
BDD4BNN: A BDD-Based Quantitative Analysis
Framework for Binarized Neural Networks

Yedi Zhang1, Zhe Zhao1, Guangke Chen1, Fu Song1,2(B), and Taolue Chen3

1 ShanghaiTech University, Shanghai, China
songfu@shanghaitech.edu.cn

2 Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China
3 Birkbeck, University of London, London, UK

Abstract. Verifying and explaining the behavior of neural networks is becom-
ing increasingly important, especially when they are deployed in safety-critical
applications. In this paper, we study verification and interpretability problems
for Binarized Neural Networks (BNNs), the 1-bit quantization of general real-
numbered neural networks. Our approach is to encode BNNs into Binary Deci-
sion Diagrams (BDDs), which is done by exploiting the internal structure of the
BNNs. In particular, we translate the input-output relation of blocks in BNNs to
cardinality constraints which are in turn encoded by BDDs. Based on the encod-
ing, we develop a quantitative framework for BNNs where precise and compre-
hensive analysis of BNNs can be performed. We demonstrate the application of
our framework by providing quantitative robustness analysis and interpretability
for BNNs. We implement a prototype tool BDD4BNN and carry out extensive
experiments, confirming the effectiveness and efficiency of our approach.

1 Introduction

Deep neural networks (DNNs) have achieved human-level performance in several
tasks, and are increasingly being incorporated into various application domains such as
autonomous driving [4] and medical diagnostics [53]. Modern DNNs usually contain
a great many parameters which are typically stored as 32/64-bit floating-point num-
bers, and require a massive amount of floating-point operations to compute the output
for a single input [60]. As a result, it is often challenging to deploy them on resource-
constrained, embedded devices. To mitigate the issue, quantization, which quantizes
32/64-bit floating-points to low bit-width fixed-points (e.g., 4-bits) with little accuracy
loss [23], emerges as a promising technique to reduce resource requirements. In par-
ticular, binarized neural networks (BNNs) [27] represent the case of 1-bit quantization
using the bipolar binaries ±1. BNNs can drastically reduce memory storage and exe-
cution time with bit-wise operations, hence substantially improve the time and energy
efficiency. BNNs have been demonstrated to achieve a high accuracy for a wide variety
of applications [34,41,52].

This work is supported by the National Natural Science Foundation of China (NSFC) under
Grants No.: 62072309, and an oversea grant from the State Key Laboratory of Novel Software
Technology, Nanjing University (KFKT2018A16).

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 175–200, 2021.
https://doi.org/10.1007/978-3-030-81685-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_8

176 Y. Zhang et al.

DNNs have been shown to lack robustness [11,14,36,49,59] and interpretability
of the predictions they make [25,43]. Various formal techniques and heuristics have
been proposed to analyze DNNs and interpret their behaviors, most of which focus on
real-numbered DNNs only. Verification of quantized DNNs has not been thoroughly
explored so far, although recent results have highlighted its importance: it was shown
that a quantized DNN does not necessarily preserve the properties satisfied by the real-
numbered DNN before quantization [14,22]. Indeed, the fixed-point number semantics
effectively yields a discrete state space for the verification of quantized DNNs whereas
real-numbered DNNs feature a continuous state space. The discrepancy could inval-
idate current verification techniques for real-numbered DNNs when they are directly
applied to the quantized counterparts (e.g., both false negative and false positive could
occur). Therefore, specialized techniques are required for rigorously verifying quan-
tized DNNs.

Broadly speaking, the existing techniques for quantized DNNs make use of con-
straint solving which is based on either SAT/SMT or (reduced, ordered) binary decision
diagrams (BDDs). A majority of work resorts to SAT/SMT solving. For the 1-bit quan-
tization (i.e., BNNs), typically BNNs are transformed into Boolean formulas where
SAT solving is harnessed [12,33,45,46]. Some recent work also studies variants of
BNNs [28,48], i.e., BNNs with ternary weights. For quantized DNNs with multiple bits
(i.e., fixed-points), it is natural to encode them as quantifier-free SMT formulas, e.g.,
using bit-vector and fixed-point theories [7,22,24], so that off-the-shelf SMT solvers
can be leveraged. In another direction, BDD-based approaches currently can tackle
BNNs only [54]. In a nutshell, they encode a BNN and an input region as a BDD,
based on which various analyses can be performed via queries on the BDD. The crux
of the approach is how to generate the BDD efficiently. In the work [54], the BDD is
constructed by BDD learning [44], thus, currently limited to toy BNNs (e.g., 64 input
size, 5 hidden neurons, and 2 output size) with relatively small input regions.

On the other hand, existing work mostly focuses on qualitative verification, which
asks whether there exists an input x (in a specified region) for a neural network such that
a property (e.g., local robustness) is violated. In many practical applications, checking
only the existence is not sufficient. Indeed, for local robustness, such an (adversarial)
input almost surely exists which makes a qualitative answer less meaningful. Instead,
quantitative verification, which asks how often a property φ is satisfied or violated, is
far more useful yet more challenging as it could provide a probabilistic guarantee of
the behavior of neural networks. Such a quantitative guarantee is essential to certify,
for instance, certain implementations of neural network based perceptual components
against safety standards of autonomous vehicles [29,32]. Quantitative analysis of gen-
eral neural networks, however, is challenging, hence received little attention and for
which the results are rather limited so far. DeepSRGR [69] presented an abstract inter-
pretation based quantitative robustness verification approach for DNNs which is sound
but incomplete. For BNNs, approximate SAT model-counting solvers (�SAT) are lever-
aged [6,47] based on the SAT encoding for the qualitative counterpart. Though proba-
bly approximately correct (PAC) style guarantees can be provided, verification cost is
usually prohibitively high to achieve higher precision and confidence.

BDD4BNN 177

Main Contributions. We propose a BDD-based framework BDD4BNN to support
quantitative analysis of BNNs. The main challenge is how to efficiently build BDDs
from BNNs [47]. In contrast to previous work [54] which is learning-based and largely
treats the BNN as a blackbox, we directly encode a BNN and the associated input
region into BDDs. In a nutshell, a BNN is a sequential composition of multiple internal
blocks and one output block. Each block comprises 3 layers and captures a function
f : {+1,−1}n → {+1,−1}m, where n (resp. m) denotes the number of inputs (resp. out-
puts) of the block. Technically, the function f can be alternatively rewritten as a function
over the standard Boolean domain, i.e., f : {0, 1}n → {0, 1}m. A key stepping-stone of
our encoding is the observation that the i-th output yi of the block can be captured by
a cardinality constraint of the form

∑n
j=1 � j ≥ k such that yi = +1 ⇔ ∑n

j=1 � j ≥ k,
where each literal � j is either x j or ¬x j for the input variable x j, and k is a constant.
We then present an algorithm to encode a cardinality constraint

∑n
j=1 � j ≥ k as a BDD

with O((n − k) · k) nodes in O((n − k) · k) time. As a result, the input-output relation
of each block can be encoded as a BDD, the composition of which yields the BDD for
the entire BNN. A distinguished advantage of our BDD encoding lies in its support of
incremental encoding. In particular, when different input regions are of interest, there is
no need to construct the BDD of the entire BNN from scratch.

Encoding BNNs as BDDs enables a wide variety of applications in security analysis
and decision explanation of BNNs. In this paper, we highlight two of them within our
framework, i.e., robustness analysis and interpretability. It was shown that DNNs have
been suffering from poor robustness to adversarial examples [49,50,59]. We consider
two quantitative variants of the problem: (1) how many adversarial examples does the
BNN have in the input region, and (2) how many of them are misclassified to each
class? We further provide an algorithm to incrementally compute the (locally) maximal
Hamming distance within which the BNN satisfies the desired robustness properties.

Interpretability is an issue arisen as a result of the blackbox nature of DNNs [25,43].
In application domains such as medical diagnosis, understanding the decisions made by
DNNs is a must. We consider two problems: (1) why some inputs are (mis)classified
into a class by the BNN and (2) are there any essential features in the input region that
are common for all samples classified into a class?

Experimental Results. We implement our framework as a prototype tool BDD4BNN
using the CUDD package [58], which scales to BNNs with up to 4 internal blocks,
200 hidden neurons, and 784 input size. To the best of our knowledge, it is the first
work to precisely and quantitatively analyze such large BNNs that go significantly
beyond the state-of-the-art. The experimental results show that BDD4BNN is signifi-
cantly more efficient and scalable than the learning-based technique [54]. Furthermore,
we demonstrate how BDD4BNN can be used in quantitative robustness analysis and
decision explanation of BNNs. For quantitative robustness analysis, our experimental
results show that BDD4BNN is considerably (5× to 1, 340×) faster and more accurate
than the state-of-the-art approximate �SAT-based approach [6]. It can also compute pre-
cisely the distribution of predicated classes of the images in the input region as well as
the locally maximal Hamming distances on several BNNs. For decision explanation,
we show the effectiveness of BDD4BNN in computing prime-implicant explanations

178 Y. Zhang et al.

and essential features of the given input region for some target classes. Note that this
work focuses on quantitative verification and interpretability of BNNs and may under-
perform SAT/SMT-based methods [12,33,45,46] for qualitative verification of BNNs.

In general, our main contributions can be summarized as follows.

Fig. 1. Architecture of a BNN with d + 1 blocks

– We introduce a novel algorithmic approach for encoding BNNs into BDDs that
exactly preserves the semantics of BNNs and supports incremental encoding.

– We propose a framework for quantitative verification of BNNs and in particular, we
demonstrate the robustness analysis and interpretability of BNNs.

– We implement the framework as an end-to-end tool BDD4BNN and conduct thor-
ough experiments on various BNNs, demonstrating the efficiency and effectiveness
of BDD4BNN.

2 Preliminaries

In this section, we briefly introduce binarized neural networks (BNNs) and (reduced,
ordered) binary decision diagrams (BDDs).

We denote by R, N, B, and B±1 the set of real numbers, the set of natural numbers,
the standard Boolean domain {0, 1} and the integer set {+1,−1}. For n ∈ N, we denote
by [n] the set {1, · · · , n}. We will use W, W′, . . . to denote (2-dimensional) matrices,
x, v, · · · to denote (row) vectors, and x, v, . . . to denote scalars. We denote by Wi,: and
W:, j the i-th row and j-th column of the matrixW. Similarly, we denote by x j andWi, j

the j-th entry of x andWi,: respectively. In this work, Boolean values 1/0 will be used
as integers 1/0 in arithmetic computations without typecasting.

2.1 Binarized Neural Networks

A binarized neural network (BNN) [27] is a neural network where weights and acti-
vations are predominantly binarized over the domain B±1. In this work, we consider
feed-forward BNNs. As shown in Fig. 1, a BNN can be seen as a sequential composi-
tion of several internal blocks and one output block. Each internal block comprises 3
layers: a linear layer (LIN), a batch normalization layer (BN), and a binarization layer
(BIN). The output block comprises a linear layer and an ARGMAX layer. Note that
the input/output of internal blocks and the input of the output block are all vectors over
B±1.

BDD4BNN 179

Table 1. Definitions of layers in BNNs, where nd+2 = s and argmax(·) returns the index of the
largest entry which occurs first.

Layer Function Parameters Definition

LIN tlini : Bni
±1 → R

ni+1 Weight matrix:W ∈ Bni×ni+1
±1

Bias (row) vector: b ∈ Rni+1

tlini (x) = y where ∀ j ∈ [ni+1],
y j = 〈x,W:, j〉 + b j

BN tbn
i : Rni+1 → R

ni+1 Weight vectors: α ∈ Rni+1

Bias vector: γ ∈ Rni+1

Mean vector: μ ∈ Rni+1

Std. dev. vector: σ ∈ Rni+1

tbn
i (x) = y where ∀ j ∈ [ni+1],

y j = α j · (x j−μ j
σ j

) + γ j

BIN tbin
i : Rni+1 → B

ni+1
±1 – tbin

i (x) = y where ∀ j ∈ [ni+1],

y j =

⎧
⎪⎪⎨
⎪⎪⎩

+1, if x j ≥ 0;

−1, otherwise.

ARGMAX tam
d+1 : R

s → B
s – tam

d+1(x) = y where ∀ j ∈ [s],
y j = 1⇔ j = argmax(x)

Definition 1. A BNN N : B
n1
±1 → B

s with s classes is given by a tuple of blocks
(t1, · · · , td, td+1) such that N = td+1 ◦ td ◦ · · · ◦ t1,

– for every i ∈ [d], ti : B
ni

±1 → B
ni+1
±1 is an internal block comprising a LIN layer tlin

i , a
BN layer tbn

i and a BIN tbin
i with ti = tbin

i ◦ tbn
i ◦ tlin

i ,
– td+1 : Bnd+1

±1 → B
s is the output block comprising a LIN layer tlin

d+1 and an ARGMAX
layer tam

d+1 with td+1 = tam
d+1 ◦ tlin

d+1,

where tbin
i , tbn

i , tlin
i for i ∈ [d], tlin

d+1 and tam
d+1 are given in Table 1.

Intuitively, a LIN layer is a linear transformation. A BN layer following a LIN layer
is used to standardize and normalize the output of the LIN layer. A BIN layer is used
to binarize the real-numbered output vector of the BN layer. In this work, we consider
the sign function which is widely used in BNNs to binarize real-numbered vectors. An
ARGMAX layer follows a LIN layer and outputs the index of the largest entry as the
predicted class which is represented by a one-hot vector. (In case there is more than one
such entry, the first one is returned.) Formally, given a BNN N = (t1, · · · , td, td+1) and
an input x ∈ B

n1
±1, N(x) ∈ B

s is a one-hot vector in which the index of the non-zero
entry is the predicated class.

2.2 Binary Decision Diagrams

A BDD [9] is a rooted acyclic directed graph where non-terminal nodes v are labeled by
Boolean variables var(v) and terminal nodes (leaves) v are labeled with values val(v) ∈
B, referred to as the 1-leaf and the 0-leaf respectively. Each non-terminal node v has two
outgoing edges: hi(v) meaning var(v) = 1 and lo(v) meaning var(v) = 0. We will also
refer to hi(v) and lo(v) as the hi and lo children of v respectively. Moreover, assuming
that x1, · · · , xm is the variable ordering, for each node v with var(v) = xi and each
v′ ∈ {hi(v), lo(v)} with var(v′) = x j, we have i < j. In the graphical representation
of BDDs, hi(v) and lo(v) are depicted by solid and dashed lines respectively. Multi-
Terminal Binary Decision Diagrams (MTBDDs) are a variant of BDDs in which the

180 Y. Zhang et al.

Fig. 2. The reduced BDD for f (x1, y1,
x2, y2) = (x1 ⇔ y1) ∧ (x2 ⇔ y2)

Table 2. Some basic BDD operations, where
op ∈ {And,Or,Xor,Xnor}

Operation Description

v = Var(x) fv(x) = x

v = Const(1) fv = 1

v = Const(0) fv = 0

Not(v) ¬ fv

Apply(v, v′, op) fv op fv′

Exists(v, X) ∃X. fv

SatAll(v) SatAll(fv)

RelProd(v, v′) fv ◦ fv′

ITE(x, v, v′) (x ∧ v) ∨ (¬x ∧ v′)

terminal nodes are not restricted to be 0 or 1. A BDD is reduced if it (1) has only one
1-leaf and one 0-leaf, (2) does not contain a node v such that hi(v) = lo(v), and (3)
does not contain two distinct non-terminal nodes v and v′ such that var(v) = var(v′),
hi(v) = hi(v′) and lo(v) = lo(v′). For example, Fig. 2 shows the reduced BDD for the
Boolean function f (x1, y1, x2, y2) = (x1 ⇔ y1) ∧ (x2 ⇔ y2). Hereafter, we assume that
BDDs are reduced.

Bryant [9] showed that BDDs can serve as a canonical form of Boolean functions.
Given a BDD over variables x1, · · · , xm, each non-terminal node v with var(v) = xi

represents a Boolean function fv = (xi ∧ fhi(v)) ∨ (¬xi ∧ flo(v)). Operations on Boolean
functions can usually be efficiently implemented via manipulating their BDD represen-
tations. A good variable ordering is crucial for the performance of BDD manipulations
while the problem of finding an optimal ordering for a function is NP-hard. To store and
manipulate BDDs efficiently, the nodes are stored in a hash table and the recent com-
puted results are stored in a cache to avoid duplicated computations. In this work, we
will use some basic BDD operations such as ITE for If-Then-Else, Xor for exclusive-
OR, Xnor for exclusive-NOR (i.e., a Xnor b = ¬(a Xor b)) and SatAll(fv) for the
set of all solutions of the Boolean formula fv. We denote by L(v) the set SatAll(fv).
For easy reference, more operations are given in Table 2. By op(v, v′) we denote the
operation Apply(v, v′, op).

3 BDD4BNN Design

3.1 BDD4BNN Overview

An overview of BDD4BNN is depicted in Fig. 3. BDD4BNN comprises four main com-
ponents: Region2BDD, BNN2CC, BDD Model Builder, and Query Engine. For a fixed
BNN N = (t1, · · · , td, td+1) and a region R of the input space of N , BDD4BNN con-
structs the BDDs (Gout

i)i∈[s] to encode the input-output relation of N in the region R,
where the BDD Gout

i corresponds to the class i ∈ [s]. Technically, the region R is parti-
tioned into s parts represented by (Gout

i)i∈[s]. For each property query, BDD4BNN ana-
lyzes (Gout

i)i∈[s] and outputs the query result.

BDD4BNN 181

Fig. 3. Overview of BDD4BNN

Fig. 4. Graphic representation of BDDs using Algorithm 1

The general workflow of our approach is as follows. First, Region2BDD builds up a
BDD Gin

R from the region R which represents the desired input space of N for analysis.
Second, BNN2CC transforms each block of the BNN N into a set of cardinality con-
straints (CCs) similar to [6,46]. Third, BDD Model Builder builds the BDDs (Gout

i)i∈[s]
from all the cardinality constraints and the BDD Gin

R . Finally, Query Engine answers
queries by analyzing the BDDs (Gout

i)i∈[s]. Our Query Engine currently supports two
types of application queries: robustness analysis and interpretability.

In the rest of this section, we first introduce the key sub-component CC2BDD,
which provides an encoding of cardinality constraints into BDDs. We then provide
details of the components Region2BDD, BNN2CC, and BDD Model Builder. The
Query Engine will be described in Sect. 4.

3.2 CC2BDD: Cardinality Constraints to BDDs

A cardinality constraint is a constraint of the form
∑n

j=1 � j ≥ k over a vector x of
Boolean variables with length n, where the literal � j is either x j or ¬x j for each j ∈ [n].
Note that constraints of the form

∑n
j=1 � j > k,

∑n
j=1 � j ≤ k and

∑n
j=1 � j < k are equivalent

to
∑n

j=1 � j ≥ k + 1,
∑n

j=1 ¬� j ≥ n − k and
∑n

j=1 ¬� j ≥ n − k + 1, respectively. We assume
that 1 (resp. 0) is a special cardinality constraint that always holds (resp. never holds).

To encode
∑n

j=1 � j ≥ k as a BDD, we observe that all the possible solutions of
∑n

j=1 � j ≥ k can be compactly represented by a BDD-like graph shown in Fig. 4(a),
where each node is labeled by a literal, and a solid (resp. dashed) edge from a node
labeled by � j means that the value of the literal � j is 1 (resp. 0). Thus, each path from the
�1-node to the 1-leaf through the � j-node (where 1 ≤ j ≤ n) captures a set of valuations
where � j followed by a (horizontal) dashed line is set to be 0 while � j followed by

182 Y. Zhang et al.

Algorithm 1: BDD Construction for cardinality constraints

1 Proc CC2BDD(CC :
∑n

j=1 � j ≥ k)
2 Gk+1,1 = Gk+1,2 = · · · = Gk+1,n−k+1 = Const(1);
3 G1,n−k+2 = G2,n−k+2 = · · · = Gk,n−k+2 = Const(0);
4 for (i = k; i ≥ 1; i − −) do
5 for (j = n − k + 1; j ≥ 1; j − −) do
6 if (�i+ j−1 == xi+ j−1) then Gi, j = ITE(xi+ j−1,Gi+1, j,Gi, j+1);
7 else Gi, j = ITE(xi+ j−1,Gi, j+1,Gi+1, j);
8 return G1,1

a (vertical) solid line is set to be 1, and all the other literals which are not along the
path can take arbitrary values. Clearly, for each of these valuations, there are at least k
positive literals, hence the constraint

∑n
j=1 � j ≥ k holds.

Based on the above observation, we build the BDD for
∑n

j=1 � j ≥ k using
Algorithm 1. It builds a BDD for each node in Fig. 4(a), row-by-row (the index i in
Algorithm 1) and from right to left (the index j in Algorithm 1). For each node at the
i-th row and j-th column, the label of the node must be the literal �i+ j−1. We build the
BDD Gi, j = ITE(xi+ j−1,Gi+1, j,Gi, j+1) if �i+ j−1 is of the form xi+ j−1 (Line 6), otherwise
we build the BDD Gi, j = ITE(xi+ j−1,Gi, j+1,Gi+1, j) (Line 7). Finally, we obtain the BDD
G1,1 that encodes the solutions of

∑n
j=1 � j ≥ k. Consider x1+¬x2+x3+¬x4+x5+¬x6 ≥ 3,

Fig. 4(b) shows its BDD by Algorithm 1.

Lemma 1. For each cardinality constraint
∑n

j=1 � j ≥ k, a BDD G with O((n − k) · k)
nodes can be computed in O((n−k) ·k) time such thatL(G) is the set of all the solutions
of
∑n

j=1 � j ≥ k.

Compared with prior works [8,42] which transform general arithmetic constraints
into BDDs, we devise a dedicated BDD encoding algorithm for the cardinality con-
straints without applying reduction, hence it is more efficient.

3.3 Region2BDD: Input Regions to BDDs

In this paper, we consider the following two types of input regions.

– Input region based on Hamming distance. For an input u ∈ B
n1
±1 and an integer

r ≥ 0, R(u, r) denotes the set {x ∈ Bn1
±1 | HD(x,u) ≤ r}, where HD(x,u) denotes the

Hamming distance between x and u. Intuitively, R(u, r) includes the input vectors
which differ from u by at most r positions.

– Input region with fixed indices. For an input u ∈ B
n1
±1 and a set of indices I ⊆ [n1],

R(u, I) denotes the set {x ∈ Bn1
±1 | ∀i ∈ [n1] \ I. ui = xi}. Intuitively, R(u, I) includes

the input vectors which differ from u only at the indices from I.

Note that both R(u, n1) and R(u, [n1]) denote the entire input space B
n1
±1.

Recall that each input sample is an element from B
n1
±1. To represent the region R by

a BDD, we transform each value ±1 into a Boolean value 1/0. To this end, for each
input u ∈ B

n1
±1, we create a new sample u(b) ∈ B

n1 such that for every i ∈ [n1], ui =

BDD4BNN 183

2u(b)i − 1. Therefore, R(u, r) and R(u, I) will be represented by R(u(b), r) and R(u(b), I),
respectively. The transformation functions tlin

i , tbn
i , tbin

i and tam
d+1 of the LIN, BN, BIN, and

ARGMAX layers (cf. Table 1) will be handled accordingly. Note that for convenience,
vectors over the Boolean domain B may be directly given by u or x when it is clear
from the context.

Region Encoding Under Hamming Distance. Given an input u ∈ Bn1 and an integer
r, the region R(u, r) can be expressed by a cardinality constraint

∑n1
j=1 � j ≤ r (which is

equivalent to
∑n1

j=1 ¬� j ≥ n1 − r), where for every j ∈ [n1], � j = x j if u j = 0, otherwise
� j = ¬x j. For instance, consider u = (1, 1, 1, 0, 0) and r = 2, we have:

HD(u, x) = 1 ⊕ x1 + 1 ⊕ x2 + 1 ⊕ x3 + 0 ⊕ x4 + 0 ⊕ x5 = ¬x1 + ¬x2 + ¬x3 + x4 + x5.

Thus, R((1, 1, 1, 0, 0), 2) can be expressed by the cardinality constraint ¬x1+¬x2+¬x3+
x4 + x5 ≤ 2, or equivalently x1 + x2 + x3 + ¬x4 + ¬x5 ≥ 3.

By Algorithm 1, the cardinality constraint of R(u, r) can be encoded by the BDD
Gin

u,r, such that L(Gin
u,r) = R(u, r). Following Lemma 1, we get that:

Lemma 2. For an input region R given by an input u ∈ B
n1 and an integer r, a BDD

Gin
u,r with O(r · (n1− r)) nodes can be computed in O(r · (n1− r)) time such thatL(Gin

u,r) =
R(u, r).

Region Encoding Under Fixed Indices. Given an input u ∈ B
n1 and a set of indices

I ⊆ [n1], the region R(u, I) = {x ∈ Bn1 | ∀i ∈ [n1] \ I. ui = xi} can be represented by the
BDD Gin

u,I � Andi∈[n1]\I
(
(ui == 1)?Var(xi) : Not(Var(xi))

)
. Intuitively, Gin

u,I states that
the value at the index i ∈ [n1] \ I should be the same as the one in u while the value at
the index i ∈ I is unrestricted. For instance, consider u = (1, 0, 0, 0) and I = {3, 4}, we
have:

R((1, 0, 0, 0), {3, 4}) = {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1)} = x1 ∧ ¬x2.
Lemma 3. For an input region R given by an input u ∈ Bn1 and indices I ⊆ [n1], a BDD
Gin

u,I with O(n1 − |I|) nodes can be computed in O(n1) time such that L(Gin
u,I) = R(u, I).

3.4 BNN2CC: BNNs to Cardinality Constraints

As mentioned before, to encode the BNNN = (t1, · · · , td, td+1) as BDDs, we transform
the BNN N into cardinality constraints from which the desired BDDs (Gout

i)i∈[s] are
constructed. To this end, we first transform each internal block ti : B

ni

±1 → B
ni+1
±1 into ni+1

cardinality constraints, each of which corresponds to one of the outputs of ti. Then we
transform the output block td+1 : B

nd+1

±1 → B
s into s(s− 1) cardinality constraints, where

one output class yields (s − 1) cardinality constraints.
For each vector-valued function t, we denote by t↓ j the (scalar-valued) function

returning the j-th entry of the output of t.

184 Y. Zhang et al.

Transformation for Internal Blocks. Consider the internal block ti : B
ni

±1 → B
ni+1
±1 for

i ∈ [d]. Recall that for every j ∈ [ni+1] and x ∈ Bni

±1, ti↓ j(x) = tbin
i (tbn

i (〈x,W:, j〉+ b j)), and
each value ±1 of an input u ∈ B

n1
±1 is replaced by 1/0 (cf. Sect. 3.3). To be consistent,

the function ti↓ j : B
ni

±1 → B±1 is reformulated as the function t(b)i↓ j : B
ni → B such that

for every x ∈ Bni , t(b)i↓ j(x) = 0.5 × (tbin
i (tbn

i (〈2x − 1,W:, j〉 + b j)) + 1), where 1 denotes the
vector of 1’s with the width ni.

Let Ci, j be the following cardinality constraint:

Ci, j �

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑ni

k=1 �k ≥ � 12 · (ni + μ j − b j − γ j·σ j

α j
)�, if α j > 0;

1, if α j = 0 ∧ γ j ≥ 0;
0, if α j = 0 ∧ γ j < 0;
∑ni

k=1 ¬�k ≥ � 12 · (ni − μ j + b j +
γ j·σ j

α j
)�, if α j < 0;

where for every k ∈ [ni], �k is xk ifWk, j = +1, and �k is ¬xk ifWk, j = −1.
Proposition 1. t(b)i↓ j ⇔ Ci, j.

Proof refers to [71].

Transformation for the Output Block. For the output block td+1 : Bnd+1

±1 → B
s, since

td+1 = tam
d+1 ◦ tlin

d+1, then for every j ∈ [s], we can reformulate td+1↓ j : B
nd+1

±1 → B as the

function t(b)d+1↓ j : B
nd+1 → B such that for every x ∈ Bnd+1 , t(b)d+1↓ j(x) = td+1↓ j(2x − 1).

For every j′ ∈ [s] \ { j}, we define the cardinality constraint Cd+1, j′ as follows:

Cd+1, j′ �

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑nd+1

k=1 �d+1,k ≥ 1
4 (b j′ − b j +

∑nd+1

k=1 (Wk, j −Wk, j′)) + 1 + �Neg,
if j′ < j and 1

4 (b j′ − b j +
∑nd+1

k=1 (Wk, j −Wk, j′)) is an integer;

∑nd+1

k=1 �d+1,k ≥ � 14 (b j′ − b j +
∑nd+1

k=1 (Wk, j −Wk, j′))� + �Neg, otherwise;

where �Neg = |{k ∈ [nd+1] | Wk, j −Wk, j′ = −2}|, �d+1,k is xd+1,k if Wk, j −Wk, j′ = +2,
�d+1,k is ¬xd+1,k ifWk, j −Wk, j′ = −2, and �d+1,k is 0 ifWk, j −Wk, j′ = 0.

Proposition 2. t(b)d+1↓ j ⇔
∧

j′∈[s], j′� j Cd+1, j′ .

Proof refers to [71].
For each internal block ti : B

ni

±1 → B
ni+1
±1 , we denote by BNN2CC(ti) the car-

dinality constraints {Ci,1, · · · ,Ci,ni+1 }. For each output class j ∈ [s], we denote by
BNN2CC j(td+1) the cardinality constraints {Cd+1,1, · · ·Cd+1, j−1,Cd+1, j+1, · · · ,Cd+1,s}. By
applying the above transformation to all the blocks of the BNN N = (t1, · · · , td, td+1),
we obtain its cardinality constraint form N (b) = (t(b)1 , · · · , t(b)d , t

(b)
d+1) such that for each

i ∈ [d], t(b)i = BNN2CC(ti), and t(b)d+1 = (BNN2CC1(td+1), · · · ,BNN2CCs(td+1)). Given
an input u ∈ B

n1 , we denote by N (b)(u) the index j ∈ [s] such that all the cardinality
constraints in BNN2CC j(td+1) hold under the valuation u. It is straightforward to verify:

Theorem 1. u ∈ Bn1
±1 is classified into the class j by the BNN N iff N (b)(u(b)) = j.

BDD4BNN 185

Example 1. Consider the BNN N = (t1, t2) with one internal block t1 and one output
block t2 as shown in Fig. 5 (left-bottom), where the elements of the Weight matrix W
are associated to the edges, and the other parameters are given in the left-up table. The
transformation functions of blocks t1 and t2 are given in the right-up table, and their
cardinality constraints are given in the right-bottom table.

For instance, for each input x ∈ B3
±1, y1 = sign(−x1 + x2 + x3 + 2.7), i.e., y1 = +1⇔

−x1+ x2+ x3+2.7 ≥ 0. By replacing xi with 2× x(b)i −1 and x(b)1 with 1−¬x(b)1 , we have:
y1 = +1 ⇔ (−x(b)1 + x(b)2 + x(b)3 + 0.85 ≥ 0) ⇔ (¬x(b)1 + x(b)2 + x(b)3 ≥ 0.15). Thus we get

y(b)1 ⇔ ¬x(b)1 + x(b)2 + x(b)3 ≥ 1 (note that y(b)1 = 0⇔ ¬x(b)1 + x(b)2 + x(b)3 < 1). Similarly, we

can deduce that o1 ⇔ y1 − y2 ≥ 0.7, and thus o1 ⇔ y(b)1 − y(b)2 ≥ 0.35⇔ y(b)1 +¬y(b)2 ≥ 2.

3.5 BDD Model Builder

The construction of the BDDs (Gout
i)i∈[s] from the BNN N (b) and the input region R

is done iteratively throughout the blocks. Initially, the BDD for the first block is built,
which can be seen as the input-output relation for the first internal block. In the i-th
iteration, as the input-output relation of the first (i−1) internal blocks has been encoded
into the BDD, we compose this BDD with the BDD for the block ti which is built from
its cardinality constraints t(b)i , resulting in the BDD for the first i internal blocks. Finally,
we obtain the BDDs (Gout

i)i∈[s] of the BNN N , with respect to the input region R.

Fig. 5. An illustrating example

Design Choice. There are several design choices for efficiency consideration which
we discuss as follows. First of all, to encode the input-output relation of an internal
block ti into BDD from its cardinality constraints t(b)i = {Ci,1, · · · ,Ci,ni+1 }, we need to
compute And j∈[ni+1]CC2BDD(Ci, j). A simple and straightforward approach is to initially
compute a BDD G = CC2BDD(Ci,1) and then iteratively compute the conjunction G =
And(G,CC2BDD(Ci, j)) of G and CC2BDD(Ci, j) for 2 ≤ j ≤ ni+1.

Alternatively, we use a divide-and-conquer strategy to recursively compute the
BDDs for the first half and the second half of the cardinality constraints respectively,

186 Y. Zhang et al.

and then apply the AND-operation. Our preliminary experimental results show that
the latter approach often performs better (about 2 times faster) than the former one,
although they generate the same BDD.

Second, constructing the BDD directly from the cardinality constraints t(b)i =

{Ci,1, · · · ,Ci,ni+1 } becomes prohibitively costly when ni and ni+1 are large, as the BDDs
CC2BDD(Ci, j) for j ∈ [ni+1] need to consider all the inputs in B

ni . To improve effi-
ciency, we apply feasible input propagation. Namely, when we construct the BDD for
the block ti+1, we only consider its possible inputs with respect to the output of the block
ti. Our preliminary experimental results show that the optimization could significantly
improve the efficiency of the BDD construction.

Third, instead of encoding the input-output relation of the BNN N as a sole BDD
or MTBDD, we opt to use a family of s BDDs (Gout

i)i∈[s], each of which corresponds
to one output class of N . Recall that each output class i ∈ [s] is represented by (s − 1)
cardinality constraints. Then, we can build a BDD Gi for the output class i, similar to
the BDD construction for internal blocks. By composing Gi with the BDD of the entire
internal blocks, we obtain the BDD Gout

i . Building a single BDD or MTBDD for the
BNN is possible from (Gout

i)i∈[s], but our approach gives the flexibility especially when
a specific target class is interested, which is common for robustness analysis.

Algorithm 2: BDD Construction for BNNs

1 Proc BNN2BDD(BNN : N = (t1, · · · , td, td+1), Region : R(u, τ))
2 Gin = Gin

u,τ (cf. Section 3.3); N (b) = (t(b)1 , · · · , t(b)d , t
(b)
d+1) (cf. Section 3.4);

3 for (i = 1; i ≤ d; i + +) do
4 G′ =Block2BDD(t(b)i ,G

in, i);

5 Gin = Exists(G′, xi) ; // xi denote input variables of t(b)i
6 G = (i == 1) ? G′ : RelProd(G,G′);
7 for (i = 1; i ≤ s; i + +) do
8 Gi =Block2BDD(t

(b)
d+1↓i,G

in, d + 1);

9 Gout
i = RelProd(Gi,G);

10 return (Gout
i)i∈[s]

11 Proc Block2BDD(CCs : {Cm, · · · ,Cn}, InputSpace : Gin, BlkIndex : i)
12 if n == m then
13 G1 =CC2BDD(Cm) (cf. Algorithm 1);
14 G = And(G1,Gin);
15 if i � d + 1 then G = Xnor(xi+1

m ,G);
16 else
17 G1 =Block2BDD({Cm, · · · ,C� n−m

2 �+m},Gin, i);

18 G2 =Block2BDD({C� n−m
2 �+m+1, · · · ,Cn},Gin, i);

19 G = And(G1,G2);
20 return G

BDD4BNN 187

Overall Algorithm. The overall BDD construction procedure is shown in Algorithm 2.
Given a BNNN = (t1, · · · , td, td+1) with s output classes and an input region R(u, τ), the
algorithm outputs the BDDs (Gout

i)i∈[s], encoding the input-output relation of the BNN
N with respect to the input region R(u, τ).

The procedure BNN2BDD first builds the BDD representation Gin
u,τ of the input

region R(u, τ) and the cardinality constraints from BNN N (b) (Line 1). The first for-
loop builds a BDD encoding the input-output relation of the entire internal blocks
w.r.t. Gin

u,τ. The second for-loop builds the BDDs (Gout
i)i∈[s], each of which encodes the

input-output relation of the entire BNN for a class i ∈ [s] w.r.t. Gin
u,τ. The procedure

Block2BDD receives the cardinality constraints {Cm, · · · ,Cn}, a BDD Gin representing
the feasible inputs of the block and the block index i as inputs, and returns a BDD G. If
i = d+1, namely, the cardinality constraints {Cm, · · · ,Cn} are from the output block, the
resulting BDD G encodes the subset of Gin

u,τ that satisfy all the cardinality constraints
{Cm, · · · ,Cn}. If i � d + 1, then the BDD G encodes the input-output relation of the
Boolean function fm,n such that for every xi ∈ L(Gin), fm,n(xi) is the truth vector of the
cardinality constraints {Cm, · · · ,Cn} under the valuation xi. When m = 1 and n = ni+1,
fm,n is the same as t(b)i , hence L(G) = {xi × xi+1 ∈ Gin × Bni+1 | t(b)i (xi) = xi+1}. Detailed
explanation refers to [71].

Theorem 2. Given a BNN N with s output classes and an input region R(u, τ), we can
compute s BDDs (Gout

i)i∈[s] such that the BNNN classifies an input x ∈ R(u, τ) into the
class i ∈ [s] iff x(b) ∈ L(Gout

i).

Algorithm 2 explicitly involves O(d+ s) RelProd-operations, O(s2 +
∑

i∈[d] ni) And-
operations and O(d) Exists-operations.

4 Applications: Robustness Analysis and Interpretability

In this section, we present two applications within BDD4BNN, i.e., robustness analysis
and interpretability of BNNs.

4.1 Robustness Analysis

Definition 2. Given a BNN N and an input region R(u, τ), the BNN is (locally) robust
w.r.t. the region R(u, τ) if each sample x ∈ R(u, τ) is classified into the same class as the
ground-truth class of u.

An adversarial example in the region R(u, τ) is a sample x ∈ R(u, τ) such that x is
classified into a class, that differs from the ground-truth class of u.

As mentioned in Sect. 1, qualitative verification which checks whether a BNN is
robust or not is insufficient in many practical applications. In this paper, we are inter-
ested in quantitative verification of robustness which asks how many adversarial exam-
ples are there in the input region of the BNN for each class. To answer this question,
given a BNN N and an input region R(u, τ), we first obtain the BDDs (Gout

i)i∈[s] by
applying Algorithm 2 and then count the number of adversarial examples for each class

188 Y. Zhang et al.

in the input region R(u, τ). Note that counting adversarial examples amounts to com-
puting |R(u, τ)| − |L(Gout

g)|, where g denotes the ground-truth class of u, and |L(Gout
g)|

can be computed in time O(|Gout
g |).

In some applications, more refined analysis is needed. For instance, it may be
acceptable to misclassify a dog as a cat, but unacceptable to misclassify a tree as a car.
This suggests that the robustness of BNNs may depend on the classes to which samples
are misclassified. To capture this, we consider the notion of targeted robustness.

Definition 3. Given a BNN N , an input region R(u, τ), and the class t, the BNN is t-
target-robust w.r.t. the region R(u, τ) if every sample x ∈ R(u, τ) is never classified into
the class t. (Note that we assume that the ground-truth class of u differs from the class t.)

The quantitative verification problem of t-target-robustness of a BNN asks how
many adversarial examples in the input region R(u, τ) are misclassified to the class t by
the BNN N . To answer this question, we first obtain the BDD Gout

t by applying Algo-
rithm 2 and then count the number of adversarial examples by computing |L(Gout

t)|.
Note that, if one wants to compute the (locally) maximal safe Hamming distance

that satisfies a robustness property for an input sample (e.g., the proportion of adversar-
ial examples is below a threshold), our framework can incrementally compute such a
distance without constructing the BDD models of the entire BNN from scratch.

Definition 4. Given a BNN N , input region R(u, r) and threshold ε ≥ 0, r1 is the
(locally) maximal safe Hamming distance of R(u, τ), if one of the follows holds:

– if Pr(R(u, r)) > ε, then Pr(R(u, r1)) ≤ ε and Pr(R(u, r′)) > ε for r′ : r1 < r′ < r;
– if Pr(R(u, r)) ≤ ε, then Pr(R(u, r1 + 1)) > ε and Pr(R(u, r′)) ≤ ε for r′ : r < r′ ≤ r1;

where Pr(R(u, r)) is the probability
∑

i∈[s].i�g |L(Gout
i)|

|R(u,r)| for g being the ground-truth class of
u, assuming a uniform distribution of adversarial samples.

Algorithm 3 shows the procedure to incrementally compute the maximal safe Ham-
ming distance for a given threshold ε ≥ 0, input region R(u, r), and ground-truth class
g of u. Remark that Pr(R(u, r)) may not be monotonic w.r.t. the Hamming distance r.

4.2 Interpretability

In general, interpretability addresses the question of why some inputs in the input region
are (mis)classified by the BNN into a specific class? We consider the interpretability of
BNNs using two complementary explanations, i.e., prime implicant explanations and
essential features.

Definition 5. Given a BNNN , an input region R(u, τ) and a class g, a prime implicant
explanation (PI-explanation) of decisions made by the BNN N on the inputs L(Gout

g)
is a minimal set of literals {�1, · · · , �k} such that for every x ∈ R(u, τ), if x satisfies
�1 ∧ · · · ∧ �k, then x is classified into the class g by the BNN N .

BDD4BNN 189

Algorithm 3: Compute the maximal safe Hamming distance

1 Proc MaxHD(BNN : N = (t1, · · · , td, td+1), Region : R(u, r), Threshold : ε, Class : g)
2 (Gout

i)i∈[s] =BNN2BDD(N ,R(u, r));
3 if (

∑
i∈[s].i�g |L(Gout

i)|
|R(u,r)| > ε) then // decrease r

4 while (r ≥ 0) do
5 r = r − 1;
6 (Gout

i)i∈[s] = (And(Gin
u,r,G

out
i))i∈[s];

7 if (
∑

i∈[s].i�g |L(Gout
i)|

|R(u,r)| ≤ ε) then return r;

8 else // increase r
9 while (r ≤ n1) do // n1 is the input size of the BNN N

10 r = r + 1;
11 (Bout

i)i∈[s] =BNN2BDD(N ,R(u, r) \ R(u, r − 1));
12 (Gout

i)i∈[s] = (Or(Bout
i ,G

out
i))i∈[s];

13 if (
∑

i∈[s].i�g |L(Gout
i)|

|R(u,r)| > ε) then return r − 1;
14 return r

Intuitively, a PI-explanation {�1, · · · , �k} indicates that {var(�1), · · · , var(�k)} are key
features, namely, if fixed, the predication is guaranteed no matter how the remaining
features change. Remark that there may be more than one PI-explanation for a set of
inputs L(Gout

g). When g is set to be the class of the benign input u, a PI-explanation on
Gout

g suggests why these samples are classified into g by the BNN N .

Definition 6. Given a BNN N , an input region R(u, τ) and a class g, the essential fea-
tures for the inputs L(Gout

g) are literals {�1, · · · , �k} such that every x ∈ R(u, τ), if x is
classified into the class g by the BNN N , then x satisfies �1 ∧ · · · ∧ �k.

Intuitively, the essential features {�1, · · · , �k} denote the key features such that all
samples x ∈ R(u, τ) that are classified into the class g by the BNN N must agree on
these features. Essential features differ from PI-explanations, where the former can be
seen as a necessary condition, while the latter can be seen as a sufficient condition.

BDD libraries (e.g., CUDD [58]) usually provide APIs to identify prime impli-
cants (e.g., Cudd bddPrintCover and Cudd FirstPrime) and essential variables (e.g.,
Cudd FindEssential). Therefore, prime implicants and essential features can be com-
puted via queries on the BDDs (Gout

i)i∈[s].

5 Evaluation

We have implemented our framework as a prototype tool BDD4BNN based on the
CUDD package [58]. BDD4BNN is implemented with Python as the front-end to pre-
process BNNs and C++ as the back-end to perform the BDD encoding and analysis.
In this section, we report the experimental results, including BDD encoding, robustness
analysis based on hamming distance, and interpretability.

190 Y. Zhang et al.

Experimental Setup. The experiments were conducted on a machine with Intel Xeon
Gold 5118 2.3GHz CPU, 64-bit Ubuntu 20.04 LTS operating systems, 128G RAM.
Each BDD encoding executed on one core limited by 8-h.

Benchmarks. We use the PyTorch (v1.0.1.post2) deep learning platform provided by
NPAQ [6] to train and test BNNs. We trained 12 BNN models (P1-P12) with varying
sizes using the MNIST dataset [35]. The MNIST dateset contains 70,000 gray-scale 28
× 28 images (60,000 for training and 10,000 for testing) of handwritten digits with 10
classes. In our experiments, we downscale the images (28 × 28) to some selected input
size n1 (i.e., the corresponding image is of the size

√
n1 × √n1) and then binarize the

normalized pixels of the images.
Details of the BNN models are listed in Table 3, each of which has 10 classes (i.e.,

s = 10). Column 1 shows the name of the BNNmodel. Column 2 shows the architecture
of the BNN model, where n1 : · · · : nd+1 : s denotes that the BNN model has d + 1
blocks, n1 inputs and s outputs; the i-th block for i ∈ [d + 1] has ni inputs and ni+1

outputs with nd+2 = s. Recall that each internal block has 3 layers while the output
block has 2 layers. Therefore, the number of layers ranges from 5 to 14, the dimension
of inputs ranges from 9 to 784, and the number of hidden neurons per linear layer ranges
from 10 to 100. Column 3 shows the accuracy of the BNN model on the test set of the
MNIST dataset. (We can observe that the accuracy increases with the size of inputs, the
number of layers, and the number of hidden neurons per layer.) We randomly choose
10 images from the training set of the MNIST dataset (one image per class) to evaluate
our approach.

5.1 Performance of BDD Encoding

We evaluate BDD4BNN on the BNNs listed in Table 3 using different input regions.

BDD Encoding Using Full Input Space. We evaluate BDD4BNN on the BNNs (P1–
P5), where Bn1

±1 is used as the input region. The results are shown in Table 4, where |G|
denotes the number of BDD nodes in the BDD manager. We can observe that both the
execution time and the number of BDD nodes increase with the size of BNNs.

BDD Encoding Under Hamming Distance. We evaluate BDD4BNN on the BNNs
(P5–P12). In this case, an input region is given by one of the 10 images and a Hamming
distance r ranging from 2 to 6. The average results are shown in Table 5, where [i] (resp.
(i)) indicates the number of cases that BDD4BNN runs out of memory (resp. time).
Overall, the execution time and the number of BDD nodes increase with r. BDD4BNN
succeeded on all the cases when r ≤ 4, 75 cases out of 80 when r = 5, and 48 cases
out of 80 when r = 6. We observe that the execution time and number of BDD nodes
increase with the number of hidden neurons (P6 vs. P7, P8 vs. P9, and P11 vs. P12),
while the effect of the number of layers is diverse (P6 vs. P8 vs. P10, and P7 vs. P9).
From P9 and P10, we observe that the number of hidden neurons per layer is likely
the key impact factor of the efficiency of BDD4BNN. Interestingly, our tool BDD4BNN
works well on BNNs with large input sizes (i.e., on P11 and P12).

BDD4BNN 191

Table 3. BNN benchmarks

Name Architecture Accuracy Name Architecture Accuracy

P1 9:20:10 12.23% P7 100:100:10 75.16%

P2 16:32:10 28.63% P8 100:50:20:10 71.1%

P3 16:64:32:10 25.14% P9 100:100:50:10 77.37%

P4 36:15:10:10 27.12% P10 100:50:30:30:10 80.63%

P5 64:10:10 49.16% P11 784:30:50:50:50:10 88.23%

P6 100:50:10 73.25% P12 784:50:50:50:50:10 86.95%

Table 4. BDD encoding using full input space

Name P1 P2 P3 P4 P5

Time (s) ≈0 0.78 28.21 10924.51 Timeout

|G| 288 18,864 17,636 152,830,875 –

These results demonstrate the efficiency and scalability of BDD4BNN on BDD
encoding of BNNs. We remark that, compared with the learning-based approach [54],
our approach is considerably more efficient and scalable. For instance, the learning-
based approach takes 403 s to encode a BNN with 64 input size, 5 hidden neurons, and
2 output size when r = 6, while ours takes about 3 s even for a larger network P5.

5.2 Robustness Analysis

We evaluate BDD4BNN on the robustness of BNNs, including robustness analysis under
different input regions and maximal safe Hamming distance computing.

Robustness Verification with Hamming Distance. We evaluate BDD4BNN on BNNs
(P7, P8, P9, and P11) using the 10 images. The input regions are given by the Hamming
distance r ranging from 2 to 4, resulting in 120 instances. To the best of our knowledge,
NPAQ [6] is the only work that supports quantitative robustness verification of BNNs to
which we compare BDD4BNN. Recall that NPAQ only provides PAC-style guarantees.
Namely, it sets a tolerable error ε and a confidence parameter δ. The final estimated
results of NPAQ have the bounded error ε with confidence of at least 1 − δ, i.e.,

Pr[(1 + ε)−1RealNum ≤ EstimatedNum ≤ (1 + ε)RealNum] ≥ 1 − δ (1)

In our experiments, we set ε = 0.8 and δ = 0.2, as done in [6].

192 Y. Zhang et al.

Table 5. BDD encoding under Hamming distance

r=2 r=3 r=4 r=5 r=6

Time(s) |G| Time(s) |G| Time(s) |G| Time(s) |G| Time(s) |G|
P5 0.01 1,559 0.03 9,795 0.11 36,796 0.74 176,107 2.94 592,104

P6 0.25 4,670 4.17 84,037 109.26 1,018,571 2,292.5 11,375,842 (5) 17,811 41,883,970

P7 0.65 5,295 22.70 106,754 652.78 1,575,722 (1) 17,399 16,163,078 [10] -

P8 0.14 6,147 1.95 125,226 44.51 1,668,027 1,146.8 20,519,582 (1) 12,491 172,369,297

P9 1.99 6,139 63.30 136,126 1,428.6 2,005,666 [1](3) 17,039 29,323,244 [10] -

P10 0.30 4,630 4.87 100,054 101.41 1,603,920 1,909.9 19,844,299 (5) 20,484 173,316,483

P11 5.52 3,128 5.73 22,120 6.60 86,413 11.63 556,774 238.2 2,881,468

P12 12.4 5,693 12.87 49,996 16.92 493,820 403.09 5,739,602 (1) 11,058 16,241,733

Table 6. Robustness verification under Hamming distance

r
NPAQ [6] BDD4BNN Diff

#(Adv) Time(s) Pr(adv) #(Adv) Time(s) Pr(adv) #(Adv) Speed Up

2 875 271.07 17.32% 1,806 0.65 35.76% 106.4% 416

P7 3 39,587 919.88 23.74% 65,054 22.71 39.01% 64.33% 40

4 1,023,798 3,862.0 25.04% 1,501,691 661.79 36.73% 46.68% 5

2 1,601 187.78 31.70% 2,261 0.14 44.76% 41.22% 1,340

P8 3 66,562 396.45 39.92% 64,372 1.96 38.60% -3.29% 201

4 1,636,070 1,861.7 40.02% 1,829,103 45.0 44.74% 11.80% 40

2 1,214 363.44 24.03% 1,406 1.99 27.84% 15.82% 182

P9 3 51,464 3,763.6 30.86% 42,901 63.31 25.73% -16.64% 58

4 1,316,181 (1) 9,007.8 32.20% 3,968,609 1,505.0 97.08% 201.5% 5

2 12,083 3,831.0 3.93% 28,736 5.52 9.34% 137.8% 693

P11 3 0 (2) 4,634.2 0% 0 5.68 0% - 815

4 0 (2) 7,979.1 0% 0 6.38 0% - 1,250

The results on the average of the images are shown in Table 6. NPAQ ran out of time
on 5 instances (which occur in P9 with r = 4 and P11 with r = 3 and r = 4), while
BDD4BNN successfully verified all the 120 instances. Table 6 only shows the results of
115 instances that can be solved by NPAQ. Columns 3, 4, and 5 (resp. 6, 7, and 8) show
the number of adversarial examples, the execution time, and the proportion of adver-
sarial examples in the input region. Column 9 shows the error rate RealNum−EstimatedNum

EstimatedNum
,

where RealNum is from our result, and EstimatedNum is from NPAQ. Column 10
shows the speedup of BDD4BNN compared with NPAQ. Remark that the numbers of
adversarial examples are 0 for P11 on input regions with r = 3 and r = 4 that can be
solved by NPAQ. There do exist input regions for P11 that cannot be solved by NPAQ
but have adversarial examples (see below). On BNNs that were solved by both NPAQ
and BDD4BNN, BDD4BNN is significantly (5× to 1, 340×) faster and more accurate
than NPAQ. From Table 5 and Table 6, we also found that most of the verification time
is spent on BDD encoding while the rest is usually less than 10 s.

Details of Robustness and Targeted Robustness. Figure 6(a) (resp. Fig. 6(b) and
Fig. 6(c)) depicts the distributions of classes on P8 with Hamming distance r = 2 (resp.
P8 with r = 3 and P11 with r = 2), where on the x-axis i = 0, · · · , 9 denotes the input

BDD4BNN 193

Fig. 6. Details of robustness verification with Hamming distance

region that is within the respective Hamming distance to the image of digit i (called
i-region). We can observe that P8 is robust for the 0-region when r = 2 and robust for
the 6-region when r = 2 and r = 3, but is not robust for the other regions. (Note P8
is not robust for 0-region when r = 3, which is hard to be visualized in Fig. 6(b) due
to the small number of adversarial examples.) Most of the adversarial examples in the
1-region and 5-region are misclassified into the digit 3 by P8. P11 is not robust for the
1-region or the 5-region, but is robust for all the other regions. Though P8 and P11 are
not robust on some input regions, indeed they are t-target-robust for many target classes
t, e.g., P11 is t-target-robust for the 1-region when t � 2, and the 5-region when t � 3.
(The raw data are given in [71].)

Quality Validation of NPAQ. Figure 6(d) shows the distribution of error rates of NPAQ,
where the x-axis is the range of the error rate and the y-axis is the corresponding number
of instances. There are 19 instances where the estimated number of adversarial exam-
ples exceeds (1+ε) of the real number of the adversarial examples and 7 instances where
the estimated number of adversarial examples is less than (1 + ε)−1 of the real number
of the adversarial examples. This means that out of 115 instances, only in 89 instances
the estimated number is within the allowed range, which is less than 1 − δ = 0.8.

Maximal Safe Hamming Distance. As a representative of such an analysis, we eval-
uate BDD4BNN on 4 BNNs (P7, P8, P9, and P11) with 10 images for 2 robustness
thresholds (ε = 0 and ε = 0.03). The initial Hamming distance r is 3. Intuitively, ε = 0
(resp. ε = 0.03) means that up to 0% (resp. 3%) samples in the input region can be
adversarial.

Table 7 shows the results, where columns SD and Time give the maximal safe Ham-
ming distance and the execution time, respectively. BDD4BNN solved 74 out of 80
instances. (For the remaining 6 instances, BDD4BNN ran out of time or memory, but

194 Y. Zhang et al.

Table 7. Maximal safe Hamming distance

Image

P7 P8 P9 P11

ε = 0 ε = 0.03 ε = 0 ε = 0.03 ε = 0 ε = 0.03 ε = 0 ε = 0.03

SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s)

0 1 15.09 4 10,845 2 0.51 6 Timeout 3 746.15 3 737.96 6 29.69 6 29.28

1 -1 19.96 -1 19.13 -1 2.84 -1 2.97 0 155.50 0 155.09 0 6.49 0 6.11

2 2 13.25 3 422.04 0 0.46 0 0.50 1 37.50 4 14,127 6 11,334 6 11,437

3 0 21.39 0 20.94 -1 1.92 -1 2.08 0 41.04 0 40.49 6 8,323.1 6 8,088.3

4 3 426.81 5 OOM -1 2.41 -1 2.61 2 8.08 5 OOM 6 30.85 6 30.74

5 -1 15.60 -1 15.92 -1 0.68 -1 0.74 -1 22.54 -1 21.54 -1 7.03 -1 6.72

6 4 7,990.6 5 OOM 3 5.69 4 198.26 1 57.37 4 Timeout 6 44.57 6 45.12

7 -1 16.08 -1 15.90 -1 2.49 -1 2.52 1 89.49 4 Timeout 6 89.38 6 88.39

8 -1 19.02 -1 19.28 -1 1.71 -1 1.80 -1 80.16 -1 79.91 6 43.95 6 43.30

9 0 26.82 0 27.69 0 5.09 1 5.39 -1 109.04 -1 107.24 6 338.73 6 327.48

Fig. 7. Graphic representation of essential features and PI-explanations

it was still able to compute a larger safe Hamming distance.) We can observe that the
maximal safe Hamming distance increases with the threshold ε on several BNNs and
input regions. We can also observe that P11 is more robust than others, which is con-
sistent with their accuracies (cf. Table 3). Remark that SD = −1 indicates that the input
image itself is misclassified.

5.3 Interpretability

To demonstrate the ability of BDD4BNN on interpretability, we consider the analysis of
the BNN P12 and the image u of digit 1.

Essential Features. For the input region given by the Hamming distance r = 4, we
compute two sets of essential features for the inputs L(Gout

2) and L(Gout
5), i.e., the

adversarial examples in the region R(u, 4) that are misclassified into the classes 2 and
5 respectively. The essential features are depicted in Figs. 7(a) and 7(b), where black
(resp. blue) color means that the value of the corresponding pixel is 1 (resp. 0), and
yellow color means that the value of the corresponding pixel can take arbitrary values.
Figure 7(a) (resp. Fig. 7(b)) indicates that the inputs L(Gout

2) (resp. L(Gout
5)) must agree

on these black- and blue-colored pixels.

BDD4BNN 195

PI-Explanations. For demonstration, we assume that the input region is given by the
fixed set of indices I = {1, 2, · · · , 28} which denotes the first row of pixels of 28 × 28
images. We compute two PI-explanations of the inputs L(Gout

2) and L(Gout
5). The PI-

explanations are depicted in Figs. 7(c) and 7(d). Figure 7(c) (resp. Fig. 7(d)) suggests
that, by the definition of the PI-explanation, all the images in the region R(u, I) obtained
by assigning arbitrary values to the yellow-colored pixels are always misclassified into
the class 2 (resp. class 5), while changing one black-colored or blue-colored pixel would
change the predication result since a PI-explanation is a minimal set of literals.

6 Related Work

In this section, we discuss the related work on qualitative/quantitative analysis and inter-
pretability of DNNs. As there is a vast amount of literature regarding these topics, we
will only discuss the most related ones to BDD4BNN.

Qualitative Analysis of DNNs. For real-numbered DNNs, various formal verifica-
tion approaches have been proposed. Typical examples include constraint solving based
approaches [17,26,30,31,51], optimization based approaches [10,13,15,16,40,61,67,
68], and program analysis based approaches [2,3,18,20,37–39,55–57,62–64,69].

Existing techniques for quantized DNNs are mostly based on constraint solving,
in particular, SAT/SMT solving [12,33,45,46]. Following this line, verification of
BNNs with ternary weights [28,48] and quantized DNNs with multiple bits [7,22,24]
were also studied. Recently, the SMT-based framework Marabou for real-numbered
DNNs [31] has also been extended to support BNNs [1].

Quantitative Analysis of DNNs. Comparing to qualitative analysis, quantitative anal-
ysis of neural networks is currently very limited. Two sampling-based approaches were
proposed to certify the robustness for both DNNs and BNNs [5,65]. Yang et al. [69]
proposed a spurious region-guided refinement approach for real-numbered DNN verifi-
cation, claiming to be the first work of the quantitative robustness verification of DNNs
with soundness guarantees.

Following the SAT-based qualitative analysis of BNNs [45,46], SAT-based quan-
titative analysis approaches were also proposed [6,21,47]. In particular, approximate
SAT model-counting solvers are utilized. Shih et al. [54] also proposed a BDD-based
approach to tackle BNNs, similar to our work in spirit. However, our approach is able
to handle BNNs of considerably larger sizes than their learning-based method.

Interpretability of DNNs. Though interpretability of DNNs is crucial for explain-
ing predictions, it is very challenging to tackle due to the blackbox nature of DNNs.
There is a large body of work on the interpretability of DNNs (cf. [25,43] for a survey).
Almost all the existing approaches are heuristic-based and restricted to finding explana-
tions that are local in an input region. Some of them tackle the interpretability of DNNs
by learning an interpretable model, such as binary decision trees [19,70] or finite-state

196 Y. Zhang et al.

automata [66]. In contrast to ours, they target at DNNs and only approximate the origi-
nal model in the input region. The BDD-based approach [54] mentioned above has been
used to compute the PI-explanation, but essential features were not considered therein.

7 Conclusion

In this paper, we have proposed a novel BDD-based framework for quantitative verifica-
tion of BNNs. We implemented the framework as a prototype tool BDD4BNN and con-
ducted extensive experiments on 12 BNN models with varying sizes and input regions.
Experimental results demonstrated that BDD4BNN is more scalable than the existing
BDD-learning based approach, and significantly more efficient and accurate than the
existing SAT-based approach NPAQ. This work represents the first, but a key, step of the
long-term program to develop an efficient and scalable BDD-based quantitative analysis
framework for BNNs.

References

1. Amir, G., Wu, H., Barrett, C.W., Katz, G.: An SMT-based approach for verifying binarized
neural networks. CoRR abs/2011.02948 (2020)

2. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction: a synergis-
tic approach for analyzing neural network robustness. In: PLDI, pp. 731–744 (2019)

3. Ashok, P., Hashemi, V., Křetı́nský, J., Mohr, S.: DeepAbstract: neural network abstraction
for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 92–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 5

4. Baidu: Apollo (2021). https://apollo.auto
5. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification for deep

neural networks. CoRR abs/2002.06864 (2020)
6. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification of neural

networks and its security applications. In: CCS, pp. 1249–1264 (2019)
7. Baranowski, M., He, S., Lechner, M., Nguyen, T.S., Rakamarić, Z.: An SMT theory of

fixed-point arithmetic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 13–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51074-9 2

8. Bartzis, C., Bultan, T.: Construction of efficient BDDs for bounded arithmetic constraints.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 394–408. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 28

9. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-
put. 35(8), 677–691 (1986)

10. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Branch and bound for
piecewise linear neural network verification. J. Mach. Learn. Res. 21, 42:1-42:39 (2020)

11. Chen, G., et al.: Who is real Bob? Adversarial attacks on speaker recognition systems. CoRR
abs/1911.01840 (2019)

12. Cheng, C.-H., Nührenberg, G., Huang, C.-H., Ruess, H.: Verification of binarized neural
networks via inter-neuron factoring. In: Piskac, R., Rümmer, P. (eds.) VSTTE 2018. LNCS,
vol. 11294, pp. 279–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03592-
1 16

https://doi.org/10.1007/978-3-030-59152-6_5
https://apollo.auto
https://doi.org/10.1007/978-3-030-51074-9_2
https://doi.org/10.1007/978-3-030-51074-9_2
https://doi.org/10.1007/3-540-36577-X_28
https://doi.org/10.1007/978-3-030-03592-1_16
https://doi.org/10.1007/978-3-030-03592-1_16

BDD4BNN 197

13. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 251–268.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 18

14. Duan, Y., Zhao, Z., Bu, L., Song, F.: Things you may not know about adversarial example: a
black-box adversarial image attack. CoRR abs/1905.07672 (2019)

15. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedfor-
ward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS,
vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-
5 9

16. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach to scalable
verification of deep networks. In: UAI, pp. 550–559 (2018)

17. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

18. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural network
verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 43–65.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 3

19. Frosst, N., Hinton, G.E.: Distilling a neural network into a soft decision tree. In: Proceed-
ings of the 1st International Workshop on Comprehensibility and Explanation in AI and ML
(2017)

20. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2:
safety and robustness certification of neural networks with abstract interpretation. In: S&P,
pp. 3–18 (2018)

21. Ghosh, B., Basu, D., Meel, K.S.: Justicia: a stochastic SAT approach to formally verify
fairness. CoRR abs/2009.06516 (2020)

22. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quantize your
neural network? In: TACAS 2020. LNCS, vol. 12079, pp. 79–97. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45237-7 5

23. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited
numerical precision. In: ICML, pp. 1737–1746 (2015)

24. Henzinger, T.A., Lechner, M., Žikelić, D.: Scalable verification of quantized neural networks
(technical report). arXiv preprint arXiv:2012.08185 (2020)

25. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks: verifi-
cation, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37,
100270 (2020)

26. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 1

27. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks.
In: NeurIPS, pp. 4107–4115 (2016)

28. Jia, K., Rinard, M.: Efficient exact verification of binarized neural networks. In: NeurIPS
(2020)

29. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to
demonstrate autonomous vehicle reliability? Transp. Res. Part A Policy Pract. 94, 182–193
(2016)

30. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT
solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9 5

https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-45237-7_5
http://arxiv.org/abs/2012.08185
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

198 Y. Zhang et al.

31. Katz, G., et al.: The Marabou framework for verification and analysis of deep neural net-
works. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

32. Koopman, P., Osyk, B.: Safety argument considerations for public road testing of
autonomous vehicles. SAE Int. J. Adv. Curr. Pract. Mobility 1, 512–523 (2019)

33. Korneev, S., Narodytska, N., Pulina, L., Tacchella, A., Bjorner, N., Sagiv, M.: Constrained
image generation using binarized neural networks with decision procedures. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 438–449. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8 27

34. Kung, J., Zhang, D.C., van der Wal, G.S., Chai, S.M., Mukhopadhyay, S.: Efficient object
detection using embedded binarized neural networks. J. Signal Process. Syst. 90(6), 877–890
(2018)

35. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
36. Lei, Y., Chen, S., Fan, L., Song, F., Liu, Y.: Advanced evasion attacks and mitigations on

practical ML-based phishing website classifiers. CoRR abs/2004.06954 (2020)
37. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural networks

with symbolic propagation: towards higher precision and faster verification. In: Chang, B.-
Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 296–319. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-32304-2 15

38. Li, R., et al.: PRODeep: a platform for robustness verification of deep neural networks. In:
FSE, pp. 1630–1634 (2020)

39. Liu, W., Song, F., Zhang, T., Wang, J.: Verifying ReLU neural networks from a model check-
ing perspective. J. Comput. Sci. Technol. 35(6), 1365–1381 (2020)

40. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward ReLU
neural networks. CoRR abs/1706.07351 (2017)

41. McDanel, B., Teerapittayanon, S., Kung, H.T.: Embedded binarized neural networks. In:
EWSN, pp. 168–173 (2017)

42. Minato, S.I., Somenzi, F.: Arithmetic Boolean expression manipulator using BDDs. Formal
Methods Syst. Des. 10(2), 221–242 (1997). https://doi.org/10.1023/A:1008643722423

43. Molnar, C., Casalicchio, G., Bischl, B.: Interpretable machine learning - A brief history,
state-of-the-art and challenges. CoRR abs/2010.09337 (2020)

44. Nakamura, A.: An efficient query learning algorithm for ordered binary decision diagrams.
Inf. Comput. 201(2), 178–198 (2005)

45. Narodytska, N.: Formal analysis of deep binarized neural networks. In: IJCAI, pp. 5692–
5696 (2018)

46. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying proper-
ties of binarized deep neural networks. In: AAAI, pp. 6615–6624 (2018)

47. Narodytska, N., Shrotri, A., Meel, K.S., Ignatiev, A., Marques-Silva, J.: Assessing heuristic
machine learning explanations with model counting. In: Janota, M., Lynce, I. (eds.) SAT
2019. LNCS, vol. 11628, pp. 267–278. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-24258-9 19

48. Narodytska, N., Zhang, H., Gupta, A., Walsh, T.: In search for a SAT-friendly binarized
neural network architecture. In: ICLR (2020)

49. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.: Practical
black-box attacks against machine learning. In: CCS, pp. 506–519 (2017)

50. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limita-
tions of deep learning in adversarial settings. In: S&P, pp. 372–387 (2016)

51. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neu-
ral networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
243–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 24

https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-319-94144-8_27
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.1023/A:1008643722423
https://doi.org/10.1007/978-3-030-24258-9_19
https://doi.org/10.1007/978-3-030-24258-9_19
https://doi.org/10.1007/978-3-642-14295-6_24

BDD4BNN 199

52. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification
using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46493-0 32

53. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed.
Eng. 19, 221–248 (2017)

54. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by Angluin-style
learning. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 354–370.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 25

55. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron convex barrier
for neural network certification. In: NeurIPS, pp. 15072–15083 (2019)

56. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective robustness
certification. In: NeurIPS, pp. 10825–10836 (2018)

57. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural
networks. Proc. ACM Program. Lang. (POPL) 3, 41:1–41:30 (2019)

58. Somenzi, F.: CUDD: CU decision diagram package (2015)
59. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
60. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks.

In: ICML, pp. 6105–6114 (2019)
61. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed integer

programming. In: ICLR (2019)
62. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional neural

networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224,
pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 2

63. Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In: ter Beek,
M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 670–686. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 39

64. Wan, W., Zhang, Z., Zhu, Y., Zhang, M., Song, F.: Accelerating robustness verification of
deep neural networks guided by target labels. CoRR abs/2007.08520 (2020)

65. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A statistical approach to assessing neural
network robustness. In: ICLR (2019)

66. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural networks using
queries and counterexamples. In: ICML, pp. 5244–5253 (2018)

67. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex outer
adversarial polytope. In: ICML, pp. 5283–5292 (2018)

68. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and verification for mul-
tilayer neural networks. TNNLS 29(11), 5777–5783 (2018)

69. Yang, P., et al.: Improving neural network verification through spurious region guided refine-
ment. CoRR abs/2010.07722 (2020)

70. Zhang, Q., Yang, Y., Ma, H., Wu, Y.N.: Interpreting CNNs via decision trees. In: CVPR, pp.
6261–6270 (2019)

71. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: a BDD-based quantitative
analysis framework for binarized neural networks. CoRR abs/2103.07224 (2021)

https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-030-24258-9_25
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-30942-8_39

200 Y. Zhang et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	BDD4BNN: A BDD-Based Quantitative Analysis Framework for Binarized Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Binarized Neural Networks
	2.2 Binary Decision Diagrams

	3 BDD4BNN Design
	3.1 BDD4BNN Overview
	3.2 CC2BDD: Cardinality Constraints to BDDs
	3.3 Region2BDD: Input Regions to BDDs
	3.4 BNN2CC: BNNs to Cardinality Constraints
	3.5 BDD Model Builder

	4 Applications: Robustness Analysis and Interpretability
	4.1 Robustness Analysis
	4.2 Interpretability

	5 Evaluation
	5.1 Performance of BDD Encoding
	5.2 Robustness Analysis
	5.3 Interpretability

	6 Related Work
	7 Conclusion
	References

