
Deductive Synthesis of Programs
with Pointers: Techniques, Challenges,

Opportunities
(Invited Paper)

Shachar Itzhaky1, Hila Peleg1, Nadia Polikarpova2(B), Reuben N. S. Rowe3,
and Ilya Sergey4,5

1 Technion, Haifa, Israel
{shachari,hilap}@cs.technion.ac.il

2 University of California, San Diego, USA
npolikarpova@eng.ucsd.edu

3 Royal Holloway, University of London, Egham, UK
reuben.rowe@rhul.ac.uk

4 Yale-NUS College, Singapore, Singapore
ilya.sergey@yale-nus.edu.sg

5 National University of Singapore, Singapore, Singapore

Abstract. This paper presents the main ideas behind deductive synthe-
sis of heap-manipulating program and outlines present challenges faced
by this approach as well as future opportunities for its applications.

1 Introduction

Just like a journey of a thousand miles begins with a single step, an imple-
mentation of a working operating system, cryptographic library, or a compiler
begins with writing a single function. This is not quite so for verified software,
whose development starts with three “steps”: a function specification (or, spec),
followed by its implementation, and then by a proof that the implementation
satisfies the spec. Although recent years have seen an explosion of increasingly
diverse and sophisticated verified systems [14,20,26,31,41,48,71,73,96], their
cost remains high, owing to the effort required to write formal specifications and
proofs in addition to writing the code.

The good news is that in many cases the aforementioned three steps can be
replaced by just one of them: writing the spec. The rest can be delegated to
deductive program synthesis [52]—an emerging approach to automated software
development, which takes as input a specifications, and searches for a corre-
sponding program together with its proof.

Past approaches to deductive synthesis typically avoided low-level programs
with pointers [43,69,83], which are notoriously difficult to reason about, making
these approaches inapplicable to automating the development of verified systems
code. The few techniques that did handle the heap [47,72] had significant limita-
tions in terms of expressiveness and/or efficiency. Our prior work on the SuSLik

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 110–134, 2021.
https://doi.org/10.1007/978-3-030-81685-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_5

Deductive Synthesis of Programs with Pointers 111

synthesizer [70], has introduced an alternative approach to synthesis of pointer-
manipulating programs, whose key enabling component is the use of Separation
Logic (SL) [66,75] as the specification formalism. Due to its proof scalability,
Separation Logic enabled modular verification of low-level imperative code and
has been implemented in a large number of automated and interactive program
verifiers [4,7,18,37,57,62,64,68]. The main novelty of SuSLik was an observa-
tion that the structure of SL specifications can be used to efficiently guide the
search for a program and its proof. Since then, our follow-up work has explored
automatic discovery of recursive auxiliary functions [34], generating indepen-
dently checkable proof certificates for synthesized programs [93], and giving the
user more control over the synthesis using concise mutability annotations [19].

As an appetizer for SL-powered deductive program synthesis consider the
problem of flattening a binary tree data structure into a doubly-linked list.
Assume also that the programmer would prefer to perform this transforma-
tion in-place, without allocating new memory, which they conjecture is possible
because the nodes of the two data structures have the same size (both are records
with a payload and two pointers). With SuSLik, the programmer can describe
this transformation using the following Hoare-style SL specification:

{tree(x, S)} flatten (loc x) {dll(x, y, S)} (1)

1 flatten(loc x) {
2 if (x == 0) {
3 } else {
4 let l = *(x + 1);
5 let r = *(x + 2);
6 flatten(l);
7 flatten(r);
8 helper (r, l, x);
9 }

10 }
11
12 helper(loc r, loc l,
13 loc x) {
14 if (l == 0) {
15 if (r == 0) {
16 } else {
17 *(r + 2) = x;
18 *(x + 1) = r;
19 }
20 } else {
21 let v = *l;
22 let w = *(l + 1);
23 *(l + 2) = r;
24 helper(r, w, l);
25 *(l + 2) = x;
26 }
27 }

Fig. 1. Flattening a tree into a DLL.

Here the precondition asserts that ini-
tially x points to the root of a tree, whose
contents are captured by a set S. The
postcondition asserts that after the exe-
cution of flatten, the same location x is a
head of a doubly-linked list, with the same
elements S as the initial tree (y denotes
the existentially quantified back-pointer
of the list). The definitions of the two
predicates, tree and dll, which constrain
the symbolic heaps in the pre- and post-
condition are standard for SL [75] and will
be shown in Sect. 2.

Given the spec (1), SuSLik takes less
than 20 s to generate the program in
Fig. 1, written in a core C-like language,
as well as a formal proof that the pro-
gram satisfies the spec. Several things are
noteworthy about this program. First, the
code indeed does not perform any allo-
cation, and instead accomplishes its goal
by switching pointers (in lines 17, 18,
23, and 25); this makes it economical in
terms of memory usage as only a low-level
program can be: similar code written in
a functional language like OCaml would
inevitably rely on garbage collection. Sec-
ond, the main function flatten relies on

112 S. Itzhaky et al.

an auxiliary recursive function helper, which the programmer did not anticipate; in fact
the need for this auxiliary—and its specification—is discovered by SuSLik completely
automatically. All the programmer has to do to obtain a provably correct implementa-
tion of flatten is to write the spec (1) and define the two SL predicates it uses, which
are, however, reusable across different programs.

At this point, a critical reader might be wondering whether this technology is
mature enough to move past hand-crafted benchmarks and assist them in developing
the next CompCert [48] or CertiKOS [31]. For one, the program in Fig. 1 does not
seem optimal: a closer look reveals that the role of helper is to concatenate the lists
obtained by flattening the two subtrees, resulting in the overall O(n2) complexity wrt.
the size of the original tree.1 Apart from performance of synthesized programs, the
reader might have the following concerns:

– What is the class of programs this approach is fundamentally capable of synthe-
sizing? How picky is it to the exact shape of input specifications?

– Is the proof search predictably fast across a wide range of problems?
– Will the synthesized code be concise and easy to understand?
– Finally, what are the “killer apps” for this technology and in which domains can

we hope for its adoption for practical need?

The goal of this manuscript is precisely to illustrate the remaining challenges in
SL-based synthesis of heap-manipulating programs and outline some future research
directions towards addressing these challenges. In the remainder of this paper we pro-
vide the necessary background and a survey of the results to date (Sect. 2); we then
zoom in on the promising techniques for improving proof search (Sect. 3); in Sect. 4
we discuss the completeness of synthesis, outlining the work that needs to be done in
order to formally characterize the class of programs that can and cannot be generated;
in Sect. 5 we talk about possible extensions to the synthesis procedure for improving
the quality of synthesized programs; finally, in Sect. 6 we discuss possible applica-
tions of SL-based synthesis, such as program repair, data migration, and concurrent
programming.

2 State of the Art

2.1 Specifications

SuSLik takes as input a Hoare-style specification, i.e., a pair of a pre- and a post-
condition. Consider, for example, a specification for a function swap,2 which swaps the
values of two pointers:

{x �→ a ∗ y �→ b} swap(loc x, loc y) {x �→ b ∗ y �→ a} (2)

The precondition x �→ a ∗ y �→ b states that the relevant part of the heap contains two
memory locations, x and y, which store values a and b, respectively. We also know
that and x �= y, because the semantics of separating conjunction (∗) require that the
two heaps it connects be disjoint. The postcondition x �→ b ∗ y �→ a demands that after

1 In Sect. 4 we show what it takes to derive an alternative, linear-time solution.
2 Our language has no return statement, hence all functions have return type void,

which is omitted from the spec; return values are emulated by writing to the heap.

Deductive Synthesis of Programs with Pointers 113

executing the function, the values stored in x and y be swapped. This specification
also implicitly guarantees that swap always terminates and executes without memory
errors (e.g., null-pointer dereferencing). Note that x and y also appear as parameters
to swap, and hence are program variables, i.e., can be mentioned in the synthesized
program; the payloads a and b, on the other hand, are logical variables, implicitly
universally quantified, and must not appear in the program. In the rest of this paper,
we distinguish program variables from logical variables by using monotype font for the
former.

In general, in a specification {P} f(...) {Q}, assertions P, Q both have the form
φ; P , where the spatial part P describes the shape of the heap, while the pure part
φ is a plain first-order formula that states the relations between variables (in (2) the
pure part in both pre- and postcondition is trivially true, and hence omitted). For
the spatial part, SuSLik employs the standard symbolic heap fragment of Separation
Logic [66,75]. Informally, a symbolic heap is a set of atomic formulas called heaplets
joined with separating conjunction (∗). The simplest kind of heaplet is a points-to
assertion x �→ e, describing a single memory location with address x and payload e. An
empty symbolic heap is represented with emp.

To capture linked data structures, such as lists and trees, SuSLik specifications
use inductive heap predicates, which are standard in Separation Logic. For instance,
the tree predicate used in (1) is inductively defined as follows:

tree(x, S) � x = 0 ⇒ {S = ∅; emp}
| x �= 0 ⇒ {S = {v} ∪ Sl ∪ Sr;

[x, 3] ∗ x �→ v ∗ 〈x, 1〉 �→ l ∗ 〈x, 2〉 �→ r ∗ tree(l, Sl) ∗ tree(r, Sr)}
(3)

The predicate is parametrized by the root pointer x and the set of tree elements S. This
definition consists of two guarded clauses: the first one describes the empty tree (and
applies when the root pointer is null), and the second one describes a non-empty tree.
In the second clause, a tree node is represented by a three-element record starting at
address x. Records are represented using a generalized form of the points-to assertion
with an offset : for example, the heaplet 〈x, 1〉 �→ l describes a memory location at the
address x + 1. The block assertion [x, 3] is an artifact of C-style memory management:
it represents a memory block of three elements at address x that has been dynamically
allocated by malloc (and hence can be de-allocated by free). The first field of the
record stores the payload v, while the other two store the addresses l and r of the left
and right subtrees, respectively. The two disjoint heaps tree(l, Sl) and tree(r, Sr) store
the two subtrees. The pure part of the second clause indicates that the payload of the
whole tree consists of v and the subtree payloads, Sl and Sr.

2.2 The Basics of Deductive Synthesis

The formal underpinning of SuSLik is a deductive inference system called Synthetic
Separation Logic (SSL). Given a pre-/postcondition pair P, Q, deductive synthe-
sis proceeds by constructing a derivation of the SSL synthesis judgment, denoted
{P}�{Q} | c, for some program c. In this derivation, c is the output program, con-
structed while searching for the proof of the synthesis goal {P} � {Q}. Intuitively,
the output program c should satisfy the Hoare triple {P} c {Q}. The derivation is
constructed by applying inference rules, a subset of which is presented in Fig. 2, and
every inference rule “emits” a program fragment corresponding to this deduction.

114 S. Itzhaky et al.

Fig. 2. Selected SSL rules (simplified). Fig. 3. Derivation of swap.

Figure 3 shows an SSL derivation for swap, using inference rules of Fig. 2. The
derivation, read bottom-up, starts with the pre/post pair from (2) as the synthesis
goal; each rule application simplifies the goal until both the pre- and the post-heap
are empty, and might also prepend a statement (highlighted in grey) to the output
program. In the initial goal, the Read rule can be applied to the heaplet x �→ a to
read the logical variable a from location x into a fresh program variable a1; the second
application of Read similarly reads from the location y. At this point, the Write
rule is applicable to the post-heaplet x �→ b1 because its right-hand side only mentions
program variables and can be directly written into the location x; note that this rule
equalizes the corresponding heaplets in the pre- and post-condition. After two applica-
tions of Write, the pre- and the post-heap become equal and can be simply cancelled
out by the Frame rule, leaving emp on either side of the goal; the terminal rule Emp
then concludes the derivation. Although very simple, this example demonstrates the
secret behind SuSLik’s efficiency: the shape of the specification restricts the set of
applicable rules and thereby guides program synthesis.

2.3 Synthesis with Recursion and Auxiliary Functions

We now return to our introductory example—flattening a binary tree into a doubly-
linked list—whose specification (1) we repeat here for convenience:

{tree(x, S)} flatten(loc x) {dll(x, y, S)}
The definition of the tree predicate has been shown above (3); the predicate dll(x, y, S)
describes a doubly-linked list rooted at x with back-pointer y and payload set S:

dll(x, y, S) � x = 0 ⇒ {S = ∅; emp}
| x �= 0 ⇒ {S = {v} ∪ S′;

[x, 3] ∗ x �→ v ∗ 〈x, 1〉 �→ n ∗ 〈x, 2〉 �→ y ∗ dll(n, x, S′)}
(4)

Note that in the spec (1) both the set S and the back-pointer y are logical variables,
but S is implicitly universally quantified (a so-called ghost variable), because it occurs
in the precondition, while y is existentially quantified (a so-called existential variable),
because it only occurs in the postcondition. The reader might be wondering why use an
existential here instead of a null pointer: as we show below, such weakening is required

Deductive Synthesis of Programs with Pointers 115

Fig. 4. Intermediate synthesis state when deriving flatten.

to obtain the solution in Fig. 1; we discuss the alternative spec and corresponding
solution in Sect. 4.

At a high level, the synthesis of flatten proceeds by eagerly making recursive calls
on the left and the right sub-trees, l and r, as illustrated in Fig. 4, which leads to the
following synthesis goal:

{[x, 3] ∗ x �→ v ∗ 〈x, 1〉 �→ l ∗ 〈x, 2〉 �→ r ∗ dll(l, yl, Sl) ∗ dll(r, yr, Sr)}
� {dll(x, y, {v} ∪ Sl ∪ Sr)} (5)

Now the synthesizer must concatenate the two doubly-linked lists, rooted at l and r,
together with the parent node x into a single list. Since the spec gives us no access to the
last element of either of the two lists, this concatenation requires introducing a recursive
auxiliary function to traverse one of the lists to the end. We now demonstrate how
SuSLik synthesizes recursive calls and discovers the auxiliary using a single mechanism
we call cyclic program synthesis [34], inspired by cyclic proofs in Separation Logic [11,
76]. The main idea behind cyclic proofs is that, in addition to reaching a terminal rule
like Emp, a sub-goal can be “closed off” by forming a cycle to an identical companion
goal earlier in the derivation; in SSL these cycles give rise to recursive calls.

Figure 5 depicts a cyclic derivation of flatten. For now let us ignore the appli-
cations of the Proc rule, which do not modify the synthesis goal; their purpose will
become clear shortly. Given the initial goal (1), SuSLik first applies the Open rule,
which unfolds the definition of tree in the precondition and emits a conditional with
one branch per clause of the predicate. The first branch (x = 0) is trivially solved by
skip, since a null pointer is both an empty tree and an empty list. The second branch
is shown in Fig. 5: its precondition contains two predicate instances tree(l, Sl) and
tree(r, Sr) for the two sub-trees of x.

Now SuSLik detects that either of those instances can be unified with the pre-
condition tree(x, S) of the top-level goal, so it fires the Call rule, which uses cyclic
reasoning to synthesize recursive calls. More specifically, Call has two premises: the
first one synthesizes a recursive call and the second one the rest of the program after
the call. The spec of the first premise must be identical to some earlier goal, so that
it can be closed off by forming a cycle; in our example, the back-link (1) connects the
first premise back to the top-level goal. Once a companion goal is identified, SuSLik
inserts an application of Proc right above it: its purpose is to delineate procedure
boundaries, or, in other words, give a name to the piece of code that the Call rule is
trying to call. To ensure that recursion is terminating, we must prove that tree(l, Sl)
in the precondition of the Call’s premise is strictly smaller than tree(x, S) in the pre-

116 S. Itzhaky et al.

Fig. 5. Derivation of flatten and its recursive auxiliary helper.

condition of the companion (see [34] for more details about our termination checking
mechanism).

After the second application of Call (to tree(r, Sr)), SuSLik arrives at the goal (5),
with two lists in the precondition (marked (a) in Fig. 5). Ignoring again the application
of Proc, which will be inserted later, SuSLik proceeds by unfolding the list dll(l, yl, Sl)
via Open, eventually arriving at the goal (b): this goal again has two lists in the
precondition but one of them is now smaller (it is the tail of dll(l, yl, Sl)). At this
point Call detects that (a sub-heap of) goal (b) can be unified,3 with goal (a) thus
forming the cycle (3), which this time links to an internal goal in the derivation instead
of the top-level goal. As before SuSLik inserts an application of the Proc rule just
above the companion goal (a), thereby abducing an auxiliary procedure with a fresh
name.

2.4 Implementation and Empirical Results

The most up-to-date implementation of SuSLik is publicly available at:

https://github.com/TyGuS/suslik

Table 1 collects the results of running SuSLik on benchmarks from our prior work [19,
34,70,93] as well as seven new benchmarks, which we added to illustrate various chal-
lenges discussed in subsequent sections.4 Most existing benchmarks had been adapted
from the literature on verification and synthesis [24,47,50,72]. In addition to standard
textbook data structures, our benchmarks include operations on two less common data
structures, which to the best of our knowledge cannot be handled by other synthesizers.

3 This is where we rely on the existential back-pointer in (1): if we replace yl with 0,
then dll(l, 0, Sl) and dll(w, yw, Sw) would not unify.

4 The code and benchmarks accompanying this paper are available online [35].

https://github.com/TyGuS/suslik

Deductive Synthesis of Programs with Pointers 117

Table 1. SuSLik benchmarks and results. We report the number of Procedures gen-
erated, total number Stmt of statements in those procedures, the ratio Code/Spec of
code to specification (in AST nodes), and the synthesis time in seconds for standard
SuSLik (Time), with a simpler cost function (TimeSC) and with no bounds on pred-
icate unfolding and calls (TimeNB). “-” denotes timeout after 30 minutes. Footnotes
indicate the sources of benchmarks.

Data structure Id Description Proc Stmt Code/Spec Time TimeSC TimeNB

Integers 1 Swap two 1 4 1.0x 0.2 1.2 0.2

2 Min of two1 1 3 1.1x 0.8 3.0 1.1

Singly linked list 3 Length2 1 6 1.4x 0.4 0.5 0.6

4 Max2 1 11 1.9x 3.0 7.0 4.7

5 Min2 1 11 1.9x 2.9 6.7 4.1

6 Singleton1 1 4 0.9x 0.2 0.2 0.2

7 Deallocate 1 4 5.5x 0.2 0.2 0.2

8 Initialize 1 4 1.6x 0.4 0.4 0.6

9 Copy3 1 11 2.7x 0.6 1.0 393.3

10 Append3 1 6 1.1x 0.4 0.4 0.6

11 Delete3 1 12 2.6x 1.2 0.9 2.0

12 Deallocate two 2 9 6.2x 0.2 0.2 0.2

13 Append three 2 14 2.3x 1.0 2.5 1.7

14 Non-
destructive
append

2 21 3.0x 8.0 51.5 -

15 Union 2 23 5.5x 4.3 20.6 36.0

16 Intersection4 3 32 7.0x 101.1 121.2 -

17 Difference4 2 21 5.1x 4.7 55.0 29.5

18 Deduplicate4 2 22 7.3x 1.8 2.5 5.5

Sorted list 19 Prepend2 1 4 0.4x 0.2 0.3 0.3

20 Insert2 1 19 3.1x 1.0 16.2 1.2

21 Insertion sort2 1 7 1.2x 0.7 2.7 42.7

22 Sort4 2 13 4.9x 1.0 1.5 2.9

23 Reverse4 2 11 4.0x 0.7 0.7 1.4

24 Merge2 2 30 4.4x 55.6 10.1 -

Doubly linked list 25 Singleton1 1 5 1.1x 0.2 0.2 0.5

26 Copy 1 22 4.3x 7.2 9.9 -

27 Append3 1 10 1.6x 1.7 27.2 -

28 Delete3 1 19 3.7x 3.4 3.5 -

29 Single to
double

1 23 6.0x 0.7 0.8 4.6

List of lists 30 Deallocate 2 11 10.7x 0.2 0.3 0.3

31 Flatten4 2 17 4.4x 0.6 0.6 1.9

32 Length5 2 21 5.5x 22.8 - -

(continued)

118 S. Itzhaky et al.

Table 1. (continued)

Data structure Id Description Proc Stmt Code/Spec Time TimeSC TimeNB

Binary tree 33 Size 1 9 2.5x 0.4 0.6 185.8

34 Deallocate 1 6 8.0x 0.2 0.2 0.2

35 Deallocate two 1 16 11.8x 0.4 0.5 0.5

36 Copy 1 16 3.8x 2.5 42.9 -

37 Flatten
w/append

1 17 4.8x 0.4 0.6 0.7

38 Flatten w/acc 1 12 2.1x 0.6 0.9 1.9

39 Flatten 2 23 7.1x 1.5 1.0 5.5

40 Flatten to dll in
place

2 15 9.6x 11.3 - 23.2

41 Flatten to dll
w/null5

2 17 11.2x 106.1 1418.3 46.5

BST 42 Insert2 1 19 2.8x 14.6 21.7 518.0

43 Rotate left2 1 5 0.2x 6.2 7.0 -

44 Rotate right2 1 5 0.2x 4.9 5.6 -

45 Find min5 1 11 1.4x 66.3 80.2 -

46 Find max5 1 18 2.2x 58.0 80.8 -

47 Delete root2 1 18 1.3x 13.9 - -

48 From list4 2 27 5.7x 10.0 10.7 -

49 To sorted list4 3 32 7.7x 20.8 11.7 -

Rose tree 50 Deallocate 2 9 12.0x 0.2 0.3 0.2

51 Flatten 3 25 8.0x 11.0 6.3 -

52 Copy5 2 32 7.9x - - -

Packed tree 53 Pack5 1 16 1.6x - - -

54 Unpack5 1 23 2.9x 21.0 - -
1 Jennisys [47] 2 ImpSynth [72] 3 Dryad [50] 4 Eguchi et al. [24] 5 New

A rose tree [51] is a variable-arity tree, where child nodes are stored in a linked list; it
is described in SL by two mutually recursive predicates (rtree for the tree and children
for the list of children), and our synthesized operations on rose trees are also mutu-
ally recursive. A packed tree is a binary tree serialized into an array; it is interesting
because operations on packed trees use non-trivial pointer arithmetic (we discuss them
in Sect. 6).

Apart from the size of each program (in statements), we also report the ratio
of code size to spec size (both in AST nodes) as a measure of synthesis utility. For
the majority of the benchmarks the generated code is larger than the specification,
sometimes significantly (up to 12x); the only exceptions are benchmarks with very
convoluted specs, such as BST rotations (benchmarks 43 and 44), or extremely simple
programs, such swap from Fig. 3 (benchmark 1) and prepending an element to a sorted
list (benchmark 19).

A number of benchmarks generate more than one procedure: those programs require
recursive auxiliaries [34], such as our running example flatten from Fig. 1 (bench-
mark 40). It is worth mentioning that benchmarks 37 through 41 encode different

Deductive Synthesis of Programs with Pointers 119

versions of flattening a binary tree into a singly or doubly-linked list: 37 and 38 are
simplified versions that do not require discovering auxiliaries because they contain addi-
tional hints from the user (a library function for appending lists in 37 and an inductive
specification for flatten with a list accumulator in 38); 39 is similar to 40 but returns
a singly-linked list (and hence requires allocation). Finally 41 is a version of 40 that
uses 0 instead of y as the back-pointer of the output list; this precludes SuSLik from
generating an auxiliary for appending two lists, and instead it discovers a slightly more
complex, but linear-time solution, which we discuss in Sect. 4.

The missing synthesis times for some benchmarks indicate that they could not be
synthesized automatically after 30 min, but were possible to solve in an “interactive”
mode, where the search has been given hints on how to proceed in the case of multiple
choices. We elaborate on the possibility of generating those programs automatically
in subsequent sections. Apart from regular SuSLik time we also report time for two
variations discussed in Sect. 3.

3 Proof Search

Similarly to existing deductive program synthesizers [43], SuSLik adopts best-first
And/Or search [54] to search for a program derivation. The search space is repre-
sented as a tree with two types of nodes. An Or-node corresponds to a synthesis goal,
whose children are alternative derivations, any of which is sufficient to solve the goal.
An And-node corresponds to a rule application, whose children are premises, all of
which need to be solved in order to build a derivation. Each goal has a cost, which
is meant to estimate how difficult it is to solve. The search works by maintaining a
worklist of Or-nodes that are yet to be explored. In each iteration, the node with the
least cost is dequeued and expanded by applying all rules enabled according to a proof
strategy ; the node’s children are then added back to the worklist.

The proof strategy and the cost function are crucial to the performance of the proof
search. In current SuSLik implementation both are ad-hoc and brittle; in the rest of
the section we outline possible improvements to their design.

3.1 Pruning via Proof Strategies

A proof strategy is a function that takes in a synthesis goal and its ancestors in the
search tree, and returns a list of rules enabled to expand that goal. Without strategies,
the branching factor of the search would be impractically large. SuSLik’s strategies
are based on the observation that some orders of rule applications are redundant, and
hence can be eliminated from consideration without loss of completeness. Identifying
redundant orders is non-trivial and is currently done informally, increasing the risk of
introducing incomplete strategies.

For example, SuSLik’s proof strategy precludes applying Call if Close (a rule
that unfolds a predicate in the postcondition) has been applied earlier in the deriva-
tion. The reasoning is that Call only operates on the precondition, while Close only
operates on the postcondition, hence the two rule applications must be independent,
and can always be reordered so that Call is applied first. But it gets more complicated
once we let Call abduce auxiliaries: now applying Call after Close could be useful
to give it access to more companion goals, whose postconditions differ from that of the
top-level goal. Consider for example copying a rose tree with the following spec:

{r �→ x ∗ rtree(x, S)} void rtcopy(loc r) {r �→ y ∗ rtree(y, S) ∗ rtree(x, S)} (6)

120 S. Itzhaky et al.

Copying a rose tree seems to require two mutually-recursive procedures: the main one
(6) that copies an rtree and an auxiliary one that copies the list of its children, and hence
has children instead of rtree in its postcondition. To our surprise, however, our proof
strategy does not preclude the derivation of rtcopy (see benchmark 52 in Table 1): in
this derivation, the auxiliary returns two rtrees, which are then unfolded after the call
to extract the relevant children.

Future Directions. To develop more principled yet efficient strategies, we need to turn
to the proof theory community, which has accumulated a rich body of work on efficient
proof search. One technique of particular interest—focusing [53]—defines a canonical
representation of proofs in linear logic [29] (more precisely, a canonical ordering on
the application of proof rules, which can be enforced during the search by tracing
local properties). Existing program synthesis work [27,79] has leveraged ideas from
focusing, but only in the setting of type inhabitation for pure lambda calculi. SuSLik
takes advantage of some of these ideas, too: it designates some rules, such as Read
and logical normalization rules, to be invertible; these rules can be applied eagerly and
need not be backtracked. Beyond focusing, we might explore the applicability of more
advanced canonical representations of programs and proofs [1,33,79]. We believe that
these techniques will help us formalize and leverage inherent SSL symmetries, such
as that two programs operating on disjoint parts of the heap can be executed in any
order.

3.2 Prioritization via a Cost Function

When selecting the next goal to expand, SuSLik’s best-first search relies on a heuristic
cost function of the form (with p, w > 1):

cost({φ, P}� {ψ, Q}) = p ∗ cost(P) + cost(Q) cost(p(e)u,c) = w ∗ (1 + u + c)
cost(P ∗ Q) = cost(P) + cost(Q) cost() = 1

In other words, a cost of a synthesis goal is a (weighted) total cost of all heaplets in
its pre- and postcondition. The intuition is that the synthesizer needs to eliminate all
these heaplets in order to apply the terminal Emp rule, so each heaplet contributes to
the goal being “harder to solve”. Predicates are more expensive than other heaplets,
because they can be unfolded and produce more heaplets. In addition, for each predicate
instance p(e)u,c SuSLik keeps track of the number of times it has been unfolded (u)
or has gone through a call (c); factoring this into the cost prevents the search from
getting stuck in an infinite chain of unfolding or calls. Finally, it can be useful to give
a higher weight to the heaplets in the precondition, because many rules that create
expensive search branches (most notably Call) operate on the precondition.

Our implementation currently uses p = 3, w = 2, which is a result of manual
tuning. Column TimeSC in Table 1 shows how synthesis times change if we set p = 1.
As you can see, SuSLik’s performance is quite sensitive even to this small change: four
benchmarks, which originally took under 30 s, now time out after 30 minutes, while
benchmark 24, on the contrary, is solved five times faster. These results suggest that
different synthesis tasks benefit from different search parameters, and that we might
need a mechanism to tune SuSLik’s search strategy for a given synthesis task.

In addition, because the cost heuristic is not efficient enough at guiding the search,
we introduce hard bounds on the number of unfoldings and calls u and c for a predicate
instance. Column TimeNB in Table 1 shows the results of running SuSLik without

Deductive Synthesis of Programs with Pointers 121

these bounds: as you can see, 19 benchmarks time out (compared to only two in the
original setup). The requirement to guess sufficient bounds for each benchmark hampers
the usability of SuSLik, hence in the future we would like to replace them with a better
cost function.

Future Directions. To guide the search in a more intelligent and flexible way, we turn
to extensive recent work on using learned models to guide proof search [8,28,49,78,95]
and program synthesis [5,15,39,46,55,82]. Guiding deductive synthesis would most
likely require a non-trivial combination of these two lines of work.

In the area of proof search, existing techniques are used to select the next strategy in
a proof assistant script [59,60,78,95], or select a subset of clauses to use in a first-order
resolutions proof [9,49]. Although these techniques are not directly applicable to our
context, we can likely borrow some high-level insights, such as two-phased search [49],
which applies a slow neural heuristic to make important decisions in early stages of
search (e.g., which predicate instances to unfold), and then less accurate but much
faster hand-coded heuristics take over. Among the many techniques for guiding program
synthesis, neural-guided deductive search (NGDS) [39] might be the natural place to
start, since it shows how to condition the next synthesis step on the current synthesis
sub-goal.

At the same time we also expect the limited size of the available dataset (i.e., the
benchmarks from Table 1) would hamper the application of deep learning to SuSLik.
An alternative approach is to encode feature extractors [58] and apply machine learning
algorithms to the result of such feature extractors. Another approach is to learn a
coarse-grained model from available data and then adjust it during search, based on
the feedback from incomplete derivations, as in [6,15,82].

4 Completeness

Soundness and completeness are desirable properties of synthesis algorithms. In our
case, it is natural to formalize these properties relative to an underlying verification
logic, which defines Hoare triples {P} c {Q}, with the total correctness interpretation
“starting from a state satisfying P , program c will execute without memory errors and
terminate in a state satisfying Q”. This logic can be defined in the style of Small-
foot [7], using a combination of symbolic execution rules and logical rules, with the
addition of cyclic proofs to handle recursion [76].

Relative soundness means that any solution SuSLik finds can be verified:
∀P , Q, c. P�Q | c ⇒ {P} c {Q}. Relative completeness means that whenever
there exists a verifiable program, SuSLik can find one: ∀P , Q.(∃c.{P} c {Q}) ⇒
(∃c′. P�Q | c′). Proving relative soundness is rather straightforward, because SSL rules
are essentially more restrictive versions of verification rules, hence an SSL derivation
can be rewritten by translating every P�Q | c into {P} c {Q}.5 Completeness on the
other hand is quite tricky, exactly because SSL rules impose more restrictions on the
pre- and postconditions, in order to avoid blind enumeration of programs and instead
guide synthesis by the spec. In the rest of this section we look into two major sources
of relative incompleteness of SSL: recursive auxiliaries and pure reasoning.

5 In our recent work we have developed an automatic translation from SSL derivations
into three Coq-based verification logics [93].

122 S. Itzhaky et al.

4.1 Recursive Auxiliaries

A common assumption and source of incompleteness in recursive program synthe-
sis [43,67,69] is that (1) synthesis is performed one function f at a time: if auxiliaries
are required, their specifications are supplied explicitly; and (2) the specification Φ of f
is inductive: one can prove that Φ holds of f ’s body assuming it holds of each recursive
call. This restriction hampers the usability of synthesizers, because the user must guess
all required auxiliaries and possibly generalize Φ to make it inductive, which in most
cases requires knowing the implementation of f . As we have shown in Sect. 2, SuSLik
mitigates these limitations to some extent, as it is able to discover auxiliary functions,
such as helper in Fig. 1, automatically. To make the search tractable, however, cyclic
synthesis restricts the space of auxiliary specifications considered by SuSLik to syn-
thesis goals observed earlier in the derivation. Although this restriction is easy to state,
we still do not have a formal characterization (or even a firm intuitive understanding)
of the class of auxiliaries that SSL fundamentally can and cannot derive. Below we
illustrate the intricacies on a series of examples.

1 intersect (loc r, y)
2 {
3 let x = *r;
4 if (x == 0) {
5 } else {
6 let v = *x;
7 let n = *(x + 1);
8 *r = n;
9 intersect(r, y);

10 insert(v, x, r, y);
11 }
12 }

13 insert(int v, loc x, r, y) {
14 let z = *r;
15 if (y == 0) { free(x); }
16 else {
17 let vy = *y;
18 let n = *(y + 1);
19 if (v == vy) {
20 *(x + 1) = z;
21 *r = x;
22 } else {
23 insert(v, x, r, n);
24 }}}

Fig. 6. Intersection of lists with unique elements. This implementation cannot be syn-
thesized from (7), but a slight modification of it can, as explained in the text.

Generalizing Pure Specs. One reason SuSLik might fail to abduce an auxiliary is
that the pure part of the companion’s goal might be too specific for the recursive call.
Let us illustrate this phenomenon using the list intersection problem (benchmark 16
in Table 1) with the following specification, where ulist denotes a singly-linked list with
unique elements:

{r �→ x ∗ ulist(x, Sx) ∗ ulist(y, Sy)}� {r �→ z ∗ ulist(z, Sx ∩ Sy) ∗ ulist(y, Sy)} (7)

Given this specification, we expected SuSLik to generate the program shown in Fig. 6.
To compute the intersection of two input lists rooted in x and y, this program first
computes the intersection of y and the tail of x (line 9). The auxiliary insert then
traverses y to check if it contains v (the head of x), and if so, inserts it into the
intermediate result z (line 23), and otherwise, de-allocates the node x (line 15). This
program, however, cannot be derived by SSL; to see why let us take a closer look at
the synthesis goal after line 9, which serves as the spec for insert:

Deductive Synthesis of Programs with Pointers 123

{Sx = {v} ∪ S1 ∧ v /∈ S1 ∧ Sz = S1 ∩ Sy; r �→ z ∗ ulist(z, Sz) ∗ ulist(y, Sy) ∗
x �→ v ∗ . . .}� {

S′
z = Sx ∩ Sy; r �→ z′ ∗ ulist(z′, S′

z) ∗ ulist(y, Sy)
}

(8)

The issue here is that the pure spec is too specific: the precondition Sz = S1 ∩ Sy

and the postcondition S′
z = Sx ∩ Sy define the behavior of this function in terms of the

elements of input lists x and y, but the recursive call in line 23 replaces y with its tail
n so these specifications do not hold anymore. The solution is to generalize the pure
part of spec (8), so that it does not refer to Sx:

{v /∈ Sz; r �→ z ∗ ulist(z, Sz) ∗ ulist(y, Sy) ∗ x �→ v ∗ . . .}
�

{
S′

z = Sz ∪ ({v} ∩ Sy); r �→ z′ ∗ ulist(z′, S′
z) ∗ ulist(y, Sy)

}
(9)

Alas, such a transformation of the pure spec is beyond SuSLik’s capabilities.

13 insert(int v, loc x,
r, y) {

14 let z = *r;
15 if (z == 0) {
16 intersectOne(v,

x, r, y)
17 } else {
18 let vz = *z;
19 let n = *(z + 1);
20 *r = n;
21 *z = v;
22 insert(v, z, r,

y);
23 ...
24 }}

To our surprise, SuSLik was nevertheless able
to generate a solution to this problem by finding
an alternative implementation for insert, shown
on the right. This implementation appends v to z

instead of prepending it; more specifically, insert
starts by traversing z, and once it reaches the
base case, it calls another auxiliary, intersectOne
(omitted for brevity), which traverses y and returns
a list whose elements are {v} ∩ Sy (i.e., a list with
at most one element), which is then appended to
the intersection. At a first glance it is unclear how
this superfluous traversal of z can possibly help
with generalizing the spec (8); the key to this mys-
tery lies in the recursive call in line 22: note that as
the second parameter, instead of the input list x,
it actually uses z after replacing its head element
with v! This substitution makes the overly restrictive spec of (8) actually hold.

Of course this implementation is overly convoluted and inefficient, so in the future
we plan equip SuSLik with the capability to generalize pure specs. To this end,
we plan to combine deductive synthesis with invariant inference techniques via bi-
abduction [86]. For instance, whenever the Call rule identifies a companion goal, we
can replace its pure pre- and post-condition φ and ψ with unknown predicates Uφ

and Uψ. During synthesis, we would maintain a set of Constrained Horn Clauses over
these unknown predicates (starting with: φ ⇒ Uφ and Uψ ⇒ ψ); these constraints
can be solved incrementally, like in our prior work [69], pruning the current derivation
whenever the constraints have no solution. If synthesis succeeds, the assignment to Uφ

and Uψ corresponds to the inductive generalization of the original auxiliary spec. Since
only the pure part of the spec is generalized, the spatial part can still be used to guide
synthesis.

Accumulator Parameters. It is common practice to introduce an auxiliary recursive
function to thread through additional data in the form of “accumulator” inputs or
outputs. Cyclic program synthesis has trouble conjuring up arbitrary accumulators,
since it constructs auxiliary specifications from the original specification via unfolding
and making recursive calls.

124 S. Itzhaky et al.

Consider linked list reversal (23 in Table 1): SuSLik generates an inefficient,
quadratic version of this program, which reverses the tail of the list and then appends
its head to the result (hence discovering “append element” as the auxiliary). The canon-
ical linear-time version of reversal requires an auxiliary with two list arguments—the
already reversed portion and the portion yet to be reversed—and hence is outside of
SuSLik’s search space: cyclic synthesis cannot encounter a precondition with two lists,
as it starts with a single list predicate in the precondition, and neither unfolding nor
making a call can duplicate it.

1 flatten (loc x) {
2 if (x == 0) {
3 } else {
4 let l = *(x + 1);
5 let r = *(x + 2);
6 flatten(l);
7 helper(r, l, x);
8 }
9 }

10
11 helper (loc r, loc l, loc x) {
12 if (r == 0) {
13 if (l == 0) {} else {

14 *(l + 2) = x;
15 }
16 } else {
17 let rl = *(r + 1);
18 let rr = *(r + 2);
19 *(r + 2) = rl;
20 *(r + 1) = l;
21 helper(rl, l, r);
22 *(x + 2) = rr;
23 *(x + 1) = r;
24 helper(rr, r, x);
25 }
26 }

Fig. 7. Flattening a tree into a DLL in linear time.

There are examples, however, where SuSLik surprized us by inventing the necessary
accumulator parameters. Consider again our running example, flattening a tree into
a doubly-linked list. Recall that given the spec (1), SuSLik synthesizes an inefficient
implementation with quadratic complexity. A canonical linear-time solution requires an
auxiliary that takes as input a tree and a list accumulator, and simply prepends every
traversed tree element to this list; because of the accumulator parameter, discovering
this auxiliary seems to be outside of scope of cyclic synthesis. To our surprise, SuSLik
is actually able to synthesize a linear-time version of flatten, shown in Fig. 7 (and
encoded as benchmark 41 in Table 1), given the following specification:

{tree(x, S)} flatten (loc x) {dll(x, 0, S)} (10)

Compared with (1), the existential back-pointer y of the output list is replaced with
the null-pointer 0, precluding SuSLik from traversing the output of the recursive call
(cf. Sect. 2), which in this case comes in handy, since it enforces that every tree element
is traversed only once.

The new solution starts the same way as the old one, by flattening the left sub-tree
l, which leads to the following synthesis goal after line 6:

{dll(l, 0, Sl) ∗ tree(r, Sr) ∗ [x, 3] ∗ x �→ v ∗ . . .}� {dll(x, 0, {v} ∪ Sl ∪ Sr}) (11)

As you can see, the precondition now contains a tree and a list! Since it can-
not recurse on the list dll(l, 0, Sl), the synthesizer instead proceeds to unfold the tree
tree(r, Sr) and then use (11) as a companion for two recursive calls on r’s sub-trees,
turning (11) into a specification for helper in Fig. 7.

Deductive Synthesis of Programs with Pointers 125

4.2 Pure Reasoning

To enable synthesis of the wide range of programs demonstrated in Sect. 2, SuSLik
must support a sufficiently rich logic of pure formulas. Our implementation currently
supports linear integer arithmetic and sets, but the general idea is to make SuSLik
parametric wrt. the pure logic (as long as it can be translated into an SMT-decidable
theory), and outsource all pure reasoning to an SMT solver.

In the context of synthesis, however, outsourcing pure reasoning is trickier than
it might seem (or at least trickier than in the context of verification). Consider the
following seemingly trivial goal:

{x �→ a + 10}� {x �→ a + 11} (12)

This goal can be solved by incrementing the value stored in x, i.e., by the program
let a1 = *x; *x = a1 + 1. Verifying this program is completely straightforward: a
typical SL verifier would use symbolic execution to obtain the final symbolic state
{x �→ a + 10 + 1}, reducing verification to a trivial SMT query ∃a.a + 10 + 1 �= a + 11.
Synthesizing this program, on the other hand, requires guessing the program expression
a1 + 1, which does not occur anywhere in the specification.

To avoid blind enumeration of program expressions, SuSLik attempts to reduce
the goal (12) to a syntax-guided synthesis (SyGuS) query [2]:

∃f.∀x, a, a1.a1 = a + 10 =⇒ f(x, a1) = a + 11

Queries like this can be outsourced to numerous existing SyGuS solvers [3,32,46,77];
SuSLik uses CVC4 [74] for this purpose. Because SyGuS queries are expensive, the
challenge is to design SSL rules to issue these queries sparingly.

Fig. 8. SSL derivation for goal (12).

Figure 8 shows how two pure reasoning rules, ∃-Intro and Solve-∃, work together
to solve the goal (12). ∃-Intro is triggered by the postcondition heaplet x �→ a + 1,
whose right-hand side is a ghost expression, which blocks the application of Write.
∃-Intro replaces the ghost expression with a program-level existential variable y (i.e.,
an existential which can only be instantiated with program expressions). Now Solve-∃
takes over: this rule constructs a SyGuS query using all existentials in the current goal
as unknown terms and the pure pre- and post-condition as the SyGuS specification.
In this case, the SyGuS query succeeds, replacing the existential y with the program
term a1 + 1. From here on, the regular Write rule finishes the job.

126 S. Itzhaky et al.

Note that although the goal (12) is artificially simplified, it is extracted from a
real problem: benchmark 32 in Table 1, length of a list of lists. In fact the versions of
SuSLik reported in our previous work were incapable of solving this benchmark because
they were lacking the ∃-Intro rule, which we only introduced recently. Although the
current combination of pure reasoning rules works well for all our benchmarks, it is
still incomplete (even modulo the completeness of the pure synthesizer), because, for
efficiency reasons, Solve-∃ only returns a single solution to the SyGuS problem, even
if the pure specification allows for many. This might be insufficient when Solve-∃ is
called before the complete pure postcondition is known (for example, to synthesize
actual arguments for a call). Developing an approach to outsourcing pure reasoning
that is both complete and efficient is an open challenge for future work.

5 Quality of Synthesized Programs

Should we hope that the output of deductive synthesis will be directly integrated into
high-assurance software, we need to make sure that the code it generates is not only
correct, but also efficient, concise, readable, and maintainable. The current implementa-
tion of SuSLik does not take any of these considerations into account during synthesis;
in this section we discuss two of these challenges, and outline some directions towards
addressing them.

5.1 Performance

We have already mentioned examples of SuSLik solutions with sub-optimal asymptotic
complexity in Sect. 4: for example, SuSLik generates quadratic programs for linked list
reversal and tree flattening instead of optimal linear-time versions. Although a linear-
time solution to tree flattening from Fig. 7 is actually within SuSLik’s search space
(even with the more general spec (1)), SuSLik opts for the sub-optimal one simply
because it has no ability to reason about performance and hence has no reason to
prefer one over the other.

To enable SuSLik to pick the more efficient of the two implementations, we can
integrate SSL with a resource logic, such as [56], following the recipe from our prior
work on resource-guided synthesis [44]. One option is to annotate each points-to heaplet
x �→p e with non-negative potential p, which can be used to pay for execution of state-
ments, according to a user-defined cost model. Predicate definitions can describe how
potential is allocated inside the data structure; for example, we can define a tree with
p units of potential per node as follows:

tree(x, S, p) � x = 0 ⇒ {S = ∅; emp}
| x �= 0 ⇒ {S = {v} ∪ Sl ∪ Sr;

[x, 3] ∗ x �→p v ∗ 〈x, 1〉 �→ l ∗ 〈x, 2〉 �→ r ∗ tree(l, Sl, p) ∗ tree(r, Sr, p)}

We can now annotate the specification (1) with potentials as follows:

{tree(x, S, 2)} flatten (loc x) {dll(x, y, S, 0)} (13)

If we define the cost of a procedure call to be 1, and the cost of other statements to
be 0, this specification guarantees that flatten only makes a number of recursive calls
that is linear in the size of the tree (namely, two calls per tree element). With this

Deductive Synthesis of Programs with Pointers 127

specification, the inefficient solution in Fig. 1 does not verify: since helper traverses
the list r, it must assign some positive potential to every element of this list in order to
pay for the call in line 24, but the specification (13) assigns no potential to the output
list. On the other hand, the efficient solution in Fig. 7 verifies: after the recursive call to
flatten in line 6 we obtain {dll(l, y, Sl, 0) ∗ tree(r, Sr, 2) ∗ . . .}; helper verifies against
this specification since it only traverses the tree r and hence can use the two units of
potential stored in its root to pay for the two calls in lines 21 and 24. In fact, the user
need not guess the precise amount of potential p = 2 in the spec (13): any constant
p ≥ 2 would work to reject the quadratic solution and admit the linear one.

5.2 Readability

Although readability is hard to quantify, we have noticed several patterns in SuS-
Lik-generated code that are obviously unnatural to a human programmer, and hence
need to be addressed. Perhaps the most interesting problem arises due to inference
of recursive auxiliaries: because SuSLik has no notion of abstraction boundaries, the
allocation of work between the different procedures is often sub-optimal. One exam-
ple is benchmark 39 in Table 1, which flattens a binary tree into a singly-linked list.
This example is discussed in detail in our prior work [34]; the solution is similar to
flatten from Fig. 1, except that this transformation cannot be performed in-place:
instead, the original tree nodes have to be deallocated, and new list nodes have to
be allocated. Importantly, in SuSLik’s solution, tree nodes are deallocated inside the
helper function, whose main purpose is to append two lists. A better design would
be to perform deallocation in the main function, so that helper has no knowledge of
tree nodes whatsoever. To address this issue in the future we might consider different
quality metrics when abducing specs for auxiliaries, such as encouraging all heaplets
generated by unfolding the same predicate to be processed by the same procedure.

6 Applications

6.1 Program Repair

In our statement of the synthesis problem, complete programs are generated from
scratch from Hoare-style specifications. But what if the program is already written
previously but is buggy—would it be possible to automatically find a fix for it if we
know what its specification is? This line of research, employing deductive synthesis for
automated program repair [30], known as deductive program repair, has been explored
in the past for functional programs [42] and simple memory safety properties [90], and
only recently has been extended to heap-manipulating programs using the approach
pioneered by SuSLik [63].

The SL-based deductive repair relies on existing automated deductive verifiers [17]
to identify a buggy code fragment (which breaks the verification), followed by the
discovery of the correct specification, which is used for the subsequent synthesis of
the patch. The main shortcoming of the existing SL-based repair tools is the need to
provide the top-level specs for the procedures in order to enable their verification (and
potential bug discovery) in the first place. As a way to improve the utility of those
tools, a promising direction is to employ existing static analyzers, such as Infer [12],
to derive those specifications by abducing them from the usages of the corresponding
functions [13].

128 S. Itzhaky et al.

6.2 Data Migration and Serialization

The pay-off of deductive synthesis is especially high for programs like tree flatten-
ing, which change the internal representation of a data structure without changing its
payload; these programs usually have a simple specification, while their implementa-
tions can get much more intricate. One example where such programs can be useful
is migration of persistent data: thanks to recent advancements in non-volatile memory
(NVM) [40,45,84], large amounts of data are now persistently stored in memory, in
arbitrary programmer-defined data structures. If the programmer decides to change the
data structure, data has to be migrated between the old and the new representations,
and writing those migration functions by hand can be tedious. In addition, reallocat-
ing large data structures is often prohibitively expensive, so the migration needs to
be performed in-place, without reallocation. As we have demonstrated in our running
example, this is something that can be easily specified and synthesized in SuSLik.

4

2 5

1 3

4 2 1 3 5

ptree(x, n, S) � {x �→ tag ∗ ptree′(x, tag , n, S)}
ptree′(x, tag , n, S) � tag = 1 ⇒ {n = 1 ∧ S = {v}; 〈x, 1 →�〉 v}

| tag = 0 ⇒ {n = 1 + nl + nr ∧
S = {v} ∪ Sl ∪ Sr;
〈x, 1 →�〉 v ∗ ptree(x+ 2, nl, Sl)
∗ ptree(x+ 2 · (1 + nl), nr, Sr)}

Fig. 9. (Left) Pointer-based and packed representations of the same binary tree. (Right)
An SL predicate for packed trees.

Another real-world application of this kind of programs is data serialization and
de-serialization, where data is transformed back and forth between a standard pointer-
based representation and an array so that it can be written to disk or sent over the
network [16,91]. For example, Fig. 9 shows a pointer-based full binary tree and its
serialized (or packed) representation, where the nodes are laid out sequentially in pre-
order [92]. The right-hand-side of the figure shows an SL predicate ptree that describes
packed trees: every node x starts with a tag that indicates whether it is a leaf; if x is
not a leaf, its left child starts at the address x + 2 and its right child at x + 2 · (1 + nl),
where nl is the size of the left child, which is typically unknown at the level of the
program.

Imagine a programmer wants to synthesize functions that translate between these
two representations, i.e., pack and unpack the tree. The most natural specification for
unpack would be:

{r �→ x ∗ packed(x, sz , S)}unpack_simple(loc r)

{
r �→ y ∗ packed(x, sz , S)

∗ tree(y, sz , S)

}
(14)

This specification, however, cannot be implemented in SSL: when x is an internal node,
we do not know the address of its right subtree, so we have nothing to pass into the
second recursive call. Instead unpack must traverse the packed tree and discover the
address of the right subtree by moving past the end of the left subtree; this can be

Deductive Synthesis of Programs with Pointers 129

implemented by returning the address past the end of the ptree together with the root
of the newly built tree, as a record:

{r �→ x ∗ 〈r, 1〉 �→ ∗ . . .} unpack(loc r) {r �→ x + 2 · sz ∗ 〈r, 1〉 �→ y ∗ . . .} (15)

With this specification, SuSLik is able to synthesize unpack in 20 s (benchmark 54 in
Table 1); as for pack (benchmark 53), it is within the search space (which we confirmed
in interactive mode) but automatic search currently times out after 30 minutes. In
the future, it would be great if SuSLik could automatically discover an auxiliary with
specification (15), given only (14) as inputs; this is similar to the problem of discovering
accumulator parameters, which we discussed in Sect. 4, and is outside of capabilities of
cyclic synthesis at the moment.

6.3 Fine-Grained Concurrency

Finally, we envision that deductive logic-based synthesis will make it possible to tackle
the challenge of synthesizing provably correct concurrent libraries. The most efficient
shared-memory concurrent programs implement custom synchronization patterns via
fine-grained primitives, such as compare-and-set (CAS). Due to sophisticated interfer-
ence scenarios between threads, reasoning about such programs is particularly chal-
lenging and error-prone, and is the reason for the existence of many extensions of
Concurrent Separation Logic (CSL) [10,65] for verification of fine-grained concur-
rency [22,23,36,38,61,85,87–89].

For instance, Fine-Grained Concurrent Separation Logic (FCSL) [61,80,81], takes
a very specific approach to fine-grained concurrency verification, following the tradi-
tion of logics such as LRG [25] and CAP [22] and building on the idea of splitting the
specification of a concurrent library to a resource protocol and Hoare-style pre/post-
conditions. State-of-the art automated tools for fine-grained concurrency verification
require one to describe both the protocol and Hoare-style pre/postconditions for the
methods to be verified [21,94]. We believe, it should be possible to take those two com-
ponents and instead synthesize the concurrent method implementations. The resource
protocol will provide an extended set of language primitives to compose programs from.
Those data structure-specific primitives can be easily specified in FCSL and contribute
derived inference rules describing when these primitives can be used safely.

Acknowledgements. We thank Andreea Costea and Yutaka Nagashima for their
feedback on the drafts of this paper. This research was supported by the National
Science Foundation under Grant No. 1911149, by the Israeli Science Foundation (ISF)
Grants No. 243/19 and 2740/19, by the United States-Israel Binational Science Foun-
dation (BSF) Grant No. 2018675, by Singapore MoE Tier 1 Grant No. IG18-SG102,
and by the Grant of Singapore NRF National Satellite of Excellence in Trustworthy
Software Systems (NSoE-TSS).

References

1. Acclavio, M., Straßburger, L.: From syntactic proofs to combinatorial proofs. In:
Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol.
10900, pp. 481–497. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94205-6 32

https://doi.org/10.1007/978-3-319-94205-6_32
https://doi.org/10.1007/978-3-319-94205-6_32

130 S. Itzhaky et al.

2. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1–8. IEEE (2013)
3. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via

divide and conquer. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 319–336. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5 18

4. Appel, A.W., et al.: Program Logics for Certified Compilers. Cambridge University
Press (2014)

5. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
learning to write programs. arXiv preprint arXiv:1611.01989 (2016)

6. Barke, S., Peleg, H., Polikarpova, N.: Just-in-time learning for bottom-up enumer-
ative synthesis. Proc. ACM Program. Lang. 4(OOPSLA), 227:1–227:29 (2020)

7. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11575467 5

8. Blaauwbroek, L., Urban, J., Geuvers, H.: Tactic learning and proving for the coq
proof assistant. In: LPAR. EPiC Series in Computing, vol. 73, pp. 138–150. Easy-
Chair (2020)

9. Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-
based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016)

10. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. ACM SIGLOG News
3(3), 47–65 (2016)

11. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: POPL, pp. 101–112. ACM (2008)

12. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 33

13. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

14. Chajed, T., Tassarotti, J., Kaashoek, M.F., Zeldovich, N.: Verifying concurrent,
crash-safe systems with perennial. In: SOSP, pp. 243–258. ACM (2019)

15. Chen, Y., Wang, C., Bastani, O., Dillig, I., Feng, Yu.: Program synthesis using
deduction-guided reinforcement learning. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12225, pp. 587–610. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53291-8 30

16. Chilimbi, T.M., Hill, M.D., Larus, J.R.: Cache-conscious structure layout. In:
PLDI, pp. 1–12. ACM (1999)

17. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

18. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: PLDI, pp. 234–245. ACM (2011)

19. Costea, A., Zhu, A., Polikarpova, N., Sergey, I.: Concise read-only specifications for
better synthesis of programs with pointers. In: ESOP 2020. LNCS, vol. 12075, pp.
141–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44914-8 6

20. Delignat-Lavaud, A., et al.: Implementing and proving the tls 1.3 record layer. In:
S&P, pp. 463–482. IEEE Computer Society (2017)

21. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper:
automatic verification for fine-grained concurrency. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 420–447. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1 16

https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
http://arxiv.org/abs/1611.01989
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1007/978-3-030-44914-8_6
https://doi.org/10.1007/978-3-662-54434-1_16
https://doi.org/10.1007/978-3-662-54434-1_16

Deductive Synthesis of Programs with Pointers 131

22. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol.
6183, pp. 504–528. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14107-2 24

23. Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-guarantee reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9 26

24. Eguchi, S., Kobayashi, N., Tsukada, T.: Automated synthesis of functional pro-
grams with auxiliary functions. In: Ryu, S. (ed.) APLAS 2018. LNCS, vol. 11275,
pp. 223–241. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02768-
1 13

25. Feng, X.: Local rely-guarantee reasoning. In: POPL, pp. 315–327. ACM (2009)
26. Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B.: Komodo: Using verification

to disentangle secure-enclave hardware from software. In: SOSP, pp. 287–305. ACM
(2017)

27. Frankle, J., Osera, P.-M., Walker, D., Zdancewic, S.: Example-directed synthesis:
a type-theoretic interpretation. In: POPL, pp. 802–815. ACM (2016)

28. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4
tactics. In: LPAR, EPiC Series in Computing, vol. 46, pp. 125–143. EasyChair
(2017)

29. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
30. Le Goues, C., Pradel, M., Roychoudhury, A.: Automated program repair. Commun.

ACM 62(12), 56–65 (2019)
31. Gu, R., et al.: Certikos: an extensible architecture for building certified concurrent

OS kernels. In: OSDI, pp. 653–669. USENIX Association (2016)
32. Huang, K., Qiu, X., Shen, P., Wang, Y.: Reconciling enumerative and deductive

program synthesis. In: PLDI, pp. 1159–1174. ACM (2020)
33. Hughes, D.J.D.: Unification nets: Canonical proof net quantifiers. In: LICS, pp.

540–549. ACM (2018)
34. Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, RN.S., Sergey, I.: Cyclic program

synthesis. In: PLDI. ACM (2021)
35. Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, R.N.S., Sergey, I.: SuSLik (CAV

2021 Artifact): Code and Benchmarks, May 2021. https://doi.org/10.5281/zenodo.
4850342

36. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: POPL, pp. 271–282. ACM (2011)

37. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

38. Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: a modular foundation for higher-order concurrent separation
logic. J. Funct. Program. 28, E20 (2018)

39. Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P., Gulwani, S.: Neural-
guided deductive search for real-time program synthesis from examples. In: ICLR.
OpenReview.net (2018)

40. Kawahara, T., Ito, K., Takemura, R., Ohno, H.: Spin-transfer torque RAM tech-
nology: review and prospect. Microelectron. Reliab. 52(4), 613–627 (2012)

41. Klein, G.: SeL4: formal verification of an OS kernel. In: SOSP, pp. 207–220. ACM
(2009)

https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1007/978-3-030-02768-1_13
https://doi.org/10.1007/978-3-030-02768-1_13
https://doi.org/10.5281/zenodo.4850342
https://doi.org/10.5281/zenodo.4850342
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4

132 S. Itzhaky et al.

42. Kneuss, E., Koukoutos, M., Kuncak, V.: Deductive program repair. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 13

43. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions.
In: OOPSLA, pp. 407–426. ACM (2013)

44. Knoth, T., Wang, D., Polikarpova, N., Hoffmann, J.: Resource-guided program
synthesis. In: PLDI, pp. 253–268. ACM (2019)

45. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as
a scalable dram alternative. In: ISCA, pp. 2–13. ACM (2009)

46. Lee, W., Heo, K., Alur, R., Naik, M.: Accelerating search-based program synthesis
using learned probabilistic models. In: PLDI. ACM (2018)

47. Rustan, K., Leino, M., Milicevic, A.: Program extrapolation with jennisys. In:
OOPSLA, pp. 411–430. ACM (2012)

48. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL, pp. 42–54. ACM (2006)

49. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: LPAR, EPiC Series in Computing, vol. 46, pp. 85–105. EasyChair (2017)

50. Madhusudan, P., Qiu, X., Stefanescu, A.: Recursive proofs for inductive tree data-
structures. In: POPL, pp. 123–136. ACM (2012)

51. Malcolm, G.: Data structures and program transformation. Sci. Comput. Program.
14(2–3), 255–279 (1990)

52. Manna, Z., Waldinger, R.J.: A deductive approach to program synthesis. ACM
Trans. Program. Lang. Syst. 2(1), 90–121 (1980)

53. Andreoli, J.: Logic programming with focusing proofs in linear logic. J. Logic Com-
put. 2, 297–347 (1992)

54. Martelli, A., Montanari, U.: Additive AND/OR graphs. In: IJCAI, pp. 1–11.
William Kaufmann (1973)

55. Menon, A., Tamuz, O., Gulwani, S., Lampson, B., Kalai, A.: A machine learning
framework for programming by example. In: International Conference on Machine
Learning, pp. 187–195 (2013)

56. Mével, G., Jourdan, J.-H., Pottier, F.: Time credits and time receipts in iris. In:
Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 3–29. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17184-1 1

57. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

58. Nagashima, Y.: LiFtEr: language to encode induction heuristics for Isabelle/HOL.
In: Lin, A.W. (ed.) APLAS 2019. LNCS, vol. 11893, pp. 266–287. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34175-6 14

59. Nagashima, Y.: Smart Induction for Isabelle/HOL (Tool Paper). In: FMCAD, pp.
245–254. IEEE (2020)

60. Nagashima, Y., He, Y.: PaMpeR: proof method recommendation system for
Isabelle/HOL. In: ASE, pp. 362–372. ACM (2018)

61. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state tran-
sition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP 2014.
LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54833-8 16

62. Nanevski, A., Vafeiadis, V., Berdine, J.: Structuring the verification of heap-
manipulating programs. In: POPL, pp. 261–274. ACM (2010)

https://doi.org/10.1007/978-3-319-21668-3_13
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-030-34175-6_14
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16

Deductive Synthesis of Programs with Pointers 133

63. Nguyen, T.-T., Ta, Q.-T., Sergey, I., Chin, W.-N.: Automated repair of heap-
manipulating programs using deductive synthesis. In: Henglein, F., Shoham, S.,
Vizel, Y. (eds.) VMCAI 2021. LNCS, vol. 12597, pp. 376–400. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-67067-2 17

64. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers.
In: POPL, pp. 320–333. ACM (2006)

65. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

66. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

67. Osera, P.-M., Zdancewic, S.: Type-and-example-directed program synthesis. In:
PLDI, pp. 619–630. ACM (2015)

68. Piskac, R., Wies, T., Zufferey, D.: GRASShopper: complete heap verification with
mixed specifications. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 124–139. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54862-8 9

69. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. In: PLDI, pp. 522–538. ACM (2016)

70. Polikarpova, N., Sergey, I.: Structuring the synthesis of heap-manipulating pro-
grams. Proc. ACM Program. Lang. 3(POPL), 72:1-72:30 (2019)

71. Protzenko, J., et al.: Evercrypt: a fast, verified, cross-platform cryptographic
provider. In: S&P, pp. 983–1002. IEEE Computer Society (2020)

72. Qiu, X., Solar-Lezama, A.: Natural synthesis of provably-correct data-structure
manipulations. PACMPL 1(OOPSLA), 65:1–65:28 (2017)

73. Ramananandro, T., et al.: Everparse: verified secure zero-copy parsers for authenti-
cated message formats. In: USENIX Security Symposium, pp. 1465–1482. USENIX
Association (2019)

74. Reynolds, A., Kuncak, V., Tinelli, C., Barrett, C.W., Deters, M.: Refutation-based
synthesis in SMT. Formal Meth. Syst. Des. 55(2), 73–102 (2019)

75. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

76. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive
procedures in separation logic. In: CPP, pp. 53–65. ACM (2017)

77. Saha, S., Garg, P., Madhusudan, P.: Alchemist: learning guarded affine functions.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 440–446.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 26

78. Sanchez-Stern, A., Alhessi, Y., Saul, L., Lerner, S.: Generating correctness proofs
with neural networks. In: Proceedings of the 4th ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 1–10. ACM
(2020)

79. Scherer, G., Rémy, D.: Which simple types have a unique inhabitant? In: ICFP,
pp. 243–255. ACM (2015)

80. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: PLDI, pp. 77–87. ACM (2015)

81. Sergey, I., Nanevski, A., Banerjee, A., Delbianco, G.A.: Hoare-style specifications
as correctness conditions for non-linearizable concurrent objects. In: OOPSLA, pp.
92–110. ACM (2016)

82. Si, X., Yang, Y., Dai, H., Naik, M., Song, L.: Learning a meta-solver for syntax-
guided program synthesis. In: International Conference on Learning Representa-
tions (2019)

https://doi.org/10.1007/978-3-030-67067-2_17
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-319-21690-4_26

134 S. Itzhaky et al.

83. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: POPL, pp. 313–326. ACM (2010)

84. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor
found. Nature 453, 80–83 (2008)

85. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54833-8 9

86. Trinh, M.-T., Le, Q.L., David, C., Chin, W.-N.: Bi-abduction with pure properties
for specification inference. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp.
107–123. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03542-0 8

87. Turon, A.: Understanding and expressing scalable concurrency. Ph.D. thesis,
Northeastern University (2013)

88. Turon, A.J., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical relations
for fine-grained concurrency. In: POPL, pp. 343–356. ACM (2013)

89. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 18

90. van Tonder, R., Le Goues, C.: Static automated program repair for heap properties.
In: ICSE, pp. 151–162 ACM (2018)

91. Vollmer, M., Koparkar, C., Rainey, M., Sakka, L., Kulkarni, M., Newton, R.R.:
LoCal: a language for programs operating on serialized data. In: PLDI, pp. 48–62.
ACM (2019)

92. Vollmer, M., et al.: Compiling tree transforms to operate on packed representations.
In: ECOOP. LIPIcs, , vol. 74, pp. 26:1–26:29. Schloss Dagstuhl (2017)

93. Watanabe, Y., Gopinathan, K., P̂ırlea, G., Polikarpova, N., Sergey, I.: Certifying
the synthesis of heap-manipulating programs (2021). Conditionally accepted at
ICFP’21

94. Windsor, M., Dodds, M., Simner, B., Parkinson, M.J.: Starling: lightweight con-
currency verification with views. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 544–569. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 27

95. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: ICML. PMLR, , vol. 97, pp. 6984–6994 (2019)

96. Zinzindohoué, J.-K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a
verified modern cryptographic library. In: CCS, pp. 1789–1806. ACM (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-319-03542-0_8
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.1007/978-3-319-63387-9_27
https://doi.org/10.1007/978-3-319-63387-9_27
http://creativecommons.org/licenses/by/4.0/

	Deductive Synthesis of Programs with Pointers: Techniques, Challenges, Opportunities
	1 Introduction
	2 State of the Art
	2.1 Specifications
	2.2 The Basics of Deductive Synthesis
	2.3 Synthesis with Recursion and Auxiliary Functions
	2.4 Implementation and Empirical Results

	3 Proof Search
	3.1 Pruning via Proof Strategies
	3.2 Prioritization via a Cost Function

	4 Completeness
	4.1 Recursive Auxiliaries
	4.2 Pure Reasoning

	5 Quality of Synthesized Programs
	5.1 Performance
	5.2 Readability

	6 Applications
	6.1 Program Repair
	6.2 Data Migration and Serialization
	6.3 Fine-Grained Concurrency

	References

