
Shaping Blockchain Technology
for Securing Supply Chains

Yong Zhi Lim1,2(B), Jianying Zhou1, and Martin Saerbeck2

1 Singapore University of Technology and Design, Singapore, Singapore
yongzhi lim@mymail.sutd.edu.sg, jianying zhou@sutd.edu.sg

2 Digital Service Centre of Excellence, TÜV SÜV Asia Pacific, Singapore, Singapore
{yong-zhi.lim,martin.saerbeck}@tuvsud.com

Abstract. Purchases in supply chains involve a network of suppliers,
manufacturers, logistics or even customers needed for the procurement
of goods or services. These are needed to operate a supply chain efficiently
and allow timely deliverables to consumers. In our work, we identify and
map a typical business process to demonstrate how we can securely allow
participants to interact with smart contracts and discover potential use
cases for supply chains.

Keywords: Blockchain · Smart contracts · Supply chains

1 Introduction

The rise of Blockchain is arguably attributed to the use of Bitcoin for financial
transactions. It currently has the world’s highest market cap and is the costliest
cryptocurrency to date [1]. Its hype has evolved over the past decade and seen
the rise of different consensus algorithms, with claims of providing higher hash
rates and transactions per second.

As businesses continue to embrace and migrate towards digitization of ser-
vices, P2P DLT (peer-to-peer distributed ledger technology) or blockchain plays
a crucial role and has seen growing interest in adapting it with discovery and
deployment of potential use cases in the supply chain sector.

Supply chains, used interchangeably with Supply Chain Management (SCM),
is a network of carriers and sellers to allow procurement of goods or services to
buyers. This process is constantly optimized over time to save costs and allows
for a quicker production cycle.

Cryptocurrencies are not the only reason for the adoption of blockchain tech-
nology. A blockchain-enabled supply chain will provide security, transparency,
authenticity and trustworthiness [19]. However, the technology is not entirely
foolproof, being susceptible to various attacks. This creates a barrier for any
supply chain wishing to adapt blockchains. We study existing industry stan-
dards to identify and adopt best practices to protect the blockchain.

c© Springer Nature Switzerland AG 2021
J. Zhou et al. (Eds.): ACNS 2021 Workshops, LNCS 12809, pp. 3–18, 2021.
https://doi.org/10.1007/978-3-030-81645-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81645-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-81645-2_1


4 Y. Z. Lim et al.

Previous studies which have claimed to successfully deploy a blockchain in
supply chains are private in nature, due to the usage of a permissioned blockchain
[6]. On the contrary, this defeats the purpose of transparency despite transactions
being traceable and with little to none industry-specific knowledge for secure
implementation by other parties. To date, most literature describe the benefits
of deploying a blockchain but with a lack of practical implementations.

In this paper, we include the identification and mapping of a typical business
process to demonstrate how an electronic bill of lading (eBL), which bridges
several standards, coded in Solidity that allows participants in Ethereum to
interact with smart contracts and discover potential use cases for supply chains.
We also identify current attacks on smart contracts and challenges ahead.

2 Background

2.1 Current State of Purchases in Supply Chains

Purchases in supply chains involve a network of suppliers, manufacturers, logis-
tics or even customers needed for the procurement of goods or services. From
the procurement of raw materials, these are needed to operate a supply chain
efficiently and allow timely deliverables to consumers. Figure 1 briefly shows how
a supply chain perform procurement of raw materials that is supplied by its ven-
dors, going through several processes to manufacture and package the goods,
before transportation and reaching out to its consumers.

Fig. 1. A Typical Supply Chain Process. Images under free-use from https://www.
irasutoya.com by Takashi Mifune

2.2 Procure-to-Pay Process

A typical procure-to-pay process in supply chains (reflected in Fig. 2) generally
consist of the following procedures involving 3 parties, the buyer B, seller S and
carrier C:

https://www.irasutoya.com
https://www.irasutoya.com


Shaping Blockchain Technology for Securing Supply Chains 5

1. B’s purchasing department creates a Purchase Order (PO) in its ERP (Enter-
prise Resource Planning) system and sends it to S. The PO contains impor-
tant information on:
(a) Items for purchase (item description, item part number, order quantity,

unit price, currency, total value, discounts, etc.)
(b) Delivery instructions (delivery address, delivery date, incoterms, etc.)
(c) Procurement references (purchase requisition number, quotation number,

etc.)
(d) Other information (buyer and seller information, payment terms, etc.)

2. S acknowledges receipt and acceptance of the PO by returning a signed copy
to B.

3. S prepares the item together with a copy of the Delivery Order (DO) and
Packing List (PL). Upon notice from S, C arranges for shipment. C also
shares a copy of the Air Waybill (AWB) or the Bill of Lading (BL) with S.

4. Once the item is delivered to the designated address in B’s warehouse, the
warehouse personnel then inspects item and tallies it with the DO. The DO
is signed physically to acknowledge receipt of the item that it is in good order
and condition. The Goods Receipt (GR) is also done in B’s ERP system.

5. S sends a copy of the invoice to B’s purchasing department. Some business
practices may require additional approval on the invoice depending on the
B’s internal processes.

6. The invoice is then submitted to B’s accounting department for processing.
The accounting personnel checks and verifies invoice against the GR and PO
information, which is part of the three-way matching process. The invoice is
recorded in B’s ERP system and contains information such as billing name
and address, delivery address, invoice number and date, PO number, payment
terms, item description and part number, quantity, unit price, currency, item
amount, tax amount, S’s bank information, etc.

7. Lastly, the invoice is scheduled and due for payment according to agreed
payment terms. B’s accounting personnel prepares and processes payment
by cash, checks or bank transfers after approved internally. A copy of the
payment detail/advice is sent to S to match receipts.

Standards. According to the United States Code of Federal Regulations (CFR)
Title 49, the bill of lading (BL) is a critical document that legally binds the
buyer and seller with all relevant shipment information (e.g. addresses, refer-
ence numbers, shipping mark, etc.) [3,28]. As we push towards standardizations,
alignment with the UNCITRAL (United Nations Commission on International
Trade Law) Model Law on Electronic Transferable Records (MLETR) is crucial
to ensure a common acceptance and quicker adoption by all [14].

Trade Terms. Better known as International Commercial Terms (Incoterms),
trade terms are globally recognized terms by the International Chamber of Com-
mence (ICC) for international trade [15]. It provides rules for trading and the
sale of goods. In its most current iteration, ICC has defined 11 terms: Ex-Works



6 Y. Z. Lim et al.

F
ig
.
2
.
A

T
y
p
ic

a
l
P

ro
cu

re
-t

o
-P

ay
P

ro
ce

ss
in

th
e

S
u
p
p
ly

C
h
a
in



Shaping Blockchain Technology for Securing Supply Chains 7

F
ig
.
3
.
A

B
lo

ck
ch

a
in

-E
n
a
b
le

d
P

ro
ce

ss
in

th
e

S
u
p
p
ly

C
h
a
in



8 Y. Z. Lim et al.

(EXW), Free Carrier (FCA), Carriage Paid To (CPT), Carriage And Insurance
Paid To (CIP), Delivered At Place (DAP), Delivered At Place Unloaded (DPU),
Delivered Duty Paid (DDP) for any mode of transport and Free Alongside Ship
(FAS), Free On Board (FOB), Cost and Freight (CFR) and Cost, Insurance and
Freight (CIF) for sea & inland transportation. Figure 4 clearly indicates the rules
which define the liabilities and transfer of risk that fall between the buyer and
seller should an issue with shipping arise.

2.3 Blockchain and Smart Contracts

Although not made explicit in Bitcoin’s original work, a blockchain claims to
facilitate a secure payment gateway with the use of digital signatures between
parties, without the need of an intermediary. These transactions are then times-
tamped and hashed to create an on-going chain of blocks, hoping to outpace
attackers [35].

The differentiating factor amongst different blockchains is perhaps their
choice of smart contract language. Highly influenced by Javascript, it aims to
have high readability and could be either be Turing (Solidity in Ethereum) or
non-Turing (Bitcoin Scripts) complete. As such, Bitcoin does not allow loops,
recursion or termination by its own.

Smart contracts are electronic forms of legal agreements which can automate
decisions made between different parties based on a set of promises, including
protocols within which the parties perform on these promises [42]. Ethereum
deploys the Ethereum Virtual Machine (EVM) to execute these scripts. Once its
source code is compiled and deployed, it becomes bytecode and is stored on the
blockchan for retrieval.

2.4 Non-Fungible Tokens

Widely known as ERC-721, NFTs can represent ownership over digital (e.g. vir-
tual collectables), physical assets (e.g. houses, unique artwork) or even negative
value assets (e.g. loans, burdens and other responsibilities) [45]. An example
first implemented by CryptoKitties, they are cryptocollectibles which represent
a real-world analogy to assets like baseball cards or fine art [22]. In our use
case, documents involved in the supply chain process, such as the bill of lading
(BL) can be represented as a NFT. It allows the use of safeTransfer, approve
functions and tracking of distinguishable documents [45].

2.5 Blockchain for Supply Chains

Can the use of smart contracts in a supply chain be trusted by its buyers, carriers
and sellers? In today’s digital age, we still lack information sharing between
organizations due to centralized databases and manual exchanges of electronic
documents. Supply chains can leverage on the benefits of a blockchain to enable
greater speed and transparency between stakeholders. We introduce the use of
smart contracts to disrupt the procure-to-pay process in supply chains. However,
current threats on smart contracts exists and we must address them.



Shaping Blockchain Technology for Securing Supply Chains 9

B
: 
B

uy
er

S:
Se

lle
r

A
st

er
is

k:
N

eg
ot

ia
bl

e

F
ig
.
4
.
In

co
te

rm
s

2
0
2
0



10 Y. Z. Lim et al.

3 Design and Implementation

To fully automate the procure-to-pay process in supply chains on the blockchain,
we introduce supplyInvoice, a smart contract. We show the proposed simplified
process in Fig. 3 should a blockchain be deployed for the supply chain. As such,
all required information should be obtained from the bill of lading (BL). The BL
and invoice are forms of NFTs, which tags itself as a digitized legal document
on the blockchain.

Current known open implementations with eBL or invoices exists in [10] and
[4] using Solidity but not with any standardization, tokenization or use with
trade terms.

With specified trade terms in the BL, supplyInvoice is able to automati-
cally execute the liabilities should a problem in the shipping process occur. This
punishes parties once the liability falls under them and the goods have been
transferred (e.g. goods have left seller, goods out for delivery). Several assump-
tions are made to complete this process: 1) parties perform immediate monetary
transfer (no delayed payment terms), 2) no involvement of escrows (third-party)
and 3) only honest parties are involved.

3.1 Data Structures

Order. contains necessary information to facilitate communication, payment
and successful shipment of goods between the buyer B, seller S and carrier C.
The following structure contains:

– buyer address to digital wallet to facilitate payment
– seller address to digital wallet to facilitate payment
– referenceNumber an unique identifier to allow tracing and easy reference
– tradeTerms stipulated in Sect. 2.2 to clearly define liabilities
– shippingMark an identifier labelled on the shipped product

3.2 Business Logic

Mapping supplyInvoice described in Sect. 2.2, the following function proto-
types provide a simplified process to complete a typical procure-to-pay process
for interaction in the blockchain.

– createOrder is created by B for the initial order and prompts to populate
all necessary fields in the order struct to facilitate procurement of goods or
services.

– createInvoice acknowledges the newly created order and prompts S to pre-
pare goods for shipment. Prepare payment for C.

– createLading is created by C the BL for the shipping process.
– assignTradeTerms assigns the rules and define liabilities between B and S.
– negotiateTradeTerms negotiates specific liabilities between B and S for nego-

tiable incoterms stipulated in Fig. 4.



Shaping Blockchain Technology for Securing Supply Chains 11

Fig. 5. Automated process in supplyInvoice involving 3 different parties, buyer B,
seller S and carrier C. A solid line is represented with time, whereas dotted lines
represent a typical flow occurring in the smart contract.

– determineLiability determines the final liability, should an issue with the
shipping occur.

– confirmShipment confirms the completion of the shipping process, provided
S acknowledges receipt of the goods in good order.



12 Y. Z. Lim et al.

– retrieveInvoice finally retrieves the invoice and releases payment for B, C
and S, upon maturity.

Additionally, parties can perform the following queries to supplyInvoice:

– queryOrder queries the specified order for information. Performed only by B

or S.
– queryInvoice queries the specified invoice for payment information. Per-

formed by B, C or S. Access is mutually exclusive between these parties.
– queryShipment obtains information regarding the movement of the goods

and at which stage is it currently at (e.g. Preparation for export, loading,
delivery to port/place, etc.). Performed only by B or S.

Should the order fail to materialize due to non-agreement of terms, the B

or S can issue a cancellation via cancelOrder or cancelInvoice respectively.
Figure 5 shows how this business logic is carried out between B, C and S.

3.3 Implementation

To test this implementation, we wrote supplyInvoice in Solidity.1 Using
Ganache and Truffle, we were able to test its functionalities in a private
Ethereum network. To further solidify security, we utilize the SafeMath and
the ERC721 libraries in OpenZeppelin to ensure best practices [7].

4 Threats

Although such an implementation may seem robust, a comprehensive study of
current threats is needed to further understand how we can secure the use of
smart contracts within supply chains.

4.1 Analysis on Smart Contract Attacks

Smart contracts are no different from a usual computer application. They can be
affected by bugs or poorly implemented code which allow attackers to exploit or
bypass rules. Despite being exposed to cyberattacks in the past, the Ethereum
blockchain sets an example of a robust and secure network. It is covered in
many peer-reviewed research with its security vulnerabilities documented in
great detail. Past attacks include The Decentralized Autonomous Organization
(TheDAO) attack [44] and the Parity Wallet hack [38] were key examples of reen-
trancy and access control issues that costed 11.5M ETH (50M USD in 2016)
and 150k ETH (30M USD in 2017) respectively.

Additional vulnerabilities include arithmetic issues (integer underflow or
overflow), unchecked return calls, denial of service (DoS), pseudo-randomness,
front-running, timestamp dependence and off-chain issues [36]. In light of these

1 https://github.com/limyz/supplyInvoice.

https://github.com/limyz/supplyInvoice


Shaping Blockchain Technology for Securing Supply Chains 13

issues, researchers are tackling these vulnerabilities by analysing the bytecode
statically or dynamically or through the study of current transactions performed
in Ethereum. Many overlapping vulnerabilities which these tools can solve proves
the difficulty working between Solidity and EVM bytecode.

Static Analysis is performed prior to deployment as bytecode to the EVM.
Oyente, uses symbolic execution to check for transaction-ordering, timestamp
dependence, mishandled exceptions and reentrancy [32]. ZEUS uses formal veri-
fication for analyzing safety properties of smart contracts [30]. Maian checks for
unrestricted smart contract actions [37]. Securify on the other hand, checks secu-
rity properties of the EVM bytecode of smart contracts [43]. Vandal introduces
a framework for detecting security vulnerabilities in smart contract bytecode
rapidly, outperforming Oyente, EthIR [18], Mythril [34], and Rattle [41]. Vandal
extracts logic relations from smart contract bytecode for logic-based analysis
[20]. ETHBMC is able to capture inter-contract relations, cryptographic hash
functions, and memcopy-style operations in smart contracts and claims to be
faster than Maian and teEther [23].

Dynamic Analysis is performed at runtime after deployment to the EVM. Con-
tractFuzzer uses fuzzing, restricted to the Application Binary Interface (ABI)
specifications to find vulnerabilities in smart contracts [29]. Sereum prevent reen-
trancy attacks without requiring any semantic knowledge of the contract [40].
ECfChecker dynamically checks if the Effectively Callback Free (ECF) object is
feasible and executable [26]. teEther actively locates an exploit for a contract
given only its binary bytecode [31]. More recently, TXSPECTOR [47] and [17]
leverages on Datalog, a language implementing first-order logic with recursion
[27], which allows scalability to detect smart contract vulnerabilities.

Furthermore, an evolving online approach to detect smart contracts attacks
include SODA, which developed 8 applications containing attack detection meth-
ods exploiting major vulnerabilities [21] and EVMPatch, which features a byte-
code rewriting engine which hardens smart contracts [16].

Despite having research directions dictating the discovery and protection of
vulnerabilities in smart contracts, it is still difficult to prevent zero-day vulnera-
bilities from occurring. Potential research directions in smart contracts analysis
is growing and desired to further make the use of them secure.

4.2 Privacy Concerns

NFTs are not enumerable as a private registry of property ownership, or
a partially-private registry. As such, privacy cannot be attained because an
attacker can simply call ownerOf for every possible tokenId [45].

However, there is a trade-off in between determining privacy, transparency
and the choice of processing these off-chain or the use of permissioned
blockchains. By leveraging on existing standards for digitalization of documents



14 Y. Z. Lim et al.

in Sect. 2.2, use of such an implementation promotes openness and quicker adop-
tion as supposed to a permissioned blockchain; where only invited users are
allowed access. Future implementations to Eth2 may provide a more robust
implementation to increase privacy using zero-knowledge proofs such as zk-
SNARKs (Zero-Knowledge Succinct Non-Interactive Argument of Knowledge,
used in ZCash) or zk-STACKs (Zero-Knowledge Succinct Transparent Argu-
ment of Knowledge) [13].

5 Challenges

Despite growing threats, several challenges also exist in overcoming barriers for
the adoption of blockchains in businesses, specifically discovering use cases for
supply chains.

5.1 Rising Gas Costs

Gas fees exist in Ethereum to help keep the network secure by charging a fee
for every computation that is executed. This prevents accidental or intentional
infinite loops or other computational wastage and serves as a limit to the number
of computational steps of code it can execute. Denoted in Gwei, each Gwei is
equal to 10−9 ETH [5].

As of writing, average gas costs having risen over 700% to almost 200
Gwei from over a year ago [46]. This makes written smart contacts with large
number of lines of code computationally expensive and impractical for execu-
tion in the network. Despite having MadMax to detect gas-focused vulnerabil-
ities [25], EIP-1559 will include a transaction pricing mechanism that dynami-
cally expands/contracts block sizes along with the introduction of Eth2 [2]. As
Ethereum is currently in transition towards Eth2, we have yet to see how this
will greatly affect implementations [11].

Additionally, permissioned blockchains may choose not to employ costing to
deploy smart contracts onto the network. This may be counterintuitive for an
already invited small pool of users in a permissioned blockchain to constantly
innovate due to the lack of rewards. Implementations within a permissioned
blockchain may not be easily audited or standardized since it is not made known
to the public domain. A comparison with cost may prove difficult but permis-
sioned blockchains do not have digital currencies and means to transact directly.

5.2 Integration

As smart contracts require a definite solution, it is difficult to code in accor-
dance to current regulatory obligations, governance or standards that needs
interpretability by humans.



Shaping Blockchain Technology for Securing Supply Chains 15

Overall Security in Blockchain. As mentioned earlier in Sect. 4, tackling
the security of smart contacts is simply a part of the blockchain ecosystem. We
will need to study and consider the greater impact of verifying the source of
the information that is being recorded into the blockchain [39] and the growing
concern of APTs (Advanced Persistent Threats) [9].

Interoperability with ERP Systems. SAP SE, a german multinational com-
pany popularly known for its ERP software, has various application program-
ming interfaces (APIs) with which one can access data within its systems [8].
However, in its community forums, SAP has limited smart contract functional-
ity with Hyperledger Fabric or Multichain and has seen obsolescence [33]. This
further challenges how interactivity and exchanges can occur between deeply
ingrained proprietary accounting systems and evolving blockchain technologies.

Unique Use Cases. Although the presented workflow may apply to most
common supply chains, customization might be required to better fit use cases.
Such implementations may include custom clearances, dangerous goods, insur-
ance claims, taxation or any additional special rules or regulations. The existing
smart contract can be modified and extended so it can be upgraded while pre-
serving their address, state, and balance [12].

5.3 Cross-Contracts on Different Blockchains

Even though the electronic bill of lading (eBL) can be adopted into a non-
fungible token (NFT), some blockchains may not be capable of accepting such
tokens due to non-compliance of the ERC-721 standard. This also includes the
deployment of smart contracts, which different blockchains require to be rewrit-
ten into another language for proper compilation and use. A possible direction for
this is to utilize the Inter-Blockchain Communication (IBC) protocol in Cosmos
[24].

5.4 Framework

There is a current lack of an agnostic framework which determines the charac-
teristics of deploying a secure blockchain in the supply chain. Potential metrics
could cover feasibility, performance and pruning requirements.

6 Conclusion

Our work has demonstrated how we can map a typical business process to the
Ethereum blockchain by writing smart contracts in Solidity. This agnostic app-
roach not only provides a secure supply chain but also simplifies and automates
several processes to facilitate greater transparency and ease of access to vari-
ous parties via the use of smart contracts. We identified existing problems and
challenges for adoption and also provide potential future research directions to
enable blockchain for supply chains.



16 Y. Z. Lim et al.

References

1. BTCBUSD—Binance Spot. https://www.binance.com/en/trade/BTC BUSD
2. EIP-1559 - Fee market change for ETH 1.0 chain. https://github.com/ethereum/

EIPs/blob/master/EIPS/eip-1559.md
3. Electronic Code of Federal Regulations (eCFR). https://www.ecfr.gov/cgi-bin/

text-idx?SID=6885de90742b035794f3c377745ff932&mc=true&node=pt49.5.375&
rgn=div5

4. fabiojose/ethereum-ex. https://github.com/fabiojose/ethereum-ex
5. Gas and fees—ethereum.org. https://ethereum.org/en/developers/docs/gas/
6. IBM Food Trust - Blockchain for the world’s food supply. https://www.ibm.com/

blockchain/solutions/food-trust
7. OpenZeppelin. https://openzeppelin.com
8. SAP API Business Hub. https://api.sap.com
9. Security Advisory for SolarWinds. https://www.solarwinds.com/securityadvisory

10. Smart0tter/tradefinance. https://github.com/Smart0tter/TradeFinance
11. The Eth2 upgrades—ethereum.org. https://ethereum.org/en/eth2/
12. Upgrading smart contracts - OpenZeppelin Docs. https://docs.openzeppelin.com/

learn/upgrading-smart-contracts
13. ZK-STARKs - EthHub. https://docs.ethhub.io/ethereum-roadmap/layer-2-

scaling/zk-starks/
14. UNCITRAL Model Law on Electronic Transferable Records—United Nations

Commission On International Trade Law (2017). https://uncitral.un.org/en/texts/
ecommerce/modellaw/electronic transferable records

15. Incoterms 2020 - ICC - International Chamber of Commerce (2020). https://
iccwbo.org/resources-for-business/incoterms-rules/incoterms-2020/

16. EVMPatch: timely and automated patching of ethereum smart contracts. In: 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, Van-
couver, B.C., August 2021. https://www.usenix.org/conference/usenixsecurity21/
presentation/rodler

17. Smart contract vulnerabilities: vulnerable does not imply exploited. In: 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, Van-
couver, B.C., August 2021. https://www.usenix.org/conference/usenixsecurity21/
presentation/perez

18. Albert, E., Gordillo, P., Livshits, B., Rubio, A., Sergey, I.: EthIR: a framework for
high-level analysis of ethereum bytecode. CoRR abs/1805.07208 (2018). http://
arxiv.org/abs/1805.07208

19. Azzi, R., Chamoun, R.K., Sokhn, M.: The power of a blockchain-based supply
chain. Comput. Ind. Eng. 135, 582–592 (2019)

20. Brent, L., et al.: Vandal: a scalable security analysis framework for smart contracts.
CoRR abs/1809.03981 (2018). http://arxiv.org/abs/1809.03981

21. Chen, T., et al.: SODA: a generic online detection framework for smart con-
tracts. In: 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, 23–26 February 2020. The Internet Soci-
ety (2020). https://www.ndss-symposium.org/ndss-paper/soda-a-generic-online-
detection-framework-for-smart-contracts/

22. CryptoKitties: Cryptokitties—technical details. https://www.cryptokitties.co/
technical-details

https://www.binance.com/en/trade/BTC_BUSD
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://www.ecfr.gov/cgi-bin/text-idx?SID=6885de90742b035794f3c377745ff932&mc=true&node=pt49.5.375&rgn=div5
https://www.ecfr.gov/cgi-bin/text-idx?SID=6885de90742b035794f3c377745ff932&mc=true&node=pt49.5.375&rgn=div5
https://www.ecfr.gov/cgi-bin/text-idx?SID=6885de90742b035794f3c377745ff932&mc=true&node=pt49.5.375&rgn=div5
https://github.com/fabiojose/ethereum-ex
https://ethereum.org/en/developers/docs/gas/
https://www.ibm.com/blockchain/solutions/food-trust
https://www.ibm.com/blockchain/solutions/food-trust
https://openzeppelin.com
https://api.sap.com
https://www.solarwinds.com/securityadvisory
https://github.com/Smart0tter/TradeFinance
https://ethereum.org/en/eth2/
https://docs.openzeppelin.com/learn/upgrading-smart-contracts
https://docs.openzeppelin.com/learn/upgrading-smart-contracts
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-starks/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-starks/
https://uncitral.un.org/en/texts/ecommerce/modellaw/electronic_transferable_records
https://uncitral.un.org/en/texts/ecommerce/modellaw/electronic_transferable_records
https://iccwbo.org/resources-for-business/incoterms-rules/incoterms-2020/
https://iccwbo.org/resources-for-business/incoterms-rules/incoterms-2020/
https://www.usenix.org/conference/usenixsecurity21/presentation/rodler
https://www.usenix.org/conference/usenixsecurity21/presentation/rodler
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
http://arxiv.org/abs/1805.07208
http://arxiv.org/abs/1805.07208
http://arxiv.org/abs/1809.03981
https://www.ndss-symposium.org/ndss-paper/soda-a-generic-online-detection-framework-for-smart-contracts/
https://www.ndss-symposium.org/ndss-paper/soda-a-generic-online-detection-framework-for-smart-contracts/
https://www.cryptokitties.co/technical-details
https://www.cryptokitties.co/technical-details


Shaping Blockchain Technology for Securing Supply Chains 17

23. Frank, J., Aschermann, C., Holz, T.: ETHBMC: a bounded model checker for smart
contracts. In: 29th USENIX Security Symposium (USENIX Security 20), pp. 2757–
2774. USENIX Association, August 2020. https://www.usenix.org/conference/
usenixsecurity20/presentation/frank

24. Goes, C.: The Interblockchain Communication Protocol: An Overview (2020)
25. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-

max: surviving out-of-gas conditions in ethereum smart contracts. Proc. ACM
Program. Lang. 2(OOPSLA) (2018). https://doi.org/10.1145/3276486

26. Grossman, S., et al.: Online detection of effectively callback free objects with appli-
cations to smart contracts. CoRR abs/1801.04032 (2018). http://arxiv.org/abs/
1801.04032

27. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999). https://doi.
org/10.1007/978-1-4612-0539-5

28. International Cargo Express: Bill Of Lading Explained: The Complete Beginner’s
Guide (2019). https://www.icecargo.com.au/bill-of-lading

29. Jiang, B., Liu, Y., Chan, W.K.: ContractFuzzer: fuzzing smart contracts for vulner-
ability detection. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ASE 2018, pp. 259–269. Association for Com-
puting Machinery, New York (2018). https://doi.org/10.1145/3238147.3238177

30. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: 25th Annual Network and Distributed System Security Sympo-
sium, NDSS 2018, San Diego, California, USA, 18–21 February 2018. The Internet
Society (2018). http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/
2018/02/ndss2018 09-1 Kalra paper.pdf

31. Krupp, J., Rossow, C.: Teether: gnawing at ethereum to automatically exploit
smart contracts. In: 27th USENIX Security Symposium (USENIX Security 18),
pp. 1317–1333. USENIX Association, Baltimore, MD, August 2018. https://www.
usenix.org/conference/usenixsecurity18/presentation/krupp

32. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. CCS 2016, pp. 254–269. Association for Computing
Machinery, New York (2016). https://doi.org/10.1145/2976749.2978309

33. Misiorek, G.: SAP Hyperledger Retirement - SAP Q&A (2021). https://answers.
sap.com/questions/13220261/sap-hyperledger-retirement.html

34. Mueller, B.: b-mueller/smashing-smart-contracts: Write-ups on security analysis of
Ethereum smart contracts using symbolic execution and constraint solving (2018).
https://github.com/b-mueller/smashing-smart-contracts

35. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report,
Manubot (2019). https://git.dhimmel.com/bitcoin-whitepaper

36. NCC Group: Decentralized Application Security Project (DASP) - Top 10 (2018).
https://dasp.co/

37. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. CoRR abs/1802.06038 (2018). http://arxiv.org/
abs/1802.06038

38. Palladino, S.: The Parity Wallet Hack Explained - OpenZeppelin blog (2017).
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/

39. Reyna, A., Mart́ın, C., Chen, J., Soler, E., Dı́az, M.: On blockchain and its inte-
gration with IoT. Challenges and opportunities. Future Gener. Comput. Syst.
88, 173–190 (2018). https://doi.org/10.1016/j.future.2018.05.046, https://www.
sciencedirect.com/science/article/pii/S0167739X17329205

https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://doi.org/10.1145/3276486
http://arxiv.org/abs/1801.04032
http://arxiv.org/abs/1801.04032
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-1-4612-0539-5
https://www.icecargo.com.au/bill-of-lading
https://doi.org/10.1145/3238147.3238177
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1145/2976749.2978309
https://answers.sap.com/questions/13220261/sap-hyperledger-retirement.html
https://answers.sap.com/questions/13220261/sap-hyperledger-retirement.html
https://github.com/b-mueller/smashing-smart-contracts
https://git.dhimmel.com/bitcoin-whitepaper
https://dasp.co/
http://arxiv.org/abs/1802.06038
http://arxiv.org/abs/1802.06038
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://doi.org/10.1016/j.future.2018.05.046
https://www.sciencedirect.com/science/article/pii/S0167739X17329205
https://www.sciencedirect.com/science/article/pii/S0167739X17329205


18 Y. Z. Lim et al.

40. Rodler, M., Li, W., Karame, G.O., Davi, L.: Sereum: protecting existing smart
contracts against re-entrancy attacks (2018). http://arxiv.org/abs/1812.05934

41. Stortz, R.: crytic/rattle: evm binary static analysis. https://github.com/crytic/
rattle

42. Szabo, N.: Smart contracts: building blocks for digital markets. https://
www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/
LOTwinterschool2006/szabo.best.vwh.net/smart contracts 2.html

43. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev, M.:
Securify: practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. CCS 2018,
pp. 67–82. Association for Computing Machinery, New York (2018). https://doi.
org/10.1145/3243734.3243780

44. Vessenes, P.: Deconstructing the DAO attack: A brief code tour (2016). https://
vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/

45. Entriken, W., Shirley, D., Evans, J., Sachs, N.: EIP-721: ERC-721 Non-Fungible
Token Standard. https://eips.ethereum.org/EIPS/eip-721

46. YCharts: Ethereum Average Gas Price. https://ycharts.com/indicators/ethereum
average gas price

47. Zhang, M., Zhang, X., Zhang, Y., Lin, Z.: TXSPECTOR: uncovering attacks in
ethereum from transactions. In: 29th USENIX Security Symposium (USENIX
Security 20), pp. 2775–2792. USENIX Association, August 2020. https://www.
usenix.org/conference/usenixsecurity20/presentation/zhang-mengya

http://arxiv.org/abs/1812.05934
https://github.com/crytic/rattle
https://github.com/crytic/rattle
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/
https://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/
https://eips.ethereum.org/EIPS/eip-721
https://ycharts.com/indicators/ethereum_average_gas_price
https://ycharts.com/indicators/ethereum_average_gas_price
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya

	Shaping Blockchain Technology for Securing Supply Chains
	1 Introduction
	2 Background
	2.1 Current State of Purchases in Supply Chains
	2.2 Procure-to-Pay Process
	2.3 Blockchain and Smart Contracts
	2.4 Non-Fungible Tokens
	2.5 Blockchain for Supply Chains

	3 Design and Implementation
	3.1 Data Structures
	3.2 Business Logic
	3.3 Implementation

	4 Threats
	4.1 Analysis on Smart Contract Attacks
	4.2 Privacy Concerns

	5 Challenges
	5.1 Rising Gas Costs
	5.2 Integration
	5.3 Cross-Contracts on Different Blockchains
	5.4 Framework

	6 Conclusion
	References




