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Abstract. In recent years machine learning has become increasingly
mainstream across industries. Additionally, Graphical Processing Unit
(GPU) accelerators are widely deployed in various neural network (NN)
applications, including image recognition for autonomous vehicles and
natural language processing, among others. Since training a powerful net-
work requires expensive data collection and computing power, its design
and parameters are often considered a secret intellectual property of their
manufacturers. However, hardware accelerators can leak crucial informa-
tion about the secret neural network designs through side-channels, like
Electro-Magnetic (EM) emanations, power consumption, or timing.

We propose and evaluate non-invasive and passive reverse engineering
methods to recover NN designs deployed on GPUs through EM side-
channel analysis. We employ a well-known technique of simple EM anal-
ysis and timing analysis of NN layers execution. We consider commonly
used NN architectures, namely Multilayer Perceptron and Convolutional
Neural Networks. We show how to recover the number of layers and
neurons as well as the types of activation functions. Our experimental
results are obtained on a setup that is as close as possible to a real-world
device in order to properly assess the applicability and extendability of
our methods.

We analyze the NN execution of a PyTorch python framework imple-
mentation running on Nvidia Jetson Nano, a module computer embedding
a Tegra X1 SoC that combines an ARM Cortex-A57 CPU and a 128-core
GPU within a Maxwell architecture. Our results show the importance of
side-channel protections for NN accelerators in real-world applications.

Keywords: Deep neural network · Side-channel analysis · Simple
power analysis · Reverse engineering

1 Introduction

Deep learning is more and more deployed in many research and industry
areas ranging from image processing and recognition [13], image recognition for
autonomous vehicles [4], robotics [9], and natural language processing [27], med-
ical applications [15], IoT speech recognition [26] to security [14,29]. This rapid
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deployment is caused by the increased computational capabilities of computers
and huge amounts of data available for machine learning. Additionally, it leads
to more and more complex machine learning architectures.

In this paper, we focus on the analysis of Multilayer Perceptron (MLP) and
Convolutional Neural Network (CNN) implemented using GPU accelerators, as
they are the most commonly used feed-forward neural networks architectures.

Designing and finding parameters for neural networks has become an increas-
ingly hard task since the NN architectures become more complex. From the
industrial point of view, we can observe an increase in the number of intellectual
property (IP) of NNs. Such IPs of commercial interest need to be kept secret.
Moreover, in the medical context, the privacy aspects of NNs can also become a
threat if revealed.

Additionally, EMVCo, an entity formed by MasterCard and Visa to manage
specifications for payment systems, requires deep learning techniques for security
evaluations [24]. Due to the above reasons, hackers might want to reverse neural
networks to learn secret information.

There exist potentially easier ways to recover a network than using complex
side-channels like EM or power consumption. For example, physical access to
the device might be sufficient for an attacker to access the NN firmware and to
reverse engineer it using binary analysis. As a countermeasure, those devices are
equipped with standard protections like blocking binary access, blocking JTAG
access, or code obfuscation. Furthermore, the IP vendors usually forbid users to
access architectural side-channel information, such as memory and cache due to
security and privacy concerns. Additionally, they implement countermeasures in
software and hardware against logical attacks that would allow hackers to obtain
run-time control on the device.

Therefore, for such protected implementations, side-channel attacks become
viable for reverse engineering NNs. Side-channel analysis (SCA) has been widely
studied for the last 20 years due to its capability to break otherwise secure
algorithms and recover secret information. In 2019, Batina et al. [1] presented the
first SCA attack to extract architecture and weights from a multilayer perceptron
implemented on a microcontroller; this attack employed both timing and EM
side-channels. This attack has shown that SCA is a serious threat to NNs.

However, there has been little work done on SCA against GPU-based neu-
ral networks1. To the best of our knowledge, there has been no power or EM
side-channel attack presented that targets GPU-based neural networks, while
GPU is the platform of choice to train and deploy neural networks.

In this work, we aim at evaluating the security of a setup that is as close to
a real-world application as possible, and therefore, we target NNs running on
GPU. Therefore, we target the Nvidia Jetson Nano, a module computer embed-
ding a Tegra X1 SoC combining an ARM Cortex-A57 CPU and a 128-core GPU
with Maxwell architecture. This hardware accelerator is relatively complex in

1 The only SCA against GPU-based NN that we have found is presented in [28].
However, it works in a different context to ours and is based on software context-
switching timing side-channel; see Subsect. 1.1 for details.
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comparison to a simple microcontroller. In particular, our setup employs the
PyTorch python framework running on the full Linux operating system (on the
ARM CPU) to instruct the GPU accelerator to execute NN computations. This
complexity poses several technical difficulties for our analysis due to a large
amount of noise and misalignment. Because of these challenges, we limit our
analysis to so-called simple EM analysis2 and we recover numbers of layers and
neurons as well as the types of activation function being executed. Our experi-
ments show that all this secret information can be recovered using dozen of EM
traces independent of inputs even when significant noise and misalignment are
present when sufficient signal processing techniques are used.

Note that we need to analyze a GPU implementation as black-box since the
low-level details of the implementation could not be public. Moreover, due to the
parallel nature of GPUs, we cannot simply replicate existing attacks for other
architectures, but adjust them adequately.

We leave recovering neuron weights and CNN hyperparameters using more
complex side-channel attacks to be future work.

1.1 Related Works

Any computation running on a platform might result in physical leakages. Those
leakages form a physical signature from the reaction time, power consumption,
and EM emanations released while the device is manipulating data. Side-channel
analysis (SCA) exploits those physical signatures to reveal secret information
about the running program or processed data In its basic form, SCA was pro-
posed to perform key recovery attacks on cryptographic implementations [10,11].

The application of SCA is not limited to the type of processing unit and can
be applied to microcontrollers as well as other platforms. In [5,7,8,16], EM and
power side-channel attacks are performed on GPU-based AES implementations.

In [19] SCA is used to break isolation between different applications con-
currently using a GPU. Essentially this work identify different ways to measure
leakage using software means from any shared component.

Side-channel attacks can be applied to extract the information of a neural
network. Batina et al. [1] presented the first EM side-channel attack to extract
the complete architecture and weights from an MLP network implemented on a
CPU. Subsequently, Honggang Yu et al. [33] combined simple EM analysis with
adversarial active learning to recover a large-scale Binarized Neural Network,
which can be seen as a subset of CNNs, implemented on a field-programmable
gate array (FPGA). In this attack, the recovery of the weights is not done
through EM analysis, but using a margin-based adversarial learning method.
This method can be seen as a cryptanalysis against NNs where weights are
treated as an attacked secret key. Takatoi et al. [25] show how to use simple EM
analysis to retrieve an activation function from a NN implemented on an Arduino
Uno microcontroller. In [32], correlation power analysis is used to reveal neuron

2 Simple EM analysis involves visually interpreting EM traces over time in order to
recover the secret.
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weights from the matrix multiplication implemented with systolic array units on
an FPGA. Another relevant attack [30] uses power SCA together with machine
learning classifier to reveal internal network architecture, including its detailed
parameters, on an ARM Cortex embedded device. Maji et al. [17] demonstrated
a timing attack combined with a simple power analysis of microcontroller-based
NN to recover hyperparameters and the inputs of the network.

The only previous attack that targets GPU-based NN [28], to the best of
our knowledge works in a different setting to ours; a model developer and an
adversary share the same GPU when training a network and the adversary aims
to break the isolation to learn the trained model. This attack is not applicable
to an edge accelerator platform as the training phase is always performed in a
controlled environment with more capable resources. This attack also relies on
the presence of an adversary sharing GPU resources while our attack does not
make such a requirement.

A recent survey of existing SCA methods for architecture extraction of neural
networks implementations is presented in [2] and an overview of hardware attacks
against NN is given in [31].

1.2 Contributions

In this paper, for the first time, to the best of our knowledge, we investigate using
simple EM analysis to break side-channel security of NN (namely Multilayer
Perceptron and Convolutional Neural Networks) running on a GPU. We present
how to successfully recover the number of layers and neurons as well as the types
of activation functions. Most importantly, our results show the importance of
side-channel protections for NN accelerators in real-world applications.

We leave recovering neuron weights and CNN hyperparameters using more
complex side-channel attacks, like DPA or template attack to be future work.

Our experimental results are obtained on the setup that is as close as possible
to a real-world device setup in order to properly assess the applicability and
extendability of our methods.

1.3 Organization of the Paper

Section 2 presents the necessary background on simple EM analysis, NNs, and
the employed GPU architecture. Subsequently, our threat model is described in
Sect. 3 and the target and NN implementation in Sect. 4. We present our reverse
engineering methods and experimental results in Sect. 5. Finally, conclusions and
future work are presented in Sect. 6.

2 Background

In this section we introduce the concepts of simple EM analysis (SEMA), Arti-
ficial Neural Network, and we describe a GPU Architecture that we analyze.
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2.1 Simple EM Analysis

In the second half of the nineties, Paul Kocher et al. presented the first research
publications about practical side-channel attacks [10,11]. They realized that the
security of cryptographic algorithms does not only depend on the mathemat-
ical properties but also on implementation details, regardless of whether the
implementation is hardware or software.

By monitoring side-channels of cryptographic implementations of DES and
RSA using a low-cost oscilloscope, more specifically the power consumption [10]
and the execution time [11], they were able to discover the side-channel leakages
corresponding to the private key usage. As a result, they were able to recover
the private key with little effort and low cost. The methods presented by Kocher
et al. in [10] are called Simple Power Analysis (SPA) and Differential Power
Analysis (DPA). SPA involves visually interpreting power consumption traces
over time to recover the secret key3. Variations in power consumption occur
particularly strongly as the device performs different operations. If the sequence
of such operations depends on the key, then using a standard digital oscilloscope
the attacker would learn information about the key. Additionally, the attacker
might further use frequency filters and averaging to improve the signal quality.

DPA improves on SPA by employing a statistical analysis between interme-
diate values of cryptographic computations and the corresponding side-channel
traces in order to recover the key.

In this paper we employ technique called Simple EM analysis (SEMA) that
is equivalent to SPA but in the EM domain. For example, how to recognize
different amount of layers in NN is shown in Fig. 7.

Template Attack [3] (TA) is another notable SCA technique that can be seen
as an improved version of SPA. It combines statistical modeling with SPA and
DPA and can achieve better accuracy than SPA. It consists of two phases, called
profiling and matching. An attacker first creates a “profile” of a sensitive device,
which is under their full control, and then matches this profile to measurements
from the victim’s device to quickly find the secret key.

We leave using aforementioned DPA and TA to recover neuron weights and
CNN hypermarameters as future work.

2.2 Artificial Neural Network

Artificial Neural Network (ANN) is a category of computing systems that can
exhibit generalization for a given task beyond the training data. A Neural Network
(NN) is a network of many simple computing units (also called nodes) connected
by communication channels to transmit a signal. The units transform numerical
inputs together with local data (i.e., weights) to produce an output. During the
so-called ‘training process’, weights and biases are adjusted to minimize a given
loss function and stores the experimental knowledge about the training task.

A simple type of neural network is a perceptron (also called neuron). The
perceptrons perform an inner product of the inputs ini and weights wi, plus
3 In our case the secret key is the network architecture.
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Fig. 1. Schematic of a multi-layer perceptron

a bias b through an activation function to compute its output. The activation
function is usually a logistic or tanh function. Hence, the formula of an artificial
neuron output is typically computed according to Eq. (1).

o = tanh(b + sum[wi ∗ xi]) (1)

A more advanced type of neural network is the Multi-layer Perceptron
(MLP). An MLP is a neural network constituted of multiple perceptrons grouped
in layers to form a directed graph. Each perceptron in a layer is fully connected
with a given weight w for every node of the following layer. An MLP consists of
at least three layers: one input layer, one output layer, and one hidden layer. An
MLP is represented on Fig. 1 An MLP with more than one hidden layer is con-
sidered a deep learning architecture. To train the network, the backpropagation
algorithm is used, which is a generalization of the least mean squares algorithm
in the linear perceptron. Backpropagation is used by the gradient descent opti-
mization algorithm to adjust the weight of neurons by calculating the gradient
of the loss function [18]. After the training phase, only the forward loop is com-
puted without backward propagation. This mode is called ‘inference’ and is the
mode used when deploying a neural network.

More advanced deep neural network units involve convolution operation in
place of the inner product of perceptrons. Neural networks with at least one layer
of convolution units are called Convolutional Neural Networks (CNN). CNNs
are commonly applied when analyzing visual imagery to take advantage of the
hierarchical pattern in data and assemble patterns of increasing complexity using
smaller and simpler patterns called filters. The convolutional layer consists of
several filters (i.e., two-dimensional array of real values) used to detect a specific
type of feature in the input. The operation consists in successive dot products
of the filters with patches of the inputs of corresponding size. Because the filter
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Fig. 2. Convolutional layer operation

size is smaller than the input size, the filters is shifted across the whole input
area with overlapping to produce a feature map. This feature map is the layer’s
output. The output of one convolution operation with one filter is depicted in
Fig. 2 Commonly, the filters are also called the weights of the convolutional
layer. CNNs usually consist of successive Convolutional layers followed by an
MLP structure to perform a classification task.

2.3 GPU Architecture

GPU is a specialized computer hardware designed to accelerate parallel com-
puting for image processing. Deep learning algorithms can benefit from GPU
high parallelization to boost their performances, especially when dealing with
visual data. A GPU groups several GPU cores into a Streaming Multiprocessor
(SM). The specific SM of Maxwell GPU architecture is shown in Fig. 3. All GPU
cores within a SM can handle floating-point operations in a Single Instruction
Multiple Data (SIMD) paradigm. This way, the exact same processing can be
applied to a large volume of data to reach a higher throughput than for a CPU.

CUDA is the Software Development Kit (SDK) introduced by NVIDIA that
gives direct access to the GPU’s instruction set and facilitates general-purpose
programming. From the programming perspective, a program that runs on a
GPU is divided into parallel threads groups into wraps of 32 threads partitioned
into blocks within grids executed on the SM [21]. When the number of blocks
in a SM is less than the number of blocks assigned for the operation, the blocks
are queued and scheduled to be executed at a later time. This method allows
programs to be scalable for the hardware it is executed on and offers speed
up for devices with more blocks per SM. Higher-level programming languages
such as python frameworks relies on CUDA to call computation every low level
function on GPU. We will see that it is possible to exploit this feature to perform
side-channel a analysis of the size of data processed by the GPU.
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Fig. 3. Maxwell streaming multiprocessor architecture

3 Threat Model

The main goal of this attack is to reverse engineer the neural network architecture
using only side-channel information. In this scenario, we consider an attacker
with no insight of the inputs type, source or the implementation of the machine
learning algorithm. Currently, to the best of our knowledge, there is no public
implementation deploying side-channel countermeasure. We consider a passive
and non-invasive attacker who can only acquire side-channel measurement while
operating “normally” the target device and cannot control the flow of operation.

A suitable use case for this attack is considering an attacker who acquired a
legal copy of the network in a black-box setting and aims to recover its internal
details for IP theft. The attacker controls the inputs and performs side-channel
measurement during the inference phase of the neural network. The goal is to
reverse engineer the following information about the neural network architecture:
number of layers, number of outputs, and activation functions in the network.

If successful, this attack can have severe monetary repercussions for com-
panies investing significant resources to develop customized machine-learning
models to create highly valuable IPs [22]. A successful attacker that is able to
steal such models can offer similar services at much lower cost than the investing
companies.

4 The Target and Network Implementation

The target is an Nvidia Jetson Nano [34], a module computer embedding a
Tegra X1 SoC [35] combining an ARM Cortex-A57 CPU and a 128-core GPU
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with Maxwell architecture suitable for AI applications such as image classifica-
tion, object detection, segmentation, and speech processing. Specifically, modules
similar to this one are used for real application in automotive visual comput-
ing, namely for Nvidia drive CX and PX computer platforms. The Jetson Nano
Tegra X1 SoC contains a GPU with one Maxwell Streaming Multiprocessor
(SMM) (see Fig. 3). The SMM is partitioned into four distinct 32-CUDA core
processing blocks (128 CUDA cores total), each with its own dedicated resources
for scheduling and instruction buffering.

The neural network is a convolutional neural network (CNN) implemented
using the PyTorch python framework [23]. The dataset used to train the network
is the CIFAR10 dataset [12], a 60 000 32× 32 color images dataset representing
10 classes. The reference CNN architecture consists of two convolutional layers
(of 6 and 16 filters of size 5) with max-pooling and three linear Fully Connected
(FC) layers, all regulated with the ReLU activation function, and the final FC
output layer. The input is a three-channel image of size 32 × 32, and the output
is a 10-sized vector of each class of the classification problem. This architecture,
together with the corresponding SPA, is presented in Fig. 4.

To better measure the execution of the neural network, we use a power trig-
ger. The Jetson Nano handles General Purpose Input/Outputs (GPIOs). We
use one GPIO pin to implement a trigger around the forward loop of the neural
network to be sure only to measure while the GPU is active. It is to be noticed
that, the neural network is already trained and the gradient operation is disabled
to prevent the backward loop from happening.

To record the EM traces we removed the heatsink of the target and placed a
Riscure Low Sensitivity (LS) EM probe4 above the main chip package. The best
position of the probe is empirically chosen to maximize the leaking signal. We
manually searched the position with a grid scanning above the chip for multiple
locations and chose the most promising position based on visual inspection of
the traces. This best location is presented in Fig. 5.

The oscilloscope in our experiment is the Teledyne Lecroy WaveRunner
8404M. We used it in two configurations, one for characterization with 5 × 109

samples/s and at most 32× 106 samples and the second one for simple EM with
109 samples/s and at most 107. We used greater sampling rate in the first con-
figuration because we performed frequency analysis and we needed to be able to
record a signal up to the GPU maximum clock frequency, namely 900 MHz, in
good quality; for simple EM we do not need that high accuracy. The oscilloscope
has TCP/IP support for both controlling and downloading measurements, which
helps to automatize the entire process.

We acquired and analyzed using Riscure’s Inspector software package5.
The goal of the neural network used in this paper is not meant for high

efficiency or presenting a challenging classification task, but rather to show the
methods and principles side-channel analysis can bring in to extract information
from a neural network closed implementation.

4 https://www.riscure.com/uploads/2017/07/inspector brochure.pdf.
5 https://www.riscure.com/security-tools/inspector-sca.

https://www.riscure.com/uploads/2017/07/inspector_brochure.pdf
https://www.riscure.com/security-tools/inspector-sca
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Fig. 4. SPA of CIFAR10 convolutional neural network

Fig. 5. Experimental setup: the EM probe location

5 Reverse Engineering

5.1 Characterization

In Fig. 4, the architecture of the neural network is showed next to an EM trace
measured during its execution on the target. From the EM trace, we can observe
that every different step of the forward loop of the NN is distinguishable. The
two convolutional blocks are identifiable by a first activity corresponding to the
convolutional operation followed by a smaller activity corresponding to the pool-
ing operation. The layers of the MLP, namely, the FC layers, are also detectable
by single peaks.

It is possible to verify whether the leakage is effectively coming from the
GPU activity by observing the leakage in the frequency domain. Because the
GPU maximum clock frequency is 900 MHz, the computation made on the device



106 �L. Chmielewski and L. Weissbart

Fig. 6. A single EM trace (in the blue color at the bottom) and the corresponding
spectrogram (middle) with the MLP activation zoomed-in (top)

will emit leakage in the same range of frequencies. In Fig. 6, we represented the
absolute value of the leakage together with the spectrogram plot of the leakage.
We can see that the detected leakage correspond to the frequency range of the
GPU. It would be possible to continue the same analysis using this frequency
signal, but in this paper, we will only focus on EM analysis in the time domain.

In the following analyses, we either use raw traces or apply an averaged
window resampling method on the absolute value of the signal. The averaged
window resampling reduces the number of features of the trace by averaging
samples in a fixed-size window shifted without overlapping across all samples
of the trace. This processing makes alignments on specific patterns faster and
easier.

5.2 Reverse Engineering the Number of Layers

In this section we investigate how to recover the number of hidden layers in the
MLP from the SCA during the inference phase.

Since the dataflow of a NN is such that layers are processed sequentially,
the analysis of different number of fully connected layer is trivial from the EM
traces. We measured three different implementations of a neural network, with
a different number of fully connected layers and observe their leakage. From the
reference neural network model, we change the number of fully connected layers
from 4 to 6. The number of neurons in each of the additional layers is the same
as the second fully connected layer from the reference model (i.e., 120 neurons).
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(a) 4 layers

(b) 5 layers

(c) 6 layers

Fig. 7. Differences in the number of fully connected layers

The resulting EM measurements are represented in Fig. 7. From the three plots,
the two first convolutional blocks and the fully connected layers are clearly iden-
tifiable. While the plots are aligned according to the first convolutional layer,
the timing of the execution is not consistent. Many process interruptions occur
during the computation, leading to misalignments in the traces. However, the
additional layers do appear in the EM measurement and are easily identifiable.

5.3 Reverse Engineering the Number of Neurons

Now we investigate how to recover the number of neurons in a hidden MLP
layer.

In a GPU implementation, every neuron operation is processed in parallel.
However, the parallelization degree depends on the size of the inputs and number
of neurons, as there is a limit on the number of floating-point operation that can
be computed in parallel. For example, given N GPU threads, each capable of
computing one floating-point operation per clock cycle, the GPU scheduler can
compute N operations per clock cycle. If ninputs×nneurons > N then the number
of neurons will partially leak, and if ninputs � N then the number of neurons will
entirely leak as every neuron computation would require more than one cycle.

From the execution of the linear operation in the fully connected layers, it
is possible to recover the number of perceptrons per layer using timing side-
channel. In Fig. 8 different models are analyzed. Here, we control the number of
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(a) 60 perceptrons

(b) 120 perceptrons

(c) 255 perceptrons

Fig. 8. Difference in number of perceptrons inside fully connected layers

neurons within the hidden layers. We can see that when the number of neurons
in the layers increases, the execution time of each layer also increases.

Recovering the exact number of neurons in a layer would require to be capa-
ble to distinguish a single neuron difference. In Fig. 9, the timing of the first
fully connected layer activity with an increasing number of perceptrons from 30
to 100 is represented. For every number of perceptron, we averaged fifty mea-
surements and align the traces according to the desired pattern to measure the
execution time of the specific layer. While the relation shows a linear behavior,
the measurements noise and re-alignment, still make it difficult to distinguish
a single perceptron change. However, approximate recovery is possible with a
relatively low error margin.

5.4 Reverse Engineering the Type of Activation Function

Nonlinear functions are essential to approximate a linearly non-separable problem.
The use of these functions also helps to reduce the number of network nodes. With
the knowledge of the type of nonlinear function used in a layer, an attacker can
deduce the behavior of the entire neural network using the input values.

We analyze the side-channel leakage from different commonly used activa-
tion functions, namely ReLU, Sigmoid, Tanh, and Softmax [6,20]. The activation
function applied to the first convolutional layer of the network is changed in dif-
ferent measurements. We measured the EM leakage of the execution of the layer
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Fig. 9. Differences in the number of perceptrons (from 30 to 100 units)

Table 1. Statistical analysis on computation time (in µs).

Activation function Mean Maximum Minimum

ReLU 33.5 34 33

Tanh 36.0 37 34

Sigmoid 43.3 46 41

Softmax 124.5 127 123

computation and the activation function for random input and is represented
in Fig. 10. We identify the execution of the convolutional layer from 0 to 520
time samples and it is identical for all sub-figures. The execution of the acti-
vation function presents differences among all different activation functions. We
can notice for example that the execution of the ReLU activation function is
the shortest and that the Softmax function is the longest by far. The timing
differences between ReLU, Tanh, and Sigmoid activation functions are smaller.

The computation time of the activation function does depend on the size of
the input. Therefore, to identify the type of activation function, one should first
recover the number of inputs. We measured fifty executions of the activation
function after the first convolutional layer. The input of this activation function
is of the size of the output of the convolutional layer before the pooling layer and
is of size 6 × 28 × 28 = 4704. All measurements are done on random data, and
we draw a statistical analysis of the timing pattern for all types of activation
functions considered in Table 1. It can be observed that each activation function
stands out, and thus it is possible to recover trivially the type of activation
function from a neural network implementation.
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(a) ReLU

(b) Tanh

(c) Sigmoid

(d) Softmax

Fig. 10. Differences in the type of activation function applied on layer output

6 Conclusions and Future Work

Side-channel analysis have already been proven capable to reverse engineering
a neural network implemented on a microcontroller architecture. While micro-
controllers can be the hardware of choice for some small edge computing appli-
cations, GPU stays the most popular platform for deep learning. In this paper,
we show the possibility to recover key parameters of a GPU implementation of
a neural network. We can recover the number of layers and number of neurons
per layer of a multi-layer perceptron with simple power analysis. We can also
identify different types of activation functions with single power analysis for a
given number of inputs. We can conclude that we have managed to recover all
the secret information that can be achieved using only simple EM analysis.

For the reverse engineering of a complete neural network, the weights of
all layers for both MLP and CNN networks and network hyperparameters for
CNNs should be recovered too. We consider these tasks to be future work, but
we envision that the weights can be recovered using correlation or differential
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power analysis on float vector multiplication similarly to [1]. However, the main
challenges, besides noise and misalignment, would be the lack of information on
how the multiplication is performed and the parallel aspect of GPU computa-
tion (i.e., multiple intermediate values might be computed at the same time).
Recovery of CNN hyperparameters would be probably also a hard task and we
suspect that it would require a template attack.
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