All the algebras in question provide a first-order equational calcu-
lus, which makes them ideal to be supported by automated theorem provers
and interactive proof assistants [lxviii] [xliv]. As a consequence, they are well
suited for developing tools that support program derivations and refinement in
a (semi-)automated style.

8 System Support: the Right Tool for the Job

Calculational program construction derives a program from a formal specifica-
tion by manageable, controlled steps that –because they are calculated– guaran-
tee that the final product meets its initial specification. As we have seen, this
methodology has been practised by many Group members, and many others
too [lxix]. And it applies to many programming styles, including both functional
and imperative. For the former one uses mostly equational reasoning, applying
the defining equations of functions together with laws of the underlying data

Algorithmics 77

structures. For the latter, inequations deploying a refinement relation are com-
mon [lxx]. A frequent synonym for “calculation rules” is “transformation rules”.

A breakthrough occurred when the Group raised the level of reasoning (Sect.
2): from manipulations of imperative code (Abstracto) to algebraic abstrac-
tions of functional control patterns (Squiggol). This made it possible to compact
derivations of several pages in traditional approaches down to one page or even
less. A similar observation concerns the general theme of ‘algebraicisation’ (see
Sect. 7).

8.1 System Support

Of course, calculational program construction can be done with pencil and paper,
and initially it should be so: that encourages a simplicity and elegance in its
methods. Ultimately, if the method proves to be useful, there are a number of
good reasons for introducing system support:

– By its very nature, program transformation leads to frequent rewritings of
program fragments; such clerical work should be automatic. And, by its very
nature, a system does this mechanical activity better than a human can.

– The system can record the applicability conditions and help in reducing them
to simpler forms, ideally all the way to “true”.

– And, as mentioned in Sect. 1, the system can construct a development history,
again a clerical task. This history serves as detailed software documentation,
since it reflects every design decision that enters into the final program. Thus,
if a line of development turns out to be a blind alley, the history can be used
for backtracking to try out alternative design decisions. Moreover, it is the
key aid to software maintenance: when the specification has to be modified
(because of new requirements), one can try to ‘replay’ a recorded development
accordingly.

Thus the Group gave considerable attention to program transformation sys-
tems [ix] once the methods they automated were sufficiently mature. In the
remainder of this section we take a brief look at one of them: it touches on sev-
eral areas within the Group, and several Group members were involved in it and
in follow-on projects.

8.2 An Example: The Project CIP

The project CIP (Computer-aided, Intuition-guided Programming) at TU
Munich ran roughly through the period 1977–1990.

The Wide-Spectrum Language CIP-L. The CIP approach was based on a
particular ‘life cycle of transformational program development’, roughly charac-
terised by the following levels [lxxi]:

1. formal problem specification (usually descriptive, not (yet) executable, pos-
sibly non-deterministic);

78 R. Bird et al.

2. recursive functional program;
3. efficiency-improved functional program;
4. deterministic, tail-recursive solution;
5. efficient procedural or machine-oriented program.

However, not all of these levels need occur: a development may start below
Level 1 and end above Level 5; and it may skip some of the intermediate levels.

The language CIP-L was however especially designed to cover all five levels
[lxxii]. Since transformations usually do not change a program as a whole, only
small portions of it, it was mandatory to design one integrated wide-spectrum
language rather separate languages for each level. In particular, the language
included assertion constructs at all levels, thus allowing the incorporation of pre-
and postconditions uniformly for functions and statements — so it is also con-
nected to the refinement calculi that were developed around the same time [lxx].
CIP-L was partly inspired by Abstracto (Subsect. 2.1); in a sense, it tried to
present a model of a possible concrete instance of Abstracto.

The Transformation System CIP-S. The purpose of CIP-S was the trans-
formational development of programs and program schemes. In addition to book-
keeping tasks, that included the manipulation of concrete programs, the deriva-
tion of new transformation rules within the system, and support for the verifi-
cation of side conditions of transformation rules [lxxiii].

In keeping with the overall CIP methodology, the kernel of the system was
itself formally specified: starting from that specification, all routines were devel-
oped to Pascal-level CIP-L using an earlier prototype system. The results were
embedded into an appropriate user environment, yielding a first operational ver-
sion of CIP-S around 1990. In conjunction with a compiler for a substantial
executable subset of CIP-L, the CIP-S system has been successfully used in
education. The transformational approach was continued by the Group.

Experiences. There is an extensive body of case studies using the CIP method-
ology. They concern mostly small and medium-sized algorithms, e.g., sorting and
parsing [lxxiv]. The formal development of CIP-S itself showed that the method
is suitable for larger software projects too.

9 Summary; but No Conclusion

This is not a ‘conclusion’. And this article is not a history. It is a description of
a goal, a justification of its importance, and a summary of the trajectory that
has led, and still leads to progress towards that goal. And what we especially
enjoy about that trajectory we have followed, right from the start 60 years ago,
is that it has always been the same one:

Let us calculate! (Sect. 2 p6)

Why is that goal so important?

Algorithmics 79

Writing programs using a careful process of walk-throughs and reviews is
(alone) not enough; “growing” programs [lxxv] in a top-down way is (alone) not
enough; proving your program correct afterwards is (alone) not enough. We have
always believed that maintaining correctness from the very top, and then ‘all the
way down’ is what we all should be aiming for.

But will we ever get there? No, we will not.
During the 1970’s, an array-out-of-bounds error in a high-level program

would typically lead to a core dump, an inch-high stack of paper that was exam-
ined at just one spot, an “Ah, yes!” and then the whole thing just thrown away.
Thirty years of progress brought us to ‘Interactive Development Environments’
and the internet, where sometimes the programmer was not even sure where the
just-corrected version of a program had been ‘deployed’, nor exactly whether it
contained the fix (because of caching). Error messages from a remote server in
some far-away city flicked up out of the window, too quickly to be read, and
could not be scrolled back. And twenty more years bring us up-to-date, with
‘intelligent’ aquarium thermometers that can be hacked from half a world away
and used to raid a company’s private database. Plus ça change. . .

The one constant through all of this is people, their tolerance for impedi-
ments to getting their work done and their perseverance in spite of them. The
technology we are trying to control, to approach rigorously, is always sitting on
that boundary, just beyond our reach: we will never calculate far enough.

Thus, however good we become at calculating, and convincing others to do
so, there will always be economic forces that promote and propagate computer
applications that we cannot develop by careful walk-throughs, or grow top-down,
or prove correct. . . or calculate. This ‘catching up’ factor is what drives all the
IFIP working groups — we constantly extend our methods improve the impact
of computers generally, to make them safer and increase their reliability, as their
use becomes ever more ambitious and spreads ever more widely.

We are not so much ‘pushing’ as ‘being pulled’. There is the excitement.

10 Detailed Attributions and Citations

[i] Contributors —
All of the members members of WG2.1, past and present, deserve credit
for what is reported here. Among those who provided actual text were
Richard Bird, Jeremy Gibbons, Ralf Hinze, Peter Höfner, Johan Jeur-
ing, Lambert Meertens, Bernhard Möller, Carroll Morgan, Tom Schrijvers,
Wouter Swierstra and Nicolas Wu.
Carroll Morgan was Group Chair at the time of writing, and is the corre-
sponding author.

[ii] The founding of IFIP —
It was established on 23 March 1962 [26,158].

[iii] Change of name —
At Meeting #39 in Chamrousse in January 1989, Formal Resolution 2 was
to recommend to TC2 that the Group’s name be changed to “WG2.1 on

80 R. Bird et al.

ALGOL: Algorithmic Languages and Calculi”. But TC2 rejected the rec-
ommendation, as reported at Meeting #40. At Meeting #41 in Burton in
May 1990, it was reported that TC2 suggested instead simply “Algorithmic
Languages and Calculi”, and this suggestion was accepted by the Group.
TC2 approved the change, which was reported at Meeting #42 in Louvain-
la-Neuve in January 1991.

[iv] Assigning meanings to programs —
This was Floyd’s association of predicates with flowchart arcs [70].

[v] An axiomatic basis for computer programming —
This was Hoare’s logic for partial correctness [95].

[vi] A Discipline of Programming —
This was Dijkstra’s calculus of weakest preconditions [65].

[vii] Predicative programming —
This generalisation was the work of Hoare and Hehner [87,88,96].

[viii] Laws of Programming —
This work was presented by a number of authors, including Hoare, at
Oxford’s Programming Research Group [97].

[ix] Program-transformation systems —
Systems designed and implemented by Group members include the
Argonne TAMPR (Transformation-Assisted Multiple Program Realiza-
tion) System [41–43], ARIES (Acquisition of Requirements and Incremen-
tal Evolution of Specifications) [113], (R)APTS (Rutgers Abstract Program
Transformation System) [162], KIDS (Kestrel Interactive Development Sys-
tem) [185], POPART (Producer of Parsers And Related Tools) [201,202],
ZAP [67,68], and the Munich CIP (Computer-aided, Intuition-guided Pro-
gramming) project [21,23,149]. Comparisons of various transformation sys-
tems are presented in [69,170].

[x] The name “Abstracto” —
The lecturer who made that remark was Leo Geurts [73, p57]; he added
that “in abstracto” was Dutch [sic!] for “in the abstract”.

[xi] Criteria for Abstracto —
These criteria for Abstracto were proposed by Robert Dewar, who was the
Group’s chairman at the time [64]. His letter was written in July 1977 [64],
in advance of Meeting #23 of the Group in Oxford in December of that
year. The New Directions in Algorithmic Languages conferences were in
1975 and 1976, the work of a subcommittee chaired by Robert Dewar and
with proceedings [181,182] edited by Stephen Schuman.

[xii] Abstracting Abstracto —
This landmark step was suggested and developed by Richard Bird and
Lambert Meertens.

[xiii] The Boom Hierarchy —
The Boom hierarchy was introduced by Hendrik Boom [38], and thus
namesd “Boom” (by others) — another pun, since Hendrik is Dutch, and
“boom” is Dutch for tree. Backhouse [11] presents a detailed study of the
Boom Hierarchy, and compares it to the quantifier notation introduced by
Edsger Dijkstra and colleagues at Eindhoven.

Algorithmics 81

[xiv] The appeal to category theory —
The introduction of concepts from category theory was due to Grant Mal-
colm [126], based on the work of Hagino [86].

[xv] The connection between type structure and data structure —
This observation was made by Martin Löf [130], and later by many others,
including by Roland Backhouse in his work on type theory [13].

[xvi] The Group’s diverse interests —
Our methods have been applied to separation logic [56], pointer struc-
tures [34,142], database queries [79,146], geographic information systems
[145], climate change [39,108,110], scientific computation [109], planning
[36] and logistics [172], and domain-specific languages for parsing/pretty
printing/program calculation.

[xvii] Beginner’s programming languages —
Beginner’s programming languages designed and implemented by Group
members include Peter King’s MABEL, Kees Koster’s ELAN, and Lam-
bert Meertens’ ABC [74].

[xviii] Inspiration for Python —
ABC ’s influence on Python [176] can be seen at Guido van Rossum’s
biographical page, and at the ABC and Python pages on Wikipedia:
https://gvanrossum.github.io/bio.html
https://en.wikipedia.org/wiki/ABC (programming language)
https://en.wikipedia.org/wiki/Python (programming language)

[xix] Revised Report on ALGOL 68 —
ALGOL 68 was designed by WG2.1 at the direction of TC2. On December
20, 1968, the language was formally adopted by the Group, and subse-
quently approved for publication by the General Assembly of IFIP.

[xx] Example of Abstracto —
This example is from Lambert Meertens [135].

[xxi] Refinement calculus —
The ‘Abstracto vision’ was Lambert Meertens’. It was developed in much
greater depth by Ralph Back (independently) [9,10] and, later, by Carroll
Morgan [151,152]. When Morgan asked Meertens why he had not pursued
the refinement calculus further, Meertens’ reply was “It didn’t work.”

[xxii] Higher-level reasoning —
Meertens became disillusioned with Abstracto’s low-level transformations,
as described in [137]. It was Richard Bird who provided the key insight
needed to lift the reasoning to a higher level [30]. Examples are given in
[136].

[xxiii] Program transformations —
These examples, and many others, were described by Bird [30].

[xxiv] Evolving notation —
Bird took the work forwards through the 1980’s, notably in a series of
tutorial papers [31–33] produced in quick succession; an example, the cal-
culation for the Maximum Segment Sum problem, is shown in Fig. 3.

https://gvanrossum.github.io/bio.html
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)

82 R. Bird et al.

[xxv] The names “Squiggol” and “BMF” —
Meertens recalls that Robert Dewar passed a note to him with the single
word “Squigol” on it, making a pun with language names such as ALGOL,
COBOL, and SNOBOL [138]. The first appearance of the name in the min-
utes is for Meeting #35 in Sausalito in December 1985. However, it has
come to be written “Squiggol”, perhaps to emphasise that the pronuncia-
tion should be "skwIg6l (“qui”) rather than "skwaIg6l (“quae”). Later, at
a meeting of the STOP project in Nijmegen in 1988, Doaitse Swierstra
coined the more sober name “Bird–Meertens Formalism” (BMF), making
a different pun with “Backus–Naur Form” (BNF).

[xxvi] The Eindhoven quantifier notation —
The Eindhoven quantifier notation rationalised the notation for binding
a variable, determining its range and forming elements from it [11,153].
In the conventional

∑N
n=0 n2 for example, the n below the

∑
is a bind-

ing occurrence; but the n in n2 is bound; and the n2 forms elements
from that bound variable. The 0 and the N determine the range of n,
and the

∑
itself gives the ‘quantifier’, the operation (usually associa-

tive and commutative) carried out on the elements. In the Eindhoven
notation that would be written in the order quantifier, bound vari-
able(s), range, element-former. The whole expression is always enclosed
by binding-scope delimiters — so the example above might be written
(+n : 0≤ n≤ N : n2).
The advantage of using the Eindhoven notation is that uniform calcu-
lational laws apply to the manipulation of those expressions, and they
greatly reduce the risk of error.

[xxvii] Catamorphisms —
Meertens coined the term catamorphism for the unique function induced
by a homomorphism from the initial algebra, in a working document
presented at Meeting #38 in Rome (1988).

[xxviii] Datatype-generic programming —
The term ‘datatype-generic programming’ was coined by Roland Back-
house and Jeremy Gibbons for a project that ran 2003–2006 [14]; the
point was to distinguish from the different use of the term ‘generic pro-
gramming’ in languages like C++, where it essentially means parametric
polymorphism. Within the context of the Group, ‘datatype-generic pro-
gramming’ has come to mean parametrization by a functor, as with cata-
morphisms, and plain ‘generic programming’ to mean functions defined
more specifically over the sum-of-products structure of a polynomial
functor, as with PolyP and Generic Haskell.

Algorithmics 83

[xxix] Polytypic programming languages and PolyP —
The language PolyP, an extension of the lazy, higher-order functional
programming language Haskell [173], was designed by Jansson and Jeur-
ing at Chalmers, Gothenburg [111]. The development of PolyP and its
applications was discussed at Meeting #49 in Rancho Santa Fe (1996),
Meeting #51 in Oxford (1998), and Meeting #53 in Potsdam (1999).

[xxx] Generic datatypes with mutual recursion —
The theory to make Generic Haskell possible was developed by Hinze,
a first-time observer in Potsdam (1999). He presented his theory at
Meeting #54 in Blackheath (2000) [91]. To support generic functions
on sets of mutually recursive datatypes, Hinze, Jeuring, and Löh devel-
oped Generic Haskell from 2000 onwards [94,119]. Various aspects of
Generic Haskell were discussed also at Meeting #59 in Nottingham in
2004.

[xxxi] Type-indexed datatypes —
Type-indexed datatypes were introduced by Hinze et al. [94]. The type
families extension of Haskell is based on the work of Chakravarty
et al. [50].

[xxxii] Fixed-point representation of mutually recursive datatypes —
Rodriguez and others developed MultiRec [178], a generic programming
library that uses a fixed-point representation of possibly mutually recur-
sive datatypes.

[xxxiii] Generic programming libraries —
For an early comparison of generic programming libraries, see Rodriguez
et al. [177]. An early variant of Scrap Your Boilerplate [118] was dis-
cussed at Meeting #56 on Ameland, The Netherlands (2001). Generic
Deriving [122] was discussed at Meeting #70 in Ulm.

[xxxiv] Catamorphisms —
This work was done mainly by Grant Malcolm [126].

[xxxv] A zoo of morphisms —
There were mutumorphisms [71], which are pairs of mutually recursive
functions; zygomorphisms [125], which consist of a main recursive func-
tion and an auxiliary one on which it depends; histomorphisms [195],
in which the body has access to the recursive images of all subterms,
not just the immediate ones; so-called generalised folds [28], which use
polymorphic recursion to handle nested datatypes; and then there were
generic accumulations [163], which keep intermediate results in addi-
tional paramters for later stages in the computation.

[xxxvi] Paramorphism —
This was introduced by Lambert Meertens at Meeting #41 in Burton,
UK (1990) [139].

[xxxvii] Recursion schemes from comonads —
This appeared in Uustalu et al [197]. Comonads capture the general idea
of ‘evaluation in context’ [196], and this scheme makes contextual infor-
mation available to the body of the recursion. It was used to subsume
both zygomorphisms and histomorphisms.

84 R. Bird et al.

[xxxviii] Adjoint folds —
This was done by Hinze [92]. Using adjunctions as the common thread,
adjoint folds arise by inserting a left adjoint functor into the recursive
characterisation, thereby adapting the form of the recursion; they sub-
sume paramorphisms, accumulating folds, mutumorphisms (and hence
zygomorphisms), and generalised folds. Later, it was observed that
adjoint folds could be used to subsume recursion schemes from comon-
ads by Hinze and Wu [93].

[xxxix] Constructive mathematics and computer programming —
The connection between constructive mathematics and computer pro-
gramming was pioneered by the Swedish philosopher and logician Per
Martin-Löf [130].

[xl] Programming languages implementing dependent types —
Programming languages with dependent types include ALF [124],
Cayenne [7], ATS [203], Epigram [132], Agda [159] and Idris [44].

[xli] Curry-Howard correspondence —
The Curry-Howard correspondence describes how the typing rules of
the lambda calculus are in one-to-one correspondence with the natural
deduction rules in logic. Wadler [200] gives a historic overview of this
idea, aimed at a more general audience.

[xlii] Generic programming in dependently typed languages —
The idea of using dependent types to define an explicit universe of types
was one of the early applications of dependently typed programming [4,
27]. Since then, there have been several PhD theses exploring this idea
further [53,57,115,123,155,159]

[xliii] WG2.1 and dependent types —
Backhouse started exploring type theory in the mid 1980’s [13]. At Meet-
ing #42, Nordström was invited as an observer and talked about the
work on ALF. Throughout the early 21st century, observers and mem-
bers were frequently active in the area of type theory or generic program-
ming, including McBride, Löh, Jansson, Swierstra, Dagand, McKinna
and many others.

[xliv] Algebra of programming in Agda —
Patrik Jansson gave a first tutorial on the dependently typed program-
ming language Agda at Meeting #63 in Kyoto in 2007. This lead to an
exploration of how to mechanize the kind of program that was previ-
ously carried out on paper [156].

[xlv] Program calculation and type theory —
As type theory is a language for describing both proofs and programs,
it is no surprise that it provides the ideal setting for formalizing the
program calculation techniques that members of the Group pioneered [3,
190,192].

[xlvi] Applications of dependent types —
As languages with dependent types matured, various researchers started
exploring novel and unexpected applications in a variety of domains [40,
58,109,110].

Algorithmics 85

[xlvii] Dependently typed combinator parsing —
This was for example investigated by Nils Danielsson [58].

[xlviii] Dependent types and program development —
Many modern dependently typed programming languages are equipped
with some sort of IDE. Once the type signature of a method has been
fixed, the programmer can interactively find a suitable definition. There
are numerous examples of how a powerful type signature can give strong
guarantees about a data structure’s invariants [131], the correctness of a
domain-specific language [59], or type preservation of a compiler [134].

[xlix] Dependent types and effects —
There is a large body of work studying how to incorporate side-effects
in dependently typed programming languages. This can be done by con-
structing denotational models [189,191], by adding new effectful prim-
itives to the type theory [157], or by giving an algebraic account of the
properties that laws that effects satisfy [45,77].

[l] Monads —
This insight was made by Eugenio Moggi while studying semantics of
programming languages [141].

[li] Kleisli arrows —
Mike Spivey adopted this notion of monads for writing purely functional
programs with exceptions [186]; Phil Wadler generalized it to other
effects, and popularized it as the main abstraction for dealing with
effects in Haskell [198,199].

[lii] Parser combinators —
The combinator style of parsing is due to William Burge [48]. The
monadic presentation was popularized by Graham Hutton and Erik
Meijer [107], and a dependently typed version presented by Nils Daniels-
son [xlvii].

[liii] Parsers in verse —
The verse characterization of the parser type is due Fritz Ruehr [179].

[liv] Applicative functors —
The applicative interface for parsers was invented by Doaitse Swier-
stra [188]. This and other applications inspired Conor McBride and
Ross Paterson to identify the abstraction of applicative functors (also
called “strong lax-monoidal functors” or “idioms”) [133]. Like monads,
applicative functors have turned out to have unforeseen applications,
such as in datatype traversals [29,78] and distributed computing [75].

[lv] Algebraic effects —
Purely functional specifications of effects were studied by Wouter Swier-
stra in his PhD thesis [189,191]. The axioms of an algebraic specification
can be applied to equational reasoning involving either combinators or
the imperative-flavoured comprehension notation provided for example
by Haskell’s do notation [77]. Algebraic effects and handlers were intro-
duced by Gordon Plotkin then explored more fully in Matija Pretnar’s
PhD thesis [175], and are now the subject of much active work in the
Group and beyond.

86 R. Bird et al.

[lvi] Applications of relation algebra —
Roland Backhouse and B.A. Carré discovered similarities between an
algebra for path problems and the algebra of regular languages [15].
Tony Hoare and others developed algebraic laws of programming, insist-
ing that “specifications obey all the laws of the calculus of relations”
[97]. Richard Bird and Oege de Moor used relations for the calculational
derivation of programs covering principles of algorithm design such as
dynamic programming, greedy algorithms, exhaustive search and divide
and conquer [35].

[lvii] Algebra of binary relations —
Calculi based on the algebra of binary relations were developed by
George Boole, Charles Peirce, Ernst Schröder, Augustus De Morgan
and Alfred Tarski [171,180,194].

[lviii] Graph algorithms —
Walter Guttmann, for example, showed that the same correctness proof
shows that well-known algorithms solve the minimum weight spanning
tree problem, the minimum bottleneck spanning tree problem and sim-
ilar optimisation problems with different aggregation functions [84].
Algebraic versions of Dijkstra’s shortest path algorithm and the one
by Floyd/Warshall are applications of these algorithms to structures
different from graphs, pinpointing the mathematical requirements on
the underlying cost algebra that ensure their correctness [102]. Roland
Backhouse and colleagues are currently writing a book on algorithmic
graph theory presented relationally [18].

[lix] Program analysis —
Program analysis using an algebraic style of reasoning has always been
a core activity of the Group; for examples see [62,63,66].

[lx] Pointer structures —
Bernhard Möller and Richard Bird researched representations of data
structures in general, and pointer structures in particular [34,142].

[lxi] Algebraic logics —
An important step to an algebraic form of program logic was taken
by Hoare and his colleagues [97]. More recently, the central aspects of
Separation Logic [160,161] were treated algebraically [54–56].
Next to programming semantics, the infinite iteration operator can be
applied to model various logics. The temporal logics LTL, CTL and
CTL∗ have been in [60,114,150]. There were studies on logics for hybrid
systems [100,101] and Neighbourhood Logic [99].

[lxii] Further applications of the algebraic approach —
The Group discovered countless areas in computer science where semir-
ings are the underlying structure. Applications reach from, fundamen-
tal concepts of programming language semantics, including concurrent
programs [98] and termination [16,61,66,90] via games [12,17,183] and
data processing [174], to multi-agent systems [144] and quantum com-
puting [193].
Beyond that, matrix-style reasoning has applications in object-oriented

Algorithmics 87

programming [121] and feature-oriented software development, includ-
ing aspects of product families [106] and of feature interactions [20].

[lxiii] Algebraic semantics of the while loop —
The fixed-point characterisation of while loops goes back to Andrzej
Blikle and David Park [37,164]. Dexter Kozen transferred the concept
into the setting of Kleene algebras [116].

[lxiv] Algebras with tests —
Test elements form a Boolean subalgebra. It represents an algebraic
version of the usual assertion logics like the Hoare calculus [117,147].
There is a direct link to weakest (liberal) preconditions [35,148].

[lxv] Fixed-point fusion —
Fixed-point fusion is a consequence of the fixed-point semantics of
recursion [1,140].

[lxvi] Virtual data structures —
These were described by Doaitse Swierstra and Oege de Moor [187].

[lxvii] Omega algebras —
The omega operator was introduce by Cohen [51]; Möller performed a
systematic study of its foundations [143].
Guttmann used it for analysing executions of lazy and strict computa-
tions [82]. Infinite traces, also called streams, have many applications
including the modelling protocols [142], as well as dynamic and hybrid
systems [100,183,184] . The corresponding algebras can also be used to
formally reason about (non)termination in classical programs [104].

[lxviii] Tool-Support for algebraic reasoning —
Peter Höfner and Georg Struth proved countless theorems of all these
algebras in automated theorem provers, such as Prover9 [103,105]. Wal-
ter Guttmann, Peter Höfner, Georg Struth and others used the interac-
tive proof assistant Isabelle/HOL to implement the algebras, the con-
crete models, as well as many program derivations, e.g. [5,6,80,83].

[lxix] Program transformation —
In the functional realm, fundamental ideas in program transformation
were introduced by Cooper [52] and subsequently developed by oth-
ers, in particular Burstall and Darlington [49]. Later activities occurred
within the ISI project [19,120] and at Kestrel Institute [81]. In the
realm of artificial intelligence there were ideas in the field of auto-
mated programming (e.g., the DEDALUS system [127] and its successor
[128,129]).

[lxx] Refinement calculi —
Imperative programming calculi based on refinement include those of
Dijkstra [65], Back [8], Hoare [96,97], Hehner [87–89], Morris [154], and
Morgan [151,152].

[lxxi] Transformational development —
For background on the ‘life cycle of transformational program develop-
ment’, see Broy [2]. The five levels of the ‘wide spectrum’ are due to
Partsch [168].

88 R. Bird et al.

[lxxii] The language CIP-L —
The language CIP-L is described in detail in the first of two volumes
about the CIP project as a whole [24]. For some of the motivation, see
Bauer [22] and Broy and Pepper [47].

[lxxiii] The system CIP-S —
The specification of the CIP-S system can be found in the second vol-
ume about the CIP project [25]. The more interesting parts of the for-
mal development of the system, together with the transformation rules
used, can also be found there. Successors to CIP-S were developed by
Partsch [169] and Guttmann et al. [85].

[lxxiv] Experiences with CIP —
Smaller CIP case studies include sorting [46,165] and parsing [166–168].
As noted above, the CIP-S system itself [25] constitutes a larger case
study.

[lxxv] Programs should be grown —
Fred Brooks wrote “Some years ago Harlan Mills proposed that any
software system should be grown by incremental development.” [72]

Acknowledgements. Section 2 is based on a paper more specifically about the evo-
lution of the Bird–Meertens Formalism [76], Sect. 3 partly based on a paper about the
contributions to generic programming of the Software Technology group at Utrecht
University [112], and Sect. 4 partly based on a paper about the unification of recursion
schemes [93].

References

1. Aarts, C., et al.: Fixed-point calculus. Inf. Process. Lett. 53(3), 131–136 (1995)
2. Agresti, W.M.: What are the new paradigms? In: Agresti, W.M. (ed.) New

Paradigms for Software Development. IEEE Computer Society Press (1986)
3. Alpuim, J., Swierstra, W.: Embedding the refinement calculus in Coq. Sci. Com-

put. Program. 164, 37–48 (2018)
4. Altenkirch, T., Mcbride, C.: Generic programming within dependently typed pro-

gramming. In: Gibbons, J., Jeuring, J. (eds.) Generic Programming. ITIFIP, vol.
115, pp. 1–20. Springer, Boston, MA (2003). https://doi.org/10.1007/978-0-387-
35672-3 1

5. Armstrong, A., Struth, G., Weber, T.: Kleene algebra. Archive of Formal Proofs
(2013). http://isa-afp.org/entries/Kleene Algebra.html

6. Armstrong, A., Foster, S., Struth, G., Weber, T.: Relation algebra. Archive of
Formal Proofs (2014). http://isa-afp.org/entries/Relation Algebra.html

7. Augustsson, L.: Cayenne - a language with dependent types. In: International
Conference on Functional Programming, ICFP 1998, pp. 239–250 (1998)

8. Back, R.J.: On the correctness of refinement steps in program development. PhD
thesis. Report A-1978-4, Department of Computer Science, University of Helsinki
(1978)

9. Back, R.J.: On correct refinement of programs. J. Comput. Syst. Sci. 23(1), 49–68
(1981). https://doi.org/10.1016/0022-0000(81)90005-2

https://doi.org/10.1007/978-0-387-35672-3_1
https://doi.org/10.1007/978-0-387-35672-3_1
http://isa-afp.org/entries/Kleene_Algebra.html
http://isa-afp.org/entries/Relation_Algebra.html
https://doi.org/10.1016/0022-0000(81)90005-2

Algorithmics 89

10. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science, Springer (1998). https://doi.org/10.1007/
978-1-4612-1674-2 4

11. Backhouse, R.: An exploration of the Bird-Meertens formalism. Technical report
CS 8810, Department of Computer Science, Groningen University (1988)

12. Backhouse, R., Michaelis, D.: Fixed-point characterisation of winning strategies
in impartial games. In: Berghammer, R., Möller, B., Struth, G. (eds.) Relational
and Kleene-Algebraic Methods in Computer Science. Lecture Notes in Computer
Science, vol. 3051, pp. 34–47. Springer (2004)

13. Backhouse, R., Chisholm, P., Malcolm, G., Saaman, E.: Do-it-yourself type theory.
Formal Aspects Comput. 1(1), 19–84 (1989)

14. Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.): Spring School on
Datatype-Generic Programming, Lecture Notes in Computer Science, vol. 4719.
Springer-Verlag (2007). https://doi.org/10.1007/978-3-540-76786-2

15. Backhouse, R.C., Carré, B.A.: Regular algebra applied to path-finding problems.
IMA J. Appl. Math. 15(2), 161–186 (1975). https://doi.org/10.1093/imamat/15.
2.161

16. Backhouse, R.C., Doornbos, H.: Datatype-generic termination proofs. Theor.
Comput. Syst. 43(3–4), 362–393 (2008). https://doi.org/10.1007/s00224-007-
9056-z

17. Backhouse, R.C., Chen, W., Ferreira, J.F.: The algorithmics of solitaire-like
games. Sci. Comput. Program. 78(11), 2029–2046 (2013). https://doi.org/10.
1016/j.scico.2012.07.007

18. Backhouse, R.C., Doornbos, H., Glück, R., van der Woude, J.: Elements of algo-
rithmic graph theory: an exercise in point-free reasoning, (working document)
(2019)

19. Balzer, R., Goldman, N., Wile, D.: On the transformational implementation app-
roach to programming. In: Yeh, R.T., Ramamoorthy, C.V. (eds.) International
Conference on Software Engineering, IEEE Computer Society, pp. 337–344 (1976)

20. Batory, D.S., Höfner, P., Kim, J.: Feature interactions, products, and composition.
In: Denney, E., Schultz, U.P. (eds.) Generative Programming and Component
Engineering. ACM, pp. 13–22 (2011). https://doi.org/10.1145/2047862.2047867

21. Bauer, F.L.: Programming as an evolutionary process. In: Yeh, R.T., Ramamoor-
thy, C. (eds.) International Conference on Software Engineering, IEEE Computer
Society, pp. 223–234 (1976)

22. Bauer, F.L.: From specifications to machine code: Program construction through
formal reasoning. In: Ohno, Y., Basili, V., Enomoto, H., Kobayashi, K., Yeh,
R.T. (eds.) International Conference on Software Engineering, IEEE Computer
Society, pp. 84–91 (1982)

23. Bauer, F.L., Wössner, H.: Algorithmic Language and Program Development.
Texts and Monographs in Computer Science. Springer (1982). https://doi.org/
10.1007/978-3-642-61807-9

24. Bauer, F.L., et al.: The Munich Project CIP, Volume I: The Wide Spectrum
Language CIP-L. Lecture Notes in Computer Science, vol. 183. Springer (1985).
https://doi.org/10.1007/3-540-15187-7

25. Bauer, F.L., et al.: The Munich Project CIP, Volume II: The Program Transforma-
tion System CIP-S, Lecture Notes in Computer Science, vol. 292. Springer-Verlag,
Berlin (1987). https://doi.org/10.1007/3-540-18779-0

26. Bemer, R.: A politico-social history of ALGOL. In: Annual Review of Automatic
Programming 5, pp. 151–237. Pergamon Press, Oxford (1969)

https://doi.org/10.1007/978-1-4612-1674-2_4
https://doi.org/10.1007/978-1-4612-1674-2_4
https://doi.org/10.1007/978-3-540-76786-2
https://doi.org/10.1093/imamat/15.2.161
https://doi.org/10.1093/imamat/15.2.161
https://doi.org/10.1007/s00224-007-9056-z
https://doi.org/10.1007/s00224-007-9056-z
https://doi.org/10.1016/j.scico.2012.07.007
https://doi.org/10.1016/j.scico.2012.07.007
https://doi.org/10.1145/2047862.2047867
https://doi.org/10.1007/978-3-642-61807-9
https://doi.org/10.1007/978-3-642-61807-9
https://doi.org/10.1007/3-540-15187-7
https://doi.org/10.1007/3-540-18779-0

90 R. Bird et al.

27. Benke, M., Dybjer, P., Jansson, P.: Universes for generic programs and proofs in
dependent type theory. Nordic J. Comput. 10(4), 265–289 (2003)

28. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects
Comput. 11(2), 200–222 (1999). https://doi.org/10.1007/s001650050047

29. Bird, R., Gibbons, J., Mehner, S., Voigtländer, J., Schrijvers, T.: Understand-
ing idiomatic traversals backwards and forwards. In: Haskell Symposium. ACM
(2013). https://doi.org/10.1145/25037782503781 (2013)

30. Bird, R.S.: Some notational suggestions for transformational programming. Work-
ing Paper NIJ-3, IFIP WG2.1, also Technical Report RCS 144, Department of
Computer Science, University of Reading (1981)

31. Bird, R.S.: An introduction to the theory of lists. Monograph PRG-56, Program-
ming Research Group, University of Oxford (1986)

32. Bird, R.S.: A calculus of functions for program derivation. Monograph PRG-64,
Programming Research Group, University of Oxford (1987)

33. Bird, R.S.: Lectures on constructive functional programming. Monograph PRG-
69, Programming Research Group, University of Oxford (1988)

34. Bird, R.S.: Unfolding pointer algorithms. J. Funct. Program. 11(3), 347–358
(2001). https://doi.org/10.1017/S0956796801003914

35. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice Hall International
Series in Computer Science. Prentice Hall, Hoboken (1997)

36. Blaine, L., Gilham, L., Liu, J., Smith, D.R., Westfold, S.J.: Planware: domain-
specific synthesis of high-performance schedulers. In: Automated Software Engi-
neering, IEEE Computer Society, p. 270 (1998). https://doi.org/10.1109/ASE.
1998.732672

37. Blikle, A.: Iterative systems: An algebraic approach. Bulletin de l’Académie
Polonaise des Sciences, Série des sciences mathématiques, astronomiques et
physiques XX(1) (1972)

38. Boom, H.: Further thoughts on Abstracto. Working Paper ELC-9, IFIP WG2.1
(1981)

39. Botta, N., Jansson, P., Ionescu, C.: Contributions to a computational theory of
policy advice and avoidability. J. Funct. Programm. 27, e23 (2017) . https://doi.
org/10.1017/S0956796817000156

40. Botta, N., Jansson, P., Ionescu, C., Christiansen, D.R., Brady, E.: Sequential
decision problems, dependent types and generic solutions. Logical Meth. Comput.
Sci. 13(1) (2017). https://doi.org/10.23638/LMCS-13(1:7)2017

41. Boyle, J., Harmer, T.J., Winter, V.L.: The TAMPR program transformation sys-
tem: simplifying the development of numerical software. In: Arge, E., Bruaset,
A.M., Langtangen, H.P. (eds,) Modern Software Tools for Scientific Computing,
Birkhäuser, pp. 353–372 (1996) . https://doi.org/10.1007/978-1-4612-1986-6 17

42. Boyle, J.M.: An introduction to Transformation-Assisted Multiple Program Real-
ization (TAMPR) system. In: Bunch, J.R. (ed.) Cooperative Development of
Mathematical Software, Department of Mathematics, University of California,
San Diego (1976)

43. Boyle, J.M., Dritz, K.W.: An automated programming system to facilitate the
development of quality mathematical software. In: Rosenfeld, J. (ed.) IFIP
Congress, North-Holland, pp. 542–546 (1974)

44. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23(5), 552–593 (2013)

45. Brady, E.: Programming and reasoning with algebraic effects and dependent
types. In: International Conference on Functional Programming, pp. 133–144
(2013)

https://doi.org/10.1007/s001650050047
https://doi.org/10.1145/25037782503781
https://doi.org/10.1017/S0956796801003914
https://doi.org/10.1109/ASE.1998.732672
https://doi.org/10.1109/ASE.1998.732672
https://doi.org/10.1017/S0956796817000156
https://doi.org/10.1017/S0956796817000156
https://doi.org/10.23638/LMCS-13(1:7)2017
https://doi.org/10.1007/978-1-4612-1986-6_17

Algorithmics 91

46. Broy, M.: Program construction by transformations: a family tree of sorting pro-
grams. In: Biermann, A., Guiho, G. (eds.) Computer Program Synthesis Method-
ologies, NATO Advanced Study Institutes Series, vol. 95. Springer (1983). https://
doi.org/10.1007/978-94-009-7019-9 1

47. Broy, M., Pepper, P.: On the coherence of programming language and program-
ming methodology. In: Bormann, (ed.) IFIP Working Conference on Programming
Languages and System Design, North-Holland, pp. 41–53 (1983)

48. Burge, W.H.: Recursive Programming Techniques. Addison-Wesley, Boston
(1975)

49. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. J. ACM 24(1), 44–67 (1977)

50. Chakravarty, M.M.T., Keller, G., Jones, S.L.P., Marlow, S.: Associated types with
class. In: Palsberg, J., Abadi, M. (eds.) Principles of Programming Languages.
ACM, pp. 1–13 (2005). https://doi.org/10.1145/1040305.1040306

51. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC
2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000). https://doi.org/
10.1007/10722010 4

52. Cooper, D.: The equivalence of certain computations. Comput. J. 9, 45–52 (1966)
53. Dagand, P.E., et al.: A cosmology of datatypes: Reusability and dependent types.

Ph.D. thesis, University of Strathclyde (2013)
54. Dang, H., Möller, B.: Concurrency and local reasoning under reverse exchange.

Sci. Comput. Programm. 85, Part B, 204–223 (2013)
55. Dang, H., Möller, B.: Extended transitive separation logic. J. Logical Algebraic

Meth. Programm. 84(3), 303–325 (2015). https://doi.org/10.1016/j.jlamp.2014.
12.002

56. Dang, H., Höfner, P., Möller, B.: Algebraic separation logic. J. Logic Algebraic
Programm. 80(6), 221–247 (2011). https://doi.org/10.1016/j.jlap.2011.04.003

57. Danielsson, N.A.: Functional program correctness through types. Ph.D. thesis,
Chalmers University of Technology and Gothenburg University (2007)

58. Danielsson, N.A.: Total parser combinators. In: International Conference on Func-
tional Programming, pp. 285–296 (2010)

59. Danielsson, N.A.: Correct-by-construction pretty-printing. In: Workshop on
Dependently-Typed Programming, pp. 1–12 (2013)

60. Desharnais, J., Möller, B.: Non-associative Kleene algebra and temporal logics.
In: Höfner, P., Pous, D., Struth, G. (eds.) Relational and Algebraic Methods in
Computer Science. Lecture Notes in Computer Science, vol. 10226, pp. 93–108
(2017). https://doi.org/10.1007/978-3-319-57418-9 6

61. Desharnais, J., Möller, B., Struth, G.: Termination in modal Kleene algebra. In:
Mayr, E.W., Mitchell, J.C., Lévy, J.J. (eds.) Exploring New Frontiers of Theo-
retical Informatics, pp. 647–660, Kluwer (2004)

62. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans.
Comput. Log. 7(4), 798–833 (2006)

63. Desharnais, J., Möller, B., Tchier, F.: Kleene under a modal demonic star. J. Logic
Algebraic Programm. 66(2), 127–160 (2006). https://doi.org/10.1016/j.jlap.2005.
04.006

64. Dewar, R.: Letter to members of IFIP WG2.1 (1977). http://ershov-arc.iis.nsk.
su/archive/eaindex.asp?did=29067

65. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Hoboken (1976)
66. Doornbos, H., Backhouse, R.C.: Algebra of program termination. In: Backhouse,

R.C., Crole, R.L., Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the

https://doi.org/10.1007/978-94-009-7019-9_1
https://doi.org/10.1007/978-94-009-7019-9_1
https://doi.org/10.1145/1040305.1040306
https://doi.org/10.1007/10722010_4
https://doi.org/10.1007/10722010_4
https://doi.org/10.1016/j.jlamp.2014.12.002
https://doi.org/10.1016/j.jlamp.2014.12.002
https://doi.org/10.1016/j.jlap.2011.04.003
https://doi.org/10.1007/978-3-319-57418-9_6
https://doi.org/10.1016/j.jlap.2005.04.006
https://doi.org/10.1016/j.jlap.2005.04.006
http://ershov-arc.iis.nsk.su/archive/eaindex.asp?did=29067
http://ershov-arc.iis.nsk.su/archive/eaindex.asp?did=29067

92 R. Bird et al.

Mathematics of Program Construction, Lecture Notes in Computer Science, vol.
2297, pp. 203–236. Springer (2000). https://doi.org/10.1007/3-540-47797-7 6

67. Feather, M.S.: A system for developing programs by transformation. Ph.D thesis,
University of Edinburgh, UK (1979). http://hdl.handle.net/1842/7296

68. Feather, M.S.: A system for assisting program transformation. ACM Trans. Pro-
gramm. Lang. 4(1), 1–20 (1982). https://doi.org/10.1145/357153.357154

69. Feather, M.S.: A survey and classification of some program transformation
approaches and techniques. In: Meertens, L. (ed.) Program Specification and
Transformation, North-Holland, pp. 165–195 (1987)

70. Floyd, R.W.: Assigning meaning to programs. In: Schwartz, J.T. (ed.) Mathemat-
ical Aspects of Computer Science, American Mathematical Society, Proceedings
of Symposia in Applied Mathematics, vol. 19, pp. 19–32 (1967)

71. Fokkinga, M.: Tupling and mutumorphisms. The Squiggolist 1(4), 81–82 (1990)
72. Brooks, J.F.: The Mythical Man-Month. Addison-Wesley, Boston (1975)
73. Geurts, L., Meertens, L.: Remarks on Abstracto. Algol. Bull. 42, 56–63 (1978)
74. Geurts, L., Meertens, L., Pemberton, S.: The ABC Programmer’s Handbook.

Prentice-Hall, Hoboken, iSBN 0-13-000027-2 (1990)
75. Gibbons, J.: Free delivery (functional pearl). In: Haskell Symposium, pp. 45–50

(2016). https://doi.org/10.1145/2976002.2976005
76. Gibbons, J.: The school of Squiggol: A history of the Bird-Meertens formalism. In:

Astarte, T. (ed.) Workshop on the History of Formal Methods. Springer-Verlag,
Lecture Notes in Computer Science (2020). (to appear)

77. Gibbons, J., Hinze, R.: Just do it: Simple monadic equational reasoning. In: Inter-
national Conference on Functional Programming, pp. 2–14 (2011). https://doi.
org/10.1145/2034773.2034777

78. Gibbons, J., dos Santos Oliveira, B.C.: The essence of the iterator pat-
tern. J. Funct. Programm. 19(3,4), 377–402 (2009). https://doi.org/10.1017/
S0956796809007291

79. Gibbons, J., Henglein, F., Hinze, R., Wu, N.: Relational algebra by way of adjunc-
tions. Proc. ACM Programm. Lang. 2(ICFP), 86:1–86:28 (2018). https://doi.org/
10.1145/3236781

80. Gomes, V.B.F., Guttmann, W., Höfner, P., Struth, G., Weber, T.: Kleene algebras
with domain. Archive of Formal Proofs (2016). http://isa-afp.org/entries/KAD.
html

81. Green, C., et al.: Research on knowledge-based programming and algorithm
design. Technical report Kes.U.81.2, Kestrel Institute (1981, revised 1982) (1981)

82. Guttmann, W.: Infinite executions of lazy and strict computations. J. Logical
Algebraic Meth. Programm. 84(3), 326–340 (2015). https://doi.org/10.1016/j.
jlamp.2014.08.001

83. Guttmann, W.: Stone algebras. Archive of Formal Proofs (2016). http://isa-afp.
org/entries/Stone Algebras.html

84. Guttmann, W.: An algebraic framework for minimum spanning tree problems.
Theoret. Comput. Sci. 744, 37–55 (2018)

85. Guttmann, W., Partsch, H., Schulte, W., Vullinghs, T.: Tool support for the
interactive derivation of formally correct functional programs. J. Univ. Comput.
Sci. 9(2), 173 (2003). https://doi.org/10.3217/jucs-009-02-0173

86. Hagino, T.: A categorical programming language. Ph.D thesis, University of Edin-
burgh, UK (1987)

87. Hehner, E.C.R.: Predicative programming, part I. Commun. ACM 27(2), 134–143
(1984). https://doi.org/10.1145/69610.357988

https://doi.org/10.1007/3-540-47797-7_6
http://hdl.handle.net/1842/7296
https://doi.org/10.1145/357153.357154
https://doi.org/10.1145/2976002.2976005
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1017/S0956796809007291
https://doi.org/10.1017/S0956796809007291
https://doi.org/10.1145/3236781
https://doi.org/10.1145/3236781
http://isa-afp.org/entries/KAD.html
http://isa-afp.org/entries/KAD.html
https://doi.org/10.1016/j.jlamp.2014.08.001
https://doi.org/10.1016/j.jlamp.2014.08.001
http://isa-afp.org/entries/Stone_Algebras.html
http://isa-afp.org/entries/Stone_Algebras.html
https://doi.org/10.3217/jucs-009-02-0173
https://doi.org/10.1145/69610.357988

Algorithmics 93

88. Hehner, E.C.R.: Predicative programming, part II. Commun. ACM 27(2), 144–
151 (1984). https://doi.org/10.1145/69610.357990

89. Hehner, E.C.R.: A Practical Theory of Programming. Springer (1993). https://
doi.org/10.1007/978-1-4419-8596-5 7

90. Hehner, E.C.R.: Specifications, programs, and total correctness. Sci. Comput.
Program. 34(3), 191–205 (1999). https://doi.org/10.1016/S0167-6423(98)00027-
6

91. Hinze, R.: Polytypic values possess polykinded types. Sci. Comput. Program.
43(2–3), 129–159 (2002)

92. Hinze, R.: Adjoint folds and unfolds–an extended study. Sci. Comput. Program.
78(11), 2108–2159 (2013). https://doi.org/10.1016/j.scico.2012.07.011

93. Hinze, R., Wu, N.: Unifying structured recursion schemes: an extended study. J.
Funct. Program. 26, 47 (2016)

94. Hinze, R., Jeuring, J., Löh, A.: Type-indexed data types. Sci. Comput. Program.
51(1–2), 117–151 (2004)

95. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

96. Hoare, C.A.R.: Programs are predicates. Philosophical Transactions of the Royal
Society of London (A 312), 475–489 (1984)

97. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM 30(8), 672–686
(1987). https://doi.org/10.1145/27651.27653

98. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and
its foundations. J. Logic Algebraic Programm. 80(6), 266–296 (2011). https://
doi.org/10.1016/j.jlap.2011.04.005

99. Höfner, P., Möller, B.: Algebraic neighbourhood logic. J. Logic Algebraic Pro-
gramm. 76, 35–59 (2008)

100. Höfner, P., Möller, B.: An algebra of hybrid systems. J. Logic Algebraic Pro-
gramm. 78, 74–97 (2009). https://doi.org/10.1016/j.jlap.2008.08.005

101. Höfner, P., Möller, B.: Fixing Zeno gaps. Theoret. Comput. Sci. 412(28), 3303–
3322 (2011). https://doi.org/10.1016/j.tcs.2011.03.018

102. Höfner, P., Möller, B.: Dijkstra, Floyd and Warshall meet Kleene. Formal Aspects
Comput. 24(4–6), 459–476 (2012). https://doi.org/10.1007/s00165-012-0245-4

103. Höfner, P., Struth, G.: Automated reasoning in Kleene algebra. In: Pfenning, F.
(ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3 19

104. Höfner, P., Struth, G.: Non-termination in idempotent semirings. In: Bergham-
mer, R., Möller, B., Struth, G. (eds.) RelMiCS 2008. LNCS, vol. 4988, pp. 206–
220. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78913-0 16

105. Höfner, P., Struth, G.: On automating the calculus of relations. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
50–66. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7 5

106. Höfner, P., Khédri, R., Möller, B.: Supplementing product families with
behaviour. Softw. Inform. 5(1–2), 245–266 (2011)

107. Hutton, G., Meijer, E.: Monadic parsing in Haskell. J. Funct. Program. 8(4),
437–444 (1998). https://doi.org/10.1017/S0956796898003050

108. Ionescu, C.: Vulnerability modelling with functional programming and depen-
dent types. Math. Struct. Comput. Sci. 26(1), 114–128 (2016). https://doi.org/
10.1017/S0960129514000139

109. Ionescu, C., Jansson, P.: Dependently-typed programming in scientific computing.
In: Hinze, R. (ed.) IFL 2012. LNCS, vol. 8241, pp. 140–156. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41582-1 9

https://doi.org/10.1145/69610.357990
https://doi.org/10.1007/978-1-4419-8596-5_7
https://doi.org/10.1007/978-1-4419-8596-5_7
https://doi.org/10.1016/S0167-6423(98)00027-6
https://doi.org/10.1016/S0167-6423(98)00027-6
https://doi.org/10.1016/j.scico.2012.07.011
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/27651.27653
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1016/j.jlap.2008.08.005
https://doi.org/10.1016/j.tcs.2011.03.018
https://doi.org/10.1007/s00165-012-0245-4
https://doi.org/10.1007/978-3-540-73595-3_19
https://doi.org/10.1007/978-3-540-78913-0_16
https://doi.org/10.1007/978-3-540-71070-7_5
https://doi.org/10.1017/S0956796898003050
https://doi.org/10.1017/S0960129514000139
https://doi.org/10.1017/S0960129514000139
https://doi.org/10.1007/978-3-642-41582-1_9

94 R. Bird et al.

110. Ionescu, C., Jansson, P.: Testing versus proving in climate impact research. In:
TYPES 2011, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Ger-
many, Leibniz International Proceedings in Informatics (LIPIcs), vol. 19, pp. 41–
54 (2013). https://doi.org/10.4230/LIPIcs.TYPES.2011.41

111. Jansson, P., Jeuring, J.: PolyP – a polytypic programming language extension.
In: Principles of Programming Languages, pp. 470–482 (1997)

112. Jeuring, J., Meertens, L.: Geniaal programmeren-generic programming at
Utrecht-. In: et al. HB (ed.) Fascination for computation, 25 jaar opleiding infor-
matica, Department of Information and Computing Sciences, Utrecht University,
pp. 75–88 (2009)

113. Johnson, W.L., Feather, M.S., Harris, D.R.: The KBSA require-
ments/specifications facet: ARIES. In: Knowledge-Based Software Engineering,
IEEE Computer Society, pp. 48–56 (1991). https://doi.org/10.1109/KBSE.1991.
638020

114. von Karger, B., Berghammer, R.: A relational model for temporal logic. Logic J.
IGPL 6, 157–173 (1998)

115. Ko, H.S.: Analysis and synthesis of inductive families. DPhil thesis, Oxford Uni-
versity, UK (2014)

116. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

117. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.
Log. 1(1), 60–76 (2000)

118. Lämmel, R., Jones, S.P.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Types in Language Design and Implementation, pp.
26–37 (2003)

119. Löh, A., Clarke, D., Jeuring, J.: Dependency-style generic Haskell. In: Shivers,
O. (ed.) International Conference on Functional Programming. ACM Press, pp.
141–152 (2003)

120. London, P., Feather, M.: Implementing specification freedoms. Sci. Comput. Pro-
gram. 2(2), 91–131 (1982)

121. Macedo, H., Oliveira, J.N.: A linear algebra approach to OLAP. Formal Aspects
Comput. 27(2), 283–307 (2015). https://doi.org/10.1007/s00165-014-0316-9

122. Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: A generic deriving mechanism
for Haskell. In: Haskell Symposium, pp. 37–48 (2010)

123. Magalhães, J.P.R.: Less is more: generic programming theory and practice. PhD
thesis, Utrecht University, Netherlands (2012)

124. Magnusson, L., Nordström, B.: The ALF proof editor and its proof engine. In:
Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 213–237.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58085-9 78

125. Malcolm, G.: Algebraic data types and program transformation. PhD thesis, Uni-
versity of Groningen (1990)

126. Malcolm, G.: Data structures and program transformation. Sci. Comput. Pro-
gram. 14, 255–279 (1990)

127. Manna, Z., Waldinger, R.J.: Synthesis: dreams → programs. IEEE Trans. Soft-
ware Eng. 5(4), 294–328 (1979). https://doi.org/10.1109/TSE.1979.234198

128. Manna, Z., Waldinger, R.J.: A deductive approach to program synthesis. ACM
Trans. Program. Lang. Syst. 2(1), 90–121 (1980). https://doi.org/10.1145/
357084.357090

129. Manna, Z., Waldinger, R.J.: The Deductive Foundations of Computer Program-
ming. Addison-Wesley, Boston (1993)

https://doi.org/10.4230/LIPIcs.TYPES.2011.41
https://doi.org/10.1109/KBSE.1991.638020
https://doi.org/10.1109/KBSE.1991.638020
https://doi.org/10.1007/s00165-014-0316-9
https://doi.org/10.1007/3-540-58085-9_78
https://doi.org/10.1109/TSE.1979.234198
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/357084.357090

Algorithmics 95

130. Martin-Löf, P.: Constructive mathematics and computer programming. In: Stud-
ies in Logic and the Foundations of Mathematics, vol. 104, Elsevier, pp. 153–175
(1982)

131. McBride, C.: How to keep your neighbours in order. In: International Conference
on Functional Programming, Association for Computing Machinery, New York,
NY, USA, ICFP 2014, pp. 297–309 (2014). https://doi.org/10.1145/2628136.
2628163

132. McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(1),
69–111 (2004)

133. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008). https://doi.org/10.1017/S0956796807006326

134. McKinna, J., Wright, J.: A type-correct, stack-safe, provably correct, expression
compiler in Epigram, unpublished draft (2006)

135. Meertens, L.: Abstracto 84: The next generation. In: Proceedings of the 1979
Annual Conference. ACM, pp. 33–39 (1979)

136. Meertens, L.: Algorithmics: Towards programming as a mathematical activity. In:
de Bakker, J.W., Hazewinkel, M., Lenstra, J.K. (eds.) Proceedings of the CWI
Symposium on Mathematics and Computer Science, North-Holland, pp. 289–334
(1986). https://ir.cwi.nl/pub/20634

137. Meertens, L.: An Abstracto reader prepared for IFIP WG 2.1. Technical report
CS-N8702, CWI, Amsterdam (1987)

138. Meertens, L.: Squiggol versus Squigol, private email to JG (2019)
139. Meertens, L.G.L.T.: Paramorphisms. Formal Aspects Comput. 4(5), 413–424

(1992)
140. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas,

lenses, envelopes and barbed wire. In: Hughes, J. (ed.) Functional Programming
Languages and Computer Architecture. Lecture Notes in Computer Science, vol.
523. Springer, pp. 124–144 (1991). https://doi.org/10.1007/3540543961 7

141. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
142. Möller, B.: Calculating with pointer structures. In: IFIP TC2/WG 2.1 Working

Conference on Algorithmic Languages and Calculi, pp. 24–48. Chapman & Hall
(1997)

143. Möller, B.: Kleene getting lazy. Sci. Comput. Program. 65, 195–214 (2007)
144. Möller, B.: Modal knowledge and game semirings. Comput. J. 56(1), 53–69 (2013).

https://doi.org/10.1093/comjnl/bxs140
145. Möller, B.: Geographic wayfinders and space-time algebra. J. Logical Algebraic

Meth. Programm. 104, 274–302 (2019). https://doi.org/10.1016/j.jlamp.2019.02.
003

146. Möller, B., Roocks, P.: An algebra of database preferences. J. Logical Algebraic
Meth. Programm. 84(3), 456–481 (2015). https://doi.org/10.1016/j.jlamp.2015.
01.001

147. Möller, B., Struth, G.: Modal Kleene algebra and partial correctness. In: Rattray,
C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 379–
393. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27815-3 30

148. Möller, B., Struth, G.: wp Is wlp. In: MacCaull, W., Winter, W., Düntsch, I. (eds.)
Relational Methods in Computer Science. Lecture Notes in Computer Science, vol.
3929, pp. 200–211. Springer (2005). https://doi.org/10.1007/11734673 16

149. Möller, B., Partsch, H., Pepper, P.: Programming with transformations: an
overview of the Munich CIP project (1983)

https://doi.org/10.1145/2628136.2628163
https://doi.org/10.1145/2628136.2628163
https://doi.org/10.1017/S0956796807006326
https://ir.cwi.nl/pub/20634
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1093/comjnl/bxs140
https://doi.org/10.1016/j.jlamp.2019.02.003
https://doi.org/10.1016/j.jlamp.2019.02.003
https://doi.org/10.1016/j.jlamp.2015.01.001
https://doi.org/10.1016/j.jlamp.2015.01.001
https://doi.org/10.1007/978-3-540-27815-3_30
https://doi.org/10.1007/11734673_16

96 R. Bird et al.

150. Möller, B., Höfner, P., Struth, G.: Quantales and temporal logics. In: Johnson, M.,
Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 263–277. Springer, Heidelberg
(2006). https://doi.org/10.1007/11784180 21

151. Morgan, C.: The specification statement. ACM Trans. Program. Lang. Syst.
10(3), 403–419 (1988). https://doi.org/10.1145/44501.44503

152. Morgan, C.: Programming from Specifications. Prentice Hall, Hoboken (1990)
153. Morgan, C.: An old new notation for elementary probability theory. Sci. Comput.

Program. 85, 115–136 (2014). https://doi.org/10.1016/j.scico.2013.09.003. special
Issue on Mathematics of Program Construction 2012

154. Morris, J.M.: A theoretical basis for stepwise refinement and the programming
calculus. Sci. Comput. Program. 9(3), 287–306 (1987)

155. Morris, P.W.: Constructing universes for generic programming. PhD thesis, Uni-
versity of Nottingham, UK (2007)

156. Mu, S.C., Ko, H.S., Jansson, P.: Algebra of programming in Agda: dependent
types for relational program derivation. J. Funct. Program. 19(5), 545–579 (2009)

157. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare
type theory. In: International Conference on Functional Programming, pp. 62–73
(2006)

158. Naur, P.: The IFIP working group on ALGOL. ALGOL Bull. (Issue 15), 52 (1962)
159. Norell, U.: Towards a practical programming language based on dependent type

theory. PhD thesis, Chalmers University of Technology (2007)
160. O’Hearn, P.: Resources, concurrency, and local reasoning. Theoret. Comput. Sci.

375, 271–307 (2007)
161. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter

data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

162. Paige, R.: Transformational programming – Applications to algorithms and sys-
tems. In: Wright, J.R., Landweber, L., Demers, A.J., Teitelbaum, T. (eds.) Prin-
ciples of Programming Languages. ACM, pp. 73–87 (1983). https://doi.org/10.
1145/567067.567076

163. Pardo, A.: Generic accumulations. In: Gibbons, J., Jeuring, J. (eds.) Generic
Programming: IFIP TC2/WG2.1 Working Conference on Generic Programming.
Kluwer Academic Publishers, International Federation for Information Process-
ing, vol. 115, pp. 49–78 (2002)

164. Park, D.: On the semantics of fair parallelism. In: Bjøorner, D. (ed.) Abstract
Software Specifications. LNCS, vol. 86, pp. 504–526. Springer, Heidelberg (1980).
https://doi.org/10.1007/3-540-10007-5 47

165. Partsch, H.: An exercise in the transformational derivation of an efficient program
by joing development of control and data structure. Sci. Comput. Program. 3(1),
1–35 (1983). https://doi.org/10.1016/0167-6423(83)90002-3

166. Partsch, H.: Structuring transformational developments: a case study based on
Earley’s recognizer. Sci. Comput. Program. 4(1), 17–44 (1984). https://doi.org/
10.1016/0167-6423(84)90010-8

167. Partsch, H.: Transformational derivation of parsing algorithms executable on par-
allel architectures. In: Ammann. U. (ed.) Programmiersprachen und Programmen-
twicklung, Informatik-Fachberichte, vol. 77, pp. 41–57. Springer (1984). https://
doi.org/10.1007/978-3-642-69393-9 3

168. Partsch, H.: Transformational program development in a particular program
domain. Sci. Comput. Program. 7(2), 99–241 (1986). https://doi.org/10.1016/
0167-6423(86)90008-0

https://doi.org/10.1007/11784180_21
https://doi.org/10.1145/44501.44503
https://doi.org/10.1016/j.scico.2013.09.003
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/567067.567076
https://doi.org/10.1145/567067.567076
https://doi.org/10.1007/3-540-10007-5_47
https://doi.org/10.1016/0167-6423(83)90002-3
https://doi.org/10.1016/0167-6423(84)90010-8
https://doi.org/10.1016/0167-6423(84)90010-8
https://doi.org/10.1007/978-3-642-69393-9_3
https://doi.org/10.1007/978-3-642-69393-9_3
https://doi.org/10.1016/0167-6423(86)90008-0
https://doi.org/10.1016/0167-6423(86)90008-0

Algorithmics 97

169. Partsch, H.: Specification and Transformation of Programs – A Formal Approach
to Software Development. Texts and Monographs in Computer Science. Springer
(1990). https://doi.org/10.1007/978-3-642-61512-2

170. Partsch, H., Steinbrüggen, R.: Program transformation systems. ACM Comput.
Surv. 15(3), 199–236 (1983)

171. Peirce, C.S.: Description of a notation for the logic of relatives, resulting from an
amplification of the conceptions of Boole’s calculus of logic. Memoirs Am. Acad.
Arts Sci. 9, 317–378 (1870)

172. Pepper, P., Smith, D.R.: A high-level derivation of global search algorithms
(with constraint propagation). Sci. Comput. Program. 28(2–3), 247–271 (1997).
https://doi.org/10.1016/S0167-6423(96)00023-8

173. Jones, S.P., et al.: Haskell 98, Language and Libraries. The Revised Report. Cam-
bridge University Press, a special issue of the Journal of Functional Programming
(2003)

174. Pontes, R., Matos, M., Oliveira, J.N., Pereira, J.O.: Implementing a linear algebra
approach to data processing. In: Cunha, J., Fernandes, J.P., Lämmel, R., Saraiva,
J., Zaytsev, V. (eds.) GTTSE 2015. LNCS, vol. 10223, pp. 215–222. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-60074-1 9

175. Pretnar, M.: The logic and handling of algebraic effects. PhD thesis, School of
Informatics, University of Edinburgh (2010)

176. Python Software Foundation: Python website (1997). https://www.python.org/
177. Yakushev, A.R., Jeuring, J., Jansson, P., Gerdes, A., Kiselyov, O., Oliveira,

B.C.D.S.: Comparing libraries for generic programming in Haskell. In: Haskell
Symposium, pp. 111–122 (2008)

178. Yakushev, A.R., Holdermans, S., Löh, A., Jeuring, J.: Generic programming with
fixed points for mutually recursive datatypes. In: Hutton, G., Tolmach, A.P. (eds.)
International Conference on Functional Programming, pp. 233–244 (2009)

179. Ruehr, F.: Dr Seuss on parser monads (2001). https://willamette.edu/∼fruehr/
haskell/seuss.html

180. Schröder, E.: Vorlesungen über die Algebra der Logik, vol 3. Taubner (1895)
181. Schuman, S.A. (ed.): New Directions in Algorithmic Languages, Prepared for

IFIP Working Group 2.1 on Algol, Institut de Recherche d’Informatique et
d’Automatique (1975)

182. Schuman, S.A. (ed.): New Directions in Algorithmic Languages, Prepared for
IFIP Working Group 2.1 on Algol, Institut de Recherche d’Informatique et
d’Automatique (1976)

183. Sintzoff, M.: On the design of correct and optimal dynamical systems and
games. Inf. Process. Lett. 88(1–2), 59–65 (2003). https://doi.org/10.1016/S0020-
0190(03)00387-9

184. Sintzoff, M.: Synthesis of optimal control policies for some infinite-state transition
systems. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol.
5133, pp. 336–359. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-70594-9 18

185. Smith, D.R.: KIDS: a semiautomatic program development system. IEEE Trans.
Softw. Eng. 16(9), 1024–1043 (1990). https://doi.org/10.1109/32.58788

186. Spivey, J.M.: A functional theory of exceptions. Sci. Comput. Program. 14(1),
25–42 (1990). https://doi.org/10.1016/0167-6423(90)90056-J

187. Swierstra, S.D., de Moor, O.: Virtual data structures. In: Möller, B., Partsch, H.,
Schuman, S. (eds.) Formal Program Development. LNCS, vol. 755, pp. 355–371.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57499-9 26

https://doi.org/10.1007/978-3-642-61512-2
https://doi.org/10.1016/S0167-6423(96)00023-8
https://doi.org/10.1007/978-3-319-60074-1_9
https://www.python.org/
https://willamette.edu/~fruehr/haskell/seuss.html
https://willamette.edu/~fruehr/haskell/seuss.html
https://doi.org/10.1016/S0020-0190(03)00387-9
https://doi.org/10.1016/S0020-0190(03)00387-9
https://doi.org/10.1007/978-3-540-70594-9_18
https://doi.org/10.1007/978-3-540-70594-9_18
https://doi.org/10.1109/32.58788
https://doi.org/10.1016/0167-6423(90)90056-J
https://doi.org/10.1007/3-540-57499-9_26

98 R. Bird et al.

188. Swierstra, S.D., Duponcheel, L.: Deterministic, error-correcting combinator
parsers. In: Launchbury, J., Meijer, E., Sheard, T. (eds.) AFP 1996. LNCS, vol.
1129, pp. 184–207. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
61628-4 7

189. Swierstra, W.: A functional specification of effects. PhD thesis, University of
Nottingham (2008)

190. Swierstra, W., Alpuim, J.: From proposition to program. In: Kiselyov, O., King, A.
(eds.) FLOPS 2016. LNCS, vol. 9613, pp. 29–44. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29604-3 3

191. Swierstra, W., Altenkirch, T.: Beauty in the beast. In: Haskell Workshop, pp.
25–36 (2007). http://doi.acm.org/10.1145/1291201.1291206

192. Swierstra, W., Baanen, T.: A predicate transformer semantics for effects (func-
tional pearl). Proc. ACM Programm. Lang. 3(ICFP), 1–26 (2019)

193. Tafliovich, A., Hehner, E.C.R.: Quantum predicative programming. In: Uustalu,
T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 433–454. Springer, Heidelberg (2006).
https://doi.org/10.1007/11783596 25

194. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941). https://
doi.org/10.2307/2268577

195. Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration,
categorically. Informatica 10(1), 5–26 (1999)

196. Uustalu, T., Vene, V.: Comonadic notions of computation. Electron. Notes
Theoer. Comput. Sci. 203(5), 263–284 (2008). https://doi.org/10.1016/j.entcs.
2008.05.029

197. Uustalu, T., Vene, V., Pardo, A.: Recursion schemes from comonads. Nordic J.
Comput. 8(3), 366–390 (2001)

198. Wadler, P.: Comprehending monads. In: LISP and Functional Programming.
ACM, pp. 61–78 (1990). https://doi.org/10.1145/91556.91592

199. Wadler, P.: The essence of functional programming. In: Principles of Programming
Languages. ACM, pp. 1–14 (1992). https://doi.org/10.1145/143165.143169

200. Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015)
201. Wile, D.: POPART: producer of parsers and related tools: System builder’s man-

ual. USC/ISI Information Science Institute, University of Southern California,
Technical report (1981)

202. Wile, D.: Program developments as formal objects. USC/ISI Information Science
Institute, University of Southern California, Technical report (1981)

203. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Principles of
Programming Languages, pp. 214–227 (1999)

https://doi.org/10.1007/3-540-61628-4_7
https://doi.org/10.1007/3-540-61628-4_7
https://doi.org/10.1007/978-3-319-29604-3_3
https://doi.org/10.1007/978-3-319-29604-3_3
http://doi.acm.org/10.1145/1291201.1291206
https://doi.org/10.1007/11783596_25
https://doi.org/10.2307/2268577
https://doi.org/10.2307/2268577
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/143165.143169

	Algorithmics
	1 Introduction
	2 From ALGOL, via Abstracto… to Squiggol
	2.1 Abstracto: the first move towards algorithmics
	2.2 The Bird–Meertens Formalism (BMF): A Higher-Level Approach
	2.3 The Boom Hierarchy of Data Structures

	3 Generic Programming: Function Follows Form
	4 Morphisms: Suddenly They Are Everywhere
	4.1 Diversification
	4.2 Unification

	5 Dependent Types: Types You Can Depend on
	5.1 What Are Dependent Types?
	5.2 Dependent Types

	6 Computational Effects: Beyond the Functional
	6.1 Effects and Monads
	6.2 Functions Too Weak, Monads Too Strong: Applicative Functors? Just Right
	6.3 Algebraic Effects and Handlers

	7 Lifting the Game: A Purely Algebraic View of Algorithms and Languages
	8 System Support: the Right Tool for the Job
	8.1 System Support
	8.2 An Example: The Project CIP

	9 Summary; but No Conclusion
	10 Detailed Attributions and Citations
	References

