
FRaGenLP: A Generator of Random
Linear Programming Problems for

Cluster Computing Systems

Leonid B. Sokolinsky(B) and Irina M. Sokolinskaya

South Ural State University (National Research University), 76, Lenin prospekt,
Chelyabinsk 454080, Russia

{leonid.sokolinsky,irina.sokolinskaya}@susu.ru

Abstract. The article presents and evaluates a scalable FRaGenLP
algorithm for generating random linear programming problems of large
dimension n on cluster computing systems. To ensure the consistency of
the problem and the boundedness of the feasible region, the constraint
system includes 2n + 1 standard inequalities, called support inequali-
ties. New random inequalities are generated and added to the system in
a manner that ensures the consistency of the constraints. Furthermore,
the algorithm uses two likeness metrics to prevent the addition of a new
random inequality that is similar to one already present in the constraint
system. The algorithm also rejects random inequalities that cannot affect
the solution of the linear programming problem bounded by the support
inequalities. The parallel implementation of the FRaGenLP algorithm
is performed in C++ through the parallel BSF-skeleton, which encap-
sulates all aspects related to the MPI-based parallelization of the pro-
gram. We provide the results of large-scale computational experiments
on a cluster computing system to study the scalability of the FRaGenLP
algorithm.

Keywords: Random linear programming problem · Problem
generator · FRaGenLP · Cluster computing system · BSF-skeleton

1 Introduction

The era of big data [1,2] has generated large-scale linear programming (LP)
problems [3]. Such problems arise in economics, industry, logistics, statistics,
quantum physics, and other fields. To solve them, high-performance computing
systems and parallel algorithms are required. Thus, the development of new par-
allel algorithms for solving LP problems and the revision of current algorithms
have become imperative. As examples, we can cite the works [4–9]. The devel-
opment of new parallel algorithms for solving large-scale linear programming

I. M. Sokolinskaya—The reported study was partially funded by the Russian Founda-
tion for Basic Research (project No. 20-07-00092-a) and the Ministry of Science and
Higher Education of the Russian Federation (government order FENU-2020-0022).

c© Springer Nature Switzerland AG 2021
L. Sokolinsky and M. Zymbler (Eds.): PCT 2021, CCIS 1437, pp. 164–177, 2021.
https://doi.org/10.1007/978-3-030-81691-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81691-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-81691-9_12

Generator of LP Problems 165

problems involves testing them on benchmark and random problems. One of
the most well-known benchmark repositories of linear programming problems
is Netlib-Lp [10]. However, when debugging LP solvers, it is often necessary to
generate random LP problems with certain characteristics, with the dimension
of the space and the number of constraints being the main ones. The paper [11]
suggested one of the first methods for generating random LP problems with
known solutions. The method allows generating test problems of arbitrary size
with a wide range of numerical characteristics. The main idea of the method
is as follows. Take as a basis an LP problem with a known solution and then
randomly modify it so that the solution does not change. The main drawback of
the method is that fixing the optimal solution in advance significantly restricts
the random nature of the resulting LP problem.

The article [12] describes the GENGUB generator, which constructs random
LP problems with a known solution and given characteristics, such as the prob-
lem size, the density of the coefficient matrix, the degeneracy, the number of
binding inequalities, and others. A distinctive feature of GENGUB is the ability
to introduce generalized upper bound constraints, defined to be a (sub)set of
constraints in which each variable appears at most once (i.e., has at most one
nonzero coefficient). This method has the same drawback as the previous one: by
preliminarily fixing the optimal solution, one significantly restricts the random
nature of the resulting LP problem.

The article [13] suggests a method for generating random LP problems with
a preselected solution type: bounded or unbounded, unique or multiple. Each
of these structures is generated using random vectors with integer components
whose range can be given. Next, an objective function that satisfies the required
conditions, i.e., leads to a solution of the desired type, is obtained. The LP
problem generator described in [13] is mainly used for educational purposes and
is not suitable for testing new linear programming algorithms due to the limited
variety of generated problems.

In the present paper, we suggest an alternative method for generating random
LP problems. The method has the peculiarity of generating feasible problems
of a given dimension with an unknown solution. The generated problem is fed
to the input of the tested LP solver, and the latter outputs a solution that
must be validated. The validator program (see, for example, [14]) validates the
obtained solution. The method we suggest for generating random LP problems
is named FRaGenLP (Feasible Random Generator of LP) and is implemented
as a parallel program for cluster computing systems. The rest of the article is
as follows. Section 2 provides a formal description of the method for generating
random LP problems and gives a sequential version of the FRaGenLP algorithm.
In Sect. 3, we discuss the parallel version of the FRaGenLP algorithm. In Sect. 4,
we describe the implementation of FRaGenLP using a parallel BSF-skeleton and
give the results of large-scale computational experiments on a cluster computing
system. The results confirm the efficiency of our approach. Section 5 summarizes
the obtained results and discusses plans to use the FRaGenLP generator in the
development of an artificial neural network capable of solving large LP problems.

166 L. B. Sokolinsky and I. M. Sokolinskaya

2 Method for Generating Random LP Problems

The method suggested in this paper generates random feasible bounded LP
problems of arbitrary dimension n with an unknown solution. To guarantee
the correctness of the LP problem, the constraint system includes the following
support inequalities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 � α
x2 � α

. . . · · · · · ·
xn � α

−x1 � 0
−x2 � 0

. . . · · · · · ·
−xn � 0

x1 +x2 · · · +xn � (n − 1)α + α/2

(1)

Here, the positive constant α ∈ R>0 is a parameter of the FRaGenLP generator.
The number of support inequalities is 2n+1. The number of random inequalities
is determined by a parameter d ∈ Z�0. The total number m of inequalities is
defined by the following equation:

m = 2n + 1 + d. (2)

The coefficients of the objective function are specified by the vector

c = θ (n, n − 1, n − 2, . . . , 1) , (3)

where the positive constant θ ∈ R>0 is a parameter of the FRaGenLP generator
that satisfies the following condition:

θ � α

2
. (4)

From now on, we assume that the LP problem requires finding a feasible point
at which the maximum of the objective function is attained. If the number d
of random inequalities is zero, then FRaGenLP generates an LP problem that
includes only the support inequalities given in (1). In this case, the LP problem
has the following unique solution:

x̄ = (α, . . . , α, α/2) . (5)

If the number d of random inequalities is greater than zero, the FRaGenLP
generator adds the corresponding number of inequalities to system (1). The
coefficients ai = (ai1, . . . , ain) of the random inequality and the constant term bi
on the right side are calculated through the function rand(l, r), which generates

Generator of LP Problems 167

a random real number in the interval [l, r] (l, r ∈ R; l < r), and the function
rsgn(), which randomly selects a number from the set {1,−1}:

aij := rsgn() · rand(0, amax),
bi := rsgn() · rand(0, bmax).

(6)

Here, amax, bmax ∈ R>0 are parameters of the FRaGenLP generator. The
inequality sign is always “�”. Let us introduce the following notations:

f(x) = 〈c, x〉; (7)

h = (α/2, . . . , α/2) ; (8)

disth(ai, bi) =
|〈ai, h〉 − bi|

‖ai‖ ; (9)

π(h, ai, bi) = h − 〈ai, h〉 − bi

|ai|2
ai. (10)

Equation (7) defines the objective function of the LP problem. Here and further
on, 〈·, ·〉 stands for the dot product of vectors. Equation (8) defines the central
point of the bounding hypercube specified by the first 2n inequalities of system
(1). Furthermore, Eq. (9) defines a function disth(ai, bi) that gives the distance
from the hyperplane 〈ai, x〉 = bi to the center h of the bounding hypercube. Here
and below, ‖ · ‖ denotes the Euclidean norm. Equation (10) defines a vector-
valued function that expresses the orthogonal projection of the point h onto the
hyperplane 〈ai, x〉 = bi.

To obtain a random inequality 〈ai, x〉 � bi, we calculate the coordinates of
the coefficient vector ai and the constant term bi using a pseudorandom rational
number generator. The generated random inequality is added to the constraint
system if and only if the following conditions hold:

〈ai, h〉 � bi; (11)

ρ < disth(ai, bi) � θ; (12)

f (π (h, ai, bi)) > f (h) ; (13)

∀l ∈ {1, . . . , i − 1} : ¬like(ai, bi, al, bl). (14)

Condition (11) requires that the center of the bounding hypercube be a feasible
point for the considered random inequality. If the condition does not hold, then
the inequality −〈ai, x〉 � −bi is added instead of 〈ai, x〉 � bi. Condition (12)
requires that the distance from the hyperplane 〈ai, x〉 = bi to the center h of the
bounding hypercube be greater than ρ but not greater than θ. The constant ρ ∈
R>0 is a parameter of the FRaGenLP generator and must satisfy the condition
ρ < θ, where θ, in turn, satisfies condition (4). Condition (13) requires that the
objective function value at the projection of the point h onto the hyperplane
〈ai, x〉 = bi be greater than the objective function value at the point h. This
condition combined with (11) and (12) cuts off constraints that cannot affect

168 L. B. Sokolinsky and I. M. Sokolinskaya

the solution of the LP problem. Finally, condition (14) requires that the new
inequality be dissimilar from all previously added ones, including the support
ones. This condition uses the Boolean function “like”, which determines the
likeness of the inequalities 〈ai, x〉 � bi and 〈al, x〉 � bl through the following
equation:

like(ai, bi, al, bl) =
∥
∥
∥
∥

ai

‖ai‖ − al

‖al‖
∥
∥
∥
∥ < Lmax ∧

∣
∣
∣
∣

bi
‖ai‖ − bl

‖al‖
∣
∣
∣
∣ < Smin. (15)

The constants Lmax, Smin ∈ R>0 are parameters of the FRaGenLP generator. In
this case, the parameter Lmax must satisfy the condition

Lmax � 0.7 (16)

(we will explain the meaning of this constraint below). According to (15),
inequalities 〈ai, x〉 � bi and 〈al, x〉 � bl are similar if the following two con-
ditions hold: ∥

∥
∥
∥

ai

‖ai‖ − al

‖al‖
∥
∥
∥
∥ < Lmax; (17)

∣
∣
∣
∣

bi
‖ai‖ − bl

‖al‖
∣
∣
∣
∣ < Smin. (18)

Condition (17) evaluates the measure of parallelism of the hyperplanes
〈ai, x〉 = bi and 〈al, x〉 = bl, which bound the feasible regions of the corre-
sponding inequalities. Let us explain this. The unit vectors ei = ai/ ‖ai‖ and
el = al/ ‖al‖ are normal to the hyperplanes 〈ai, x〉 = bi and 〈al, x〉 = bl, respec-
tively. Let us introduce the notation δ = ‖ei − el‖. If δ = 0, then the hyperplanes
are parallel. If 0 � δ < Lmax, then the hyperplanes are considered to be nearly
parallel.

Condition (18) evaluates the closeness of the parallel hyperplanes 〈ai, x〉 =
bi and 〈al, x〉 = bl. Indeed, the scalar values βi = bi/ ‖ai‖ and
βl = bl/ ‖al‖ are the normalized constant terms. Let us introduce the notation
σ = |βi −βl|. If σ = 0, then the parallel hyperplanes coincide. If the hyperplanes
are nearly parallel and 0 � σ < Smin, then they are considered to be nearly
concurrent.

Two linear inequalities in R
n are considered similar if the corresponding

hyperplanes are nearly parallel and nearly concurrent.
The constraint (16) for the parameter Lmax is based on the following propo-

sition.

Proposition 1. Let the two unit vectors e, e′ ∈ R
n and the angle ϕ < π between

them be given. Then,
‖e − e′‖ =

√
2(1 − cos ϕ). (19)

Generator of LP Problems 169

Proof. By the definition of the norm in Euclidean space, we have

‖e − e′‖ =
√∑

j

(ej − e′
j)

2 =
√∑

j

(
ej2 − 2eje′

j + e′
j
2
)

=
√∑

j

ej2 − 2
∑

j

eje′
j +

∑

j

e′
j
2 =

√

1 − 2〈ej , e′
j〉 + 1.

Thus,

‖e − e′‖ =
√

2 (1 − 〈ej , e′
j〉). (20)

By the definition of the angle in Euclidean space, we have, for unit vectors,

〈ej , e′
j〉 = cos ϕ.

Substituting in (20) the expression obtained, we have

‖e − e′‖ =
√

2 (1 − cos ϕ).

The proposition is proven.

It is reasonable to consider that two unit vectors e, e′ are nearly parallel if
the angle between them is less than π/4. In this case, according to (19), we have

‖e − e′‖ <

√

2
(
1 − cos

π

4

)
.

Taking into account that cos(π/4) ≈ 0.707, we obtain the required estimate:

‖e − e′‖ < 0.7.

An example of a two-dimensional LP problem generated by FRaGenLP is
shown in Fig. 1. The purple color indicates the line defined by the coefficients of
the objective function; the black lines correspond to the support inequalities, and
the red lines correspond to the random inequalities. For the sake of clarity, we use
green dashed lines to plot the large and the small circles defined by the equations
(x1 − 100)2+(x2 − 100)2 = 1002 and (x1 − 100)2+(x2 − 100)2 = 502. According
to condition (12), any random line must intersect the large green circle but not
the small green circle. The semitransparent red color indicates the feasible region
of the generated LP problem.

Algorithm 1 represents a sequential implementation of the described method.
Step 1 assigns zero value to the counter k of random inequalities. Step 2 cre-
ates an empty list A to store the coefficients of the inequalities. Step 3 creates
an empty list B to store the constant terms. Step 4 adds the coefficients and
constant terms of the support inequalities (1) to the lists A and B, respectively.
Step 5 generates the coefficients of the objective function according to (3). If the
parameter d, which specifies the number of random inequalities, is equal to zero,
then Step 6 passes the control to Step 19. Steps 7 and 8 generate the coefficients

170 L. B. Sokolinsky and I. M. Sokolinskaya

Fig. 1. Random LP problem with n = 2, d = 5, α = 200, θ = 100, ρ = 50, Smin = 100,
Lmax = 0.35, amax = 1000, and bmax = 10 000

and the constant term of the new random inequality. Step 9 checks condition
(11). If the condition does not hold, then the signs of the coefficients and the
constant term are reversed (Steps 10, 11). Step 12 checks condition (12). Step 13
checks condition (13). Step 14 checks condition (14). Step 15 appends the coeffi-
cients of the new random inequality to the list A (++ denotes the concatenation
of lists). Step 16 appends the constant term of the new random inequality to the
list B. Step 17 increments the counter of added random inequalities by one. If
the number of added random inequalities has not reached the given quantity d,
then Step 18 passes the control to Step 7 to generate the next inequality. Step 19
outputs the results. Step 20 stops computations.

3 Parallel Algorithm for Generating Random LP
Problems

Implicit loops generated by passing the control from Steps 12–14 to Step 7 of
Algorithm 1 can result in high overheads. For example, during the generation of
the LP problem represented in Fig. 1, there were 112 581 returns from Step 12 to
label 7, 32 771 from Step 13, and 726 from Step 14. Therefore, generating a large
random LP problem on a commodity personal computer can take many hours.
To overcome this obstacle, we developed a parallel version of the FRaGenLP gen-
erator for cluster computing systems. This version is presented as Algorithm 2.
It is based on the BSF parallel computation model [15,16], which assumes the
master–slave paradigm [17]. According to the BSF model, the master node serves

Generator of LP Problems 171

Algorithm 1. Sequential algorithm for generating a random LP problem
Parameters: n, d, α, θ, ρ, Smin, Lmax, amax, bmax

1: k := 0
2: A := []
3: B := []
4: AddSupport(A, B)
5: for j = n . . . 1 do cj := θ · j
6: if d = 0 goto 19
7: for j = 1 . . . n do aj := rsign() · rand(0, amax)
8: b := rsign() · rand(0, bmax)
9: if 〈a, h〉 � b goto 12

10: for j = 1 . . . n do aj := −aj

11: b := −b
12: if disth(a, b) < ρ or disth(a, b) > θ goto 7
13: if f(π(h, a, b)) � f(h) goto 7
14: for all (ā, b̄) ∈ (A, B) do if like(a, b, ā, b̄) goto 7
15: A := A ++ [a]
16: B := B ++ [b]
17: k := k + 1
18: if k < d goto 7
19: output A, B, c
20: stop

as a control and communication center. All slave nodes execute the same code
but on different data.

Let us discuss Algorithm 2 in more detail. First, we look at the steps per-
formed by the master node. Step 1 assigns zero value to the counter of random
inequalities. Step 2 creates an empty list AS to store the coefficients of the sup-
port inequalities. Step 3 creates an empty list BS to store the constant terms of
the support inequalities. Step 4 adds the coefficients and constant terms of the
support inequalities (1) to the lists AS and BS , respectively. Step 5 generates
the coefficients of the objective function according to (3). Step 6 outputs the
coefficients and constant term of the support inequalities. If the parameter d,
which specifies the number of random inequalities, is equal to zero, then Step 7
passes the control to Step 36, which terminates the computational process in
the master node. Step 8 creates an empty list AR to store the coefficients of the
random inequalities. Step 9 creates an empty list BR to store the constant terms
of the random inequalities. In Step 18, the master node receives one random
inequality from each slave node. Each of these inequalities satisfies conditions
(11)–(13) and is not similar to any of the support inequalities. These conditions
are ensured by the slave nodes. In the loop consisting of Steps 19–32, the mas-
ter node checks all received random inequalities for similarity with the random
inequalities previously included in the lists AR and BR. The similar new inequal-
ities are rejected, and the dissimilar ones are added to the lists AR and BR. In
this case, the inequality counter is increased by one each time some inequality

172 L. B. Sokolinsky and I. M. Sokolinskaya

Algorithm 2. Parallel algorithm for generating a random LP problem
Parameters: n, d, α, θ, ρ, Smin, Lmax, amax, bmax

Master Slave (l=1,. . . ,L)

1: k := 0
2: AS := []
3: BS := []
4: AddSupport(AS , BS)
5: for j = n . . . 1 do cj := θ · j
6: output AS , BS , c
7: if d = 0 goto 36
8: AR := []
9: BR := []

10:
11:
12:
13:
14:
15:
16:
17:
18: RecvFromSlaves a(1), b(1), ..., a(L), b(L)

19: for l = 1 . . . L do
20: isLike := false
21: for all (ā, b̄) ∈ (AR, BR) do
22: if like(a(l), b(l), ā, b̄) then
23: isLike := true
24: goto 27
25: end if
26: end for
27: if isLike continue
28: AR := AR ++ [a(l)]
29: BR := BR ++ [b(l)]
30: k := k + 1
31: if k = d goto 33
32: end for
33: SendToSlaves k
34: if k < d goto 18
35: output AR, BR

36: stop

1: if d = 0 goto 36
2: AS := []
3: BS := []
4: AddSupport(AS , BS)
5: for j = 1 . . . n do
6: a

(l)
j := rsign() · rand(0, amax)

7: end for
8: b(l) := rsign() · rand(0, bmax)
9: if 〈a(l), h〉 ≤ b(l) goto 12

10: for j = 1 . . . n do a
(l)
j := −a

(l)
j

11: b(l) := −b(l)

12: if disth(a(l), b(l)) < ρ goto 5
13: if disth(a(l), b(l)) > θ goto 5
14: if f(π(h, a(l), b(l))) � f(h) goto 5
15: for all (ā, b̄) ∈ (AS , BS) do
16: if like(a(l), b(l), ā, b̄) goto 5
17: end for
18: SendToMaster a(l), b(l)

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33: RecvFromMaster k
34: if k < d goto 5
35:
36: stop

Generator of LP Problems 173

is added to the lists. If the required number of random inequalities has already
been reached, then Step 31 performs an early exit from the loop. Step 33 sends
the current number of added random inequalities to the slave nodes. If this quan-
tity is less than d, then Step 34 passes the control to Step 18, which requests
a new portion of random inequalities from the slave nodes. Otherwise, Step 35
outputs the results, and Step 36 terminates the computational process in the
master node.

Let us consider now the steps performed by the l-th slave node. If the param-
eter d, which specifies the number of random inequalities, is equal to zero, then
Step 1 passes the control to Step 36, which terminates the computational process
in the slave node. Otherwise, Steps 2 and 3 create the empty lists AS and BS to
store the support inequalities. Step 4 adds the coefficients and constant terms
of the support inequalities (1) to the lists AS and BS , respectively. Steps 5–8
generate a new random inequality. Step 9 checks condition (11). If this condi-
tion does not hold, then the signs of the coefficients and the constant term are
reversed (Steps 10 and 11). Steps 12–14 check conditions (12) and (13). Steps 15–
17 check the similarity of the generated inequality to the support inequalities. If
any one of these conditions does not hold, then the control is passed to Step 5
to generate a new random inequality. If all conditions hold, then Step 18 sends
the constructed random inequality to the master node. In Step 33, the slave
receives from the master the current number of obtained random inequalities. If
this quantity is less than the required number, then Step 34 passes the control
to Step 5 to generate a new random inequality. Otherwise, Step 36 terminates
the computational process in the slave node.

4 Software Implementation and the Computational
Experiments

We implemented the parallel Algorithm 2 in C++ through the parallel BSF-
skeleton [18], which is based on the BSF parallel computation model [15] and
encapsulates all aspects related to the parallelization of the program using the
MPI library [19].

The BSF-skeleton requires the representation of the algorithm in the form
of operations on lists using the higher-order functions Map and Reduce, defined
by the Bird–Meertens formalism [20]. The required representation can be con-
structed as follows. Set the length of the Map and Reduce lists equal to the
number of slave MPI processes. Define the Map list items as empty structures:

struct PT bsf mapElem T{ } .

Each element of the Reduce list stores the coefficients and the constant term of
one random inequality 〈a, x〉 � b:

struct PT bsf reduceElem T{ float a[n]; float b} .

Each slave MPI process generates one random inequality using the
PC bsf MapF function, which executes Steps 5–17 of Algorithm 2. The slave

174 L. B. Sokolinsky and I. M. Sokolinskaya

Table 1. Specifications of the “Tornado SUSU” computing cluster

Parameter Value

Number of processor nodes 480

Processor Intel Xeon X5680 (6 cores, 3.33 GHz)

Processors per node 2

Memory per node 24 GB DDR3

Interconnect InfiniBand QDR (40 Gbit/s)

Operating system Linux CentOS

MPI process stores the inequality that satisfies all conditions to its local Reduce
list consisting of a single item. The master MPI process receives the generated
elements from the slave MPI processes and places them in its Reduce list (this
code is implemented in the problem-independent part of the BSF-skeleton). After
that, the master MPI process checks each obtained inequality for similarity with
the previously added ones. If no matches are found, the master MPI process adds
the inequality just checked to its local Reduce list. These actions, correspond-
ing to Steps 19–32 of Algorithm 2, are implemented as the standard function
PC bsf ProcessResults of the BSF-skeleton. The source code of the FRaGenLP
parallel program is freely available on the Internet at https://github.com/leonid-
sokolinsky/BSF-LPP-Generator.

Using the program, we conducted large-scale computational experiments on
the cluster computing system “Tornado SUSU” [21]. The specifications of the
system are given in Table 1. The computations were performed for several dimen-
sions, namely n = 3000, n = 5500, and n = 15 000. The total numbers of inequal-
ities were, respectively, 6301, 10 001, and 31 501. The corresponding numbers
of random inequalities were 300, 500, and 1500, respectively. Throughout the
experiments, we used the following parameter values: α = 200 (the length of the
bounding hypercube edge), θ = 100 (the radius of the large hypersphere), ρ = 50
(the radius of the small hypersphere), Lmax = 0.35 (the upper bound of near
parallelism for hyperplanes), Smin = 100 (the minimum acceptable closeness for
hyperplanes), amax = 1000 (the upper absolute bound for the coefficients), and
bmax = 10 000 (the upper absolute bound for the constant terms).

The results of the experiments are shown in Fig. 2. Generating a random LP
problem with 31 501 constraints with a configuration consisting of a master node
and a slave node took 12 min. Generating the same problem with a configuration
consisting of a master node and 170 slave nodes took 22 s. The analysis of the
results showed that the scalability bound (the maximum of the speedup curve)
of the algorithm significantly depends on the dimension of the problem. For
n = 3000, the scalability bound was 50 processor nodes approximately. This
bound increased up to 110 nodes for n = 5000, and to 200 nodes for n =
15 000. A further increase in problem size causes the processor nodes to run

https://github.com/leonid-sokolinsky/BSF-LPP-Generator
https://github.com/leonid-sokolinsky/BSF-LPP-Generator

Generator of LP Problems 175

Fig. 2. Speedup curves of the FRaGenLP parallel algorithm for various dimensions

out of memory. It should be noted that the scalability bound of the algorithm
significantly depends on the number of random inequalities too. Increasing this
number by a factor of 10 resulted in a twofold reduction of the scalability bound.
This is because an increase in the number of slave nodes results in a significant
increase in the portion of sequential computations performed by the master node
in Steps 19–32, during which the slave nodes are idle.

5 Conclusions

In this paper, we described the parallel FRaGenLP algorithm for generating ran-
dom feasible bounded LP problems on cluster computing systems. In addition
to random inequalities, the generated constraint systems include a standard set
of inequalities called support inequalities. They ensure the boundedness of the
feasible region of the LP problem. In geometric terms, the feasible region of the
support inequalities is a hypercube with edges adjacent to the coordinate axes,
and the vertex that is farthest from the origin is cut off. The objective function
is defined in such a manner that its coefficients decrease monotonically. The
coefficients and constant terms of the random inequalities are obtained using a
random number generator. If the feasible region of a randomly generated inequal-
ity does not include the center of the bounding hypercube, then the sign of the
inequality is reversed. Furthermore, not every random inequality is included in
the constraint system. The random inequalities that cannot affect the solution
of the LP problem for a given objective function are rejected. The inequalities,
for which the bounding hyperplane intersects a small hypersphere located at the
center of the bounding hypercube are also rejected. This ensures the feasibility
of the constraint system. Moreover, any random inequality that is “similar” to

176 L. B. Sokolinsky and I. M. Sokolinskaya

at least one of the inequalities already added to the system (including the sup-
port ones) is also rejected. To define the “similarity” of inequalities, two formal
metrics are introduced for bounding hyperplanes: the measure of parallelism and
the measure of closeness.

The parallel algorithm is based on the BSF parallel computation model,
which relies on the master–slave paradigm. According to this paradigm, the
master node serves as a control and communication center. All slave nodes exe-
cute the same code but on different data. The parallel implementation was per-
formed in C++ through the parallel BSF-skeleton, which encapsulates all aspects
related to the MPI-based parallelization of the program. The source code of the
FRaGenLP generator is freely available on the Internet at https://github.com/
leonid-sokolinsky/BSF-LPP-Generator.

Using this implementation, we conducted large-scale computational experi-
ments on a cluster computing system. As the experiments showed, the parallel
FRaGenLP algorithm demonstrates good scalability, up to 200 processor nodes
for n = 15 000. Generating a random LP problem with 31 501 constraints takes
22 s with a configuration consisting of 171 processor nodes. Generating the same
problem with a configuration consisting of a processor node takes 12 min. The
program was used to generate a dataset of 70 000 samples for training an artificial
neural network capable of quickly solving large LP problems.

References

1. Jagadish, H.V., et al.: Big data and its technical challenges. Commun. ACM 57(7),
86–94 (2014). https://doi.org/10.1145/2611567

2. Hartung, T.: Making big sense from big data. Front. Big Data. 1, 5 (2018). https://
doi.org/10.3389/fdata.2018.00005

3. Sokolinskaya, I., Sokolinsky, L.B.: On the solution of linear programming problems
in the age of big data. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS,
vol. 753, pp. 86–100. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67035-5 7

4. Sokolinsky, L.B., Sokolinskaya, I.M.: Scalable method for linear optimization of
industrial processes. In: Proceedings – 2020 Global Smart Industry Conference,
GloSIC 2020, pp. 20–26. Article number 9267854. IEEE (2020). https://doi.org/
10.1109/GloSIC50886.2020.9267854

5. Sokolinskaya, I., Sokolinsky, L.B.: Scalability evaluation of NSLP algorithm for
solving non-stationary linear programming problems on cluster computing systems.
In: Voevodin, V., Sobolev, S. (eds.) Supercomputing, RuSCDays 2017. Communi-
cations in Computer and Information Science, vol. 793. pp. 40–53. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71255-0 4

6. Mamalis, B., Pantziou, G.: Advances in the parallelization of the simplex method.
In: Zaroliagis, C., Pantziou, G., Kontogiannis, S. (eds.) Algorithms, Probability,
Networks, and Games. LNCS, vol. 9295, pp. 281–307. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24024-4 17

7. Huangfu, Q., Hall, J.A.J.: Parallelizing the dual revised simplex method. Math.
Program. Comput. 10(1), 119–142 (2018). https://doi.org/10.1007/s12532-017-
0130-5

https://github.com/leonid-sokolinsky/BSF-LPP-Generator
https://github.com/leonid-sokolinsky/BSF-LPP-Generator
https://doi.org/10.1145/2611567
https://doi.org/10.3389/fdata.2018.00005
https://doi.org/10.3389/fdata.2018.00005
https://doi.org/10.1007/978-3-319-67035-5_7
https://doi.org/10.1007/978-3-319-67035-5_7
https://doi.org/10.1109/GloSIC50886.2020.9267854
https://doi.org/10.1109/GloSIC50886.2020.9267854
https://doi.org/10.1007/978-3-319-71255-0_4
https://doi.org/10.1007/978-3-319-24024-4_17
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/s12532-017-0130-5

Generator of LP Problems 177

8. Tar, P., Stagel, B., Maros, I.: Parallel search paths for the simplex algorithm.
Central Eur. J. Oper. Res. 25(4), 967–984 (2017). https://doi.org/10.1007/s10100-
016-0452-9

9. Yang, L., Li, T., Li, J.: Parallel predictor-corrector interior-point algorithm of
structured optimization problems. In: 3rd International Conference on Genetic
and Evolutionary Computing, WGEC 2009, pp. 256–259 (2009). https://doi.org/
10.1109/WGEC.2009.68

10. Gay, D.M.: Electronic mail distribution of linear programming test problems. Math.
Program. Soc. COAL Bull. 13, 10–12 (1985)

11. Charnes, A., Raike, W.M., Stutz, J.D., Walters, A.S.: On generation of test
problems for linear programming codes. Commun. ACM 17(10), 583–586 (1974).
https://doi.org/10.1145/355620.361173

12. Arthur, J.L., Frendewey, J.O.: GENGUB: a generator for linear programs with
generalized upper bound constraints. Comput. Oper. Res. 20(6), 565–573 (1993).
https://doi.org/10.1016/0305-0548(93)90112-V

13. Castillo, E., Pruneda, R.E., Esquivel, Mo.: Automatic generation of linear program-
ming problems for computer aided instruction. Int. J. Math. Educ. Sci. Technol.
32(2), 209–232 (2001). https://doi.org/10.1080/00207390010010845

14. Dhiflaoui, M., et al.: Certifying and repairing solutions to large LPs how good are
LP-solvers? In: SODA03: Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 255–256. Society for Industrial and Applied
Mathematics, USA (2003)

15. Sokolinsky, L.B.: BSF: a parallel computation model for scalability estimation of
iterative numerical algorithms on cluster computing systems. J. Parallel Distrib.
Comput. 149, 193–206 (2021). https://doi.org/10.1016/j.jpdc.2020.12.009

16. Sokolinsky, L.B.: Analytical estimation of the scalability of iterative numerical
algorithms on distributed memory multiprocessors. Lobachevskii J. Math. 39(4),
571–575 (2018). http://dx.doi.org/10.1134/S1995080218040121

17. Sahni, S., Vairaktarakis, G.: The master-slave paradigm in parallel computer and
industrial settings. J. Glob. Optim. 9(3–4), 357–377 (1996). https://doi.org/10.
1007/BF00121679

18. Sokolinsky, L.B.: BSF-skeleton. User manual. arXiv:2008.12256 [cs.DC] (2020)
19. Gropp, W.: MPI 3 and beyond: why MPI is successful and what challenges it faces.

In: Träff, J.L., Benkner, S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490,
pp. 1–9. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33518-1 1

20. Bird, R.S.: Lectures on constructive functional programming. In: Broy, M. (ed.)
Constructive Methods in Computing Science. NATO ASI Series F: Computer and
Systems Sciences, vol. 55, pp. 151–216. Springer, Heidlberg (1988). https://doi.
org/10.1007/978-3-642-74884-4 5

21. Kostenetskiy, P., Semenikhina, P.: SUSU supercomputer resources for industry and
fundamental science. In: Proceedings – 2018 Global Smart Industry Conference,
GloSIC 2018, art. no. 8570068, p. 7. IEEE (2018). https://doi.org/10.1109/GloSIC.
2018.8570068

https://doi.org/10.1007/s10100-016-0452-9
https://doi.org/10.1007/s10100-016-0452-9
https://doi.org/10.1109/WGEC.2009.68
https://doi.org/10.1109/WGEC.2009.68
https://doi.org/10.1145/355620.361173
https://doi.org/10.1016/0305-0548(93)90112-V
https://doi.org/10.1080/00207390010010845
https://doi.org/10.1016/j.jpdc.2020.12.009
http://dx.doi.org/10.1134/S1995080218040121
https://doi.org/10.1007/BF00121679
https://doi.org/10.1007/BF00121679
http://arxiv.org/abs/2008.12256
https://doi.org/10.1007/978-3-642-33518-1_1
https://doi.org/10.1007/978-3-642-74884-4_5
https://doi.org/10.1007/978-3-642-74884-4_5
https://doi.org/10.1109/GloSIC.2018.8570068
https://doi.org/10.1109/GloSIC.2018.8570068

	FRaGenLP: A Generator of Random Linear Programming Problems for Cluster Computing Systems
	1 Introduction
	2 Method for Generating Random LP Problems
	3 Parallel Algorithm for Generating Random LP Problems
	4 Software Implementation and the Computational Experiments
	5 Conclusions
	References

