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Abstract. We exploit the Diffie-Hellman-like structure of CSIDH to
build a quantum-resistant authenticated key-exchange algorithm. Our
security proof has optimal tightness, which means that the protocol is
efficient even when instantiated with theoretically-sound security param-
eters. Compared to previous isogeny-based authenticated key-exchange
protocols, our scheme is extremely simple, its security relies only on the
underlying CSIDH-problem and it has optimal communication complex-
ity for CSIDH-based protocols. Our security proof relies heavily on the
re-randomizability of CSIDH-like problems and carries on in the ROM.
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1 Introduction

Authenticated key-exchange protocols allow two parties to collaborate in order to
create a shared secret key, providing each of them with some assurance on the
identity of the partner. Authentication can be achieved in two ways: implicitly, if
it follows from the algebraic properties of the scheme, or explicitly, by receiving
a confirmation that the interlocutor has actually computed the key. The latter
implies the use of a second mechanism, like a signature scheme, a KEM or a
MAC. Even if explicit authentication might seem a stronger and preferable fea-
ture, in the real world it does not add much to the security of the protocol. First
of all, it does not guarantee that the partner holds the shared key for all the time
between the key confirmation and the use of the key. Moreover, the generation of
signatures or the use of KEMs and MACs produces evidence of participation to a
key-exchange, while implicit authentication does not. Finally, the schemes rely-
ing on implicit authentication typically require less computations and message
exchanges compared to those involving an explicit authentication mechanism,
with a significant profit in computational cost and communication efficiency.

The security proof limits the advantage of an adversary in breaking the
scheme to the probability of solving some mathematical hard problem. Deploy-
ing a cryptographic algorithm should always be done in a theoretically sound
way: the size of the concrete parameters must be large enough to guarantee the
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required λ bits of security. If on one hand any security proof asymptotically guar-
antees the desired security level, on the other hand we want to use the smallest
parameters possible, in order to obtain the most efficient implementation under
the given security constraints. It is therefore extremely relevant to measure the
so-called tightness of the proof by computing its security loss L(λ), which should
be as small as possible. The parameters on which we focus are, in particular,
the number of users running the protocol and the number of sessions per user;
both quantities are approximated to 216 for small-scale and 232 for large-scale
applications. Note that, nowadays, security proofs [JKSS12,KPW13,BFK+14]
for a widely deployed protocol such as TLS have a quadratic loss in the number
of sessions, fact that is not taken into account for the implementation.

In 2019 Cohn-Gordon et al. [CCG+19] developed a key-exchange protocol
with an nearly (but optimally) tight security proof. In particular, the security
loss is linear in the number of users and constant in the number of sessions per
user. The security is based on the Strong-DH assumption defined over cyclic
groups of prime order. The re-randomization of Diffie-Hellman problems plays a
fundamental role in achieving the optimal tightness of the proof, and thus it is a
feature that we cannot disregard. The tightness and practicality of these scheme
raise an interesting question: is it possible to adapt the protocol (together with
its security proof) in order to make it quantum-safe?

In 1997, Peter Shor [Sho97] published a quantum algorithm for integer factor-
ization and one for computing discrete logarithms, both running in polynomial
time. As soon as a large-scale quantum computer will become available, the
information security based on primitives like the RSA cryptosystem and the
Diffie-Hellman key-exchange will be breached. In order to address this quantum
threat, many researchers have focused their attention on post-quantum cryp-
tography. The goal is to find new cryptographic primitives which can be imple-
mented on classical computers, still guaranteeing security against both classical
and quantum adversaries. In 2016, NIST announced a world-wide competition
for new post-quantum standards in public-key encryption and digital signature
algorithms. 69 submissions were accepted in the first round, 26 made it to the
second step, and 7 finalists were announced on July 22, 2020.

Supersingular-Isogeny based Diffie-Hellman (SIDH) [JD11] is a promising
candidate in the search for post-quantum cryptographic protocols. Key-exchange
protocols based on isogenies are unique in the sense that they provide key-
sizes roughly similar to those of pre-quantum alternatives, but they are also
known for being more complex (algebraically) compared to some of the post-
quantum alternatives. An example of a scheme that is based on SIDH is SIKE
[JAC+19], which is one of the 26 candidates in the second round of NIST’s
2016 competition for post-quantum cryptographic protocols. Even if SIKE is not
among the finalists announced in July 2020, NIST has shown high interest on
isogeny-based cryptography, encouraging further research on this field [AASA+].
Although SIDH-based schemes have been around for a few years now, there are
still open questions about the security behind them. In particular, random self-
reducibility of SIDH problems seems very hard to achieve.
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A different isogeny-based scheme is CSIDH [CLM+18]: introduced in 2018,
it offers a much more flexible and adaptable algebraic structure. In our paper,
we obtain an optimally tight security proof for a CSIDH-based key-exchange
protocol, making use of random self-reducibility. This kind of re-randomization
plays a fundamental role in the tight proofs of, for instance, the classical Diffie-
Hellman key-exchange, as well as in more modern schemes.

The protocol we introduce is, to our knowledge, the best proven-secure result
for isogeny-based key-exchange protocols. The proofs presented here draw on
the proofs from Cohn-Gordon et al. [CCG+19], but with changes to the re-
randomization strategy, since re-randomization in the isogeny case is different
from the one in the cyclic group case. Both efficiency and tightness are a signif-
icant improvement over the state of the art, and can lead to the deployment of
schemes with more efficient parameter choices obtaining high security at com-
putational costs which are as low as possible.

1.1 Our Contributions

In Sect. 3.2 we adapt protocol Π by Cohn-Gordon et al. [CCG+19] to the isogeny
setting, obtaining the first implicitly authenticated CSIDH-like protocol with
weak forward secrecy, under only the Strong-CSIDH assumption. This is the
first scheme with a security proof (moreover with optimal tightness) in the same
setting as CSIDH. The protocol requires each user to perform 4 ideal-class eval-
uations, and its security proof, shown in Appendix B, has a tightness loss which
is linear in the number of sessions performed by a single user.

The adaptation we perform is, however, not entirely straightforward. In the
new setting we have only one operation, namely the multiplication of ideal
classes, while in the original protocol re-randomization is achieved via two oper-
ations (addition and multiplication of exponents). This leads to a different re-
randomization technique which relies one the random self-reducibility of the
computational CSIDH problem shown in Sect. 4.1.

We obtain a significant improvement over the state of the art of isogeny-based
key-exchange protocols. Compared to one of the latest scheme, from “Strongly
Secure Authenticated Key Exchange from Supersingular Isogenies” [XXW+19],
we obtain better efficiency and tightness. Moreover, unlike this latter scheme,
our protocol does not require any authentication mechanism. This allows us to
rely on the same class (and a smaller number) of hardness assumptions, and to
avoid the use of signatures, which are tricky and expensive [DG19] to produce
in the isogeny setting. Compared to the CSIDH protocol, which lacks a security
proof and for which authentication seems hard to achieve, our Π-SIDE protocol
has implicit authentication at the cost of a few more ideal-class evaluations. As
shown in Sect. 6, our Π-SIDE protocol is competitive with other post-quantum
candidates, once instantiated with theoretically-sound parameters.

A few days after the publication of our paper, the same protocol appeared in
the work by Kawashima et al. [KTAT20]. The results have been obtained inde-
pendently and there was not collaboration between the two groups of authors.
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1.2 Related Work

In the last years, a lot of research has been conducted on SIDH-based schemes.
For example, Galbraith [Gal18] has shown how to adapt generic constructions
to the SIDH setting, and he introduced two new SIDH-AKE protocols. Similar
results were achieved by Longa [Lon18], except for the introduction of the two
new schemes. Assuming a straightforward adaptation, a few other protocols have
a non-quadratic tightness loss. For example KEA+ [LM06] has a linear loss in
the number of participants multiplied by the number of sessions, assuming the
hardness of the Gap-DH problem. Although, it does not achieve wPFS and takes
O(t log t) time only when instantiated on pairing-friendly curves.

In their recent paper, Xu et al. [XXW+19] propose SIAKE2 and SIAKE3, a
two-pass and a three-pass AKE respectively. SIAKE2, whose security relies on the
decisional SIDH assumption, has a rather convoluted construction: they design a
strong One-Way CPA secure PKE scheme, which is then turned into a One-Way
CCA KEM through the modified FO-transform and finally used as a building
block for the AKE scheme. The three-pass AKE SIAKE3 is obtained by modifying
the previously designed KEM, once a new assumption (the 1-Oracle SI-DH, an
analogue of the Oracle Diffie-Hellman assumption in which only one query is
allowed) is made. Compared to this scheme, our result is simpler and it has a
tighter security proof, smaller communication complexity and improved overall
efficiency. Finally, we remark that it is also possible to look at CSIDH-based
key-exchange from a non-interactive viewpoint, as it has been recently done by
Brendel et al. [BFG+19].

2 Preliminaries

In this section, we first recall the definition of tightness for security reductions.
Then we provide the reader with key-concepts and results which are indispens-
able to understand the constructions of SIDH and CSIDH. Good references
regarding elliptic curves and isogenies are Silverman [HS09], Washington [Was08]
and De Feo [Feo17]; the original papers introducing SIDH and CSIDH are Jao-De
Feo [JD11] and Castryck et al. [CLM+18], respectively.

2.1 Tight Reductions

When comparing schemes, one should always consider protocols once they have
been instantiated with theoretically-sound parameters, which guarantee the
desired level of security. These parameters (such as the bit-length of the prime
defining a base field or the key size) strongly depend on the security proof cor-
related with the protocol. A security proof usually consists of

– a security model, in which we describe an adversary by listing a set of queries
that it can make (and therefore specifying what it is allowed to do);

– a sequence of games leading to a reduction, in which an adversary A against
the protocol is turned into a solver B for an allegedly hard problem.
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The “quality” of a reduction can be measured by computing its security loss: if
tA and εA are the running time and the success probability of A respectively,
and tB and εB respectively are the running time and the success probability of
B, then we define the security loss L as

tA
εA

= L
tB
εB

. (1)

If L is constant, then we say that the reduction is tight. Having a tight proof
is as relevant as building an efficient protocol, because this leads to deploy the
smallest possible parameters when concretely instantiating a protocol.

In some cases, however, it is impossible to obtain a tight reduction. In a
simple scheme the adversary is run only once, in opposition to other protocols
which use the Forking Lemma in order to run multiple copies of the adversary.
A linear loss in the number of participants to the protocol is unavoidable for
simple schemes, while applying the Forking Lemma leads to a non-tight proof.
We therefore focus on optimal tightness whenever tightness is unachievable: the
L in Eq. (1) turns out to be not constant, but one proves that it is impossible to
decrease it. We rely on the same strategies adopted in the paper by Cohn-Gordon
et al. [CCG+19] to prove the lower bound on the tightness loss, applying their
variant of the meta-reduction techniques by Bader et al. [BJLS16].

Many available schemes, which are currently taken into account for standard-
ization processes, have quite non-tight security reductions. Let μ be the number
of users running the protocol and let k be the number of sessions per user.
HMQV [Kra05], a classically secure protocol in the random-oracle model under
the CDH assumption, has security loss O

(
μ2k2

)
. If we consider a generic signed

KEM approach, we get a O
(
μ2k2

)
loss in addition to the signature scheme loss.

In many cases, parameters are chosen in a non theoretically-sound way, while
tightness loss should always be considered when comparing protocols.

2.2 Elliptic Curves, Isogenies and Endomorphism Rings

Let Fp be a finite field for a large prime p and let E be an elliptic curve over
Fp. We say that E is supersingular if and only if it has order #E(Fp) = p + 1.
Consider the isomorphisms of elliptic curves, i.e. all the invertible algebraic maps.
Any two elliptic curves over the algebraic closure Fp are isomorphic if and only
if they have the same j-invariant. Thus we can use isomorphisms to define an
equivalence relation between elliptic curves and identify an equivalence class by
the j-invariant of the curves in the class.

Let E1 and E2 be two elliptic curves defined over Fp, and let 0E1 , 0E2 denote
their respective points at infinity. An isogeny from E1 to E2 is a morphism
φ : E1 → E2 such that φ(0E1) = 0E2 . For any isogeny φ : E1 → E2 there exists a
dual isogeny φ̂ : E2 → E1 such that φ̂◦φ = [deg(φ)]E1 and φ◦φ̂ = [deg(φ)]E2 . An
isogeny is essentially determined by its kernel: given a finite subgroup G ⊂ E(Fp),
there exist a unique (up to isomorphisms) elliptic curve E2 � E1/G and a
separable isogeny φ : E1 → E2 such that ker(φ) = G. The isogeny φ has degree
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� equal to the cardinality of its kernel, and we call it an �-isogeny. Given the kernel
of an isogeny, we can exploit Vélu’s formulae [Vél71] to compute the isogeny φ
together with the codomain curve E2 in O(� log(p)2) bit operations. This is the
best approach when � is small enough and p is shorter than a few thousand
bits. Any separable isogeny defined over Fp can be written as the composition
of isogenies of prime degrees.

An endomorphism is an isogeny from E to itself; the set of endomorphisms
of E, together with the zero map and equipped with pointwise addition and
composition, forms the endomorphism ring End(E). We denote by Endp(E) the
ring of endomorphisms defined over Fp. For ordinary curves Endp(E) = End(E),
while for supersingular curves Endp(E) ⊂ End(E). In particular, End(E) is
an order in a quaternion algebra, whilst Endp(E) is an order in the imaginary
quadratic field Q(

√
p). A classical result by Deuring [Deu41] reveals that End(E)

is a maximal order in Bp,∞, the quaternion algebra ramified at p and at ∞.

2.3 The Ideal Class Group Action

We hereafter provide the reader with the basic definitions and known results
regarding ideal class group action. In particular, this section gravitates around
a recurring sentence in isogeny-based cryptography:

“The ideal class group of an imaginary quadratic order O acts freely via
isogenies on the set of elliptic curves with Endp(E) � O.”

We will then focus on the computational aspects, essential to understand CSIDH.

Algebraic Foundations. An algebra A is a vector space over a field K equipped
with a bilinear operation. If the bilinear operation is associative, then we say that
A is an associative algebra. Given a unitary ring R, a left R-module RM consists
of an abelian group (M,+) and a scalar multiplication R ×R M −→R M which
satisfies left/right distributivity, associativity and neutrality of ring’s unit. Let
R be an integral domain (a commutative unitary ring without zero-divisors) and
let K be its field of fractions; a left R-module RM is a lattice in the vector space
V over K if RM is finitely generated, R-torsion free and an R-submodule of V .
An order is a subring O of a ring A such that 1) A is a finite dimensional algebra
over Q, 2) O spans A over Q (i.e. QO = A), 3) O is an integer lattice in A.

The Ideal Class Group. Let K be a finite extension of Q of degree 2, which
is called a quadratic number field, and let O ⊆ K be an order. The norm of an
O-ideal a ⊆ O is defined as N(a) = |O/a|, which is equal to gcd({N(α) | α ∈ a}).
Norms are multiplicative: N(ab) = N(a)N(b). A fractional ideal of O is an O-
submodule of K of the form αa, where α ∈ K

∗ and a is an O-ideal. Fractional
ideals can be multiplied and conjugated in the obvious way, and the norm extends
multiplicatively to fractional ideals. A fractional O-ideal is invertible if there
exists a fractional O-ideal b such that ab = O. If such b exists, we denote
a−1 = b. All the principal fractional ideals αO where α ∈ K

∗ are invertible.



Practical Isogeny-Based Key-Exchange with Optimal Tightness 457

The ideal class group of O, defined as cl(O) := I(O)/P (O), is the quotient
of the set of invertible fractional ideals I(O) by the set of principal invertible
fractional ideals P (O). For any M ∈ Z \ {0}, every ideal class [a] has an integral
representative of norm coprime to M . There is a unique maximal order of K

with respect to inclusion, which is called the ring of integers and is denoted by
OK. The conductor of O in OK is the index f = [OK/O]. Every O-ideal of norm
coprime to the conductor is invertible and factors uniquely into prime ideals.

The Class Group Action. Let E��p(O) be the set of supersingular elliptic
curves over Fp with Endp(E) isomorphic to an order O in an imaginary quadratic
field and let E ∈ E��p(O). Given an O-ideal a, we define the action of a on E
as follows:

1. we consider all the endomorphisms α in a,
2. we compute the a-torsion subgroup E[a] = ∩α∈aker(α) = {P ∈ E(Fp) :

αP = 0E ∀α ∈ a},
3. we compute the isogeny φa : E → Ea � E/E[a].

It is common practice to denote the action of a on E by a ∗E.
A fundamental result in isogeny-based protocols is the Deuring correspon-

dence between the set of maximal orders in Bp,∞ and the set of elliptic curves:
fixing a supersingular elliptic curve E0, every �-isogeny α : E0 → E corresponds
to an ideal a of norm �, and vice-versa. Since Ea is determined (up to isomor-
phism) by the ideal class of a, finding different representatives of an ideal class
corresponds to finding different isogenies between two fixed curves.

We can rewrite any ideal a of O as the product of O-ideals a = (πpO)ras,
where πp is the p-th Frobenius endomorphism and as ⊆ πpO. This defines an
elliptic curve a ∗E and an isogeny φa : E −→ a ∗E of degree N(a) as follows:

– the separable part of φa has kernel ∩α∈as
ker(α);

– the purely inseparable part consists of r iterations of Frobenius.

The isogeny φa and the codomain a ∗E are both defined over Fp and are
unique up to Fp-isomorphism. Directly from this construction it is clear that
multiplying ideals and composing isogenies are equivalent operations.

Let E��p(O, π) be the set of elliptic curves defined over Fp whose endomor-
phism ring is isomorphic to O such that the Frobenius endomorphism πp cor-
responds to π. As explained by Castryck et al. [CLM+18], we get the following
fundamental result:

Theorem 1. Let O be an order in an imaginary quadratic field and π ∈ O such
that E��p(O, π) is non-empty. Then the ideal class group cl(O) acts freely and
transitively on the set E��p(O, π) via the map

cl(O) × E��p(O, π) −→ E��p(O, π)
([a], E) −→ [a] ∗E.

From now on, we drop the class notation“[a]” in favor of a simpler “a” by
considering any integral representative in the class.
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The Structure of the Class Group. The class group cl(O) is a finite
abelian group whose cardinality is asymptotically #cl(O) ∼ √|Δ|. As argued by
CSIDH’s authors [CLM+18], computing the exact structure of the class group
requires a lot of computational effort. The best known algorithm (by Hafner and
McCurley [HM89]) for computing the structure of the class group is subexponen-
tial in Δ, which is typically very large for CSIDH (about the size of p). Therefore,
the authors opt for heuristics which allow to find a very good approximation.

We are interested in the primes for which there exist distinct prime ideals
l, l of O such that �O = ll. If � is such a prime, we say that it splits in O; �
is called an Elkies prime in the point-counting setting. The ideal l is generated
as (�, π − λ), where λ ∈ Z/�Z is an eigenvalue of πp on the �-torsion, and its
conjugate is l = (�, π − π/λ), where p/λ is any integral representative of that
quotient modulo �. The prime � splits in O if and only if Δ is a non-zero square
modulo �. The CSIDH protocol is carefully designed such that a long list of
primes (74 in the 512-bit implementation) are Elkies primes.

Computing the Group Action. According to the heuristics assumed in
CSIDH, any element of the group can be represented as the product of small
primes ideals. We can compute l ∗E, the action of a prime ideal l = (�, π −λ) on
E, in three different ways:

(a) by using the modular polynomials [Sut13]:
1. find Fp-rational roots of the modular polynomial Φl(X, j(E)), which are

the j-invariants of the two possible codomains;
2. compute the kernel polynomials χ(x) ∈ Fp[x] for the corresponding iso-

genies;
3. determine which of the options is the correct one by checking if πp(x, y) =

[λ](x, y) modulo χ(x) over the curve;
(b) by using the division polynomials [Was08, XI.3]:

1. factor the �-th division polynomial ψl(E) over Fp;
2. match the irreducible factors with the right Frobenius eigenvalues;
3. use Kohel’s formulae to compute the codomain;

(c) by using Vélu’s formulae:
1. find a basis of the �-torsion points and compute the eigenspaces of πp;
2. apply Vélu’s formulae to a basis point of the correct eigenspace to com-

pute the codomain.

In CSIDH, the authors opt for the last method, which is the fastest when the
necessary extension fields (in which the basis points lie) are small.

When λ = 1, the curve has a rational point defined over the base field Fp. If we
also have that p/λ = −1, then the other eigenspace of Frobenius endomorphism
modulo � is defined over Fp2 , so both codomains can be easily computed using
Vélu’s formulae over the base field, switching from a curve to its quadratic twist
if necessary. The parameters of the implementation are decided such that p ≡ −1
(mod �) for many different primes �: in this case, λ = 1 automatically implies
that p/λ = −1.
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3 Isogeny-Based Key-Exchange Protocols

Isogeny-based cryptography is a class of allegedly quantum-resistant schemes
resulting from NIST’s competition. Two of the most peculiar features that distin-
guish them from the other candidates are the use of shorter keys and the deploy-
ment of more sophisticated algebraic structures. In this section, we first provide
an overview of CSIDH (pronounced “seaside”) [CLM+18], a key-exchange proto-
col which does not take part in NIST’s competition but is extremely interesting
and promising. Then, we introduce our new protocol Π-SIDE (pronounced “pie-
side”), a translation if the protocol Π [CCG+19] in the CSIDH setting.

3.1 CSIDH

What follows is an outline of the CSIDH protocol, whose underlying algebraic
structures are briefly explained in Sect. 2.3. We dwell in particular on the aspects
which are relevant to our results.

Parameters. Fix a large prime p = 4 · �1 · �2 · · · · �n −1 where �i are small distinct
odd primes. p is designed such that p ≡ 3 (mod 4), in order to

– easily write down supersingular elliptic curves over Fp;
– make use of the Montgomery form of elliptic curves in the implementation.

The starting curve for each execution of the protocol is the supersingular
elliptic curve in Montgomery form E0 : y2 = x3 + x over Fp. In this case the
characteristic equation of the Frobenius endomorphism is π2

p = −p, which implies
that the Fp-rational endomorphism ring Endp(E0) is an order in the imaginary
quadratic field Q(

√−p); in particular, Endp(E0) = Z[π]. The resulting �i-isogeny
graph is a disjoint union of cycles. Moreover, since π2 − 1 ≡ 0 (mod �i) for each
i = 1, . . . , n, the ideals �iO split as �iO = lili = (�i, π − 1)(�i, π +1) (so all the �i

are Elkies primes). Furthermore, the kernel of φli is the subgroup generated by
a point P of order �i which lies in the kernel of π − 1. Analogously, the kernel of
φli

is generated by a point Q of order �i that is defined over Fp2 but not in Fp

and such that π(Q) = −Q.

Sampling Ideals and Computing Their Action. Although we want to sample
uniformly at random from the ideal class group cl(O), it is preferable not to
compute its exact structure because of the large size of the discriminant Δ. By
heuristically assuming that

– the ideals li do not have very small order,
– the ideals li are evenly distributed in the class group,

two ideals le1
1 le2

2 · · · len
n for small ei will rarely lie in the same class. The ei are

sampled from a short range {−m, . . . m} for some integer m such that 2m + 1 ≥
n
√

#cl(O). Since the prime ideals li are fixed, we represent any ideal
∏

i l
ei
i (which

will be the user’s secret key) as a vector (e1, e2, . . . , en) ∈ [−m,m]n.
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Since π2 ≡ −p ≡ 1 (mod �i), the eigenvalues of all �i-torsion subgroups are
+1 and −1. This allows us to efficiently compute the action of li by using method
3 in Sect. 2.3.

Representing and Validating Fp-Isomorphism Classes. The SIDH protocol misses
a key-validation mechanism, and countermeasures are expensive. We recall how
the authors of CSIDH solve the problem for their protocol. First of all, they
provide a result [CLM+18, Proposition 8]) which states that, for the chosen p
and supersingular elliptic curve, the Montgomery coefficient uniquely represents
the class of elliptic curves resulting from the evaluation of an ideal. Secondly,
to prove that an elliptic curve is supersingular (and thus #E(Fp) = p + 1),
it is enough to find a point Q ∈ E whose order is a divisor of p + 1 greater
than 4

√
p (by Hasse’s theorem, we have only one multiple of that divisor in the

interval [p+1−2
√

p, p+1+2
√

p], which must be the group order by Lagrange’s
theorem). They therefore provide an algorithm which takes a point at random
and computes its order. With high probability (increasing with �i), this will
tell in only one step if the curve is supersingular or not. If x-only Montgomery
arithmetic is used, a random point P is obtained by randomly picking x ∈ Fp,
and there is no need to differentiate points in Fp and in Fp2 (in the second case,
the point will correspond to an Fp-rational point in the quadratic twist, which
is supersingular if and only if the original curve is supersingular).

The CSIDH Protocol. We first describe how to perform the Setup and the key
generation, then we schematise the simple structure of key-exchange protocol.

Setup. In this phase we set up the global parameters of the key-exchange pro-
tocol. In particular, we fix:

– n distinct odd primes �i, corresponding to n isogeny-degrees;
– a large prime p = 4 · �1 · �2 · · · �n − 1;
– the supersingular elliptic curve E0 : y2 = x3 + x over Fp with endomorphism

ring O = Z[π].

Key Generation. The private key is an n-tuple (e1, . . . , en) of integers, ran-
domly sampled from a range {−m, . . . ,m} such that 2m + 1 ≥ n

√
#cl(O), rep-

resenting the ideal class a = le1
1 le2

2 . . . len
n ∈ cl(O). The public key is the Mont-

gomery coefficient A ∈ Fp of the elliptic curve a∗E0 : y2 = x3+Ax2+x, obtained
by applying the action of a to the curve E0.
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Algorithm 2: CSIDH, the non-interactive key-exchange protocol.

Alice Bob
sskA : a ∈ cl(O) sskB : b ∈ cl(O)

spkA : EA = a ∗E0 spkB : EB = b ∗E0

retrieve EB and check retrieve EA and check
its supersingularity; its supersingularity;

KA = a ∗ EB KB = b ∗ EA

KA = ab ∗ E0 = KB

3.2 Our Protocol: Π-SIDE

Algorithm 3: Π-SIDE protocol.

Alice: PA ∈ Fp Bob: PB ∈ Fp

sskA : a ∈ cl(O) sskB : b ∈ cl(O)
spkA : EA = a ∗ E0 spkB : EB = b ∗E0

retrieve EB and check
its supersingularity;

eskA : f $←− cl(O)
epkA : EF = f ∗E0 retrieve EA and check

EF its supersingularity;

eskB : g $←− cl(O)
epkB : EG = g ∗E0

EG

ctxt = PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG

KB = H(ctxt ‖ g ∗EA ‖ b ∗EF ‖ g ∗EF )

KA = H(ctxt ‖ a ∗EG ‖ f ∗EB ‖ f ∗EG)

Just like in CSIDH, we fix a large prime p = 4 · �1 · �2 · · · �n − 1 for odd
and distinct primes �i. Then we consider the supersingular elliptic curve E0 :
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y2 = x3 +x defined over Fp, with endomorphism ring O = Z[π]. We recall that a
key-pair (a, EA) can be correctly (with heuristic assumptions) formed as follows:

1. for i = 1, 2, . . . , n, sample the exponent ai
$←− {−m, . . . m}, where m is the

smallest integer such that 2m + 1 ≥ n
√

#cl(O);
2. construct the fractional ideal a = la1

1 · la2
2 · · · lan

n . The ideal class a will play
the role of secret key;

3. evaluate the action of the ideal class a on the elliptic curve E0, obtaining
the curve EA = a ∗E0; EA is the Montgomery curve defined by the equation
y2 = x3 + Ax2 + x over Fp and it will be the public part of the key pair.

The implementation-oriented reader should always remember that each elliptic
curve should be represented using its Montgomery coefficient. For the sake of
notation we will refer to the curve instead.

Let P be the set of participants to the key-exchange protocol. We assume
that each party in P holds a static secret key ssk and a static public key spk,
the latter registered at a certificate authority CA. The certificate authority, upon
registering a public key, does not require a proof of knowledge on the correspond-
ing secret key. We do not demand that public keys differ from party to party,
but we allow each party to register only one public key.

Suppose now that two parties Alice and Bob (uniquely identified as PA and
PB) in the set P want to establish a shared key. Here we have to distinguish
between the initiator of the protocol (in our example Alice) and the responder.
At the beginning of the session, upon retrieving Bob’s public key, Alice samples
an ephemeral secret key eskA = f, computes the ephemeral public key epkA =
EF and sends the result to PB . Upon receiving EF , Bob first checks that it is
supersingular and that its Montgomery coefficient is not in {±2}; if so, he in
turn samples an ephemeral secret key eskB = g, computes the ephemeral public
key EG and sends it to Alice. Alice herself verifies the validity of EG. Each of
them can now obtain the session key K: given access to an hash function H,
they can locally compute

K = H(PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ ag ∗E0 ‖ bf ∗E0 ‖ fg ∗E0).

3.3 The SIDH Case

A question naturally arises: if Π can be adapted to the CSIDH setting, why
can’t we do the same in the SIDH setting? On one hand, it is surely possible to
translate the protocol itself, since SIDH has a Diffie-Hellman-like structure too.
The adaptation would require a different parameter choice, allowing two extra
sets of basis points, and the exchange of four extra image points (the images
of the peer’s basis points via the ephemeral isogeny) in order to allow the two
parties to compute the common key.

On the other hand, in this case the security proof wouldn’t hit the optimality
bound in the tightness loss. As it will be clarified in the next section, a property
that plays a fundamental role in this sense is the random self-reducibility of the
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computational problem. In the next section we provide a formal proof of this
feature in the CSIDH case. At our knowledge, there exists no evidence that SIDH
shares this property, and it is rather unlikely to find a way to prove it.

4 Random Self-reducibility

According to a fundamental definition by Blum and Micali, later rephrased by
Naor [NR97], a problem f is random self-reducible if solving it at any given
instance x can be reduced in polynomial time to the solution of f at one or more
random instances yi. In order to achieve random self-reducibility, there are two
conditions that have to be satisfied:

– the generation of the random instances y1, . . . yn has to be performed non-
adaptively;

– the instances y1, . . . yn must be uniformly distributed.

Random self-reducible problems are extremely relevant for cryptographic
purposes. First of all, they are used in worst-case to average-case reductions:
a worst-case instance of the problem can be used to generate a set of random
instances, so that solving f on the random instances allows us to solve f at
the worst-case instance in polynomial time. In the early ’80s, Goldwasser and
Micali exploited random self-reducibility of mathematical problems to construct
cryptographic algorithms for probabilistic encryption [GM82] and pseudoran-
dom generation [BM82]. Even more, if the group G and its generator g are
properly chosen, the random self-reducibility of the discrete logarithm problem
guarantees passive security of the plain Diffie-Hellman key-exchange protocol.

Fig. 1. Rerandomization graphs for Computational Diffie-Hellman and Computational-
CSIDH problems.
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4.1 Random Self-reducibility on CSIDH

It is folklore that the key-recovery problem in CSIDH is random self-reducible,
while SIDH-based problems are not. De Feo and Galbraith [DG19] provide
a short proof of random self-reducibility of CSIDH; hereafter, we prove this
property more verbosely, in a fashion that resembles the classical proof of re-
randomizability for the Computational Diffie-Hellman problem. A fundamental
role is played by the commutative action of cl(O) on the set of elliptic curves
with endomorphism ring isomorphic to O. The presence of a commutative action
is a very strong element of resemblance with the Diffie-Hellman protocol.

Let us now prove random self-reducibility of the Computational CSIDH prob-
lem, from which we can deduce the same property for the Gap and the Strong
variants. Let G be the set of elliptic curves defined over Fp.

Problem 1 (Computational-CSIDH problem). Given n distinct odd primes �i

and a large prime p = 4 · �1 · �2 · · · �n − 1, let E0 ∈ G be the supersingular
elliptic curve in Montgomery form y2 = x3 + x. Given two valid CSIDH public
keys A,B ∈ Fp, where A is the Montgomery coefficient of the elliptic curve
EA = a ∗E0 and B is the one of EB = b ∗E0, find the Montgomery coefficient
Z ∈ Fp of the elliptic curve EA,B = ab ∗E0.

Theorem 2. The computational-CSIDH problem is random self-reducible. In
other words, given any two random elliptic curves ET = t∗E0 and EU = u∗E0, for
any algorithm B which solves the computational-CSIDH problem with advantage

AdvComp−CSIDH
G

(B) = Prob
[ B(ET , EU ) = Z ′ | ET

$←− G, EU
$←− G

]

there exists an oracle algorithm AB that, for any input EA, EB ∈ G, outputs the
correct solution to the corresponding computational-CSIDH problem with advan-
tage AdvComp−CSIDH

G
(B), and has roughly the same running time.

Proof. Let EA = a∗E0 and EB = b∗E0 be the two elliptic curves corresponding to
the Montgomery coefficients A and B; we can construct the following algorithm:

AB(EA, EB)

t, u
$←− cl(O)

ET ← t ∗EA = t′ ∗E0, EU ← u ∗EB = u′ ∗E0

Z ′ ← B(ET , EU )

return Z of [t−1u−1] ∗EZ′

In other words, the algorithm proceeds as follows. First of all, we pick
uniformly at random two isogeny classes t, u ∈ cl(O): they are defined as
t = lt11 lt22 . . . ltnn ∈ cl(O) and u = lu1

1 lu2
2 . . . lun

n ∈ cl(O) where each exponent
ti, uj is picked uniformly at random from the set {−m, . . . ,m}. Then we evalu-
ate the action of t on EA and the action u on EB , obtaining two random elliptic



Practical Isogeny-Based Key-Exchange with Optimal Tightness 465

curves ET , EU ∈ G. Finally, we submit the new random instance to the algo-
rithm B, which outputs Z ′, the Montgomery coefficient of the elliptic curve EZ′ .
Since

EZ′ = t′u′ ∗E0

= (ta)(ub) ∗E0

= (tu)(ab) ∗E0

= (tu) ∗EA,B ,

we can easily retrieve the Montgomery coefficient Z of the elliptic curve EA,B =
t−1u−1 ∗EZ′ . The advantage of the algorithm AB can be calculated as follows:

Prob[AB(EA, EB) = Z] = Prob
[
t, u

$←− cl(O) : B(t∗EA, u∗EB) = (ta)(ub)∗E0

]
.

By construction, the ideal classes t and u can be considered as sampled uniformly
at random from cl(O) (for the heuristics assumed in CSIDH), and therefore the
elliptic curves ET = t ∗EA and EU = u ∗EB are independent and uniformly
distributed on G. Therefore, the oracle consulted by AB receives a well formed
instance, so we can conclude that

Prob[AB(EA, EB) = Z] = Prob
[
B(ET , EU ) = taub ∗E0

∣
∣ t, u $←− cl(O)

]

= AdvComp−CSIDH
G

(B).

As pointed out in Sect. 2.3, we can efficiently compute the action of the ideal
classes l and l−1 by using Vélu-type formulae. Therefore we can conclude that,
if B runs in t-time, then the algorithm AB runs in (t + δ)-time, where δ is the
small running time required to sample elements and evaluate the action of ideal
classes. ��

5 Security of Π-SIDE

In this section, we define some allegedly hard problems in the CSIDH setting.
The definition of our security model and the full proof can be found in Appendix
B. The structure of the proof is similar to the one for protocol Π [CCG+19], but
we have made a number of changes, mostly related to the new re-randomization
technique. A straightforward adaption would have not been possible by simply
substituting exponentiations with class group evaluations.

5.1 Hard Problems

In Sect. 4.1, we have seen that the Comp-CSIDH problem consists in finding
the Montgomery coefficient Z ∈ Fp of the elliptic curve ab ∗ E0 given the
Montgomery coefficients of the curves EA = a ∗E0 and EB = b ∗E0. In order
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to keep the notation as simple as possible, we will formulate the next problems
referring to the elliptic curve itself, instead of its Montgomery coefficient. The
reader should always keep in mind that, when it comes to the implementation,
each elliptic curve will be represented by its Montgomery coefficient, which lies
in Fp. We start with defining a decisional problem:

Problem 2 (Decisional-CSIDH problem). In the CSIDH setting, let a, b, r $←−
cl(O) be elements randomly sampled from cl(O) and let b

$←− {0, 1} be the result
of a fairly tossed coin. If b = 0 set EZ = r ∗E0, otherwise set EZ = ab ∗E0

and run the adversary on input (EA = a ∗E0, EB = b ∗E0, EZ). We define the
advantage of A in solving the decisional CSIDH problem over cl(O) as

AdvDec−CSIDH
cl(O) (A) :=

∣
∣
∣
∣Prob

[A(EA, EB , EZ) = b
] − 1

2

∣
∣
∣
∣.

In other words, the decisional problem is hard if the adversary succeeds with a
negligible probability in distinguishing among a properly computed session key
and a random key. Trivially, if we can solve the computational variant of problem
then we can also solve its decisional variant. But does the opposite hold?

Problem 3 (Gap-CSIDH problem). In the CSIDH setting, let a, b $←− cl(O) be
two elements randomly sampled from cl(O), corresponding to the curves EA =
a ∗E0 and EB = b ∗E0. Suppose that the adversary A is given access to a
Dec-CSIDH oracle D(·, ·, ·), which outputs 1 if queried on a valid CSIDH triplet
(EA, EB , EAB) and 0 otherwise. We define the advantage of A in solving the
Gap-CSIDH problem over cl(O) as

AdvGap−CSIDH
cl(O) (A) := Prob

[A(EA, EB) = EA,B , providing A access to D(·, ·, ·)]

The security of protocol Π [CCG+19] relies on the Strong-DH problem
[ABR01], a variant of the Gap problem in which the adversary is granted access
to a more limited decisional oracle.

Problem 4 (Strong-CSIDH problem). In the CSIDH setting, let a, b $←− cl(O)
be two elements randomly sampled from cl(O), corresponding to the curves EA =
a ∗E0 and EB = b ∗E0. Let D be an oracle for the decisional CSIDH problem.
Suppose that the adversary A is given access to a decisional oracle with fixed
first input DX(·, ·) := D(EX , ·, ·), which outputs 1 if queried on a valid CSIDH
triplet (EX , EY , EXY ) and 0 otherwise. We define the advantage of A in solving
the Strong-CSIDH problem over cl(O) as

AdvSt−CSIDH
cl(O) (A) := Prob

[A(EA, EB) = EA,B , providing A access to DX(·, ·)]

Rerandomizability of the Gap-CSIDH and the Strong-CSIDH problems follows
directly from Theorem 4.1. The full security proof, which strongly relies on these
problems, is provided in Appendix B. Based on the current state of the art, there
is no reason to believe that the above problems can be easily solved.
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6 Comparison

Comparing the efficiency of our scheme with other post-quantum schemes is
hard. First of all, many schemes do not have a security proof [Ber19] (and thus we
cannot define theoretically-sound parameters); secondly, it is highly non-trivial
to convert the concrete analysis into security parameters for many schemes.

Castryck et al. [CLM+18] describe an implementation for a 128-bit security
level that requires about 106·106 clock cycles to compute the group action. Since
our protocol Π-SIDE requires four group action computations, we have a total
cost of about 400 ·106 clock cycles, ignoring hashing and other cheap operations.

The most natural target for comparison is SIKE [JAC+19], which the orig-
inal Π-protocol can also be generalized to. One would probably not attempt
to build it on top of the defined KEM, but use the underlying isogeny instead.
Table 2.1 from SIKE [JAC+19] suggests that an isogeny computation using the
optimized implementation (which probably matches the CSIDH implementa-
tion best) requires roughly 50 · 106 clock cycles for the 128 bit security level
(SIKEp434), which becomes roughly 200 · 106 clock cycles for the generalized
Π-protocol, significantly faster than the CSIDH-based version.

Now suppose we instantiate the protocol with 216 users and 216 sessions
per user. In this case, the apparent security level of our protocol falls to
about 110 bits. The SIKE-based protocol with the standard security proof
will have a quadratic security loss. This means that in order to get a simi-
lar theoretically-sound security level from the SIKE-based protocol, we need
to switch to SIKEp610. Again, Table 2.1 from SIKE [JAC+19] suggests that
an isogeny computation using the optimized implementation requires roughly
160 ·106 clock cycles. The generalized Π-protocol then requires roughly 640 ·106

clock cycles, which is significantly slower than the CSIDH-based version. Accord-
ing to this approximate analysis, the CSIDH-based version is faster than the
corresponding SIKE-based protocol when instantiated with theoretically-sound
parameters. However, to properly determine which is faster, comparable opti-
mized implementations would be needed.

Another natural comparison target is the Strongly secure AKE from Super-
singular Isogenies by Xu et al. [XXW+19] referred to in Sect. 1.2. For their
two-pass protocol SIAKE2 and their three-pass protocol SIAKE3, the numbers of
cycles are approximately 7 ·109 and 6 ·109, respectively [XXW+19, Table 6]. Our
protocol is significantly faster, by about an order of magnitude.

7 Conclusions and Open Problems

In this paper we have shown that it is possible to construct post-quantum
isogeny-based key-exchange protocols with optimal tightness, without compro-
mising efficiency and key-size. The protocol is an easy adaptation of protocol Π
[CCG+19], where we substitute exponentiations in cyclic groups with actions of
ideal classes on elliptic curves. The adaptation of the proof, which requires ran-
dom self-reducibility of the computational-CSIDH problem, could not be done
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trivially. Indeed, we have had to exploit a different re-randomization technique
for the computational challenge, since we only have one group operation on ideal
classes against two operations (addition and multiplication) on exponents. We
have shown that the resulting scheme is competitive with other isogeny-based
protocols, which lack a security proof or have a larger tightness loss.

Our protocol is proven secure in the Random Oracle Model. In a crucial step
we use the Strong-CSIDH oracle to detect if the adversary queries the hashing
oracle on an input which contains the solution to a given computational-CSIDH
challenge. If we allow the adversary to make quantum queries, the target solution
might be hidden in the superposition of states. We believe that collapsing the
input state after the oracle’s answer is not invalidating our security proof, since
we do not need to reprogram the oracle. We leave the proof of security in the
QROM as future work.

A stronger security notion can be achieved by adding the static-static term
in the session-key computation, or by applying the NAXOS trick [LLM07]. But
security against state compromise (ephemeral key reveal) increases the tightness
loss, since we cannot tightly deal with state reveal queries. How to move to a
stronger security model without losing in tightness is still an open problem.

We have seen how the flexible algebraic structure at the basis of CSIDH
can be exploited to remodel protocol Π in the isogeny setting. Nevertheless,
the simplicity of this scheme might be further exploited. Other quantum-hard
problems might be used to translate the scheme in other algebraic contexts.
Adaptions in this direction are left for further research.

As a last remark, we would like to clarify that our scheme is not affected by
the algorithm recently published by Castryck et al. [CSV20]. This attack, which
breaks some instances of the Decisional CSIDH problem, does not work when
p ≡ 3 (mod 4), as per our protocol.

Appendix

A Security Model

Suppose that we have a certificate authority CA, a set of parties P := {Pi}μ
i=1

and an adversary M. The parties can communicate with each other and with
CA by using an unauthenticated network. CA can be seen as a globally trusted
party, or register, who holds and distributes the static public keys of the parties
in P. At any time, a new player can join in P by communicating his static public
key to the CA, and the register can grow indefinitely. As we mentioned before,
we do not require different parties to hold different public keys, and neither
we demand any proof of knowledge of the related secret key. Our protocol is
implicitly authenticated and, as such, no identification or proof of knowledge of
any secret information is required. The only constraint we impose is that each
member can commit to only one static public key at a time.

Each Pi is represented as a set of oracles {π1
i , π2

i , . . . , πk
i }, one for each of the

k sessions the user can participate to. Each oracle πs
i = (P s

i , ψs
i ,K

s
i , sentsi , recv

s
i ,

roles
i ) maintains an internal state consisting of:



Practical Isogeny-Based Key-Exchange with Optimal Tightness 469

– the identity of the intended peer P s
i which is supposedly taking part to the

key-exchange session;
– ψs

i ∈ {∅, accept, reject}, which indicates whether the session key has not been
computed yet, or if it has been accepted or rejected;

– the session key Ks
i , which is not empty if and only if ψs

i = accept;
– sentsi , the collection of all the messages sent by the oracle;
– recvs

i , the collection of all the messages received by the oracle;
– the role roles

i of the oracle (init or resp).

sentsi and recvs
i together form the view views

i of Pi of the session s.
We now define the attribute for indicating two oracles that allegedly par-

ticipated to the same key-exchange session. Two oracles πs
i and πt

j are called
partner oracles if

1. P s
i = Pj and P t

j = Pi, i.e. if they are the intended peer of each other;
2. ψs

i = ψt
j = accept, i.e. they both accepted the session key;

3. views
i = viewt

j , i.e. the messages sent and received by Pi match with the ones
respectively received and sent by Pj during the key-exchange session;

4. they have specular roles.

Slightly simplifying the definition, an oracle is fresh if and only if its session
key has not been revealed, its partner oracle has not been corrupted or tested
and the partner’s session key has not been revealed. We will later constrain the
adversary to test only fresh oracles. A party is honest if all its oracles are fresh,
i.e. if it has not been corrupted yet.

In this model, the adversary A has full control over the network and interacts
with the oracles through queries that allow it to

– activate an oracle πs
i and assign a role by sending it a message on behalf of

a peer Pj ;
– reveal the long-term secret key of a user Pi. This query provides the target

user with the attribute of corrupted and all its oracles will answer ⊥ to each
later query;

– register the long-term public key for a new user. No knowledge of the corre-
sponding secret key is required and the public key is distributed to all other
users;

– reveal the session key ks
i stored in the internal state of any oracle πs

i . The
target oracle is now said to be revealed.

– test an oracle πs
i , which outputs ⊥ if ψs

i = accept. If ψs
i = accept it then out-

puts a key, which is either the session-key or one picked at random, according
to a previously defined random bit. The key, may it be real or the random,
is consistently issued in case of further tests.

Note that the adversary cannot query on the ephemeral key of any session.
We work in the Real-or-Random model: when tested, each oracle will output

a real session key or a random key, according to a bit sampled at the beginning
of the security game. If b = 0 each oracle tested during the game will output a
random key, while if b = 1 each tested oracle will output the real session key.
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Once the environment has been set up, we run the following AKE security
game GΠ(μ, k), with μ honest parties and at most k sessions per user:

1. at first we toss a coin b
$←− {0, 1}. We also set up μ parties, providing each

of them with a long-term key pair (ski, pki) and with k oracles;
2. we then run the adversary A, which knows all the public keys and can make

any number of the previously defined queries. The only restriction is that an
oracle must be fresh when it is tested;

3. at some point, A will eventually output b′, its guess on the initial bit b. If the
tested oracles are fresh and b′ = b, then A wins the security game.

An adversary can try to break the system in three different ways: it can
trick two oracles into computing different session keys (event breakSound), break
the unicity of the partnership relation between two oracles (event breakUnique)
or successfully guess b′ = b (event breakKE). We formalise these ideas in the
following definition.

Definition 5. In this security model, a protocol Π fails if at least one of
breakSound, breakUnique and breakKE occurs while running game G(μ, k). Given
an adversary A, we define its advantage against the AKE security of protocol Π
as

AdvAKE
Π (A) := max

{
Prob[breakSound], P rob[breakUnique], P rob[breakKE] − 1

2

}

and we say that it (t, εA, μ, k)-breaks the AKE security of Π if it runs in time t
and has advantage AdvAKE

Π−SIDE(A) ≥ εA.

B The Security Proof

As in the proof by Cohn-Gordon et al. [CCG+19], we prove the following:

Theorem 3. Consider an environment running Π-SIDE together with an
adversary A against AKE security of Π-SIDE. Then there exist 3 Strong-CSIDH
adversaries B1,B2,B3 such that A’s advantage AdvAKE

Π−SIDE(A) is at most

μ · AdvSt−CSIDH
cl(O) (B1) + AdvSt−CSIDH

cl(O) (B2) + μ · AdvSt−CSIDH
cl(O) (B3) +

μk2

N

where μ = |P| is the number of parties, k is the maximal number of AKE-
sessions per party and N is the order of cl(O). The run-time of adversaries
B1,B2,B3 is almost the same as A and they make at most as many queries to
the Strong-CSIDH oracle as A does to the hash oracle H.

The proof structure is analogous to the one of Π, rephrased and adapted to
our setting. It consists of six different games: Game 0 is the AKE experiment,
while the other five games involve the following oracle types:
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– type I: an initiator oracle which has received the response from a responder
oracle (honest when the response is received) and with which it agrees on the
transcript ctxt;

– type II: an initiator oracle whose intended peer is honest until the oracle
accepts;

– type III: a responder oracle triggered by an honest initiator, with which it
agrees on ctxt and which is still honest when it receives the response;

– type IV: a responder oracle whose intended peer is honest until the oracle
accepts;

– type V: an oracle (whether initiator or responder) whose intended peer is
corrupted.

Table 1. Oracle types, defined by role, partner’s honesty and agreement on ctxt.

Oracle Init. Resp.
Honest partner Honest partner Corrupted Agreement

(before acceptance) (after acceptance) partner on ctxt

Type I

Type II

Type III

Type IV

Type V

At the time of starting an AKE session, an initiator oracle cannot be entirely
sure about the intended peer’s honesty: we cannot tell if it is of type I or type
II. This uncertainty vanishes when it receives the response and it comes the
time to compute the session key. This aspect will be taken in account during the
definition of the security games.

We now define six different security games, which will lead to the definition
of the three adversaries B1,B2,B3 in Theorem 3. In each game we will have to
look at the input to the hash function; for future references, we indicate the
general form of the input to the hash oracle involving a key-exchange session
between parties PA,PB as

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ W1 ‖ W2 ‖ W3 (2)

For i = 0, 1, . . . , 5 we denote with Sj the event “Game i outputs 1”, which will
indicate a success for the adversary in breaking protocol Π-SIDE (i.e. at least
one of the events breakSound, breakUnique and breakKE happens during Game i).

Game 0. In this game, we simply run the usual AKE security game: the adversary
can corrupt some players, reveal some session keys (but not any ephemeral secret
key) and delay/redirect messages. When it will be ready, it will pick a fresh oracle
and make a query test on its session key. Game 0 will output 1 whenever the
adversary breaks the AKE security of protocol Π-SIDE:

Prob[S0] = Prob[breakKE].
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Game 1. In this game we abort if the same ctxt is computed by two non-
partnered oracles. We can upper-bound the probability of this event with the
probability that the following conditions are simultaneously verified:

1. two oracles πs
i , π

t
i belong to the same user Pi;

2. they pick the same ephemeral secret key during their respective sessions;
3. they are involved in two key-exchange sessions with the same user Pj (since

the identity of the intended peer is part of the ctxt).

Recalling that we have μ users engaging in at most k sessions, we get that

|Prob[S1] − Prob[S0]| ≤ μk2

N

and thus, since in this game the unicity of the partner oracle cannot be broken,
we can conclude that

Prob[breakUnique] ≤ μk2

N
.

Game 2. In this game we modify how each oracle computes the session key:
instead of computing the input to the hash oracle H, it checks if the adversary
has queried the oracle on that same input, and behaves consequently: if the
answer is yes, then it stores that hash value as the session key (i.e. it properly
computes the key), otherwise it picks a key at random and stores that one
instead. Note that, when it comes the time for an initiator oracle to compute
the session key, the oracle type is fully determined.

A type I oracle (an initiator oracle with a definitely honest partner oracle with
which it agrees on the ctxt) will store the key computed by the corresponding
responder oracle.

Each type II or type V initiator oracles of party PA has to check if the input

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ a ∗EG ‖ f ∗EB ‖ f ∗EG

has been object of any oracle query. If so, it sets its session key to the correspond-
ing hash value (previously stored by the responder oracle), otherwise it picks a
session key at random (answering consistently to any following hash query on
that same input).

Each type III, IV or V responder oracle of a party PB in a session with PA

will check if any queries have been made on input

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ g ∗EA ‖ b ∗EF ‖ g ∗EF .

If so, it stores the same result; otherwise, it stores a random key. In any case,
each later hash query is consistently answered with the stored session key.

We cannot observe the exact time in which the key derivation oracle is queried
for the first time, thus Game 2 outputs 1 whenever Game 1 outputs 1, and vice
versa. We can therefore conclude that

Prob[S2] = Prob[S1].
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Game 3. In this game (which is a variant of Game 2) we modify how a type IV
oracle (a responder oracle whose intended peer is honest until the oracle accepts)
chooses the session key. What it does is 1) to pick a random key; 2) to wait for
the adversary to possibly corrupt the intended peer PA; 3) only then modify the
hash oracle with the random key k.

We can now define the following events:

– L (for Long-term key), in which the adversary queries the hash oracle on
input

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ g ∗EA ‖ b ∗EF ‖ g ∗EF

before the long-term secret key of any initiator oracle is revealed;
– LA is the same event as L, but for a specific intended peer PA. Trivially

Prob[L] =
∑

i Prob[Li];
– CA(for Corruption), in which the adversary queries the hash oracle on input

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ g ∗EA ‖ W2 ‖ W3

before peer PA is corrupted; therefore we have Prob[LA] ≤ Prob[CA].

In order to obtain a bound on Prob[CA] (and thus a bound on Prob[L]), we
construct an adversary B1 against the Strong-CSIDH problem.

Definition 6. [Adversary B1] Consider now an adversary B1 which is given
a Comp-CSIDH challenge (ES , ET ) and is given access to a DS(·, ·) oracle.
First of all, it chooses a user PA uniformly at random and sets its long-term
public key to EA = ES . Then it sets the ephemeral public key of a type IV
oracle to be r ∗ET , for a random r

$←− cl(O). Finally, it runs Game 2. If B1

corrupts PA, the experiment aborts.
We need to recognise the hash queries that involve the user PA (hap-

pening in Game 2) and those involving the type IV oracle of any party PB .
In particular,

1. consider hash queries of the form

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ W1 ‖ b ∗EF ‖ f ∗EG

involving user PA as initiator. We do not know PA’s secret key a = s, so
we have to recognise if W1 is actually EAG = s ∗EG. This can be done
by checking if DS(EG,W1) = 1;

2. consider hash queries of the form

PB ‖ PA ‖ EB ‖ EA ‖ EF ‖ EG ‖ b ∗EG ‖ W2 ‖ f ∗EG

involving user PA as responder. Again, we do not know PA’s secret key
a = s, but this time it is W2 = a ∗EF that we cannot compute; thus we
have to recognise if W2 is actually s ∗EF . This can be done by checking
if DS(EF ,W2) = 1;
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3. consider hash queries of the form

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ g ∗EA ‖ W2 ‖ W3

involving the type IV oracle and user PA. We have to recognise if W1 is
actually rt∗EA = g∗ES . This can be done by checking if DS(EG,W1) = 1.
Whenever we succeed and we find that W1 = ESG = s ∗EG, since we
computed EG = r ∗ET , we output

EZ = r ∗W1 = rs ∗EG = rsr ∗ET = rrsET = s ∗ET = EST .

We have just described an adversary B1 which succeeds whenever event LA

occurs in Game 2. LA can occur only before PA is corrupt, and thus B1’s game
would have gone through. We can therefore define the upper bound

AdvSt−CSIDH
cl(O) (B1) ≥ 1

μ

μ∑

i=1

Prob[CI ] ≥ 1
μ

μ∑

i=1

Prob[LI ] =
1
μ

Prob[L]

from which we get that
∣
∣Prob[S3] − Prob[S2]

∣
∣ ≤ Prob[L] ≤ μ · AdvSt−CSIDH

cl(O) (B1)

the first element at the right-hand side of the inequality in Theorem 3.

Game 4. In this game a type III oracle (a responder oracle triggered by an
honest initiator, with which it agrees on the ctxt and which is still honest when
it receives the response) chooses the session key at random without modifying
the key derivation hash oracle. Consider an oracle belonging to user PB with
static secret key b and ephemeral secret key g whose intended honest peer PA

has static secret key a. The adversary can find out this change only if (call this
event L) it makes a query of the form

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ W1 ‖ W2 ‖ g ∗EF .

This leads us to the following inequality:
∣
∣Prob[S4] − Prob[S3]

∣
∣ ≤ Prob[L].

Similarly to what we did in the previous game, we want to bound Prob[L]
by constructing an adversary B2 against the Strong-CSIDH problem.

Definition 7. [Adversary B2] Consider now an adversary B2 which is given
a Comp-CSIDH challenge (ES , ET ) and is given access to a DS(·, ·) oracle.
It runs Game 3., re-randomizing the challenge as follows: 1) it sets the
ephemeral public key of type I and II oracles to EF = r ∗ES for a random
r

$←− cl(O); 2) it sets the ephemeral public key of type III oracles to EG =

r′ ∗ET for a random r′ $←− cl(O).
In this game, since we embed the challenge in two ephemeral keys, all

the static secret keys are known to the adversary. We need therefore to
recognise two types of hash oracle queries:
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1. hash queries for type II oracles of the form

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ a ∗EG ‖ f ∗EB ‖ f ∗EG

given the knowledge of the static secret keys, the only information to be
detected is whether W3 = f ∗EG = rs ∗EG or not. The answer can be
obtained by performing the oracle query DS(EG, rW3);

2. hash queries for type III oracles of the form

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ W1 ‖ W2 ‖ g ∗EF

given the knowledge of the static secret keys, the only information to be
detected is whether W3 = g ∗EF = r′t ∗EF or not. The answer can again
be obtained by performing the oracle query DS(EG, [rW3).

If the Strong-CSIDH oracle outputs 1, then we output

EZ = r−1r′−1
W3 = rr′fg ∗E0 = rr′rsr′t ∗E0 = rrr′r′st ∗E0 = EST .

We have just described an adversary B2 which succeeds whenever event L
occurs in Game 2. From this fact we get that

∣
∣Prob[S4] − Prob[S3]

∣
∣ ≤ Prob[L] ≤ AdvSt−CSIDH

cl(O) (B2)

the second element at the right-hand side of the inequality in Theorem 3.

Game 5. In this game a type II oracle (an initiator oracle whose intended peer
is honest until the oracle accepts) chooses a random key EK and modifies the
key derivation hash oracle only if the intended peer is corrupted. Consider an
oracle belonging to user PA with static secret key a and ephemeral secret key
f: if the adversary corrupts the intended peer PB , the hash oracle will output
E : k whenever it is queried on input

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ a ∗EG ‖ f ∗EB ‖ f ∗EG.

Analogously to what we did in Game 3, we define the following events:

– L: a query on the above input happens before the long-term secret key of any
responder oracle is revealed. It follows that

∣
∣Prob[S5] − Prob[S4]

∣
∣ ≤ Prob[L];

– LB : same as L, but for a specific intended peer PB . Trivially, Prob[L] =∑
i Prob[Li];

– CB : a query on input

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ W1 ‖ W2 ‖ W3 W2 = f ∗EB = b ∗EF

happens before user PB is corrupted; therefore we have Prob[LB ] ≤
Prob[CB ].



476 B. de Kock et al.

As we did in the previous games, we want to find an upper bound on Prob[L].

Definition 8. [Adversary B3] Consider now an adversary B3 which is given
a Comp-CSIDH challenge (ES , ET ) and is given access to a DS(·, ·) oracle.
It runs Game 4., it embeds the challenge as follows: 1) it sets the static
public key of a uniformly-at-random user PB to EB = ES ; 2) it sets the
ephemeral public key of type I and II oracles whose intended peer is PB to
EF = r ∗ET for a random r

$←− cl(O).
If the adversary corrupts party PB , the game aborts, since the corre-

sponding static secret key is unknown. We need therefore to recognise three
types of queries made to the hash oracle:

1. hash queries for which PB acts as responder

PA ‖ PB ‖ EA ‖ EB ‖ EF ‖ EG ‖ g ∗EA ‖ b ∗EF ‖ g ∗EF .

Given that both b = s and t are unknown, the only information we cannot
compute and that has to be detected is whether W2 = b ∗EF = b ∗ES .
The answer can be obtained by performing the oracle query DS(EF ,W2);

2. hash queries for which PB acts as initiator:

PB ‖ PA ‖ EB ‖ EA ‖ EF ‖ EG ‖ b ∗EG ‖ f ∗EA ‖ f ∗EG

(note that, in this case, the second part of the challenge has not been
embedded in EF ). The only information to be detected is whether W1 =
b∗EF = b∗ES , and the answer can be obtained by performing the oracle
query DS(EG,W1);

3. hash queries defining event CB , i.e. made before the user PB is corrupted:

PA ‖PB ‖EA ‖EB ‖EF ‖EG ‖W1 ‖W2 ‖W3 W2 = f∗EB = b∗EF

We have to recognise if W2 is actually f ∗EB = rt ∗EB , and this can be
done by checking if DS(EF ,W2) = 1.

If the Strong-CSIDH oracle outputs 1 and realise that W2 = s ∗EF =
srt ∗E0, then we output

EZ = r−1W2 = rsrt ∗E0 = rrst ∗E0 = EST .

We have just described an adversary B3 which succeeds whenever event LB

occurs in Game 5. LB can occur only before PB is corrupt, and thus B3’s game
would have gone through. We can therefore upper bound

AdvSt−CSIDH
cl(O) (B3) ≥ 1

μ

μ∑

i=1

Prob[CI ] ≥ 1
μ

μ∑

i=1

Prob[LI ] =
1
μ

Prob[L]
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from which we get that
∣
∣Prob[S5] − Prob[S4]

∣
∣ ≤ Prob[L] ≤ μ · AdvSt−CSIDH

cl(O) (B3)

the third and last element at the right-hand side of the inequality in Theorem3.
Concluding the Proof. Following from how we constructed each game in the
proof, whenever the games do not abort because of adversarial corruption, the
adversary is provided with a random session key, completely independent of
every key and sent message. Therefore

Pr[S5] =
1
2
.

We have seen in Game 1. that

Prob[breakUnique] ≤ μk2

N

and, due to the perfect correctness of the scheme,

Prob[breakSound] = 0.

We can therefore exploit the bounds on adversarial winning probabilities
to prove Theorem 3: given an adversary A against protocol Π-SIDE, we have
built three adversaries B1,B2,B3 against Strong-CSIDH such that A wins with
advantage AdvAKE

Π−SIDE(A) at most

μ · AdvSt−CSIDH
cl(O) (B1) + AdvSt−CSIDH

cl(O) (B2) + μ · AdvSt−CSIDH
cl(O) (B3) +

μk2

N

where μ is the number of participants to the protocol.
The tightness loss L = O(μ) that we achieve in this security proof is optimal

for simple protocols such as ours. The arguments adopted by Cohn-Gordon et
al. [CCG+19] still hold in our setting and the adaptation is straightforward.
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