
Balancing Automation and Control for
Formal Verification of Microprocessors

Shilpi Goel, Anna Slobodova(B), Rob Sumners, and Sol Swords

Centaur Technology, Inc., Austin, TX, USA
{shilpi,anna,rsumners,sswords}@centtech.com

Abstract. Formal methods are becoming an indispensable part of the
design process in software and hardware industry. It takes robust tools
and proofs to make formal validation of large scale projects reliable.
In this paper, we will describe the current status of formal verifica-
tion at Centaur Technology. We will explain our challenges and our
methodology—how various proofs and verification artifacts are intercon-
nected and how we keep them consistent over the duration of a project.
We also describe our main engine—a powerful symbolic simulator with
rewriting capabilities that is integrated in a theorem prover and proven
correct.

Keywords: Hardware verification · Microprocessor verification ·
Microcode verification · Formal methods · ACL2 · Symbolic
simulation · Decision procedures

1 Introduction

The discussion of Formal Verification (FV) of software and hardware three
decades ago was mostly about case studies or proofs of concept that required
a lot of manual effort by researchers. Since then, FV has taken a transforma-
tional journey that has resulted in highly automated tools—equivalence checkers,
model checkers, SMT solvers, and theorem provers. Large scale formal verifica-
tion projects were first reported by hardware companies around ten years ago,
e.g. Intel [28], IBM [36], ARM [34], and Centaur Technology [18,37]. Success sto-
ries of FV at software development companies followed. To name just a few, see
Peter O’Hearn’s keynote at PLDI 2020 conference about incorrectness logic and
static analysis his group applies at Facebook [30], David Dill’s keynote at CAV
2020 about the Libra project at Facebook [19] and their use of the Move Prover
[44], or the invited talk by Byron Cook at CAV 2018 about the application of
formal methods at Amazon Web Services [16]. Formal methods are becoming
a reliable and indispensable part of the design process in the commercial soft-
ware and hardware industries. This newly elevated position of formal verification
brings new responsibilities for those that develop tools and methods and those
who build proofs. FV teams face various challenges:

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 26–45, 2021.
https://doi.org/10.1007/978-3-030-81685-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_2

Balancing Automation and Control for FV of Microprocessors 27

• Tools and libraries used by FV teams are expected to be reliable and main-
tainable.

• FV teams get involved much sooner in a project cycle, often starting with an
incomplete design, and they are expected to give feedback quickly.

• Designs under FV scrutiny are being continuously changed by several design-
ers at a time.

• Specifications change during the process as designers get feedback from back-
end tools, or due to the changes in the target market.

• The scope and depth of proofs change as development continues.
• An FV team might be working on several proliferations of a project with

overlapping schedules.

These challenges can only be solved by building robust expandable proofs. In
this paper, we will describe the approach taken by our FV team at Centaur Tech-
nology. Centaur is a relatively small company, of about one hundred employees,
that designs x86 compatible microprocessors, focusing on the low cost, low power
market. It might surprise many that our formal verification tools are based on a
theorem prover. This is only possible because the theorem prover we use, ACL2
[8], has been designed with industrial applications in mind [24]. ACL2 has been
successfully used not only at our company but also at many others: e.g. ARM,
AMD [35], IBM [36], Rockwell-Collins [22], and Oracle [32]. All our proofs are
done within the ACL2 system. ACL2 is used to write specifications, models,
tools, and tests, as well as to generate documentation. Two features of ACL2
that are crucial to our work are fast execution and extensibility. Our x86 model
[20] is not only one of most complete of its kind, but is capable of executing
application programs at a speed of around 3 million instructions per second.

We will start with a brief description of the ACL2 system and the features
that make it a good choice for a verification framework (Sect. 2). The reflective
features of ACL2 allow us to build verified tools within the system. One such tool
is FGL [39], our symbolic simulator equipped with rewriting capabilities. FGL
is completely integrated into ACL2 as a verified clause processor. It provides
a desirable balance between automation and user guidance. We will describe
its mechanism in detail in Sect. 4. We also explain its usability as a highly pro-
grammable solver that is capable of proving complex conjectures about Register-
Transfer Level (RTL) design and microcode in Sect. 3. FGL and its use within
our framework are primary contributions of the work presented in this paper.
The challenges enumerated above are illustrated with the process of verifica-
tion for a single x86 instruction. We explain the complex interconnection of the
various parts of the proofs, and describe how they are built and maintained.

2 Our FV Tools

All formal verification at Centaur is done within the framework of ACL2 [8].
ACL2 is an untyped language (a subset of Common Lisp) and a theorem prover
that supports first-order logic as expressed in this language. ACL2 also has

28 S. Goel et al.

some limited support for higher-order style definitions [29]. ACL2 is an open
source software project that has an active community contributing to an exten-
sive library of proofs and utilities. Centaur has contributed to many libraries that
support hardware verification, including support for translating Verilog and Sys-
tem Verilog to ACL2 expressions [7,10] and libraries that support bit operations.
ACL2 provides an interface through which it can be connected to trusted tools
such as SAT solvers. There is also an integration of Z3 in ACL2 [5] and an
interface to the ABC model checker [1,14].

Besides interfaces to trusted tools, ACL2 has a mechanism for extending its
reasoning by admitting verified clause-processors [2]. We use this feature in sev-
eral ways, notably for SVL [43], a routine that automates verification of multipli-
ers, and for FGL, the core tool that provides automation for our microoperation
execution and microcode proofs.

FGL, briefly, is a term rewriter geared toward transforming expressions act-
ing on fixed-sized data into Boolean formulas. For example, a specification for an
x86 instruction may be written in high-level ACL2. Processing a call of this spec-
ification function on variable arguments in FGL yields a result that expresses
each of the bits of the writeback data, flags, etc., as a Boolean formula (rep-
resented in an and-inverter graph) whose inputs are the symbolic bits of the
input variables. Similarly, FGL processing of the ACL2 model of the microcoded
implementation for that instruction yields Boolean formula representations of
the implementation’s outputs. Equivalence checking these two sets of Boolean
formulas is then sufficient to show that the implementation result matches the
specification. We describe the FGL system in more detail in Sect. 4, showing
how it transforms terms into hybrid term/Boolean-function objects and how its
behavior may be programmed with rewrite rules.

3 Challenges of Verifying a Single x86 instruction

An intuitive notion of the functional correctness of a microprocessor is that any
sequence of bytes decoded as instructions either executes correctly or leads to
an exception if byte sequence is illegal. For the x86 instruction set, parsing and
decoding a sequence of bytes is a complex process due to the many instruction
formats with varying lengths and field types. The Intel 64 and IA-32 Instruc-
tion Set Architecture (ISA) is defined by the Software Developer’s Manuals [27],
which have thousands of pages describing the expected impact of every instruc-
tion on the state of the machine. It is a living and growing specification, with new
instructions and variants added constantly. The architectural specification does
not dictate how the ISA is supposed to be implemented. Various implementation-
specific choices, collectively called the microarchitecture, include:

– how memory is organized
– how an instruction is decoded into a sequence of microoperations
– the set of microoperations implemented in hardware
– the throughput and latency of microoperations and instructions

Balancing Automation and Control for FV of Microprocessors 29

and various others features of the microprocessor. In our previous work [21],
we described what it means for an x86 instruction to be decoded and executed
correctly and how our proofs capture this property. For illustrative purposes, we
use the same example that was described in that work. Table 1 describes the x86
double-precision shift right instruction SHRD and Table 2 shows the microopera-
tions that implement it1. In this paper, we will recall the individual steps of the
verification with a different purpose—to discuss the challenges in each step and
how we deal with them. In particular, we will focus on increasing the automation
and reducing the time required of engineers to catch and debug problems while
maintaining the proofs.

In the process of verification, we refer to two sets of formal specifications:
the architectural specification of x86 [20] and a microarchitectural specification,
which is a proprietary IP of Centaur and unique to each project. We refer to the
former as the x86 model and the latter as the microcode model. Both of these
models are written in ACL2 following an interpreter-style operational semantics
approach. The x86 model includes the specification of x86 instructions that oper-
ate on the ISA state, and analogously, the microcode model includes the specifi-
cations of microoperations that operate on the microarchitectural state. Thanks
to the high execution speed of the x86 model, it can be validated by running
extensive code. The microcode model is directly compared to the RTL implemen-
tation. In addition, for data-intensive operations like floating-point arithmetic,
we have the ability to run our models against existing x86 hardware from Intel
and AMD. Again, the efficient execution of ACL2 code is crucial for the valida-
tion of these models.

Our verification is done on the Register-Transfer Level (RTL) of microproces-
sor design. We have two goals: to confirm that the RTL behaves as specified by
our microarchitectural specification and to show that it implements instructions
correctly with respect to our architectural specification.

Table 1. SHRD–-Double Precision Shift Right: irrelevant fields elided

Opcode Instruction Description

REX.W + 0F AC /r ib SHRD r/m64, r64, imm8 Shift r/m64 to right
imm8 places while
shifting bits from r64
in from left

3.1 Front-End and Microcode Verification

The front-end of a microprocessor fetches, decodes, and then translates a
sequence of bytes into a sequence of microoperations. For a modern x86 pro-
cessor, this is one of the more complicated parts of the design. Writing and

1 Note that this is not the actual implementation of SHRD in our current design.

30 S. Goel et al.

Table 2. SHRD RCX, RDX, imm8: a concrete run

Initial values RDX := 0x1122_3344_5566_7788
RCX := 0x0123_4567_89AB_CDEF
imm8 := 16

Expected values RDX := 0x1122_3344_5566_7788
RCX := 0x7788_0123_4567_89AB

UOPs from front-end Concrete Run & Description
MOVSX G2, RCX
(SSZ: 64; DSZ: 64)

G2 ← 0x0123_4567_89AB_CDEF
Move RCX to internal register G2

MOVZX G3, <imm8>
(SSZ: 8; DSZ: 64)

G3 ← 16
Move immediate to internal register G3

UOPs in ROM Concrete Run & Description
AND G3, G3, 63
(SSZ: 8; DSZ: 64)

G3 ← 16
Mask immediate operand

MOV G10, -1
(SSZ: 64; DSZ: 64)

G10 ← 0xFFFF_FFFF_FFFF_FFFF
Move -1 to internal register G10

JE G3, 0, ent_nop
(SSZ: 16; DSZ: 16)

No jump taken
Jump to routine ent_nop if G3 == 0

SUB G5, 0, G3
(SSZ: 32; DSZ: 32)

G5 ← 0xFFFF_FFF0; ZF ← 0
Store -G3 in internal register G5;
clear the zero flag because result is non-zero

SHR<!ZF> G10, G10, G5
(SSZ: 64; DSZ: 64)

G10 ← 0xFFFF
Shift G10 right by (G5 & 63) if ZF == 0

AND<ZF> G10, G10, 0
(SSZ: 64; DSZ: 64)

G10 ← 0xFFFF
Set G10 to 0 if ZF == 1

AND G6, RDX, G10
(SSZ: 64; DSZ: 64)

G6 ← 0x7788
Store (RDX & G10) in internal register G6

SHR G7, G2, G3
(SSZ: 64; DSZ: 64)

G7 ← 0x0000_0123_4567_89AB
Store (G2 » G3) in G7

SHL G2, G7, G3
(SSZ: 64; DSZ: 64)

G2 ← 0x0123_4567_89AB_0000
Store (G7 « G3) in G2

OR G2, G2, G6
(SSZ: 64; DSZ: 64)

G2 ← 0x0123_4567_89AB_7788
Store (G2 | G6) in G2

ROR G7, G2, G3
(SSZ: 64; DSZ: 64)

G7 ← 0x7788_0123_4567_89AB
Rotate G2 right by G3 and store result in G7

OR RCX, G7, G7
(SSZ: 64; DSZ: 64)

RCX ← 0x7788_0123_4567_89AB
Store the result of G7 | G7 in RCX

maintaining a formal specification for it would be impractical. The readability
and complexity of such a specification would be similar to that of the implemen-
tation itself. How, then, do we go about its verification? We have one methodol-
ogy to verify the decoding of byte sequences into legal/illegal instructions (with
appropriate exceptions), and another one to show that legal instructions are
implemented correctly via microoperations.

Balancing Automation and Control for FV of Microprocessors 31

Listing 1.1. SHRD entry in inst.lst
(xINST "SHRD"

(OP :OP #xFAC)
(ARG :OP1 '(:MODR/M.R/M :GPR :MEM)

:OP2 '(:MODR/M.REG :GPR)
:OP3 '(:IMM8))

'(X86 -SHLD/SHRD)
'((:UD (UD-LOCK -USED))))

For illegal instructions, we make sure that all sequences of bytes that do
not decode into a sequence of legal instructions are recognized as illegal and
we verify that an appropriate exception is signaled. This is done by simulating
the front-end on a symbolic sequence of bytes and proving that any input that
does not map to a legal opcode (as defined by the decode specification in our
x86 model) produces an exception. The decode specification in the x86 model
relies heavily on inst.lst—a data structure defined by us that captures all
the information needed to decode every x86 instruction. The initial version of
inst.lst was mechanically extracted from the Intel manuals (Chaps. 3–5, Vol.
2) [27] by parsing the tables in the description pages of each instruction and
transforming the contents into an ACL2-readable format. For instance, for the
implementation in Table 2, the relevant entry in the Intel manuals is in Table 1
and that in inst.lst is in Listing 1.1. Since then, inst.lst has been inspected,
enhanced, and validated against internal and external x86 decoders.

Next we focus on our process for verifying legal instructions. For each instruc-
tion, our goal is to prove that for any starting machine state and for any
byte sequence representing a legal invocation of that instruction in that state,
the front-end produces a sequence of microoperations which, when run on our
microcode model, produce the same results as the instruction run on our x86
model2. To prove this, we simulate the front-end to generate the correspond-
ing sequence of microoperations. Using FGL, we then prove that the sequence
implements the instruction as defined by our x86 specification. FGL symboli-
cally processes the sequence of microoperations as executed on our microcode
model, resulting in a symbolic machine state where the bits of the written reg-
isters are represented as Boolean formulas in terms of the values read from the
initial state. It likewise processes the instruction specification, reducing it to
Boolean formulas as well. We can then show by Boolean equivalence checking
that the front-end-generated sequence of microoperations has the same effect on
the state as the x86 instruction specification. We discuss the process of symbolic
simulation of microcode by FGL in Sect. 4. This FGL proof confirms that the
front-end’s operation is correct for this particular instruction.

This correctness has two caveats. First, it assumes that the individual micro-
operations are correctly implemented, i.e., in accordance with their specifica-
tions in our microcode model. Second, in the case of out-of-order processors,
if the microoperations are executed in a different order, that sequence needs
to be compared to the sequence generated by the front-end. Currently, we can
2 Note that the microcode model is a proprietary formal model of the microarchitecture

implemented by the design. Its validation is discussed later.

32 S. Goel et al.

ensure only the former—for most microoperations, we have proved that their
implementations in the processor’s execution units matches their behavior in
our microcode model; we discuss this further in Sect. 3.2. However, the latter—
the correctness of reordering of the microoperations—is work planned for the
future.

There is another part to the verification story. The front-end generates only
sequences of microoperations of a limited length. Some instructions are complex
and require much longer sequences (e.g. instructions performing transcendental
or cryptographic functions). For these instructions, the sequence of microopera-
tions generated by the front-end is just the beginning of the microcode program.
The rest is stored in a ROM and the front-end generates the entry-point of this
code. That means our verification has to account for those microcode routines.

ROM instructions are more complex than microoperations and they may
also be compressed in order to save valuable ROM space. As in the front-end,
the specification of this compression and decoding of ROM instructions into
sequences of microoperations is complex and also changes during the design
process. Even if we could define it formally, the maintenance of such a specifica-
tion would be very time consuming. Instead, we do the same trick as with the
front-end—we symbolically simulate the part of the design that fetches ROM
instructions and translates them into a sequence of microoperations. The rest
is done similarly as for the sequence of operations generated by the front-end.
These proofs implicitly verify the correctness of fetching from ROM and ROM
instruction translation. We call this implicit verification because we do not have
an explicit specification of the translation and fetching. However, we do have
formal specifications of the instructions implemented by the microcode. There-
fore, the proof of correctness of the instructions implies the correctness of the
underlying design, including ROM fetching and translation. In other words, we
can verify some parts of the design as black-boxes, without knowing exactly
how they work, by reasoning about the overall observable effect on the machine
state. The main advantage of this type of verification of both the front-end and
microcode translator is that the maintenance of the proofs does not require
either deep understanding of the design or writing and maintaining cumbersome
specifications.

The microcode sequences generated from x86 instructions that we encoun-
tered so far were in the style of straight-line code. We do not expect this to be
the case for all of them. In the past, we worked on some microcode stored in
ROM that served other purposes [18]. This code had loops and jumps between
loops and we were able to do invariant-style proofs. Our main problem at that
time was that the proofs were not robust enough and very hard to maintain. Now
we are in a much better position, having FGL and a methodology that keeps
the microcode model in sync with the design. Hence, we are optimistic about
our ability to bring the verification of most, if not all, legal x86 instructions to
completion.

Balancing Automation and Control for FV of Microprocessors 33

Finally, we note that in our previous work [21], we used GL—the predecessor
of FGL—as our core verification tool. The benefits of switching to FGL have
been considerable. GL had limited support for term rewriting, as a result of
which symbolic simulation of the microcode model was difficult and debugging
failed proof attempts even more so. As such, instead of programming GL to
deal with symbolic machine states, we usually used ACL2’s rewriter to “open
up” the microcode model and played to GL’s strengths by using it for the final
equivalence proof that often required non-trivial arithmetic reasoning. In other
words, we obtained ACL2 formulas corresponding to the written registers in
terms of the values in the initial microcode state, and then used GL to prove
that those formulas were equivalent to our specification functions. FGL easily
allows us to do these tasks (symbolic simulation and equivalence checking) along
with others within a common environment and thereby reduces overhead in our
methodology.

3.2 Verification of Execution Units

Everything that was said in Sect. 3.1 relies on the assumption that our microcode
model is correct. Parts of that model—front-end decoding and ROM instruction
fetch and translate—are implicitly verified. The other part, definitions of micro-
operations that form the base of the model, were explicitly defined in ACL2 and
need to be validated. A large portion of our work lies in the proofs that confirm
that RTL executes the microoperations in compliance with those specifications.
In order to achieve that, we build a formal model of the respective RTL module
[7], unroll it with respect to the latencies of the microoperations to be verified
[6] and check conformance with the specification using FGL.

These microoperations are executed in various units, the number, timing, and
organization of which differs based on the specific microarchitecture. We might
have separate floating-point add and floating-point multiply units, or one unit
that executes both. There might be a unit that implements string operations,
another that implements integer operations, and yet another one devoted to
SIMD operations, etc. The scope of proofs that confirm correctness of execution
of microoperations is dictated by the capacity of the tools we use. During the
first years of FV at Centaur, we limited the proof for each microoperation to
the specific unit where it was executed [25,26,37]. Since then, improvements
to our RTL modeling and symbolic simulation (i.e., FGL) allow us to do the
proofs in the scope of the module containing all those units (we refer to that
module as the execution module or EXE) [21]. Migration to a higher scope has
a huge advantage for the stability of the proofs. First, proofs are robust with
respect to the changes of the interfaces of submodules in EXE. For instance, when
an interface of a floating-point sub-unit changes to accommodate extra control
signals that simplify its logic, very likely the change is transparent to the input-
output behavior of EXE and will not effect our proofs. Second, if timing of an
internal unit changes, but overall timing of the EXE module does not, that is
transparent to the proofs.

34 S. Goel et al.

Having all microoperation proofs in the same scope has another advantage—
we can build just one formal model of the RTL, do one unrolling to the maximum
latency, and store it as a constant that can be shared and loaded by individual
proofs. A review of the assumptions about the interface and the maintenance of
the assumptions is also simplified when all the proofs are done with respect to
one module.

3.3 Regressions

Regressions have become an indispensable part of the continuous integration.
There are several reasons why we need to re-run our proofs regularly. Since
we start to build our proofs early in the design process, design changes occur
regularly and can introduce bugs that we need to catch. But proofs can be
broken not only due to changes in the design but also because of changes in
the specifications, tools, and libraries. While the ISA specification is relatively
stable, the microarchitecture specification might change during the project as
a result of feedback from back-end tools or better ideas from the designers.
Proofs might also change as the design becomes more mature and we add more
thorough checks. While the core ACL2 theorem prover is very stable, ACL2
libraries are growing and may be modified by developers outside our team. All
of these verification artifacts are tightly interconnected and regressions ensure
that we keep them consistent.

When a proof of the correctness of a microoperation fails, there are several
possible reasons:

– There is a bug in the RTL design.
– There was a change in the design (interface or timing) that our proofs need

to take into account.
– The specification of the microoperation changed; e.g. some flags indicate a

new intended use, or a portion of the result became “don’t care”.

We need to investigate the reason for failure and either report a bug to
designers, adjust the proofs, or change the specification of the microoperation.

When we change the specification of a microoperation, the new definition
will then be used by our microcode proofs. If those fail, it may indicate that the
change affected some instruction implementations in an undesirable way. In other
cases, the failure might be a result of missing rewrite rules. Microcode proofs
might also fail due to the changes to front-end design or fetch and translate from
ROM that introduced a new bug.

Regressions can be scheduled for a specific frequency (daily, weekly, etc.),
run manually, or triggered by changes in the design, specification, or tool suite.
We use open-source tools like git and Jenkins, and ACL2-specific scripts that
compute dependencies on ACL2 files. Regressions also automatically generate
a documentation manual from our ACL2 proof scripts [17]. This documenta-
tion includes information about which proofs failed and which succeeded and
as the result of it, which microoperations and instructions are covered by the

Balancing Automation and Control for FV of Microprocessors 35

successful proofs. This keeps the documentation in sync with the design as well
as the proofs. We tag individual documentation topics to indicate their intended
audience; e.g., the General Audience tag is used when an overview of a verifica-
tion effort is presented, and the FV Audience tag is used when describing proof
strategies and verification tools.

4 FGL

Since FGL is the core proof engine used in our microcode and execution unit
proofs, we will describe here how it works and how it may be programmed.

FGL [4,39] is part of the ACL2 libraries and publicly available [9]. It is a
significant rewrite and extension of GL (“G in the Logic”) [38,41,42], which was
itself a rewrite and extension of the G System of Boyer and Hunt [13]. The idea
behind all of these is to recursively transform ACL2 terms into symbolic objects
that represent the values of these terms and that consist mostly of structures
containing Boolean function objects. When successful, the result of transforming
the body of a conjecture is a single Boolean function, which may be checked
for validity. The G System supported Boolean functions represented as binary
decision diagrams [15], and operated on symbolic input objects using symbolic
counterpart functions derived mechanically from function definitions. GL used
an interpreter to capture function behavior rather than translating definitions,
and added support for an and-inverter graph (AIG) representation for Boolean
functions along with links to external SAT solvers for resolving Boolean function
validity. Later changes in GL added preliminary support for rewrite rules and
termlike symbolic objects so as to allow for some abstraction.

FGL continues the trend toward user-definable rules displacing built-in
behavior. It is a rewriter at its core, so user-defined rewrite rules are the basis
of its reasoning system, rather than an add-on. Nevertheless, it comes with an
extensive library of rules that replicates the automation provided by GL. Rewrite
rules supported by FGL offer powerful capabilities such as programmable binding
of free variables and visibility into the syntax of the rewriting targets [39]. FGL
also replaces built-in primitive function symbolic counterparts with meta rules
similar in spirit to ACL2’s [23], which similarly allow directly programmable
manipulation of the syntax of objects but may also be added by users. FGL
adds support for incremental SAT, allowing multiple SAT checks of related for-
mulas to share learned clauses and heuristic information. It also allows global
simplification of the entire AIG using combinational circuit simplification meth-
ods. Both of these features may be invoked from within rewrite rules; e.g., if
the author of a rewrite rule judges that a hypothesis of the rule is unlikely to
be solved by rewriting alone, they may specify that incremental SAT should be
used to prove it.

Many other projects have also aimed to allow interactive theorem provers
to call on automatic decision procedures; too many such efforts exist to list
them all. In higher-order logic proof assistants, several tools collectively called
hammers translate queries into the language of an automated theorem prover

36 S. Goel et al.

Listing 1.2. Semantics of a machine instruction
(defun run -inst (inst st)

(let* ((instname (first inst))
(args (rest inst))
(x (first args))
(y (second args))
(ans (case instname

(const y)
(copy (get -st-reg y st))
(add (+ (get -st-reg x st)

(get -st-reg y st)))
(and (bitwise -and (get -st-reg x st)

(get -st-reg y st)))
(rshift (right -shift (get -st-reg y st)

(get -st-reg x st))))))
(set -st-reg x ans st)))

Listing 1.3. Semantics of a straight-line code block
(defun run -prog (insts st)

(if (atom insts)
st

(let ((st (run -inst (first insts) st)))
(run -prog (rest insts) st))))

and then translate the emitted proof back into a form acceptable by the original
prover [12]. Several decision procedure integrations have also been carried out
in ACL2. Reeber and Hunt [33] identified a decidable subclass of ACL2 list
formulas and contributed a decision procedure that transforms such a formula
into a SAT problem. Peng and Greenstreet [31] process a subclass of ACL2
formulas including integer and rational arithmetic, uninterpreted functions, and
algebraic data structures, converting such problems to SMT queries. FGL differs
by focusing on the efficient integration of user-extendible term rewriting and
Boolean simplification and decision procedures.

4.1 Example

We describe how FGL works at a high level by running through an example,
the code of which is publicly available [40]. We define a simple machine model
(Listings 1.2, 1.3) that has 16 32-bit registers and a few instructions defined,
and use those instructions to implement (in straight-line code) an optimized
routine to count the number of bits set in a 32-bit input (Listing 1.4), similar to
implementations in Bit Twiddling Hacks [11]. We also define a straightforward
ACL2 specification count-bits for the bit count operation (Listing 1.5). We
prove that for any initial state, if we run this program on the machine, then the
resulting state has its register 0 value equal to the count-bits of the value that
was in register 0 before running the program (Listing 1.6).

The invocation of def-fgl-thm in Listing 1.6 causes the FGL rewriter to be
applied to the conjecture. It begins by descending into the term and applying
rewrite rules to subterms from the inside out. In many cases, these rules are just
the definitional formulas of the functions we have introduced; for example, the
definitions of run-prog, run-inst, and count-bits are used as rewrite rules, so
that calls of these functions are replaced by their bodies. Rewriting the term

Balancing Automation and Control for FV of Microprocessors 37

Listing 1.4. BITCOUNT program listing
(defconst *bitcount*

'((copy 10 0) ;; copy the operand to regs 10 and 11
(copy 11 0)
(const 5 #x55555555) ;; set reg 5 to the mask
(and 10 5) ;; bitand the operand with the mask
(const 0 1) ;; set reg 0 to 1
(rshift 11 0) ;; right shift the operand by 1
(and 11 5) ;; mask the shifted operand
...
(const 0 #x003f)
(and 10 0) ;; mask the relevant bits of the result
(copy 0 10))) ;; move the result to reg 0.

Listing 1.5. count-bits specification function
(defun count -bits (x)

(if (or (not (integerp x)) (<= x 0))
0

(+ (nth -bit 0 x)
(count -bits (right -shift 1 x)))))

while opening such definitions effectively conducts a symbolic simulation of the
program and its specification. For some functions, it is preferable to avoid open-
ing the definitions and instead use rules that rely on particular properties to
simplify combinations of calls; for example, Listing 1.7 shows a rule that simpli-
fies a read of a write of the machine state’s register file.3

Rather than producing a new term as the result of rewriting each subterm,
the FGL rewriter produces hybrid structures we call symbolic objects that may
(like terms) contain function calls, variable references, and constants, but (unlike
terms) also may contain symbolic Booleans, represented by a reference into an
AIG defining a Boolean function, and symbolic integers, represented by a list
of references into the AIG giving the two’s-complement bits. Table 3 lists the
variants of symbolic objects.

In order to prove this conjecture, we aim for the result of rewriting the con-
jecture to be a symbolic Boolean, which can then be proved valid by encoding
its negation as a SAT problem. We therefore want to compute a Boolean for-
mula equivalent to the equal comparison of the specification and implementation
results. Working backwards from this goal, we can obtain this if we can repre-
sent the specification and implementation results as symbolic integers; the equal

Listing 1.6. Correctness theorem for BITCOUNT
(def -fgl -thm bitcount -implements -count -bits

(let* ((input (get -st-reg 0 st))
(final -st (run -prog *bitcount* st))
(result (get -st-reg 0 final -st)))

(equal result (count -bits input))))

3 Since ACL2 is an untyped language, functions have well-defined behavior even on ill-
typed inputs. The uses of zero-extend in this rule reflect the choice of the definitions
to coerce integers that don’t fit in the allotted space into well-typed values by zero-
extending them.

38 S. Goel et al.

Listing 1.7. Read-over-write rule for get-st-reg
(def -fgl -rewrite get -st-reg -of-set -st-reg

(equal (get -st -reg i (set -st-reg j v st))
(if (equal (zero -extend 4 i) (zero -extend 4 j))

(zero -extend 32 v)
(get -st-reg i st))))

Table 3. Symbolic object variants

– (g-boolean lit) represents a Boolean, t or nil, as an AIG literal, lit

– (g-integer lit0 lit1 . . .) represents an integer as a list of AIG literals giving the two’s-complement bits, least-significant first

– (g-concrete obj) represents the constant obj itself

– (g-apply fn args) represents a function application, where fn is a function symbol and args is a list of symbolic objects

– (g-var name) represents a variable named name

– (g-ite test then else) represents an if-then-else, where the three arguments are symbolic objects

– (g-cons car cdr) represents a cons pair, where the two arguments are symbolic objects

– (g-map tag alist) represents a table of key/value pairs with constant keys and symbolic values,

supporting fast lookups (see ACL2 documentation on fast alists [3])

comparison of these is the conjunction of the Boolean equivalences between all
the corresponding bits. Working further backwards, we’ll find that we can simi-
larly compute these values given the bits of the intermediate integer values from
which they are computed, etc., back to the original values that are components
of the free variables of the conjecture. That is, generally speaking, we wish to
represent every intermediate integer value as a symbolic integer. In the next
two sections we will describe how to extract Boolean variables from the initial
variables of the conjecture (Sect. 4.2) and how to build up Boolean formulas to
represent the bits of intermediate values (Sect. 4.3).

4.2 Extracting Boolean Variables

When rewriting a term in a Boolean context such as the test of an if expression,
FGL will coerce the rewritten result to a symbolic Boolean object. The symbolic
Boolean values of symbolic object types other than function calls and variables
are easy to determine; for example, integers are non-nil and therefore considered
true in ACL2. For function call and variable results, this coercion is accomplished
by assigning a Boolean variable to the object, either a fresh one—a new primary
input node in the underlying AIG— or an existing one when such an assignment
has already been recorded for that object. These Boolean variables along with
the constants t and nil are the base Boolean formulas. More complex formulas
are built up from these variables by processing of if terms and by low-level
meta-routines, introduced below.

The Boolean variables needed for the bitcount proof correspond to the bits
of the accessed registers of the initial machine state st. We introduce rewrite
rules that cause FGL to generate 32 Boolean variables for the bits of a 32-bit
register when that register is accessed, composing these into a symbolic integer.
The two rules involved are shown in Listing 1.8.

Balancing Automation and Control for FV of Microprocessors 39

Listing 1.8. Rules for generating Boolean variables for initial register values
(def -fgl -rewrite get -st-reg -generate -bits

(implies (syntaxp (fgl -object -case st :g-var))
(equal (get -st-reg n st)

(zero -extend 32 (hide -get -st-reg n st)))))

(def -fgl -rewrite zero -extend -const -width
(implies (syntaxp (integerp n))

(equal (zero -extend n x)
(if (or (not (integerp n))

(<= n 0))
0

(intcons (intcar x)
(zero -extend (1- n) (intcdr x)))))))

The FGL rewriter will try to apply the first rule, get-st-reg-generate-bits,
every time it encounters a call of get-st-reg, but due to its syntaxp hypoth-
esis it will immediately fail if st is not syntactically a variable. In the case of
the conjecture we’re attempting to prove, this ensures that the rule will only
apply to get-st-reg calls on the initial state. Such calls will be replaced by
the zero-extend term of the right-hand side. In that term, hide-get-st-reg is
an alias for get-st-reg; this avoids looping in the application of the rule. The
construction of the 32-bit vector of Boolean variables is then accomplished by
repeated application of the rule zero-extend-const-width. The functions intcar,
intcdr, and intcons used here to access or construct bits of an integer as if it
were a list of Booleans: intcar gets the Boolean value of the least-significant bit
(LSB), intcdr right-shifts by 1 to remove the LSB, and intcons adds a new LSB
to an integer, reversing the intcdr operation. The first argument to intcons is
recognized by FGL as a Boolean context, so the rewriter will introduce Boolean
variables corresponding to the terms that appear there, namely:

(intcar (intcdr . . . (intcdr (hide-st-get k st)) . . .))

The association of each such termlike object with the corresponding Boolean
variable is stored in a hash table. Each time a termlike object is found in a
Boolean context, it is looked up in the table; if it has an existing entry, the
corresponding Boolean variable is returned, and if not, a new Boolean variable
is generated and stored.

After generating the new Boolean variable, the intcons call becomes a new
symbolic integer that now includes that bit. The final value produced by the zero-
extend is therefore a symbolic integer consisting of 32 fresh Boolean variables. If
the same register were to be accessed again, the same process would occur except
that the objects associated with the Boolean variables would be recognized and
the same Boolean variables returned again.

4.3 Composing Boolean Functions

The most basic way in which a new Boolean formula is computed from a pre-
vious one during FGL’s rewriting process is by FGL’s built-in handling of if.
Specifically, if an if term occurs in which the two branches are both symbolic

40 S. Goel et al.

Listing 1.9. Bitwise AND implementation rule
(def -fgl -rewrite fgl -bitwise -and

(equal (bitwise -and x y)
(if (int -endp -check x-endp x)

(if (intcar x) (ifix y) 0)
(if (int -endp -check y-endp y)

(if (intcar y) (ifix x) 0)
(intcons (and (intcar x)

(intcar y))
(bitwise -and (intcdr x) (intcdr y)))))))

Boolean objects, the result is the Boolean if-then-else of the test formula and
the two branch formulas. This if-then-else formula is built in the AIG and a
reference to the resulting node is returned as the Boolean formula resulting from
the if. If the two branches are both integer values represented either as symbolic
integers or integer constants, then the result is a new symbolic integer, the bits
of which are the if-then-elses of the test with the corresponding bits from the
two branches.

As a simple example, the rule used to expand calls of bitwise-and is shown
in Listing 1.9. This rewrites a call of bitwise-and on a pair of symbolic integers,
producing a new symbolic integer in which each bit’s formula is the AND of the
corresponding bits of the inputs.

The rule applies to any call of bitwise-and. It first checks each of the inputs
with int-endp-check. This is true if it can be syntactically determined that the
input must be either −1 or 0—in particular, if the input’s symbolic integer
representation has only one bit. (The syntactic check works by binding its result
to the free variable x-endp introduced within the form. The technical details of
this rewriter feature are described elsewhere [39].) If this is true of either input,
then the result is based on the one relevant bit of that input (the intcar): if it is
true, then the input’s value is -1 and the result is the other input (coerced to an
integer value using ifix, which replaces non-integer values with 0); if false, then
the input’s value is 0 and therefore the result is too. In many cases, the intcar
value will be a (non-constant) Boolean formula; the result of this if is then a
new vector of Boolean formulas, each of which is the conjunction of the intcar
formula with the corresponding bit of the other input.

If the int-endp-check test is false on both inputs, then the rule creates the
first bit of the result by creating the and of the first bits of the two inputs. (In
ACL2, (and x y) is really shorthand for (if x y nil), so this is actually another
if merge operation.) It then makes another call of bitwise-and on the remaining
bits of the two inputs, which will cause another application of this rule; this
recurs until the bits of one of the inputs are exhausted.

The bitwise-and rule is a particularly simple example of how FGL can be
programmed to compute complex Boolean formulas, but designing and proving
these sorts of rules for other operations is a straightforward exercise in interactive
theorem proving. FGL also includes a library of such rules which the user can
safely extend with new rewrite rules as needed.

For some applications, the performance of stepping through iterative rules
such as these using the rewriter is insufficient. For these cases, FGL supports

Balancing Automation and Control for FV of Microprocessors 41

creating custom rewriting procedures analogous to ACL2’s metafunctions [23]
and invoking them via rules similar to ACL2’s meta rules. Metafunctions operate
directly on the syntactic forms to be rewritten—symbolic objects in FGL, terms
in ACL2. They return a resulting term (and substitution in FGL, though not
in ACL2) that is equivalent to the input object. To allow a metafunction to
be applied during rewriting, a meta rule is admitted, which requires proving a
theorem stating that the metafunction produces correct results. It is noteworthy
that FGL itself is proven in ACL2 to produce correct results even with user
extension via rewrite rules or custom rewriting procedures.

5 Conclusion

Over the past years, formal verification at Centaur has moved beyond its previous
focus on data-path proofs for arithmetic modules. Our verification projects have
expanded into the areas of front-end decoding and microcode, as well as the
implementations of a rich set of microoperations. We engage with the design
process in its early stages and maintain and expand our proofs throughout the
whole life cycle of the project. Over the years, our tools have been improved and
we have learned a few lessons.

We chose to use open-source tools and we are constantly contributing to
ACL2 libraries. The ACL2 community has a tested way of collaboration between
groups using git, peer reviewed commits, and a rich regression suite.

We write specifications that can be expanded and refined in response to
design and microarchitectural changes. When the design is incomplete, the spec-
ifications are still useful when augmented by relevant assumptions. When a
project requires additional flags or features, a modular style of specification
allows for appropriate changes. We try to avoid complex specifications like those
for the front-end decoder or ROM instruction decoder. These parts of the design
are implicitly verified during microcode verification.

Scheduled, triggered, and manual regressions are an important safeguard to
avoid breaking consistency among our proofs. They catch undesirable changes
in the specifications, tools, and design.

A key to ensuring stability of the proofs is their scope—the bigger the scope,
the more stable the proofs, because changes to interfaces of larger modules are
less frequent than changes at lower levels. The transition from unit to cluster-
level proofs led to substantially higher robustness and easier maintenance. This
has been possible due to improvements in the process of building our formal
models and enhancements in FGL. We also benefit greatly from enhancements
in modern SAT solvers.

We still have considerable work to do towards achieving our verification goals.
Some of these goals could be achieved with more man power, whereas for others
we do not have the right technology yet. There is a lot of microcode left to
be verified. We have not verified the mechanisms of out-of-order microoperation
scheduling, but we believe it is possible with our tools. We do not have a complete
methodology for verification of memory access instructions yet. Our plan is to
work on all these fronts.

42 S. Goel et al.

References

1. ACL2 Documentation: AIGNET-ABC-INTERFACE Interface to ABC. Accessed
April 2021. http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-
manual/?topic=AIGNET_AIGNET-ABC-INTERFACE

2. ACL2 Documentation: CLAUSE-PROCESSOR. Accessed April 2021. http://
www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_
CLAUSE-PROCESSOR

3. ACL2 Documentation: FAST-ALISTS. Accessed April 2021. http://www.cs.
utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_FAST-
ALISTS

4. ACL2 Documentation: FGL Bit-blasting Prover Framework. Accessed April
2021. https://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?
topic=FGL_FGL

5. ACL2 Documentation: SMTLINK Interface to Z3. Accessed April 2021. http://
www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=SMT_
SMTLINK

6. ACL2 Documentation: SV Hardware Verification Library. Accessed April
2021. http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?
topic=ACL2_SV

7. ACL2 Documentation: VL Verilog Toolkit. Accessed April 2021. http://www.cs.
utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_VL

8. ACL2 Home Page. Accessed April 2021. http://www.cs.utexas.edu/users/moore/
acl2

9. FGL Library in the ACL2 Community Books. Accessed April 2021. https://github.
com/acl2/acl2/tree/master/books/centaur/fgl

10. VL Verilog Toolkit. Accessed: April 2021. https://github.com/acl2/acl2/tree/
master/books/centaur/vl

11. Anderson, S.E.: Bit twiddling hacks. Accessed: April 2021. https://graphics.
stanford.edu/~seander/bithacks.html#CountBitsSetParallel

12. Blanchette, J., Kaliszyk, C., Paulson, L., Urban, J.: Hammering towards QED. J.
Formaliz. Reason. 9(1), 101–148 (2016). https://doi.org/10.6092/issn.1972-5787/
4593

13. Boyer, R.S., Hunt, Jr., W.A.: Symbolic simulation in ACL2. In: Proceedings of the
Eighth International Workshop on the ACL2 Theorem Prover and Its Applications,
ACL2 2009, pp. 20–24. ACM, New York (2009). https://doi.org/10.1145/1637837.
1637840

14. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_5

15. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992). https://doi.org/10.1145/
136035.136043

16. Cook, B.: Formal reasoning about the security of Amazon web services. In:
Chockler, H., Weissenbacher, G. (eds.) CAV 2018, Part I. LNCS, vol. 10981, pp.
38–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_3

17. Davis, J., Kaufmann, M.: Industrial-strength documentation for ACL2. In: Pro-
ceedings of the 12th International Workshop on the ACL2 Theorem Prover and
its Applications, ACL2 2014, Vienna, Austria, 12–13 July 2014, pp. 9–25 (2014).
https://doi.org/10.4204/EPTCS.152.2

http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=AIGNET_AIGNET-ABC-INTERFACE
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=AIGNET_AIGNET-ABC-INTERFACE
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_FAST-ALISTS
https://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=FGL_FGL
https://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=FGL_FGL
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=SMT_SMTLINK
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=SMT_SMTLINK
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=SMT_SMTLINK
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_SV
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_SV
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_VL
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_VL
http://www.cs.utexas.edu/users/moore/acl2
http://www.cs.utexas.edu/users/moore/acl2
https://github.com/acl2/acl2/tree/master/books/centaur/fgl
https://github.com/acl2/acl2/tree/master/books/centaur/fgl
https://github.com/acl2/acl2/tree/master/books/centaur/vl
https://github.com/acl2/acl2/tree/master/books/centaur/vl
https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1145/1637837.1637840
https://doi.org/10.1145/1637837.1637840
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.4204/EPTCS.152.2

Balancing Automation and Control for FV of Microprocessors 43

18. Davis, J., Slobodova, A., Swords, S.: Microcode verification – another piece of
the microprocessor verification puzzle. In: Klein, G., Gamboa, R. (eds.) ITP 2014.
LNCS, vol. 8558, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-08970-6_1

19. Dill, D.L.: Formal Verification of Libra Blockchain Smart Contracts. Recording of
the keynote (2020). https://www.youtube.com/watch?v=cYxxJU-Wt2U

20. Goel, S.: Formal Verification of Application and System Programs Based on a
Validated x86 ISA Model. Ph.D. thesis, Department of Computer Science, The
University of Texas at Austin (2016). http://hdl.handle.net/2152/46437

21. Goel, S., Slobodova, A., Sumners, R., Swords, S.: Verifying x86 instruction imple-
mentations. In: Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2020, pp. 47–60. Association for Comput-
ing Machinery, New York (2020). https://doi.org/10.1145/3372885.3373811

22. Greve, D., Wilding, M.: Evaluatable, high-assurance microprocessors. In: NSA
High-Confidence Systems and Software Conference (HCSS), Linthicum, MD,
March 2002. http://hokiepokie.org/docs/hcss02/proceedings.pdf

23. Hunt, W.A., Kaufmann, M., Krug, R.B., Moore, J.S., Smith, E.W.: Meta reasoning
in ACL2. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 163–
178. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868_11

24. Hunt, Jr., W.A., Kaufmann, M., Moore, J.S., Slobodova, A.: Industrial hardware
and software verification with ACL2. In: Verified Trustworthy Software Systems,
vol. 375. The Royal Society (2017). https://doi.org/10.1098/rsta.2015.0399 (Article
Number 20150399)

25. Hunt, W.A., Swords, S.: Centaur technology media unit verification. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 353–367. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4_28

26. Hunt, Jr., W.A.A., Swords, S., Davis, J., Slobodova, A.: Use of formal verification
at centaur technology. In: Hardin, D. (ed.) Design and Verification of Microproces-
sor Systems for High-Assurance Applications, pp. 65–88. Springer, Boston (2010).
https://doi.org/10.1007/978-1-4419-1539-9_3

27. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Man-
ual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4, November,
2020, Order Number: 325462–070US. https://software.intel.com/en-us/articles/
intel-sdm

28. Kaivola, R., et al.: Replacing testing with formal verification in Intel® CoreTM

i7 processor execution engine validation. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 414–429. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4_32

29. Kaufmann, M., Moore, J.S.: Limited second-order functionality in the first-order
setting. J. Autom. Reason. 64, 391–422 (2020). https://doi.org/10.1007/s10817-
018-09505-9

30. O’Hearn, P.W.: Formal reasoning and the hacker way (keynote). In: Krishnan, P.,
Reichenbach, C. (eds.) Proceedings of the 9th ACM SIGPLAN International Work-
shop on the State Of the Art in Program Analysis, SOAP@PLDI 2020, London,
UK, 15 June 2020, p. 1. ACM (2020). https://doi.org/10.1145/3394451.3401953

31. Peng, Y., Greenstreet, M.R.: Smtlink 2.0. In: Electronic Proceedings in Theoretical
Computer Science, vol. 280, pp. 143–160, October 2018. https://doi.org/10.4204/
eptcs.280.11

32. Rager, D.L., Ebergen, J., Nadezhin, D., Lee, A., Chau, C., Selfridge, B.: Formal
Verification of Division and Square Root Implementations, an Oracle Report, pp.
149–160. ACM, IEEE, October 2016

https://doi.org/10.1007/978-3-319-08970-6_1
https://doi.org/10.1007/978-3-319-08970-6_1
https://www.youtube.com/watch?v=cYxxJU-Wt2U
http://hdl.handle.net/2152/46437
https://doi.org/10.1145/3372885.3373811
http://hokiepokie.org/docs/hcss02/proceedings.pdf
https://doi.org/10.1007/11541868_11
https://doi.org/10.1098/rsta.2015.0399
https://doi.org/10.1007/978-3-642-02658-4_28
https://doi.org/10.1007/978-1-4419-1539-9_3
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/s10817-018-09505-9
https://doi.org/10.1007/s10817-018-09505-9
https://doi.org/10.1145/3394451.3401953
https://doi.org/10.4204/eptcs.280.11
https://doi.org/10.4204/eptcs.280.11

44 S. Goel et al.

33. Reeber, E., Hunt, W.A.: A SAT-based decision procedure for the subclass of unrol-
lable list formulas in ACL2 (SULFA). In: Furbach, U., Shankar, N. (eds.) IJCAR
2006. LNCS (LNAI), vol. 4130, pp. 453–467. Springer, Heidelberg (2006). https://
doi.org/10.1007/11814771_38

34. Reid, A., et al.: End-to-end verification of processors with ISA-formal. In: Chaud-
huri, S., Farzan, A. (eds.) CAV 2016, Part II. LNCS, vol. 9780, pp. 42–58. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_3

35. Russinoff, D.M.: Formal Verification of Floating-Point Hardware Design: A Math-
ematical Approach. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
95513-1

36. Sawada, J., Sandon, P., Paruthi, V., Baumgartner, J., Case, M., Mony, H.:
Hybrid verification of a hardware modular reduction engine. In: Bjesse, P., Slo-
bodova, A. (eds.) Proceedings of Formal Methods in Computer-Aided Design
(FMCAD). ACM/IEEE CEDA (2011). https://www.cs.utexas.edu/users/hunt/
FMCAD/FMCAD11/

37. Slobodova, A., Davis, J., Swords, S., Hunt, Jr., W.A.: A flexible formal verification
framework for industrial scale validation. In: Proceedings of the 9th IEEE/ACM
International Conference on Formal Methods and Models for Codesign (MEM-
OCODE), pp. 89–97. IEEE/ACM, Cambridge (2011). https://doi.org/10.1109/
memcod.2011.5970515

38. Swords, S.: Term-level reasoning in support of bit-blasting. In: Slobodova, A., Hunt,
Jr., W.A. (eds.) Proceedings 14th International Workshop on the ACL2 Theorem
Prover and its Applications, Austin, Texas, USA, 22–23 May 2017. Electronic Pro-
ceedings in Theoretical Computer Science, vol. 249, pp. 95–111. Open Publishing
Association (2017). https://doi.org/10.4204/EPTCS.249.7

39. Swords, S.: New rewriter features in FGL. In: Passmore, G., Gamboa, R. (eds.)
Proceedings of the Sixteenth International Workshop on the ACL2 Theorem Prover
and its Applications, Worldwide, Planet Earth, 28–29 May 2020. Electronic Pro-
ceedings in Theoretical Computer Science, vol. 327, pp. 32–46. Open Publishing
Association (2020). https://doi.org/10.4204/EPTCS.327.3

40. Swords, S.: FGL example. Accessed April 2021. https://github.com/solswords/fgl-
example

41. Swords, S., Davis, J.: Bit-blasting ACL2 theorems. In: Hardin, D., Schmaltz, J.
(eds.) Proceedings 10th International Workshop on the ACL2 Theorem Prover and
its Applications, Austin, Texas, USA, 3–4 November 2011. Electronic Proceedings
in Theoretical Computer Science, vol. 70, pp. 84–102. Open Publishing Association
(2011). https://doi.org/10.4204/EPTCS.70.7

42. Swords, S.O.: A Verified Framework for Symbolic Execution in the ACL2 Theorem
Prover. Ph.D. thesis, University of Texas at Austin, December 2010. http://hdl.
handle.net/2152/ETD-UT-2010-12-2210

43. Temel, M., Slobodova, A., Hunt, W.A.: Automated and scalable verification of inte-
ger multipliers. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp.
485–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_23

44. Zhong, J.E., et al.: The move prover. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020,
Part I. LNCS, vol. 12224, pp. 137–150. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-53288-8_7

https://doi.org/10.1007/11814771_38
https://doi.org/10.1007/11814771_38
https://doi.org/10.1007/978-3-319-41540-6_3
https://doi.org/10.1007/978-3-319-95513-1
https://doi.org/10.1007/978-3-319-95513-1
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD11/
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD11/
https://doi.org/10.1109/memcod.2011.5970515
https://doi.org/10.1109/memcod.2011.5970515
https://doi.org/10.4204/EPTCS.249.7
https://doi.org/10.4204/EPTCS.327.3
https://github.com/solswords/fgl-example
https://github.com/solswords/fgl-example
https://doi.org/10.4204/EPTCS.70.7
http://hdl.handle.net/2152/ETD-UT-2010-12-2210
http://hdl.handle.net/2152/ETD-UT-2010-12-2210
https://doi.org/10.1007/978-3-030-53288-8_23
https://doi.org/10.1007/978-3-030-53288-8_7
https://doi.org/10.1007/978-3-030-53288-8_7

Balancing Automation and Control for FV of Microprocessors 45

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Balancing Automation and Control for Formal Verification of Microprocessors
	1 Introduction
	2 Our FV Tools
	3 Challenges of Verifying a Single x86 instruction
	3.1 Front-End and Microcode Verification
	3.2 Verification of Execution Units
	3.3 Regressions

	4 FGL
	4.1 Example
	4.2 Extracting Boolean Variables
	4.3 Composing Boolean Functions

	5 Conclusion
	References

