
Protecting the Privacy of Voters: New
Definitions of Ballot Secrecy for E-Voting

Ashley Fraser(B) and Elizabeth A. Quaglia

Information Security Group, Royal Holloway, University of London, London, UK
{Ashley.Fraser.2016,Elizabeth.Quaglia}@rhul.ac.uk

Abstract. Protecting the privacy of voters is a basic requirement of any
electronic voting scheme, and formal definitions can be used to prove that
a scheme satisfies privacy. In this work, we provide new game-based def-
initions of ballot secrecy for electronic voting schemes. First, we propose
an intuitive definition in the honest model, i.e., a model in which all elec-
tion officials are honest. Then, we show that this definition can be easily
extended to the malicious ballot box setting and a setting that allows
for a distributed tallier. In fact, to the best of our knowledge, we provide
the first game-based definition of ballot secrecy that models both a mali-
cious ballot box and a malicious subset of talliers. We demonstrate that
our definitions of ballot secrecy are satisfiable, defining electronic voting
scheme constructions which we prove satisfy our definitions. Finally, we
revisit existing definitions, exploring their limitations and contextualis-
ing our contributions to the field.

Keywords: E-voting · Ballot secrecy · Game-based definitions

1 Introduction

Voter privacy ensures that a voter can participate in democratic processes with-
out risk of intimidation or blackmail, and is regarded as a basic requirement
in many elections.1 At a fundamental level, voter privacy is defined as ballot
secrecy, which intuitively states that a voter’s vote remains secret throughout
the election, except when the result of the election reveals the vote, for exam-
ple, in the event of a unanimous result. Stronger notions of privacy exist [23],
including receipt-freeness and coercion-resistance but, in this work, we restrict
discussion to the basic requirement of ballot secrecy.

Rigorous definitions of privacy have been proposed in the literature, the most
common of which are game-based definitions. Early game-based definitions [4,5]
follow the well-established route of indistinguishability experiments (such as, for

1 Though the focus of this paper is privacy, another basic property of e-voting schemes
is verifiability, by which any interested party can check that the result of the election
is computed correctly. For a full discussion of this notion, including formal definitions,
the interested reader can consult [18].

c© Springer Nature Switzerland AG 2021
O. Dunkelman et al. (Eds.): SAC 2020, LNCS 12804, pp. 670–697, 2021.
https://doi.org/10.1007/978-3-030-81652-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81652-0_26&domain=pdf
https://doi.org/10.1007/978-3-030-81652-0_26

Protecting the Privacy of Voters 671

example, IND-CPA for public key encryption [27]). That is, an adversary must
distinguish two different election views, when provided with a result computed
with respect to the viewed election. Informally, we refer to this approach as the
Benaloh approach, recognising the fact that Benaloh established this approach
in early works [4,5].2 The Benaloh approach is utilised in a number of ballot
secrecy definitions [10,11,19,30]. However, to address the fact that the Benaloh
approach limits the class of voting result functions that can be considered (see
Sect. 5), a separate line of research departed from this approach, focusing instead
on definitions that provide an adversary with a view of a ‘real’ election or a ‘fake’
election [7–9,16,20]. Here, the adversary is always provided with a tally com-
puted with respect to the ‘real’ election. In particular, this approach is favoured
by BPRIV [7], a highly-regarded definition of ballot secrecy. More generally, the
majority of game-based definitions of ballot secrecy position themselves in the
so-called honest model. That is, they consider all election officials to be trusted.
With respect to formal definitions, the consideration of the malicious setting is
a young area of research and has focused on a malicious ballot box [11,19,20].

1.1 Our Contributions

New Definitions of Ballot Secrecy. In this work, we revisit the approach taken
in [5] and present new definitions of ballot secrecy. We choose this approach
due to the well-established, intuitive nature of indistinguishability experiments.
Moreover, though we recognise that the Benaloh approach limits the class of
result functions considered, an issue that we explore in Sect. 3 and Sect. 5, the
Benaloh approach, and our definitions specifically, provides a number of advan-
tages over existing definitions, which we discuss below.

First, we define BS, a definition of ballot secrecy in the honest model (Sect. 3).
BS builds upon [5], capturing several additional functionalities. First of all, BS
models e-voting schemes with a registration phase. That is, eligible voters are
provided with a credential that is required to cast a ballot. Voter registration is
not modelled in [5] or subsequent, related, definitions [10,11] and, hence, BS is
the first definition that follows this approach to model voter registration. This
reflects how advanced e-voting schemes are modelled, for example, Belenios [2,
17] and Civitas [14,15]. Secondly, BS allows for adaptive corruption of voters.
Previous game-based definitions that model registration of voters are limited to
static corruption of voters only [16,19] or allow for voters to cast only a single
ballot [30]. Therefore, BS improves upon existing definitions in the honest model
by modelling registration of voters and adaptive corruption of voters.

Our second definition, mbbBS, extends BS to the malicious ballot box setting
(Sect. 4.1). mbbBS is similar to the definition presented in [11], which also adopts
the approach of [5]. However, contrary to [11], and similarly to BS, mbbBS models
registration of voters. Our model for mbbBS captures static corruption of voters
only, a consequence of using the Benaloh approach, as we will explain in Sect. 4.1.

2 In particular, Benaloh is the sole author of [4] and is a co-author of [5].

672 A. Fraser and E. A. Quaglia

We note, however, that all ballot secrecy definitions that model voter registration
in the malicious ballot box setting only capture static voter corruption [19,20].

Finally, we define dtBS, which, to the best of our knowledge, is the first ballot
secrecy definition that models a malicious ballot box and a distributed tallier,
in which the adversary corrupts a subset of talliers (Sect. 4.2). dtBS extends
mbbBS to model an adversary that corrupts a subset of talliers. Like mbbBS,
dtBS considers static corruption of voters. Given that the malicious setting has
received significantly less attention than the honest model, and a malicious tallier
has not been explored, we believe that definitions in the malicious model, such
as dtBS, are valuable and desirable. In particular, Helios [28] distributes the role
of the tallier, yet proofs of ballot secrecy for Helios model the tallier as a single
entity [7,17]. As such, we see dtBS as an important step towards formal proofs
of security under realistic trust assumptions.

Feasibility of Our Definitions. For all of our definitions, we show feasibility,
proving that our definitions can be satisfied. Specifically, we define an e-voting
scheme Γmini, and prove it satisfies BS and mbbBS. We then extend Γmini to a
setting with a distributed tallier, in a construction that we call Γ ′

mini, and prove
that it satisfies dtBS. Our scheme Γmini is a simple construction; specifically, it is
not verifiable. However, Γmini can be used to prove the security of real, verifiable,
e-voting schemes, similarly to how minivoting was used to prove ballot secrecy of
Helios in [8].3 Indeed, using the technique of [8], Γmini can also be extended to a
generic, Helios-like, e-voting protocol which can be shown to satisfy our notions
of ballot secrecy if Γmini satisfies ballot secrecy (and the verification process is
secure). As such, though we simply demonstrate feasibility, our definitions can
be applied to practical e-voting schemes.

Contextualising Our Definitions. Finally, we compare ballot secrecy definitions,
with the goal of better understanding the limitations of definitions. In particular,
we discuss related work and place our definitions in the context of the existing
literature in Sect. 5. It emerges that our definitions provide an advantage with
respect to extendibility, when compared to BPRIV. Moreover, our definitions
improve upon existing definitions that follow the Benaloh approach, particularly
with respect to the attacker model.

2 Preliminaries

Notation. We write x ← X to denote assignment of X to x. We use standard set
notation and write {{x1, . . . , xn}} to denote a multiset consisting of elements
3 In fact, in [8], Bernhard et al. introduce minivoting, a simple e-voting scheme in

which voters simply encrypt their vote and a tallier decrypts each ciphertext and
computes the result from the resulting plaintext votes. Like Γmini, mini-voting is
not verifiable. However, Bernhard et al. prove that mini-voting satisfies a notion
of ballot secrecy and subsequently build a generic, verifiable, e-voting scheme with
homomorphic tallying that also satisfies ballot secrecy. Helios is an instantiation of
this generic e-voting scheme and, therefore, Helios can be shown to satisfy ballot
secrecy if the underlying mini-voting construction is ballot secret.

Protecting the Privacy of Voters 673

x1, . . . , xn, writing {{}} to denote the empty multiset. Additionally, we write
L = (x1, . . . , xn) to denote a list L with entries x1, . . . , xn, and write L ← L||y
to denote appending y to the list L. We let A(x1, . . . , xn; c) denote the output
of algorithm A on inputs x1, . . . , xn and coins c. Generally, we omit coins and
simply write A(x1, . . . , xn). Moreover, we write AO to denote algorithm A with
oracle access to O.

We provide syntax for a single-pass e-voting scheme, which requires a voter
to post a single message in order to cast a vote. We consider that an e-voting
scheme is defined relative to a result function4 f : (V × C)∗ → R, where
V = {id1, . . . , idnv

} is the set of nv eligible voters, C = {1, . . . , nc} is the set
of nc candidates, and R is the result space of the election. Informally, our syntax
captures an e-voting scheme with the following structure. Firstly, an election
administrator publishes public parameters of the scheme. Then, a registrar pro-
vides eligible voters with a public and private credential and adds public cre-
dentials to a set L. Voters cast ballots that are linked to their public credential,
and a ballot box manager processes and posts ballots to a ballot box BB. We
assume that the ballot box is private and the ballot box manager publishes a
public view of the ballot box, known as the bulletin board, PBB. Finally, the
tallier computes and publishes the result of the election with a proof of correct
tallying that can be verified by anyone. We formally define the syntax of an
e-voting scheme, adapted from the syntax of [7,12], in Definition 1.

Definition 1 (E-voting scheme). An e-voting scheme Γ for a result
function f is a tuple of probabilistic polynomial-time (PPT) algorithms
(Setup,Register,Vote,Valid,Append,Publish,Tally,Verify) such that:

Setup(1λ) On input security parameter 1λ, algorithm Setup initialises set L and
ballot box BB as empty. Setup outputs an public/private election key pair
(pk, sk). We assume that pk includes the sets V and C.

Register(id,L, pk) On input voter identity id, set L and pk, algorithm Register
outputs a public/private credential pair (pkid , skid) and updates set L with
pkid such that L ← L ∪ {pkid}.

Vote(v, pkid , skid , pk) On input vote v, pkid , skid and pk, algorithm Vote outputs
a ballot b that includes the voter’s public credential.

Valid(b,BB,L, pk) On input ballot b, ballot box BB, set L and pk, algorithm Valid
outputs 1 if ballot b is accepted to ballot box BB, and 0 otherwise.

Append(b,BB,L, pk) On input b, BB, set L and pk, algorithm Append outputs
the updated ballot box to include ballot b.

Publish(BB) On input BB, algorithm Publish outputs bulletin board PBB.

Tally(BB,L, sk) On input BB, set L and sk, algorithm Tally computes and outputs
the election result r ∈ R with a proof π that the result is correct.

Verify(BB,L, r, π, pk) On input BB, set L, result r, proof π and pk, algorithm
Verify outputs 1 if the election result verifies, and 0 otherwise.

4 Our result function, similar to the result function in [7], determines how the result
of the election is computed.

674 A. Fraser and E. A. Quaglia

E-voting schemes must satisfy correctness, which requires that the result
output by algorithm Tally is equivalent to result function f applied to all votes
input to algorithm Vote.

Definition 2 (Correctness). An e-voting scheme Γ defined with respect to a
result function f is correct if, for any set of nv voters V = {id1, . . . , idnv

} and
votes v1, . . . , vnv

∈ C, there exists a negligible function negl such that

Pr

⎡
⎢⎣

(pk,sk)←Setup(1λ); for i=1,...nv :{
(pkidi

,skidi
)←Register(idi,L,pk); bi←Vote(vi,pkidi

,skidi
,pk);

if Valid(bi,BB,L,pk)=1: BB←Append(bi,BB,L,pk)
}
;

(r,π)←Tally(BB,L,sk): r=f((pkid1 ,v1),...(pkidnv
,vnv))

⎤
⎥⎦ ≥ 1 − negl (λ) .

3 Ballot Secrecy in the Honest Model

We introduce BS, a definition of ballot secrecy in which an adversary can adap-
tively corrupt voters, submitting ballots on their behalf, and can submit two
votes (the left and right vote) on behalf of honest voters. Thus, BS describes an
experiment in which an adversary is provided with access to a bulletin board,
and the corresponding election result, that consists of ballots for the left or right
vote submitted on behalf of honest voters, in addition to ballots submitted on
behalf of corrupted voters. If the adversary cannot determine whether the bul-
letin board and result contains the left or right votes submitted by honest voters,
a scheme is said to satisfy BS.

BS requires a balancing condition to ensure that the adversary cannot trivially
distinguish views. For example, an adversary in the BS experiment could submit
‘0’ as the left vote and ‘1’ as the right vote on behalf of all honest voters. Then,
the election result allows the adversary to trivially distinguish the two possible
views. We define our balancing condition to prevent such trivial distinctions, and
to model adaptive voter corruption. We first describe BS, followed by details of
our balancing condition.

The BS experiment ExpBSΓ,A(λ) for adversary A = (A1,A2), formally defined
in Fig. 1, proceeds as follows. A challenger initialises sets V0 and V1, required to
model the balancing condition, as empty, generates the election key pair (pk, sk),
and chooses a bit β. Adversary A1 is given public key pk and proceeds to query
a number of oracles, formally defined in Fig. 1 and described as follows. We write
Ox(y1,...,yn)(z1, . . . , zn) to denote oracle Ox parametrised by y1, . . . , yn that takes
as input z1, . . . , zn.

Oreg(pk,LQreg)(id) registers an eligible voter. If id is in the set of eligible voters
V, oracle Oreg runs algorithm Register on behalf of id and returns the voter’s
public credential pkid to A1. Oracle Oreg additionally updates a list of queries
Qreg to include the tuple (id, pkid , skid).

Ocorrupt(Qreg,Qcorrupt)(id) corrupts a voter. If id is a registered voter, oracle
Ocorrupt returns the voter’s private credential skid to A1, and updates a
list of queries Qcorrupt to include the tuple (id, pkid , skid).

Protecting the Privacy of Voters 675

Ovote(pk,L,BB,Qreg,Qcorrupt,V0,V1)(pkid , v0, v1) produces and submits a ballot for
vote vβ on behalf of an uncorrupted voter. If voter pkid is registered but not
corrupt, and v0, v1 are valid vote choices, oracle Ovote runs algorithms Vote
and Append on behalf of voter pkid and vote vβ . Oracle Ovote also updates
sets V0 and V1 to include votes v0 and v1 respectively, and removes any pre-
vious entries for pkid , modelling an e-voting scheme with a last-vote-counts
revote policy.

Ocast(pk,L,BB,V0,V1)(pkid , b) submits a ballot on behalf of a voter. If ballot b is
valid and created for voter pkid , and ballot b does not exist in BB, oracle
Ocast appends ballot b to ballot box BB. Oracle Ocast also removes any
entries in sets V0 and V1 for pkid .

OboardBB () returns bulletin board PBB to A1.

Adversary A1 outputs state information st, indicating that the experiment
should transition to the tallying phase. Upon receiving the result r and proof of
correct tallying π, A2 outputs a bit β′. The experiment returns 1 if β′ = β and
the balancing condition is satisfied.

Definition 3 (BS). An e-voting scheme Γ satisfies BS if, for any PPT adver-
sary A = (A1,A2), there exists a negligible function negl such that

Pr
[
ExpBSΓ,A(λ) = 1

]
≤ 1

2
+ negl(λ)

where ExpBSΓ,A(λ) is the experiment defined in Fig. 1.

3.1 Our Balancing Condition

Following a query to oracle Ovote, sets V0 and V1 are updated to contain tuples
(pkid , v0) and (pkid , v1) respectively. After the result of the election is announced,
multisets V ′

0 and V ′
1 are defined to contain the votes v0 and v1 from sets V0 and

V1 respectively. Our balancing condition, V ′
0 = V ′

1 , ensures that, for every left-
hand vote of an honest voter, there exists an honest voter for whom the same
vote is submitted as their right-hand vote. Thus, we prevent trivial distinctions.

This notion of balance is inspired by Benaloh and Yung’s early definition
of ballot secrecy [5] and is used by Bernhard and Smyth in their ballot secrecy
definition IND − SEC [10]. However, in comparison to BS, neither IND − SEC
nor Benaloh and Yung’s approach model registration of voters. It transpires
that, to capture registration of voters and, in particular, to capture revoting and
adaptive corruption of voters for e-voting schemes with voter registration, the
balancing condition described above must include more complex features. We
describe these subtleties and demonstrate their necessity through examples.

Eliminating Entries from Ovote. We require that, following a query to Ovote
on behalf of a voter pkid , previous entries containing pkid are removed from
sets V0 and V1. Else, it is possible that an adversary can submit oracle queries

676 A. Fraser and E. A. Quaglia

Fig. 1. The ballot secrecy experiment ExpBSΓ,A(λ) where A = (A1,A2) has access to
oracles O = {Oreg,Ocorrupt,Ovote,Ocast,Oboard}.

that allow trivial distinctions, even if a scheme is intuitively ballot secret.
Consider an e-voting scheme that employs a last-vote-counts revote policy
and allows voters to cast a ballot for ‘0’ or ‘1’. Let the election result be
a vector of size two, indicating the number of votes cast for each candidate.
Assume that Ovote does not remove any entries from sets V0 or V1. Then an
adversary in the BS experiment can query Ovote(pkid1 , 0, 1), Ovote(pkid2 , 1, 0),
Ovote(pkid1 , 1, 0) and Ovote(pkid3 , 0, 1) for pkid1 , pkid2 and pkid3 obtained via
queries to Oreg such that V0 = {(pkid1 , 0), (pkid2 , 1), (pkid1 , 1), (pkid3 , 0)} and
V1 = {(pkid1 , 1), (pkid2 , 0), (pkid1 , 0), (pkid3 , 1)}. Subsequently, V ′

0 = V ′
1 and the

balancing condition is satisfied. However, if β = 0, r = (1, 2) and, if β = 1,
r = (2, 1). Then the adversary trivially distinguishes the two views and succeeds
in the BS experiment. Therefore, it is essential that Ovote removes previous
entries that contain pkid from sets V0 and V1. Indeed, if the first entry of V0 and
V1 is removed, the balancing condition is not satisfied and the adversary cannot
succeed in the BS experiment.

Protecting the Privacy of Voters 677

Eliminating Entries from Ocast. Similarly, following a query to Ocast on behalf
of voter pkid , it is essential that entries containing pkid are removed from sets V0

and V1. In fact, rather than the second two queries to Ovote in the example above,
the adversary can query Ocast(pkid1 , b) where b encodes a vote for ‘1’. Then, if
Ocast does not remove the previous entry for pkid1 , the balancing condition is
satisfied. Yet, the result r = (0, 2) (if β = 0) or r = (1, 1) (if β = 1). Under static
corruption of voters, removal of entries is not necessary as an adversary cannot
make a query to Ovote on behalf of a corrupted voter, i.e., voter pkid1 in the
example. Thus, removal of previous entries is key to ensure that our balancing
condition allows for adaptive corruption of voters.

Voting Policies. Our balancing condition models a last-vote-counts revote policy,
a policy applied to implemented e-voting schemes, for example, the Estonian i-
Voting scheme [25]. On the other hand, it is common to implement an e-voting
scheme with a no revote policy. For instance, Helios [1,28] allows for both a
last-vote-counts and a no revote policy. For this reason, we briefly describe how
our balancing condition can be modified in a straightforward way to account for
a no revote policy as follows. Ovote does not remove previous entries containing
pkid from sets V0 and V1 following a query on behalf of voter pkid . Additionally,
Ovote adds new entries to sets V0 and V1 only if the sets do not contain an entry
on behalf of pkid . Finally, Ocast does not update sets V0 and V1.

3.2 Satisfiability of BS

We demonstrate satisfiability of BS by constructing an e-voting scheme Γmini,
defined formally in Fig. 2. Γmini relies on a homomorphic public key encryp-
tion scheme Π and a signature of knowledge SOK, both of which are formally
defined in Appendix A. A voter with credential pair (pkid , skid)5 casts a bal-
lot for v ∈ {0, 1}6 by producing an encryption, denoted c, of v under Π, and
generating a signature of knowledge, denoted σ, that the resulting ciphertext
encrypts v ∈ {0, 1} using their private credential under SOK. The form of a
ballot b is (pkid , c, σ). If ciphertext c does not appear in a ballot on the ballot
box, and signature of knowledge σ verifies, the ballot is appended to the ballot
box. The ballot box and the bulletin board are identical in this scheme. To com-
pute the result, ciphertext c is extracted from the final ballot cast by each voter.
The extracted ciphertexts are homomorphically tallied and the homomorphic
ciphertext is decrypted, giving the result of the election. As we do not focus on
verifiability, we simply define algorithm Tally to output ⊥ in place of a proof of
correct tallying, and algorithm Verify is defined to always return 1.

To satisfy BS, we require that Π satisfies non-malleable-CPA security [3],
NM-CPA, and SOK satisfies extractability [13]. We define these security proper-
ties in Appendix A. We obtain the result in Theorem 1.

5 We write that credential pairs are generated by a one-way function f .
6 This can be extended to multi-candidate elections in the style of Helios [1,28].

678 A. Fraser and E. A. Quaglia

Fig. 2. The e-voting scheme Γmini constructed from public key encryption scheme Π
and signature of knowledge SOK.

Theorem 1. Γmini (Fig. 2) satisfies BS if public key encryption scheme Π sat-
isfies NM-CPA and signature of knowledge SOK satisfies extractability.

We formally prove Theorem 1 in Appendix B. Informally, assuming that an
adversary queries Ovote and Ocast such that V ′

0 = V ′
1 , the result computed

over BB in the BS experiment for β = 0 is indistinguishable from the result for
β = 1. In fact, with respect to the ballots included in the election result, BB
contains the same number of votes for each candidate, regardless of β. Moreover,
an adversary cannot distinguish whether BB contains ballots for a left- or right-
hand vote on behalf of honest voters if Π satisfies NM-CPA. Finally, NM-CPA
security of Π and extractability of SOK ensures that an adversary cannot submit
ballots on behalf of a corrupt voter that are meaningfully related to the ballots of
honest voters, thus skewing the result and allowing the adversary to distinguish
views [21].

3.3 Limitation of BS

For transparency, we elaborate on an aspect of BS that limits the class of
e-voting schemes that can be captured by BS. We believe that such discussion is
essential to understand security definitions for e-voting and ensure that, to prove

Protecting the Privacy of Voters 679

security of an e-voting scheme, the most relevant definition is chosen based on
the nuances of the scheme. In Sect. 5, we elaborate on the complexities and limi-
tations of ballot secrecy definitions in the literature, further casting light on the
applicability of definitions.

Our balancing condition limits the class of result functions that can be cap-
tured. In particular, consider an e-voting scheme in which a voter can submit
a score for a candidate, e.g., C = {0, 1, 2}, and the result consists of the sum
of all scores submitted. In [7], the authors show that Benaloh and Yung’s bal-
lot secrecy definition [5], upon which BS is based, does not capture this result
function. Specifically, [5] and BS do not model an attacker that can distinguish
different vote assignments that lead to the same result, for example, two voters
voting 0 and 2 respectively, and both voters voting 1. Despite this, common
result functions, such as plurality voting, are within the scope of our definition.

4 Extending BS to the Malicious Setting

Corrupt election officials can break ballot secrecy. In particular, a malicious ballot
box can ‘stuff’ the ballot box with ballots, which can lead to attacks against ballot
secrecy [21]. Furthermore, a malicious tallier can potentially reveal the votes of
all honest voters, for example, if ballots consist of a vote encrypted under the
tallier’s public key, such as in our construction Γmini. To overcome this, many
e-voting schemes distribute the role of the tallier [29,31] and assume that a
proportion of talliers are honest. We define mbbBS, a definition that extends BS
to the malicious ballot box setting, and dtBS, an extension of mbbBS in which
the adversary can further corrupt a subset of talliers where the role of the tallier
is distributed. In doing so, we provide definitions that allow a scheme designer
to prove ballot secrecy in the event of an attacker that can corrupt the ballot
box and a proportion of talliers.

4.1 Malicious Ballot Box Manager

We extend BS to mbbBS, defining an adversary that arbitrarily constructs the
ballot box, obtaining ballots for honest voters that correspond to either a left or
right vote submitted to an oracle Ovote. Hence, mbbBS models a corrupt bal-
lot box, but considers all other election entities to be honest. We note that, in
this setting, the adversary can only statically corrupt voters, a common restric-
tion [16,20]. This arises as a consequence of the balancing condition, which we
elaborate on following the formal definition.

The mbbBS experiment ExpmbbBS
Γ,A (λ) for adversary A = (A1,A2,A3), for-

mally defined in Fig. 3, registers all nv eligible voters and provides the adversary
A1 with the set of public credentials L and the election public key pk. A1 selects
a subset of public credentials corrL to corrupt and A2 receives a list of cor-
responding private credentials cL. Adversary A2 is provided with access to an
oracle Ovote(pk,L,corrL,V)(pkid , v0, v1) that returns ballots for vβ on behalf of hon-
est voters, and constructs a ballot box BB, which may include both honestly and

680 A. Fraser and E. A. Quaglia

maliciously generated ballots. Upon receiving the result r computed over BB and
a proof of correct tallying π, A3 outputs a bit β′. If β′ = β and the balancing
condition is satisfied, the experiment returns 1. We observe that the adversary
does not require access to oracles Oreg and Ocorrupt, as defined for BS, because
voters are statically corrupted. Moreover, the adversary does not require access
to an oracle Ocast because A2 constructs the ballot box.

Definition 4 (mbbBS). An e-voting scheme Γ satisfies mbbBS if, for any PPT
adversary A = (A1,A2,A3), there exists a negligible function negl such that

Pr
[
ExpmbbBS

Γ,A (λ) = 1
]

≤ 1
2

+ negl(λ)

where ExpmbbBS
Γ,A (λ) is the experiment defined in Fig. 3.

Fig. 3. The malicious ballot box ballot secrecy experiment ExpmbbBS
Γ,A (λ) where A =

(A1,A2,A3) has access to oracle Ovote.

Protecting the Privacy of Voters 681

Our Balancing Condition. mbbBS maintains a list of queries to Ovote in a
set V such that each entry in V consists of a tuple (pkid , v0, v1, b). Then, if b
appears on ballot box BB and the tuple contains the final ballot that appears on
BB with respect to voter pkid , the experiment adds v0 (resp., v1) to a multiset
V0 (resp., V1). In other words, multisets V0 and V1 contain only the final vote
for every honest voter such that a corresponding ballot is appended to BB.7

As a result of our balancing condition, mbbBS considers static corruption of
voters. Indeed, if mbbBS allows adaptive corruption of voters, a trivial distin-
guishing attack is possible. To demonstrate this, we recall our construction Γmini

(Fig. 2) and assume that an adversary in the mbbBS experiment can adaptively
corrupt voters. That is, the adversary has access to oracles Oreg and Ocorrupt
as defined in Fig. 1. Then, the adversary queries b1 ← Ovote(pkid1 , 0, 1) and
b2 ← Ovote(pkid2 , 1, 0) for pkid1 and pkid2 obtained via queries to Oreg. Voter
pkid1 is corrupted via a query to Ocorrupt and the adversary appends b1, b2 and
b3, a ballot for ‘1’ on behalf of pkid1 , to BB. The balancing condition is satisfied
but, if β = 0 (resp., β = 1), r = (0, 2) (resp., r = (1, 1)), and the adversary can
trivially distinguish the two views. Consequently, we restrict mbbBS to allow only
static corruption of voters. Then, if the adversary wishes to corrupt pkid1 , they
cannot make queries to Ovote on behalf of pkid1 and, in the example above, the
balancing condition is not satisfied. Therefore, the adversary does not succeed
in the mbbBS experiment.
Satisfiability of mbbBS. We show that our e-voting construction Γmini (Fig. 2)
satisfies mbbBS under the same conditions that Γmini satisfies BS. Indeed, we
design the ballots in Γmini to be non-malleable, which is required to satisfy mbbBS,
a fact that we elaborate on following our formal result. In other words, we
intentionally design Γmini to satisfy stronger notions of ballot secrecy than BS.
We require a NM-CPA secure public key encryption scheme and a signature of
knowledge that satisfies extractability. We obtain the result in Theorem 2.

Theorem 2. Γmini (Fig. 2) satisfies mbbBS if public key encryption scheme Π
satisfies NM-CPA and signature of knowledge SOK satisfies extractability.

We formally prove Theorem 2 in Appendix B. The proof of Theorem 2 is
very similar to the proof that Γmini satisfies BS (Theorem 1). In particular, an
adversary cannot distinguish whether Ovote returns a ballot corresponding to
v0 or v1 as a result of NM-CPA security of Π. Moreover, the ballots returned
by Ovote cannot be modified by the adversary in a meaningful way due to
non-malleability of the ballot, provided by extractability of SOK and NM-CPA
security of Π. Thus, any ballot in BB is either a ballot of a corrupt voter that
is independent of any other ballot, or an output of oracle Ovote. Then, if the
balancing condition is satisfied, the result computed over BB constructed by the
adversary is indistinguishable for β = 0 or 1.

As noted, ballots must be non-malleable to satisfy mbbBS. Intuitively, if an
attacker with control of the ballot box can transform ballots, then they can
append ballots to the ballot box that are meaningfully related to the vote of
7 As with BS, our balancing condition can be modified to model a no-revote policy.

682 A. Fraser and E. A. Quaglia

an honest voter such that the result reveals the honest voter’s vote. We demon-
strate this by describing an attack against our e-voting scheme Γmini where we
replace the signature of knowledge with a standard digital signature scheme.
An adversary in the mbbBS experiment can query b1 ← Ovote(pkid1 , 0, 1),
b2 ← Ovote(pkid2 , 1, 0) and b3 ← Ovote(pkid3 , 0, 1), appending ballots b1 and
b2 to BB. Let b3 = (pkid3 , c3, σ3). The adversary produces a signature σ4

for ciphertext c3 for a corrupt voter pkid4 and appends the modified ballot
b∗ = (pkid4 , c3, σ4) to BB. The balancing condition is satisfied, yet, if β = 0,
r = (2, 1) and, if β = 1, r = (1, 2), which allows A to distinguish the two views.
This attack is possible because the ballot is malleable. In contrast, if σ is a signa-
ture of knowledge, the adversary requires knowledge of the plaintext encrypted
by c3 in order to construct a signature of knowledge for pkid4 . Therefore, we con-
clude that e-voting schemes that allow malleable ballots cannot satisfy mbbBS.

We recognise that there exists e-voting schemes for which the ballots are
malleable, for example, e-voting schemes that include a timestamp in the ballot.
An adversary in the mbbBS experiment can modify the timestamp in a ballot
output by Ovote and append the modified ballot to BB. Then, the result trivially
reveals β and the balancing condition holds. However, there may not be a ballot
secrecy issue with the scheme in practice. Therefore, if a scheme produces ballots
that contain a malleable part, the scheme does not satisfy mbbBS, despite the
fact that it is intuitively ballot secret. Despite this, we believe that non-malleable
ballots are desirable. For example, if a ballot includes a malleable timestamp, an
attacker with control of the ballot box can modify the timestamp, potentially
ensuring that a ballot is not included in the result of the election. Furthermore,
ballots with malleable elements can be modified to ensure non-malleability. For
instance, a ballot can include a signature of knowledge or proof of knowledge that
ties the signature or proof to the malleable element, ensuring that the malleable
element cannot be modified without detection (which, in turn, ensures that a
modified ballot is not valid).

4.2 Distributed and Malicious Tallier

We now consider an extension of mbbBS for e-voting schemes with a distributed
tallier, that is, we write tallier T as T = (T1, . . . , Tn). In this case, we consider
an election private key that is distributed amongst n talliers such that sk =
(skT1 , . . . , skTn

) and at least t shares are required to reconstruct sk where t ≤ n.8

We extend mbbBS to a definition dtBS that models a corrupt ballot box and a
subset of corrupt talliers. In particular, we model an attacker that obtains the
private key share of up to t−1 talliers. As with mbbBS, we consider other election
entities to be honest and only allow the static corruption of voters.

The corruption strategy captured by dtBS does not model an attacker that
generates key shares for corrupt talliers. In fact, we consider that all key shares
are generated honestly. In other words, the attacker corrupts talliers after key

8 We note that, specifically, t = n is possible. That is, all n shares are required to
reconstruct the private key.

Protecting the Privacy of Voters 683

generation and, therefore, cannot influence the generation of key shares. As dtBS
is a preliminary exploration of ballot secrecy with a malicious ballot box and
tallier, we consider the attack strategy captured by dtBS to be appropriate and
leave the case of stronger attacker models as an open problem.

We define the dtBS experiment ExpdtBSΓ,A (λ, t, n), parametrised by the number
of talliers n and the number of shares required to reconstruct the election pri-
vate key t, as the mbbBS experiment, defined in Fig. 3, but with the following
modifications. In addition to statically corrupting a subset of voters, adversary
A corrupts t − 1 talliers. That is, A submits t − 1 unique indices {i1, . . . , it−1}
and obtains the set of private key shares {skTi1

, . . . , skTit−1
}. Additionally, algo-

rithm Tally takes as input t private key shares that include the t − 1 shares
returned to A. In all other respects, the dtBS experiment is identical to the
mbbBS experiment.

Definition 5 (dtBS). An e-voting scheme Γ for n talliers and threshold t, where
election private key sk = (skT1 , . . . , skTn

), satisfies dtBS if, for any PPT adver-
sary A = (A1,A2,A3), there exists a negligible function negl such that

Pr
[
ExpdtBSΓ,A (λ, t, n) = 1

]
≤ 1

2
+ negl(λ)

where ExpdtBSΓ,A (λ, t, n) is the mbbBS experiment defined in Fig. 3 for A provided
with t − 1 private key shares of their choice and where algorithm Tally takes as
input the t − 1 private keys provided to A.

Satisfiability of dtBS. To illustrate satisfiability of dtBS, we consider a modifica-
tion to Γmini (Fig. 2) that uses a (t, n)-threshold public key encryption scheme [24],
Φ, which we define in Appendix A. We call our modified construction Γ ′

mini. For-
mally, Γ ′

mini is identical to Γmini with the exceptions of the following modifications
to algorithms Setup, Vote and Tally. We write that Setup takes additional input
t and n and, rather than running algorithm Π.Gen, Setup runs algorithm Φ.Gen
to generate a public key pkφ and n private keys skφ1 , . . . , skφn

. Each tallier is
provided with a private key. Algorithm Vote encrypts vote v by running Φ.Enc,
rather than Π.Enc. Finally, algorithm Tally requires interaction between t talliers.
In detail, any tallier can produce the homomorphic ciphertext cipher, and, then,
t talliers each produce a partial decryption of cipher by running algorithm Φ.Dec.
The final result r is computed by running algorithm Φ.Combine on input of the
t partial decryptions.

As for our previous results, to satisfy dtBS, we require that Φ satisfies
t-NM-CPA security and SOK satisfies extractability. We define t-NM-CPA secu-
rity for a (t, n)-threshold encryption scheme in Appendix A. Briefly, security of
a (t, n)-threshold encryption scheme is defined as a natural extension of security
for a standard encryption scheme with the exception that the adversary can
statically corrupt t − 1 decryption servers, see, for example [26,32]. Therefore,
t-NM-CPA security for Φ is equivalent to NM-CPA security for a standard pub-
lic key encryption scheme but the adversary obtains the private keys of t − 1
decryption servers of their choice. We obtain the result in Theorem 3.

684 A. Fraser and E. A. Quaglia

Theorem 3. Γ ′
mini satisfies dtBS if (t, n)-threshold public key encryption scheme

Φ satisfies t-NM-CPA and signature of knowledge SOK satisfies extractability.

We formally prove Theorem 3 in Appendix B. The proof of this result follows
largely from the fact that Γmini satisfies mbbBS and, as such, the result and output
of Ovote is indistinguishable for β = 0 or 1. Moreover, by t-NM-CPA security of
the threshold encryption scheme, access to t − 1 private keys does not provide
the adversary with any more information about the votes of honest voters.

5 A Comparison of Ballot Secrecy Definitions

In this section, we provide a comparison of existing game-based definitions,
grouping them according to their underlying intuition. In particular, we identify
two types of definitions: those that tally the ‘real’ election, and those that rely
on a balancing condition and tally the viewed election. We place our definitions
(Definitions 3–5) in context, highlighting our contribution to the area.

5.1 Tally the ‘Real’ Election

Recall from the introduction that definitions in this category provide the adver-
sary with a view of a real or fake election, depending on the value of a coin
flip, and always compute the tally for the real election. This approach to defin-
ing ballot secrecy was introduced in [8], and refined in [9]. In [7], Cortier et al.
reviewed ballot secrecy definitions from the literature and defined BPRIV as an
alteration of [8,9], avoiding weaknesses found in both previous, related, defini-
tions.9 Arguably, BPRIV has since become the most well-known and widely used
definition of ballot secrecy in the literature. In fact, in [6], it was used to prove
the security of Helios and has been extended to capture receipt-freeness [12].
Moreover, it has been extended to model e-voting schemes with registration of
voters [16] and to capture a malicious ballot box [20]. As BPRIV is the state-of-
the-art definition in this category, we focus on BPRIV and its extensions from [16]
and [20]. BPRIV avoids the limitations of existing definitions, including those def-
initions that follow the ‘tally the viewed election’ approach (see Sect. 5.2). More-
over, BPRIV is shown to imply a simulation-based notion of ballot secrecy [7],
reinforcing the correctness and strength of the BPRIV approach. Despite this, we
highlight two drawbacks of this approach.

Need for Additional Properties. BPRIV is strong and well-established, yet,
as a stand-alone definition, it is subject to attacks, as highlighted by Cortier et
al., the authors of BPRIV [7]. Specifically, BPRIV does not capture an attacker
that can cause the rejection of honestly created ballots, which can violate ballot
secrecy. Cortier et al. define an e-voting scheme such that ballots are appended

9 For full details of the review and weakness found in [8,9], and other ballot secrecy
definitions, consult [7].

Protecting the Privacy of Voters 685

with a bit, 0 or 1, where algorithm Vote always appends a 0. Then, if there
exists a ballot in BB that is appended with 1, all subsequent ballots are rejected.
As BPRIV always computes the result of the ‘real’ election, such a scheme sat-
isfies BPRIV. Yet, an attacker can ensure that a majority of honestly created
ballots are rejected, potentially revealing the votes of a small subset of honest
voters. Therefore, Cortier et al. define strong correctness, an additional property
required to prevent such attacks. Our definition BS, and other definitions in the
same category [4,5,10,11,19,30], on the other hand, capture this attack. In fact,
the balancing condition of BS ensures that votes of honest voters are added to
multisets V ′

0 and V ′
1 , even if the ballot is rejected by algorithm Valid, yet the

votes contained in these multisets will not necessarily be included in the result.
As a consequence, the adversary can output a ballot box such that the balancing
condition is satisfied, and determine β from the result computed over BB.

Furthermore, Cortier et al. highlight that BPRIV is subject to another attack
in which the ballots of honest voters are not included in the result, potentially
revealing the vote of an honest voter, and describe an e-voting scheme for a
referendum that rejects the ballot of the first voter if the ballot is for a specified
candidate [7]. Then, depending on whether the ballot is included in the result, it
is possible to determine how the first voter voted. This scheme satisfies BPRIV
despite the fact that, intuitively, it is not ballot secret. Therefore, BPRIV must
be accompanied by a second additional property, strong consistency, that pre-
vents this attack. By contrast, BS and [4,5,10,11,19,30] capture this attack. By
defining an adversary that submits a query to Ovote such that the left-hand vote
is for the specified candidate and the right-hand vote is for a second candidate,
the balancing condition can be satisfied and the result returned to the adversary
in the BS experiment reveals whether the first ballot was removed. We addi-
tionally note that definitions derived from BPRIV [12,16,20] also require strong
consistency and strong correctness to capture the two attacks outlined above.

Extendibility. For schemes with a registration phase, BPRIV has been extended
to static voter corruption only [16]. In fact, extending BPRIV to an e-voting
scheme with a registration phase is non-trivial and attempting to model adaptive
corruption of voters in a logical fashion (e.g., by providing access to a corrupt
oracle as in our definition BS) results in a definition that is too strong [16]. By
contrast, BS captures adaptive corruption.

BPRIV is also difficult to extend to the malicious ballot box setting, though
a recent attempt was made in [20]. There, BBβ is the ballot box created by the
adversary in the BPRIV experiment for β ∈ {0, 1}. Briefly, if β = 0, the result
and tallying proof are returned for BB0. If β = 1, the experiment returns the
tally computed over BB0 such that BB0 is transformed according to the ways
in which the adversary tampers with the ballots on BB1. This ensures that the
result returned to the adversary corresponds to the actions taken by the adver-
sary when constructing the ballot box. To achieve this, the extension defines an
algorithm that detects the ways in which an adversary can tamper with ballots
in the ballot box (e.g., the algorithm can be defined to include one or more of the

686 A. Fraser and E. A. Quaglia

following actions: delete, modify, re-order ballots). In doing so, the definition is
flexible, capable of capturing different potential attack scenarios. However, this
means that, before applying the definition, it is necessary to first define an algo-
rithm, presenting an opportunity for flawed security proofs if the algorithm is not
defined correctly. On the other hand, BS can be easily extended to mbbBS and
does not require additional algorithms, providing a simple-to-apply definition in
the malicious setting. Further, BPRIV cannot be easily extended to a setting in
which the tallier is distributed and a subset of talliers can be corrupted. Indeed,
in [22], del Pino et al. state that it is difficult to adapt BPRIV to this setting
because corrupted talliers must participate in the tallying stage of the election
for both ballot boxes, yet BPRIV only ever returns the result for the ballot box
corresponding to the ‘real’ election. To overcome this, like our definition dtBS,
del Pino et al. also rely on a balancing condition, effectively departing from
BPRIV’s approach.

5.2 Tallying the Viewed Election

Recall that the second type of approach, introduced in [4,5], tallies the ballot
box corresponding to the bulletin board viewed by the adversary. The defini-
tions in [4] and [5] have been adopted in subsequent definitions and extended to
the malicious ballot box setting. Namely, [4] (respectively, [5]) has been adopted
by [30] (respectively, [10]) and extended to the malicious ballot box setting in [19]
(respectively, [11]). The definitions that follow this approach require a balancing
condition. The approaches defined in [4] and [5] differ with respect to the balanc-
ing condition. We choose to follow [5] to avoid the requirement of a partial tally
assumption, which we describe in this section, and which is required by defini-
tions that follow [4]. As a result, the definitions presented in this paper are close
in spirit to [5,10,11]. However, our definitions are distinct. In fact, our definitions
extend to e-voting schemes with voter registration, and avoid an incompatibility
issue found with [10] and outlined below. We now discuss some of the benefits
and limitations of this approach and, in particular, we elaborate on the features
that set BS apart from other definitions that follow this approach.

Restricted Result Functions. The balancing condition required in this style
of definition restricts the class of result functions that can be captured, a criticism
that does not apply to BPRIV. Some definitions [4,19,30] define the balancing
condition such that the output of the result function applied to each of the
two multisets is equal, i.e., f(V0) = f(V1). It is well-known that this approach
requires a partial tally assumption [7,19]. That is to say, where a set of votes
can be written as V = V ′ ∪ V ′′, the partial tally assumption states that f(V) =
f(V ′) ∗ f(V ′′). We avoid the partial tally assumption by following the approach
of [5,10,11], and require that two sets, when viewed as multisets, are equal (we
additionally extend this to e-voting schemes with a registration phase). However,
this approach does still restrict the class of result functions. In fact, as we discuss
in Sect. 3.3, our definitions, and those in [5,10,11], do not capture result functions

Protecting the Privacy of Voters 687

that allow different vote assignments that lead to the same result. Despite this,
we note that common result functions, such as plurality voting, are within the
scope of our definitions.

Extendibility. Unlike BPRIV, it has been shown that definitions in this category
can be easily extended to the malicious setting. In particular, Bernhard and
Smyth [11] and Cortier and Lallemand [19] extend this approach to the malicious
ballot box setting in an intuitive way. Our definitions mbbBS and dtBS also
demonstrate how this approach can be extended to the malicious ballot box and
distributed tallier settings respectively.

On the other hand, extending to model e-voting schemes with a registration
phase is not as well understood. Definitions in this category that model voter
registration either allow static corruption of voters only [19], or allow adaptive
corruption but only allow the adversary to submit a single left- and right-hand
vote on behalf of each honest voter [30]. In this paper, we show that it is possible
to model adaptive corruption of voters and allow the adversary to submit an
arbitrary number of votes on behalf of each voter, capturing e-voting schemes
with revoting policies. Thus, BS models an attack strategy that has not yet
captured been captured by any previous definition.

Compatibility with Verifiability. Though in this paper we focus on privacy
for e-voting, it is desirable that a ballot secrecy definition is compatible with
verifiability [18]. In [7] it was discovered that IND − SEC [10], a ballot secrecy
definition that relies on a balancing condition that is very similar to ours, is not
compatible with verifiability. IND − SEC, like BS, requires that the multisets
of left- and right-hand votes submitted on behalf of honest voters are equal.
However, if these two multisets are not equal, IND − SEC returns the result
and accompanying tallying proof computed over the ballot box corresponding
to the IND − SEC experiment where β = 0. In [7], Cortier et al. prove that an
e-voting scheme cannot simultaneously satisfy IND − SEC and tally uniqueness,
a minimal property required to ensure verifiability of an e-voting scheme, as a
result of the actions performed when the multisets are not equal. We refer the
reader to [7] for full details of this result. A fix to IND − SEC was put forth
in [33] to overcome this weakness, proposing that, if the multisets are not equal,
the IND − SEC experiment still returns the result computed over BB for β = 0,
but not the tallying proof. However, a definition that does not return a tallying
proof does not capture verifiable voting schemes. Instead, our definitions avoid
the verifiability compatibility issue of both versions of IND − SEC [10,33] by
restricting the adversary and requiring that the two multisets are equal, i.e., the
experiment returns 0 otherwise.

5.3 Summarising Our Contributions

Game-based definitions of ballot secrecy in the honest model are well-studied.
BPRIV, in particular, has received a lot of attention and is often regarded as the

688 A. Fraser and E. A. Quaglia

de facto definition of ballot secrecy. In contrast, the ballot secrecy definitions
introduced in this paper follow the approach of [5]. Consequently, our definitions
are not affected by the limitations of BPRIV, namely, the need for additional
properties in order to prove security of an e-voting scheme, and the difficulties
of extendibility. In fact, our definitions inherit the benefits of the Benaloh app-
roach, that is, our definitions are intuitive, based on long-established techniques
for indistinguishability experiments, and are well-suited to extensions into the
malicious setting. Moreover, our definitions differ from existing definitions that
also follow this approach. In particular, our definitions model e-voting schemes
with a registration phase and, in comparison to existing definitions, BS cap-
tures adaptive voter corruption in an e-voting scheme with a registration phase,
whilst also modelling revoting policies. Moreover, though we do restrict the set of
result functions that can be considered, we do not require a partial tally assump-
tion. We believe that, to model realistic attack scenarios, the way forward is
ballot secrecy definitions that model corrupted election officials. Our definitions
mbbBS and dtBS model such attack scenarios and provide a spring-board for
future research in this direction. Finally, we comment that, in light of current
restrictions on movement caused by global pandemics, and the potential that
democratic processes could move on-line as a result, we believe it is an apt time
to revisit existing approaches and explore new definitions of ballot secrecy.

Acknowledgement. This work is partly supported by the EPSRC and the UK govern-
ment as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway,
University of London (EP/P009301/1)

A Building Blocks for our Constructions

A.1 Public-Key Encryption

Definition 6. (PKE scheme) A public key encryption scheme Π is a tuple of
PPT algorithms (Π.Gen,Π.Enc,Π.Dec) such that

Π.Gen(1λ) On input security parameter 1λ, algorithm Π.Gen outputs a key pair
(pkΠ , skΠ).

Π.Enc(pkΠ ,m) On input public key pkΠ and message m, algorithm Π.Enc out-
puts a ciphertext c.

Π.Dec(skΠ , c) On input private key skΠ and ciphertext c, algorithm Π.Dec out-
puts a message m.

Definition 7 (NM-CPA). A public key encryption scheme Π satisfies NM-CPA
if, for any PPT adversary A = (A1,A2), there exists a negligible function negl
such that

Pr
[
ExpNM-CPA

Π,A (λ) = 1
]

≤ 1
2

+ negl(λ)

where ExpNM-CPA
Π,A (λ) is the experiment defined in Fig. 4.

Protecting the Privacy of Voters 689

Fig. 4. The NM-CPA experiment ExpNM-CPA
Π,A (λ) for public key encryption scheme Π

and the t-NM-CPA experiment Expt-NM-CPA
Φ,A (λ) for (t, n)-threshold public key encryption

scheme Φ.

A.2 Threshold Public Key Encryption

Definition 8. (Threshold PKE scheme) A (t, n)-threshold public key encryp-
tion scheme Φ is a tuple of PPT algorithms (Φ.Gen, Φ.Enc, Φ.Dec, Φ.Combine)
such that

Φ.Gen(1λ, t, n) On input security parameter 1λ, threshold t and n, algorithm
Φ.Gen outputs a public key pkΦ and n private keys, skΦ1 , . . . , skΦn

.
Φ.Enc(pkΦ,m) On input public key pkΦ and message m, algorithm Φ.Enc outputs

a ciphertext c.
Φ.Dec(pkΦ, i, skΦi

, c) On input public key pkΦ, an index 1 ≤ i ≤ n, private key
skΦi

and ciphertext c, algorithm Φ.Dec outputs a decryption share ci.
Φ.Combine(pkΦ, c, c1, . . . , ct) On input public key pkΦ, ciphertext c and t decryp-

tion shares c1, . . . , ct, algorithm Φ.Combine outputs a message m.

Definition 9 (t-NM-CPA). A (t, n)-threshold public key encryption scheme Φ
satisfies t-NM-CPA if, for any PPT adversary A = (A1,A2), there exists a

690 A. Fraser and E. A. Quaglia

negligible function negl such that

Pr
[
Expt-NM-CPA

Φ,A (λ, t, n) = 1
]

≤ 1
2

+ negl(λ)

where Expt-NM-CPA
Φ,A (λ, t, n) is the experiment defined in Fig. 4.

A.3 Signature of Knowledge

Definition 10 (Signature of knowledge). A signature of knowledge SOK is a
tuple of algorithms (SoK.Setup,SimSetup,SoK.Sign,SimSign,SoK.Verify) relative
to a relation R such that

– SoK.Setup(1λ): on input security parameter 1λ, algorithm SoK.Setup outputs
public parameters pp.

– SimSetup(1λ): on input security parameter 1λ, algorithm SimSetup outputs
public parameters pp and trapdoor τ .

– SoK.Sign(pp, s, w,m): on input pp, statement s, witness w and message m,
algorithm SoK.Sign outputs a signature σ if (s, w) ∈ R.

– SimSign(pp, s, τ,m): on input pp, s, τ and m, algorithm SimSign outputs a
signature σ.

– SoK.Verify(pp, s,m, σ): on input pp, s, m and σ, algorithm SoK.Verify outputs
1, if the signature verifies and 0 otherwise.

Definition 11 (Extractability). Let Extract be a PPT algorithm such that

– Extract(pp, τ, s,m, σ): on input public parameters pp, trapdoor τ , statement s,
message m and signature σ, algorithm Extract outputs a witness w.

Then signature of knowledge SOK satisfies extractability if, for all PPT adver-
saries A, there exists a negligible function negl such that

Pr
[
ExpExtSOK,A,Extract(λ)

]
≤ negl(λ)

where ExpExtSOK,A,Extract(λ) is the experiment defined in Fig. 5.

B Ballot Secrecy of our Constructions

B.1 Proof of Theorem 1

Let A be an adversary in the experiment ExpBSΓmini,A(λ) where Γmini is the con-
struction in Fig. 2. Assume that A can output a bit β′ such that β′ = β and
A queries Ovote and Ocast such that V ′

0 = V ′
1 . Then A succeeds in experi-

ment ExpBSΓmini,A(λ) with probability non-negligibly greater than 1
2 . We note that,

throughout the experiment, A can only gain information about β through access
to the bulletin board BB and the election result r.

Protecting the Privacy of Voters 691

Fig. 5. The extractability experiment ExpExtSOK,A,Extract(λ) for signature of knowledge
SOK.

Let Forge denote the event that A submits a valid ballot b =
(pkid , c, σ) to Ocast where (·, pkid , ·) ∈ Qreg \ Qcorrupt. We write that
b is valid if Valid(b,BB, pk,L) = 1 which requires, in particular, that
SoK.Verify(pp, (c, pkΠ , pkid), c, σ) = 1. Moreover, let Success denote the event
that experiment ExpBSΓmini,A(λ) returns 1. Note that,

Pr
[
ExpBSΓmini,A(λ) = 1

]
≤ Pr[Success ∧ Forge] + Pr

[
Success ∧ Forge

]

≤ Pr[Forge] + Pr
[
Success ∧ Forge

]
.

We show that Pr[Forge] ≤ negl(λ) and Pr
[
Success ∧ Forge

]
≤ 1

2 + negl(λ). The
result of the Theorem then follows.

First, we show that Pr[Forge] ≤ negl(λ). In fact, we show that, if A can
submit a valid ballot to Ocorrupt, then A can be used to construct an adversary
B in the extractability experiment ExpExtSOK,B,Extract(λ), where B plays the role of
the challenger in the BS experiment and C is the challenger in the extractability
experiment. In detail, we construct adversary B as follows.

1. B obtains public parameters pp for signature of knowledge SOK from C and
runs (pkΠ , skΠ) ← Π.Gen(1λ), and performs the setup of Γmini, providing A
with pk. B additionally performs the initialisation steps of the BS experiment
and selects a bit β ← {0, 1}.

2. B answers queries to Oreg, Ocorrupt and Oboard as described in the BS exper-
iment. Moreover, B computes the election result as described in algorithm
Tally.

692 A. Fraser and E. A. Quaglia

3. For queries to Ovote(pkid , v0, v1), B computes c ← Π.Enc(pkΠ ,mβ ; r)
and queries Opp,τ ((c, pkΠ , pkid), (skid , r), c) in the extractability experiment,
receiving a signature of knowledge σ. B constructs ballot b ← (pkid , c, σ) and
appends the ballot to BB.

4. B answers queries to Ocast as described in the BS experiment. By assumption
that event Forge occurs, SoK.Verify returns 1 for at least one tuple (pkid , b)
queried to Ocast such that pkid ∈ Qreg \ Qcorrupt. We denote this ballot
as (pk∗

id , c∗, σ∗). Then, B output ((c∗, pkΠ , pk∗
id), c∗, σ∗) in the extractability

experiment.

B perfectly simulates the role of the challenger in the BS experiment to A.
In fact, B trivially simulates oracles Oreg, Ocorrupt and Oboard, and trivially
computes the result of the election and returns r to A. Moreover, when A queries
Ovote, B returns a ciphertext consisting of an encryption c that is identical to
the encryption viewed by A in the BS experiment and obtains a signature of
knowledge from O in the extractability experiment that is identical to the signa-
ture viewed by A in the BS experiment. Therefore, B perfectly simulates Ovote
to A. Furthermore, B perfectly simulates Ocast to A and, if event Forge occurs,
A successfully creates a valid signature of knowledge without witness (skid , r),
and, therefore, B can output this signature in the extractability experiment and
succeeds. By assumption, the signature of knowledge SOK satisfies extractability,
and hence, we conclude that Pr[Forge] ≤ negl(λ).

We now show that Pr
[
Success ∧ Forge

]
≤ 1

2 +negl(λ). That is, we show that,
if A succeeds in the BS experiment without event Forge occurring, we can use
A to construct an adversary B′ in the NM-CPA experiment ExpNM-CPA

Π,B′ (λ), where
B′ plays the role of the challenger in the BS experiment and C is the challenger
in the NM-CPA experiment against scheme Π. In detail, we construct adversary
B′ as follows.

1. B′ obtains a public key pkΠ for public key encryption scheme Π from C, runs
(pp, τ) ← SimSetup(1λ), and performs the setup of Γmini, providing A with pk.
B′ additionally performs the initialisation steps of the BS experiment.

2. B′ answers queries to oracles Oreg, Ocorrupt, Ocast and Oboard as described
in the BS experiment.

3. For queries Ovote(pkid , v0, v1), B′ queries (m0 = v0,m1 = v1) to oracle
OEncrypt in the NM-CPA experiment and receives a ciphertext c of mβ .
B′ then computes σ ← SimSign(pp, (c, pkΠ , pkid), τ, c) and appends ballot
b = (pkid , c, σ) to BB.

4. B′ computes the election result. Throughout, B′ keeps track of tuples (pkid , b)
queried by A to Ocast, such that the query results in a ballot that will be
included in the result. We denote by B the set of all tuples of the form
(pkid , b). B′ constructs a vector c that consists of the ciphertext element of
each ballot in B and submits c to C. C returns a vector of plaintexts m
(i.e., the plaintext votes encoded in ballots submitted to Ocast) to B′. For
each tuple (pkid , b) ∈ B, B′ replaces ballot b with the corresponding plaintext
included in vector m. B′ then computes the result r by computing the result
function f(V0 ∪ B).

Protecting the Privacy of Voters 693

5. B′ returns the bit β′ output by A.

We show that B′ perfectly simulates the role of the challenger in the BS exper-
iment to A. Trivially, B′ simulates oracles Oreg, Ocorrupt, Ocast and Oboard to
A. Additionally, B′ answers queries to Ovote by obtaining a ciphertext from
OEncrypt in the NM-CPA experiment that is identical to the encryption viewed
by A in the BS experiment and constructs a signature of knowledge that is
identical to that viewed by A. Consequently, the ballot obtained by B′, and
subsequently appended to the ballot box, is identical to the ballot computed by
Ovote. Therefore, B′ perfectly simulates Ovote. Finally, B′ computes the result
function for set V0 (and B). By the assumption that event Forge does not occur,
B cannot contain ballots meaningfully related to the votes of honest voters.
Moreover, by assumption that A succeeds in the BS experiment, V0 = V1 and,
as such, B′ perfectly simulates algorithm Tally to A. Moreover, we have that β′

output by B′ is equal to the bit β chosen by C in the NM-CPA experiment. In
particular, if A correctly guesses β′ in the BS experiment, A correctly determines
whether BB contains ballots corresponding to left- or right-hand votes submit-
ted via Ovote. As these ballots are created by calling OEncrypt in the NM-CPA
experiment where the bit β is chosen by the NM-CPA challenger, B′ succeeds in
the NM-CPA experiment. However, by assumption, Π satisfies NM-CPA security
and we conclude that Pr

[
Success ∧ Forge

]
≤ 1

2 + negl(λ). ��

B.2 Proof of Theorem 2

The details of this result follow largely from the proof of Theorem 1. We let A be
an adversary in the experiment ExpmbbBS

Γmini,A(λ) where Γmini is the construction in
Fig. 2. We assume that A succeeds in experiment ExpmbbBS

Γmini,A(λ) with probability
non-negligibly greater than 1

2 , that is, A outputs a bit β′ such that β′ = β and
constructs ballot box BB such that V0 = V1. Throughout the experiment, A
obtains information about β through ballots output by Ovote and the election
result r.

Let Forge denote the event that A posts a valid ballot b = (pkid , c, σ) to BB
where pkid ∈ L\ corrL and b is not the output of Ovote. We write that b is valid
if SoK.Verify(pp, (c, pkΠ , pkid), σ, c) = 1. Moreover, let Success denote the event
that experiment ExpmbbBS

Γmini,A(λ) returns 1. As before,

Pr
[
ExpmbbBS

Γmini,A(λ) = 1
]

≤ Pr[Forge] + Pr
[
Success ∧ Forge

]
.

We show that Pr[Forge] ≤ negl(λ) and Pr
[
Success ∧ Forge

]
≤ 1

2 + negl(λ). The
result of the Theorem then follows.

First, we show that Pr[Forge] ≤ negl(λ). In fact, we show that, if A can post a
valid ballot to BB for an honest voter (without calling Ovote), then A can be used
to construct an adversary B in the extractability experiment ExpExtSOK,B,Extract(λ),
where B plays the role of the challenger in the mbbBS experiment and C is the
challenger in the extractability experiment. The detailed construction of B is

694 A. Fraser and E. A. Quaglia

very similar to the adversary B described in the proof of Theorem 1, and we
refer the reader to this proof for full details. We describe the following changes
to the adversary B:

1. In step 2, B does not answer queries to oracles Oreg, Ocorrupt or Oboard as
A does not have access to these oracles in the mbbBS experiment.

2. In step 4, by assumption that event Forge occurs, SoK.Verify returns 1 for
at least one ballot, which we denote b∗ = (pk∗

id , c∗, σ∗), that appears on BB
such that pkid ∈ L \ corrL and b is not the output of Ovote. Then, B output
((c∗, pkΠ , pk∗

id), c∗, σ∗) in the extractability experiment.

B perfectly simulates the role of the challenger in the mbbBS experiment to
A. As in the proof of Theorem 1, B perfectly simulates Ovote to A. Furthermore,
if event Forge occurs, A successfully creates a valid signature without witness
(skid , r), and, therefore, B can output this signature in the extractability exper-
iment and succeeds. By assumption, the signature of knowledge SOK satisfies
extractability, and hence, we conclude that Pr[Forge] ≤ negl(λ).

We now show that Pr
[
Success ∧ Forge

]
≤ 1

2 +negl(λ). That is, we show that,
if A succeeds in the NM-CPA experiment without event Forge occurring, we can
use A to construct an adversary B′ in the NM-CPA experiment ExpNM-CPA

Π,B′ (λ),
where B′ plays the role of the challenger in the mbbBS experiment and C is the
challenger in the NM-CPA experiment. Again, the detailed construction of B′ is
very similar to the adversary B′ described in the proof of Theorem 1, and we
describe the following changes to B′:

1. Step 2 is no longer required as A does not have access to oracles Oreg,
Ocorrupt or Oboard in the mbbBS experiment.

2. For queries to Ovote(pkid , v0, v1), rather than appending ballot b to BB, B′

outputs b to A.
3. To compute the election result, B′ creates a set B that consists of tuples

(pkid , b) such that ballot b, submitted on behalf of voter credential pkid ,
appears on BB, is not an output of Ovote, and will be included in the result
(i.e., is the last ballot cast for voter pkid). B′ then constructs vector c from
set B and proceeds to compute the election result as described in Step 4 in
the proof of Theorem 1.

B′ perfectly simulates the role of the challenger in the mbbBS experiment to
A. In particular, the ballot output by B′ following a query to Ovote is identical to
the ballot output by Ovote because B′ obtains the ballot by querying OEncrypt
in the NM-CPA experiment. Moreover, as in the proof of Theorem 1, B′ perfectly
simulates algorithm Tally to A as we assume that V0 = V1 and, as such, the results
computed for β = 0 and β = 1 are identical. B′ outputs β′ = β in the NM-CPA
experiment. That is, if A outputs β′ = β in the mbbBS experiment, A correctly
determines whether Ovote returns a ballot corresponding to the left- or right-
hand vote. As the ballot is constructed by calling OEncrypt, where β is chosen
by the challenger C, B′ succeeds in the NM-CPA experiment. By assumption,
Π satisfies NM-CPA security and we conclude that Pr

[
Success ∧ Forge

]
≤ 1

2 +
negl(λ). ��

Protecting the Privacy of Voters 695

B.3 Proof of Theorem 3

The details of this result follow largely from the proof of Theorem 2. We focus
on the changes to the proof of Theorem 2. We let A be an adversary in the
experiment ExpdtBSΓ ′

mini,A(λ, t, n) where Γ ′
mini is the construction described in Sect. 4.2.

We assume that A succeeds in experiment ExpdtBSΓ ′
mini,A(λ, t, n) with probability non-

negligibly greater than 1
2 . We define events Forge and Success as in the proof of

Theorem 2 and we show that Pr[Forge] ≤ negl(λ) and Pr
[
Success ∧ Forge

]
≤

1
2 + negl(λ). The result of the Theorem then follows.

First, we show that Pr[Forge] ≤ negl(λ). This part of the proof is identical to
the proof of Theorem 2, with the following exceptions. In step 1 of the description
of adversary B, B runs (pkΦ, skΦ1 , . . . , skΦn

) ← Φ.Gen(1λ, t, n) and provides
A with t − 1 private keys of A’s choice. Additionally, B computes the result
using the t − 1 private keys given to A plus one other private key. As in the
proof of Theorem 2, B perfectly simulates the role of the challenger in the dtBS
experiment to A. In particular, B generates the keys for Φ and provides A with
t − 1 private keys as expected. This concludes the first part of the proof.

We now show that Pr
[
Success ∧ Forge

]
≤ 1

2 + negl(λ). We describe the fol-
lowing change to adversary B′. In step 1, B′ requests the t − 1 private keys from
C that A requests, and B′ returns the private keys provided by C to A. Specific
to the proof of this result, B′ returns private keys to A that are identical to the
private keys output to A in the dtBS experiment. Therefore, the second part of
the proof holds. ��

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX 2008, vol. 17, pp.
335–348 (2008)

2. Belenios voting system. https://www.belenios.org/index.html
3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of

security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

4. Benaloh, J.: Verifiable secret-ballot elections. Ph.D. thesis (1987)
5. Benaloh, J., Yung, M.: Distributing the power of a government to enhance the

privacy of votes. In: PODC 1986, pp. 52–62 (1986)
6. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: A comprehensive

analysis of game-based ballot privacy definitions. ePrint Report 2015/255 (2015)
7. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK: a com-

prehensive analysis of game-based ballot privacy definitions. In: S&P 2015, pp.
499–516 (2015)

8. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting helios
for provable ballot privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 335–354. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23822-2 19

https://www.belenios.org/index.html
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/978-3-642-23822-2_19

696 A. Fraser and E. A. Quaglia

9. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

10. Smyth, B., Bernhard, D.: Ballot secrecy and ballot independence coincide. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
463–480. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-
6 26

11. Bernhard, D., Smyth, B.: Ballot secrecy with malicious bulletin boards. ePrint
Report 2014/822 (2014)

12. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: a non-
interactive receipt-free electronic voting scheme. In: CCS 2016, pp. 1614–1625,
New York (2016)

13. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

14. Civitas voting system. www.cs.cornell.edu/projects/civitas/
15. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system.

In: S&P 2008, pp. 354–368. IEEE (2008)
16. Cortier, V., Dragan, C.C., Dupressoir, F., Warinschi, B.: Machine-checked proofs

for electronic voting: privacy and verifiability for Belenios. In: CSF 2018, pp. 298–
312 (2018)

17. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for helios
under weaker trust assumptions. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014. LNCS, vol. 8713, pp. 327–344. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11212-1 19

18. Cortier, V., Galindo, D., Küsters, R., Müller, J., Truderung, T.: SoK: verifiability
notions for e-voting protocols. In: S&P 2016, pp. 779–798 (2016)

19. Cortier, V., Lallemand, J.: Voting: you can’t have privacy without individual veri-
fiability. In: CCS 2018, pp. 53–66, New York (2018)

20. Cortier, V., Lallemand, J., Warinschi, B.: Fifty shades of ballot privacy: privacy
against a malicious board. ePrint Report 2020/127 (2020)

21. Cortier, V., Smyth, B.: Attacking and fixing helios: an analysis of ballot secrecy.
In: CSF 2011, pp. 297–311 (2011)

22. del Pino, R., Lyubashevsky, V., Neven, G., Seiler, G.: Practical quantum-safe vot-
ing from lattices. In: CCS 2017, pp. 1565–1581, New York (2017)

23. Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in elec-
tronic voting. In: CSFW 2006, pp. 12–42 (2006)

24. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

25. i-voting. e-estonia.com/solutions/e-governance/i-voting/
26. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting

or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45472-1 7

27. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

28. Helios voting system. heliosvoting.org/
29. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:

Chaum, D., et al. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 37–
63. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12980-3 2

https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-40203-6_26
https://doi.org/10.1007/978-3-642-40203-6_26
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
www.cs.cornell.edu/projects/civitas/
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://e-estonia.com/solutions/e-governance/i-voting/
https://doi.org/10.1007/3-540-45472-1_7
https://heliosvoting.org/
https://doi.org/10.1007/978-3-642-12980-3_2

Protecting the Privacy of Voters 697

30. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 16

31. Pereira, O.: Internet voting with helios. Real-World Electronic Voting, pp. 277–308
(2016)

32. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

33. Smyth, B., Bernhard, D.: Ballot secrecy and ballot independence: definitions and
relations. ePrint Report 2013/235 (2013)

https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/BFb0054113

	Protecting the Privacy of Voters: New Definitions of Ballot Secrecy for E-Voting
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Ballot Secrecy in the Honest Model
	3.1 Our Balancing Condition
	3.2 Satisfiability of BS
	3.3 Limitation of BS

	4 Extending BS to the Malicious Setting
	4.1 Malicious Ballot Box Manager
	4.2 Distributed and Malicious Tallier

	5 A Comparison of Ballot Secrecy Definitions
	5.1 Tally the `Real' Election
	5.2 Tallying the Viewed Election
	5.3 Summarising Our Contributions

	A Building Blocks for our Constructions
	A.1 Public-Key Encryption
	A.2 Threshold Public Key Encryption
	A.3 Signature of Knowledge

	B Ballot Secrecy of our Constructions
	B.1 Proof of Theorem 1
	B.2 Proof of Theorem 2
	B.3 Proof of Theorem 3

	References

