
Learning Based Timing Closure
on Relative Timed Design

Tannu Sharma(B), Sumanth Kolluru, and Kenneth S. Stevens(B)

University of Utah, Salt Lake City, USA
tannu.sharma@utah.edu, kstevens@ece.utah.edu

Abstract. Relative timed circuits leverage formal timing specifications
to design and optimize integrated circuits. Relative timing can be applied
to specify design correctness and performance properties of digital cir-
cuits in the form of a set of timing constraints. These circuits often show
significant performance and power advantages over other approaches,
but require assistance to automate timing driven synthesis and place
and route in commercial electronic design automation (EDA) tools. A
machine learning based automatic timing closure solution for relative
timed circuits is presented. The machine learning implementation is
expected to speed-up the process by learning from the features during
each iteration, minimizing the overall run-time to timing close a design. A
comparative study between regression model based and gradient boost-
ing tree based solutions with an algorithmic approach is presented. Power
and performance of the circuits are improved while reducing overall run-
time required to timing close a relative timed design with commercial
EDA tools.

Keywords: relative timing · timing closure · heuristic · greedy ·
machine learning · gradient descent · boosting · regression · EDA

1 Introduction

Time delays are manifested in the components and wires of an integrated circuit
(IC). Delays are evaluated based on a timing path between two points in a
circuit, which consist of a sequence of components a signal must pass through.
Time delays dictate the robustness, performance, and power of a system. Static
timing analysis is employed to evaluate and optimize delays and to close timing
during synthesis and layout [1].

Traditional techniques employed by commercial electronic design automation
(EDA) tools are insufficient to close timing on a relative timed (RT) design. RT
timing paths can be cyclical, and may be controlled by state bits in sequential
logic implemented as combinational gates with feedback. To improve quality of
relative timed designs, an engine that understands relative timing is required
to obtain delay target values and sign-off timing in the current commercial
framework.
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 133–148, 2021.
https://doi.org/10.1007/978-3-030-81641-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_7

134 T. Sharma et al.

1.1 Relative Timing

Relative timing (RT) is a universal representation of the sequencing property
of time [2]. Sequencing in the time domain is a common correctness require-
ment used in integrated circuits. An example of a critical well known correctness
requirement in the time domain is the storing of data in a flip-flop. Data must
arrive at a flop earlier than the clock.

G0

G1
G2

in
x

x
out

A Z

A Z

A

B

Z

Fig. 1. Pulse generator circuit. The maximum delay path from the rising edge of in (pod)
to the rising edge of out (poc0) of Eq. 2 is highlighted in red, and the minimum delay path
from the rising edge of in (pod) to the falling edge of out (poc1) is highlighted in blue.
The capacitor models wire and gate capacitance of a latch array. (Color figure online)

The simplified universal specification of a relative timing constraint is shown
in Eq. 1 [2]. Relative timing constraints require there must be a common timing
start point called a point of divergence (pod) which has causal paths to two
timing endpoints called points of convergence (poc0, poc1). To ensure delay of
the early path of the constraint is always less than the delay of the late path
requires taking the maximum delay from pod to poc0 (plus margin m) and the
minimum delay from pod to poc1. RT expressions employ unbounded delays,
and thus are a property of the circuit structure. Therefore, RT constraints are
agnostic to specific implementation details of a design which affect circuit delays
such as technology node, device sizes, or standard cell layout. Specific path delays
are not known until design instantiation and timing closure.

pod �→ poc0 + m ≺ poc1 (1)

Assume one needs to synthesize and verify a circuit that generates a pulse.
Such a circuit could be used to pulse clock a latch bank. The circuit in Fig. 1
generates a pulse on the out net upon a rising edge of the in net when proper
circuit delays are employed. The delay path through the inverter can be designed
to generate the required minimum pulse width. The relative timing constraint
(RTC) to correctly realize the pulse generator of Fig. 1 is shown in Eq. 2. This
produces a pulse on net out with a minimum width m. The ‘+’ or ‘–’ appended
to each net name indicates a rising or falling transition respectively on the net.
The causal path through the circuitwhich creates a rising edge on out transitions
through pin A of gate G2; the causal path for the falling edge is through pin B.

in+ �→ out+ + m ≺ out- (2)

Learning Based Timing Closure on Relative Timed Design 135

A relative timed design can contain as many as several million RT constraints.
Many of these paths conflict, because maximum and minimum delay path seg-
ments can partially or completely overlap [3]. Manually converging timing by
modifying the timing constraints on individual paths is not a feasible option for
such designs, and it may not be possible to resolve the large number of violating
paths through mere post-layout ECO [4]. As such, an automated aid to produce
timing closed designs is required.

The timing on a relative timed design is complex, where the optimization of
one path may affect timing of other paths (associated or non-associated). The
entire problem is an interaction of non-convex optimization algorithms across
often competing timing path constraints. In order to model the delay target value
for each path, the algorithms consider device sizes, drive strength, transition
capacitance, fanout, derating factors, and EDA uncertainty along with the affects
of other paths.

This chapter discusses timing closure methodologies for relative timed design.
The key contribution of this work describes a machine learning based timing
closure engine (MLTC) developed to minimize the number of iterations required
to converge timing on complex relative timed designs. Machine learning timing
closure results are compared with a heuristic based timing closure (HBTC) CAD
tool that automatically generates functional delay targets for a complete RT
constraint set [5].

The MLTC engine is capable of generating a timing closed design with
arbitrary initial delay targets, including initial maximum delay targets as zero
(0 ps). The tool is usually able to produce a completely closed set of constraints
with no negative slack violations.

The machine learning based timing closure tool is evaluated on a variety of
designs for run-time (number of iterations), power, performance, and design
robustness. Several types of RT constraints are employed in these designs.
Pipelined designs employ the bundle data design style with handshake controllers
[6].

2 Background

Relative timing passes a large set of overlapping maximum and minimum path
delay constraints to the EDA tools for timing driven optimization. The interac-
tion between these constraints in commercial timing driven EDA optimization
algorithms is complicated and non-convex. A small variation in one maximum
or minimum path delay constraint can create a large perturbation in slacks on
seemingly unrelated paths. This unexpected variation is based on physical place-
ment among other factors in the EDA algorithms.

While the HBTC algorithm produces solutions of reasonable quality, a num-
ber of factors encouraged us to search for better algorithmic solutions. In order
to obtain good results, the heuristic based approach requires many iterations
through the synthesis or place and route (PnR) tools resulting in very large run
times. Assessing and configuring the heuristic tool to include a number of second

136 T. Sharma et al.

order factors was difficult. These optimizations include important aspects such
as competing maximum and minimum delay paths, whether the path is a timing
critical delay path, determining when performance improvements are coming at
the cost of too much power, and other interdependent factors.

Multiple gradient descent based algorithms were implemented and tested
while exploring the algorithmic solution space to solve the relative timing closure
problem. Because the search space is a non-convex optimization problem, none of
the gradient descent solutions were able to generate a timing closed design with
quality of results similar to those achieved by the greedy heuristic based timing
closure engine. Therefore we investigated algorithms that employ a supervised
learning based framework.

Machine learning (ML) algorithms are an excellent application to this prob-
lem space if data is carefully prepared. The ML based approach is not used to
replace the current EDA tools but to improve the quality of RT design flow
with commercial EDA tools. The timing constraints and their associated paths
are unique to each design, so our initial work is not generalized by training on
sample designs. Rather this work employs the more flexible and programmable
search properties of ML algorithms to achieve better solutions than heuristic or
gradient descent based approaches.

Data plays an important role for any machine learning problem, especially
when there may not exist a direct correlation between data among designs or
data paths. Due to this ML has already carved its niche in the EDA industry to
find design or timing solutions [7–14]. In our approach two supervised learning
based regression models were implemented for a given set of input and outputs.
One to handle smaller designs with a basic algorithm and second for complex
relative timed designs with a more sophisticated algorithm. Both the approach
works well on all designs (small and large), with a better run-time on complex
relative timed designs with the later.

Data
Collection

Data
Preparation

Label
Extraction

ML
Model
Creation

ML
Model

Evaluation
Prediction

Fig. 2. General Approach to use Machine Learning in RT timing driven optimizations.

3 Approach

The general approach to use machine learning in relative timing driven EDA
optimizations is shown in Fig. 2. The timing closure algorithm proceeds by using
an ML algorithm to update path delay values for relative timing constraints.

Learning Based Timing Closure on Relative Timed Design 137

The updated path delays are passed to commercial EDA tools to perform timing
driven synthesis or place and route (PnR) of the design. Each iteration with ML
includes a synthesis or PnR run and timing analysis with PrimeTime. The results
generated by the ML algorithm are also validated to ensure the RT constraints
are obeyed with each new prediction.

3.1 Data Collection and Preparation

A careful selection of both timing and physical design parameters, is necessary
during data collection. It is equally important to discard irrelevant/overlapping
features to maintain the quality of data during data preparation. After extracting
the relevant features, it is also important to adjust the hyper-parameters to
improve the quality of the predictive model during model evaluation.

3.2 Machine Learning Algorithms

A tree based gradient boosting framework and a polynomial regression based
algorithm were tested for RT timing closure.

Negslack>0.5

pathtype=1 pathtype=2

Margin>0.2 Margin<0.2 Predict=0.75

Predict=0.67 Predict=0.54

YES NO

Negslack>0.5

pathtype=1 pathtype=3

Margin>0.3 Margin<0.3 Predict=0.45

Predict=0.62 Predict=0.79

YES NO

Prediction Score 2 1.5

0.51.3

2.30.9

Fig. 3. Decision tree Example

Gradient Boosting Decision Trees. Decision tree ensembles create a gradi-
ent boosted decision tree (gbdt) model [15]. The problem of estimating accurate
delay target values with no negative slack is modeled here. The model created
from the training data consists of an ensemble of trees, where each tree makes
a prediction. All the predictions are taken into account by the ensemble model
to make the final prediction. The prediction scores of each individual tree are
summed up to get the final score. In Eq. 3, K is the number of trees, yi is the
prediction, xi is the input, f is a function, and F is all the possible decision
trees.

K∑

k=1

yi = fk(xi), fk ∈ F (3)

138 T. Sharma et al.

Based on the extracted features, decision trees are created to establish a rela-
tionship between inputs xi and output yi. The objective function and various
tree pruning techniques are utilized to optimize the model. Based on the pre-
diction scores and weights assigned to the leaf nodes, the final prediction value
is calculated. A model similar to Fig. 3 is created during each iteration. In our
case, the inputs are the timing constraint parameters and path characteristics. In
Fig. 3 two such trees are illustrated. In practice, many such trees are constructed
by the gradient boosting decision tree based learning algorithm.

The initial experiments were performed using extreme gradient boosting
(xgboost) algorithm. However, it was observed, that the delay predictions of the
xgboost model were inaccurate due to improper inclusion of encoded categori-
cal features during each prediction. With the xgboost model, no timing closure
could be achieved after +500 iterations on a small design and +100 iterations on
a large design. The light gradient boosting model lgbm implementation can han-
dle encoded categorical features well. It allows to establish a relationship between
paths that are dependent on each other (especially in a complex design).

LightGBM (lgbm) is a gradient boosting model that can also use a tree
based learning algorithm [16]. The framework is capable of handling large data
sets. It performs supervised learning on data with multiple features in order to
predict a target variable, which is a delay value in this case [17]. LightGBM
is faster, outperforms other algorithms like extreme gradient boosting (xgboost)
considerably [18], and can handle categorical data.

Polynomial Regression. Polynomial regression is a technique used to estab-
lish a relationship between an input x and an output y. It is modeled to fit a non
linear relationship, which means x has degree n. A linear regression model can
be formulated as y = β0 + β1x where the βi values are constants. A polynomial
regression is modeled as y = β0 +β1x+β2x

2 ++βnx
n [19]. The higher degree

model is responsible for the raised non-linearity in the relationship of x and y.
Polynomial regression models are much more accurate than linear models, but
they tend to over-fit the input data. The model is more suitable to minimize
variance in unbiased estimators of the coefficients.

3.3 Models

It is worth noting that inclusion of the right features as part of the data set
is more important in this problem than the choice of algorithm to implement
the learning based model. The behavior of the model is directly driven by the
quality of the data provided to the model.

Different RT constraints have varying impact on timing driven optimization
of a design. Most, if not all, of the relative timing constraints must hold for design
correctness. Some of these correctness constraints have large margins and easily
hold (e.g. the early path has two gates and the late path passes through nine
gates). Other correctness constraints drive the overall performance of the design,
such as paths that pass through pipeline registers. The quality of results can

Learning Based Timing Closure on Relative Timed Design 139

be improved if timing closure focuses on these performance driven constraints.
Therefore, path types as well as their constraints need to be included in the
feature set. Path types identify the performance criticality of RT constraints are
passed to the ML algorithms.

EDA tools require the timing graph of a circuit to be represented as a directed
acyclic graph (DAG). This is critical when relative timing is applied to asyn-
chronous circuits with sequential functions implemented as combinational gates
with feedback. Representing the graph as a DAG necessitates utilizing a subset
of the full set of RT path constraints. In addition, many included paths are cut
in producing the DAG, resulting in timing paths that are subsets of the full
RT constraint path. The current implementation only employs a subset of the
RT paths for both synthesis and validation, not the full RTC path. Thus, after
timing closure as reported in this paper some timing paths may have violations,
even though the path segments used for timing closure have all met timing.
These are reported in Sect. 6.

Uniformity of the delay in performance driven paths is very important. Com-
mon designs which require such uniformity include dependent cycles (e.g. linear
pipelines) and signals with large fan out (e.g. driving a large register bank).
Uniformity of delay targets can be achieved in this tool by using a common tcl
variables for the delay values. Another method for creating uniform delay tar-
gets is to use wild cards in the design based on design hierarchy. For example,
the presence of the wildcard “*” in the sample constraint in Eq. 4 indicates
applicability of defined delay of 0.2 to all the paths between register clock pin
to another register data pin as defined by the start and end point. A similar
situation is applicable while extracting path delays using Synopsys PrimeTime.
Thus, it helps in reducing physical design variation due to EDA on the connected
paths [4].

set max delay 0.2 -from ctlreg0/qreg ∗ /G -to doutl/qreg ∗ /D (4)

run=-1:
Input: netlist,

library, constraints

Run:
Synthesis

Run:
PrimeTime

Negative
slack?

Sign-off

Extract
relevant
RTC data

Label
Extraction

Extract
connectivity

data
run += 1

if
run==0?

Connectivity
graph Synthesis/-
Physical design

Data
Preparation

Machine Learning Model
(Light Gradient Boosting Decision
Tree or Polynomial Regression)

Delay
Prediction

Write
Constraints

Model
Accuracy
and Hyper-
parameters

Predicted
delay

validation

Evaluation and
data extraction

Data Processing Model Training,
Testing and
Evaluation

no

yes

yes

Fig. 4. Workflow of machine learning based delay evaluation to sign-off timing on a
RT design with commercial EDA tools in the inner loop of the implementation.

140 T. Sharma et al.

4 Implementation

The flow diagram in Fig. 4 shows the basic framework of the implementation. The
complete timing closure system is powered by small sub-programs to interface
with synthesis or PnR tools, to process data, to validate quality of predictions
and to extract required data at various stages of the flow using timing tools.

The end goal of the ML workflow is to generate delay target values for the
subsets of RT constrained paths while ensuring timing closure of the design with
no negative slack. The ML based framework always ensures that delay margin
is obeyed between associated minimum and maximum delay constraints during
the predicted delay validation step.

The prediction of the model produces targets with the intent of generating a
solution with positive slack. Timing closure is obtained when no negative slack
exists on any timing path. The program terminates with non-convergence when
three subsequent iterations have the exact same values of the negative slack on
the exact same relative timing paths. At this moment, no upper bound is added
to the number of iterations, however, the time-frame is restricted based on the
allowed run-time of a program on a machine.

It is imperative to have a uniquely trained model for each design. The con-
straints and their paths are unique to each design netlist and iteration. The
constraints remain relevant for a design unless there is a change in the netlist.
If there is a change in netlist, discarding the old model and restarting timing
closure run from the beginning will ensure the timing paths and the model are
not outdated.

4.1 Learning

The data set passed to the ML workflow varies depending on the size of the
design. Run time to converge timing on a complex design can extend up to
many hours. Nearly all the run time is spent in the synthesis and/or PnR runs
to reach converged delay values with no negative slack. Therefore our process
focuses on minimizing the number of iterations required to reach a converged
set of design constraints by learning from both positive slack and negative slack
data generated during each iteration. The results of the model are evaluated
during subsequent iterations to ensure the model is moving towards convergence
in each iteration.

Feature Selection. The selected feature set or columns in the data set cur-
rently includes the following. (a) Design connectivity data including timing end
points for RT constraints such as: start point (pod) and end point (poc), and
path type information identifying whether the path is a data path (register-to-
register) or control path (controller-to-controller or controller-to-register). (b)
Timing constraint data including margin, delay value, delay type (minimum
delay or maximum delay), slack (positive or negative), and whether a path is a
performance path or a design correctness path.

Learning Based Timing Closure on Relative Timed Design 141

Algorithm 1. Light Gradient Boosting
1: Data: datai

2: current run = i
3: if column type is ‘object’ then
4: data encoding = encode(

∑i
k=1 datak[column name])

5: end if
6: train.data ← ∑i

k=1 datak

7: x.train.data ← train.data− [column with cost function delay value]
8: y.train.data ← train.data[cost function delay value column]
9: test.data ← datai

10: lgb train = Create GBDT Model with data set (x.train.data, y.train.data,
test.data)

11: gbm = lgb.train(lgb train) in iterations
12: if test.data not empty then
13: gbm.predict(test.data)
14: end if

Certain features are categorical features. These are required to build a rela-
tionship between the data and/or prioritize certain paths over others. The cost
function is composed of a negative slack value, delay, and margin. The results of
the cost function i.e. target feature (yi) is predicted by the model. Eqs. 5 and 6
define the basic estimated delay for maximum and minimum paths, respectively.

CFmax(target delay max) < delay − negslack (5)
CFmin(target delay min) > delay + negslack (6)

The cost function changes based on the margin values defined for minimum
and maximum delay paths. If the margin is not maintained during estimated
delay calculation, the difference is calculated and added to the cost function to
maintain margin. The maximum delay is decreased (or minimum delay is raised)
based on the positive slack on each path. A performance constraint in the form
of a maximum delay constraint is present on minimum delay paths of perfor-
mance type to reduce variability and more tightly constrain cycle times. The
estimated maximum delay is raised to maintain the margin between minimum
and maximum delay constraint on paths with the same start point and end point,
which minimizes energy consumption but allows more variation. The algorithm
learns from the data set in order to achieve optimized predictions. The data set
increases over time, which leads to improved prediction accuracy. The predicted
delay values replace the delay values in the constraints file for next synthesis or
PnR run.

Training. The training data includes all the extracted features and labeled
data. The data set grows with each iteration while learning between subse-
quent iterations. Data with consistent trends simplifies the training of a machine
learning algorithm. That luxury is generally not observed in this application as

142 T. Sharma et al.

the identical delay value on a path can return vastly different slack values on
different runs due to a change caused on a totally different path or different
synthesis run. Often such variations are caused by a path becoming an outlier
as optimizations on other paths take priority. Such unpredictable changes tend
to be itinerant, so by incrementally updating the training data set progress is
made towards an accurate and consistent model.

Testing. The test data set consists of data with a negative slack. The supervised
learning model created from the training data set is used to predict delay for all
the failing timing paths. The delay target is updated in the constraints for next
iteration. The test data set is also updated between iterations.

4.2 Machine Learning Algorithms

A comparative analysis is performed between the results obtained from gradient
boosting decision tree based model and polynomial regression based model. The
later implements separate models for minimum and maximum delay paths.

There exists n relative time constraint sub-paths in each design. On iteration
i, a path n has delay target tni and delay dni where dni ≥ 0, and a slack sni.
In the event of a negative slack (sni < 0) on path n, maximum delay fixing is
prioritized over minimum delay. The cost function estimates the delay tni for
each constraint path to be dni−sni if it is a maximum delay path, and dni+sni

if it is minimum delay path. The estimated delay value data set is input into a
machine learning algorithm to obtain predicted delay values based on the feature
set and relationship built over iterations. In the event of non-convergence, slack
on same paths between subsequent iterations is compared. If there is no change
in slack for three iterations, the program terminates with non-convergence.

4.3 Light Gradient Boosting (LightGBM)

The pseudo code of the implementation is in Algorithm 1. The features were
extracted and an input data set was created using commercial EDA tools. The
data set generated for each iteration i with negative slack present on one or more
delay paths is given by datai. There exists categorical features in the data set, so
data encoding is performed to convert them to numerical values. Training data
train.data and test data test.data are separated. A check is added to exclude
paths with negative slack that are being tested during an iteration from the
training data set of that iteration. The created model is used to predict new
delay values that would fit the design better. The process is repeated until the
design converges with no negative slack.

Learning Based Timing Closure on Relative Timed Design 143

Algorithm 2. Polynomial Regression Model
1: Data: datai

2: current run = i
3: train.data ← ∑i

k=1 datak

4: test.data ← datai

5: train.min ← ∑i
k=1 datak, when column ‘delay type’ is ‘min’

6: train.max ← ∑i
k=1 datak, when column ‘delay type’ is ‘max’

7: test.data pos ← test.data , when column ‘negslack’ value is 0
8: test.data neg ← test.data, when column ‘negslack’ value is less than 0
9: test.min ← test.data neg, when column ‘delay type’ is ‘min’

10: test.max ← test.data neg, when column ‘delay type’ is ‘max’
11: x.train.min.data ← train.min−[column with cost function delay value]
12: x.train.max.data ← train.max−[column with cost function delay value]
13: y.train.min.data ← train.min[cost function delay value column]
14: y.train.max.data ← train.max[cost function delay value column]
15: model.min = create pipeline with polynomial features (x.train.min.data,

y.train.min.data)
16: model.max = create pipeline with polynomial features (x.train.max.data,

y.train.max.data)
17: min pred = model.min.predict(test.min)
18: max pred = model.max.predict(test.max)
19: pred = append(min pred, max pred)

4.4 Polynomial Regression Model

The polynomial model was chosen over the linear regression package provided
by the scikit-learn package [20] to better fit the data outliers. A linear regression
model looks for a linear relationship between the features, which does not exist
in our case. No linear model would serve the problem appropriately since this is
a non-convex optimization problem. A polynomial regression establishes a non
linear relationship between the feature set to obtain the predicted delay value.
On a large complex design, too high of a model degree will result in memory out
errors. We found that a polynomial of the order of four works well to predict the
delay target values from the feature set. Pseudo-code for this implementation is
shown in Algorithm 2.

5 Designs

The machine learning based timing closure (MLTC) tool and HBTC have been
applied to converge timing on a number of designs implemented in the 40 nm
technology node. Designs with varying complexity are used to test the conver-
gence engine: linear pipeline, watchdog timer, wakeup timer, timer, and FFT-64
design. The designs implemented here are hierarchical designs containing soft
macros of asynchronous linear controllers and register banks, as well as free
form RT constraints in the counters.

144 T. Sharma et al.

The pipeline design is a retimed 10-stage linear pipeline design implementing
dout = 2x2 + 2x + 2. This design can be scaled to arbitrary pipeline depth, but
here contains 179 unique RT constraint sub-paths.

The general, wakeup, and watchdog timers are small designs contain 121, 86,
and 108 RTCs respectively. They contain 16 bit programmable timers including
multiple clocked and asynchronous time sampled inputs and prescale dividers.
These designs all show a power reduction of 30× or more in common operational
modes compared to a clocked design.

The FFT design is a 32-bit, 64-point multirate fast Fourier transform (FFT)
design that is hierarchically decomposed at the top level to operate at multiple
frequencies [21]. This is a large design that contains over 50,000 RTCs, that takes
approximately 40 min to synthesize with Design Compiler.

6 Results

Synopsys Design Compiler is used for synthesis. Synopsys PrimeTime for timing
analysis, power analysis, and slack output. Modelsim is used for simulation. The
results are compared for power, performance, and simulation errors that occur
after the timing closure run due to the partial paths used in synthesis and timing
analysis. The same starting point is employed for all the designs during the two
machine learning models by assigning zero maximum delay targets.

The maximum delay targets for all of the designs in Table 1 and 2 are set
to zero to start the timing closure optimization. This allows the ML algorithms
to optimize the designs targeting maximum achievable frequency. Table 1 shows
results obtained from light gradient boosting decision tree model, and Table 2
shows results for polynomial regression model. Each iteration includes syn-
thesis/Primetime/ML runs and one PnR run. The number of iterations are
identified.

Table 1. Results with light gradient boosting model (lgbm)

Designs No. of
iterations

sim. errors avg cycle
time (ns)

Power (uW) Energy (fJ) eτ2

Pipeline 5 0 0.945 0.27 0.26 0.023

Wakeup 8 0 0.548 51.23 28.07 0.843

Watchdog 13 0 1.247 46.72 58.26 9.06

Timer 22 6 1.903 57.71 106.02 38.39

FFT-64 4 0 1.692 17,300 29.27e3 8.38e3

For small designs like the wakeup and watchdog controllers, the overall run-
time was 20 min with lgbm and convergence with prm was much quicker. The
largest design example, FFT-64, took 16 h to converge with lgbm implementation
whereas prm took 23 h to converge on the same design. Most of the run-time is

Learning Based Timing Closure on Relative Timed Design 145

Table 2. Results with polynomial regression model (prm)

Designs No. of
iterations

sim.
errors

avg cycle
time (ns)

Power
(uW)

Energy (pJ) eτ2

Pipeline 1 0 0.945 0.27 0.26 0.023

Wakeup 6 0 0.548 50.39 27.61 0.830

Watchdog 7 1 1.247 44.31 55.25 8.59

Timer 7 6 1.903 57.44 109.31 39.59

FFT-64 6 0 1.690 18,400 31.10e3 8.88e3

spent running commercial EDA tool, whereas machine learning data-set genera-
tion, feature and label extraction, model training and testing takes a few seconds
to a few minutes based on the complexity of the design.

Table 3. Comparison between LGBM and PRM.

Designs No. of iterations Energy eτ2

Pipeline 5.00 1.00 1.00

Wakeup 1.33 1.02 1.01

Watchdog 1.86 1.05 1.05

Timer 3.14 0.97 0.97

FFT-64 0.67 0.94 0.94

6.1 Comparative Analysis

LGBM vs PRM. A comparison of results from the polynomial regression
model (prm) and light gradient boosting model (lgbm) learning algorithms is
presented in Table 3. Both designs produce results with nearly identical cycle
times for the small and large designs. They produce equivalent results for the
simple pipeline design with prm converging in one iteration. The polynomial
regression model performs better in both run time and energy efficiency on the
small designs. The opposite is true for large designs, where lgbm model converges
more quickly with better energy results. The prm model is better trained with
positive slack data in comparison to including the complete data set for light
gradient boosting model. Also, the train data set needs to be substantial to run
light gradient boosting model which is achieved in subsequent iterations for a
small design. This also makes lgbm model a better choice for complex relative
timed designs.

146 T. Sharma et al.

MLTC vs HBTC. Table 4 compares the results obtained from two machine
learning models: light gradient boosting (lgbm) and polynomial regression model
(prm) with respect to the heuristics based timing closure (HBTC) engine
[5]. Both the machine learning algorithms perform better in comparison to
HBTC based engine in terms of number of iterations (shown in Fig. 5), power,
energy and performance on the smaller designs. The HBTC algorithm produces
improved results over the lgbm model, but requires 4.5× more run time.

Table 4. Power and performance contrast between ML and HBTC results.

Design Cycle Time

(lgbm)

Cycle Time

(prm)

Cycle Time

(hbtc)

Energy (fJ)

(lgbm)

Energy

(fJ) (prm)

Energy

(fJ) (hbtc)

Wakeup 0.548 0.548 0.550 28.07 27.61 28.80

Watchdog 1.247 1.247 1.238 58.26 55.25 64.87

Timer 1.903 1.903 2.115 109.82 109.31 85.55

FFT-64 1.692 1.690 1.688 29.27e3 31.10e3 20.93e3

wakeup watchdog timer FFT64
0

10

20

30
lgbm prm hbtc

Fig. 5. Number of iterations, ML vs HBTC

7 Conclusion

Machine learning is employed to implement gradient descent algorithms in com-
bination with boosting to solve the non-convex timing closure problem for rel-
ative timed circuits. These algorithms drive synthesis or place and route to
produce a full timing closed design. The designs are started in a state where
maximum delay values are set to zero, and convergence is reached when there
are no negative slacks in the designs.

Various ML algorithms were investigated and the results were compared to
heuristics based timing closure (HBTC) method. The better version of gradient

Learning Based Timing Closure on Relative Timed Design 147

boosting algorithms in the form of light gradient boosting algorithm is imple-
mented which is faster and works well with the desired encoded features. The
polynomial regression model was also implemented. Timing data generated dur-
ing synthesis or place and route is incorporated while implementing the two
machine learning models.

The algorithms were compared using a set of five designs, ranging from a
simple linear pipeline using retiming to solve a polynomial function, to a com-
plex 64-point fast Fourier transform function. Both machine learning algorithms
converged to produce results of similar quality in terms of circuit cycle time.
The lgbm models use many weak learners like the decision trees shown in Fig. 3,
so, the learning process is slower than polynomial regression which is mainly
numerical based relationship to learn and predict. This makes LGBM model
best suited for complex designs where one path delay/slack is intertwined with
other paths and polynomial regression is best suited for smaller/simpler designs.

The polynomial regression model showed 5.4% better energy results on the
small design, whereas the light gradient boosting model showed 6% better energy
efficiency on the large 64 point FFT design. The machine learning algorithms
served as a solution to build a relative timing closure tool when other gradient
descent based approaches failed. The contrast with HBTC approach shows scope
of improvement in ML approaches by making them power aware. At the same
time, applying ML based timing closure on a small hierarchical blocks serves to
improve the quality of top level design. Finally, by implementing learning based
timing closure, we could minimize the number of iterations required to generate
a timing closed relative timed design.

References

1. Nair, R., Berman, C.L., Hauge, P.S., Yoffa, E.J.: Generation of performance con-
straints for layout. IEEE Trans. Comput. Aided Des. 8(8), 860–874 (1989)

2. Stevens, K.S., Ginosar, R., Rotem, S.: Relative timing. IEEE Trans. Very Large
Scale Integr. Syst. 1(11), 129–140 (2003)

3. Manoranjan, J.V., Stevens, K.S.: Qualifying relative timing constraints for asyn-
chronous circuits. in: International Symposium on Asynchronous Circuits and Sys-
tems, pp. 91–98 (2016)

4. Sharma, T., Stevens, K.S.: Physical design variation in relative timed asynchronous
circuits. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp.
278–283 (2017)

5. Sharma, T., Stevens, K.S.: Automatic timing closure for relative timed designs. In:
28th IFIP International Conference on Very Large Scale Integration, IEEE (2020)

6. Sutherland, I.E.: Micropipelines. Commun. ACM 32(6), 720–738 (1989)
7. Bao, W., Cao, P., Cai, H., Bu, A.: A learning-based timing prediction framework for

wide supply voltage design. In: Proceedings of the 2020 on Great Lakes Symposium
on VLSI, Series (GLSVLSI 2020), New York, USA, pp. 309–314 (2020)

8. Turtletaub, I., Li, G., Ibrahim, M., Franzon, P.: Application of Quantum Machine
Learning to VLSI Placement, pp. 61–66 (2020)

148 T. Sharma et al.

9. Kapre, N., Chandrashekaran, B., Ng, H., Teo, K.: Driving timing convergence
of FPGA designs through machine learning and cloud computing. In: 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Computing
Machines, pp. 119–126 (2015)

10. Kahng, A.B.: Machine learning applications in physical design: recent results
and directions. In: Proceedings of the 2018 International Symposium on Physi-
cal Design, Series (ISPD 2018), pp. 68–73 (2018)

11. Airani, K., Guttal, R.: A machine learning framework for register placement opti-
mization in digital circuit design. CoRR vol. abs/1801.02620 (2018)

12. Yanghua, Q., Ng, H., Kapre, N.: Boosting convergence of timing closure using fea-
ture selection in a learning-driven approach. In: 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), pp. 1–9 (2016)

13. Elfadel, I.A.M., Boning, D.S., Li, X.: Machine Learning in VLSI Computer-Aided
Design. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04666-8

14. Beerel, P.A., Pedram, M.: Opportunities for machine learning in electronic design
automation. In: 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–5 (2018)

15. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, Series (NIPS 2017) (2017)

16. Welcome to LightGBM’s documentation! - LightGBM 2.2.4 documentation
17. Sun, X., Liu, M., Sima, Z.: A novel cryptocurrency price trend forecasting model

based on LightGBM. Fin. Res. Lett. 32, 101084 (2018)
18. Light GBM vs XGBOOST: which algorithm takes the crown
19. Huang, L., Jia, J., Yu, B., gon Chun, B., Maniatis, P., Naik, M.: Predicting execu-

tion time of computer programs using sparse polynomial regression. In: Advances
in Neural Information Processing Systems (2010)

20. sklearn.preprocessing.PolynomialFeatures - scikit-learn 0.21.3 documentation
21. Lee, W., Vij, V.S., Thatcher, A.R., Stevens, K.S.: Design of Low energy, high

performance synchronous and asynchronous 64-Point FFT. In: Design, Automation
and Test in Europe (DATE). pp. 242–247. IEEE (2013)

https://doi.org/10.1007/978-3-030-04666-8

	Learning Based Timing Closure on Relative Timed Design
	1 Introduction
	1.1 Relative Timing

	2 Background
	3 Approach
	3.1 Data Collection and Preparation
	3.2 Machine Learning Algorithms
	3.3 Models

	4 Implementation
	4.1 Learning
	4.2 Machine Learning Algorithms
	4.3 Light Gradient Boosting (LightGBM)
	4.4 Polynomial Regression Model

	5 Designs
	6 Results
	6.1 Comparative Analysis

	7 Conclusion
	References

