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Abstract. Multi-threaded unit tests for high-performance thread-safe
data structures typically do not test all behaviour, because only a single
scheduling of threads is witnessed per invocation of the unit tests. Model
checking such unit tests allows to verify all interleavings of threads. These
tests could be written in or compiled to LLVM IR. Existing LLVM IR
model checkers like divine and Nidhugg, use an LLVM IR interpreter
to determine the next state. This paper introduces llmc, a multi-core
explicit-state model checker of multi-threaded LLVM IR that translates
LLVM IR to LLVM IR that is executed instead of interpreted. A test
suite of 24 tests, stressing data structures, shows that on average llmc
clearly outperforms the state-of-the-art tools divine and Nidhugg.

1 Introduction

High-performance software often uses thread-safe data structures to allow mul-
tiple threads access to the data, without corrupting it. Unit tests for such data
structures typically do not test all behaviour, because the thread scheduler of
the run-time environment non-deterministically chooses only a single interleav-
ing. Thus, only a single trace is witnessed each time the unit test is invoked. If
we would model check [1] these unit tests, we can witness all possible traces by
exploring all thread schedules. Because it does not depend on the run-time envi-
ronment, model checking can become part of a continuous integration pipeline,
enabling push-button verification of multi-threaded software.

These thread-safe data structures can be written in or compiled to LLVM IR,
the intermediate representation of the LLVM Project [2]. The LLVM Project is
a collection of modular and reusable compiler and toolchain technologies. Many
front-ends for LLVM IR exist, for example for C, C++, Java, Ruby, and Rust,
potentially allowing an LLVM IR model checker to be usable for many languages.

1.1 Related Work

Model checkers that operate on LLVM IR already exist, for example divine,
Nidhugg, RCMC and LLBMC. divine [3] is a stateful multi-core model checker
of multi-threaded LLVM IR. It has many features such as capturing I/O during
model checking, SC and TSO memory models, library support such as libc and
libpthread. Input programs are linked with divine’s operating system layer,
DiOS, and are interpreted as a whole on the DiVM virtual machine.
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divine detects memory operations to thread-private memory, by traversing
the heap on-the-fly and recognizing if a memory-object is either known only to
one thread or to multiple [4]. In the former case, memory operations to that
memory-object can be collapsed, i.e. joined with the previous instruction.

Nidhugg [5] is a stateless multi-core model checker of multi-threaded LLVM
IR that uses an LLVM IR interpreter. It features a sophisticated partial-order
reduction, rfsc [6], that categorizes traces according to which read reads from
which write and traverses only one trace in each category. In practice this reduc-
tion is quite powerful. However, Nidhugg comes with a caveat: because Nidhugg
is stateless, common prefixes of traces are traversed once per trace instead of
once in total. This down-side of a stateless approach becomes more pronounced
with longer and more often occurring common traces. Moreover, Nidhugg might
not terminate in the presence of infinite loops.

RCMC [7] is also a stateless LLVM IR model checker. During execution within
its LLVM IR interpreter, it keeps track of a happens-before graph of all observed
memory operations. Using this, RCMC can determine the possible values a read
can observe, without simply executing all interleavings of all threads. Unlike
Nidhugg, it does not support heap memory and is only released in binary form.

CBMC [8] is a bounded model checker for C and C++ programs, using SMT
solving to check for memory safety, exceptions, undefined behaviour and asser-
tions. Loops and recursion are a problem for CBMC when their bound cannot
be determined: one needs to set an upper bound on the number of unwindings.

LLBMC [9] is similar to CBMC, using SMT-solving to find bugs, but only
for single-threaded C/C++ programs and it operates on LLVM IR.

Other, less related tools include SMACK [10], SeaHorn [11] and KLEE [12].

1.2 Contribution

This paper introduces llmc 0.2, a stateful multi-core model checker of multi-
threaded LLVM IR. Instead of using an LLVM IR interpreter like divine,
Nidhugg and llmc 0.1 [13], it transforms input LLVM IR to LLVM IR that
implements the dmc api, the next-state interface to the model checker dmc [14].
We call this transformation process ll2dmc and combined with dmc (Fig.
1), it allows for up to three orders of magnitude higher throughput (states/s)
than divine. At present, llmc lacks sophisticated state space reductions, caus-
ing state space sizes of roughly two orders of magnitude larger than divine. We
compared llmc to divine and Nidhugg using a test suite covering various data
structures. Overall, despite the lack of sophisticated reductions, llmc is on aver-
age an order of magnitude faster than divine and ∼3.8x faster than Nidhugg.
Additionally, llmc is able to compute the state spaces of the tests where divine
or Nidhugg fail.

Fig. 1. The flow of how an LLVM IR input program is verified in llmc.
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2 LLMC: Low-Level Model Checker

This section explains how the transformation process (ll2dmc) transforms the
input LLVM IR of a program to LLVM IR that implements the dmc api. llmc
supports LLVM IR compiled from C and C++, by handling a number of builtins
(e.g. __atomic_* for atomic memory operations), part of libpthread (for thread
support), libc (e.g. for memory allocation) and global constructors.

2.1 DMC Model Checker

Fig. 2. DMC model checker

The model created by ll2dmc is given to dmc
to explore. Dmc interacts with the model via the
dmc api (NextState API and dtree API com-
bined) as illustrated in Fig. 2: after requesting
the initial state from the model, dmc continues
to request successor states, until the state space
has been generated. A state is a vector of 32-bit
integers; two states need not be of the same length.

The states are stored in the concurrent com-
pression tree dtree [14], allowing lossless com-
pression, fast insertion and duplicate detection of
states. When inserted, states are given a unique
StateID. A StateID can be stored in states as
well, thus allowing the creation of a DAG of states: a root-state and sub-states.
Additionally, dtree allows incremental updates to a state, without having the
actual contents of the state and it allows partial reconstruction of states. This
delta interface uses the StateID to identify states and can avoid needless copy-
ing of entire states, increasing performance. Dmc exposes these dtree features
as part of the dmc api [14].

2.2 Input Language to LL2DMC: LLVM IR

To understand how llmc handles input LLVM IR [2], we briefly explain it here.
LLVM IR supports control flow by way of basic blocks. Basic blocks are a list of
instructions that execute sequentially. The last instruction of a basic block is a
terminator instruction, such as a branch (jump) instruction or return statement.

LLVM IR uses single static assignment form for register values. To support
data flow depending on control flow, φ-nodes exist. These nodes are instructions
at the beginning of a basic block that take a value depending on the basic block
from which was jumped to the basic block containing the φ-nodes.

2.3 Output of LL2DMC: Model Implementing DMC API

The output of ll2dmc is a model that implements the NextState API part
of the dmc api of the model checker dmc [14]. The NextState API requires
two interfaces from a model: one to communicate the initial state and one to
generate next states, given a state.
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The initial state of a model generated by ll2dmc is as if one just started
the program: registers are unused, global memory is initialized to 0 and a call to
the global constructor (@llvm.global_ctors) is set up. Global constructors are
functions that are called before main, which are used to initialize memory and
miscellaneous initialization, such that the executable is set up properly before
main is invoked. Having the initial state in this manner, allows the global con-
structor to be part of the state space and thus be checked as well.

Starting with the initial state, dmc will keep asking the model to generate
the next states for a given state, by invoking the next-state interface of the
model, until there are no more new states of which to request next states. Given
a state, the next-state interface determines the states reachable from that state.
In the case of a model generated by ll2dmc, first the global constructors of the
modelled program are explored, thus faults in global constructors are detected.
When the global constructors are completed, a call to main is set up. At this
point, the exploration is performed until no new states are visited.

2.4 State Space Exploration

This section describes the next-state function and how it is generated from LLVM
IR. Figure 3 describes what a state looks like. A state contains information not
unlike what an operating system keeps track of [15]. All instructions are mapped
to a unique index, such that the PC (program counter) uniquely identifies the
current position in code. The field Thread Results holds the return values of
finished threads; the field #threads specifies the number of threads in the current
state. The remainder of the state constitutes a list of per-thread data.

Each thread has its own PC and can independently manipulate it by function
calls or branching. Status fields are used to indicate whether the thread/program
is running, done or failed. Each thread has its own set of Registers , the current
state of LLVM IR registers. The size of Registers is determined by the function
requiring the largest number of LLVM IR registers. Function calls manipulate
these registers and the list of stack frames described by Previous frame .

A Field is a StateID to a sub-state, as described in Sect. 2.1. The separation
into a root-state and sub-states allows sub-states to grow and the state storage
component of dmc, dtree, to compress them using tree compression [14]. It also
allows the use of the delta interface: a write to memory can be simply translated

Fig. 3. A description of the state used by llmc.
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to a single, efficient call, taking the current Memory index, the offset to write to
and the new data. The resulting index can be written to Memory .

A single LLVM IR instruction in the program is translated to many LLVM IR
instructions in the model. We will distinguish LLVM IR registers in the model
from registers in the source program by calling the former model-registers. In
general, a single LLVM IR instruction is translated to a single step with three
phases: In the Preamble phase, operands to the source LLVM IR instruction
are remapped to model-registers and loaded from Registers or Memory . In the
Action phase, the source LLVM IR instruction is cloned, with the operands
remapped to the LLVM IR model-registers set up during the Preamble phase.
In the Epilogue phase, if the source LLVM IR instruction assigns a value to a
register, the value returned by the cloned instruction is written to Registers .

Listing 1 illustrates how a step is performed as part of the next-state function.
Multiple steps can be performed as part of the same transition (line 8), as long
as the changes are local to the thread (line 4). This is explained in more detail
in Sect. 2.5. The step function is called for every thread in the state vector.

2.4.1 Register Manipulation
Note that the Registers are not separated into a sub-state, like Memory . We
chose this such that simple register manipulating LLVM IR instructions would
have no need for an indirection and directly translate to an identical instruction,
with its operands mapped such that they are loaded from the Registers and the
return value of the instruction written back to the corresponding register. This
allows us to trivially collapse such instructions, combining the Preamble phases,
requiring dependencies only to be loaded once.

2.4.2 Memory Instructions
Memory instructions such as loads and stores can be directly mapped to the
delta interface, reading or writing only a part of the Memory sub-state. There is
no distinction between memory allocated on the stack (alloca) and on the heap

Listing 1 In the next-state function, the step function is called for each thread.

1 void step(StateVector sv, int threadID)
2 bool onlyLocal = true; # true while handling commutative instructions
3 bool emit = false; # set to true when new state is to be emitted
4 while(sv.threads[threadID].pc > 0 and onlyLocal)
5 switch(sv.threads[threadID].pc)
6 case 0: break; # not running, do nothing
7 case SomePC: # PC of first instruction of group
8 # statically collapsed instructions: preamble, action, epilogue
9 # sv.threads[threadID].pc, onlyLocal and emit may change

10 ...
11 if(emit) MC.insert(sv); # emit new state if needed
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(malloc): both allocate memory by growing the Memory sub-state. The returned
pointer describes which thread created the memory and the offset within the
sub-state. Any thread can write to and read from any such memory location.
At present, memory cannot be freed, so free has no effect. Because of the tree
compression, this has no detrimental effect on memory usage, but does mean
llmc currently does not detect free-related bugs.

2.4.3 Branching, Function Calls and Threading
To support control flow in llmc, the PC can be changed to the index assigned to
the first instruction in the target basic block. If the target basic block contains
φ-nodes, those registers are updated to the value corresponding to the basic
block we are branching from.

Function calls set up a new stack frame with the current Registers , PC and
where to write the return value, then pushes it to the linked list of frames pointed
to by Previous frame . A return from a function pops the top frame from the
list of frames, copies the Registers into the state vector, updates the PC and
writes the return value into the right register. There is no bound on the number
of frames; the last frame has Previous frame set to 0, indicating no next frame.

Threads are created (pthread_create) by enlarging the root state with
enough space to fit another thread and incrementing #threads . When a thread
is done, it is marked as such, but not removed from the state vector. This is to
retain the memory allocated by a thread. Due to the compression of dtree, it has
little impact on the memory foot print of the state space. The return value from
the thread is added to Thread results , where it can be read (pthread_join).

2.5 State Space Reduction

Instructions that only have an effect local to a thread do not change the
behaviour of another thread. Such instructions are commutative; their respective
ordering is not relevant. Thus, such instructions can be collapsed with the pre-
vious or next instruction. For example, instructions that read and write only to
registers of a thread are local instructions and do not influence another thread.
Branching and function calls are other such commutative instructions.

llmc collapses commutative instructions statically as well as dynamically. The
latter is needed to collapse instructions after conditional control flow, because
statically the condition is unknown. On-the-fly, the condition is evaluated, the
branch taken and it is determined if the next instruction can be collapsed.

2.5.1 Thread-Private Memory llmc collapses all such commutative
instructions, with the important exception of memory operations on memory
only accessible to the current thread (memory operations to memory accessible
to other threads are never collapsed). This requires knowledge on what memory
each thread can access, which llmc currently does not track. divine imple-
ments [4] this by traversing the memory graph in every state, using a run-time
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type system to identify pointers and how to follow them (edges); each allocation
yields a node.

Nidhugg uses a partial-order-reduction [6] that takes into account from which
write a value read by a read originates. In this process, memory operations to
thread-private memory are indeed collapsed, because a read can read only a
single value: the last value written by the thread itself. The current version of
llmc does not feature an on-the-fly state space reduction for memory operations.
Instead, we preprocess the input LLVM IR and statically annotate memory oper-
ations that cannot be proven to be local to a thread. While this does reduce the
state space, because many operations are to stack variables that remain thread-
private, it can only approach the on-the-fly reductions of divine and Nidhugg.

3 Evaluation

Table 1 shows a feature comparison between the tools mentioned in Sect. 1.1.
The table shows that RCMC and CBMC do not support dynamic memory in
the presence of multiple threads. This limits their usability for our use case,
model checking multi-threaded tests of data structures, since numerous thread-
safe data structures use dynamic memory. Furthermore, RCMC, CBMC and
LLBMC do not support infinite loops and only have limited support for spin-
locks. More complex infinite loops like appending a new node in the Michael-
Scott queue [17] using compare-and-swap are not supported. Thus, we focus on
an experimental comparison between llmc, divine and Nidhugg on execution
time, memory footprint of the state space and scalability across multiple threads,
since all three tools support using multiple threads for model checking.

Table 1. A feature comparison between the tools mentioned in Sect. 1.1.
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divine [3] 4.4.2 (5494190) LLVM IR STa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nidhugg [5] 0.2 (45664bc) LLVM IR STPWAa ✓ ✓ ✓ ∼d ✓ ✓ ✓ ✓ ✓ ✓

RCMC [7] n/a LLVM IR (W)RC11 ✓ ∼b ∼c ∼d ✓ ✓ ✓

CBMC [8] 5.10 (ef00f47) C/C++ STPa ✓ ∼b ∼c ∼d ✓ ✓ ✓ ✓

LLBMC [9] 2013.1 LLVM IR n/a ✓ ∼c ∼d ✓ ✓ ✓

LLMC [13] 0.1 LLVM IR STPa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LLMC 0.2 (a732c63) LLVM IR Sa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
a Models [16]: S) Sequentially consistent; T) TSO; P) PSO; W) POWER; A) ARM.
b Not supported in combination with threads.
c Only trivial spin-locks are supported.
d Threads within global constructors not supported.
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We ran our experiments on a Dell R930 with 4 E7-8890-v4 CPUs totaling 96
cores and 2TiB RAM. All sources were compiled using GCC 9.3.0.

3.1 Test Suite

We tested the tools using four real-world concurrent LLVM IR data structures,
one concurrent algorithm and one protocol. Sources for all tests are available
online1. We instantiate the tests with various combinations of threads and num-
ber of elements inserted, processed or dequeued. All combinations are listed
later, in Table 2. These six tests cover different classes of problem types, differ-
ent shapes of state spaces, and serve to illustrate the strengths and weaknesses
of the tools:

– SortedLinkedList illustrates a concurrency problem where a number of
elements are inserted by a number of threads, with a single outcome: all paths
converge to one state. Elements can be inserted throughout the chain.

– LinkedList , similar to SortedLinkedList , but with various outcomes,
because the list is not sorted. It has high contention on the head of the chain.

– Prefixsum is a concurrent approach to determine all sums up to any index
in an array. It highlights the ability of the model checker to determine thread-
private memory, because the two-pass prefixsum algorithm actually partitions
the problem into separate per-thread problems that require no communication
and one single-threaded part.

– Hashmap illustrates a concurrency problem where a key is inserted using
compare-and-swap, followed by either atomically storing the value or busy-
waiting on the value, if the key already exists (findOrPut [18]). The latter
involves atomically loading the value until a non-empty value is loaded.

– MSQ is the well-known Michael-Scott queue [17]. It is similar to LinkedList
, with the addition of dequeue operations, which may return nothing when

the queue is empty. The dequeuer can be made blocking by calling dequeue
until it successfully dequeues an element; this is done in 2 and .

– Philosophers is the Dining Philosophers Problem [19], a commonly used
protocol to illustrate issues in concurrent resource management. It involves
P philosophers and P forks; each philosopher grabs their left fork, then the
right, then puts the right fork back, then the left. This is repeated R times.
The crux is that each fork is a shared resource for two philosophers. For our
tests suite, this illustrates contention on multiple elements in a single array.

These tests highlight the strengths and weaknesses of each tool using real-
world data structures and algorithms. The well-known Michael-Scott queue
for example is used in many software packages. They reflect different kinds of
state spaces: LinkedList focuses on “wide” state spaces, with many end states;
SortedLinkedList examples state spaces that go wide, but converge into a
single end state; Prefixsum highlights the model-checker’s ability to detect
thread-local memory: model checkers that can detect this have a narrow state
space, otherwise a model checker will explore all interleavings.
1 https://github.com/bergfi/llmc/tree/cav2021/tests/performance.

https://github.com/bergfi/llmc/tree/cav2021/tests/performance
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3.2 Observations and Considerations

For each model, we verified that all expected end states were reachable. For
example for 1 , we manually verified that all 8!/(4!4!) = 70 possible outcomes of
the linked list were generated.

We witnessed divine returning varying state space sizes across different runs
on the same test when using multiple threads, indicating a concurrency problem.
It also occasionally crashed, most often when using 192 threads. Even though this
indicates the answers divine gives might not be correct, we opted to include the
results, assuming they would at least provide an indication of the performance.

Furthermore, we did run RCMC on a number of tests. RCMC often runs out
of memory before crashing; likely the result of an infinite loop. For even some
small tests, it could not finish within 100x the time other tools needed.

3.3 Experimental Results

Figure 4 shows the results of llmc compared to divine on state space explo-
ration time (4a) and Nidhugg on wall-clock time (4b) when applied to the models
from Table 2. These graphs indicate relative performance: the uppermost (blue)
line for example indicates the line where llmc is 100x faster. Figure 4c compares
llmc (lower data points) and divine (upper data points) on the memory com-
pression of the state spaces they generate. Figure 4d compares llmc (upper data
points) and divine (lower data points) on the throughput of states per second.

3.3.1 LLMC vs DIVINE
Looking at the results in Fig. 4a, we see that llmc outperforms divine by at
least 5x in all test cases except Prefixsum and two SortedLinkedList tests.
llmc suffers in the Prefixsum tests because of the lack of dynamic thread-
private memory detection. This results in significantly larger state spaces, up to
three orders of magnitude for 4 , as seen in Fig. 4c.

Comparing the sorted and non-sorted linked list cases, we notice llmc
is able to outperform divine in the non-sorted cases by higher factors than the
sorted cases. This difference can be explained by that the two tools generate more
similarly sized state spaces for non-sorted cases, but not for sorted cases.
For example, llmc generates ∼14.4x more states than divine for 4 , but only
∼2.2x more for 4 . This highlights llmc is lacking a reduction technique, which
works for divine in the sorted cases, but not as well for the non-sorted cases.

For the two Hashmap cases that both tools completed, llmc outperforms
divine by 8.4x and 157x. Since the hash map is a single global memory object all
threads can access, llmc does not have the disadvantage of lacking a dynamic
thread-private memory reduction. divine crashed for the two other test cases.

divine is unable to complete two of the four Michael-Scott queue tests,
crashing out, the others are verified 86x and 272x faster by llmc than by divine.

As the complexity of the Philosopher test cases increases, llmc increasingly
outperforms divine. The two tools generate similarly sized state state spaces,
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Fig. 4. All experimental results, see Table 2 for a legend. Results above the DNF line
mean the tool on the y-axis Did Not Finish, not supporting the test.

because the high contention leaves relatively few memory instructions to be
collapsed by divine’s reduction, thus levelling the playing field.

In summary, llmc is able to outperform divine in most of the test cases,
mostly between 10x–100x faster, with an outlier as high as 2450x faster ( ).
This highlights the performance difference, as on average llmc visits ∼1.4M

Table 2. The six tests with various combinations of number of threads and ele-
ments, totaling 24 input programs. MSQ configurations describe a combination of
Enqueuers and ([B]locking) Dequeuers in parallel (‖) and sequential (;).
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states per second (∼8.5M states/s for ), where divine visits ∼4k states per
second (Fig. 4d).

3.3.2 LLMC vs Nidhugg
Moving on to Fig. 4b, we notice Nidhugg is unable to complete any of the
Michael-Scott queue , Hashmap or Philosopher test cases. This is because
Nidhugg supports neither the __atomic_* instructions needed for the Michael-
Scott queue nor the spin-lock used in the Hashmap and Philosopher
tests. We tried Nidhugg’s transformation capabilities to transform the spin-lock
to an assume statement, thus limiting the traces traversed to the ones where
the condition of the spin-lock holds, but the generated LLVM IR was invalid
and could not be used. Additionally, we tried an experimental version (7b8be8a)
with a changelog containing potential fixes to no avail.

We see that Nidhugg outperforms llmc in the Prefixsum test cases con-
sistently by multiple orders of magnitude: Nidhugg traverses only a single trace
for each of these test cases. This highlights the strength of Nidhugg in its ability
to conclude that each read can only read a single value. Without this technique,
llmc needs to exhaustively go through all interleavings of the threads.

For the linked list, sorted and non-sorted , we see that as the cases get
bigger, llmc is able to outperform Nidhugg. This highlights the disadvantage
of stateless model checking: bigger state spaces tend to cause more common
prefixes of paths, which causes more work for stateless model checking.

3.3.3 Scalability

Fig. 5. Scalability comparison of
divine , llmc , Nidhugg .

Figure 5 shows the results for various num-
ber of threads for SortedLinkedList3.9 3 ,
chosen for the performance similarity of
the three tools. The graph shown is typ-
ical: other test expose similar patterns as
the one we highlight here. divine does
not scale well in the number of threads:
its peak performance lies typically around
4 or 8 threads, confirmed by the divine
developers2. Nidhugg expectedly does scale
very well, as threads just execute a spe-
cific trace, with hardly and communication.
llmc shows some scalability, but a ∼4x
improvement using 192 threads leaves a lot
of room for improvement3.

2 https://divine.fi.muni.cz/trac/ticket/44.
3 https://github.com/bergfi/dmc/issues/1.

https://divine.fi.muni.cz/trac/ticket/44
https://github.com/bergfi/dmc/issues/1
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3.3.4 DMC and DTREE
We highlight one aspect of the performance of llmc: the underlying model
checker dmc and its storage component dtree [14]. In Figure 4c, we notice
that although llmc on average generates state spaces of an order of magnitude
larger compared to divine, it uses two orders of magnitude less memory per
state, due to dtree. Furthermore, dtree allows to apply a delta to a state
without reconstructing the entire state. Since states are typically ∼2kiB in these
tests, this significantly avoids copying memory and increases performance.

4 Conclusion

We have introduced llmc 0.24, the multi-threaded low-level model checker that
model checks software via LLVM IR. It translates the input LLVM IR into a
model LLVM IR that implements the dmc api, the API of the high-performance
model checker dmc. This allows llmc to execute the model’s next-state func-
tion, instead of interpreting the input LLVM IR, like divine and Nidhugg. We
compared llmc to these tools using a test suite of 24 tests, covering various
data structures. llmc outperforms divine and Nidhugg up to three orders of
magnitude, while other tests have shown areas for improvement. Averaging the
results of all completed tests, llmc is an order of magnitude faster than divine
and ∼3.4x faster than Nidhugg. divine and Nidhugg are unable to complete 4
and 12 tests, respectively, due to crashing or not supporting infinite loops or
__atomic_* library calls.

Future Work. llmc will benefit most from a state space reduction technique that
collapses memory instructions to thread-private memory. We aim to integrate
this as part of a memory emulation layer that also adds support for relaxed
memory models. Even without the dynamic reduction technique, the results
show that llmc in its current form is a high performing tool to model check
software.
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