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Abstract. Unlike signatures in a single-party setting, threshold signa-
tures require cooperation among a threshold number of signers each hold-
ing a share of a common private key. Consequently, generating signatures
in a threshold setting imposes overhead due to network rounds among
signers, proving costly when secret shares are stored on network-limited
devices or when coordination occurs over unreliable networks. In this
work, we present FROST, a Flexible Round-Optimized Schnorr Thresh-
old signature scheme that reduces network overhead during signing oper-
ations while employing a novel technique to protect against forgery
attacks applicable to similar schemes in the literature. FROST improves
upon the state of the art in Schnorr threshold signature protocols, as it
can safely perform signing operations in a single round without limiting
concurrency of signing operations, yet allows for true threshold signing,
as only a threshold t out of n possible participants are required for signing
operations, such that t ≤ n. FROST can be used as either a two-round
protocol, or optimized to a single-round signing protocol with a pre-
processing stage. FROST achieves its efficiency improvements in part by
allowing the protocol to abort in the presence of a misbehaving partic-
ipant (who is then identified and excluded from future operations)—a
reasonable model for practical deployment scenarios. We present proofs
of security demonstrating that FROST is secure against chosen-message
attacks assuming the discrete logarithm problem is hard and the adver-
sary controls fewer participants than the threshold.
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1 Introduction

Threshold signature schemes are a cryptographic primitive to facilitate joint
ownership over a private key by a set of participants, such that a threshold
number of participants must cooperate to issue a signature that can be verified
by a single public key. Threshold signatures are useful across a range of settings
that require a distributed root of trust among a set of equally trusted parties.

Similarly to signing operations in a single-party setting, some implementa-
tions of threshold signature schemes require performing signing operations at
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scale and under heavy load. For example, threshold signatures can be used by
a set of signers to authenticate financial transactions in cryptocurrencies [16],
or to sign a network consensus produced by a set of trusted authorities [22]. In
both of these examples, as the number of signing parties or signing operations
increases, the number of communication rounds between participants required
to produce the joint signature becomes a performance bottleneck, in addition
to the increased load experienced by each signer. This problem is further exac-
erbated when signers utilize network-limited devices or unreliable networks for
transmission, or protocols that wish to allow signers to participate in signing
operations asynchronously. As such, optimizing the network overhead of signing
operations is highly beneficial to real-world applications of threshold signatures.

Today in the literature, the best threshold signature schemes are those that
rely on pairing-based cryptography [6,7], and can perform signing operations
in a single round among participants. However, relying on pairing-based signa-
ture schemes is undesirable for some implementations in practice, such as those
that do not wish to introduce a new cryptographic assumption, or that wish
to maintain backwards compatibility with an existing signature scheme such
as Schnorr signatures. Surprisingly, today’s best non-pairing-based threshold
signature constructions that produce Schnorr signatures with unlimited con-
currency [14,28] require at least three rounds of communication during signing
operations, whereas constructions with fewer network rounds [14] must limit
signing concurrency to protect against a forgery attack [10].

In this work, we present FROST, a Flexible Round-Optimized Schnorr
Threshold signature scheme1 that addresses the need for efficient threshold sign-
ing operations while improving upon the state of the art to ensure strong security
properties without limiting the parallelism of signing operations. FROST can be
used as either a two-round protocol where signers send and receive two messages
in total, or optimized to a (non-broadcast) single-round signing protocol with
a pre-processing stage. FROST achieves improved efficiency in the optimistic
case that no participant misbehaves. However, in the case where a misbehaving
participant contributes malformed values during the protocol, honest parties can
identify and exclude the misbehaving participant, and re-run the protocol.

The flexible design of FROST lends itself to supporting a number of prac-
tical use cases for threshold signing. Because the preprocessing round can be
performed separately from the signing round, signing operations can be per-
formed asynchronously ; once the preprocessing round is complete, signers only
need to receive and eventually reply with a single message to create a signature.
Further, while some threshold schemes in the literature require all participants
to be active during signing operations [9,14], and refer to the threshold prop-
erty of the protocol as merely a security property, FROST allows any threshold
number of participants to produce valid signatures. Consequently, FROST can
support use cases where a subset of participants (or participating devices) can
remain offline, a property that is often desirable for security in practice.

Contributions. In this work, we present the following contributions.
1 Signatures generated using the FROST protocol can also be referred to as “FROSTy

signatures”.
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– We review related threshold signature schemes and present a detailed analysis
of their performance and designs.

– We present FROST, a Flexible Round-Optimized Schnorr Threshold signa-
ture scheme. FROST improves upon the state of the art for Schnorr thresh-
old signatures by defining a signing protocol that can be optimized to a
(non-broadcast) single-round operation with a preprocessing stage. Unlike
many prior Schnorr threshold schemes, FROST remains secure against known
forgery attacks without limiting concurrency of signing operations.

– We present a proof of security and correctness for an interactive two-round
variant of FROST, building upon proofs of security for prior related threshold
schemes. We then demonstrate how this proof extends to FROST in the
single-round setting.

Organization. We present background information in Sect. 2; in Sect. 3 we give
an overview of related threshold Schnorr signature constructions. In Sect. 4 we
review notation and security assumptions maintained for our work, and we intro-
duce FROST in Sect. 5. In Sect. 6 we give proofs of security and correctness for
FROST, and discuss operational considerations in Sect. 7. We conclude in Sect. 8.

2 Background

Let G be a group of prime order q in which the Decisional Diffie-Hellman problem
is hard, and let g be a generator of G. Let H be a cryptographic hash function
mapping to Z

∗
q . We denote by x

$← S that x is uniformly randomly selected
from S.

2.1 Threshold Schemes

Cryptographic protocols called (t, n)-threshold schemes allow a set of n partici-
pants to share a secret s, such that any t out of the n participants are required
to cooperate in order to recover s, but any subset of fewer than t participants
cannot recover any information about the secret.

Shamir Secret Sharing. Many threshold schemes build upon Shamir secret
sharing [27], a (t, n)-threshold scheme that relies on Lagrange interpolation to
recover a secret. In Shamir secret sharing, a trusted central dealer distributes
a secret s to n participants in such a way that any cooperating subset of t
participants can recover the secret. To distribute this secret, the dealer first
selects t − 1 coefficients a1, . . . , at−1 at random, and uses the randomly selected
values as coefficients to define a polynomial f(x) = s +

∑t−1
i=1 aix

i of degree
t − 1 where f(0) = s. The secret shares for each participant Pi are subsequently
(i, f(i)), which the dealer is trusted to distribute honestly to each participant
P1, . . . , Pn. To reconstruct the secret, at least t participants perform Lagrange
interpolation to reconstruct the polynomial and thus find the value s = f(0).
However, no group of fewer than t participants can reconstruct the secret, as at
least t points are required to reconstruct a polynomial of degree t − 1.
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Verifiable Secret Sharing. Feldman’s Verifiable Secret Sharing (VSS)
Scheme [11] builds upon Shamir secret sharing, adding a verification step to
demonstrate the consistency of a participant’s share with a public commitment
that is assumed to be correctly visible to all participants. To validate that a share
is well formed, each participant validates their share using this commitment. If
the validation fails, the participant can issue a complaint against the dealer,
and take actions such as broadcasting this complaint to all other participants.
FROST similarly uses this technique as well.

The commitment produced in Feldman’s scheme is as follows. As before in
Shamir secret sharing, a dealer samples t − 1 random values (a1, . . . , at−1), and
uses these values as coefficients to define a polynomial f of degree t − 1 such
that f(0) = s. However, along with distributing the private share (i, f(i)) to
each participant Pi, the dealer also distributes the public commitment C =
〈φ0, . . . , φt−1〉, where φ0 = gs and φj = gaj .

Note that in a distributed setting, each participant Pi must be sure to have
the same view of C as all other participants. In practice, implementations guar-
antee consistency of participants’ views by using techniques such as posting
commitments to a centralized server that is trusted to provide a single view to
all participants, or adding another protocol round where participants compare
their received commitment values to ensure they are identical.

Threshold Signature Schemes. Threshold signature schemes leverage the
(t, n) security properties of threshold schemes, but allow participants to produce
signatures over a message using their secret shares such that anyone can validate
the integrity of the message, without ever reconstructing the secret. In threshold
signature schemes, the secret key s is distributed among the n participants, while
a single public key Y is used to represent the group. Signatures can be generated
by a threshold of t cooperating signers. For our work, we require the resulting
signature produced by the threshold signature scheme to be valid under the
Schnorr signature scheme [26], which we introduce in Sect. 2.3.

Because threshold signature schemes ensure that no participant (or indeed
any group of fewer than t participants) ever learns the secret key s, the generation
of s and distribution of shares s1, . . . , sn often require generating shares using a
less-trusted method than relying on a central dealer. FROST instead makes use
of a Distributed Key Generation (DKG) protocol, which we describe in Sect. 2.2.
Similarly, generating Schnorr signatures in a threshold setting requires that the
random nonce k be generated in such a way that each participant contributes to
but does not know the resulting k. To perform this task, FROST uses additive
secret sharing, which we now describe.

Additive Secret Sharing. While Shamir secret sharing and derived construc-
tions require shares to be points on a secret polynomial f where f(0) = s, an
additive secret sharing scheme allows a set of α participants to jointly compute
a shared secret s by each participant Pi contributing a value si such that the
resulting shared secret is s =

∑α
i=1 si, the summation of each participant’s share.

Consequently, additive secret sharing can be performed non-interactively; each
participant directly chooses their own si. Benaloh and Leichter [4] generalize
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additive secret sharing to arbitrary monotone access structures, and Cramer,
Damg̊ard, and Ishai [8] present a non-interactive mechanism, which we use in
its simplest case, for participants to locally convert additive shares of the form
s =

∑
i si to polynomial (Shamir) form, as si

λi
are Shamir secret shares of the

same s, where the λi are Lagrange coefficients. In FROST, participants use this
technique during signing operations to non-interactively generate a nonce that
is Shamir secret shared among all signing participants.

2.2 Distributed Key Generation

Unlike threshold schemes such as Shamir secret sharing that rely on a trusted
dealer, Distributed Key Generation (DKG) ensures every participant contributes
equally to the generation of the shared secret. At the end of running the protocol,
all participants share a joint public key Y , but each participant holds only a share
si of the corresponding secret s such that no set of participants smaller than the
threshold knows s.

Pedersen [23] presents a two-round DKG where each participant acts as the
central dealer of Feldman’s VSS [11] protocol, resulting in n parallel executions of
the protocol. Consequently, this protocol requires two rounds of communication
between all participants; after each participant selects a secret xi, they first
broadcast a commitment to xi to all other participants, and then send all other
participants a secret share of xi.

Gennaro et al. [15] demonstrate a weakness of Pedersen’s DKG [23] such that
a misbehaving participant can bias the distribution of the resulting shared secret
by issuing complaints against a participant after seeing the shares issued to them
by this participant. To address this issue, the authors propose a three-round pro-
tocol, modifying Pedersen’s DKG to include an additional “commitment round”,
such that adversaries are prevented from adaptively disqualifying participants,
thereby ensuring the value of the resulting secret is determined before partici-
pants reveal their inputs. However, in a later work, Gennaro et al. [14] prove that
Pedersen’s DKG as originally described [23] is secure enough in certain contexts,
as the resulting secret is sufficiently random despite the chance for bias from a
misbehaving participant adaptively selecting their input after seeing inputs from
other participants.

FROST can use either Pedersen’s DKG [23] or Gennaro’s DKG [15] to gener-
ate the shared long-lived secret key among participants during its key generation
stage.

2.3 Schnorr Signatures

Often, it is desirable for signatures produced by threshold signing operations to
be indistinguishable from signatures produced by a single participant, for rea-
sons of backwards compatibility and to prevent privacy leaks. For our work, we
require signatures produced by FROST signing operations to be indistinguish-
able from Schnorr signatures [26], and thus verifiable using the standard Schnorr
verification operation.
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A Schnorr signature is generated over a message m (employing a signature
format similar to EdDSA [17]) by the following steps:

1. Sample a random nonce k
$← Zq; compute the commitment R = gk ∈ G

2. Compute the challenge c = H(R, Y,m)
3. Using the secret key s, compute the response z = k + s · c ∈ Zq

4. Define the signature over m to be σ = (R, z).

Validating the integrity of m using the public key Y = gs and the signature
σ is performed as follows:

1. Parse σ as (R, z); derive c = H(R, Y,m)
2. Compute R′ = gz · Y −c

3. Output 1 if R
?= R′ to indicate success; otherwise, output 0.

Schnorr signatures are simply the standard Σ-protocol proof of knowledge
of the discrete logarithm of Y , made non-interactive (and bound to the message
m) with the Fiat-Shamir transform.

2.4 Attacks on Parallelized Schnorr Multisignatures

Attack via Wagner’s Algorithm. We next describe an attack recently intro-
duced by Drijvers et al. [10] against some two-round Schnorr multisignature
schemes in a parallel setting. This attack can be performed when the adver-
sary has control over either choosing the message m to be signed, or the ability
to adaptively choose its own individual commitments used to determine the
group commitment R after seeing commitments from all other signing parties.
In Sect. 5.2 and Sect. 6 we discuss how FROST avoids the attack.

Successfully performing the Drijvers attack2 requires finding a hash out-
put c∗ = H(R∗, Y,m∗) that is the sum of T other hash outputs c∗ =
∑T

j=1 H(Rj , Y,mj) (where c∗ is the challenge, mj the message, Y the public sign-
ing key, and Rj the group’s commitment corresponding to a standard Schnorr sig-
nature as described in Sect. 2.3). To find T hash outputs that sum to c∗, the adver-
sary can open many (say T number of) parallel simultaneous signing operations,
varying in each of the T parallel executions either its individual commitment used
to determine Rj or mj . Drijvers et al. use the k-tree algorithm of Wagner [29] to
find such hashes and perform the attack in time O(κ·b·2b/(1+lg κ)), where κ = T+1,
and b is the bitlength of the order of the group.

Although this attack was proposed in a multisignature n-out-of-n setting, this
attack applies similarly in a threshold t-out-of-n setting for an adversary that
controls up to t − 1 participants. We note that this attack applies to threshold
schemes proposed in the literature, such as the scheme by Gennaro et al. [14].

Drijvers et al. [10] also present a metareduction for the proofs of several
Schnorr multisignature schemes that use a generalization of the forking lemma
2 Note that we slightly modify this attack to include the public key Y as an input into

H to match the notation used in this paper.
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with rewinding, highlighting that the security of this proof technique does not
extend to a multi-party setting. Because our proofs of security for FROST (pre-
sented in Sect. 6) reduce to the hardness of the discrete logarithm problem for
the underlying group, as opposed to the one-more discrete logarithm problem,
the metareduction presented by Drijvers et al. [10] does not apply to our proof
strategy.

Attack via ROS Solver. Benhamouda et al. [5] recently presented a
polynomial-time algorithm that solves the ROS (Random inhomogeneities in a
Overdetermined Solvable system of linear equations) problem. As first described
by Schnorr [25], the ROS problem challenges an adversary to find an (� + 1) × �
submatrix of rank �, when given a system of n � � linear equations modulo
q with � unknowns and random constant terms. Benhamouda et al. show how
to solve the ROS in expected polynomial time when � > lg q. Solving the ROS
problem in the setting of Schnorr multisignatures enables an adversary that is
allowed to open � simultaneous connections to an honest participant with inputs
m1, . . . ,m� to produce a (� + 1)th signature without asking the participant for a
signature on m�+1. The authors demonstrate that threshold schemes using Gen-
naro et al.’s DKG [15] and multisignature schemes such as two-round MuSig [21]
are not secure against their ROS-solving algorithm. However, the authors con-
clude that (the current version of) FROST is not affected by their ROS-solving
algorithm.

3 Related Work

We now review prior threshold schemes with a focus on Schnorr-based designs,
and split our review into robust and non-robust schemes. Robust schemes ensure
that so long as t participants correctly follow the protocol, the protocol is guar-
anteed to complete successfully, even if a subset of participants (at most n − t)
contribute malformed shares. Conversely, designs that are not robust simply
abort after detecting any participant misbehaviour.

Robust Threshold Schemes. Stinson and Strobl [28] present a threshold sig-
nature scheme producing Schnorr signatures, using the modification of Peder-
sen’s DKG presented by Gennaro et al. [15] to generate both the secret key s
during key generation as well as the random nonce k for each signing operation.
This construction requires at minimum four rounds for each signing operation
(assuming no participant misbehaves): three rounds to perform the DKG to
obtain k, and one round to distribute signature shares and compute the group
signature. Each round requires participants to send values to every other partic-
ipant.

Gennaro et al. [14] present a threshold Schnorr signature protocol that uses
a modification of Pedersen’s DKG [23] to generate both s during key genera-
tion and the random nonce k for signing operations. However, their construction
requires all n signers to participate in signing, while the adversary is allowed to
control up to the given threshold number of participants. Recall from Sect. 2.2
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that Pedersen’s DKG requires two rounds; this construction requires an addi-
tional round for signing operations when all participants are equally trusted.
Each round requires that all participants send values to all other participants.
The authors also discuss an optimization that leverages a signature aggregator
role, an entity trusted to gather signatures from each participant, perform vali-
dation, and publish the resulting signature, a role we also adopt in our work. In
their optimized variant, participants can perform Pedersen’s DKG to generate
multiple k values in a pre-processing stage independently of performing signing
operations. In this variant, to compute � signatures, signers first perform two
rounds of � parallel executions of Pedersen’s DKG, thereby generating � random
nonces. The signers can then store these pre-processed values to later perform �
single-round signing operations.

Our work builds upon the key generation stage of Gennaro et al. [14]; we
use a variant of Pedersen’s DKG for key generation with a requirement that in
the case of misbehaviour, the protocol aborts and the cause investigated out of
band. However, FROST does not perform a DKG during signing operations as
is done in both of the above schemes, but instead make use of additive secret
sharing and share conversion. Consequently, FROST trades off robustness for
more efficient signing operations, such that a misbehaving participant can cause
the signing operation to abort. However, such a tradeoff is practical to many
real-world settings.

Further, because FROST does not provide robustness, FROST is secure so
long as the adversary controls fewer than the threshold t participants, an improve-
ment over robust designs, which can at best provide security for t ≤ n/2 [15].

Non-robust Threshold Schemes. FROST is not unique in trading off favour-
ing increased network efficiency over robustness. Gennaro and Goldfeder [12]
present a threshold ECDSA scheme that similarly requires aborting the protocol
in the case of participant misbehaviour. Their signing construction uses a two-
round DKG to generate the nonce required for the ECDSA signature, leveraging
additive-to-multiplicative share conversion. This DKG has been also applied in
a Schnorr threshold scheme context to generate the random nonce for more effi-
cient distributed key generation operations [18] in combination with threshold
Schnorr signing operations [28]. In later work [13], Gennaro and Goldfeder define
an optimization to a single-round ECDSA signing operation with a preprocessing
stage, which assumes the protocol will abort in the case of failure or participant
misbehaviour. Their end-to-end protocol with identifiable aborts has eight net-
work rounds, six of which require broadcasting to all other signing participants,
and two of which require performing pairwise multiplicative-to-additive share
conversion protocols. Further, while the protocol can be optimized into a pre-
processing phase, the choice of the signing coalition must be determined at the
time of preprocessing. FROST defines a more efficient preprocessing phase as
secret nonces can be generated in a distributed manner in the preprocessing
phase entirely non-interactively. Further, participants can “mix” preprocessed
values across different signing coalitions, as FROST requires that the choice for
the signing coalition be made only during the signing stage.
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Recent work by Damg̊ard et al. [9] define an efficient threshold ECDSA con-
struction that similarly requires aborting in the case of misbehaviour. Their design
relies on generating a blinding factor d + m · e such that where d and e are 2t
secret sharings of zero, such that the entire binding factor evaluates to zero when
all signing parties are honest and agree on m. This approach is similar to FROST
in that signature shares are bound to the message and to the set of signing parties.
However, the security of their scheme requires the majority of participants to be
honest, and n ≥ 2t+1. Further, their scheme requires all n participants take part
in signing operations, where the threshold t is simply a security parameter.

Similarly to FROST, Abidin, Aly, and Mustafa [1] present a design for
authentication between devices, and use additive secret sharing to generate the
nonce for Schnorr signatures in a threshold setting, a technique also used by
FROST. However, the authors do not consider the Drijvers attack and conse-
quently their design is similarly limited to restricted levels of parallelism. Fur-
ther, their design does not include validity checks for responses submitted by
participants when generating signatures and consequently does not detect nor
identify misbehaving participants.

FROST improves upon prior work in Schnorr threshold schemes by providing
a single-round signing variant with a preprocessing stage that is agnostic to the
choice of the signing coalition. Further, the number of signing participants in
FROST is required to be simply some t ≤ n, while remaining secure against the
Drijvers attack and misbehaving participants who do not correctly follow the
protocol.

4 Preliminaries

Let n be the number of participants in the signature scheme, and t denote the
threshold of the secret-sharing scheme. Let i denote the participant identifier
for participant Pi where 1 ≤ i ≤ n. Let si be the long-lived secret share for
participant Pi. Let Y denote the long-lived public key shared by all participants
in the threshold signature scheme, and let Yi = gsi be the public key share for
the participant Pi. Finally, let m be the message to be signed.

Let α be the number of participants performing a signing operation, where
t ≤ α ≤ n. For a set S = {p1, . . . , pα} of α participant identifiers in the sign-
ing operation, let λi =

∏α
j=1,j �=i

pj

pj−pi
denote the ith Lagrange coefficient for

interpolating over S. Note that the information to derive these values depends
on which α (out of n) participants are selected, and uses only the participant
identifiers, and not their shares.3

Security Assumptions. We maintain the following assumptions, which imple-
mentations should account for in practice.

– Message Validation. We assume every participant checks the validity of the
message m to be signed before issuing its signature share.

3 Note that if n is small, the λi for every possible S can be precomputed as a perfor-
mance optimization.
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– Reliable Message Delivery. We assume messages are sent between participants
using a reliable network channel.

– Participant Identification. In order to report misbehaving participants, we
require that values submitted by participants to be identifiable within the
signing group. Implementations can enforce this using a method of participant
authentication within the signing group.4

5 FROST: Flexible Round-Optimized Schnorr Threshold
Signatures

We now present FROST, a Flexible Round-Optimized Schnorr Threshold signa-
ture scheme that minimizes the network overhead of producing Schnorr signa-
tures in a threshold setting while allowing for unrestricted parallelism of signing
operations and only a threshold number of signing participants.

Efficiency over Robustness. As described in Sect. 3, prior threshold signature
constructions [14,28] provide the property of robustness. However, in settings
where one can expect misbehaving participants to be rare, threshold signing
protocols can be relaxed to be more efficient in the “optimistic” case that all
participants honestly follow the protocol. In the case that a participant does
misbehave, honest participants can identify the misbehaving participant and
abort the protocol, and then re-run the protocol after excluding the misbehaving
participant. FROST trades off robustness in the protocol for improved round
efficiency in this way.

Signature Aggregator Role. We instantiate FROST using a semi-trusted sig-
nature aggregator role, denoted as SA. Such a role allows for less communication
overhead between signers and is often practical in a real-world setting. However,
FROST can be instantiated without a signature aggregator; each participant
simply performs a broadcast in place of SA performing coordination.

The signature aggregator role can be performed by any participant in the
protocol, or even an external party, provided they know the participants’ public-
key shares Yi. SA is trusted to report misbehaving participants and to publish
the group’s signature at the end of the protocol. If SA deviates from the protocol,
the protocol remains secure against adaptive chosen message attacks, as SA is
not given any more of a privileged view than the adversary we model in our proof
of security for FROST in Sect. 6. A malicious SA does have the power to perform
denial-of-service attacks and to falsely report misbehaviour by participants, but
cannot learn the private key or cause improper messages to be signed. Note this
signature aggregator role is also used in prior threshold signature constructions
in the literature [14] as an optimization.

4 For example, authentication tokens or TLS certificates could serve to authenticate
participants to one another.
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Fig. 1. KeyGen. A distributed key generation (DKG) protocol that builds upon the
DKG by Pedersen [23]. Our variant includes a protection against rogue key attacks
by requiring each participant to prove knowledge of their secret value commits, and
requires aborting on misbehaviour.

5.1 Key Generation

To generate long-lived key shares in our scheme’s key generation protocol,
FROST builds upon Pedersen’s DKG for key generation; we detail these protocol
steps in Fig. 1. Note that Pedersen’s DKG is simply where each participant exe-
cutes Feldman’s VSS as the dealer in parallel, and derives their secret share as
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the sum of the shares received from each of the n VSS executions. In addition to
the base Pedersen DKG protocol, FROST additionally requires each participant
to demonstrate knowledge of their secret ai0 by providing other participants with
proof in zero knowledge, instantiated as a Schnorr signature, to protect against
rogue-key attacks [2] in the setting where t ≥ n/2.

To begin the key generation protocol, a set of participants must be formed
using some out-of-band mechanism decided upon by the implementation. After
participating in the Ped-DKG protocol, each participant Pi holds a value (i, si)
that is their long-lived secret signing share. Participant Pi’s public key share
Yi = gsi is used by other participants to verify the correctness of Pi’s signature
shares in the following signing phase, while the group public key Y can be used
by parties external to the group to verify signatures issued by the group in the
future.

View of Commitment Values. As required for any multi-party protocol using
Feldman’s VSS, the key generation stage in FROST similarly requires partici-
pants to maintain a consistent view of commitments Ci , 1 ≤ i ≤ n issued during
the execution of Ped-DKG. In this work, we assume participants broadcast the
commitment values honestly (e.g., participants do not provide different com-
mitment values to a subset of participants); recall Sect. 2.1 where we described
techniques to achieve this guarantee in practice.

Security Tradeoffs. While Gennaro et al. [15] describe the “Stop, Kill, and
Rewind” variant of Ped-DKG (where the protocol terminates and is re-run if
misbehaviour is detected) as vulnerable to influence by the adversary, we note
that in a real-world setting, good security practices typically require that the
cause of misbehaviour is investigated once it has been detected; the protocol
is not allowed to terminate and re-run continuously until the adversary finds a
desirable output. Further, many protocols in practice do not prevent an adver-
sary from aborting and re-executing key agreement at any point in the protocol;
adversaries in protocols such as the widely used TLS protocol can skew the
distribution of the resulting key simply by re-running the protocol.

However, implementations wishing for a robust DKG can adapt our key gen-
eration protocol to the robust construction presented by Gennaro et al. [15]. Note
that the efficiency of the DKG for the key generation phase is not extremely crit-
ical, because this operation must be done only once per key generation for long-
lived keys. For the per-signature operations, FROST optimizes the generation
of random values without utilizing a DKG, as discussed next.

5.2 Threshold Signing with Unrestricted Parallelism

We now introduce the signing protocol for FROST. This operation builds upon
known techniques in the literature [1,14] by employing additive secret shar-
ing and share conversion to non-interactively generate the nonce value for each
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Fig. 2. FROST preprocessing protocol

signature. However, signing operations in FROST additionally leverage a bind-
ing technique to avoid known forgery attacks without limiting concurrency. We
present FROST signing in two parts: a pre-processing phase and a single-round
signing phase. However, these stages can be combined for a single two-round
protocol if desired.

As a reminder, the attack of Drijvers et al. [10] requires the adversary to
either see the victim’s T commitment values before selecting their own commit-
ment, or to adaptively choose the message to be signed, so that the adversary
can manipulate the resulting challenge c for the set of participants performing
a group signing operation. To prevent this attack without limiting concurrency,
FROST “binds” each participant’s response to a specific message as well as
the set of participants and their commitments used for that particular signing
operation. In doing so, combining responses over different messages or partici-
pant/commitment pairs results in an invalid signature, thwarting attacks such
as those of Drijvers et al.

Preprocessing Stage. We present in Fig. 2 a preprocessing stage where partic-
ipants generate and publish π commitments at a time. In this setting, π deter-
mines the number of nonces that are generated and their corresponding commit-
ments that are published in a single preprocess step. Implementations that do
not wish to cache commitments can instead use a two-round signing protocol,
where participants publish a single commitment to each other in the first round.

Each participant Pi begins by generating a list of single-use private nonce
pairs and corresponding public commitment shares 〈((dij ,Dij = gdij ), (eij , Eij =
geij ))〉π

j=1, where j is a counter that identifies the next nonce/commitment share
pair available to use for signing. Each Pi then publishes (i, Li), where Li is their
list of commitment shares Li = 〈(Dij , Eij)〉π

j=1. The location where participants
publish these values can depend on the implementation (which we discuss further
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Fig. 3. FROST single-round signing protocol

in Sect. 7). The set of (i, Li) tuples are then stored by any entity that might
perform the signature aggregator role during signing.

Signing Protocol. At the beginning of the signing protocol in Fig. 3, SA selects
α : t ≤ α ≤ n participants (possibly including itself) to participate in the signing.
Let S be the set of those α participants. SA then selects the next available
commitment (Di, Ei) : i ∈ S, which are later used to generate a secret share to
a random commitment R for the signing group.5

5 Each participant contributes to the group commitment R, which corresponds to the
commitment gk to the nonce k in step 1 of the single-party Schnorr signature scheme
in Sect. 2.3.
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The resulting secret nonce is k =
∑

i∈S ki, where each ki = di + ei · ρi

(we next describe how participants calculate ρi), and (di, ei) correspond to the
(Di = gdi , Ei = gei) values published during the Preprocess stage. Recall from
Sect. 2.1 that if the ki are additive shares of k, then the ki

λi
are Shamir shares

of k.
After these steps, SA then creates the set B, where B is the ordered list of

tuples 〈(i,Di, Ei)〉i∈S . SA then sends (m,B) to every Pi, i ∈ S.
After receiving (m,B) from SA to initialize a signing operation, each partic-

ipant checks that m is a message they are willing to sign. Then, using m and B,
all participants derive the “binding values” ρi, i ∈ S such that ρi = H1(i,m,B),
where H1 is a hash function whose outputs are in Z

∗
q .

Each participant then computes the commitment Ri for each participant in
S by deriving Ri = Di · (Ei)ρi . Doing so binds the message, the set of signing
participants, and each participant’s commitment to each signature share. This
binding technique thwarts the attack of Drijvers et al. described in Sect. 2.4 as
attackers cannot combine signature shares across disjoint signing operations or
permute the set of signers or published commitments for each signer.

The commitment for the set of signers is then simply R =
∏

i∈S Ri. As in
single-party Schnorr signatures, each participant computes the challenge c =
H2(R, Y,m).

Each participant’s response zi to the challenge can be computed using the
single-use nonces (di, ei) and the long-term secret shares si, converted to additive
form:

zi = di + (ei · ρi) + λi · si · c

SA finally checks the consistency of each participant’s reported zi with their
commitment share (Di, Ei) and their public key share Yi. If every participant
issued a correct zi, the group’s response is z =

∑
i∈S zi, and the group signature

on m is σ = (R, z). This signature is verifiable to anyone performing a standard
Schnorr verification operation with Y as the public key (Sect. 2.3).

Handling Ephemeral Outstanding Shares. Because each nonce and com-
mitment share generated during the preprocessing stage described in Fig. 2 must
be used at most once, participants should delete these values after using them
in a signing operation, as indicated in Step 5 in Fig. 3. An accidentally reused
(dij , eij) can lead to exposure of the participant’s long-term secret si.

However, if SA chooses to re-use a commitment set (Di, Ei) during the sign-
ing protocol, doing so simply results in the participant Pi aborting the protocol,
and consequently does not increase the power of SA.

6 Security

We now present proofs of correctness and a high-level overview of our proof of
security against chosen-message attacks for FROST. We present our complete
proofs of security in Appendix A.
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6.1 Correctness

Signatures in FROST are constructed from two polynomials; the first polynomial
F1(x) defines the secret sharing of the private signing key s (such that Y = gs)
and the second polynomial F2(x) defines the secret sharing of the nonce k such
that k =

∑
i∈S di + ei · ρi using the associated public data (m,B) to determine

ρi. During the key generation phase described in Fig. 1, the first polynomial
F1(x) =

∑n
j=1 fj(x) is generated such that the secret key shares are si = F1(i)

and the secret key is s = F1(0).
During the signature phase (Fig. 3), each of the α : t ≤ α ≤ n participants

selected for signing use a pair of nonces (di, ei) to define a degree α−1 polynomial
F2(x), interpolating the values (i, di+ei·H1(i,m,B)

λi
), such that F2(0) =

∑
i∈S di +

ei · ρi.
Then let F3(x) = F2(x) + c · F1(x), where c = H2(R, Y,m). Now zi equals

di + (ei · ρi) + λi · si · c = λi(F2(i) + c · F1(i)) = λiF3(i), so z =
∑

i∈S zi is
simply the Lagrange interpolation of F3(0) = (

∑
i∈S di + eij · ρi) + c · s. Because

R = g
∑

i∈S di+ei·ρi and c = H2(R, Y,m), (R, z) is a correct Schnorr signature
on m.

6.2 Security Against Chosen Message Attacks

We now present a high-level overview of the proof of security against chosen-
message attacks for FROST; our complete proofs are in Appendix A. We begin
by summarizing a proof of security for an interactive variant of FROST that we
call FROST-Interactive, and then demonstrate how the proof extends to plain
FROST.

We employ the generalized forking strategy used by Bellare and Neven [3]
to create a reduction to the security of the discrete logarithm problem (DLP)
in G. We prove security against the standard notion of existential unforgeability
against chosen message attacks (EUF-CMA) by demonstrating that the difficulty
to an adversary to forge FROST signatures by performing an adaptively chosen
message attack in the random oracle model reduces to the difficulty of computing
the discrete logarithm of an arbitrary challenge value ω in the underlying group,
so long as the adversary controls fewer than the threshold t participants.

FROST-Interactive. In FROST-Interactive, ρi is established using a “one-
time” verifiable random function (VRF),6 as ρi = aij + (bij · Hρ(m,B)), where
(aij , bij) are selected and committed to as (Aij = gaij , Bij = gbij ) during the
preprocessing stage, along with zero-knowledge proofs of knowledge of (aij , bij).
To perform a signing operation, participants first generate ρi in the first round
of the signing protocol using (aij , bij), and then publish ρi to the signature
aggregator, which distributes all ρ�, � ∈ S to all signing participants. These
6 A one-time VRF Fk for key k relaxes the standard properties of a VRF by requiring

that Fk(x) be unpredictable to someone who does not know k only when at most
one value of Fk(y) has been published by the keyholder (and y �= x). We use the
construction k = (a, b) ∈ Z

2
q and Fk(x) = a+b·x. The public key is (A = ga, B = gb).
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ρ�, � ∈ S values are then used by all signing participants to compute R in the
second round of the signing protocol, which participants use to calculate and
publish zi.

Summary of Proof for EUF-CMA Security for FROST-Interactive. Let
nh be the number of queries made to the random oracle, np be the number of
allowed preprocess queries, and ns be the number of allowed signing queries. We
assume there exists a forger F that (τ, nh, np, ns, ε)-breaks FROST-Interactive,
meaning that F can compute a forgery for a signature generated by FROST-
Interactive in time τ with success ε, but is limited to making nh number of ran-
dom oracle queries, np number of preprocess queries, and ns number of signing
queries. We construct an algorithm C that (τ ′, ε′)-solves the discrete logarithm
problem in G, for an arbitrary challenge value ω ∈ G, using as a subroutine a
forger F that can forge FROST signatures.

Without loss of generality, we assume F controls t − 1 participants.

Theorem 1. If the discrete logarithm problem in G is (τ ′, ε′)-hard, then the
FROST-Interactive signature scheme over G with n signing participants, a
threshold of t, and a preprocess batch size of π is (τ, nh, np, ns, ε)-secure whenever

ε′ ≤ ε2

2nh + (π + 1)np + 1
and

τ ′ = 4τ + (30πnp + (4t − 2)ns + (n + t − 1)t + 6) · texp + O(πnp + ns + nh + 1)

such that texp is the time of an exponentiation in G, assuming the number of
participants compromised by the adversary is less than the threshold t.

Proof Sketch for FROST-Interactive. We provide our complete proof in
Appendix A, but summarize here. We prove Theorem 1 by contradiction.

We begin by embedding the challenge value ω into the group public key Y .
The coordinator algorithm C then uses the generalized forking algorithm GFA
to initialize the simulator A(Y, {h1, . . . , hnr

};β), providing the group public key
Y , outputs for nr = 2nh + (π + 1)np + 1 random oracle queries denoted as

{h1, . . . , hnr
} $← H, and the random tape β. A then invokes the forger F , sim-

ulating the responses to F ’s random oracle queries by providing values selected
from {h1, . . . , hnr

}, and also simulates the honest party Pt in the KeyGen, Pre-
process, and Sign procedures.

To simulate signing without knowing the secret key corresponding to Pt’s
own public key Yt, A generates the commitment and signature for participant
Pt by publishing (Dtj = gztj · (Yt)−cj , Etj) such that ztj

$← Zq, cj is the next
unused value from the set of random oracle outputs supplied by GFA, and
Etj = getj , etj

$← Z
∗
q . To determine which challenge cj to return for a particu-

lar commitment (Dij , Eij) when simulating a signing operation, A forks F to
extract its (aij , bij) VRF keys from its zero-knowledge proofs during Preprocess
for each participant P� controlled by F , and consequently can directly compute
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its corresponding ρ�. Hence, A can compute R strictly before F for every signing
query, and thus can always correctly program the random oracle for the query
H2(R, Y,m) to return the correct cj embedded in Dtj .

Once A has returned a valid forgery σ = (R, z) and the index J associated to
the random oracle query hJ such that hJ = c, GFA re-executes A with the same
random tape β and public key Y , but with responses to random oracle queries
{h1, . . . , hJ−1, h

′
J , . . . , h′

nr
}, where {h′

J , . . . , h′
nr

} $← H. Doing so simulates the
“forking” of A at a specific point in its execution, such that all behaviour of A
is identical between executions up to the J th random oracle query, but different
thereafter.

Consequently, given a forger F that with probability ε produces a valid
forgery, the probability that A returns a valid forgery for FROST-Interactive
is ε, and the probability that GFA returns two valid forgeries using the same
commitment after forking A is ε2

nr
.

The running time for C to compute the discrete logarithm by procuring two
forgeries from FROST-Interactive is four times that for F (because of the forking
of A, which itself forks F), plus the time to compute (30πnp + (4t − 2)ns + (n +
t − 1)t + 6) exponentiations, and O(πnp + ns + nh + 1) other minor operations,
such as table lookups.

Extension of Proof to FROST. We now heuristically demonstrate how the
change from FROST-Interactive to FROST does not open a hole in the proof.
The difference between FROST-Interactive and FROST is the replacement of
the interactive VRF in FROST-Interactive with a hash function (modelled by
a random oracle) to derive ρi. This change still achieves the properties required
of ρi, as deterministic, unpredictable, and bound to (i,m,B). However, the key
distinction when generating ρi via a VRF versus a hash function is that in
FROST-Interactive, the VRF query is part of the signing algorithm, and so each
such query uses up a (di, ei) pair; therefore, the adversary can learn only one
ρi(m,B) value for any given (i,Di, Ei) ∈ B, and importantly, this allows the
simulator A in the proof to always be able to set H2(R, Y,m) to the correct
cj value. In plain FROST, the adversary can query the random oracle ρi =
H1(i,m,B) polynomially many times, even with the same (i,Di, Ei) ∈ B. The
adversary will be able to produce a forgery if7 (slightly generalizing the Drijvers
attack to arbitrary linear combinations instead of just sums) they can find m∗,
r∗, and 〈mj , Bj , γj〉π

j=1 such that

H2(R∗, Y,m∗) =
π∑

j=1

γj · H2(Rj , Y,mj) (1)

7 This is the main heuristic step; sufficiency (“if”) is immediate, but we do not prove
necessity (“only if”). That said, the only information the forger has about honest
participant Pt’s private key st is Yt = gst and π pairs (gkj , zj = kj + st · λt ·
H2(Rj , Y, mj))

π
j=1. If the forger can produce a forgery, they must necessarily be able

to compute a pair (gk∗
, z∗ = k∗ + st · λt · H2(R

∗, Y, m∗)). Assuming taking discrete
logs is infeasible, writing z∗ as a linear combination of the zj (as polynomials in the
unknown st) appears to be the forger’s only reasonable strategy.
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where Rj =
∏

(i,D,E)∈Bj

D · EH1(i,mj ,Bj), R̂j = Djt · E
H1(i,mj ,Bj)
jt , R∗ = gr∗ ·

π∏

j=1

R̂j

γj

, each Bj contains the honest party’s (t,Djt, Ejt), and m∗ is not one of

the mj .
Importantly, the key difference between FROST and schemes susceptible to

the Drijvers attack is that in FROST, the R∗ in the left side of Eq. 1 is itself a
function of all the inputs to the hash functions on the right side. Drijvers can
use Wagner’s generalized birthday attack [29] because the left and right sides of
Eq. 1 are independent for schemes vulnerable to their attack, and so Wagner’s
algorithm can find a collision between a list of possible values on the left (the
(m∗, R∗) terms) and a (larger) list of possible values on the right (the (mj , Rj)
terms). In FROST, however, each combination of values on the right changes R∗,
and so the list of possible values on the left (varying m∗, for example) changes for
each such combination, increasing the cost to an attacker from the generalized
birthday collision attack to multiple preimage attacks.

As such, we heuristically argue that the difference between generating ρi via
the one-time VRF in FROST-Interactive and the random oracle in plain FROST
has no security consequence.

6.3 Aborting on Misbehaviour

FROST requires participants to abort once they have detected misbehaviour,
with the benefit of fewer communication rounds in an honest setting.

If one of the signing participants provides an incorrect signature share, SA
will detect that and abort the protocol, if SA is itself behaving correctly. The
protocol can then be rerun with the misbehaving party removed. If SA is itself
misbehaving, and even if up to t − 1 participants are corrupted, SA still cannot
produce a valid signature on a message not approved by at least one honest
participant.

7 Implementation and Operational Considerations

We have implemented FROST in Rust, using Ristretto over curve25519 [19] for
the group operations. Our source code can be found at https://crysp.uwaterloo.
ca/software/frost.

We now discuss two topics that may be of interest to implementors.

Publishing Commitments. The preprocessing step for FROST in Sect. 5.2
requires some agreed-upon location for participants to publish their commit-
ments to, such as a commitment server, which is trusted to provide the correct
(i.e., valid and unused) commitment shares upon request. If malicious, it could
perform a denial-of-service attack, or it could provide stale or malformed com-
mitment values on behalf of honest participants. However, simply having access

https://crysp.uwaterloo.ca/software/frost
https://crysp.uwaterloo.ca/software/frost
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to the set of a participant’s public published commitments does not grant any
additional powers.

Performing Two-Round FROST Without Central Roles. While the
round complexity of FROST can be optimized using central roles such as the sig-
nature aggregator, some implementations may wish to remain completely decen-
tralized. In this setting, participants can simply broadcast commitments to each
other, and perform signing using a two-round setting (foregoing the preprocess-
ing step) for further simplicity.

8 Conclusion

While threshold signatures provide a unique cryptographic functionality that is
applicable across a range of settings, implementations incur network overhead
costs when performing signing operations under heavy load. As such, minimiz-
ing the number of network rounds required for threshold signing operations has
practical benefits for network-limited devices or where signers can go offline
but wish to perform a signing operation asynchronously. In this work, we intro-
duce FROST, a flexible Schnorr-based threshold signature scheme that improves
upon the state of the art by minimizing the number of network rounds required
for signing without limiting the parallelism of signing operations. We present
an optimized variant of FROST as a single-round signing protocol with a pre-
processing phase, but the protocol can be used in a two-round setting. While
FROST requires aborting on misbehaviour, such a tradeoff is often practical in
a real-world setting, assuming such cases of misbehaviour are rare. We present
proofs of security and correctness for FROST, demonstrating FROST is secure
against chosen-message attacks assuming the adversary controls fewer than a
threshold number of participants, and the discrete logarithm problem is hard.
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A Proof of Security

In Sect. 6.2, we presented a high-level overview of the proof of security for
FROST-Interactive. We now present the proof in detail.
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A.1 Preliminaries

Our proof strategy is to demonstrate that the security of FROST-Interactive
reduces to the difficulty of computing the discrete logarithm of an arbitrary
challenge value ω. At a high level, ω will be embedded into a public key Y
representing a set of participants, such that Y is the output of these participants
cooperating to perform the FROST KeyGen protocol. Then, to compute the
discrete logarithm of ω, a forger F will produce two forgeries (σ, σ′), σ 	= σ′

for the same commitment value R and message m. Using (σ, σ′), the discrete
logarithm of ω can subsequently be extracted.

We now describe how we perform this proof strategy in detail, starting by
introducing four different algorithms that we use in our proof, and expanding
further below.

– F represents a forger that with probability ε and in time t can compute a
forgery σ for a public key Y , where Y was generated as part of the FROST
KeyGen protocol.

– A represents a simulator that invokes F and simulates the necessary
inputs/outputs for F to perform its forgery attack. Specifically, A simulates
honest participants in FROST KeyGen and signing operations, as well as
random oracle queries.

– GFA represents the Generalized Forking Algorithm that establishes a random
tape and outputs to random oracle queries, and invokes A with these values
in order to produce two forgeries (σ, σ′).

– C represents the coordination algorithm that accepts a challenge value ω and
invokes the other algorithms in order to obtain (σ, σ′), which it then uses to
compute the discrete logarithm of ω.

Adversary Powers. When performing its forgery attack, we grant F the role
of the signature aggregator SA. Without loss of generality, we assume F controls
t − 1 participants, and has full power over how these participants behave, what
secret and public values they generate, etc. We also assume the participant Pt

is in the signing set S.
We now further describe GFA and C; note these algorithms remain largely

unchanged from their use by Bellare and Neven [3]. We describe the implemen-
tation of A in the proof directly.

Generalized Forking Algorithm and Lemma. We build upon the Gener-
alized Forking Algorithm and Lemma by Bellare and Neven [3], which simulates
the rewinding of the adversary A, and which we describe next.

Generalized Forking Algorithm. Let nr be the maximum number of random
oracle outputs that A may need to generate, and let h be the number of possible
outputs from the random oracle H.
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Algorithm 1. Generalized Forking Algorithm GFA(Y )
Input A public key Y
Output (1, hJ , h′

J , σ, σ′) if A produces two forgeries, otherwise ⊥

1: Instantiate a random tape β and {h1, . . . , hnr} $← H
2: (J, σ) or ⊥ ← A(Y, {h1, . . . , hnr}; β)

3: If ⊥, then return ⊥. Otherwise, h′
J , . . . , h′

nr

$← H
4: (J ′, σ′) ← A(Y, {h1, . . . , hJ−1, h

′
J , . . . , h′

nr
}; β)

5: If J
?
= J ′ and hJ �= h′

J then return (1, hJ , h′
J , σ, σ′). Else, return ⊥

The adversary A is an algorithm that accepts as inputs a public key Y ,
the randomly selected set h1, . . . , hnr

of random oracle outputs, and a random
tape β. A outputs an integer J which represents the index corresponding to the
random oracle query that can be used to derive c for the forgery σ = (R, z),
along with σ itself. GFA (Algorithm 1) plays the role of setting up these inputs
and outputs, and executing A accordingly.

The execution GFA is as follows: first GFA instantiates a random tape β,
and generates random outputs h1, . . . , hnr

which will then be used by A to
simulate the outputs for each random oracle query. GFA then executes A with
these inputs as well as a public key Y . A uses the forger F as a subroutine to
perform its forgery attack, simulating all input and output whenever F requests
a signing operation or random oracle query. Eventually, F outputs a forgery σ
with probability ε, which A returns along with its corresponding index for the
random oracle query that can be used to derive c for σ. After A outputs (J, σ),
GFA first checks to see if the output is a successful forgery, as indicated by when
J ≥ 1. If so, it continues to the second execution of A.

For the second execution of A, GFA will feed in the same random tape β,
but will supply a different set of simulated responses for the random oracle H.
In order to “fork” A, GFA will supply the same responses h1, . . . , hJ−1, but will
provide different responses for hJ , . . . , hnr

. In doing so, GFA simulates forking
the adversary at a specific point when performing its attack similar to the proof
model by Pointcheval and Stern [24], but without needing to rewind A to a
specific point.

After its second execution, A will return (J ′, σ′) or ⊥. If J ′ ?= J but the
output from the random oracle queries is different such that hJ 	= h′

J , then GFA
will output 1 to indicate success along with the two forgeries σ, σ′ and the two
random oracle queries corresponding to these forgeries (hJ , h′

J ). These values
can then be used by the coordination algorithm C to determine the discrete
logarithm of the challenge value ω (we provide more details on how to perform
this operation below).

Generalized Forking Lemma. We will now see how the generalized forking
lemma presented by Bellare and Neven [3] determines the probability that GFA
will return a successful output. Let acc be the accepting probability of A, or
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Algorithm 2. Algorithm C(ω)
Input A challenge value ω
Output The discrete logarithm of ω, or ⊥

1: Simulate KeyGen to embed challenge value ω and extract the forger’s secret values
(Y, (a10, . . . , a(t−1)0)) ← SimKeyGen(ω)

2: (1, hJ , h′
J , σ, σ′) or ⊥ ← GFA(Y )

3: If not ⊥, then ExtractDLog(ω, hJ , h′
J , σ, σ′, (a10, . . . , a(t−1)0))

the probability that J ≥ 1, and let h be the total number of possible outputs of
H. Let e′ be the advantage of solving the discrete logarithm problem over some
group G. Recall that nr is the maximum number of random oracle outputs A
may need to generate.

Lemma 1. Generalized Forking Lemma [3] Let frk be defined by the fol-
lowing probability:

frk = Pr[b = 1 : x
$← IG : (b, σ, σ′) $← GFA(x)]

where IG is an input generator for a challenge input x. Then

e′ ≥ frk ≥ acc · (
acc
nr

− 1
h

)

Lemma 1 demonstrates the probability e′ that running the generalized forking
algorithm GFA will produce two valid forgeries σ = (R, z) and σ′ = (R′, z′) along
with their respective challenge responses from the random oracle (hJ , h′

J ) over
the same message m and public commitment R, and so enable the extraction of
the desired discrete logarithm.

Embedding the Challenge Value During KeyGen. We use a coordination
algorithm C described in Algorithm 2 to perform setup for GFA and to derive
the discrete logarithm of the challenge value ω afterward.

Simulating KeyGen. We now describe how C embeds the challenge value ω
into the group public key Y during a simulation of the KeyGen phase; Y is in
turn fed as input into GFA. For simplicity of notation, we let n = t (where n
is the total number of participants and t is the threshold), and F controls t − 1
participants, and A simulates the tth (honest) participant to F . The case for
general n is similar.

For the first round of the key generation protocol, A simulates Pt as follows.
Let Ci be the set of public commitments φi1, . . . , φi(t−1) for participant Pi. To
calculate Ct and to distribute shares ft(1), . . . , ft(t−1) to the t−1 participants
corrupted by F , A does the following:

1. Randomly generate x̄t1, . . . , x̄t(t−1) to serve as the secret shares corresponding
to ft(1), . . . , ft(t − 1)
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Algorithm 3. Algorithm ExtractDLog(ω, hJ , h′
J , (σ, σ′), (a10, . . . , a(t−1)0))

Input A challenge value ω, two random oracle responses hJ , h′
J and their

corresponding two forgeries (σ, σ′), and secret values (a10, . . . , a(t−1)0)
Output The discrete logarithm of ω

1: Parse σ, σ′ as (R, z), (R, z′), and then compute the discrete logarithm of Y as
(z′−z)

(h′
J

−hJ )
.

2: Compute at0 = dlog(Y ) − ∑t−1
i=1 ai0

3: Return at0, which is the discrete logarithm of ω

2. Set φt0 to be the challenge value ω
3. Calculate φt1, . . . , φt(t−1) by performing Lagrange interpolation in the expo-

nent, or φtk = ωλk0 · g
∑t−1

i=1 λki·x̄ti

A then broadcasts Ct for Pt. For the second round, A sends (1, x̄t1), . . . , (t−
1, x̄t(t−1)) to the participants P1, . . . , Pt−1 corrupted by F . Further, A simulates
the proof of knowledge for at0 by deriving σ as:

ct, z
$← Zq; R = gz · ω−ct ; and σ = (R, z)

A derives the public key for Pt by following the same steps they would use
to calculate the public key for their peers (as the discrete log of the challenge
value ω is unknown), by deriving Yt =

∏n
j=1

∏t−1
k=0 φtk mod q

jk .
The participants controlled by F can derive their private key shares si by

directly following the KeyGen protocol, then deriving Yi = gsi . We will see in
the proof for FROST-Interactive how A can still simulate signing for the honest
party Pt to F even without knowing its corresponding private key share. Each
party (honest or corrupted by F) can follow the KeyGen protocol to derive the
group’s long-lived public key, by calculating Y =

∏n
j=1 φj0.

In addition, C must obtain F ’s secret values (a10, . . . , a(t−1)0) using the
extractor for the zero-knowledge proofs that F generates. C will use these values
next in order to convert the discrete logarithm for the group public key Y into
the discrete logarithm for the challenge value ω.

Solving Discrete Logarithm of the Challenge. We now describe how two
forged signatures (σ, σ′) along with the challenge values from the random oracle
query (hJ , h′

J ) produced as output from GFA can be used by C to extract
the discrete logarithm of the challenge value ω. We give an overview of the
algorithm ExtractDLog in Algorithm 3, which C uses as a subroutine. Note
that the advantage e′ used later in our proofs denotes the advantage of C(ω) of
solving the discrete logarithm for the challenge value ω.

We can compute dlog(Y ), because

R = gz · Y −hJ = gz′ · Y −h′
J
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and since hJ 	= h′
J , then

dlog(Y ) =
(z′ − z)

(h′
J − hJ)

The discrete logarithm corresponding to ω can then be extracted as follows:

at0 = dlog(Y ) −
t−1∑

i=1

ai0 = dlog(ω) (2)

As discussed in Sect. A.1, all of F ’s ai0, i 	= t values are known as these
were extracted by A while performing the key generation protocol. Hence, C
can extract at0 using Eq. 2, resulting in learning the discrete log of the challenge
value ω.

A.2 Proof of Security for FROST-Interactive

Due to the difficulty of simulating zero-knowledge proofs in parallel, for the
purposes of proving the security of FROST, we will first prove security against
an interactive two-round variant of the FROST signing operation, which we
call FROST-Interactive. In Sect. 6.2, we discuss how the security for FROST-
Interactive extends to plain FROST.

FROST-Interactive. FROST-Interactive uses the same KeyGen protocol to
generate long-lived keys as regular FROST, as further described in Sect. 5.1. We
present an overview of the Preprocess step for FROST-Interactive in Fig. 4, and
the signing step in Fig. 5.

The distinction between the signing operations for plain FROST and
FROST-Interactive is how the binding value ρi is generated. Because of the
difficulty of simulating non-interactive zero-knowledge proofs of knowledge
(NIZKPKs) in a concurrent setting, we instantiate FROST-Interactive using
a one-time VRF, from which each participant generates their value ρi given the
inputs (m,B). We prove this variant to be secure against the standard notion
of EUF-CMA security.

Preprocess. The Preprocess phase for FROST-Interactive differs from FROST
in two ways. First, participants additionally generate one-time VRF keys
(aij , bij) and their commitments (Aij = gaij , Bij = gbij ) along with the usual
FROST nonce values (dij , eij) and their commitments (Dij = gdij , Eij = geij )
along with a zero-knowledge proof of knowledge for the (aij , bij) one-time VRF
keys. These keys are later used to generate ρi during the signing phase.

We require Preprocess for FROST-Interactive to be performed serially so
that the simulator can efficiently extract the discrete logarithm of the adver-
sary’s non-interactive zero knowledge proof of knowledge of its VRF keys via
rewinding. In the setting of plain FROST, the Preprocess step can be performed
non-interactively, and thus the requirement of performing this step serially is no
longer relevant.
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Fig. 4. FROST-interactive two-round preprocessing protocol

Sign. To perform signing, SA first sends (m,B) to each participant, and each
participant responds with ρi = aij + bij ·Hρ(m,B), where B is derived similarly
to in plain FROST via the ordered list of tuples (i,Dij , Eij), i ∈ S. In the second
round, SA then sends each ρi to each of the signing participants, who use these
values to derive R and then to calculate their own response zi.

Proof of Security for FROST-Interactive. We now present a proof of EUF-
CMA security for FROST-Interactive, demonstrating that an adversary that can
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Fig. 5. FROST-interactive two-round signing protocol

compute forgeries acting against FROST-Interactive can be used to compute the
discrete logarithm of an arbitrary challenge value.

Let nh be the number of queries made to the random oracle, np be the number
of allowed preprocess queries, and ns be the number of allowed signing queries.

Theorem 2. If the discrete logarithm problem in G is (τ ′, ε′)-hard, then the
FROST-Interactive signature scheme over G with n signing participants, a
threshold of t, and a preprocess batch size of π is (τ, nh, np, ns, ε)-secure whenever

ε′ ≤ ε2

2nh + (π + 1)np + 1

and

τ ′ = 4τ + (30πnp + (4t − 2)ns + (n + t − 1)t + 6) · texp + O(πnp + ns + nh + 1)

such that texp is the time of an exponentiation in G, assuming the number of
participants compromised by the adversary is less than the threshold t.
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Algorithm 4. Algorithm A(Y, {h1, . . . , hnr
};β)

Input A public key Y and random oracle outputs {h1, . . . , hnr}
Output An index J and forgery σ, or ⊥

1: Initialize ctr = 1, Tρ = {}, T2 = {}, T3 = {}, T4 = {}, J2 = {}, C = {}, M = {}
2: Run F on input Y , answering its queries as follows, until it outputs (m, σ = (R, z)) or ⊥.
3: On simulating Hρ(m, B):
4: If Tρ[m, B] = ⊥, set Tρ[m, B] = hctr; ctr = ctr + 1. Return Tρ[m, B].
5: On simulating H2(R, Y, m):

6: If T2[m, R] = ⊥, set T2[R, Y, m] = hctr, J2[R, Y, m] = ctr; ctr = ctr + 1. Return
T2[R, Y, m].

7: On simulating H3(X ):
8: If T3[X ] = ⊥, set T3[X ] = hctr; ctr = ctr + 1. Return T3[X ].
9: On simulating H4(i, Φ):
10: If T4[i, Φ] = ⊥, set T4[i, Φ] = hctr; ctr = ctr + 1. Return T4[i, Φ].

11: On simulating Preprocess:
12: Round 1:

13: For 1 ≤ j ≤ π, do:

14: Set c̄j = hctr, C[j] = ctr, ctr = ctr + 1, z̄tj
$← Zq , Dtj = gz̄tj · Yt

−c̄j .

15: Follow the protocol honestly to sample (etj , atj , btj) and derive (Etj , Atj , Btj).

16: Follow the protocol honestly to sample (katj , kbtj) and derive (Ratj , Rbtj).

17: Derive Kt honestly, publish to F , and wait for all K� values from F .
18: Round 2:
19: Derive Lt, Φ, Jt honestly. Send (t, Lt, Jt) to F , and wait to receive the (�, L�, J�) tuples

from F , following the protocol for validation.

20: Reprogram T3[K1, . . . , Kn] = hctr; set ctr = ctr + 1. Rederive ct and Jt honestly.

21: Rewind F to step 1 in Round 2 of Figure 4, immediately before F queries H3 with
(K1, . . . , Kn).

22: After allowing F to proceed after rewinding, use its two sets of outputs to derive the
discrete logarithm of each A�j and B�j ; store for use in the signing protocol.

23: Complete the protocol honestly.

24: On simulating Sign:
25: Round 1: Input (m, B)
26: Insert m into M .

27: Using (a�j , b�j) obtained during Preprocess, derive ρ� : � ∈ S, � �= t

28: Derive ρt = atj + btj · Hρ(m, B) and R, following the protocol honestly for validation.

29: Program T2[m, R] = c̄j , J2[m, R] = C[j]; return ρt.
30: Round 2: Input (ρj , . . . , ρt)
31: Let zt = z̄tj + (etj · ρt); return zt to F
32: If F outputs ⊥, then return ⊥. Else F outputs (m, σ = (R, z)).

33: If T2[m, Y, R] = ⊥, set T2[m, Y, R] = hctr, J2[m, Y, R] = ctr, and ctr = ctr + 1.
34: Let c = T2[m, Y, R]. If R �= gzY −c or m ∈ M , then return ⊥
35: Let J = J2[m, Y, R]. Return J, σ = (R, z)

Proof. We prove the theorem by contradiction. Assume that F can
(τ, nh, np, ns, ε)-break the unforgeability property of FROST-Interactive. We will
demonstrate that an algorithm C that can (τ ′, ε′)-solve the discrete logarithm
of an arbitrary challenge value ω ∈ G. We first describe the simulator A, which
uses F as a black-box forger.
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We now describe how A simulates FROST-Interactive to F in Algorithm 4.
Recall that F controls t − 1 participants, and A simulates a single honest par-
ticipant Pt.

Let nr = 2nh +(π +1)np +1 denote the maximum number of random oracle
outputs A may require.

After performing the key generation phase as described in Sect.A.1, A
invokes F to perform its forgery attack. A simulates both the responses to the
random oracle queries of F as well as the role of Pt in the Preprocess and Sign
algorithms.

Simulating Random Oracle Queries. For each random oracle query to Hρ,
H2, H3, and H4, A responds by first checking a corresponding associative table
(initialized to empty on start) to see if the output has already been determined
for that query. If no such output exists, A sets the output to the next available
value from {h1, . . . , hnr

} supplied by GFA upon start, indicated by ctr. After
setting the output, A increments ctr and returns the freshly assigned output.
In lieu of the H1(i,m,B) hash function used in FROST (presented in Sect. 5.2),
FROST-Interactive uses an interactive one-time VRF with input Hρ(m,B) to
provide this binding mechanism.

Simulating Preprocess. To perform the Preprocess stage, A simulates the
honest participant Pt, following the protocol honestly with exception of the fol-
lowing steps. When generating Dtj , A first picks c̄j as the next available hctr

value, and keeps track of which one it used by setting C[j] = ctr in a list C. A
randomly selects z̄tj

$← Zq, and then derives Dtj = gz̄tj · Yt
−c̄j .

A honestly computes and publishes its proof of knowledge of the (atj , btj)
values in Round 2. However, during this round, A itself forks F in order to
extract the discrete logarithms (a�j , b�j) of the commitment values (A�j , B�j)
for all of the players P� controlled by F . A is able to learn these values by
rewinding F to the point before it makes the query Φ = H3(K1, . . . ,Kt), and
programming the random oracle to return a different random output Φ′. Then,
when F republishes Ji : i 	= t for all dishonest parties that F controls, A can
solve for the discrete log for each commitment.

Simulating Signing. F initiates the FROST-Interactive signing protocol in the
role of SA, sending (m,B) in Round 1. Upon receiving these values, A is able
to compute not only its ρt, but also all of the other ρ� values for all of the other
participants, because of its knowledge of the (a�j , b�j) that A obtained during
Round 2 of the preprocessing stage. Using these ρ� values, it can compute the R
that will be used in Round 2, and program H2(R, Y,m) = c̄j . It also saves C[j],
the ctr value such that c̄k = hctr, as J2[R, Y,m] in a table J2.
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Note that A is never required to guess which output from the random oracle
to program to correctly issue a signature, because A can always compute R
before F can, and consequently can program the random oracle H2(R, Y,m)
with perfect success. Conversely, a signing request by A in the simulation for
plain Schnorr succeeds only with probability 1/(nh + ns + 1) [3].

Finding the Discrete Logarithm of the Challenge Input. As described
in Sect. A.1, using the two forgeries (σ, σ′), the discrete logarithm of ω can be
derived.

Recall that the probability of F succeeding for one run of A is simply ε, as A
can return the correct challenge for each signing query. Then, using the forking
lemma, the probability that the discrete logarithm of ω can be extracted after
A is run twice is at least ε2

nr
(ignoring the negligible ε

h term, as h—the number
of possible hash outputs—is typically at least 2256), and the total time required
to extract the discrete logarithm of the challenge value is:

τ ′ = 4τ + (30πnp + (4t − 2)ns + (n + t − 1)t + 6) · texp + O(πnp + ns + nh + 1)

The running time for C to compute the discrete logarithm by procuring two
forgeries from FROST-Interactive is four times that for F (because of the forking
of A, which itself forks F), plus the time to compute (30πnp + (4t − 2)ns + (n +
t − 1)t + 6) exponentiations:

– In simulating KeyGen, (t − 1) · t to compute Ct, 2 to compute R, and n · t to
compute Yt

– In each of two executions of A:
• 7 in each of π iterations of Round 1 of simulating Preprocess,
• 8π to validate each of two versions of t−1 J� lists in Round 2 of simulating

Preprocess,
• t − 1 to validate the ρ� and t to compute R in each simulation of Sign,
• 2 to compute R to verify the output of F .

and O(πnp + ns + nh + 1) other minor operations, such as table lookups.

A.3 Extension of FROST-Interactive to FROST

In this section, we describe the changes we make to FROST-Interactive to remove
one round of communication in each of the Preprocess and the Sign phases. We
argue in Sect. 6 why our changes do not harm the security of the protocol.

Removal of One-Time Verifiable Random Functions to Generate ρi.
The primary difference between FROST-Interactive and FROST is that in the
former, interactive one-time VRFs are used to generate the ρi binding values.
In FROST, on the other hand, these values are generated with random oracles
(modelling hash functions). Removing the one-time VRFs removes the VRF keys
(aij , bij) and their commitments (Aij , Bij) from the protocol.
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Removal of One Round of the Sign Phase. With the one-time VRFs
removed, all participants can compute every other participants’ ρi values non-
interactively, and so the first round of the Sign protocol for FROST-Interactive
(where participants exchange their ρi values) is no longer necessary for FROST.

Removal of the Proofs of Knowledge of the One-Time VRF Keys
and One Round of the Preprocess Phase. As the one-time VRF keys are
removed, so are their proofs of knowledge Ji in the Preprocess phase. Removing
the Ji then makes the Ki unused, and removing the Ki removes the first round
of the Preprocess phase.
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