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Abstract. Traditionally, network intrusion detection systems identify
attacks based on signatures, rules, events or anomaly detection. More
and more research investigates the application of deep learning tech-
niques for this purpose. Deep learning significantly increases detection
performance, and can abolish the need for expert knowledge-intensive
feature extraction. The use of deep learning for network intrusion detec-
tion also has a major disadvantage, however, as it is not deployed yet
in real-time implementations. In this paper, we propose two approaches
that facilitate the transition towards functional real-time implementa-
tions: (1) the use of flow buckets to collect raw traffic-based features, and
(2) the acceleration of neural network architectures for intrusion detec-
tion using the Xilinx FINN toolchain for FPGAs. We obtain promising
results that show our flow bucket approach does not deteriorate detec-
tion performance when compared to traditional approaches, and we lay a
foundation to further build on with respect to accelerating deep learning
algorithms for network intrusion detection on FPGA.
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1 Introduction

Ever since the introduction of AlexNet [13] in 2012, deep learning has gained
increasing attention as its results significantly exceed those of traditional
approaches. Besides applications in image processing and natural language pro-
cessing, a wide range of other domains have since started employing deep learning
as well. Also Network Intrusion Detection Systems (NIDSs), which up until that
point were based on signatures or rules [22,23,25] as well as anomaly detection
and other traditional machine learning techniques [10,28,32], have begun consid-
ering deep learning as a reliable approach for intrusion detection [2,33]. NIDSs
aim at detecting intrusions in a network environment by inspecting incoming
network traffic and either recognizing known attacks or observing deviations
from what is considered to be normal traffic. And while (deep) learning-based
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NIDSs have certainly improved over time, there still remain challenges. One
major challenge is to be able to execute these new deep learning-based detec-
tion algorithms in real-time in network environments with ever increasing band-
widths. Most NIDSs in literature are currently CPU- or GPU-based and do
therefore not have the capabilities of handling large network streams at a high
throughput. Moreover, the features in publicly available datasets are typically
pre-calculated offline, and it is not trivial to extract them online in real-time.
In this paper, we examine these challenges, and aim to develop a deep learning-
based NIDS with real-time throughput and feature extraction as well as high
detection performance. Our contributions are the following:

– We propose an approach using flow buckets for real-time extraction of raw
traffic-based features (Sect. 3);

– We examine the flow distribution of the CICIDS2017 and UNSW-NB15
datasets when using that approach (Sect. 5);

– We propose a method to relate model and network throughput for those flow
bucket features (Sect. 4);

– We evaluate the performance of the resulting features in a deep learning model
and compare to a baseline (Sect. 5);

– We train various quantized deep learning models to examine the effects on
accuracy, and then deploy such a quantized model on a PYNQ-Z2 FPGA
board using FINN [30] to examine the throughput (Sect. 5);

Before explaining these contributions, Sect. 2 gives an overview of related work.

2 Related Work

While the hardware acceleration of machine learning and deep learning algo-
rithms is certainly increasingly relevant, the reported designs for network intru-
sion detection systems remain limited in number. This section considers work
that has been done regarding the acceleration of machine learning algorithms on
FPGAs, and provides insights regarding their performance and model sizes.

Das et al. [8] propose both a Feature Extraction Module (FEM) and a Prin-
cipal Component Analysis (PCA) based anomaly detector. The FEM is able to
collect connection-based as well as time-based features using feature sketches,
with a reported throughput of 21.25 Gbps. Likewise, while the PCA achieves 99%
attack detection with a 1.95% false alarm rate for the KDDCup1999 dataset, it
also supports a 23.76 Gbps data throughput.

Ngo et al. [20] devise both a decision tree as well as a neural network trained on 6
features from the NSL-KDD dataset. The neural network consists of an input layer
with the 6 input values, 2 hidden layers with 2 neurons and finally an output layer
with 1 neuron. Both classifiers are implemented on a Xilinx Virtex-5 xc5vtx240t
FPGA for a 100 MHz clock. They report a maximum throughput of 9.86 Gbps for
both classifiers, but only for packets that contain 1500 bytes. The decision tree
throughput drops to 7.42 Gbps for 64-byte packets, with the neural network only
retaining 1.78 Gbps. While dropping some accuracy percentiles when compared to
the same models on GPU, these hardware implementations feature a speedup of
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11.6×. Expanding on this work in [19], the same authors provide a neural network
with one hidden layer and 0–10 neurons in that layer as a building block for software
defined network security. For this application, they report a maximum throughput
of 5.12 Gbps if the hidden layer in the neural network is removed.

Ioannou et al. [11] train a three layer fully connected neural network with one
hidden layer with 21 hidden neurons on the NSL-KDD dataset and accelerate it
using a Xilinx Zynq Z-7020 FPGA. The authors indicate that the architecture
supports over 10 Gbps, while they report an accuracy of 80.52%.

Murovič et al. [18] use a binarized neural network with 1 layer of 100 neurons
to detect intrusions of the UNSW-NB15 dataset. They report an accuracy of
90.74%, with a latency of 19.62 ns.

Umuroglu et al. [29] propose LogicNets to map a quantized neural network
to hardware building blocks that can be very efficiently accelerated on hardware.
By representing neurons in a network as truth tables with a specific number of
input and output bits, they are able to create scalable designs that allow for
very high clock frequencies while maintaining a good performance. They report
a supported clock frequency of 471 MHz with an accuracy of 91.30% for an
architecture trained on the UNSW-NB15 dataset with 5 layers and 593 + 256 +
128 + 128 neurons.

Maciel et al. [5] implement a reconfigurable architecture for K-means and K-
modes intrusion detection on FPGA. They investigate the number of clock cycles
and energy consumption for 5 iterations of the algorithm, when using a specific
number of centroids and points. When compared to an Intel Xeon E5-2060, they
require 91% fewer clock cycles and consume 99% less energy.

Even though these works are significant steps in the right direction, there
is still a lot of room for improvement. While the proposed models vary in size,
they are still quite small overall. As the 5-layer model of [29] appears to be the
largest, real deep learning architectures are not available just yet. Furthermore,
while the machine learning models are trained on (a subset of) pre-calculated
features, the extraction of those features remains limited. Feature extraction
modules serve to extract features to some extent, but do not support all features
that are available in publicly available datasets. Finally, reporting the detection
performance often remains limited to reporting an accuracy value, while previous
work indicates this is not a good representation due to prevalent class imbalance
[14]. This paper investigates both the application of deep learning for network
intrusion detection, as well as the real-time extraction of generic features that
are dataset independent.

3 Feature Extraction

Before any machine learning can be done, it is important to decide on what
features to use. These features should represent all information that is required
to allow the machine learning algorithm to make reliable predictions. Their rep-
resentation can also determine what operations are required in the machine
learning algorithm: Multidimensional matrices may require convolutions, while
sequences might rely on recurrent structures. In this section, we will first discuss
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how and what features are traditionally used for network intrusion detection,
after which we will discuss an alternative: raw traffic based features.

3.1 Traditional Features

Traditionally, network intrusion detection features are dataset dependent: They
have been extracted during the inception or the analysis of a particular dataset.
Some features can recur among multiple datasets, while others only concern one
dataset. For example, both UNSW-NB15 [17] and CICIDS2017 [24] contain the
source and destination IP (Internet Protocol) addresses, the TCP (Transmission
Control Protocol)/UDP (User Datagram Protocol) ports and the traffic proto-
col. However, only UNSW-NB15 considers source and destination jitter, while
CICIDS2017 includes the 8 TCP flags, among other things.

Typically, features represented in such a manner are numeric and/or symbolic
and require some preprocessing before usage. The 41 features of KDDCup1999
[1] and NSL-KDD [26] contain 38 numeric values and 3 symbolic features, which
are often represented with a vector containing 122 values1 [4,7,9,16]. Of course,
these features can also be used in other ways, for example by encoding them to
pixel values [12] or reducing them in auto-encoders [3].

Although popular, these traditional features do not lend themselves easily
for hardware acceleration for two reasons:

1. Extracting traditional features in real-time on hardware is not trivial, as many
features require high-level interpretation and/or rely on network flow statis-
tics. High-level features require additional design complexity and resource
usage to be functional: Counting the number of HTTPS methods in UNSW-
NB15 dataset for the ct flw http mthd feature requires parsing incoming traf-
fic to identify HTTPS traffic. Computing the standard deviation of the packet
length in a network flow in CICIDS2017 requires keeping track of a flow until
it is considered to be finished. This ties up resources and can result in signif-
icant detection delays for large flows. Feature extraction modules on FPGA,
such as in [8] or [27], do not keep track of all features provided in different
datasets, but rather concern smaller feature sets.

2. A machine learning model that is trained on one dataset cannot simply be
used for a different dataset: Different (numbers of) features in a potentially
different context require a new model for almost every dataset. This is not
practical when designing models for real applications as opposed to synthetic
datasets, as a model should be retrainable for use in various contexts.

Moreover, an additional argument against these traditional pre-calculated fea-
tures, from a machine learning point of view, is that there is no guarantee that
the provided features suffice to reliably model the circumstances, and that they
do not contain unnecessary redundancy. In this paper we therefore investigate an
alternative to traditional network intrusion detection: raw traffic-based features.

1 The three features are one-hot encoded to 3, 11 and 70 values respectively.



Real-Time Deep Learning Network Intrusion Detection on FPGA 137

3.2 Raw Traffic-Based Features

Raw traffic-based features, in contrast to traditional features, are based only
on the raw network traffic that is being inspected by the NIDS. They can be
extracted from this traffic by selecting a number of transmitted bytes and using
those bytes directly as input for the machine learning model in one way or
another. This abolishes the extensive resource usage to monitor traffic flows,
and can be used in any situation: Independent of the situation, it is possible
to train a model on extracted traffic bytes. In [31], two approaches to use raw
traffic are investigated: HAST-I (HierArchical Spatial-Temporal features) con-
siders the first i bytes of a traffic flow to create a large rectangle image. HAST-II
extracts the first j bytes of the first k packets in a flow to create a sequence of
smaller images. These images can then be processed in convolutional layers in a
machine learning model. Similarly, in [33], the leading bytes of subsequent pack-
ets in a flow are concatenated to obtain a square image. These approaches report
promising results, attaining state-of-the-art results on their evaluation datasets.
Moreover, in [14], a comparison is made between the state-of-the-art results for
traditional features and the use of raw traffic-based features in machine learning.
The findings indicate that raw traffic-based features have the potential to match
and even surpass traditional approaches. For real-time application however, the
techniques considered in [14,31,33] are not sufficient, as they first sort the entire
dataset before extracting features from the resulting flows. In a real-time sce-
nario, it is not possible to wait until an entire dataset, or even a subset thereof,
is available before features are extracted, as this would occupy too many mem-
ory resources and excessively delay detection. In the following section we will
therefore present an approach to extract raw traffic-based features in real-time.

3.3 Our Proposed Approach: Flow Buckets

The research in [31] and [33] works on data that have been completely prepro-
cessed before extracting the traffic bytes for machine learning. Concretely, this
works on traffic that has been captured and sorted into complete flows. Traffic
can be sorted into flows using flow identifiers (FID). A FID is a tuple comprising
5 values: The flow source and destination IP addresses, the source and desti-
nation TCP/UDP ports and the protocol number (6 for TCP or 17 for UDP).
Raw traffic can be extract from packet capture files (PCAP), and the flows can
be derived by using these FID values. Such an approach is however not rep-
resentative of a real-time scenario with different flows in rapid succession, and
where it might be necessary to keep track of various flows simultaneously. Once
again, keeping track of too many flows for too long occupies too many memory
resources and delays detection, so an alternative real-time solution is necessary.
For this purpose, we will discuss flow buckets to keep track of l bytes from up to
m packets for n separate flows concurrently.

A flow bucket represents a storage element that can store l × m bytes from
one specific flow. Every flow packet adds l bytes to the bucket, causing it to fill
up gradually. When the bucket is full, it produces one set of input features for
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Fig. 1. (a) Packets are put into one of n buckets according to their FID. (b) Each bucket
stores up to l packet bytes for up to m packets, and emptying a bucket produces input
features for a machine learning model. Missing bytes are zero-padded.

the machine learning model, and it is emptied such that new bytes can be added,
as shown in Fig. 1b.

Combining n separate buckets allows for the construction of a mechanism
to process a packet stream in real-time, as demonstrated in Algorithm 1 and
Fig. 1a. Each bucket can be identified with the FID of the flow it is currently
keeping track of, and every flow consists of either a TCP or a UDP session.
Whenever adding a packet to the buckets, it is first checked whether one of the
current buckets is keeping track of the packet’s FID. If this is not the case, either
an empty bucket is filled, or the oldest bucket, that is the bucket that has gone
the longest without new packets, is emptied to make place for the new FID. On
the contrary, if there already is a bucket for the FID, the packet is added to that
bucket instead. However, if this would cause the number of packets in the bucket
to exceed m, the bucket should also be emptied first. Emptying a bucket simply
implies taking l bytes of every packet in a bucket and using the bytes as input
features for the machine leaning model. In the case that the number of packets
in an emptied bucket is less than m, the missing packet bytes are padded with
zeros to ensure the input features retain a fixed shape.

This principle is simpler to translate to hardware in comparison to traditional
feature extraction, and by choosing a value for l, m and n, the total resource
usage can be constrained. As only very limited processing is actually required,
the flow bucket approach is very unlikely to form a bottleneck in any NIDS. We
explore this approach further in the experiments in Sect. 5.

When comparing (l,m, n)-flow buckets against other approaches, such as
HAST-II [31] or PCCN [33], there are common qualities as well as distinct dif-
ferences: Flow buckets use a packet’s leading bytes as features, and rely on the
FID to distinguish between flows. Moreover, the resulting features can be used to
construct images to use in a convolutional neural network. The most significant
difference however is that unlike HAST-II or PCCN, flow buckets are suitable
for extracting incoming network traffic at line speed. As PCCN or HAST-II are
devised based on collected packet traces, they do not consider real-time extrac-
tion. In principle, the flow bucket approach can be used to extract features with
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Algorithm 1: Processing a packet using flow buckets
input : A packet stream PStream, where each packet is a sequence of bytes
output: Machine learning feature maps of size l × m

’Buckets’ contains all buckets and their current FIDs;
Buckets ← InitializeBuckets(l,m, n);
for Packet in PStream do

Extract the FID from the input packet ;
FID ← GetFlowID(P);
if IsValidFlowID(FID) then

if FID is in Buckets then
AddPacket(Buckets, FID, Packet);

else
if IsEmptyBucket(Buckets) then

AddNewBucket(Buckets, FID);
AddPacket(Buckets, FID, Packet);

else
EmptyOldestBucket(Buckets);
AddNewBucket(Buckets, FID);
AddPacket(Buckets, FID, Packet);

Function AddPacket(Buckets, FID, Packet):
if IsBucketFull(Buckets, FID) then

EmptyBucket(Buckets, FID);
AddNewBucket(Buckets, FID);

FillBucket(Buckets, FID, Packet);

the same dimensions as PCCN or HAST-II features, and as such can serve as a
tool to make these approaches suitable for real-time use.

3.4 Our Alternative Proposed Approach: Bidirectional Flow
Buckets

It is possible to extend the flow bucket concept to bidirectional flows. Given
flow F1 with FID1 = (A,B, a, b, x) and its reverse flow F2 with FID2 =
(B,A, b, a, x), the bidirectional flow F1,2 includes all packets from both F1 and
F2. It is bidirectional because it considers all traffic in one connection, both the
forward traffic (from host A at port a to host B at port b) and the reverse,
backward traffic (from host B at port b to host A at port a). A and B are in this
case IP addresses, while a and b are port numbers and x is the protocol number.
It is possible to consider bidirectional flows instead of regular flows for the flow
bucket approach. This implies, after calculating the FID of an input packet,
the algorithm should not only check whether any of the buckets capture that
flow, but also whether any of the buckets capture the reverse FID instead. If
that is the case, the packet is considered a backward packet in that bidirectional
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flow, and is added to the bucket. If m and n would be infinitely large, and if for
every forward flow its backward alternative would exist, using bidirectional flows
would effectively halve the number of employed buckets as opposed to using reg-
ular flows. It might therefore be interesting to use bidirectional flows when trying
to maximize the number of packets captured inside each bucket. Of course, in
a real implementation, it is not feasible to achieve such large values for m or
n. Our experiments in Sect. 5.1 show that realistic values already contribute to
reducing the number of used buckets.

4 From Software to Hardware

There are various ways to map a software-based machine learning algorithm to
an FPGA, such as using HLS4ML2, Vitis AI3 or FINN [6,30]. In this paper, we
choose FINN for the acceleration of deep learning models, as it is open source
and publicly available, and as it supports sufficient layers to synthesize an entire
deep learning model. It works using a dataflow architecture, where each layer has
its own compute engine and is implemented concurrently. FINN is suitable for
high throughput applications, and allows for significant customization through
its folding parameters that determine parallelization. The slowest layer will be
the bottleneck in a pipelined architecture. In this section, we discuss the steps
FINN takes to accelerate hardware, as well as how to interpret the reported
results.

4.1 Accelerating a Model Using FINN

FINN requires a number of steps to turn a regular deep learning network into
a dataflow architecture. Initially, the model needs to be quantized, for example
using Quantization Aware Training (QAT) in Brevitas [21]. The resulting quan-
tized model can then be processed using a set of transformations. First, stream-
lining transformations serve to remove floating point operations from the model,
by shifting them around and aggregating them in multi-thresholding layers. This
prepares the other layers to be then turned in HLS (High-Level Synthesis) layers,
once all non-supported operations have been (re)moved. FINN can then synthe-
size these HLS layers into hardware using Xilinx Vivado, and this hardware can
finally be deployed on an FPGA. In Sect. 5 we describe how we use FINN to
accelerate a custom deep learning model.

4.2 Fps to Bandwidth

In FINN, the default reporting of model throughput uses the framerate rf in
frames per second or fps, which is common practice for image processing mod-
els. While this is a useful metric, it does not directly translate to a supported

2 https://fastmachinelearning.org/hls4ml/.
3 https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html.

https://fastmachinelearning.org/hls4ml/
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
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maximum network bandwidth. Nevertheless, as each emptied bucket in the flow
bucket approach also corresponds with one input image for the subsequent algo-
rithm, in our context, the rf can also be defined as the number of flows per
second, where each flow is one emptied bucket. When B is the number of traf-
fic bytes in a dataset, and f is the total number of captured flows using the
flow bucket method, bpf = B · 8/f is the average number of bits per flow that
are transmitted in the dataset. This also includes non-flow bits such as Address
Resolution Protocol (ARP) data. Consequently, it is also possible to find the
relationship between the supported throughput rf and the supported bitrate rb
in bits per second: bpf = rb/rf . This allows a FINN user to estimate what the
supported bandwidth rb would be, for a specific dataset with B, a specific flow
bucket configuration with f and an accelerated model with rf .

5 Experiments

In this section, we will describe the experiments we conducted for both the
evaluation of flow buckets and the translation of machine learning models to
hardware. All code is publicly available4.

5.1 Flow Buckets

We have conducted a number of experiments to evaluate the impact of using flow
buckets to extract features instead of using a completely preprocessed dataset. We
consider buckets with l = 96 andm = 5, or concretely, buckets that can contain the
leading 96 bytes of up to 5 packets with the same FID. Using these settings, one
learning sample is a concatenation of 5 vectors of 96 elements, where each vector is
separated from the other vectors with a FF -valued byte as described for Header-
Payload features in [33]. Both the results in [33] as well as in [14] suggest this con-
figuration is suitable to detect attacks. The resulting vector has a length of 484
bytes and can be reshaped into a 22× 22 image. First we will consider the impact
of m and the number of buckets, n, on the flow distribution, then we will inspect
machine learning performance for these alternative features.

Flow Distribution. While maintaining l fixed at 96, different values for m
and n will lead to different feature compositions for the machine learning model.
First, we inspect the impact of n when m remains constant at a value of 5. We
choose m = 5 to be able to generate features with the same shape as those in
[33]. Increasing n leads to keeping track of more flows concurrently, which should
in theory provide buckets with more opportunities to be filled up before being
emptied to make space for a different flow. For this experiment, we use various
values of n for the CICIDS2017 dataset. Figure 2a gives the flow distribution for
this experiment. The flow distribution considers the percentage of all extracted
flows (=emptied buckets) that consist of s packets, where s is a value between

4 https://gitlab.com/EAVISE/real-time-dl-nids-on-fpga.

https://gitlab.com/EAVISE/real-time-dl-nids-on-fpga
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1 and m. Clearly, nearly 80% of all flows consist of only 1 packet, and nearly the
entire other 20% comprise the 2-packet flows. Apparently, while there is space for
5 packets, the vast majority of buckets are already emptied when they contain
1 or 2 packets. One reason for this could be that, for the vast majority of the
dataset, only flows with 1 or 2 packets exist. That however is very unlikely, as
it would limit any communication to be finished with a maximum of 2 packets
transmitted. Moreover, Fig. 2b considers a scenario with an infinitely large value
for n in CICIDS2017. This can be achieved by sorting all packets in the dataset
according to their FID first, and then by continuing filling buckets until all
packets have been used for every FID separately. As there clearly are many
flows with at least 5 packets, the results in Fig. 2a suggest that there are so
many different concurrent flows in CICIDS2017 that it is nearly impossible to
keep track of a flow long enough to consistently fill buckets. If we would keep
on increasing n, more and more flows would contain 5 packets. However, as each
bucket requires m · l = 96 ·5 = 480 bytes of storage, using n = 104 would already
require 4.8 MB of on-chip memory, which is unrealistic for real-time acceleration
on FPGA, especially if this memory might also be reserved for the machine
learning model.

(a) (b)

Fig. 2. Flow distribution for unidirectional flow buckets, with m = 5 and various values
of n (a) and baseline flow distribution (b) for CICIDS2017.

Interestingly, when performing the same experiment with bidirectional flows
instead of unidirectional flows, the results are significantly different, as shown
in Fig. 3a. While 1-packet and 2-packet flows still encompass about 65% of all
flows, about 30% of all flows now comprise 5 packets. This indicates a significant
portion of the traffic is bidirectional, and that it is a lot easier to keep track of
bidirectional flows compared to unidirectional flows. As a result, the total number
of extracted flows is considerably smaller for the bidirectional approach, as shown
in Fig. 3b. For this approach more packets can be captured in the same bucket,
which in turn results in fewer buckets being needed. In a real-time scenario,
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(a) (b)

Fig. 3. Flow distribution for bidirectional flow buckets (a) and flow counts for unidi-
rectional and bidirectional flow buckets (b) with m = 5 and various values of n for
CICIDS2017.

when compared to the unidirectional alternative, this would imply that for the
same network traffic the overall architecture supports a higher throughput. It
is also clear that realistic values for m and n already result in considerable
improvements, which in turn implies that infinitely large values are not required.

For the bidirectional case, there can be merit in increasing m, as it is likely
that deeper buckets will indeed be sufficiently utilized. Each 5-packet flow has
the potential to be a larger total flow that is terminated due to the bucket being
full. This is not the case for the unidirectional approach, where nearly all flows
terminate at only 1 or 2 packets. Figure 4a gives the flow distribution for the
bidirectional approach with m = 10 and n = 100, with Fig. 4b similarly giving
the distribution for m = 100. As the bucket depth m increases, the portion
of m-packet flows decreases, while other portions increase. This trend is most
noticeable for the portion of 1-packet streams, that significantly increases from
54% to 62% as m goes from 10 to 100.

When repeating the first experiment for UNSW-NB15, the results in Fig. 5
show a behaviour similar to CICIDS2017. For unidirectional flows, most flows are
captured with 2 or 4 packets, with only a few flows consisting of 5 packets. Once
again, using bidirectional flows considerably decreases the total number of flows,
which goes from about 7.5 × 107 unidirectional to about 5.3 × 107 bidirectional
flows. This effect is also visible in Fig. 5b, as a significantly larger portion of the
flows contains 5 packets. Both unidirectional and bidirectional cases also more
clearly follow the expected behaviour compared to CICIDS2017 when increasing
n, as being able to monitor more flows concurrently increases the relative portion
of 5-packet flows, starting from about n = 1000. One reason for this can be
found through the average number of packets per unique flow: CICIDS2017
contains 55,953,889 packets that belong to a flow, while UNSW-NB15 contains
187,072,760 packets. However, when counting the number of unique FIDs per
day, and calculating the sum for every day for both datasets, CICIDS2017 has
2,649,163 unique FIDs and UNSW-NB15 has 3,996,364. On average, this means
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(a) (b)

Fig. 4. Flow distribution for m = 10 (a) and m = 100 (b) bidirectional flow buckets
with n = 100 for CICIDS2017.

that UNSW-NB15 has about 47 packets for each unique FID, while CICIDS2017
only has about 21. Therefore, on average more packets will belong to the same
flow in UNSW-NB15, which in turn means it is easier to start completely filling
up buckets while fewer buckets are available.

Machine Learning Performance. In order to measure the impact of using
flow buckets, we first establish a baseline performance, obtained from training
a machine learning model on raw traffic-based features from a dataset that has
been completely sorted into flows. The employed model is a Convolutional Neural
Network we name BaseCNN2D as presented in Fig. 6. Each convolutional layer
is followed by one batch normalization layer (with ε = 10−5) and one ReLU
activation layer. The 6×6 feature map is downsampled using max pooling, with
the result being reformed to a 1024-sized vector. This vector, after one final
batch normalization layer as well as a 50% dropout layer, is used as an input to
a fully connected layer.

The model was trained for an initial learning rate of 0.001, which was divided
by 10 if no improvement was shown during the last 10 epochs, for a total number
of 100 epochs, with an SGD optimizer. We report our results using the accuracy
Acc, the weighted average detection rate5 DRw, the weighted average F-measure
Fw, as well as two metrics that are proposed in [14]: The detection score DS and
the identification score IS. The DS is the F-measure of the binarized confusion
matrix, where each detected attack that actually was an attack (even if it was
another attack class) is considered a true positive. Equation 1 then gives the
IS, which is the harmonic mean of the weighted average F-measure Fw and
macro average F-measure FM in a multiclass scenario. As the IS considers both
minority and majority classes through respectively FM and Fw, it assesses how
well a model can identify specific attacks in a dataset.

5 The DR is commonly used in intrusion detection literature to denote the recall.
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(a) (b)

Fig. 5. Flow distribution for unidirectional (a) and bidirectional (b) flow buckets, with
m = 5 and various values of n for UNSW-NB15.

Fig. 6. The BaseCNN2D architecture that was used in the experiments, with s indi-
cating the stride of a convolution layer while the feature map and fully connected layer
sizes are provided below the graph. Visualized using [15].

IS =
2 · Fw · FM

Fw + FM
(1)

For these training parameters and these metrics, the machine learning results
are presented in Table 1.

To investigate the effect of using flow bucket feature extraction, we consider
a unidirectional bucket configuration with l = 96, m = 5 and where n is either
1, 10, 100 or 1000. This configuration produces features that are in line with the
features in [14,33] and allows for assessing whether flow bucket features actually
work for machine learning. As the results in Table 1 show, that is actually the
case: For 10, 100 and 1000 buckets the results are only slightly lower than the
baseline, without any indications that one is significantly worse than the other.
This is to be expected, as Fig. 2a shows very little difference between the flow
distributions of the selected values for n. Somewhat unexpectedly, the model for
n = 1 achieves a near perfect classification, making only 1,263 errors for over 4
million test samples. This further underlines the potential that raw traffic-based
features have for real-time deep learning based network intrusion detection.
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Table 1. Machine learning performance of the BaseCNN2D model for datasets
extracted from CICIDS2017 using flow buckets for different values of n. The first row
considers the scenario in which all packets have been sorted before feature extraction.

l m n Acc DRw Fw DS IS

/ / / 99.54 99.54 99.54 97.70 98.77

96 5 1 99.97 99.97 99.97 99.97 99.28

96 5 10 99.37 99.37 99.40 96.03 98.42

96 5 100 99.38 99.38 99.40 96.05 98.46

96 5 1000 99.37 99.37 99.39 96.02 98.46

5.2 Quantization

Before using FINN for hardware acceleration, it is required to quantize the target
machine learning model. Using the Brevitas [21] library for quantization-aware
training, we trained three neural networks using either 8-bit, 4-bit or 2-bit quan-
tization of both weights and activations. For this purpose, a simplified version
of the BaseCNN2D model was used as presented in Fig. 7, with a smaller fully
connected layer, global average pooling instead of max pooling and without reg-
ularization after pooling. By training this network without quantization, and
by then using the proposed quantization alternatives, we obtain the results pre-
sented in Table 2. All training is done using the CICIDS2017 dataset with raw
traffic-based features extracted from presorted flows.

Table 2. Result of training the simplified BaseCNN2D model using 8-bit, 4-bit and
2-bit quantization, as well as baseline results without quantization.

Quantization Acc DRw Fw DS IS

None 99.52 99.52 99.52 97.59 98.58

8-bit 99.53 99.53 99.53 97.65 98.65

4-bit 99.49 99.49 99.49 97.46 98.36

2-bit 99.41 99.41 99.41 97.26 97.23

These results suggest that the 8-bit quantization has no negative impact
on the model’s performance. On the contrary, the 8-bit case appears to achieve
better results than the baseline without any quantization. When the quantization
is further extended to 4-bit, there are only minor drops in performance. And
remarkably, even going down to 2-bit quantization, the results remain high.
Because we want to limit the hardware footprint of our FPGA implementation
as much as possible, we choose the 2-bit w2a2 model for hardware acceleration.
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Fig. 7. The simplified BaseCNN2D architecture, used for quantization and hardware
acceleration with s indicating the stride of a convolution layer while the feature map
and fully connected layer sizes are provided below the graph. Visualized using [15].

Table 3. Resource utilization of the w2a2 quantized simplified BaseCNN2D model as
accelerated on a PYNQ-Z2 board.

Resources Utilization Available Utilization (%)

LUT 24,635 53,200 46.31%

LUTRAM 1,980 17,400 11,38%

FF 27,450 106,400 25,80%

BRAM 37.50 140 26.79%

5.3 FPGA Performance

We use the FINN workflow [6,30] to accelerate the trained and quantized model
on FPGA. We first use a specific set of transformations in a specific order to turn
the entire model into synthesizable hardware. Then, this hardware is synthesized
using FINN in collaboration with Vivado 2020.1, resulting in a bitfile and Python
code for the PYNQ-Z2 board with a Xilinx ZYNQ XC7Z020-1CLG400C FPGA.
Using out-of-context synthesis for the accelerated model leads to the resource
utilization depicted in Table 3. The included Python code reports a throughput
of about 9635 images/second, or rf = 9635 fps using a 100 MHz clock.

As B = 50, 557, 729, 836 bytes for the CICIDS2017 dataset, we can calculate
bpf for any flow bucket approach to estimate the supported bandwidth. For
example for (l,m, n) = (96, 5, 5), f = 43, 263, 642 flows, which in turn means
bpf is about 9349 bits per flow. This means that for this architecture with
(96, 5, 5)-buckets, the supported bitrate is rb = rf · bpf = 90.08 Mbps.

The supported throughput for the flow buckets in hardware will depend on
the network interface. Consider for example an implementation on a PYNQ-
Z2 FPGA with a Xilinx 1G/2.5G Ethernet Subsystem and a physical ethernet
interface supporting 1Gpbs. While internally the system may run faster, the
total throughput will be constrained by the physical interface. For this example,
the internal system could run with a 100 MHz clock and receive the ethernet
packets in 32-bit blocks over an AXI Stream bus. In the absolute worst case,
with the smallest possible 64-byte Ethernet packets, all featuring the same FID,
it should take max(l, 64)/4 · m clock cycles to fill a bucket. For (96, 5, n), that
would be 120 clock cycles or 1.2 · 106 buckets per second.
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5.4 Discussion

We developed, to the best of our knowledge, the first reported sufficiently deep
convolutional neural network for network intrusion detection accelerated on an
FPGA. It obtains state-of-the-art detection performance on CICIDS2017 using
2-bit quantization and raw traffic-based features, and fits on a lower-end PYNQ-
Z2 board. The results in Sect. 5.1 show that these raw traffic-based features
can be extracted in real-time using flow buckets without considerably adversely
effecting detection performance. There is still room for improvement, as the
throughput of the accelerated model should still be increased for real-time intru-
sion detection. We observe the following options to achieve this goal:

– There are still some computational bottlenecks in the network that can be
solved in order to increase the speed. Currently the network is limited by the
slowest layer.

– The current platform is relatively small resource-wise. Using a larger platform
such as a Xilinx Alveo card would allow for more parallelization, which would
in turn allows to speed up the computations in the layers.

– Further optimization of the machine learning model, through 1-bit quantiza-
tion, pruning or other methods, reduces the functionality that needs to be
translated to hardware.

We are confident that these optimizations will further improve the throughput
towards real-time intrusion detection.

6 Conclusion and Future Work

In this paper, we set out to develop a deep learning-based NIDS with real-time
throughput and feature extraction as well as high detection performance. We
proposed the flow bucket approach to enable real-time raw traffic-based feature
extraction. Analyzing the results of this approach for two recent and publicly
available datasets, UNSW-NB15 and CICIDS2017, shows that using these fea-
tures does not deteriorate learning performance, but rather allows for very high
detection accuracy. Moreover, we also proposed a deep learning architecture that
retains performance even when quantized towards 2-bit weights and activations.
Finally, we have laid a foundation to further build upon with respect to acceler-
ating our deep learning model in hardware. While the maximum bandwidth is
currently still limited, there are clear possibilities to further improve throughput.
For future work, we will aim at optimizing the hardware architecture to reach
higher network traffic bandwidth. Moreover, we will further explore different
ways in which raw-traffic based features can be used as input for machine learn-
ing models. E.g., for unidirectional flow buckets with (l,m, n) = (96, 5, 5), the
majority of the flows contains 1 or 2 packets. Using m = 2 significantly reduces
input feature size, and thus model size, but might not impact the detection
performance too drastically. Additional research concerning the applicability of
bidirectional flows is also in order. Exploring all these options may finally lead
to viable deep learning architectures for real-time NIDSs.
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based network intrusion detection: techniques, systems and challenges. Comput.
Secur. 28(1), 18–28 (2009)

11. Ioannou, L., Fahmy, S.A.: Network intrusion detection using neural networks on
FPGA SoCs. In: 2019 29th FPL, pp. 232–238, September 2019

12. Kim, T., Suh, S.C., Kim, H., Kim, J., Kim, J.: An encoding technique for CNN-
based network anomaly detection. In: IEEE BigData, pp. 2960–2965, December
2018

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Adv. NIPS 25, 1097–1105 (2012)
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