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Abstract. Sketch is a popular program synthesis tool that solves for
unknowns in a sketch or partial program. However, while Sketch is pow-
erful, it does not directly support modular synthesis of dependencies,
potentially limiting scalability. In this paper, we introduce Sketcham,
a new technique that modularizes a regular sketch by automatically
generating mocks—functions that approximate the behavior of complete
implementations—from the sketch’s test suite. For example, if the func-
tion f originally calls g, Sketcham creates a mock g, from g’s tests and
augments the sketch with a version of f that calls g,,,. This change allows
the unknowns in f and g to be solved separately, enabling modular syn-
thesis with no extra work from the Sketch user. We evaluated Sketcham
on ten benchmarks, performing enough runs to show at a 95% confidence
level that Sketcham improves median synthesis performance on six of our
ten benchmarks by a factor of up to 5x compared to plain Sketch, in-
cluding one benchmark that times out on Sketch, while exhibiting similar
performance on the remaining four. Our results show that Sketcham can
achieve modular synthesis by automatically generating mocks from tests.
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1 Introduction

Program synthesis by sketching, as embodied by the Sketch synthesis tool [30],
is a popular technique that has been applied to a wide variety of problems
[5,7,13,14,15,16,18,22,29]. A Sketch input (henceforth a sketch) is a program
written in a C-like language augmented with holes, unknown constants, and gen-
erators, unknown expressions. The solution for a sketch is specified using test
cases called harnesses, also written in the Sketch language, that make assertions
about the results of to-be-synthesized code. Sketch searches for a solution using
counterezample-guided inductive synthesis (CEGIS), which alternately synthe-
sizes a candidate solution and then uses a verifier to check the assertions; any
counterexamples from verification feed into the next round of synthesis [27].
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One key challenge of using Sketch is that it does not specifically support
modular synthesis. More precisely, even if an input sketch is divided into a num-
ber of functions that call each other, Sketch solves them all together. This ap-
proach potentially limits scalability, as SAT formulas created by Sketch can grow
quite quickly as function calls are inlined. A Sketch user could potentially work
around this by manually replacing calls to to-be-synthesized functions with calls
to Sketch models [24], which are mocks, i.e., functions that, in place of full imple-
mentations, approximate the desired behavior with a specification in the form
of assertions about individual cases. However, writing additional specifications
is both time consuming and redundant with developing the original sketch.

In this paper, we introduce Sketcham (short for Sketch and Mocks), a novel
technique that converts a regular sketch problem into a modular sketch problem
by automatically generating mocks from harnesses. More specifically, suppose
Sketcham is given a sketch in which function f calls g and g is tested by harness h.
Sketcham first converts h into a mock g, that has the same function signature as
g but whose body encodes the assertions from h. Then, Sketcham augments the
original sketch with new code in which f calls g,, instead of g, thereby allowing
f to be synthesized separately from g. Thus, by converting tests (harnesses) to
mocks (specs), Sketcham enables modular synthesis without extra work from the
user. Section 2 gives an overview of Sketcham.

Sketcham generates the new, modular sketch problem using a sequence of
three algorithms. First, Sketcham traverses the original sketch to build a map-
ping A from function names to a set of assertions in which each function is called.
Note that we place some limitations of the assertions—e.g., they can contain at
most one function call—to guarantee we can always translate them from harness
assertions to mock assertions. Next, Sketcham traverses A, generating a mock
fm for each function f € dom(A), where f,, encodes the assertions in A(f). Fi-
nally, Sketcham generates new mock harnesses that are the same as the original
harnesses, except they call mocks instead of the underlying functions. Section 3
presents Sketcham’s core algorithms.

We implemented Sketcham as an additional pass to Sketch, which we evalu-
ated on ten benchmarks. We found a high variance in running time, both under
Sketch and under Sketcham. To account for this difference, we used the Clopper-
Pearson method [6], running each configuration (synthesis tool-benchmark com-
bination) up to 1,487 times, reaching 95% confidence that the true median run-
ning time lies within 20% of the experimental median, excluding failures and
runs exceeding a 60 minute timeout. We found that, for six of ten benchmarks,
Sketcham runs up to 5x faster than Sketch; for one benchmark Sketcham is up
to a factor of 0.98x slower; for the remaining three benchmarks, performance is
indistinguishable. We examined one benchmark, deduplication of elements in an
array, in detail. We found that the performance improvement is largely due to
a mock that does a thorough job representing the function it mocks, and that
the performance improvement occurs during the CEGIS synthesis phase rather
than the CEGIS verification phase. Section 4 presents our evaluation.
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1 int[n] dedup(int n, int[n] vs,

2 ref int sz) {

3 int[n] svs=sort(n, vs); int[n] res;

4 sz =77; // 0

5 for(int i=77; i<n; ++i) { // 0

6 int j = expr({sz,i}, {PL,MI}); // sz-1
7 if (... ){//sz==0]/svs[i]>res[j]

s res[sz] = svs[i];

9 sz = expr({sz,i}, {PL,MI}); // sz+1
10 i3

11 return res;

12 ¥

13 int[n] sort(int n, int[n] vs) {

14 int m=..., r=..., i=..., j=...;

15 int[m] as = sort(vs[0::m]);

16 int[r] bs = sort(vs[m::r]);

17 while(exprBool({i, j, n}, {PL})) // i+j<n
18 /* add as[i++] or bs[j++] to vs */

19 return vs;

20 }

(¢) Mock harnesses.

(a) dedup and sort (simplified).

harness void h_sort(int n,
int[n] vs) {
int[n] svs = sort(vs);
for(int i=0; i<n-1; ++i)
assert svs[i] <= svs[i+1];
/* also elts(vs)=elts(svus) */

©® N o o kA W N R

model int[n] sort_mock(int n,
int[n] vs) {
int[n] svs = sort_uf(vs);
for(int i=0; i<mn-1; ++i)
assume svs[i] <= svs[i+1];
/* also elts(vs)=elts(svs) */
return svs;

}

(d) Translating sort’s test harness into a mock.

Fig. 1: Sketcham applied to deduplication via sorting.

In summary, Sketcham demonstrates that modular synthesis can be achieved
by automatically generating mocks from tests (specs from harnesses) without

additional user effort.

2 Overview

To illustrate Sketcham, consider Figure 1la, which shows a simplified sketch
whose solution deduplicates an array of integers. This sketch makes use of Sketch

Lo N = R CRE

holes 77, which are unknown constants, and generators such as expr (vars, ops),

which is an unknown expression composed of variables vars combined with
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operands ops, including PL for addition and MI for subtraction. The correct
solutions for the holes and generators are shown in end-of-line comments.

At the top of Figure 1a, function dedup takes a length n and array vs, and it
returns the deduplicated array and, by reference, the deduplicated array’s length
sz (in Sketch, functions can only have at most one return value, hence the return-
by-reference sz). The dedup function begins by calling another function, sort,
to sort the array (line 3). Then it initializes sz to a hole and loops through
the array (lines 4-5). In each iteration, it computes an expression j of sz and i
(line 6) used in a conditional guard (line 7; details of guard not shown). If the
condition holds, the element at position i is copied into res and sz is updated;
otherwise the element is ignored. Finally, dedup returns the result array res.

The sort function (line 13) takes the length and array and returns a sorted
array. This particular sketch is for merge sort. Here the programmer knows
that merge sort involves sorting two sub-arrays but isn’t sure about the details.
After some initialization (not shown), it makes two recursive calls to sort sub-
arrays (lines 15 and 16). Then it loops over the sorted sub-arrays, merging the
elements into array vs, which is returned. The loop guard (line 17) uses a different
generator, exprBool (vars, ops), that generates arithmetic comparisons (<, <=,
etc) among expressions generated by calling expr (vars, ops).

Harnesses and Mocks. To test the expected behavior of dedup and sort, the
sketch also includes two harnesses, h_dedup and h_sort. Figure 1b shows the
call graph of the sketch with the harnesses, and the left side of Figure 1d shows
a portion of h_sort (we omit h_dedup for brevity). This harness calls sort and
then makes assertions about the results, e.g., that the output array is sorted.
Harnesses are distinguished from regular functions by the keyword harness, and
their arguments are treated as universally quantified. Thus, h_sort tests that
for all n and arrays vs of length n, the sort function is correct.

To solve this synthesis problem, Sketch converts dedup, sort, and a har-
ness into a single SAT formula and then uses CEGIS to find a solution. This
approach works, but the formula passed to the solver is large, because it con-
tains both functions’ worth of code, and complex, because reasoning about the
code in dedup requires simultaneously reasoning about the code in sort. Thus,
mashing together both functions into a single SAT formula potentially limits the
scalability of Sketch.

The key idea of Sketcham is to observe that this sketch is actually modular—
it has been divided into two functions, each with their own tests. Sketcham takes
advantage of this modularity by creating a new synthesis problem that includes
mock versions of functions in the sketch, which can then be used to enable
separate reasoning about each function.

The right side of Figure 1d shows sort_mock, the mock version of sort.
The mock has the same signature as sort, but instead of containing the actual
sorting code, it contains assertions from h_sort about sort’s expected behavior.
In detail, in place of calling sort, the mock calls a fresh uninterpreted function
sort_uf on line 3. Then it makes assumptions (rather than assertions) about
the result array svs (line 5), and finally returns svs (line 7). The mock itself is a
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int doub(int m) { model int doub_mock(int m) {
return m * 2; int out = doub_uf(m);
} assume (0 == m}10) —
harness void h(int n) { out == (m/10 + m/10) * ?7;
int out = doub(n * 10); return out;
assert out == (n + n) * 77;
} }
(a) Double. (b) Mock double.

Fig. 2: The double function and its mock.

Sketch model (indicated by the model keyword), and where the mock is called,
Sketch will replace the call with the assumptions in the model’s body [24].

Next, Sketcham creates new code that uses the mock, as shown in Figure 1c.
(Here the dashed, greyed boxes are for functions and harnesses that are generated
but do not improve solving time; see Section 4.2.) In particular, dedup' is the
same as dedup, except it calls sort_mock instead of sort, and h_dedup'' is the
same as h_dedup but it calls dedup' instead of dedup.

The final sketch includes h_dedup'', h_dedup' (a trivial harness that calls a
mocked dedup), and h_dedup—in that order—as well as the harnesses for sort.
Sketcham searches for a solution for each harness in order, i.e., it tries to solve
h_dedup'' first. Notice that, critically, when Sketcham solves h_dedup"' ', it need
not consider the code of sort, but rather only its specification as encoded in the
mock. In practice, this means that Sketcham can solve h_dedup'' up to 18.1x
faster than Sketch solves h_dedup, a significant speedup.

Moreover, sort_mock encodes the specification of sort, so once Sketcham
solves h_dedup'', it has found a solution for h_dedup as well. To preserve cor-
rectness, Sketcham keeps the original harnesses such as h_dedup, because mocks
with partial specifications can lead to partially incorrect solutions to the har-
nesses using them. However, even in these cases, the counterexamples they gener-
ate can still help more quickly narrow the synthesis search space for the original
harness, and lead to an ultimately valid solution.

Quantifier Elimination. In Figure 1d, the translation from harness to mock
was straightforward: the call to the mocked function becomes a call to an un-
interpreted function, and asserts become assumes. Sometimes, however, the
translation is more complex. Consider the sketch in Figure 2a, which includes a
function doub that doubles its input and a harness h that calls doub(n*10) and
asserts the result is (n+n)*77 for some hole.

Notice this assertion only describes arguments of the form n*10 for some n,
i.e., implicitly there must exist some m such that m = n*10 for the assertion to
hold. Sketcham performs quantifier elimination [1,4] on such nested existentials,
following the approach of Kuncak et al. [17]. Figure 2b shows the resulting mock.
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Fig.3: Sketcham architecture

Here, in the assumption, n is replaced by witness candidate m/10. Because m is
an integer, we also add a precondition that m is evenly divisible by 10.

We note that Sketcham includes quantifier elimination for completeness, and
in our evaluation we consider the sketch in Figure 2a. However, we did not find
quantifier elimination necessary for our other benchmarks.

3 The Sketcham Algorithm

Next we more formally describe Sketcham, which is implemented as a pass within
Sketch as shown in Figure 3. The presentation that follows reflects this Sketch
implementation without loss of generality of the core algorithm for converting
tests to mocks. The Sketch frontend consumes the input sketch and transforms
it into the Sketch intermediate representation (Sketch IR), which is passed to the
Sketch backend. Sketch IR encodes first-order logic augmented with theories of
arithmetic, arrays, functions, and more, as discussed below. When the backend
loads the IR, it performs loop unrolling, function inlining, and other transforma-
tions that are needed by the solver [26], yielding a program p. Standard Sketch
then uses CEGIS to solve the synthesis problem, outputting a hole assignment
that the frontend uses to produce the solved sketch. Sketcham modifies this pro-
cess by inserting, after optimization, a mock rewriting phase, described below,
that transforms p into the augmented program p,, for CEGIS.

We formalize Sketcham on the fragment of Sketch IR shown in Figure 4. Here
types are omitted, and we assume the sketch is type-correct. A program sketch
p is a sequence of harness and function definitions. A harness definition h tags
a function definition as a test harness. A function definition d is given named
parameters! and a body, which is a sequence of statements. Statements s are

! For simplicity, we assume parameter names are unique across the whole program.
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P = (h]d)*

h = harness d

d =def f(z,...,z){s*}

s = 1z := e | return e | assert ¢ | assume ¢

e, b, = f(e,....,e)|uopelebope|n|z|??x

wop  u= |-

bop = A[VIe| = [=[+]-1*]/]%
x,y € variable names G € graphs A f—>d
f, g € function names ® € set of ¢ F:f—f

Fig.4: Sketcham’s fragment of Sketch IR

assignments, returns, assertions, and assumptions. The most critical expressions
e in our algorithm are function calls f (e, ..., e ) with their arguments. The
detailed grammar for the remaining expressions is unimportant in the remainder
of this section, but for completeness we show expressions for unary and binary
logical and arithmetic operations uop e and e bop e; constants n; variables x;
and named holes 77 z. Below, we sometimes use the metavariables ¢ and v in
place of e to indicate an expression used for Boolean-valued formulas.

Given the input Sketch IR program p as shown in Figure 3, Sketcham creates
the output sketch by first calling BUILDASSERTMAP (Algorithm 1) to build
mapping A from function names to assertions from tests of those functions. Next,
GENERATEMOCKS (Algorithm 2) uses A to construct mocks for functions in the
domain of A, yielding program p’, which includes the original sketch p plus those
mocks. This step also returns a mapping F' from the original function names to
the corresponding mock names. Finally, MOCKHARNESSES (Algorithm 3) creates
the output sketch p,,, which augments p’ with copies of the original sketch’s
harnesses, except the copies call the mocks instead of the original functions.

Critically, during this last step, holes are not renamed when the harnesses are
copied. Moreover, the newly generated harnesses are prepended to the sketch.
Thus, when CEGIS tries solving each harness in p,, in order, it will first find
solutions that are consistent with the mocks. Then when it reaches the original
harnesses (which must remain in case there is information in them not captured
by the mocks—see discussion of GENERATEMOCKS below), CEGIS can use the
information it already derived from the mocks to find the ultimate solution to
the original problem.

In the remainder of this section, we describe each step of the algorithm in
detail. Below, we capitalize the names of sets of a given metavariable (e.g., @ is
a set of formulas ¢, etc.), and we use vector notation to indicate arrays (e.g., §
is an array of statements s).

Building the assertion mapping. FEach mock expresses the specification of an
original function as it is encoded by that function’s tests. To start, Sketcham
collects assertions from those tests into an assertion mapping. Algorithm 1 builds
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Algorithm 1 Mock rewriting: building the assertion map

Input: p - the sketch
Output: A - finite map of function names to sets of assert formulas
1: function BUILDASSERTMAP(p)

2: A+ 10

3: &+ {¢ | assert ¢ € p} > all solver-reachable asserts in p
4: Py {ped|0=]f(...) € 9|} > asserts with 0 function calls
5: O {ped|1=|f(...) €|} > asserts with 1 function call
6: for all f € ¢; do

7: Pp— PoU{ped | fEP} > asserts with O calls, or 1 call to f
8: W O\ By

9: while ¥ # () do

10: X« FVW) > inputs and holes free in ¥
11: U {ped;| XNFV(p) # 0}

12: @f < @f \ 4

13: end while

14: Alf] « &

15: end for

16: end function

the assertion mapping A from the input sketch p. The algorithm begins by
initializing A to empty and @ to the set of all assertions from all tests in p.
It then selects two subsets of @. The set @y contains all assertions that do not
include calls to any functions, and the set @1 contains all assertions that include
exactly one function call. We exclude assertions with multiple function calls
so that mocks are standalone, to conform to the technical requirements Sketch
imposes on models. As a consequence, we exclude some terms that present no
such concerns (e.g., conjunctions of otherwise unrelated terms), as translating
them to assumptions may be much more complex or even impossible. We leave
extending BUILDASSERTMAP to more assertion patterns to future work.

For each function f called in an assertion in @1, on line 7 we next compute the
set @5 from Py (the assertions that hold throughout each test, including at calls
to f) and the subset of @ that refers to f. For example, consider the assertion
in h_sort in Figure 1d. This code refers to the result of calling sort(n, vs),
so &1 = {¢;(sort(n,vs))}, where the ¢;s capture the assertions in h_sort.
Additionally, if we picked, say, a loop unrolling bound of 4, then Sketch would
implicitly assert n<4, resulting in &9 = {n<4}. In general, &y might contain
additional assertions that are irrelevant to the calls in @,. For example, loop
unrolling for harness h_dedup (not shown) might add another bound m<4 to &
for sort. However, such irrelevant assertions will not change the resulting mock.

In some cases, we cannot add assertions in ®; to A because other asser-
tions on the same variables interfere. For example, suppose the sketch includes
assert f(x) and assert g(x). Then &; might not completely characterize
f—the assertion in @ is valid only if assert g(x) also holds, which puts an
unknown (until the full sketch is solved) constraint on x. Thus, in this case, our
algorithm discards the assertions in ®;. More specifically, on line 9, the loop
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Algorithm 2 Mock rewriting: generate mocks

Input: p - the sketch

Input: A - output of Algorithm 1

Output: p’ - the sketch augmented with mock definitions

Output: F' - finite mapping from an original function name to its mock
1: function GENERATEMOCKS(p, A)

2 F«0,p«+p

3 for all f— &€ Ado

4: def f(@){...} + the definition of f in p

5: fu < FRESHNAME(f)

6: §<+ 1]

7 o {6 €| 0=|f(...) € 9}

8 P {pe@[1=[f(...) €9}

9: for all ¢ € ¢; do > convert asserts into assumes
10: f(€) + the lone function call in ¢

11: du — O[f(€) := fu(D)] > substitute uninterpreted function
12: U {x;=¢ |0<i<|Z|} > equate parameters to arguments
13: ¢ — (ANPo) AN (ANY) = ¢u > the condition where ¢ holds
14: ¢ [FV(9); 0+ §']

15: g.append(assume ¢')

16: end for

17: fm < FRESHNAME(f)

18: F[f] < fm

19: dm < def fr, (B){ > create the mock definition

5
return fy, (%)

20: p'.inser}:c(dm)

21: end for
22: end function

removes any ¢ € ¢y whose free variables overlap with free variables outside of
@ . The process iterates in case free variable dependencies cascade. For example,
the existence of assert g(x) would eliminate assert f(x-y), which would in
turn eliminate assert f(y). The result is the transitive closure of the allowable
assertions about each function.

Generate mocks. Next, Algorithm 2 iterates through each function in the domain
of A, generating a corresponding mock to add to the augmented sketch p’. As
it does so, it also builds a map F from function names to the names of the
generated mocks.

For each f +— & € A, GENERATEMOCKS begins by finding the definition of f
and creating a corresponding freshly named uninterpreted function f,. It then
initializes §, the assumptions to be inserted into the new mock body, to empty.
Then, from each asserted formula ¢ € @, the algorithm creates a formula ¢, by
substituting the single function call f(€) in ¢ with a call f, (&), where & are the
formal parameters of f (line 11). Notice this call to f,, is the same no matter the
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Algorithm 3 Mock rewriting: mock harnesses

Input: p’ - the sketch from Algorithm 2

Input: F) - the name map from Algorithm 2

Output: p,, - the sketch augmented with mock harnesses
1: function MOCKHARNESSES(p’, F)
2: G < CALLGRAPH(P), pm <+ P’

3: for i <— 1, maximum mock call graph depth do
4: Fip1 <0
5: for all def ¢(7){5} € CALLERS(G,dom F;) do > similarly, harness def
6: g' + FRESHNAME(g)
7 d' + def g (A > respectively, harness def
slf=f1f=f €F]|ses}
}
8: Pm.insert(d’, before g)
9: Fitalgl < ¢’
10: end for

11: end for
12: end function

original call to f, which ensures the generated mock conforms to the technical
requirements Sketch imposes on models. To encode the actual information at
the call site, we next add a precondition. The algorithm constructs ¢ (line 13),
which is an implication denoting that ¢, holds if the ancillary asserts @, and
the equalities x; = e; from the call to f hold. One nuance we elide here is that
Sketch augments all function calls with an additional explicit path condition
parameter that captures conditional branches taken up to the point of the call,
which makes it easier for Sketch to translate the IR into a SAT formula. For
soundness, we include this path condition as a premise of ¢’ and assign f, the
path condition T. Note that our implementation trims @y before adding it to ¢’
to the subset containing only the variables in €.

Next, the algorithm performs quantifier elimination on ¢', yielding ¢” (line 14).
More precisely, [FV(¢); ¥ | ¢'] eliminates variables in FV(¢) from ¢’, searching
for witnesses in ¥. Then, ¢” is added to § as an assume, and the loop continues
until all mappings for f have been handled.

Finally, on lines 17-19 the algorithm computes a fresh Sketch name f,, for f,
adds a mapping to F', and creates function definition d,, for f,,. The function f,,
takes the same arguments as f, assumes all formulas in §, and returns f,, on f,,’s
arguments. Thus, when f,, is called, the assertions about f from its original test
suite in p are assumed on f,,,’s arguments, as we saw in Section 2. The definition
d,, is added to p’, and mock generation continues until all mappings in A have
been traversed.

New mock harnesses. The last step of Sketcham adds calls to the mocks gener-
ated by GENERATEMOCKS. One naive approach would be to simply replace each
call to f with a call to f,, for all f — f,, € F. However, this will not work for
two reasons. First, we need a full solution for the holes in all functions, including
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those that are mocked. Replacing calls to f with calls to f,, would remove many
constraints on the holes in f, underconstraining their solutions. Second, as we
saw earlier the template for f might contain additional information excluded by
BUILDASSERTMAP, so replacing f by f,, might underconstrain f’s callers.

Our solution is to create an output sketch that includes both the original
sketch—including all calls to f in their original form—and duplicate sketch code
that calls f,, in place of f. The duplicated code refers to the same holes as
the original sketch. Hence, information derived from the duplicated code can
potentially greatly speed up solving of the original code.

Algorithm 3 shows MOCKHARNESSES, which creates this duplicate code. The
algorithm begins by constructing a call graph G from the sketch p’ from the
previous step. Note that none of the mocks in p’ are called yet, so the call graph
is the same as for the original sketch. Next, the algorithm duplicates the sketch
one level of the call stack at a time, starting at the mocks and working up toward
the harnesses. To limit duplication, e.g., for mocks called by recursive functions
whose duplication would loop infinitely, the algorithm bounds the duplication
depth. For each level 4, it iterates through all functions g € CALLERS(G, dom F}),
meaning functions g that call a function in the domain of F;. It duplicates each
such g, replacing calls to functions f € dom F; with calls to F;[f], and then adds
the duplicated function to the sketch. Since g has now been renamed, g — ¢’ is
added to a new mapping F; 1, and calls to it are duplicated in the next iteration,
repeating until reaching the root of the call graph or the maximum duplication
depth. Note the process is the same for both regular function definitions and for
functions that are harnesses.

For example, suppose harness h calls function g, which in turn calls function
f, and assume GENERATEMOCKS created f,, and g,,. Then in the first iteration,
MOCKHARNESSES creates a duplicate h’ that calls g, and a duplicate g’ that
calls f,,. In the next and final iteration, it creates a duplicate h’ that calls ¢'.

When we insert the duplicate functions, we insert them before the original
functions. This ensures that when we insert the duplicate harnesses that call the
mocks, Sketch will solve those harnesses before solving the original ones.

4 Evaluation

We evaluated Sketcham on ten benchmarks, running each from 11 to 1487 times
until reaching statistically significant results. We found that, for six of ten bench-
marks, Sketcham performs up to 5x faster than Sketch, for one benchmark
Sketcham is slower by a factor of up to 0.9x%, and for the remaining three bench-
marks performance is indistinguishable. We examined the benchmark dedup
(Figure 1) in depth and found that, as suspected, overall performance improve-
ment is due to improved synthesis time when using sort_mock.

Implementation. Sketcham comprises approximately 1075 lines of C+4 code
within the Sketch backend. The user enables Sketcham with -mock and specifies
the max mock duplication depth via —-bnd-mock-depth, which defaults to 3.
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Because they clone and then rearrange the input Sketch IR program, the
run time of Algorithms 1-3 is approximately linear in the number of functions
and the number of asserts in the sketch. Our implementation covers the features
given as part of the Sketch IR fragment in Figure 4, with the modification that
we explicitly depict assignment, which Sketch IR does not require because it
structurally hashes expressions to yield a compact in-memory representation [26].
We also note that Sketch includes additional features that we leave to future
work, such as complex harness types, and that quantifier elimination is currently
restricted to arithmetic expressions.

Benchmarks. We used the following benchmarks:

— double, the integer doubling program given in Figure 2.

— absval, the absolute value function.

— fib, the linear-time Fibonacci function. The specification requires its output
to be equivalent to the exponential time algorithm.

— datetime, a simplified implementation of the C strptime function. This func-
tion accepts a format that it uses to parse a date/time string.

— boyerMoore, which implements the Boyer Moore string search algorithm [3].

— regex, a regular expression matching engine and compiler.

— spellcheck, a program that suggests a corrected version of its input using the
Levenshtein edit distance from entries in a dictionary.

— minpair, uses edit distance to find the closest pair out of an array of values.

— dedup,,, deduplication with merge sort from Figure 1, and dedup;, dedupli-
cation with insertion sort.

Sketch has a multitude of configuration options that can have a large effect on
performance. The middle portion of Table 1 gives values for the four options that
differ across the benchmarks: int type, whether Sketch uses symbolic integers (in
either a bit-vector encoding or a sparse encoding [26]) or native integers [28];
int bits, the number of bits per integer; loop unroll, the maximum loop unrolling
depth; and func inline, the maximum depth of function call inlining.

We selected values for these options that reflected each benchmark’s design
and demonstrated pronounced run time differences from Sketch to Sketcham, as
follows. double and absval use Sketch’s defaults. fib tests recursively computing
the Fibonacci sequence up to the tenth entry, so function call inlining is set
accordingly. regez is required to reject bad matches, which requires higher un-
rolling and inlining. datetime, boyerMoore, spellcheck, and minpair need higher
loop unrolling to iterate over long strings. These last three and both dedups also
do much better using native integers. The dedups also run unreasonably slowly
with more bits or higher unroll, so we reduced the amount of unrolling. In all
our benchmarks, any configuration options not discussed here were left as their
defaults, including the mock duplication depth, with the default of 3.

Methodology. All measurements were taken on a 3.2 GHz AMD Ryzen 5 1600
system with 32GB of RAM. We found that while most benchmarks consistently



820 N.F.F. Bragg et al.

# # int int loop func|Sketch runs|Sketcham runs

lines holes type bits unroll inline|total failed|total failed

double 8 1{symbolic 5 8 5 17 0 17 0
absval 69 9|symbolic 5 8 5 17 0 17 0
fib 46 4|symbolic 6 8 10| 20 0| 65 0
datetime 177 3|symbolic 11 20 5 11 11 17 0
boyerMoore 136 16| native 7 13 5 17 0| 153 19
regex 357 5604|symbolic 5 30 717 0| 17 0
spellcheck 94 5/ native 5 9 5 17 0 17 0
minpair 113 3| native 5 10 5 17 0 22 2
dedup; 73 1134| native 2 4 5| 1487 88| 762 23
dedupm 80 9008| native 2 4 5| 648 281| 88 16

Table 1: Benchmark config options and characteristics.

perform within half an order of magnitude under both Sketch and Sketcham,
in a few cases synthesis time varies by as much as two and a half orders of
magnitude. To account for this variance during our evaluation, we repeatedly
ran each benchmark until achieving statistical significance, between 11 and 1487
times, as listed in the rightmost portion of Table 1. Each run was executed with
the system otherwise almost totally idle to minimize interference. While most
runs completed successfully, we exclude those that exceed a 60 minute timeout
or fail to synthesize due to exhausting system memory or a crash within Sketch.
To give an idea of the problem size, the leftmost portion of Table 1 lists the
numbers of lines and holes per benchmark.

As other work has observed [9], performance evaluation methodologies that
lack rigor can lead to misleading and incorrect conclusions. To avoid this prob-
lem, we collect enough data to calculate a percentile’s confidence interval (CI)
at a given confidence level (CL). We employ the classic Clopper-Pearson [6] (or
“exact”) method using the probabilities of the Binomial distribution to itera-
tively calculate confidence intervals for a given dataset. While other methods
are often used, many of these assume an underlying Gaussian distribution. The
underlying distributions for our measurements are not known and do not appear
to be Gaussian, a case the exact method handles correctly.

Run time variance is not correlated across configurations, so the number of
runs needed for significance can differ from Sketch to Sketcham, as reflected
in the “total” columns of Table 1. We ran each configuration repeatedly until
measurements met two statistical significance conditions. First, that they reach
a 95% CL that the population median lies within at most a 20% CI around
the sample median. For example, for a sample median of 100s, the population
median might lie between 90s and 110s, or between 98s and 118 s, depending
on the underlying distribution. Second, the CI must range entirely between the
first and third quartiles to increase the confidence that the median measurements
adequately reflect the underlying distribution. In seven out of ten benchmarks
these two conditions were sufficient to yield Cls that did not overlap across Sketch
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and Sketcham, which allows for statistically significant performance claims about
these benchmarks.

4.1 Performance

Figure 5 shows the running times of Sketch and Sketcham on our benchmarks.
The distribution of times is shown as notched box plots. The boxes extend from
the first to the third quartile, with the median shown as a mid-line. The CI is
indicated by the notch. The whiskers extended to the minimum and maximum
values (some whiskers are truncated to allow for a closer view of the median).
Following standard practice, we conclude that two configurations have a sta-
tistically significant difference in performance if their CIs do not overlap, as there
is then high probability that the median times of the distributions are different.

Sketch  Sketcham
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We see that for six of the ten benchmarks, Sketcham is faster than Sketch, while
one is marginally slower and three display no significant performance change. We
investigated each benchmark’s performance in detail, discussed next. The per-
formance differences we report are ratios of the run time of Sketch to Sketcham
for a given benchmark. Due to uncertainty we report speedup ranges for the me-
dian, comparing the opposite extents of each CI. This ranges from, at minimum,
the ratio of the faster end of Sketch’s CI to the slower end of Sketcham’s CI, up
to, at maximum, the ratio of the slower end of Sketch’s CI to the faster end of
Sketcham’s CI.

The times shown are total run time, which can be broken down into synthesis,
verification, and overhead time. For Sketcham, overhead can further be broken
down into mock construction and normal Sketch overhead. The total runtime
overhead of mock construction is less than 0.4% for all benchmarks except regex
(3%) and both dedups (~20%). In most cases, this time was dominated by the
GENERATEMOCKS and BUILDASSERTMAP phases.

The double benchmark’s performance is approximately the same in both
cases. In fact, the Cls overlap almost completely, suggesting the performance
may be dominated by constant factors in Sketch.

The absval benchmark is also approximately the same. It is another simple
program that Sketch solves very quickly, and as such the mocks only add to the
verification time.

The fib benchmark asserts that, on integers 0 to 9, the to-be-synthesized
linear-time Fibonacci implementation returns the same result as an exponential-
time implementation. In Sketch, the calls to the exponential-time algorithm
cause a slowdown. But since Sketcham replaces calls to the exponential-time
algorithm with calls to a (constant-time) mock, Sketcham achieves a speedup
of 3.8-4.5x. While it is difficult to make out in the plot, the median and CI lie
immediately above the first quartile for Sketcham.

The datetime benchmark fails to synthesize in Sketch due to memory ex-
haustion, but it consistently synthesizes in just a few seconds using Sketcham.
Investigating further, we found the bottleneck is a function that parses strings
into integers in a loop that converts digits and adds them to a running total.
For example, the digit sequence abc is converted to the integer 100*a+10*b+c.
This conversion loop is unrolled to the maximum bound by Sketch, and the in-
put strings are of varying sizes, which is encoded as a separate formula for each
possible length. The SAT conversion algorithm translates symbolic arithmetic
formulas according to combinations of possible values of their subformulas, which
results in very large SAT formulas in this case. Later in the conversion, these
are merged back together in another quadratic operation. Due to the number
of formulas and overall formula size, this eventually exhausts memory. While
Sketcham technically faces the same issue, it does so after decomposing the
sketch into smaller formulas, and thus these limits are never approached.

The boyerMoore benchmark runs 4-5x faster under Sketcham than Sketch.
The reason is similar to the previous case. boyerMoore includes a generator that
constructs arithmetic expressions that add and subtract a small set of values
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including a hole. Sketch constructs these expressions recursively so they grow
quickly, with the total number of terms determined exponentially by the degree of
function inlining, and the resulting expressions have high symmetry, both factors
that slow down solving, further compounded by the location of this expression
deep within the sketch. Because Sketcham breaks the problem’s dependencies,
this expression can be synthesized separately from the rest of the program, which
proceeds much more quickly.

The regex benchmark’s overall performance using Sketcham is statistically
significantly slower by a factor of 0.98 x, which is a minimal difference in practice.
The main mocked function here performs compilation of a regular expression
into instructions for a virtual machine. Because compilation is recursive, it is
difficult to give a specification that Sketcham can use. It is instead given by
example with an exhaustive set of subproblems, which greatly increases the
number of harnesses to solve. While most harnesses keep similar performance
and the slowest harness is 8% faster in Sketcham, this is not enough margin to
improve overall solve time.

The spellcheck benchmark using Sketcham sees a speedup of 1.5x, while
minpair performs roughly the same (0.89-1.04x). Both rely on the same Lev-
enshtein edit distance algorithm. The harness for this algorithm, which is the
most time-consuming in either sketch, runs last in both settings, which reveals
the source of the performance difference between the two benchmarks. minpair
is dominated by synthesis time and spellcheck by verification time, which means
that harnesses for the minimum pair function are more difficult to synthesize
than for the spellcheck function, and so the former accumulates more state within
the solver that is compounded when solving the Levenshtein harness. This slows
it down enough to decrease the overall performance. On the other hand, the im-
provement of spellcheck is distributed across all individual harnesses, and across
both synthesis and verification time, more than making up for the time it takes
to construct and solve the mock harnesses.

Finally, the dedups show a notable performance improvement with Sketcham.
In both dedup; and dedup,,, the problem is large and complex enough that plain
Sketch struggles with it. Sketcham eliminates the interactions of holes across the
deduplication and sorting functions, which speeds up synthesis by a factor of
1.3-1.9x for dedup; and 1.003-1.5x for dedup,,.

4.2 Case Study: Deduplication

Next, we examine the performance of dedup; and dedup,, in detail, as they
illustrate the strengths and weaknesses of Sketcham. We break our discussion
into comparisons of solving time across harnesses and comparisons of CEGIS
synthesis time to CEGIS verification time.

Time to Solve Each Harness. Both dedup; and dedup,, are structured the same
way, and Sketcham creates the harnesses and mocks shown in Figure 1c for both.
Figure 6 breaks down the total times for dedup; and dedup,,, grouped by the
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harnesses for sort and for dedup. We exclude overheads such as time spent in
mock construction, parsing the input, and reassembling the output.

We make several observations. First, comparing the first and third columns
within each subfigure, we see the time for solving h_sort is the same for Sketch
and Sketcham. This makes sense because h_sort' adds no information—it calls
mocked sort and then immediately asserts the same specification as in the mock.
Note that, while the trivial h_sort' harness could be elided here, creating an
analogous harness would be useful if the harness accidentally contained a con-
tradiction. In such a case, Sketcham would almost instantly decide the harness
is unsatisfiable, whereas Sketch could spend an arbitrary amount of time rea-
soning about the computation in the actual called function before detecting the
contradiction.

Second, comparing the second and fourth columns within each subfigure,
we see that the CI of h_dedup using Sketcham lies well below the CI using
Sketch. The speed improves by a factor of 3.2-4.7x for dedup; and 2.2-4.9x for
dedup,,. Examining this result in detail, we find that Sketcham works exactly
as intended: h_dedup'' calls the mocked sort, enabling it to synthesize quickly
and assign holes correctly, which are then simply verified when checking h_dedup
(and h_dedup"' is trivial, similarly to h_sort').

Third, also comparing the second and fourth columns, we see the variance
in performance for Sketch is much greater than for Sketcham. Investigating fur-
ther, we found this occurs for two reasons. First, the specification in h_sort is
weak enough? that sometimes an incorrect hole assignment for sort satisfies the
verifier and is only discovered while synthesizing h_dedup, forcing the solver to
backtrack at great cost and simultaneously consider the holes in both functions.
Second, even when the solver finds a correct assignment for sort, it includes the

2 In addition to the specification we have supplied, a complete specification of sort
relies on the existence of a permutation function over the array’s indices.
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entire formula again while solving h_dedup, resulting in a much larger problem
and corresponding variability. In contrast, with Sketcham, h_dedup'' is decou-
pled from sort, eliminating these issues.

Fourth, we observe that both Sketch and Sketcham can solve h_sort about
10x faster for dedup; than for dedup,,. Overall, merge sort is more challenging for
Sketch than insertion sort (note that since Sketch finitizes the problem by, e.g.,
unrolling loops, asymptotic complexity does not play a role). More surprisingly,
synthesizing h_dedup is also faster for dedup; compared to dedup,,. We believe
this occurs because synthesis of h_dedup must sometimes recover from a bad
hole assignment from h_sort, which will be quicker for dedup;, and because the
easier synthesis of dedup; means the solver accumulates less state, such as conflict
clauses, that would otherwise slow down solving subsequent harnesses.

Finally, we begin to get a clearer picture of the divergence between dedup;
and dedup,,. In dedup;, h_dedup synthesis is the performance driver, and the
improvement using Sketcham has a significant impact on total performance im-
provement. In dedup,, it is overshadowed by h_sort, which dominates to the
point that improvement elsewhere is not as significant a contributor. Combined
with the overhead of mock construction, this leads to a less pronounced improve-
ment in total performance.

Synthesis and Verification Time. Figure 7 shows the times for the CEGIS synthe-
sis phase and verification phase for each benchmark under Sketch and Sketcham.
Not shown are the overheads of mock construction, parsing, etc., which for dedup;
we found took 3—4s in Sketch versus 17-19s in Sketcham, and for dedup,, took
90-96s in Sketch versus 201-207s using Sketcham. We believe much of the dif-
ference between these could be eliminated with additional engineering effort.
Looking at verification times in Figures 7c and 7d, we see that while the veri-
fication times for Sketch and Sketcham are different, they are still relatively close:
Sketcham is 0.81-0.86x slower for dedup; and 1.12-1.16x faster for dedup,,. In
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contrast, comparing synthesis times in Figures 7a and 7b, we see a more signif-
icant speedup for Sketcham over Sketch: 1.59-2.55x for dedup; and 1.28-2.28 x
for dedup,,. Moreover, if we compare synthesis and verification time, we see that
the overall solving time for both benchmarks is dominated by synthesis time.
Indeed, we observed even greater synthesis speedups on other benchmarks in-
cluding fib (4.2-5.1x) and boyerMoore 5.2—-6.9x, but the most extreme of which
was spellcheck, which saw synthesis speed up by 308.4-345.7x using Sketcham.
Thus, we find that Sketcham’s performance improvements come from reducing
synthesis time by introducing mocks that decrease the number of holes that need
to be considered at once.

4.3 Discussion

In general, we found that Sketch’s performance is unpredictable in practice,
which is influenced by factors such as the solver’s random seed. For example,
in terms of overall solving time, our experimental runs included several outliers
(not shown in Figure 5) near the 60 minute timeout. In these cases, Sketch
essentially makes a very poor initial guess for the holes, and verification produces
counterexamples that do not add much information. Both Sketch and Sketcham
exhibit this issue.

Moreover, often what seem like minor changes in the program sketch or con-
figuration options can result in totally different solver behavior, and hence perfor-
mance. One example of this was boyerMoore, which turned out to be non-linearly
sensitive to the loop unrolling parameter. This benchmark was also extremely
fickle about the problem formulation—holes in what seemed to be innocuous lo-
cations would lead to timeouts in both Sketch and Sketcham. Another example
is dedup, which initially had a specification that omitted a requirement that the
output array did not have a negative length. Without this constraint, the per-
formance benefit of Sketcham was overwhelmed by the variability of the solver
exploring ultimately impossible scenarios.

Overall, our results suggest that while Sketcham can’t always outperform
plain Sketch, it performs best on problems split into functions whose tests cover
the behavior the sketch actually relies on while being easier to compute than the
functions’ actual implementations. While Sketcham affected the performance of
both CEGIS phases, the best improvements were observed when the solving time
of dependencies was dominated by the synthesis phase. For programs with these
properties, Sketcham can exhibit a performance improvement of as much as 5x
overall, with synthesis time improvements alone of up to 345.7x. Moreover, in
some cases, such as datetime, Sketcham can solve problems that are out of reach
of plain Sketch. For programs where these properties do not hold, Sketcham
performance is typically similar to plain Sketch.

5 Related Work

There are several threads of related work.
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Program Synthesis with models. As discussed earlier, our work builds on
work by Singh et al. [24], who propose manually created models for Sketch.
While Sketcham relies on the core algorithm of that work, Sketcham frees the
Sketch user from needing to write models, because we create mocks automat-
ically from normal sketches. Mariano et al. [18] use algebraic specifications to
model libraries. In contrast, our approach derives specifications from the input
program’s assertions, without requiring the programmer to add annotations.

Deriving mocks and specs from tests. Saff et al. [21] use the capture and re-
play of actual test executions to automatically generate mock dependencies with
the goal of speeding up test execution. Fazzini et al. [8] further generalize this
capture-and-replay technique to consistently model the environment of a mo-
bile app under test, allowing for testing apps that use an inconsistent resource
like a database or network device. Both of these target normal testing rather
than synthesis. Nguyen et al. [19] leverage symbolic execution over input-output
test pairs to perform program repair. However, they use these tests to model
individual expressions instead of modeling entire functions. The insight under-
lying these approaches is similar to ours, however Sketcham is capable of both
input-output pairs and general properties, and does not rely on either concrete
or symbolic execution of tests.

Component-based synthesis. Gulwani et al. [10] model programs using logical
input-output relations to synthesize loop-free bit-vector programs. Shi et al. [23]
combine many solutions that each only partially meet a specification into one
that meets the entire specification. Both approaches limit the synthesis search
space by building their solutions from the bottom up, from a selection of base
components. Smith and Albarghouthi [25] prune the search space using bottom
up algebraic rewriting of the program into an equivalent normal form. In contrast
to these, Sketcham derives its benefits from breaking apart input sketches from
the top down, at function level granularity.

Modular synthesis using symbolic or actual execution. Samak et al. [22] de-
rive specifications of class methods using symbolic execution and use them to
synthesize a replacement shim class one method at a time. Van Geffen et al. [31]
use symbolic execution to model abstract virtual machines to modularly syn-
thesize a compiler one instruction at a time. In contrast, because our approach
derives mocks directly from the input’s assertions, we need not consider the code
itself when modeling it. Hua et al. [11] modularize the synthesis of library calls
through execution of actual partial programs. In contrast, we attempt to avoid
called functions entirely by relying on their inferred specifications.

Other approaches. Bodik et al. [2] finalize incomplete programs using angelic
nondeterminism. In contrast, Sketcham does not introduce arbitrary angelic val-
ues, but instead constrains any angelic-like behavior using a function’s inferred
specification. Huang et al. [12] use a divide-and-conquer strategy to iteratively
split synthesis problems according to heuristics. In contrast, Sketcham splits
problems structurally in a single pass. Polikarpova et al. [20] speed up synthesis
through modular verification using refinement types. In contrast, our approach
achieves a similar kind of modularity without being type-directed.
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6 Conclusion

This paper presents Sketcham, a new technique for decomposing program
sketches during synthesis by turning a function’s test suite into a mock that
a caller can invoke in place of that function, thereby allowing separate reasoning
about callers and callees. Sketcham gathers asserts from tests into a specifica-
tion for each function which it embodies as a Sketch model. We implemented
Sketcham as an additional pass with Sketch and evaluated it on a set of ten
benchmarks. Our rigorous evaluation strategy ensured at a confidence level of
95% that our measurements demonstrate performance gains of as much as 5x,
including one benchmark that otherwise timed out on Sketch. Based on these re-
sults, we believe that automatically generating mocks from tests with Sketcham
is a promising new approach for achieving modular synthesis.
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