
Hot Current Topics of Descriptional
Complexity

Martin Kutrib1(B), Nelma Moreira2, Giovanni Pighizzini3, and Rogério Reis2

1 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

2 CMUP and DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal

{nelma.moreira,rogerio.reis}@fc.up.pt
3 Dipartimento di Informatica, Università degli Studi di Milano, via Celoria 18,

20133 Milano, Italy
pighizzini@di.unimi.it

Preamble

Descriptional complexity has historically been a multidisciplinary area of study,
with contributions from automata theory, computational complexity, cryptog-
raphy, information theory, probability, statistics, pattern recognition, machine
learning, computational learning theory, computer vision, neural networks, for-
mal languages and other fields. Some basic questions are: How succinctly can
a descriptional system represent objects (for example, encoded as formal lan-
guages) in comparison with other descriptional systems? What is the maximal
size trade-off when changing from one system to another, and can it be achieved?

Since the late nineties the scope of the IFIP Working Group 1.02 encom-
passes all aspects of descriptional complexity, both in theory and application.
The formal orientation suggested its establishment under the head of the IFIP
Technical Committee TC1 on Foundations of Computer Science.

The topics of the working group include but are not limited to descriptional
complexity of formal systems and structures, various measures of descriptional
complexity of automata, grammars, languages and of related systems, trade-offs
between descriptional complexity and mode of operation, circuit complexity of
Boolean functions and related measures, succinctness of description of (finite)
objects, descriptional complexity in resource bounded or structure bounded envi-
ronments, structural complexity, descriptional complexity of formal systems for
applications (for example, software reliability, software and hardware testing,
modeling of natural languages), descriptional complexity aspects of nature moti-
vated (bio-inspired) architectures and unconventional models of computing.

Furthermore, the Working Group tries to promote interaction and the
exchange of information across traditional discipline boundaries and to provide
a point of contact for all researchers in all disciplines interested in descriptional
complexity and its applications.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
M. Goedicke et al. (Eds.): Advancing Research in Information and Communication Technology,
IFIP AICT 600, pp. 3–28, 2021. https://doi.org/10.1007/978-3-030-81701-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81701-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-81701-5_1

4 M. Kutrib et al.

Here, we first address the basic ideas and concepts of descriptional com-
plexity from a general abstract perspective. Then we select some recent trends
in the area, discuss problems, results, and open questions. In particular, we
address operational state complexity, that is, the size impact of decomposing
formal systems, a bridge between descriptional and computational complexity,
where the size of two-way finite automata is related to the L versus NL prob-
lem, the descriptional complexity of so-called limited automata which are Turing
machines with rewriting restrictions, and look at parameterized nondeterminism
in finite automata (that may change their mind). Then we are interested in the
question to what extent the descriptional capacity can be boosted by trans-
ductions. Finally, we turn to enumerations and average complexity. The results
presented are not proved but we merely draw attention to the overall picture
and some of the main ideas involved.

Our tour on the subjects covers some current hot topics in the field of descrip-
tional complexity. It obviously lacks completeness and it reflects our personal
view of what constitute some of the most interesting links to descriptional com-
plexity theory. In truth there is much more to the field than can be summarized
here.

1 Descriptional Complexity: Idea and Basic Concepts

Since the early days of theoretical computer science the relative succinctness
of different representations of (sets of) objects by formal systems have been a
subject of intensive research. An obvious choice to encode the objects is by strings
over a finite number of different symbols. Then a set of objects is a set of strings.
To move closer to a machinery that can be used for the studies, a string is called
a word and a set of words is said to be a formal language. A formal language can
be described by several means, for example, by automata, grammars, rewriting
systems, equation systems, etc. In general, such a descriptional system is a set of
finite descriptors for languages. Core questions of descriptional complexity are
“How succinctly (related to a size complexity measure) can a system represent a
formal language in comparison with other systems?” and “What is the maximum
trade-off when the representation is changed from one descriptional system to
another, and can this maximum be achieved?”

Descriptional complexity has historically been a multidisciplinary area of
study, with contributions from very different areas of computer science such as,
for example, automata and formal language theory, computational complexity,
cryptography, information theory, etc. The approach to analyze the size of sys-
tems as opposed to the computational power seems to originate from Stearns [87]
who studied the relative succinctness of regular languages represented by deter-
ministic finite automata and deterministic pushdown automata. In the classifi-
cation of automata, grammars, and related (formal) systems it turned out that
the gain in economy of description heavily depends on the considered systems.
For instance, it is well known that nondeterministic finite automata (NFA) can
be converted into equivalent deterministic finite automata (DFA) of at most

Hot Current Topics of Descriptional Complexity 5

exponential size. The underlying construction is probably one of the best-known
results on descriptional complexity: by this so-called powerset construction, each
state of the DFA is associated with a subset of NFA states [81]. Moreover, the
construction turned out to be optimal. That is, the bound on the number of states
necessary for the construction is tight in the sense that for an arbitrary n there
is always some n-state NFA which cannot be simulated by any DFA with strictly
less than 2n states [64,68,70]. For deterministic pushdown automata accepting
a regular language, we know that they can be converted into equivalent finite
automata of at most doubly-exponential size [88]. In the levels of exponentiation
this bound is tight. In [68] a double exponential lower bound has been obtained.
The precise bound is still an open problem. In contrast, if we replace “determin-
istic pushdown automata” with “nondeterministic pushdown automata” then we
are faced with the phenomenon of non-recursive trade-offs. That is, the maxi-
mum size blow-up cannot be bounded by any recursive function. In other words,
when the size trade-off from one descriptional system to another is non-recursive,
one can choose an arbitrarily large computable function f but the gain in econ-
omy of description eventually exceeds f when changing from the former system
to the latter. Essentially, this means that the gain in economy of description can
be arbitrary and, thus, the achievable benefit in description length is of arbi-
trary size. This cornerstone of descriptional complexity theory originates from
the seminal paper by Meyer and Fischer [68]. Non-recursive trade-offs usually
sprout at the wayside of the crossroads of (un)decidability, and in many cases
proving such trade-offs apparently requires ingenuity and careful constructions.

Nowadays, descriptional complexity has become a large and widespread area.
Classical main branches are, for example, mutual simulations, state complexity
of operations, whose systematic study was initiated in [92], magic numbers, a
research field initiated in [48], the size impact of adding resources to a sys-
tem, determinization of nondeterministic finite automata accepting subregular
languages [8], transition complexity of NFA [23,33,46,47,63], and non-recursive
trade-offs, and many others. Further results and references can be found, for
example, in the surveys [32,41,42,57].

In order to be more precise, we now turn to present and discuss the very
basics of descriptional complexity.

We denote the set of nonnegative integers by N. Let Σ∗ denote the set of all
words over a finite alphabet Σ. The empty word is denoted by λ, and we set
Σ+ = Σ∗ − {λ}. For the reversal of a word w we write wR and for its length we
write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions. In general, the
family of all languages accepted by a device of some type X is denoted by L (X).

Next, we formalize the intuitive notion of a representation or description of
formal languages. We say that a descriptional system S is a set of encodings of
items where each item D ∈ S represents or describes a formal language L(D),
and the underlying alphabet alph(D) over which D represents a language can be
read off from D. In the following, we call the items descriptors and identify the
encodings of some language representation with the representation itself. The
family of languages represented (or described) by S is L (S) = {L(D) | D ∈ S }.

6 M. Kutrib et al.

For every language L, the set S(L) = {D ∈ S | L(D) = L } is the set of its
descriptors in S.

For example, deterministic finite automata can be encoded over some fixed
alphabet such that their input alphabets can be extracted from the encodings.
The set of these encodings is a descriptional system S, and L (S) is the family
of regular languages.

A (size) complexity measure for a descriptional system S is a total, com-
putable mapping c : S → N. From the viewpoint that a descriptional system is
a set of encoding strings, the lengths of the strings are a natural measure for the
size. We denote it by length. In fact, we will use length to obtain a rough classifi-
cation of different complexity measures. We distinguish between measures that
(with respect to the size of the underlying alphabet) are related with length by
a computable function and measures that are not. If there is a total computable
function g : N×N → N such that, for all D ∈ S, length(D) ≤ g(c(D), |alph(D)|),
then c is said to be an s-measure (a size measure). Since for any coding alphabet
there are only finitely many descriptors having at most length g(c(D), |alph(D)|),
over the same alphabet there are only finitely many descriptors in S having the
same size as D. If, in addition, for any alphabet Σ, the set of descriptors in S
describing languages over Σ is recursively enumerable in order of increasing size,
then c is said to be an sn-measure.

For example, further size complexity measures for nondeterministic finite
automata are the number of states (state) and the number of transition (trans).
Clearly, length, state, and trans are sn-measures for finite automata.

Whenever we consider the relative succinctness of two descriptional sys-
tems S1 and S2, we assume the intersection L (S1) ∩ L (S2) to be non-empty.
Let S1 and S2 be descriptional systems with complexity measures c1 and c2,
respectively. A total function f : N → N, is said to be a lower bound for the
increase in complexity when changing from a descriptor in S1 to an equivalent
descriptor in S2, if for infinitely many D1 ∈ S1 with L(D1) ∈ L (S2) there exists
a minimal D2 ∈ S2(L(D1)) such that c2(D2) ≥ f(c1(D1)). A total function
f : N → N is an upper bound for the increase in complexity when changing
from a descriptor in S1 to an equivalent descriptor in S2, if for all D1 ∈ S1 with
L(D1) ∈ L (S2), there exists a D2 ∈ S2(L(D1)) such that c2(D2) ≤ f(c1(D1)).
If there is no recursive, that is, computable function serving as upper bound, the
trade-off is said to be non-recursive.

2 Operational State Complexity

The (deterministic) state complexity of a regular language L is the number of
states of its minimal complete deterministic finite automaton, and is denoted by
sc(L). This is the most well-studied descriptional measure for regular languages,
but one may as well consider the minimal number of states or the minimal
number of transitions of nondeterministic finite automata, nsc(L) and tsc(L),
or even consider the same measures but for incomplete DFAs. Another usual
measure is the size of the syntactic monoid (syntactic complexity).

Hot Current Topics of Descriptional Complexity 7

While representational complexity considers the changes of size caused by
conversions between different models, the operational complexity considers the
size of the model of a language resulting from an operation performed on one or
more languages. As an example for the first case we have the determinization:
given an n-state NFA for a regular language, the equivalent DFA has at most 2n

states. This, established in 1957 by Rabin and Scott [81], is considered the first
result in state complexity.

The state complexity of an operation (or operational state complexity) on
regular languages is the worst-case state complexity of a language resulting from
the operation, considered as a function of the state complexities of the operands.

Given a binary operation ◦, the ◦-language operation state complexity problem
can be stated as follows:

– given an m-state DFA A1 and an n-state DFA A2;
– how many states are sufficient and necessary, in the worst case, to accept the

language L(A1) ◦ L(A2) by a DFA?

This formulation can be generalized for operations with a different number of
arguments, other kinds of automata and classes of languages.

An upper bound can be obtained by providing an algorithm that, given DFAs
for the operands, constructs a DFA that accepts the resulting language. Most
algorithms first construct an NFA and then apply to it the subset construction.
The number of states of the resulting DFA is an upper bound for the state
complexity of the referred operation.

To show that an upper bound is tight, for each operand a family of lan-
guages, indexed by their state complexity, must be given such that the resulting
automata achieve that bound. We can call those families witnesses.

Table 1. State complexity and nondeterministic state complexity for basic operations
on regular and finite languages. The state complexity of the operands is m and n, and k
is the alphabet size.

Regular Finite

sc nsc sc sc

L1 ∪ L2 mn m + n + 1 mn − (m + n) m + n − 2

L1 ∩ L2 mn mn mn − 3(m + n) + 12 O(mn)

L m 2m m Θ(k
m

1+log k)

L1L2 m2n − 2n−1 m + n (m − n + 3)2n−2 m + n − 1

L� 2m−1 + 2m−1 m + 1 2m−3 + 2m−4 m − 1

LR 2m m + 1 O(k
m

1+log k) m

In 1994, Yu, Zhuang and Salomaa [93] studied the state complexity of basic
regularity preserving operations such as concatenation, star, reversal, union, and
intersection. More than two decades before, in 1970, Maslov [66] had already

8 M. Kutrib et al.

presented some estimates for union, concatenation, and star, as well as for other
regularity preserving operations such as cyclic shift or proportional removals.

In the last decades, a huge amount of results were obtained on this subject.
Several lines of research have emerged. One was to consider other operations,
such as the “shuffle”, or combined operations, such as the “star of union” or
the “star-complement-star”. The state complexities of most of these combined
operations are much lower than the mathematical composition of the state com-
plexities of their component individual operations. Another line of research was
to reduce the alphabet size of the witness languages. The range of state complex-
ities that may result from an operation, as opposed to the worst-case value, was
studied under the so called magic number problem. Magic numbers for a given
operation (or conversion) are the ones that cannot occur as state complexity
values [48]. Many subclasses of regular languages are of special interest, such as,
finite, unary, or star-free. For those, and many other, the operational state com-
plexity restricted to a given subclass was studied. Moreover many of the above
problems were also considered for nondeterministic state complexity or transi-
tion complexity. A list of these recent results as well as details on the witnesses
used can be found in the surveys by Gao, Moreira, Reis and Yu [27] and by Brzo-
zowski [13]. Davies’s PhD thesis [21] presents detailed proofs of the operational
state complexity for some basic operations on regular languages, and provides
an excellent introduction to the subject. As an illustration, in Table 1 we present
the results for some basic operations on regular and finite languages, both for
deterministic and nondeterministic state complexities. From these results it is
evident that the complexity of determinization plays a fundamental role in the
operational complexity. Given an m-state NFA for a finite language over an
alphabet of size k, the equivalent DFA has at most Θ(k

m
1+log k) states, and this

bound is tight [83]. Campeanu, Culik and Salomaa [14], presented the first formal
study of operational state complexity on finite languages. The state complexity
of basic operations on NFA (both for regular and finite languages) were studied
by Holzer and Kutrib [40].

A great effort was spent to find witnesses with minimal alphabet size. Many
different witnesses were found for the various operations. Symbolic manipulation
software is in general used to help to establish witness candidates that after can
be formally proved to attain the maximal bounds. However, the reason why a
given witness would work for several complexity bounds is not well understood.
In 2012, Brzozowski identified a family of languages that witnesses the state
complexity of all basic operations on regular languages [12]. Figure 1 presents
the minimal DFA for the language family. More importantly, he established
conditions for a family of languages to attain those bounds and, in this sense,
to be the most complex regular languages. A fundamental condition was that,
for a language with state complexity m, the size of its syntactic monoid should
be mm, which is the tight upper bound.

This research triggered the development of an algebraic approach to opera-
tional descriptional complexity. Given a complete DFA A, each letter corresponds
to a transformation on the set of states. One says that the letter acts on the set

Hot Current Topics of Descriptional Complexity 9

Fig. 1. Brzozowski’s “universal” witness.

of states. This notion can be extended to words, and the set of transformations
induced by all words, with composition, is a monoid, the transition monoid
of A. The syntactic complexity of a regular language is the size of the transition
monoid of its minimal DFA (also called the syntactic monoid). For instance, in
Fig. 1 the letter a performs a cyclic permutation, b a transposition (0, 1) (i.e.
interchanges those states and all other are fixed points), and c sends m − 1 to 0,
keeping unaltered the other states. It can be shown that every transformation
of {0, . . . , m − 1} can be represented as the action of a word over {a, b, c} [12].
The operational syntactic complexity on regular and subregular languages was
extensively studied mainly by Brzozowski and co-authors.

The use of algebraic characterizations in operational state complexity is now
a hot topic of research. Bell, Brzozowski, Moreira, and Reis [4] considered the
following question: for which pairs of languages (Lm, L′

n) (with state complexi-
ties m and n, respectively) does Lm◦L′

n reach the maximal state complexity mn
for every proper binary Boolean operation ◦? A sufficient condition (excluding
known counterexamples) is that the transition monoids contain the symmetric
groups Sm and Sn, respectively. Davies refined those conditions proving that
in general (except restricted cases) it is sufficient that the transition monoids
contain 2-transitive groups [20,21].

It is known that a witness with a maximal transition monoid is guaranteed
to maximize the state complexity of reversal. This is not the case for other
operations. In general it is difficult to know which transformations one needs to
associate to each letter on an operand DFA to ensure that the resulting DFA
from the operation is, in some sense, maximal. If the alphabet size is not an
issue, one can use the one-letter-per-action (OLPA) technique: i.e. the witnesses
have one letter for each possible transformation. Sakoda and Sipser used this
technique for studying the state complexity of the conversions between one-way
and two-way finite automata [82] (see Sect. 3). Although some authors used this
technique sparsely in past, only recently it was formalized by Davies [19,21] and
Caron, Hamel-De le Court, Luque and Patrou [15]. Its power, limitations, and
which consequences it can have in this topic remains open. Anyhow, deepening
the connection between combinatorial and algebraic methods seems fruitful.

10 M. Kutrib et al.

3 When Descriptional Complexity Meets Computational
Complexity

Usually, when we refer to finite automata, we implicitly assume that we are
considering one-way finite automata, namely automata that can read the input
only from left to right.

The extension to the two-way case, namely to automata which are able to
move the input head in both directions, is an interesting area, with challeng-
ing descriptional complexity problems and important connections with classical
computational complexity. Actually, the investigation of complexity questions
for one-way and two-way finite automata can be carried out as a part of the
area of computational complexity, with classes of problems, reductions, com-
plete problems and, of course, open questions, as emphasized in [49] by Christos
Kapoutsis who introduced the name Minicomplexity for this area.

Here, we present a short outline on two-way finite automata and on the
connections with computational complexity.

First of all, we have to mention that it is well known that the capability of
moving the head in both directions does not increase the computational power
of finite automata. Two-way finite automata, in both deterministic and non-
deterministic versions (2DFA and 2NFA, for short), still characterize the class
of regular languages. This result was independently proved in 1959 by Rabin
and Scott and by Shepherdson, by showing constructions transforming 2NFAs
into equivalent DFAs [81,85]. (An alternative transformation was obtained by
Vardi [89].) The increment in the number of states in such transformations is
exponential. We will now present a simple example showing that such an increas-
ing cannot be avoided. Before doing that, we mention that in two-way automata
we assume that the input is surrounded by two special symbols called the left
and the right endmarker.

For each integer n > 0, let us consider the language

In = (a + b)∗a(a + b)n−1 .

It is not difficult to see that In is recognized by an NFA with n + 1 states, while
any DFA accepting it requires 2n states in order to remember, at each step of
the computation, the suffix of length n of the input string so far inspected (a
formal proof can be done with standard distinguishability arguments). We can
easily construct a 2DFA which recognizes In by locating the right endmarker
and then moving the head to the left to check if the nth symbol from the right
is an a. This can be implemented using n + 2 states.

A more sophisticated example with similar properties is

Ln = (a + b)∗a(a + b)n−1a(a + b)∗ ,

where we ask that strings contain a pair of a’s with n − 1 symbols in between.
In this case, a 2DFA can check a string w by moving the head from the first
symbol of w to the right, up to reach a cell containing a. Then, it moves n more
positions to the right. If the reached cell contains another a, then the automaton

Hot Current Topics of Descriptional Complexity 11

accepts. Otherwise, it moves the head n − 1 cell to the left, reaching the cell to
the right of the first a, and it repeats by using the same approach, looking for
a cell containing a while moving to the right. Even for Ln we can obtain an
NFA and a 2DFA with O(n) states while each DFA requires a number of states
exponential in n.1

One natural question arising after seeing these two examples is whether or not
two-way motion can be used to remove the nondeterminism, without significantly
increasing the size of the description. This problem was posed by Sakoda and
Sipser in 1978 [82] and, actually, it was formulated by the two following questions:

1. For every 2NFA M , is there an equivalent 2DFA with only polynomially more
states than M?

2. For every NFA M , is there an equivalent 2DFA with only polynomially more
states than M?

Sakoda and Sipser conjectured that both questions have negative answers. To
support such a conjecture, they presented a complete analogy with the P ver-
sus NP problem.

Two years later, Sipser proved exponential separations, under the conditions
that the simulating 2DFAs are sweeping, namely they can reverse the movement
of the input head only at the endmarkers [86]. However, Berman and Micali
showed that this does not solve the general problem [5,69].

For several years not so much work has been done around these questions,
until the first years of this millennium, when new investigations on two-way
automata have been carried out and several new results, solving some special
cases, have been obtained. However, it seems that we are still far from a solution
for the general case.

Besides the result on sweeping 2DFAs, similar separations have been obtained
for the simulation of NFAs and 2NFAs by restricted kinds of 2DFAs, as oblivious
2DFAs [45,60], rotating automata [54], few reversal automata [51]. Exponential
separations between these kinds of devices and unrestricted 2DFAs have been
also proved, showing that these results do not solve the general problem. For a
more detailed overview and further references see [75].

Some results providing polynomial simulations of restricted forms of 2NFAs
by (unrestricted) 2DFAs have been obtained by considering the unary case (i.e.,
the input alphabet contains only one-letter, so this gives a restriction on the class

1 The 2DFA we described for In makes use of the endmarkers, while the 2DFA for Ln

does not use them. Actually, we could adapt the technique used to recognize Ln

in order to obtain a 2DFA with O(n) states accepting In, without using the end-
markers. The main difference is that the 2DFA so obtained may need to reverse the
direction of its head many times, while the 2DFA we described for In makes only one
reversal. It seems quite natural to have endmarkers in two-way automata. However,
in some works they are presented without endmarkers. This does not change the
computational power. The example of In shows some differences when we consider
size and number of reversals. In general, it has been proved that two-way automata
can have different properties with or without endmarkers [90].

12 M. Kutrib et al.

of accepted languages) [29], and the case of outer nondeterministic automata,
which can make nondeterministic choices only when the head visits one of the
endmarkers [28].2

Recently, a different approach was proposed, trying to obtain polynomial
simulations of 2NFAs by some extensions of 2DFAs. In [34] it is presented a
polynomial simulation by single-tape deterministic Turing machines working in
linear time (by a result by Hennie [38], these machines are no more powerful than
finite automata). It will be interesting to continue this approach by considering,
for instance, simulations by deterministic 1-limited automata. These devices are
discussed in the next section.

As already mentioned, Sakoda and Sipser presented an analogy between the
above Questions 1. and 2. and the P versus NP question. In particular they
defined a notion of reducibility and presented complete problems for the two
questions.

Starting from an initial result by Berman and Lingas [6], strong connections
have been discovered between the question of Sakoda and Sipser and the open
question L versus NL (classes of languages accepted in logarithmic space by
deterministic and nondeterministic Turing machines, respectively).

In [30], by considering the unary case, it was proved that L = NL would imply
a state polynomial simulation of unary 2NFAs by 2DFAs. So, showing that the
simulation of 2NFAs by 2DFAs is not polynomial, already in the restricted case
of a unary alphabet, would separate L and NL. We point out that at the moment
the best known simulation in the unary case is superpolynomial, but subexpo-
nential [29]. This result and that of Berman and Lingas have been generalized
by Kapoutisis in [52] and further generalized in [55], by considering the class
L/poly of languages accepted by deterministic logspace bounded machines that
can access a polynomial advice. It was proved the following:

Theorem 1 ([55]). L/poly ⊇ NL if and only if there is a polynomial simulation
of unary 2NFAs by 2DFAs.

Actually, further characterizations of L/poly ⊇ NL have been presented in [55].
Among them, it was shown that L/poly ⊇ NL is equivalent to the existence of
2DFAs of size polynomial in h which are able to check accessibility in unary
encoded h vertex graphs and to check two-way liveness in h-tall, h-column
graphs. Hence, such versions of accessibility and liveness problems are com-
plete for the above Question 1. in the unary case. It was conjectured that these
statements are false.

These results show important connections between descriptional complex-
ity of automata and classical computational complexity. As we mentioned at the
beginning of the section, following the approach of minicomplexity, the investiga-
tion on the complexity of finite automata can be carried out in the wider area of

2 Concerning the unary case, the state cost of simulation of one-way nondeterministic
automata by 2DFAs has been proved to be quadratic [17]. This gives a positive
answer to the second question in the unary case.

Hot Current Topics of Descriptional Complexity 13

computational complexity, using the same methods (reductions, complete prob-
lems, etc.). We recommend the works [50,53] to appreciate the minicomplexity
approach.

4 Turing Machines with Rewriting Restrictions

It is well known that each class of languages in the Chomsky hierarchy has a
corresponding family of recognizing devices. By considering for the top level, i.e.,
Type 0 languages, Turing machines with a read-only input tape and a separate
worktape, we easily obtain a hierarchy of machines by restricting the space used
on the worktape to be linear in the input length for context-sensitive languages,
by accessing it as a pushdown store in the case of context-free languages3, and
by removing the worktape for regular languages.

Having the same computational power of multi-tape machines, single-tape
Turing machines are sufficient to characterize the class of Type 0 languages. Fur-
thermore, restricting these devices to use only the portion of the tape which ini-
tially contains the input, we obtain linear bounded automata, which characterize
context-sensitive languages. However, by still considering pushdown automata
for the family of context-free languages, we do not obtain a hierarchy of machines.

A less-known characterization of the class of context-free languages in terms
of machines was obtained by Hibbard in 1967, in terms of limited automata, a
class of single-tape nondeterministic Turing machines satisfying the following
rewriting restriction: fixed an integer d ≥ 0, a d-limited automaton (d-LA, for
short) can rewrite the contents of each tape cell only in the first d visits [39].
Without loss of generality, d-LAs can be restricted to use only the portion of the
tape which initially contains the input.

Hibbard proved that for each fixed d ≥ 2, the class of languages accepted
by d-LAs coincides with the class of context-free languages. Since d-LAs are
a restriction of linear bounded automata and, clearly, they are extensions of
finite automata, using 2-LAs for the class of context-free languages we obtain a
single-tape machine hierarchy corresponding to the Chomsky hierarchy.

To give a sake of the way used by limited automata to operate, we describe
a simple strategy that can be implemented by a 2-LA in order to recognize the
language consisting of all sequences of balanced brackets. An input sequence
of brackets can be inspected starting from the leftmost symbol and moving to
the right, until reaching the first closing bracket. If the sequence is balanced,
then the corresponding opening bracket is necessarily the last bracket before
it, that must be of the same type. If so, these two brackets can be overwritten
by a special symbol, and the same procedure can be repeated by moving from
the position of the just overwritten opening bracket to locate the first closing
bracket, overwriting it, then checking if the last bracket before it is of the same
type, overwriting it, and so on. When no more closing brackets are left in the
3 It can be easily seen that each context free-language can be accepted by a pushdown

automaton which uses an amount of pushdown store which is linear in the input
length.

14 M. Kutrib et al.

sequence, even none opening bracket should be left. In this case the original
sequence was balanced and the machine can accept; in all other cases the machine
rejects. If the input sequence is written on a Turing machine tape, one bracket
per cell, and the computation starts, as usual, with the head scanning the cell
containing the leftmost input symbol, then each cell containing a closing bracket
is overwritten only when the head visits it for the first time. Thereafter, the head
is moved back to the left to search the corresponding opening bracket, which was
already visited one time and which is overwritten when the head visits it for the
second time. After these active visits, a cell can be visited further many times,
but it cannot be overwritten, so it is “frozen”. Hence, each tape cell is overwritten
at most in the first 2 visits.

In the last years, limited automata have been investigated in a series of
papers, with the main focus on their descriptional complexity (for a recent
overview see [76]). The costs of the simulations between pushdown automata
and 2-LAs have been stated in [78]. These results have been extended to d-LAs,
with d > 2 in [61]. In [78] it was also proved that deterministic 2-LAs (D-2-LAs)
are equivalent to deterministic pushdown automata. As proved in [39], the class
of languages accepted by deterministic limited automata becomes larger by
increasing the number of possible rewritings, i.e., by increasing the value of d we
obtain a proper infinite hierarchy of languages accepted by D-d-LAs. However,
this hierarchy does not cover all the class of context-free languages.

We now focus on the subfamily of 1-limited automata, i.e., single-tape
machines that can rewrite the contents of any tape cell only in the first visit.
This model characterizes regular languages [91], so they are equivalent to finite
automata. The cost of the conversions of nondeterministic and deterministic 1-
LAs into equivalent finite automata have been studied in [77] and they are sum-
marized in Fig. 2, with some other costs. Some comments on these results:

– The double exponential simulation (a) of 1-LAs by one-way DFAs is obtained
by combining the Shepherdson construction for simulating 2NFAs by DFAs
with the classical subset construction. The double exponential gap, which
cannot be reduced, is due to a double role of the nondeterminism: when a
cell is visited for the first time, a symbol is written on it according to a
nondeterministic decision; in the next visits to the same cell, the available
nondeterministic choices also depend on the symbol which is written in it,
namely the symbol written during the first visit.

– The arrow (b) represents the Sakoda and Sipser question, for which an expo-
nential upper bound but only a polynomial lower bound are known.

– Arrow (c) presents a similar question for limited automata, translated of one
exponentiation level: by (a) we know that the elimination of the nondetermin-
ism from 1-LAs costs at most a double exponential in size, however the best
known lower bound is exponential. It could be interesting to know if there are
strict relationships between these two questions, e.g., if an exponential gap
from 2NFAs to 2DFAs would imply a double exponential gap from 1-LAs to
D-1-LAs and vice versa.

Hot Current Topics of Descriptional Complexity 15

Fig. 2. Costs of some conversions between different kinds of limited automata and
finite automata.

– The exponential upper bound in (d) derives from (b). An exponential lower
bound will close the Sakoda and Sipser question. So the study of the con-
version in (d) can be seen as a “relaxed” version of the Sakoda and Sipser
question where nondeterminism is removed by allowing to rewrite tape cells
in the first visit.
We point out that in [34] it was recently obtained a polynomial blowup from
2NFAs to single-tape deterministic machines working in linear time. Since
with a polynomial increase in the size, each 1-LA can be converted into an
equivalent one working in linear time, also preserving determinism [35], prov-
ing that the simulation (d) costs polynomial would improve that result.

In Sect. 3 we have already mentioned the unary case and its relevance in the
connection with the Sakoda and Sipser question. Several results related to lim-
ited automata in the unary case have been obtained in [61,62]. Further results
concerning unary 1-LA are presented in [79].

5 Automata that May Change Their Mind

The concept of nondeterministic machines was introduced in the seminal paper
of Rabin and Scott [81] on finite automata and their decision problems from
1959. Over the years, nondeterminism turned out to be a very fruitful concept
in different areas of computer science like, for example, computability theory,
complexity theory, automata theory, formal language theory, etc., to mention
only a few.

For finite automata it is folklore that deterministic finite automata (DFA)
are as powerful as nondeterministic finite automata (NFA) from a computational
capacity point of view. However, from a descriptional complexity point of view

16 M. Kutrib et al.

NFAs can offer exponential savings in size compared with DFAs. That is reason
enough to consider nondeterminism as a resource of the underlying model and
to quantify its usage to some extend. A lot of results on such quantifications
are subsumed under the name limited nondeterminism in the literature, see, for
example, [32] for a survey.

Being interested in the power of the amount of nondeterminism with respect
to computations and conciseness it has been newly interpreted in terms of
one-time nondeterministic automata [44] and its generalization mind-changing
automata [43]. The idea of mind-changing automata is that at the outset the
automaton is partially deterministic. In this way, defined transitions constitute
situations for which the automaton already has an opinion (on how to proceed),
while undefined transitions constitute situations for which the automaton is still
irresolute. Whenever the automaton encounters a situation for which it is irres-
olute, it can form its opinion by choosing an appropriate transition out of a
set of transitions. The chosen transition is then added to the transition func-
tion. Finally, whenever the automaton is in a situation for which a transition is
defined, it can change its mind and interchange the transition by an alternative
matching transition from the set of available transitions. Now, the total number
of mind changes is considered as a limited resource.

We illustrate the notion by the following example.

Example 2. Consider the mind-changing finite automaton (MCFA) M depicted
in Fig. 3, where the transitions of the initial transition function δ0 are drawn with
solid arrows and that of the initial set of alternative transitions T0 are depicted
with dashed arrows. So, we have δ0(1, a) = δ0(1, b) = 1, δ0(2, a) = δ0(2, b) = 3,
and T0 = {(1, a, 2)}. The language accepted by M with up to k ≥ 0 mind changes
is denoted by Lk(M).

Fig. 3. The MCFA M of Example 2.

Obviously, L0(M) = ∅, since the automaton can never change any transition
and thus the sole accepting state 3 cannot be reached.

Whenever M decides to make a mind-changing step, that is, exchanging the
original transition (1, a, 1) by (1, a, 2) from T0, then the sole accepting state 3
can be reached from 1 via state 2 by reading either aa or ab. Let us see how this
works on input w = baab. To this end let δ′ = (δ0 ∪ {(1, a, 2)}) \ {(1, a, 1)} and
T ′ = (T0 ∪{(1, a, 1)})\{(1, a, 2)}. Then an accepting computation on input w is

(1, baab, δ0, T0) (1, aab, δ0, T0) (1, ab, δ0, T0) (2, b, δ′, T ′) (3, λ, δ′, T ′),

Hot Current Topics of Descriptional Complexity 17

where the sole mind-change appeared at the next to last computation step. Yet
there is another computation on w which is not accepting, since the mind-change
appeared too early and the computation blocks. This non-accepting computation
is

(1, baab, δ0, T0) (1, aab, δ0, T0) (2, ab, δ′, T ′) (3, b, δ′, T ′).

It is worth mentioning, that although the underlying automata induced by δ0
and δ′ are both deterministic, there are more than one computation on M , due
to the mind-changes. By our example it is not hard to see that

L1(M) = {w ∈ {a, b}∗ | the next to last letter of w is an a }
and moreover Lk(M) = L1(M), for k ≥ 1.

In case we consider the MCFA M ′ with initial transition function δ′ and
initial set of alternative transitions T ′, then one observes that

L0(M ′) = L1(M ′) = b∗a(a + b)

and Lk(M ′) = {w ∈ {a, b}∗ | the next to last letter of w is an a }, for k ≥ 2. �
Intuitively, it is clear that the family of languages accepted by MCFAs coin-

cides with the regular languages. Although the concept of mind changes does do
not improve the computational power of ordinary finite automata, the question
for the descriptional complexity of such devices arises. It turned out that the
upper bound on the costs for the simulations of an MCFA M by a DFA depends
on the nondeterministic degree d(M) of M that is defined as

d(M) =
∏

(q,a)∈Q×Σ
|δ0(q,a)∪{p|(q,a,p)∈T0}|�=0

|δ0(q, a) ∪ { p | (q, a, p) ∈ T0 }|,

where Q is the state set and Σ is the input alphabet.

Theorem 3. Let M be an n-state MCFA. Then (k + 1) · n · d(M) + 1 states are
sufficient for an NFA to accept the language Lk(M), for every k ≥ 0.

From Theorem 3 and the powerset construction on NFAs an upper bound
for the simulation by DFAs follows. Note that the DFAs are partial. At least one
state can be saved in the exponent.

Corollary 4. Let k ≥ 0 be a constant and M be an n-state MCFA with input
alphabet Σ. Then, 2(k+1)·n·d(M) + 1 states are sufficient for a DFA to accept the
language Lk(M).

How about the lower bounds for the simulations? In this connection a special
case, that is, an MCFA M that may change its mind only once (L1(M)) on a
single transition (|T0|), has been studied in more detail. Even in this special case
the MCFA can be more succinct than nondeterministic finite automata.

We consider complete MCFAs, where an MCFA M is said to be complete
if the underlying initial DFA M ′ is complete, that is, |δ0(q, a)| = 1, for every
state q and every input symbol a. For k = 0 it is obvious that L0(M) = L(M ′).
Thus, in this case we do not save states when comparing MCFAs and DFAs.

18 M. Kutrib et al.

Theorem 5. Let M be an n-state complete MCFA having |T0| = 1. Then
2n+log n−1 states are sufficient and necessary in the worst case for a DFA to
accept the language L1(M).

An MCFA that witnesses the matching lower bound of Theorem 5 is depicted
in Fig. 4.

Fig. 4. The n-state complete MCFA M with a singleton set of alternative transitions T0

witnessing the lower bound of Theorem 5. The transitions from δ0 are drawn with solid
arrows and that of T0 are depicted with dashed arrows.

The lower bound of Theorem 5 implies that any nondeterministic finite
automaton accepting these languages requires at least n+log n−1 states. In other
words, there is a sequence of regular languages (Rn)n≥3 accepted by an n-state
complete mind-changing finite automaton with a single alternative transition
with at most one mind-change such that any nondeterministic finite automaton
accepting Rn requires at least n + log n − 1 states.

At this point one may ask, whether it is possible to generalize Theorem 5 to
k ≥ 1 mind-changing moves in general? Since T0 is required to be a singleton
set, the constraint k ≥ 1 means that during the computation one can alternate
up to k times between two transitions during the computation. Indeed, it is not
hard to see that the upper bound construction given in the proof of Theorem 5
for the case k = 1 generalizes to arbitrary fixed k with k ≥ 1.

Theorem 6. Let M be an n-state complete MCFA having |T0| = 1. Then,
for k ≥ 2, 2log(k+1)·(n−1)+logn states are sufficient for a DFA to accept the
language Lk(M).

What about the lower bound? Here the situation is much more involved
compared to the lower bound construction. At the moment, we can only provide
the non-matching lower bound from Theorem 5 for k ≥ 2, which is somehow
trivial. Nevertheless, to improve the upper or the lower bound for the conversion
under consideration is left as an open problem.

Finally, it is mentioned that also mind-changing pushdown automata have
been considered [43]. While for any (constant) number of mind-changes MCFAs
characterize the regular languages, the situation for pushdown automata changes
drastically. In fact, for mind-changing pushdown automata, there is an infinite
proper hierarchy depending on the number of mind-changes strictly in between

Hot Current Topics of Descriptional Complexity 19

the deterministic and arbitrary context-free languages. From the descriptional
complexity point of view there are non-recursive trade-offs between all hierarchy
levels.

6 Boosting the Descriptional Capacity by Transductions

Finite-state transducers are finite automata with an output and they have been
studied at least since 1950s. A typical application of finite-state transducers is,
for example, the lexical analysis of computer programs or XML documents. Here,
the correct formatting of the input is verified, comments are removed, the cor-
rect spelling of the commands is checked, and the sequence of input symbols is
translated into a list of tokens. The output produced is subsequently processed
by a pushdown automaton that realizes the syntactic analysis. Another example
is the use of cascading finite-state transducers. Here, one has a finite number
of transducers T1, T2, . . . , Tn, where the output of Ti is the input for the next
transducer Ti+1. Such cascades of finite-state transducers have been used, for
example, in [26] to extract information from natural language texts. Another
example is the Krohn-Rhodes decomposition theorem which shows that every
regular language is representable as the cascade of several finite-state transduc-
ers, each one having a “simple” algebraic structure [31,36]. Finally, it is shown
in [18] that cascades of deterministic pushdown transducers lead to a proper
infinite hierarchy in between the deterministic context-free and the deterministic
context-sensitive languages with respect to the number of transducers involved.
All the examples of cascading transductions so far addressed have in common
that the subsequently applied transducers are, at least in principle, different.
Another point of view is taken in [7,65], where subsequently applied identical
transducers are studied. Such iterated finite-state transducers are considered as
language generating devices starting with some symbol in the initial state of the
transducer, iteratively applying in multiple sweeps the transducer to the output
produced so far, and eventually halting in an accepting state of the transducer
after a last sweep. These iterated finite-state transducers are quite powerful since
their nondeterministic version can generate non-recursive languages with only
three states. Even in the deterministic case, one state suffices to generate the
class of D0L Lindenmayer languages and two states are sufficient to generate
languages which are neither context-free nor in 0L. It is worth remarking that
an essential feature in these models is that the underlying finite-state transducer
is not length-preserving. In contrast to all these examples and other works in the
literature (see, for example, [74]), where the subsequently applied transducers
are in principle different and not necessarily length-preserving, the model of iter-
ated uniform finite-state transducers introduced in [58,59] as language accepting
devices requires that the same transducer is applied in every sweep and that the
transduction is length-preserving.

So, an iterated uniform finite-state transducer is basically a finite-state trans-
ducer which processes the input in multiple passes (also sweeps). In the first pass,
it reads the input word followed by an endmarker and emits an output word.

20 M. Kutrib et al.

In the following passes, it reads the output word of the previous pass and emits
a new output word. The number of passes taken, the sweep complexity, is given
as a function of the length of the input. The transducers to be iterated are
length-preserving finite-state transducers, also known as Mealy machines [67].

It is known that at least a logarithmic number of sweeps is necessary to accept
non-regular languages. Under a natural constructibility condition it is shown that
there exists a proper infinite hierarchy of accepted language families depending
on the sweep complexity beyond the logarithm, both in the deterministic (iufst)
and nondeterministic (niufst) case [59]. Also, nondeterminism is separated from
determinism for all the hierarchy levels.

From the descriptional complexity viewpoint a constant bound on the sweep
complexity is of particular interest. So, the succinctness dependent on the con-
stant k ≥ 1 and in comparison with more traditional models of finite-state
automata has been studied in more detail.

Example 7. For k ≥ 1, the language Ek = {a, b}∗b{a, b}k−1, whose words are
characterized by having the letter b at the kth position from the right, is con-
sidered. It is well known that any deterministic finite automaton (DFA) needs
at least 2k states to accept Ek.

A k-sweep iufst T (k-iufst) can accept Ek with three states only. The basic
idea of T ’s processing is to shift the input word symbol by symbol to the right,
whereby an a is inserted at the first position and the last symbol is removed (this
takes two states). In this way, in the first k − 1 sweeps the input is shifted k − 1
positions to the right. In a final sweep, it is sufficient to check whether the last
symbol is a b. The number of the current sweep can be stored as index of the
endmarker. �

The example shows that iterated transductions may lead to a drastic decrease
of the number of states for accepting regular languages. It may suggest that the
descriptional power of k-iufsts always outperforms that of DFAs. However,
some languages are particularly size-demanding that even iterated transduction
cannot reduce the number of states for their recognition. Witnesses for this fact
are the unary regular languages Lp = { am·p | m ≥ 0 } where p is a prime number.
The state-graph of the minimal DFA accepting Lp consists of a simple directed
cycle of p states, beginning from and ending into a designated state which is both
the initial and the unique accepting state. In fact, this elementary automaton is
actually the best we can provide for Lp, regardless the (classical) computational
paradigm we may want to adopt: for example, it is known that p states are
necessary for accepting Lp on DFAs, NFAs, two-way DFAs, and two-way NFAs.
Even on k-iufsts the language Lp needs at least p states to be accepted.

Theorem 8. Let k ≥ 1. Then p states are necessary and sufficient for a k-iufst
to accept Lp.

To study the descriptional power of k-sweep iterated uniform finite-state
transducer versus classical finite automata, it is helpful to consider first the
sweep reduction and determinization.

Hot Current Topics of Descriptional Complexity 21

Theorem 9. Let n, k > 0 be integers. Every n-state k-niufst (resp., k-iufst)
can be converted to an equivalent 2ni-state �k

i �-niufst (resp., �k
i �-iufst).

The sweep reduction can directly be used to transform constant sweep
bounded iufst and niufsts into equivalent DFAs and NFAs.

Corollary 10. Let n, k > 0 be integers. Every n-state k-niufst (resp., k-iufst)
can be converted to an equivalent NFA (resp., DFA) with at most 2nk states.

The result presented in Theorem 9 turned out to be almost optimal in the
sense that there are languages witnessing that nk states are necessary.

Let us discuss in more detail the possibility of trading states for input sweeps
and vice versa. Concerning the relation between the necessary number of states
and the number of sweeps, we have the following situation: Theorem 8 shows
that there are languages for which additional sweeps do not help to decrease the
number of states at all. By Corollary 10, any n-state k-iufst can be converted
into an equivalent DFA with at most 2nk states. Conversely, clearly we cannot
reduce the number of states below two or three (for non-trivial languages) by
increasing the number of sweeps. So, there is an upper bound for the number
of sweeps that may help. In other words, for any regular language L we have a
fixed sweep range from 1 to some kL in which we can trade states for sweeps
and vice versa.

Theorem 11. Let k ≥ 2 and n ≥ 3 be integers, and T be an n-state k-iufst
such that the minimal DFA for L(T) has 2nk states. Then any (k − 1)-iufst
for L(T) must have at least �nk/k−1� states.

Finally, removing the nondeterminism and the sweeps at the same time means
to convert a k-niufst to a DFA. Conversion to an NFA with subsequent deter-
minization gives the upper bound of 22n

k

states. A lower bound for this size
blow-up is derived by considering the witness language

En,k = { vbw | v, w ∈ {a, b}∗, |w| = c · nk for c > 0}
for any n, k > 1.

Theorem 12. For any integers m > 1 and k > 0, an m-state k-niufst can be
converted to an equivalent 22n

k

-state DFA. There is an m-state k-niufst which
cannot be converted to an equivalent DFA with less than 2(m−1)k

states.

Finally, it should be mentioned that for k-iufst the commonly considered
decision problems have the same computational complexity as for determin-
istic finite automata, that is, they are NL-complete. When the bound of the
sweep complexity is beyond logarithm, typical decision problems become non-
semidecidable.

Several possible lines of research on iterated transducers may be tackled.
First of all, it would be natural to consider the same decision problems as in the
deterministic case as well as the size cost of implementing language operations for

22 M. Kutrib et al.

nondeterministic transducers. It would also be interesting to study more general
forms of iterated transduction where, for example, different transductions can
be performed at different sweeps, or where further information, apart from the
output, can be passed on from one sweep to the next.

7 Enumerations and Average Complexity

Descriptional complexity, similarly to what happens in computational complex-
ity, is almost always considered for its worst-case. However, in most cases, this
worst-case complexity is only achieved for sets of inputs of very small signif-
icance. For practical applications, the average-case analysis, where input data
is assumed to follow a given probability distribution, can provide much more
accurate prediction of the needed computational resources.

The study of complexity results on average can be performed through exper-
imentation, for which well behaved random generators for the computational
models, and thus rigorous enumerative descriptions of their classes, are needed.
Enumerative formulae and asymptotic estimates for different kinds of finite
automata were presented in 1960s and 1970s. For a survey, we refer the reader to
Domaratzki [22]. Concerning uniform random generation, first Nicaud [71] pre-
sented a random generator for binary accessible nonisomorphic DFAs that was
extended to arbitrary alphabets by Champarnaud and Paranthoën [16]. Almeida,
Moreira and Reis [1] based on a string representation, gave another enumeration
and random generator for the same class of automata, that avoided any ulte-
rior rejection phase. Bassino and Nicaud [3] improving their previous work gave
asymptotic estimates on the number of objects of this class of a given size, as
well as, presented a random generator based on Boltzmann samplers. Almeida,
Moreira and Reis [2] presented a canonical form for minimal acyclic DFAs which
allows its exact enumeration, and that was later extended to non-minimal (trim)
acyclic DFAs. An exact enumerative formula based on that representation, and
using generalized parking functions, was published by Priez [80]. A random gen-
erator for accessible acyclic DFAs was developed by Felice and Nicaud [24],
but that is feasible only for small sized automata. On this subject, a survey by
Nicaud [73] can be consulted for further details. In the case of NFAs the situation
is much more challenging. Testing if two NFAs are isomorphic is an hard prob-
lem and thus feasible uniform random generators are not expected to be found.
Moreover, with high probability, a uniform random NFA is universal, so other
distributions should be considered. Restricted subclasses of NFAs adequate for
random generation were studied by Héam and Joly [37] and by Ferreira, Moreira
and Reis [25].

For regular expressions random generation is easily obtained from any unam-
biguous context-free grammar that generated them. All random generators listed
here aim an uniform distribution of the objects generated. This distribution,
although “naturally” chosen as unbiased, was subject of a study of its expres-
sivity by Koechlin, Nicaud and Rotondo [56] showing that, at least for some
aspects of the behavior of the regular expressions other distributions should

Hot Current Topics of Descriptional Complexity 23

be considered. In particular, those authors studied absorbing patterns in regu-
lar expressions with respect to language equivalence. What is implied by their
results is that if one uniformly random generates regular expressions one can-
not expect to obtain, with a reasonable probability, regular languages outside a
constant set of languages. This means that a core set of languages have so many
regular expressions representatives that the remaining languages very scarcely
appear. Both the experimental studies and the analytic combinatorics studies,
mentioned below, aim to the estimation of the relative descriptional complexity
of different models as combinatorial objects by themselves, disregarding language
equivalence.

Alternative methods to obtain average results in descriptional complexity can
be used in order to avoid the experimentation. Because Kolmogorov incompress-
ible objects have a behavior that it is, by definition, indistinguishable from the
average, its study should give rise to average complexity results in a very elegant
and succinct manner. Nevertheless, and although canonical string representa-
tions exist for some of the models and the successful application of these ideas
in computational complexity, no results can be here listed using such technique.

An elegant alternative is the framework of analytic combinatorics [84], by
relating combinatorial objects to algebraic properties of complex analytic gener-
ating functions. In particular, the behavior of these functions around their dom-
inant singularities gives access to the asymptotic form of their (power) series
coefficients. In recent years, the average size of different NFA constructions from
regular expressions, using the framework of analytic combinatorics was studied.
Nicaud [72] showed that, for a uniform distribution, the position automaton has
asymptotically and on average linear size w.r.t the size of the expressions. Sev-
eral other constructions for regular expressions and other kind of expressions
were also considered [9,11]. In those studies, whenever explicit expressions for
the generating functions were obtained, it was possible to estimate asymptotic
average values using relatively standard analytic methods. However, in general,
one does not deal with just one combinatorial class, but with an infinite family
of combinatorial classes indexed by the size of the alphabet. This raises problems
that do not appear in standard combinatorial classes, such as graphs or trees.
Moreover, in many cases, having explicit expressions for the generating functions
is unmanageable. Then one needs to use generating functions implicitly defined
by algebraic curves, and develop a method to extract the required information
for the asymptotic estimates. This method allowed to find, for the combinato-
rial classes considered, the behavior of the generating function without knowing
beforehand the explicit value of its singularity. As an example it was possible to
study the average behavior of regular expressions in star normal form [10]. The
average results obtained so far on the descriptional complexity of conversions of
regular expressions to other models have revealed that asymptotic complexities
in the worst case when linear are halved on the average case and square-rooted
in the other cases (see [11] for a recent list of average case results).

All these studies using the framework of analytic combinatorics are based on
the combinatorial class of regular expressions (or some subset of those). It would

24 M. Kutrib et al.

be very interesting to see if the same approach could be applied to combinatorial
classes of other models, like DFAs, and, in particular, if the goal of character-
izing the average behavior of determinization of NFAs is attainable with this
technique.

References

1. Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string
automata representation. Theoret. Comput. Sci. 387(2), 93–102 (2007)

2. Almeida, M., Moreira, N., Reis, R.: Exact generation of minimal acyclic determin-
istic finite automata. Int. J. Found. Comput. Sci. 19(4), 751–765 (2008)

3. Bassino, F., Nicaud, C.: Enumeration and random generation of accessible
automata. Theoret. Comput. Sci. 381(1–3), 86–104 (2007)

4. Bell, J., Brzozowski, J., Moreira, N., Reis, R.: Symmetric groups and quo-
tient complexity of Boolean operations. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 1–12. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 1

5. Berman, P.: A note on sweeping automata. In: de Bakker, J.W., van Leeuwen, J.
(eds.) Proceedings 7th ICALP 1980. LNCS, vol. 85, pp. 91–97. Springer (1980).
https://doi.org/10.1007/3-540-10003-2 62

6. Berman, P., Lingas, A.: On the complexity of regular languages in terms of finite
automata. Technical Report 304, Polish Academy of Sciences (1977)

7. Bordihn, H., Fernau, H., Holzer, M., Manca, V., Martin-Vide, C.: Iterated sequen-
tial transducers as language generating devices. Theoret. Comput. Sci. 369, 67–81
(2006)

8. Bordihn, H., Holzer, M., Kutrib, M.: Determinization of finite automata accepting
subregular languages. Theoret. Comput. Sci. 410, 3209–3222 (2009)

9. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Average size of automata con-
structions from regular expressions. Bull. EATCS 116, 167–192 (2015)

10. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On average behaviour of regular
expressions in strong star normal form. Int. J. Found. Comput. Sci. 30(6–7), 899–
920 (2019)

11. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Analytic combinatorics and
descriptional complexity of regular languages on average. ACM SIGACT News
51(1), 38–56 (2020)

12. Brzozowski, J.: In search of most complex regular languages. Int. J. Found. Com-
put. Sci. 24(6), 691–708 (2013)

13. Brzozowski, J.A.: Towards a theory of complexity of regular languages. J. Autom.
Lang. Comb. 23(1–3), 67–101 (2018)

14. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations
on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214,
pp. 60–70. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45526-4 6

15. Caron, P., le Court, E.H., Luque, J., Patrou, B.: New tools for state complexity.
Discret. Math. Theor. Comput. Sci. 22(1) (2020)

16. Champarnaud, J.M., Paranthoën, T.: Random generation of DFAs. Theoret. Com-
put. Sci. 330(2), 221–235 (2005)

17. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(3),
149–158 (1986)

https://doi.org/10.1007/978-3-662-43951-7_1
https://doi.org/10.1007/3-540-10003-2_62
https://doi.org/10.1007/3-540-45526-4_6

Hot Current Topics of Descriptional Complexity 25

18. Citrini, C., Crespi-Reghizzi, S., Mandrioli, D.: On deterministic multi-pass analysis.
SIAM J. Comput. 15, 668–693 (1986)

19. Davies, S.: A general approach to state complexity of operations: formalization
and limitations. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp.
256–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 21

20. Davies, S.: Primitivity, uniform minimality, and state complexity of Boolean oper-
ations. Theory Comput. Syst. 62(8), 1952–2005 (2018)

21. Davies, S.: Algebraic Approaches to State Complexity of Regular Operations.
Ph.D. thesis, University of Waterloo, Ontario, Canada (2019)

22. Domaratzki, M.: Enumeration of formal languages. Bull. EATCS 89, 113–133
(2006)

23. Domaratzki, M., Salomaa, K.: Lower bounds for the transition complexity of NFAs.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 315–326.
Springer, Heidelberg (2006). https://doi.org/10.1007/11821069 28

24. De Felice, S., Nicaud, C.: Random generation of deterministic acyclic automata
using the recursive method. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS,
vol. 7913, pp. 88–99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38536-0 8

25. Ferreira, M., Moreira, N., Reis, R.: Forward injective finite automata: exact and
random generation of nonisomorphic NFAs. In: Konstantinidis, S., Pighizzini, G.
(eds.) DCFS 2018. LNCS, vol. 10952, pp. 88–100. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94631-3 8

26. Friburger, N., Maurel, D.: Finite-state transducer cascades to extract named enti-
ties in texts. Theoret. Comput. Sci. 313, 93–104 (2004)

27. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
J. Autom. Lang. Comb. 21(4), 251–310 (2017)

28. Geffert, V., Guillon, B., Pighizzini, G.: Two-way automata making choices only at
the endmarkers. Inf. Comput. 239, 71–86 (2014)

29. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theoret. Comput. Sci. 295, 189–203 (2003)

30. Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space. Inf.
Comput. 209(7), 1016–1025 (2011)

31. Ginzburg, A.: Algebraic Theory of Automata. Academic Press, Cambridge (1968)
32. Goldstine, J., et al.: Descriptional complexity of machines with limited resources.

J. UCS 8, 193–234 (2002)
33. Gruber, H., Holzer, M.: On the average state and transition complexity of finite

languages. Theoret. Comput. Sci. 387, 155–166 (2007)
34. Guillon, B., Pighizzini, G., Prigioniero, L., Pr̊uša, D.: Two-way automata and one-

tape machines. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp.
366–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 30

35. Guillon, B., Prigioniero, L.: Linear-time limited automata. Theoret. Comput. Sci.
798, 95–108 (2019)

36. Hartmanis, J., Stearns, R.E.: Algebraic Structure Theory of Sequential Machines.
Prentice-Hall, Hoboken (1966)

37. Héam, P.-C., Joly, J.-L.: On the uniform random generation of non deterministic
automata up to isomorphism. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp.
140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22360-5 12

38. Hennie, F.C.: One-tape, off-line Turing machine computations. Inform. Control
8(6), 553–578 (1965)

39. Hibbard, T.N.: A generalization of context-free determinism. Inform. Control
11(1/2), 196–238 (1967)

https://doi.org/10.1007/978-3-319-98654-8_21
https://doi.org/10.1007/11821069_28
https://doi.org/10.1007/978-3-642-38536-0_8
https://doi.org/10.1007/978-3-642-38536-0_8
https://doi.org/10.1007/978-3-319-94631-3_8
https://doi.org/10.1007/978-3-319-94631-3_8
https://doi.org/10.1007/978-3-319-98654-8_30
https://doi.org/10.1007/978-3-319-22360-5_12

26 M. Kutrib et al.

40. Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic
finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS,
vol. 2608, pp. 148–157. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-44977-9 14

41. Holzer, M., Kutrib, M.: Descriptional complexity - an introductory survey. In:
Martin-Vide, C. (ed.) Scientific Applications of Language Methods, pp. 1–58. Impe-
rial College Press (2010)

42. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata - a survey. Inform. Comput. 209, 456–470 (2011)

43. Holzer, M., Kutrib, M.: Automata that may change their mind. In: Freund, R., Hos-
podár, M., Jirásková, G., Pighizzini, G. (eds.) Non-Classical Models of Automata
and Applications (NCMA 2018). books@ocg.at, vol. 332, pp. 83–98. Austrian Com-
puter Society, Vienna (2018)

44. Holzer, M., Kutrib, M.: One-time nondeterministic computations. Int. J. Found.
Comput. Sci. 30, 1069–1089 (2019)

45. Hromkovič, J., Schnitger, G.: Nondeterminism versus determinism for two-way
finite automata: generalizations of Sipser’s separation. In: Baeten, J.C.M., Lenstra,
J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 439–
451. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0 36

46. Hromkovič, J., Schnitger, G.: NFAs with and without ε-transitions. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 385–396. Springer, Heidelberg (2005). https://doi.org/10.
1007/11523468 32

47. Hromkovič, J., Seibert, S., Wilke, T.: Translating regular expressions into small ε-
free nondeterministic finite automata. J. Comput. System Sci. 62, 565–588 (2001)

48. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of
DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237, 485–494
(2000)

49. Kapoutsis, C.A.: Minicomplexity. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS
2012. LNCS, vol. 7386, pp. 20–42. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31623-4 2

50. Kapoutsis, C.A.: Minicomplexity. J. Autom. Lang. Comb. 17(2–4), 205–224 (2012)
51. Kapoutsis, C.A.: Nondeterminism is essential in small two-way finite automata

with few reversals. Inf. Comput. 222, 208–227 (2013)
52. Kapoutsis, C.A.: Two-way automata versus logarithmic space. Theory Comput.

Syst. 55(2), 421–447 (2014)
53. Kapoutsis, C.A.: Minicomplexity - some motivation, some history, and some struc-

ture (invited talk extended abstract). In: Catania, B., Královic, R., Nawrocki, J.R.,
Pighizzini, G. (eds.) SOFSEM 2019. LNCS, vol. 11376, pp. 28–38. Springer (2019)

54. Kapoutsis, C.A., Královic, R., Mömke, T.: Size complexity of rotating and sweeping
automata. J. Comput. Syst. Sci. 78(2), 537–558 (2012)

55. Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of L/poly
versus NL. Theory Comput. Syst. 56(4), 662–685 (2015)

56. Koechlin, F., Nicaud, C., Rotondo, P.: Uniform random expressions lack expressiv-
ity. In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) MFCS 2019. LIPIcs, vol.
138, pp. 51:1–51:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

57. Kutrib, M.: The phenomenon of non-recursive trade-offs. Int. J. Found. Comput.
Sci. 16, 957–973 (2005)

https://doi.org/10.1007/3-540-44977-9_14
https://doi.org/10.1007/3-540-44977-9_14
https://doi.org/10.1007/3-540-45061-0_36
https://doi.org/10.1007/11523468_32
https://doi.org/10.1007/11523468_32
https://doi.org/10.1007/978-3-642-31623-4_2
https://doi.org/10.1007/978-3-642-31623-4_2

Hot Current Topics of Descriptional Complexity 27

58. Kutrib, M., Malcher, A., Mereghetti, C., Palano, B.: Descriptional complexity
of iterated uniform finite-state transducers. In: Hospodár, M., Jirásková, G.,
Konstantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612, pp. 223–234. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23247-4 17

59. Kutrib, M., Malcher, A., Mereghetti, C., Palano, B.: Deterministic and nondeter-
ministic iterated uniform finite-state transducers: computational and descriptional
power. In: Anselmo, M., Della Vedova, G., Manea, F., Pauly, A. (eds.) CiE 2020.
LNCS, vol. 12098, pp. 87–99. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-51466-2 8

60. Kutrib, M., Malcher, A., Pighizzini, G.: Oblivious two-way finite automata: decid-
ability and complexity. Inf. Comput. 237, 294–302 (2014)

61. Kutrib, M., Pighizzini, G., Wendlandt, M.: Descriptional complexity of limited
automata. Inf. Comput. 259(2), 259–276 (2018)

62. Kutrib, M., Wendlandt, M.: On simulation cost of unary limited automata. In:
Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 153–164. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19225-3 13

63. Lifshits, Y.: A lower bound on the size of ε-free NFA corresponding to a regular
expression. Inform. Process. Lett. 85(6), 293–299 (2003)

64. Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kybernetiki
9, 321–326 (1963). (in Russian), German translation: Über den Vergleich zweier
Typen endlicher Quellen. Probleme der Kybernetik 6 (1966), 328–335

65. Manca, V.: On the generative power of iterated transductions. In: Ito, M., Păun,
G., Yu, S. (eds.) Words, Semigroups, and Transductions - Festschrift in Honor of
Gabriel Thierrin, pp. 315–327. World Scientific (2001)

66. Maslov, A.N.: Estimates of the number of states of finite automata. Dokllady
Akademii Nauk SSSR 194, 1266–1268 (1970). (in Russian). English translation in
Soviet Mathematics Doklady, 11, 1373–1375 (1970)

67. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34,
1045–1079 (1955)

68. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Symposium on Switching and Automata Theory (SWAT 1971),
pp. 188–191. IEEE (1971)

69. Micali, S.: Two-way deterministic finite automata are exponentially more succinct
than sweeping automata. Inf. Process. Lett. 12(2), 103–105 (1981)

70. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Com-
put. 20(10), 1211–1214 (1971)

71. Nicaud, C.: Étude du comportement en moyenne des automates finis et des lan-
gages rationnels. Ph.D. thesis, Université de Paris 7 (2000)

72. Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A.H., Ionescu,
A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 626–637. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00982-2 53

73. Nicaud, C.: Random deterministic automata. In: Csuhaj-Varjú, E., Dietzfelbinger,
M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 5–23. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44522-8 2

74. Pierce, A.: Decision Problems on Iterated Length-Preserving Transducers. Bache-
lor’s thesis, SCS Carnegie Mellon University, Pittsburgh (2011)

75. Pighizzini, G.: Two-way finite automata: old and recent results. Fundam. Inform.
126(2–3), 225–246 (2013)

https://doi.org/10.1007/978-3-030-23247-4_17
https://doi.org/10.1007/978-3-030-51466-2_8
https://doi.org/10.1007/978-3-030-51466-2_8
https://doi.org/10.1007/978-3-319-19225-3_13
https://doi.org/10.1007/978-3-642-00982-2_53
https://doi.org/10.1007/978-3-662-44522-8_2

28 M. Kutrib et al.

76. Pighizzini, G.: Limited automata: properties, complexity and variants. In: Hos-
podár, M., Jirásková, G., Konstantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612,
pp. 57–73. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23247-4 4

77. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25(7), 897–916 (2014)

78. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fundam.
Inform. 136(1–2), 157–176 (2015)

79. Pighizzini, G., Prigioniero, L.: Limited automata and unary languages. Inf. Com-
put. 266, 60–74 (2019)

80. Priez, J.B.: Enumeration of minimal acyclic automata via generalized parking func-
tions. In: FPSAC 2015. DMTCS, January 2015

81. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

82. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.)
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, 1–3
May 1978, San Diego, California, USA, pp. 275–286. ACM (1978)

83. Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary
alphabets. J. Autom. Lang. Comb. 2(3), 177–186 (1997)

84. Sedgewick, R., Flajolet, P.: Analysis of Algorithms. Addision-Wesley, Boston
(1996)

85. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959)

86. Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. Syst. Sci.
21(2), 195–202 (1980)

87. Stearns, R.E.: A regularity test for pushdown machines. Inform. Control 11, 323–
340 (1967)

88. Valiant, L.G.: Regularity and related problems for deterministic pushdown
automata. J. ACM 22, 1–10 (1975)

89. Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata.
Inf. Process. Lett. 30(5), 261–264 (1989)

90. Vardi, M.Y.: Endmarkers can make a difference. Inf. Process. Lett. 35(3), 145–148
(1990)

91. Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing
Company, Dordrecht (1986)

92. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

93. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)

https://doi.org/10.1007/978-3-030-23247-4_4

	Hot Current Topics of Descriptional Complexity
	1 Descriptional Complexity: Idea and Basic Concepts
	2 Operational State Complexity
	3 When Descriptional Complexity Meets Computational Complexity
	4 Turing Machines with Rewriting Restrictions
	5 Automata that May Change Their Mind
	6 Boosting the Descriptional Capacity by Transductions
	7 Enumerations and Average Complexity
	References

