
28th IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2020
Salt Lake City, UT, USA, October 6–9, 2020
Revised and Extended Selected Papers

VLSI-SoC:
Design Trends

IFIP AICT 621

Andrea Calimera
Pierre-Emmanuel Gaillardon

Kunal Korgaonkar
Shahar Kvatinsky

Ricardo Reis (Eds.)

IFIP Advances in Information
and Communication Technology 621

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board Members

TC 1 – Foundations of Computer Science
Luís Soares Barbosa , University of Minho, Braga, Portugal

TC 2 – Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education
Arthur Tatnall , Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems
Burkhard Stiller, University of Zurich, Zürich, Switzerland

TC 7 – System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems
Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society
David Kreps , National University of Ireland, Galway, Ireland

TC 10 – Computer Systems Technology
Ricardo Reis , Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems
Steven Furnell , Plymouth University, UK

TC 12 – Artificial Intelligence
Eunika Mercier-Laurent , University of Reims Champagne-Ardenne, Reims, France

TC 13 – Human-Computer Interaction
Marco Winckler , University of Nice Sophia Antipolis, France

TC 14 – Entertainment Computing
Rainer Malaka, University of Bremen, Germany

http://orcid.org/0000-�0002-�5037-�2588
http://orcid.org/0000-�0003-�4317-�971X
http://orcid.org/0000-�0002-�5776-�2888
http://orcid.org/0000-�0001-�5781-�5858
http://orcid.org/0000-�0003-�0984-�7542
http://orcid.org/0000-0003-2303-7263
http://orcid.org/0000-�0002-�0756-�6934

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102
http://www.springer.com/series/6102

Andrea Calimera • Pierre-Emmanuel Gaillardon •

Kunal Korgaonkar • Shahar Kvatinsky •

Ricardo Reis (Eds.)

VLSI-SoC:
Design Trends
28th IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2020
Salt Lake City, UT, USA, October 6–9, 2020
Revised and Extended Selected Papers

123

Editors
Andrea Calimera
Politecnico di Torino
Turin, Italy

Pierre-Emmanuel Gaillardon
University of Utah
Salt Lake City, UT, USA

Kunal Korgaonkar
Technion – Israel Institute of Technology
Haifa, Israel

Shahar Kvatinsky
Technion – Israel Institute of Technology
Haifa, Israel

Ricardo Reis
Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-030-81640-7 ISBN 978-3-030-81641-4 (eBook)
https://doi.org/10.1007/978-3-030-81641-4

© IFIP International Federation for Information Processing 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5881-3811
https://orcid.org/0000-0003-3634-3999
https://orcid.org/0000-0002-9078-2944
https://orcid.org/0000-0001-7277-7271
https://orcid.org/0000-0001-5781-5858
https://doi.org/10.1007/978-3-030-81641-4

Preface

This book contains extended and revised versions of the highest quality papers
presented during the 28th edition of the IFIP/IEEE WG 10.5 International Conference
on Very Large Scale Integration (VLSI-SoC 2020), a global system-on-chip design and
CAD conference. The 28th edition of the conference was held during October 6–9,
2020, virtually from Salt Lake City, USA. Previous conferences have taken place in
Edinburgh, Scotland (1981); Trondheim, Norway (1983); Tokyo, Japan (1985);
Vancouver, Canada (1987); Munich, Germany (1989); Edinburgh, Scotland (1991);
Grenoble, France (1993); Chiba, Japan (1995); Gramado, Brazil (1997); Lisbon,
Portugal (1999); Montpellier, France (2001); Darmstadt, Germany (2003); Perth,
Australia (2005); Nice, France (2006); Atlanta, USA (2007); Rhodes Island, Greece
(2008); Florianopolis, Brazil (2009); Madrid, Spain (2010); Kowloon, Hong Kong
(2011), Santa Cruz, USA (2012), Istanbul, Turkey (2013), Playa del Carmen, Mexico
(2014), Daejeon, South Korea (2015), Tallin, Estonia (2016), Abu Dhabi, United Arab
Emirates (2017), Verona, Italy (2018), and Cuzco, Peru (2019).

The purpose of this conference, sponsored by the IFIP TC 10 Working Group 10.5,
the IEEE Council on Electronic Design Automation (CEDA), and the IEEE Circuits
and Systems Society, with the in-cooperation of ACM SIGDA, is to provide a forum
for the presentation and discussion of the latest academic and industrial results and
developments as well as the future trends in the field of system-on-chip (SoC) design,
considering the challenges of nano-scale along with state-of-the-art and emerging
manufacturing technologies. In particular, VLSI-SoC 2020 addressed cutting-edge
research fields like low-power design of RF, analog and mixed-signal circuits, EDA
tools for the synthesis and verification of heterogenous SoCs, accelerators for cryp-
tography and deep learning and on-chip interconnection systems, reliability and testing,
and integration of 3D-ICs. The chapters of this new book in the VLSI-SoC series
continue its tradition of providing an internationally acknowledged platform for sci-
entific contributions and industrial progress in this field.

For VLSI-SoC 2020, 38 papers out of 74 submissions were selected for oral pre-
sentation, and out of those 38 full papers presented at the conference, 16 papers were
chosen by a special selection committee to have an extended and revised version
included in this book. The selection process for these papers considered the evaluation
scores during the review process as well as the review forms provided by members
of the Technical Program Committee and the session chairs as a result of the
presentations.

The chapters of this book have authors from Belgium, Brazil, England, France,
Germany, Israel, Italy, Japan, and USA. The Technical Program Committee for the
regular tracks comprised 93 members from 23 countries.

VLSI-SoC 2020 was the culmination of the work of many dedicated volunteers:
paper authors, reviewers, session chairs, invited speakers, and various committee
chairs. We thank them all for their contributions.

This book is intended for the VLSI community at large, and in particular the many
colleagues who did not have the chance to attend the conference. We hope that you
enjoy reading this book and find it useful in your professional life and for the devel-
opment of the VLSI community as a whole.

May 2021 Andrea Calimera
Pierre-Emmanuel Gaillardon

Kunal Korgaonkar
Shahar Kvatinsky

Ricardo Reis

vi Preface

Organization

The IFIP/IEEE International Conference on Very Large Scale Integration
System-on-Chip (VLSI-SoC) 2020 took place during October 6–9, 2020, virtually
from Salt Lake City, USA. VLSI-SoC 2020 was the 28th in a series of international
conferences, sponsored by IFIP TC 10 Working Group 10.5 (VLSI), IEEE CEDA, and
ACM SIGDA. The Organization Committee of the conference consisted of the
following colleagues:

General Chair

Pierre-Emmanuel
Gaillardon

University of Utah, USA

Technical Program Chairs

Shahar Kvatinsky Technion, Israel
Andrea Calimera Politecnico di Torino, Italy

Special Sessions Chairs

Mike Niemier University of Notre Dame, USA
David Atienza EPFL, Switzerland

PhD Forum Chair

Cunxi Yu University of Utah, USA

Local Chairs

Ross Walker University of Utah, USA
Mike Wirthlin Brigham Young University, USA

Industrial Chair

Luca Amaru Synopsys, USA

Publicity Chairs

Anupam Chattopadhyay NTU, Singapore
Andre Reis UFRGS, Brazil
Ian O’Connor ECL, France
Joseph Friedman UT Dallas, USA

Publication Chair

Kunal Korgaonkar Technion, Israel

Web Chairs

Ganesh Gore University of Utah, USA
Edouard Giacomin University of Utah, USA

VLSI-SoC Steering Committee

Graziano Pravadelli University of Verona, Italy
Ibrahim Elfadel Khalifa University, UAE
Manfred Glesner TU Darmstadt, Germany
Matthew Guthaus UC Santa Cruz, USA
Luis Miguel Silveira INESC ID, Portugal
Fatih Ugurdag Ozyegin University, Turkey
Salvador Mir TIMA, France
Ricardo Reis UFRGS, Brazil
Chi-Ying Tsui HKUST, Hong Kong, China
Ian O'Connor INL, France
Masahiro Fujita The University of Tokyo, Japan

As for the Technical Program Committee, it was composed as follows:

Technical Program Committee Track Chairs

AMS, Sensors, and RF Track

Salvador Mir TIMA, France
Ross Walker University of Utah, USA

VLSI Circuits and SoC Design Track

H. Fatih Ugurdag Ozyegin University, Istanbul
Adam Teman Bar-Ilan University, Israel

Embedded Systems Design and Software Track

Ibrahim Elfadel Khalifa University, UAE
Michele Magno ETH Zurich, Switzerland

CAD Tools and Methodologies for Digital IC Design and Optimization Track

Victor Grimblatt Synopsys, Chile
Aida Todri-Sanial University of Montpellier and CNRS, France

viii Organization

Verification, Modeling, and Prototyping Track

Graziano Pravadelli Università di Verona, Italy
Yakir Vizel Technion, Israel

Design for Testability, Reliability, and Fault Tolerance Track

Matteo Sonza Reorda Politecnico di Torino, Italy
Leticia Bolzani Poehls PUCRS and RWTH Aachen, Germany

Hardware Security Track

Odysseas Koufopavlou University of Patras, Greece
Anupam Chattopadhyay Nanyang Technological University of Singapore,

Singapore

Emerging Technologies and New Computing Paradigms Track

Ian O’Connor Lyon Institute of Nanotechnology, France
Yang (Cindy) Yi Virginia Tech, USA

Technical Program Committee

Alain Pegatoguet University of Nice, France
Alberto Bosio Ecole Centrale de Lyon, France
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Alexander Ivrii IBM, Israel
Alexander Nadel Intel, Israel
Alexandre Levisse EPFL, Switzerland
Ali Akoglu University of Arizona, USA
Armin Tajalli University of Utah, USA
Arnaud Virazel University of Montpellier, France
Avi Mendelson Technion, Israel
Ayesha Khalid Queen’s University Belfast, Northern Ireland
Azemard Nadine University of Montpellier, France
Bah Hwee Gwee Nanyang Technological University of Singapore,

Singapore
C. Andras Moritz University of Massachusetts, USA
Carlos Silva-Cardenas Pontificia Universidad Catolica del Peru, Peru
Chester Rebeiro IIT Madras, India
Christos Papachristou Case Western Reserve University, USA
Chun-Jen Tsai National Chiao Tung University, Taiwan
Daniele Pagliari Politecnico di Torino, Italy
David Atienza EPFL, Switzerland
Debdeep Mukhopadhyay IIT Kharagpur, India
Dimitrios Soudris National Technical University of Athens, Greece
Donatella Sciuto Politecnico di Milano, Italy
Elena Ioana Vatajelu TIMA, France

Organization ix

Francesco Regazzoni ALaRI, Switzerland
George Gielen Catholic University of Leuven, Belgium
George Yuan Hong-Kong University of Science and Technology,

Hong Kong
Gianvito Urgese Politecnico di Torino, Italy
Gilles Sicard CEA LETI, France
Gurgen Harutyunyan Synopsys, Armenia
Jacob Rosenstein Brown University, USA
Joseph Friedman University of Texas at Dallas, USA
Katell Morin-Allory Université Grenoble Alpes, France
Ke-Horng Chen National Chiao Tung University, Taiwan
L. Miguel Silveira University of Lisbon, Portugal
Lars Bauer Karlsruhe Institute of Technology, Germany
Luc Claesen Hasselt University, Belgium
Maciej Ogorzalek Jagiellonian University, Poland
Marco Donato Harvard University, USA
Matthew Guthaus University of California, Santa Cruz, USA
Matthew Johnston Oregon State University, USA
Michail Maniatakos NYU Abu Dhabi, UAE
Michele Lora Singapore University of Technology, Singapore
Michele Portolan Grenoble INP, France
Mottaqiallah Taouil Delft University of Technology, the Netherlands
Nicola Nicolici McMaster University, Canada
Ozgur Tasdizen ARM, England
Paolo Rech Federal University of Rio Grande do Sul, Brazil
Peng Liu Zhejiang University, China
Per Larsson-Edefors Chalmers University of Technology, Sweden
Piero Malcovati University of Pavia, Italy
Piero Malcovati University of Pavia, Italy
Pramod Subramanyan Indian Institute of Technology, Italy
Ricardo Reis Universidade Federal do Rio Grande do Sul, Brazil
Robert Wille Linz University, Austria
Rongmei Chen IMEC, Belgium
Salvatore Pennisi University of Catania, Italy
Sébastien Le Beux Concordia University, Canada
Seiji Kajihara Kyushu Institute of Technology, Japan
Sezer Gören Yeditepe University, Turkey
Shigeru Yamashita Ritsumeikan University, Japan
Shivam Bhasin Nanyang Technological University of Singapore,

Singapore
Smail Niar Université Polytechnique Hauts-de-France, France
Srinivas Katkoori University of South Florida, USA
Sujoy Sinha Roy University of Birmingham, England
Swaroop Chosh Pennsylvania State University, USA
Sylvain Bourdel Université Grenoble Alpes, France
Tetsuya Iizuka The University of Tokyo, Japan

x Organization

Tiago Balen Federal University of Rio Grande do Sul, Brazil
Tiziana Margaria Lero, Ireland
Tolga Yalcin Northern Arizona University, USA
Vasilis Pavlidis University of Manchester, England
Walter Weber TU Wien, Austria
Wenjing Rao University of Illinois at Chicago, USA
Xing Huang Technical University of Munich, Germany
Yuanqing Cheng Beihang University, China
Zhaohao Wang Beihang University, China

Organization xi

Contents

Low-Power High-Speed ADCs for ADC-Based Wireline Receivers
in 22 nm FDSOI. 1

David Cordova, Wim Cops, Yann Deval, François Rivet,
Herve Lapuyade, Nicolas Nodenot, and Yohan Piccin

Mixed-Mode Signal Processing for Implementing MCMC
MIMO Detector . 21

Amin Aghighi, Behrouz Farhang-Boroujeny, and Armin Tajalli

Low Power Current-Mode Relaxation Oscillators for Temperature
and Supply Voltage Monitoring . 39

Shanshan Dai, Caleb R. Tulloss, Xiaoyu Lian, Kangping Hu,
Sherief Reda, and Jacob K. Rosenstein

Fully-Autonomous SoC Synthesis Using Customizable Cell-Based Analog
and Mixed-Signal Circuits Generation . 65

Tutu Ajayi, Sumanth Kamineni, Morteza Fayazi,
Yaswanth K. Cherivirala, Kyumin Kwon, Shourya Gupta,
Wenbo Duan, Jeongsup Lee, Chien-Hen Chen, Mehdi Saligane,
Dennis Sylvester, David Blaauw, Ronald Dreslinski Jr, Benton Calhoun,
and David D. Wentzloff

Assessing the Configuration Space of the Open Source NVDLA Deep
Learning Accelerator on a Mainstream MPSoC Platform 87

Alessandro Veronesi, Davide Bertozzi, and Milos Krstic

SAT-Based Mapping of Data-Flow Graphs onto Coarse-Grained
Reconfigurable Arrays . 113

Yukio Miyasaka, Masahiro Fujita, Alan Mishchenko,
and John Wawrzynek

Learning Based Timing Closure on Relative Timed Design 133
Tannu Sharma, Sumanth Kolluru, and Kenneth S. Stevens

Multilevel Signaling for High-Speed Chiplet-to-Chiplet Communication. 149
Rakshith Saligram, Ankit Kaul, Muhannad S. Bakir,
and Arijit Raychowdhury

From Informal Specifications to an ABV Framework for Industrial
Firmware Verification . 179

Samuele Germiniani, Moreno Bragaglio, and Graziano Pravadelli

Modular Functional Testing: Targeting the Small Embedded Memories
in GPUs. 205

Josie Esteban Rodriguez Condia and Matteo Sonza Reorda

RAT: A Lightweight Architecture Independent System-Level Soft Error
Mitigation Technique. 235

Jonas Gava, Ricardo Reis, and Luciano Ost

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption . . . 255
Yinghua Hu, Kaixin Yang, Shahin Nazarian, and Pierluigi Nuzzo

3D Nanofabric: Layout Challenges and Solutions for Ultra-scaled
Logic Designs . 279

Edouard Giacomin, Juergen Boemmels, Julien Ryckaert,
Francky Catthoor, and Pierre-Emmanuel Gaillardon

3D Logic Cells Design and Results Based on Vertical NWFET Technology
Including Tied Compact Model. 301

Arnaud Poittevin, Chhandak Mukherjee, Ian O’Connor,
Cristell Maneux, Guilhem Larrieu, Marina Deng, Sebastien Le Beux,
François Marc, Aurélie Lecestre, Cedric Marchand,
and Abhishek Kumar

Statistical Array Allocation and Partitioning for Compute
In-Memory Fabrics . 323

Brian Crafton, Samuel Spetalnick, Gauthaman Murali, Tushar Krishna,
Sung-Kyu Lim, and Arijit Raychowdhury

abstractPIM: A Technology Backward-Compatible Compilation Flow
for Processing-In-Memory . 343

Adi Eliahu, Rotem Ben-Hur, Ronny Ronen, and Shahar Kvatinsky

Author Index . 363

xiv Contents

List of Contributors

Amin Aghighi Electrical and Computer Engineering Department, University of Utah,
Salt Lake City, USA

Tutu Ajayi University of Michigan, Ann Arbor, MI, USA

Muhannad S. Bakir Georgia Institute of Technology, Atlanta, GA, USA

Rotem Ben-Hur Technion - Israel Institute of Technology, Haifa, Israel

Davide Bertozzi Department of Engineering, Universitá degli Studi di Ferrara,
Ferrara, Italy

David Blaauw University of Michigan, Ann Arbor, MI, USA

Juergen Boemmels IMEC, Leuven, Belgium

Moreno Bragaglio Department of Computer Science, University of Verona, Verona,
Italy

Benton Calhoun University of Virginia, Charlottesville, VA, USA

Francky Catthoor IMEC, Leuven, Belgium; KU Leuven, Leuven, Belgium

Chien-Hen Chen University of Virginia, Charlottesville, VA, USA

Yaswanth K. Cherivirala University of Michigan, Ann Arbor, MI, USA

Josie Esteban Rodriguez Condia Dip. di Automatica e Informatica (DAUIN),
Politecnico di Torino, Torino, Italy

Wim Cops MACOM Technology Solutions, Sophia Antipolis, France

David Cordova MACOM Technology Solutions, Sophia Antipolis, France

Brian Crafton Georgia Institute of Technology, Atlanta, GA, USA

Shanshan Dai Brown University, Providence, RI, USA

Marina Deng University of Bordeaux, CNRS UMR 5218, Bordeaux INP Talence,
Bordeaux, France

Yann Deval Laboratorie IMS, Université de of Bordeaux, Bordeaux INP,
CNRS UMR 5218, Talence, France

Ronald Dreslinski Jr. University of Michigan, Ann Arbor, MI, USA

Wenbo Duan University of Michigan, Ann Arbor, MI, USA

Adi Eliahu Technion - Israel Institute of Technology, Haifa, Israel

Behrouz Farhang-Boroujeny Electrical and Computer Engineering Department,
University of Utah, Salt Lake City, USA

Morteza Fayazi University of Michigan, Ann Arbor, MI, USA

Masahiro Fujita The University of Tokyo, Tokyo, Japan

Pierre-Emmanuel Gaillardon University of Utah, Salt Lake City, UT, USA

Jonas Gava Instituto de Informática, PGMicro, Universidade Federal do Rio Grande
do Sul - UFRGS, 9500, Porto Alegre, Brazil

Samuele Germiniani Department of Computer Science, University of Verona,
Verona, Italy

Edouard Giacomin University of Utah, Salt Lake City, UT, USA

Shourya Gupta University of Virginia, Charlottesville, VA, USA

Kangping Hu Brown University, Providence, RI, USA

Yinghua Hu University of Southern California, Los Angeles, CA, USA

Sumanth Kamineni University of Virginia, Charlottesville, VA, USA

Ankit Kaul Georgia Institute of Technology, Atlanta, GA, USA

Sumanth Kolluru University of Utah, Salt Lake City, USA

Tushar Krishna Georgia Institute of Technology, Atlanta, GA, USA

Milos Krstic IHP - Leibniz-Institut für innovative Mikroelektronik, Frankfurt Oder,
Germany

Abhishek Kumar Université de Toulouse, LAAS, CNRS, INP Toulouse, Toulouse,
France

Shahar Kvatinsky Technion - Israel Institute of Technology, Haifa, Israel

Kyumin Kwon University of Michigan, Ann Arbor, MI, USA

Herve Lapuyade Laboratorie IMS, Université de of Bordeaux, Bordeaux INP,
CNRS UMR 5218, Talence, France

Guilhem Larrieu Université de Toulouse, LAAS, CNRS, INP Toulouse, Toulouse,
France; Institute of Industrial Science, LIMMS-CNRS/IIS, The University of Tokyo,
Tokyo, Japan

Sebastien Le Beux Lyon Institute of Nanotechnology, University of Lyon, CNRS
UMR 5270, Lyon, France; Ecole Centrale de Lyon, Ecully, France

Aurélie Lecestre Université de Toulouse, LAAS, CNRS, INP Toulouse, Toulouse,
France

Jeongsup Lee University of Michigan, Ann Arbor, MI, USA

Xiaoyu Lian Brown University, Providence, RI, USA

xvi List of Contributors

Sung-Kyu Lim Georgia Institute of Technology, Atlanta, GA, USA

Cristell Maneux University of Bordeaux, CNRS UMR 5218, Bordeaux INP Talence,
Bordeaux, France

François Marc University of Bordeaux, CNRS UMR 5218, Bordeaux INP Talence,
Bordeaux, France

Cedric Marchand Lyon Institute of Nanotechnology, University of Lyon,
CNRS UMR 5270, Ecole Centrale de Lyon, Ecully, France

Alan Mishchenko UC Berkeley, Berkeley, CA, USA

Yukio Miyasaka UC Berkeley, Berkeley, CA, USA

Chhandak Mukherjee University of Bordeaux, CNRS UMR 5218, Bordeaux INP
Talence, Bordeaux, France

Gauthaman Murali Georgia Institute of Technology, Atlanta, GA, USA

Shahin Nazarian University of Southern California, Los Angeles, CA, USA

Nicolas Nodenot MACOM Technology Solutions, Sophia Antipolis, France

Pierluigi Nuzzo University of Southern California, Los Angeles, CA, USA

Ian O’Connor Lyon Institute of Nanotechnology, University of Lyon, CNRS UMR
5270, Ecole Centrale de Lyon, Ecully, France

Luciano Ost Wolfson School, Loughborough University, Loughborough, England

Yohan Piccin MACOM Technology Solutions, Sophia Antipolis, France

Arnaud Poittevin Lyon Institute of Nanotechnology, University of Lyon,
CNRS UMR 5270, Ecole Centrale de Lyon, Ecully, France

Graziano Pravadelli Department of Computer Science, University of Verona,
Verona, Italy

Arijit Raychowdhury Georgia Institute of Technology, Atlanta, GA, USA

Sherief Reda Brown University, Providence, RI, USA

Ricardo Reis Instituto de Informática, PGMicro, Universidade Federal do Rio Grande
do Sul - UFRGS, 9500, Porto Alegre, Brazil

François Rivet Laboratorie IMS, Université de of Bordeaux, Bordeaux INP,
CNRS UMR 5218, Talence, France

Ronny Ronen Technion - Israel Institute of Technology, Haifa, Israel

Jacob K. Rosenstein Brown University, Providence, RI, USA

Julien Ryckaert IMEC, Leuven, Belgium

Mehdi Saligane University of Michigan, Ann Arbor, MI, USA

List of Contributors xvii

Rakshith Saligram Georgia Institute of Technology, Atlanta, GA, USA

Tannu Sharma University of Utah, Salt Lake City, USA

Matteo Sonza Reorda Dip. di Automatica e Informatica (DAUIN), Politecnico di
Torino, Torino, Italy

Samuel Spetalnick Georgia Institute of Technology, Atlanta, GA, USA

Kenneth S. Stevens University of Utah, Salt Lake City, USA

Dennis Sylvester University of Michigan, Ann Arbor, MI, USA

Armin Tajalli Electrical and Computer Engineering Department, University of Utah,
Salt Lake City, USA

Caleb R. Tulloss Columbia University, New York, NY, USA

Alessandro Veronesi IHP - Leibniz-Institut für innovative Mikroelektronik, Frankfurt
Oder, Germany

John Wawrzynek UC Berkeley, Berkeley, CA, USA

David D. Wentzloff University of Michigan, Ann Arbor, MI, USA

Kaixin Yang University of Southern California, Los Angeles, CA, USA

xviii List of Contributors

Low-Power High-Speed ADCs
for ADC-Based Wireline Receivers

in 22 nm FDSOI

David Cordova2(B), Wim Cops2, Yann Deval1, François Rivet1,
Herve Lapuyade1, Nicolas Nodenot2, and Yohan Piccin2

1 Laboratorie IMS, Université de of Bordeaux, Bordeaux INP, CNRS UMR 5218,
Talence, France

2 MACOM Technology Solutions, Sophia Antipolis, France
david.cordova@macom.com

Abstract. A very low-power 875MS/s 7b single-channel high-speed
successive approximation register (SAR) analog-to-digital converter
(ADC) that achieves a SNDR/SFDR at Nyquist rate of 41.46/55.01 dB
is presented. The use of an integer-based split CDAC combined with an
improvement for the LSB capacitor allows a substantial improvement in
the SNDR. A simple and accurate calibration procedure for the ADC is
presented thanks to back gate biasing. The ADC is designed in 22 nm
FDSOI while consuming 1.65 mW from a 0.8 V supply with a core chip
area of 0.00074 mm2. The Walden figure-of-merit of 19.5 fJ/conversion-
step at Nyquist rate making it one of the lowest among recently published
medium resolution SAR ADCs.

Keywords: Analog-to-digital converter (ADC) · low power · single
channel · successive approximation register (SAR)

1 Introduction

The increasing demand of higher data rates in datacenters has led to new emerg-
ing standards (200–400 G Ethernet and others) in wireline communications.
These standards will favored more sophisticated encoding schemes that require
less bandwidth such as the case of PAM4. Its encoding uses 4 levels and reduces
the bandwidth by a factor of 2. But at the price to be harder to be supported
by purely analog solutions. So, a natural shift towards multi-level signaling and
mixed-signal architectures is expected.

ADC-based solutions give more opportunities for speed increase. They
present more robust solutions over channels with high losses (>20 dB) because
they can take advantage of technology scaling and most of the equalization can
be implemented in the digital domain [1,2].

Such ADCs are implemented using time-interleaving: identical sub-ADCs
multiplexed in time, operating in parallel to achieve a higher sampling rate [3].

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 1–19, 2021.
https://doi.org/10.1007/978-3-030-81641-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_1

2 D. Cordova et al.

A suitable sub-ADC should optimize the achievable speed, resolution, power
performance and complexity [4–7]. Thus, research in this area is crucial for the
next-generation of wireline communication systems.

This paper continuous the works presented in [8,9] on ADCs for high-speed
wireline receivers. It explains the ADC-based receiver architecture using the speed
requirements for future wireline communications standards. The ADC architec-
ture selection based on energy efficiency and the back gate biasing calibration.

As a result of the above, a very low-power 7-bit SAR ADC is been presented.
It features: an improvement for the CDAC LSB capacitor is implemented to
improve the SNDR, a simple and accurate calibration procedure for the com-
parator and ADC using back gate biasing. The circuit was designed using the
22FDXTM platform enabling a power efficient and flexible design.

Section 2 introduces the context of high-speed wireline receivers, the speed
and modulation requirements for 100 Gb/s operation. Section 3 presents the sub-
ADC resolution estimation based on link budget analysis. Section 4 highlights the
ADC architecture selection from the energy efficiency comparison of two high-
speed converters. In Sect. 5, the circuit description is presented. Simulation results
are shown in Sect. 6 and Sect. 7 draws the main conclusions from this work.

2 High-Speed Wireline Receivers

Today, all datacenter managers (e.g. Google, Facebook, Amazon, ...) have imple-
mented 100 Gb Ethernet connectivity which consists of 4 parallel signals at
25 Gb/s. The encoding of the signals is NRZ (binary modulation Non Return to
Zero). The circuits in receivers and transmitters (optical or electrical) are well
known and generally of an analog nature. The main disadvantage using this pro-
tocol is the high frequency bandwidth usage, especially up to (and even beyond)
12.5 GHz.

For this reason, future standards for higher bitrate transmissions will aban-
don NRZ in favor of more sophisticated encodings that use less frequency band-
width. The IEEE 802.3 Ethernet Workgroup is in charge to complete the stan-
dard by fall of 2021 under the denomination IEEE 802.3ck which consists of 100,
200, and 400 GbE using 100 Gb/s lanes [10].

The Optical Internetworking Forum (OIF), a non-profit consortium, is also
working on the Common Electrical I/O (CEI) 112 G standard, which targets
112 Gb/s electrical interfaces. As data rate continues to increase, 112 Gb/s over
single lane is on the horizon. The feasibility certainly depends on the choice of
signal modulation and channel characteristics.

4-level Pulse Amplitude Modulation (PAM4) is gaining more attention in
recent years as an alternative coding scheme to NRZ. In NRZ signaling, one
bit is a symbol and has two distinct amplitude levels of ‘0’ or ‘1’. Symbols are
expressed in terms of baud. NRZ bitrate is equal to its symbol rate where 1 Gb/s
is equal to 1 Gbaud.

PAM4 signaling uses four different levels, where each level corresponds to one
symbol representing two bits. With two bits per symbol, the baud rate is half the

Low-Power High-Speed ADCs 3

bitrate. For example, 56 Gbaud PAM4 is equal to 112 Gbaud NRZ (112 Gb/s).
As such, PAM4 achieves twice as much throughput using half the bandwidth
compared to NRZ.

In standard linear PAM4 signaling, it is possible for two transitions to happen
at the same time. These transitions can cause two-bit errors per symbol. If
standard PAM4 signaling is converted to gray code, the Bit Error Rate (BER)
is reduced to one-bit per symbol and the overall bit error rate is cut in half.
BER can be expressed as a function of the signal-to-noise ratio (SNR) at the
decision point. The use of PAM4 signaling brings many advantages to overcome
the bandwidth limitations of NRZ, but also bring new challenges in link-path
analysis.

As the link’s speed requirements become more stringent, pure analog archi-
tectures cannot meet them. So, a natural shift towards mixed-signal architectures
is expected. ADC-based receivers give more opportunities for speed augmenta-
tion because they constitute more robust solutions due to their digital nature
and they scale well with process. The high density of lower processes will allow
receivers relying heavily on digital signal processing (DSP) [11]. These receivers
incorporate an ADC to digitize the received signal and perform equalization in
the digital domain [8,9]. A typical ADC-based receiver is shown in Fig. 1.

3 sub-ADC Resolution Estimation

The resolution of the sub-ADC will be calculated using the BER at the output
of the receiver (pre-FEC or raw BER). Figure 1 corresponds to the link budget
of a realistic implementation for an ADC-based receiver.

Fig. 1. sub-ADC in a Time Interleaved System

4 D. Cordova et al.

The proposed sub-ADC is designed to meet the SNR requirements for 56
GBaud PAM4 signaling. Considering the same amplitude swing for NRZ and
PAM4 encodings, the SNR in PAM4 is lower than NRZ. Forward error correction
(FEC) is used to improve link integrity and counteract physical layer level errors
introduced by reduced SNR in PAM4 signals [8,9].

At 56 GBaud, the pre-FEC raw BER of < 10–4 is a typical target. In our
design the receiver is designed to achieve BER = 10–6 over a 30 dB loss channel
at 28 GHz. We start from the output SNR (post-FEC BER = 10–15) and work
backwards from there.

BERpost,FEC =
(

M – 1
2M

)
× erfc

(√
3 · SNR

2(M2 – 1)

)
(1)

where is M = 4, for PAM4 modulation and erfc is the complementary error func-
tion, which yields a SNR≈ 25 dB.

For a FEC gain of 3.8 dB, the pre-FEC BER is

25 dB︸ ︷︷ ︸
BERpost,FEC

– 3.8 dB︸ ︷︷ ︸
GainFEC

= 21.2 dB︸ ︷︷ ︸
BERpre,FEC<10–6

(2)

The DSP equalization boost is calculated as

30 dB︸ ︷︷ ︸
channel loss

– 8 dB︸︷︷︸
Txgain

– 8 dB︸︷︷︸ = 14dB
Rxgain

(3)

Considering a SNR noise penalty of –0.5 dB per dB of DSP boost and a margin
of 6 dB, the SNR requirement at the input of the ADC yields:

SNRADC = 21.2 dB︸ ︷︷ ︸
BERpre,FEC<10–6

+ 14 × 0.5 dB︸ ︷︷ ︸
No,DSP

+ 6dB︸︷︷︸
Margin

= 34.2 dB (4)

which roughly corresponds to a resolution of ≈5.4b. Our design targets a reso-
lution of 7b as a trade-off of speed and power for a single-channel ADC.

4 sub-ADC Architecture Selection

A suitable sub-ADC architecture should not magnify the complexity and the
achievable speed and resolution. The architecture selection was chosen from the
energy efficiency comparison of two high-speed, medium-resolution converters:
the flash ADC and SAR ADC.

An N-bit flash ADC is composed of 2N – 1 comparators, a reference resistor
ladder and a thermometer-to-binary encoder as shown in Fig. 2(a). The reference
resistor ladder and thermometer-to-binary encoder energies scale roughly as 2N

but are usually less than the total comparator energy. For simplicity, the speed

Low-Power High-Speed ADCs 5

R

R

R

R

R

VREF

(a)

−

+

−

+

...
−

+

VIN

Thermometer

to
Binary

Nbits

Φs

2N−1Cu 4Cu 2Cu Cu Cu

(b)

VIN

VREF

Binary Cap.DAC

−

+
SAR
Logic

Nbits
VX

Fig. 2. (a) Flash ADC; (b) SAR ADC with binary-weighted capacitive DAC.

1 2 3 4 5 6 7 8
 ADC Resolution (bits)

0

0.5

1

1.5

2

2.5

3

3.5

4

 N
or

m
al

iz
ed

 E
ne

rg
y/

C
on

ve
rs

io
n

(p
J)

 VDD=VFS=0.8V

= 0.7
= 3/4

 Cu= 2.4fF
 CSW,eq= 20fF

Flash
SAR

ADC

Fig. 3. Energy comparison between SAR and Flash ADCs as a function of resolution

and structure of the comparators used in Flash and SAR ADC are assumed to
be the same. Therefore, the energy per conversion for a flash ADC is

Ecomp = ClatchV2
DD

Eflash = (2N – 1) · Ecomp,
(5)

where Ecomp is the energy of a single comparator. Clatch and VDD represent
the total switched capacitance in the comparator’s latch and supply voltage,
respectively. A basic SAR ADC structure is shown in Fig. 2(b). It consists of
a comparator, a capacitive DAC and a SAR control logic. There are several
switching schemes aiming to improve the energy efficiency in SAR ADCs [12].
For simplicity, the conventional switching scheme is used in this comparison.
The energy per conversion of the comparator can be calculated similar to a flash
ADC.

6 D. Cordova et al.

The capacitive DAC using the conventional switching scheme presents a total
array energy for one conversion is

EDAC = 2η2(1+1/2ζ)N C′
u

2N′/2ζ
(VDDVFS), (6)

where C′
u is the process-dependent unit capacitance required for matching to the

N′-bit level and is assumed to be 2.4 fF in 22FDX. VFS is the ADC full scale,
respectively. The η1 and γ2 coefficients represent the DAC energy dependence
on the input-signal and capacitance mismatch, respectively. The total energy
consumed by the switching of the SAR logic over one conversion is

Elogic ≈ NCSW,eqV
2
DD, (7)

where CSW,eq is the total switched capacitance in the SAR logic normalized to
1-bit level. Summing the energy of the SAR blocks, the total energy per sample
conversion yields

ESAR = EDAC + (N + 1) · Ecomp + Elogic (8)

The total energy consumption of flash and SAR ADCs are compared versus a
resolution range of 1 to 8 bits, as seen in Fig. 3. At resolutions below 4 bits, a flash
ADC presents lower energy compared to a SAR ADC. However, as the resolution
increases the number of comparators in a flash ADC increases exponentially,
while it increases linearly for a SAR ADC. Above a resolution of 6 bits, the
energy efficiency of the SAR structure becomes more apparent. Based on this
energy comparison, a SAR ADC is the better choice for 7-bit resolution, which
is the target range for the proposed ADC-based receiver.

5 Circuit Description

This sub-ADC is designed as a building block inside a Time-Interleaved (TI)
ADC. This TI-ADC is a 7-bit 56 G Sample/s with a Interleaved Sampler Ratio
(ISR) of 64 [8,9]. Thus, making the sub-ADC operates at 875 MHz.

A very low-power 875 MS/s 7-bit SAR ADC that is suitable for integration
into a TI-ADC is presented. The use of an integer-based split CDAC combined
with an improvement for the LSB capacitor allows a substantial improvement in
the SNDR. A simple and accurate calibration procedure for the ADC is presented
thanks to back gate biasing.

The proposed SAR ADC uses asynchronous design to improve the speed
conversion, an integer-based split capacitive DAC (CDAC) and the monotonic
switching principle. Figure 4a illustrates the top-level ADC architecture. The

1 η = 0.7 is a reasonable approximation [13].
2 γ equals 3/4 or 1/2 if the mismatch is dominated by edge effects or oxide variation,

respectively.

Low-Power High-Speed ADCs 7

inp

Φs,ADC

8C 4C 2C C C C

2C

DCDAC[5]

V
D

D

DCDAC[4]

V
D

D

DCDAC[3]

V
D

D

DCDAC[2]

V
D

D

DCDAC[1]

V
D

D

DCDAC[0]

V
D

D
/

2

LS
B

=
0.

5C

inm

Φs,ADC

8C 4C 2C C C C

2C

DCDAC[5]

V
D

D

DCDAC[4]

V
D

D

DCDAC[3]

V
D

D

DCDAC[2]

V
D

D

DCDAC[1]

V
D

D

DCDAC[0]

V
D

D
/

2

LSB
=

0
.5C

Integer-Based Split CDAC

4bits︷ ︸︸ ︷
Upper DAC

2bits︷ ︸︸ ︷
Lower DAC

Integer-Based Split CDAC

−

+ Compout

Ready

Φ
co

m
p

Φs,ADC

Detect
Clock
Logic

SAR
Async.
Logic Dout[6 : 0]

DCDAC[5 : 0]

DCDAC[5 : 0]

(a)
(b) 10.9µm

67
.8
µ
m

1 Switches
2 Comparator
3 CDAC
4 Logic

2

1

4

3 3

Fig. 4. (a) Architecture of the proposed single-channel 7b SAR ADC; (b) Layout

front-end T&H circuit consists of a sampling bootstrapped switch with feed-
through and charge-injection compensation. The sampling clock (Φs,ADC), with
a 25% duty cycle, drives the T&H and triggers the asynchronous internal con-
version logic, which is responsible for generating the bit-cycle phases, controlling
the comparator, storing its decisions and switching the CDAC.

The ADC comprises two identical 6b CDACs to accommodate differential
operation. Since the MSB decision is the sign bit, it can be decided without
changing the state of the CDAC. Thus, 6b CDAC, instead of 7b CDAC, is
sufficient for this 7b SAR ADC design [14].

5.1 Capacitive DAC

The 6b CDAC, depicted in Fig. 4a, is based on an integer-based split capacitive
DAC. The CDAC is divided in two sides: the lower side and the higher side of
2b and 4b, respectively. The split capacitor with a value 2C (C = unit capacitor)
is placed just after the smallest unit capacitor of the 4b array, thus avoiding
the non-linearity issues found in the common split capacitor array [15]. In the
lower side two variations for the LSB capacitor were evaluated, Fig. 5. Instead
of switching a fraction of the unit capacitor (0.5C) during the LSB conversion
by the full difference of the reference voltage, VREF = VDD, a C unit capacitor
is switched by a fraction of the reference voltage, VREF = VDD/2, which will
be referred as LSB1 [5]. And the other LSB2 is implemented switching two unit
capacitors (1C) in series by VREF = VDD.

The unit capacitors of the CDAC are designed to achieve best area efficiency
using alternate-polarity metal-finger capacitors (APMOM) which offer high den-
sity, good matching characteristics and low parasitics.

For this 7b SAR ADC, the total capacitance of this capacitor array is (27–3+
3)C = 19, [15]. A 70% area reduction compared to a conventional CDAC with

8 D. Cordova et al.

(a)

CDACEquivalent Circut

CB

(2U − 1)C (2L − 1)0.5C

VLVU

VLSB = VDAC(2
N−1)

2N−1

CPAR1 CPAR2

L=2bits︷ ︸︸ ︷
Csum,L

U=4bits︷ ︸︸ ︷
Csum,U

C

DCDAC[0]

LSB1

V
D

D
/

2 ⇒
CPAR2=aCCB

VU

C

DCDAC[1]

V
D

D
/

2

LSB1 Detail

VL

C

DCDAC[0]

V
D

D
/

2

C

C

DCDAC[0]

LSB2

V
D

D ⇒

(b)

CPAR2=aCCB

⇒VU

C

DCDAC[1]

V
D

D
/

2

LSB2 Detail

VL

C
CPAR3=bC

C

DCDAC[0]

V
D

D

CB

⇒VU

C

DCDAC[1]

V
D

D
/

2

VL

k1C
k2C

k3C

DCDAC[0]

V
D

D

CB
VU

C

DCDAC[1]

V
D

D
/

2

CPAR2′= k1k2
k1+k2+k3

C

VL

CLSB= k1k3
k1+k2+k3

C

CPAR3′= k2k3
k1+k2+k3

C

DCDAC[0]

V
D

D

Fig. 5. LSB Capacitor Variation with parasitics: (a) LSB1; (b) LSB2

monotonic switching is obtained, thus reducing settling time between conversion
cycles and minimizing area and power consumption.

The designed one-side total capacitance is 45.6 fF, which produces an equiv-
alent kT/C thermal noise of 301.4 μV. The least significant bit (LSB) value for
a 7b ADC at a reference voltage of 0.8 V is 6.25 mV so the thermal noise intro-
duced by this capacitor array is not a limiting factor. Following the equivalent
circuit shown in Fig. 5, the CDAC voltage (VDAC) and LSB voltage (VLSB) are

VDAC =
CB(CU

VREF + CL
VREF) + CU

VREFCsum,L

den
· VREF

+
CU
VREFCPAR2

den
· VREF (9)

VLSB =
VDAC(2N – 1)

2N – 1

=
CB(Csum,U + Csum,L) + Csum,UCsum,L + Csum,UCPAR2

(2N – 1)den
· VREF (10)

where N = U + L, den = (Csum,U + CPAR1)(Csum,L + CPAR2) + CB(Csum,U +
Csum,L + CPAR1 + CPAR2), CB = 2C. Csum,U–L and CU–L

VREF denotes the total
capacitance and total capacitors connected to VREF in the Upper and lower
DACs, respectively.

The parasitic capacitance CPAR2 in the numerator of Eq. 10 contributes to a
code dependent error, degrading the DAC linearity [16]. CPAR2 is defined by the

Low-Power High-Speed ADCs 9

Fig. 6. CPAR2 grid for a,b values

total parasitic capacitance of the top plates in the Lower CDAC and the metal
interconnection. Figure 5a shows the Lower DAC section for the LSB1 capacitor.
CPAR2 is denoted as a fraction of the unit capacitor (aC), for this condition the
VLSB error can be reduced by minimizing CPAR2 contribution.

In Fig. 5b it is shown a variation of LSB capacitor (LSB2) to reduce the
VLSB error. CPAR2 is the same as in LSB1, but with the addition of CPAR3
as the parasitic capacitance of the bottom plates of the two unit capacitors in
series. CPAR3 is represented as a fraction of the unit capacitor (bC). Through
a delta-star transformation LSB2 is shaped with the same arrangement as for
LSB1. Figure 6 shows the new values of CPAR2 and CLSB. A range for CPAR3
between [0.21 0.4]C yields the reduction of CLSB and CPAR2 simultaneously. In
22 nm FDSOI, the APMOM capacitors present a parasitic ≈0.13C per capacitor
yielding a value of b around 0.26.

5.2 Comparator and Back Gate Biasing Calibration

Since the comparator determines the accuracy and speed of the ADC, special
care has to be taken for its design [17]. A strong-ARM comparator is chosen for
its superior decision speed enabled by the single-stage design. It is optimized for
low noise and low power. Figure 7a shows the schematic, the latch regeneration
forces one of the signals, rst and set , to high and the other to low, depending on
the comparison result. As a result, the output of the OR gate (ready) is pulled
high to enable the asynchronous control clock and to facilitate the progression
to the next step in the SAR conversion.

The offset voltage VOS introduced by the input differential pair is calibrated
using a simple and accurate procedure. The calibration operates in two phases:
VOS extraction and VOS calibration. The offset extraction is a fast loop operat-
ing at the comparator’s clock frequency ΦCLK and follows the smart resettable

10 D. Cordova et al.

inp
VBBP

MDP

MNP

VDD

s

MPP

MS1P

Φclk

MS2P

Φclk

VDD

Φclk

inm
VBBM

MDM

MNM

VDD

r

MPM

MS1M

Φclk

MS2M

Φclk

5.5µm
(b)(a)

16
µ
m

setOUT rst OUT

readyrst
set

Fig. 7. Strong ARM Comparator: (a) Schematic; (b) Layout

Fig. 8. Back gate biasing DAC: back gate bias and offset voltage

SAR (SR-SAR) technique presented in [18]. The SR-SAR technique is proposed
as a fast and accurate alternative to the conventional linear search technique,
which is simple and accurate but suffers from long simulation time. The SR-
SAR uses a modified SAR algorithm to determine the comparator offset voltage
in a much shorter time. The input of the comparator is modified to provide a
quasi-monotonic stimulus. It allows a well defined crossing from low-to-high and
high-to-low transitions. It yields to an accurate extraction of the rising offset
(VOSR) and falling offset (VOSF) voltages.

The second phase is a slow loop (below 1 MHz), due to the low frequency
nature of the transistor’s back gate. After extracting the VOS, the control block
begins to adjust the threshold voltages (VTH) of the differential pair through a
back gate biasing DAC until VOS ≈ 0 or a margin is reached.

The back gate biasing DAC consists of a resistor ladder controlled by a 5-
bit digital word. In order to choose the variation range of the ladder, we need

Low-Power High-Speed ADCs 11

Fig. 9. Back gate biasing calibration procedure showing: input differential voltage
(Vind), DAC ladder code, DAC back gate voltage and offset voltage (VOS)

Table 1. Post-Layout VOS Calibration.

Search range –50 to 50 mV

Resolution 0.1 mV (10 bits)

ΦCLK 10 MHz

Uncalibrated Calibrated

Mean (VOS) –1.61 mV 0.02 mV

σ (VOS) 8.86 mV 0.73 mV

to extract the VOS range of the comparator. Using Monte-Carlo (MC) simula-
tions from the schematic, a VOS range (+/–3σ) of ≈45 mV was obtained for the
nominal clock frequency of 875 MHz.

The nominal voltage supply for the comparator is 0.8 V, the same for the back
gate bias at nominal operation. In Fig. 8 is shown the back gate bias control.
The ladder was designed using a resolution of 5bits, with the back gate voltage
varying between 0.4 to 0.8 V. An artificial offset voltage range of +/–32 mV
(≈2.1 mV steps) was created. For example if a negative VOS is extracted, the
calibration controller will only choose from the positive range to counterbalanced
the negative VOS generated by the differential pair.

The VOS calibration for the comparator consists of two phases:

1. VOS extraction:
– It begins with initialization of the back gate biasing DAC, ladder

code = 15 → VBBP = VBBN = 0.8 V,
– After initialization VOSR and VOSF are extracted.

12 D. Cordova et al.

2. VOS calibration:
– VOSR and VOSF determine the iteration sequence for the ladder with

VOS,init = VOSR = VOSF,
– For VOS,init < 0, the ladder will add a positive VOS,iter[code] > 0,

with the code starting at 0. For VOS,init > 0, the code starts at 16
(VOS,iter[code] < 0),

– The body-bias are switched to the current code value: VBBP[code],
VBBN[code] and VOS,iter[code] is extracted,

– The iteration sequence continues until VOS,iter[code] < tolerance, i.e.
1 mV or the code reachs its final value.

Figure 9 shows the time diagram of the comparator’s VOS calibration
sequence for VOS,init < 0. The code transitions had a time step of 2.5 μs and
the comparator is clocked at 10 MHz (T = 100 ns). By clocking the comparator
at low frequency, the time step of the transient simulation is coarse enough to
allow a much faster convergence solution.

To evaluate the proposed calibration methodology, MC Post-Layout Simula-
tions (PLS) were performed on the comparator using the same search range and
resolution for VOS extraction. Figure 10 shows the histogram of VOS for 100
MC runs for an uncalibrated and calibrated comparator. It clearly stands out
the VOS mean and standard deviation reduction for the calibrated comparator.
Another aspect to point out is the larger VOS of the uncalibrated version, but
this did not present any issues since the resistor ladder was designed with some
margin. Table 1 summarizes the MC results. The VOS mean was almost zeroed
and the standard deviation was reduced by a factor of 12.

uncalibrated= -1.61 mV
uncalibrated= 8.86 mV

calibrated= 0.02 mV
calibrated= 0.73 mV

-30 -20 -10 0 10 20 30
 VOS (mV)

0

5

10

15

20

25

 F
re

qu
en

cy

Fig. 10. Histogram Strong ARM VOS: Uncalibrated, Calibrated for 100 MC runs

Low-Power High-Speed ADCs 13

Fig. 11. SAR Logic and timing

5.3 SAR Logic

Besides the advantage of faster bit-cycle conversion, an additional benefit of
asynchronous SAR logic is that it does not require an external high-frequency
clock, and thus saves the power needed to generate and distribute it. This is
extremely important, since this ADC will be part of a time-interleaved system.

The logic of the SAR ADC can be divided into two parts: 1) the clock gener-
ation, which provides the clock for the comparator and the bit-cycle phases and
2) the state memory, in charge of controlling the CDAC based on the comparator
decision in each of the bit-cycle phases, Fig. 11. The Track duration is set at
25% of the 875 MHz clock period.

The clock generation combines the clock ΦADC, ready and stopcycle signals
to generate the comparator clock (ΦComp) and bit-cycle clocks (CLKp,n) with
simple combinational logic. At the same time, a sampling pulse is generated
from ΦADC and its delay. This pulse propagates sequentially, as controlled by
the CLKp,n signals, generating each of the bit-cycle phases, Fig. 11. The Track
duration is set at 25% of the 875 MHz clock period. Additionally, the stopcycle
signal is used to indicate the end of the conversion cycle.

14 D. Cordova et al.

The state memory part connects directly to the differential output of the com-
parator. A dynamic register is used as memory to optimize loop delay and enable
fast settling upon comparator decision. One cell is activated during every com-
parison by its corresponding bitcycle[i] and provides DoutCDAC and DoutCDAC
as control signals for the CDAC. Finally, DoutCDAC is retimed by ΦADC to
create the output data.

6 Simulation Results

This circuit has been designed using the 22FDXTM platform in 22 nm FDSOI
CMOS of GLOBALFOUNDRIES [19]. One of the most differentiated features
of the 22FDX platform is the capability of effective back gate biasing. Back gate
biasing applies a positive or a negative voltage to the back gate of the transistor,
which allows the transistor VTH to be tuned, and can be done statistically or
dynamically.

The nominal full-scale ADC input is 800 mVpp,diff with a common mode
of 400 mV. It operates from a core 0.8 V supply and simulated, under typical
conditions. Power consumption is 1.65 mW based on PLS results at 875 MS/s.
This overal power consists of 80 μW for the bootstrapped input switch, 40 μW
for the CDAC, 0.68 mW for the comparator and 0.85 mW for the phase and
SAR logic, as seen in Fig. 12.

Although, the calibration for the comparator was implemented to extract the
VOS, it can also be used to calibrate the ADC. Figure 13 shows the MC simula-
tion results, the ADC was calibrated at the middle of the range (64 LSB) and a
4× reduction of the output code σ was achieved. It is worth to mention that the
limiting factor for the ADC calibration is the resolution, LSB = 6.25 mV (7 bits).

50.91%
0.85mW

Logic

4.85%
0.08mW

Switches
%

8mW

41.82%
0.68mW

Comparator

2.42%
0.04mW

CDAC

Total=1.65mW

Fig. 12. sub-ADC power consumption breakdown

It is worth to mention, that the calibration procedure for the comparator
and ADC was performed at low frequency, due to the time step of the transient
simulation is coarse enough to allow a much faster convergence solution. For

Low-Power High-Speed ADCs 15

that reason, the results for static and dynamic characteristics shown are just for
nominal conditions without calibration.

The simulated DNL and INL results at 875 MS/s for a ramp up input for
the two LSB capacitor versions are depicted in Fig. 14. It can be seen that the
second version (LSB2) is more robust to implement the LSB capacitor of the

uncalibrated= 63.5 LSB
uncalibrated= 2.0 LSB

calibrated= 64.0 LSB
calibrated= 0.5 LSB

56 58 60 62 64 66 68 70 72
 Calibrated code = 64 (LSB)

0

100

200

300

400

500

600

700

800

 F
re

qu
en

cy

Fig. 13. Histogram of ADC Output Code: Uncalibrated, Calibrated for 1000 MC runs

0 20 40 60 80 100 120
-1

0

1

2

 D
iff

er
en

tia
l N

on
Li

ne
ar

ity DNL
Post-Layout
@27°C ,TT

LSB1 LSB2

0 20 40 60 80 100 120
 Output code

-1

0

1

2

 In
te

gr
al

 N
on

Li
ne

ar
ity

 INL
Post-Layout
@27°C ,TT

LSB1 LSB2

1.96/-0.69 1.08/-0.51

1.12/-1.06
-0.78/0.60

Fig. 14. DNL and INL. LSB1 (dashed); LSB2 (solid)

16 D. Cordova et al.

SFDR =
51.08dB

SNDR =
37.8dB

THD =
-40.01dB

Fs= 875 MHz
NFFT= 512
Cycles= 251
Fin= 428.96 MHz

ENOBLSB1= 5.99

Post-Layout
@27°C ,TT

100 200 300 400
 Frequency [MHz]

-80

-70

-60

-50

-40

-30

-20

-10

0
 A

m
pl

itu
de

 [d
B

FS
] SFDR =

55.01dB

SNDR =
41.46dB

THD =
-45.35dB

Fs= 875 MHz
NFFT= 512
Cycles= 251
Fin= 428.96 MHz

ENOBLSB2= 6.59

Post-Layout
@27°C ,TT

100 200 300 400
 Frequency [MHz]

-80

-70

-60

-50

-40

-30

-20

-10

0

 A
m

pl
itu

de
 [d

B
FS

]

Fig. 15. Output Spectrum with 0 dBFS signal applied at 428.96 MHz, sampling fre-
quency is 875 MHz. LSB1 (left); LSB2 (right)

Table 2. Performance Summary and Comparison with Single-Channel State-of-the-
Art SAR ADCs

This Work∗ [7]+ [4]+ [5]+ [6]+

Technology [nm] 22 nm FDSOI 28 nm CMOS 65 nm CMOS 32 nm SOI 40 nm CMOS

Architecture SAR SAR 2b/c SAR 2 comp. SAR ci-SAR

Calibration YES NO YES YES YES

Resolution [bits] 7 7 8 8 6

Supply [Volts] 0.8 1.0 1.2 1.0 1.0

Samplig Rate [GS/s] 0.875 1.25 0.4 1.2 1

Power Consumption [mW] 1.65 3.56 4.0 3.1 1.26

Active Area [mm2] 0.00074 0.0071 0.024 0.0031 0.00058

SFDR@ Nyq. [dB] 55.01 52 53 49.8 49.7

SNDR@ Nyq. [dB] 41.46 40.1 40.4 39.3 34.6

FoM@Nyq. [fJ/conv-step] 19.5 34.4 116.9 34 28.7

+ Measured; ∗Post Layout

lower side of the differential DAC. LSB2 presents a DNL within 1.08/–0.51 LSB,
and the INL within –0.78/+0.6 LSB.

The output spectrum at 428.96 MHz input frequency is shown in Fig. 15.
The ADC achieves a SNDR/SFDR of 41.46/55.01 dB at Nyquist frequency for
the LSB2 version, presenting an overall improvement of 0.6ENOB with respect

Low-Power High-Speed ADCs 17

to the LSB1 version, showing the advantage of the proposed modification for the
LSB capacitor.

Table 2 shows a performance summary and comparison with recent state-
of-the-art SAR ADCs of similar performance, Fig. 16. The presented ADC
achieves a comparable SNDR and lower FoM for a similar sampling rate (between
400 MS/s ⇔ 1.25 GS/s) and resolution (6–8b) while having a lower complexity
and a smaller area.

107 108 109

Fsnyq (Hz)

100

101

102

 F
O

M
W

 (
fJ

/c
on

v-
st

ep
)

This work
ISSCC 1997-2020
VLSI 1997-2020
Envelope

Fig. 16. Comparison with state-of-the-art single-channel SAR based on [20]

7 Conclusion

A 7b 875 MS/s single-channel SAR ADC has been presented. The integer-based
split CDAC combined with an improvement for the LSB capacitor allows a sub-
stantial improvement in the SNDR. A simple and accurate calibration procedure
for the ADC is presented thanks to back gate biasing. The use of a dynamic reg-
ister in the SAR logic yields a shorter and more uniform settling time per cycle
and therefore a faster ADC. The circuit in 22 nm FDSOI achieves a Nyquist
Walden FoM of 19.5 fJ/conversion-step, which is the lowest FoM among pre-
viously medium resolution (5.5 ⇔ 7.5ENOB) SAR ADCs with sampling rates
greater than 0.8 GS/s/channel.

Acknowledgment. The authors thank the MACOM High-Performance-Analog
design team for contributing to the circuit design and GLOBALFOUNDRIES for tech-
nology access.

18 D. Cordova et al.

References

1. Hudner, J., Carey, D., Casey, R., et al.: A 112GB/S PAM4 wireline receiver using a
64-Way time-interleaved SAR ADC in 16NM FinFET. In: 2018 IEEE Symposium
on VLSI Circuits, pp. 47–48, June 2018

2. Sun, K., Wang, G., Zhang, Q., Elahmadi, S., Gui, P.: A 56-GS/s 8-bit time-
interleaved ADC With ENOB and BW enhancement techniques in 28-nm CMOS.
IEEE J. Solid State Circuits 54(3), 821–833 (2019)

3. Kull, L., et al.: Implementation of low-power 6–8 b 30–90 GS/s time-interleaved
ADCs with optimized input bandwidth in 32 nm CMOS. IEEE J. Solid State
Circuits 51(3), 636–648 (2016)

4. Wei, H., et al.: A 0.024mm2 8b 400MS/s SAR ADC with 2b/cycle and resistive
DAC in 65nm CMOS. In: 2011 IEEE International Solid-State Circuits Conference,
pp. 188–190, February 2011

5. Kull, L., et al.: A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR ADC
with alternate comparators for enhanced speed in 32 nm digital SOI CMOS. IEEE
J. Solid State Circuits 48(12), 3049–3058 (2013)

6. Choo, K.D., Bell, J., Flynn, M.P.: 27.3 area-efficient 1GS/s 6b SAR ADC with
charge-injection-cell-based DAC. In: 2016 IEEE International Solid-State Circuits
Conference (ISSCC), pp. 460–461, January 2016

7. Ramkaj, A.T., Strackx, M., Steyaert, M.S.J., Tavernier, F.: A 1.25-GS/s 7-b SAR
ADC with 36.4-dB SNDR at 5 GHz using switch-bootstrapping, USPC DAC and
triple-tail comparator in 28-nm CMOS. IEEE J. Solid State Circuits 53(7), 1889–
1901 (2018)

8. Cordova, D., et al.: A hierarchical track and hold circuit for high speed ADT-
based receivers in 22nm FDSOI. In: 2019 26th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), pp. 358–361 (2019)

9. Cordova, D., et al.: A 0.8V 875MS/s 7b low-power SAR ADC for ADC-based Wire-
line Receivers in 22nm FDSOI. In: 2020 IFIP/IEEE 28th International Conference
on Very Large Scale Integration (VLSI-SoC) (2020)

10. IEEE P802.3ck: 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force
(2019). http://www.ieee802.org/3/ck/

11. Chen, E., Yousry, R., Yang, C.K.: Power optimized ADC-based serial link receiver.
IEEE J. Solid State Circuits 47(4), 938–951 (2012)

12. Rabuske, T., Fernandes, J.: Review of SAR ADC switching schemes. In: Rabuske,
T., Fernandes, J. (eds.) Charge-Sharing SAR ADCs for Low-Voltage Low-Power
Applications. Analog Circuits and Signal Processing, pp. 25–67. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-39624-8 3

13. Ginsburg, B.P., Chandrakasan, A.P.: Dual time-interleaved successive approxima-
tion register ADCs for an ultra-wideband receiver. IEEE J. Solid-State Circuits
42(2), 247–257 (2007)

14. Liu, C., Chang, S., Huang, G., Lin, Y.: A 10-bit 50-MS/s SAR ADC with a mono-
tonic capacitor switching procedure. IEEE J. Solid-State Circuits 45(4), 731–740
(2010)

15. Deng, L., Yang, C., Zhao, M., Liu, Y., Wu, X.: A 12-bit 200KS/s SAR ADC with
a mixed switching scheme and integer-based split capacitor array. In: 2013 IEEE
11th International New Circuits and Systems Conference (NEWCAS), pp. 1–4,
June 2013

16. Zhu, Y., et al.: A power-efficient capacitor structure for high-speed charge recycling
SAR ADCs. In: 2008 15th IEEE International Conference on Electronics, Circuits
and Systems, pp. 642–645 (2008)

http://www.ieee802.org/3/ck/
https://doi.org/10.1007/978-3-319-39624-8_3

Low-Power High-Speed ADCs 19

17. Xu, H., Abidi, A.A.: Analysis and design of regenerative comparators for low offset
and noise. IEEE Trans. Circuits Syst. I Regul. Papers 66(8), 2817–2830 (2019)

18. Omran, H.: Fast and accurate technique for comparator offset voltage simulation.
Microelectr. J. 89, 91–97 (2019)

19. Carter, R., et al.: 22nm FDSOI technology for emerging mobile, Internet-of-
Things, and RF applications. In: 2016 IEEE International Electron Devices Meet-
ing (IEDM), pp. 2.2.1–2.2.4, December 2016

20. Murmann, B.: ADC Performance Survey 1997–2020. http://web.stanford.edu/
∼murmann/adcsurvey.html

http://web.stanford.edu/~murmann/adcsurvey.html
http://web.stanford.edu/~murmann/adcsurvey.html

Mixed-Mode Signal Processing
for Implementing MCMC MIMO

Detector

Amin Aghighi, Behrouz Farhang-Boroujeny, and Armin Tajalli(B)

Electrical and Computer Engineering Department, University of Utah,
Salt Lake City, USA

armin.tajalli@utah.edu

https://lcas.ece.utah.edu/

Abstract. A hybrid analog/digital signal processor has been proposed
to implement energy-efficient multi-input-multi-output (MIMO) detec-
tors. A sub-optimum MIMO detector based on Markov Chain Monte
Carlo (MCMC) algorithm for a 4 × 4 MIMO system is presented. A
careful partitioning between analog and digital domains has been made
to reduce system power consumption. The outputs of the proposed ana-
log signal processing unit are being converted to digital using a low-
resolution analog-to-digital converter (ADC), to deliver the signals to
the digital portion of the detector system. The proposed 4 × 4 MCMC
MIMO detector is designed in a standard 45 nm CMOS technology, that
consumes 29.3 mW from 1.0 V supply. A throughput of 235.3 Mbps is
achieved, while operating at 1.0 GHz clock frequency. The design occu-
pies a 0.11 mm2 silicon area.

Keywords: Optimal detectors · sub-optimal detectors · Markov Chain
Monte Carlo (MCMC) · VLSI MIMO · Mixed-mode MIMO ·
Mixed-mode circuits

1 Introduction

Modern wireless communications use the Multi-Input Multi-Output (MIMO)
approach to improve data throughput at a lower cost. Moreover, the ever-growing
number of users makes MIMO systems even more desirable [1]. Since MIMO sys-
tems use the same frequency band for transmitting parallel data streams, data
transfer bandwidth improves with the number of transmit antennas [2]. There-
fore, receiver-joint detection is crucial for exploiting the full capacity of the sys-
tem. Although the optimum detectors can harness the full channel capacity, their
complexity increases exponentially with the number of transmit antennas [3]. As
a result, improving the performance of sub-optimum detectors is a demanding
research topic [4–7]. A few implementations for sub-optimum detectors operat-
ing based on the Markov-Chain Monte Carlo (MCMC) algorithm are reported

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 21–37, 2021.
https://doi.org/10.1007/978-3-030-81641-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_2

22 A. Aghighi et al.

Fig. 1. MIMO system input-output description.

in [2,8–10]. Although this detector can achieve full channel capacity, the existing
implementations, which are mainly based on Digital Signal Processors (DSP),
result in fairly complex and power-hungry circuits.

This paper targets lowering power consumption and increasing throughput
of the MCMC detectors by moving high-speed and energy-hungry operations
from DSP to analog/mixed-mode domain. A set of system-level simulations are
carried out to show the performance of the proposed analog/mixed-mode app-
roach. Several analog building blocks are proposed to implement target signal
processing schemes in a more energy-efficient way. The power and area cost of
these blocks are calculated through simulations to have a good cost estimation
of the proposed detector.

The rest of this paper is organized as follows: Sect. 2 provides a brief overview
on MCMC detectors, and describes the high level implementation of the pro-
posed MCMC detector. System level simulation results are presented in Sect. 3.
Section 4 demonstrates circuit-level implementation, and Sect. 5 provides com-
parison between the proposed MCMC detector and the state-of-the-art.

2 System Level MCMC Detector

2.1 Conventional MCMC Detectors

Considering a flat fading channel, the input-output for each channel that is
shown in Fig. 1, can be described by:

y = A · d + n (1)

where, y is the received data vector, d is the transmitted data bits, n is the
channel additive noise vector, and A is the channel gain matrix. The MCMC
detector is based on an iterative approach. While the detection algorithm is
thoroughly described in [2], a brief concept review is presented here. The MCMC
detector takes a random set of initial bits, b0, by a Gibbs sampler [11], and
calculates the error function based on:

e0 = y − A · b0 (2)

Mixed-Mode Signal Processing for Implementing MCMC MIMO Detector 23

Fig. 2. The proposed MCMC detector block diagram.

where, each element of e0 represents the initial error associated with each
channel.

In other words:

e0,i = y0,i − (A1,i · b0,1 + A2,i · b0,2 + · · · + AN,i · b0,N) (3)

where, i is the desired channel index and N is equal to the number of transmit
antennas. When all of the e0 elements are found, one of the bits in b0 will be
flipped in each iteration, and the error vector, e, will be recalculated. The new
error vector in each iteration can be readjusted from the previous value:

ek = ek−1 + A:,m · (2b(k−1),m) (4)

where, k is the index for the iteration steps, m is the index for the bit which is
flipped, and A:,m represents the m-th column of A. In order to compare the error
functions between every two consecutive iterations, and decide about the m-th
bit, the summation of squared components of e is calculated and defined as:

E = e21 + e22 + · · · + e2N (5)

Based on the E value at each iteration step, it will be decided to keep either “+1”
or “−1” for the m-th bit. When the decision has been made for all the bits in
b0, the MCMC detector repeats this operation for Ngs times for different initial
conditions. The performance (accuracy) of the MCMC detector improves when
T parallel Gibbs samplers run with different initial random set of bits [2]. As
including randomness to the decision process reduces the stalling problem, the
MCMC detector introduced in [2] utilizes a random variable, v, and considers
both E and v for making decisions.

Usually, MCMC detectors employ Forward Error Correction (FEC), in order
to reduce the Bit Error Rate (BER). In this work, we will analyze only the raw
BER, before applying FEC.

2.2 Proposed MCMC Detector Circuit

Figure 2 shows the proposed MCMC detector, in which most of the speed-limited
operations are moved into the analog domain. In order to calculate each com-

24 A. Aghighi et al.

Fig. 3. BER versus SNR while sweeping Ngs and T.

ponent of the error vector, e, a set of digital-to-analog converters (DACs) are
employed to convert the digitized received data, y, and the channel gain matrix,
A, to the analog domain. The DACs are implemented based on very low-power
and low complexity circuits. Bit-wise multiplication is implemented in the ana-
log domain to multiply DACA by b0, and then simply subtract the result from
DACy to produce the error vector, e. As will be shown in Sect. 4, the summation
occurs in the current domain and no extra hardware is required. There are N
parallel operators in total needed to produce all the components of the e. A
square generator produces the e2i for each channel separately and adds them
together to estimate the updated value for E. Finally, a low-resolution analog-
to-digital converter (ADC) closes the loop by digitizing the E value, leaving the
final step of decision, i.e., determining b0 to digital circuits. As will be shown
later, the entire operation explained above is implemented using simple analog
circuits that occupy a small area and need only one clock cycle to finish each
step.

The proposed system needs one clock cycle to generate each component of e.
Therefore, considering the arrays of DACA and DACy are working in parallel,
producing N components of e0 takes one clock cycle based on (2). Since all of the
building blocks in Fig. 2 are synchronized and working at the same frequency,
producing and digitizing e0 also occurs at the same clock rate. Hence, it takes one
clock cycle to fulfill all the operations shown in Fig. 2. Based on (3), another clock
cycle is required to calculate ek, and decide about k-th bit of k > 1. Therefore,
while making decision for the first bit takes two clock cycles, the next bits require
only one clock cycle to be determined. Hence, it takes (N + 1) clock cycles in
order to determine the polarity of all the bits in b.

3 System Level Simulation Results

High-level simulations have been carried out to determine the performance of
the circuit shown in Fig. 2, and determine the required specifications for the key
building blocks in this architecture. Some design parameters, such as the number

Mixed-Mode Signal Processing for Implementing MCMC MIMO Detector 25

of parallel Gibbs samplers T, the number of iterations for each Gibbs sampler
Ngs, and the required resolution for each data converter, will be determined
based on this study. For simplicity, it is assumed that each antenna transmits
bits over only one carrier, i.e., there is no sub-carrier. The number of transmit
antennas is set to N. Also, in order to have enough number of bits for calculating
BER, the whole MCMC detector iterates for NMC = 500 times, which results in
NMC × T × Ngs × N total number of bits. Here, T and Ngs are the most critical
design parameters that determine the cost and the performance of the detector.
This work uses the same T and Ngs values that have been employed in [2].

Figure 3 shows Bit-Error-Rate (BER) versus signal-to-noise ratio (SNR) for
the received signal, while T and Ngs have been swept. As it is expected, BER
improves by Ngs and T. However, improvement for Ngs = T > 10 is marginal.
It is reported in [2] that Ngs = T = 6 to 8 is a good compromise. In order to
determine the right resolution for each of the data converters (DACA, DACy and
ADC), a two-step verification has been implemented. Initially, the resolution of
each data converter gradually reduces, while all the other data converters are
considered to be ideal. This approach prevents the other data converters to con-
tribute to the total quantization noise and affect the system performance. In the
second step, the entire system is simulated while all the data converters have
been employed with their limited resolution. Figure 4(a), (b) and (c) represent
the MCMC performance, while the resolution for DACA, DACy and ADC have
been swept, respectively. As it is shown in Fig. 4(a), increasing DACA resolution
higher than 6 bits, does not improve the MCMC performance. Therefore, the
resolution of DACA needs to be 6b or more, in order not to lose much perfor-
mance. When the resolution of DACA is more than 6b, the system needs to be
simulated for much longer in order to produce a precise BER estimation. As
can be seen in Fig. 4(a), the results for resolutions higher than 6b are not very
accurate. Based on the results shown in Fig. 4(b) and (c), one can conclude that
the minimum resolution for DACy and the ADC are 6b and 3b, respectively.

Figure 5 represents the second step of our analysis, in which the resolution of
all the data converters have been limited to the values discussed above. Based
on these results, the performance of the proposed MCMC detector, which is
utilizing a realistic model for the data converters, is very close to those reported
in Figs. 4(a), (b) and (c).

4 Circuit Level Simulations

This Section demonstrates circuit-level implementations and simulation results
for the proposed detector shown in Fig. 2.

Figure 6 shows the merged DACA, DACy, and the multiplier for producing
the error vector, e. Current mode logic (CML) based circuits have been used to
simplify the design, and also make it possible to linearly operate at very high fre-
quencies with a low level of consumption and complexity [12–16]. While DACA

and multiplier are shown in the right-hand side of the schematic (Fig. 6), the pro-
grammable differential pair at the left-hand side represents DACy. Current-mode

26 A. Aghighi et al.

Fig. 4. BER versus SNR while sweeping (a) DACA resolution, (b) DACy resolution,
and (c) ADC resolution.

DAC architecture has been used to simplify the multiplication and summation
operations. Depending on sign of b values, the output of DACA is multiplied
by “+1” or “−1”. The outputs of the N parallel DACs are shorted properly to
implement a summer, as required in (3).

The consumption of the DACs depends on the resolution as well as their
speed of operation. In order to make sure that the DACs can operate properly
at the desired clock frequency, the time constant at the output node should be
chosen carefully:

Mixed-Mode Signal Processing for Implementing MCMC MIMO Detector 27

Fig. 5. BER versus SNR when including all the data converters.

Fig. 6. DACA merged with multiplier and DACy for producing the e function for each
channel.

RL < 1/(2πCL,DAC × 5fbit) (6)

where CL,DAC is the DAC load capacitance, and fbit is the input bit frequency.
Here, a factor of five is considered to assure settling with an error of less than
1%. The maximum DAC output swing will be achieved when all of the binary-
weighted current sources are turned on in all of the N + 1 parallel DACs on each
channel. Since there are a total of 26 − 1 copies of the unit current source for
each DAC, the minimum required unit current, Iunit, is equal to:

Iunit =
Vswing,sq

(26 − 1) × (N + 1) × RL,DAC
(7)

where, VSwing,sq is the squarer required input swing, and RL is the load resistance
determined by (6). Figure 7 represents the circuit level implementation of the
squarer block. Given that all of the devices work in the saturation region, and
assuming ideal long channel device characteristics, it can be shown that [17]:

ISQ = ID1 + ID2 = kV 2
id + 2IB (8)

28 A. Aghighi et al.

Fig. 7. Squarer circuit schematic.

Fig. 8. Input-output transfer characteristics of the simulated squarer circuit.

where, Vid is the input differential voltage, k = (W/L)μnCox and (W/L) is
the aspect ratio of T1 and T2. There should be N parallel squarer blocks in an
N×N MIMO system, their outputs combined to produce E. Hence, N squarer
output nodes have been shorted together to produce ISQ,total:

ISQ,tot = ISQ,1 + ISQ,2 + . . . ISQ,N (9)

and E:
E = e21 + e22 + · · · e2N = ISQ,tot × RL (10)

While having large M as the ratio between transistors T1/T2 to T3/T4
increases the squaring accuracy [17], a ratio of M = 4 provides enough accuracy
for our system. In order to prove this, the system is simulated while replacing
the ideal squarer by the transistor level circuit. Figure 8 shows the input-output
transfer characteristics of the squarer circuit with an ideal squarer, whose gain
is 4 [V/V]. The offset introduced by the last term in (8) can be removed by
comparing the output of the target circuit with a reference (replica) circuit. As
can be seen in Fig. 8, the maximum error is limited to about 25%.

Figure 9 compares the expected system performance with a system that uses
transistor-level squarer circuit. Here, a realistic model for all of the other build-
ing blocks including data converters has been included. Although we are using

Mixed-Mode Signal Processing for Implementing MCMC MIMO Detector 29

Fig. 9. System level simulation results with ideal and transistor level squarer circuit.

Fig. 10. StrongARM comparator used in the ADC implementation.

a replica circuit to eliminate the offset of the squarer circuit, system-level simu-
lations show that the absolute value of the offset does not influence the system
performance. Based on Fig. 9, the system performance with a transistor-level
model of the squarer circuit is consistent whit that of an ideal squarer.

A careful design procedure needs to be employed to minimize the energy con-
sumption of the circuit shown in Fig. 6, while the dynamic range is maintained.
Based on this design procedure, the size of the load resistance, RL, and the bias
current of the DAC unit cells can be determined.

The 3b ADC block in Fig. 2 has been implemented using a conventional flash
ADC structure, that employs StrongArm based comparator topology, shown in
Fig. 10. Since PVT variations affect the output swing of the squarer, two replicas
of the squarer are provided to determine the maximum and minimum reference
levels for the ADC. While one of the replicas mimics the squarer when input
swing is minimum, i.e., Vid = 0, the other replica produces the expected squarer
output swing with Vid = Vid,max = 180 mV. These two voltages are then utilized
to generate different reference levels for comparators using a resistor ladder.

30 A. Aghighi et al.

Table 1. Area and power consumption of the proposed MCMC detector.

DAC Squarer ADC DSP 1 Gibbs iteration

Power (mW) 3.87 1.6 0.84 1.0 7.3

Area (mm2) 0.012 0.0026 0.011 0.002 0.028

Power Share (%) 53.2 21.8 11.4 13.6 100

Area Share (%) 43.4 9.6 39.8 7.2 100

Table 2. Performance comparison with synthesized version in [2].

Proposed MCMC Synthesized version [2]

Technology (nm) 45 130

Power (mW) 7.3 N/A

Area (mm2) 0.028 0.37

Clock Freq. (MHz) 1000 620

Throughput per 62.5 38.75

Gibbs Sampler (Mbps)

Area Efficiency 0.21 0.56

mm2/(µm × Mbps)

5 Comparison and Discussion

This Section provides a high-level comparison between the proposed MCMC
detector and the state-of-the-art, especially synthesized version in [2], as well as
other MIMO detector implementations [18–21].

Table 1 reports the detailed occupied area and power consumption of the
proposed MCMC detector while considering biasing circuits and other auxiliary
blocks. Pessimistic parasitic capacitance estimation is also included to account
for routing and layout considerations. Based on the results in Table 1, the DAC
arrays have the biggest contribution in the total power consumption. In terms
of area, DACs and the ADC are the most dominant contributors. The entire
system of Fig. 2 consumes 7.3 mW, while occupying a core area of 0.028 mm2. It
is possible to omit DACy to reduce area and power consumption. Since we can
use the received analog data before digitizing in the RX chain prior to the DSP,
DACy can be easily removed for the future implementations.

The MCMC presented in [2] is implemented on an FPGA, which makes it
hard to have a detailed comparison with our proposed implementation. However,
they have synthesized their proposed detector in a 130-nm VLSI IBM process.
Therefore, we used their synthesized simulation results to compare it with that of
our proposed mixed-mode MCMC detector. Table 2 compares the performance
of the proposed MCMC detector with the synthesized version reported in [2]. For
a fair comparison, similar system parameters have been selected (e.g., through-
put per Gibbs sampler, which is defined as fclk/(NgsT)). It is assumed that

Mixed-Mode Signal Processing for Implementing MCMC MIMO Detector 31

Table 3. Performance Comparison with State-of-the-Art MIMO Detectors.

MIMO detectors [18] [19] [20] [21] Proposed detector

Detection algorithm LMMSE MMSE PIC Relaxed K-best MMF-LSD MCMC

Technology (nm) 65 90 130 180 45

Supply (V) 1.2 1.2 1.3 1.8 1.0

Clock Freq. (MHz) 400 568 270 250 1000

Throughput (Mbps) 600 757 8.57 31.7 235.3

SNR (dB) N/A 15 17.7 15.5 6.5b

BER N/A 1E-2 1E-3 1E-2 1E-5b

Area (mm2) 1.4 1.5 2.38 0.31 0.11

Power (mW) 266 189.1 94 56.5 29.44

Area efficiency 0.552 0.245 16.4 0.302 0.23

(mm2/(Mbps × µm2))

Power efficiencya 255.77 104.08 2920.6 247.5 125.11

(pJ/b)

Simulation (S)/ M M M M S

Measurement (M)
aNormalized to 45 nm technology bAfter FEC

T = Ngs = 4 for both cases. In addition, the area efficiency is defined to be the
ratio of the occupied area of each Gibbs sampler to the throughput per Gibbs
sampler. Proper scaling factors have been employed to convert power and area
between the two technologies. Based on Table 2, our proposed MCMC detector
area efficiency outweigh that of [2] by a factor of about 2.66. Unfortunately, there
is no power consumption reported for the implementation in [2].

Table 3 provides a performance comparison between the proposed mixed-
mode MCMC detector and some of the state-of-the-art MIMO detectors with
VLSI implementations. The throughput of the proposed MCMC detector is cal-
culated based on:

Throughput =
Nant × fclk

NCycles
(11)

where, Nant is the number of antennas, fclk is the clock frequency, and NCycles is
the total number of cycles which is equal to:

NCycles = (Ngs × Nant) + 1 (12)

Also, power efficiency (PE) for each reference is normalized to 45 nm tech-
nology as calculated by:

PE = Power × 1(V)
Supp.(V)

× 45(nm)
Tech.(nm)

× 1
Throughput

(13)

Although a crude comparison is provided in Table 3, the following points
should be considered for a more reasonable comparison:

32 A. Aghighi et al.

1) SNR: The reported detectors in Table 3 operate at higher SNR regime
which increases the throughput and reduces the achieved BER. Hence, working
at the same SNR as the MCMC detector (i.e., 6.5 dB [2]) may adversely affect
the throughput, power and area efficiency of such detectors.

2) BER: Higher BER means lower reliability of the detector and thus the sys-
tem. Therefore, working at different BER affects the power and area efficiency of
the system. Since the proposed MCMC detector provides soft decisions, its BER
can be improved using a FEC unit. Although FEC is not implemented in this work,
its power and area overhead is considered in the DSP unit. Based on [2], MCMC
detector with FEC can achieve a BER of 10−5 while SNR is only 6.5 dB. However,
the reported detectors in Table 2 are working at BER less than 10−3.

3) Adopted algorithm: Last but not least, the intention of this paper is to
introduce an alternative way for implementing MIMO detectors which reduces the
cost by moving the DSP design complexity to analog/mixed mode domain circuits.
In other words, this approach can be applied to other detection algorithms that
are more efficient than MCMC algorithm. For instance, multiplying is considered
as a complex arithmetic operation in DSP. However, it can be simply implemented
in analog domain using DACs. Almost every detection algorithm includes multi-
plication operation. Hence, the proposed approach can be utilized to reduce their
DSP complexity and thus, reduce the total system cost.

6 Future Works

The possible future works can be divided into two categories of algorithm-level
improvements and circuit-level improvements.

6.1 Algorithm-Level Improvements

In this paper, the proposed approach is applied to the conventional MCMC
algorithm that is discussed in [2]. However, this approach is also suitable for any
other algorithm that includes multiplication operations.

For instance, stochastic iterative MIMO (SIM) detector introduced in [22]
works based on the bit-flop MCMC method too. Comparing the hardware effi-
ciency of [22] with that of [2] shows a superior performance for [22] by a factor
of more than 5. While in conventional MCMC detector the Gibbs sample is
updated by the conditional probabilities calculated in the DSP of the detector,
SIM in [22] updates the Gibbs sampler directly using decoded bits from channel
decoder. Since the SIM works based on the bit-flop method as in the conven-
tional MCMC, the analog/mixed mode circuits working after DSP unit could
be more or less the same. In other words, by applying the same approach to
the DSP unit in [22] to move some of the complicated processes to the analog
domain, throughput of the system significantly improves as compared with this
paper.

Mixed-Mode Signal Processing for Implementing MCMC MIMO Detector 33

Fig. 11. Proposed charge-based architecture of the merged DAC-multiplier-summer
for future implementations.

6.2 Circuit-Level Improvements

As previously discussed, a crude and very primitive circuit solution is offered
here and can be improved by employing different circuit techniques and architec-
tures. Since DAC arrays have a big contribution to both total power consumption
and occupied area, more efficient DAC architectures are highly desirable. Hence,
moving to a charge redistribution-based DAC which is inherently high speed, can
significantly improve the efficiency of the system as compared with the current
CML-based DAC implementation.

Figure 11 shows the suggested charge-based implementation of the DAC
arrays to generate the e function for each channel. There are N copies of 6-
bit binary weighted cap array which convert the digital [A] for each channel
back to the analog domain. An extra switch for each capacitive bank is provided
to simply take care of the multiplication function. Another capacitive bank is
added to implement DACy in Fig. 2. Moreover, POL signal controls the summa-
tion polarity in (3) similar to the CML DACy in Fig. 6. Since the unit cap, Cu,
can be as small as 1 or 2 fF in a 6-bit DAC, total occupied area and power con-
sumption will be remarkably reduced as compared with the CML-based DACs.
Also, as discussed earlier in Sect. 5, DACy array can be neglected if the received
data is directly utilized before digitization prior to the DSP unit.

The currently employed CML-based architecture in Fig. 6 and the suggested
charge-redistribution-based DAC in Fig. 11 are calculating the e function based
on (3). As shown in both of these figures, N + 1 DAC arrays in each channel
are operating for N + 1 clock cycles to perform 1 Gibbs iteration. Hence, we
can define the switching activity (SA) based on the number of DACs that are
operating in each Gibbs iteration:

34 A. Aghighi et al.

Fig. 12. Switching activity reduction factor (SARF) versus number of channels in an
N ×N MIMO system.

SAconv = (N + 1)(DAC) × N(channel) × (N + 1)cycles
= N × (N + 1)2

(14)

where, SAconv shows the switching activity of the charge-redistribution-based
DAC in Fig. 11. However, based on (4), finding [e](k)with k > 1 is simply the
addition of [e](k−1) and the second term in (4). Given that generating the second
term in (4) requires only one DAC per channel, it is feasible to turn off all other
N DACs in each channel for K > 1 by utilizing a sample and hold (S/H) circuit.
Hence, a S/H circuit which is easily compatible with charge-redistribution-based
DAC, can be employed to hold the value of [e](k−1) for [e](k) calculation and
significantly improve the system power efficiency. In other words, except for the
first clock in which N + 1 DACs are operating in each channel, the next N
cycles only need one DAC per channel to calculate the error function based on
the stored value in S/H circuit. Therefore:

SAS/H(i) =

{
(N + 1)(DAC) × N(channel) if i = 1
1(DAC) × N(channel) if i = 2, 3, ..., N + 1

(15)

where, SAS/H(i) shows the switching activity of the charge-redistribution-based
DAC with S/H for ith clock cycle. Considering all of the N + 1 cycles, SAS/H

for 1 Gibbs iteration is equal to:

SAS/H = N × (2N + 1) (16)

In order to compare SAconv and SAS/H , we can define the switching activity
reduction factor (SARF) as follows:

Mixed-Mode Signal Processing for Implementing MCMC MIMO Detector 35

SARF =
SAconv

SAS/H
=

(N + 1)2

2N + 1
(17)

As shown in Fig. 12, employing a S/H with the charge-redistribution-based
DAC of Fig. 11 significantly reduces the switching activity in an N × N MIMO
system by increasing the number of channels. It should be noted that the number
of channels does not necessarily represent the number of antennas in a MIMO
system. In fact, the effective number of channels can be increased using different
types of modulations such as 16/64/256-QAM.

7 Conclusion

An analog/mixed-mode approach for designing MCMC MIMO detectors is pre-
sented. The proposed system relaxes some of the complexities in the design of
conventional digital detectors, especially by moving some high-speed operations
to analog domain. While the proposed system consumes 29.3 mW, the pro-
posed detector operates at 1 GHz clock frequency. Achieving a throughput of
235.3 Mbps, the circuit occupies 0.11 mm2 Silicon area (estimated). Moreover,
a charge-redistribution-based implementation is presented for future works that
can significantly enhance the power and area efficiency of the current implemen-
tation. The proposed approach can be applied for implementing similar process-
ing systems in which speed and energy efficiency are the concerns.

References

1. Foschini, G.J. : Layered space-time architecture for wireless communication in a
fading environment when using multi-element antennas. Bell Labs Tech. J. 1, 41–59
(1996). https://doi.org/10.1002/bltj.2015

2. Laraway, S.A., Farhang-Boroujeny, B.: Implementation of a Markov chain Monte
Carlo based multiuser/MIMO detector. IEEE Trans. Circuits Syst. I Regular
Papers 56(1), 246–255 (2008). https://doi.org/10.1109/TCSI.2008.925891

3. Verdu, S.: Minimum probability of error for asynchronous Gaussian multiple-access
channels. IEEE Trans. Inf. Theory 32(1), 85–96 (1986). https://doi.org/10.1109/
TIT.1986.1057121

4. Zhu, H., Shi, Z. and Farhang-Boroujeny, B.: MIMO detection using Markov chain
Monte Carlo techniques for near-capacity performance. In: Proceedings. (ICASSP
2005). IEEE International Conference on Acoustics, Speech, and Signal Processing,
vol. 3, p. 1017 (2005). https://doi.org/10.1109/ICASSP.2005.1415885

5. Farhang-Boroujeny, B., Zhu, H., Shi, Z.: Markov chain Monte Carlo algorithms
for CDMA and MIMO communication systems. IEEE Trans. Sig. Process. 54(5),
1896–1909 (2006). https://doi.org/10.1109/TSP.2006.872539

6. Hedstrom, J.C., Yuen, C.H., Chen, R., Farhang-Boroujeny, B.: Achieving near
MAP performance with an excited Markov chain Monte Carlo MIMO detector.
IEEE Trans. Wirel. Commun. 16(12), 7718–7732 (2017). https://doi.org/10.1109/
TWC.2017.2750667

https://doi.org/10.1002/bltj.2015
https://doi.org/10.1109/TCSI.2008.925891
https://doi.org/10.1109/TIT.1986.1057121
https://doi.org/10.1109/TIT.1986.1057121
https://doi.org/10.1109/ICASSP.2005.1415885
https://doi.org/10.1109/TSP.2006.872539
https://doi.org/10.1109/TWC.2017.2750667
https://doi.org/10.1109/TWC.2017.2750667

36 A. Aghighi et al.

7. El Gamal, H., Hammons, A.R.: A new approach to layered space-time coding and
signal processing. IEEE Trans. Inf. Theory 47(6), 2321–2334 (2001). https://doi.
org/10.1109/18.945250

8. Aghighi, A., Farhang-Boroujeny, B. and Tajalli, A.: Energy and area efficient
mixed-mode MCMC MIMO detector. In: 2020 IFIP/IEEE 28th International Con-
ference on Very Large Scale Integration (VLSI-SOC), Salt Lake City, UT, USA,
pp. 105–110 (2020). https://doi.org/10.1109/VLSI-SOC46417.2020.9344098

9. Auras, D., Deidersen, U., Leupers, R., Ascheid, G.: A parallel MCMC-Based MIMO
detector: VLSI design and algorithm. In: Claesen, L., Sanz-Pascual, M.-T., Reis, R.,
Sarmiento-Reyes, A. (eds.) VLSI-SoC 2014. IAICT, vol. 464, pp. 149–169. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25279-7 9

10. Deidersen, U., Auras, D., Ascheid, G.: A parallel VLSI architecture for Markov
chain Monte Carlo based MIMO detection. In: Proceedings of the 23rd ACM Inter-
national Conference on Great Lakes Symposium on VLSI, pp. 167–172 (2013).
https://doi.org/10.1145/2483028.2483084

11. Tribble, S.D. : Markov chain Monte Carlo algorithms using completely uniformly
distributed driving sequences. Ph.D. thesis, Stanford University (2007)

12. Aghighi, A., et al.: CMOS amplifier design based on extended GM/ID methodology.
In: 2019 17th IEEE Int. New Circuits and Systems Conference (NEWCAS), pp.
1–4 (2019). https://doi.org/10.1109/NEWCAS44328.2019.8961308

13. Atkinson, J., Aghighi, A., Anderson, S., Bailey, A., Crane, M., Tajalli, A.: Multi-
stage current-steering amplifier design based on extended GM/ID methodology.
In: 2019 IEEE 62nd International Midwest Symposium on Circuits and Sys-
tems (MWSCAS), pp. 129–132 (2019). https://doi.org/10.1109/MWSCAS.2019.
8885313

14. Aghighi, A., Tabib-Azar M., Tajalli, A.: An ULP self-supplied brain interface cir-
cuit. In: 2020 IFIP/IEEE 27th International Conference on Very Large Scale Inte-
gration (VLSI-SOC), Salt Lake City, UT, USA, pp. 100–104 (2020). https://doi.
org/10.1109/VLSI-SOC46417.2020.9344092

15. Aghighi, A., Alameh, A.H., Taherzadeh-Sani, M., Nabki, F.: A 10-Gb/s low-power
low-voltage CTLE using gate and bulk driven transistors. In: IEEE International
Conference on Electronics, Circuits and Systems (ICECS), pp. 217–220 (2016).
https://doi.org/10.1109/ICECS.2016.7841171

16. Aghighi, A., Tajalli, A., Taherzadeh-Sani, M.: A low-power 10 to 15 Gb/s common-
gate CTLE based on optimized active inductors. In: 2020 IFIP/IEEE 27th Inter-
national Conference on Very Large Scale Integration (VLSI-SOC), Salt Lake
City, UT, USA, pp. 100–104 (2020). https://doi.org/10.1109/VLSI-SOC46417.
2020.9344076

17. Gerosa, A., Soldà, S., Bevilacqua, A., Vogrig, D., Neviani, A.B.: An energy-detector
for noncoherent impulse-radio UWB receivers. IEEE Trans. Circuits Syst. I Regular
Papers 56(5), 1030–1040 (2009). https://doi.org/10.1109/TCSI.2009.2016125

18. Chen, X., et al.: Flexible, efficient multimode MIMO detection by using recon-
figurable ASIP. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 23(10),
2173–2186 (2014). https://doi.org/10.1109/TVLSI.2014.2361206

19. Studer, C., Fateh, S., Seethaler, D.: ASIC implementation of soft-input soft-
output MIMO detection using MMSE parallel interference cancellation. IEEE J.
Solid-State Circuits 46(7), 1754–1765 (2011). https://doi.org/10.1109/JSSC.2011.
2144470

20. Chen, S., Zhang, T., Xin, Y.: Relaxed K-best MIMO signal detector design and
VLSI implementation. IEEE Trans. Very Large Scale Integration (VLSI) Syst. Reg-
ular Papers 15(3), 328–337 (2007). https://doi.org/10.1109/TVLSI.2007.893621

https://doi.org/10.1109/18.945250
https://doi.org/10.1109/18.945250
https://doi.org/10.1109/VLSI-SOC46417.2020.9344098
https://doi.org/10.1007/978-3-319-25279-7_9
https://doi.org/10.1145/2483028.2483084
https://doi.org/10.1109/NEWCAS44328.2019.8961308
https://doi.org/10.1109/MWSCAS.2019.8885313
https://doi.org/10.1109/MWSCAS.2019.8885313
https://doi.org/10.1109/VLSI-SOC46417.2020.9344092
https://doi.org/10.1109/VLSI-SOC46417.2020.9344092
https://doi.org/10.1109/ICECS.2016.7841171
https://doi.org/10.1109/VLSI-SOC46417.2020.9344076
https://doi.org/10.1109/VLSI-SOC46417.2020.9344076
https://doi.org/10.1109/TCSI.2009.2016125
https://doi.org/10.1109/TVLSI.2014.2361206
https://doi.org/10.1109/JSSC.2011.2144470
https://doi.org/10.1109/JSSC.2011.2144470
https://doi.org/10.1109/TVLSI.2007.893621

Mixed-Mode Signal Processing for Implementing MCMC MIMO Detector 37

21. Myllyla, M., Cavallaro, J.R., Juntti, M.: Architecture design and implementation
of the metric first list sphere detector algorithm. IEEE Trans. Very Large Scale
Integration (VLSI) Syst. 19(5), 895–899 (2010). https://doi.org/10.1109/TVLSI.
2010.2041800

22. Chen, J., Hu, J., Sobelman, G.E.: Stochastic iterative MIMO detection system:
algorithm and hardware design. IEEE Trans. Circuits Syst. I Regular Papers 62(4),
1205–1214 (2015). https://doi.org/10.1109/TCSI.2015.2390558

https://doi.org/10.1109/TVLSI.2010.2041800
https://doi.org/10.1109/TVLSI.2010.2041800
https://doi.org/10.1109/TCSI.2015.2390558

Low Power Current-Mode Relaxation
Oscillators for Temperature and Supply

Voltage Monitoring

Shanshan Dai1, Caleb R. Tulloss2, Xiaoyu Lian1, Kangping Hu1,
Sherief Reda1, and Jacob K. Rosenstein1(B)

1 Brown University, Providence, RI 02912, USA
jacob rosenstein@brown.edu

2 Columbia University, New York, NY 10027, USA

Abstract. This chapter presents a family of current-mode relaxation
oscillators that can be designed either as a compensated digital clock
source, or as an oscillator-based sensor whose frequency reports the tem-
perature or supply voltage. One compensated timer implementation in
0.18 µm CMOS achieves a figure of merit of 120 pW/kHz, making it one
of the most efficient relaxation oscillators reported to date. The oscilla-
tor design is then extended to produce a VDD-controlled oscillator and
a temperature-controlled oscillator. Finally, we introduce a low-power
hybrid oscillator sensor, which encodes measurements of both the supply
voltage and temperature into the durations of its two alternating digital
clock phases. The underlying dual-phase current-mode relaxation oscil-
lator and the resulting sensor circuits are easy to implement, are area-
and energy-efficient, and offer straightforward power and speed tradeoffs
for a wide range of applications.

Keywords: relaxation oscillator · low power · temperature sensor ·
supply voltage sensor

1 Introduction

Timers, temperature sensors, and supply voltage monitors are fundamental com-
ponents of nearly all microelectronic systems. At the low-power end of the spec-
trum, small embedded sensors are constrained by battery capacity or unpre-
dictable environments, and they must make the most of limited sources of energy
[1,2]. At the high-performance end, servers rely on temperature and voltage
monitors to maximize performance and power efficiency, while balancing com-
putational loads, scaling voltage and frequency, and avoiding overheating.

Some of the constraints in microelectronic devices are fundamentally thermal
limits. Implantable medical devices, despite their comparatively low power, are
often constrained to only a few degrees of heating to avoid damaging the sur-
rounding biological tissue [3]. In higher power CPUs and GPUs, power dissipation

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 39–63, 2021.
https://doi.org/10.1007/978-3-030-81641-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_3

40 S. Dai et al.

is non-uniformly distributed, and localized hot spots can deviate significantly in
temperature compared to other areas of the chip, exposing some areas of the device
to potential hardware failure and reduced lifespan.

Other limitations come down to timing. Low-power devices often spend much
of their time in idle modes to conserve energy, and as a result a large fraction
of their total energy consumption may come from circuits like wake-up timers.
There are important tradeoffs between precision, power, and area in low-power
oscillators. Meeting timing specification is also clearly a main design constraint in
high-performance systems, where logic timing is a function of local variations in
process, supply voltage, and temperature, and there is always a tension between
power efficiency and operating margin. Minimizing the area and energy associ-
ated with monitor circuits is key to supporting sensing at high spatial resolution
with minimal cost and interference [4,5].

The architect and designer Frank Lloyd Wright once said, “Simplicity and
repose are the qualities that measure the true value of any work of art.” A
similar philosophy can apply to power optimization in microelectronic circuits.
Simpler circuits often use fewer transistors, reducing power. Keeping circuits
in repose by minimizing their activity also improves efficiency. Although there
are numerous potential strategies for performance improvements, if the aim is
for straightforward design and reliability, beauty can often be found in small,
simple, and low-power circuit solutions.

This chapter begins with a description of a low-power current-mode relax-
ation oscillator [6]. The oscillator is initially introduced with the goal of constant
frequency across temperature and supply voltage. Then, we illustrate how the
oscillator can be modified to use a reference voltage intentionally sensitive to
either temperature or supply voltage [7]. Three sensor designs are proposed: one
dedicated temperature sensor, one dedicated supply voltage sensor, and a hybrid
sensor that senses both temperature and supply voltage in two alternating phases
of one oscillator.

The circuits proposed here have the benefit of extremely low design complex-
ity. There are only four key parameters (W and L of a key transistor, Iref , and
C) in the sensor design, which can be easily scaled to achieve speed and power
trade-offs for different applications, while maintaining state-of-the-art perfor-
mance. With a temperature sensor core area of 0.003 mm2 and a supply voltage
sensor core area of 0.005 mm2, the two dedicated sensors have conversion ener-
gies of 0.28 and 0.35 nJ/conv respectively, each achieving the lowest conversion
energy in its class.

Section 2 introduces the ultra-low-power and compact relaxation oscillator
topology [6], and in Sect. 3 we extend the structure to design standard cells for
temperature and supply-voltage monitoring. Section 4 describes two schemes for
converting the analog oscillator period and duty cycle information to a digital
readout. We then discuss suitable reference current generation for the oscillator,
and Sect. 5 introduces a modified bandgap current reference. Section 6 highlights
key design considerations, and analyzes the anticipated performance limitations.
Specifically, we analyze transistor switching delays and sources of nonlinearity,

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 41

which are key to building more accurate sensor designs based on relaxation oscil-
lators. Section 7 presents experimental results from three sensor designs imple-
mented in a standard 0.18 µm CMOS process, and Sect. 8 concludes the chapter.

2 Dual-Phase Current-Mode Relaxation Oscillator

2.1 Operation Description

Fig. 1. A dual-phase current-mode relaxation oscillator [6].

Figure 1 shows a dual-phase current-mode relaxation oscillator described in [6].
In this circuit, M2–M4 are matched transistors. Two identical capacitors C1
and C2 are alternately charged by Iref and reset to ground as dictated by the
complementary output clocks Q and Q, which are generated by a set-reset (SR)
latch.

As illustrated by the timing diagram in Fig. 1, when Q = 1 and Q = 0,
VC2 and node S at the drain of M4 are reset to ground. The voltage on C1 is
charged up with a slope of (Iref/C1). Meanwhile, biased with Iref , M3 compares
VC1 with the reference voltage (Vref = Iref · Rref) and provides an amplified
difference to the R node. Once the voltage on the R node reaches the latch’s
threshold voltage, the SR latch changes its state to Q = 0 and Q = 1. In this
state, there is no current flowing through M3 and C1, and Iref biases M4 while
charging C2. The oscillation period can be expressed as:

T = 2
(

Vref

Iref/C
+ tsw + τSR

)

= 2 (τRC + tsw + τSR) , (1)

where C1 = C2 = C, τRC = RrefC. τSR stands for the digital delay of SR
latch. In low-power applications, current starving can be employed to reduce the
dynamic power consumption of the SR latch.

42 S. Dai et al.

Power and Design Notes: Since the same devices and current are reused for
both the comparator bias and capacitor charging, source-coupled comparators
such as this one can be highly power and area efficient [8]. To adjust the power,
area, and accuracy for different applications and/or clock speeds, one can simply
modify Iref , C, and the dimensions of M2-M4.

Oscillator Period Components: The first component τRC and the third compo-
nent τSR are straightforward to interpret: τRC is the time required for C1 or C2
to reach Vref from ground, and τSR is the digital delay of the SR latch after
node S or R reaches the switching/triggering point of the SR latch.

The second component tsw is relatively more complicated. In general, when
the current charges the capacitor to Vref , the voltage on node S or R is not high
enough to switch the SR latch. Therefore tsw is the delay between the capacitor
voltage reaching Vref and node S/R reaching the switching point of the SR
latch. tsw is affected by the finite comparator transistor gain and the parasitic
capacitance at node S or R, so we call tsw the comparator delay. Due to the
second component tsw and the third component τSR, the final voltage on the
capacitor ends up being higher than the reference voltage Vref .

In Sect. 6, the oscillation period is analyzed using the current-split model.
The idea is that a portion of Iref is used to charge up the capacitor C while the
rest is charging up the parasitic capacitance on node S or R, until node S or R
switches the SR latch. For more technique details for more accurate oscillator
design, we refer the reader to Sect. 6.

2.2 Oscillator Variations and Extensions

In Fig. 1, the resistor Rref creates a reference voltage that is approximately
constant. For other applications, it is possible to replace this fixed reference
voltage with a voltage corresponding to a measurement quantity of interest,
creating a voltage-controlled oscillator.

However, one obstacle to the extension of this structure is the finite input
impedance at the node Vref , looking into the source of M2. Supposing that there
is a voltage sampled at a capacitor, we would like to generate a voltage-controlled
frequency by connecting this sampling capacitor to the source node of M2. But
this voltage will be quickly corrupted by the bias current flowing into M2 due
to the resistive path at its source node. Instead, we want a constant voltage at
the source node of M2, regardless of the loading effect.

Figure 2 addresses this limitation by adding a high-impedance unity-gain
buffer which replicates VIN at Vref , in an arrangement which also reuses M2’s
bias current. It can be viewed as an amplifier whose inputs are at the gates of
M5-M6, and whose output is the drain node of M6. This amplifier is connected
as a voltage follower, so that its output is regulated to be approximately equal
to VIN , assuming a reasonable loop gain. The open-loop gain A0 of the amplifier
made by M5-M6, M1-M2 and M7-M8 is:

A0 = gm5/6[rds6 || (1/gm2 + rds8)], (2)

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 43

Fig. 2. Proposed voltage-controlled oscillator. VIN is buffered and replicated in place
of Vref , producing an oscillation period proportional to VIN .

where gm2 and gm5/6 are the transconductances of M2 and M5/M6, and rds6
and rds8 are the drain-to-source resistances of M6 and M8, respectively. The
static current consumption of the voltage sensor in Fig. 2 is 3 × Iref . Thanks
to the current reuse, the current addition is only one Iref compared with the
current-mode relaxation oscillator shown in Fig. 1.

The period of this voltage-controlled oscillator can be expressed as:

τVIN
= 2

(
VIN

Iref/C
+ tsw + τSR

)
(3)

If tsw and τSR are small, the period in (3) becomes linearly proportional to the
in voltage, providing a time-encoded measurement of VIN .

Now that VIN is buffered, we can connect it to an arbitary sampled voltage,
either from a resistive voltage divider or a sampling capacitor. Section 3 details
three possible extentions realizing temperature and/or supply voltage sensing.

3 Temperature and Supply Voltage Sensing

3.1 Supply Voltage Sensing

As shown Fig. 3, a natural step towards a supply-voltage-controlled oscillator
would be to create VIN by a simple voltage division from VDD, employing the
configuration described in Fig. 2. The period of the supply-voltage-controlled
oscillator is:

τVIN
= 2

(
2/5VDD

Iref/C
+ tsw + τSR

)
(4)

44 S. Dai et al.

Fig. 3. Proposed voltage sensor.

The first term in (4) dominates the oscillation period because the comparator
delay tsw and the digital delay τSR are much faster than charging C to 2*VDD/5.
The period in (4) becomes linearly proportional to the supply voltage, providing
a time-encoded measurement of VDD.

Design Notes and Example: To trade off between power, area, and accuracy,
the circuit designer can tune the three key parameters in this supply voltage
sensor, Iref , C, and the dimensions of M1-M4, to meet different specifications.
Taking a µW supply-voltage sensor operating around 10 MHz for example, Iref is
2.1 µA and C is 50 fF. Transistors M2-M4 have W/L = 3 µm/1 µm, operating
in the subthreshold region for high gm/ID (transconductance efficiency). For
the other design parameters, M5-M6 have W/L = 5 µm/1 µm, and operate
in subthreshold, while M7-M8 have W/L = 2 µm/4 µm and operate in strong
inversion.

3.2 Temperature Sensing

Biased with a constant current Iref , a forward-biased diode has a voltage Vdiode

with a complementary to absolute temperature (CTAT) coefficient, due to the
exponential temperature dependence of its reverse saturation current Is:

Vdiode(T) =
kT

q
ln

(
Iref
Is(T)

)
, (5)

where T is the absolute temperature, k is Boltzmann’s constant, and Vdiode is
on the order of several hundred millivolts.

Considering the fact that both the diode and M2 can be biased by the same
reference current, a low-power temperature sensor can be readily implemented

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 45

Fig. 4. Proposed temperature sensor. By replacing Vref with Vdiode, a temperature-
dependent oscillation is obtained.

by replacing Rref with a forward-biased diode from Fig. 1, as redrawn in Fig. 4.
Now the period of this relaxation oscillator becomes:

τtemp = 2
(

Vdiode

Iref/C
+ tsw + τSR

)
(6)

Since the first term in (6) dominates the oscillation period, the oscillation period
will reflect the diode’s sensitivity to temperature. Excluding bias generation, the
static current consumption of this temperature sensor is 2Iref .

Design Example: To implement a µW temperature sensor operating at a speed
around 10 MHz, Iref , C, and the M2-M4 dimensions can be assigned the same
values as those in the supply-voltage sensor design.

3.3 Hybrid Oscillator Sensing both Temperature and Supply
Voltage

For ultra-low power applications like radio-frequency identification (RFID)
tags which need both temperature and supply voltage monitoring, we can save
power by combining the two sensors into one.

Figure 5(a) presents a conceptual diagram, containing two halves: the left half
has an input of 1/4VDD generated from a voltage divider, and the input to the
right half comes from the complementary-to-absolute-temperature (CTAT) volt-
age of a forward-biased diode. As a result, the digital output Q will be modulated
by both the temperature and the supply voltage. The detailed transistor-level
schematic is drawn in Fig. 5(b). Four identical PMOS transistors in series from
VDD to ground form a supply voltage divider. To minimize power, a small W/L
ratio is chosen for these four devices, which ensures that the current of the volt-
age divider is much less than Iref ; additionally, the high impedance combined
with the gate capacitance of M5 helps to filter out high-frequency supply noise.

46 S. Dai et al.

Fig. 5. Proposed structure for a hybrid oscillator which senses both supply voltage and
temperature (a) conceptual and its timing diagram, (b) transistor-level schematic.

Compared with two separate temperature and VDD sensors, this hybrid oscilla-
tor saves half of the dynamic power and reduces static current consumption by
Iref .

The logic “high” and “low” durations of the digital output Q are linearly
proportional to VDD and temperature, respectively. If tsw and τSR are negligible,
then

τhigh ≈ 1/4 VDD

Iref/C
(7)

τlow ≈ Vdiode

Iref/C
(8)

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 47

Design Notes: Some very careful readers may ask: why is the gate voltage of
M5 1/4VDD in Fig. 5 but 2/5VDD in Fig. 3? In order to make the unity-gain
operational amplifier work, the gate voltage of M5 has to provide a gate-to-source
voltage drop for M5, plus enough headroom for the 2Iref current source beneath
M5, which operates in the saturation region. We apply the circuit described in
Fig. 5 to the ultra-low power domain. With Iref on the nA level, the gate-to-
source voltage of M5 is lower than with a µA level bias current, so the required
M5 gate voltage is lower.

As a parameter example for a nanowatt hybrid sensor operating at several
tens of kHz and nanowatts, Iref is set to be 6 nA and C to be 50 fF. Transistors
M2-M4 have a dimension of W/L = 1 µm/3 µm.

4 Readout Circuit

When integrating the sensors in a System-on-Chip (SoC), a readout circuit is
required to digitize the analog time information using a reference clock. There are
two approaches to the frequency-to-digital conversion, depending on the relative
reference clock speed.

With a reference clock faster than the sensor clock, the first approach is to
count the fast reference clock cycles during N slow sensor cycles (N = 256).
As depicted in Fig. 6, after N slow sensor cycles, the time-to-digital converter
sends a DONE signal to latch the reference clock counting for DATA readout.
Meanwhile, it clears the reference clock counter for the next round of conversion.
This approach has a quick conversion time at the expense of high dynamic power
due to the fast reference clock.

Fig. 6. Frequency-to-digital conversion scheme used to digitize the sensor outputs,
when the reference clock is much faster than the sensor clock.

The second approach is to count the sensor cycles during a fixed number (N)
of reference clock cycles, when the reference clock is slower than the sensor clock.

48 S. Dai et al.

To implement this method, we can just swap the connections of the reference
and sensor clock in Fig. 6. This approach is generally applied to ultra low power
systems, where the reference clock is typically slow to reduce the power budget.

One similarity shared by the two approaches is that between the sensor clock
and reference clock, a faster clock is counted during a fixed number (N) of the
slower clock cycles. For the dedicated supply voltage and temperature sensors in
Fig. 3 and Fig. 4, we can use either fast or slow reference clocks, depending on
the data-conversion speed requirement.

Fig. 7. Modification of the frequency-to-digital conversion scheme to digitize the hybrid
sensor output.

For the hybrid sensor in Fig. 5, we have to measure the logic high and logic
low duration separately with a fast reference clock, in order to obtain the temper-
ature or supply voltage information, respectively. Figure 7 illustrates measure-
ment of the sensor clock’s logic phase. An AND gate enables the fast reference
clock counting only during sensor logic high. Similarly, to measure the logic low
duration, we can replace the AND gate with an OR gate.

5 Reference Current Generation

In Fig. 1, 2, 3, 4 and 5, does Iref have to be a bandgap reference current insen-
sitive to supply voltage and temperature (PVT)? Let us only consider the dom-
inant term in each oscillation period, with the assumption that the comparator
delay tsw and the SR latch delay τSR are much smaller.

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 49

For a Resistor-Capacitor (RC) relaxation oscillator, its linear component is:

Trelx osc,linear = 2 × Vref

Iref/C
= 2 × Iref · R

Iref/C
= 2 × RC (9)

We can see that the reference current Iref is cancelled out, leaving only RC.
In other words, Iref does not have to be a PVT insensitive current to keep the
linear dominant period components constant. In fact, a proportional-to-absolute-
temperature (PTAT) current can bias the RC relaxation oscillator, while keeping
a constant oscillation frequency over temperature and supply voltage, as in [6].

When it comes to the supply voltage and temperature sensor, Eq. (7) and
(8) tell us that a constant reference current Iref is required in order to make the
period component linear with VDD or Vdiode.

Fig. 8. A compact and easy-to-design bandgap current reference modified from [9] with
removal of the operational amplifier. Copies of the reference current are created with
mirrors from MP2.

Figure 8 depicts a compact and easy-to-design bandgap current reference cir-
cuit. This circuit is modified from [9] with removal of the operational amplifier.
It places a resistor R1 in parallel with the diodes in order to reduce the mini-
mum supply voltage compared to a classical bandgap configuration. The identical
NMOS pair MN1-MN2 will regulate their source voltages to be equal. By select-
ing a proper ratio of R1 to R2 and a diode area ratio of N , one can generate a
temperature-independent current IBGR,

IBGR =
Vd

R1
+

ΔVd

R2
=

1
R1

(
Vd +

R1

R2

kT

q
ln N

)
, (10)

50 S. Dai et al.

where Vd is the voltage across the P+/N-well junction diodes, and ΔVd is the
difference between the two diodes’ forward voltages, which appears across R2.
Vd has a CTAT coefficient, while the second term is PTAT. Similar to other
bandgap circuits, the basic principle is to compensate a CTAT coefficient with
a weighted PTAT coefficient, by choosing the correct value of (R1/R2 × ln N) in
(10).

It is worth noting that the resistor temperature coefficient can affect the
temperature variation of IBGR. This could be addressed by implementing R1

and R2 with two series resistors having opposite temperature coefficients.

6 Design Considerations

The dominant linear component in the oscillation period represents the ideal
oscillation behavior. To design an accurate sensor, we have to suppress the non-
linear components in the oscillation period as much as possible. This section
takes a detailed look at these nonidealities, using the current-split model. The
expressions and delay model in this section apply to both constant frequency
oscillators and extended voltage or voltage sensors.

6.1 Delay Model of the Amplifying Transistor

Fig. 9. Current splitting when both the drain and source of M3 are ramping up.

As illustrated in Fig. 9, Iref splits into two branches. One branch Ichrg flows
into M3 to charge up the capacitor C while the remainder charges the parasitic
capacitance at the drain node of M3. The voltage change at the drain node of
M3, Δ(Vd,M3), can be written in terms of its charging current (Iref − Ichrg) and
the internal parasitic capacitance Cint:

Δ(Vd,M3) =
Iref − Ichrg

Cint
Δt (11)

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 51

If M3 has a gain of AM3, the voltage change at the drain node of M3, Δ(Vd,M3),
also equals the ramping rate on C amplified with AM3,

Δ(Vd,M3) = AM3 × Ichrg
C

Δt, (12)

we can use (11) and (12) to solve for Ichrg:

Ichrg =
Iref

1 + AM3Cint/C
(13)

Equation (13) tells us that the gain of M3 affects the current splitting. When
M3 works in the linear region, AM3,lin is small, and the denominator is approx-
imately 1. Thus almost all the Iref flows into M3 to charge up C (Iref ≈ Ichrg).
As M3 enters the saturation region, or AM3,sat is large, AM3,satCint becomes
comparable to C, and a fraction of Iref begins to charge up Cint. At this phase,
we could also say that Cint requires more current than C, since M3 is amplifying
the changes in VC . From the small-signal perspective, dV/dt at the output of
M3 could approach (AM3,sat × Iref/C) only if M3 had infinite bandwidth (no
Cint, and thus no current splitting). But in practice, Cint limits the bandwidth.

Fig. 10. The delay model and illustrated transition of the source-coupled amplifier
transistors (M3 and M4).

As shown in Fig. 10, the source voltage of M3 ramps up from zero until
its drain voltage reaches VSW , the switching threshold of the SR latch. We
divide the total period into two phases τ1 and τ2 based on the operation of
M3 (linear and saturation). We use the capacitor ramping voltage VC and M3
drain voltage Vd,M3, to calculate τ1 and τ2 respectively, as illustrated by the two
yellow segments in Fig. 10. We use Vd,M3 rather than VC to derive τ2, because
it is simpler to obtain the initial and final voltages of Vd,M3 during τ2.

During τ1, M3 is in the linear region, with its drain-to-source voltage below
Vdsat. Here M3 operates as a resistor, and initially the drain of M3 (Vd,M3)

52 S. Dai et al.

directly follows the capacitor voltage VC . The gain AM3,linear is small, and the
voltage is charging at a rate of Iref/C based on (13).

This first phase ends when the drain-to-source voltage of M3 equals Vdsat,
which corresponds to a capacitor voltage VC,sat. The duration of the first phase
τ1 can be derived as:

τ1 =
VC,sat

Iref/C
(14)

In order to derive τ1, we need to find VC,sat, the capacitor voltage at which M3
enters saturation.

At the end of τ1, M2 and M3 form a differential amplifier, whose input
voltage is the difference between the two source voltages and whose output is the
difference between the two drain voltages. Their source and drain node voltages
at the end of τ1 are described in Table 1.

Table 1. Node voltages at the end of τ1.

Transistor Source Drain

M2 VIN VIN + Vgs,M2

M3 VC,sat VC,sat + Vdsat

Given that the gain of M3 is AM3,sat, VC,sat can be obtained from:

AM3,sat(VIN − VC,sat) = VIN + Vgs,M2 − VC,sat − Vdsat, (15)

where (VIN −VC,sat) on the left is the source voltage difference between M2 and
M3, and the expression on the right is the drain voltage difference of M2 and
M3, the amplifier’s output. We can use Eq. (15) to solve for VC,sat, and from
there solve for τ1 using Eq. (14).

During τ2, M3 operates in the saturation region, amplifying the voltage differ-
ence between the two source voltages VIN and VC , and current splitting occurs.
The drain voltage of M3, Vd,M3, is (Vdsat + VC,sat) at the start of τ2 and slews
to VSW , at a rate of (AM3,satIchrg/C), to trigger the SR latch, as illustrated by
the second yellow segment line in Fig. 10. From (13), the total time of the second
phase τ2 is:

τ2 =
VSW − (Vdsat + VC,sat)

AM3,satIchrg/C

=
VSW − (Vdsat + VC,sat)

AM3,satIref/(C + AM3,satCint)
(16)

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 53

Substituting the expression of VC,sat obtained from (15) into τ1 and τ2 in
(14) and (16), we can reach to the overall oscillation half-period:

τ1 + τ2 =
VIN

Iref/C
+

VSW − Vdsat − VIN

Iref/Cint

+
VSW − Vgs,M2 − VIN

AM3,satIref/C
+

Vgs,M2 − Vdsat

(AM3,sat − 1)Iref/Cint
(17)

The last term in (17) is negligible, because its ratio to the first term is on the
order of (1

AM3,sat
· Cint

C) assuming VIN and (Vgs,M2 − Vdsat) have the same order
of magnitude. In a sensor design example at the 0.18µm CMOS process node,
AM3,sat is about 100, C is 50 fF and Cint is <5 fF. Thus, the last term contributes
less than 0.1% to the overall conversion time. Similarly, the contributions of the
second and third terms can be justified numerically by substituting AM3,sat and
Cint into their ratios to the first term. Moreover, the contribution of the second
term can be further reduced by decreasing |VSW − Vdsat − VIN |. We can achieve
this reduction by adjusting the transistor dimensions of NOR gates in the SR
latch (VSW adjustment).

6.2 Curvature Error/Nonlinearity

In (17), the first term describes the ideal behavior, in which the oscillation period
τ1 + τ2 is linear with VIN , and VIN can represent a resistor voltage, temperature
or supply voltage. The second and third terms highlight important sources of
nonlinearity.

In this subsection, we can begin to understand the nonlinearity of the oscilla-
tion period by building an expression for errors in (17) in terms of several partial
derivatives, and then considering the magnitude and temperature dependence of
each term, assuming that VIN is ideal:

Δ(τ1 + τ2) ≈ −VIN

I2ref/C
· ΔIref

+
1

Iref/Cint
· Δ(VSW − Vdsat − VIN)

+
1

Iref/C
· Δ

[
VSW − Vgs,M2 − VIN

AM3,sat

]
(18)

The first term in this expansion approximates the sensitivity to errors in Iref .
When analyzing the other terms in (18), Iref is assumed constant.

Since Cint has minimal temperature and voltage dependences [8], the second
error term will vary primarily with the switching threshold VSW . For the SR
latch design, we suggest adding current sources (mIref) on top of the PMOS
devices in series with VDD to limit the peak dynamic current, which is also
called current starvation. Using this technique will make VSW more robust to the
supply voltage variation. Assuming subthreshold operation near the switching
threshold, VSW can thus be formulated as:

54 S. Dai et al.

Fig. 11. Simulated switching threshold of the SR latch versus temperature.

VSW = ηVT ln
(

mIref
V 2
TµCox(W/L)n,SR

)
+ VTH,n (19)

This expression predicts that VSW will be complementary to absolute tempera-
ture, as plotted in Fig. 11. Assuming M2 and M3 are also subthreshold, Vgs,M2

follows (19) and the gain of M3 is:

AM3,sat = gm3rds,m3 =
VA

ηVT
, (20)

where VA is the early voltage (which has minimal temperature dependence), η
is the subthreshold slope factor, and VT = kT/q is the thermal voltage.

Substituting (19) and (20) into (18), one can observe that the second term
scales linearly with temperature. The third term introduces second-order tem-
perature curvature error.

Based on this analysis, we can recognize the importance of minimizing Cint to
reduce the second term in (18), and maximizing AM3,sat to reduce the third term.
Therefore, in our designs, we increased the lengths of the amplifying transistors,
and minimized the sizes of the transistors in the SR latch. The importance of
minimizing Cint indicates that the proposed circuit can continue to benefit from
CMOS technology scaling.

7 Measured Performance

Sensing circuits based on relaxation oscillators can be applied across a wide
range of applications, from low-power sensor nodes to high-performance thermal
monitors on multicore processors.

This section gives three oscillator-based sensor examples: one nW hybrid
oscillator (Fig. 5), one µW VDD sensor (Fig. 3), and one µW temperature sensor
(Fig. 4), in a standard 0.18µm CMOS process. A micrograph of the fabricated
chip is shown in Fig. 12. One bandgap reference circuit based on Fig. 8 is also

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 55

Fig. 12. Die photo of the proposed temperature and voltage sensors, fabricated in 0.18
µm CMOS.

included. The bandgap draws 2.0 µA and occupies 0.0156 mm2, including several
current mirrors to distribute Iref to multiple sensors.

As depicted in Fig. 6 and Fig. 7, the experimental sensor readout is performed
using a time-to-digital converter (TDC) implemented on an FPGA module (Opal
Kelly XEM6310). The TDC counts reference clock cycles during N sensor cycles
(N = 256 in the µW sensors and N = 10 in the nW hybrid sensor), which is the
equivalent conversion time.

7.1 State of the Art

Before we introduce the current-mode relaxation oscillator-based supply voltage
and temperature sensors, let us first briefly review the state-of-the-art in each
category.

There are several options for producing digital outputs that represent the
supply voltage. One of the simplest arrangements is a voltage-controlled oscil-
lator, which is often used for supply monitoring [10,11]. Digital critical path
monitors (CPMs) [12,13] have very low latency and can be used to respond to
power supply transients, but they are less precise for continuous monitoring, and
CPMs are often combined with other complementary sensors.

Temperature sensors use a wider variety of approaches. Resistive [15–17] and
thermal-diffusivity [18] temperature sensors are able to achieve high resolution
(often <0.1 ℃), but demand sophisticated frequency-locked loops or ΣΔ-ADCs
to digitize the temperature-dependent information. Their area, power consump-
tion, and design complexity increase accordingly. Oscillator-based temperature
sensors, which employ frequency [4,19–21] or duty cycle modulation [22], are
appealing for thermal monitoring as they are straightforward to implement.

Low-latency temperature measurements are important to track thermal tran-
sients, which can swing 10–20 ℃ within 2–3 ms in smartphone SoCs [23]. Ulti-
mately, a monitor circuit must be evaluated by a combination of factors [14]
including its area, power, resolution, conversion time, and accuracy. Some of
these metrics are quantified for a survey of temperature sensors in Fig. 13.

56 S. Dai et al.

Fig. 13. CMOS smart temperature sensors [14] are compared by plotting (a) energy per
conversion versus temperature resolution, and (b) an energy-resolution figure-of-merit
(FoM, with unit of nJ·K2) versus normalized circuit area.

7.2 Hybrid nW Temperature/VDD Sensor

The hybrid nW oscillator has an active area of 46 µm × 68 µm in a standard
0.18 µm CMOS process. At room temperature, with a supply voltage of 1.3 V,
the circuit oscillates at 35.7 kHz while consuming 40 nA. The duration of the
temperature phase (τlow) is 16.0 µs, and the VDD sensing phase (τhigh) is 12.0 µs.

The time-to-digital converter (TDC) described in Fig. 7 is also simulated in
0.18 µm CMOS. Its simulated power is 1.2 µW for the temperature phase data
readout, and is 0.9 µW for the VDD phase data readout, under a 0.8 V digital
supply. Its estimated area is 3000 µm2, using low-power D-flip-flops based on
[24]. In more advanced process nodes, the TDC power and area would decrease
further.

Figure 14(a) shows a temperature sweep of the hybrid sensor measured across
five chips when VDD is 1.3 V. The duration of the temperature phase is linear
with temperature, while the VDD phase has minimal temperature dependence.
The peak-to-peak temperature nonlinearity error is +0.68/−0.51℃ after two-
point linear calibration, as plotted in Fig. 14(b). In Fig. 14(c), measured on five
chips, the mean voltage sensitivity of the temperature phase is 2.03 ℃/V with-
out calibration when VDD varies from 1.2 V to 1.8 V. Based on the time-to-
digital converter described in Fig. 7, each reading was conducted by counting

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 57

Fig. 14. Measurements of the temperature-sensitive phase of five hybrid sensor sam-
ples, showing (a) pulse width versus temperature, (b) nonlinearity error after 2-point
trimming, and (c) supply sensitivity.

a 100 MHz reference clock only during the temperature sensitive phase for 10
sensor cycles, yielding a conversion time of 280 µs. The corresponding root-
mean-squared (RMS) temperature resolution is 0.17 ℃.

Figure 15(a) shows a supply voltage sweep for the hybrid sensor from 1.2 V
to 1.8 V at room temperature. The duration of the VDD phase has a peak-
to-peak nonlinearity error of +9.73/–13.98 mV after two-point calibration. In
Fig. 15(c), from −15 ℃ to 100 ℃, the duration of the VDD phase shows an
average temperature dependence of 0.54 mV/℃ without any calibration. The
RMS VDD resolution is 1.8 mV via 100 consecutive VDD readings at 1.3 V VDD.
Each reading was conducted by counting a 100 MHz reference clock only during
the VDD sensitive phase for 10 sensor cycles, corresponding to a conversion time
of 280 µs.

7.3 Dedicated µW Temperature Sensor

The µW temperature sensor has an active area of 60 µm × 55 µm. It con-
sumes 6.57 µA and operates at 12.0 MHz with VDD = 1.3 V at room temper-
ature. Figure 16(a) shows a temperature sweep of the temperature sensor mea-
sured across 15 sample test chips when VDD is 1.3 V, in which the periods are
linear with temperature. The peak-to-peak temperature nonlinearity error is
+0.85/–0.94℃ after two-point linear calibration, as plotted in the upper panel
of Fig. 16(b). In the lower panel of Fig. 16(b), measured on 15 samples, the mean

58 S. Dai et al.

Fig. 15. Measurements of the VDD-sensitive phase of five hybrid sensor samples, show-
ing (a) pulse width versus VDD, (b) nonlinearity error after 2-point trimming, and (c)
temperature sensitivity.

voltage sensitivity is 2.28 ℃/V after the removal of the systematic non-linearity
when VDD varies from 1.2 V to 1.8 V. The RMS temperature resolution is 210 mK
via 1000 consecutive temperature readings at room temperature. Each reading
was conducted by counting a 100 MHz reference clock for 256 sensor cycles as
shown in Fig. 6, yielding a conversion time of 21.4 µs. The simulated power of
the time-to-digital converter described by Fig. 6 is 2.1 µW in 0.18 µm CMOS.

7.4 Dedicated µW VDD Sensor

The VDD sensor core occupies an area of 60 µm × 86 µm. Its current consump-
tion is 8.34 µA, measured with VDD = 1.3 V at room temperature. Figure 17(a)
shows a supply voltage sweep for the VDD sensor from 1.2 V to 1.8 V at room
temperature. As shown in the lower panel of Fig. 17(b), the period has a peak-
to-peak nonlinearity error of +28.7/−30.0 mV after two-point calibration. Based
on 1000 consecutive VDD readings at 1.3 V VDD, with a conversion time of 256
sensor cycles (22.4 µs), the corresponding RMS VDD resolution is 0.94 mV.

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 59

Fig. 16. Measurements of the µW temperature sensor, illustrating (a) oscillation period
versus temperature, (b) temperature nonlinearity error after two-point calibration with
15 samples, (c) oscillation period versus VDD, and (d) supply sensitivity without cali-
bration (upper) and supply sensitivity after curvature correction (lower).

7.5 Performance Summary

Table 2 summarizes the nW and µW temperature sensor performance, and
Table 3 summarizes the performance of the two VDD sensors. When we evalu-
ate the energy per conversion, the power consumption of the bandgap reference
and the time-to-digital converter are also taken into account. In particular, the
time-to-digital converter consumes more power than the nW sensor itself, due
to the fast reference clock.

60 S. Dai et al.

Fig. 17. Measurements of the µW VDD sensor, showing (a) oscillation period versus
VDD, (b) VDD nonlinearity error, (c) oscillation period versus temperature, (d) tem-
perature sensitivity before (upper) and after curvature correction (lower).

Table 2. Temperature sensor specifications

Temperature sensor nW sensor/µW sensor

Technology node 0.18 µm

Supply voltage range (V) 1.2–1.8

Temp. range (℃) −15–100

Sensor core area (mm2) 0.0031/0.0033

Frequency at room temp. (MHz) 0.0357/12.0

Power (µW) 0.052/8.54

Supply sensitivity (℃/V) 2.03/2.28

Peak-to-peak error (℃) (+0.68/−0.51)/(+0.85/−0.94)

Calibration 2-point

Resolution (mK) 168/210

Conv. time (µs) 280/21.4

Simulated TDC power (µW) 1.2/2.1

Energy/Conversion (nJ) 1.08/0.35

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 61

Table 3. Supply voltage sensor specifications

VDD sensor nW sensor/µW sensor

Technology node 0.18 µm

Supply voltage range (V) 1.2–1.8

Temp. range (℃) −15–100

Sensor core area (mm2) 0.0031/0.0052

Frequency at room temp. (MHz) 0.0357/11.3

Power (µW) 0.052/10.84

Temp. sensitivity (mV/℃) 0.54/0.79

Peak-to-peak error (mV) (+9.73/−13.98)/(+28.7/−30.0)

Calibration 2-point

Resolution (mV) 1.8/2.1

Conv. time (µs) 280/22.4

Simulated TDC power (µW) 0.9/2.1

Energy/Conversion (nJ) 0.99/0.28

8 Conclusion

Before we conclude, perhaps we can take a broader perspective, and ask what
the current-mode relaxation oscillator and the bandgap circuit structure have
in common, which enables their power efficiency. One feature they share is that
they save power by obviating the operational amplifiers used in the conventional
oscillator and bandgap. In most operational amplifiers, signal amplification is
obtained by sharing a common source node and comparing the differential gate
voltages between two transistors. In the oscillator and proposed bandgap, the
amplifying transistors share a common gate voltage but compare their source
nodes, allowing current reuse in the capacitor charging or bias branches. Recog-
nizing that voltage amplification is not constrained to gate comparison is essen-
tial to understanding the performance of the designs in this chapter.

Acknowledgements. This work was funded in part by grant FA8650-18-2-7851 from
the Defense Advanced Research Projects Agency (DARPA). C. R. Tulloss is also grate-
ful for support from the Jayakumar Undergraduate Summer Research Fellowship.

References

1. Ferro, E., Brea, V.M., López, P., Cabello, D.: Micro-energy harvesting system
including a pmu and a solar cell on the same substrate with cold startup from 2.38
nw and input power range up to 10 µW using continuous MPPT. IEEE Trans.
Power Electron. 34(6), 5105–5116 (2018)

62 S. Dai et al.

2. Sadagopan, K.R., Kang, J., Ramadass, Y., Natarajan, A.: A cm-scale 2.4-GHz
wireless energy harvester with nanowatt boost converter and antenna-rectifier res-
onance for WiFi powering of sensor nodes. IEEE J. Solid-State Circuits 53(12),
3396–3406 (2018)

3. Jia, Y., et al.: Wireless opto-electro neural interface for experiments with small
freely behaving animals. J. Neural Eng. 154, 046032 (2018)

4. Anand, T., Makinwa, K.A., Hanumolu, P.K.: A VCO based highly digital tem-
perature sensor with 0.034 ◦/mV supply sensitivity. IEEE J. Solid-State Circuits
51(11), 2651–2663 (2016)

5. Mordakhay, A., Shor, J.: Miniaturized, 0.01 mm2, resistor-based thermal sensor
with an energy consumption of 0.9 nJ and a conversion time of 80 µs for processor
applications. IEEE J. Solid-State Circuits 53(10), 2958–2969 (2018)

6. Dai, S., Rosenstein, J.K.: A 14.4 nW 122 kHz dual-phase current-mode relaxation
oscillator for near-zero-power sensors. In: IEEE Custom Integrated Circuits Con-
ference (CICC) (2015)

7. Dai, S., Tulloss, C.R., Lian, X., Hu, K., Reda, S., Rosenstein, J.K.: Tempera-
ture and supply voltage monitoring with current-mode relaxation oscillators. In:
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)
(2020)

8. Jiang, H., Wang, P.H.P., Mercier, P.P., Hall, D.A.: A 0.4-V 0.93-nW/kHz relax-
ation oscillator exploiting comparator temperature-dependent delay to achieve 94-
ppm/◦C stability. IEEE J. Solid-State Circuits 53(10), 3004–3011 (2018)

9. Banba, H., et al.: A CMOS bandgap reference circuit with sub-1-V operation. IEEE
J. Solid-State Circuits 34(5), 670–674 (1999)

10. Chen, S.W., Chang, M.H., Hsieh, W.C. Hwang, W.: Fully on-chip temperature,
process, and voltage sensors. In: IEEE International Symposium on Circuits and
Systems (ISCAS) (2010)

11. Kobayashi, A., Hayashi, K., Arata, S., Murakami, S., Xu, G., Niitsu, K.: A 65-
nm CMOS 1.4-nW self-controlled dual-oscillator-based supply voltage monitor for
biofuel-cell-combined biosensing systems. In: IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5 (2019)

12. Vezyrtzis, C., et al.: Droop mitigation using critical-path sensors and an on-chip
distributed power supply estimation engine in the z14TM enterprise processor. In:
IEEE International Solid-State Circuits Conference (ISSCC) (2018)

13. Hsu, C.-H., Huang, S.-Y., Kwai, D.-M., Chou, Y.-F.: Worst-case IR-drop moni-
toring with 1 GHz sampling rate. In: International Symposium on VLSI Design,
Automation, and Test, VLSI-DAT, pp. 1–4 (2013)

14. Makinwa, K.A.A.: Smart Temperature Sensor Survey. https://ei.ewi.tudelft.nl/
docs/TSensor survey.xls

15. Pan, S., Luo, Y., Shalmany, S.H., Makinwa, K.A.: A resistor-based temperature
sensor with a 0.13 pJ · K2 resolution FoM. IEEE J. Solid-State Circuits 53(1),
164–173 (2018)

16. Park, H., Kim, J.: A 0.8-V resistor-based temperature sensor in 65-nm CMOS
with supply sensitivity of 0.28 ◦C/V. IEEE J. Solid-State Circuits 53(3), 906–912
(2018)

17. Choi, W., et al.: A compact resistor-based CMOS temperature sensor with an
inaccuracy of 0.12◦C (3σ) and a resolution FoM of 0.43 pJ · K2 in 65-nm CMOS.
IEEE J. Solid-State Circuits 53, 3356 (2018)

18. Sonmez, U., Sebastiano, F., Makinwa, K.A.: Compact thermal-diffusivity-based
temperature sensors in 40 nm CMOS for SoC thermal monitoring. IEEE J. Solid-
State Circuits 52(3), 834–843 (2017)

https://ei.ewi.tudelft.nl/docs/TSensor_survey.xls
https://ei.ewi.tudelft.nl/docs/TSensor_survey.xls

Current-Mode Relaxation Oscillators for Temp/Supply Voltage Monitoring 63

19. Yang, K., et al.: A 0.6 nJ −0.22/+0.19 ◦C inaccuracy temperature sensor using
exponential subthreshold oscillation dependence. In: IEEE International Solid-
State Circuits Conference (ISSCC), pp. 160–161 (2017)

20. Wang, X., Wang, P.H.P., Cao, Y., Mercier, P.P.: A 0.6 V 75 nW all-CMOS tem-
perature sensor with 1.67 m◦/mV supply sensitivity. IEEE Trans. Circuits Syst. I
Regular Papers (TCASi) 64(9), 2274–2283 (2017)

21. Someya, Teruki, Mahfuzul Islam, A.K.M., Sakurai, T., Takamiya, M.: An 11-nW
CMOS temperature-to-digital converter utilizing sub-threshold current at sub-
thermal drain voltage. IEEE J. Solid-State Circuits 54(3), 613–622 (2019)

22. Wang, B., Law, M.K., Tsui, C.Y., Bermak, A.: A 10.6 pJ·K2 resolution FoM tem-
perature sensor using a stable multi vibrator. IEEE Trans. Circuits Syst. II Express
Briefs (TCASII) 65(7), 869–873 (2018)

23. Said, M., Chetoui, S., Belouchrani, A., Reda, S.: Understanding the sources of
power consumption in mobile SoCs. In: IEEE Ninth International Green and Sus-
tainable Computing Conference (IGSC) (2018)

24. Piguet, C.: Logic synthesis of race-free asynchronous CMOS circuits. IEEE J. Solid-
State Circuits 26(3), 371–380 (1991)

Fully-Autonomous SoC Synthesis Using
Customizable Cell-Based Analog and
Mixed-Signal Circuits Generation

Tutu Ajayi1(B), Sumanth Kamineni2, Morteza Fayazi1,
Yaswanth K. Cherivirala1, Kyumin Kwon1, Shourya Gupta2, Wenbo Duan1,

Jeongsup Lee1, Chien-Hen Chen2, Mehdi Saligane1, Dennis Sylvester1,
David Blaauw1, Ronald Dreslinski Jr1, Benton Calhoun2,

and David D. Wentzloff1

1 University of Michigan, Ann Arbor, MI, USA
ajayi@umich.edu

2 University of Virginia, Charlottesville, VA, USA

Abstract. This chapter presents the world’s first autonomous mixed-
signal SoC framework, driven entirely by user constraints, along with a
suite of automated generators for analog blocks. The process-agnostic
framework takes high-level user intent as inputs to generate optimized
and fully verified analog and mixed-signal blocks using a cell-based design
methodology.

The approach is highly scalable and silicon-proven by an SoC pro-
totype which includes 2 PLLs, 3 LDOs, 1 SRAM, and 2 temperature
sensors fully integrated with a processor in a 65 nm CMOS process. The
physical design of all blocks, including analog, is achieved using optimized
synthesis and APR flows in commercially available tools. The framework
is portable across different planar and FinFET CMOS processes and
requires no-human-in-the-loop, dramatically accelerating design time.

Keywords: analog synthesis · analog generator · SoC generator

1 Introduction

There is an ever-growing need for automation in analog circuit design, vali-
dation, and integration to meet modern-day SoC requirements. Time-to-market
constraints have become tighter, design complexity has increased and more func-
tional blocks (in number and variety) are being integrated into SoCs. These
challenges often translate to increased manual engineering efforts and non-
recurring engineering (NRE) costs. FASoC is an open-source1 framework for
Fully-Autonomous SoC design [1,2]. Coupled with a suite of analog generators,
1 Source code for the framework and all generators developed as part of this work can

be downloaded from https://github.com/idea-fasoc/fasoc.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 65–85, 2021.
https://doi.org/10.1007/978-3-030-81641-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_4&domain=pdf
https://github.com/idea-fasoc/fasoc
https://doi.org/10.1007/978-3-030-81641-4_4

66 T. Ajayi et al.

FASoC can generate complete mixed-signal system-on-chip (SoC) designs from
the high-level user specifications. The framework leverages differentiating tech-
niques to automatically synthesize correct-by-construction RTL descriptions for
both analog and digital circuits, enabling a technology-agnostic, no-human-in-
the-loop implementation flow.

Analog blocks like PLLs, LDOs, ADCs, DC-DC converters, and sensor inter-
faces are recasted as structures composed largely of digital components while
maintaining analog performance. They are then expressed as synthesizable Ver-
ilog blocks composed of digital standard cells and auxiliary cells (aux-cells). The
framework employs novel techniques to automatically characterize aux-cells and
develop models required for generating bespoke analog blocks. The framework
is portable across processes and scalable in terms of analog performance, layout,
and other figures of merit.

The SoC generation tool translates user intent to low-level specifications
required by the analog generators. The IP-XACT [3] standard is leveraged to
achieve full SoC integration. Added vendor extensions capture additional meta-
data relating to the generated blocks. This enables the composition of vast
numbers of digital and analog components into a single correct-by-construction
design. The fully composed SoC design is finally realized by running the Ver-
ilog through synthesis and automatic place-and-route (APR) tools to realize full
design automation.

2 Overview

Aux-cell
Generator

Analog
Generators

SoC
Solver

PDK,
Std Cells Models

User
Intent

Block
specs

SoC

SoC Genera�on

Process Setup and Modeling

SoC
Integrator

Analog
Generators

Model
Generators

Aux-cell
Generator Embedded EDA tool

flow for simula�on,
synthesis, APR, etc
Feedback loop

IP DB

Composite
Design

Aux-cell
library

Fig. 1. FASoC Framework Overview [1]

A high-level representation of the framework is shown in Fig. 1. The Process
setup and modeling phase is performed once for the process design kit (PDK),
and it involves the generation of the aux-cells and models for the generator. The
setup process is largely dominated by simulations using the design templates in

FASoC 67

combination with the characterization scripts. The automation of aux-cell and
model generation significantly reduces porting effort across PDKs.

The SoC generation phase begins by invoking the SoC solver repetitively to
translate the high-level user-intent into analog specifications that satisfy the user
constraints. The SoC solver explores the SoC design space through a combina-
tion of mathematical and heuristic system models, to determine the necessary
system blocks and their specifications. For instance, it can determine the operat-
ing frequency of the PLL to be generated based on the target application, SoC.
If targeting a neural network application, it considers parameters such as the
supported pipelines, instructions per operation, inference per second and oper-
ations per inference. The block generators are invoked as needed and the SoC
integrator stitches the composed design and walks it through a synthesis and
APR flow to create the final SoC layout. The FASoC framework is tightly inte-
grated with analog generators for PLL, LDO, temperature sensor, SAR ADC,
switched-capacitor DC-DC converter and SRAM blocks. Section 4 describes the
circuit architecture adopted by the different generators.

3 Process Setup and Modeling

Simula�on Ar�fact
Genera�on

PDK,
Cells

Design
Templates

Characteriza�on
Scripts

Aux-cell
library

Model
Genera�on

Model
File

Fig. 2. Aux-cell and model file generation flow [1]

FASoC employs a synthesizable cell-based approach for generating analog
blocks, significantly cutting back on manual layout and verification efforts. Aux-
cells are small analog circuits that buttress the standard cell library and pro-
vide specific analog functionality required by the generators. Each cell is no
larger than a D flip-flop and can be placed on the standard cell rows. The cre-
ation of aux-cells is simplified by using a suite of design templates in tandem
with PDK characterization scripts. The templates capture the aux-cell’s precise
circuit behavior without including any PDK-specific information. The charac-
terization scripts operate on the PDK to derive technology-specific parameters
required to set knobs within the templates. Example parameters extracted from
the PDK include threshold voltage, metal parasitics, MOSFET behavior, and
Fan-out of 4. The knobs set within the template include device type, transistor
sizing, and other circuit design options. The results from aux-cell generation
include the netlist, layout, timing library, and other files required to proceed

68 T. Ajayi et al.

with conventional synthesis and APR. Presently, the layouts for the aux-cells
are manually created, however, there is an expanding array of tools [4–6] for lay-
out automation that show promising results. The template-based methodology
for creating aux-cells enhances process-portability and significantly cuts down
on design time. All of the generators presented in this work leverage a suite of
aux-cells that are depicted in Fig. 3. The template-based methodology enables
users to extend the aux-cell library by creating a design template that captures
the respective aux-cell precise behavior without including the PDK information.

Fig. 3. Schematic for aux-cells used across PLL, LDO and temperature sensor gener-
ators [1]

The analog generators use models to predict performance and select design
parameters to create optimized block designs that satisfy the input specifications.
The models are derived from the parameterized templates that incorporate the
aux-cells. The models for each generator vary and are developed from a combina-
tion of mathematical equations, machine learning, and design space exploration.
The modeling exercise is also performed once per PDK and the results are saved
into a model file. Section 4 briefly describes the modeling approach adopted by
each generator integrated into the framework.

4 Analog Generator Architecture

Synthesizable analog blocks [7] were introduced a few decades ago and have
continued to evolve, closely matching the performance obtainable by full custom
designs. Prior works have described techniques for synthesizing analog blocks for
UWB transmitters [8], PLLs [9], DACs [10], and other types of analog blocks [11–
13]. This approach lowers engineering design costs, increases robustness, eases
portability across PDKs, and continues to show promise even at advanced pro-
cess nodes [14–16]. The analog generators developed as part of this work can be

FASoC 69

Verilog
Genera�on

Macro
Genera�on

Macro
Valida�on

PDK,
Cells

Block
specs

Models
Analog
Block

Design

Fig. 4. Analog generator flow [1]

likened to ASIC memory compilers that take in a specification file and produce
results in industry-standard file formats, which can then be used in standard
synthesis and APR tools. Unlike typical memory compilers, the generators are
open-source, process agnostic, and share a scalable framework amenable to dif-
ferent types of blocks. The framework is modular and share a similar process as
depicted in Fig. 4. The full generation process is broken down into three steps:

Verilog Generation: This step leverages models to produce a synthesizable
Verilog description of the block that conforms to the input specifications. It
also generates guidance information in a vendor-agnostic format. The guidance
includes synthesis constraints, placement instructions, and other information
that may be required by the synthesis and/or APR tool to generate blocks
that achieve the desired performance. In addition, this step also reports early
estimates on performance and the characteristics of the block to be created.

Macro Generation: The Verilog and guidance information is passed to a digital
flow to create macros that can be embedded into larger SoC designs. The digi-
tal flow in this step performs synthesis, APR, DRC, and LVS verification. The
digital flow includes an adapter to translate the guidance into vendor-specific
commands used in synthesis and APR. The adapter abstraction allows us to
(1) express additional design intent without exposing protected vendor-specific
commands and (2) easily support multiple EDA tools including open-source
alternatives [17–19].

Macro Validation: The last step is a comprehensive verification and reporting
of the generated block. The full circuit goes through parasitic extraction, SPICE
simulations, requirement checks, and other verification to culminate in a detailed
datasheet report.

The generators can be invoked standalone, outside of the full SoC generator
flow. To simplify the system integration, the AMBA™ APB protocol was adopted
as the register interface to all blocks.

The following subsections briefly describe the analog generators currently
integrated into the FASoC framework.

4.1 PLL

The generated PLLs (Fig. 5) share the same base architecture as ADPLL [20].
The phase difference of the reference and output clocks are captured by the

70 T. Ajayi et al.

Aux-cell 2:
Fine Ctrl. (FC)

Aux-cell 1:
Coarse Ctrl.

(CC)

...

Embedded TDC

. . .
Digital Ctrl.

including Loop
Filter

CLK_REF

Latched
Phase

DCO
CTRL.

WORD

DCO
NCC

NDRV

NSTG

NFC

Fig. 5. DCO architecture indicating the aux-cells and designs parameters [1]

embedded time-to-digital converter (TDC), while the digital filter calculates
the frequency control word for the digitally controlled oscillator (DCO). The
input specification to the generator defines the nominal frequency range and
in-band phase noise (PN). The PLL generator uses a physics-based mathemat-
ical model [21] for characterization. The first step is building a mathematical
relationship between DCO design parameters (number of aux-cells and stages)
and the required DCO specifications. Using simulation results from a paramet-
ric sweep, the effective ratio of drive strength and capacitance can be derived
for each aux-cell. This ratio enables us to predict frequency and power results
(frequency range, frequency resolution, frequency gain factor, and power con-
sumption) given a set of input design parameters.

4.2 LDO

The generated LDOs (Fig. 6) share the same base architecture as DLDO [22].
The LDO leverages an array of small power transistors that operate as switches
for power management. Based on design requirements, the generator can swap
the clocked comparator with a synthesizable stochastic flash ADC [23] to improve
transient response. The input specifications to the LDO generator are the VIN

range, Iload,max range, and the dropout voltage. The generator uses a poly-fit
model of the load current (Iload,max) performance for various combinations of
aux-cell connections (connected in parallel and for different VDD inputs) in both
ON and OFF states. The model is created by simulating various test circuits after
parasitic extraction.

FASoC 71

VIN

CTRL[2]

CTRL[N]

CTRL[1]

DIGITAL
CTRL.

Rload

VREG

Iload

#2

#N
ERROR

DETECTION
(CMP./ADC)

VREF

Error (e) #1

Cload

Aux-Cell 1:
Current Switch

Aux-Cell 2: 1-bit Analog
Voltage Comparator

Fig. 6. LDO architecture indicating the aux-cells and design parameters derived from
input specifications of VIN, Iload and desired transients [1]

4.3 Temperature Sensor

VVDD

enable

HEADERX1RVT

Level
Converter

LCX1RVT
NAND2X1RVT_ISOVDD INVX1RVT_ISOVDD

VDD

VDD

...

...
Reference Counter

Result Counter

LSBMSB

019

Result Code
Stop

ref clock

...

Temperature
Sensi�ve Ring Oscillator

Na�ve Device

Fig. 7. Temperature sensor architecture indicating the aux-cells [1]

The generated sensors (Fig. 7) share the same base architecture as [24]. The
sensor relies on a temperature-sensitive ring oscillator and stacked zero-VT
devices for better line sensitivity. The input specifications include the temper-
ature range and optimization strategy, for either error or power. For a given
temperature range, the generator first checks a modeling file to select an opti-
mized design model. If the modeling file is not already present, the generator
will sweep the design parameters and start the internal simulations. The results
are then utilized to train a predictive Bayesian neural network model. Doing this
can considerably reduce the total simulation time and predict the best design
parameters that can match the input specifications.

72 T. Ajayi et al.

4.4 SAR ADC

1x1x2x32x64x128x

1x1x2x32x64x128x

+

-

SAR
LOGICCOMP

OUT

COMP CLK

UNIT_CAP

SW_INPUT

VREFL
VREFH
VIN_P

VIN_N
VREFH
VREFL

VCM

VCM
SW_VCM Capacitor DAC

CLK

SW_CTRL
SAMPLE

Comparator

COMP OUTIN_P

IN_N

COMP
CLK

NAND-based
Comparator

RESULT[7:0]

Fig. 8. SAR ADC architecture indicating the aux-cells

The generated SAR ADC (Fig. 8) utilizes the same base architecture as [25],
which consists of capacitors, switches, a comparator, and a SAR controller. The
Capacitor DAC includes the capacitor arrays and switches, it samples the dif-
ferential signals at the input. The comparator uses a NAND-based structure,
which is more suitable for design synthesis. The SAR controller generates the
control signals for switches in the Capacitor DAC and the comparing clock for
the NAND-based comparator. The input specification includes the sampling
frequency, the target effective number of bits (ENOB), and the optimization
method (for either power or area). For a given ENOB value, the generator selects
the optimal number of switches that can satisfy the target sampling frequency.

4.5 Switched-Capacitor DC-DC Converter

VIN

VIN/2

VIN/4

5VIN/8

VIN

2:1
Conv

PMOS switches

NMOS switches

PMOS switches

NMOS switches

2:1 Conv

clk0,
clk0b,
clk1,
clk1b

Non-
overlapping

clock
generator

2:1
Conv

2:1
Conv

clk
4

4

DCDC_NOV_CLKGEN

DCDC_CAP_UNIT

DCDC_XSW_PMOS

DCDC_XSW_NMOS

Fig. 9. Switched-Capacitor DC-DC converter architecture indicating the aux-cells

FASoC 73

The generated switched-capacitor DC-DC converter (Fig. 9) utilizes the same
base architecture as [26], which consists of multiple stages of 2:1 converters.
The conversion ratio of the DC-DC converter is determined by the number
of 2:1 converter stages and their configuration. The 2:1 converters are com-
posed of 3 different aux-cells: DCDC CAP UNIT, DCDC XSW PMOS, and
DCDC XSW NMOS. One additional aux-cell, i.e. DCDC NOV CLKGEN, is
also required to generate two non-overlapping clock signals and their inverted
signals for the 2:1 converters. Based on the input specifications (VIN, Vout, Iload,
and fclk), the generator finds the optimal number of aux-cells in the 2:1 convert-
ers as well as determining the number of stages and their configuration.

4.6 SRAM

Fig. 10. SRAM architecture showing macros and bank strategy

A third party Commercial memory compilers (CMCs) [27–29] can generate
an SRAM for a given PDK. However, they are the outcome of a human-driven
design effort for each PDK and cover a fixed design space that usually emphasizes
high performance. Such limitations restrict compilers’ usage for applications such
as ultra-low-power systems, which often operate in the nW to µW space. More
importantly, the CMCs are not open source and may not be readily available due
to cost or licensing issues, especially for newer technologies. Hence, a memory
macro generation framework [30] is developed to address these issues and allow
easy and autonomous generation of optimized memory macros in the design
space where CMCs can not be used.

The memory generator creates fully-functional tapeout-ready integrated
memories across a broad range of user specifications. The compiled SRAMs
(Fig. 10) follow a standard multi-bank memory architecture. The memory gen-
erator uses a 6T bitcell, a row decoder, column mux, wordline driver, sense
amplifier, write driver, and a pre-charge circuit as the aux-cells. The aux-cells
are stitched together, bottom-up, to form a bank, and then a multi-bank mem-
ory. The user input specifications are capacity, word size, operating voltage,

74 T. Ajayi et al.

and operating frequency. The generator adopts a hierarchical memory model
to determine the optimal row and column periphery. The model helps to select
the SRAM architecture and the leaf-level components that best satisfy the user
specifications while minimizing energy consumption and delay.

5 SoC Generation

The top-level SoC generation begins with an iterative SoC solver to determine
the optimal composite design which is a combination of blocks, analog specifica-
tions, and module connectivity. The strategy is guided by high-level user intent
(i.e. target application and power/area budgets), available analog block gener-
ators, and a database of IPs. Analog generators are then invoked as necessary
to generate bespoke blocks required to satisfy the specifications within the com-
posite design. The generator outputs include all artifacts required to push the
block through standard synthesis and APR tools. The outputs are also cached
in an IP database, allowing for faster SoC generation if a matching entry already
exists. Entries in the database can also be populated with 3rd party IPs such as
processors and other peripherals.

The IP-XACT format is adopted to describe the composite design as well as
the block designs stored in the database. Added Vendor extensions [31] capture
additional analog data, simulation, and verification information. The SoC inte-
grator begins by stitching the composite design together and translating it to its
structural Verilog equivalent that can be run through digital simulation tools.
The structural Verilog, along with all required artifacts from the database, is
then passed through the embedded EDA tool flow to generate the final verified
GDS. This same flow is pervasive across the framework and is also used by all
generators (aux-cell, model, and analog). Tools within the flow cover all aspects
of chip design including SPICE simulations, digital simulations, synthesis, APR,
DRC, LVS, and extraction.

The rest of this section describes key components that make up the SoC
generation stage.

5.1 SoC Solver

The primary task of the SoC solver is to derive a feasible solution to the supplied
user intent and further derive an optimal solution that satisfies the intent. The
user intent provides a basic sketch of the target application and includes mini-
mal information relating to the performance, power, and area requirements. The
solver takes an iterative approach to perform targeted design space exploration
based on predictions learned from prior executions of the analog generators. It
essentially builds a correlation between the user intent, analog block specifica-
tions (of all supported generators), and the generated block results.

Although the solver relies on a database of existing IP for faster iteration, it
can quickly start from a cold cache to narrow down to an optimal solution. The
run-time of the solver is based on the number of blocks in the design, supplied

FASoC 75

budget, and how warm the cache is. The solver employs a heuristic algorithm to
optimize the overall SoC metrics including power, performance, area, and other
figures of merit.

The primary result of this process is a composite design in the form of a
structural netlist. The netlist includes all specific module instances and infor-
mation describing the ports and connectivity of all modules that constitute the
design. The stitching process employs standard Arm AMBA protocols (e.g. APB
and AHB) and includes all necessary interconnects and multiplexers.

5.2 IP-XACT and Database

The database entries are implemented using IP-XACT++, an extended ver-
sion of IP-XACT. The added vendor extension catalogs supplemental meta-data
relating to the IP. This non-tabular format allows for the storage of the PPA
metrics as well as other figures of merits specific to each generator. This is in
addition to the traditional IP information like ports, interfaces, memory maps,
and validation data. The information associated with each generated instance of
the IP allows the SoC Solver to quickly search the database for specific param-
eters and eases the stitching process to create the final netlist.

5.3 Embedded EDA Flow

The framework relies on an embedded EDA tool flow to accelerate the RTL-to-
GDS process. It is a set of scripts and methodologies that leverage commercial
EDA tools to accomplish the task of walking arbitrary designs through the syn-
thesis and implementation process as quickly as possible. It builds on several
modular abstractions to provide a PDK agnostic flow. Figure 11 shows the main
abstractions inherent within the tool flow.

Fig. 11. Embedded EDA tool flow abstractions

76 T. Ajayi et al.

Flow scripts: These are robust reference scripts for all the steps in the flow.
It is collection of scripts span several EDA vendors used throughout the steps.
It contains the best practices and recommendations from the tool providers and
has been stitched together to form a generic end-to-end flow that can easily be
customized based on several factors.

Platform Configuration: These constitute the PDK specific information, con-
figurations, rules, and requirements for a specific technology node. There is a
one-time effort to create this customization for newly supported technologies,
however, subsequent designs can re-use that effort transparently

Site Configuration: These are configuration parameters that establish point-
ers to the required site-specific information. These are file paths to the PDK,
standard cells, tool binaries, and license information for the EDA tools.

Design Files: This is the design-specific information that contains significantly
less information about the EDA tools, PDK, and Site location since those have
mostly been abstracted away and are expressed as customization to the generic
flow in the EDA scripts. It is intended to express the actual design intent with
little reference to the other abstractions.

Combined, these modular abstractions can be customized and combined
together to form a block or chip specific flow. The various steps supported in the
flow are simulation, synthesis, APR, LVS, DRC and extraction. It has support
for 13 PDKs and has been validated with 6 different tape-outs across different
PDKs. The flow is used at various levels and steps within the FASoC framework
and has also been leveraged for other projects.

6 Evaluation

The framework has been fully verified in a planar 65 nm and FinFET 12 nm
processes. The evaluation begins with a focus on the individual generators.
The results presented explore the design-space possible with each generator and
demonstrate full adherence to the user input specification in a 65 nm process.
Results are then presented from a prototype SoC created in 65 nm process using
this framework.

6.1 Analog Generation Results

Figure 12 presents the results of several PLLs generated using different input
specifications. It compares the input requirements against the simulated results
after parasitic extraction. The results show that the generated frequency ranges
cover that of the input requirements and with better phase noise levels. The
highlighted PLL 8, corresponds to one of the PLLs integrated into the SoC
prototype and also shows measured results that satisfy the given specifications

Figure 13 shows the spice simulation results of multiple LDO designs after
parasitic extraction. The graph shows the maximum load current at different

FASoC 77

PLL 1

Fig. 12. Generated PLL designs for eight different input specifications. PLL1 is taped-
out in the SoC prototype [1]

input voltages corresponding to the input parameter array size for a dropout
voltage of 50 mV. The highlighted measurements correspond to the input spec-
ification for blocks integrated into the SoC prototype with VIN = 1.3 V and
VREG = 1.2 V.

Figure 14 presents the simulation results of various memory capacities across
a broad range of architectural options and operating voltages (VDD). Each point
on the curve corresponds to an energy-delay pair specific to an architecture
(rows, columns, and banks) and VDD combination. The generator selects the
Pareto-optimal design that satisfies the user requirements. The highlighted point
on the 16 KB curve corresponds to the memory block integrated into the SoC
prototype.

Figure 15 shows the spice simulation results of multiple temperature sensor
designs after parasitic extraction.

Figure 16 presents the simulation results of various numbers of Vcm switches.
The generator selects the optimized value to satisfy the input specifications. By
using a common-centroid placement strategy on the capacitors, the generator can
also reduce the systematic mismatch which affects the accuracy of capacitance
ratios. Table 1 shows the spice simulation results of cdl and pex netlists that
closely match the input specifications with an area optimization.

78 T. Ajayi et al.

101 102

Array Size

0

5

10

15

20

25

30
M

ax
Lo

ad
C

ur
re

nt
(m

A)

Vin = 0.6V

Vin = 0.7V

Vin = 0.8V

Vin = 0.9V

Vin = 1.0V

Vin = 1.1V

Vin = 1.2V

Vin = 1.3V

150 200 250 300
Array Size

10

15

20

25

30

LDO 1

LDO 2/3

ZOOM

Fig. 13. Iload,max vs. array size, for multiple LDO designs generated [1]

0 2 4 6 8 10 12
0

2

4

6

8

← prototype design

Delay (Normalized)

E
ne

rg
y

pe
r

A
cc

es
s

(N
or

m
al

iz
ed

) 8KB
16KB
32KB
64KB

Fig. 14. Normalized energy and delay plots for various memory sizes while sweeping
VDD. The results are normalized with respect to the 8 KB memory [1].

Table 1. ADC Simulation Results

Output Specifications CDL PEX

Sampling Freq (MHz) 1

Unit Cap Value (fF) 2.6

Area (mm2) - 0.04

Power dissipation (µW) 6.72 11.2

Effective Number of Bits 7.86 7.75

FASoC 79

−20 0 20 40 60 80 100

0

10

20

30

40

Temperature (°C)

P
ow

er
(n

W
)

−20 0 20 40 60 80 100

−0.75

−0.5

−0.25

0

0.25

0.5

Temperature (°C)

E
rr

or
 (
°C

)

Fig. 15. Power and Error results against temperature for various temperature sensor
designs (each fitted plot represents a unique design) [1]

Fig. 16. Effective number of bits vs. Number of switches for Vcm

6.2 Prototype Chip Results

The 65 nm prototype SoC design (Fig. 17) features 2 PLLs, 3 LDOs, a 16 KB
SRAM, and 2 temperature sensors fully integrated with an Arm® Cortex™-M0
in a 65 nm CMOS process. Using off-chip connections, the entire SoC can be
powered using one of the LDOs and clocked using the PLLs while monitoring
the temperature of the chip.

80 T. Ajayi et al.

LDO1/2/3

Cortex-M0
Processor

16KB
SRAMUART

PLL1/2

Temp
Sensor1/2APB Crossbar

(a)

2.6mm
2.6m

mLDO1

LDO2

LDO3

16KB SRAM

PLL1 PLL2

M0
T1

T2

(b)

Fig. 17. Simplified block diagram (a) and annotated die photo (b) for the 65 nm
prototype SoC [1]

A similar 12 nm prototype SoC (Fig. 18) features a PLL, 2 LDOs, a 64
KB SRAM, 3 temperature sensors, a bluetooth transmitter, 2 SAR ADCs, a
switched-capacitor DC-DC converter fully integrated with an Arm Cortex-M0
processor.

Figure 12 presents results for 8 PLL designs generated from different input
specifications, including one from the prototype, and the results show output per-
formances in-line with the input specifications. The measured frequency is 10%
slower while the phase noise matches the simulation and specification require-
ment. Table 2 summarizes the results for all PLLs in the prototype.

Table 3 shows the LDO Iload,max measurements closely matching the input
specification requirements. Compared to the comparator-based architecture
(LDO1/2), the ADC based controller architecture (LDO3) achieves better tran-
sient performance with a 10× and 7× improvement in settling time and under-
shoot voltage respectively. The line and load regulation values are measured
at VIN = 1.3 V, VREF = 1.2 V, and Iload = 10 mA. LDO3 load regulation is
comparatively worse due to the high gain of the ADC based controller. While

FASoC 81

M0 Core

64 KB
Generated
SRAM

ARM
memory

ARM
memory

DC-DCTe
m

p
Se

ns
or

s

ADCs

LDOs

PLL

BLE Tx

LDO
ARM Cortex-M0

Processor

BLE
Radio

ΔΣ
ADC

PLL

Temp
Sensor

APB Crossbar

DC/DCUART

IRAM DRAM

Mem

2 mm

2
m

m

(a) (b)

Fig. 18. Simplified block diagram (a) and annotated die photo (b) for the 12 nm
prototype SoC

Table 2. PLL Simulation vs Measurement Results [1]

Output Specifications PLL1 PLL2

Sim Meas Sim Meas

Min Freq (MHz) 200 190 170 150

Max Freq (MHz) 1,060 920 1,080 930

Fnom (MHz) 643 558 627 548

Power@Fnom (mW) 7.20 6.90 8.06 7.70

Area (µm2) 167,639.04 167,639.04

Table 3. LDO Simulation vs Measurement Results @ 200 MHz control clock [1]

Output Specifications LDO1 LDO2 LDO3

Sim Meas Sim Meas Sim Meas

Dropout Voltage (mV) 50 70 50 80 50 80

Iload,max (mA) 15.00 15.38 25.00 24.84 25.00 23.72

Settling Time - Ts (µs) 1.1 1.8 2.1 2.9 0.12 0.19

Max Undershoot (V) 0.35 0.98 0.57 0.98 0.38 0.14

Max Current Eff. (%) 94.2 96.4 95.7 94.5 81.9 74.0

Load Regulation (mV/mA) - −1.00 - −0.35 - −3.6

Line Regulation (V/V) - 0.180 - 0.004 - 0.950

Area (µm2) 17,318.56 31,187.56 127,163.56

operating at lower VREF and Iload conditions, the line/load regulation degrades
for all the LDOs because of the increase in relative switch strength.

82 T. Ajayi et al.

The temperature sensor has an area of 2,620 µm2. A 2-pt calibration is
performed at 0 ◦C and 80 ◦C. Measured results show a sensing range between
−20 ◦C and 100 ◦C with an accuracy of ±4 ◦C.

0.8 0.9 1 1.1 1.2
10

20

30

40

50

60

70

VDD (V)

M
ax

Fr
eq

ue
nc

y
(M

H
z)

0

0.5

1

1.5

2

2.5

3

P
ow

er
@

F
m
a
x

(m
W

)

Measured Max Freq (MHz)
Measured Power@Fmax

Simulated Power@Fmax

Fig. 19. Measured and simulated performance and power results of SRAM across
VDD [1]

Figure 19 summarizes the SRAM measured and simulated performance across
the input operating voltage range of 0.8 V to 1.2 V. The SRAM peak perfor-
mance is at 65 MHz with the power consumption of 2.09 mW at 1.2 V, which
exceeds the targeted frequency of 50 MHz. The measured power for the SRAM
also include the leakage power of the processor and peripheral interface. The gen-
erated SRAM has an area of 0.68 mm2 with the custom bitcell area occupying
0.4 mm2.

7 Conclusion

This chapter presented an autonomous framework that generates a completely
integrated SoC design based on user input specifications. The framework is PDK
agnostic and allows for faster turn-around times when building custom analog
blocks and integrating them into larger SoC designs. The framework includes
generators for PLL, LDO, temperature sensor, SAR ADC, switched-capacitor
DC-DC, and SRAM blocks. The framework can easily be extended to support
more generators and different PDKs. The framework’s validation was performed

FASoC 83

by creating and fabricating SoC prototypes in 12 nm and 65 nm processes.
Silicon measurements for the analog blocks were inline with user requirements
and simulation results. This work establishes a new milestone in creating a silicon
compiler [32] that further reduces the complexity of realizing modern SoCs and
cuts down on design time.

Acknowledgment. This material is based on research sponsored by Air Force
Research Laboratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement number FA8650-18-2-7844. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

References

1. Ajayi, T., et al.: An open-source framework for autonomous SoC design with analog
block generation. In: 2020 IFIP/IEEE 28th International Conference on Very Large
Scale Integration (VLSI-SOC), pp. 141–146. IEEE (2020)

2. Ajayi, T., et al.: Fully autonomous mixed signal SoC design and layout generation
platform (2020)

3. Accellera, “IP-XACT - Accellera”. https://www.accellera.org/downloads/
standards/ip-xact. Accessed 03 May 2020

4. Wu, C.-Y., Graeb, H., Hu, J.: A pre-search assisted ILP approach to analog inte-
grated circuit routing. In: 2015 33rd IEEE International Conference on Computer
Design (ICCD), pp. 244–250. IEEE (2015)

5. Kunal, K., et al.: ALIGN: open-source analog layout automation from the ground
up. In: Proceedings of the 56th Annual Design Automation Conference 2019, pp.
1–4 (2019)

6. Xu, B., et al.: MAGICAL: toward fully automated analog IC layout leveraging
human and machine intelligence. In: 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 1–8. IEEE (2019)

7. Vladimirescu, A., Zlatanovici, R., Jespers, P.: Analog circuit synthesis using stan-
dard EDA tools. In: 2006 IEEE International Symposium on Circuits and Systems,
p. 4 (2006)

8. Park, Y., Wentzloff, D.D.: An all-digital 12pj/pulse 3.1–6.0 GHhz IR-UWB trans-
mitter in 65 nm CMOS. In: 2010 IEEE International Conference on Ultra-
Wideband, vol. 1, pp. 1–4. IEEE (2010)

9. Park, Y., Wentzloff, D.D.: An all-digital PLL synthesized from a digital standard
cell library in 65 nm CMOS. In: 2011 IEEE Custom Integrated Circuits Conference
(CICC), pp. 1–4. IEEE (2011)

10. Ansari, E., Wentzloff, D.D.: A 5 mw 250 ms/s 12-bit synthesized digital to analog
converter. In: Proceedings of the IEEE 2014 Custom Integrated Circuits Confer-
ence, pp. 1–4. IEEE (2014)

11. Bang, S., Wang, A., Giridhar, B., Blaauw, D., Sylvester, D.D.: A fully integrated
successive-approximation switched-capacitor DC-DC converter with 31 mv output
voltage resolution. In: 2013 IEEE International Solid-State Circuits Conference
Digest of Technical Papers, pp. 370–371. IEEE (2013)

12. Jung, W., Jeong, S., Oh, S., Sylvester, D., Blaauw, D.: A 0.7 pf-to-10 nf fully dig-
ital capacitance-to-digital converter using iterative delay-chain discharge. In: 2015
IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical
Papers, pp. 1–3. IEEE (2015)

https://www.accellera.org/downloads/standards/ip-xact
https://www.accellera.org/downloads/standards/ip-xact

84 T. Ajayi et al.

13. Shim, M., et al.: An oscillator collapse-based comparator with application in a 74.1
db SNDR, 20ks/s 15b SAR ADC. In: 2016 IEEE Symposium on VLSI Circuits
(VLSI-Circuits), pp. 1–2. IEEE (2016)

14. Bang, S., et al.: A fully synthesizable distributed and scalable all-digital LDO in 10
nm CMOS. In: 2020 IEEE International Solid-State Circuits Conference-(ISSCC),
pp. 380–382. IEEE (2020)

15. Kundu, S., Chai, L., Chandrashekar, K., Pellerano, S., Carlton, B.: A self-calibrated
1.2-to-3.8 ghz 0.0052 mm2 synthesized fractional-n MDLL using a 2b time-period
comparator in 22 nm finfet CMOS. In: 2020 IEEE International Solid-State Circuits
Conference-(ISSCC), pp. 276–278. IEEE (2020)

16. Rovinski, A., et al.: A 1.4 GHz 695 giga risc-v inst/s 496-core manycore processor
with mesh on-chip network and an all-digital synthesized PLL in 16 nm CMOS.
In: 2019 Symposium on VLSI Circuits, pp. C30–C31. IEEE (2019)

17. Wolf, C.: Yosys open synthesis suite. http://www.clifford.at/yosys/. Accessed 08
May 2020

18. Ngspice: the open source spice circuit simulator. http://ngspice.sourceforge.net/.
Accessed 08 2020

19. S. N. Laboratories: Xyce parallel electronic simulator (xyce). https://xyce.sandia.
gov/. Accessed 08 May 2020

20. Moore, D.M., Xanthopoulos, T., Meninger, S., Wentzloff, D.D.: A 0.009 mm2 wide-
tuning range automatically placed-and-routed ADPLL in 14-nm finfet CMOS.
IEEE Solid-State Circuits Lett. 1(3), 74–77 (2018)

21. Perrott, M.H., Trott, M.D., Sodini, C.G.: A modeling approach for Σ-Δ fractional-
N frequency synthesizers allowing straightforward noise analysis. IEEE J. Solid-
State Circuits 37(8), 1028–1038 (2002)

22. Okuma, Y., et al.: 0.5-v input digital LDO with 98.7% current efficiency and 2.7-µa
quiescent current in 65 nm CMOS. In: IEEE Custom Integrated Circuits Confer-
ence 2010, pp. 1–4. IEEE (2010)

23. Weaver, S., Hershberg, B., Kurahashi, P., Knierim, D., Moon, U.-K.: Stochastic
flash analog-to-digital conversion. IEEE Trans. Circuits Syst. I Regular Papers
57(11), 2825–2833 (2010)

24. Saligane, M., Khayatzadeh, M., Zhang, Y., Jeong, S., Blaauw, D., Sylvester, D.:
All-digital SoC thermal sensor using on-chip high order temperature curvature
correction. In: 2015 IEEE Custom Integrated Circuits Conference (CICC), pp.
1–4. IEEE (2015)

25. Jeong, S.: A 120 nw 8b sub-ranging SAR ADC with signal-dependent charge recy-
cling for biomedical applications. In: 2015 Symposium on VLSI Circuits (VLSI
Circuits), pp. C60–C61 (2015)

26. Salem, L.G., Mercier, P.P.: A recursive switched-capacitor DC-DC converter
achieving 2N − 1 ratios with high efficiency over a wide output voltage range.
IEEE J. Solid-State Circuits 49(12), 2773–2787 (2014)

27. ARM: Artisan memory compilers. https://developer.arm.com/ip-products/
physical-ip/embedded-memory. Accessed 18 Jan 2021

28. Synopsys: Designware memory compilers. https://www.synopsys.com/dw/ipdir.
php?ds=dwc sram memory compilers. Accessed 18 Jan 2021

29. D. Technology: Memory products. http://dolphin-ic.com/memory-products.html.
Accessed 18 Jan 2021

30. Kamineni, S., Gupta, S., Calhoun, B.H.: Memgen: an open-source framework for
autonomous generation of memory macros. In: 2021 IEEE Custom Integrated Cir-
cuits Conference (CICC), pp. 3–2. IEEE (2021)

http://www.clifford.at/yosys/
http://ngspice.sourceforge.net/
https://xyce.sandia.gov/
https://xyce.sandia.gov/
https://developer.arm.com/ip-products/physical-ip/embedded-memory
https://developer.arm.com/ip-products/physical-ip/embedded-memory
https://www.synopsys.com/dw/ipdir.php?ds=dwc_sram_memory_compilers
https://www.synopsys.com/dw/ipdir.php?ds=dwc_sram_memory_compilers
http://dolphin-ic.com/memory-products.html

FASoC 85

31. Dreslinski, R., et al.: Fully-autonomous SoC synthesis using customizable cell-based
synthesizable analog circuits. Technical Report, University of Michigan Ann Arbor
United States (2019)

32. Johannsen, D.: Bristle blocks: a silicon compiler. In: 16th Design Automation Con-
ference, pp. 310–313. IEEE (1979)

Assessing the Configuration Space of the
Open Source NVDLA Deep Learning
Accelerator on a Mainstream MPSoC

Platform

Alessandro Veronesi1(B), Davide Bertozzi2(B), and Milos Krstic1(B)

1 IHP - Leibniz-Institut für innovative Mikroelektronik,
15236 Frankfurt Oder, Germany

{veronesi,krstic}@ihp-microelectronics.com
2 Department of Engineering, Universitá degli Studi di Ferrara, 44122 Ferrara, Italy

davide.bertozzi@unife.it

Abstract. Deep neural networks (DNNs) are computationally and
memory intensive, which makes them difficult to deploy on traditional
hardware environments. Therefore, many dedicated solutions have been
proposed in the literature and market. However, most of them remain
proprietary or lack maturity, thus preventing the adoption of deep-
learning (DL) based software in new application domains. The Nvidia
Deep-Learning Accelerator (NVDLA) is a free and open architecture
that aims at promoting a standard way of designing deep neural net-
work (DNN) inference engines. Following an analogy with open-source
software, which is downloaded and executed, open hardware is likely
to use FPGAs as reference implementation platform. However, tailor-
ing accelerator configuration to the capacity of cost-effective reconfig-
urable logic remains a fundamental challenge for their actual deploy-
ment in system-level designs. This chapter presents an overview of the
hardware and software components of the NVDLA inference framework,
and reports on the exploration of its configuration space. It explores the
resource utilization-performance trade-offs spanned by the main precom-
piled NVDLA accelerator configurations on top of the mainstream Zynq
UltraScale+ MPSoC. For the sake of comprehensive end-to-end perfor-
mance characterization, the inference rate of the software stack and of the
accelerator hardware are matched, thus identifying current bottlenecks
and promising optimization directions.

Keywords: Deep-Learning · Reconfigurable Logic · Bare-Metal
Software · Open Hardware · Configurable Accelerator

1 Introduction

In recent years, the market request for efficient hardware supporting deep-
learning inference and training is increasing. As a result, computing accelerators
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 87–112, 2021.
https://doi.org/10.1007/978-3-030-81641-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_5

88 A. Veronesi et al.

in the context of heterogeneous hardware platforms are becoming key enablers
for the large-scale adoption of Artificial Intelligence (AI)-based solutions. While
graphics processing units (GPUs) are still the most commonly used platform
for accelerating deep neural networks (DNNs), more specialized hardware may
enhance the overall power and time execution budget [1,17].

Among the several options that are currently investigated, Field-
Programmable Gate Arrays (FPGAs) are gathering momentum because of their
capability to fit the tight power budgets of embedded applications [15] and to
shorten the development cycle. Unlike their ASIC counterparts, they can be
reconfigured on-the-field, which plays a fundamental role in modern context-
sensitive IoT scenarios with changing input datasets over time and frequent
model updates. As a result, FPGAs are gaining ground in assisting CPUs for
deep neural network (DNN) acceleration [14,26].

The growing popularity of FPGAs well beyond their traditional prototyp-
ing function as mainstream computing platforms well matches another emerging
trend: open hardware. Inspired by the successful trajectory of open-source soft-
ware, open hardware typically refers to the publicly availability of RTL models of
IP components, so that interested users can feed them to a physical implementa-
tion flow. The industry itself may leverage open hardware as a means of speeding
up the adoption of disruptive technologies, thus triggering a virtuous cycle that
potentially results in broader market opportunities. This paradigm enables com-
panies and academia to reduce development times and to take advantage of
emerging technologies without massive investments. It is the case of the RISC-V
Foundation, which aims at promoting the free and open RISC-V instruction set
architecture, together with its hardware and software ecosystem [34].

There is a strong parallelism between open hardware and open software at
various level of development and deployment process. In particular, as open
software can be easily downloaded and compiled for a general-purpose CPU, an
open hardware IP can be easily synthesized for an FPGA target, with a number
of additional benefits. First, the released hardware models undergo an intensive
customization effort by developers, either to specialize them for the application
at hand or to augment the level of security of the hardware realization, since
anybody can inspect and test the design. Second, prototyping on specific FPGA
platforms may be an integral part of the business model for open hardware, to
enable its validation on the field. Third, the resulting implementation on recon-
figurable logic may already hit the desired compromise between performance,
power and development cost to make it the target platform for deployment.

From the above brief observations, it is possible to assess how open hardware
may play a central role in deep-learning-based ecosystems. Besides the availabil-
ity of various commercial deep-learning accelerator (DLA) designs, closed DLA
solutions’ reserved nature and demanding license cost prevent broad adoption
of those architectures and, more generally, of AI in new application domains.
Therefore, the availability of open hardware DLA may be a key enabler for
future innovative AI-based applications.

NVDLA Cross-Layer Assessment 89

The more relevant examples in this sense are represented by the Nvidia Deep-
Learning Accelerator (NVDLA) [32] and the agile systolic array generator Gem-
mini [4]. NVDLA is an open-source industry-grade inference engine that has also
been integrated into the Jetson Xavier SoC platform [30]. NVDLA is an end-to-
end software-hardware stack from the high-level deep-learning framework to the
actual hardware implementation through the Runtime environment. The accel-
erator is highly configurable to adapt to various computing applications with
different resource budgets.

On the other hand, Gemmini is an academic design implementing a para-
metric systolic array architecture for general matrix-to-matrix multiplication
(GEMM) acceleration. In Gemmini, the systolic array hardware is expanded
with some elementary post-processing units and a scratchpad memory. Given
their open source nature, both NVDLA and Gemmini are influential contribu-
tions to the abundance of new machine learning accelerators, which raises inter-
est in their comparison against state-of-the-art common benchmarks. The work
in [5] has proven NVDLA to be 3.77× faster than Gemmini on an equivalently
sized configuration running ResNet-50. Due to its promising performance and
to its industry-proven nature, the focus of this chapter will be on the NVDLA
accelerator and on its concrete FPGA deployment.

Each target FPGA platform can impose a different resource budget, which
forces developers to trade architectural complexity and performance for lower
resource utilization to some extent. On the one hand, hardware and algorithm
optimizations for performance are pursued to make up for the inherently limited
reconfigurable fabric speed. On the other hand, the limited programming den-
sity of such fabrics may cause full-featured hardware architectures not to fit the
FPGA resources at hand. These conflicting requirements are exacerbated by the
recent advancements of DNN algorithms (e.g. Winograd and FFT convolutions,
weight compression), which come with their associated hardware extensions
[2,11,28].

This chapter moves from the observation that the flexible NVDLA accelera-
tor has mainly undergone virtual or physical prototyping so far while validating
only single design points. Moreover, although the accelerator gained ample pop-
ularity since its initial release, the active support received from the community
remains below expectations. One of the main reasons is the design complexity
and poor software documentation. Moreover, few works correlate its wide config-
uration space to the capacity of mainstream reconfigurable fabrics and achievable
performance. At the same time, like many other open hardware cores, NVDLA
comes with testbenches for direct hardware performance evaluation. However,
they may turn out to be misleading since they ignore the overhead of the software
stack, including user-mode and kernel-mode drivers, the Runtime environment
and portability layers for compatibility across computing platforms.

In order to facilitate the assessment, the further development and the con-
crete deployment of NVDLA, this chapter expands our previous work [20] by
providing a more detailed introductory guide to the hardware and software
stack of this DLA and an accurate in-sight of the available NVDLA Compiler’s

90 A. Veronesi et al.

workflow and capabilities. This chapter will analyze the Compiler’s workflow
and functional capabilities (Sect. 4), the Runtime environment and its inference
performance (Sect. 5), and will correlate hardware configurations to the resource
capacity of a mainstream FPGA platform (Sect. 6).

The Xilinx’s Zynq UltraScale+ MPSoC family (more precisely, the ZCU102
board) has been considered as implementation target. A bare-metal porting
guide on top of the board is described in Sect. 5.1. On the other hand, Sect. 6.2
describes the synthesis results of available pre-compiled configurations on top of
the board’s programmable logic. Last, Sect. 7 provides a comparison between
software and hardware throughput, thus, identifying major bottlenecks and
pointing to some easily affordable optimizations to enhance the architectural
support for FPGA targets.

2 Related Work

There is a surge of interest in FPGAs as implementation platforms for DNN
accelerators [14,25,26]. The availability of high-level synthesis (HLS) tools from
FPGA vendors lowers the programming hurdle and allows sophisticated end-
to-end hardware-software co-design flows [13,21]. Flexibility of reconfigurable
logic is typically exploited to directly map hardwired DNN models for better
performance [16,25,26].

A more general approach consists of supporting the mathematical operations
at the core of deep-learning inference in the accelerator hardware. This approach
is better suited for virtualized environments and frequent model updates. Along
this direction, the NVIDIA deep-learning accelerator project promotes interop-
erability with the majority of modern deep-learning networks [32]. Early works
on this architecture mainly resulted in extensive prototyping effort: some of them
targeted virtual platforms [8,27], while others targeted FPGAs [29]. However,
none of them initially have gone beyond a functional verification of the design
or the straightforward reporting of FPGA resource utilization, thus lacking of
in-depth analysis.

Only the work in [12] provides performance evaluation. For instance, assum-
ing the YOLO-v1 neural-network model as a benchmark, with a 256-MAC
NVDLA at 150 MHz, they reach 8 frames per second. Unfortunately, a single
design point is investigated (e.g., there is no discussion on the feasibility of
fitting larger NVDLA configurations into the target board) and the Runtime
overhead was not taken into account. To date, the most informative parametric
study is still the one reported on the NVDLA website [32], which is however
referred to ASIC technology, is far from exhaustive, and ignores the overhead of
the software stack.

More recently, the focus has shifted on system integration and customization.
NVDLA has in fact been synthesized and combined with different MCU archi-
tectures [3,6]. For instance, in work [6], authors have integrated NVDLA with
a RISC-V processor core, while keeping under control the power consumption
of the accelerator. In the works [22,23], the NVDLA’s convolutional core has

NVDLA Cross-Layer Assessment 91

been extended with additional hardware to implement an error detection rou-
tine working in parallel to the standard convolution operation. With only 30%
of extra hardware and power consumption in the convolutional core, they can
identify up to 99% of the injected faults during convolutions.

Udupa et al. [19] noticed that the NVDLA’s dataflow is not optimal for
2D Convolutions and Pooling operations, which are quite common in mobile-
oriented CNNs. Therefore, they propose a modification of the baseline MAC
cells to enhance resource usage during those operations.

While the hardware architecture has been the focus of explorative research
only since recently, the NVDLA Compiler has been targeted for optimization
since the original release. An Open-Source tool enabling both the compilation of
a broader range of neural networks than initially supported and their mapping
onto different NVDLA configurations is presented in Ref. [9].

Last, the scalable SIMBA deep-learning accelerator [24] is based on an array
of processing elements that are directly derived from the NVDLA architecture.
The SIMBA DLA targets the provisioning of scalable compute power within
package-level integration through multi-chip modules rather than large mono-
lithic dies.

This chapter provides an introduction to the NVDLA architecture and aims
to correlate the configuration space of the accelerator to the configuration space
of the NVDLA accelerator to the performance-resource utilization trade-offs
spanned on a commercial FPGA platform. In particular, this work has a distinc-
tive focus on the interplay between hardware and software layers in determining
inference performance, and investigating the NVDLA’s synthesis outcome on a
mainstream FPGA platform.

3 The NVDLA Architecture

The NVDLA project is composed of three main GitHub repositories, providing
the source code of:

– The Virtual Prototyping platform;
– The Software Stack, composed of two Runtime Drivers and a Neural Network

Compiler;
– The Hardware RTL and SystemC models.

The Virtual Prototyping repository is mainly composed by an NVDLA Sys-
temC model and by a Linux Kernel image running on a QEMU platform and
containing both drivers and Compiler. It is worth highlighting that the available
SystemC model is an RTL model. Therefore, more complex networks may have
a long simulation time.

The Software repository contains the Runtime environment, composed of a
User-Mode Driver (UMD) and a Kernel-Mode Driver (KMD). The NVDLA’s
Compiler is released as part of the UMD code, since the two software compo-
nents share many data structures. Both User-Mode and Kernel-Mode Drivers

92 A. Veronesi et al.

Fig. 1. NVDLA software stack.

are largely hardware-independent, and the needed modifications to make them
run with different NVDLA configurations are few and simple.

The Hardware repository is structured into three different branches: the “nvd-
lav1” contains the “Full” configuration, entirely supported by the Compiler and
containing all NVDLA functional units; the “nv small” branch contains two
“Small” and one “Large” configurations, suitable for more scaled applications;
last, the “master” branch contains several custom configurations, most of them
only partially verified or not mature for an ASIC implementation. All the avail-
able branches contain both a SystemC and a Verilog source code of the acceler-
ator instances. Those descriptions are dynamically generated by a script-based
environment which revolves around a “.spec” Specification File of the configu-
ration.

For our purpose, we focus on the software stack and the Verilog RTL model.

3.1 Software Environment

The software environment is composed by a Network Compiler and by a Run-
time Environment. The Compiler acquires a pre-trained Neural Network written
in Caffe as well as an NVDLA configuration and produces a “.loadable” file, con-
taining the list of hardware layers to be executed (see Fig. 1). A hardware layer
is a set of operations to be scheduled on each functional unit of the NVDLA
architecture. The current baseline Compiler fully supports only the “Full” con-
figuration (also referred as “NVDLA v1” online), while other configurations are
only partially supported (see Sect. 4.2).

The loadable file is given to the Runtime Environment, which is composed
by a User Mode Driver (UMD) and a Kernel Mode Driver (KMD). The former

NVDLA Cross-Layer Assessment 93

loads the network into the main memory (which has to be shared between the
two drivers and the hardware), reads and unpackages the image file and executes
data preparation, which mainly consists of re-interpreting the input pixel format
into an accelerator-specific memory mapping. The KMD contains the functional
unit scheduler and the hardware abstraction layer.

Instead, the network’s weights are already prepared by the Compiler, which
also takes care of their memory reservation. Network’s execution information are
thus serialized and packed into the “.loadlable” file. More precisely, the “load-
able” file consists of a byte sequence, containing network’s data and a network’s
compiled model description structured as a list of executable hardware layers.

UMD starts its execution copying in DRAM the loadable file content.
Together with the pre-processed input image, the loadable file’s data are used
by the UMD to prepare and send an “NVDLA Task” to the KMD. Thus,
the inference is performed in a single NVDLA Task, through a layer-by-layer
execution.

The OS-driver interactions are wrapped into a Portability Layer structure
and hidden to the drivers’ main routines. Currently, no actively supported
bare-metal implementations exist for the NVDLA drivers, a gap that the work
reported in this chapter will bridge not to include the OS overhead into the
NVDLA performance evaluation. Both the UMD and the KMD are originally
written for Linux and only support JPEG and PGM image formats.

Fig. 2. NVDLA hardware block diagram.

94 A. Veronesi et al.

3.2 Hardware Architecture

The NVDLA architecture is composed of several functional units. As shown in
Fig. 2, NVDLA revolves around a sophisticated Convolution Pipeline (CONV),
which is augmented by an activation engine (Single-Point Data Processor, SDP)
and a pooling engine (Planar Data Processor, PDP). There are also more spe-
cialized hardware units to extend the range of compatible deep-learning appli-
cations. They include a Cross-Channel Data Processor (CDP) for local response
normalization and a Reshape Engine (RUBIK) for simple image manipulation.

The accelerator has two interfaces to the outside world. On the one hand,
the Configuration Space Bus (CSB) is a slave interface connected to the host
processor and is used for accelerator configuration together with an interrupt
signal. On the other hand, the data backbone (DBB) is a link with the main
system memory, which is shared with the host processor. The CSB is a simple,
memory-like interface, thought to be easily connected to a different standard bus.
As an instance, the NVDLA’s GitHub hardware repository already contains a
CSB-to-AMBA APB bridge. Last, it is possible to instantiate an optional DBB
interface, which typically consists of a high-speed, dedicated SRAM, onto which
a Bridge DMA moves data from the main memory in a software-controlled way.

Beyond supporting the processing of a wide range of DNNs, NVDLA targets
instantiation flexibility: in fact, most of the above hardware units are optional
and highly configurable (e.g., number of MACs, convolution buffer size, batch
size, number of operations per convolution round, activation function, etc.). Even
when all functional units are supported, there are still significant degrees of
freedom as to the deep-learning processing features, such as the convolution
algorithm and the weight compression option. A detailed list of configuration
options is reported in Sect. 6.1.

Fig. 3. NVDLA CBUF block diagram in the “Full” configuration.

NVDLA Cross-Layer Assessment 95

The Convolutional Pipeline (CONV unit) is composed of five stages: Convo-
lution DMA (CDMA), Convolution Buffer (CBUF), Convolution Sequence Con-
troller (CSC), Convolution MAC array (CMAC), and Convolution Accumulator
(CACC). The system designer can configure the CONV pipeline by enabling
optional extra features (Winograd convolution support, Multi-Batch size and
weight compression support) and choosing CBUF and CMAC sizes.

CBUF block comprises several SRAM banks (see Fig. 3) which can be con-
figured in number and size. Each bank acts as a circular buffer, where new data
has incremental entry address, and if the address reaches the end, it wraps to
zero and starts increasing again.

)b()a(

Fig. 4. NVDLA CMAC unit. An array of MAC cells shares a broadcast input (a). Each
MAC cell is composed of an array of multipliers and the result is sent to the adder tree
in CACC (b).

The computing core of the CONV unit is the CMAC. The CMAC unit is
structured as an array of Atomic K MAC cells, where each cell is composed of
an Atomic C number of multipliers (see Fig. 4). Data are fed from the CBUF
and broadcast among different MAC cells. The two above parameters define the
simplest atomic convolution supported, where Atomic C is the maximum num-
ber of accepted input tensor channels and Atomic K is the maximum number
of accepted kernels in a single layer. Multiplication results are sent to the accu-
mulation unit (CACC) and summed thanks to an adder tree. Last, it is essential
to remember that the CONV unit output has no direct access to the memory
interface. Instead, CONV results are sent to the SDP unit as inputs.

In NVDLA “Full”, the Single-Point Data Processor (SDP) can perform bias
addition, batch normalization, element-wise operations among different input
tensors and non-linear functions applications, mainly to perform activations.
Non-linear functions may be both natively supported by SDP hardware (like
ReLU and PReLU) or emulated through a Look-Up Table unit (like Sigmoid
and Tanh in the “Full” configuration). Other configurations differ per type of
supported operations and sub-units throughput (see Sect. 4.2 and Sect. 6.1).

96 A. Veronesi et al.

The Planar Data Processor (PDP) is capable of min, max and mean pooling
operations. The PDP engine operates on different planes of the input feature
data cube. No interferences are present on different channels of the same feature
data cube. PDP can acquire data both from the memory interface and the SDP
output (also referred to as “fused” mode or “on-the-fly” mode).

The Cross-Channel Data Processor (CDP) is specifically designed to imple-
ment those functions that need to cross-combine values coming from separate
channels. To perform them, CDP uses a LUT-based engine. In the “Full” con-
figuration the Compiler can configure it to perform Local-Response Normaliza-
tion (LRN) functions. LRN layers are present in models like AlexNet [7] and
GoogLeNet [18], but are becoming less and less popular in recent DNN models.

NVDLA configuration takes place exclusively through the CSB interface.
Every unit has a CSB slave where, to hide the programming latency, two sets of
configuration registers are present, handled in a ping-pong manner.

NVDLA units can operate sequentially or pipelined. In particular, CONV,
SDP and PDP units can be configurred as a single execution chain (also referred
to as “fused mode”), while CDP and RUBIK cannot, since they differ in data for-
mat. Otherwise, functional blocks can be configured independently (also referred
to as “independent mode”) and perform memory-to-memory operations. This
causes a per-block round-trip through main memory. However, online documen-
tation poorly describes those operating modes. More details will be provided in
Sect. 4.2.

4 NVDLA Network Compiler

The NVDLA’s Compiler takes care of the Neural Network (NN) framework
interpretation and of the operations for functional units mapping. Its routine
revolves around two primary operations: input files parsing and execution code
generation. An NVDLA environment refers to the compiled file containing the
information for the complete execution of a Deep-Learning model as “.loadable”
file.

It is worth noticing that the NVDLA’s original Compiler is compatible only
with the Caffe Neural Network Framework. Nevertheless, different alternative
solutions are available online. Talking about the direct support by NVIDIA,
the TensorRT library [31] is an open-source AI toolchain and runtime software
developed for Jetson boards. It fully supports the ONNX framework and is
capable of advanced NN compiling features (e.g., kernel auto-tuning, layers and
tensors fusion, etc.). Although, it natively targets NVIDIA Jetson boards, thanks
to its open-source availability, it may be adapted to different NVDLA-based
SoCs.

Regarding the third parties support, Skymizer developed an ONNX Compiler
with a dedicated NVDLA backend [9]. The Open Neural Network Compiler
(ONNC) is capable of the same features of the initially developed Compiler by
NVIDIA, but with a greater focus on customization simplicity and flexibility.
Additionally, it has been reported to support more networks than the original
NVIDIA Compiler (see Ref. [8]).

NVDLA Cross-Layer Assessment 97

4.1 Compiler Workflow

The NVDLA Compiler is released as a set of APIs available in the UMD source
code. The Compiler is structured into a frontend and a backend. The frontend
coincides with the NN model parser, the backend instead implements compiling
routines, which are composed, among other things, of the network model-to-
hardware units assignment procedure, the memory allocation routine and the
graph optimization. NVIDIA provides a Compiler executable for Caffe-based
Neural Network models which relies on Google’s Protocol Buffer library.

The NVDLA Compiler execution always starts with the parsing operation.
The Compiler takes a pre-trained Caffe network (composed of a “.prototxt” file
containing the model description and a “.caffemodel” file containing the trained
weights), and produces a first intermediate representation of the network. This
first representation consists of an oriented graph where nodes are network layers,
and edges are features and weights data cubes. Next, the Compiler realizes a
second inspection of this graph and associates to every network layer a different
hardware unit to perform it, compliant to the layer behaviour. Last, several
optimization cycles are performed on top of this graph to resolve data and control
dependencies.

During the optimization cycles mentioned above, many essential routines take
place. One relevant example is the convolutions splitting process. Since NVDLA’s
CMAC unit size is user-defined, it is expected that bigger convolutions are not
fitting it. Thus, the Compiler separates them in several different hardware layers
to be processed in sequence (see Fig. 5).

As stated in Sect. 3, the convolution engine has no write-dedicated DMA,
and every convolution operation result is sent to the SDP engine. Since data
coming from the CONV engine are not automatically retrieved from the SDP,
the Compiler appends to every CONV layer an SDP “no-operation” (NOP), to
make it write out its input. Since most of the convolutions in NNs are followed
by activations, the Compiler then optimizes the graph by merging adjacent SDP
operations, whenever possible. As a result, the number of scheduled SDP oper-
ations is always equal or bigger than the number of convolutions performed (see
Fig. 5).

NVIDIA chose to make its DLA compatible with the FP16 and INT8 data
types. However, many NN frameworks (and Caffe as well) rely on a 32-bit
Floating-Point data type (FP32) to improve training precision.

The conversion between the original FP32 data and an FP16 or even INT8
data is automatically handled by the Compiler. However, a calibration table
should be used to simplify the work that may not turn out successful in the
most complex transformations (i.e., from FP32 to INT8, see Ref. [33]). Finally,
when the entire network’s data are converted, the Compiler reserves memory
entries for them in a virtualized memory environment.

98 A. Veronesi et al.

Fig. 5. Hardware Layers programmed for each functional unit (hereby compiled for the
“Full” configuration). The CONV operations number is always equal or bigger than
the network’s convolutions number because of the splitting mechanism. The number
of SDP is never less than the CONV operations, due to the NOPs appended to every
CONV operation performed.

Together with the above operations, the Compiler performs additional trans-
formations. Among them, this software updates the tensors sizes for optimizing
element-wise operations in the SDP engine or pre-processes the network’s aux-
iliary data.

Last, the Compiler can also support operations that are not natively accel-
erated by the NVDLA’s hardware. This feature is mainly available for the
“SoftMax” non-linear function. To achieve the SoftMax support, the Compiler
produces a particular hardware layer labelled as “emulator-dedicated”. EMU-
dedicated hardware layers are network operations not supported by the hard-
ware that must be executed by the Runtime environment instead and, thus, by
the CPU where the software is running on.

When all the above operations are successfully performed, the Compiler seri-
alizes the network’s graph representation and translates the whole data structure
into a list of addresses and configuration values. The whole memory stack con-
taining the network compiled information is finally saved into the loadable file.

4.2 Supported Features

The original NVDLA Compiler supports only the “Full”, “Large” and “Small”
configurations, but can be extended to additional configurations by customizing
the proper data structure present in the source code. However, NVIDIA fully
verified all the three available configurations (“Full”, “Large” and “Small”) only
for the MNIST, ResNet-18 and ResNet-50 models, providing an INT8 calibration
table only for ResNet-50.

NVDLA Cross-Layer Assessment 99

Table 1. NVDLA’s Compiler supported features per data path (a) and supported
functional units per configuration backend (b)

Functional Unit Feature FP16 INT8

CONV Direct Conv. Yes Yes
Dilatation Conv. Yes Yes
Winograd Conv. Yes Yes
Deconvolution Yes Yes

Fully Connected Yes Yes
Group Conv. Yes No

Winograd Group Conv. Yes No

PDP Pooling (min/max/avg) Yes Yes

SDP Bias Addition Yes Yes
Batch Norm. Yes Yes

Scale Yes Yes
Sigmoid Yes No
Tanh Yes No

EltWise SUM Yes Yes
EltWise SUB No No
EltWise MIN Yes No
EltWise MAX Yes No

CDP LRN Yes No

Unit Full Large Small

Winograd No No No
Compress Weights No No No

PDP Yes Yes Yes
CDP Yes Yes Yes

SDP Bias Yes Yes Yes
SDP BatchNorm Yes Yes Yes

SDP EW Yes Yes No
SDP LUT Yes Yes No
BDMA Yes No No
RUBIK Yes No No

(a) (b)

Even if the Compiler can support a vast amount of different features, not all
of them are implemented in practice (see Table 1). For example, the procedures
to perform Winograd Convolutions are available in both the presented data path,
but to date none of the available Compiler’s backends can produce a loadable
file supporting this algorithm. The same happens for the weight compression
capability.

Different considerations hold for the LUT sub-engines in SDP and CDP units.
The software must configure those units in order to use non-linear activation func-
tions on them. To offload the Runtime and speed-up the execution, the Compiler
already determines the configuration register values for the LUT programming.

Therefore, to implement a non-linear function in the LUT engines, the Com-
piler must contain a quantized version of the selected function and a dedicated
subset of routines determining the configuration registers’ values to program
it into the hardware. Even if the Compiler supports LUT engines in both the
“Full” and “Large” configurations, the functions’ quantized descriptions are not
available for all the datapaths (see Table 1). More precisely, Sigmoid and Tanh
activations functions are available for the “Full” configuration, but not for the
“Large” configuration.

The same happens with the LRN operations in the CDP engine. Since this
unit is LUT-based, a quantized version of the non-linear function must be pro-
vided and programmed into the hardware. Like Sigmoid and Tanh, a quantized
version of the LRN is available in the Compiler’s code for the FP16 data path,
but not for the INT8 data path, thus no LRN support is available in the “Large”
configuration.

Another Compiler’s duty consists of serializing the network’s graph represen-
tation. That means the Compiler determines the precise functional units’ exe-
cution order and optimizes it. Since NVDLA can combine the CONV, SDP and
PDP engines, the Compiler decides if those units are operating independently
(independent mode) or in a single pipelined chain (fused mode, or “on-the-fly

100 A. Veronesi et al.

processing” in the online programming guide). Independent and fused modes
are always available and supported since all the provided NVDLA configura-
tions contain the involved units.

The CONV and SDP pipelining is always available since the CONV unit
has no direct write back to the memory interface but always passes through
the SDP engine. Nevertheless, currently the fused mode is only supported for
“ReLU” activations, while executing a “No Operation” in SDP to write back the
convolution result in other cases.

Last, if CONV and SDP units are pipelined, the Compiler always tries to
append the PDP operations whenever possible. However, this is possible only
when the PDP buffer size is compliant to the SDP output size. This means
that if the software splits a convolution layer into more hardware layers, PDP
pipelining is not possible.

5 Software Runtime Analysis

NVDLA’s Runtime is composed of two drivers, named UMD and KMD. While
UMD mainly takes care of data preparation, KMD contains the functional unit
scheduler and the hardware abstraction layer.

UMD is available to the developer as a set of C++ APIs. NVIDIA provides
a sample main routine for image recognition tasks, containing the input image
pre-processing and basic routines calling the UMD APIs for network loading and
task submission.

User-Mode Driver contains an “Emulator”, a software extension to DLA’s
capabilities. Thanks to the Emulator, the UMD can offload the execution of
specific layers to the CPU. In the original UMD and Compiler, this is used to
perform SoftMax activation functions.

Kernel-Mode Driver contains the functional units scheduler and the hardware
abstraction layer. Since the network model interpretation and resource assign-
ment have already been made by the Compiler, the functional unit scheduling
restrict itself to a temporal assignment of the hardware layers to free units.

One of the main goals of this chapter is to shed light on the performance of
the Runtime environment. A porting of the whole software stack on the industry-
standard Zynq UltraScale+ MPSoC (ZCU102) is presented to assess it, including
a bare-metal implementation of the Runtime software in order to hide the addi-
tional overheads introduced by the Operating System.

5.1 Bare-Metal Implementation

A bare-metal version of the NVDLA firmware can be derived and ported to one
core of the 64-bit ARM Cortex A53 host processor on this platform, running
at 1.2 GHz. The board’s DRAM memory sub-system revolves around a 4 GB
Micron MTA4ATF51264HZ device configured to reach a peak bandwidth of
21.3 GB/s. This speed is enough for the requirements of the DNNs that will be
tested later [32]. Without a lack of generality, the board SD Card is used as the
repository for the input loadable file and for the images to be processed.

NVDLA Cross-Layer Assessment 101

According to NVDLA’s drivers’ structure, the porting must be accomplished
mainly by re-writing their portability layers. To simplify the hardware manage-
ment, Xilinx provides a group of software libraries (named “standalone” in case
of bare-metal software) for the Zynq UltraScale+ MPSoC boards family. Thus,
those libraries were exploited to achieve the file system support (to read images
and loadable file from the I/O unit), interrupt control (to interact with NVDLA
hardware) and dynamic memory management (extensively used by the UMD).
The file system support is not essential, but allows to reuse a big part of the
available software without strongly patching the Compiler and the Runtime.

Since the focus is on the performance assessment of UMD essential routines,
the Emulator code section is not ported, containing the SoftMax non-linear
function implementation. This even simplifies the UMD porting since no half-
precision Floating-Point (FP16) support is required anymore.

The original Linux drivers implementation relies on file descriptors to manage
the communication between the two drivers, using virtualized memory regions
for data exchange. As a workaround, specific data structures are instantiated as
an exchange area between UMD and KMD. The actual exchange routines take
place via memcpy() operations.

The NVDLA’s original drivers communicate with each other through an
ioctl() mechanism. Therefore, the original ioctl() methods have to be converted
into lightweight standard C routines, which can be invoked by the UMD-to-KMD
interface functions.

Last, since the UMD hadn’t been initially developed for a bare-metal envi-
ronment, many routines in the UMD portability layer (that largely correspond to
the UMD-to-KMD interface) are thought to be invoked during the UMD associ-
ated process creation and closure. Those procedures are mainly unnecessary for
a single-process environment like the one considered in this chapter, while the
memory reservation mechanism (easily replaced by a malloc()) and the initial-
ization procedures (to initialize the interrupt handler and the hardware-related
parameters like the NVDLA’s address) can be relevant for other contexts.

After the Runtime’s bare-metal porting, the latter consists of a unified execu-
tion flow where the developer can focus on key Runtime operations rather than
on the driver entities that perform them. Therefore, key Runtime operations
include:

– Network loading. It transfers a pre-compiled loadable file from an I/O
device (in our case, the SD Card) to main memory.

– Test operation. It performs image reading, data preparation and fills up a
data structure with task scheduling information.

– Submit operation. It schedules operations to the accelerator’s functional
units, with which interaction takes place through the hardware abstraction
layer.

In order to assess the software stack of the NVDLA framework in isolation,
the hardware execution should be assumed to occur in zero time. This can be
achieved by disabling write/read operations to/from the accelerator registers in
the KMD, and by virtually driving interrupt responses of the accelerator to the

102 A. Veronesi et al.

hardware abstraction layer, under the assumption of instantaneous execution of
scheduled commands.

Achieving the latter object is relatively easy. The inference always starts
with the UMD sending an “NVDLA task” to the KMD. The task is a decom-
pressed version of the loadable file, containing a list of hardware layers to be
performed, their dependencies and a set of memory addresses pointing to the
weights data allocated in main memory. The KMD performs the task in a func-
tional unit scheduling wheel, where at each cycle, a new operation is programmed
in the NVDLA’s registers, then a “wait for interrupt” statement is performed.
At the arrival of the interrupt, the KMD reads the functional units’ status and
determines which operations have completed. With this information, the KMD
updates the task dependencies and programs the next operation to be executed.

To virtually drive the interrupts, the registers interactions are hidden and
the operation programmed data saved directly in a variable. Then, the interrupt
handler function is manually called, and the correct flag is set according to the
saved data.

5.2 Runtime Performance

To evaluate the Runtime performance, Zynq Cortex’s APU Global Counter can
be used. If clocked at 100 MHz, Runtime execution time measurement turn out
to have a precision of 10 ns.

Regarding the tested DNNs, their Caffe models have been compiled with
the baseline NVDLA Compiler provided by NVIDIA. According to what pre-
sented in Sect. 4.2, compiling for different NVDLA configurations mainly results
in different functional units availability, different data path precision and convo-
lutional pipeline characteristics. In order to characterize the software stack, all
the DNNs under test have to be compiled for the NVDLA “Large” configuration
of the accelerator hardware, with a batch size of 1.

As anticipated in Sect. 5.1, the key Runtime operations include compiled
Network Loading, Test operation and task Submit. Next, the assessment of the
performance of these operations is provided.

As shown in Fig. 6, the network Loading time dominates over that of other
operations, due to reading of the loadable file from SD Card. On the target
board, the loading time turns out to be slightly better than a similar operation
performed from Flash memory, given the bandwidths of the devices under test:
100 MByte/s for the SD card vs. a peak bandwidth of up to 90 MByte/s for the
Flash memory. It is worth recalling that network loading occurs only occasionally
for DNN model update, while Test operation and Submit are performed at each
inference. Therefore, from now on, our focus will be only on Test and Submit.

In contrast, the scheduler and the hardware abstraction layers (see “Submit”
column) run much faster, mainly because the DNN interpretation has already
been realized during the compilation phase. Thus, Runtime scheduling restricts
only to task-to-functional unit assignment over time. As a result, the “Submit”
time grows with the number of schedulable “hardware layers” the DNN is broken
into by the Compiler, and that the KMD scheduler will process.

NVDLA Cross-Layer Assessment 103

Fig. 6. Execution time of the key operations of the NVDLA Runtime for different
DNNs under test. Image format: 28 × 28 pixels for LeNet-5, 224 × 224 pixels for the
others.

While the “Submit” time scales with the computational cost of the DNN
under test, the Test operation time shows a tighter correlation with the format
of the input dataset (MNIST for LeNet-5 vs. ImageNet for the remaining DNNs).
This results from the breakdown in Fig. 7, which shows the contribution of the
image loading time from SD card (in yellow). Clearly, the Test execution time is
dominated by data preparation on the ARM and DRAM subsystems, and not
by the I/O unit.

Next, under the assumption of instantaneous hardware execution, it is possi-
ble to characterize sustainable software throughput. In order to get realistic per-
formance estimates, the assumption is that the image to be processed is already
in DRAM. As a result, the Test routine remains the throughput bottleneck
and does not enable a frame rate higher than roughly 20 frames-per-second for
ImageNet-processing DNN models, and 120 fps for LeNet-5. The Submit opera-
tion alone would enable up to 1600 fps for LeNet-5 and slightly more than 200 fps
for the most complex Resnet152.

It is important to observe that the Test operation is hardware-independent
and memory-centric, thus the NVDLA Runtime environment gives rise to a
significant software overhead. Therefore, using NVIDIA precompiled testbenches
to project accelerator frame rate may be misleading, since limitations dictated
by the software stack are not accounted for.

104 A. Veronesi et al.

Fig. 7. Breakdown of the test execution time.

6 Hardware Synthesis

One of the distinctive features of NVDLA is hardware configurability. For the
sake of coherent analysis, the Xilinx’s Zynq UltraScale+ MPSoC is also used as
target platform as already done for the software stack. More in detail, NVDLA
model was synthesized and mapped for the Programmable Logic (PL) of the
ZCU102 board.

In all tested configurations, the accelerator is inferred as a single clock
domain. No specific mapping optimization to heterogeneous FPGA resources
was applied. Thus, absolute performance measurements reported in this chapter
have to be considered as pessimistic.

6.1 Inspected Hardware Configurations

NVDLA currently comes with several pre-compiled hardware configurations. All
the main stable configurations for an FPGA synthesis will be tested. A detailed
description can be found in Table 2. They encompass “Small”, “Medium” and
“Large” or even “Full” instances. All of them share a common baseline feature:
they instantiate all the functional units of the accelerator, except for RUBIK.
Moreover, the usage of the SRAM interface is configuration-specific.

Instead, they mainly differ by the target data type, the number of instantiated
MACs and the buffer size in the convolutional unit, batch size, and by DNN
algorithmic features such as weight compression or Winograd convolution (which
correspond to matching hardware units).

The “Full” version includes, among the other things, Winograd convolution,
weight compression, a batch size of 32, 2048 MACs (organized as 16 MAC cells,
64 multipliers each), INT8/FP16 data path and a dedicated SRAM interface.
In this configuration, internal optimizations are enabled in the SDP, PDP and

NVDLA Cross-Layer Assessment 105

CDP in order to maximize throughput. The 16 FP16 MAC cells can be re-
configured to support multiple data path as 32 INT8 MAC cells. Overall, it is a
high-end instantiation of a deep-learning accelerator aiming at memory-efficient
high-performance inference. The “Large” configuration is directly retrieved from
the “Full” configuration while relying only on an INT8 data path.

The “Small” configuration exhibits a baseline convolutional pipeline without
the optional memory interface, and a tighter resource budget for reduced area and
power requirements, including 64 MACs (organized as 8 MAC cells, 8 multipliers
each), INT8 data path, and a batch size of 1. To further diminish the area foot-
print, the SDP engine cannot perform element-wise operations between two input
feature data cubes and its LUT-based activation unit is not present (see Table 2
for all details). The “Medium” configuration directly enhances the “Small” con-
figurations, enlarging the MAC array size and the other units’ throughput.

Table 2. Tested hardware configurations. Atomic K is always referred to INT8 data
precision

Data Type Total Atomic Atomic CBUF SDP PDP CDP Winograd Weight Batch

MACs C K Support Compression Size

(KB)

nv small Int8 64 8 8 128 Yes Yes Yes No No 1

nv small 256 Int8 256 32 8 128 Yes Yes Yes No No 1

nv medium 512 Int8 512 32 16 512 Yes Yes Yes No No 1

nv large Int8 2048 64 32 512 Yes Yes Yes Yes Yes 32

nv full Int8/Fp16 2048 64 32 512 Yes Yes Yes Yes Yes 32

SDP E-W SDP LUT SDP SDP E-W PDP CDP RUBIK SRAM

Support Support Throughput Throughput Throughput Throughput Support Mem. If.

(op/cycle) (op/cycle) (op/cycle) (op/cycle)

nv small No No 1 - 1 1 No No

nv small 256 No No 1 - 1 1 No No

nv medium 512 No No 4 - 2 2 No No

nv large Yes Yes 16 4 8 8 Yes Yes

nv full Yes Yes 16 4 8 8 Yes Yes

6.2 Implementation Synthesis Results

Table 3 reports FPGA resource utilization for the configurations under test.
Interestingly, even the smallest accelerator instance (“Small” configuration)
takes already 43% of available CLBs, an utilization that grows to 84% for the
“Medium” configuration. From these tests, the “Large” and “Full” architectures
are so overprovisioned that they do not fit the Programmable Logic of the Zynq
UltraScale+ platform, which questions their deployment in cost-sensitive appli-
cation domains.

More in detail, the second column of Table 3 shows an extensive logic LUT
utilization, which grows from 25% in the “Small” configuration to 47% in the
“Medium” one. MAC units occupy only 10% of the LUTs in the “Small” baseline
configuration and roughly add from 60 to 90 additional LUTs for each increment
in the number of MACs, which depends on the specific configurations.

106 A. Veronesi et al.

Table 3. Synthesized hardware resource utilization

LUTs LUTRAMs FFs BRAMs DSP slices CLB
occupation

nv small 68927 196 69347 100 41 43%

nv small 256 90871 196 92830 165 41 57%

nv medium 512 130532 200 116364 187 75 84%

Simultaneously, the number of instantiated DSP slices is quite limited: from
1.63% in “Small” to 2.98% in “Medium”. This points to an inherent limitation
of the released source code of the accelerator: it natively targets ASIC imple-
mentation and is not optimized to make extensive use of DSP slices of the target
FPGA. The root cause for such inefficient use of DSPs may be identified in the
logic-level specification of convolutional’s unit multipliers. In facts, MAC cells
multipliers’ gate-level description biases the synthesis tool interpreter toward a
LUT-based implementation of those hardware elements.

Fig. 8. LUT occupation for each NVDLA functional unit.

Allocated DSP slices are in the Convolution DMA, which uses them for
address manipulation, and especially in the CDP engine. In those units, mul-
tiplications are described as arithmetic operations and modelled with a more
abstract behavioural syntax, thus mapping to DSP slices is straightforward for
the synthesis tool. As a result, when target CDP performance is boosted in the
transition from “Small 256” to “Medium” configurations, hardware redundancy
is used to meet the requirement, which results in a doubled allocation of DSP
slices. Source code optimizations for better use of DSP slices in the convolutional
pipeline is an active research and development area.

For each hardware configuration under test, Fig. 8 illustrates a breakdown of
LUT occupation into the individual functional units. Only interfaces to external
busses are omitted since constant throughout the configurations and lightweight
with respect to reported results (e.g., 300 LUTs for the CSB interface).

NVDLA Cross-Layer Assessment 107

We can first notice that the LUT occupation of the MAC array significantly
changes across configurations. In the “Small” one, the MAC array area is irrele-
vant compared to contributions of other functional units, while in the “Medium”
configuration it becomes as large as 30% of the total LUT count.

Besides the MAC array, the CDP makes the most extensive usage of LUTs,
followed by the SDP engine. In particular, the number of LUTs in both CDP,
PDP, and SDP increases from “Small 256” to “Medium” due to the boost in
these functional units’ throughput requirements.

)c()b()a(

Fig. 9. NVDLA CBUF bank structure in three different configurations. nv small,
SRAM macros = 8-Byte × 256 each (a); nv small 256, SRAM macros = 8-Byte ×
128 each (b); nv medium, SRAM macros = 16-Byte × 128 each (c)

Observing the Convolutional Buffer (CBUF), we can notice a counterintu-
itive trend in LUT (Fig. 8) and BRAM allocation (Table 3). Starting from the
“Small” configuration, the CBUF LUT utilization decreases with the growth of
the CBUF size (from 128 kB to 512 kB). At the same time, the BRAM uti-
lization has a significant increase in the transition from “Small” to “Small 256”
architectures (i.e., from 64 to 128 BRAMs, which determines a similar trend
also for the total number of BRAMs allocated by the design as a whole). How-
ever, the allocated BRAMs remain stable in the transition from “Small 256” to
“Medium” configurations.

This synthesis result is apparently unjustified observing the CBUF total size,
which does not change between the “Small” configurations, but increases in the
“Medium” one. The explanation can be found in the way the CBUF is organized.
In all the tested configurations, NVDLA comes with 32 SRAM banks, but in the
“Small” one they have a width of 8-Byte, which grows to 32-Byte data in the
“Small 256” and “Medium” configurations.

The single buffer bank organization consists of a set of SRAM macros with
a bitwidth of 64 in the two “Small” architectures (see Fig. 9). Therefore, when
the MAC array needs to be fed with a 64-bit input (“Small” case), one macro
would be enough. However, in order to increase the buffer depth, the “Small”
configuration combines two SRAMs into a unique aggregate macro, while leaving
the output bitwidth unaffected.

When the bitwidth increases to 256 bits (“Small 256” and “Medium” cases),
the CBUF aggregates 4 64-bit macros to provide it in “Small 256”, and 2 128-bit
macros in “Medium”.

The mapping of these convolution buffer configurations to FPGA turns out
to be sub-optimal. In fact, both the 16 kb SRAM macros in the “Small” con-
figuration and the 8 kb macros of the “Small 256” configuration are exclusively

108 A. Veronesi et al.

mapped to 36 kb BRAMs of the FPGA. The result is twofold. On the one hand,
this explains the increase in allocated BRAMs in Table 3 when moving from
“Small” to “Small 256” despite the convolutional buffer size stays the same. On
the other hand, this mapping results in a total of 2304 Kb occupied memory for
the “Small” and 4608 Kb for the “Small 256” instances versus a request of only
1024 Kb in both cases.

When moving to the “Medium” configuration, the SRAM macro size grows
to 64 Kb, which exceeds the BRAM size, hence justifying the FPGA synthe-
sis and mapping tools (Vivado) choice to map each macro to two different 36
Kb BRAMs. Thus, the number of occupied BRAMs is the same as in “Small
256” (see Table 3). However, memory utilization efficiency is better: 4608 Kb
of memory is occupied versus the requested 4096 Kb. Overall, the “Medium”
configuration makes more efficient use of memory resources than the lower-end
ones.

Finally, the different convolution buffer organization leads to different com-
plexity of the multiplexing and control logic. From Fig. 8, the “Small” config-
uration takes more LUTs in its CBUF due to an additional multiplexing layer
to aggregate SRAM macros. Moreover, “Medium” reduces the used LUTs in
CBUF with respect to “Small 256” because only two SRAM macros have to be
combined to provide the target bitwidth instead of 4.

Table 4. Synthesized hardware timing

Clock speed ResNet-50
(frame/sec)

nv small 130MHz 0.95

nv small 256 130MHz 5.98

nv medium 512 80MHz 7.44

Moving the discussion to the hardware execution time, we can observe the
clock speed and inference performance results reported in Table 4. We observe a
38% reduction of the clock speed only for the “Medium” configuration.

In order to factor in the clock speed to assess inference performance, we
assume the ResNet-50 DNN as a benchmark. From the “Small” to the “Small
256” configuration, an allocation of 4× the number of MACs results in an infer-
ence rate improvement by 6×.

When we move from “Small 256” to “Medium”, the benefits of doubling the
number of MACs, improving the convolutional buffer size and speeding up the
functional unit throughput are partly offset by the more complex hardware and
the lower operating speed. Therefore, the inference rate speedup is only 1.2×
(instead of the theoretical 2×), achieved with a number of CLBs which is 1.4×,
thus giving rise to an unbalanced cost-benefit trade-off for “Medium”.

NVDLA Cross-Layer Assessment 109

7 End-to-End HW/SW Performance and Optimizations

For a single inference of the ResNet-50 DNN, the hardware and software execu-
tion times have been combined. The software stack has been characterized for
the “Large” configuration, but it is matched to the performance of a “Medium”
accelerator instance since the only difference, i.e., the Submit time, would be neg-
ligible. Assuming a batch size of 1 (which is the only possible in the “Medium”
and smaller configurations), 63 ms have to be budgeted for the software stack (the
Test operation takes two orders of magnitude longer than Submit) and 134 ms
for hardware inference in the “Medium” configuration. Overall, the resulting
frame rate amounts to 5.13 fps. For the “Small” configuration, the frame rate
can be as small as 1 fps.

As a future optimization, it is conceivable to parallelize data preparation
with hardware operation. Since the total frame rate is currently hardware-
dominated, the expected upper bound consists of the 7.44 fps derived in Table 4
for “Medium”, while no noticeable improvement is expected for “Small”. One
way to quickly achieve this modification may be to restore the original UMD
and KMD software entities and make them work in parallel on two different
processing cores. Since original drivers act independently, their execution can be
pipelined.

As far as hardware is concerned, future performance optimizations may come
from better FPGA heterogeneous resource utilization. A significant re-writing
of the MAC cells source code may involve DSP slices in the convolutional
pipeline, enhancing the CMAC throughput. Second, onboard BRAMs can be
better exploited to implement both CBUF’s and other units’ memories. More-
over, since those modifications reduce the LUT occupation and better use the
already available FPGA resources, the total CLB usage will likely be reduced.
Thus, this would enable smaller NVDLA configurations to fit the programmable
logic of low-end devices as well.

Last but not least, since not all NVDLA functional units are always addressed
(as seen in Sect. 4.2) and the Runtime is mainly configuration-independent, many
NVDLA sub-units can be removed from the hardware “spec” file, without sig-
nificant modifications of the hardware/software stack (e.g., CDP unit in “Small”
configuration). This will lead to even smaller hardware footprints, without loss
in performance or functionalities.

8 Conclusions

The NVIDIA Deep-Learning Accelerator is a promising project bringing an
industrial-grade design to the open-source community. However, even if a rich
hardware architecture has been released, the software’s available support and
documentation are reduced and must be enhanced by the community.

The exploration of the software stack reported in this chapter revealed the
Compiler not to be optimized for hardware configurations different from “Full”.
At the same time, not all the functionalities available in hardware are ade-
quately exploited in the software stack. LUTs engines are fully supported only

110 A. Veronesi et al.

for the FP16-capable architectures, while the Compiler support for INT8-based
architectures is reduced. Moreover, additional functionalities such as Winograd
convolutions, weight compression or the additional memory interface for the
“Large” configuration are unsupported even when available in the instantiated
hardware.

Moving to the hardware implementation, this chapter reports on the DNN
accelerator mapping onto the commercial Xilinx UltraScale+ MPSoC and its
integrated reconfigurable logic. The analysis revealed that the pre-compiled
“Large” and “Full” configurations are overprovisioned for cost-effective Edge
computing platforms. The “Medium” configuration makes effective use of
FPGA memory resources and provides the best performance, but exhibits an
unfavourable cost-benefit trade-off with respect to the “Small 256” configura-
tion.

Finally, the chapter projects some optimization possibilities from the obser-
vation of the more evident bottlenecks. For instance, the frame rate on the
target platform is currently hardware-dominated: it achieves roughly 5 fps for
ResNet-50, potentially extended up to 8 fps, while future optimizations of hard-
ware performance (including synthesis for ASIC) will bring a software-limited
throughput of 20 fps to the forefront.

References

1. Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE
107(8), 1655–16674 (2019). https://doi.org/10.1109/JPROC.2019.2921977

2. DiCecco, R., Lacey, G., Vasiljevic, J., Chow, P., Taylor, G., Areibi, S.: Caffeinated
FPGAs: FPGA framework for convolutional neural networks. In: Proceedings of
the 2016 International Conference on FPT, pp. 265–268 (2016). https://doi.org/
10.1109/FPT.2016.7929549

3. Farshchi, F., Huang, Q., Yun, H.: Integrating NVIDIA deep learning accel-
erator (NVDLA) with RISC-V SoC on FireSim. arXiv preprint (2019).
arXiv:1903.06495v2

4. Genc, H., et al.: Gemmini: an agile systolic array generator enabling systematic
evaluations of deep-learning architectures. arXiv preprint (2019). arXiv:1911.09925

5. Gonzalez, A., Hong, C.: A Chipyard Comparison of NVDLA and Gemmini. http://
charleshong3.github.io/projects/nvdla v gemmini.pdf

6. Guoyu, C., Zhenjiang, P., Shanggong, F., Dawei, W., Jingwen, C., Shengang, Z.:
Research on the architecture of edge computing SoC with ultra-low power. In: Pro-
ceedings of the 2020 IEEE 3rd International Conference on Electronics Technology
(ICET), pp. 54–57 (2020). https://doi.org/10.1109/ICET49382.2020.9119600

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proceedings of Advances in Neural Information
Processing Systems, pp. 84–90 (2012). https://doi.org/10.1145/3065386

8. Lin, W., Hsieh, C., Chou, C.: ONNC-based software development platform for
configurable NVDLA designs. In: Proceedings of the 2019 International Symposium
on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–2 (2019). https://doi.
org/10.1109/VLSI-DAT.2019.8741778

https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/FPT.2016.7929549
https://doi.org/10.1109/FPT.2016.7929549
http://arxiv.org/abs/1903.06495v2
http://arxiv.org/abs/1911.09925
http://charleshong3.github.io/projects/nvdla_v_gemmini.pdf
http://charleshong3.github.io/projects/nvdla_v_gemmini.pdf
https://doi.org/10.1109/ICET49382.2020.9119600
https://doi.org/10.1145/3065386
https://doi.org/10.1109/VLSI-DAT.2019.8741778
https://doi.org/10.1109/VLSI-DAT.2019.8741778

NVDLA Cross-Layer Assessment 111

9. Lin, W., et al.: ONNC: a compilation framework connecting ONNX to propri-
etary deep learning accelerators. In: Proceedings of the 2019 IEEE International
Conference on AICAS, pp. 214–218 (2019). https://doi.org/10.1109/AICAS.2019.
8771510

10. Liu, S.-M., Tang, L., Huang, N.-C., Tsai, D.-Y., Yang, M.-X., Wu, K.-C.: Fault-
tolerance mechanism analysis on NVDLA-based design using open neural network
compiler and quantization calibrator. In: Proceedings of the 2020 International
Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–3 (2020).
https://doi.org/10.1109/VLSI-DAT49148.2020.9196335

11. Lu, L., Liang, Y., Xiao, Q., Yan, S.: Evaluating fast algorithms for convolutional
neural networks on FPGAs. In: Proceedings of the 25th IEEE International Sym-
posium on FCCM, pp. 101–108 (2017). https://doi.org/10.1109/FCCM.2017.64

12. Luo, S.: Customization of a deep learning accelerator. In: Proceedings of the 2019
International Symposium on VLSI-DAT, pp. 1–2 (2019). https://doi.org/10.1109/
VLSI-DAT.2019.8741855

13. Moreau, T., Chen, T., Jiang, Z., Ceze, L., Guestrin, C., Krishnamurthy, A.: VTA:
an open hardware-software stack for deep learning. arXiv preprint abs/1807.04188
(2018)

14. Qiu, J., et al.: Going deeper with embedded FPGA platform for convolutional neu-
ral network. In: Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 26–35 (2016). https://doi.org/10.1145/
2847263.2847265

15. Shawahna, A., Sait, S.M., El-Maleh, A.: FPGA-based accelerators of deep learning
networks for learning and classification: a review. IEEE Access 7, 7823–7859 (2019).
https://doi.org/10.1109/ACCESS.2018.2890150

16. Suda, N., et al.: Throughput-optimized OpenCL-based FPGA accelerator for large-
scale convolutional neural networks. In: Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 16–25 (2016).
https://doi.org/10.1145/2847263.2847276

17. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural
networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017). https://
doi.org/10.1109/JPROC.2017.2761740

18. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2014).
https://doi.org/10.1109/CVPR.2015.7298594

19. Udupa, P., Mahale, G., Chandrasekharan, K.K., Lee, S.: Accelerating depthwise
convolution and pooling operations on z-first storage CNN architectures. In: Pro-
ceedings of the 2020 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–5 (2020). https://doi.org/10.1109/ISCAS45731.2020.9180863

20. Veronesi, A., Krstic, M., Bertozzi, D.: Cross-layer hardware/software assessment
of the open-source NVDLA configurable deep learning accelerator. In: Proceedings
of the 28th IFIP/IEEE International Conference on Very Large Scale Integra-
tion (VLSI-SoC), pp. 1–6 (2020). https://doi.org/10.1109/VLSI-SOC46417.2020.
9344109

21. Wang, D., Xu, K., Jiang, D.: PipeCNN: an OpenCL-based open-source FPGA
accelerator for convolution neural networks. In: Proceedings of the 2017 Interna-
tional Conference on FPT, pp. 279–282 (2017). https://doi.org/10.1109/FPT.2017.
8280160

22. Xu, Z., Abraham, J.: Design of a safe convolutional neural network accelerator.
In: Proceedings of the 2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pp. 247–252 (2019). https://doi.org/10.1109/ISVLSI.2019.00053

https://doi.org/10.1109/AICAS.2019.8771510
https://doi.org/10.1109/AICAS.2019.8771510
https://doi.org/10.1109/VLSI-DAT49148.2020.9196335
https://doi.org/10.1109/FCCM.2017.64
https://doi.org/10.1109/VLSI-DAT.2019.8741855
https://doi.org/10.1109/VLSI-DAT.2019.8741855
https://www.aminer.org/pub/5b67b4b117c44aac1c866d25/vta-an-open-hardware-software-stack-for-deep-learning
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1109/ACCESS.2018.2890150
https://doi.org/10.1145/2847263.2847276
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ISCAS45731.2020.9180863
https://doi.org/10.1109/VLSI-SOC46417.2020.9344109
https://doi.org/10.1109/VLSI-SOC46417.2020.9344109
https://doi.org/10.1109/FPT.2017.8280160
https://doi.org/10.1109/FPT.2017.8280160
https://doi.org/10.1109/ISVLSI.2019.00053

112 A. Veronesi et al.

23. Xu, Z., Abraham, J.: Safety design of a convolutional neural network accelerator
with error localization and correction. In: Proceedings of the 2019 IEEE Interna-
tional Test Conference (ITC), pp. 1–10 (2019). https://doi.org/10.1109/ITC44170.
2019.9000149

24. Yakun, S.S., et al.: Simba: scaling deep-learning inference with multi-chip-module-
based architecture. In: Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pp. 14–27 (2019). https://doi.org/10.
1145/3352460.3358302

25. Zhang, J., Li, J.: Improving the performance of OpenCL-based FPGA accelera-
tor for convolutional neural network. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 25–34 (2017).
https://doi.org/10.1145/3020078.3021698

26. Zhang, X., et al.: DNNBuilder: an automated tool for building high-performance
DNN hardware accelerators for FPGAs. In: Proceedings of the 2018 International
Conference on Computer-Aided Design, pp. 1–8 (2018). https://doi.org/10.1145/
3240765.3240801

27. Zhou, G., Zhou, J., Lin, H.: Research on NVIDIA deep learning accelerator. In:
Proceedings of 12th IEEE International Conference on Anti-counterfeiting, Secu-
rity, and Identification, pp. 192–195 (2018). https://doi.org/10.1109/ICASID.2018.
8693202

28. Zhuge, C., Liu, X., Zhang, X., Gummadi, S., Xiong, J., Chen, D.: Face recognition
with hybrid efficient convolution algorithms on FPGAs. In: Proceedings of the 2018
GLSVLSI Great Lakes Symposium on VLSI, pp. 123–128 (2018). https://doi.org/
10.1145/3194554.3194597

29. Internet: GitHub issue #110: NVDLA running on a FPGA platform. github.
com/nvdla/hw/issues

30. Internet: NVIDIA Jetson modules. https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/

31. Internet: NVIDIA TensorRT library. developer.nvidia.com/tensorrt
32. Internet: NVDLA open source project. nvdla.org
33. Internet: NVDLA low precision support. github.com/nvdla/sw/blob/v1.2.0-OC/

LowPrecision.md
34. Internet: RISC-V Foundation. riscv.org

https://doi.org/10.1109/ITC44170.2019.9000149
https://doi.org/10.1109/ITC44170.2019.9000149
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1145/3020078.3021698
https://doi.org/10.1145/3240765.3240801
https://doi.org/10.1145/3240765.3240801
https://doi.org/10.1109/ICASID.2018.8693202
https://doi.org/10.1109/ICASID.2018.8693202
https://doi.org/10.1145/3194554.3194597
https://doi.org/10.1145/3194554.3194597
http://github.com/nvdla/hw/issues
http://github.com/nvdla/hw/issues
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://developer.nvidia.com/tensorrt
http://nvdla.org/
http://github.com/nvdla/sw/blob/v1.2.0-OC/LowPrecision.md
http://github.com/nvdla/sw/blob/v1.2.0-OC/LowPrecision.md
https://riscv.org/

SAT-Based Mapping of Data-Flow
Graphs onto Coarse-Grained

Reconfigurable Arrays

Yukio Miyasaka1(B), Masahiro Fujita2, Alan Mishchenko1,
and John Wawrzynek1

1 UC Berkeley, Berkeley, CA, USA
yukio miyasaka@berkeley.edu

2 The University of Tokyo, Tokyo, Japan

Abstract. Recently, it has been common to use parallel processing for
machine learning. CGRAs are drawing attention in terms of reconfig-
urability and high performance. We propose a method to map data-flow
graphs onto CGRAs by SAT solving. The proposed method can perform
the automatic transformation which changes the order of operations in
data-flow graphs to obtain more efficient schedules. It also accommo-
dates mapping of multi-node operations like MAC operation. We have
solved mapping problems of matrix-vector multiplication. In our exper-
iment, a SAT solver outperformed an ILP solver. Our method success-
fully processed a data-flow graph of more than a hundred nodes. The
automatic transformation under the associative and commutative laws
was not as much scalable but successfully reduced the number of cycles,
where the XBTree-based method worked faster than the enumeration-
based method. As another direction, we tried to optimize a CGRA archi-
tecture according to a data-flow graph and were able to reduce its PEs
and connections through incremental SAT solving.

Keywords: SAT problem · mapping · data-flow graph · CGRA

1 Introduction

Neural networks are used for machine learning in many fields including image
recognition [1]. The calculation of neural network involves numerous MAC oper-
ations, and there have been many accelerators developed. For example, TPU
[2] has a square mesh of MAC operation units and efficiently performs matrix
multiplication in a pipelined manner.

On the other hand, fabricating an ASIC for each application is costly, and
reconfigurable devices such as FPGAs attract attention these days. A CGRA
(Coarse-Grained Reconfigurable Array) is a reconfigurable device that consists
of ALU-like units, whereas an FPGA consists of LUTs. It has been shown that

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 113–131, 2021.
https://doi.org/10.1007/978-3-030-81641-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_6

114 Y. Miyasaka et al.

CGRAs achieve higher performance and better energy-efficiency than FPGAs
for domain-specific applications [3].

This paper proposes a SAT-based method for mapping data-flow graphs onto
CGRAs. The optimality of the obtained schedule in terms of the number of cycles
can be proved by checking the mapping problem with one less number of cycles
is unsatisfiable. The proposed method can apply transformations to data-flow
graphs during the mapping process by using XBTrees [4] that can implicitly
express all possible orders of operations under the associative and commutative
laws. Our method also supports mapping of multi-node operations.

In the experiments, we compared the XBTree-based transformation method
with the enumeration-based method on mapping problems of matrix-vector mul-
tiplication. The XBTree-based method was able to solve the problems that can-
not be solved in time by the enumeration-based method. Furthermore, as an
additional attempt, we tried to optimize a CGRA architecture according to a
data-flow graph. Through iterative synthesis with incremental SAT solving [5],
we were able to remove several PEs and connections in a 3 × 3 square mesh
architecture without degrading the performance for an AES data-flow graph.

This paper is organized as follows. Section 2 reviews related work and con-
trasts our approach. Section 3 explains the basics of SAT problem. Section 4
defines the mapping problem, explains the core of our SAT-based mapping
method, and compares a SAT solver and an ILP solver. Section 5 explains the
enumeration-based transformation methods proposed in our previous work and
shows mapping results for sparse matrix multiplication as an example. Section 6
proposes the XBTree-based transformation method and compares it with the
enumeration-based method on mapping of matrix vector multiplication. Section 7
explains a CGRA optimization method and shows a result for a mesh CGRA
and an AES data-flow graph. Section 8 concludes the paper.

2 Related Work

There have been many studies on mapping onto CGRAs. A study [6] proposed
MRRG (Modulo Routing Resource Graph), where the computational resources
are duplicated by the number of cycles as the time-frame expansion, and per-
formed simulated annealing under the law of causality. Recent studies replaced
simulated annealing by ILP (Integer Linear Programming), which can prove the
possibility of mapping in the given number of cycles [7]. We use a SAT solver
instead of an ILP solver because the SAT solver worked faster than the ILP
solver as shown in our preliminary experiment.

The studies above and others, as far as we know, did not modify the data-
flow graphs generated by architecture-agnostic compilers. A study [8] proposed
an approach using an encoding like an SMT (Satisfiability Modulo Theories)
solver to map linear functions and optimize them during the mapping process,
but it was limited to linear functions. Our method can automatically optimize
data-flow graphs according to the architectures of CGRAs.

Some studies [9] mapped data-flow graphs at the level of assembly language,
but we target high-level data-flow graphs where nodes correspond to arithmetic

SAT-Based Mapping 115

operations [10] or subroutines. Such a high-level description makes it easy for
the mapper to optimize the calculation by changing the order of operations.

Our previous work [11] used a table to enumerate all possible orders of oper-
ations for the automatic transformation. That caused a combinational explosion
where the number of intermediate values increases exponentially over the num-
ber of contiguous associative (and commutative) operations. To improve the
scalability, this work adopts XBTrees and sorters. An XBTree is a binary tree
with exchangers and can implicitly express all possible structures of binary trees
with a specific number of leaf nodes. Besides, this paper extends the mapping
method to optimization of CGRA architectures.

3 SAT Problem

A SAT (Satisfiability) problem is a problem to find an assignment to the vari-
ables that makes the given logic formula evaluate to true. If there is such an
assignment, the logic formula is satisfiable (SAT); otherwise, it is unsatisfiable
(UNSAT). The modern SAT solvers take a CNF (Conjunctive Normal Form)
formula as an input. A CNF formula is a conjunction of clauses, a clause is a
disjunction of literals, and a literal is a boolean variable or its negation.

For example, the CNF formula (1) consists of clauses a, (a∨c), and (a∨b∨c),
where a, a, b, c, and c are the literals, and a, b, and c are the variables. This
CNF formula is satisfiable with the assignment (a, b, c) = (true, true, false). If we
add a clause b to it as shown in the CNF formula (2), it becomes unsatisfiable.

In many applications, we need to impose a constraint that more than K of the
specified literals cannot be true at the same time. (3) is a typical representation
of the constraint on N literals {a0, a1, ..., aN−1} with integer addition (+), where
it is assumed that true is 1 and false is 0 as an integer. This constraint is called
an at most K constraint. In this paper, we used the bimander encoding [12]
(with two literals in each group) if K = 1, and the sequential unary counter
encoding [13] otherwise.

a ∧ (a ∨ c) ∧ (a ∨ b ∨ c) (1)

a ∧ (a ∨ c) ∧ (a ∨ b ∨ c) ∧ b (2)

a0 + a1 + ... + aN−1 ≤ K (3)

4 Mapping Problem

4.1 Data-Flow Graph

A data-flow graph in this paper is a directed acyclic graph that represents cal-
culation as trees of operations. We call the leaf nodes as input-nodes as they
correspond to the input variables of the calculation. The internal nodes are
called operator-nodes, and each of them represents one operation. The edges
pass the values of nodes: the input variables of input-nodes, and the results

116 Y. Miyasaka et al.

A B

+

+

C

+

D

(a)

A B

+

+

C

+

D

(b)

Fig. 1. Data-flow graphs for sum of four variables: A, B, C, and D.

1 1

External
memory

1

1

PE

1

1 1

PE

1

1

PE 1

1

PE

1

Fig. 2. A CGRA consisting of four PEs connected in a one-way ring.

of the operations of operator-nodes. An operator-node uses the received values
as the operands of the operation. The incoming edges to an operator-node are
labeled to specify the order of the operands when the operation is not commu-
tative. The operator-nodes whose results are the outputs of the calculation are
also called as result-nodes.

A data-flow graph is not a canonical representation. For example, there are
multiple data-flow graphs for sum of four variables as shown in Fig. 1. The order
of the operations is fixed in a data-flow graph even if it is arbitrary in nature.
In this case, one can be transformed to the other under the associative law.

4.2 CGRA

We represent a CGRA as a directed graph. We call nodes and edges in CGRAs as
components and paths respectively to distinguish those from those in data-flow
graphs. There are three kinds of components: PE (Processing Element), memory,
and external memory. Each PE has a given number of operation-units and regis-
ters. A memory holds the values received from other components, and its size is
unlimited unless specified. For each memory, a user can specify the input variables
that are stored in the memory in advance of the calculation, and even use it as a
ROM by removing its incoming edges. The external memory is a memory that
supplies the specified input variables and collects the outputs. It can store and
pass intermediate values by a user setting. Each path is labeled by the number of
values it can pass in one cycle. An example of CGRA is shown at Fig. 2.

SAT-Based Mapping 117

aPE0

a b c

PE1

c d

Communication step

PE0

a b

PE1

c d

Operation step

PE0

e b

PE1

a d

Storing step

e=a+c

Fig. 3. An example of cycle.

We assume that all components in a CGRA are synchronized. We divide one
cycle into three steps: communication step, operation step, and storing step as
shown in Fig. 3. First, some of the values in the registers in PEs and the values
in memories are passed to other components in the communication step. Next,
each operation-unit performs at most one operation in the operation step. An
operation-unit can use as the operands the values in the registers in the same PE
and the values communicated to that PE in that cycle. Finally, in the storing
step, the registers and memories store the values. A register stores one value
from the values in the registers in the same PE, the results of the operations
in that PE, and the values communicated to that PE in that cycle. A memory,
if the number of residing values exceeds a specified limit, selects the values to
discard.

4.3 SAT-Based Mapping

We create a CNF formula using three kinds of boolean variables shown below.
Let i, j, k, and h be integers. We number (zero-based) the nodes in a data-flow
graph and the components and the paths in a CGRA. Let node i denote the i-th
node, component j denote the j-th component, path h denote the h-th path,
and cycle k denote the k-th cycle. The range of k is from 0 to N − 1, where N is
the number of cycles. In the following, node i also means the value of the node.

– Xi,j,k ... node i exists in component j at the end of cycle k
– Yi,h,k ... node i is communicated in path h at cycle k
– Zi,j,k ... node i is calculated in component j at cycle k

Xi,j,k means node i is stored (in the registers) in component j at cycle k.
The CNF is composed of the following clauses. Let Hj denote the set of

incoming paths to component j, sh denote the component at the origin of path
h, component e denote the external memory, Di denote the set of the nodes
which are the operands (the nodes at the origins of the incoming edges) of node
i, and O denote the set of the result-nodes.

1. Xi,j,0 for ∀(i, j) where component j is a memory or external memory storing
node i, which is an input-node, in advance of the calculation

2. ¬Xi,j,0 for ∀(i, j) where the condition above is not met
3. Xi,e,N−1 for ∀i ∈ O

118 Y. Miyasaka et al.

4. ¬Xi,j,k ∨ Xi,j,k−1 ∨ ∨
h∈Hj

Yi,h,k ∨ Zi,j,k for ∀(i, j, k �= 0)
5. ¬Yi,h,k ∨ Xi,sh,k−1 for ∀(i, h, k �= 0)
6. ¬Zi,j,k ∨ Xd,j,k−1 ∨ ∨

h∈Hj
Yd,h,k for ∀d ∈ Di, for ∀(i, j) where node i is an

operator-node and component j is a PE, for ∀k �= 0
7. ¬Zi,j,k for ∀(i, j) where the condition above is not met, for ∀k �= 0
8. At most K constraint on {Xi,j,k for ∀i} where K is the number of registers

in component j, for ∀j where component j is a PE, for ∀k
9. At most K constraint on {Yi,h,k for ∀i} where K is the label of path h, for

∀(h, k �= 0)
10. At most K constraint on {Zi,j,k for ∀i} where K is the number of operation-

units in component j, for ∀j where component j is a PE, for ∀k �= 0

The clauses 1 and 2 set the initial condition and the clause 3 sets the condition
at the end of the computation. The clause 4 imposes the constraints that the
existence of a node in a component infers its existence in the component at
the previous cycle, its communication to the component at the same cycle, or
its calculation in the component at the same cycle (if the node is an operator-
node and the component is a PE). The clause 5 imposes the constraint that
the communication of a node in a path infers its existence in the component
at the origin of the path. The clauses 6 and 7 impose the constraint that the
calculation of a node in a component infers that the node is an operator-node,
the component is a PE, and all of its operands are available there. The clause
8 limits the number of nodes in a PE to the number of registers in the PE,
the clause 9 limits the number of nodes communicated in a path to the label
of the path, and the clause 10 limits the number of the operations performed
simultaneously in a PE to the number of operation-units in the PE. Additional
clauses are necessary if a user limits the size of memories or forbids the external
memory to store and pass the intermediate values.

It is assumed that an operation-unit can process one operator-node in a cycle.
On condition that an operation-unit can process two or more operator-nodes at
the same time, MAC operation for example, we need to use a different formu-
lation. Fortunately, the formulation for the enumeration-based transformation
method also works for that purpose.

The formulation above does not consider pipelining. To be pipelined, a sched-
ule must not use the same resource in multiple cycles that are congruent modulo
T , where T is the number of contexts. This constraint can be imposed by mod-
ifying the clauses 8, 9, and 10. Let t be an integer. The modification to the
clause 8 is shown below, where the changes are written in a bold font. The same
modification must be applied to the clauses 9 and 10.

8. At most K constraint on {Xi,j,k for ∀i, for ∀k where k mod T = t} where
K is the number of the registers in component j, for ∀j where component j
is a PE, for ∀t ∈ [0, T − 1]

4.4 Preliminary Experiment

As a preliminary experiment, we compared a SAT solver (KISSAT) and an ILP
solver (CPLEX v20.1), each running in a single thread. In the ILP problems, the

SAT-Based Mapping 119

x2

w12

×

+

w22

×

w32

×

w42

×

+ + +

x1

w11

×

w21

×

w31

×

w41

×

x3

w13

×

+

w23

×

w33

×

w43

×

+ + +

x4

w14

×

+

w24

×

w34

×

w44

×

+ + +

Fig. 4. A data-flow graph of 4 × 4 matrix-vector multiplication.

at most K constraints were directly expressed without encoding. A parameter
“emphasis mip” was set at one for the ILP solver to focus on the satisfiability.

We mapped a data-flow graph of 4 × 4 matrix-vector multiplication shown
at Fig. 4 and a CGRA consisting of four PEs connected in a one-way ring shown
at Fig. 2. The number of operation-units and the number of registers in each PE
were set at 1 and 2 respectively. No pipelining was done. The external memory
was not allowed to store the intermediate values.

The runtime is shown in Table 1. The mapping problem was UNSAT when
the number of cycles was 9 and SAT when it was 10. It means that 10 is the
minimum possible number of cycles. The SAT solver solved the problems more
than a hundred times faster than the ILP solver. The runtime of ILP solver
is reasonable because several studies [7,14,15] showed that an ILP solver got
timeout (one day) just in mapping a data-flow graph consisting of dozens of
nodes.

120 Y. Miyasaka et al.

Table 1. The results and runtime in seconds for mapping 4 × 4 matrix-vector multi-
plication onto the CGRA of four PEs in a one-way ring.

Cycle Result Runtime

SAT solver ILP solver

9 UNSAT 8.9 3567.8

10 SAT 1.2 767.1

5 Enumeration-Based Transformation

5.1 CNF Formulation

The enumeration-based automatic transformation method was proposed in our
previous work [11]. It enumerates all possible operations that calculate each
node and modifies the CNF formula so that the node can be calculated by any
of those operations. For example, the value A + B + C can be calculated as
(A+B)+C, (B+C)+A, or (C+A)+B, but one data-flow graph can represent
only one of them. The method enumerates all of them from one data-flow graph
by traversing it and uses the modified CNF formula where any of them can be
used in mapping.

The enumeration of all possible operations under the associative and com-
mutative laws is performed as follows. First, we create cluster-nodes by merging
all contiguous operator-nodes of the same associative operator. An example is
shown at Fig. 5. Next, we enumerate all candidates for the last operation for
each cluster-node, taking the commutativity of the operator into account. For
example, for multiplication of four variables, there are seven candidates: four
candidates are the multiplication between one variable and the product of the
other three variables, and three candidates are the multiplication between the
product of two variables and the product of the other two variables. Finally,
for each intermediate value we encountered, we create a new node, called an
intermediate-node, and enumerate all candidates for its last operation. This
final step is recursively done until every intermediate value corresponds to one
intermediate-node. Intermediate-nodes are virtual and not located in data-flow
graphs. We create a table, as shown in Table 2 for example, to avoid duplication
of intermediate-nodes.

The CNF formula is modified to enable each node to be calculated by any of
the enumerated candidates. Here, the cluster-nodes and intermediate-nodes are
treated as operator-nodes. Let l be an integer, Li be the number of candidates
to calculate node i, and Di,l be the set of the nodes which are the operands in
the l-th candidate to calculate node i. We use a new kind of boolean variable,
Zi,j,k,l, which means all the operands in the l-th candidate to calculate node i
are available in component j at cycle k. The clause 6 is replaced by the following
clauses:

6.1. ¬Zi,j,k,l∨Xd,j,k−1∨∨
h∈Hj

Yd,h,k for ∀d ∈ Di,l, for ∀l ∈ [0, Li−1], for ∀(i, j)
where node i is an operator-node and component j is a PE, for ∀k �= 0

SAT-Based Mapping 121

A B C D

G

FE

× ×

+

A B C D

G

FE× ×

× ×

+

+

Fig. 5. Creation of cluster-nodes by merging contiguous operator-nodes of the same
associative operator.

6.2. ¬Zi,j,k ∨ ∨
l∈[0,Li−1] Zi,j,k,l for ∀(i, j) where node i is an operator-node and

component j is a PE, for ∀k �= 0

This formulation also makes mapping of multi-node operations possible. A
multi-node operation is an operation that simultaneously processes multiple
nodes in data-flow graphs. For example, MAC operation, which processes con-
tiguous multiplication and addition, can be mapped as follows. For each node
i that is an operator-node of addition, for each candidate to calculate node i,
let node a be the first operand and node b be the second operand. If node a is
an operator-node of multiplication, for each candidate D (a pair of operands)
to calculate node a, we add D ∪ {b} to the candidates to calculate node i. The
same for node b. By doing this, we can map MAC operation using the same CNF
formula. Note that the addition of candidates is actually performed after all new
candidates are enumerated for all nodes and for all multi-node operations in
order to prevent the new candidates from interfering each other,

5.2 Example: Sparse Matrix Multiplication

As an example, we synthesized sparse matrix multiplication algorithms based
on TPU [2] using our mapping method. We can obtain the fastest algorithm
exploiting the sparsity for each sparse matrix. Figure 6 shows the original algo-
rithm for A = W ·X where W , X, and A are 3× 3 matrices. Each element of W

122 Y. Miyasaka et al.

Table 2. A table from a node to its candidates after processing a cluster-node of
multiplication of four variables: A, B, C, and D.

Node Candidates

A×B × C ×D (A×B × C) ×D, (A×B ×D) × C,

(A× C ×D) ×B, (B × C ×D) ×A,

(A×B) × (C ×D), (A× C) × (B ×D), (A×D) × (B × C)

A×B × C (A×B) × C, (A× C) ×B, (B × C) ×A

A×B ×D (A×B) ×D, (A×D) ×B, (B ×D) ×A

A× C ×D (A× C) ×D, (A×D) × C, (C ×D) ×A

B × C ×D (B × C) ×D, (B ×D) × C, (C ×D) ×B

A×B A×B

A× C A× C

A×D A×D

B × C B × C

B ×D B ×D

C ×D C ×D

is assigned to one PE. The elements of X are passed to the right, and the partial
sums are passed down in the figure. Each PE multiplies a received element of X
and the assigned element of W and adds the result and a received partial sum. It
takes eight cycles to calculate A, where the number of contexts is 3. The figure
also shows the beginning of the next matrix multiplication B = W · Y .

We solved the problems mapping sparse matrix multiplication where some
elements of W are zero and the corresponding multiplications can be skipped. We
used a CGRA of the same topology with each path labeled by one. The number of
operation-units and the number of registers in each PE are 1 and 2 respectively,
and MAC operation was enabled. The inputs come from the external memory,
to which the outputs are returned. We put a ROM for each PE and connected
the ROM to the PE. At most one none-zero element of W can be assigned to
each ROM. Because of the automatic transformation, permutations of rows and
columns of W can be done automatically with swapping output-columns and
input-rows, so we only have to consider permutationally inequivalent matrices.
There are 36 permutationally inequivalent matrices in 3 × 3 matrices [16].

We tried to reduce the number of cycles and the number of contexts for
each matrix except an all zero matrix. We fixed the number of contexts at 3
when changing the number of cycles. On the other hand, we fixed the number of
cycles at 9 when changing the number of contexts. Note that there is one extra
cycle required for the initial condition. Table 3 shows the results. The minimum
possible number of cycles was reduced in proportion to the number of zeros. Only
when the number of zeros was 3 or 6, the number of required cycles changed
depending on the places of zeros. The number of required contexts reduced by
one for one matrix when the number of zeros was 5 or 6. For lager number of

SAT-Based Mapping 123

W11 W21 W31

W12 W22 W32

W13 W23 W33

Y12 Y11 X13 X12 X11

Y21 X23 X22 X21

X33 X32 X31

12345

B12 B21 A33

B11 A23 A32

A13 A22 A31

A12 A21

A11

8

7

6

5

4

Matrix elements
Partial sum

s

Fig. 6. The algorithm for 3 × 3 matrix multiplication using nine PEs connected in a
3 × 3 square mesh.

zeros, the minimum possible number of contexts was 2 when it was 7, and 1
when it was 8.

6 XBTree-Based Transformation

6.1 CNF Formulation

In this work, we implemented another transformation method based on XBTrees,
which is originally used for logic factoring of logic circuits [4]. This method
can perform the same transformation as the enumeration-based method if the
transformation is done for associative and commutative two-input operators.

An XBTree is a binary tree with exchangers that rotate the order of inputs
according to the control signals. It can efficiently enumerate all possible struc-
tures of binary trees with a specific number of leaf nodes. For an exchanger of
size S, let x0, ..., xS−1 and y0, ..., yS−1 be the inputs and outputs respectively.
The control signal of the exchanger, c, is an integer in the range from 0 to S−1.
The function of the exchanger is shown at (4). For example, an XBTree with four
leaf nodes is shown at Fig. 7. Depending on the control signal of the exchanger,

124 Y. Miyasaka et al.

Table 3. The number of 3 × 3 sparse matrices successfully mapped onto the CGRA
of nine PEs in a 3 × 3 square mesh for each number of cycles (when the number of
contexts was 3) and for each number of contexts (when the number of cycles was 9).

A B

C

D

Exchanger

Fig. 7. An XBTree with four leaf nodes: A, B, C, and D.

it is either Fig. 1(a) or (b), assuming the internal nodes are operator-nodes of
addition.

∀n.yn = xn+c mod S (4)

We can apply the XBTree-based transformation to two-input operators that
are both associative and commutative. We create cluster-nodes as described in
the previous section and replace each cluster-node by an XBTree and a sorter
instead of enumerating all possible orders of operations. For example, a cluster
node of multiplication of four variables is replaced by the data-flow graph shown
at Fig. 8. The XBTree has as many leaf nodes as the number of inputs to the
cluster-node, while the leaf nodes are the outputs of the sorter that reorders the
inputs to the order designated by its control signal. The sorter is required to
fully search the variants under the commutative law. We implement a sorter as
a set of one-output multiplexers, where each multiplexer exclusively selects one
from the inputs of the sorter.

SAT-Based Mapping 125

A B

×

×

×

Exchanger

Sorter

C D

Fig. 8. A data-flow graph implicitly enumerating all possible orders of operations for
multiplication of four variables: A, B, C, and D.

The CNF formula needs to be modified to accommodate exchangers and
sorters, which are called blocks and not treated as nodes. We introduce new
kinds of boolean variables shown below. Let p, q, and r be integers. We number
the blocks in a data-flow graph and denote the p-th block by block p and its size
(the number of its inputs) by Sp.

– Pp,q,j,k ... the q-th output of block p exists in component j at cycle k (q ∈
[0, Sp − 1])

– Pp,q,r,j,k ... the q-th output is the r-th input in block p, and the r-th input of
block p exists in component j at cycle k (q, r ∈ [0, Sp − 1])

– Qp,q or Qp,q,r ... control signal of block p (q, r ∈ [0, Sp − 1])

We adopt the one-hot encoding for control signals. The variables {Qp,q for ∀q ∈
[0, Sp − 1]} are used as a control signal for block p that is an exchanger, and
the variables {Qp,q,r for ∀q ∈ [0, Sp − 1]} are used as a control signal for the
multiplexer generating the r-th output of block p that is a sorter.

We add the following four types of clauses to the CNF. Let dp,r denote
the r-th input of block p. It can be a node or an output of another block. In
the latter case, where it is the q′-th output of block p′, dp,r is a pair (p′, q′).
For simplicity, when d is (p′, q′), Xd,j,k−1 is regarded as Pp′,q′,j,k, and Yd,h,k is
constant-false (excluded from clauses). The same applies for the elements in Di,
a set of operands, used in the clause 6, and the elements in Di,l in the clause
6.1. A one-hot constraint is a combination of an at most 1 constraint and a large
clause containing all literals in the set to make at least one of them true.

11. ¬Pp,q,r,j,k ∨ Qp,r−q mod Sp
for ∀(q, r) ∈ [0, Sp − 1]2, for ∀p where block p is

an exchanger, for ∀j where component j is a PE, for ∀k �= 0
12. ¬Pp,q,r,j,k ∨Qp,q,r for ∀(q, r) ∈ [0, Sp −1]2, for ∀p where block p is a sorter,

for ∀j where component j is a PE, for ∀k �= 0

126 Y. Miyasaka et al.

13. ¬Pp,q,r,j,k ∨ Xdp,r,j,k−1 ∨ ∨
h∈Hj

Ydp,r,h,k for ∀(q, r) ∈ [0, Sp − 1]2, for ∀j
where component j is a PE, for ∀(p, k �= 0)

14. ¬Pp,q,j,k ∨∨
r∈[0,Sp−1] Pp,q,r,j,k for ∀q ∈ [0, Sp −1], for ∀j where component

j is a PE, for ∀(p, k �= 0)
15. One-hot constraint on {Qp,q for ∀q ∈ [0, Sp − 1]}, for ∀p where block p is

an exchanger
16. One-hot constraint on {Qp,q,r for ∀q ∈ [0, Sp − 1]}, for ∀r ∈ [0, Sp − 1], for

∀p where block p is a sorter
17. At most 1 constraint on {Qp,q,r for ∀r ∈ [0, Sp − 1]}, for ∀q ∈ [0, Sp − 1],

for ∀p where block p is a sorter

The clauses 11 and 12 make Pp,q,r,j,k false when the q-th output is not the r-th
input in block p according to the control signal. The clause 13 then ensures that
the r-th input of block p is available in component j at cycle k. The clause 14
finally determines the presence of the q-th output of block p in each component
at each cycle. Note that we do not care the cases where component j is not a
PE because such Pp,q,j,k will never be used (especially in the clause 6 or 6.1).
The clauses 15 and 16 make the control signals one-hot. The clause 17 prohibits
any two multiplexers in a sorter from selecting the same input.

A minor difference from the enumeration-based method is that intermediate
values cannot be shared. For example, when we calculate A + B + C and
A + B + D, it might be good to calculate A + B and use it to calculate both
(A + B) + C and (A + B) + D. The enumeration-based method can do that by
sharing a table among the cluster-nodes, but the XBTree-based method cannot
because it creates an XBTree separately for each cluster-node.

The multi-node operation can be supported by using the clauses 6.1 and 6.2
even if we use the XBTree-based method. After inserting XBTrees, we traverse
the data-flow graph to find nodes that match a multi-node operation. During
this process, we may encounter the places where nodes are separated by blocks
but match a multi-node operation if the control signals for the blocks take a
particular value. In this case, we create Ri,l, a set of control signal variables
(Qp,q and Qp,q,r) that are true when the control signals take that particular
value, while adding the set of operands as a new (l-th) candidate to calculate
node i. Then, we disable that candidate unless the control signals take that
value by adding the following clause. Note that we do not care the control signal
variables that are false because the control signals are one-hot encoded.

6.3. ¬Zi,j,k,l ∨ Q for ∀Q ∈ Ri,l, for ∀l ∈ [0, Li − 1] where Ri,l exists, for ∀(i, j)
where node i is an operator-node and component j is a PE, for ∀k �= 0

6.2 Comparison: Matrix-Vector Multiplication

We solved the same problem as in the preliminary experiment in Sect. 3 to com-
pare the automatic transformation methods. We enabled MAC operation in this
comparison. We also changed the size of the problem (the size of matrix and the
number of PEs) to see the scalability of the methods. We used KISSAT.

SAT-Based Mapping 127

Table 4. The results and runtime in seconds for mapping matrix-vector multiplication
using MAC operation with or without the automatic transformation under the asso-
ciative and commutative laws which was performed by the enumeration-based method
(Enum) or the XBTree-based method (XBTree).

Size Node (Block) Cycle Result (Runtime)

w/o Enum XBTree w/o Enum XBTree

4 48 (0) 80 (0) 48 (8) 6 UNSAT (<0.1) UNSAT (0.2) UNSAT (0.1)

7 UNSAT (0.5) SAT (1.2) SAT (0.8)

8 SAT (0.1) SAT (0.3) SAT (0.5)

5 75 (0) 185 (0) 75 (12) 7 UNSAT (0.2) UNSAT (3.7) UNSAT (0.8)

8 UNSAT (2.8) SAT (761.1) SAT (109.8)

9 SAT (1.8) SAT (61.0) SAT (4.2)

6 108 (0) 420 (0) 108 (16) 8 UNSAT (0.3) TO (>10800) UNSAT (2879.8)

9 UNSAT (45.7) TO (>10800) SAT (3284.0)

10 SAT (54.0) SAT (4248.2) SAT (92.8)

The results and runtime are shown at Table 4. TO (Timeout) was set at three
hours. When the problem size was 4, the minimum possible number of cycles
was 8 (two cycles reduced) just by using MAC operation. This number cannot
be more than the number of cycles required to map the data-flow graph where
each set of addition and multiplication is manually converted into a three-input
operator-node of MAC operation. When the automatic transformation under the
associative and commutative laws was done, the minimum possible number of
cycles became 7. It spends one cycle for the initial condition, one cycle just load-
ing inputs, another cycle loading inputs and calculating initial products, three
cycles loading inputs and performing MAC operations, and one cycle storing the
outputs. The number of cycles also reduced by 1 for the problems of size 5 and
6 by the automatic transformation.

Regarding the comparison between the enumeration-based method and the
XBTree-based method, some problems ended up in TO in the enumeration-
based method when the problem size was 6 probably because of the exponential
increase in the number of intermediate-nodes. On the other hand, the XBTree-
based method was able to solve those problems and worked faster than the
enumeration-based method for most of the other problems.

7 CGRA Optimization

We conducted another experiment to optimize an architecture of CGRA with
incremental SAT solving [5]. Up to here, we have considered the methods to
adapt data-flow graphs to CGRAs, but we can also optimize CGRAs through
iterative synthesis. After getting a minimum cycle schedule, we try to reduce
the components and paths one by one without increasing the number of cycles.
In this process, we utilize incremental SAT solving, which can reuse the clauses
added and learned in the previous calls. Specifically, we solve the CNF, where we
obtained a minimum cycle schedule, again with the assumptions (a set of literals
that are forced to be true) to disable one component or path. If it is SAT, we

128 Y. Miyasaka et al.

In

A&S

Sub Sub Sub Sub

Mix Mix Mix Mix

M M

M

KS

KSc

A&S

Repeat 8 times

Sub Sub Sub Sub

M M

M

KS

KSc

A&S

A&S

Fig. 9. A data-flow graph for AES.

add those assumptions to the CNF as clauses, then the component or path will
never be used in mapping. Otherwise, we give up removing that component or
path. We repeat this for each component and path in the CGRA.

We targeted a data-flow graph generated for AES [17] shown at Fig. 9. It
consists of 138 nodes where each operator-node corresponds to a subroutine. We
used a CGRA of 3 × 3 square mesh PEs shown at Fig. 10. Each PE has one
operation-unit and two registers. The mapping was done with no pipelining and
no transformation. We used another SAT solver, Glucose v4.1, which supports
incremental SAT solving.

The original mapping problem was solved with 52 cycles in 0.5 s. It is the
theoretical minimum number of cycles because the data-flow graph has 50 levels
of operator-nodes and we need one cycle for the initial condition and another
cycle for storing the result. Compared to the mapping problem of matrix vector
multiplication onto a ring architecture, this problem was solved very fast even
though the data-flow graph has more than a hundred nodes. It means that the
mapping difficulty comes from not only the number of nodes but also the capacity
of the architecture.

Next, we ran incremental SAT solving to optimize the CGRA. We first
removed as many PEs as possible, and then removed as many paths as pos-
sible. The result is shown at Fig. 11. The optimization took only 1.8 s. It turned
out that we can sequentially map the data-flow graph onto four PEs connected
in a ring, where some PEs are connected in two-way, but others are in one-way.
Note that we checked redundancy of PEs (and paths) in a specific order, and it
may be better to explore different orders.

SAT-Based Mapping 129

1

1

PE

1

1

PE

1

1

PE

1

PE

1

PE

1

PE

1 1

PE

1 1

PE

1

PE

11

External memory

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1

1 1 1

Fig. 10. A CGRA consisting of nine PEs connected in a 3 × 3 square mesh.

PE

1

PE

PE

1

PE

11

External memory

1

1
1

1 1

Fig. 11. The CGRA optimized through incremental SAT solving.

8 Conclusion

We proposed a SAT-based data-flow graph mapping method for CGRAs. It
performs the automatic transformation under the associative and commutative
laws using XBTrees and sorters. We compared the XBTree-based transformation
method with the enumeration-based method, and the XBTree-based method
worked faster and solved more problems than the enumeration-based method. In
another experiment, we optimized an architecture of CGRA through incremental
SAT solving.

Regarding the ILP solver, it was slower than the SAT solver probably because
the mapping problem contained few at most K constraints and K was small. If
K is large (each PE has a large number of registers for example), the ILP solver
might work faster than the SAT solver. Also, we used incremental SAT solving
for optimization, but one can use the ILP solver instead.

Our method using SAT solver is not as scalable as the heuristic methods
like simulated annealing. We are considering decomposing a data-flow graph or
imposing some heuristic constraints by generalizing small mapping results. We

130 Y. Miyasaka et al.

are currently working on a hierarchical mapping method, which maps nodes
while partitioning the array.

We are also considering adopting a rule base transformation, where a rule is
a possible transformation defined by a user, to deal with other than the associa-
tive and commutative laws. For CGRA architecture optimization, it might be
good to further explore the search space: the topology of CGRA, the number of
operation-units, the number of registers, and the bandwidth of paths.

The source code of our program is available at [18].

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proceedings of International Conference on Neural
Information Processing Systems, pp. 1097–1105 (2012)

2. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit.
ACM SIGARCH Comput. Archit. News 45(2), 1–12 (2017). https://doi.org/10.
1145/3140659.3080246

3. Liu, L., et al.: A survey of coarse-grained reconfigurable architecture and design.
ACM Comput. Surv. (CSUR) 52(6), 1–39 (2020). https://doi.org/10.1145/3357375

4. Yoshida, H., Fujita, M.: Exact minimum factoring of incompletely specified
logic functions via quantified Boolean satisfiability. IPSJ Trans. Syst. LSI Des.
Methodol. 4, 70–79 (2011). https://doi.org/10.2197/ipsjtsldm.4.70

5. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5 23

6. Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: Exploiting
loop-level parallelism on coarse-grained reconfigurable architectures using mod-
ulo scheduling. IEE Proc. Comput. Digit. Tech. 150(5), 255 (2003). https://doi.
org/10.1049/ip-cdt:20030833

7. Chin, S.A., Anderson, J.H.: An architecture-agnostic integer linear programming
approach to CGRA mapping. In: Proceedings of Design Automation Conference
(DAC), pp. 1–6 (2018). https://doi.org/10.1145/3195970.3195986

8. Greene, J.W.: Exact mapping of rewritten linear functions to configurable logic.
In: Proceedings of International Workshop on FPGAs for Software Programmers
(FSP), pp. 11–18 (2019)

9. Chin, S.A., et al.: CGRA-ME: a unified framework for CGRA modelling and explo-
ration. In: Proceedings of International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP), pp. 184–189 (2017). https://doi.org/
10.1109/ASAP.2017.7995277

10. Flynn, M.J., Pell, O., Mencer, O.: Dataflow supercomputing. In: Proceedings of
International Conference on Field Programmable Logic and Applications (FPL),
pp. 1–3 (2012). https://doi.org/10.1109/FPL.2012.6339170

11. Miyasaka, Y., Fujita, M.: SAT-based mapping of data-flow onto array processor.
In: 2020 IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC) (2020)

12. Nguyen, V.H., Mai, S.T.: A new method to encode the at-most-one constraint into
SAT. In: Proceedings of International Symposium on Information and Communi-
cation Technology (SoICT), 03–04 December, pp. 1–8 (2015). https://doi.org/10.
1145/2833258.2833293

https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3357375
https://doi.org/10.2197/ipsjtsldm.4.70
https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1049/ip-cdt:20030833
https://doi.org/10.1049/ip-cdt:20030833
https://doi.org/10.1145/3195970.3195986
https://doi.org/10.1109/ASAP.2017.7995277
https://doi.org/10.1109/ASAP.2017.7995277
https://doi.org/10.1109/FPL.2012.6339170
https://doi.org/10.1145/2833258.2833293
https://doi.org/10.1145/2833258.2833293

SAT-Based Mapping 131

13. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751 73

14. Lee, G., Choi, K., Dutt, N.D.: Mapping multi-domain applications onto
coarse-grained reconfigurable architectures. IEEE Trans. Comput. Aided Design
Integr. Circuits Syst. 30(5), 637–650 (2011). https://doi.org/10.1109/TCAD.2010.
2098571

15. Yoon, J., Shrivastava, A., Park, S., Ahn, M., Paek, Y.: A graph drawing based
spatial mapping algorithm for coarse-grained reconfigurable architectures. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 17(11), 1565–1578 (2009). https://
doi.org/10.1109/TVLSI.2008.2001746

16. Živković, M.: Classification of small (0,1) matrices. Linear Algebra Appl. 414(1),
310–346 (2006). https://doi.org/10.1016/j.laa.2005.10.010

17. Liu, B., Baas, B.M.: Parallel AES encryption engines for many-core processor
arrays. IEEE Trans. Comput. 62(3), 536–547 (2013). https://doi.org/10.1109/TC.
2011.251

18. https://github.com/MyskYko/dfgmap

https://doi.org/10.1007/11564751_73
https://doi.org/10.1109/TCAD.2010.2098571
https://doi.org/10.1109/TCAD.2010.2098571
https://doi.org/10.1109/TVLSI.2008.2001746
https://doi.org/10.1109/TVLSI.2008.2001746
https://doi.org/10.1016/j.laa.2005.10.010
https://doi.org/10.1109/TC.2011.251
https://doi.org/10.1109/TC.2011.251
https://github.com/MyskYko/dfgmap

Learning Based Timing Closure
on Relative Timed Design

Tannu Sharma(B), Sumanth Kolluru, and Kenneth S. Stevens(B)

University of Utah, Salt Lake City, USA
tannu.sharma@utah.edu, kstevens@ece.utah.edu

Abstract. Relative timed circuits leverage formal timing specifications
to design and optimize integrated circuits. Relative timing can be applied
to specify design correctness and performance properties of digital cir-
cuits in the form of a set of timing constraints. These circuits often show
significant performance and power advantages over other approaches,
but require assistance to automate timing driven synthesis and place
and route in commercial electronic design automation (EDA) tools. A
machine learning based automatic timing closure solution for relative
timed circuits is presented. The machine learning implementation is
expected to speed-up the process by learning from the features during
each iteration, minimizing the overall run-time to timing close a design. A
comparative study between regression model based and gradient boost-
ing tree based solutions with an algorithmic approach is presented. Power
and performance of the circuits are improved while reducing overall run-
time required to timing close a relative timed design with commercial
EDA tools.

Keywords: relative timing · timing closure · heuristic · greedy ·
machine learning · gradient descent · boosting · regression · EDA

1 Introduction

Time delays are manifested in the components and wires of an integrated circuit
(IC). Delays are evaluated based on a timing path between two points in a
circuit, which consist of a sequence of components a signal must pass through.
Time delays dictate the robustness, performance, and power of a system. Static
timing analysis is employed to evaluate and optimize delays and to close timing
during synthesis and layout [1].

Traditional techniques employed by commercial electronic design automation
(EDA) tools are insufficient to close timing on a relative timed (RT) design. RT
timing paths can be cyclical, and may be controlled by state bits in sequential
logic implemented as combinational gates with feedback. To improve quality of
relative timed designs, an engine that understands relative timing is required
to obtain delay target values and sign-off timing in the current commercial
framework.
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 133–148, 2021.
https://doi.org/10.1007/978-3-030-81641-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_7

134 T. Sharma et al.

1.1 Relative Timing

Relative timing (RT) is a universal representation of the sequencing property
of time [2]. Sequencing in the time domain is a common correctness require-
ment used in integrated circuits. An example of a critical well known correctness
requirement in the time domain is the storing of data in a flip-flop. Data must
arrive at a flop earlier than the clock.

G0

G1
G2

in
x

x
out

A Z

A Z

A

B

Z

Fig. 1. Pulse generator circuit. The maximum delay path from the rising edge of in (pod)
to the rising edge of out (poc0) of Eq. 2 is highlighted in red, and the minimum delay path
from the rising edge of in (pod) to the falling edge of out (poc1) is highlighted in blue.
The capacitor models wire and gate capacitance of a latch array. (Color figure online)

The simplified universal specification of a relative timing constraint is shown
in Eq. 1 [2]. Relative timing constraints require there must be a common timing
start point called a point of divergence (pod) which has causal paths to two
timing endpoints called points of convergence (poc0, poc1). To ensure delay of
the early path of the constraint is always less than the delay of the late path
requires taking the maximum delay from pod to poc0 (plus margin m) and the
minimum delay from pod to poc1. RT expressions employ unbounded delays,
and thus are a property of the circuit structure. Therefore, RT constraints are
agnostic to specific implementation details of a design which affect circuit delays
such as technology node, device sizes, or standard cell layout. Specific path delays
are not known until design instantiation and timing closure.

pod �→ poc0 + m ≺ poc1 (1)

Assume one needs to synthesize and verify a circuit that generates a pulse.
Such a circuit could be used to pulse clock a latch bank. The circuit in Fig. 1
generates a pulse on the out net upon a rising edge of the in net when proper
circuit delays are employed. The delay path through the inverter can be designed
to generate the required minimum pulse width. The relative timing constraint
(RTC) to correctly realize the pulse generator of Fig. 1 is shown in Eq. 2. This
produces a pulse on net out with a minimum width m. The ‘+’ or ‘–’ appended
to each net name indicates a rising or falling transition respectively on the net.
The causal path through the circuitwhich creates a rising edge on out transitions
through pin A of gate G2; the causal path for the falling edge is through pin B.

in+ �→ out+ + m ≺ out- (2)

Learning Based Timing Closure on Relative Timed Design 135

A relative timed design can contain as many as several million RT constraints.
Many of these paths conflict, because maximum and minimum delay path seg-
ments can partially or completely overlap [3]. Manually converging timing by
modifying the timing constraints on individual paths is not a feasible option for
such designs, and it may not be possible to resolve the large number of violating
paths through mere post-layout ECO [4]. As such, an automated aid to produce
timing closed designs is required.

The timing on a relative timed design is complex, where the optimization of
one path may affect timing of other paths (associated or non-associated). The
entire problem is an interaction of non-convex optimization algorithms across
often competing timing path constraints. In order to model the delay target value
for each path, the algorithms consider device sizes, drive strength, transition
capacitance, fanout, derating factors, and EDA uncertainty along with the affects
of other paths.

This chapter discusses timing closure methodologies for relative timed design.
The key contribution of this work describes a machine learning based timing
closure engine (MLTC) developed to minimize the number of iterations required
to converge timing on complex relative timed designs. Machine learning timing
closure results are compared with a heuristic based timing closure (HBTC) CAD
tool that automatically generates functional delay targets for a complete RT
constraint set [5].

The MLTC engine is capable of generating a timing closed design with
arbitrary initial delay targets, including initial maximum delay targets as zero
(0 ps). The tool is usually able to produce a completely closed set of constraints
with no negative slack violations.

The machine learning based timing closure tool is evaluated on a variety of
designs for run-time (number of iterations), power, performance, and design
robustness. Several types of RT constraints are employed in these designs.
Pipelined designs employ the bundle data design style with handshake controllers
[6].

2 Background

Relative timing passes a large set of overlapping maximum and minimum path
delay constraints to the EDA tools for timing driven optimization. The interac-
tion between these constraints in commercial timing driven EDA optimization
algorithms is complicated and non-convex. A small variation in one maximum
or minimum path delay constraint can create a large perturbation in slacks on
seemingly unrelated paths. This unexpected variation is based on physical place-
ment among other factors in the EDA algorithms.

While the HBTC algorithm produces solutions of reasonable quality, a num-
ber of factors encouraged us to search for better algorithmic solutions. In order
to obtain good results, the heuristic based approach requires many iterations
through the synthesis or place and route (PnR) tools resulting in very large run
times. Assessing and configuring the heuristic tool to include a number of second

136 T. Sharma et al.

order factors was difficult. These optimizations include important aspects such
as competing maximum and minimum delay paths, whether the path is a timing
critical delay path, determining when performance improvements are coming at
the cost of too much power, and other interdependent factors.

Multiple gradient descent based algorithms were implemented and tested
while exploring the algorithmic solution space to solve the relative timing closure
problem. Because the search space is a non-convex optimization problem, none of
the gradient descent solutions were able to generate a timing closed design with
quality of results similar to those achieved by the greedy heuristic based timing
closure engine. Therefore we investigated algorithms that employ a supervised
learning based framework.

Machine learning (ML) algorithms are an excellent application to this prob-
lem space if data is carefully prepared. The ML based approach is not used to
replace the current EDA tools but to improve the quality of RT design flow
with commercial EDA tools. The timing constraints and their associated paths
are unique to each design, so our initial work is not generalized by training on
sample designs. Rather this work employs the more flexible and programmable
search properties of ML algorithms to achieve better solutions than heuristic or
gradient descent based approaches.

Data plays an important role for any machine learning problem, especially
when there may not exist a direct correlation between data among designs or
data paths. Due to this ML has already carved its niche in the EDA industry to
find design or timing solutions [7–14]. In our approach two supervised learning
based regression models were implemented for a given set of input and outputs.
One to handle smaller designs with a basic algorithm and second for complex
relative timed designs with a more sophisticated algorithm. Both the approach
works well on all designs (small and large), with a better run-time on complex
relative timed designs with the later.

Data
Collection

Data
Preparation

Label
Extraction

ML
Model
Creation

ML
Model

Evaluation
Prediction

Fig. 2. General Approach to use Machine Learning in RT timing driven optimizations.

3 Approach

The general approach to use machine learning in relative timing driven EDA
optimizations is shown in Fig. 2. The timing closure algorithm proceeds by using
an ML algorithm to update path delay values for relative timing constraints.

Learning Based Timing Closure on Relative Timed Design 137

The updated path delays are passed to commercial EDA tools to perform timing
driven synthesis or place and route (PnR) of the design. Each iteration with ML
includes a synthesis or PnR run and timing analysis with PrimeTime. The results
generated by the ML algorithm are also validated to ensure the RT constraints
are obeyed with each new prediction.

3.1 Data Collection and Preparation

A careful selection of both timing and physical design parameters, is necessary
during data collection. It is equally important to discard irrelevant/overlapping
features to maintain the quality of data during data preparation. After extracting
the relevant features, it is also important to adjust the hyper-parameters to
improve the quality of the predictive model during model evaluation.

3.2 Machine Learning Algorithms

A tree based gradient boosting framework and a polynomial regression based
algorithm were tested for RT timing closure.

Negslack>0.5

pathtype=1 pathtype=2

Margin>0.2 Margin<0.2 Predict=0.75

Predict=0.67 Predict=0.54

YES NO

Negslack>0.5

pathtype=1 pathtype=3

Margin>0.3 Margin<0.3 Predict=0.45

Predict=0.62 Predict=0.79

YES NO

Prediction Score 2 1.5

0.51.3

2.30.9

Fig. 3. Decision tree Example

Gradient Boosting Decision Trees. Decision tree ensembles create a gradi-
ent boosted decision tree (gbdt) model [15]. The problem of estimating accurate
delay target values with no negative slack is modeled here. The model created
from the training data consists of an ensemble of trees, where each tree makes
a prediction. All the predictions are taken into account by the ensemble model
to make the final prediction. The prediction scores of each individual tree are
summed up to get the final score. In Eq. 3, K is the number of trees, yi is the
prediction, xi is the input, f is a function, and F is all the possible decision
trees.

K∑

k=1

yi = fk(xi), fk ∈ F (3)

138 T. Sharma et al.

Based on the extracted features, decision trees are created to establish a rela-
tionship between inputs xi and output yi. The objective function and various
tree pruning techniques are utilized to optimize the model. Based on the pre-
diction scores and weights assigned to the leaf nodes, the final prediction value
is calculated. A model similar to Fig. 3 is created during each iteration. In our
case, the inputs are the timing constraint parameters and path characteristics. In
Fig. 3 two such trees are illustrated. In practice, many such trees are constructed
by the gradient boosting decision tree based learning algorithm.

The initial experiments were performed using extreme gradient boosting
(xgboost) algorithm. However, it was observed, that the delay predictions of the
xgboost model were inaccurate due to improper inclusion of encoded categori-
cal features during each prediction. With the xgboost model, no timing closure
could be achieved after +500 iterations on a small design and +100 iterations on
a large design. The light gradient boosting model lgbm implementation can han-
dle encoded categorical features well. It allows to establish a relationship between
paths that are dependent on each other (especially in a complex design).

LightGBM (lgbm) is a gradient boosting model that can also use a tree
based learning algorithm [16]. The framework is capable of handling large data
sets. It performs supervised learning on data with multiple features in order to
predict a target variable, which is a delay value in this case [17]. LightGBM
is faster, outperforms other algorithms like extreme gradient boosting (xgboost)
considerably [18], and can handle categorical data.

Polynomial Regression. Polynomial regression is a technique used to estab-
lish a relationship between an input x and an output y. It is modeled to fit a non
linear relationship, which means x has degree n. A linear regression model can
be formulated as y = β0 + β1x where the βi values are constants. A polynomial
regression is modeled as y = β0 +β1x+β2x

2 ++βnx
n [19]. The higher degree

model is responsible for the raised non-linearity in the relationship of x and y.
Polynomial regression models are much more accurate than linear models, but
they tend to over-fit the input data. The model is more suitable to minimize
variance in unbiased estimators of the coefficients.

3.3 Models

It is worth noting that inclusion of the right features as part of the data set
is more important in this problem than the choice of algorithm to implement
the learning based model. The behavior of the model is directly driven by the
quality of the data provided to the model.

Different RT constraints have varying impact on timing driven optimization
of a design. Most, if not all, of the relative timing constraints must hold for design
correctness. Some of these correctness constraints have large margins and easily
hold (e.g. the early path has two gates and the late path passes through nine
gates). Other correctness constraints drive the overall performance of the design,
such as paths that pass through pipeline registers. The quality of results can

Learning Based Timing Closure on Relative Timed Design 139

be improved if timing closure focuses on these performance driven constraints.
Therefore, path types as well as their constraints need to be included in the
feature set. Path types identify the performance criticality of RT constraints are
passed to the ML algorithms.

EDA tools require the timing graph of a circuit to be represented as a directed
acyclic graph (DAG). This is critical when relative timing is applied to asyn-
chronous circuits with sequential functions implemented as combinational gates
with feedback. Representing the graph as a DAG necessitates utilizing a subset
of the full set of RT path constraints. In addition, many included paths are cut
in producing the DAG, resulting in timing paths that are subsets of the full
RT constraint path. The current implementation only employs a subset of the
RT paths for both synthesis and validation, not the full RTC path. Thus, after
timing closure as reported in this paper some timing paths may have violations,
even though the path segments used for timing closure have all met timing.
These are reported in Sect. 6.

Uniformity of the delay in performance driven paths is very important. Com-
mon designs which require such uniformity include dependent cycles (e.g. linear
pipelines) and signals with large fan out (e.g. driving a large register bank).
Uniformity of delay targets can be achieved in this tool by using a common tcl
variables for the delay values. Another method for creating uniform delay tar-
gets is to use wild cards in the design based on design hierarchy. For example,
the presence of the wildcard “*” in the sample constraint in Eq. 4 indicates
applicability of defined delay of 0.2 to all the paths between register clock pin
to another register data pin as defined by the start and end point. A similar
situation is applicable while extracting path delays using Synopsys PrimeTime.
Thus, it helps in reducing physical design variation due to EDA on the connected
paths [4].

set max delay 0.2 -from ctlreg0/qreg ∗ /G -to doutl/qreg ∗ /D (4)

run=-1:
Input: netlist,

library, constraints

Run:
Synthesis

Run:
PrimeTime

Negative
slack?

Sign-off

Extract
relevant
RTC data

Label
Extraction

Extract
connectivity

data
run += 1

if
run==0?

Connectivity
graph Synthesis/-
Physical design

Data
Preparation

Machine Learning Model
(Light Gradient Boosting Decision
Tree or Polynomial Regression)

Delay
Prediction

Write
Constraints

Model
Accuracy
and Hyper-
parameters

Predicted
delay

validation

Evaluation and
data extraction

Data Processing Model Training,
Testing and
Evaluation

no

yes

yes

Fig. 4. Workflow of machine learning based delay evaluation to sign-off timing on a
RT design with commercial EDA tools in the inner loop of the implementation.

140 T. Sharma et al.

4 Implementation

The flow diagram in Fig. 4 shows the basic framework of the implementation. The
complete timing closure system is powered by small sub-programs to interface
with synthesis or PnR tools, to process data, to validate quality of predictions
and to extract required data at various stages of the flow using timing tools.

The end goal of the ML workflow is to generate delay target values for the
subsets of RT constrained paths while ensuring timing closure of the design with
no negative slack. The ML based framework always ensures that delay margin
is obeyed between associated minimum and maximum delay constraints during
the predicted delay validation step.

The prediction of the model produces targets with the intent of generating a
solution with positive slack. Timing closure is obtained when no negative slack
exists on any timing path. The program terminates with non-convergence when
three subsequent iterations have the exact same values of the negative slack on
the exact same relative timing paths. At this moment, no upper bound is added
to the number of iterations, however, the time-frame is restricted based on the
allowed run-time of a program on a machine.

It is imperative to have a uniquely trained model for each design. The con-
straints and their paths are unique to each design netlist and iteration. The
constraints remain relevant for a design unless there is a change in the netlist.
If there is a change in netlist, discarding the old model and restarting timing
closure run from the beginning will ensure the timing paths and the model are
not outdated.

4.1 Learning

The data set passed to the ML workflow varies depending on the size of the
design. Run time to converge timing on a complex design can extend up to
many hours. Nearly all the run time is spent in the synthesis and/or PnR runs
to reach converged delay values with no negative slack. Therefore our process
focuses on minimizing the number of iterations required to reach a converged
set of design constraints by learning from both positive slack and negative slack
data generated during each iteration. The results of the model are evaluated
during subsequent iterations to ensure the model is moving towards convergence
in each iteration.

Feature Selection. The selected feature set or columns in the data set cur-
rently includes the following. (a) Design connectivity data including timing end
points for RT constraints such as: start point (pod) and end point (poc), and
path type information identifying whether the path is a data path (register-to-
register) or control path (controller-to-controller or controller-to-register). (b)
Timing constraint data including margin, delay value, delay type (minimum
delay or maximum delay), slack (positive or negative), and whether a path is a
performance path or a design correctness path.

Learning Based Timing Closure on Relative Timed Design 141

Algorithm 1. Light Gradient Boosting
1: Data: datai

2: current run = i
3: if column type is ‘object’ then
4: data encoding = encode(

∑i
k=1 datak[column name])

5: end if
6: train.data ← ∑i

k=1 datak

7: x.train.data ← train.data− [column with cost function delay value]
8: y.train.data ← train.data[cost function delay value column]
9: test.data ← datai

10: lgb train = Create GBDT Model with data set (x.train.data, y.train.data,
test.data)

11: gbm = lgb.train(lgb train) in iterations
12: if test.data not empty then
13: gbm.predict(test.data)
14: end if

Certain features are categorical features. These are required to build a rela-
tionship between the data and/or prioritize certain paths over others. The cost
function is composed of a negative slack value, delay, and margin. The results of
the cost function i.e. target feature (yi) is predicted by the model. Eqs. 5 and 6
define the basic estimated delay for maximum and minimum paths, respectively.

CFmax(target delay max) < delay − negslack (5)
CFmin(target delay min) > delay + negslack (6)

The cost function changes based on the margin values defined for minimum
and maximum delay paths. If the margin is not maintained during estimated
delay calculation, the difference is calculated and added to the cost function to
maintain margin. The maximum delay is decreased (or minimum delay is raised)
based on the positive slack on each path. A performance constraint in the form
of a maximum delay constraint is present on minimum delay paths of perfor-
mance type to reduce variability and more tightly constrain cycle times. The
estimated maximum delay is raised to maintain the margin between minimum
and maximum delay constraint on paths with the same start point and end point,
which minimizes energy consumption but allows more variation. The algorithm
learns from the data set in order to achieve optimized predictions. The data set
increases over time, which leads to improved prediction accuracy. The predicted
delay values replace the delay values in the constraints file for next synthesis or
PnR run.

Training. The training data includes all the extracted features and labeled
data. The data set grows with each iteration while learning between subse-
quent iterations. Data with consistent trends simplifies the training of a machine
learning algorithm. That luxury is generally not observed in this application as

142 T. Sharma et al.

the identical delay value on a path can return vastly different slack values on
different runs due to a change caused on a totally different path or different
synthesis run. Often such variations are caused by a path becoming an outlier
as optimizations on other paths take priority. Such unpredictable changes tend
to be itinerant, so by incrementally updating the training data set progress is
made towards an accurate and consistent model.

Testing. The test data set consists of data with a negative slack. The supervised
learning model created from the training data set is used to predict delay for all
the failing timing paths. The delay target is updated in the constraints for next
iteration. The test data set is also updated between iterations.

4.2 Machine Learning Algorithms

A comparative analysis is performed between the results obtained from gradient
boosting decision tree based model and polynomial regression based model. The
later implements separate models for minimum and maximum delay paths.

There exists n relative time constraint sub-paths in each design. On iteration
i, a path n has delay target tni and delay dni where dni ≥ 0, and a slack sni.
In the event of a negative slack (sni < 0) on path n, maximum delay fixing is
prioritized over minimum delay. The cost function estimates the delay tni for
each constraint path to be dni−sni if it is a maximum delay path, and dni+sni

if it is minimum delay path. The estimated delay value data set is input into a
machine learning algorithm to obtain predicted delay values based on the feature
set and relationship built over iterations. In the event of non-convergence, slack
on same paths between subsequent iterations is compared. If there is no change
in slack for three iterations, the program terminates with non-convergence.

4.3 Light Gradient Boosting (LightGBM)

The pseudo code of the implementation is in Algorithm 1. The features were
extracted and an input data set was created using commercial EDA tools. The
data set generated for each iteration i with negative slack present on one or more
delay paths is given by datai. There exists categorical features in the data set, so
data encoding is performed to convert them to numerical values. Training data
train.data and test data test.data are separated. A check is added to exclude
paths with negative slack that are being tested during an iteration from the
training data set of that iteration. The created model is used to predict new
delay values that would fit the design better. The process is repeated until the
design converges with no negative slack.

Learning Based Timing Closure on Relative Timed Design 143

Algorithm 2. Polynomial Regression Model
1: Data: datai

2: current run = i
3: train.data ← ∑i

k=1 datak

4: test.data ← datai

5: train.min ← ∑i
k=1 datak, when column ‘delay type’ is ‘min’

6: train.max ← ∑i
k=1 datak, when column ‘delay type’ is ‘max’

7: test.data pos ← test.data , when column ‘negslack’ value is 0
8: test.data neg ← test.data, when column ‘negslack’ value is less than 0
9: test.min ← test.data neg, when column ‘delay type’ is ‘min’

10: test.max ← test.data neg, when column ‘delay type’ is ‘max’
11: x.train.min.data ← train.min−[column with cost function delay value]
12: x.train.max.data ← train.max−[column with cost function delay value]
13: y.train.min.data ← train.min[cost function delay value column]
14: y.train.max.data ← train.max[cost function delay value column]
15: model.min = create pipeline with polynomial features (x.train.min.data,

y.train.min.data)
16: model.max = create pipeline with polynomial features (x.train.max.data,

y.train.max.data)
17: min pred = model.min.predict(test.min)
18: max pred = model.max.predict(test.max)
19: pred = append(min pred, max pred)

4.4 Polynomial Regression Model

The polynomial model was chosen over the linear regression package provided
by the scikit-learn package [20] to better fit the data outliers. A linear regression
model looks for a linear relationship between the features, which does not exist
in our case. No linear model would serve the problem appropriately since this is
a non-convex optimization problem. A polynomial regression establishes a non
linear relationship between the feature set to obtain the predicted delay value.
On a large complex design, too high of a model degree will result in memory out
errors. We found that a polynomial of the order of four works well to predict the
delay target values from the feature set. Pseudo-code for this implementation is
shown in Algorithm 2.

5 Designs

The machine learning based timing closure (MLTC) tool and HBTC have been
applied to converge timing on a number of designs implemented in the 40 nm
technology node. Designs with varying complexity are used to test the conver-
gence engine: linear pipeline, watchdog timer, wakeup timer, timer, and FFT-64
design. The designs implemented here are hierarchical designs containing soft
macros of asynchronous linear controllers and register banks, as well as free
form RT constraints in the counters.

144 T. Sharma et al.

The pipeline design is a retimed 10-stage linear pipeline design implementing
dout = 2x2 + 2x + 2. This design can be scaled to arbitrary pipeline depth, but
here contains 179 unique RT constraint sub-paths.

The general, wakeup, and watchdog timers are small designs contain 121, 86,
and 108 RTCs respectively. They contain 16 bit programmable timers including
multiple clocked and asynchronous time sampled inputs and prescale dividers.
These designs all show a power reduction of 30× or more in common operational
modes compared to a clocked design.

The FFT design is a 32-bit, 64-point multirate fast Fourier transform (FFT)
design that is hierarchically decomposed at the top level to operate at multiple
frequencies [21]. This is a large design that contains over 50,000 RTCs, that takes
approximately 40 min to synthesize with Design Compiler.

6 Results

Synopsys Design Compiler is used for synthesis. Synopsys PrimeTime for timing
analysis, power analysis, and slack output. Modelsim is used for simulation. The
results are compared for power, performance, and simulation errors that occur
after the timing closure run due to the partial paths used in synthesis and timing
analysis. The same starting point is employed for all the designs during the two
machine learning models by assigning zero maximum delay targets.

The maximum delay targets for all of the designs in Table 1 and 2 are set
to zero to start the timing closure optimization. This allows the ML algorithms
to optimize the designs targeting maximum achievable frequency. Table 1 shows
results obtained from light gradient boosting decision tree model, and Table 2
shows results for polynomial regression model. Each iteration includes syn-
thesis/Primetime/ML runs and one PnR run. The number of iterations are
identified.

Table 1. Results with light gradient boosting model (lgbm)

Designs No. of
iterations

sim. errors avg cycle
time (ns)

Power (uW) Energy (fJ) eτ2

Pipeline 5 0 0.945 0.27 0.26 0.023

Wakeup 8 0 0.548 51.23 28.07 0.843

Watchdog 13 0 1.247 46.72 58.26 9.06

Timer 22 6 1.903 57.71 106.02 38.39

FFT-64 4 0 1.692 17,300 29.27e3 8.38e3

For small designs like the wakeup and watchdog controllers, the overall run-
time was 20 min with lgbm and convergence with prm was much quicker. The
largest design example, FFT-64, took 16 h to converge with lgbm implementation
whereas prm took 23 h to converge on the same design. Most of the run-time is

Learning Based Timing Closure on Relative Timed Design 145

Table 2. Results with polynomial regression model (prm)

Designs No. of
iterations

sim.
errors

avg cycle
time (ns)

Power
(uW)

Energy (pJ) eτ2

Pipeline 1 0 0.945 0.27 0.26 0.023

Wakeup 6 0 0.548 50.39 27.61 0.830

Watchdog 7 1 1.247 44.31 55.25 8.59

Timer 7 6 1.903 57.44 109.31 39.59

FFT-64 6 0 1.690 18,400 31.10e3 8.88e3

spent running commercial EDA tool, whereas machine learning data-set genera-
tion, feature and label extraction, model training and testing takes a few seconds
to a few minutes based on the complexity of the design.

Table 3. Comparison between LGBM and PRM.

Designs No. of iterations Energy eτ2

Pipeline 5.00 1.00 1.00

Wakeup 1.33 1.02 1.01

Watchdog 1.86 1.05 1.05

Timer 3.14 0.97 0.97

FFT-64 0.67 0.94 0.94

6.1 Comparative Analysis

LGBM vs PRM. A comparison of results from the polynomial regression
model (prm) and light gradient boosting model (lgbm) learning algorithms is
presented in Table 3. Both designs produce results with nearly identical cycle
times for the small and large designs. They produce equivalent results for the
simple pipeline design with prm converging in one iteration. The polynomial
regression model performs better in both run time and energy efficiency on the
small designs. The opposite is true for large designs, where lgbm model converges
more quickly with better energy results. The prm model is better trained with
positive slack data in comparison to including the complete data set for light
gradient boosting model. Also, the train data set needs to be substantial to run
light gradient boosting model which is achieved in subsequent iterations for a
small design. This also makes lgbm model a better choice for complex relative
timed designs.

146 T. Sharma et al.

MLTC vs HBTC. Table 4 compares the results obtained from two machine
learning models: light gradient boosting (lgbm) and polynomial regression model
(prm) with respect to the heuristics based timing closure (HBTC) engine
[5]. Both the machine learning algorithms perform better in comparison to
HBTC based engine in terms of number of iterations (shown in Fig. 5), power,
energy and performance on the smaller designs. The HBTC algorithm produces
improved results over the lgbm model, but requires 4.5× more run time.

Table 4. Power and performance contrast between ML and HBTC results.

Design Cycle Time

(lgbm)

Cycle Time

(prm)

Cycle Time

(hbtc)

Energy (fJ)

(lgbm)

Energy

(fJ) (prm)

Energy

(fJ) (hbtc)

Wakeup 0.548 0.548 0.550 28.07 27.61 28.80

Watchdog 1.247 1.247 1.238 58.26 55.25 64.87

Timer 1.903 1.903 2.115 109.82 109.31 85.55

FFT-64 1.692 1.690 1.688 29.27e3 31.10e3 20.93e3

wakeup watchdog timer FFT64
0

10

20

30
lgbm prm hbtc

Fig. 5. Number of iterations, ML vs HBTC

7 Conclusion

Machine learning is employed to implement gradient descent algorithms in com-
bination with boosting to solve the non-convex timing closure problem for rel-
ative timed circuits. These algorithms drive synthesis or place and route to
produce a full timing closed design. The designs are started in a state where
maximum delay values are set to zero, and convergence is reached when there
are no negative slacks in the designs.

Various ML algorithms were investigated and the results were compared to
heuristics based timing closure (HBTC) method. The better version of gradient

Learning Based Timing Closure on Relative Timed Design 147

boosting algorithms in the form of light gradient boosting algorithm is imple-
mented which is faster and works well with the desired encoded features. The
polynomial regression model was also implemented. Timing data generated dur-
ing synthesis or place and route is incorporated while implementing the two
machine learning models.

The algorithms were compared using a set of five designs, ranging from a
simple linear pipeline using retiming to solve a polynomial function, to a com-
plex 64-point fast Fourier transform function. Both machine learning algorithms
converged to produce results of similar quality in terms of circuit cycle time.
The lgbm models use many weak learners like the decision trees shown in Fig. 3,
so, the learning process is slower than polynomial regression which is mainly
numerical based relationship to learn and predict. This makes LGBM model
best suited for complex designs where one path delay/slack is intertwined with
other paths and polynomial regression is best suited for smaller/simpler designs.

The polynomial regression model showed 5.4% better energy results on the
small design, whereas the light gradient boosting model showed 6% better energy
efficiency on the large 64 point FFT design. The machine learning algorithms
served as a solution to build a relative timing closure tool when other gradient
descent based approaches failed. The contrast with HBTC approach shows scope
of improvement in ML approaches by making them power aware. At the same
time, applying ML based timing closure on a small hierarchical blocks serves to
improve the quality of top level design. Finally, by implementing learning based
timing closure, we could minimize the number of iterations required to generate
a timing closed relative timed design.

References

1. Nair, R., Berman, C.L., Hauge, P.S., Yoffa, E.J.: Generation of performance con-
straints for layout. IEEE Trans. Comput. Aided Des. 8(8), 860–874 (1989)

2. Stevens, K.S., Ginosar, R., Rotem, S.: Relative timing. IEEE Trans. Very Large
Scale Integr. Syst. 1(11), 129–140 (2003)

3. Manoranjan, J.V., Stevens, K.S.: Qualifying relative timing constraints for asyn-
chronous circuits. in: International Symposium on Asynchronous Circuits and Sys-
tems, pp. 91–98 (2016)

4. Sharma, T., Stevens, K.S.: Physical design variation in relative timed asynchronous
circuits. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp.
278–283 (2017)

5. Sharma, T., Stevens, K.S.: Automatic timing closure for relative timed designs. In:
28th IFIP International Conference on Very Large Scale Integration, IEEE (2020)

6. Sutherland, I.E.: Micropipelines. Commun. ACM 32(6), 720–738 (1989)
7. Bao, W., Cao, P., Cai, H., Bu, A.: A learning-based timing prediction framework for

wide supply voltage design. In: Proceedings of the 2020 on Great Lakes Symposium
on VLSI, Series (GLSVLSI 2020), New York, USA, pp. 309–314 (2020)

8. Turtletaub, I., Li, G., Ibrahim, M., Franzon, P.: Application of Quantum Machine
Learning to VLSI Placement, pp. 61–66 (2020)

148 T. Sharma et al.

9. Kapre, N., Chandrashekaran, B., Ng, H., Teo, K.: Driving timing convergence
of FPGA designs through machine learning and cloud computing. In: 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Computing
Machines, pp. 119–126 (2015)

10. Kahng, A.B.: Machine learning applications in physical design: recent results
and directions. In: Proceedings of the 2018 International Symposium on Physi-
cal Design, Series (ISPD 2018), pp. 68–73 (2018)

11. Airani, K., Guttal, R.: A machine learning framework for register placement opti-
mization in digital circuit design. CoRR vol. abs/1801.02620 (2018)

12. Yanghua, Q., Ng, H., Kapre, N.: Boosting convergence of timing closure using fea-
ture selection in a learning-driven approach. In: 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), pp. 1–9 (2016)

13. Elfadel, I.A.M., Boning, D.S., Li, X.: Machine Learning in VLSI Computer-Aided
Design. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04666-8

14. Beerel, P.A., Pedram, M.: Opportunities for machine learning in electronic design
automation. In: 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–5 (2018)

15. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, Series (NIPS 2017) (2017)

16. Welcome to LightGBM’s documentation! - LightGBM 2.2.4 documentation
17. Sun, X., Liu, M., Sima, Z.: A novel cryptocurrency price trend forecasting model

based on LightGBM. Fin. Res. Lett. 32, 101084 (2018)
18. Light GBM vs XGBOOST: which algorithm takes the crown
19. Huang, L., Jia, J., Yu, B., gon Chun, B., Maniatis, P., Naik, M.: Predicting execu-

tion time of computer programs using sparse polynomial regression. In: Advances
in Neural Information Processing Systems (2010)

20. sklearn.preprocessing.PolynomialFeatures - scikit-learn 0.21.3 documentation
21. Lee, W., Vij, V.S., Thatcher, A.R., Stevens, K.S.: Design of Low energy, high

performance synchronous and asynchronous 64-Point FFT. In: Design, Automation
and Test in Europe (DATE). pp. 242–247. IEEE (2013)

https://doi.org/10.1007/978-3-030-04666-8

Multilevel Signaling for High-Speed
Chiplet-to-Chiplet Communication

Rakshith Saligram(B), Ankit Kaul, Muhannad S. Bakir,
and Arijit Raychowdhury

Georgia Institute of Technology, Atlanta, GA 30332, USA
rakshith.saligram@gatech.edu

Abstract. Increasing memory bandwidth bottleneck, die cost, lower
yields at scaled nodes and need for more compact and power efficient
devices have led to sustained innovations in integration methodologies.
While the semiconductor market has already started witnessing some
of these in product forms, many other techniques are currently under
investigation in both academia and industry. In this chapter, we explore
a 2.5D integrated system where the interconnects are modelled in the
form of coplanar microstrip lines. A model is developed to understand
the behavior of these wireline structures and is used to study their signal-
ing characteristics. Generally, the conventional NRZ signaling is used to
transmit data. As an alternative, we explore a higher order modulation
scheme, namely, PAM4. Through the simulation study, we demonstrate
that PAM4 can provide up to 63% better energy efficiency and 27%
higher bandwidth density than NRZ.

Keywords: Heterogeneous Integration · Coplanar Microstrip · NRZ ·
PAM4 · Channel Operating Margin

1 Introduction

The power, performance, area, and cost (PPAC) benefits of semiconductor-based
electronic systems have traditionally been addressed via conventional scaling.
With the slowing down of Moore’s Law-an empirical rule which predicted that
the number of transistor densities doubles every two years, both the computing
performance and the DRAM capacity have plateaued in the last couple of years
as depicted in Fig. 1 [1]. The feature size which was once defined as the gate
length (but no longer is) has shrunk and in the past few years, a node actually
encompasses several consecutive technology generations and has been enabled by
process optimizations and circuit redesign. The unstated assumption of Moore’s
Law is that the die size remains unchanged so that doubling of the number
of transistors will lead to doubling of performance. However, at nodes 10 nm
and lower, this assumption fails to hold due to the yield issues and costs. The
cost of the dies continues to increase at lower technology nodes indicating that
increasing die size are not economically viable (Fig. 2 [2]), Fig. 3 [3].
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 149–178, 2021.
https://doi.org/10.1007/978-3-030-81641-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_8

150 R. Saligram et al.

Performance scaling can be achieved through solutions like heterogeneous
integration where instead of fabricating large single die, multiple smaller dies
will be tessellated. These smaller dies will communicate in order to achieve same
functionality and achieve same performance as the single large die. This appears
to address the two main issues of lower yield and higher manufacturing cost.
But we need to make sure that the cost of “putting together” or integrating
the smaller dies is reasonable and the connections between these dies will be as
efficient as it were a single die in terms of speed and quality of the signals. We
henceforth call these smaller dies as chiplets and is defined as any die which is
integrated with such other dies (or chiplets).

Heterogeneous Integration can be defined as the assembly and packaging
of multiple separately manufactured components onto a single chip in order
to improve functionality and enhance operating characteristics. It allows for
components of different functionalities, different process technologies (that may
be incompatible otherwise), and many times separate manufacturers to operate
as a single entity. It also offers ways to continue the use of dies that are not
performance critical with high performance dies from newer generation.

The idea of assembling dies is well-known in the industry. Multiple chips like
power regulators, transceivers, processors, memories have been interconnected to
form a system using printed circuit boards (PCBs). Typically, several PCBs are
connected through a back plane. For the PCBs, we need to have a packaged chip
which even though has been the mainstay, has disadvantages like low structural
integrity due to chip-package-interactions [4] and low IO density. The large bump
pitches limit the number of IOs that emanate from the chip. The board level
latencies also become prominent in high performance systems. The dimensions
of the package features have scaled by 3-5× while silicon has scaled by 1000×
[5] over the last 50 years. Also, with an increasing need for high-performance
and high-efficiency computing, due to increasing cloud, mobile, and edge-based
devices, the PPAC targets are increasingly challenged by interconnect bandwidth
demands between the dies (mainly CPU and memory), which require low-power,
high bandwidth interconnects [6]. Thus, the PCB based SOC approach has been
replaced with many technologies like EMIB, CoWoS, HIST, Foveros etc., which
are discussed in next section.

1.1 Overview

A general prototype of a heterogeneous integrated system is shown in Fig. 4.
One of the constraints for such a system is that the chiplets must be able to
communicate as if they were a single entity. Hence, there is a huge demand for
the bandwidth (BW) of such systems. The BW depends directly on the num-
ber of interconnects that are connected between two chiplets. While the size
of the chiplets (the amount of surface area available for interconnect connec-
tions) dictates the number of interconnects, it is a natural tendency to pack
as many interconnects as possible in the given area. However, this is not pos-
sible, as the number of interconnects that can be drawn depends on (i) the
technology which governs the interconnect pitch and (ii) cross-talk interference

Multilevel Signaling 151

Fig. 1. (a) Uniprocessor Performance Scaling and (b) DRAM Capacity Scaling.

factors which increase as more interconnects are crammed together in a smaller
area. Thus, in a heterogeneously integrated system, as pitch (distance of sepa-
ration between two interconnects) decreases, more physical IO get packed in a
much smaller area leading to higher shoreline -BW-density albeit with increased
cross-talk and interference. One way to increase the bandwidth is to explore
alternative signaling techniques which can transmit more information in a given
clock period. This is the key idea presented in this work where higher order
signaling scheme like PAM4 is systematically studied.

152 R. Saligram et al.

Fig. 2. Die Cost per mm2 across technology nodes

First, a sample system is modelled to understand the channel characteristics
of inter-chiplet communication systems. After analysis of the system, we apply
two types of signals viz., conventional NRZ and PAM4 to determine the highest
operating frequency of the system. We vary the channel length and pitch to study
the behavior of fine pitch and long length interconnect systems and understand
how the frequency of operation varies. In order to quantify the performance, we
use two metrics namely shoreline-BW density and energy per bit transmitted.
Simple transceiver models are used to estimate energy efficiency of transmission.

2 Literature Survey

The need for high bandwidth and low energy chip-to-chip signal interconnections
can be addressed with multi-die heterogeneous integration (HI) schemes, such as
2.5D and 3D integration, to enable opportunities in low-power and high perfor-
mance mobile and server computing [7]. This approach involves partitioning large
SoCs into smaller dice, improving yield, hence reducing cost, and subsequently
aggregating the partitioned known good dice (KGD). KGD from different nodes
or technologies (e.g. silicon CMOS and emerging non-volatile memories) can be
integrated together to enable HI, thus supporting flexible product migration to
advanced nodes further reducing cost. HI can also facilitate packing more silicon
than traditional approaches enable.

There are multiple types of die integration architectures that can be used to
enable HI of disparate active dice. While the objective of this work is to explore

Multilevel Signaling 153

Fig. 3. IC Design Cost Breakdown

coplanar microstrip based channels as a model for die to die interconnects for
2.5D integration, and evaluate the use of higher order modulation schemes for
die-to-die signaling, in this section we provide a summary of different multi-
die integration techniques, their potential applications, and associated technical
tradeoffs.

2.1 2D and 2D Enhanced Architectures

The Heterogeneous Integration Roadmap (HIR) 2019 [8] describes a 2D archi-
tecture as one where two or more active silicon dice are arranged laterally on
an underlying package and are interconnected on the package. An example of
a conventional 2D architecture where interconnection is accomplished using an
organic package, as shown in Fig. 5b. However, any form of integration with
an enhancement in interconnect density over mainstream organic packages, and
with interconnection achieved through an underlying substrate can be termed as
a 2D enhanced architecture. The choice of underlying substrates for 2D enhanced
architectures can include silicon/ceramic/glass interposers, bridges (both embed-
ded and non-embedded), and organic material. As noted in [8], architectures
with significant interconnection enhancements over conventional 2D architec-
tures (such as two or more dice integrated with flip-chip technology on an organic
package substrate (Fig. 5b)) are typically referred to as 2.x architectures.

Figure 6 illustrates four common types of 2D enhanced (or 2.5D) integration
architectures. The first approach (Fig. 6a) represents a bridge-based integration
where a silicon”bridge chip” is embedded within an organic package substrate.
Dense interconnects on the Si-bridge along with fine-pitch μ-bumps are used for

154 R. Saligram et al.

Fig. 4. Generic Prototype of Heterogeneous Integrated System

die-to-die interconnection. Figure 6b represents a traditional interposer-based
integration which uses through silicon vias (TSV) for signaling and power deliv-
ery to the interconnected dice. The third approach (Fig. 6c) de-embeds the silicon
bridge chip and places it between the active chips and the package. The fourth
approach, typically referred to as wafer-level packaging (WLP), is a method of
packaging dice while they are still on a silicon wafer or on a reconstituted wafer,
post singulation. There are primarily two kinds of WLP: fan-in and fan-out. In
fan-in WLP the I/O density is limited to the die size, whereas with a fan-out
WLP the redistribution layer (RDL) is processed on the wafer, and the intercon-
nect area can be larger than the die area, thus, I/O distribution is not limited
by die size. An illustration example of a fan-out WLP cross-section is shown in
Fig. 6d.

Silicon interposer-based integration is capable of supporting higher inter-
connect densities (0.5–1.0 µm line/space) than organic substrates (2–5 µm)
along with less thermal coupling and lower package power densities compared
to 3D integration [9]. However, Si-interposers are more expensive compared to
organic substrates, highlighting a tradeoff between cost and density. Moreover,
interposer-based links can also have higher energy-per-bit (EPB) and latency for
die-to-die connections compared to 3D integration due to the potentially longer
interconnects leading to higher parasitics.

2.5D integration of field-programmable gate arrays (FPGA) based on sili-
con interposers can achieve an aggregate BW in excess of 400 Gb/s [10]. The
3D processor-on-memory integration using through silicon vias (TSVs) exhibits
a maximum memory BW of 510.4 Gb/s at 277 MHz [11]. Recent demonstra-
tions using passive interposer technology include TSMC’s CoWoS used to inte-
grate two chiplets on a silicon interposer [12]. One of the first demonstrations

Multilevel Signaling 155

Fig. 5. (a) Conventional flip-chip and (b) multi-chip module (MCM) integration using
controlled collapse chip connection (C4) and ball grid arrays (BGA).

of 2.5D integration of chiplets on an active interposer include the work from
Vivet et al. [13]. There have also been multiple demonstrations of multi-die
packages using bridge-chip technology, including embedded multi-interconnect
bridge technology [14] and heterogeneous interconnection stitching technology
[15] to enable 2.5D microsystems. In its simplest form, bridge-chip technology
utilizes a silicon die with high-density interconnects for inter-die communication.
The performance metrics of these 2.5D integration technologies are comparable
to interposer-based 2.5D solutions, but many other benefits are offered, includ-
ing the elimination of TSVs. The Kaby Lake G from Intel [9] is an example of
a consumer-end product which integrates silicon from different process nodes
and providers: intel 8th Gen core CPUs, AMD Radeon discrete GPU, and high
bandwidth memory (HBM) using the EMIB bridge technology.

2.2 3D Architectures

An architecture where two or more active dice are vertically arranged and inter-
connected without the means of a package is defined as a 3D architecture, accord-
ing to the HIR [8]. 3D integration can be broadly classified into two types. First
is monolithic 3D integration, where two or more active device layers and inter-
connects are sequentially processed using standard lithography tools. The other
type is TSV-based 3D, which utilizes TSVs along with either solder capped
copper pillars (or μ-bumps) or wafer-level hybrid bonds to establish vertical
interconnections between stacked KGDs.

156 R. Saligram et al.

Fig. 6. 2.5D chip stack using (a) bridge-chip technology, (b) interposer technology, (c)
Non-embedded bridge-chip using multi-height microbumps technology, and (d) fan-out
wafer level packaging.

Compared to single die system-on-chips (Fig. 5a), 3D integration architec-
tures such as TSV-based 3D 7a and Monolithic 3D 7b can provide certain ben-
efits. TSV-based 3D enables diverse heterogeneity in device integration from
different technology nodes and improves overall yield through splitting larger
monolithic dice into multiple smaller dice [16]. Monolithic 3D integration [17],

Multilevel Signaling 157

Fig. 7. 3D chip stack. (a) TSV-based and (b) monolithic inter-layer via-based
integration.

enabled through fabrication of high-density fine-pitch inter layer vias (ILVs), can
enable higher inter-layer connectivity compared to both conventional 2D and
TSV-based 3D and higher interconnect density than TSV-based 3D [18], [19].
Based on these studies, there exists a performance gap between TSV-based 3D
and monolithic 3D ICs in terms of energy, bandwidth, and interconnect density.

With conventional air-cooling, 3D integration of logic-on-logic tiers can lead
to a worst case 73% higher maximum junction temperature (Tj,max) compared
to an equivalent 2.5D case [20]. This difference in Tj,max can be attributed
to increased volumetric power in 3D ICs, which can lead to higher inter-tier
steady state temperatures and transient thermal coupling. However, 3D inte-
gration technologies present significant electrical benefits including lower signal-
ing EPB, lower interconnect latency, and higher interconnect density compared
to 2.5D integration schemes such as interposers and bridge-based integration
[9,21,22].

A few benefits of TSV-based 3D integration include lower signaling EPB, lower
link latency, and higher interconnect density compared to other enhanced-2D

158 R. Saligram et al.

integration schemes such as interposers and bridge-based integration. However,
relative to monolithic 3D ICs, conventional TSV-based 3D integration is expected
to have higher EPB, higher inter-chip link latency, and lower interconnect den-
sity [21]. Monolithic 3D integration is a promising option for increased BW, which
achieves higher BW than TSV-based 3D integration resulting from the utilization
of shorter and denser nanoscale vertical vias [23]. Owing to this performance gap,
there is a significant interest in monolithic 3D fabrication. However, limitations in
devices, materials, and temperatures make monolithic 3D integration challenging
and limiting.

A number of recent 3D integration demonstrations have been explored to
enable opportunities in high-performance computing [24], imaging [25,26], and
gas sensing [27]. In these demonstrations, 3D integration of multiple active device
layers is realized primarily through TSV-based 3D stacking [22,28,29] or fabri-
cation of multiple active layers within the same IC (monolithic 3D integration)
[30,31]. Sinha et al. [22] demonstrated a 3D stacking of 2 active dice using high-
density face-to-face wafer-bonding technology at 5.76 µm pitch and TSVs. They
demonstrated an order-of-magnitude better bandwidth (204–307 GB/s), BW
(2276–3413 GB/s/mm2), and EPB (0.013–0.021 pJ/bit) compared to existing
2.5D/3D bump-based techniques.

3 Channel Modelling

The prototype model shown in Fig. 4 electrically resembles the coplanar
microstrip lines. A close-up figure focusing on the interconnects is depicted in
Fig. 8. In our case, we keep the structure symmetrical i.e., the spacing between
the microstrips (referred to as the pitch) is uniform and all the channels are of
equal width. In this system, we transmit signals on all channels textit(SSS) as
compared to others where it can be either an interleaving of signal and ground
signals (SG-SG-SG) or multiple grounds with a signal (GSG-GSG-GSG) which
can possibly use asymmetric signal-ground pitches and different widths for sig-
nal and ground interconnects. Here, the ground signal will be a common plane
beneath the channel and a dielectric material of height h. The microstrip lines
have the benefits as they are planar in nature, easily fabricable, have good heat
sinking and good mechanical support. It is a wire over a ground plane struc-
ture and thus tends to radiate as the spacing between the channel and the
ground plane increases. The two-media nature or the substrate discontinuity of
the coplanar microstrip causes the dominant mode of transmission to be quasi-
TEM (hybrid) which means it has non-zero electric and magnetic fields in the
direction of propagation.

Due to the quasi-TEM mode of propagation, the phase velocity, character-
istic impedance, and the field variation across the channel become frequency
dependent. One of the guiding criteria for stipulating the physical dimension
of the coplanar microstrip lines is provided by [32] which are used mainly for

Multilevel Signaling 159

Fig. 8. Coplanar Microstrip Channel Model

Table 1. Coplanar Microstrip Channel Model Dimensions

Dimension Symbol Value

Channel Width w 5 µm

Channel Thickness t 2 µm

Substrate Height h 10 µm

Channel Pitch s 5 µm–50 µm (5 µm steps)

Channel Length l 100 µm–1000 µm (100 µm steps)

developing closed form equations for effective dielectric constants, characteristic
impedance etc., The physical dimensions should satisfy:

0.1 ≤ w/h ≤ 10 (1)
0.1 ≤ s/h ≤ 10 (2)

1 ≤ εr ≤ 18 (3)

where s is the spacing between the conductors (channels) or the pitch, h is the
thickness of the dielectric, w is the width of the channel, t is the thickness of
the channel and the ground plane. s/h = g denotes the normalized gap factor
and w/h = u denotes the normalized channel width. Table 1 shows the vari-
ous parameters used in the model building. The concept of effective dielectric
constant was introduced to account to the fact that most of the electric fields
are constrained within the dielectric substrate but, a fraction of the total energy
exists within the air above. The variation of effective dielectric constant with the
pitch is depicted in Fig. 9 and that for intrinsic impedance with pitch is shown
in Fig. 10 [33–37].

The analytic expressions for the same are given by [38]

εeff =
1 + εr · K(k′)

K(k) · K(k3)
K(k′

3)

1 + K(k′)
K(k) · K(k3)

K(k′
3)

(4)

160 R. Saligram et al.

Z0 =
60π√
εeff

· 1
K(k)
K(k′) + K(k3)

K(k′
3)

(5)

where
k =

w

2s + w
(6)

k′ =
√

1 − k2 (7)

k3 =
tanh(πs/4h)

tanh(π(2s + w)/4h)
(8)

k′
3 =

√
1 − k2

3 (9)

and K(x) denotes Complete Elliptic Integral of First Kind

K(x) =
∫ π

2

0

dθ√
1 − x2sin2θ

(10)

Fig. 9. Variation of Effective Dielectric Constant with Channel Pitch

A coplanar microstrip model has been designed in HFSS. Each terminal of the
channel acting as a port yielding frequency dependent 6 port scattering param-
eters in the form of touchstone files. The microstrip lines show higher radiation

Multilevel Signaling 161

Fig. 10. Variation of Intrinsic Impedance with Channel Pitch

due to lower isolation and thus more cross-talk. The cross-talk experienced by
a channel due to the adjacent channels depends on the pitch while the amount
of signal attenuation depends on how far the signal has to travel which is the
length of the channel. Thus, pitch and length are the two factors that dictate
the quality of the received signal. In order to study their effects on the system
performance, we parametrically vary them: the pitch is changed from 5 µm to 50
µm in steps of 5 µ and the length is varied from 100 µm to 1 mm in increments
of 100 µ. The effect of E-field coupling can be observed in Fig. 11 with three
cases that show the variation of magnitude of electric field on the victim channel
with (a) no aggressors, (b) one aggressor and (c) two aggressors. Noting this, we
use the generated touchstone files for performing the channel simulation. But,
before applying signals to the channel, it is recommended that the models be
checked for passivity.

The Passivity theorem states that the Scattering matrix S(s) represents a
passive linear system iff

1. S(s*) = S*(s) where * denotes complex conjugate operator.
2. Each element of S(s) is analytic in Re{s} > 0
3. [1 − SH(s)S(s)] ≥ 0 for all ω

The S parameters have been verified in ADS to be passive.

162 R. Saligram et al.

Fig. 11. E field coupling for different Scenario (a) No Aggressor Active, (b) One Aggres-
sor Active (c) Both Aggressor Active

4 Transceiver System Architecture

4.1 Bundle Data Clock Forwarded Channels

Each of the coplanar microstrip lines act as a channel transmitting data from the
transmitter to the receiver in the form of voltage signals. As mentioned earlier,
the BW of the interconnects is critical. Thus, in order to improve the useful BW,
and to enhance the area utilization, we propose single ended transmission as
opposed to differential mode which uses two links to transmit one signal, though
differential signaling offers lesser crosstalk and higher signal swings. Meanwhile,
the negative effects of single ended data transmission like simultaneous switching
and reference offset can be mitigated by adjusting the voltage amplitude of the
signal. In order to minimize the energy per bit, we propose not to use any
equalization at both transmitter and receiver side. We also try to eliminate
other sources of link power consumption like clock data recovery circuits at the
receiver side by using clock forwarding.

This essentially allows a fully parallel IO design. This is a distinguishing fac-
tor in the design of current parallel chiplet to chiplet communication technologies
and is simpler to design than traditional SERDES. This is effective because in
the target designs the channel lengths are short. Thus, there can be one addi-
tional clock signal for a bundle of few data signals (8 or 16) which can be used
to forward the reference clock generated on the transmitter to the receiver as
shown in Fig. 12.

4.2 Signaling

Here we evaluate two types of signaling schemes.

Multilevel Signaling 163

Non-Return to Zero (NRZ). Here the data is represented in the form of
single 0’s and 1’s. When signaling a “0” bit, a voltage of 0V is sent on the channel
and for transmitting a “1” bit, a voltage of Vdd is sent. A sample waveform for
a given stream of bits is shown in the Fig. 13.

4 Level Pulse Amplitude Modulated (PAM4). In this scheme, two bits of
data are grouped to signal a voltage value. Since 4 combinations of 2-bit sequence
are possible, we have 4 voltage levels. 00 −→ 0V , 01 −→ Vdd/3, 10 −→ 2Vdd/3
and 11 −→ Vdd. The sample waveform of PAM4 for the same bit stream is shown
in Fig. 13. The symbol rate in PAM4 is half that of the NRZ or the data rate is
twice that of the NRZ.

With two different signaling schemes, we have the corresponding transmitter
and receivers.

4.3 Transmitter

NRZ. Since we do not use pre-emphasis or equalization, the transmitter can
be a simple buffer which transmits voltages on to the channel. The only design
constraint for these buffers is that they must be suitably sized to be able to drive
the pad capacitance of the receiver along with that of the channel.

PAM4. Here, two bits need to be transmitted as one value of voltage. The input
data is passed through a serializer which is then input to a simple 2-bit Digital
to Analog Converter (DAC). The DAC will convert it to a mapped voltage and
is transmitted on to the channel by a current mode driver.

4.4 Receiver

NRZ. Similar to the transmitter, the receiver is a simple buffer which will detect
the voltage on the channel and decode it as a 0 or a 1. Thus, the buffer acts
as a high gain voltage comparator which will compare the signal value to the
trip-point voltage of the buffer in order to make the decision.

Fig. 12. Bundle Data Clock Forwarded Channel

164 R. Saligram et al.

Fig. 13. NRZ and PAM4 waveforms for an arbitrary bit stream

PAM4. The four voltage levels on the channel need to decoded back to two
bits. Here, we use a simple 2-bit Analog to Digital Converter (ADC) to do the
conversion. Due to its high speed of operation, a flash-ADC is best suitable for
the purpose. The Flash-ADC in-turn comprises of three high gain comparators
which compare the signal value against the external reference voltage. The ADC
output is then encoded to binary.

The NRZ and PAM4 systems are shown in Fig. 14.

5 Channel Simulation

5.1 Setup

The simulation is performed in Keysight Advanced Digital System (ADS) plat-
form for a 28 nm technology node and the simulation setup is as shown in Fig. 15.
The transmitter is a Pseudo-Random Bit Sequence (PRBS) generator with the
bits being electrically encoded to voltage signals. In this study, a PRBS-7 sys-
tem is used for which the sequence generating monic polynomial is given by
x7 + x6 + 1. The transmitter has a transmit resistance denoted by R-TX which
is typically around 50Ω in parallel with the pad capacitance (Cpad) which for a
typical 28 nm node is around 5 pF.

The transmitter and receiver for the NRZ is a buffer as explained in the
previous section. For PAM4, we use IBIS-AMI model along with the executables
generated from MATLAB SERDES toolkit which can be used in conjunction
with the ADS setup. The supply voltage is chosen to be 1 V for both NRZ and
PAM4.

The channel is modelled in the form of a 6 port S-parameter network. We use
the touchstone files generated from the HFSS models. The six ports represent

Multilevel Signaling 165

Fig. 14. Circuits of (a) NRZ and (b) PAM4 Systems.

the three transmitter and three receiver ports which constitute the three chan-
nels. The middle channel is the victim channel that needs to carry the required
data signal under the influence of the two aggressor channels on the side which
contribute to the crosstalk. To emulate the worst-case crosstalk scenario, we have
the crosstalk generators (“XTalk” Transmitter) which are configured to operate
at the same data rate as the main transmitter but generate out of phase signals.

On the receiver side, we have the pad capacitance. The termination resis-
tance used in most of communication channels will impact power as it causes
the received signals to attenuate. Thus, in order to reduce the power consump-
tion, short links typically eliminate the legacy termination resistance. This will
make the load on the receiver side to be purely capacitive which will cause the
received signal to be reflected back to the transmitter affecting the quality of
the transmitted signal and increasing inter-symbol interference (ISI). With the
channel length being considerably small, the lack of termination resistance does
not affect the bit error rate (BER) significantly.

166 R. Saligram et al.

Fig. 15. Channel Simulation Setup in ADS Platform

5.2 Simulation

The channel simulation controller performs statistical convolution of channel
impulse response with that of the data transmitted and the eye-diagram is gen-
erated at the receiver side. The channel simulation is performed for different pitch
and channel length configurations. The following is the trend that is desirable
to be observed:

1. At a constant data rate, as the channel pitch decreases, the opening of the
eye diagram decreases. This is due to the fact that the channels will get closer
and the crosstalk increases.

2. At a constant data rate, as the channel length increases, the opening of eye
diagram decreases because the signals suffer more attenuation when it travels
longer distance on the dissipative media.

3. With constant dimensions, the eye-opening decreases with the increase in
data rate due to higher inter-symbol interference.

Figures 16 and 17 show the eye diagrams for a sample of four pitch-length
configurations at a constant data rate. In an ideal case, the eye-opening must be
minimum for 1000 µm length-5 µm pitch channel due to highest attenuation and
crosstalk and maximum for 100 µm length-50 µm pitch channel due to lowest
attenuation and crosstalk. However, we note that the electromagnetics of the
coplanar microstrip line is much more complex than simple linear relationships
between frequency of operation and channel dimensions.

5.3 Role of Termination Resistance

As mentioned earlier, the termination resistance at the receiver side is the major
cause of signal attenuation and power dissipation. But, the main role of using
a termination resistance is to avoid signal reflection back to the transmitter

Multilevel Signaling 167

Fig. 16. NRZ Eye for (a) L = 100 µm, P = 5 µm (b) L = 100 µm, P = 50 µm
(c) L = 1000 µm, P = 5 µm, (d) L = 1000 µm, P = 50 µm

Fig. 17. PAM4 Eye for (a) L = 100 µm, P = 5 µm (b) L = 100 µm, P = 50 µm
(c) L = 1000 µm, P = 5 µm, (d) L = 1000 µm, P = 50 µm

168 R. Saligram et al.

causing more ISI. The effect of termination resistance can be seen when trying
to push the design operating frequency to a higher value. The Fig 18a shows
the eye diagram for a relatively smaller length and very high pitch coplanar
microstrip design at 10 GS/s for PAM4. There is no clear eye opening and the
diagram looks completely distorted. The Fig 18b shows the eye diagram for the
same design but with a 50 Ω termination resistance. We see that the eye has
clear and well-defined openings making the received signal easily detectable.

Notice that amplitude of the eye diagram before the addition of the termi-
nation resistance is 1 V while that after addition is approximately 0.4 V. This is
the signal attenuation mentioned above. Thus, adding a termination resistance
will be a design choice to either embrace lower energy per bit at lower data rate

Fig. 18. 10 GS/s PAM4 receiver eye diagram (a) without and (b) with 50 Ω termination
resistance.

Multilevel Signaling 169

Fig. 19. Channel Operating Margin Definition based on Eye Diagram for (a) NRZ and
(b) PAM4

or higher energy per bit at higher data rate. In this article, we chose to forgo
the slight improvement in data rate for lower energy per bit transmitted.

5.4 Channel Operating Margin and Highest Signaling Rate

The channel operating margin (COM) is a measure of channel performance which
was originally developed for IEEE 802.3bj and IEEE 802.3bs Gigabit Ethernet
(GbE) standards. The concept of COM has been applied for the channels under
consideration. The COM is defined w.r.t to eye-diagram in Fig. 19 as

COM = 20log10
ASignal

Anoise
(11)

The standard requirement for a communication channel transmitting NRZ
data is that COM ≥ 3 dB. For PAM4 signaling, since the amplitude of the
ideal signal is 1/3rd that of NRZ, the target COM ≥ 9.5 dB. In the limiting
case, it will be 3 dB for NRZ and 9.5 dB for PAM4. For PAM4, the average
of COM for all the three eyes is taken. Here in the simulation, we determine

170 R. Saligram et al.

the highest data rate that can be achieved while meeting the COM requirement
for every configuration of channel length and pitch. This is done by setting an
optimization goal to meet the COM requirement and sweeping over a suitable
frequency range. All the measurements are made for a BER of 1e-15.

The intensity plot versus the channel dimensions are depicted in Fig. 20 for
NRZ system and Fig. 21 for PAM4 system [39]. The channel pitch is along the X
axis and the channel length is along the Y axis. The highest data rate that can
be achieved for the given pitch and length while meeting the Channel Operating
Margin requirement is indicated by intensity of the color in each box.

The ideal scenario of data rate increasing with increasing channel pitch can
be seen for channel length of 600 µm in case of NRZ. At 40 µm pitch in PAM4,
the ideal trend of data rate decreasing with increasing channel length can be
observed. That being said, we need to look at the general trend of the data rate
as the channel dimensions are varied while considering that the maximum fre-
quency of operation is controlled by the electromagnetics of the channel, effective
dielectric constant of the substrate, characteristic impedance, resonant frequen-
cies and so on. Traditionally channels are designed by fixing most of the physical
channel parameters, but here we perform a design space exploration to identify
the limits of parallel IO links.

Figure 22 show the shoreline BW density vs channel length for a sample of
four pitch configurations for NRZ and PAM4 systems. The direct implication of
the finer pitch is increased shoreline density.

Fig. 20. Maximum Frequency of Operation for NRZ for iso-BER of 1e-15

Multilevel Signaling 171

Fig. 21. Maximum Frequency of Operation for PAM4 for iso-BER of 1e-15

Fig. 22. Shoreline BW density versus Channel Length for (a) NRZ and (b) PAM4.

6 Power Estimations

6.1 Transmitter

NRZ: In our assumptions of single ended voltage mode transmission, the driver
is a buffer circuit that needs to drive the wire and the pad capacitance. The
magnitude of the wire capacitance is much smaller compared to that of the pad
capacitance. If Cpad is the pad capacitance, fclk is the frequency of operation at
which the data bits are transmitted, Vdd is the supply voltage, then the power
dissipation can be written as

172 R. Saligram et al.

PTX = CpadfclkV
2
dd (12)

PAM4: The transmitter for PAM4 is a 2-bit DAC. We consider a simple capac-
itive binary-weighted array DAC structure as show in Fig. 23. The capacitive
switching will be the key component of power consumption in this structure.
[40] provides a power estimation of such structures; when applied to a 2-bit
DAC with equal probability of 0’s and 1’s gives Eq. (13). fclk is the frequency
of operation, C0 is the capacitance of the unit capacitor, Vref is the reference
voltage for the conversion.

PDAC =
9
32

fclkC0V
2
dd (13)

A simple current mode driver comprising of two binary weighted current
sources with tail currents IT and 2IT can be utilized to drive the signal as shown
in Fig. 24. The power is given be (14)

PCMD = 3VddIT (14)

6.2 Receiver

NRZ: The single ended receiver is a buffer that decodes the signal to a 0 or 1
level and has the same power expression as that of the transmit buffer given by
(5) but with load capacitance just another buffer.

PAM4: The receiver for PAM4 is a 2-bit ADC. With the inherent advantages
of high speed of operation and the low-resolution requirements for case under
discussion, a flash ADC is the best candidate. A flash ADC consists of 2N − 1
comparators and an encoder. For a N = 2 bit flash ADC, we will need three com-
parators (Fig. 25). The power of a matching limited comparator [41] is given by
(15), where Cox is the oxide capacitance, AV T is the threshold voltage mismatch
coefficient, Vinp−p is the peak to peak input voltage, CCmin is the minimum
required capacitance.

Fig. 23. Binary Weighted 2 bit Capacitive DAC

Multilevel Signaling 173

Fig. 24. 2 bit Current Mode Driver

PComp = (144 · 22NCoxA
2
V T

V 2
dd

V 2
inp−p

+ CCminV 2
dd) · (2N − 1)fclk (15)

The power of a Wallace Encoder [42] in terms of number of bits N, typical
gate energy Egate and operating frequency fclk is given by

Penc = 5 · (2N − N) · Egate · fclk (16)

Fig. 25. Two bit Flash ADC with three comparators and Wallace Encoder

174 R. Saligram et al.

Fig. 26. Generic Structure of Phase Locked Loop

6.3 Phase Locked Loop (PLL)

A generic block diagram of a PLL is shown in Fig. 26. Here, we consider a non-
differential 5 stage VCO along with the phase-frequency detector (PFD) from
[43]. [44] provides with elaborate power estimations treating PLL as a second
order continuous time system. Given the damping factor of 0.707 and a natu-
ral frequency of 9.375 MHz with a multiplier of N = 32, the power of the PLL
can be written as (17), where CPFD, CDIV , CV CO are the total capacitances
of Phase-Frequency Detector, Frequency Divider and Voltage Controlled Oscil-
lator respectively. The frequency divider circuit under consideration is a series
of True Single Phase Clocked (TSPC) Flops [45] along with Transmission Gate
(TG) multiplexers and inverters and PBIAS is the power of the bias circuitry.
.

PPLL = (CPFD + CDIV + CV CO) · V 2
dd · fclk + PBIAS (17)

Fig. 27. Power consumption of various components of NRZ and PAM4 system for their
highest frequency of Operation

Multilevel Signaling 175

Table 2. Parameters and Values used in Power Estimation

Process
Parameters

Typical 28 nm
Node Value

Cox 45 fF/µm2

AV T 1.2 mV–µm

Egate 1.2 fJ

CCmin 5 fF

C0 1 pF

Other
Parameters

Value

IT 0.5 mA

Vdd 1 V

Vin p−p 1 V

PBIAS 0.5 mW

The value of various parameters used in power estimation is shown in Table 2.
The total power for a 2.345 Gb/s NRZ is 31.2 mW leading to an energy-
efficiency of 13.323 pJ/b. For the 1.49 GS/s PAM system, the power is 14.53
mW producing an energy-efficiency of 4.876 pJ/bit.

Figure 27 show the breakdown of power consumption. As expected, the PLL
is the major consumer with up to 62.4% in NRZ and 86.5% in PAM. The receiver
in both cases is negligible, as we do not use any equalizer or CDR.

7 Conclusion and Future Scope

In this paper we develop a tool chain from channel modelling to channel simu-
lation and power estimation. The different industry standard tools used in the
process include HFSS, ADS and MATLAB. We explore the coplanar microstrip
based channels as a model for die to die interconnects for 2.5D integration. We
show that higher order modulation like PAM can be applied with more than 63%
energy efficiency per bit. This is enabled by the simple transceiver structures for
short channel lengths. At high channel densities of up to 5 µm pitch, we note
that we can achieve 445 Gb/s/mm of shoreline-BW-density with NRZ and 565
Gb/s/mm with PAM4.

As an extension to the current work, we are also tuning the design to match
the industry trends. Currently we propose to explore ultra-fine pitches of up to
1 µm and characterize the same. The choice of the substrate material is another
important factor. We also need to quantify the energy per bit at various termi-
nation resistance and choose the one that yields the best results. The circuits
discussed need to be simulated for more accurate power numbers. Thus, we think
there is sufficient opportunity to enhance this design simulation framework.

176 R. Saligram et al.

References

1. Hennessy, J.: The End of Moore’s Law & Faster General Purpose Computing, and
a New Golden Age, DARPA ERI Summit, July 2018

2. Holt, B.: Advancing Moore’s Law. Intel Investor Meeting, Santa Clara (2015)
3. LaPadeus, M.: Big Trouble At 3nm, Semiconductor Engineering, June 2018.

https://semiengineering.com/big-trouble-at-3nm/
4. Zhang, X., Im, S.H., Huang, R., Ho, P.S.: Chip package interactions. In: Bakir,

M., Meindl, J. (eds.) Integrated Interconnect Technologies for 3D Nanoelectronic
Systems, Artech House, Norwood, MA, USA, Chapter 2 (2008)

5. Iyer, S.S.: Heterogeneous Integration for Performance and Scaling. IEEE Trans.
Compon. Packag. Manuf. Technol. 6, 973–982 (2016)

6. Mahajan, R., et al.: Embedded multidie interconnect bridge–a localized, high-
density multichip packaging interconnect. IEEE Trans. Compon. Package. Manuf.
Technol. 9(10), 1952–1962 (2019). https://doi.org/10.1109/TCPMT.2019.2942708

7. Collaert, N.: 1.3 future scaling: where systems and technology meet. In: IEEE
International Solid-State Circuits Conference (ISSCC), pp. 25–29 (2020). https://
doi.org/10.1109/ISSCC19947.2020.9063033

8. Heterogeneous Integration Roadmap (HIR): Chapter 22: Interconnects for 2D and
3D Architectures. https://eps.ieee.org/images/files/HIR 2019/HIR1 ch22 2D-3D.
pdf

9. Lee, H.J., Mahajan, R., Sheikh, F., Nagisetty, R., Deo, M.: Multi-die integration
using advanced packaging technologies. In: IEEE Custom Integrated Circuits Con-
ference (CICC), pp. 1–7 (2020). https://doi.org/10.1109/CICC48029.2020.9075901

10. Erdmann, C., et al.: A heterogeneous 3D-IC consisting of two 28 nm FPGA die and
32 reconfigurable high-performance data converters. IEEE J. Solid-State Circuits
50(1), 258–269 (2015). https://doi.org/10.1109/JSSC.2014.2357432

11. Kim, D.H., et al.: Design and analysis of 3D-MAPS (3D massively parallel processor
with stacked memory). IEEE Trans. Comput. 64(1), 112–125 (2015). https://doi.
org/10.1109/TC.2013.192

12. Lin, M.S., et al.: A 7nm 4GHz Arm R©-core-based CoWoS R© Chiplet design for
high performance computing. In: Symposium on VLSI Circuits, Kyoto, Japan, pp.
C28–C29 (2019). https://doi.org/10.23919/VLSIC.2019.8778161

13. Vivet, P., et al.: 2.3 a 220GOPS 96-core processor with 6 Chiplets 3D-stacked on
an active interposer offering 0.6 ns/mm latency, 3Tb/s/mm2 Inter-Chiplet Inter-
connects and 156mW/mm2@ 82%-Peak-Efficiency DC-DC Converters. In: IEEE
International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA,
pp. 46–48 (2020). https://doi.org/10.1109/ISSCC19947.2020.9062927

14. Mahajan, R., et al.: Embedded multi-die interconnect bridge (EMIB) - a high
density, high bandwidth packaging interconnect. In: IEEE Electronic Components
and Technology Conference (ECTC), Las Vegas, NV, pp. 557–565 (2016). https://
doi.org/10.1109/ECTC.2016.201

15. Jo, P.K., Rajan, S.K., Gonzalez, J.L., Bakir, M.S.: Embedded polylithic integration
of 2.5-D and 3-d chiplets enabled by multi-height and fine-pitch CMIs. IEEE Trans.
Comput. Packag. Manuf. Technol. 10(9), 1474–1481 (2020). https://doi.org/10.
1109/TCPMT.2020.3011325

16. England, L., Arsovski, I.: Advanced packaging saves the day! - How TSV technol-
ogy will enable continued scaling. In: IEEE International Electron Devices Meet-
ing (IEDM), San Francisco, CA, pp. 3.5.1–3.5.4 (2017). https://doi.org/10.1109/
IEDM.2017.8268320

https://semiengineering.com/big-trouble-at-3nm/
https://doi.org/10.1109/TCPMT.2019.2942708
https://doi.org/10.1109/ISSCC19947.2020.9063033
https://doi.org/10.1109/ISSCC19947.2020.9063033
https://eps.ieee.org/images/files/HIR_2019/HIR1_ch22_2D-3D.pdf
https://eps.ieee.org/images/files/HIR_2019/HIR1_ch22_2D-3D.pdf
https://doi.org/10.1109/CICC48029.2020.9075901
https://doi.org/10.1109/JSSC.2014.2357432
https://doi.org/10.1109/TC.2013.192
https://doi.org/10.1109/TC.2013.192
https://doi.org/10.23919/VLSIC.2019.8778161
https://doi.org/10.1109/ISSCC19947.2020.9062927
https://doi.org/10.1109/ECTC.2016.201
https://doi.org/10.1109/ECTC.2016.201
https://doi.org/10.1109/TCPMT.2020.3011325
https://doi.org/10.1109/TCPMT.2020.3011325
https://doi.org/10.1109/IEDM.2017.8268320
https://doi.org/10.1109/IEDM.2017.8268320

Multilevel Signaling 177

17. Wei, H., Shulaker, M., Wong, H.S.P., Mitra, S.: Monolithic three-dimensional inte-
gration of carbon nanotube FET complementary logic circuits. In: IEEE Inter-
national Electron Devices Meeting (IEDM), Washington, DC, pp. 19.7.1–19.7.4
(2013). https://doi.org/10.1109/IEDM.2013.6724663

18. Liu, C., Lim, S.K.: A design tradeoff study with monolithic 3D integration. In:
International Symposium on Quality Electronic Design (ISQED), Santa Clara,
CA, pp. 529–536 (2013). https://doi.org/10.1109/ISQED.2012.6187545

19. Beyne, E.: Short course on: heterogeneous system partitioning and the 3D intercon-
nect technology landscape. In: Symposia on VLSI Technology and Circuits (2020)

20. Kaul, A., Peng, X., Kochupurackal Rajan, S., Yu, S., Bakir, M.S.: Thermal model-
ing of 3D polylithic integration and implications on BEOL RRAM performance. In:
IEEE International Electron Devices Meeting (IEDM), Virtual Conference (2020)

21. Zhang, Y., Zhang, X., Bakir, M.S.: Benchmarking digital die-to-die channels in
2.5-D and 3-D heterogeneous integration platforms. IEEE Trans. Electron. Devices
65(12), 5460–5467 (2018). https://doi.org/10.1109/TED.2018.2876688

22. Sinha, S., et al.: A high-density logic-on-logic 3DIC design using face-to-face hybrid
wafer-bonding on 12nm FinFET process. IEEE International Electron Devices
Meeting (IEDM), Virtual Conference (2020)

23. Panth, S., Samadi, K., Du, Y., Lim, S.K.: High-density integration of functional
modules using monolithic 3D-IC technology. In: Asia and South Pacific Design
Automation Conference (ASP-DAC), Yokohama, pp. 681–686 (2013). https://doi.
org/10.1109/ASPDAC.2013.6509679

24. Lee, C.C., et al.: An overview of the development of a GPU with integrated HBM on
silicon interposer. In: Electronic Components and Technology Conference (ECTC),
Las Vegas, NV, pp. 1439–1444 (2016). https://doi.org/10.1109/ECTC.2016.348

25. Tsugawa, H., et al.: Pixel/DRAM/logic 3-layer stacked CMOS image sensor tech-
nology. In: IEEE International Electron Devices Meeting (IEDM), San Francisco,
CA, 2017, pp. 3.2.1–3.2.4 (2017). https://doi.org/10.1109/IEDM.2017.8268317

26. Srimani, T., Hills, G., Lau, C., Shulaker, M.: Monolithic three-dimensional imag-
ing system: carbon nanotube computing circuitry integrated directly over silicon
imager. In: IEEE International Electron Devices Meeting (IEDM), Symposium on
VLSI Technology, Kyoto, Japan, 2019, pp. T24–T25 (2019). https://doi.org/10.
23919/VLSIT.2019.8776514

27. Shulaker, M.M., et al.: Three-dimensional integration of nanotechnologies for com-
puting and data storage on a single chip. Nature 547, 74–78 (2017). https://doi.
org/10.1038/nature22994

28. Lee, J.C.: High bandwidth memory(HBM) with TSV technique. In: Interna-
tional SoC Conference(ISOCC), Jeju, pp. 181–182 (2016). https://doi.org/10.1109/
ISOCC.2016.7799847

29. Gomes, W., et al.: 8.1 Lakefield and mobility compute: A 3D stacked 10nm and
22FFL hybrid processor system in 1212mm2, 1mm package-on-package. In: IEEE
International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA,
pp. 144–146 (2020). https://doi.org/10.1109/ISSCC19947.2020.9062957

30. Batude, P., et al.: 3D monolithic integration. In: IEEE International Symposium
on Circuits and Systems (ISCAS), Rio de Janeiro, pp. 2233–2236 (2011). https://
doi.org/10.1109/ISCAS.2011.5938045

31. Bishop, M.D., Wong, H.S.P., Mitra, S., Shulaker, M.M.: Monolithic 3-D integration.
IEEE Micro 39(6), 16–27 (2019). https://doi.org/10.1109/MM.2019.2942982

32. Kirschning, M., Jansen, R.H.: Accurate wide-range design equations for the fre-
quency dependent characteristic of parallel coupled microstrip lines. MTT-32, Jan-
uary 1984. https://doi.org/10.1109/TMTT.1984.1132616

https://doi.org/10.1109/IEDM.2013.6724663
https://doi.org/10.1109/ISQED.2012.6187545
https://doi.org/10.1109/TED.2018.2876688
https://doi.org/10.1109/ASPDAC.2013.6509679
https://doi.org/10.1109/ASPDAC.2013.6509679
https://doi.org/10.1109/ECTC.2016.348
https://doi.org/10.1109/IEDM.2017.8268317
https://doi.org/10.23919/VLSIT.2019.8776514
https://doi.org/10.23919/VLSIT.2019.8776514
https://doi.org/10.1038/nature22994
https://doi.org/10.1038/nature22994
https://doi.org/10.1109/ISOCC.2016.7799847
https://doi.org/10.1109/ISOCC.2016.7799847
https://doi.org/10.1109/ISSCC19947.2020.9062957
https://doi.org/10.1109/ISCAS.2011.5938045
https://doi.org/10.1109/ISCAS.2011.5938045
https://doi.org/10.1109/MM.2019.2942982
https://doi.org/10.1109/TMTT.1984.1132616

178 R. Saligram et al.

33. Veyres, C, Fouad Hanna, V. : Extension of the application of conformal mapping
techniques to coplanar lines with finite dimensions. Int. J. Electron. 48(1), 47–56
(1980)

34. Ghione, G., Naldi, C.U.: Parameters of coplanar waveguides with lower ground
plane. Electron. Lett. 19(18), 734–735 (1983)

35. Ghione, G., Naldi, C.U.: Coplanar waveguides for MMIC applications: effect of
upper shielding, conductor backing, finite-extent ground planes, and line-to-line
coupling. IEEE Trans. Microwave Theory Tech. 35(3), 260–267 (1987)

36. Bedair, S., Wolff, I.: Fast and accurate analytic formulas for calculating the param-
eters of a general broadside-coupled coplanar waveguide for MMIC applications.
IEEE Trans. Microwave Theory Tech. 37(5), 843–850 (1989)

37. Wang, Y.C., Okoro, J.A.: Impedance calculations for modified coplanar waveg-
uides. Int. J. Electron. 68(5), 861–875 (1990)

38. Simons, R.N.: Coplanar Waveguide Circuits, Components, and Systems. Wiley
(2001). ISBN 0-471-16121-7

39. Saligram, R, Kaul, A, Bakir, M. S, Raychowdhury, A: A model study of multilevel
signaling for high-speed chiplet-to-chiplet communication in 2.5D integration. In:
28th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC), October 2020

40. Saberi, M., Lotfi, R., Mafinezhad, K., Serdijn, W.A.: Analysis of power consump-
tion and linearity in capacitive digital-to-analog converters used in successive
approximation ADCs. IEEE Trans. Circuits Syst. I Regular Papers 58 (2011).
https://doi.org/10.1109/TCSI.2011.2107214

41. O’Driscoll, S., Shenoy, K. V., Meng, T. H.: Adaptive resolution ADC array for
an implantable neural sensor. IEEE Trans. Biomed. Circuits Syst. 5(2), 120–130
(2011). https://doi.org/10.1109/TBCAS.2011.2145418

42. Murmann, B.: Energy Limits in A/D Converters, SSCS Talk (2012)
43. Jeong, D.K., Borriello, G., Hodges, D.A., Katz, R.H.: Design of PLL-based

clock generation circuits. IEEE J. Solid-State Circuits 22(2), pp. 255–261 (1987).
https://doi.org/10.1109/JSSC.1987.1052710

44. Duarte, D., Vijaykrisnan, N., Irwin, M.J.: A complete phase-locked loop power
consumption model. In: Proceedings 2002 Design, Automation and Test in Europe
Conference and Exhibition, Paris, France, 2002, p. 1108. https://doi.org/10.1109/
DATE.2002.998464

45. Rabaey, J.: Digital Integrated Circuits: A Design Perspective. Prentice-Hall Inter-
national, NJ (2003)

https://doi.org/10.1109/TCSI.2011.2107214
https://doi.org/10.1109/TBCAS.2011.2145418
https://doi.org/10.1109/JSSC.1987.1052710
https://doi.org/10.1109/DATE.2002.998464
https://doi.org/10.1109/DATE.2002.998464

From Informal Specifications to an ABV
Framework for Industrial Firmware

Verification

Samuele Germiniani, Moreno Bragaglio, and Graziano Pravadelli(B)

Department of Computer Science, University of Verona, Verona, Italy
{samuele.germiniani,moreno.bragaglio,graziano.pravadelli}@univr.it

Abstract. Firmware verification for small and medium industries is a
challenging task; as a matter of fact, they generally do not have per-
sonnel dedicated to such activity. In this context, verification is executed
very late in the design flow, and it is usually carried on by the same engi-
neers involved in coding and testing. The specifications initially discussed
with the customers are generally not formalised, leading to ambiguity in
the expected functionalities. The adoption of a more formal design flow
would require the recruitment of people with expertise in formal and
semi-formal verification, which is not often compatible with the budget
resources of small and medium industries. The alternative is helping the
existing engineers with tools and methodologies they can easily adopt
without being experts in formal methods.

The paper follows this direction by presenting MIST, a framework for
the automatic generation of an assertion-based verification environment
and its integrated execution inside an off-the-shelf industrial design tool.
In particular, MIST allows generating a complete environment to verify
C/C++ firmware starting from informal specifications.

Given a set of specifications written in natural language, the tool
guides the user in translating each specification into an XML formal
description, capturing a temporal behaviour that must hold in the design.
Our XML format guarantees the same expressiveness of linear temporal
logic, but it is designed to be used by designers that are not familiar with
formal methods. Once each behaviour is formalised, MIST automatically
generates the corresponding testbench and checker to stimulate and ver-
ify the design. To guide the verification process, MIST employs a clus-
tering procedure that classifies the internal states of the firmware. Such
classification aims at finding an effective ordering to check the expected
behaviours and to advise for possible specification holes.

MIST has been fully integrated into the IAR System EmbeddedWork-
bench. Its effectiveness and efficiency have been evaluated to formalise
and check a complex test plan for industrial firmware.

The research has been partially supported by the project “Dipartimenti di Eccellenza
2018–2022” funded by the Italian Ministry of Education, Universities and Research
(MIUR); and with the collaboration of IDEA S.p.a.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 179–204, 2021.
https://doi.org/10.1007/978-3-030-81641-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_9

180 S. Germiniani et al.

Keywords: verification · testing · simulation · checker · PSL · LTL ·
specification

1 Introduction

In the last few decades, verification has become one of the most crucial aspects of
developing embedded systems. Thoroughly verifying the correctness of a design
often leads to identifying bugs and specification holes far earlier in the deploy-
ment process, exempting the developing company from wasting resources in
costly maintenance.

Software bugs can become exceptionally expensive when they are intention-
ally used to exploit vulnerabilities [1] or when they cause accidental software fail-
ures [2]. The cost worsens depending on how late the bug is discovered in the devel-
oping process. The Systems Sciences Institute at IBM [3] reports that fixing a bug
discovered during the implementation phase is roughly six times more costly than
fixing a bug identified during requirements analysis; fixing an error discovered after
release is up to 100 times more expensive than one identified during maintenance.
To sum things up, the cost of bugs escalates exponentially after each step of the
developing cycle. The National Institute of Standards and Technology (NIST) esti-
mates that the US economy loses 60 billion annually in costs associated with devel-
oping and distributing patches that fix software faults and vulnerabilities [4].

However, our experience suggests that many companies have to cut down
the verification process due to the lack of time, tools and specialized engineers.
To make things worse, developing time is often hard to assess correctly [5],
while managers usually tend to underestimate it. As a result, engineers and
programmers are subject to very firm deadlines; hence they are mostly concerned
about conjuring functionalities instead of carefully verifying the design [6].

That is even more critical in the case of firmware verification, which requires
exceptional consideration to deal also with the underlying hardware. Complex
industrial designs usually include various firmware instances executed on differ-
ent target architectures, which need to be co-simulated. Furthermore, virtual
platforms and simulators are not available for each target architecture or they
are not equipped with the proper verification tools. Therefore, several companies
postpone firmware verification at the end of the design process, when the real
hardware is available, finally asking the verification engineers to manually check
if the firmware meets the specifications.

Indeed, one of the main problems that prevent an effective and efficient
firmware verification process is the incapability of formalizing the initial design
specification, which is generally written in extremely long and ambiguous natural-
language descriptions. Such descriptions risk being differently interpreted by
designers and verification engineers, as well as by the project’s customers them-
selves, thus leading to the misalignment between the initial specification and the
final implementation [7]. Besides, the lack of formalisation prevents the engineer
from exploiting automatic tools for verification, with the consequent adoption of
ineffective and inefficient (semi-)manual approaches. In particular, without a well-
defined specification, it becomes impractical to define any formal or semi-formal

MIST 181

verification strategy. Generally, those strategies require describing the expected
behaviours in terms of logic assertions unambiguously. In the case of semi-formal
approaches, the verification engineer has to define a set of testbenches to stimulate
the design under verification. To accomplish that, the verification engineer must
identify and learn additional tools, further increasing the verification overhead.

To fill in the gap, we present MIST: an all-in-one tool capable of generat-
ing a complete environment to verify C/C++ firmware starting from informal
specifications. The tool provides a user-friendly interface to allow designers and
their customers, which are not familiar with temporal logic, to formalise the ini-
tial specifications into a set of non-ambiguous temporal behaviours. From those,
MIST generates a verification environment composed of monitors (checkers) and
testbenches to verify the correctness of the firmware implementation automati-
cally. Then, in order to guide the verification process, MIST employs a clustering
procedure that classifies the internal states of the firmware. Such classification
aims at finding an effective ordering to check the expected behaviours and to
advise for possible specification holes. The verification environment has been
fully integrated with the popular IAR Embedded Workbench toolchain [8]. We
evaluated the tool by verifying the correctness of an already released industrial
firmware, allowing the discovery of bugs that were never detected previously.

The rest of the paper is organized as follows. Section 2 summarizes the state
of the art. Section 3 overviews the methodology. Sections 4, 5, 6, 7 explain in
detail the methodology implemented in MIST. Section 8 reports the experimental
results. Finally, in Sect. 9 we draw our conclusions.

2 Background

Formalisation of specifications is the process of translating requirements of a
design into logic properties that can be used to verify its correctness automati-
cally. Usually, the procedure consists of two main steps. Firstly, the verification
engineer has to disambiguate the informal specifications written in natural lan-
guage. Secondly, a formal specification language must be adopted to formalise
the specifications into logical formulas that will be used to verify the design.

During the past decades, numerous approaches have been developed to per-
form verification with the above paradigm.

Moketar et al. [9] introduce an automated collaborative requirements engi-
neering tool, called TestMEReq, to promote effective communication and col-
laboration between client stakeholders and requirements engineers for better
requirements validation. The proposed tool is augmented with real time com-
munication and collaboration support to allow multiple stakeholders to collabo-
ratively validate the same set of requirements.

In [10] the authors describe a method to formalise specifications in a domain
specific language based on regular expressions. The approach mainly consists in
using a set of parallel non-deterministic Finite state machines to map formal
specifications into behavioural models.

Subramanyan et al. [11] propose an approach to verify firmware security prop-
erties using symbolic execution. The paper introduces a property specification

182 S. Germiniani et al.

language for information flow properties, which intuitively captures the require-
ments of confidentiality and integrity.

In [12], Buzhinsky presents a survey of the most popular existing approaches
to formalise discrete-time temporal behaviours.

All the above works either use a standardised (such as PSL [13], SVA [14]) or
a domain-specific formalisation language relying on temporal logic formalisms
such as LTL (linear temporal logic) and CTL (computation tree logic). The LTL
logic allows the formalisation of temporal behaviours unfolding on a single com-
putational path; CTL is an extension of LTL which additionally allows branching
time and quantifiers.

Once the informal specifications are thoroughly translated into logic formu-
las, automatic verification can be applied to the target design. The process of
verifying a design using a set of formalised behaviours is called assertion-based
verification (ABV); this technique aims at checking if the formalised behaviours
hold in the design. ABV can be performed using model checking tools; although
these procedures are capable either of proving that a property holds or gener-
ating a counterexample, they are not scalable, as they must explore the whole
state-space of the design. To address the scalability problem, simulation-based
approaches have been introduced to perform ABV. This techniques consist of
simulating a design with a limited set of stimuli and memory configurations;
therefore, they do not prove that properties hold for every possible computa-
tional path. To apply this verification model to a design, the verification engi-
neer needs two additional elements aside from the assertions: a set of meaningful
testbenches to stimulate and a virtual platform to simulate.

A set of significant testbenches is essential to thoroughly verify all function-
alities of a design, to maximize its statement/branch coverage, and if possible,
to discover hidden bugs.

Frattini et al. [15] address the topic of test-case generation by deepening into
the possibility of generating a much more complete minimum set of stimuli for
simulation-based verification.

In [16], the authors propose a self-tuning approach to guide the generation of
constrained random testbenches using a sat solver. They employ a greedy search
strategy to obtain a high-uniform distribution of stimuli.

Cadar et al. [17] present KLEE, a symbolic simulation tool capable of auto-
matically generating tests that achieve high coverage for C/C++ programs.

In [18], the authors introduce a purely SAT-based semi-formal approach for
generating multiple heterogeneous test-cases for a propositional formula.

“A Virtual Platform is a software based system that can fully mirror the
functionality of a target System-on-Chip or board. These virtual platforms com-
bine high-speed processor simulators and high-level, fully functional models of
the hardware building blocks, to provide an abstract, executable representation
of the hardware to software developers and to system architects” [19]. With
a virtual platform, the DUV can be verified by injecting testbenches and by
checking if the assertions hold during simulation. In this work, we generated a
verification environment for the virtual platforms provided by IARSystem.

MIST 183

3 Methodology

As shown in Fig. 1, the proposed methodology is composed of four main steps
executed sequentially. The input of MIST is a set of temporal behaviours gen-
erated in the first step of the methodology starting from informal specifications
written in natural language. The output is a collection of files that need to be
added to a target simulator to perform the verification of the design.

(1) Formalisation of specifications: The first step consists of translating
the informal requirements into logic formulas. Initially, the user has to reinterpret
the specifications into a set of cause/effect propositions, which naturally translate
to logic implications a → c. The user must fill in an XML scheme containing
the implications, where each antecedent/consequent pair (a, c) is still written in
natural language. After that, (a, c) pairs are formalised into formulas predicating
on inputs/outputs and internal variables of the design under verification (DUV).
To do so, the user uses an intuitive language of our craft to easily model complex
temporal behaviours.

(2) Checker synthesis: In the second step, the tool parses the formalised
specifications from the XML schema and generates a checker for each formula.
Firstly, each formula is translated into a Büchi automaton. Secondly, a C/C++
representation of a corresponding checker is obtained from the automaton.

Fig. 1. Execution flow of MIST.

184 S. Germiniani et al.

(3) Generation of test plan: The third step of the methodology aims at
finding an effective verification order for the given specifications. Each behaviour
must be verified when the firmware reaches a specific memory state that we
call “precondition state”, otherwise the verification would be vacuous. In this
state, the behaviour can be verified by providing the proper stimuli. During
the verification of a behaviour, the firmware changes to a new memory state
that we call “postcondition state”. Considering these assumptions, we identify
a sorted list of behaviours that would connect each “postcondition state” to
the “precondition state” of the following behaviour in the list to guarantee an
effective verification process.

(4) Simulation set-up: In the last step, the tool generates all the files neces-
sary to set-up the verification environment. This phase handles the architecture-
dependent features of the employed simulator, such as time flow, interrupts and
breakpoints. The output files can be described as follows:

– A set C/C++ source files implementing the checkers;
– A set of testbenches to stimulate the design;
– An orchestration file to verify each behaviour in the optimal “pre/postcondi-

tion” order;
– A set-up file to initialize the verification environment;
– A set of utility functions to handle the time flow and to manage the interrupts

(if present).

Details related to the four steps implemented by MIST are reported hereafter.

4 Formalisation of Specifications

In this section, we describe in detail how to employ our approach to formalise
the specifications and to generate the testbenches. The process of formalisation
consists of two subsequent steps. Firstly, the specifications are partially disam-
biguated using a high-level formalism. After that, they are completely formalised
using our newly created language. If necessary, testbenches can be defined during
formalisation.

4.1 High-Level Formalisation

To clarify the whole procedure, we refer to the formalisation of the following
example of specification:

“Firmware is in standard mode, boiler temperature is equal to 18 ◦. Switches A
and B are pressed or auto mode is active for at least 2000 ms, after that the
boiler’s temperature starts rising, then the firmware enters in comfort mode

and sends an acknowledgment as output”

The user has to interpret the specification and translate it into a cause/effect
behavior, which is represented by a high-level XML file as follows.

MIST 185

<assertion id=66>
<precondition >
Firmware is in standard mode , boiler temperature
is equal to 18

</precondition >
<postcondition >
Firmware is in comfort mode
</postcondition >
<antecedent >
Switches A and B are pressed or auto mode is
active for at least 2000 ms, after that the
boiler ’s temperature starts rising

</antecedent >
<consequent >
The firmware enters in comfort mode and sends an
acknowledgement as output

</consequent >
</assertion >

Listing 1.1. High-level specification

As depicted in the example, the high-level XML file consists of 5 tags:

– <assertion> contains the id attribute to uniquely identify the behavior;
– <antecedent> contains the antecedent part of the informal specification;
– <consequent> contains the consequent part of the informal specification;
– <precondition> contains the memory state the firmware must reach before

checking the antecedent;
– <postcondition> contains the memory state reached by the firmware after

the consequent has been successfully verified.

By performing this preliminary step, the user prepares the ground for the com-
plete formalisation. Furthermore, the semi-formal specifications allow a better
understanding of the quality of the informal specifications. Indeed, a specifica-
tion that can not be formalised with the above pattern is either a non-functional
specification or a poorly defined functional specification that must be clarified
with the customer. This formalisation model could be even used directly dur-
ing the initial interaction with the customer to guide the creation of a set of
well-formed specifications from the beginning.

4.2 Low-Level Formalisation

When the high-level XML file is completed, the user fills in the low-level XML file
by adding unambiguous details to formalise the behaviors. To help non-expert in
formal logic and temporal methods during the formalisation process, we defined
a new language whose grammar is showed below.

186 S. Germiniani et al.

assertion : antecedent -> consequent | precondition
| postcondition

precondition : proposition
postcondition : proposition
antecedent : next_fragment
consequent : next_fragment
next_fragment : fragment | fragment; next_fragment
fragment : proposition [min, max, times, delay,

forced , man_forced , until]
proposition : c_boolean_expression

Through this language, the user can formalise the specifications in forms of
implications, where each antecedent/consequent is an ordered list of fragments.
Each fragment contains a proposition p and a set of attributes specifying the
temporal behavior of p. A proposition is a C/C++ boolean expression. From a
temporal perspective, the verification of a consequent starts in the same instant
in which the antecedent becomes true, and each fragment is evaluated one instant
after the evaluation of the previous fragment completes. For example, in the
implication a → c, where a contains the sequence of fragments [f1; f2; f3] and c
contains [f4; f5]: if f1 holds in the interval [t0, tn], f2 evaluation starts at time
tn+1; on the contrary, if f3 holds in the interval [tk, tl], f4 evaluation starts at
tl, since t3 belongs to the antecedent while t4 to the consequent. A fragment
represents then a sequence of boolean events, similar to a PSL SERE [13]. Given
a fragment f with a set of attributes
[min, max, times, delay, until] containing a proposition p, the semantics of
the evaluation of f at time t0 can be described as follows:

– min = n with n > 0: f is true if p holds from t0 to tn−1. In other words, min
attribute means that the proposition must remain true for a minimum of n
instants.

– max = n with n > 0: f is true if p becomes false before tn. In other words,
max attribute means that the proposition must remain true for a maximum
of n instants.

– times = m with m > 0 and max = n with n > 0: f is true at time tk <= tn
if p holds for m (not necessarily consecutive) instants. If attribute times is
set, then max must be set, while min and until are ignored.

– delay = n with n > 0: f is true at time tn−1.
– until = q where q is a proposition, and max = n with n > 0: f is true if
q holds at time tf with t0 ≤ tf ≤ tn−1 and p holds from time t0 to tf−1. If
attribute until is set then max must be set, while min and times are ignored.

To exemplify the use of the proposed language, we report hereafter the low-
level XML resulting from the formalisation of the behavior previously used as a
running example.

MIST 187

<assertion id=66>
<precondition >

mode == 0 && bTemp == 18.0
</precondition >
<postcondition >

mode == 1
</postcondition >
<antecedent >

<fragment min=2000 >
(P0 == 0 && P4 == 16 && P12 == 4) || autoMode

</fragment >
<fragment until=bTmpRising max=9000>

true
</fragment >

</antecedent >
<consequent >

<fragment min=1>
mode == 1 && P16 == 1

</fragment >
<fragment min=1>

(P16 >> 1) == 1
</fragment >

</consequent >
</assertion >

Listing 1.2. Low-level specification

The precondition (postcondition) is represented as a proposition identify-
ing a concrete memory state that must be reached before (after) the verifi-
cation of the behavior. In this example, the memory configuration identified
by mode == 0 && bTemp == 18.0 is forced before checking the rest of
the behaviour. The antecedent contains two fragments that, according to the
described semantics, identify the following behavior: the first fragment is true
if P0 == 0 && P4 == 16 && P12 == 4 || autoMode holds true for
2000 consecutive instants; after that, the second fragment is true if bTmpRising
becomes true within 9000 instants. The consequent also contains two fragments.
In the first fragment the proposition mode == 1 && P16 == 1 must be true
for one instant. In the following instant, the second fragment is evaluated, and
the proposition (P16 >> 1) == 1 must be true. From a temporal perspective,
the antecedent is evaluated from time t0 to tk with 2000 < k < 11000 while the
consequent is evaluated from tk to tk+1.

4.3 Type System

In addition to the features described above, the propositions used in each frag-
ment completely supports a C-compliant type system. In particular, variables
can be defined using the usual C-styled syntax to declare their type. Moreover,
the propositions support the explicit and implicit C type casting. Since the DUV

188 S. Germiniani et al.

already contains the required declarations in the source code, the user needs only
to spend few seconds to copy and paste them to the low-level XML file.

Furthermore, the user can declare debug variables to simplify the formali-
sation of complex behaviours. Debug variables are used during simulation but
are held in memory outside the firmware under verification. This feature can
be exceptionally useful to store intermediate values during the simulation of
a behaviour. Listing 1.3 shows a possible declaration for the variables used in
Listing 1.2.

<declaration >
unsigned char P0;
unsigned char P4;
unsigned char P12;
unsigned char P16;

</declaration >
<assertion id=66>

<declaration >
int mode;
float bTemp;
bool bTmpRising;
bool autoMode;

</declaration >
...

</assertion >

Listing 1.3. Variables declaration

Note that we provide support for both global and local declarations. Local dec-
larations are valid only inside the assertion in which they are defined; global
declarations extend to all defined assertions.

4.4 Testbench Generation

The formalisation language used in MIST provides three additional attributes:
“nTB”, “forced” and “manual forced” to allow the generation of testbenches.
The attribute forced can be specified for a fragment f to guide the testbench
generator during the DUV simulation. If forced = n with n > 0, MIST calls a
SAT solver to generate a model for the proposition p that returns an assignment
vari = vali for each variable vari included in p. If f is evaluated at time t0, then
each vari is forced to value vali in the interval [t0, tn−1]. The attribute nTB
specifies how many testbenches must be generated for the current behaviour. If
nTB is equal to p with p > 1, MIST generates p distinct test-vectors for the
current fragment. If the number of available distinct test-vectors is less than p,
MIST replicates the last generated test-vector to fill the empty spots.

<FRAGMENT forced ="200" delay ="200" >
x || y

</FRAGMENT >

MIST 189

Consider the example above, if nTB = 4 and x||y is the proposition defined
in the fragment, then there can exist only 3 distinct test-vector: (x = true,
y = false), (x = false, y = true), (x = true, y = true). In this scenario, MIST repli-
cates (x = true, y = true) to fill the fourth test-vector. Note that the attributes
forced is completely independent of the evaluation of the fragment. If forced
is the only attribute defined in the fragment, then the fragment is considered
“empty”; nonetheless, a test-vector is generated anyway, but the evaluation of
the empty fragment is skipped and the evaluation of the next fragment begins
in the same instant (and not one instant later).

The attribute manual forced follows the same semantic described for
forced, except that the generated test-vector is manually provided by the user
instead of being generated automatically. This is exceptionally useful in cases
where the stimuli must vary in time or must follow a certain pattern. More-
over, the user could exploit this feature to integrate testbenches generated with
specialised external tools, remarkably increasing the flexibility of MIST.

The syntax of manual forced is slightly different: manual forced = n, where
n is the id of a test-vector declared in the current assertion. Note that forced
and manual forced are mutually exclusive, only one of them can be used in a
fragment at any time. A test-vector is defined with the following syntax:

<test_vector id="uInt">
[var1, var2, ... , varn] = {

tv tb1;
tv tb2;

...
tv tbm;

}
</test_vector >

[var1, var2, ... , varn] is the list of variables on which to apply the stimulus.
tv tbi is the ith test-vector to be injected in the fragment when the simulator
is stimulating the design with the ith testbench. Each tv tbi follows the syntax
showed below.

tv tbi : =
(var1 val1, var2 val1, ..., varn val1, duration1),
(var1 val2, var2 val2, ..., varn val2, duration2),

...
(var1 valk, var2 valk, ..., varn valk, durationn)

Each tuple (var1 valj , var2 valj , ... , varn valj , durationj) identifies a piece
of test-vector where the variables var1, var2, ... , varn are forced with the values
var1 valj , var2 valj , ... , varn valj for durationj instants. Once the values are
injected for durationj instants, the following tuple (j + 1) is used to inject the
values.

In the example depicted in Listing 1.2, we assumed that pressing the bot-
tom and rising the temperature were internal events of the firmware that did
not require any external stimulus. However, in many cases this is not true;
usually, the user has to provide as input a sequence of stimuli to test the

190 S. Germiniani et al.

correct behaviour. In the example below, we propose again the same formalised
behaviour where the fragments of the antecedent are used to inject testbenches.
Note that the consequent is the same of Listing 1.2.

<assertion id=66 nTB=2>
<precondition >

mode == 0 && bTemp == 18.0
</precondition >
<postcondition >

mode == 1
</postcondition >
<antecedent >

<fragment forced=2000 delay=2000>
(P0 == 0 && P4 == 16 && P12 == 4) || autoMode

</fragment >
<fragment man_forced=7 delay=1200/>

</antecedent >
<test_vector id=7>

[bTemp] ={
(18.0 ,200) ,(18.2 ,200) ,(18.4 ,200) ,(18.6 ,200)
,(18.8 ,200) ,(19.0 ,200); }

</test_vector >
</assertion >

Listing 1.4. Low-level specification with testbenches

In this example, there are both automatic and manual test-vectors.
Since nTB = 2, MIST generates two testbenches.
In the first fragment of the antecedent, the generated test-vector is (P0 = 0,

P4 = 16, P12 = 4, autoMode = false) for the first testbench and (P0 = 0, P4 = 0,
P12 = 0, autoMode = true) for the second testbench. The second fragment con-
tains a manual test-vector with ID equal to 7. We also use the attribute “delay”
to postpone the evaluation of the second fragment after injecting the test-vector
of the first fragment. Likewise, we put off the evaluation of the consequent by
delaying the second fragment. If we combine the automatic test-vector of the first
fragment with the manual test-vector of the second fragment, MIST generates
the following testbenches:

1. (P0 = 0, P4 = 16, P12 = 4, autoMode = false) for 2000 instants, (bTemp =
18.0) for 200 instants, (bTemp = 18.0) for 200 instants, (bTemp = 18.2) for
200 instants, (bTemp = 18.4) for 200 instants, (bTemp = 18.6) for 200 instants,
(bTemp = 18.8) for 200 instants, (bTemp = 19.0) for 200 instants

2. (P0 = 0, P4 = 0, P12 = 0, autoMode = true) for 2000 instants, ... the rest is
the same of the previous testbench.

Note that in the second testbench, the test-vector for the second fragment is the
same used for the first. This happens because only one test-vector was defined for
the second fragment while 2 were needed to generate the required testbenches.

From a temporal point of view, the two testbenches can be represented as in
Fig. 2. Both testbenches are injected from time t0 to time t3199.

MIST 191

Fig. 2. Testbenches timeline

5 Checker Synthesis

In the second step of the methodology, MIST parses the formalised specifications
in the low-level XML files and generates a C/C++ checker for each implication.
The process works in three main sub-steps. Firstly, the tool translates each XML
assertions to a PSL formula. Secondly, each PSL formulas is used to generate
its equivalent Büchi automaton. Finally, the Büchi automaton is translated to
C/C++.

We treat each implication as two independent formulas, one for the
antecedent and one for the consequent. This separation is necessary to pin-
point scenarios where the implication is vacuously true. If we considered the
implication as a whole, a true evaluation could either mean that the con-
sequent was true or the antecedent was false, we want to distinguish both
cases to better warn the user. To convert an XML assertion to PSL, each
sequence of fragments is treated as a PSL SERE. For example, the conse-
quent of the specification used in Sect. 4 translates to the following PSL formula
{mode == 1 && P16 == 1; (P16 >> 1) == 1}.

Since the PSL syntax does not allow the use of many C operators such as the
bit shift operator (<<), we execute an intermediate step to provide support to
all C operators that can be used to form a boolean expression. In this step, the
tool substitutes each fragment’s proposition with a placeholder boolean variable
representing the proposition. For example, the above formula would be translated
to {ph1; ph2} where ph1 is the placeholder for mode == 1 && P16 ==
1 and ph2 is the placeholder for (P16 >> 1) == 1; Once the translations
above are completed, we generate a Büchi automaton for each formula. To do
so, we use spotLTL [20], an external library capable of generating automata
from LTL/PSL formulas. Finally, the resulting automaton is visited to generate
a C/C++ implementation of the corresponding checker.

192 S. Germiniani et al.

Fig. 3. Example of checker synthesis.

Figure 3 shows an example to clarify the process. In steps (1) and (1.5), the
fragment is converted to PSL, and its proposition is substituted with placeholders
according to the aforementioned procedure. In step (2), the LTL formula is
given as input to spotLTL to generate the depicted Büchi automaton. Before
synthesizing the C/C++ checker, each placeholder is substituted back to its
original proposition. In Fig. 3, placeholder ph1 and ph2 are substituted back to
mode == 1 && P16 == 1 and (P16 >> 1) == 1. In step (3), the automaton
is visited starting from the first state. For each state, the tool generates a case
of a C switch, for each edge the tool generates the next-state function in each
case. Note that the accepting (rejecting) state is optimized away. For example,
the generated checker contains a case in which state is equal to 0. In this case, if
the condition mode == 1 && P16 == 1 is satisfied then state is changed to 1,
otherwise it is changed to 3. In this scenario, states 2 and 3 are respectively the
accepting and rejecting states where the checker returns 1 (true) and 0 (false).
In all other states, the checker returns −1 (unknown).

MIST 193

6 Test Plan Generation

In the third step of the methodology, the low-level XML file is used to generate
an effective testing order. Such an order is intended for generating testbenches
that make the firmware evolve in the right memory state before the verification
of a behaviour is performed. Otherwise, the checker may pass vacuously or fail
due to a wrong precondition state reached by the firmware when the checker is
executed.

MIST can generate a test plan following two different strategies: a guided and
an unguided strategy. The unguided strategy does not leverage the information
provided by the postconditions to generate an effective testing order; therefore it
is more prone to errors. On the other hand, since it does not require the definition
of postconditions, it is easier to use. Inexperienced users should become confident
with this first strategy before exploring the more sophisticated second one. The
guided strategy makes full use of the postconditions to reduce unexpected failures
of checkers due to formalisation mistakes. Furthermore, it provides feedback on
the quality of the formalised specifications.

6.1 Unguided Test Plan Generation

This procedure can be used to quickly generate a test plan without exploiting
the relation between preconditions and postconditions. Although it is less secure,
it might be more preferable for developers who do not want to put in the extra
effort of applying the guided approach.

First, the user has to define a safe condition and a set of behaviours. After
that, MIST automatically generates a test plan operating as follows. During the
simulation, the verification process waits until the safe condition is satisfied.
Then, the verification process stores the current firmware memory; this memory
state is called “safe state”. From there on, the following algorithm is executed:

1. Pick an untested behaviour (bi); if all behaviours are tested, this process ends.
2. Load the safe state in the firmware’s memory.
3. Force the precondition pri of bi to be true in the current simulation, if pri

does not hold after being forced, prompt an error and return to 1.
4. Test bi using testbench tbij and dump the result of the test in the verification

report.
5. If j is the index of the last testbench of bi, then go to 1, else, increment j and

return to 2.

The safe condition is a non-temporal boolean expression following the same
semantics of a fragment proposition. If it becomes true during simulation, it
prompts the beginning of the verification process. Delaying the verification pro-
cess until the safe condition is satisfied allows the simulation to perform a proper
initialisation of the firmware; this step is mandatory for most implementations
before testing any functional behaviour. A precondition is forced following a
similar procedure to the one used to force a proposition inside a fragment. Once

194 S. Germiniani et al.

again, we use a sat solver to identify an assignment of variables that satisfies the
proposition, this assignment is then forced during the simulation.

Dumping and loading safe states are inexpensive procedures both compu-
tationally and memory wise. This is true because only a small writable part
of the firmware’s memory is dumped, as it is the only portion of memory that
could change during execution, the rest remains unchanged for all simulations.
Furthermore, only one safe state needs to be stored to make this approach work.

6.2 Guided Test Plan Generation

The unguided test plan generation already provides a quick and simple approach
to enable verification using MIST. However, to apply that procedure correctly
without mistakes, the user would have to annotate each formalised behavior with
the exact memory state to be forced before starting the test. This process can
be extremely time-consuming and error-prone; as a matter of fact, to be sure of
reaching the correct memory configuration, the user might have to address in
the precondition the value of all variables used in the firmware, which could be
thousands of variables in most industrial firmware. In many cases, errors in this
procedure lead to a vacuous verification; the test is unable to fire the antecedent
of the target assertion, as the testbench is injected in the wrong memory config-
uration. In this situation, the verification engineer would have to go through an
excruciating process of trial and error to find the correct precondition.

To address this issue, we developed a guided test plan generation, to produce
an effective testing order. This procedure relies on the assumption that the
DUV was developed by following a coherent logic flow. The generated testing
order tries to mimic the behavior of a human that manually tests the DUV.
To check the correctness of a design, the human starts from the initial state
and provides a sequence of stimuli to the DUV. Each sequence of stimuli moves
the DUV from one configuration to the next in a coherent flow, such that the
ending configuration represents the starting precondition for effectively checking
the next behavior in a cause-effect cascade fashion. Through this approach, the
specifications are verified in the order intended by the designer, thus reducing
the necessity of forcing the memory state that represents the precondition of the
target behavior, since the DUV gets naturally brought to the proper state. In
other words, the verification engineer no longer has to regard the whole memory
of the firmware in the precondition; the correct memory configuration is partially
reached as a “side-effect” of the previously tested behaviours.

The guided test plan generation consists of two main procedures. Firstly, all
assertions formalised in the low-level XML file are divided into subsets through
a clustering procedure. Secondly, each subset is treated as a node of a multilevel
graph, and a verification order is defined by generating a path that connects all
nodes. Such a path is then traversed to generate an effective testing order.

In this procedure, we consider the precondition and postcondition tags
of each assertion. Each precondition/postcondition consists of a propositional
formula following the template variable1 == constant1 & variable2 ==
constant2 & ... & variablen == constantn that represents a concrete memory

MIST 195

Fig. 4. Example of test plan generation

configuration. To simplify the exposition, we will use the term “memory state”
while referring to a precondition/postcondition.

In the clustering phase, the goal is to divide the set of all memory states into
subsets. We will refer to the example depicted in Fig. 4 to clarify the procedure.
At the bottom of Fig. 4 we report the list of assertions used in the example.
For instance, the assertion described in Sect. 4 is represented in the example as
“a66 is [pre66 : mode = 0] − > [pos66 : mode = 1]”, where pre (pos) is the
precondition (postcondition) of the assertion with id equal to 66. The clustering
process starts by considering the whole set of memory states, and then it is recur-
sively repeated for each generated sub-set until no set can be further divided.
The process counts the occurrences of each variable in all memory states in the
current set; the variable with the highest count is used to perform the split. In
the example, the most frequent variable in the whole set is a. The current set is
split into as many sub-sets as the number of different assignments of the most
frequent variable. Also, we add an optional sub-set containing all memory states
that do not include the most frequent variable (do not care sub-set). In the
example, the whole set is divided into three clusters, two clusters for a = 0 and
a = 1 and one don’t care cluster a = −. The same process is repeated until all

196 S. Germiniani et al.

sub-sets contain only memory states with equivalent assignments. In the exam-
ple, the cluster identified by a = 0 and b = 0 contains three equivalent memory
states [pre5], [pos5], [pre6] that have the same assignments [a = 0 & b = 0].
This heuristic approach is intuitively justified by the assumption that the most
frequent variables represent better the whole state; therefore, it is reasonable
to make them represent wider clusters than those represented by less frequent
variables. The clustering procedure aims at making all similar memory states
“close” to each other.

In the second part of the approach, each sub-state is used to infer an effective
testing order. Starting from the precondition of an assertion chosen randomly
(or by the user), the tool finds a path that covers all the memory states. To move
from one memory state to the next, the procedure applies the following rules:

R1: Checking an assertion i in memory state [prei] moves the process to [posi]
(solid red arrow);

R2: If the process can not find any other unused precondition in the current
state cluster, it must jump to its upper cluster and continue the search (dotted
black arrow);

R3: After a jump, the process searches for the first unused precondition [prej]
in the current cluster. If it finds one, it continues the process from that state
(rounded white arrow).

To clarify the procedure, we explain the process by considering the example
of Fig. 4. In this example, the user chooses to start with assertion a0; therefore,
the starting state is [pre0]. By applying rule R1, assertion a0 is added to the test
plan, and the execution moves to state [pos0]. In the destination cluster, we find
an unused precondition [pre1]. We apply again rule R1, assertion a1 is added
to the test plan, and the execution is moved to pos1. We repeat the process for
assertion a4, and we reach the state pos4. In this case, no more preconditions are
available in the current cluster; therefore, the execution must apply rule R2 and
jump to the upper cluster identified by a = −. By applying rule R3, the process
finds an unused precondition pre3 and continues from there. Again, we add
assertion a3 to the test plan, and we move the execution to pos3. We apply rule
R2 as no other preconditions can be found in the current cluster, and we reach
cluster a = 1. We must apply rule R2 again for the same reason and jump to the
upper cluster. The procedure continues as described above until all assertions are
added to the test plan. The resulting test plan is [a0, a1, a4, a3, a5, a6, a7, a2].

Note that the ideal case, where all behaviors described by the initial specifi-
cation perfectly connect to form a coherent path, requires the user to completely
formalise the specifications such that all assertions belong to a unique cluster.
This requirement could be extremely tedious to achieve manually and could be
unfeasible for most large-scale designs. For this reason, each time we identify a
hole in the specification, such that the postcondition of an assertion does not
connect with the precondition of any other assertion, our heuristic approach
jumps to a similar close state and warn the verification engineer. To be clear, in
the case of fully connected specifications, our approach uses only rule R1. Each
time rules R2 and R3 are used, we are approximating.

MIST 197

Table 1. Completeness analysis for example in Fig. 4

max applications of rule R2 completeness

0 times 62.5%

1 times 87.5%

2 times 100%

After generating the test plan, MIST informs the user of the completeness
of the given set of behaviors by comparing the total number of assertions with
the number of times rule R2 was applied to continue the clustering process. The
completeness index is calculated with the following formula:
(1 − exceeded maxR2 applications/tot assertions).
Where exceeded maxR2 applications represents the number of times the process
has to violate the maximum number of consecutive applications of rule R2.
Intuitively, the resulting completeness is an index describing how much the set
of behaviors is likely to cover all functionalities of the DUV without holes. Each
time a missing link is found, the completeness is reduced.

Table 1 shows the completeness for the running example. The first row of
the table shows the completeness when no approximation is allowed, or in other
words, when the process should not use rule R2 to continue. In the example,
rule R2 is used 3 times non-consecutively; therefore, the resulting completeness is
(1− 3/8) = 0.625. In the example, the second (third) row shows the completeness
reachable by allowing the consecutive application of rule R2 at most once (twice).

The user can exploit this information to improve the set of formalised behav-
iors such that rule R2 is applied as less as possible while achieving high com-
pleteness.

7 Simulation Setup

7.1 Setup

In the last step of the methodology, the verification environment is set up. This
phase handles the architecture-dependent features of the target simulator. For
now, MIST is capable of generating a verification environment for the IARsystem
workbench, which is an industrial compiler and debugger toolchain for ARM-
based platforms. In particular, we exploit the provided breakpoint system to
evaluate the checkers and to handle the time flow.

Since our checkers provide support for temporal behaviors, we need a way
to sample the time flow. To accomplish that, we provide a debugging variable
sim time that can be used by the user to simulate the advancement of time in
the DUV. To capture this event in the debugger, we place a breakpoint on that
variable to recognize write operations. Each time sim time is incremented, the
simulated time advances by one instant producing a re-evaluation of the active
checker. Usually, the best way to use sim time is to place it in a timed interrupt

198 S. Germiniani et al.

that keeps increasing it at a constant rate. Furthermore, we use breakpoints to
inject stimuli in the ports and variables of the fragments using the forced and
manual forced attributes. Following the above mechanisms, MIST generates the
files to perform the verification of the DUV using IARsystem. The generated files
consist of an entry point to set up the verification environment, utility functions
to handle the time events, the orchestration file that executes each checker using
either a guided or unguided strategy and a set of files containing the checkers.
To integrate the generated verification environment with IARSystem, the user
only has to provide the MIST’s entry point file to the simulator; after that, the
verification process proceeds automatically until its completion.

7.2 Report

Fig. 5. Example of report

Once all behaviours are tested, the verification process provides a verification
report containing the results of the simulation. The report includes information
related to the coverage and failure of checkers, together with the applied test-
benches. Checkers whose antecedent was false are reported as vacuously satisfied;
otherwise, they are either reported as “verified” if the consequent was true, or
as “failed” if the consequent was false.

MIST 199

Since our formalisation language has a well-structured and simplified syn-
tax, failed checkers are also capable of reporting additional information about
the failure. Not only they can report exactly the location of the failure in the
behaviour, but they can also infer its cause. We show an example of a verification
report in Fig. 5.

In this example, we show the result of two possible failures for the running
examples depicted in Listing 1.2 (66 a) and 1.4 (66 b). In particular, 66 a is vacu-
ously verified, as the failure makes the antecedent false; 66 b fails on testbench 2,
as the failure occurred in the consequent. All other behaviours are correctly ver-
ified for all testbenches. The verification report is composed of two main parts,
the first part contains the details of the failures, while the second part contains
the summary of the whole simulation. For each failed test, the verification envi-
ronment is capable of reporting the exact location of the failure. For behaviour
66 b, it is reported that the failure occurred in the first fragment of the con-
sequent while injecting the second testbench. Thanks to the limited number of
temporal operators and a well-defined structure of the propositions, we can pro-
vide a custom message for each failure, greatly simplifying the understanding of
its cause. These messages usually contain the assignment of variables that made
the proposition fail together with additional remarks on the applied temporal
operator. By reading the message for behaviour 66 b, we can quickly understand
the cause of the failure: the assignment of variables mode = 1, P16 = 4 clearly
does not satisfy proposition mode == 1 && P16 == 1. In particular, variable
P16 is the cause of the failure. Furthermore, the message “after 0 instants of
〈min, 1〉” warns the user when the proposition became false, that is, in the first
instant of evaluating a fragment annotated with the min attribute.

8 Experimental Results

The experimental results have been carried out on a 2.9 GHz Intel Core i7 pro-
cessor equipped with 16 GB of RAM and running Windows 10.

8.1 Case Study

We evaluated the effectiveness of our tool to verify an industrial firmware com-
posed of over 10000 lines of C code. The analyzed case study is represented by
firmware implementing the controller of a boiler implant. The user can interact
with the firmware through an HMI (Human machine interface) composed of LCD
display and 4 alphanumeric digits, 7 keys, an RS485 connection and 1 TTL con-
nection (possibility of a second modbus with the addition of the ITRF14 inter-
face). Moreover, the firmware is connected to several external devices providing
inputs/outputs such as thermostats, boilers, clocks and an internet gateway. The
firmware runs on an RL78 microcontroller, allowing communications with the
external devices through Modbus and I2C protocols. Finally, the internal time
flow is handled using timed interrupts. The case study configuration is depicted
in Fig. 6.

200 S. Germiniani et al.

Fig. 6. Case study

8.2 Results

We put emphasis on the timing results of the complete verification process, from
the formalisation of specifications to the simulation of the behaviours. Starting
from the informal specification of the firmware, we formalised 100 behaviours.
On average, each behaviour takes 30 s to be formalised into the high-level XML
format. The formalisation of the low-level XML format depends significantly on
the skill of the verification engineer and his/her knowledge of the underlying
implementation details. After some practice, we were capable of formalizing a
behaviour in less than three minutes. Overall, we formalised all 100 behaviours
in less than 6 h. After that, MIST generated the testing files and produced an
effective test plan in less than 10 s. We don’t report numerical results proving the
scalability of the tool in terms of time/memory as the complexity of the approach
is linear with respect to the number of formalised behaviours; therefore, the tool
might take minutes at most to formalise thousands of behaviours. Finally, we
set-up the verification environment in the simulator (IAR System Workbench).
The simulation took less than 40 min to verify non-vacuously each behaviour
and to produce a report of the verification.

The employment of our methodology to an industrial legacy firmware dis-
covered numerous bugs related to an inaccurate sampling of time. One notable
example concerns the usage of switches in the HMI. Many specifications implied
that some switches needed to be pressed for a certain amount of time to active
a functionality. However, during simulation, the correct behaviour did not occur
even when providing the correct stimuli. Using MIST for the verification of such
a firmware was considerably helpful in identifying a temporal inconsistency of
Modbus and I2C protocols that caused a delay in its execution.

MIST 201

Table 2. Completeness analysis for the considered case study.

max applications of rule R2 completeness

0 45.5%

1 72.73%

2 79.22%

3 81.82%

4 97.73%

5 100%

Table 3. Completeness analysis of the case study after the improvements.

max applications of rule 2 completeness

0 48.5%

1 75.73%

2 88.2%

3 100%

Furthermore, the generation of the test plan for 100 behaviours suggested
a remarkable incompleteness in the firmware specifications. In Table 2 we can
observe the completeness estimations produced for the case study by consider-
ing the approach proposed in Sect. 6. We used those statistics to improve the
completeness of the specifications by adjusting the behaviours underlining the
highest incompleteness and by adding 10 behaviours to cover some specifica-
tions holes. After completing this procedure, we achieved new completeness
estimations reported in Table 3. To achieve 100% completeness with the new
specifications, we needed to apply rule R2 only 3 times, while with the initial
specifications, it was used 5 times.

To test the effectiveness of the new language developed for MIST, we arranged
a 2-day workshop with the company that provided the industrial case study.
In this short time, the developers have been capable of quickly grasping the
fundamentals of the language, and before long, they have begun formalising
specifications and using the tool on their own.

9 Conclusions and Future Works

In this paper, we presented MIST, an all-in-one tool capable of generating a com-
plete environment to verify C/C++ firmwares starting from informal specifica-
tions. MIST reduces the verification effort by providing a user-friendly interface
to formalise specifications into assertions and to generate the verification envi-
ronment automatically. Furthermore, MIST employs a clustering procedure to
generate an effective test plan that reduces potential mistakes while formalizing
the specifications.

202 S. Germiniani et al.

Collaborating with the industry gave us the opportunity to make the tool
go through a long tuning process. Moreover, the feedback received by experi-
enced developers allowed us to thoroughly assess the potentials and limitations
of MIST. The majority of limitations were overcome during the tuning process;
however, there are still few issues that need to be addressed in future works.
Most drawbacks of the verification environment generated by MIST are related
to unjustified constraints imposed by C-Spy, which is the debugger used in the
IARSystem Workbench. Below, we report some of those constraints.

– No observability of non-static variables: we can not test the value or put
breakpoints on automatic variables, therefore, we can not write assertions
with those variables

– Macros declared with the “#define aliasName originalName” C statement
are not visible during simulation: the user is forced to use the right side of
the macro when writing propositions, as the debugger does not keep track
of aliasing. This limitation deeply affect the readability of the formalised
behaviours.

– Lack of strongly typed variables and complex C data structures in the C-Spy
language: this major constraint strongly affected the development of MIST;
furthermore, we believe that it will also heavily affect extensibility and main-
tainability.

To avoid being dependent on the constraints imposed by a specific simulator,
we will modify the back-end of MIST to be easily extendable to other target
simulators.

Hereafter, we report some limitations of MIST that we would like to overcome
in future releases.

– No support to generate testbenches that affect only a portion of bits of a
target variable: consider the variable unsigned char P0, for now, the user
can not generate a testbench that, for instance, would modify the value of
the first bit of P0 while keeping the other bits unchanged. We planned to
introduce a custom operator to overcome the above limitation.

– All behaviours are linked to the same temporal event: we would like to have
the user define what temporal event should produce the advancement of time
inside each behaviour.

MIST is an open source project (GNU license) freely available at https://gitlab.
com/SamueleGerminiani/mist.

References

1. Shamal, P.K., Rahamathulla, K., Akbar, A.: A study on software vulnerability
prediction model. In: 2017 International Conference on Wireless Communications,
Signal Processing and Networking (WiSPNET), pp. 703–706 (2017)

https://gitlab.com/SamueleGerminiani/mist
https://gitlab.com/SamueleGerminiani/mist

MIST 203

2. Nagappan, N., Ball, T.: Static analysis tools as early indicators of pre-release defect
density, pp. 580–586, June 2005

3. Dawson, M., Burrell, D., Rahim, E., Brewster, S.: Integrating software assurance
into the software development life cycle (SDLC). J. Inf. Syst. Technol. Plann. 3,
49–53 (2010)

4. Zhivich, M., Cunningham, R.K.: The real cost of software errors. IEEE Secur. Priv.
7(2), 87–90 (2009)

5. Jørgensen, M., Teigen, K., Moløkken-Østvold, K.: Better sure than safe? Over-
confidence in judgement based software development effort prediction intervals. J.
Syst. Softw. 70, 79–93 (2004)

6. Oyetoyan, T.D., Milosheska, B., Grini, M., Soares Cruzes, D.: Myths and facts
about static application security testing tools: an action research at Telenor digital.
In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 86–
103. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91602-6 6

7. Osman, M.H., Zaharin, M.F.: Ambiguous software requirement specification detec-
tion: an automated approach. In: 2018 IEEE/ACM 5th International Workshop on
Requirements Engineering and Testing (RET), pp. 33–40 (2018)

8. https://www.iar.com/iar-embedded-workbench
9. Moketar, N.A., Kamalrudin, M., Sidek, S., Robinson, M., Grundy, J.: An auto-

mated collaborative requirements engineering tool for better validation of require-
ments. In: 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 864–869 (2016)

10. Kakiuchi, Y., Kitajima, A., Hamaguchi, K., Kashiwabara, T.: Automatic monitor
generation from regular expression based specifications for module interface veri-
fication. In: 2005 IEEE International Symposium on Circuits and Systems, vol. 4,
pp. 3555–3558 (2005)

11. Subramanyan, P., Malik, S., Khattri, H., Maiti, A., Fung, J.: Architecture of a
tool for automated testing the worst-case execution time of real-time embedded
systems firmware. In: 2016 Design Automation & Test in Europe Conference &
Exhibition (DATE), pp. 337–342 (2016)

12. Buzhinsky, I.: Formalization of natural language requirements into temporal logics:
a survey. In: 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN), pp. 400–406 (2019)

13. IEEE standard for property specification language (PSL). IEEE Std. 1850-2010
(Revision of IEEE Std. 1850-2005), pp. 1–182 (2010)

14. IEEE standard for systemverilog-unified hardware design, specification, and verifi-
cation language - redline. IEEE Std. 1800-2009 (Revision of IEEE Std. 1800-2005)
- Redline, pp. 1–1346 (2009)

15. Yang, S., Wille, R., Drechsler, R.: Improving coverage of simulation-based verifi-
cation by dedicated stimuli generation. In: Formal Methods in Computer Aided
Design, pp. 599–606 (2014)

16. Zhao, Y., Bian, J., Deng, S., Kong, Z.: Random stimulus generation with self-
tuning. In: 13th International Conference on Computer Supported Cooperative
Work in Design, pp. 62–65 (2009)

17. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In: OSDI, vol. 8,
pp. 209–224 (2008)

18. Agbaria, S., Carmi, D., Cohen, O., Korchemny, D., Lifshits, M., Nadel, A.: SAT-
based semiformal verification of hardware. In: Formal Methods in Computer Aided
Design, pp. 25–32 (2010)

https://doi.org/10.1007/978-3-319-91602-6_6
https://www.iar.com/iar-embedded-workbench

204 S. Germiniani et al.

19. https://www.esa.int
20. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:

Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

https://www.esa.int
https://doi.org/10.1007/978-3-319-46520-3_8

Modular Functional Testing: Targeting
the Small Embedded Memories in GPUs

Josie Esteban Rodriguez Condia(B) and Matteo Sonza Reorda

Dip. di Automatica e Informatica (DAUIN), Politecnico di Torino, Torino, Italy
{josie.rodriguez,matteo.sonzareorda}@polito.it

http://www.cad.polito.it

Abstract. Graphic Processing Units (GPUs) are promising solutions
in safety-critical applications, e.g., in the automotive domain. In these
applications, reliability and functional safety are relevant factors. Nowa-
days, many challenges are impacting the implementation of high-
performance devices, including GPUs. Moreover, there is the need for
effective fault detection solutions to guarantee the correct in-field opera-
tion. This work describes a modular approach to develop functional test-
ing solutions based on the non-invasive Software-Based Self-Test (SBST)
strategy. We propose a scalar and modular mechanism to develop test
programs based on schematic organizations of functions allowing the
exploration of different solutions using software functions. The Flex-
GripPlus model was employed to evaluate experimentally the proposed
strategies, targeting the embedded memories in the GPU. Results show
that the proposed strategies are effective to test the target structures
and detect from 98% up to 100% of permanent stuck-at faults.

Keywords: Graphics Processing Units (GPUs) Software-Based
Self-Test (SBST) · Modular Test program · In-field Testing

1 Introduction

Graphics Processing Units (GPUs) are powerful devices devoted to processing
high-demand data-intensive applications, such as multimedia, multi-signal anal-
ysis, and High-Performance Computing (HPC). Moreover, GPUs’ flexibility and
programming capabilities have boosted the operational scope of these technolo-
gies into new domains, so these devices are now also used for safety-critical
applications with substantial requirements in terms of reliability and functional
safety.

In the automotive field, safety-critical applications, such as Advanced Driver
Assistance Systems (ADAS) [1] and sensor-fusion systems, usually require huge
computational power and real-time capabilities. For this purpose, cutting-edge
technologies are used to implement modern GPU platforms to maximize perfor-
mance and reduce power consumption. Nevertheless, some studies [2,3] have

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 205–233, 2021.
https://doi.org/10.1007/978-3-030-81641-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_10

206 J. E. R. Condia and M. Sonza Reorda

proven that devices with the latest transistor technologies are prone to be
affected by faults during the device’s operative life. One of the most critical
challenges arises when permanent faults (for example, caused by wear-out or
aging [4]) affect a module during the in-field operation, potentially altering the
functionality and the reliability of a device. Thus, end-of-manufacturing testing
is no longer sufficient. These recent challenges require additional testing proce-
dures executed during the in-field operation of a device.

In practice, test engineers employ three main methods to perform testing
during the operational phase of digital devices. These mechanisms are based on
i) hardware, ii) software and iii) hybrid approaches and can be used to solve the
new reliability and technology challenges in GPUs. The hardware mechanisms
include solutions based on the addition of Design for testability (DfT) structures,
such as Logic and Memory Built-in Self-Test [5], which can be activated at the
Power-on or during idle times of the operation and stimulate/observe the internal
modules of a device detecting possible faults [6]. Furthermore, ‘Error Correcting
Codes’ (ECC) structures can detect errors and also provide mitigation features
into memory modules or communications peripherals.

On the other hand, software solutions are based on designing special pro-
grams using appropriate combinations of instructions to test a target function-
ally. These non-invasive and flexible mechanisms are formally called Software-
Based Self-Test (SBST) [7]. Finally, the last approach is based on hybrid mech-
anisms, combining hardware structures and software programs to detect [8] or
mitigate [9] faults located in the different modules of a device. Both (hardware
and hybrid) solutions are costly when targeting small modules in a GPU and
should be developed and included in a design before the production phase. More-
over, both methods cannot be used in already existing hardware platforms.

The testing procedures of GPUs must consider that these special-purpose
parallel architectures are particularly efficient when executing embarrassingly
parallel programs, as a result of two main factors: the parallel operation of
threads and the efficient procedures of loading and storing operands from/to
memory. However, real applications are far from this behavior, and most of
them are composed of non-easily-parallelizable algorithms. Thus, these applica-
tions usually include intra-warp divergence, which is produced when a group of
threads (also known as Warp) follows different execution paths with different
instructions. In [10], the authors analyzed the applications in the CUDA Soft-
ware Development Kit (SDK) and concluded that approximately 33% of the total
execution on them is devoted to process intra-warp divergence. Furthermore, in
[11], the authors profile a divergence map of typical programs and workloads in
GPUs. Results show that most applications might produce thousands or millions
of divergence conditions during the operation of the applications.

The GPUs include several structures and features to manage issues related
with the intra-warp divergence. A special structure called Convergence Manage-
ment Unit (CMU) (also known as Branch Convergence/Divergence Controller,
Branch Controller, or Divergence Controller) is employed to manage the intra-
warp divergence. The CMU controls the operation of multiple paths in the same

Modular Functional Testing 207

group of threads. Internally, the CMU evaluates control-flow instructions and
uses a stack memory to store relevant information concerning the execution
paths. Thus, the CMU is crucial for the correct operation of an application in
the GPU, and a fault affecting this unit can propagate through the modules and
collapse the entire operation of the device and the application.

On the other hand, the use of several levels of memory supports an effi-
cient management of operands and reduces latencies generated by the inactive
threads, allowing high-performance operation in GPUs [12]. In the GPU paral-
lel architecture, several in-chip and out-chip memories cooperate on hiding stall
conditions during the operation of programs that become more critical when a
few threads access dispersed memory locations. Faults in these structures might
compromise the operation of a thread. Some hardware solutions, such as ECC
structures are now common. However, these solutions are not always acceptable
and the best tradeoffs are adopted (i.e., in some cases the ECCs are limited
to massive memory structures, such as the cache, the shared memory and the
register file), leaving other structures unprotected.

Several works demonstrated that SBST solutions [7] could be successfully
integrated into safety-critical applications, such as the automotive ones [13].
Most previous works on GPUs proposed SBST strategies targeting some data-
path modules [14], including the execution units [15,16], the register file [17], the
pipeline registers [18] and some embedded memories [19]. Moreover, other solu-
tions targeted critical modules in the control-path (i.e., the warp scheduler [20],
their internal memories [21,22], and parts of the convergence management unit
[23]). Nevertheless, to the best of our knowledge, most of the proposed strate-
gies were designed after relevant programming efforts and analyses, considering
the specific micro-architectural details of the targeted structures, complicating
portability and generalization. Thus, practical strategies to provide convenient
procedures in developing SBST mechanisms are still missing in parallel archi-
tectures, including GPUs.

In the present work, we go beyond traditional approaches of developing test
programs using assembly instructions only and we propose a modular approach
to develop functional test procedures using the SBST strategy. The validation
of this proposed approach employs as targets some relatively small but critical
memory modules in the GPU.

The proposed modular approach exploits a key feature of most SBST strate-
gies in which a test program corresponds to a combination of several routines,
which are linked together and integrated into the test program. Thus, each rou-
tine’s intended functionality can be seen as a ‘modular’ and independent block.
This abstraction level (routines as blocks) can be used to explore alternative
descriptions and observe the advantages and limitations of diverse topologies
for a given target. Moreover, this method allows to port test routines between
different targets, simplifying the development of functional test programs.

This manuscript is an extension of a previous work [23], which introduced a
modular approach to develop parametric test programs. The procedures were
experimentally validated using the memory in the convergence management
module. The main novelties of this work with respect to [23] are: i) a detailed

208 J. E. R. Condia and M. Sonza Reorda

description of the proposed modular strategy to generate test programs, ii) the
exploration of different test-program topologies for a given module, iii) the imple-
mentation of different test routines (in a test program), considering operational
constraints, and iv) the validation through experiments using the small embed-
ded memories in the GPU core.

The proposed modular approach, and the developed SBST strategies are
implemented and evaluated resorting to the FlexGripPlus model, an open-source
version of the NVIDIA GPU architecture. Results show that the flexibility of
the proposed modular test programs do not compromise the fault detection
capabilities (from 98% to 100%) for the evaluated modules.

This work is organized as follows. Section 2 introduces a basic overview of the
GPU architecture, with special emphasis on the FlexGripPlus and the memory
modules targeted to validate the proposed strategies. Section 3 describes the
modular SBST strategies to test permanent faults. Sections 4, 5, and 6 describe
the procedures to develop test programs in the stack memory, the Predicate
register file, and in the address register and vector register files, respectively.
Section 7 reports the main constraints and limitations during the development
of the test programs. Section 8 reports the experimental results, and Section IX
draws some conclusions and outlines future works.

2 Background

2.1 General Organization of GPUs

GPUs are special-purpose parallel processing devices composed of arrays of exe-
cution units (also called ‘Streaming Multiprocessors’, or SMs), implementing
the Single-Instruction Multiple-Data (SIMD) paradigm [24] or variations, such
as the Single-Instructions Multiple-Thread (SIMT). An SM is the main oper-
ative core inside a GPU and is organized as a few pipeline stages, including
various execution units (also known as Stream/Scalar Processors, or SPs), some
cache memories, a Register File (RF), one or more scheduler controllers, and
one or more dispatchers. More in detail, the operation of an SM starts when
the scheduler controller submits an available group of threads (also called Warp
or Work-group) and one instruction is fetched, decoded and executed in the
available SPs. Then, a new instruction is loaded and executed.

The SM also includes a CMU able to control different execution path in a
warp, which are produced when conditional assessments are present in a parallel
program. Modern SM implementations also include a memory hierarchy com-
posed of several levels of memories, aiming at the reduction of latency and race
conditions when load and store operations are performed.

2.2 FlexGripPlus

FlexGripPlus is a microarchitectural RT-level GPU model described in VHDL
[25]. This model is a new version built on top of the original FlexGrip model [26].

Modular Functional Testing 209

FlexGripPlus implements the Nvidia G80 microarchitecture, supporting up to
52 assembly instructions, and is also compatible with the CUDA programming
environment. The latest version of the GPU model has the flexibility to select
among 8, 16, or 32 SPs and may be configured to include both Floating-Point
Unit (FP32) and Special Function Unit cores.

Fig. 1. A general scheme of the SM architecture in FlexGripPlus.

The FlexGripPlus architecture is based on the SIMT paradigm and
exploits a SM core with five stages of pipeline (Fetch, Decode, Read/Issue,
Execute/Control-flow and Write-back), as shown in Fig. 1. In the SIMT
paradigm, the controller (WSC) submits a warp (32 threads) and one instruc-
tion is fetched, decoded, and distributed to be processed on an independent SP.
The Read/Issue and Write-back stages load and store data operands from/to
the Register File (RF), shared, global, local or constant memories. Moreover,
the Address Register File (ARF) and a Predicate Register File (PRF) are used
to perform the indirect addressing of memory resources and to store conditional
flags, respectively.

The Execute/Control-flow stage is composed of the SPs, FP32s and other
accelerators. Moreover, this stage contains one CMU used for intra-warp branch-
ing and also controls and traces the intra-warp divergence (caused when threads
of a warp follow different execution paths, so executing different instructions).
The CMU handle two paths in the same level of divergence by executing every
path in a serial manner until both paths return to convergence (all threads in
a warp execute the same instruction). The number of supported nesting diver-
gence is proportional to the number of threads in a warp. Furthermore, the CMU

210 J. E. R. Condia and M. Sonza Reorda

also stores the information related to perform conditional branches with several
execution paths.

The following subsection describes the purpose of the embedded memories
in the GPU architecture and in the FlexGripPlus model.

2.3 Embedded Memories

Inside the SM core, several embedded memories are used to indirectly access
to memory resources, to store the predicate flags, after the execution of condi-
tional instructions, and to store information for divergence management. These
embedded memories are limited in size, in some cases lie inside controllers, mak-
ing hard and expensive to add fault detection or mitigation structures, such as
ECC or BIST.

Stack Memory: This special-purpose embedded memory is located inside the
CMU and stores the starting (divergence point) and ending (convergence point)
addresses when a conditional assessment instruction is executed by a warp. More
in detail, the memory contains a set of 32 Line Entries (LEs). The number of
LEs is directly related with the number of threads in a warp and the maximum
number of nested divergences per warp. A divergence point can be defined as
the address, in a parallel program, where two paths (Taken and No-Taken) are
produced by effect of a conditional operation, so causing intra-warp divergence
(threads in a warp execute different paths with different instructions). Further-
more, a convergence point is the location in the parallel program where the
intra-warp divergence ends, so the threads in a warp execute one path again.

Fig. 2. Organization of one LE in the stack memory of FlexGripPlus.

Each LE in the stack is composed of three fields, (see Fig. 2). These fields are
the ‘thread mask’ (TM), the flow ID, and the ‘program counter of a warp’ (SPC).
The TM stores the status of the active threads in a warp and an active logic
state represents the number of active threads executing a path (Taken or No-
Taken). The flow ID represents the execution state of the intra-warp divergence.
This field can be ‘01’ (for a branch condition) or ‘00’ (for a convergence point
or embarrassingly parallel condition). The SPC can store the starting address of
the paths or the convergence point address after both paths are executed.

The CMU employs two LEs to manage the intra-warp divergence. The first
LE stores the convergence point (also known as synchronization point) and the
number of active threads at the moment of starting the divergence. The second
LE stores the starting address for the No-taken path and the threads to execute
this path. It is worth noting that the CMU uses a new set of LEs to store the
status once nesting divergence is produced.

Modular Functional Testing 211

Predicate Register File (PRF): This module stores the predicate flags after
the execution of conditional assessments, by each thread, in a warp. These con-
ditional assessments are the product of logic-arithmetical operations or explicit
setting operations. When the GPU model is configured with 8 SPs, 2,048 one-bit
size locations are assigned per SP. These locations are divided in groups of 4-bits
registers (C0, C1, C2 and C3) and distributed among the available threads. Each
predicate register Cx stores the logical state of the zero (Z), the sign (S), the
carry (C), and the overflow (O) flags for each thread. The flags remain constant
in the subsequent clock cycles until the execution of a new instruction affects
their state. Furthermore, these predicate flags are also used as conditions for
the executions of instructions, so these are commonly read before the execution
if required. Recent implementations of the PRF provide support for up to 8
predicate registers per thread.

Address Register File (ARF): This module is a structure of registers devoted
to perform indirect indexing for external memories to the SM, including the
shared and constant memories. These additional registers are mainly used in
case of performance optimization for the several threads in a program and are
mainly focused on the efficient access of memory sectors organized as arrays or
matrices. Furthermore, the ARF reduces latency of accessing frequently used
data by a kernel.

Each one of the eight SPs has an associated ARF module composed of 512
registers of 32 bit-size holding up to 128 threads. Each ARF module is distributed
among the threads, so four registers (A0, A1, A2, and A3) can be employed per
thread.

Vector Register File (VRF): This is a massive structure composed of 16KB
general-purpose registers of 32 bit-size and located inside of an SM. This struc-
ture is the fastest element in the memory hierarchy of the SM and is one of the
most critical units in the operation of a thread, since most instructions store or
load operands from this structure. The VRF is divided among the eight cores
and it is distributed among the threads in a program during the configuration
phase.

Since recent GPU architectures protect the VRF against fault effects through
ECC structures, this module is not considered as the main target for the devel-
opment of SBST programs. However, we employ this module to validate and
also explore different options of implementing test programs.

3 Modular Functional Testing Approach

The modular approach for testing is a generic strategy to develop functional
test programs taking into account the microarchitectural composition of a target
module, the interaction with the parallel architecture of the GPU, its functional
operation, its constraints, and the fault model. This modular approach is based

212 J. E. R. Condia and M. Sonza Reorda

on the development of a group of generic procedures, which are represented as
a set of interconnected blocks, that once translated, compose a test program.

Fig. 3. A general scheme of the proposed modular approach to develop functional test
programs.

The approach for modular testing considers three steps: i) Generic blocks
description, ii) Implementation or mapping, and iii) validation, see Fig. 3.

In the beginning, the organization of the test program is initially defined as
a set of generic high-level blocks, which are then divided into a group of inter-
connected procedures to generate the intended test functionality. This modular
abstraction provides flexibility that can be used to explore and address different
approaches of functional test in any module.

The Generic blocks description is a strategy to represent the behavior of the
interconnected procedures aiming the test a given target module. This represen-
tation considers the operation of the module and its interaction with the system,
the operational constraints, and the features of the target fault model.

In this stage, the most relevant functionalities of each hardware module are
employed to define a sequence of generic procedures (blocks) that, once com-
bined, allows the functional test of the module. Each procedure is intended to
aim one of this three functionalities: 1) Fault Controllability, 2) Fault Observ-
ability or 3) Program Monitoring. Fault Controllability procedures are directly
related to the ability to inject test patterns through the available instructions
and structural resources. Fault Observability procedures propagate the effect of
a fault in the module into one of the available outputs of the GPU, such as
control signals, buses, or external memories.

In principle, a Fault Controllability procedure injects test patterns in the
target module. However, the feasibility of applying those patterns must be eval-
uated for each target module. It is worth noting that SBST is a non-invasive

Modular Functional Testing 213

test strategy, so it is possible that some modules have not controllability sup-
port (i.e., instructions able to activate faults in the module) to apply a test
pattern. On the other hand, Fault Observability procedures describe the feasible
methods to propagate the fault effect to any visible output. This feature becomes
important in modules that are operated by different threads. In a parallel archi-
tecture, such as the GPU, the observability of faults might implicitly include
parallel fault propagation. The micro-architectural features of a module provide
the composition and contribute to identifying the Fault Controllability and Fault
Observability procedures for a module. Finally, Program Monitoring procedures
introduce optional management, tracing, or check-pointing in the test program.
They can be used to increase the observability of faults or other purposes, such
as the test program’s division into parts. In this stage, a general analysis of the
module’s observability and controllability allows the definition of the procedures
to integrate the functional test program.

The operational constraints and the target fault model provide the relevant
limitations regarding the controllability or the fault’s observability. At this level,
the constraints are used to propose alternative procedures aiming at the man-
agement or even removing these limitations. The features of the fault model
are used as complementary information to verify that each procedure and the
combination of them allow the test of faults.

For illustration purposes, the method is supported in a scheme describing
the procedures (software functions) of the modular test program, see Fig. 4. This
scheme is composed of blocks (1, 2 and 3), representing modular procedures, and
a set of interconnections (Arrows), indicating the serial sequence of operations
during the test. Finally, dotted modules in a scheme represent loop functions
as the repetition of one or several blocks. It is worth noting that in parallel
architectures, and depending on the structural location of the target module,
several threads might execute the same test program in parallel.

The flexibility of the modular approach allows the exploration of test pro-
grams by composing different block interconnections and different routines, so
potentially allowing test designers to explore different benefits or constraints in
the development of a test program.

The second step (Implementation or mapping) builds a test program by trans-
lating the blocks in the modular scheme into equivalent software routines. In fact,
the modular schemes only consider the main functional features of a test pro-
gram and include all microarchitectural constraints. Thus, the implementation
stage is based on the translation or mapping of each procedure (block or func-
tion) into the equivalent software routines using the available instructions of the
GPU’s microarchitecture. In this step, the interconnections and internal loop are
also considered and included in the mapping process.

The identification of the specific set of instructions allows the operation of
any intended functionality from the modular organization, so aiming the test of
the targeted modules. More in detail, the implementation of the modular test
program requires the use of an incremental approach. Initially, each block (pro-
cedure) is analyzed and translated individually. Then, a preliminary evaluation

214 J. E. R. Condia and M. Sonza Reorda

Fig. 4. An example of the modular organization of a test program. General organization
and test program description (Top), Equivalent organization per thread (Bottom).

is performed to verify the functional test operation. This process is repeated for
each procedure in the modular scheme. Then, the main interconnections among
the blocks are mapped and checked. Finally, the internal loop is automated to
provide portability according to the number of resources per thread and warps
in the test program.

Each procedure (block) can be composed of a number of instructions ranging
from simple instruction up to complex program procedures. Similarly, the inter-
nal loop requires the addition of several instructions at the beginning or at the
end of the routines, which are commonly included to manage the control flow
and the sequence of the program. In the end, the blocks of all proposed SBST
strategies are described as a combination of a high-level programming language,
such as CUDA (when possible), and instructions at the assembly-level (SASS
for the used GPU). The main advantage is that minimal changes in a block
(procedure) are required to change the functionality of a test program (i.e., the
test can be focused on fault detection or diagnosis).

Finally, in the third step (validation), the self-test routines are verified using
fault injection campaigns into the target modules. The output reports can be
employed to improve the quality of a test program.

The following sections describe the development of the functional blocks and
schemes used to develop SBST programs for the divergence stack memory, PRF,
ARF, and the VRF in a GPU core.

4 Stack Memory

As introduced above, the stack memory is a particular module in a parallel
architecture. This module is part of the control-flow management, so one warp
may access this memory to push or pop information.

Modular Functional Testing 215

4.1 Controllability

The controllability (and the injection of test patterns) of this module is achieved
by forcing the execution of controlled divergences for each thread in a warp.
The generation of divergences forces the stack to store the information of the
number of active threads in the TM field and the starting instruction address
in the SPC field, so both fields are excited each time a divergence is produced.
When more than one divergence is produce, two possible effects in the stack are
observed. In the first case, a serial divergence only access the same LE in the
stack and changes the values of TM and SPC. On the other hand, a nesting
divergence changes the target LE and both values (TM and SPC) are stored in
a new addressed LE.

The detection of permanent faults in the stack is reduced to generate and
perform a sequence of divergence paths as a method to excite the TM field of
each LE in the Stack memory.

Using the previous information, we propose two possible methods to control
the address pointer of the LEs and inject test patterns in both fields (TM and
SPC) of the LEs in the stack.

The first method (Nesting), see Fig. 5 (Top), generates test patterns by using
a sequence of recursive intra-warp divergence routines, so nesting functions cause
the movement of the address in the stack pointer into a deeper LE. The diver-
gence is produced by successive conditional assessments between the thread iden-
tified of each thread in a warp and constant values, so generating an ordered
number of comparisons (following a specific path, grey path in Fig. 3) and pro-
ducing the required test pattern in the TM field of each LE.

On each comparison, one or a group of threads is disabled, so defining a
pattern to be stored into the deeper LE and generating two execution paths. This
method is useful in managing the addressing of the LEs and injecting patterns
into the TM field. The routines on each path (Taken and No-taken) expose the
presence of a permanent fault in the TM. The previous process is repeated for
half the number of threads in a warp, hence two LEs are required during nesting
divergence management. Once the Taken routine finishes, the DMU submits the
No-taken path routine when a fault is present.

A fault-free divergence stack always executes the routine in the Taken path,
which generates new divergence paths and forces the test of other levels of LEs.
Moreover, once a divergence is generated, two LEs store the synchronization
point and the address to start the not-taken path (which can be used as test
patterns). Thus, a fault can be detected when retrieving the stored values, or
when the number of threads executing a path is different from the expected one,
so making the fault effects visible in the outputs.

The Nesting strategy can inject test patterns on the even LEs of the stack
memory. However, the odd ones are missing. The generation of test patterns for
these fields requires the explicit addition of one synchronization function (SSY)
before start the comparisons causing the divergence. The effect of SSY is the
movement of the address pointer to the next or deeper LE in the stack memory.
Then, the same previous procedure can be applied again, so testing the odd LEs.

216 J. E. R. Condia and M. Sonza Reorda

On the other hand, the main issue of this strategy is the procedure to manage
disabled threads. When a thread is disabled, this cannot be turned active again
until the divergence paths are executed, and a convergence point is reached.
Thus, it is not possible to test or detect a permanent fault in a deeper LE loca-
tion. This restriction implies that the comparisons should be performed multiple
times, targeting different threads in the TM field. We anticipate that this strat-
egy may suffer from considerable code length and excessive execution times.

Fig. 5. A general scheme of the proposed modular SBST strategies Nesting (Top) and
Sync-Trick (Bottom) to test the stack memory. (*) Optional function to test the odd
LEs. (§) Optional functions to distribute the test functions in the system memory.

The second method (called Sync-Trick), see Fig. 5 (Bottom), exploits the
functionality of synchronization functions (SSY) to deceive the CMU when test-
ing the stack memory. This method allocates SSY functions in strategically
selected locations in the test program to generate the movement in the stack
pointer.

More in detail, one SSY is explicitly located before each sequence of controlled
divergence functions to test the TM of a LE. Hence, this function forces the
controller to allocate a new level of LE in the memory without the need to
generate an intra-warp divergence explicitly. The advantage of this method is
that each LE can be addressed without the need of disabling specific threads
to create nesting addressing of the memory. Thus, this strategy replaces the
generation of nesting divergence by the management of the stack pointer and
the execution of sequential controlled divergences.

The sequences of intra-warp divergence operations, generating the Taken and
No-taken paths, inject the test patterns into the target LE. This process can be

Modular Functional Testing 217

repeated N times (number of threads in a warp) to use different active threads
and memory addresses as test patterns. Then, a new SSY addresses a deeper
LE and the test procedure is restarted. It is worth noting that this mechanism
is effective to move across one direction and reach deeper LEs in the memory.
However, the returning phase (to a previous LE) requires the achievement of the
convergence point address, which is initially stored in the stack by the execution
of the SSY instruction.

4.2 Observability

The fault effect propagation is achieved using the Signature per Thread (SpT)
strategy [18,21,27]. This mechanism assigns one signature to each thread to
map and to propagate the effect of a permanent fault into the global memory.
Each SpT is updated, taking advantage of both paths (Taken and No-taken)
produced during an intra-warp divergence. Thus, the same mechanism used to
test faults is used to increase the observability of the structure under test. Each
SpT computes and accumulates intermediate results for each verified LE. The
SpTs are finally grouped and stored in global memory for later analyses.

4.3 Test Program Organization

The interconnections and the main architecture of each proposed test approach
are defined knowing the stack memory’s observability and controllability meth-
ods.

Figure 5 presents the basic schemes of the modular composition of the Nesting
and Sync-Trick test mechanisms.

In the first case (Nesting), the test generation is based on nesting divergences,
so the general test strategy starts with selecting the target LE in the stack
(optional use of the SSY function). Then, one divergence (two paths) divides
the number of active threads, followed by the execution of a taken routine.
This routine is in charge of update the SPT in the active threads. Then, a new
divergence is produced (two new paths). Similarly, the same procedure restarts
again, and a new taken routine is operated. The previous procedure continues
until all LEs in the stack are addressed. Finally, the No-Taken paths are operated
before reach the routine of convergence (CONV).

In the second approach (Sync-Trick), the operation starts selecting a target
LE in the stack (using the SSY function). Then, the divergence is generated,
and the two paths are created. The taken (function) path updates the signature
per thread, and, finally, the Not-Taken path is executed, and both paths reach
the convergence function (CONV). The previous procedure is repeated as the
number of threads in a warp (N). Then, a new target LE in the stack is addressed,
and the procedure is restarted again until the total number of LEs in the stack
(M) is tested.

In both schemes, the address pointers SPC0, SPC1, and SPC2 represent each
block function’s effect on the stack address pointer and the values stored in the
SPC field of the stack memory.

218 J. E. R. Condia and M. Sonza Reorda

As depicted in both schemes, the PC and Check-point procedures are also
included in the test strategy. These complementary functions are introduced to
increase observability or to allow the division into parts when possible.

A control-flow routine (PC) can be included before or in one of the divergence
paths to test the high bits in the SPC field. In fact, a detailed overview of the
SPC field revealed that this field is partially tested. This issue is mainly caused
by the short length of the test program for both strategies. In order to complete
the test of the SPC field, the test routines are redistributed across the system
memory, so generating the missing test patterns and the PC routine is used to
address those test routines distributed in the memory.

The check-point routines are included to verify the testing of the SPC field
of the LEs in the stack. These routines are located after the convergence point.
In this way, any permanent fault in the SPC is detected when the convergence
point or the starting address of the No-Taken path are incorrectly read from the
LEs by the effect of any permanent fault. A fault in the SPC field generates an
unexpected addressing in the system memory. The permanent fault is detected
by mismatches in time execution and through the signatures stored in the global
memory.

The check-point routines verify, through a check-point signature, the correct
flow execution of a program. Moreover, this function compares an expected check
signature value with the actual accumulated value during the test program’s
execution. When the comparison matches, the accumulated signature is updated,
otherwise the test program finishes propagating in memory the error in the SPC
field of the evaluated LE. The same strategy can be applied to any of the two
controllability methods (Nesting or Sync-Trick).

The use of these additional functions (Check-Point and PC) is optional, con-
sidering that these strategies are costly in memory overhead for an in-field execu-
tion. It is worth noting that the proposed technique takes into account the oper-
ational restrictions to develop the test programs using the Stuck-at fault model.
Other fault models would require the adaptation of the Sync-trick mechanism.
However, it would be hard or impossible to follow the Nesting strategy. The
convergence function (CONV) synchronizes both paths’ operation and restart
(from that point) the embarrassingly parallel operation of all threads in a warp.

4.4 Implementation

The synch-trick strategy cannot be directly described in CUDA, and explicit
assembly level descriptions are required. In contrast, the Nesting mechanism can
be directly mapped into the CUDA without modifications. The implemented
code for both test methods is composed of the following functions: i) Initial-
ization function, ii) synchronization function (SSY), iii) flow control function
(PC), iv) intra-warp divergence function and SpT update functions (Taken and
No-Taken), and v) check-point function (Check-point).

Each function is described independently and can be attached depending on
the target of a test program. The initialization function defines and initializes
the registers for each thread. Moreover, this function initializes the addresses to

Modular Functional Testing 219

store the SpTs and check-point signatures. The functionality of other functions
was introduced in the previous section.

Two main operations can be employed to manage the addressing of LEs
in the stack memory. Initially, the convergence function is implemented using
one synchronization instruction (SSY), which affects the stack pointer in the
memory, and moves it to the next LE. When the program reaches the conver-
gence point, the pointer returns to the previously addressed LE. During the
execution, the first LE is used only for storing purposes. In contrast, the sec-
ond LE is employed during the management of the divergence, and control-flow
instructions can affect this LE with writing or reading operations. Thus, when
the operation of the first path ends, the information in the second LE is used
to start the not-taken path until the convergence point is reached. The CONV
function, which is interpreted as the return from an addressed LE to the previous
one, is described using exit control-flow instructions, such as (NOP.S).

The PC functions are relocations in the memory of the intra-warp divergence
routines. These PC functions require of some instructions (in the format of 32
and 64 bits) located before each relocated function. These instructions avoid
hanging conditions by permanent faults in the SPC field. In this way, when the
program counter is affected by a fault, and it jumps to any unexpected memory
location, it is always possible to retake control of the program and finish the
execution of the GPU. Nevertheless, it is expected degradation in performance by
the effect of the permanent fault. On the other hand, the intra-warp divergence
routines are generated by successive comparisons between the Thread.id values,
of a warp, with a constant value. The constant value is loaded using immediate
instructions. The check-point signatures are predefined before execution and also
loaded through immediate instructions. Then, the two paths are executed.

The functions in both paths (Taken and No-taken) update the SpT, which
is firstly loaded from memory and then increased as a counter according to the
path. A similar procedure is applied in the check-point routines that update
check-point signatures to verify the step-by-step execution of the program, so
avoiding infinite loops or unexpected branches by faults in the SPC field.

The modular description of both SBST strategies allows the exploration of
multiple options for the programs. In the Nesting method, the modular approach
guides the addition of functions, such as the nesting divergence, and also provides
support to add or to remove optional functions targeting the SPC field (PC and
Check-point). In contrast, the modularity presents considerable advantages for
the Sync-Trick method. The code description of this method is scalable and
modular, so it is possible to append or remove block functions in the description
of the program, targeting the individual test of LEs in the stack memory. This
modularity gives us the possibility to address any or a group of LEs and to
generate an independent test program. The division of the test contributes to
reducing the execution time of the test program during the in-field operation of
a GPU.

The Sync-Trick method can employ two approaches to evaluate LEs in mem-
ory. The first approach (Accumulative or Acc) aims the test of a consecutive

220 J. E. R. Condia and M. Sonza Reorda

group of LEs and accumulates the signatures in memory. This approach must
always start from the first LE and can finish at any of the other 31 LEs in the
stack.

On the other hand, the second approach (Individual or Ind) targets the test-
ing of an individual LE and then the retrieving of signature results to the host.
This approach only focuses on one of the LEs in the memory and is intended to
have a reduced execution time. The performance cost (execution time (ST)) of
both approaches (Acc and Ind) can be calculated using the Eqs. (1) and (2).

ST (Acc) = Ts · n + Ch · n + SSY · (n− 1) (1)

ST (Ind) = Ts + Ch + SSY · (n− 1) (2)

where n represents the target LE in the stack memory. SSY, Ts, and Ch
represent the execution time of the synchronization, test pattern injection, and
check-point functions, respectively. The initialization function was not included
considering that it is constant for both cases, and it is negligible in terms of
duration.

From Eqs. (1) and (2), it is clear that the cost of the Accumulative version
(Acc) is higher than for the Ind version. The cost is mainly caused by the different
approaches in each case. In the Acc version, the program is intended to test the
number of selected LEs sequentially. In contrast, the Ind approach targets the
test on one LE, so the test patterns and check-point functions are used once.
The number of synchronization functions depends on the target level of LE in
the stack memory.

On the other hand, the performance cost of the Nesting method is described
by the expression in Eq. (3).

Ns = N · Ch ·
m∑

i=0

(SSY + Ts) (3)

where N represents the total number of threads in a warp, and m is the target
LE to be tested. CH, SSY, and Ts have the same meaning than in Eqs. (1) and
(2). As introduced previously, the target LE could be even or odd. Thus, the
starting value of i in the summation could be 0 or 1.

5 Predicate Register File

This module is a parallel structure in the GPU and it is addressed in parallel by
the active threads during the execution of a program, so the maximum number
of threads per core are required to perform the test of the complete module.

Modular Functional Testing 221

Controllability. The PRF stores homogeneous information, so each active
thread in a program have direct access to this memory, Thus, only one pro-
cedure is required to inject test patterns. The test of each register is based on
the generation of load procedures (Ld), see Fig. 6. Initially, Ld targets one predi-
cate register per thread (Cx) and assigns a value by using two possible methods:
i) conditional assessments(PRF T) or ii) direct assignments(PRF T R2C).

In the first case, a sequence of conditional assessments causes the activation
of each predicate flag, injecting a test pattern, and propagates its effect for
evaluation. On the other hand, in the direct assignment, the movement operation
changes the content of the predicate register. It is worth noting that in both cases,
one flag was targeted to clearly identify a fault.

5.1 Observability

A function (PROP) performs conditional evaluations to identify and classify a
fault. This function propagates the effect of the target predicate register. The
conditional evaluations produce two paths (Taken and No-taken). Both paths
are used to update an SpT to identify if a fault was present in a given flag of
a predicate register. As depicted in Fig. 6, the gray path describes the fault-free
case of the test. When there are no detected faults, the test program remains
convergent for all threads in a warp. In contrast, when a fault is detected, an
intra-warp divergence is produced as effect of the fault and the SpT are updated
indicating a detected fault. It is worth nothing that four serial procedures of
conditional evaluations are required to test each register.

5.2 Test Program Organization

Two different approaches of modular test can be proposed for this module. In the
first case (PRF T), see Fig. 6 (Top), the organization of the test program is fully
sequencial, so the Ld procedure injects a test pattern into a target register in the
PRF. Then, the Prop routine propagates any fault and evaluates the previously
register in search of faults. The taken and not-taken routines are used to update
the SpT and propagate any fault effect into the available outputs. The Taken
routine is intended to be operated when a faults are not present in the evaluated
register of the PRF. Once, both paths reaches convergence, the previous sequence
is repeated as the number of exclusive predicate registers per thread (M), the
total number of flags (N) and the number of test patterns to inject per register
(T).

In the second case (PRF T R2C), see Fig. 6 (Bottom), the organization of
the test program varies and is divided as a sequence of individual operations.
First, The injection is performed using the Ld procedure and propagated with
the Prop routine. Then, it is repeated M times, as the number of registers, so
injecting the same test pattern to each register.

The evaluation is performed using the one divergence and the Taken pro-
cedures. Again, these procedures are repeated as the number of registers per

222 J. E. R. Condia and M. Sonza Reorda

Fig. 6. General schemes of the modular approaches to test the PRF.

thread, so evaluating all previously addressed flags. Finally, the complete proce-
dure of injection, propagation and evaluation is repeated as the number of flags
per register and the number of test patterns to inject. It is worth noting that
the main fault model target of the proposed strategy is stuck-at faults. However,
it is also possible to adapt the second case to evaluate other fault models in the
PRF.

5.3 Implementation

Three versions of the Ld function can be described; one based on logic-arithmetic
instructions (IOP.AND, IOP.XOR) and a second version using setting instruc-
tions (ISETP) to modify a flag in the predicate register. Furthermore, it is also
possible to modify a register using a direct assignment (R2C). Thus, the main
functionality (inject a test pattern) can be obtained through several descriptions.
The block functions in the SBST strategy for the PRF are parametrically devel-
oped, so it is possible to easily replace one function (such as Ld) by another in the
program. It is worth noting that the first two cases require several instructions
before the comparison or setting.

The Prop function also supports different implementation methods. One
method is based on a sequence of conditional operations, which are executed once
a specific flag is active. The other method is through intra-warp divergence, so
explicitly producing two execution paths corresponding to the faulty (No-Taken)
and fault-free (Taken) cases. In both versions, the parametric description allows
the selection of a predicate register and a target flag, so simplifying the proce-
dures for the generation of the test program.

The routines on each path follow a similar description with respect to those
developed for the stack memory, so in principle, these functions are imported
into these SBST programs.

Equations 4 and 5 represent the performance cost of both strategies for test-
ing the PRF. As you can observe, both equations are equivalent and the per-
formance of both strategies remains the same. The main difference between the

Modular Functional Testing 223

two approaches is the order of executing the test on each register of the PRF
module.

ST = ((Ld + Prop) ·M + T ·M) ·N · T (4)

ST = (Ld + Prop + T) ·N ·M · T (5)

The Ld implementation presents the same cost for the IOP (arithmetic and
logical) and the ISETP (setting) descriptions of the functions. However, for the
R2C alternative, the total description and memory footprint is reduced to a total
of 36 instructions.

6 Address Register File and Vector Register File

These modules are parallel in the operation of a program in the GPU and can
be accessed in parallel by the active threads.

6.1 Controllability

The ARF and the VRF modules stores homogeneous information on each regis-
ter, so there are not internal field divisions. This feature allows the use of only
one procedure (Ld) to perform the test pattern injection. The main idea of the
Ld procedure is to perform direct assignation of test patterns on each register of
both modules (General Purpose Registers Rx in the VRF and address registers
Ax in the ARF). The addressing routine of the registers is mainly sequential.
However, the direction and the limits are defined according to the number of
threads in a program (T). It is worth noting that all active threads can access
the ARF or VRF during the execution of the instructions.

6.2 Observability

The propagation of a fault is performed using a function (Comp). This procedure
performs conditional assessments and compare the value in any register with
several predefined masks. These masks are used to identify any fault in the
evaluated registers and are the base for the comparison.

There are two possible selections of the mask: i) Fine-grain and ii) Coarse-
grain. A fine-grain mask allows identifying the location of the fault affecting a
register. However, several detection procedures are required. On the other hand,
a coarse-grain mask allows the rapid detection of a fault, but it is not possible
to identify its location.

After each comparison, a divergence is produced. This divergence is employed
as mechanism to evaluate the propagation of a fault and also to update the SpT.
The gray (see Fig. 7) path shows the embarrassingly parallel operations, when
the test approach is used and there are not fault in the module. In contrast, the
Not-taken path in black is used when a fault is detected.

224 J. E. R. Condia and M. Sonza Reorda

6.3 Test Program Organization

The organization of the modular test programs can be defined in two methods
and can be applied for both modules (ARF and VRF). It must be considered that
the internal content of each routine is adapted according to the target module.
In the representative schemes, we considered a test program configured with a
defined number of register per thread in a warp (N), a defined number of warps
(M), a predefined number of parallel threads (P) and a fixed number of test
patterns to inject (T).

Fig. 7. General schemes of the modular approaches to test the ARF and VRF.

In the first case, see Fig. 7(Top), the procedure is performed targeting a
sequential test detection. First, the Ld procedure injects test patterns in one
register. Then, the Prop procedure propagates the faults effect (if present) and
a comparison is performed using the Comp procedure. This comparison starts
the divergence and the Taken path is evaluated to update the signature for
each active thread. Finally, the previous procedure is repeated as the number
of registers per thread in a warp, number of warps in the test program and the
number of test patterns to inject.

The second approach, see Fig. 7(Bottom), is intended to divide the test pro-
gram into small parts, so the sequential procedure of test is replaced by a two
independent stages that combined provide the same test functionality of the
previously explained approach. These two independent stages are: general test
patterns injection (1) and general evaluation (2). In (1), a complete sequence of
one test pattern injection is performed injecting in all registers assigned to any
thread. Then, in the stage (2), all propagation and comparison operations are
performed to identify faults in the registers. Finally, both stages (1 and 2) are
repeated as the number of warp in the program and the number of test patterns
to inject.

Modular Functional Testing 225

6.4 Implementation

In the case of the ARF and the VRF memories, both approaches employ sim-
ilar methods to implement the Ld function. This is based on the direct assign
instructions R2A and MOV, respectively. However, the ARF structure can use an
equivalent instruction to perform the assignation using another address register
as source A2A.

The Comp function compares and enables a flag when mismatches are found.
In both cases this function is implemented using similar mechanisms through
constant values (from immediate instructions or loaded from memory). Finally,
the same intra-warp divergence functions are imported and adopted for these
modules. It is worth noting that the development of the blocks allows different
targets of the SBST program. On the one hand, it is possible to develop the func-
tions to only perform fault detection. Furthermore, the functions can be replaced
with special versions, which provide fault diagnosis features (VRF T dia), so
allowing the identification of the location causing the fault effect. A detailed
evaluation shows that both versions of the R2A and A2A routines to implement
the Ld function have the same cost in terms of execution and resource overhead.

Equation 6 describes the performance costs for both approaches, which are
equivalent from the performance point of view. Nevertheless, the test can be
performed in parts (ld + comp) when the modules are free and the application
can be stopped for a long interval. Otherwise, the complete evaluation of each
register and the splitting into parts can be employed when short interval times
can be employed. It is worth noting that the performance of each approach is
affected when faults are detected on each module by the execution of the missing
path in order to update the detection signatures.

ST = ((Ld + Pr + Co + Ts) ·N ·M · P = ((Ld) ·N + (Pr + Co + Ts) ·N) ·M · P
(6)

7 Limitations and Constraints

Although the proposed modular approach can be applied to any hardware mod-
ule in a GPU, several programming constraints must be consider in the mapping
or implementation step.

In the implementation of the SBST techniques, we explored different possible
description styles for each program using high-level and middle-level abstraction
languages for programming the GPU (CUDA and PTX, respectively). How-
ever, we observed some constraints related to the implementation of the SBST
technique in CUDA or PTX, due to the fact that particular combinations of
instructions are required to excite any of the target modules. Furthermore, the
generation of specific instructions at the two levels in some cases was not possible
(e.g., the SSY instruction cannot be used in CUDA or PTX levels). Thus, we
adopted the assembly language (SASS) to describe most SBST techniques that
cannot be directly described at other abstraction levels.

226 J. E. R. Condia and M. Sonza Reorda

It should be noted that compilers in the programming environment of GPUs
have as main target the performance optimization of a program, so removing or
reorganizing the intended test program and causing a mismatch in the intended
behavior of the SBST programs. The solution to overcome this issue is based on
a combination of different levels of description, when possible. This solution is
affordable only when the Instruction Set Architecture (ISA) of a GPU device is
well known, which unfortunately is not always the case.

8 Experimental Results

The RTL FlexGripPlus model was used in the experiments. Initially, the per-
formance parameters of the implemented test programs are determined. Then,
fault injection campaign results are reported showing the effectiveness of the
proposed modular approach on the target modules.

8.1 Performance of the Test Programs

Table 1 reports the results concerning the performance parameters for all imple-
mented test programs. It is worth noting that results reported in Table 1 were
obtained by simulations performed resorting to the ModelSim environment.

The reported results show the performance parameters for the two possible
test methods of the stack memory (Nesting and Sync-Trick methods under the
accumulative and individual approaches). All versions present an overhead in
the global memory of 64 locations (256 bytes) devoted to saving the SpTs and
the Check-point signatures.

Regarding the performance results of both versions, it can be noted that
the Sync-Trick (Ind) approach maintains an average performance cost to test
any LE in the stack memory. The only difference among these programs is the
number of SSY instructions included to address a selected LE. Similarly, the
Sync-Trick (Acc) version can test a group of LEs consecutively. However, it
requires additional execution time and cannot be stopped once the test program
starts.

On the other hand, Table 1 also reports the required execution time to test
the first and the second LEs in the stack using the Sync-Trick Ind (rows 2 and
3, column 4) and Sync-Trick Acc (row 5, column 4) approaches. The Individ-
ual approach requires 76 additional clock cycles to test the LEs, but it has the
advantage of being able to test each LE independently. In contrast, the Accumu-
lative method must check both LEs consecutively. Thus, the Ind approach can
be adapted for in-field operation by the limited number of clock cycles required
during the execution.

The performance parameters show that for the Nesting approach, there is a
proportional relation between the number of instructions and the number of LEs
to test. Similarly, the relationship between the execution time and the number
of LEs to test presents an increasing exponential ratio. In the end, the Nesting
method requires more than twice the execution time to test the entire stack than

Modular Functional Testing 227

Table 1. Performance parameters of the SBST programs using the two approaches to
detect permanent faults in the LEs

Approach Module Instructions Execution
time
[Clock
cycles]

System
memory
overhead
[Bytes]

Sync-Trick Ind LE #1 Stack 403 33,449 1,612

LE #2 Stack 404 34,211 1,616

LE #10 Stack 412 34,589 1,648

Sync-Trick Acc LEs 1 – 2 Stack 794 66,637 3,176

LEs 1-10 Stack 3,922 326,423 15,688

All Stack 12,524 1,030,473 50,096

Nesting LE 1 Stack 683 37,986 2,732

LEs 1-2 Stack 1,323 83,569 5,292

LEs 1-10 Stack 6,443 528,086 25,772

All Stack 19,883 2,567,209 79,532

PRF T PRF 434 1,890,106 1,736

PRF T R2C PRF 398 1,795,596 1,592

ARF T ARF 122 338,240 488

VRF T det VRF 82 108,958 368

VRF T dia VRF 350 1,503,254 2,800

Sync-Trick using the Acc approach. The execution time could be the relevant
parameter to take into account when targeting the in-field operation.

As observed in Table 1, the implemented test programs, targeting the
PRF and using two different Fault controllability procedures (PRF T and
PRT T R2C) require different execution times. Moreover, the number of instruc-
tions in both test programs is different. However, the intended test functionality
of both versions is the same, so showing that the modular approach can pro-
duce different test programs for the same module and allowing the exploration
of different test solutions.

Regarding the implemented test programs for the VRF, The fault diagnosis
(VRF T dia) version requires up to 13 times the execution time of the test
program targeting fault detection (VRF T det), only. The interesting of both
test programs is that the modular program is the same, but the implemented
functions produce the difference in time execution and intended functionality.

8.2 Fault Injection Results

The fault injection environment follows the methodology described in [18], and
we injected permanent faults using the Stuck-at Fault model. On each target
module, fault simulation campaigns were performed injecting faults in every

228 J. E. R. Condia and M. Sonza Reorda

location of each module, meaning 4,224, 32,768, 262,144 and 262,144 permanent
faults in the stack memory, PRF, ARF and VRF, respectively. These fault sim-
ulation campaigns were performed using both representative benchmarks and
the test programs implementing the proposed SBST strategies. Moreover, the
SBST programs targeting the stack memory were evaluated with and without
the optional PC functions.

The representative benchmarks have been carefully selected to compare the
detection capabilities they can achieve with the ones provided by the proposed
SBST programs. Descriptions and details regarding the chosen benchmarks can
be found in [18]. For the sake of completeness and comparison, the different
versions of the SBST strategy are reported in Table 2. The results are reported
based on the output effect of the faults as: Faults corrupting the output results,
or ‘Corrupted Output Data’ (Data)), faults corrupting the complete execution of
the system, or ‘Hang’, and fault affecting the performance of a given benchmark,
or ‘Timeout’.

The last column of Table 2 reports the testable FC (TFC) of the benchmarks
and the proposed SBST strategy. The TFC is defined as the ratio between the
number of detected faults and the number of injected faults after removing the
untestable faults. The untestable faults are those faults that due to structural
or functional issues cannot be tested and cannot produce any failure. A detailed
analysis of the stack memory revealed that a total of 192 faults are untestable.
These are related to the lowest bits of the SPC field of each LE, which does
not affect the execution of an instruction. Thus, these faults were removed when
computing the TFC.

The Sync-Trick strategy provides a moderate FC for both cases (Ind and
Acc). Moreover, the FC increases when adding the PC functions and the relo-
cation of the test functions in the memory. These comprehensive approaches
(Ind+SP and Acc+SP) obtain a high percentage of FC for the target structure.

An in-depth analysis of the results shows that the Individual approach allows
detecting 100% of the faults in the TM of all LEs by looking at the results of the
test procedure “Data” type faults. In contrast, the Acc version causes a small
percentage (0.75%) of faults produced in the TM field and visible because they
hang or crash the GPU. This behavior can be explained considering that in the
Ind approach, each LE is evaluated individually, and so all detections can be
labeled as Data. On the other hand, for the Acc method, a permanent fault in
one LE affects the synchronization point, thus corrupting the convergence point
and causing the Hang condition. More in detail, a Stuck-at-0 fault is a sensitive
case during the run of the test program. A fault affecting one LE when used as
synchronization causes the Hang condition.

The Nesting SBST program has a slightly lower FC than Sync-Trick with
an increment of more than twice the percentage of faults causing hanging and
timeout. This fault effect is equivalent to the effect shown by in the Acc version
of Sync-Trick. In this case, the Nesting method generates intra-warp divergence
to move the stack pointer among the LEs (in the stack memory), testing all
LEs even when a fault is detected, so other LEs are also tested. The continuous

Modular Functional Testing 229

evaluation generates issues when a fault affects the LE used for synchronization
purposes (when testing the even LEs). Thus, the test program may confuse the
convergence point and produce the Hang or Timeout condition. According to
results, the Nesting strategy seems to be more susceptible to Hang and Timeout
effects than the Sync-Trick using the Acc approach.

In both approaches, the addition of the relocation in memory and the
SPC functions increase the testable coverage in the stack memory. However,
as explained previously, these optional functions can be employed when it is
possible to use the entire system memory to relocate the test functions in spe-
cific memory locations, or the application code allows this adaptation. Similarly,
both SBST approaches can detect a considerable percentage of the permanent
faults in the stack memory. However, a direct comparison involving the perfor-
mance parameters from Table 1 shows that the Nesting approach consumes more
than twice the execution time and 37% of additional instructions. In conclusion,
the Sync-Trick strategy seems to be a feasible candidate for in-field operations.
Moreover, the Ind strategy can be divided into parts and adapted with the
application code.

Regarding the SBST program for the PRF module, the two implemented
versions obtain the 100% of fault coverage. The main advantage of both ver-
sions is the fault propagation to the global memory, so enabling the detection
as Data. In fact, all faults detected are identified using this classification. Thus,
the main difference between SBST approaches is the performance and overhead
cost, which are mainly caused by the internal description of one modular function
(Ld). The previous fault coverage results allow us to validate the exploration of
different methods to implement different modular functions. In both cases, the
replacement of a modular function does not affect the final fault coverage. A sim-
ilar situation is observed in the SBST programs for VRF. In both approaches
(Detection (Dec) and Diagnosis (Dia)), the programs reach a full fault cover-
age (100%). However, the performance degradation rises up to 13.8 times when
employing the diagnosis version of the test program. Nevertheless, this SBST
version can be affordable with mild system time constraints, such as during the
Switch-on of the system.

Although Table 2 reports one SBST program for the PRF, the two versions
were evaluated changing each time the Ld function. The two versions achieved
the same fault coverage (100%) and the Ld functions, in both versions, have the
same performance cost, so both solutions can be used identically.

A comparison of the FC obtained by the proposed SBST strategies and the
representative benchmarks shows that the FC using these specialized programs is
higher for the targeted modules than the FC obtained with typical applications.
Thus, the FC capabilities of a representative benchmark is mostly lower. This
behavior can be explained considering that most applications only use parts of
the modules (e.g., only the first levels of stack memory to handle the divergence
or certain registers per thread in the ARF or VRF modules) to operate the
instructions of each application.

230 J. E. R. Condia and M. Sonza Reorda

Table 2. FC results for the representative benchmarks and the proposed SBST
strategies

SBST strategy
or benchmark

Module (%)

Data Hang Timeout FC TFC

MxM Stack 0.00 0.38 - 0.38 0.40

PRF 0.00 0.38 - 0.38 0.38

ARF 25.07 0.0 - 25.07 25.07

VRF 18.26 8.24 - 26.5 26.5

Sort Stack 0.15 0.04 - 0.19 0.19

PRF 0.16 0.04 - 0.20 0.20

ARF 0.00 0.00 - 0.00 0.00

VRF 0.18 0.07 - 0.25 0.25

FFT Stack 0.14 0.19 - 0.33 0.35

PRF 0.15 0.19 - 0.34 0.34

ARF 0.0 0.0 - 0.00 0.00

VRF 0.19 0.21 - 0.4 0.4

Edge Stack 0.15 0.28 - 0.43 0.47

PRF 0.00 7.05 - 7.05 7.05

ARF 0.00 0.00 - 0.00 0.00

VRF 12.25 5.6 - 17.85 17.85

Sync-Trick Ind Stack 65.64 2.08 1.01 68.75 72.02

Acc 64.89 2.84 1.01 68.75 72.02

Ind + PC 83.00 8.49 2.44 93.93 98.41

Acc + PC 82.24 9.25 2.44 93.93 98.41

Nesting Stack 54.12 11.81 1.23 67.16 70.04

+ PC 76.94 13.16 2.81 92.91 97.34

PRF T PRF 100.0 - - 100.0 100.0

R2C 100.0 - - 100.0 100.0

VRF T Det VRF 100.0 - - 100.0 100.0

Dia 100.0 - - 100.0 100.0

ARF T ARF 100.0 - - 100.0 100.0

The matrix multiplication application generates one level of divergence. Thus,
other levels inside the Stack memory are not employed, and the fault effect in not
detected or propagated into the application. On the other hand, the VRF and
the ARF modules are excited in almost 25% and 20%, which helps to explain
the fault coverage obtained for both modules (26.5% and 25.07%, respectively).
In contrast, the Sort application can generate intra-warp divergence, depending
on the input data operands, but it remains limited to the first LE in the stack
memory. However, the percentage of detection (0.33% and 0.19%) is negligible
in comparison with the proposed test strategies. A similar behavior is observed
for the ARF, PRF and VRF when executing this application.

The FFT benchmark produces two levels of intra-warp divergence, so using
up to four LEs during the operation. This behavior slightly increases the per-
centage of faults detected. Nevertheless, the achieved percentage remains small.
Finally, the Edge application causes two levels of intra-warp divergence and can
detect some faults as Data and hangs. However, the total coverage of all repre-
sentative kernels is minimal.

Modular Functional Testing 231

The previous scenario supports the idea that executing applications and
checking their results (as it is often done when using a functional test approach)
is definitely not enough to verify the functionality of crucial hardware modules in
the GPU. Thus, special test programs, as those proposed in this work using the
modular approach, are required to guarantee the correct operation of a module
inside a device used in a safety-critical application.

The main advantage of the proposed method lies in its modularity and scal-
ability. Scalability allows the configuration and the selection of the number of
LEs to be tested in the SBST programs for the stack memory. Moreover, the test
programs for the ARF, PRF and VRF can also be reduced to target only specific
registers in the target modules. Finally, the scalability of their structure allows
splitting the overall program in several parts, as presented for the Sync-Trick
SBST program.

As introduced previously, the implementation of the test programs required
the combination of high-level descriptions (about 15% of the total code in all
SBST strategies), and the addition of assembly functions (about 85%). For both
proposed SBST strategies targeting the memory stack, the synchronization func-
tions (SSY) were implemented in assembly language. In this way, we could also
avoid that the compiler removes or changes important parts of the test code.
Similarly, in the PRF test program, the Comp modular function used specific
procedures that required assembly language support. Thus, these parts and oth-
ers are written at the assembly level. These limitations show that the develop-
ment of test programs for these complex structures in GPUs requires access to
the assembly formats to provide feasible and efficient solutions. The implemen-
tation effort could be reduced by the design of an automatic tool to include the
subroutines at the assembly or binary level. Moreover, such a tool could also
be employed to develop modular approaches, targeting other modules, such as
functional units in the GPU.

Although the proposed SBST strategies targeted the test of unprotected
memories in a GPU model with the G80 micro-architecture, we still claim that
the proposed methodology can be adapted and used for the most recent GPU
architectures, such as Maxwell and Pascal that include similar structures. More-
over, other parallel architectures can also use the proposed method.

9 Conclusions

We introduced a modular and scalable method to design functional programs
for testing in the field the small embedded memories in GPU cores. For this pur-
pose, each target embedded memory was analyzed and based on controllability,
observability and composition features, a set of parametric functions were devel-
oped and then combined to test each target structure in the GPU. Results show
that the modular solution allows the exploration of the advantages and limita-
tions of different routines employed in a test program. Moreover, this technique
also allows the split of a test program into several parts, while still achieving
the same FC, so allowing to adjust the test program to potential requirements
of in-field operations.

232 J. E. R. Condia and M. Sonza Reorda

As future works, we plan to extend the proposed method to test other func-
tional units and critical modules in parallel architectures. Moreover, we plan to
use the modular approach to target other fault models.

Acknowledgments. This work has been partially supported by the European Com-
mission through the Horizon 2020 RESCUE-ETN project under grant 722325.

References

1. Shi, W., Alawieh, M.B., Li, X., Yu, H.: Algorithm and hardware implementation for
visual perception system in autonomous vehicle: a survey. Integration 59, 148–156
(2017)

2. Hamdioui, S., Gizopoulos, D., Guido, G., Nicolaidis, M., Grasset, A., Bonnot,
P., Reliability challenges of real-time systems in forthcoming technology nodes.
In: 2013 Design, Automation Test in Europe Conference Exhibition (DATE), pp.
129–134 (2013)

3. Agbo, I., Taouil, M., Hamdioui, S., Weckx, P., Cosemans, S., Catthoor, F.,
Dehaene, W.: Read path degradation analysis in SRAM. In: 2016 21th IEEE Euro-
pean Test Symposium (ETS), pp. 1–2 (2016)

4. Chen, X., Wang, Y., Liang, Y., Xie, Y., Yang, H.: Run-time technique for simulta-
neous aging and power optimization in GPGPUs. In: 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6 (2014)

5. Becker, A.J., Pathirane, C.A.S., Aitken R.C.: Memory built-in self-test for a data
processing apparatus, US Patent 9,449,717, 20 September 2016

6. Gulati, R., et al.: Self-test during idle cycles for shader core of GPU, US Patent
10,628,274, 21 April 2020

7. Psarakis, M., Gizopoulos, D., Sanchez, E., Sonza Reorda M.: Microprocessor
software-based self-testing. IEEE Design Test Comput. 27(3), 4–19 (2010)

8. Condia, J.E.R., Narducci, P., Sonza Reorda, M., Sterpone, L.: A dynamic hardware
redundancy mechanism for the in-field fault detection in cores of GPGPUs. In: 2020
23rd International Symposium on Design and Diagnostics of Electronic Circuits
Systems (DDECS), pp. 1–6 (2020)

9. Condia, J.E.R., Narducci, P., Sonza Reorda, M., Sterpone, L.: A dynamic recon-
figuration mechanism to increase the reliability of GPGPUs. In: 2020 IEEE 38th
VLSI Test Symposium (VTS), pp. 1–6 (2020)

10. Baghsorkhi, S.S., Delahaye, M., Patel, S.J., Gropp, W.D., Hwu, W.-M.W.: An
adaptive performance modeling tool for GPU architectures. SIGPLAN Not. 45(5),
105–114 (2010)

11. Coutinho, B., Sampaio, D., Pereira, F.M.Q., Meira Jr., W.: Profiling divergences
in GPU applications. Concurr. Comput. Pract. Exp. 25(6), 775–789 (2013)

12. Mei, X., Chu, X.: Dissecting GPU memory hierarchy through microbenchmarking.
IEEE Trans. Parallel Distrib. Syst. 28(1), 72–86 (2017)

13. Bernardi, P., Grosso, M., Sanchez, E., Ballan, O.: Fault grading of software-
based self-test procedures for dependable automotive applications. In: 2011 Design,
Automation Test in Europe, pp. 1–2 (2011)

14. Abdel-Majeed, M., Dweik, W.: Low overhead online periodic testing for GPGPUs.
Integration 62, 362–370 (2018)

15. Di Carlo, S., et al.: A software-based self test of CUDA fermi GPUs. In: 2013 18th
IEEE European Test Symposium (ETS), pp. 1–6 (2013)

Modular Functional Testing 233

16. Defour, D., Petit, E.: A software scheduling solution to avoid corrupted units on
GPUs. J. Parallel Distrib. Comput. 90–91, 1–8 (2016)

17. Sabena, D., Sonza Reorda, M., Sterpone, L., Rech, P., Carro, L.: On the evaluation
of soft-errors detection techniques for GPGPUs. In: 2013 8th IEEE Design and Test
Symposium, pp. 1–6 (2013)

18. Condia, J.E.R., Sonza Reorda, M.: Testing permanent faults in pipeline registers of
GPGPUs: a multi-kernel approach. In: 2019 IEEE 25th International Symposium
on On-Line Testing and Robust System Design (IOLTS), pp. 97–102 (2019)

19. Condia, J.E.R., Sonza Reorda, M.: On the testing of special memories in GPGPUs.
In: 2020 IEEE 26th International Symposium on On-Line Testing and Robust
System Design (IOLTS), pp. 1–6 (2020)

20. Di Carlo, S., Condia, J.E.R., Sonza Reorda, M.: An on-line testing technique for
the scheduler memory of a GPGPU. IEEE Access, vol. 8, pp. 16 893–16 912 (2020)

21. Du, B., Condia, J.E.R., Sonza Reorda, M., Sterpone, L.: About the functional
test of the GPGPU scheduler. In: 2018 IEEE 24th International Symposium on
On-Line Testing And Robust System Design (IOLTS), pp. 85–90 (2018)

22. Di Carlo, S., Condia, J.E.R., Sonza Reorda M.: On the in-field test of the GPGPU
scheduler memory. In: 2019 IEEE 22nd International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS), pp. 1–6 (2019)

23. Condia, J.E.R., Sonza Reorda, M.: Testing the divergence stack memory on GPG-
PUs: a modular in-field test strategy. In: 28th IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC 2020), pp. 1–6 (2020)

24. Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans.
Comput. C-21(9), 948–960 (1972)

25. Condia, J.E.R., Du, B., Sonza Reorda, M., Sterpone, L.: FlexGripPlus: an improved
GPGPU model to support reliability analysis. Microelectr. Reliab. 109, 113660
(2020)

26. Andryc, K., Merchant, M., Tessier, R.: FlexGrip: a soft GPGPU for FPGAs. In:
International Conference on Field-Programmable Technology (FPT) 2013, pp. 230–
237 (2013)

27. Apostolakis, A., Psarakis, M., Gizopoulos, D., Paschalis, A., Parulkar, I.: Exploit-
ing thread-level parallelism in functional self-testing of CMT processors. In: 2009
14th IEEE European Test Symposium, pp. 33–38

RAT: A Lightweight Architecture
Independent System-Level Soft Error

Mitigation Technique

Jonas Gava1(B), Ricardo Reis1(B), and Luciano Ost2(B)

1 Instituto de Informática, PGMicro,
Universidade Federal do Rio Grande do Sul - UFRGS, CP. 15064, Av. Bento

Gonçalves, 9500., Porto Alegre 91501-970, Brazil
{jfgava,reis}@inf.ufrgs.br

2 Wolfson School, Loughborough University, Loughborough, UK
l.ost@lboro.ac.uk

Abstract. To achieve a substantial reliability and safety level, it is
imperative to provide electronic computing systems with appropriate
mechanisms to tackle soft errors. This paper proposes a low-cost system-
level soft error mitigation technique, which allocates the critical appli-
cation function to a pool of specific general-purpose processor registers.
Both the critical function and the register pool are automatically selected
by a developed profiling tool. The proposed technique was validated
through more than 400K fault injections considering a Linux kernel,
different benchmarks, and two multicore Arm processor architectures
(ARMv7-A and ARMv8-A). Results show that our technique signifi-
cantly reduces the code size and performance overheads while provid-
ing soft error reliability improvement compared with the Triple Modular
Redundancy (TMR) technique.

Keywords: Multicore · Soft error reliability · Mitigation technique ·
Fault tolerance

1 Introduction

Multicore architectures are being adopted in many industrial segments such
as automotive, medical, consumer electronics, and high-performance computing
(HPC). Applications running on such architectures differ in terms of security,
reliability, performance, and power requirements. To achieve a substantial relia-
bility and safety level, it is imperative to provide electronic computing systems
with appropriate mechanisms to tackle systematic or transient faults, also known
as soft errors or Single Event Upset (SEU). While the former originates from
hardware and software design defects, soft errors are those caused by alpha par-
ticles or atmospheric neutrons [24]. The occurrence of soft errors can either cor-
rupt the memory data, the output of a program, or even crash the entire system,
which depending on its criticality level can lead to life-threatening failures.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 235–253, 2021.
https://doi.org/10.1007/978-3-030-81641-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_11

236 J. Gava et al.

The soft error mitigation problem can be tackled both in hardware and soft-
ware [23]. While hardware approaches lead to the area and power overhead,
software techniques are generally implemented on a per-application basis that
usually incurs in performance penalties due to the redundant computation. Such
additional overhead might restrict the use of costly mitigation techniques under
resource-constrained devices. Furthermore, the adoption of soft error mitiga-
tion techniques also adds development complexity, which has a direct impact on
the time-to-market. Examples of soft error mitigation techniques include, among
others, Error Detection and Correction Code (EDAC) and Triple Module Redun-
dancy (TMR).

This paper addresses the above challenges by proposing a novel lightweight
system-level soft error mitigation technique, called Register Allocation Technique
(RAT) [13]. The proposed technique along with the developed profilling toolset
enables software engineers to isolate and allocate the most critical application
function to a pool of least used general-purpose processor registers. RAT was
compared against a selective TMR technique [11], considering a Linux kernel, 13
applications, a dual-core and a quad-core ARM processor. Results demonstrated
that RAT reduces the code size and performance overheads while providing
reliability improvement.

The rest of this paper is organized as follows. Section 2 presents basic con-
cepts and related works in software soft error mitigation techniques. Section 3
describes the proposed mitigation technique. In Sect. 4, the experimental setup
and adopted evaluation metrics are presented. In Sect. 5, the efficiency of RAT
is evaluated, and a specific case study analyzing the registers criticality is pre-
sented. Section 6 evaluates the impact of instruction set architectures (ISAs) on
the RAT efficiency (i.e., ARMv7-A 32 and ARMv8-A 64 bits). Finally, Sect. 7
presents final remarks and future works.

2 Fundamental Concepts and Related Works

2.1 Fault Tolerance Taxonomy

The soft error assessment and mitigation literature is abundant, requiring a
taxonomy to classify the different approaches. This work considers the definitions
from [3,17] for fault, error, and failure. A fault is an event that may cause the
internal state of the system to change, e.g., a radiation particle strike. When a
fault affects the system’s internal state, it becomes an error. If the error causes
a deviation of at least one of the system’s external states, then it is considered
as a failure.

The most commonplace classification for soft error assessment considers three
classes: Silent Data Corruption (SDC) occurs when the system does not detect a
fault and the outcome of the application is affected; In Detected Unrecoverable
Error (DUE) on the other hand, the fault is detected and it is not possible to con-
tinue the execution (e.g., segmentation fault); and Masked, when the application
outcome and the system state are the same as a faultless execution.

RAT Mitigation Technique 237

As mentioned before, soft error mitigation techniques can be implemented
in hardware, software, or a combination of both. The next Section reviews only
the software-based approaches.

2.2 Software-Based Soft Error Mitigation Techniques

A processor-based system can be affected by two main types of soft errors:
control-flow and data-flow. A control-flow error occurs when the error causes
deviation from the correct program flow (e.g., incorrect branch). The data-flow
error refers to the soft error caused by a bit-flip in a storage component, such
as a register or memory element. They can, for instance, affect the output of
a program generating an SDC, or leading to a DUE when computing a wrong
memory address.

Aiming to mitigate both types of soft error effects, the following works have
promoted some software system-level techniques, i.e., techniques that can be
applied at the software architectural level (e.g., application, operating system
(OS)). In [6] and [18] tools that apply fault tolerance techniques in C/C++ appli-
cations are proposed. Supported transformations are architecture-independent,
but the language is fixed, and the compiler may remove redundant code during
the compiler optimization phases. The focus of [18] is on low-cost safety-critical
applications, where the high memory and speed overheads (about 3–4 times)
are not important metrics. Another similar tool is the REliable Code COmpiler
(RECCO) [6], which relies on code reordering and selective variable duplication.
In [22], authors use genetic algorithms to find a combination of optimization
parameters (i.e., compilation flags) that increase the reliability of the final binary
and present a reasonable trade-off in terms of performance, and memory size.
The proposed technique was evaluated considering an FPGA implementation
that was exposed to a proton irradiation test. In [21], the authors implemented
in C code two mitigation techniques: the TMR and the Conditional Modular
Redundancy (CMR). Their results have shown that both techniques do not
provide a reasonable protection to a complex system executing Linux kernel.
According to the authors, the OS itself is an enormous source of errors and need
to be protected if employed on safety-critical systems.

The downside of aforementioned approaches is the fact that during the com-
piler optimization phase, parts of the protected code (e.g., redundant functions)
may be wrongly removed. One solution to overcome such restriction relies on
modifying the assembly code after the compilation. A popular instruction-level
mitigation technique introduced by [19] is the Swift-R, which implements TMR
to recover from soft errors in the register file. Instead of duplicating instructions,
it triplicates, and changes the checking points to a voter mechanism. In [16],
they apply the SWIFT-R to protect specific registers and find the best trade-
off. They developed a generic intermediate language and their own compilation
infrastructure. Although the idea is interesting, a considerable effort is neces-
sary to support new processor architecture, limiting its usability. Authors in [10]
proposed the Configurable Fault Tolerance Tool (CFT-tool) that modifies the

238 J. Gava et al.

assembly code by applying different data-flow and control-flow protection tech-
niques. Although this approach does not suffer from compiler optimization, it is
architecture-dependent. The CFT-tool uses a configuration file to minimize this
limitation. However, this file needs to be hand-made for each new ISA. Shirvani
et al. [23] propose a software implementation of EDAC, i.e., an independent task
that is executed periodically. Results show their approach provides protection
for code segments and can enhance the system reliability with a lower check-bit
overhead with relation to other techniques (e.g., Hamming, Parity).

Different from the reviewed works, RAT does not involve code redundancy,
and it is an architecture-independent approach. Furthermore, RAT is a fully
automated approach that is developed on the basis of LLVM backend, enabling
its extension and combination with other soft error mitigation techniques, as
shown in Sect. 5.

3 Register Allocation Technique (RAT)

Rather than implementing a toolset from scratch, we have adopted a flexible
virtual platform (VP) that provides us with the necessary means (i.e., simulator
with processor and component models, full software behavior observability) to
implement the proposed technique. RAT was implemented on the basis of OVP-
sim framework [14] to enable a fast design space exploration, but other VPs with
similar support could also be used (e.g., gem5 [7]). The main steps of the RAT
(Fig. 1) are as follows:

Fig. 1. Main steps of proposed register allocation technique (RAT).

A. Software stack (i.e., application, operating system, drivers) source code selec-
tion.

B. Target processor architecture selection and source code compilation using
Clang/LLVM 6.0.1.

RAT Mitigation Technique 239

C. In this step, the application is executed, and essential information are
extracted (i.e., processor register file utilization and critical function). Note
that the software engineer can either determine the most critical applica-
tion function or use the default option of our toolset, which selects the most
executed one.

D. Here, our tool extracts, from the object code, the type (i.e., 32 or 64-bit)
and the number of registers needed to be reserved to the function defined as
critical in the previous step. In this stage, the register pool is set following
the strategy of allocating least-used general-purpose registers for the critical
function.

E. In this step, a new compilation is performed, taking into account the critical
function and the register pool previously set. The underlying compilation
uses a modified version of the LLVM Fast Register Allocator, which consid-
ers arguments (i.e., restrictions) that are passed to LLVM Static Compiler
(LLC) through a command line (Fig. 2). Note that we do not control the
use of the registers available in the pool, the compiler decides which ones to
prioritize.

F. Finally, the resulting hardened binary is generated by the LLVM linker
(LLD).

Fig. 2. Example of C code conversion to ARMv8-A assembly without and with RAT
flags compilation.

The left-side of Fig. 2 shows an example of a C language function that takes
three integer parameters as input, performs arithmetic operations, and returns
an integer value. The resulting 64-bit ARM (Aarch64) assembly code is shown in
the right-side of Fig. 2, where at the top the default register allocation is shown.

240 J. Gava et al.

In turn, at the bottom right of Fig. 2 the RAT technique is applied, limiting
the function register pool to “W21, W22, W23”. By the calling convention, the
ARMv8-A general-purpose registers with indexes from 0 to 7 are used for inputs
and result. When restricting registers outside this range, the compiler only needs
to insert some MOV instructions at the beginning and end of the function. As
mentioned before, RAT is a compiler-based mitigating technique, thus it can be
associate with other techniques as well. Such capacity is explored in Sect. 5.

4 Experimental Setup and Evaluation Metrics

In order to demonstrate the effectiveness of RAT, we adopted the fault injection
simulator proposed in [5], which is also implemented on the basis of OVPsim.
Fault analyzes are obtained by injecting faults (i.e., bit-flips) in the general-
purpose registers (i.e., X0-X30) of a dual-core and a quad-core ARM Cortex-
A72, in a random order. Conducted experiments include 320K fault injections
in a realistic software stack including unmodified Linux kernel, a standard par-
allelization library (OpenMP), and considering 13 applications taken from the
Rodinia Benchmark Suite [9] as shown in Table 1. One of the main concerns
when assessing the reliability of a system is to develop a precise, well-covered
and realistic approach. In this sense, this work sought to ensure that the num-
ber of fault injections has a statistical significance by applying the equations
developed by [15]. This work injects 3100 faults per campaign, thus generating
a 1.75% error margin with 95% confidence level.

Table 1. Rodinia Benchmarks

Benchmark Domain

A Backprop Pattern Recognition

B BFS Graph Algorithms

C HeartWall Medical Imaging

D HotSpot Physics Simulation

E HotSpot3D Physics Simulation

F Kmeans Data Mining

G LUD Linear Algebra

H Myocyte Biological Simulation

I NN Data Mining

J particle-filter Medical Imaging

K PathFinder Grid Traversal

L SradV1 Image Processing

M SradV2 Image Processing

Depending on the application’s nature, the three categories classification
described in Sect. 2. A may be inadequate to express all the possible misbehav-

RAT Mitigation Technique 241

iors. With this in mind, the results are classified according to Cho [12], which
defines five possible behaviors for a system in the presence of a fault: Vanish:
no fault traces are left in both memory and architectural state; Output not
Affected (ONA): the resulting memory is not modified, however, one or more
remaining bits of the architectural state is incorrect; Output Memory Mis-
match (OMM): the application terminates without any error indication, and
the resulting memory is affected; Unexpected Termination (UT): the appli-
cation terminates abnormally with an error indication; Hang: the application
does not finish requiring a preemptive removal.

Software engineers might categorize the criticality of application functions
entirely differently depending on their criteria and/or system domains. For the
sake of simplicity, this work assumes that most executed functions are the critical
ones. Although not ideal, such an approach is adequate to evaluate the benefits
and drawback of the proposed mitigation technique. RAT reliability, code and
performance overheads are compared against the selective TMR implementation
(i.e., VAR3+) [4].

4.1 Reference Mitigation Technique - Selective TMR

In [11], the authors describe a set of rules for data-flow techniques that aim to
detect faults affecting values stored in registers bank and memory devices. In this
work, we use a triplication instead of duplication since the target is to mitigate
the occurrence of soft error. The selective TMR technique implementation was
based on [8] inside the Clang/LLVM 6.0.1. The VAR3+ technique was chosen
due to its capability of increasing reliability while maintaining a low code and
performance overhead compared with previous TMR-based techniques. In this
technique, each register has a replica (rule G1), and all instructions, except for
branches and stores, are replicated (D2). The replicas are checked before every
load, store, or branch instruction (C3, C4, C5, C6). Some acronyms used in
the following sections are RAT: reference application + register allocation tech-
nique, TMR: selective TMR technique (VAR3+), and TMR+RAT: TMR + register
allocation technique.

4.2 Evaluation Metrics

To adequately assess the soft error mitigation technique reliability, [20] intro-
duced a metric called Mean Work To Failure (MWTF), which is calculated by
the average amount of work that an application can perform for each error.
A unit of work is a general concept whose specific definition depends on the
application. The unit work is defined here as a correct program execution (i.e.,
Vanished fault), while the number of errors is defined as the sum of ONA, OMM,
UT, and Hang results as shown in (1).

MWTF =
V anished

ONA + OMM + UT + Hang
(1)

242 J. Gava et al.

This work also employs the Fault Coverage metric, which describes the per-
centage of faults that are either detected or masked. It is represented as the ratio
of detected and masked faults (i.e., Vanished) to the total number of faults that
occurred, as shown in (2).

Fcoverage =
UT + V anished

ONA + OMM + Hang
(2)

Finally, we use the Fault Coverage Increase (FCI) to describe the gain in the
percentage of fault coverage when comparing the mitigation techniques.

5 RAT Efficiency Analysis

5.1 RAT Code and Performance Overhead

To provide relevant overhead measures, the code size information was extracted
from the application object files, while the performance figures were obtained
from the gem5 full system simulator [7].

Fig. 3. Code size overhead for ARM Cortex-A72 processor when comparing the impact
of the mitigation techniques with the original reference benchmark (Ref).

Figure 3 shows a substantial code size overhead (e.g., up to 84.86% - bench-
mark C) when the TMR technique is used. In turn, the cost of the proposed
technique is negligible, 0.15% in the worst case (benchmark K). Such low over-
head is due to the RAT approach, which only adds MOV instructions at the

RAT Mitigation Technique 243

beginning and end of the critical functions. As a consequence, the performance
of applications is not jeopardized when RAT is used (i.e., less than 1% for all
scenarios).

Results in Fig. 4a and b show that the use of the TMR can lead to up to
38.5% and 50% of performance penalty (benchmark C) when running on dual
and quad-core ARM Cortex A72 processors. The reason why there is an increase
in the execution time in the quad-core when compared to the dual-core is due to
the increasing execution of OS thread synchronization routines that is not linear
with the number of cores. Note that the additional execution time of TMR is small
for a technique that triples instructions and inserts voters into the code. This
behavior is justified by the fact that only instructions inside the application’s
scope are replicated, and the majority of Rodinia applications rely on external
library calls. One possible solution to this problem implies replicating function
calls; however, there are possible collateral damages inherent to this approach
(e.g., modifying the same data structure multiple times).

(a) Dual-core performance overhead (b) Quad-core performance overhead

Fig. 4. Performance overhead for dual (b) and quad-core (c) ARM Cortex-A72 proces-
sor when comparing the impact of the mitigation techniques with the original reference
benchmark (Ref).

5.2 RAT Soft Error Reliability Evaluation

Techniques Comparison. Figure 5 and 6 show the reliability comparison
between the three mitigation techniques. In terms of MWTF on Fig. 5, the TMR
implementation provides higher reliability in 5 out of 13 cases (C, D, F, I, K),
while the RAT in 4 cases (A, E, J, L), and the TMR+RAT in the other 4 cases (B,
G, H, M). Results show that RAT can also provide reliability improvements of
up to 40% in some cases compared to TMR. Results also show that, depending
on the application nature, TMR+RAT is an appropriated combination to improve
system reliability. For instance, taking the benchmarks B and K as examples, it
is possible to identify a considerable difference in the MWTF gain when com-
paring the two TMR implementations. While benchmark B showed a reliability

244 J. Gava et al.

Fig. 5. Normalized reliability comparison between each technique considering the orig-
inal benchmark code as reference (Ref) for a dual-core ARM Cortex-A72.

improvement of 40% for TMR+RAT, the use of TMR provides an improvement of
51% for K.

Figure 6 shows a significant increase in the FCI average compared to the
results in the dual-core processor, 5.47% versus 1.48%. Note that all reliability
metrics have been reduced from dual-core to quad-core, and the increase was
only about the reference benchmark. This behavior occurs due to the rise in the
execution of thread management tasks, which have a higher susceptibility to soft
errors, as mentioned earlier. The TMR technique obtained better reliability results
in 6 of the 13 benchmarks (C, E, F, J, K, L), RAT was better in 2 cases (D, H),
and TMR+RAT was better in 5 cases (A, B, G, I, M). Note that the applications’
reliability varies from one mitigation technique to another. For that reason,
we claim that engineers can use our toolset to analyze the impact of different
mitigation techniques at the system-level, so they might be able to identify the
most suitable one considering their application’s/system’s constraints. Further, a
more in-depth analysis is carried out, verifying the results of the fault injections
in each register for a specific case study.

Registers Criticality Analysis. Figur 7 shows how the 64-bit ARM
(AArch64) calling convention works. The X0–X7 registers are used for input
parameters and return functions; the X8 is used to hold an indirect return loca-
tion address; the X9–X15 are used to hold local variables (caller saved); the X16
and the X17 are the Intra-Procedure-call scratch registers; the X18 can be used
for some OS-specific purpose; the X19–X28 are callee-saved registers; the X29 is
the frame pointer; while the X30 is the link register, used to return from subrou-

RAT Mitigation Technique 245

Fig. 6. Normalized reliability comparison between each technique considering the orig-
inal benchmark code as reference (Ref) for a quad-core ARM Cortex-A72.

tines. To better explain the RAT benefits, we chose the particle-filter benchmark
(J) as a case study.

The results show that half of the registers (X0–X16) do not suffer significantly
from soft errors (Fig. 8), when the particle-filter benchmark (J) is executed on a
dual-core ARM Cortex-A72 processor. In contrast, the rest of the registers suffers
strongly from the injected faults. Especially the callee-saved category that is used
to hold long-lived values that must be preserved across calls and are used by the
Linux kernel. Theoretically, there are registers that take a longer time to get
written, but they are continuously read. However, as shown in Fig. 9, the fault
masking increases when we apply the RAT technique and limit the number of
registers that will be used to execute the most performed function. In general,
this effect occurs because when entering the critical function, the callee-saved
registers are saved in memory and return to their original values at the end of
the execution. In practice, this behavior ends up reducing the lifetime of these
registers, making them more resilient to soft errors. The best examples are from
the X17 and X19 registers. For the X17 register, we have a fault-masking rate
of 70% in the reference application, and 98% when using the RAT mitigation
technique. For the X19 register, we have a fault-masking rate of 37% in the
reference application, and 58% when using the RAT technique.

246 J. Gava et al.

Fig. 7. Allocation of the general-purpose registers following the AArch64 calling con-
vention [2].

Fig. 8. Registers criticality for the Reference particle-filter benchmark running on a
dual-core ARM Cortex-A72.

Results demonstrated that RAT reduces the code size and performance over-
heads while providing reliability improvement when considering a state-of-the-
art 64-bits processor, which has a large register pool (i.e., 32 general-purpose reg-
isters). Researchers and industrial leaders are also developing optimized machine-
learning algorithms [1], aiming to enable their execution in resource-constrained

RAT Mitigation Technique 247

Fig. 9. Registers criticality for the RAT version of particle-filter benchmark running
on a dual-core ARM Cortex-A72.

devices. The resulting scenario calls for lightweight soft error mitigation tech-
niques such as the one proposed here. The next Section investigates the RAT
efficiency when applied to a more resource-constrained architecture.

6 RAT Efficiency in Distinct Processor Architectures

To assess the impact of the processor architecture on RAT efficiency, this Section
considers the ARMv7-A 32-bit and the ARMv8-A 64-bit instruction set archi-
tectures.

6.1 ARMv7-A General-Purpose Registers

The ARMv7-A has 16 registers (R0–R15) with 32 data bits each. Removing the
special use registers (IP, SP, LR, PC), there are only 12 extra registers that RAT
can use to allocate the application critical function. As explained in the Sect. 5.2,
there is also a particular ARMv7-A calling convention. As shown in Fig. 10, the
initial registers (R0-R3) are used to pass input and function return parameters,
the R4–R11 are used for local variables, and the R12–R15 are special registers
responsible for managing stack, function return address, and jumps during the
application execution.

248 J. Gava et al.

For example, if a routine has more than four arguments, besides using R0–
R3, the stack will need to be used to store the extra parameters. Moreover, if
R4–R11 are not sufficient, R0–R3 and R12 can be used, and even LR when there
are no other subroutine calls.

Fig. 10. Register usage for ARMv7 architecture.

6.2 Soft Error Reliability Assessment for the ARMv7-A
Considering Different Mitigation Techniques

In order to understand how limiting the number of available registers affects the
soft error reliability results, the experiments consider a subset of seven appli-
cations of the Rodinia Benchmark Suite executing in dual-core and quad-core
Arm Cortex-A9 processors. For each scenario, 1600 SEU fault injections were
performed targeting the 16 general-purpose registers. Based on the equation
defined in [15], our results have a margin of error of 2.45% with a 95% confi-
dence level.

Figure 11 shows the MWTF results normalized by the reference application
version indicated on the left y-axis. Each bar in the graph indicates a mitigation
technique, and each group of three bars refers to a different application. The right
y-axis shows the increase/decrease in the fault coverage for each case, which are
indicated by the red dots. Following the same format adopted in the previous
Section, results consider dual-core and quad-core processor architectures and
the three soft error mitigating techniques (i.e., TMR, TMR-RAT, and RAT).
For the dual-core results (Fig. 11a), it is possible to observe a low soft error
reliability improvement when applying the mitigation techniques (see MWTF
and FC values). While TMR presents the higher MWTF factor for the kmeans
application (19%), RAT shows the best FCI factor for the same application (9%).

RAT Mitigation Technique 249

(a) Dual-core reliability results

(b) Quad-core reliability results

Fig. 11. Reliability improvement for dual (a) and quad-core (b) Arm Cortex-A9 proces-
sor when comparing the impact of the mitigation techniques with the original reference
benchmark (Ref).

250 J. Gava et al.

The application of RAT leads to a low reliability improvement (MWTF fac-
tor equal to 7% - best case) at a low extra code overhead. The low reliability
improvement is expected; since the number of available registers is low, the regis-
ters’ allocation can be precisely the same as the reference version if the function
defined as critical already uses all possible registers.

Quad-core soft error reliability results (Fig. 11b) provide a lower MWTF
and FCI average compared with the dual-core configuration. The more cores
the higher is the probability of a fault happening during the operating system
execution. In this case, the operating system puts more pressure on the registers,
leading to more spilling to temporary values stored in memory, thus requiring an
increase in the proportional time slice of the application’s total execution. This
effect reduces the chance of a fault being masked within one of the hardened
functions. For instance, the best achieved FCI factor is only 4% when RAT is
applied to the backprop application. In turn, the higher MWTF factor of 13%
is achieved when TMR is applied for the same application.

6.3 RAT Soft Error Efficiency Comparison: ARMv7-A vs
ARMv8-A

The purpose of this section is to make a more detailed comparison of the reli-
ability results when applying TMR, TMR-RAT, and RAT techniques to seven
Rodinia applications running on different processor architectures.

Figure 12 shows the normalized MWTF of each application (i.e., unprotected
and protected versions) obtained from the fault injection campaigns considering
the Arm Cortex-A72 and the Arm Cortex-A9. Each bar in the 4-bar structure
of the graph indicates a different version of each application.

Analyzing Fig. 12a, we see that the ARM Cortex-A72 dual-core provides a
significant MWTF improvement in all applications. The minimum increase is
1.93× (pathfinder - R), and the maximum 4.33× (backprop - TMR). Results
show RAT can benefit from processors with a larger number of registers. Results
obtained from the quad-core processor scenarios (Fig. 12b), show a reasonable
reduction in the MWTF improvement. The minimum reliability improvement of
0.92× is achieved when applying RAT to the hotspot application. In turn, the
use of TMR+RAT incurs an improvement of 3.11× for the kmeans application.
Therefore, the increase of system resource utilization leads to a decrease of more
than 70% in the normalized MWTF in some cases (i.e., hotspot and myocyte).

RAT Mitigation Technique 251

(a) Dual-core reliability mismatch results

(b) Quad-core reliability mismatch results

Fig. 12. Reliability mismatch for dual (a) and quad-core (b) Arm Cortex-A72 processor
when comparing with Arm Cortex-A9.

252 J. Gava et al.

7 Conclusion and Future Works

The importance of using selective and lightweight soft error mitigation tech-
niques is increasing every year. The results show that redundancy does not
always ensure reliability, and the other factors such as code size and performance
overheads must be considered. In this regard, the proposed RAT offers a good
compromise in terms of reliability improvement, code size overhead, and perfor-
mance penalty when compared to TMR. Hardened applications, resulting from
adopted mitigation techniques, present a lower soft error reliability improvement
when executed in the Cortex-A9 (i.e., ARMv7-A ISA). An improvement in the
MWTF factor of up to 4.33× is achieved for the same configuration (i.e., mit-
igation technique and application) when executed in Arm Cortex-A72. Future
works include further investigation of RAT considering other processor architec-
tures and more complex benchmarks that do not depends on external libraries. It
may also be interesting to analyze the RAT’s impact when dealing with floating
point registers.

References

1. Abich, G., Gava, J., Reis, R., Ost, L.: Soft error reliability assessment of neural
networks on resource-constrained IoT devices. In: 2020 27th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), pp. 1–4 (2020). https://
doi.org/10.1109/ICECS49266.2020.9294951

2. Arm: ARMv8-A parameters in general-purpose registers (2020). https://developer.
arm.com/docs/den0024/latest/the-abi-for-arm-64-bit-architecture/register-use-
in-the-aarch64-procedure-call-standard/parameters-in-general-purpose-registers

3. Avižienis, A., Laprie, J.-C., Randell, B.: Dependability and its threats: a taxonomy.
In: Jacquart, R. (ed.) Building the Information Society. IIFIP, vol. 156, pp. 91–120.
Springer, Boston, MA (2004). https://doi.org/10.1007/978-1-4020-8157-6 13

4. Azambuja, J.R., Lapolli, A., Altieri, M., Kastensmidt, F.L.: Evaluating the effi-
ciency of data-flow software-based techniques to detect sees in microprocessors. In:
2011 12th Latin American Test Workshop (LATW), pp. 1–6 (2011). https://doi.
org/10.1109/LATW.2011.5985914

5. Bandeira, V., Rosa, F., Reis, R., Ost, L.: Non-intrusive fault injection techniques
for efficient soft error vulnerability analysis. In: 2019 IFIP/IEEE 27th Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC), pp. 123–128 (2019).
https://doi.org/10.1109/VLSI-SoC.2019.8920378

6. Benso, A., Chiusano, S., Prinetto, P., Tagliaferri, L.: A C/C++ source-to-source
compiler for dependable applications. In: Proceeding International Conference on
Dependable Systems and Networks, DSN 2000, pp. 71–78 (2000). https://doi.org/
10.1109/ICDSN.2000.857517

7. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2),
1–7 (2011). https://doi.org/10.1145/2024716.2024718

8. Bohman, M., James, B., Wirthlin, M.J., Quinn, H., Goeders, J.: Microcontroller
compiler-assisted software fault tolerance. IEEE Trans. Nucl. Sci. 66(1), 223–232
(2019). https://doi.org/10.1109/TNS.2018.2886094

9. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: 2009
IEEE International Symposium on Workload Characterization (IISWC), pp. 44–54
(2009). https://doi.org/10.1109/IISWC.2009.5306797

https://doi.org/10.1109/ICECS49266.2020.9294951
https://doi.org/10.1109/ICECS49266.2020.9294951
https://developer.arm.com/docs/den0024/latest/the-abi-for-arm-64-bit-architecture/register-use-in-the-aarch64-procedure-call-standard/parameters-in-general-purpose-registers
https://developer.arm.com/docs/den0024/latest/the-abi-for-arm-64-bit-architecture/register-use-in-the-aarch64-procedure-call-standard/parameters-in-general-purpose-registers
https://developer.arm.com/docs/den0024/latest/the-abi-for-arm-64-bit-architecture/register-use-in-the-aarch64-procedure-call-standard/parameters-in-general-purpose-registers
https://doi.org/10.1007/978-1-4020-8157-6_13
https://doi.org/10.1109/LATW.2011.5985914
https://doi.org/10.1109/LATW.2011.5985914
https://doi.org/10.1109/VLSI-SoC.2019.8920378
https://doi.org/10.1109/ICDSN.2000.857517
https://doi.org/10.1109/ICDSN.2000.857517
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/TNS.2018.2886094
https://doi.org/10.1109/IISWC.2009.5306797

RAT Mitigation Technique 253

10. Chielle, E., Barth, R.S., Lapolli, A.C., Kastensmidt, F.L.: Configurable tool to
protect processors against SEE by software-based detection techniques. In: 2012
13th Latin American Test Workshop (LATW), pp. 1–6 (2012). https://doi.org/10.
1109/LATW.2012.6261259

11. Chielle, E., Kastensmidt, F.L., Cuenca-Asensi, S.: Overhead reduction in data-
flow software-based fault tolerance techniques. In: Kastensmidt, F., Rech, P.
(eds.) FPGAs and Parallel Architectures for Aerospace Applications, pp. 279–291.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-14352-1 18

12. Cho, H., Mirkhani, S., Cher, C.Y., Abraham, J.A., Mitra, S.: Quantitative evalua-
tion of soft error injection techniques for robust system design. In: Proceedings of
the 50th Annual Design Automation Conference, DAC 2013. Association for Com-
puting Machinery, New York (2013). https://doi.org/10.1145/2463209.2488859

13. Gava, J., Reis, R., Ost, L.: RAT: a lightweight system-level soft error mitiga-
tion technique. In: 2020 IFIP/IEEE 28th International Conference on Very Large
Scale Integration (VLSI-SOC), pp. 165–170 (2020). https://doi.org/10.1109/VLSI-
SOC46417.2020.9344080

14. Imperas: OVPsim Simulator (2020). http://www.ovpworld.org
15. Leveugle, R., Calvez, A., Maistri, P., Vanhauwaert, P.: Statistical fault injection:

quantified error and confidence. In: 2009 Design, Automation Test in Europe
Conference Exhibition, pp. 502–506 (2009). https://doi.org/10.1109/DATE.2009.
5090716

16. Martinez-Alvarez, A.: Compiler-directed soft error mitigation for embedded sys-
tems. IEEE Trans. Dependable Secure Comput. 9(2), 159–172 (2012). https://doi.
org/10.1109/TDSC.2011.54

17. Mukherjee, S.S., Emer, J., Reinhardt, S.K.: The soft error problem: an architectural
perspective. In: 11th International Symposium on High-Performance Computer
Architecture, pp. 243–247 (2005). https://doi.org/10.1109/HPCA.2005.37

18. Nicolescu, B., Velazco, R.: Detecting Soft Errors by a Purely Software Approach:
Method, Tools and Experimental Results, pp. 39–51. Springer, Boston (2003).
https://doi.org/10.1007/0-306-48709-8 4

19. Reis, G.A., Chang, J., August, D.I.: Automatic instruction-level software-only
recovery. IEEE Micro 27(1), 36–47 (2007). https://doi.org/10.1109/MM.2007.4

20. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I., Mukherjee,
S.S.: Software-controlled fault tolerance. ACM Trans. Archit. Code Optim. 2(4),
366–396 (2005). https://doi.org/10.1145/1113841.1113843

21. Rodrigues, G.S., Kastensmidt, F.L., Reis, R., Rosa, F., Ost, L.: Analyzing the
impact of using pthreads versus OpenMP under fault injection in ARM Cortex-A9
dual-core, pp. 1–6 (2016). https://doi.org/10.1109/RADECS.2016.8093180

22. Serrano-Cases, A., Morilla, Y., Mart́ın-Holgado, P., Cuenca-Asensi, S., Mart́ınez-
Álvarez, A.: Nonintrusive automatic compiler-guided reliability improvement of
embedded applications under proton irradiation. IEEE Trans. Nucl. Sci. 66(7),
1500–1509 (2019). https://doi.org/10.1109/TNS.2019.2912323

23. Shirvani, P.P., Saxena, N.R., McCluskey, E.J.: Software-implemented EDAC pro-
tection against SEUs. IEEE Trans. Reliab. 49(3), 273–284 (2000). https://doi.org/
10.1109/24.914544

24. Snir, M., et al.: Addressing failures in exascale computing. Int. J. High Perform.
Comput. Appl. 28(2), 129–173 (2014). https://doi.org/10.1177/1094342014522573

https://doi.org/10.1109/LATW.2012.6261259
https://doi.org/10.1109/LATW.2012.6261259
https://doi.org/10.1007/978-3-319-14352-1_18
https://doi.org/10.1145/2463209.2488859
https://doi.org/10.1109/VLSI-SOC46417.2020.9344080
https://doi.org/10.1109/VLSI-SOC46417.2020.9344080
http://www.ovpworld.org
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1109/TDSC.2011.54
https://doi.org/10.1109/TDSC.2011.54
https://doi.org/10.1109/HPCA.2005.37
https://doi.org/10.1007/0-306-48709-8_4
https://doi.org/10.1109/MM.2007.4
https://doi.org/10.1145/1113841.1113843
https://doi.org/10.1109/RADECS.2016.8093180
https://doi.org/10.1109/TNS.2019.2912323
https://doi.org/10.1109/24.914544
https://doi.org/10.1109/24.914544
https://doi.org/10.1177/1094342014522573

SANSCrypt: Sporadic-Authentication-Based
Sequential Logic Encryption

Yinghua Hu(B), Kaixin Yang, Shahin Nazarian, and Pierluigi Nuzzo

University of Southern California, Los Angeles, CA 90089, USA
{yinghuah,kaixinya,shahin.nazarian,nuzzo}@usc.edu

Abstract. Sequential logic encryption is a countermeasure against
reverse engineering of sequential circuits based on modifying the orig-
inal finite state machine of the circuit such that the circuit enters a
wrong state upon being reset. A user must apply a certain sequence
of input patterns, i.e., a key sequence, for the circuit to transition to
the correct state. The circuit then remains functional unless it is pow-
ered off or reset again. Most sequential encryption methods require
the correct key to be applied only once. In this paper, we propose
a novel Sporadic-Authentication-Based Sequential Logic Encryption
method (SANSCrypt) that circumvents the potential vulnerability asso-
ciated with a single-authentication mechanism. SANSCrypt adopts a new
temporal dimension to logic encryption, by requiring the user to sporad-
ically perform multiple authentications according to a protocol based on
pseudo-random number generation. We provide implementation details
of SANSCrypt and present a design that is amenable to time-sensitive
applications. In SANSCrypt, the authentication task does not signifi-
cantly disrupt the normal circuit operation, as it can be interrupted or
postponed upon request from a high-priority task with minimal impact
on the overall performance. Analysis and validation results on a set of
benchmark circuits show that SANSCrypt offers a substantial output
corruptibility if the key sequences are applied incorrectly. Moreover, it
exhibits exponential resilience to existing attacks, including SAT-based
attacks, while maintaining a reasonably low overhead.

Keywords: Hardware Security · Sequential Encryption · Sporadic
Authentication

1 Introduction

The ever-increasing costs for the design and manufacturing of modern VLSI sys-
tems have led to a global supply chain, where several important steps, such as
verification, fabrication, testing, and packaging, are outsourced to third-party
companies. As proprietary design information and intellectual property (IP)
blocks inevitably get to the supply chain, an untrusted third party may gain
access to a sufficient amount of critical design information to potentially reverse

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 255–278, 2021.
https://doi.org/10.1007/978-3-030-81641-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_12

256 Y. Hu et al.

engineer the design and massively reproduce it for illegal profit. Another possi-
ble consequence of reverse engineering is Hardware Trojan (HT) insertion, which
can either disrupt the normal circuit operation [1] or provide the attacker with
access to critical data or software running on the chip [2]. Both types of HTs
can be destructive for safety-critical applications, such as autonomous driving
cars and implantable medical devices.

Countermeasures for reverse engineering, such as logic encryption [3–6], inte-
grated circuit (IC) camouflaging [7], split manufacturing [8], and watermark-
ing [9] have been developed over the past decades to either increase the hardness
of IC reverse engineering or embed unique proprietary signatures on the IC.
Among these, logic encryption has received significant attention as a promising,
low-overhead countermeasure. Logic encryption achieves IC protection by prop-
erly modifying the original circuit such that a user can only access the correct
function after configuring the circuit with a correct key pattern. Otherwise, the
circuit function remains hidden, and the output different from the correct one.

Various logic encryption techniques [3–6] and potential attacks [10–12] have
appeared in the literature, as well as methods to systematically evaluate them [13,
14]. A category of techniques [3–5], referred to as combinational encryption, is
designed to modify and protect combinational circuits or the combinational logic
portions of sequential circuits. When the circuit scan chains are accessible to the
attackers, one of the most successful attacks against combinational encryption
is the Boolean satisfiability (SAT)-based attack [10]. Even if the scan chains are
not accessible, e.g., due to scan chain encryption and obfuscation [15–17], a vari-
ant of SAT-based attacks [18,19] can still succeed, at a higher cost, by leveraging
methods from bounded model checking to unroll the sequential circuit. Another
possible vulnerability of combinational encryption methods stems from the cor-
relation between the circuit structure and the correct key, as recently exposed
by an increasing number of attacks [20,21] and theoretical analyses [22]. On the
other hand, sequential logic encryption [6,23,24] targets the state transitions of
the original finite state machine (FSM). Sequential encryption methods typically
introduce additional states and transitions in the original FSM, such that the cir-
cuit enters the encrypted mode upon being reset, exhibiting an incorrect function.
A user must apply a certain sequence of input patterns, i.e., a key sequence, for
the circuit to transition to the correct initial state and enter the functional mode.
Then, the circuit remains functional unless it is powered off or reset again.

Recently, a set of attacks have been reported against sequential encryption
schemes, aiming to retrieve the correct key sequence or the correct circuit func-
tion. Similarly to the aforementioned SAT-based attacks [18,19] to combinational
encryption, sequential encryption can also be attacked via an approach based
on circuit unrolling and bounded model checking [25]. Another attack based on
automatic test pattern generation (ATPG) [26] uses concepts from excitation
and propagation of stuck-at faults to search the key sequence among the test
patterns generated by ATPG. The ATPG-based attack assumes that most stuck-
at faults can only be triggered and detected in the functional mode. Therefore,
the correct authentication key sequence must appear in most of the test pat-
terns generated by ATPG tools. Furthermore, when the attackers have some

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 257

knowledge of the topology of the encrypted FSM, then they can extract and
analyze the state transition graph and bypass the encrypted mode [25]. Overall,
the continuous advances in FSM extraction and analysis tools tend to challenge
any of the existing sequential encryption schemes and call for approaches that
can significantly increase their robustness.

This paper presents a novel Sporadic-Authentication-based Sequential Logic
Encryption scheme (SANSCrypt), which raises the attack difficulty via a multi-
authentication protocol, whose decryption relies on retrieving a set of correct
key sequences as well as the time at which each sequence should be applied. Our
contributions can be summarized as follows:

– A robust, multi-authentication-based sequential logic encryption method that
for the first time, to the best of our knowledge, systematically incorporates
the robustness of multi-factor authentication (MFA) [27] in the context of
hardware encryption.

– An architecture for sporadic re-authentication where key sequences must be
applied at multiple times, determined by a random number generator, to
access the correct circuit functionality.

– A design of the multi-authentication protocol that is suitable for time-
sensitive applications, as it ensures that the real-time execution of time-
critical and safety-critical tasks is not disrupted.

– Security analysis and empirical validation of SANSCrypt on a set of ISCAS’89
benchmark circuits [28], showing exponential resilience against existing
attacks, including SAT-based attacks, and reasonably low overhead.

Analysis and validation results show that SANSCrypt can significantly enhance
the resilience of sequential logic encryption under different attack assumptions.
A preliminary version of the results of this paper appeared in our previous pub-
lication [29], where we first introduced SANSCrypt. In this paper, we present
an improved architecture and protocol design that are specifically amenable to
time-sensitive applications, by allowing the authentication task to be interrupted
or postponed upon request from higher-priority tasks. Moreover, we extend
our analysis of the brute-force attack resilience to account for the attack dif-
ficulty brought by the timing uncertainty about when to apply the correct key
sequences. Finally, we offer an extensive validation of the proposed construction,
showing its ability to protect time-sensitive applications without affecting the
execution of time-critical tasks.

The rest of the paper is organized as follows. We provide an overview of
existing sequential logic encryption methods and related attacks in Sect. 2. In
Sect. 3, we present a multi-authentication protocol applicable to sequential logic
encryption and introduce the basic design and implementation details of SAN-
SCrypt. We then describe an enhanced design that is compatible with time-
sensitive applications. The security level of SANSCrypt is analyzed in Sect. 4,
while Sect. 5 reports the results from functional testing and the overhead after
synthesis. Conclusions are drawn in Sect. 6.

258 Y. Hu et al.

Fig. 1. State transition diagrams for different sequential encryption techniques.

2 Overview of Sequential Logic Encryption

A first sequential logic encryption method based on encrypting the finite state
machine (FSM) of a circuit is HARPOON [6]. After encryption with HAR-
POON, the resulting FSM exhibits two main modes of operation, namely, an
encrypted mode and a functional mode, as shown in Fig. 1 (top left). When
powered on, the circuit starts in the encrypted mode and exhibits incorrect func-
tionality. The user must apply an appropriate sequence of input patterns during
the first few clock cycles to enter the functional mode, in which the correct
functionality is recovered. To claim ownership of the circuit, HARPOON also
creates a set of watermark states in the encrypted mode that can be entered only
when another unique sequence of input patterns, known to the circuit designer,
is applied. However, due to the simple mechanism of HARPOON, there is only
one transition connecting the encrypted mode portion to the functional mode
portion of the state transition diagram (STG) of the FSM. This distinguish-
able feature may help attackers locate and bypass the encrypted mode by FSM
extraction and analysis methods [25].

Several tools [30–32] have been recently developed to facilitate FSM extrac-
tion by identifying the state registers from the circuit netlist. The increasing
accuracy and efficiency of these methods call for encryption techniques that are
more robust in the way they manipulate and obfuscate the STG of the circuit.

Interlocking [23] improves HARPOON by modifying the circuit FSM such
that multiple transitions are available between the states of the encrypted mode
FSM and the ones of the functional mode FSM, as shown in Fig. 1 (bottom left),
making it harder for the attacker to detect the boundary between the two modes.
However, in both HARPOON and Interlocking, once the circuit enters the func-

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 259

Fig. 2. (a) A miter circuit and (b) an unrolled circuit that represents the behavior of
the sequential circuit for the first 3 cycles.

tional mode, it remains there unless it is powered off or reset. Moreover, because
the correct circuit function can only be accessed when the correct key sequence is
applied, attacks based on Automatic Test Pattern Generation (ATPG) [26] can
be successfully mounted most of the times. ATPG-based attacks are based on the
assumption that many stuck-at faults can only be triggered and detected when
the circuit is in the functional mode. Therefore, the correct key sequence can
be efficiently retrieved by analyzing common sub-sequences in the test patterns
generated by ATPG tools.

Dynamic State Deflection [33] adds another level of protection by requiring
an additional key input verification step in the functional mode. If the additional
key input is incorrect, the FSM transitions to a black-hole state cluster which can
no longer be left, as shown in Fig. 1 (top right). However, since the correct value
for the extra key input is fixed over time, the scheme becomes more vulnerable
to SAT-based attacks [18,19].

The original SAT-based attack [10] has proven to be powerful on combi-
national logic encryption [3–5] when the circuit scan chains are accessible to
attackers. The attack can efficiently prune out wrong keys by iteratively solving
a set of SAT problems. At the first iteration, a miter circuit, consisting of two
copies of the encrypted circuit, is assembled as shown in Fig. 2(a). The miter
circuit is used to generate a SAT instance that is solved to search for a distin-
guishing input pattern (DIP). A DIP is an input pattern i, such that there exist
at least two different key patterns, k1 and k2, leading to different outputs for
the encrypted circuits, i.e., F = 1 in Fig. 2(a). Once a DIP is found, the attack
queries an oracle, i.e., a functional circuit that is assumed to be available, to find
the correct output for this DIP. The DIP and the correct output provide addi-
tional constraints for the SAT instance at the next iteration, which contributes
to eliminating a group of wrong keys that do not result in the correct output
when applying the DIP to the encrypted circuit. When no new DIPs are found,
the SAT-based attack terminates, indicating that the remaining keys can all be
used as correct keys.

When the scan chains are not available, a combinational miter circuit can-
not be directly formed and SAT-based attacks [18,19] leverage methods from
bounded model checking [34] to “unroll” the logic loops in the sequential circuit
and obtain a combinational circuit that represents the behavior of the original
circuit over a time horizon, as pictorially shown in Fig. 2(b). The miter circuit is
then built out of the unrolled circuit to execute the SAT-based attack. However,

260 Y. Hu et al.

to successfully terminate the attack, additional steps of model checking must be
taken to ensure that the candidate keys are not only correct up to the current
horizon but also for the original circuit. If this is not the case, the SAT-based
attack must be repeated on unrolled circuit versions for increasingly longer time
horizons to prune out wrong keys that were not detectable over shorter horizons.
As suggested in the literature [25], a similar technique based on circuit unrolling
can be used to attack sequential logic encryption methods. However, a detailed
evaluation of these attacks on sequential encryption has been elusive.

While most of the encryption techniques mentioned above corrupt the circuit
function immediately after reset unless the correct key sequence is applied, DES-
ENC [24], shown in Fig. 1 (bottom right), determines the cycle for transitioning
to the encrypted mode by counting the number of occurrences of a user-defined
rare event in the circuit, unless the correct key sequence is applied. After the
number of occurrences reaches a given threshold, the circuit enters the encrypted
mode. This scheme is more resilient to sequential SAT-based attacks [35] because
it requires unrolling the circuit FSM a large number of times to find the key.
However, the initial transparency window may still expose critical portions of
the circuit functionality.

3 Multi-authentication-Based Sequential Encryption

We introduce the design and implementation details for SANSCrypt, starting
with the underlying threat model.

3.1 Threat Model

SANSCrypt assumes a threat model that is consistent with the previous litera-
ture on sequential logic encryption [6,19,25]. The goal of the attack is to access
the correct circuit functionality, by either finding the correct key sequence or
reconstructing the correct circuit function. To achieve this goal, the attacker
can leverage one or more of the following resources: (i) the encrypted netlist;
(ii) a working circuit providing correct input-output pairs; (iii) knowledge of the
encryption technique. In addition, we assume that the attacker has no access to
the scan chain and cannot directly observe or change the state of the circuit.

3.2 Authentication Protocol

As shown in Fig. 3(a), existing sequential logic encryption techniques are mostly
based on a single-authentication protocol, requiring users to be authenticated
only once before accessing the correct circuit function. After the authentication,
the circuit remains functional unless it is powered off or reset. To attack the
circuit, therefore, it is sufficient to discover the correct key sequence that must
be applied to the encrypted circuit upon reset.

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 261

Fig. 3. Conventional (a) and proposed (b) authentication protocols for logic encryption.

We adopt, instead, the authentication protocol in Fig. 3(b), where the cir-
cuit can “jump” back to the encrypted mode from the functional mode. Once
the back-jumping occurs, another round of authentication is required to resume
the normal operation. The back-jumping can be triggered multiple times and
involves a different key sequence for each round of re-authentication. The hard-
ness of attacking this protocol stems from both the increased number of the
key sequences to be applied and the uncertainty on the time at which each
sequence should be applied. A new temporal dimension adds to the difficulty
of the decryption procedure, which poses a significantly higher threshold to the
attackers.

3.3 Overview of the Encryption Scheme

SANSCrypt is a sequential logic encryption scheme which supports random back-
jumping, as represented in Fig. 4. When the circuit is powered or reset, the circuit
falls into the reset state E0 of the encrypted mode. Like other sequential logic
encryption schemes, the user must apply at startup the correct key sequence at
the primary input ports for the circuit to transition to the initial (or reset) state
N0 of the functional mode.

Once the circuit enters the functional mode, it can deliberately, but randomly,
jump back, as denoted by the blue edges in Fig. 4, to a state sbj in the encrypted
mode, called back-jumping state, after a designated number of clock cycles tbj ,
called back-jumping period. The user then needs to apply another key sequence to
return to the state right before the back-jumping operation and resume normal
operations, as shown by the red arrows in Fig. 4. Both the back-jumping state sbj
and the back-jumping period tbj are determined by a pseudo-random number
generator (PRNG) embedded in the circuit. Therefore, when and where the
back-jumping operation happens is unpredictable unless the attacker is able
to break the PRNG given the resources described in Sect. 3.1. An in-package
key management circuit will be in charge of automatically applying the key
sequences from a tamper-proof memory at the right time, as computed from
a hard-coded replica of the PRNG. The schematic of SANSCrypt is shown in
Fig. 5 and consists of two additional blocks, that is, a back-jumping module and
an encryption finite state machine (ENC-FSM), besides the original circuit. We
discuss each of these blocks in the following subsections.

262 Y. Hu et al.

Fig. 4. State transition diagram of SANSCrypt.

3.4 Back-Jumping Module

The back-jumping module consists of an n-bit PRNG, an n-bit Counter, and
a Back-Jumping Finite State Machine (BJ-FSM). BJ-FSM continually checks
the output from the PRNG and the counter, and determines the back-jumping
operations, as summarized by the flowchart in Fig. 6. Upon circuit reset, BJ-FSM
keeps checking the authentication status. Once the authentication is successful
and the circuit enters the functional mode, BJ-FSM samples the current PRNG
output and stores this value as the back-jumping period tbj . At the same time,
the counter is set to zero.

The counter increments its output at each clock cycle until it reaches tbj ,
when BJ-FSM samples again the PRNG output r. By taking the PRNG outputs
at different clock cycles, r and tbj are generally not the same. The BJ-FSM then
implements a function of r to determine the back-jumping state, i.e.,

sbj = f(r).

For example, if sbj is an l-bit binary number, BJ-FSM can arbitrarily select l
bits from r and assign the value to sbj . If the first l bits of r are selected, we
have

f(r) = r[0 : l − 1].

Meanwhile, BJ-FSM sends a back-jumping request to the other blocks of the
circuit, such that the circuit back-jumps to sbj in the encrypted mode, where
it keeps checking the authentication status of the circuit. SANSCrypt does not
set any specific requirement on the PRNG. Any PRNG architecture can be
used based on the design budget and the desired security level. For example,
linear PRNGs, such as Linear Feedback Shift Registers (LFSRs), provide higher

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 263

Fig. 5. Schematic view of SANSCrypt.

speed and lower area overhead but tend to be more vulnerable than cipher-based
PRNGs, such as AES, which are, however, more expensive.

3.5 Encryption Finite State Machine (ENC-FSM)

The Encryption Finite State Machine (ENC-FSM) determines whether the user’s
key sequence is correct and, if it is not correct, takes actions to corrupt the
functionality of the original circuit. Without creating extra input ports for the
authentication, the input of the ENC-FSM is provided via the primary input
ports. The output enc out of ENC-FSM is an n-bit-long array, which can be used,
together with a set of XOR gates, to corrupt the circuit function [3]. For example,
in Fig. 7, a 3-bit array enc out is connected to six nodes in the original circuit via
XOR gates. In this paper, XOR gates are inserted at randomly selected nodes.
However, any other combinational logic encryption technique is also applicable.
As a design parameter, we denote by node coverage the ratio between the number
of inserted XOR gates and the total number of combinational logic gates in the
circuit.

Only one state of ENC-FSM, termed auth, is used in the functional mode.
In auth, all bits in enc out are set to zero and the original circuit functionality
is not corrupted. In the other states, the value of enc out changes based on the
state, but at least one bit is set to one to guarantee that the circuit output is
incorrect. A sample truth table for a 3-bit enc out array is shown in Table 1.
When the circuit is not in auth, i.e., in the encrypted mode, enc out changes
its value based on the state of the encryption FSM. Such an approach makes it
difficult for signal analysis attacks, aiming to locate signals with low switching
activity in the encrypted mode, to find enc out and bypass ENC-FSM. After a

264 Y. Hu et al.

Fig. 6. Flowchart of BJ-FSM.

successful authentication, the circuit resumes its normal operation. Additional
registers are, therefore, required in the ENC-FSM to store the circuit state before
back-jumping so that it can be resumed after authentication.

3.6 Guaranteeing Real-Time Operation

Unlike previous sequential logic encryption methods, SANSCrypt requires the
user to sporadically be re-authenticated amid the circuit’s normal operation.
As discussed in Sect. 4, this feature can significantly raise the attack difficulty.
However, it can also cause timing overhead and impact the performance in time-
sensitive applications that require prompt, real-time response, or guarantees that
a time-critical or safety-critical task meets a pre-defined deadline. For example,
upon detection of a vehicle collision, authentication tasks should be preempted
by the airbag control in the attempt to protect passengers. In this Section, we
present an enhanced back-jumping FSM (EBJ-FSM) design that delivers precise,
guaranteed, and predictable timing for real-time operation.

We denote by VI and VS the set of all possible primary input patterns and
states of a circuit, respectively. We then assume without loss of generality that
any input pattern in a set

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 265

Fig. 7. enc out controls the original circuit via XOR gates.

Table 1. Truth Table for a 3-Bit enc out Array

State E0 E1 E2 E3 E4 Auth

enc out[0] 0 1 1 1 1 0

enc out[1] 1 0 1 1 0 0

enc out[2] 1 1 1 0 0 0

Ip = {i1, i2, ..., in},

where Ip ⊆ VI , can trigger a time-critical task whose execution should immedi-
ately start or be queued after the ongoing time-critical task. Such tasks should
be completed, without interruption, within a number of clock cycles given by a
function deadline. We assume that a task deadline depends, in general, on the
triggering input and the current state of the circuit, i.e.,

deadline : VI × VS → N.

When a time-critical task is requested by an input pattern in Ip, the deadline
function returns the remaining number of clock cycles required without inter-
ruption to finish this task and the ongoing time-critical tasks, if any, based on
the current state s. When the circuit is in an idle state, i.e., no time-critical task
is being executed, and the current input pattern i satisfies i /∈ Ip, the deadline
function returns zero. The deadline function models the scheduling algorithm
determining the priority among tasks and can be customized based on the desired
application. Figure 8 shows the flowchart of EBJ-FSM for time-sensitive appli-
cations. On top of the basic back-jumping feature, two locations in the flow chart
handle task prioritization in the encrypted mode (➀) and the functional mode
(➁), respectively.

High-Priority Task Triggered in the Encrypted Mode (Case ➀). The
enhanced BJ-FSM (EBJ-FSM) allows the circuit to enter the functional mode in
two scenarios: (1) upon a successful authentication, and (2) when a high-priority

266 Y. Hu et al.

Fig. 8. Flowchart of EBJ-FSM.

task is triggered. EBJ-FSM monitors these two events at each clock cycle. Once
the functional mode is entered, EBJ-FSM checks whether the second scenario
occurred, i.e., a high-priority task was triggered. If this is the case, meaning that
the authentication process was interrupted, EBJ-FSM sets the back-jumping
time tbj to the time required to complete the task execution as computed by the
deadline function. When the high-priority task terminates and there are no new
task requests with high priority, the circuit back-jumps to the encrypted mode
and the authentication procedure is resumed.

High-Priority Task Triggered in the Functional Mode (Case ➁). In
the functional mode, EBJ-FSM continually checks whether the counter output
has reached the threshold tbj . If so, it will request back-jumping as is the case
for the BJ-FSM design in Fig. 6. However, in this case, the back-jumping time
tbj is updated at each clock cycle via the following formula,

tbj,k := max{tbj,k−1, deadline() + counter()},

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 267

Fig. 9. Examples of high-priority tasks triggered in (a) the encrypted mode and (b)
the functional mode. Both tasks require 5 clock cycles to finish with BJ-FSM and
EBJ-FSM.

where counter() returns the current counter output and tbj,k refers to the stored
back-jumping time at time k. Effectively, the back-jumping time tbj is prolonged
if a high-priority task cannot be completed before the next designated back-
jumping operation.

Figure 9 shows the timing diagrams for two high-priority tasks triggered in
two different modes. While the basic SANSCrypt protocol causes delays to the
task execution, the EBJ-FSM guarantees that there is no delay in the execution
of the critical tasks and no impact on the real-time performance of the circuit.

As a further enhancement, we observe that the function that determines
the back-jumping state sbj can also be modified by adding the current input
value i as an argument. We propose this modification to mitigate a potential
vulnerability associated with FSM structural analysis of the basic SANSCrypt
architecture, as further illustrated in Sect. 4.

4 Security and Performance Analysis

We analyze SANSCrypt’s resilience against existing attacks and estimate its
timing overhead due to the multi-authentication protocol.

268 Y. Hu et al.

4.1 Brute-Force Attack

We assume that the number of primary inputs used as key inputs is |i| and a
round of authentication requires c clock cycles to apply the correct key sequence.
If the attacker has no a priori knowledge of the correct key sequence, then the
average number of attempts needed to find the correct key sequence for each
authentication step, τ , can be computed as follows:

τ = (2|i|·c + 1)/2 ≈ 2|i|·c−1,

where we use τ to represent the expected value of the random variable τ . This
amounts to the same brute-force attack complexity of HARPOON, where the
encrypted circuit needs only one round of authentication. Due to the multi-
authentication protocol implemented in SANSCrypt, the attacker needs to find
the correct key sequences for more than one round of authentication. Each cor-
rect key sequence depends on the back-jumping states that are determined by
the PRNG output. To achieve maximum protection, a designer can associate
each PRNG output value with a unique back-jumping state, hence a unique
key sequence for the authentication. Therefore, the average brute-force effort to
guess all the correct key sequences T is

T = Nr · τ = Nr · 2|i|·c−1,

where Nr is the number of possible values of the PRNG output. For a 10-bit
PRNG, if |i| = 32 and c = 8, this average attack effort reaches 5.8 × 1079.

Even if all the key sequences are known, it still remains challenging to infer
when each key sequence should be applied, as the attacker should find the
back-jumping time associated with the sequence, and this is independent of the
sequence itself. To account for the time uncertainty, we first estimate the effort
for guessing the back-jumping time for one authentication round. The back-
jumping time ranges from one to Nr cycles following a uniform distribution.
Therefore, the average brute-force effort to correctly guess the time is

tbj =
Nr

2
,

while the average effort to correctly find both the key sequence and the time at
which to apply it becomes

tbf = E[τtbj] = τtbj =
Nr

2
· 2|i|·c−1.

Suppose the attacker needs to perform at least m rounds of authentication, where
m ≥ Nr and all Nr key sequences are used for the authentication at least once.
The expected value for m can be calculated as follows, using a result from the
coupon collector’s problem [36]:

m = Nr ·
(

1
1

+
1
2

+ · · · +
1

Nr − 1
+

1
Nr

)
.

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 269

In our previous example, where Nr = 1024, we have m = 7689. The average
brute-force attack effort to find the back-jumping times and the key sequences
for m authentication steps would then be

T bf = E [(tbjτ)m] = Em [E[(tbjτ)m|m]] = Em

[(
Nr

2
2|i|·c−1

)m∣∣∣∣ m

]
.

For simplicity, we provide a lower bound for the expectation above. Since m ≥ Nr

and Nr

2 · 2|i|·c−1 > 1, we have the following lower bound for T bf :

T bf ≥
(

Nr

2
· 2|i|·c−1

)Nr

.

In our example, the average brute-force effort will be lower bounded by 1.8 ×
1081379, which makes a brute-force attack infeasible and exponentially harder
than in previous sequential obfuscation methods.

4.2 Sequential SAT-Based Attack

A SAT-based attack can be carried out on existing sequential logic encryption
methods by unrolling the sequential circuit [25]. In this paper, we implement
such an attack to validate the resilience of methods such as HARPOON and
SANSCrypt by adapting previously proposed attack strategies [18,19] to a set-
ting in which a dynamic key, i.e., a sequence of keys applied at different clock
cycles, is presented via the primary input ports of the circuit.

Figure 10 shows the schematic of an unrolled circuit under the assumption
that the number of clock cycles, n, required by the encrypted circuit to enter
the functional mode after reset is known. The primary input ports of the first n
replicas of the encrypted circuit, marked in red, act as the key ports K of the
unrolled circuit. Starting with the (n+1)th circuit replica, the primary input and
output ports of the encrypted circuit, marked in blue and magenta, act, instead,
as the primary input ports I and the primary output ports O of the unrolled
circuit, respectively. A combinational miter circuit can then be assembled using
this unrolled circuit to mount a combinational SAT-based attack and find the
correct key. If the SAT-based attack fails to find the correct key with (n + 1)
circuit replicas, the circuit will be unrolled once more to repeat the attack.

The attack described above would still be ineffective on SANSCrypt, since it
can retrieve the first key sequence but would fail to discover when the next back-
jumping occurs and what would be the next key sequence. Even if the attacker
knows when the next back-jumping occurs, the attack will fail due to the large
number of circuit replicas needed to find all the key sequences, as empirically
observed in Sect. 5.

4.3 FSM Extraction and Structural Analysis

As discussed in Sect. 2, a common shortcoming of previous sequential encryption
schemes is the easy separation of states between the encrypted mode and the

270 Y. Hu et al.

Fig. 10. An unrolled version of the encrypted circuit which requires n clock cycles to
find the key sequence.

Fig. 11. Circuit mode switching for an authenticated user.

functional mode due to the fact that only one transition goes though the two
modes. SANSCrypt addresses this issue by designing more than one transition
between the two modes, as shown in Fig. 4. In a basic BJ-FSM design, shown
in Fig. 6, the back-jumping state is solely determined by the PRNG. Because
transitions in FSM are typically determined also by the primary input, attackers
can potentially identify all the back-jumping transitions by analyzing the tran-
sition conditions. The enhanced BJ-FSM design (EBJ-FSM), shown in Fig. 8,
circumvents this vulnerability by also using the primary inputs to determine the
back-jumping state.

Without extracting the FSM, an attacker may also try to locate and isolate
the output of ENC-FSM by looking for low signal switching activities when the
circuit is in the encrypted mode. SANSCrypt addresses this risk by expanding
the output of ENC-FSM from one bit to an array. The value of each bit changes
frequently with state changing in the encrypted mode, which makes it difficult
for attackers to find them based only on signal switching activities.

4.4 Cycle Delay Analysis

Due to multiple back-jumping and authentication operations in SANSCrypt,
additional clock cycles will be required. Suppose that each authentication
requires ta clock cycles and the circuit stays in the functional mode for tb clock
cycles before the next back-jumping occurs, as shown in Fig. 11. Assuming that
no higher-priority tasks are triggered, the cycle delay overhead can be computed
as the ratio Ocd = ta/tb.

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 271

Fig. 12. Average cycle delay as a function of PRNG bit length when the key sequence
cycle length ta is 8, 16, 64, and 128.

Table 2. Overview of the Selected Benchmark Circuits

Circuit s27 s298 s1238 s9234 s15850 s35932 s38584

Input 4 3 14 36 77 35 38

Output 1 6 14 39 150 320 304

DFF 3 14 18 211 534 1728 1426

Gate 10 119 508 5597 9772 16065 19253

Specifically, for an n-bit PRNG, the average tb is equal to the average output
value, i.e., 2n−1. To illustrate how the cycle delay overhead is influenced by this
encryption, Fig. 12 shows the relation between average cycle delay overhead and
PRNG bit length. The clock cycles (ta) required for each authentication are set
to 8, 16, 64, and 128. When the PRNG bit length is small, the average cycle delay
increases significantly as ta increases. However, the cycle delay can be reduced by
increasing the PRNG bit length. For example, the average cycle delay overhead
becomes negligible (≤1%) for all the four cases when the PRNG bit length is 14
or larger.

5 Simulation Results

We first evaluate the effectiveness of SANSCrypt on seven ISCAS’89 sequential
benchmark circuits of different sizes, as summarized in Table 2. All the exper-
iments are executed on a Linux server with 48 2.1-GHz processor cores and
500-GB memory. We implement our technique on the selected circuits with dif-
ferent configurations and use a 45-nm Nangate Open Cell Library [37] to syn-
thesize the encrypted netlists for area optimization under a critical-path delay
constraint that targets the same performance as for the original netlists. For
the purpose of illustration, we realize the PRNG using Linear Feedback Shift
Registers (LFSRs) with different sizes, ranging from 5 to 15 bits. An LFSR pro-
vides an area-efficient implementation and has often been used in other logic

272 Y. Hu et al.

Fig. 13. The average HD for different node coverage: (a) 5%, (b) 10%, (c) 15%, and
(d) 20%.

encryption schemes in the literature [8,38]. We choose a random 8-cycle-long
key sequence as the correct key, and select 5%, 10%, 15%, and 20% as node
coverage levels. Finally, we use the Hamming distance (HD) between the correct
and the corrupted output values as a metric for the output corruptibility. If the
HD is 0.5, the effort spent to identify the incorrect bits is maximum.

Functional Verification. First, we simulate all the encrypted circuits with
(case 1) and without (case 2) the correct key sequences, by applying a randomly
generated input vector that is 1000-cycle long. We then compare the circuit
output with the golden output from the original netlist and calculate the HD
between the two. Each simulation is repeated for 1000 times to obtain the aver-
age HD. Moreover, we demonstrate the additional robustness of SANSCrypt by
simulating a scenario (case 3) in which the attacker assumes that the encryption
is based on a single-authentication protocol and, thus, provides only the first
correct key sequence upon reset. Figure 13 shows the average HD in these three
cases. For all the circuits, the average HD is zero only in case 1, when all the
correct key sequences are applied at the right clock cycles. Otherwise, in case 2
(orange) and case 3 (green), we observe a significant increase in the average HD.
The average HD in case 3 is always smaller than that of case 2 because, in case

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 273

Table 3. SAT-based attack runtime for finding the first 7 key sequences

Key Seq. Index 1 (HARPOON) 2 3 4 5 6 7

Runtime [s] 4 123 229 1941 1301 2202 25571

Table 4. ADP Overhead Results for Full Encryption

Circuit s27 s298 s1238 s9234

Node Coverage 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

Area [%] 1418.51418.51403.21403.2413.0427.3425.2453.8144.8165.7176.0189.2114.6131.7144.5160.1

Power [%] 1627.71627.71627.51627.5385.7390.6389.9402.8217.8232.1235.0249.8179.8197.5188.0190.6

Delay [%] 0.0 0.0 1.4 1.4 0.0 0.0 0.0 0.5 0.0 0.0 0.0 5.8 0.0 0.0 0.9 3.6

Circuit s15850 s35932 s38584 Average∗

Node Coverage 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

Area [%] 92.9 112.1 120.1 133.9 116.3129.5139.4151.6133.5140.9158.7165.6120.4136.0147.8160.1

Power [%] 127.4 142.3 153.2 163.0 98.4 101.9101.2103.0123.9128.8142.0140.3149.5160.5163.9169.4

Delay [%] −0.3 0.0 0.1 0.6 −0.4 0.0 4.3 5.3 0.6 2.0 0.4 4.9 0.0 0.4 1.1 4.0
∗Excluding s27 and s298.

3, the correct functionality is recovered for a short period of time, after which
the circuit jumps back to the encrypted mode. The longer the overall runtime,
the smaller will be the impact of this transparency window in which the circuit
exhibits the correct functionality.

Sequential SAT-Based Attacks. We apply the sequential SAT-based attack
in Sect. 4 to circuit s1238 with a 5-bit LFSR and 20% node coverage, under
a stronger attack model, in which the attacker knows when to apply the key
sequences. Table 3 shows the runtime to find the first set of 7 key sequences.
The runtime remains exponential in the number of key sequences, which makes
sequential SAT-based attacks impractical for large designs.

Impact of High-Priority Tasks. We further characterize the behavior of
SANSCrypt in the presence of high-priority tasks. We consider the largest ISCAS
benchmark s38584 and assume, without loss of generality, that all the high-
priority tasks to be executed on the encrypted circuit have the same deadline
td. For a sequence of input patterns, we define the high-priority task load L as
the ratio between the number of high-priority task requests in the sequence and
the sequence length. Figure 14(a) and Fig. 14(b) show simulation results under
different task loads and deadlines for 10, 000 clock cycles, when the PRNG length
is 5 and 10, respectively. L ranges from 0 to 0.3, while the task deadline takes
four different values within 5 and 20. When L = 0, no high-priority tasks are
requested and the numbers of authentications within 10, 000 clock cycles are 480
and 25 for the two different PRNG lengths, respectively. When L or td increases,
it is more likely for a high-priority task to either interrupt or postpone the
authentication step, leading to a decreasing number of authentications, as shown
in Fig. 14(a). However, in a scenario in which the number of authentications is
already as low as 25 without execution of high-priority tasks, as in Fig. 14(b),

274 Y. Hu et al.

Fig. 14. Number of authentications required within 10, 000 clock cycles on s38584 for
different priority task loads L. The PRNG length is (a) 5 and (b) 20.

the likelihood that a task needs to interrupt or postpone the authentication
process decreases. As a result, increasing L or td does not significantly affect
the number of authentications as in the scenario of Fig. 14(a). When L = 0.05
and td = 5 or 10, the number of authentications becomes larger than in the
absence of high-priority tasks in Fig. 14(a), an artifact due to the non-ideality
of the LFSR used in the design, which disappears when using a higher-quality
PRNG. On the other hand, when many time-consuming high-priority tasks need
to be executed, i.e., when the task load L is 0.3 and the deadline td is 20, we
observe that 5 and 3 authentications are still required per 10, 000 clock cycles in
Fig. 14(a) and (b), respectively, which keeps the multi-authentication protocol
effective. Overall, SANSCrypt is capable of delivering security as well as precise,
guaranteed, and predictable timing in the execution of time-critical tasks.

Implementation Overhead. Finally, Table 4 reports the synthesized area,
power, and delay (ADP) overhead due to the implementation of our technique.
In more than 70% of the circuits, the delay overhead is less than 1%, and exceeds
the required clock cycle by at most 5.8%. Except for s27 and s298, characterized
by a small gate count, all the other circuits show average area and power overhead
of 141.1% and 160.8%, respectively, which is expected due to the additional
number of registers required in ENC-FSM to guarantee that the correct state
is entered upon re-authentication. However, because critical modules in large
SoCs may only account for a small portion of the area, this overhead becomes
affordable under partial obfuscation. For example, we encrypted a portion of
state registers in s38584, the largest ISCAS’89 benchmark, using SANSCrypt.
We then randomly inserted additional XOR gates to achieve the same HD as in
the case of full encryption. Table 5 reports the overhead results after synthesis,
when the ratio between the encrypted state registers and the total number of
state registers decreases from 100% to 1%. Encrypting 10% of the registers will
only cost 33.4% of the area while incurring negative power overhead and 4.2%
delay overhead. On the other hand, implementing the enhanced design based on

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 275

Table 5. ADP Overhead Results for Partial Encryption

Encrypted registers/Total registers 100% 50% 25% 10% 5% 2.5% 1%

Area [%] 133.5 71.6 49.1 33.4 27.8 23.5 22.4

Power [%] 123.9 40.2 9.6 −12.8 −20.5 −22.1 −25.0

Delay [%] 0.6 1.8 2.1 4.2 5.4 3.9 4.6

Fig. 15. Area, timing, power overhead increase, compared with the original SAN-
SCrypt scheme, after the implementation of EBJ-FSM under different coverage ratios
on s38584.

the EBJ-FSM on s38584, while using the same settings as in Table 5, causes an
increase in the ADP overhead with respect to the basic SANSCrypt architecture,
as shown in Fig. 15. Yet, the increase in both the area and timing overhead is
below 4%, with the timing overhead often being lower than in the baseline. The
increase in power overhead is substantial, but it is partially compensated by the
negative power overhead of the baseline design in Table 5, and therefore still
acceptable.

6 Conclusion

We proposed SANSCrypt, a robust sequential logic encryption technique relying
on a sporadic authentication protocol, in which re-authentications are carried
out at pseudo-randomly selected time slots to significantly increase the attack
effort. By allowing flexible interruption and postponement of authentication
tasks upon requests from high-priority tasks, SANSCrypt is capable of guar-
anteeing reliable timing and seamless operation in real-time and time-sensitive
applications. Future work includes optimizing the implementation to further
reduce the overhead, and investigating key manager architectures to guarantee
reliable key delivery in large systems on chip.

Acknowledgments. This work was supported in part by the Air Force Research
Laboratory (AFRL) and the Defense Advanced Research Projects Agency (DARPA)
under agreement number FA8650-18-1-7817.

276 Y. Hu et al.

References

1. Karri, R., Rajendran, J., Rosenfeld, K., Tehranipoor, M.: Trustworthy hardware:
identifying and classifying hardware trojans. Computer 43(10), 39–46 (2010)

2. Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detec-
tion. IEEE Des. Test Comput. 27(1), 10–25 (2010)

3. Rajendran, J., et al.: Fault analysis-based logic encryption. IEEE Trans. Comput.
64(2), 410–424 (2013)

4. M. Yasin, Sengupta, A., Nabeel, M.T., Ashraf, M., Rajendran, J.J., Sinanoglu, O.:
Provably-secure logic locking: from theory to practice. In: Proceedings of SIGSAC
Conference Computer and Communications Security, pp. 1601–1618 (2017)

5. Yasin, M., Mazumdar, B., Rajendran, J.J., Sinanoglu, O.: SARLock: SAT attack
resistant logic locking. In: IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 236–241 (2016)

6. Chakraborty, R.S., Bhunia, S.: HARPOON: an obfuscation-based SoC design
methodology for hardware protection. IEEE Trans. Comput. Aid. Des. Integr. Circ.
Syst. 28(10), 1493–1502 (2009)

7. Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran J.: CamoPerturb: secure IC
camouflaging for minterm protection. In: 2016 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pp. 1–8 (2016)

8. Xiao, K., Forte, D., Tehranipoor, M.: Efficient and secure split manufacturing
via obfuscated built-in self-authentication. In: IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pp. 14–19 (2015)

9. Charbon, E.: Hierarchical watermarking in IC design. In: IEEE Proceedings of
Custom Integrated Circuits Conference, pp. 295–298 (1998)

10. Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of logic encryption
algorithms. In: IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pp. 137–143 (2015)

11. Chakraborty, P., Cruz, J., Bhunia, S.: SURF: joint structural functional attack on
logic locking. In: IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pp. 181–190 (2019)

12. Shen, Y., Li, Y., Kong, S., Rezaei, A., Zhou, H.: SigAttack: new high-level sat-
based attack on logic encryptions. In: Design, Automation and Test in Europe
Conference and Exhibition (DATE), pp. 940–943 (2019)

13. Menon, V.V., et al.: System-level framework for logic obfuscation with quantified
metrics for evaluation. In: Secure Development Conference (SecDev), pp. 89–100
(2019)

14. Hu, Y., Menon, V.V., Schmidt, A., Monson, J., French, M., Nuzzo, P.: Security-
driven metrics and models for efficient evaluation of logic encryption schemes. In:
ACM-IEEE International Confernce on Formal Methods and Models for System
Design (MEMOCODE), pp. 1–5 (2019)

15. Sengar, G., Mukhopadhyay, D., Chowdhury, D.R.: Secured flipped scan-chain
model for crypto-architecture. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst.
26(11), 2080–2084 (2007)

16. Paul, S., Chakraborty, R.S., Bhunia, S.: VIm-scan: a low overhead scan design
approach for protection of secret key in scan-based secure chips. In: IEEE VLSI
Test Symposium (VTS), pp. 455–460 (2007)

17. Wang, X., Zhang, D., He, M., Su, D., Tehranipoor, M.: Secure scan and test using
obfuscation throughout supply chain. IEEE Trans. Comput. Aid. Des. Integr. Circ.
Syst. 37(9), 1867–1880 (2017)

SANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption 277

18. El Massad, M., Garg, S., Tripunitara, M.: Reverse engineering camouflaged sequen-
tial circuits without scan access. In: 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 33–40. IEEE (2017)

19. Shamsi, K., Li, M., Pan, D.Z., Jin, Y.: KC2: key-condition crunching for fast
sequential circuit deobfuscation. In: Design, Automation and Test in Europe Con-
ference and Exhibition (DATE), pp. 534–539 (2019)

20. Chakraborty, P., Cruz, J., Bhunia, S.: SAIL: machine learning guided structural
analysis attack on hardware obfuscation. In: IEEE Asian Hardware Oriented Secu-
rity and Trust Symposium (AsianHOST), pp. 56–61 (2018)

21. Sisejkovic, D., Merchant, F., Reimann, L.M., Srivastava, H., Hallawa, A., Leupers,
R.: Challenging the security of logic locking schemes in the era of deep learning: a
neuroevolutionary approach. arXiv preprint arXiv:2011.10389 (2020)

22. Hu, Y., Yang, K., Dutta Chowdhury, S., Nuzzo, P.: Risk-aware cost-effective design
methodology for integrated circuit locking. In: Design, Automation and Test in
Europe Conference and Exhibition (DATE), pp. 1182–1185. IEEE (2021)

23. Desai, A.R., Hsiao, M.S., Wang, C., Nazhandali, L., Hall, S.: Interlocking obfusca-
tion for anti-tamper hardware. In: Proceedings of Cyber Security and Information
Intelligence Research Workshop, pp. 1–4 (2013)

24. Kasarabada, Y., Raman, S.R.T., Vemuri, R.: Deep state encryption for sequential
logic circuits. In: IEEE Computer Society Annual Symposium VLSI (ISVLSI), pp.
338–343 (2019)

25. Meade, T., Zhao, Z., Zhang, S., Pan, D., Jin, Y.: Revisit sequential logic obfus-
cation: attacks and defenses. In: IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1–4 (2017)

26. Duvalsaint, D., Liu, Z., Ravikumar, A., Blanton, R.: Characterization of locked
sequential circuits via ATPG. In: IEEE International Test Conference in Asia (ITC-
Asia), pp. 97–102 (2019)

27. Bhargav-Spantzel, A., Squicciarini, A.C., Modi, S., Young, M., Bertino, E., Elliott,
S.J.: Privacy preserving multi-factor authentication with biometrics. J. Comput.
Secur. 15(5), 529–560 (2007)

28. Brglez, F., Bryan, D., Kozminski, K.: Combinational profiles of sequential bench-
mark circuits. In: IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1929–1934 (1989)

29. Hu, Y., Yang, K., Nazarian, S., Nuzzo, P.: SANSCrypt: a sporadic-authentication-
based sequential logic encryption scheme. In: IFIP/IEEE International Confefrence
on Very Large Scale Integration (VLSI-SoC), pp. 129–134 (2020)

30. Meade, T., Jin, Y., Tehranipoor, M., Zhang, S.: Gate-level netlist reverse engineer-
ing for hardware security: control logic register identification. In: IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pp. 1334–1337 (2016)

31. Brunner, M., Baehr, J., Sigl, G.: Improving on state register identification in
sequential hardware reverse engineering. In: IEEE International Symposium on
Hardware Oriented Security and Trust (HOST) (2019)

32. Geist, J., et al.: RELIC-FUN: logic identification through functional signal com-
parisons. In: Proceedings of Design Automation Conference (DAC) (2020)

33. Dofe, J., Yu, Q.: Novel dynamic state-deflection method for gate-level design obfus-
cation. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 37, 273–285 (2018)

34. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking (2003)

35. Kasarabada, Y., Chen, S., Vemuri, R.: On SAT-based attacks on encrypted sequen-
tial logic circuits. In: International Symposium on Quality Electronic Design
(ISQED), pp. 204–211 (2019)

http://arxiv.org/abs/2011.10389

278 Y. Hu et al.

36. Flajolet, P., Gardy, D., Thimonier, L.: Birthday paradox, coupon collectors,
caching algorithms and self-organizing search. Discret. Appl. Math. 39(3), 207–
229 (1992)

37. Silvaco: 45nm open cell library (2019)
38. Rahman, M.S., et al.: Dynamically obfuscated scan chain to resist oracle-guided

attacks on logic locked design. IACR Cryptol. ePrint Arch., vol. 2019, p. 946 (2019)

3D Nanofabric: Layout Challenges
and Solutions for Ultra-scaled Logic Designs

Edouard Giacomin1(B), Juergen Boemmels2, Julien Ryckaert2,
Francky Catthoor2,3, and Pierre-Emmanuel Gaillardon1

1 University of Utah, Salt Lake City, UT, USA
{edouard.giacomin,pierre-emmanuel.gaillardon}@utah.edu

2 IMEC, Leuven, Belgium
3 KU Leuven, Leuven, Belgium

Abstract. In the past few years, novel fabrication schemes such as par-
allel and monolithic 3D integration have been proposed to keep sus-
taining the need for more cost-efficient integrated circuits. By stacking
several devices, wafers, or dies, the footprint, delay, and power can be
decreased compared to traditional 2D implementations. While parallel
3D does not enable very fine-grained vertical connections, monolithic 3D
currently only offers a limited number of transistor tiers due to the high
cost of the additional masks and processing steps, limiting the benefits
of using the third dimension. This book chapter introduces an innovative
planar circuit netlist and layout approach, enabling a new 3D integration
flow called 3D Nanofabric. The flow, consisting of N identical vertical
tiers, is aimed at single instruction multiple data processor Arithmetic
Logic Units (ALUs). By using a single metal routing layer for each verti-
cal tier, the process flow is significantly simplified since multiple vertical
layers can potentially be patterned at once, similar to the 3D NAND flash
process. In our study, we thoroughly investigate the layout constraints
arising from the Nanofabric flow and the non-crossing planar graph con-
straint and propose several techniques to overcome them. We then show
that by stacking 32 layers to build a 32-bit ALU, the footprint is reduced
by 8.7× compared to a conventional 7 nm FinFET implementation.

Keywords: 3D Logic Integration · Nanotechnologies · Emerging
Technologies · Layout

1 Introduction

For many years, the semiconductor industry has continued to scale down the
Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) to increase the
number of devices per area unit, thus enhancing the performances of Integrated
Circuits (ICs). Novel transistor topologies have emerged in the past few years as
an alternative to planar transistors, such as FinFETs [1]. They allow better elec-
trostatic control, decreased leakage, and reduced short-channel effects, improv-
ing electrical performances. However, FinFETs still suffer from the short-channel
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 279–300, 2021.
https://doi.org/10.1007/978-3-030-81641-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_13

280 E. Giacomin et al.

effect and other physical limitations, such as quantum effects [2], and can not
be scaled indefinitely. Therefore, alternative routes are being investigated to: (i)
first, keep pushing the cost scaling for a given performance and (ii) then pack
more performance for the same cost to enable more functionality per area.

In particular, in recent years, three-dimensional integrated circuits (3D ICs)
have been proposed [3–19]. A 3D IC is an integrated circuit manufactured by
stacking silicon wafers, dies, or transistors. They are then interconnected ver-
tically to achieve performance improvements at reduced power due to shorter
interconnects than conventional 2D approaches. Furthermore, stacked device lay-
ers increase the number of transistors per unit footprint without requiring costly
feature size reduction. In the past few years, two 3D integration schemes have
emerged: parallel 3D [3–9], where wafers or dies are stacked and interconnected
using Through Silicon Vias (TSVs) and bonding techniques, and monolithic
3D [10–19], where multiple layers of transistors and/or memory are deposited
sequentially on top of one another on the same starting substrate.

While the large size of the TSVs limits the interconnection density of paral-
lel 3D integration, monolithic 3D allows a finer interconnection granularity. How-
ever, state-of-the-art monolithic 3D works [10–19] are currently constrained by
the number of active tiers (2–4), limiting the potential offered by 3D integration.
In this book chapter, we extend our previous work [20] that introduces a new 3D
integration scheme, called 3D Nanofabric. The Nanofabric consists of N identical
vertical tiers, each realizing the same logic function. As such, it can be used in Sin-
gle Instruction Multiple Data (SIMD) processor Arithmetic Logic Units (ALUs),
where each vertical tier is one ALU bit. We propose here to use a single metal rout-
ing layer at each vertical tier to greatly simplify the process flow, as multiple verti-
cal layers can potentially be patterned at once. Note that the only practical way to
process multiple vertical layers at once in a one-shot fashion, both for deposition
and etching of materials, is to restrict the process flow to a single layer. This leads
to a non-crossing planar graph requirement, which will be formulated a bit fur-
ther. While we are aware of the challenges 3D technologies bring, such as thermal
aspects including cooling, power distribution, yield, and reliability, those are out
of the scope of this book chapter and are part of ongoing and future work. Instead,
this book chapter focuses on the layout constraints and proves that conventional
designs can be integrated into the 3D Nanofabric flow, given the constraints of a
planar graph without crossing wires within a vertical tier.

The contributions of this book chapter are:

– We introduce a novel 3D design style using a very simplified set of masks
and describe a possible process flow that could enable a sufficiently high yield
across all layers.

– We investigate the physical design constraints arising from our proposed 3D
Nanofabric flow.

– We propose several solutions at the gate and netlist levels to design complex
logic gates under the different non-crossing planar graph layout constraints.

– We provide a footprint comparison of different conventional logic
gates between our proposed 3D Nanofabric and a 2D 7 nm FinFET
implementation.

3D Nanofabric: Layout Challenges and Solutions 281

– At the circuit level, we show that by stacking up to 32 layers to build a
larger 32-bit ALU, the footprint is reduced by 8.7× compared to a 2D planar
7 nm FinFET implementation.

The rest of this book chapter is organized as follows: Sect. 2, presents
related work. Section 3 briefly presents the proposed 3D Nanofabric concept
and describes a possible technology process flow. Section 4 discusses the differ-
ent physical design constraints of the 3D Nanofabric. Section 5 proposes several
solutions. Section 6 provides experimental footprint comparisons with a conven-
tional 2D technology. Section 7 concludes this book chapter.

2 Background and Related Work

Our proposed 3D Nanofabric aims at a similar objective as the 3D NAND,
namely, to exploit repetitive vertical layers to decrease the footprint, but is
targeted at logic applications. However, this can only be achieved by proposing
a circuit netlist topology and layout that relies solely on a single layer where
the device channel, poly, and metal wires are all embedded without any other
crossing than the gate on top of the device channel. To the best of our knowledge,
that is a crucial challenge that has not been enabled by any other proposed netlist
approach in literature.

2.1 Parallel 3D

Parallel 3D integration [3–9], also called stacked 3D integration, refers to a 3D
integration scheme in which devices on separate wafers are fabricated in paral-
lel prior to a bonding or stacking step, as shown in Fig. 1(a). In this process,
wafers, dies, or packages are vertically interconnected, allowing several parti-
tioning schemes, such as subsystem, block or die. Parallel 3D can be realized
by employing several techniques, like TSV [5–7] or bonding [8]. Bonding is used
to join the surface of two wafers or chips using various chemical and physical
processes [9], while TSVs are vertical connections that pass completely through
a silicon wafer or a die. While TSVs allow a fine-grained integration of several
dies into a single 3D stack, they also consume a significant area, which otherwise
could be used for logic gates. As a result, the 3D interconnection density is con-
siderably limited by the large size of the TSVs (µm range), and the maximum
TSV density achievable today is around 105 vias/mm2 [16].

2.2 Monolithic 3D

Monolithic 3D [10–19] refers to multiple transistor tiers and/or memory cells ver-
tically stacked sequentially on the same starting substrate, as shown in Fig. 1(b).
More particularly, the bottom transistor tier is first processed with or with-
out interconnects, called Intermediate Back-End-Of-Line (iBEOL). The top tier
is then processed, followed by a contact processing step. This 3D integration

282 E. Giacomin et al.

Fig. 1. 3D integration schemes: (a) Parallel integration (e.g.: TSV); (b) Monolithic
integration.

scheme can achieve a very low 3D contact pitch, similar to a standard con-
tact (<100 nm), since the devices can be stacked using the lithography precision
aliment. Compared to the parallel integration scheme, monolithic 3D achieves
a larger interconnection density (up to 2 × 107 vias/mm2), using conservative
65 nm design rules [11]. However, monolithic 3D is challenging as processing the
top tier can damage the bottom tier [13], so low thermal budget devices, such
as junction-less devices [14], are required for the top tier. Moreover, it is diffi-
cult to obtain a stable iBEOL between the two tiers as copper metallization can
contaminate the bottom tiers [13]. Monolithic 3D opens several opportunities,
such as stacking 2 nodes N − 1 instead of a node N [17], in a Logic-on-Logic
or Memory-on-Logic way [10], or more disruptive approaches where emerging
technologies can be stacked on top of CMOS [18,19]. However, only four active
tiers have been demonstrated up to this date [19], limiting the benefits of using
the third dimension. Besides, for pure homogeneous logic stacking, the potential
cost benefits of these approaches to extend to more than 2 layers appears to be
even more limited [10,12].

2.3 Other Logic 3D Technologies

Recent works proposed to use gate-all-around devices in an array fashion [21,22]
to further decrease the footprint compared to parallel or monolithic 3D. In Sky-
bridge 3D [22], a junctionless vertical nanowire template structure is employed
to design static logic gates. As the template is pre-doped with p and n-type hor-
izontal stripes, any static CMOS gate can be designed by forming the pull-up
and pull-down networks through series and parallel devices. For instance, series
networks are built with series devices implemented on a single nanowire, while
parallel connections are achieved using devices on different nanowires. Similarly

3D Nanofabric: Layout Challenges and Solutions 283

to [22] a Stacked Horizontal Nanowire based 3-D IC (SN3D) was introduced [21],
where junctionless horizontal nanowires are employed. Each static CMOS gate
can be designed by stacking several nanowires on top of each other. Common
contact and horizontal insulation features are used to connect or isolate the dif-
ferent source and drain regions to realize series and parallel connections. While
these works showed a significant footprint reduction (5.5–40× s) compared to
conventional 2D and monolithic 3D implementations, the number of masks and
processing costs remain high as they have to be accumulated for every sequen-
tial layer that is added. This implies that no real cost scaling is feasible in this
way. Hence, that is not compatible with our objectives, as introduced in the
introduction.

2.4 3D NAND Memory

3D NAND memory has been proposed [23–25] to sustain the continuous demand
for data storage. This 3D technology consists of many same vertical layers,
stacked on top of each other and processed in a single shot. Since it has a highly
repetitive mask set, 3D NAND technology is very cost-effective. Recently, up to
128 vertical layers have been demonstrated for the 3D NAND [24], resulting in
a minimal footprint per stored bit. As a result, 3D NAND is currently replacing
2D NAND in the SSD market. While our proposed 3D Nanofabric is aimed at
logic applications and not memory, it uses a similar concept to 3D NAND as it
consists of repetitive vertical layers stacked on top of each other, where multiple
layers can be patterned at once. However, the complexity and challenges for this
logic extension are highly non-trivial, as we will show in the rest of this book
chapter. Hence, several disruptive novel aspects have to be employed to enable
this.

3 Proposed 3D Nanofabric Concept

In this section, we briefly summarize the proposed 3D Nanofabric concept and
then present a possible fabrication flow.

3.1 General Overview

The goal of our proposed 3D Nanofabric is to substantially decrease the man-
ufacturing costs so that scaling many layers becomes truly attractive. This is
achieved by: (i) considerably reducing the area by stacking many layers verti-
cally; (ii) using a simplified process flow where all vertical layers can be pat-
terned at once, similarly to what 3D NAND has achieved. While inspired by the
3D NAND process flow, our proposed 3D Nanofabric is aimed at logic applica-
tions. The proposed 3D Nanofabric consists of N identical stacked vertical tiers,
depicted in Fig. 2(a). In other words, the 3D Nanofabric is a 3D ALU where each
tier is an ALU bit. Hence, it is aimed at realizing SIMD processor datapaths,

284 E. Giacomin et al.

Fig. 2. 3D Nanofabric concept: (a) Identical transistor tiers; (b) Cross-section general
organization.

where the datapath is composed of an array of 3D ALUs. The way the Nanofab-
ric communicates with the other parts of the processor (control, memory, etc.)
is out of the scope of this book chapter and will be investigated in future work.
To stack many vertical layers, we propose here to use a very restricted set of
masks (i.e., only a single metal routing track), which allows multiple layers to be
patterned at once during fabrication, as will be explained in Sect. 3.2. As shown
in Fig. 2(b), the global signals which are shared among all the vertical layers,
such as the select signals Sel[0 : M] (M depending on the number of operations
the ALU can realize) or Vdd and Vss, are provided through vertical pillars. The
other signals (inputs and outputs of each ALU slice) are fed independently to
each vertical layer from the side, using staircase-like structures similar to 3D
NAND [26] chips. To stack many layers, we propose here to use a very restricted
set of masks (i.e., only a single metal routing track) on top of using physically
identical vertical tiers. This small set of masks and layout regularity enables a
low-cost manufacturing process flow, in which multiple layers can be patterned
at once, as will be explained in the next subsection.

3.2 Potential 3D Nanofabric Process Flow

In this section, we briefly describe a possible technological solution for manufac-
turing the proposed 3D Nanofabric. Based on the Coventor® modeling software,
the process flow has been used to derive the design and layout rules presented in
this section and employed to obtain the results of Sect. 6. Note that a more com-
plete and thorough process flow study is out of the scope of this book chapter.
While a simple solution would be to create the structure sequentially layer-by-
layer, this would not be cost-effective at all as most steps would have to be
repeated for each layer. Instead, we propose a solution that only uses a single
metal routing layer and patterns multiple vertical layers at once.

The gate-forming processing flow steps are illustrated in Fig. 3(a)–(h). As
shown in Fig. 3(a), the flow starts by depositing the layer-stack: for each ver-
tical tier, we deposit an active layer (blue), a sacrificial layer (green), which
will become the gate (dummy-gate, referred to as GATE INTEND), and an

3D Nanofabric: Layout Challenges and Solutions 285

Fig. 3. 3D Nanofabric gate forming process flow steps: (a) Layer-stack deposition; (b)
Trenches creation, where source and drain regions will be formed; (c) Dummy-gate
removal; (d) Gate-oxide and metal-gate filling; (e) Metal recess; (f) Spacer fill and
etch-back; (g) Metal lines formation; (h) Resulting 3D structure. (Color figure online)

inter-dielectric layer (grey). Note that for the sake of the readability of the
figure, only 3 active layers are depicted, but the described process is extendable
to N tiers. While there are multiple possible options for creating active layers,
we propose here to use a layer transfer of crystalline silicon, as it is done for
Silicon On Insulator (SOI) processes. Those SOI-like silicon devices are well
understood and have good electrical characteristics. The sacrificial layer may be
a nitride layer, such as SiN or some other material that can be etched with
a sufficient selectivity with respect to the active and the inter-dielectric layers.
The process relies on an indirect fabrication of the gates, which are formed in a
collateral fashion. As depicted in Fig. 3(b), the layer-stack is patterned through
an etching process by forming trenches through where source and drain regions
will be formed. As such, a high-aspect-ratio etch is employed, such as reactive-
ion etch or any suitable dry etching process. As a result, the layer-stack is then
partitioned by a number of sub-stacks separated by trenches, referred to as
channel-islands. The dummy-gate material is then removed by using a selective
isotropic etch process, as shown in Fig. 3(c). As a considerable amount of mate-
rial is removed from the layer-stack, a mechanical support is required for the
active layer and inter-dielectric layer. This is achieved by the design rule that

286 E. Giacomin et al.

every gate-island is abutting a vertical support wall of an insulating material
(referred to as OXWALL), such as SiO2. As illustrated in Fig. 3(d), the gate
dielectric and gate electrode materials are then formed through conformal depo-
sition in the cavities obtained from removing the dummy-gate. Note that the
trenches can then subsequently be re-etched (by reusing the previous hard mask
of Fig. 3(b)) to remove the gate electrode material filling them. Then, insulat-
ing sidewall spacers are formed as follows: first, the metal gate lines are recessed
from the side (Fig. 3(e)) by an isotropic metal etch, and then, the formed cavities
are filled with the spacer material (Fig. 3(f)). As earlier, the excess material in
the trenches is removed by an anisotropic high-aspect-ratio etch using the same
hard mask of Fig. 3(b). Then, source and drain regions are formed at the end of
the channel portion facing the trenches. These regions are doped using in-situ
epitaxy doping. The next step is to form the wiring lines and vertical pillars (i.e.,
vias, referred to as CONT VERT). For the vias, vertical holes are etched through
the whole layer-stack. For the wiring lines (referred to as METAL LINE), holes
are formed, which are used as filling ports for the metal lines. The metal lines
are filled over the whole length of the line through these filling ports. There-
fore, a very conformal deposition is needed to avoid pinch-off. The metal is then
removed from the plugs (referred to as METAL CUT) and refilled with a dielec-
tric to cut the wiring metal lines at specific locations. As shown in Fig. 3(g), the
wiring lines extend across and over the source and drain regions of the active
semiconductor.

Fig. 4. 3D Nanofabric active patterning process flow steps: (a) Cut a narrow gap; (b)
Silicon isotropic etch; (c) Oxide selective deposit to recreate the vertical gating.

Figure 3(h) shows the resulting 3D structure. Gate lines extend across and
over the channel region portions of the horizontal channel transistors. The gate
lines and wiring lines are arranged side-by-side and their separation is ensured
by the spacers. The single layer of the gate lines and wiring lines of each logic cell

3D Nanofabric: Layout Challenges and Solutions 287

of each device tier is readily visible in the figure, indicating a common geometric
horizontal plane intersected by all gate lines and wiring lines of each logic cell.

Similar to the gate patterning, the ACTIVE layer employs sideways process-
ing. After the active patterning, we need to “repair” the inter-dielectric layer,
as the gate is crossing over the edge of the active. “Repairing” can only be done
over small distances, so the initial patterning does not use final dimensions. The
active design will be upsized until only a small gap is left. As illustrated in
Fig. 4(a), this gap is etched into the layer-stack with another high-aspect-ratio
etch, which exposes the active on the sidewall. As shown in Fig. 4(b), a high
selective silicon etch is then used to trim the active silicon to the target size.
This way of patterning will impact some design restrictions on the ACTIVE
layer: the distance between two ACTIVE -polygons should either be the nominal
value or be big enough to fit a double-gap into it. Once the active is patterned,
the inter-dielectric layer gap is closed by selective deposition of oxide on oxide,
as depicted in Fig. 4(c).

3.3 3D Nanofabric Layout Examples

Fig. 5. NAND2: (a) Schematic; (b) Layout with layer legend.

The layout of a conventional NAND2 gate is depicted in Fig. 5(b) to illustrate
our proposed flow. As discussed, each gate (GATE INTEND) is surrounded by a
METAL LINE layer. As such, some metal breakers are required (METAL CUT)
to achieve all the different connections. The XCOUPLE layer is used to connect
the gate and the routing layer (METAL LINE). Two OXWALL squares in direct
contact with the gate can be observed and are used to mechanically support the
vertical structure. They also act as metal routing breakers. Besides, the Vdd and
Vss supply lines are fed through vertical pillars (brown CONT VERT squares)
to the logic gate. Note that, as explained earlier, the GATE INTEND layer is
not a physical mask as the gates are formed indirectly throughout the flow. This
layer is only shown here for layout purposes to ease the design step. Also, the

288 E. Giacomin et al.

XCOUPLE layer is used to form a connection between the GATE INTEND and
METAL LINE layers.

Figure 6(a)–(c) depicts the layouts of an INV, NAND3, and SRAM6T cells,
respectively. As can be observed, such simple gates can be efficiently designed
with the proposed 3D Nanofabric as their internal organization is straightfor-
ward, resulting in compact gates. This is because gates such as AND, OR,
NAND, or NOR simply require a stack of series transistors and a stack of parallel
transistors, so most of the source and drain regions can be shared. However, as
will be described in the next sections, more complex logic gates require specific
techniques to be designed and will result in an area overhead compared to tra-
ditional 2D layouts. Note that the SRAM 6T uses both vertical and horizontal
gate patterns to result in a more compact gate.

Fig. 6. Layout of various cells using the proposed Nanofabric rules: (a) INV; (b)
NAND3; (c) SRAM6T.

4 Layout Challenges

In this section, we describe the different layout challenges arising from the tech-
nology assumptions and the Nanofabric manufacturing flow. It will be shown
that these challenges are very different from the ones that have to be dealt with
in the 3D NAND case.

4.1 Gate Layer Forming

In conventional 2D technologies (planar or FinFET), the metal routing layers
often span across unrelated gate and active layers, as they are distinct from a pro-
cessing point of view, as shown in Fig. 7, depicting a conventional planar layout

3D Nanofabric: Layout Challenges and Solutions 289

of an AOI211 gate. In the proposed Nanofabric flow, this is not possible due to
the fabrication process: as explained in Sect. 3.2, the GATE INTEND layer is
derived from a boolean operation on the ANTIGATE layer. As such, it is strictly
impossible to have the ANTIGATE layer spanning on the GATE INTEND
layer, as it is the case in traditional 2D designs, which limits the freedom in
terms of physical layout. Also, as depicted in Fig. 5(b), the GATE INTEND
layer has to be surrounded on all sides by the ANTIGATE. As a result, some
breakers have to be employed to achieve distinct connections on the different
source and drain sides. While it is not an issue for a simple gate like the NAND2,
it brings some challenges for more complex gates like the XOR2 or AO22.

Fig. 7. Conventional planar layout of a AOI211 gate.

4.2 Single Metal Level Routing

As discussed earlier, the main layout limitation is that only a single metal rout-
ing track can be used within the Nanofabric, which considerably restricts the
physical design. This means that when designing, no upper metal level layers can
be used in case of metal crossing in high congestion areas. Without any crossing
possibility, it means that complex gates, such as XOR2 or the FA are challenging
to design. However, it is still possible to design such kinds of gates, and some
solutions are proposed in the next section. Another requirement arising from
the single metal rule is that the standard cell input and output pins have to be
located on the border to be accessed externally, as illustrated in Fig. 5(b). Since

290 E. Giacomin et al.

the flow only uses a single routing metal layer, there is no way to access the pins
located in the center of the cell through higher levels of metals, as is the case in
conventional 2D designs. As an example, the inputs A1 and C0 in Fig. 7 would
make the cell non-routable using the proposed Nanofabric flow.

5 Layout Solutions

In this section, we present the algorithm, consisting of several steps, used in
the Nanofabric to overcome the planar non-crossing layout restrictions. We first
describe each step with examples and then provide the complete algorithm.

5.1 Step 1: Resolving Loops at the Cell Level

The first step to resolve metal crossing is to make sure that no metal loop is
present within a single logic cell. Several techniques are employed:

Fig. 8. XOR2 logic gate: (a) Layout using the proposed Nanofabric rules; (b)
Transistor-level schematic. Note that the schematic is identical to a traditional static
CMOS XOR2 gate.

Transistor Placement and Stacking: Due to the non-conventional way of
designing logic cells, there is more freedom to move the transistors vertically
and horizontally, instead of having fixed top p-well and bottom n-well zones

3D Nanofabric: Layout Challenges and Solutions 291

as in traditional 2D designs. While this is not the case for simple gates like the
NAND2, more complex gates will require such arrangement, as depicted in Fig. 8
for a XOR2. Due to the complexity of the XOR2 cell and the non-crossing planar
graph constraints, the transistor sharing the same gate signals (mainly A and B)
are all stacked on each other to relieve congestion within the cell. In particular,
the internal inverters are also stacked as they share the same inputs as the XOR2
gate. Note that unlike conventional design styles, there is no fixed height for the
different logic cells, as complex gates such as the XOR2 will require a larger
height due to the transistor stacking. Therefore, more different design styles are
possible for a given cell, depending on its desired shape and internal structure.

Vertical Signals: Global signals, including Vdd, Vss, or the ALU control sig-
nals shared among all the vertical layers to perform the same logic function, are
provided to the Nanofabric through vertical pillars. In particular, unlike conven-
tional 2D designs, the standard cell power supply grid lines are removed. This
relieves metal routability since those signals will not block the metal routing
layer. Note that for an ALU, the primary inputs and outputs are independent
for each vertical tiers. Hence, they cannot be provided through vertical pil-
lars spanning among all tiers. Instead, similarly to the 3D NAND process [26],
staircase-like structures are employed to convey all the signals to the appropriate
tier independently.

Fig. 9. AO22: (a) Transistor-level based schematic; (c) Gate-level based schematic
using AND/OR gates; (d) Gate-level based schematic using NAND gates; (d) Layout
using NAND gates with the proposed Nanofabric rules.

Gate-Based Logic Cells: A solution to design complex gates is to use gate-
level based designs instead of transistor-level based designs. For the AO22 gate,
which transistor level-based design is depicted in Fig. 9(a), the different connec-
tions, notably i1 and i2, make it impossible to be designed using the proposed
Nanofabric flow. Since each gate has to be surrounded by the metal layer, and
there is only a single metal layer, these kinds of connections where 4 transis-
tors share the same drain or source are particularly challenging. However, using
the gate-level based design shown in Fig. 9(b) greatly simplifies the routing and

292 E. Giacomin et al.

makes it possible by merely cascading basic gates (NAND2, NOR2, etc.). While
the gate-level based design uses more transistors (18 instead of 10), it can be
rearranged using De Morgan’s equation, as shown in Fig. 9(c), and only uses 2
more transistors than the transistor-level based implementation. The layout of
AOI22 gate based on NAND2 gates is depicted in Fig. 9(d).

Propagate an Internal Signal Using Inverters: Another way of resolv-
ing specific metal crossing is to propagate the signal within the logic gate. As
depicted in Fig. 10, transistor N1 and P1 are driven by input A, while tran-
sistor N2 is driven by Ā. One way to achieve this without crossing is to use
a first inverter to generate Ā to drive transistor N2. Then, another inverter is
used to invert signal Ā back to A to drive transistor P1. That way, signal A is
propagated internally within the logic gate.

Fig. 10. Signal propagation using internal inverters. Here, signal A is propagated
within the logic cell.

5.2 Step 2: Resolving Loops at the Netlist Level

Once all logic gates do not contain any internal metal loop, they can be used
to build more complex blocks, such as a complete ALU. Duplicated gates can
be used to resolve any additional metal loop in the netlist when connecting
the different gates. As illustrated in Fig. 11(a), the input arrangement of the
AO22 gate is causing a metal crossing, and there is no way to move the gates
to overcome this issue. This metal crossing can be resolved by duplicating the
OR2 gate (in blue) on the side. As depicted in Fig. 11(b), its output can now be
connected to the AO22 gate without being confined, as it was the case before.
Note that while it brings an area overhead, duplicating logic gates will always
resolve any crossing issue as the gates can be duplicated up to the netlist primary
inputs.

3D Nanofabric: Layout Challenges and Solutions 293

Fig. 11. Logic circuit schematic: (a) Containing 2 metal crossings; (b) Alleviating 1
metal crossing through duplicated inputs from the staircase. (Color figure online)

5.3 Step 3: Duplicating Signals Through Staircases and Vertical
Signals

As explained in Sect. 3.1, each 2D layer will receive its primary inputs from its
sides. However, the first logic level of the ALU may require some inputs to be fed
to several parallel gates, implying possible metal crossing, as shown in Fig. 12(a).
In this example, input B is driving three parallel gates. However, since there is
no way to place them next to each other, the B metal wire has to cross inputs A
and C. Since the primary inputs of each 2D layer are provided through a vertical
staircase, they can be duplicated to be fed to more gates in the ALU. As depicted
in Fig. 12(b), both metal crossings can be resolved by duplicating the primary
inputs A and B. Besides, as using step 2 might also result in several duplicated
primary inputs, the staircase will be able to feed them to the ALU while avoiding
metal crossing. As the control signals are provided through vertical pillars, those
can also be easily duplicated if they need to control several logic gates.

Fig. 12. Logic circuit schematic: (a) Containing 1 metal crossings; (b) Alleviating the
metal crossing by using duplicated inputs from the staircase.

294 E. Giacomin et al.

5.4 Non-crossing Planar Graph Algorithm

Fig. 13. Non-crossing planar graph algorithm illustration.

In this sub-section, we present the complete algorithm, illustrated on Fig. 13,
to produce the layout for an ALU netlist while only using a single metal layer.
The algorithm, described with more details in Algorithm1, consists of all the
previous layout solutions presented in Sect. 5 combined. The algorithm starts
from one of the last logic gate (producing an output) and propagates backward
through the netlist. It first solves the internal gate crossings for each gate, before
solving the metal loops at the netlist level (between several gates). Once all the
gates of a given logic level have been treated, it moves to the previous logic
level until it reaches the primary inputs. If necessary, those primary inputs are
duplicated through the staircases or the vertical signals. Here, we assume that
the netlist does not contain feedback loops. While feedback loops are generally
present in sequential circuits, the goal here is to design combinational ALUs for
SIMD processors, so it is unlikely to happen. Besides, a proper synthesis of the
ALU function would also eliminate the feedback loops within the netlist.

6 Experimental Results

In this section, we first describe our experimental methodology and then demon-
strate the footprint benefits of our proposed 3D Nanofabric.

6.1 Experimental Methodology

We developed an in-house PDK for the 3D Nanofabric flow for the footprint
evaluations, following the technological assumptions presented in Sect. 3.2. For
the 2D baseline, we considered 2 cases: (a) the ASAP 7 nm FinFET design kit
from ASU [27] and (b) an in-house FinFET IN7 node. For a fair area comparison,
transistors are minimum sized in all cases. For both 2D cases, the ALU area values
were obtained after synthesis by using the complete available logic libraries. For
the 3D case, an extra step is performed to draw the layout by hand, following
the novel approach described above.

3D Nanofabric: Layout Challenges and Solutions 295

Algorithm 1: 3D Nanofabric non-crossing planar graph algorithm.
Starts at the output node (last level of logic depth);
Logic level = Get Total Nb Logic Levels();
while (Logic level != 1) do

Number gates = Get Current Logic Level Nb Gates();
while (Number gates != 1) do

if Current gate has internal crossings then
Duplicate Gate Inputs();
Use Gate Based Logic Cell();
Propagate Signal Using Inverters();

else
Use Transistor Based Logic Cell();

end
Number gates = Number gates− 1;

end
if Crossing between gates then

Duplicate Gate();
end
Logic level = Logic level − 1;

end
if Crossing between primary inputs then

Duplicate Signals();
end

6.2 Logic Gate Area Comparison

Table 1 shows the area of a few conventional logic gates, using the proposed 3D
Nanofabric flow compared to other technologies.

Table 1. Logic gates area (in µm2) using ASAP7, IN7 and the proposed 3D Nanofabric
process.

Gate ASAP7 IN7 3D Nanofabric

INVD1 0.044 0.016 0.029

NOR2D1 0.058 0.024 0.041

AO22D1 0.092 0.040 0.127

XOR2D1 0.117 0.072 0.083

NOR3D1 0.073 0.032 0.052

Average 0.077 (−17%)∗ 0.037 (+1.8×)∗ 0.066
∗ 3D Nanofabric area overhead/reduction, when compared to
ASAP7 and IN7 respectively.

296 E. Giacomin et al.

As expected, compared to a highly and aggressively optimized IN7 library,
using the 3D Nanofabric process brings an area overhead (1.8× on average) due
to the non-crossing rule, which requires extra transistors or spacing for complex
gates. In particular, the area overhead is even more significant for gate-level based
cell such as the AO22 gate due to the additional transistors. Note that the logic
gate area is reduced (17% on average) compared to ASAP7 since the proposed
Nanofabric allows us to design compact gates, as the nmos and pmos transis-
tors can be placed closer to each other. Besides, the significant difference between
ASAP7 and IN7 is from the fact that IN7 is equivalent to a commercial foundry
5 nm technology node due to its aggressive dimensions and multiple design boost-
ers enabling a 6-track library, while ASAP7 can only achieve 7.5 tracks.

6.3 ALU Footprint Comparison

Fig. 14. 1-bit basic ALU: (a) Schematic; (b) Layout view using the proposed 3D
Nanofabric rules and process flow.

In this section, we consider a basic 1-bit ALU, whose schematic is depicted
in Fig. 14(a). This 1-bit ALU is capable of performing the following operations:

– A + B + Cin

– A&B
– A|B
– AˆB

We study the area of the 1-bit ALU for all 3 cases using ASAP7, IN7, and
the proposed 3D Nanofabric. For both ASAP7 and IN7, we only considered
gates using minimum sized transistors, as we made the same assumption for the
proposed 3D Nanofabric. The layout of the 1-bit ALU using the 3D Nanofabric
is shown in Fig. 14(b). Note the presence of several OXWALL regions, which
fill the extra empty spaces required to route the single metal level layer. Here,
there is no need for dummy-poly as in a FinFET technology where the gate
is needed to define the Source-Drain. Instead, the empty spaces are filled with

3D Nanofabric: Layout Challenges and Solutions 297

the OXWALL dielectric layer. Also, the gate to gate distance is always enforced
(36 nm) to ensure that all the gate are aligned, so the layout is fully regular. As
shown in Table 2, ASAP7 and IN7 have a 1.6× and 3.7× smaller area than the
proposed 3D Nanofabric, respectively, for the 1-bit ALU as some gates have to
be duplicated to avoid crossing. Besides, some extra space is required for routing
where 2D processes use higher metal layers.

Table 2. 3D Nanofabric ALU footprint compared to ASAP7 and IN7 for an N -bit
ALU.

Number of bits N
Footprint (in µm2)∗

ASAP7 IN7 3D

1 0.787 (+1.6×) 0.338 (+3.7×) 1.257

2 1.822 (−1.4×) 0.758 (+1.7×) 1.257

3 2.186 (−1.7×) 1.193 (+1.05×) 1.257

4 2.668 (−2.1×) 1.516 (−1.2×) 1.257

8 4.765 (−3.8×) 2.991 (−2.4×) 1.257

16 11.033 (−8.8×) 5.539 (−4.4×) 1.257

24 16.169 (−12.9×) 8.265 (−6.6×) 1.257

32 21.257 (−16.9×) 10.999 (−8.7×) 1.257
∗ Also shows the 3D Nanofabric footprint overhead/reduction,
when compared to ASAP7 and IN7 respectively.

Note that while a single layer brings some area overhead due to the layout
constraints, the main goal of the proposed flow is to stack many vertical layers,
to achieve a footprint reduction. By going to 3D to build larger ALUs, we can
observe considerable footprint gains. This is because stacking 4 vertical layers
in 3D has the same footprint as a single layer, while the area of the 2D imple-
mentation increases for each additional bit. In particular, when going to 2 and 4
layers, we can already remark some footprint reduction when using the proposed
Nanofabric flow when compared to ASAP7 (45%) and IN7 (20%), respectively.
More importantly, using 32 vertical layers to build a 32-bit ALU reduces the foot-
print even further by a factor of 16.9× and 8.7× when compared to ASAP7 and
IN7, respectively. We believe that stacking 32 vertical layers is a fair assumption,
as current 3D NAND processes have demonstrated up to 128 stacked layers [24].
Hence, we can expect that a higher number of vertical layers could be considered
once the technology is more mature in the long term. Note that while the results
presented in this section are for the specific ALU depicted in Fig. 14(a), similar
results are expected when considering different ALU designs.

7 Conclusion

In this book chapter, we introduced a novel 3D design flow called 3D Nanofabric.
The flow consists of several identical stacked logic layers, making it well suited

298 E. Giacomin et al.

for SIMD processor applications where many basic regular ALUs are repeated.
We first proposed a possible fabrication flow and described how multiple vertical
layers could be patterned at once to define the transistor structures. We then
thoroughly investigated the layout constraints of the Nanofabric flow and pro-
posed several solutions to overcome them so that basic ALUs can be designed.
We showed the 32-bit ALU footprint is reduced by a factor of 8.7× compared
to a traditional 2D approach using a 7 nm FinFET technology, when using 32
vertical layers. We believe that this novel 3D approach enables cost-effective 3D
scaling as it enables more performant circuits at a smaller footprint with reduced
production cost.

References

1. Natarajan, S., et al.: A 14nm logic technology featuring 2nd-generation FinFET,
air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM
cell size. In: 2014 IEEE International Electron Devices Meeting, San Francisco,
CA, pp. 3.7.1–3.7.3 (2014). https://doi.org/10.1109/IEDM.2014.7046976

2. Colinge, J.P.: FinFETs and Other Multi-Gate Transistors, 1st edn. Springer,
Boston (2007). https://doi.org/10.1007/978-0-387-71752-4

3. Yoon, S.W., Yang, D.W., Koo, J.H., Padmanathan, M., Carson, F.: 3D TSV pro-
cesses and its assembly/packaging technology. In: 2009 IEEE International Con-
ference on 3D System Integration, San Francisco, CA, pp. 1–5 (2009). https://doi.
org/10.1109/3DIC.2009.5306535

4. Chua, T.T., et al.: 3D interconnection process development and integration with
low stress TSV. In: 2010 Proceedings 60th Electronic Components and Technology
Conference (ECTC), Las Vegas, NV, pp. 798–802 (2010). https://doi.org/10.1109/
ECTC.2010.5490728

5. Van Olmen, J., et al.: 3D stacked IC demonstration using a through silicon via first
approach. In: 2008 IEEE International Electron Devices Meeting, San Francisco,
CA, pp. 1–4 (2008). https://doi.org/10.1109/IEDM.2008.4796763

6. Beyne, E., et al.: Through-silicon via and die stacking technologies for
microsystems-integration. In: 2008 IEEE International Electron Devices Meeting,
San Francisco, CA, pp. 1–4 (2008). https://doi.org/10.1109/IEDM.2008.4796734

7. Chaabouni, H., et al.: Investigation on TSV impact on 65nm CMOS devices and
circuits. In: 2010 International Electron Devices Meeting, San Francisco, CA, pp.
35.1.1–35.1.4 (2010). https://doi.org/10.1109/IEDM.2010.5703479

8. Ruythooren, W., Beltran, A., Labie, R.: Cu-Cu bonding alternative to solder based
micro-bumping. In: 2007 9th Electronics Packaging Technology Conference, Singa-
pore, pp. 315–318 (2007). https://doi.org/10.1109/EPTC.2007.4469706

9. Zheng, Z., et al.: Demonstration of ultra-thin buried oxide germanium-on-insulator
MOSFETs by direct wafer bonding and polishing techniques. Appl. Phys. Lett.
109(2), 023503 (2016). https://doi.org/10.1063/1.4955486

10. Batude, P., et al.: Advances, challenges and opportunities in 3D CMOS sequential
integration. In: 2011 International Electron Devices Meeting, Washington, DC, pp.
7.3.1–7.3.4 (2011). https://doi.org/10.1109/IEDM.2011.6131506

11. Brunet, L., et al.: First demonstration of a CMOS over CMOS 3D VLSI CoolCube™

integration on 300mm wafers. In: 2016 IEEE Symposium on VLSI Technology,
Honolulu, HI, pp. 1–2 (2016). https://doi.org/10.1109/VLSIT.2016.7573428

https://doi.org/10.1109/IEDM.2014.7046976
https://doi.org/10.1007/978-0-387-71752-4
https://doi.org/10.1109/3DIC.2009.5306535
https://doi.org/10.1109/3DIC.2009.5306535
https://doi.org/10.1109/ECTC.2010.5490728
https://doi.org/10.1109/ECTC.2010.5490728
https://doi.org/10.1109/IEDM.2008.4796763
https://doi.org/10.1109/IEDM.2008.4796734
https://doi.org/10.1109/IEDM.2010.5703479
https://doi.org/10.1109/EPTC.2007.4469706
https://doi.org/10.1063/1.4955486
https://doi.org/10.1109/IEDM.2011.6131506
https://doi.org/10.1109/VLSIT.2016.7573428

3D Nanofabric: Layout Challenges and Solutions 299

12. Mallik, A., et al.: The impact of sequential-3D integration on semiconductor scal-
ing roadmap. In: 2017 IEEE International Electron Devices Meeting (IEDM),
San Francisco, CA, pp. 32.1.1–31.1.4 (2017). https://doi.org/10.1109/IEDM.2017.
8268483

13. Brunet, L., et al.: Breakthroughs in 3D Sequential technology. In: 2018 IEEE Inter-
national Electron Devices Meeting (IEDM), San Francisco, CA, pp. 7.2.1–7.2.4
(2018). https://doi.org/10.1109/IEDM.2018.8614653

14. Vandooren, A., et al.: 3D sequential stacked planar devices on 300 mm wafers
featuring replacement metal gate junction-less top devices processed at 525◦C with
improved reliability. In: 2018 IEEE Symposium on VLSI Technology, Honolulu, HI,
pp. 69–70 (2018). https://doi.org/10.1109/VLSIT.2018.8510705

15. Liu, C., Lim, S.K.: A design tradeoff study with monolithic 3D integration. In:
Thirteenth International Symposium on Quality Electronic Design (ISQED), Santa
Clara, CA, pp. 529–536 (2012). https://doi.org/10.1109/ISQED.2012.6187545

16. Andrieu, F., et al.: A review on opportunities brought by 3D-monolithic integra-
tion for CMOS device and digital circuit. In: 2018 International Conference on IC
Design & Technology (ICICDT), Otranto, pp. 141–144 (2018). https://doi.org/10.
1109/ICICDT.2018.8399776

17. Gitlin, D., Vinet, M., Clermidy, F.: Cost model for monolithic 3D integrated cir-
cuits. In: 2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified
Conference (S3S), Burlingame, CA, pp. 1–2 (2016). https://doi.org/10.1109/S3S.
2016.7804408

18. Sabry Aly, M., et al.: Energy-efficient abundant-data computing: the N3XT 1,000 x.
Computer 48(12), 24–33 (2015). https://doi.org/10.1109/MC.2015.376

19. Shulaker, M., et al.: Three-dimensional integration of nanotechnologies for com-
puting and data storage on a single chip. Nature 547(7661), 74–78 (2017). https://
doi.org/10.1038/nature22994

20. Giacomin, E., Boemmels, J., Ryckaert, J., Catthoor, F., Gaillardon, P.: Layout
considerations of logic designs using an N-layer 3D Nanofabric process flow. In:
28th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC), Salt Lake City, UT, USA, 5–7 October 2020

21. Macha, N.K., Iqbal, M.A., Rahman, M.: Fine-grained 3-D CMOS concept using
stacked horizontal nanowire. In: 2016 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH), Beijing, pp. 151–152 (2016). https://doi.
org/10.1145/2950067.2950079

22. Li, M., Shi, J., Rahman, M., Khasanvis, S., Bhat, S., Moritz, C.A.: Skybridge-
3D-CMOS: a vertically-composed fine-grained 3D CMOS integrated circuit tech-
nology. In: 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
Pittsburgh, PA, pp. 403–408 (2016). https://doi.org/10.1109/ISVLSI.2016.56

23. Kang, D., et al.: 13.4 a 512Gb 3-bit/cell 3D 6th-generation V-NAND flash memory
with 82MB/s write throughput and 1.2Gb/s interface. In: 2019 IEEE International
Solid- State Circuits Conference - ISSCC, San Francisco, CA, USA, pp. 216–218
(2019). https://doi.org/10.1109/ISSCC.2019.8662493

24. Siau, C., et al.: 13.5 a 512Gb 3-bit/cell 3D flash memory on 128-wordline-layer
with 132MB/s write performance featuring circuit-under-array technology. In: 2019
IEEE International Solid-State Circuits Conference - ISSCC, San Francisco, CA,
USA, pp. 218–220 (2019). https://doi.org/10.1109/ISSCC.2019.8662445

25. Shibata, N., et al.: 13.1 a 1.33Tb 4-bit/cell 3D-flash memory on a 96-word-line-
layer technology. In: 2019 IEEE International Solid-State Circuits Conference -
ISSCC, San Francisco, CA, USA, pp. 210–212 (2019). https://doi.org/10.1109/
ISSCC.2019.8662443

https://doi.org/10.1109/IEDM.2017.8268483
https://doi.org/10.1109/IEDM.2017.8268483
https://doi.org/10.1109/IEDM.2018.8614653
https://doi.org/10.1109/VLSIT.2018.8510705
https://doi.org/10.1109/ISQED.2012.6187545
https://doi.org/10.1109/ICICDT.2018.8399776
https://doi.org/10.1109/ICICDT.2018.8399776
https://doi.org/10.1109/S3S.2016.7804408
https://doi.org/10.1109/S3S.2016.7804408
https://doi.org/10.1109/MC.2015.376
https://doi.org/10.1038/nature22994
https://doi.org/10.1038/nature22994
https://doi.org/10.1145/2950067.2950079
https://doi.org/10.1145/2950067.2950079
https://doi.org/10.1109/ISVLSI.2016.56
https://doi.org/10.1109/ISSCC.2019.8662493
https://doi.org/10.1109/ISSCC.2019.8662445
https://doi.org/10.1109/ISSCC.2019.8662443
https://doi.org/10.1109/ISSCC.2019.8662443

300 E. Giacomin et al.

26. Jang, J., et al.: Vertical cell array using TCAT (Terabit Cell Array Transistor)
technology for ultra high density NAND flash memory. In: 2009 Symposium on
VLSI Technology, Honolulu, HI, pp. 192–193 (2009)

27. Clark, L.T., et al.: ASAP7: a 7-nm finFET predictive process design kit. Micro-
electron. J. 53, 105–115 (2016). https://doi.org/10.1016/j.mejo.2016.04.006. ISSN:
0026-2692

https://doi.org/10.1016/j.mejo.2016.04.006

3D Logic Cells Design and Results Based
on Vertical NWFET Technology
Including Tied Compact Model

Arnaud Poittevin1(B), Chhandak Mukherjee2, Ian O’Connor1,
Cristell Maneux2, Guilhem Larrieu3,4, Marina Deng2, Sebastien Le Beux1,

François Marc2, Aurélie Lecestre3, Cedric Marchand1, and Abhishek Kumar3

1 Lyon Institute of Nanotechnology,
University of Lyon, CNRS UMR 5270, Ecole Centrale de Lyon, Ecully, France

{arnaud.poittevin,ian.oconnor,sebastien.le-beux,
cedric.marchand}@ec-lyon.fr

2 University of Bordeaux, CNRS UMR 5218, Bordeaux INP Talence, Bordeaux,
France

{chhandak.mukherjee,cristell.maneux,marina.deng,
francois.marc}@u-bordeaux.fr

3 Université de Toulouse, LAAS, CNRS, INP Toulouse, Toulouse, France
{guilhem.larrieu,aurelie.lecestre,abhishek.kumar}@laas.fr

4 Institute of Industrial Science, LIMMS-CNRS/IIS, The University of Tokyo,
Tokyo, Japan

http://inl.cnrs.fr/

https://www.ims-bordeaux.fr/

https://www.laas.fr/

Abstract. Gate-all-around Vertical Nanowire Field Effect Transistors
(VNWFET) are emerging devices, which are well suited to pursue scal-
ing beyond lateral scaling limitations around 7 nm. This work explores
the relative merits and drawbacks of the technology in the context of
logic cell design. We describe a junctionless nanowire technology and
associated compact model, which accurately describes fabricated device
behavior in all regions of operations for transistors based on between 16
and 625 parallel nanowires of diameters between 22 and 50 nm. We used
this model to simulate the projected performance of inverter logic gates
based on passive load, active load and complementary topologies and
to carry out a performance exploration for the number of nanowires in
transistors. In terms of compactness, through a dedicated full 3D layout
design, we also demonstrate a 48% reduction in lateral dimensions for the
complementary structure with respect to 7 nm FinFET-based inverters.

Keywords: Vertical NWFET technology · compact model · VNWFET
DC measurements · 3D logic circuit cell · circuit simulation results

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 301–321, 2021.
https://doi.org/10.1007/978-3-030-81641-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_14

302 A. Poittevin et al.

1 Introduction

Data size and functionality requirements for computing are increasing, accord-
ing to the expectation that hardware performance will continue to improve,
irrespective of the actual implementation. This is particularly true for emerging
computing paradigms such as Edge Computing, which is placing extraordinarily
stringent constraints on computing hardware performances. However, the end of
roadmapped technological scaling is anticipated around the 7 nm FinFET gate
length node, mainly for cost reasons. In this context, vertical integration is an
attractive approach to fully take advantage of 3D integration and scale pitch
between contacts. Huge gains in silicon area are expected through the combina-
tion of extremely small elementary device footprint and minimal device usage
with MIG (Majority Inverter Graph logic) and PTL (Pass Transistor Logic)
design styles, for instance. This paper is the first attempt to quantify the gains
in terms of compactness and energy efficiency of 3D logic blocks based on actual
fabricated p-type VNWFET devices.

This chapter is organized as follows: Sect. 2 recalls the main features of the
VNWFET technology while detailing its associated scalable compact model.
In particular, the unified charge-based control model has been modified self-
consistently in order to take into account depletion and accumulation regimes,
electrostatic control, short-channel effects (SCE), drain-induced barrier lower-
ing (DIBL) and band-to-band tunneling (BTBT) contributions through gate-
induced drain leakage (GIBL). Simulated results are compared to measurements
to illustrate the versatility of the p-type VNWFET model in terms of dimen-
sions. An n-type VNWFET model has also been delivered using the electron
mobility value from the literature. These scalable compact models have been
implemented in Verilog-A, and subsequently implemented in a dedicated cir-
cuit design workspace. In Sect. 3, we demonstrate the efficiency of this design
workspace to simulate and quantify the 3D logic blocks. 3D layouts implement
inverter functions with various topologies: (i) passive load, (ii) active load and
(iii) complementary. Their static and dynamic energy consumption and delays
are given. In Sect. 4, we propose a layout footprint comparison between the 7
nm FinFET and the VNWFET through conventional rules. Going beyond this
approach, Sect. 5 deals with large-scale integration considerations suitable for a
fully 3D logic block architecture.

2 VNWFET Devices

2.1 Technology Description

The VNWFET technology has a junction-less architecture composed of a
homogenous highly doped nanowire channel, patterned into boron doped

VNWFET Design 303

(2 × 1019cm−3) Si substrate. The current flows between silicided source/drain
contacts and is controlled by a gate-all-around structure with a physical channel
length of 14 nm (Fig. 1). As illustrated in the 3D schematic of a 1-bit adder logic
cell consisting of vertically stacked VNWFETs, vertical integration allows higher
flexibility over lateral devices in terms of gate, spacer and channel lengths with-
out compromising on cell area, thus paving the way for scalable and innovative
logic designs. More details on the fabrication steps can be found in [2]. Process
parameters for the VNWFET under study are summarized in Table 1.

Fig. 1. The VNWFET: STEM image (reproduced with authorization from [1]) showing
(a) the cross section of vertical transistor nanowire arrays, (b) single nanowire and (c)
gate formation, (d) 3D schematic of a vertically stacked 3D integrated 1-bit adder logic
cell

Table 1. Process parameters for the VNWFET under study

Process Parameter Value

Physical gate length 14 nm

NW diameter 22 nm

NW in parallel 16

Tox 5 nm

Nch 1.1 × 1019 ˙cm−3

Gate work function 4.5 eV

304 A. Poittevin et al.

2.2 Compact Model

Drain Current Formulation. The model formulation is based on the unified
charge-based control model (UCCM) elaborated in [3] for long-channel devices,
which furthers the physical basis of the junctionless nanowire transistor (JLNT)
model presented in [4] and adapted in [5] for the JLNT technology under test
[2]. The limitations of the model in [4] is mainly the piece-wise continuous drain-
current model which requires additional smoothing functions and fitting param-
eters to smooth the transition between depletion and accumulation modes of
operation. In order to overcome this, the explicit and non-piece-wise solution in
[3] treats the mobile charge (Qm) to be decoupled between the depletion (QDP)
and complementary (QC) components. In the depletion mode the UCCM expres-
sion has been formulated as [3] in Eq. 1.

QDP = QeffLW

{
Qsc

Qeff
exp

(
Vg − Vth − ηV

ηφT
+

Qdep

Qsc

)}
(1)

with the depletion charge, Qdep = qNDR
2 , the effective charge during depletion,

Qeff = QscηCoxφT

Qsc+ηCoxφT
, Qsc = 2εSiφT

R , R being the nanowire diameter, η an interface
trap parameter, φT the thermal voltage and V the potential along the channel.
A Lambert W function has been used in both [3] and [4] to develop the solution
of total mobile charge in the JLNT. While the expression for QDP predicts the
depletion contribution correctly (for Vg < Vth), it underestimates the value of the
drain current above the flat-band condition. So in accumulation mode, especially
in high accumulation with QC ≤ Qdep, the charge QC has been derived to act
complementary to QDP , considering that the threshold voltage is pinned at
VFB in the accumulation region, in order to avoid using additional smoothing
functions and improve simulation time. Under high accumulation QC ≤ Qdep

and QC is simplified using another Lambert function (Eq. 2 [3]):

Qc = ηCcφT LW ×
{

Qsc

ηCcφT
× e

Vg−VF B−ηV

ηφT

}
(2)

with corrected electrostatic control through Cc=Cox − Ceff , Ceff = 1/Cox +
R/2εSi. Having evaluated both the depletion and complementary parts of the
mobile charge, one can formulate the non-piece-wise continuous model of the
total drain current in terms of QDP and QDC at the source and the drain end,
QDP0, QC0 and QDPL, QCL, respectively (Eq. 3).

IDS,0 = μeff
2πR

Leff
φT

[
Q2

DP

2η CoxφT
+ QDP +

Q2
c

2ηCcφT
+ 2Qc

]QDP0
QC0

QDP L
QCL

(3)

The drain current expression is free of any fitting parameters and can be eval-
uated based on the physical device parameters such as that of geometry and
doping. Additionally, short channel effects were taken into account considering
velocity saturation, an effective mobility, μeff , and incorporating an effective

VNWFET Design 305

gate length, Leff = L − ΔL, where L is the physical device gate length and
ΔL is calculated following the expression in [6]. Considering that the source and
drain access region resistances degrade the drain current above threshold, the
final expression of the drain current can be written as a function of the long
channel current (IDS,0), using Eq. 3, taking into account the corrections due to
short-channel effects [5], as in Eq. 4 [6].

IDS,0NF

1 + 2π R
Leff

NFμeff (RS + RD)
[
(QDP0 + QC0) − η1(QDP0 + QC0 − (QDP,V Deff + QC,V Deff))

]

(4)

Here, RS and RD are the source and drain series access resistances, respectively;
NF is the number of nanowires in parallel, η1 is a fine tuning parameter to take
into account the drain-voltage dependence of the series access resistances and
QDP ,Vdeff + QC ,Vdeff is the total mobile charge at the drain end (pinch-off)
of the channel. Additionally, considering formation of Schottky contacts at the
source and drain access regions, the subthreshold leakage currents are also taken
into account. Consequently, thermionic (Ith), tunneling (Itun) and band-to-band
tunneling (BTBT) contributions through gate-induced drain leakage (GIDL) are
added as separate branch currents [7] to the total drain current, in order to model
the subthreshold behavior of the drain current. Equation 5 gives the expression
used in the compact model for the BTBT current at the drain end [7].

IGIDL = 2πRLAccessNF × AGIDLVDS × E2
segd × e

− BGIDL
Esegd (5)

where LAccess represents the lengths of the source and drain access regions out-
side the channel, BGIDL is a physics-based parameter with a theoretical value of
21.3 MV/cm [7] and Esegd is the electric field in the drain overlap region, given
in Eq. 6.

Esegd =
Cox ×

√
V 2

segd + (CGIDLVDS)2

ε0εSi
(6)

Here, Vsegd is the gate-drain voltage across the oxide and AGIDL, CGIDL are
two GIDL fitting parameters. Lastly, additional model improvement has been
achieved compared to the model reported in [5], in the subthreshold regime.
In order to improve model accuracy, the accurate extraction of the parameter
η is ensured in order to correctly adjust the subthreshold slope. Moreover, the
effect of drain-induced barrier lowering (DIBL) is also taken into account in the
compact model by a modification of the threshold voltage through the Eq. 7

Vth = VFB − Qdep

Cox
− DIBL(VDSmax − VDSmin) (7)

with DIBL being the drain-induced barrier lowering in mV/V.

Gate Capacitance Calculation. To extract the gate capacitances, the total
gate charge, Qg, can be written in terms of the channel charge Qch, as [3],

Qg = −Qch = 2πR

∫ Leff

0

(QDP + QC)dy (8)

306 A. Poittevin et al.

The solution to the integral in Eq. 8 can be obtained by substituting the effective
gate length as a function of the drain current in the depletion and the comple-
mentary region of operations. The channel charge can thus be represented as
a function of the QDP and QC at the drain and source ends (Eq. 9) following
Eqs. 1 and 2 [3].

Qch = μeff (2πR)2φT

[
Q3

DP

3IDP ηCoxφT
+

Q2
DP

2IDP
+

Q3
C

3ICηCCφT
+

Q2
C

IC

]QDP0
QC0

QDP L
QCL

(9)

Here, IDP and IC are the depletion and complementary contributions of the
drain current. Finally, the intrinsic gate-source and gate-drain capacitances are
calculated using the expression in Eqs. 10 and 11, given the transconductance,
output conductance and the terminal voltages [3] for a single nanowire,

Cgs =
L2

eff (gds + gm)2

μeffIDS
− Qg(gds + gm)

IDS
(10)

Cgd =
−L2

effg2ds

μeffIDS
+

Qggds

IDS
(11)

The total gate capacitance of the nanowire arrays can thus be obtained with the
expression in Eq. 12.

Cgg = NF × (Cgs + Cgd) (12)

2.3 Measured and Simulated Results

DC Validation. For the validation of the compact model against measurement
results, we chose a wide range of geometries where test structures had diameters
(D) ranging between 22–50 with 16–625 nanowires in parallel (NF). Figure 2 show
the transfer characteristics, ID − VGS , of the JLNTs with D = 22 nm/NF = 16
(2a) and D = 50 nm/NF = 36 (2b), respectively. The model simulation results
show very good agreement with the measurements over the entire bias range,
indicating accuracy of individual modules of the compact model. Particularly,
the improvement of the model accuracy in the subthreshold region is observable
compared to the results reported in [5], leveraging Eqs. 5 and 7 as well as the
parameter η. The improvement in drive current and subthreshold leakage with
a higher number of nanowires in parallel is obvious from Fig. 2b, which however
suffers from a more pronounced DIBL induced VT -shift. This is most likely due
to quantum confinement effects in smaller nanowire diameters [8]. Nevertheless,
the compact model captures these effects with sufficient accuracy. A second order
validation is performed in Figs. 3 depicting the output characteristics, ID −VDS ,
of the JLNTs, further affirming model accuracy.

Scalability. Model scalability is crucial for compact models to support predic-
tive design at circuit level. Moreover, a scalable model parameter set is evidently

VNWFET Design 307

(a) 22nm diameter & 16 nanowires in par-
allel

(b) 50nm diameter & 36 nanowires in par-
allel

Fig. 2. ID − VGS of JLNTs of a given diameter and channel multiplicity

more reliable for innovative 3D logic circuit design. Figure 4 depicts the normal-
ized (with the effective NW width, πD×NF) gate capacitance and drain current
for all available geometries. The intrinsic gate capacitance shows better scalabil-
ity, especially for smaller number of nanowires in parallel, compared to the drain
current. It is also interesting to note that current scalability can be observed for
mainly devices with diameters of 22 nm (the representative set from this technol-
ogy), which have particularly reduced contributions from drain leakage currents
that do not scale across devices, as depicted in Fig. 4b. Even though the present
model formulation is inherently scalable, given the maturity of the technology,
the measured drain current does not scale well across all devices under test as
well as different technology generations owing to process variation. The deviation
from linearity in larger nanowire diameters could also possibly be attributed to
quantum confinement in smaller nanowire diameters [8].

Perspectives. Detailed formulation for the formation of Schottky barriers at
the drain/source ends were not taken into account in the present model formula-
tion in order to avoid model convergence issues due to increased computational
complexity and only thermionic/tunneling subthreshold leakage currents as well
as access region lumped resistances have been considered. This would be, how-
ever, an important aspect for further refinement of the model and improvement
of its accuracy. Moreover, further model enhancement will also rely on improve-
ment of process scalability in subsequent generations as well as design of dedi-
cated test-fixtures in order to correctly extract the parasitic contributions within
the device’s 3D architecture.

3 Logic Performance Assessment

In this section, we leverage the developed compact model to assess the perfor-
mance metrics of various topologies of an elementary logic gate in the VNWFET

308 A. Poittevin et al.

(a) 22nm diameter & 16 nanowires in par-
allel

(b) 50nm diameter & 36 nanowires in par-
allel

Fig. 3. ID − VDS of JLNTs of a given diameter and channel multiplicity

technology. While it is possible to simulate logic gates implementing multiple
Boolean operations, we focus in this paper on the comparison between several
topologies implementing a single inverter operation. This is partly due to the lack
of experimental devices and consequently measurements with which the compact
model parameters can be defined; but it also targets a full understanding of the rel-
ative merits and drawbacks of the device itself, minimizing design-specific issues.
In a first exploration we assess the simulated performance of p-type only inverters,
while in a second exploration, using a literature survey, we extrapolate the model
to n-type VNWFETs in order to explore a simple complementary inverter struc-
ture. Finally, we establish a comparison with the 7 nm FinFET technology node
using typical values, in preparation for further analysis in Sect. 4.

3.1 Simulated Structures

This work focuses on inverter structures implemented with passive- and active-
load topologies, as well as with complementary topologies.

P-type only Inverters. P-type only structures use a p-type device as conven-
tional pull-up, and implement the pull-down branch as a resistance, with either
a passive (Fig. 5a) or an active (Fig. 5b) load. For the latter, we use a p-type
device configured as current source. In both cases, the pull-down load is respon-
sible for the low logic state output. This type of structure is known to be less
efficient than their complementary counterparts, but firstly enables validation of
the use of experimental data for designing logic, and secondly gives first insights
into the use of such devices.

Complementary Inverter. For the complementary circuit, based on [9,10]
and shown in Fig. 5c, we conjecture a value for the carrier mobility in the n-type

VNWFET Design 309

(a) Normalized gate capacitance (b) Normalized drain current

Fig. 4. Normalized parameters for different VNWFET geometries

VNWFET channel and consequently its drive current. This value is 3x that of
the p-type VNWFET. Hence to balance the circuit for a switching input voltage
value halfway between the supply rails and for roughly equivalent noise margins,
we target identical currents in both devices. To achieve this, we set the NF
(number of nanowires) per device in the P-type equal to 3x that of the n-type.

3.2 Results

The goal of the following simulation-based exploration is to study the impact of
using a large range of nanowires per transistor on typical static and dynamic logic
performance metrics. In the simulation protocol, we assume that the gate capac-
itance behaves in the same way for both p- and n-type VNWFETs, and that the
capacitive load on the output of each structure is equivalent to its own theoretical
input capacitance (i.e. fanout of 1). Since the p-type VNWFET gate capacitance
with NF = 16 is experimentally determined to be 50aF, and assuming that its
evolution with NF is linear, we deduce a capacitance contribution per nanowire
of 3.25aF. Measurements were performed using the model described in Sect.
2 as implemented in Verilog-A and simulated using the SpectreTMcommercial
simulator.

Static Performance. DC simulation points enable the extraction of typical
static characteristics of the p-type VNWFET transistor.

• Ion/Ioff ratio
In this analysis, we characterize the p-type VNWFET characteristics in terms of
Ion/Ioff ratio for values of NF ranging from 3–300. To measure Ion (resp. Ioff),
we set input A = 0 (resp. A = 1) such that the pull-up device is on (resp. off) in
all structures. We observe a linear increase in the leakage current with NF at a
rate of 61pA per nanowire. Given the 16 nm nanowire diameter, this translates
to 0.3 µA/µm2 leakage current density in the p-type VNWFET. However, device

310 A. Poittevin et al.

Rload

GND

Vdd

V NWFET − PInput

¬(Output)

(a) Passive load

GND

Vdd

V NWFET − P1

V NWFET − P2

Input

V gload

¬(Output)

(b) Active load

Vdd

GND

V NWFET − P

V NWFET − N

Input ¬(Output)

(c) Complementary MOS

Fig. 5. Schematics of the studied inverter structures

Ion does not increase linearly with NF – in fact, the rate of increase slows down
when using large values of NF. As a result, device Ion/Ioff ratio decreases with
increasing NF, from 15 03 NF = 10 to 6.5 03 F = 300.

• Logic level Degradation
The load in the pull-down branch of both passive- and active-load inverters is
a major factor both for logic ‘1’ level degradation and for high-low propagation
delay. Its value is a tradeoff: increasing the load decreases logic level degradation
but increases propagation delay. For the studied structures the best compromise,
as shown in Fig. 6, gives a 15% logic ‘1’ level degradation and a 15% logic ‘0’ level
overshoot during high-low transitions at the output for a 1 GHz input signal.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

time (ns)

V
o
u
t

input voltage

passive inverter output

active inverter output

CMOS inverter output

Fig. 6. Voltage across the load capacitor for the studied structures

VNWFET Design 311

Dynamic Performance. As shown in Fig. 6, we carried out transient simula-
tions to extract relevant dynamic performance metrics, using a 1 GHz data input
with rise and fall times equal to 10 ps. As previously indicated, each inverter
shown in Fig. 5 was simulated with a fan-out of 1.

• Propagation Delay
For small values of NF, we observe a delay (measured as t Vout = 50%Vdd - t
in = 50%Vdd) ranging from 5–10 according to the type of inverter (the lowest
delay is achieved by the passive load inverter). When increasing NF, the gate
delay increases. This result can be linked principally to the sublinear increase in
Ion with NF, and the linear increase in gate capacitance with NF.

• Dynamic Energy Consumption
We also measure the energy required to transit through the transistor channel
when changing state. We calculate the amount of charge for a low-high transi-
tion at the output for the self-loaded complementary inverter. This value varies
linearly with NF and works out to 11aC per nanowire. With a 1 V supply volt-
age this gives us an energy consumption of 11aJ per nanowire for a low-high
transition at the output.

Fanout Analysis. Due to the sublinear variation of Ion with NF, self-loaded
logic cells with high values of NF cannot charge completely in the available
time (Fig. 7). At 1 GHz and for NF ≥ 300, an inverter cannot cascade with
an identical logic cell. Similarly, when increasing the fan-out (number of cells
controlled by the inverter), this boundary reduces until fan-out = 5, where a
single nanowire transistor cannot drive 5 identical cells simultaneously. This
information is crucial regarding power and delay management when designing
larger cells.

3.3 Comparison with FinFET and Conclusion

Based on the previous results, there is a clear advantage for using logic cells
with low NF, both for power consumption concerns and for fan-out. The values
obtained are compared in Table 2 to FinFET values from the literature, both
for static values [11] and for propagation delay [12]. Note that while being an
academic non-optimized technology, the VNWFET shows similar order of mag-
nitude compared with the industrial mature process 7 nm FinFET.

Table 2. VNWFET/FinFET comparison

Metric VNWFET 7nm FinFET

Static leakage current density (µA/µm2) 0.3 1

Ion/Ioff ratio (×104) [1.5–0.65] ≈8

Propagation delay (ps) [5–10] 2.2

312 A. Poittevin et al.

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

time(ns)

V
o
u
t
(V

)

NF = 3

NF = 6

NF = 15

NF = 30

NF = 67

NF = 300

Fig. 7. Voltage across the load capacitance of the self-loaded complementary inverter
according to NF (number of nanowires in the p-type VNWFET)

4 3D Logic Cells

4.1 Going Vertical: Implications on Physical Circuit Design

Paradigm Change. Vertical transistor channels lead to a paradigm change in
the design of logic cells. Source and drain contacts, separated by the vertical
channel, can occupy the same lateral space. Stacked series transistors further
improve the gain in circuit density. Further, the additional dimension enables
numerous spatial configurations for the same logic functionality [13]. However,
careful evaluation of gate contacts and routing is necessary to ensure the best
tradeoff between density and performance. In this section, we identify critical
dimensional constraints, formulate λ rules for the VNWFET technology and
leverage them to compare footprint to lateral FinFET technology. Although this
article does not aim to explore complex logic structures using this technology, it
lays the foundations for carrying out a complete and exhaustive study with this
objective. For this reason, in order to deal with the significant differences between
planar FinFET technology and vertical nanowire technology, initial designs must
share as much common ground as possible with a tried-and-tested yet cutting-
edge technology. Based on the comparison results we extrapolate the comparison
metrics to projected figures considering using the potential of the VNWFET
technology to its full extent.

VNWFET Design 313

Comparison Basis. A planar FinFET channel is composed of a number of fins,
according to the desired transistor characteristics (Fig. 8). Similarly, a VNWFET
channel is composed of several vertical nanowires. In this work, we aim to com-
pare the footprint of VNWFET-based logic cells with respect to FinFET-based
logic cells. We take as baseline reference λ rules for elementary standard cells
based on the 7 nm FinFET technology [14] established in the context of exhaus-
tive layout and performance benchmarking. λ rules constitute a simple tool that
allows first order scaling by linearizing the resolution of the complete wafer
implementation. While modern processes rarely shrink uniformly, λ rules remain
useful to make first-order cross-technology spatial comparisons. The principle of
λ-rules is to decorrelate characteristic sizes from absolute dimensions by express-
ing them as a function of some reference length unit (λ). The λ value used for
the FinFET represents twice the fin thickness (Tsi – as shown in Fig. 8), which
represents the smallest mask dimension (oxide thickness, established through
epitaxial growth, is not correlated to lithography or mask limitations) . Corre-
spondingly, the smallest dimension in the VNWFET transistor is the nanowire
diameter D (see Fig. 9) and is accordingly used to define λ for the VNWFET
technology . An important observation in both technologies is that dimensions
in the transistor zone are comparable to λ, while dimensions comparable to 3×λ
are used in the routing and contacting of the transistor. In the baseline reference,
FinFET planar transistors are at the 7 nm node, such that λ = 3.5 nm, while the
current state of VNWFET technology allows a minimal nanowire diameter such
that λ = 16 nm. It should be stressed that this is representative of an emerging
research technology under development rather than an inherent limitation to the
technology. Table 3 shows the λ-rules as established in [14] for 7 nm FinFETs as
well as those chosen in this paper for VNWFETs.

Fig. 8. Perspective view of a 7 nm node FinFET transistor [14]

314 A. Poittevin et al.

Table 3. λ-Rule metric comparison between FinFET and VNWFET

Parameter Value in 7nm FinFET
(nm)

Value in projected
VNWFET (nm)

Comment

Tfin/D 3.5 = λfin 11 = λNW Fin thickness /
nanowire diameter

Tsi 2× λfin Fin length
Hfin/HNW 4× λfin 30 Height
Tox 1.55 5 Oxide thickness
Pfin/PNW 2× λfin + Tfin 2× λNW + D Pitch
WC 3× λfin 3× λNW Contact size
WM2M 2× λfin 2× λNW Gate to contact space

4.2 The 3D Architecture of the VNWFET Technology

There are 3 metallic contacts along the transistor’s vertical channel. This struc-
ture is shown in Fig. 9 [2]:

– The bottom PtSi contact surrounds the bottom of the nanowire and estab-
lishes a first access to the transistor channel. This contact is ultimately used
as drain or source.

– A top Al contact covers the top of the nanowire and establishes a second
access to the transistor channel. This contact is similarly used as a drain or
source.

– A Cr layer in the middle surrounds the center of the nanowires and is sepa-
rated from the silicon by a gate oxide. This metal contact acts as the gate.

It is worth noticing that the gate structure surrounds the channel, thus categoriz-
ing this type of transistor as a Gate-all-around (GAA) FET. Moreover, as com-
pared to FinFET technologies, the silicon in the region of the drain and source is
doped in the same way as for the channel zone. Specifically, the nanowire to which
the drain, gate and source are attached is etched in a uniformly doped silicon bulk
[1]. This transistor is thus also a junction-less transistor. The perspective view of
the nanowire transistor provides insights into the tridimensional structure of the
device. Since we focus on the lateral footprint and for the sake of improved visibil-
ity, vertical dimensions are not to scale in this view. A single transistor may com-
prise multiple (NF) nanowires in its channel and each nanowire is surrounded by
gate oxide before any contacts other than the bottom contact is deposited. In order
to facilitate the differentiation between p- and n-type, and for the sake of clarity,
the figures representing VNWFET structures in the remainder of this paper will
show neither the gate oxide surrounding the silicon nanowire nor the insulating
spacers for each metallic layer. Spacers made of oxide are represented between top
contact and gate and between gate and bottom contact to isolate those metals.
In order to facilitate the differentiation between p- and n-type, and for the sake
of clarity, the figures representing VNWFET structures in the remainder of this
paper will show neither the gate oxide surrounding the silicon nanowire nor the
insulating spacers for each metallic layer.

VNWFET Design 315

Fig. 9. Perspective and cut view of a projected VNWFET transistor

4.3 Footprint Estimation

As indicated previously, we focus on the footprint (lateral area) in order to
keep common grounds with the FinFET technology. The vertical height of the
logic cell is considered unimportant in this comparison and unrelated to any
FinFET dimension. The same is true for gate length and contact thickness. In the
standard cell approach, the lateral “height” of the cell (i.e. the distance between
supply voltage and ground) is constant for all standard cells in a technology.
Data inputs and outputs are typically located in the middle of the cell. Their
position is not constrained and their access is not taken into account in the cell
design. This type of layout allows the designer to assemble each logic gate on
the same level with only inputs and outputs to route properly, usually through
a dedicated routing channel. Several important points mentioned in Sect. 3 are
taken into account in order to implement logic cells in the context of standard
cell design. The current technology is used for characterization and trials on
vertical nanowires. It is thus unable to sustain the requirements of the λ-rule
constraints we introduced in Table 3. Indeed, the 16 nm diameter value is not
the main concern, since the dimensions of the metallic layers are much larger
for electrical characterization purposes and manufacturing process limitations.
The lithography equipment used in the process is not intended for this scale of
precision. These manufacturing changes, as compared to [1], remain credible in
a foreseeable future. In a nutshell, the main assumption is that contact and gate
dimensions are in the same range as the nanowire dimensions.

4.4 Layout Footprint Comparison Example

The comparison method explained above is applied to a CMOS inverter structure
with balanced switching corresponding to nanowire mobility [9]. The difference

316 A. Poittevin et al.

between the mobility of both transistor channels suggests that the n-type and p-
type transistors respectively possess one fin or one nanowire and one fin or three
nanowires. In Fig. 10, the layout is composed of large voltage supply extensions
for both VDD and GND and an active zone where the transistors are connected
together. The layout footprint is the product of the width and length given in λ
values. In both Figures. 10a and 10b, we notice a similar inverter structure, where
the position of the supply voltages and input/output are indicated. The FinFET
inverter footprint is 48λ long and 18λ wide while the VNWFET inverter footprint
is 31λ long and 15λ wide. This represents a 48% footprint area reduction. If we
choose a less restrictive comparison criterion and consider the active part alone
(removing the 12λ supply contacts for both layouts), we observe an 84% footprint
area reduction.

(a) Top view for the
7nm finFET technol-
ogy [14]

(b) Perspective view for the VNWFET technology

Fig. 10. Representation of an inverter gate in both VNWFET and finFET technologies

5 A Custom EDA Tool

5.1 Specifications

EDA (Electronic Design Automation) tools are common and accessible nowa-
days. However, considering the technology under analysis, there are some specific
aspects such as the vertical channel and routing rules resulting from it. These

VNWFET Design 317

aspects are not easy to feed into EDA software. Indeed, usual supported circuits
are a succession of 2D layers interconnected by vias. For this reason, we decided
to develop a specific tool for interconnecting the VNWFET devices that will
ease a few aspects of the work:

– Rendering the logic cell in 3D
– Creating masks suited for very specific manufacturing constraints
– Giving a computing basis for 3D parasitic extraction

5.2 Realisation

The tool under development is written in Python3 and requires 3D modeling
software (Blender) as well as a mask editing and viewing software (Klayout). Its
input is a Python file describing the structure of the logic cell. Ultimately, it will
to be able to read a netlist.

5.3 Example of Studied Structure

Since we studied the inverter under different aspects, we can showcase the tool
we have been using on this particular case. First, Fig. 11 shows a realistic (manu-
facturing wise) representation of the inverter cell with labels in blue for the signal
to send to the logic cell, in comparison with the logic cell in Fig. 10b studied ear-
lier, which was also generated with this tool but with a different manufacturing
library. Last but not least Fig. 12 is the GDS file used for manufacturing the
mask of this particular structure

Fig. 11. Realistic view of the VNWFET CMOS inverter with manufacturing con-
straints taken into account (Color figure online)

318 A. Poittevin et al.

Fig. 12. Generated mask for a realistic VNWFET CMOS inverter design

6 Insights for Large Scale Integration

6.1 Promising Results for Further Designs

While devices based on vertical nanowires have been compared to lateral GAA
devices in the past [15], this work used apparent mobility differences between
both device channels to justify the difference in gate lengths. In order to achieve
similar drive strength for both devices, the vertical device gate length is around
2 times that of the lateral device. Such electrical considerations help to set the
vertical dimensions for the VNWFET. Gate length values in the referenced arti-
cle are in the 10–20 range. This value fits our designs without any impact on the
device footprint area and its impact on overall performance will be studied in
the future. The fact that VNWFET dimensions such as gate, spacer and channel
lengths are decorrelated from the lateral footprint allows electrical parameters
to be tuned without touching the cell design. This favors the standardization
of simple cells, as well as the achievement of complex logic design and scalable
electronics. In this work, the comparison method separated electrical behavior
concerns from device layout to establish a workflow and to enable the future con-
sideration of stacked-gate vertical devices [16]. Stacking gates requires device Ion
to be high enough to drive the whole common channel. We demonstrate in Sect.
3 that with current technology, the fan-out limit is 4 for a very low number of
transistors. Thus, we can expect at least a functional 4-stacked gates transistor,
which already enables significant opportunity for disruptive logic designs.

VNWFET Design 319

6.2 The Future of the VNWFET Technology

It was shown from the analysis in the last chapter that we would be able to stack
up to 4 gates on a nanowire channel. This aspect of the VNWFET technology
is crucial for its future success.

Making Stacking Possible. Considering the current state of the art,
VNWFETs can be connected together on the top, gate or bottom level. Each of
those levels can be accessed considering a single gate technology. What would
happen if we stack multiple gate levels on the same nanowire channel is what we
need to measure and plan for. Figure 13 shows how this transformation affects
the structure.

Fig. 13. Transition from 1 gate to 2 stacked-gates: structural changes visualisation for
two transistor connected in a source-drain fashion

Reasons for Stacking Gates. When looking at a large scale circuit, we notice
that around half of the metal paths are used by interconnections which consume
a significant part of effective power and is also responsible for important delays.
There are numerous ways to reduce interconnection length and complexity such
as modifying the way logic cells are designed or going for regular and optimized
structures. What we propose depends on the scale of the interconnects leveraging
the properties of the VNWFETs:

– For an interconnect between 2 transistors, we hope to remove some of it by
considering stacked gates as transistors in a drain-source connected configu-
rations

– For an interconnect between 2 logic cells, owing to the vertical channel, out-
puts, inputs or power supplies can be connected through design on the chosen
interconnect layers. No vias are therefore necessary.

Some previous works have focused on the theoretical advantages of 2 stacked
gates 3D structures similar to the VNWFET technology [17] while [18] explores
a manufacturing process for stacked gates applied for Tunnel FETs. In light of
these articles, enhancement and optimization of this VNWFET technology and
designing technology specific logic cells appears quite promising.

320 A. Poittevin et al.

7 Conclusion

This work considers the use of VNWFETs as a means to implement 3D
logic blocks. We have built a technology scalable physics-based compact model
and implemented it in Verilog-A as incorporated in a dedicated circuit design
workspace. This environment has been used to simulate innovative 3D layouts of
inverter cells. The layout of the complementary inverter has been compared with
projected 7 nm FinFET technology through the use of λ rules. We showed that
the VNWFET-based approach achieves 48% footprint reduction and can reach
84% if only the active part is considered. Beyond λ rule comparisons, we pre-
sented another physical layout implementation that leverages the unique features
of VNWFETs, where dimensions such as gate, spacer and channel lengths are
de-correlated from the transistor footprint. This important property allows elec-
trical parameters to be tuned without any impact on cell design. The standard-
ization of such simple logic cells will pave the way for more complex VNWFET
logic cell designs.

Acknowledgments. This work was supported by the French RENATECH network
(French national nanofabrication platform) and by the LEGO project through ANR
funding (Grant ANR-18-CE24-0005-01).

References

1. Larrieu, G., Han, X.-L.: Vertical nanowire array-based field effect transistors for
ultimate scaling. Nanoscale 5, 2437 (2013). https://doi.org/10.1039/c3nr33738c

2. Guerfi, Y., Larrieu, G.: Vertical silicon nanowire field effect transistors with
nanoscale gate-all-around. Nanoscale Res. Lett. 11, 210 (2016). https://doi.org/
10.1186/s11671-016-1396-7

3. Hamza, A., Imail, R., Alias, N.E., Peng Tan, M.L., Poorasl, A.: Explicit continuous
models of drain current, terminal charges and intrinsic capacitance for a long-
channel junctionless nanowire transistor. Phys. Scr. 94, 105813 (2019)

4. Lime, F., Moldovan, O., Iniguez, B.: A compact explicit model for long-
channel gate-all-around junctionless MOSFETs. Part I: DC characteristics. IEEE
Trans. Electron Devices 61, 3036–3041 (2014). https://doi.org/10.1109/TED.2014.
2340441

5. Mukherjee, C., Larrieu, G., Maneux, C.: Compact modeling of 3D vertical junc-
tionless gate-all-around silicon nanowire transistors. In: EUROSOI ULIS (2020)

6. Lim, F., Àvila-Herrera, F., Cerdeira, A., Iñiguez, B.: A compact explicit DC model
for short channel Gate-All-Around junctionless MOSFETs. Solid State Electron
131, 24–29 (2017). https://doi.org/10.1109/TED.2014.2340441

7. Zhu, G., et al.: Subcircuit compact model for dopant-segregated Schottky gate-all-
around Si-nanowire MOSFETs. IEEE Trans. Electron device 57(4), 24–29 (2017).
https://doi.org/10.1109/TED.2010.2041513

8. Sahay, S., Kumar, M.J.: Junctionless Field-Effect Transistors: Design, Modeling
and Simulation. IEEE Press Series on Microelectronic Systems, Wiley, Hoboken
(2019) https://b-ok.cc/book/4976757/3a8e5e

9. Gunawan, O., et al.: Measurement of carrier mobility in silicon nanowires. Nano
Lett. 8, 1566–1571 (2008). https://doi.org/10.1021/nl072646w

https://doi.org/10.1039/c3nr33738c
https://doi.org/10.1186/s11671-016-1396-7
https://doi.org/10.1186/s11671-016-1396-7
https://doi.org/10.1109/TED.2014.2340441
https://doi.org/10.1109/TED.2014.2340441
https://doi.org/10.1109/TED.2014.2340441
https://doi.org/10.1109/TED.2010.2041513
https://b-ok.cc/book/4976757/3a8e5e
https://doi.org/10.1021/nl072646w

VNWFET Design 321

10. Colinge, J.-P., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5,
225–229 (2010). https://doi.org/10.1038/nnano.2010.15

11. Clark, L.T., et al.: ASAP7: a 7-nm finFET predictive process design kit. Micro-
electron. J. 53, 105–115 (2016). https://doi.org/10.1016/j.mejo.2016.04.006

12. Raghavan, P., et al.: Holistic device exploration for 7 nm node. In: IEEE Custom
Integrated Circuits Conference (CICC), pp. 1–5 (2015). https://doi.org/10.1109/
IEDM.2016.7838497

13. Moroz, V., et al.: Power-performance-area engineering of 5nm nanowire library
cells. In: International Conference on Simulation of Semiconductor Processes and
Devices (SISPAD), pp. 433–436 (2015). https://doi.org/10.1109/SISPAD.2015.
7292353

14. Cui, T., Xie, Q., Wang, Y., Nazarian, S., Pedram, M.: 7nm FinFET standard cell
layout characterization and power density prediction in near- and super-threshold
voltage regimes. In: International Green Computing Conference, pp. 1–7 (2014).
https://doi.org/10.1109/IGCC.2014.7039170

15. Yakimets, D., et al.: Vertical GAAFETs for the ultimate CMOS scaling. IEEE
Trans. Electron Devices 62, 1433–1439 (2015). https://doi.org/10.1109/TED.2015.
2414924

16. Shi, J., Li, M., Rahman, M., Khasanvis, S., Moritz, C.A.: NP-Dynamic Skybridge:
A Fine-Grained 3D IC technology with NP-dynamic logic. IEEE Trans. Emerging
Top. Comput. 5, 286–299 (2017). https://doi.org/10.1109/TETC.2017.2684781

17. Veloso, A., et al.: Challenges and opportunities of vertical FET devices using 3D
circuit design layouts. In: IEEE SOI 3D Subthreshold Microelectronics Technol-
ogy Unified Conference (S3S), pp. 1–3 (2016). https://doi.org/10.1109/S3S.2016.
7804409

18. Li, X., et al.: Vertically stacked and independently controlled twin-gate MOSFETs
on a single Si nanowire. IEEE Electron Device Lett. 32, 1492–1494 (2011). https://
doi.org/10.1109/LED.2011.2165693

19. Chhandak, M., et al.: 3D logic cells design and results based on vertical NWFET
technology including tied compact model. In: 2020 IFIP/IEEE 28th International
Conference on Very Large Scale Integration (VLSI-SOC), pp. 76–81 (2020) https://
doi.org/10.1109/VLSI-SOC46417.2020.9344094

https://doi.org/10.1038/nnano.2010.15
https://doi.org/10.1016/j.mejo.2016.04.006
https://doi.org/10.1109/IEDM.2016.7838497
https://doi.org/10.1109/IEDM.2016.7838497
https://doi.org/10.1109/SISPAD.2015.7292353
https://doi.org/10.1109/SISPAD.2015.7292353
https://doi.org/10.1109/IGCC.2014.7039170
https://doi.org/10.1109/TED.2015.2414924
https://doi.org/10.1109/TED.2015.2414924
https://doi.org/10.1109/TETC.2017.2684781
https://doi.org/10.1109/S3S.2016.7804409
https://doi.org/10.1109/S3S.2016.7804409
https://doi.org/10.1109/LED.2011.2165693
https://doi.org/10.1109/LED.2011.2165693
https://doi.org/10.1109/VLSI-SOC46417.2020.9344094
https://doi.org/10.1109/VLSI-SOC46417.2020.9344094

Statistical Array Allocation
and Partitioning for Compute In-Memory

Fabrics

Brian Crafton(B), Samuel Spetalnick, Gauthaman Murali, Tushar Krishna,
Sung-Kyu Lim, and Arijit Raychowdhury

Georgia Institute of Technology, Atlanta, GA 30332, USA
brian.crafton@gatech.edu, arijit.raychowdhury@ece.gatech.edu

Abstract. Compute in-memory (CIM) is a promising technique that
minimizes data transport, the primary performance bottleneck and
energy cost of most data intensive applications. This has found wide-
spread adoption in accelerating neural networks for machine learn-
ing applications. Utilizing a crossbar architecture with emerging non-
volatile memories (eNVM) such as dense resistive random access mem-
ory (RRAM) or phase change random access memory (PCRAM), various
forms of neural networks can be implemented to greatly reduce power and
increase on chip memory capacity. However, compute in-memory faces
its own limitations at both the circuit and the device levels. Although
compute in-memory using the crossbar architecture can greatly reduce
data transport, the rigid nature of these large fixed weight matrices for-
feits the flexibility of traditional CMOS and SRAM based designs. In
this work, we explore the different synchronization barriers that occur
from the CIM constraints. Furthermore, we propose a new allocation
algorithm and data flow based on input data distributions to maximize
utilization and performance for compute-in memory based designs. We
demonstrate a 7.47× performance improvement over a naive allocation
method for CIM accelerators on ResNet18.

Keywords: Compute In-Memory · RRAM · PCRAM

1 Introduction

Modern computing systems are heavily dependent on the capacity and access
time of expensive memory banks due to the ever increasing performance gap
between main memory and logic. Furthermore, the cost of moving data has
become more expensive than operating on it [1], and thus not only has the
memory become the fundamental bottleneck of computing, but both reading
and transporting the data has become more expensive than the operation we
seek to perform. Popularization of data intensive applications like machine learn-
ing and artificial intelligence have further exacerbated this problem. To address
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 323–341, 2021.
https://doi.org/10.1007/978-3-030-81641-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_15

324 B. Crafton et al.

these issues, new architectures based on traditional CMOS attempt to minimize
the transport of data by optimizing for data reuse [1] and adopting constraints
inspired by the brain [2]. While these techniques yield strong results, they still
face the fundamental technological limitations of CMOS.

Fortunately a new class of embedded non-volatile memory (eNVM) is posi-
tioned to minimize data transport by performing compute in-memory. In-
memory computing seeks to perform matrix multiplication (y = Wx) in a cross-
bar structure using Ohm’s law and the non-volatile conductance state provided
by the non-volatile memory. Using this technique, each weight of the matrix
(Wij) is programmed as a conductance to a cell and each value of the vector
(xi) is converted to voltage and applied to the rows of the memory crossbar. By
Ohm’s law, the current through each cell is proportional to the product of the
programmed conductance (Wij) and applied voltage (xi). By Kirchhoff’s current
law (KCL), the resulting currents summed along the columns of the crossbar are
proportional to the product of the matrix and vector, (y). Under this procedure,
the only data transport required for matrix multiplication is the feature vector
(x) from memory and result (y) to memory. Therefore, in-memory computing
eliminates the majority of data transfer and thus energy cost of data intensive
operations.

Although compute in-memory using the crossbar architecture can greatly
reduce data transport, the rigid nature of these large fixed weight matrices for-
feits the flexibility of traditional CMOS and SRAM based designs. Given that
eNVM has high density and unfortunately high write energy compared to tradi-
tional SRAM, CIM-based inference-only designs avoid writing to the eNVM cells
once programmed. While this is advantageous for data transport and energy effi-
ciency, it means each CIM processing element (PE) can only perform operations
it has the weights for. This implies that if there is an unbalanced workload where
some PEs operations take longer than others, we cannot simply re-allocate these
operations to other PEs. Therefore, we must use synchronization barriers for all
PEs so distributed matrix multiplication completes before another is started. In
contrast, every CMOS and SRAM based PE are computationally identical and
can perform any operation in the DNN graph.

Therefore a fundamental problem in CIM based designs is array utilization,
the percent of time an array is in use. Recent large scale CIM designs [3], use
weight duplication and layer pipelining techniques to maximize performance. We
describe these techniques in detail in Sect. 2. While impressive performance is
achieved, these techniques only perform well when the workloads are determinis-
tic. Circuit level techniques like zero-skipping greatly increase performance, but
create non-deterministic workloads that compromise array utilization. In this
work [4] we identify and profile these new challenges using a simple simulator
framework. We then propose a novel algorithm, which makes use of input statis-
tics to find optimal array allocation policies to maximize utilization and break
synchronization barriers. Furthermore, we introduce a new data flow that gen-
eralizes CIM arrays to maximize their utilization. We run our experiments on
ImageNet [5] using ResNet18 [6] and CIFAR10 [7] using VGG11 [8]. Although

Array Allocation and Partitioning 325

we apply our techniques to deep learning, we claim that the techniques we pro-
pose can be extended to any compute in-memory application. We note that a
combination of these strategies yield 7.47× improvement in performance over a
baseline naive array allocation.

2 Background and Motivation

Compute in-memory systems use binary or multi-level cells as weights to per-
form matrix multiplication in memory. In this work we will focus our attention
to binary cells given the current state of the art in eNVM [9–11] already strug-
gles with variance thus making multi-level cells even more difficult to utilize.
However, the same techniques demonstrated in this work can easily be applied
to multi-level cells as well. Given binary cells, we must use 8 adjacent cells to
form a single 8-bit weight, like those shown in the columns of Fig. 1. The 8-bit
vector inputs to this array are shifted in 1 bit at a time, and the resulting binary
product collected at the ADCs is shifted left by the same amount the inputs
are shifted right. In this way, each array is able to perform an 8-bit matrix
multiplication.

Fig. 1. Typical compute in-memory PE (processing engine) and sub-array (SA) archi-
tecture. (A) NxN sub-array PE with L1 cache and psum buffer. In this work N is 8.
(B) Typical sub-array design with dual word line drivers, ADCs, shift and add units,
and an adder tree.

2.1 Array Operation

In Fig. 2, we illustrate this process using a 4-bit, 2× 2 matrix multiplication. In
the top inset of the figure, we provide the example problem and solution of the
matrix multiplication, along with how it is mapped to the crossbar array. The
values of the matrix are mapped to the memory cells (RRAM) of the crossbar,
and the input vectors are encoded as binary values to be shifted in one bit at
a time. In the second inset of Fig. 2 we walk through the four cycles associated

326 B. Crafton et al.

Fig. 2. Example compute in-memory procedure for a 4-bit, 2 × 2 matrix multiplication.

with the 4-bit matrix multiplication. In cycle 1 the select the first bit in each of
the input values, and read the corresponding rows of RRAM cells, performing
binary matrix multiplication. We continue this procedure through cycles 2 to 4,
collecting all partial sums. In the third and final inset we perform post processing
to combine the binary matrix multiplications into a 4-bit matrix multiplication
using shift and add operations in CMOS. In Fig. 2F, we observe how shift is
performed for each cycle. We multiply (shift) each output value by the cumula-
tive magnitude of the corresponding input (X) and weight (W) bits. Lastly, in
Fig. 2G, we sum all results together to get our solution vector. Although, in this
example we performed 4-bit matrix multiplication, this technique generalizes to
all input and weight precisions by combining matrix multiplication using shift
and add post processing.

There are two constraints we face at the array level that limit performance:
the number of columns that share an ADC and the precision of the ADC.

Array Allocation and Partitioning 327

The number of columns that share an ADC is a function of the area of the
ADC and the distance between bitlines. For every column that shares a single
ADC, the number of cycles to perform a dot product multiplies. The precision
of an ADC determines how many rows we can turn on at once, for if we read
more rows than states we can successfully read, we overflow the column ADCs
and incur errors.

There are two common techniques for performing compute in memory. The
first technique, we call baseline, is simply reading as many rows as the ADC
precision allows (e.g. for a 3-bit ADC, we read 8 rows simultaneously). The
next technique is commonly called zero skipping [12], where only rows with ‘1’s
are read. This technique exploits sparsity in the input features or activations
(for neural networks). Zero skipping performs faster than the baseline technique
because for most cases it will process more total rows per cycle. In Fig. 3, we
provide an example case for zero-skipping where 8 total rows are read using a
2-bit ADC. Baseline (Fig. 3A) requires 2 cycles since it targets four consecutive
rows at a time. Zero-skipping (Fig. 3B) is able to finish all 8 rows in a single cycle
because we only consider the ‘1’s in the input vector. There are few reasons not
to perform zero skipping, unless there is limited input data bandwidth or the
eNVM has high variance and accumulated too many errors.

Fig. 3. Simplified breakdown of ADC reads in baseline and zero-skipping with 2-bit
ADC precision. (A) Baseline targets four consecutive rows at a time since the 2-bit
ADCs are capable of distinguishing 4 states. (B) Zero skipping targets the next 4 rows
where the word line is enabled. This way we can read more rows and not overflow our
ADC.

2.2 Array Allocation

By encapsulating the array, ADCs, and shift and add logic, a matrix multi-
plication engine can be created. Using these arrays as building blocks, prior

328 B. Crafton et al.

work has implemented CNNs (Convolutional Neural Networks) where a group
of arrays implement a larger matrix multiplication. Despite performing more
complex operations, the core operations of CNNs are converted into matrix mul-
tiplication. In Fig. 1 we illustrate this idea, showing how a group of arrays is tiled
together to form a PE. In Fig. 5 we further depict how these arrays can be pieced
together to form a larger matrix. In this example, both input feature maps and
filters are vectorized with the filters forming the columns of a matrix. The vec-
torized feature maps are input to the crossbar to perform matrix multiplication,
where the results are output feature maps for this layer in a CNN.

Given the high density of these PEs, hundreds or thousands of them can be
tiled in the same area used by modern ICs. Although similar in concept, CIM-
based DNN accelerators have numerous differences from traditional CMOS based
designs that introduce challenges in maximizing performance. First off, a CIM-
based PE has fixed weights that cannot be reprogrammed due to the high energy
cost of writing eNVM. Traditional CMOS based PEs are generalized compute
units that can operate on any input data, since they do not contain fixed weights.
Thus, while flexible CMOS PEs are challenged by data movement, the challenge
with CIM-based PEs is weight allocation and placement.

Table 1. Energy and latency comparison for CMOS memories and eNVM [13].

Device SRAM DRAM RRAM PCRAM

Write Energy 1 fJ 10 fJ 10 pJ 10 pJ

Write Latency 1 ns 10 ns 10 ns 50 ns

In Fig. 4, we illustrate the process of allocating and mapping a matrix to a
distributed group of memory arrays. In this example, we map a 256 × 128 8-bit
matrix multiplication to a group of 16 arrays. Each array is a 128 × 128 RRAM
array, where each cell is 1-bit. Since we require 8 adjacent cells to form a single
weight, each 128 × 128 RRAM array can function as a 128 × 16 8-bit matrix
multiplication engine. Next, we divide up the 256 × 128 matrix into an 8 × 2
grid of 128 × 16 arrays. From here the mapping process is simple, where we
assign each point in the grid to a corresponding array in our design.

Fig. 4. Example weight allocation procedure for a 256 × 128 matrix multiplication.

Array Allocation and Partitioning 329

2.3 Maximizing Utilization

So far we have discussed how CIM-based PEs contain fixed weights due to energy
constraints, and thus weights must remain fixed. While this greatly simplifies
both our dataflow and reduces traffic and thus power, it means compute units
can only perform a subset of the matrix multiplications in the network. This
implies that if a PE finishes its workload before another, we cannot simply re-
distribute the workload to keep both PEs utilized. Thus a fundamental issue in
CIM-based accelerators is array utilization. Several works have addressed this
issue introducing ideas such as weight duplication and layer pipelining.

Weight duplication [3] is used to maximize throughput in large scale CIM
accelerators where the amount of on-chip memory exceeds the number of weights
in the model. In [14], 24,960 arrays are used for a total on-chip memory capac-
ity of nearly 104 MB (2b cells), while only using an area of 250mm2. Using
this enormous on-chip memory capacity, they not only fit ResNet [6] but dupli-
cate shallow layers up to 32×. When weights are duplicated, the input data is
divided equally amongst each duplicate array so they can process in parallel. We
illustrate this idea for a convolutional layer in Fig. 5. The input patches from
the input feature maps (IFMs) are divided into groups based on the number of
duplicates, and then mapped to each duplicate.

Layer pipelining [3] is used to maximize throughput in eNVM CIM accel-
erator, where arrays are not re-programmed due to large amounts of on-chip
memory and high write energy. At the same time, most modern neural networks
contain 20 or more layers that must be processed sequentially. Given that most
designs use 128× 128 arrays, it becomes infeasible to partition arrays such that
they can be used for each layer without being re-programmed. This implies that
the majority of PEs would sit idle waiting for their layer to be processed. To
solve this problem, images are pipelined through the network to keep all arrays

Fig. 5. Convolutional layer mapped to a CIM array. Both input features maps (IFM)
and filters are vectorized with the filters forming the columns of a matrix. The vector-
ized feature maps applied to the crossbar to perform matrix multiplication, where the
results are output feature maps (OFMs).

330 B. Crafton et al.

Fig. 6. Layer pipelining

utilized. Although this compromises single example latency, it maintains maxi-
mum throughput. We provide visualization in Fig. 6, where 3 feature maps from
3 different input examples are processed together.

3 Block-Wise Array Allocation

In the previous section, we discussed several techniques that are used in CIM
accelerators to increase throughput, but each introduces it’s own synchronization
barrier that limits array level utilization. In this work, we identify two of these
barriers and propose our solution to mitigate this problem. The two techniques
that create these barriers are weight duplication and layer pipelining. In previous
work these barriers were not a problem because array performance was deter-
ministic. When zero-skipping is introduced, it instigates these barriers because it
introduces non-deterministic computation time for each array. Zero skipping will
only improve the performance of a CIM accelerator because it simply means each
array will perform equal to or faster than the baseline algorithm. However, since
the number of ones in the input vector of the CIM operation follows a random
distribution, the amount of time to finish a dot product is non-deterministic.
This means that several arrays performing a part of a larger matrix multipli-
cation need to be synchronized to the slowest preforming array. As the size of
the operation (and number of arrays) increases, the more stalls occur. In the fol-
lowing section, we explore the implications of zero skipping at the architectural
level.

3.1 Identifying Synchronization Barriers

The non-determinism introduced by zero-skipping induces the need for synchro-
nization barriers. A synchronization barrier is required when a group arrays are
processing a distributed workload and finish at different times, but must be syn-
chronized before starting another task. The first barrier occurs at the layer level

Array Allocation and Partitioning 331

and is a result of using layer pipelining. When the arrays are distributed to each
layer, we attempt to divide them evenly so that all layers finish at the same
time. If any layer is consistently performing faster than other layers, it will have
to stall because layers downstream will not be able to buffer its outputs. Previ-
ous work [14] have allocated arrays to layers based on the number of duplicates
required such that all layers in the pipeline complete their workload at the same
time, and thus sustain full utilization. This allocation policy can be written as:

Minimize: max
∀L∈N

MACL

ArrayL

This allocation method works under the assumption that all arrays perform
at the same rate and we can choose the number of arrays on chip. However,
as [12] points out neither of these assumptions will hold in a realistic design.
Prior works [3,14] assume 128 cells can be read at once using 5 and 8 bit ADCs.
Although feasible in theory, we note that such a design will yield very high error
given that the state of the art devices have 5% device-to-device variance [9,15],
and thus at most 8 rows (3-bit) can be read at once. Such a design also yields
very poor memory density since large (5–8 bit) ADCs occupy over 10× the area
of eNVM. Instead columns must be processed in batches using zero-skipping,
where current summation is used for 8 rows and then intermediate results are
stored and accumulated using existing digital logic in the array.

When zero skipping is used, each array performs at a non-deterministic speed
that follows the distribution of input data it receives. In Fig. 7, we plot the
average time for an array to perform a 128×16 matrix multiplication versus the
percentage of ‘1’s in all the 8-bit input features for the 20 convolutional layers
in ResNet18. To compute the percentage of ‘1’s for a layer, we average the 8
bits in all 8-bit input features together. For example, a 1000-entry 8-bit input
vector contains 8000 bits and to determine the percentage of ‘1’s, we average over
8000 bits to compute this percentage. From Fig. 7, we infer a linear relationship

Fig. 7. Cycles per array versus the percentage of ‘1’s in all 8-bit input features. Each
point represents the average percentage for one of the 20 layers in ResNet18.

332 B. Crafton et al.

between the percentage of ‘1’s in the input features to a layer, and the expected
number of cycles to perform the matrix multiplication.

Naturally, we can use this information to better allocate duplicates to each
layer in our design. We approach this problem by quantifying the total number
of multiply-and-accumulate (MAC) operations in each layer, and the average
number of MAC operations per cycle an array can perform. This new allocation
policy can be written as:

Minimize: max
∀L∈N

MACL

ArrayL · PerfL
where PerfL is added in the denominator to take into account the performance
of each array in the layer. In prior works, performance per array is constant
since each array takes the same number of cycles to perform a matrix multi-
plication. Therefore, arrays are allocated to each layer based only on the total
MACs per layer. When zero-skipping is introduced and performance per array
is not constant, this allocation method fails to allocate evenly. To achieve equal
utilization, we can instead allocate arrays to each layer based on the expected
number of cycles it will take to finish without any duplicate arrays. We can
compute the expected number of cycles it will take a layer to finish by dividing
the total MACs in a layer by the average performance of each array in the layer.
We call this allocation method performance-based allocation, whereas allocation
that assumes all arrays perform evenly is weight-based allocation.

Fig. 8. The 3 × 3 × 128 × 128 filter used in layer 10 from ResNet18 converted into a
matrix with annotated blocks. This filter requires 72 128×128 arrays to store in a 9×8
grid.

While this technique ensures that all our layers will be equally utilized, it does
not ensure that the arrays inside each layer will be equally utilized. Each layer in
our DNN (convolution or fully connected) is implemented as a matrix consisting
of eNVM arrays. We visualize this idea in Fig. 8, where a 3 × 3 × 128 × 128
filter is mapped to 72 arrays arranged in a 9 × 8 grid. In each of the 9 rows,
all 8 arrays share the same input data and, consequently, the same word lines.
This implies that all 8 arrays will operate at the same speed and form our
minimal deterministic compute unit that we call a block. Because the 9 different
rows do not share the same input vectors, they will operate at different speeds.

Array Allocation and Partitioning 333

If some arrays receive fewer ‘1’s than other arrays, they will sit idle waiting for
arrays that receive more ‘1’s to finish. In Fig. 9, we plot the average cycle time of
the arrays in each block of layers 10 and 15 (ResNet18) versus the percent of ‘1’s
they receive. Layer 10 is a 3×3×128×128 filter (Fig. 8) that contains 9 different
blocks, and Layer 15 is a 3 × 3 × 256 × 256 filter that contains 18 different
blocks. Just as before, we observe a linear relationship between cycle time and
the percentage of ‘1’s. Since layer 15 contains more blocks, it is more susceptible
to longer delays because the expected slowest block’s cycle time increases with
the number of arrays. In this figure, we observe a 12% and 27% difference in
cycle time for layers 10 and 15, which motivates a better allocation technique to
prevent significant idle time.

Fig. 9. Cycles per array versus the percentage of ‘1’s in all 8-bit input features. The
blue crosses represent the average percentage for 1 of the 18 blocks in layer 15 of
ResNet18. The black ×s represent 1 of the 9 blocks in layer 10.

3.2 Optimizing Array Allocation

Finding the optimal allocation policy for blocks is more difficult. We cannot add
redundant blocks to the same layer, because each layer only uses each weight
once per operation. Instead, we adopt a new grouping strategy for arrays: rather
than duplicating layers of arrays, we duplicate blocks of arrays. To find the
optimal array allocation policy, we propose a linear time (O(N) complexity)
solution discussed below. This is especially important for larger networks like
ResNet18, where there are 247 blocks and finding an optimal solution could be
quite difficult.

With this new grouping strategy, we can allocate using the same technique as
before. First we gather an approximation of the average MAC per cycle for each
block of arrays. We can do this two ways. The first option, is running a cycle
accurate simulator on some example data to get a very accurate approximation.
The second option is to profile the distribution of ‘1’s in the activations gathered

334 B. Crafton et al.

from a large set of examples run on a GPU. Once we have an approximation
for the MAC per cycle of each block, we can compute the expected number of
cycles each block will take to perform it’s partial dot product. Once we have
cycle approximations for each block, we begin allocating arrays to each block.
While we have free (not allocated) arrays, we loop through and allocate arrays
to the block with the highest expected latency. We provide pseudo-code for this
technique in Algorithm 1. Once we run out of arrays or the number of arrays left
over is not enough to allocate to the slowest block we have found the optimal
allocation. We call this allocation method block-wise, whereas allocation based
on the layer is layer-wise.

Algorithm 1. Array Allocation
1: procedure Array Allocation(Arrays : integer, Size : Array, Perf : Array)
2: Allocation = [0, 0, ... 0]
3: min = Argmin(Allocation � Perf)
4: while Arrays > Cost[min] do
5: Arrays = Arrays - Size[min]
6: Allocation[min] = Allocation[min] + 1
7: min = Argmin(Allocation � Perf)

8: return Allocation

3.3 Block-Wise Data Flow

To make use of our new allocation policy, a new data flow strategy is required.
Since arrays from the same layer are not grouped together, we treat these blocks
as generalized compute units rather than being bound to a specific duplicate.
Therefore, we no longer stall for the slowest block in a layer, but rather just send
work to the next available block. This means that the same blocks will no longer
be working together on the same input data, and thus will not be part of the same
gather and accumulate procedure. As a result, a new routing and scheduling
policy is required because blocks will not always send their partial sums to
the same accumulator for every input feature map. To implement this idea, we
include output feature destination addresses in the packet containing data when
sending input features to each block. Upon completing a partial dot product,
a block sends their computed partial sums to the designated accumulator and
requests additional work from the memory controller.

4 CIM-Based Architecture

Although our allocation policy will work for any general CIM based accelerator,
we adopted a similar architecture to previous work [3,14]. Our basic processing
element (PE) contains 64 128 × 128 arrays. We choose 64 arrays because it

Array Allocation and Partitioning 335

provides each block with sufficient network bandwidth and SRAM capacity, while
maintaining good SRAM density and low interconnect overhead. Our input data,
weights, and activations are all 8 bits. Each array has 1 3-bit ADC for every 8
columns where a single column is pitch-matched with a comparator. We choose
3-bit because state of the art devices [9] have 5% variance and 3-bits is the
maximum precision that can be read with no error. We shift one bit from each
of the 128 inputs in one at a time which takes 8 cycles. In the best case scenario,
we perform all 128 rows at the same time. In the worst case scenario, it takes
16 cycles since we enable every single row. Therefore, each array takes anywhere
from 64 to 1024 cycles and performs a 128 × 16 dot product. In all designs we
consider, we use use the same 64 array PE and simply increase the count per
design.

Fig. 10. Block-wise network architecture with 1 router (R) per PE. All input features
are routed from the global buffer to PEs. All partial sums are routed from PE to vector
unit (V), and vector unit to output feature buffer.

The activation inputs to the RRAM sub-arrays are stored in on-chip SRAM,
while the input images are read in from external DRAM. Matrix multiplication
is performed by the PEs, while custom vector units are used to perform vector-
wise accumulation, bias addition, quantization, and relu. We use a N ×N mesh
network for communication between PEs, memory, and vector units shown in
Fig. 10. Since blocks vary in size and no block contains 64 sub-arrays, we have
to partition the PE to contain several blocks. This configuration implies that
the different blocks share the same virtualized input and output ports. As dis-
cussed in Sect. 3, input and output vectors are packetized to include destination
information. Each block in the PE is given an id that is used to route packets
to and from. Upon completing a partial dot product, a block sends its partial
sum to vector units where they are accumulated and activation functions and
quantization is applied.

336 B. Crafton et al.

5 Results

To benchmark block-wise allocation, we compare with several other techniques:
weight-based allocation, performance-based layer-wise allocation, and the base-
line algorithm which does not use zero-skipping. We empirically evaluate perfor-
mance and array utilization for the three techniques on ImageNet using ResNet18
and CIFAR10 using VGG11. We run these techniques in a custom simulation
framework designed to evaluate performance and power of compute in-memory
using standard CMOS and RRAM models from [16].

Fig. 11. Inference performance for ResNet18 and VGG11 by algorithm and design size
assuming 100MHz clock. For ResNet18, block-wise allocation sustains a 8.83×, 7.47×,
and 1.29× speedup over baseline (no zero-skipping), weight-based, and performance-
based layer-wise allocation. For VGG11, block-wise allocation sustains a 7.04×, 3.50×,
and 1.19× speedup.

Our simulator performs cycle-accurate implementations of convolutional and
fully connected layers. It is based in Python, but runs array level operations
in C for faster evaluation. We model components in the design in object ori-
ented fashion, iterating through all components in all PEs each cycle. We embed
performance counters in our ADC and sub-array objects to track metrics like
stalls so we can calculate utilization. As input, the simulator takes the network
weights, input images, PE level configuration, and chip-level configuration. The
PE-level configuration includes details like the precision of each ADC and size
of the sub-array. The chip-level configuration contains the number of PEs and
details about array allocation and mapping. As output, the simulator produces a

Array Allocation and Partitioning 337

table with all desired performance counters and all intermediate layer activations
that are verified against a TensorFlow [17] implementation for correctness.

To show how our algorithm scales by the size of the design, we have evaluated
the different allocation algorithms on several different designs with increasing
numbers of PEs. In Fig. 11, we plot performance versus the number of PEs in the
design for both ResNet18 and VGG11. For ResNet18, we begin at 86 PEs since
this contains the minimum number of arrays (5472) required to store ResNet18.
At 86 PEs, all algorithms yield the same result since no duplication can be
done and weights are simply allocated to store ResNet18. From there, we begin
increasing the design size by 1

2 powers of 2. Block-wise allocation performs the
best achieving 29% improvement over layerwise-allocation and 7.47× improve-
ment over both weight-based and baseline (not zero-skipping) algorithms. We
follow the same procedure for VGG11, however we observe that block-wise allo-
cation yields less performance advantage. This is because VGG11 has roughly
half the layers that ResNet18 has. It is more difficult to allocate evenly amongst
a deeper network and therefore, block-wise allocation yields better results on
deeper networks.

To better understand why we get these large performance improvements, it
is useful to analyze array utilization. We define array utilization as the average
utilization of all the arrays in the design, where utilization for a single array can
be defined as:

Utilization = CycleActive/(CycleActive + CycleStall)

In Fig. 13, we visualize layer-wise utilization of the 20 convolutional layers from
ResNet18 using the different techniques. It is clear that block-wise allocation
sustains the highest array utilization across nearly all layers in the network, eas-
ily outperforming the other techniques. Weight-based allocation performs very
poorly because of the very different speeds of each layer and block we showed
in Figs. 7 and 9. It should be noted that we do not plot the baseline algorithm
because it has different array level performance given that zero skipping is not
used.

Fig. 12. Array utilization by layer for VGG11 on CIFAR10. Baseline not shown because
zero skipping is not used.

In Fig. 13, we visualize layer-wise utilization of the 10 convolutional layers
from VGG11 using the different techniques. We observe a similar pattern to

338 B. Crafton et al.

ResNet18, with a couple differences. First, the disparity in utilization between
the methods is not as significant since there is not as many layers, and thus the
pipeline is easier to balance. Second, the first layer’s utilization is higher for the
layer-wise methods. This indicates it is a significant bottleneck in the pipeline
and that it is severely under-allocated.

Fig. 13. Array utilization by layer for ResNet18 on ImageNet. Baseline not shown
because zero skipping is not used.

5.1 Power Evaluation

In this work we focus on performance evaluations, however higher array utiliza-
tion results in less leakage power and improved energy efficiency. To compare
the power consumption of the various allocation methods and dataflows, we use
Neurosim [16] which has been developed to evaluate the performance of DNN
accelerators using eNVM technology. Like prior work for CMOS based memory
[18] and non-volatile memory [19], Neurosim models power throughout the sys-
tem using a hierarchical model computing CV 2 for each component. Using the
models for these components, we can approximate the system level power for a
large scale CIM accelerator. In Fig. 14, we provide select parameters used by our
tool to approximate total power.

Fig. 14. Simulation parameters used for hardware components at both the sub-array
and processing element level.

Array Allocation and Partitioning 339

Given that the computation being done by each method is identical, the dif-
ferences in power occur from leakage current in the ADCs, SRAM, and logic
as well as interconnect utilization. In Fig. 15, we plot TOP/W for the various
allocation methods for both ResNet18 and VGG11. Power efficiency changes
negligibly versus design size, and thus we only show results for the 256 PE
design (16384 arrays). Overall, VGG11 has higher efficiency because it the fea-
ture maps (activations) are more sparse. For ResNet18, block-wise allocation
yields the highest efficiency, achieving 1.07×, 1.75×, and 4.01× improvement
over layer-wise, weight-based, and baseline, respectively. For VGG11, we see a
similar result, where block-wise achieves 1.03×, 1.31×, and 4.48× improvement
over layer-wise, weight-based, and baseline, respectively. The efficiency advan-
tage for block-wise versus layer-wise and weight-based can be attributed to the
lower latency, and thus less total leakage power. However, the massive improve-
ment over baseline is due to zero-skipping.

Fig. 15. Inference efficiency (TOP/W) for ResNet18 and VGG11 by algorithm.

6 Conclusion

In this paper we demonstrate the efficacy of a new technique and data flow
to improve array utilization in CIM accelerators. Given that the write energy
of eNVM is high, CIM arrays contain fixed weights unlike CMOS PEs which
can perform any operation in a DNN. Thus array utilization becomes a key
challenge since only some arrays can perform particular operations. By profiling
input statistics and relaxing our data flow, we can allocate arrays to maximize
utilization and as a result, performance. The proposed allocation algorithm and
data flow performs 7.47× better than naive allocation and a layer-wise dataflow.

Acknowledgement. This work was funded by the U.S. Department of Defense’s
Multidisciplinary University Research Initiatives (MURI) Program under grant num-
ber FOA: N00014-16-R-FO05 and the Semiconductor Research Corporation under the
Center for Brain Inspired Computing (C-BRIC) and Qualcomm.

340 B. Crafton et al.

References

1. Chen, Y.-H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient recon-
figurable accelerator for deep convolutional neural networks. IEEE J. Solid-State
Circuits 52(1), 127–138 (2017)

2. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro 38(1), 82–99 (2018)

3. Shafiee, A., et al.: Isaac: a convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. ACM SIGARCH Comput. Architect. News 44(3),
14–26 (2016)

4. Crafton, B., Spetalnick, S., Murali, G., Krishna, T., Lim, S.K., Raychowdhury, A.:
Breaking barriers: maximizing array utilization for compute in-memory fabrics. In:
2020 IFIP/IEEE 28th International Conference on Very Large Scale Integration
(VLSI-SoC), IEEE (2020)

5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition, 2009 (CVPR 2009). pp. 248–255, IEEE (2009)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

7. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

9. Wu, J., et al.: A 40nm low-power logic compatible phase change memory technol-
ogy. In: 2018 IEEE International Electron Devices Meeting (IEDM), pp. 27–36,
IEEE (2018)

10. Yoon, J.-H., Chang, M., Khwa, W.-S., Chih, Y.-D., Chang, M.-F., Raychowdhury,
A.: Ternary-weight compute-in-memory RRAM macro with voltage-sensing read
and write verification for reliable multi-bit rram operation. In: 2021 IEEE Custom
Integrated Circuits Conference (CICC), pp. 1–4, IEEE (2021)

11. Yoon, J.-H., Chang, M., Khwa, W.-S., Chih, Y.-D., Chang, M.-F., Raychowd-
hury, A.: 29.1 a 40nm 64kb 56.67 tops/w read-disturb-tolerant compute-in-
memory/digital RRAM macro with active-feedback-based read and in-situ write
verification. In: 2021 IEEE International Solid-State Circuits Conference (ISSCC),
vol. 64, pp. 404–406, IEEE (2021)

12. Yang, T.-H., et al.: Sparse RERAM engine: joint exploration of activation and
weight sparsity in compressed neural networks. In: Proceedings of the 46th Inter-
national Symposium on Computer Architecture, pp. 236–249 (2019)

13. Yu, S., Chen, P.-Y.: Emerging memory technologies: recent trends and prospects.
IEEE Solid-State Circuits Mag. 8(2), 43–56 (2016)

14. Peng, X., Liu, R., Yu, S.: Optimizing weight mapping and data flow for convo-
lutional neural networks on processing-in-memory architectures. Regular Papers.
IEEE Trans. Circuits Syst. (2019)

15. Crafton, B., Spetalnick, S., Raychowdhury, A.: Counting cards: exploiting
weight and variance distributions for robust compute in-memory. arXiv preprint
arXiv:2006.03117. (2020)

16. Chen, P.-Y., Peng, X., Yu, S.: Neurosim: a circuit-level macro model for bench-
marking neuro-inspired architectures in online learning. IEEE Trans. Comput
Aided Design Integr. Circuits Syst. 37(12), 3067–3080 (2018)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2006.03117

Array Allocation and Partitioning 341

17. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pp. 265–283 (2016)

18. Wilton, S.J., Jouppi, N.P.: Cacti: an enhanced cache access and cycle time model.
IEEE J. Solid-State Circuits 31(5), 677–688 (1996)

19. Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: NVSim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory. IEEE Trans. Comput.
Aided Design Integr. Circuits Syst. 31(7), 994–1007 (2012)

abstractPIM: A Technology
Backward-Compatible Compilation Flow

for Processing-In-Memory

Adi Eliahu(B), Rotem Ben-Hur, Ronny Ronen, and Shahar Kvatinsky

Technion - Israel Institute of Technology, 3200003 Haifa, Israel
{adieliahu,rotembenhur}@campus.technion.ac.il

ronny.ronen@technion.ac.il, shahar@ee.technion.ac.il

Abstract. The von Neumann architecture, in which the memory and
the computation units are separated, demands massive data traffic
between the memory and the CPU. To reduce data movement, new
technologies and computer architectures have been explored. The use of
memristors, which are devices with both memory and computation capa-
bilities, has been considered for different processing-in-memory (PIM)
solutions, including using memristive stateful logic for a programmable
digital PIM system. Nevertheless, all previous work has focused on a spe-
cific stateful logic family, and on optimizing the execution for a certain
target machine. These solutions require new compiler and compilation
when changing the target machine, and provide no backward compatibil-
ity with other target machines. In this chapter, we present abstractPIM, a
new compilation concept and flow which enables executing any function
within the memory, using different stateful logic families and different
instruction set architectures (ISAs). By separating the code generation
into two independent components, intermediate representation of the
code using target independent ISA and then microcode generation for a
specific target machine, we provide a flexible flow with backward com-
patibility and lay foundations for a PIM compiler. Using abstractPIM,
we explore various logic technologies and ISAs and how they impact each
other, and discuss the challenges associated with it, such as the increase
in execution time.

Keywords: Memristor · processing-in-memory · RRAM · stateful
logic · ISA

1 Introduction

In recent years, the trend of data-intensive applications has become popu-
lar. Data-intensive applications process large volumes of data and also exhibit
compute-intensive properties, and therefore, they require massive data transfer
between the memory and the central processing unit (CPU). Since there is a
large performance gap between the CPU and the memory [1], this massive data
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Calimera et al. (Eds.): VLSI-SoC 2020, IFIP AICT 621, pp. 343–361, 2021.
https://doi.org/10.1007/978-3-030-81641-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81641-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-81641-4_16

344 A. Eliahu et al.

transfer has become a bottleneck in execution of data-intensive applications.
This bottleneck is often called the memory wall. As a result of the memory
wall challenge, processing-in-memory (PIM) has become attractive [2,3]. Due
to the recent advances in memory technologies, e.g., resistive random access
memory (RRAM) [4] and PCM [5], PIM has gained interest and has become
an integral part of many computer architectures. The memristor, which func-
tions as both a memory element and a computation unit, can help reducing
data transfer between the CPU and the memory and thus addresses the mem-
ory wall problem. By applying voltage across the device, the memristor performs
switching between two resistance values, high resistance value (ROFF) and low
resistance value (RON), therefore it can function as a binary memory element.
To increase the memristor density, it can be programmed to have intermedi-
ate resistance between ROFF and RON , thus achieving multi-level cell (MLC)
storage capability.

In addition to their storage capabilities, memristors can also be used for com-
putation. There are two approaches to use memristors as computation units. The
first approach is using the memristor in application-specific architectures. Mem-
ristors can be used for the purpose of a specific computation. For example, in [6],
an efficient vector-matrix multiplication using memristor analog computation is
demonstrated. In this manner, the dual-function memristor can perform effi-
cient computing and reduce data transfer requirements between the CPU and
the memory. Numerous accelerators integrating analog memristor-based compu-
tations have recently been developed, mostly for artificial intelligence applica-
tions [7].

The second approach of using memristor as a computation unit, on which we
focus in this chapter, is called ‘stateful logic’. Using stateful logic, memristive
logic gates are constructed within the memory array for general-purpose compu-
tation. Stateful logic enables programmable general-purpose architectures since
every memristive cell can be used as a storage element, as well as an input,
output or a register. Several memristor logic gate families have been designed,
including MAGIC [8], IMPLY [9], and resistive majority [10].

Some stateful logic families can be easily integrated within a memristive
crossbar array with minor modifications. Designing a functionally complete logic
gate set using such a family, e.g., a MAGIC NOR gate, enables in-memory exe-
cution of any function. Various logic gate families have been explored in the
literature, each of them has different advantages. Previous efforts to execute
a function within the memory concentrated on utilizing a specific PIM fam-
ily and optimizing the latency, area, or throughput using this technology, e.g.,
SAID [11] and SIMPLE [12] for optimizing latency in MAGIC technology [8],
SIMPLER [13] for optimizing throughput in MAGIC technology [8] and K-map
based synthesis [14] for optimizing latency and area in IMPLY [9].

While these previous works have considerably improved the logic function
execution in terms of latency, area, or throughput, they are strongly dependent
on the PIM family and its basic operations, and therefore are limited to a spe-
cific target machine. However, each PIM technology has different advantages,

A Technology Backward-Compatible Compilation Flow for PIM 345

and therefore, flexibility in the used PIM technology has many motivations. For
example, the MAGIC family provides memristive crossbar compatibility and
high parallelism by executing MAGIC logic gates on aligned elements in differ-
ent rows of the memristive crossbar. A different PIM technology, called CRS [15],
provides flexibility by executing 16 Boolean functions in a single operation.

In this chapter, we propose a new hierarchical compilation method for PIM,
which provides flexibility and is not restricted to a certain PIM technology. Our
flow separates the code generation into two components. The first component is
intermediate code generation using target independent instruction set architec-
ture (ISA). The second component is microcode generation for a specific target
machine and PIM technology. The third component, runtime execution, executes
the code. The first component, which is run by the programmer, is independent
of the PIM technology. In this component, a compiled program that consists of
target-independent instructions is generated. In the second component, which is
target-dependent, these instructions are translated into an execution sequence
of micro-operations supported by the target machine. The second component is
performed by the PIM technology provider. In the third component, at runtime,
the compiled code instructions are sent from the CPU to the memory controller,
which contains the instruction execution sequences from the second component.
The controller translates the instructions into micro-operations and sends them
to the memory. This third component is similar to an instruction-level opcode
being executed using micro-operations in the x86 processors [16].

Figure 1 demonstrates the first and third flow components of a half adder logic
for different ISAs and target machines. The first two implementations, shown in
Fig. 1(a) and 1(b), demonstrate the use of the same target machine while using
different ISAs. The code is compiled for a machine that its PIM technology
supports only MAGIC NOR logic gates. However, the first example targets a
controller which supports only NOR ISA commands, whereas the second example
supports all the 2-input and 1-output logic functions as its ISA. In the first
component, a netlist and compiled program composed of the ISA commands,
dubbed instructions, are generated. In Fig. 1(a), the netlist is composed of five
logic gates that implement the half adder logic, and in Fig. 1(b) it is composed of
two gates (AND and XOR). The number of gates in the netlist is a representative
of both the code size (or number of commands sent from the CPU to the PIM
machine), and the control load between the CPU and the memory controller. We
will refer to it for the rest of the chapter as code size. The code size is also a means
of estimation of the code abstraction achieved by our flow. In these examples, the
code sizes are five and two, respectively. The second component is the microcode
generation, where each command is translated to a sequence of MAGIC NOR
operations and is embedded in the controller. In the third component, the code
is executed. The commands are sent from the CPU to the controller, and then
from the controller to the memory; hence, the code size is reduced with minimal
changes to the in-memory implementation, namely, adding a few states to the
memory controller to support other operations.

346 A. Eliahu et al.

Fig. 1. Compilation example for a half adder using various ISAs and target machines.
(a) A NOR ISA and MAGIC NOR target machine. (b) All 2-input and single-output
ISA and MAGIC NOR target machine. (c) All 2-input and single-output ISA and
MAGIC NAND target machine. (d) All 2-input and single-output ISA and 2-input and
single-output MAGIC target machine.

Figures 1(b), 1(c) and 1(d) demonstrate the use of the same ISA while using
different target machines. These three examples use all 2-input logic functions as
their ISA, but the first machine uses MAGIC NOR technology, the second uses
MAGIC NAND technology and the third uses all MAGIC 2-input logic func-
tions. This example demonstrates the ISA definition flexibility and command
hierarchy enabled by our method, and the possible reduction in code size and
reduction in the control load between the CPU and the memory controller. It also
demonstrates the backward compatibility feature; in Figs. 1(c)–(d), machines
with technologies which enable lower execution time are used, and yet the gen-
erated intermediate code is backward compatible with other PIM technologies.
The separation into two independent code generation components also enables
the exploration of the impact of the ISA on the used target machine and vice
versa.

This chapter makes the following contributions:

1. Development of technology-independent and ISA-flexible flow (first presented
in [17]) for executing any logic function to a memristive crossbar array. Our
technique, called abstractPIM, presents a hierarchical view and includes three
components. It is a solid foundation for implementation of compilers for
general-purpose memristive PIM architectures. This chapter also extends the
work in [17] and discusses future work of the abstractPIM flow.

2. Examining the impact of the ISA and the target machine on each other using
abstractPIM, in terms of flexibility, performance and code size.

3. A 56% reduction in the control load between the CPU and the memory con-
troller as compared to state-of-the-art solutions [13], demonstrated for differ-
ent benchmarks.

A Technology Backward-Compatible Compilation Flow for PIM 347

Fig. 2. MAGIC NOR gates. (a) MAGIC NOR gate schematic. (b) Two MAGIC NOR
gates in a crossbar configuration, executed in parallel.

2 Background and Related Work

2.1 Stateful Logic

In stateful logic families [18], the logic gate inputs and outputs are represented
by memristor resistance. We demonstrate the stateful logic operation using
MAGIC [8] gates, which are used as a baseline in this chapter. Figure 2(a) depicts
a MAGIC NOR logic gate; the gate inputs and output are represented as memris-
tor resistance. The two input memristors are connected to an operating voltage,
Vg, and the output memristor is connected to the ground. The output memristor
is initialized at RON and the input memristors are set with the input values.
During the execution, the resistance of the output memristor changes according
to the ratio between the input values and the initialized value at the output.
For example, when one or two inputs of the gate are logical ‘1’, according to the
voltage divider rule, the voltage across the output memristor is higher than Vg

2 .
This causes the output memristor to switch from RON to ROFF , matching the
NOR function truth table. The MAGIC NOR gate can be integrated in a mem-
ristive crossbar array row, as shown in Fig. 2(b). Integration within the crossbar
array enables executing logic gates in different rows in the same clock cycle, thus
providing massive parallelism.

2.2 Logic Execution Within a Memristive Crossbar Array

In CMOS logic, execution of an arbitrary logic function is performed by signals
propagating from the inputs towards the outputs. However, in stateful logic, the
execution is performed by a sequence of operations, each operation operates in
a single clock cycle. In each clock cycle, one operation can be performed either
on a single row, or on multiple rows concurrently. Overall, the execution takes
several clock cycles. A valid logic execution is defined by mapping of every logic
gate in the desired function to several cells in the crossbar array, and operating
it in a specific clock cycle.

348 A. Eliahu et al.

Fig. 3. SIMPLER CU and FO node values example. (a) An example netlist. (b) The
SIMPLER DAG generated from the example netlist, including the CU and FO values.

Many tools to generate the sequence of operations and map them into the
memristive crossbar array cells have been discussed in the literature, e.g., SIM-
PLE [12], SAID [11], the tool suggested by Yadav et al. [19] and the tool sug-
gested by Thangkhiew et al. [20]. These tools map the logic to several rows in the
memristive crossbar. Recently, a new method, called SIMPLER [13], which maps
the logic to a single row, has been presented. This method tries to minimize the
number of initialization cycles in the execution sequence to reduce the overall
number of execution cycles. The input logic function of SIMPLER is synthe-
sized using the ABC synthesis tool [21], which generates a netlist implementing
the function with NOT and NOR gates only. Then, an in-house mapping tool
builds a directed acyclic graph (DAG), in which every node represents a gate
in the netlist. Each node is given two values: fanout (FO) and cell usage (CU).
The former indicates how many parents the node has (i.e., how many gates
are directly connected to its output), and the latter estimates the cell usage of
the sub-graph starting from the node (i.e., the number of cells necessary for
the execution of the sub-graph). An example of the CU and FO node values
is demonstrated in Fig. 3. Figure 3(a) shows a netlist, and Fig. 3(b) shows its
corresponding SIMPLER DAG with the CU and FO node values.

The CU of a node V is calculated by:

– If V is a leaf then:
CU(V) = 1 (1)

– Else, sort all N children of V by descending order of their CU values. Then:

CU(V) = max{CU(Vchild,i)) + i − 1},∀i = (1 to N) (2)

Based on the CU and FO values, the mapping tool determines the order in
which the gates operate. Additionally, the mapping tool traces the number of
available cells, and when they are all occupied, it adds an initialization cycle in
which cells are initialized and then reused. The gate execution ordering is deter-
mined such that the number of initialization cycles, and consequently overall
execution time, will be minimized.

A Technology Backward-Compatible Compilation Flow for PIM 349

The gap between target machine constraints and architectural design choices,
e.g., ISA, has not been addressed in the aforementioned mapping tools. Attempts
have been made in existing mapping tools to support complex operations in the
in-memory execution, e.g., 4-input LUT function [11]. However, their flexibility
is limited and they do not completely separate the intermediate code generation
and microcode generation, therefore they impose target machine and ISA depen-
dency and do not provide backward compatibility with other target machines.

3 abstractPIM: Three-Component Code Execution Flow
for PIM

The abstractPIM flow includes two code generation components and one exe-
cution component. In the first component, intermediate representation genera-
tion, the program is compiled into a sequence of target independent instructions
based on a defined ISA. In the second component, microcode generation, each
instruction is translated into micro-operations that are supported by the target
machine. The translation is performed once per instruction, and is embedded
in the controller design. We adopt an existing mapping flow and modify it to
support different ISAs and PIM technologies. In the third component, runtime
execution, the instructions in the compiled code are sent from the CPU to the
controller, which translates them into micro-operations and sends them to the
memory.

Existing logic execution methods use a set of basic logic operations to imple-
ment a logic function. They rely on a memory controller which is configured to
perform these operations by applying voltages on the rows and columns of the
memory array. In this chapter, we assume that the memory controller is config-
ured to perform several logic operations, dubbed instructions. Their execution
sequence is determined according to a specific target machine and the PIM tech-
nology it supports. For example, if the ISA includes an AND instruction and
the used technology is MAGIC NOR, 3 computation operations and 1 initializa-
tion cycle will be executed one after the other to run the AND instruction, as
demonstrated in Fig. 1(b), gate 1. An alternative PIM technology that consists
of NAND gates will perform the same AND instruction using two NAND com-
putations and one initialization cycle (Fig. 1(c)). The instruction execution using
different PIM technologies may differ in the execution time and cell usage. Our
approach raises the system abstraction level and reduces the flow dependency
of the specific PIM technology. It also moves one step closer towards defining a
general instruction set to a memristor-based PIM architecture and designing its
compiler.

The controller support of complex instructions also reduces the code size and
hence the amount of code transfer between the CPU and the memory controller.
However, there is a code size and execution time trade-off; the reduction in the
code size may cause an execution time penalty. In a machine which supports
NOR operations, the execution time, measured by the number of clock cycles in
the execution sequence, is lowest when the ISA includes only NOR instructions

350 A. Eliahu et al.

since using basic instructions allows finer granularity. However, when using other
instructions, they will be eventually executed using a NOR execution sequence.
Any use of other instructions, which are, in fact, implemented using NOR micro-
operations, might increase the number of NOR operations, hence the execution
time.

For example, in Fig. 1, the first NOR-based implementation takes 5TNOR

clock cycles to operate, where Top is the number of clock cycles required for
execution of an op operation. The second implementation, however, takes a
total of TAND + TXOR clock cycles. In a machine which supports MAGIC NOR
operations, the first implementation takes 10 clock cycles (2 cycles per NOR),
and the second implementation takes 11 clock cycles (4 for the AND2 gate and 7
for the XOR2 gate, according to Table 1). Some execution cycles are computation
cycles and some are initialization cycles, as further elaborated is Sect. 5.

The instruction hierarchy in abstractPIM improves the flexibility of the com-
pilation flow, as demonstrated in Figs. 1(b)–(d). This is similar to high-level pro-
gramming compared to assembly coding, which can improve flexibility at the cost
of execution time penalty. While we demonstrate it using MAGIC-based logic
families, the flow can be easily used for other target machines and stateful logic
families. In our study, we choose different groups of ISAs, and different target
machines that support different logic families. We demonstrate how they can be
used to execute different benchmarks, and analyze the code size and execution
time of the configurations.

4 Case Study: Vector-Matrix Multiplication

We showcase our flow with a vector-matrix multiplication (VMM) benchmark
(a 5 element vector and a 5 × 5 matrix with 8-bit elements), which is useful in
many applications, e.g., neural networks. The benchmark is tested over a tar-
get machine with 1024-sized memristive memory row that supports the MAGIC
NOR logic family. The supported set of operations (NOT, NOR2) by the target
machine is called TS0. Other logic families are discussed in Sect. 6. We first com-
pile the benchmark for a basic case, where the ISA is also the technology set, i.e.,
TS0. The selection of this ISA enabled a fair comparison between abstractPIM
and existing logic execution methods, such as SIMPLER [13], which do not use a
two-component code generation process. The used technology sets supported by
the target machines we use and their instruction parameters are listed in Table 1.
Each instruction has three parameters: the number of inputs (I), the number of
outputs (O) and the number of execution cycles (T). The first two parameters
are technology independent, whereas the last parameter is technology depen-
dent. The parameter corresponding to technology set N is TN . For example, the
OR instruction has two inputs and a single output (I = 2, O = 1), and requires,
when using a target machine that supports TS0, three clock cycles for execution
(T0 = 3, two computation cycles and one initialization cycle). Using ISA=TS0
for the VMM benchmark, there are 25470 execution cycles, out of which, half
are initialization cycles and half are computation cycles. Therefore, the code size
is 12735 instructions.

A Technology Backward-Compatible Compilation Flow for PIM 351

Table 1. Instruction Execution Characteristics for MAGIC Families

Instruction I O T0 T1 TS0 TS1 IS2 IS3

NOT 1 1 1 + 1 1 + 1 ✓ ✓ ✓ ✓

NOR2 2 1 1 + 1 2 + 1 ✓ ✓ ✓ ✓

NOR3 3 1 3 + 1 3 + 1 - - - ✓

NOR4 4 1 5 + 1 4 + 1 - - - ✓

OR2 2 1 2 + 1 1 + 1 - ✓ ✓ ✓

OR3 3 1 4 + 1 2 + 1 - - - ✓

OR4 4 1 6 + 1 3 + 1 - - - ✓

AND2 2 1 3 + 1 1 + 1 - ✓ ✓ ✓

AND3 3 1 6 + 1 2 + 1 - - - ✓

AND4 4 1 9 + 1 3 + 1 - - - ✓

NAND2 2 1 4 + 1 2 + 1 - - ✓ ✓

NAND3 3 1 7 + 1 3 + 1 - - - ✓

NAND4 4 1 10 + 1 4 + 1 - - - ✓

XOR2 2 1 6 + 1 5 + 1 - - ✓ ✓

XOR3 3 1 11 + 1 9 + 1 - - - ✓

XOR4 4 1 16 + 1 15 + 1 - - - ✓

XNOR2 2 1 5 + 1 5 + 1 - - ✓ ✓

XNOR3 3 1 11 + 1 6 + 1 - - - ✓

XNOR4 4 1 16 + 1 8 + 1 - - - ✓

IMPLIES 2 1 2 + 1 2 + 1 - - ✓ ✓

!IMPLIES 2 1 2 + 1 2 + 1 - - ✓ ✓

MUX 3 1 7 + 1 4 + 1 - - ✓ ✓

HA 2 2 7 + 1 6 + 1 - - ✓ ✓

HS 2 2 6 + 1 5 + 1 - - ✓ ✓

The execution time format is Tc +Ti, where Tc is the num-
ber of computation cycles and Ti is the number of initial-
ization cycles.

In attempt to reduce the code size, we used IS2, which contains all the
functions with 1 or 2 inputs and 1 output, excluding trivial functions, e.g., con-
stant ‘0’ and identity functions1. The set also includes common combinational
functions with more than 2 inputs or more than 1 output. Since the number
of such functions is large, even for a small number of inputs, we chose three
functions which, according to experiments we conducted, were useful in cer-
tain benchmarks: half adder [HA], multiplexer [MUX] and half subtractor [HS].
These instructions demonstrate the ability of our system to support blocks with

1 Identity functions, which are in fact copy operations, can be useful in other mapping
methods [11,12], but not in our row-based flow.

352 A. Eliahu et al.

Fig. 4. abstractPIM general flow is composed of three components, two components are
for code generation (differences between them are marked with purple.), and the last
component is for execution. (a) Intermediate representation generation. (b) Microcode
generation. (c) Runtime execution. (Color figure online)

more than two inputs or more than a single output. Because of the circular
dependency limitation of our flow, which is further elaborated in Sect. 7, some
useful instructions, e.g., 4-bit adder, could not be used. Using IS2, code size is
reduced by 52%, but execution time is increased by 16%.

To demonstrate the benefit of a larger number of instruction inputs and
reduce the execution time, IS3 was defined. It contains the IS2 instructions,
and the 2-input and single output symmetric functions from IS2 extended to 3
and 4 inputs. Using IS3, lower execution time and code size, as compared to IS2,
are achieved. The execution time is increased by only 8%, and the code size is
reduced by 57%, as compared to TS0.

5 abstractPIM Flow and Methodology

The flow of abstractPIM is composed of three components, as shown in Fig. 4.
In the first component, the intermediate representation generation, the input is
a Verilog program. The program is synthesized using the Synopsys DC synthesis
tool [22], where the synthesis standard cell library includes the ISA in .lib format.
The Synopsys DC synthesis tool was chosen since it supports multi-output cell
synthesis. Furthermore, whereas other tools, such ABC [21], support only struc-
tural Verilog, Synopsys DC supports behavioral SystemVerilog as well, therefore
eases the burden of programming. Then, a compiled program is generated using
a modified and extended version of the SIMPLER mapping tool [13]. This tool
builds a directed acyclic graph (DAG). In its original form, every node repre-
sents a NOR gate in the netlist, since SIMPLER was designed specifically for
the MAGIC NOR family [8]. In the modified mapping tool, each node represents
a wider variety of instructions based on the ISA. Using the DAG, the inputs and
outputs of the instructions are mapped to row cells in the memristive array, and
a compiled program is generated. The I and O parameters are used to build the
DAG and are technology-independent. The T parameters (see Table 1), which
are technology-dependent and determined in the second component, are not used
for compilation. Therefore, a complete separation between the code generation
components and backward compatibility with other target machines is achieved.

A Technology Backward-Compatible Compilation Flow for PIM 353

The second component of the abstractPIM flow is microcode generation. For
each instruction, a microcode is generated by synthesizing the instruction to
a micro-operation netlist and then to an execution sequence, which includes
mapping to the memristive crossbar array and intermediate computation cell
allocation based on specific PIM technology. The second component input is
the instruction implemented in Verilog. The instruction is synthesized using
the Synopsys DC synthesis tool for a specific PIM technology, described in the
synthesis standard cell library. In this chapter, we demonstrate the flow with
the MAGIC [8] family, and therefore we extended the SIMPLER [13] mapping
tool to support different MAGIC operations instead of only MAGIC NOR. The
execution times, listed in Table 1, were calculated using this flow. The second
component of abstractPIM can be replaced by handcrafted execution sequences
or other mapping tools, depending on the PIM technology in use, which may pro-
duce even faster execution sequences. One such example is discussed in Sect. 7.4.

The general SIMPLER flow was adopted in our system for the two first
components. Several modifications have been made to support different features
in our tool:

1. Modifications to the synthesis tool and library. As stated above, the
ABC synthesis tool [21] is replaced with Synopsys Design Compiler [22] to
support synthesis with multi-output cells. The cell library format was changed
to the Liberty library format, which is supported by the new synthesis tool.

2. Modifications to the mapping tool. While in SIMPLER each node rep-
resents a NOT or NOR operation, in abstractPIM, each node can represent
a wider variety of instructions (in the first component) or micro-instructions
(in the second component). Other minor changes to the SIMPLER algorithm
were also performed, e.g., determining the FO value of each node to include
all the connected gates of each gate output and traversing the DAG accord-
ingly, setting the CU values according to the number of outputs of the logic
gates, and parsing the new synthesis tool output.

In the third component, runtime execution, the two components outputs are
used for full program execution. Instructions are sent from the CPU to the
controller, and micro-operations are sent from the controller to the memory.

The SIMPLER mapping tool [13] traces the number of available cells, and
when they are all occupied, adds a cycle which initializes several unused cells
in parallel. However, not all stateful logic families use initialization, therefore
initialization cycles should not be part of the first component of the flow so we
remove them. In the second component, since the flow is demonstrated using
the MAGIC [8] family, we perform initialization. As opposed to SIMPLER, the
second component is not aware of the full program and instruction dependencies,
therefore optimized parallel initialization cannot be performed. Instead, output
and intermediate computation cell initialization is performed at the first cycle
of each instruction execution (if needed, additional initialization cycles can be
added to the instruction execution sequence). Overall, the component separa-
tion enables flexibility and backward compatibility at the cost of execution time
penalty.

354 A. Eliahu et al.

Fig. 5. Normalized code size with respect to TS0 for different ISAs.

In both code generation components, each standard library cell includes
several parameters, e.g., propagation delays and area. Since existing commer-
cial synthesis tools are CMOS-oriented, we set these parameters differently and
according to our memristor synthesis flow. Propagation delays, which are rel-
evant for propagating signals in CMOS logic, are irrelevant in the context of
memristor logic, where the execution time of each logic operation is a single
clock cycle, and are set to 0. The area parameter is set equal for all the library
cells, thus the synthesis does not prefer any particular cell, and minimizes the
number of cells in the netlist, i.e., minimizes the code size.

After developing abstractPIM and composing the ISAs, the code size and
execution time were explored. We show the two metrics separately, due to the
absence of a natural metric that combines both of them2. It is assumed that the
clock cycle time was the same for all the technology sets, so that the execution
time can be measured in clock cycle units.

We used the EPFL benchmark suite [23]. These benchmarks are native com-
binational circuits designed to challenge modern logic optimization tools. The
benchmark suite is divided into arithmetic and random/control parts. Each
benchmark was tested with different technology sets and ISAs, listed in Table 1,
within a 512-sized row. One benchmark, max, could not be mapped to a 512-sized
row and was therefore tested with a 1024-sized row.

6 Results

In this section we evaluate the abstractPIM code size reduction capabilities and
execution time penalty, and discuss its abstraction, flexibility and backward
compatibility advantages.

The abstraction achieved by our flow using different ISAs enables backward
compatibility, and reduces the code size as compared to an implementation
based on a specific PIM technology. In the absence of a metric that measures

2 Weighted product of code-size and execution-time was found misleading.

A Technology Backward-Compatible Compilation Flow for PIM 355

the abstraction level achieved by our flow, we use the code size as a metric
of abstraction. Figure 5 shows the code size needed for the execution of each
benchmark using different ISAs: TS0, TS1 (used as ISAs and not as technology
sets), IS2 and IS3. The code size is determined only by the ISA, and is inde-
pendent of any target machine. Since the chosen sets are subsets of each other,
i.e., TS0 ⊂ TS1 ⊂ IS2 ⊂ IS3, then CSTS0 > CSTS1 > CSIS2 > CSIS3, where
CSset is the code size of set. Using TS1, IS2 and IS3 reduced the code size by
30%, 40% and 56% compared to TS0, respectively.

For execution time evaluation, we compiled the benchmarks with the differ-
ent ISAs and for the different target machines to demonstrate the flexibility and
PIM technology independence achieved by our flow. We used two “native” con-
figurations: TS0/TS0, TS1/TS1, and four “abstract” configurations: TS0/IS2,
TS0/IS3, TS1/IS2, and TS1/IS3, where the notation is target-machine/ISA.
We also compare the results to a single-component target-specific flow, SIM-
PLER [13].

The results are shown in Fig. 6. When comparing TS0/TS0 with SIMPLER,
the execution time is approximately doubled, since in our flow, every NOR or
NOT operation takes an additional cycle for initialization. In SIMPLER, which
operates at full program context and not at single instruction context, multiple
initialization cycles can be combined and therefore the number of initialization
cycles is negligible.

When comparing target machines that use native configurations (TS0/TS0
vs. TS1/TS1) we observe that the target machine which is more capable (TS1)
runs faster (30%). When comparing target machines that use the same abstract
configuration (TS0/IS2 vs. TS1/IS2 and TS0/IS3 vs. TS1/IS3) we also observe
that the target machine which is more capable runs faster (32% and 33%,
respectively). When comparing the execution time of a native configuration
(TS0/TS0 and TS1/TS1) with that of an abstract configuration using the same
target machine, we see that the abstract configuration is slower. TS0/IS2 and
TS0/IS3 are 24% and 8% slower than TS0/TS0, respectively. Comparing the
native TS1/TS1 configuration with the relevant abstract configurations exhibits
similar results.

The above observations are quite expected. An important but less obvious
benefit of abstractPIM is shown when changing a target machine. For example,
when the target machine is upgraded from TS0 to TS1, a program that has been
compiled natively (TS0/TS0) executes the same number of cycles when running
on TS1 (if TS0 ⊂ TS1, otherwise even slower). However, a program that has
been compiled in the first place using IS3 (IS2) runs 27% (16%) faster than on
the original machine – no recompilation needed. This is reflected by comparing
TS1/IS3 (TS1/IS2) vs. TS0/TS0.

Another observation is that among abstract ISAs, higher abstraction usu-
ally exhibits better performance, as shown by comparing TS0/IS3 vs. TS0/IS2
(13%) and TS1/IS3 vs. TS1/IS2 (13%). When comparing the results of TS0/IS2
or TS0/IS3 with TS0/TS0, the execution time, almost always, is increased (by
24% and 8% for TS0/IS2 and TS0/IS3 as compared to TS0/TS0, respectively).

356 A. Eliahu et al.

Fig. 6. Normalized execution time with respect to TS0/TS0 for the different target
machines and ISAs.

However, in the priority benchmark, the execution time is decreased. On one
hand, it is expected that the execution time will increase since using basic
instructions allows finer granularity. On the other hand, when the number of
instructions is reduced, so does the number of initialization cycles. The two
opposite trends cause different benchmark behaviors. Comparison of technology
TS1 and different ISAs shows the same effect.

The flexibility and code size reduction advantages of abstractPIM come with
a cost. Using MAGIC technology, in every execution cycle, one write operation is
performed every clock cycle, and therefore, the number of execution cycles is also
the number of write operations. The additional execution cycles per benchmark
result in proportional additional energy consumption and lower effective life-
time. We believe that higher abstraction is worth the cost of these limitations.
This is similar to the advantages of the abstraction achieved by a high-level
programming language in comparison to low-level programming languages, e.g.,
assembly.

7 Future Work

In this section, we discuss future research directions that can be explored using
abstractPIM, including current limitations of the abstractPIM flow and possible
solutions.

7.1 Supporting Multi-output ISA Commands

AbstractPIM supports multi-output instructions (in this work, these instruc-
tions are demonstrated as part of ISA and not supported by the target machine,
since there are no multi-output MAGIC operations), but not all kinds of multi-
output instructions can be used in it, since some may lead to bogus dependencies
that hinder the execution mapping. Figure 7 demonstrates these bogus depen-
dencies. In the case demonstrated in Fig. 7, the input is the function code:

A Technology Backward-Compatible Compilation Flow for PIM 357

Fig. 7. Compilation with multi-output instructions which creates a circular depen-
dency. (a) Generated netlist using single output gate synthesis. (b) Generated netlist
using multi-output gate synthesis. (c) The graph that represents netlist (a), which is a
DAG and can be used for the mapping algorithm. (d) The graph that represents netlist
(b), which includes a cyclic dependency. (Color figure online)

g = ab, h = cdef . In Fig. 7(a), the code is compiled using single-output instruc-
tions (AND2 instruction), whereas in Fig. 7(b), it is compiled using multi-output
instructions (an instruction which computes two AND2 operations, marked in
blue). Figures 7(c) and 7(d) show the graphs corresponding to the netlists in
Figs. 7(a) and 7(b), respectively. Whereas the graph in Fig. 7(c) is a DAG, the
graph in Fig. 7(d) is not a DAG. While there is no combinational loop in both
netlists and the synthesis product is valid, a circular dependency was created
between the two 2-output AND2 cells. AbstractPIM relies on the graph acyclic
structure (since it uses the SIMPLER mapping algorithm), and therefore instruc-
tions which might cause cyclic dependency cannot be used.

A sufficient condition that guarantees no such loops will be created, is to use
only cells in which all the outputs depend on all the inputs, e.g., half adder,
which implements the functions S = a ⊕ b and C = ab. However, in the case of
a 32-bit adder, which is a common combinational block, the first output bit S0

is given by S0 = A0 ⊕ B0 ⊕ Cin, where A0 and B0 are the least significant bits
of the added numbers, and Cin is the carry in. As can be concluded from the
S0 calculation, it is not dependent on the other inputs and can therefore cause
a cyclic graph. Future work will ensure support of any multi-output instruction,
thus enabling more flexibility in planning the ISA.

7.2 Architecture-Targeted Compilation

When using the compilation method proposed in this chapter, the code is com-
piled to support different logic families, e.g., MAGIC NOR. This flexibility comes
with a cost: the compilation does allow technology backward compatibility and
execution of the code on different machines without re-compiling the code, but
the compiled instruction stream is not necessarily optimized for a desired specific
logic family. For example, assume a code containing a XOR logic is compiled to
an ISA consisting of two instructions only: NOR and NAND. A XOR logic can
be implemented, e.g., using either 4 NAND gates or 5 NOR gates. If the compiler
is not aware of the exact target machine, it will likely compile the XOR logic

358 A. Eliahu et al.

into the shorter sequence consisting of 4 NAND gates. If this code is eventually
run on a target machine consisting of NOR operations only, that machine imple-
ments NOR in 1 clock cycle and NAND in 4 clock cycles, so the execution will
take 16 cycles (4 NAND gates) total rather than 5 cycles (5 NOR gates) total.
As a result, although the code is compatible with the given target machine, it is
not latency-optimized to it.

When the code is compiled for a specific stateful logic family, it can be opti-
mized for this specific technology, e.g., achieving the lowest latency possible using
our flow for the used technology, while maintaining backward compatibility. The
optimization can be done in the first component of abstractPIM (intermediate
representation), both as part of the synthesis and as part of the mapping tool.
The optimization is based on technology parameters, i.e., the second component
(microcode generation).

In this chapter, we discuss the optimization both as part of the synthesis and
as part of the mapping tool. First, we discuss the optimization as part of the
synthesis. In abstractPIM, every instruction in the ISA, which is represented by
a cell in a synthesis standard library, is defined with the same area. The synthesis
minimizes the area, which is equivalent in this case to minimizing the number
of instructions needed for execution. However, to achieve architecture-targeted
compilation, different area values can be defined for the cells in the synthesis
standard library based on technology parameters. In this manner, various fac-
tors can be optimized in the synthesis. In the above NOR and NAND example,
the compiler will be informed that a NAND instruction costs twice as much as
a NOR instruction, and will compile the code accordingly by prioritizing the
different cells in the synthesis standard library. In that sense, it is important to
mention that in the case of architecture-targeted compilation, the intermediate
representation and microcode generation components are no longer independent
of each other. Particularly, in the case of latency optimization, the latency of each
instruction, which is architecture dependent and acquired in the microcode gen-
eration component, should be embedded in the compiler. Similarly, the compiler
can optimize the instruction stream considering other factors such as minimiz-
ing the number of write operations to the memristive crossbar array, prioritizing
instructions with less inputs (e.g., prioritizing NOR2 instruction over NOR3
instruction), etc.

Furthermore, the optimization of the aforementioned factors can be consid-
ered not only in the synthesis, but also in the mapping tool. For example, in our
flow, we used SIMPLER as a mapping tool. As discussed in Sect. 2.2, SIMPLER
builds a DAG which determines an efficient gate execution order using heuris-
tics based on different node parameters, e.g., CU (cell usage). The CU values
(Eqs. 1 and 2) can be modified according to the instructions number of outputs
and number of temporary computation cells.

As previously mentioned, the SIMPLER mapping tool can be replaced with
any other mapping tool in the abstractPIM flow. Different mapping tools opti-
mize different factors (e.g., latency, area, or throughput), and therefore the choice
of the mapping tool depends on the architecture demands. Our flow enables to

A Technology Backward-Compatible Compilation Flow for PIM 359

easily switch between the different mapping tools and compare them to discover
the best mapping tool for a specific technology and optimization factor.

7.3 High-Level Compilation

In abstractPIM, the input to our tool is a Verilog code. This code is synthe-
sized using a synthesis standard library that includes the ISA commands, and is
eventually computed on the hardware. However, the synthesis tools used in this
work are CMOS-oriented, and they are aiming for maximizing the parallelism
using such a technology. These tools are not optimal for execution on a single-
row memristive crossbar array with cell reuse. While abstractPIM establishes
foundations for a PIM compiler, it still remains in the synthesis domain. In its
current shape, abstractPIM can be used to implement instruction hierarchy in
PIM architectures, but there is still work to do in order to make it a software
compiler. A natural research direction is to replace the synthesis tool (“silicon
compiler”) with a traditional compiler (“software compiler”) that compiles a
high-level software code (e.g., Python code), into a sequence of ISA commands
that can be analyzed using similar methods to those used in this chapter.

7.4 Supporting Input Overwriting

As demonstrated in FELIX [24], single-cycle operations of different Boolean
functions (and not only a NOR operation) can be implemented using MAGIC
gates. The MAGIC gate inputs can be overwritten to save the utilized num-
ber of cells, to improve the effective lifetime of the system and to enhance its
performance. To use such logic gates in abstractPIM, the algorithm used for
the mapping should be modified to support input overwriting, as done in X-
MAGIC [25]. Figure 8 demonstrates the modifications made in the X-MAGIC
DAG, which should be applied in the abstractPIM flow for overwriting support.
These modifications include the definition of different edges in the DAG, each
of which represents different dependency between the nodes. The first edge type
is a regular edge, which represents a non-overwriting dependency. The second
edge type is an overwriting edge, which represents a case where the output of
the child node is overwritten by the parent operation.

Figure 8(a) shows an example netlist that consists of three XOR logic gates,
and Fig. 8(b) shows its corresponding X-MAGIC DAG. Gates g2 and g3 use
gate g1 output, and therefore are connected to it via an edge. Assume gate g2
overwrites gate g1 output, while gate g3 does not overwrite gate g1 output. If
gate g2 is executed before gate g3, the output of gate g1 will be overwritten
as part of gate g2 execution, and gate g3 will not operate properly. Therefore,
regular, non-overwriting dependency (marked in black) and overwriting depen-
dency (marked in green) are marked accordingly in the DAG. To ensure that the
overwriting node is the last one executed, a sequencing dependency (marked in
red) between gate g2 and gate g3 is added to the DAG.

360 A. Eliahu et al.

Fig. 8. X-MAGIC DAG Example. (a) An example netlist of three XOR logic gates.
(b) The X-MAGIC DAG corresponding to the netlist in (a). A regular edge is marked
with black, an overwriting edge is marked with green and a sequencing edge is marked
with red. (Color figure online)

8 Conclusions

This chapter presents a hierarchical compilation concept and method for logic
execution within a memristive crossbar array. The proposed method provides
flexibility, portability, abstraction and code size reduction. Future research direc-
tions that can enhance the abstractPIM flow, e.g., architecture-targeted compi-
lation and input-overwriting support, are also presented in this chapter. The
abstractPIM flow lays a solid foundation for a compiler for a memristor-based
architecture, by enabling automatic mapping and execution of any logic function
within the memory, using a defined ISA.

Acknowledgment. This research is supported by the ERC under the European
Union’s Horizon 2020 Research and Innovation Programme (grant agreement no.
757259).

References

1. Pedram, A., Richardson, S., Horowitz, M., Galal, S., Kvatinsky, S.: Dark memory
and accelerator-rich system optimization in the dark silicon era. IEEE Des. Test
34(2), 39–50 (2017)

2. Hamdioui, S., et al.: Memristor for computing: myth or reality? In: DATE, pp.
722–731, March 2017

3. Ielmini, D., Wong, H.-S.P.: In-memory computing with resistive switching devices.
Nat. Electron. 1, 333–343 (2018)

4. Lastras-Montaño, M.A., Cheng, K.-T.: Resistive random-access memory based on
ratioed memristors. Nat. Electron. 1, 466–472 (2018)

5. Wong, H.S.P., et al.: Phase change memory. Proc. IEEE 98, 2201–2227 (2010)
6. Woods, W., Teuscher, C.: Approximate vector matrix multiplication implementa-

tions for neuromorphic applications using memristive crossbars. In: IEEE/ACM
NANOARCH, pp. 103–108, July 2017

7. Deng, L., et al.: Model compression and hardware acceleration for neural networks:
a comprehensive survey. Proc. IEEE 108(4), 485–532 (2020)

8. Kvatinsky, S., et al.: MAGIC-memristor-aided logic. IEEE TCAS II 61, 895–899
(2014)

9. Borghetti, J., et al.: ‘memristive’ switches enable ‘stateful’ logic operations via
material implication. Nature 464, 873–876 (2010)

A Technology Backward-Compatible Compilation Flow for PIM 361

10. Testa, E., et al.: Inversion optimization in majority-inverter graphs. In:
NANOARCH, pp. 15–20, July 2016

11. Tenace, V., et al.: SAID: a supergate-aided logic synthesis flow for memristive
crossbars. In: DATE, pp. 372–377, March 2019

12. Ben Hur, R., et al.: SIMPLE MAGIC: synthesis and in-memory mapping of logic
execution for memristor-aided logic. In: IEEE/ACM ICCAD, pp. 225–232, Novem-
ber 2017

13. Ben-Hur, R., et al.: SIMPLER MAGIC: synthesis and mapping of in-memory logic
executed in a single row to improve throughput. In: IEEE TCAD, July 2019

14. Bürger, J., et al.: Digital logic synthesis for memristors. In: Reed-Muller, pp. 31–40,
January 2013

15. Linn, E., et al.: Beyond von Neumann - logic operations in passive crossbar arrays
alongside memory operations. Nanotechnology 23, 305205 (2012)

16. P6 family of processors hardware developer’s manual. http://download.intel.com/
design/PentiumII/manuals/24400101.pdf

17. Eliahu, A., et al.: abstractPIM: bridging the gap between processing-in-memory
technology and instruction set architecture. In: 2020 IFIP/IEEE 28th International
Conference on Very Large Scale Integration (VLSI-SOC), pp. 28–33 (2020)

18. Reuben, J., et al.: Memristive logic: a framework for evaluation and comparison.
In: PATMOS, pp. 1–8, September 2017

19. Yadav, D.N., Thangkhiew, P.L., Datta, K.: Look-ahead mapping of Boolean func-
tions in memristive crossbar array. Integration 64, 152–162 (2019)

20. Thangkhiew, P.L., Zulehner, A., Wille, R., Datta, K., Sengupta, I.: An efficient
memristor crossbar architecture for mapping Boolean functions using Binary Deci-
sion Diagrams (BDD). Integration 71, 125–133 (2020)

21. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

22. Kurup, P., et al.: Logic Synthesis Using Synopsys, 2nd edn. Springer, Heidelberg
(2011)

23. Amarù, L., Gaillardon, P.-E., De Micheli, G.: The EPFL combinational benchmark
suite. In: IWLS (2015)

24. Gupta, S., Imani, M., Rosing, T.: FELIX: fast and energy-efficient logic in mem-
ory. In: 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–7 (2018)

25. Peled, N., et al.: X-MAGIC: enhancing PIM using input overwriting capabilities.
In: 2020 IFIP/IEEE 28th International Conference on Very Large Scale Integration
(VLSI-SOC), pp. 64–69 (2020)

http://download.intel.com/design/PentiumII/manuals/24400101.pdf
http://download.intel.com/design/PentiumII/manuals/24400101.pdf
https://doi.org/10.1007/978-3-642-14295-6_5

Author Index

Aghighi, Amin 21
Ajayi, Tutu 65

Bakir, Muhannad S. 149
Ben-Hur, Rotem 343
Bertozzi, Davide 87
Blaauw, David 65
Boemmels, Juergen 279
Bragaglio, Moreno 179

Calhoun, Benton 65
Catthoor, Francky 279
Chen, Chien-Hen 65
Cherivirala, Yaswanth K. 65
Condia, Josie Esteban Rodriguez 205
Cops, Wim 1
Cordova, David 1
Crafton, Brian 323

Dai, Shanshan 39
Deng, Marina 301
Deval, Yann 1
Dreslinski Jr, Ronald 65
Duan, Wenbo 65

Eliahu, Adi 343

Farhang-Boroujeny, Behrouz 21
Fayazi, Morteza 65
Fujita, Masahiro 113

Gaillardon, Pierre-Emmanuel 279
Gava, Jonas 235
Germiniani, Samuele 179
Giacomin, Edouard 279
Gupta, Shourya 65

Hu, Kangping 39
Hu, Yinghua 255

Kamineni, Sumanth 65
Kaul, Ankit 149
Kolluru, Sumanth 133
Krishna, Tushar 323
Krstic, Milos 87

Kumar, Abhishek 301
Kvatinsky, Shahar 343
Kwon, Kyumin 65

Lapuyade, Herve 1
Larrieu, Guilhem 301
Le Beux, Sebastien 301
Lecestre, Aurélie 301
Lee, Jeongsup 65
Lian, Xiaoyu 39
Lim, Sung-Kyu 323

Maneux, Cristell 301
Marc, François 301
Marchand, Cedric 301
Mishchenko, Alan 113
Miyasaka, Yukio 113
Mukherjee, Chhandak 301
Murali, Gauthaman 323

Nazarian, Shahin 255
Nodenot, Nicolas 1
Nuzzo, Pierluigi 255

O’Connor, Ian 301
Ost, Luciano 235

Piccin, Yohan 1
Poittevin, Arnaud 301
Pravadelli, Graziano 179

Raychowdhury, Arijit 149, 323
Reda, Sherief 39
Reis, Ricardo 235
Rivet, François 1
Ronen, Ronny 343
Rosenstein, Jacob K. 39
Ryckaert, Julien 279

Saligane, Mehdi 65
Saligram, Rakshith 149
Sharma, Tannu 133
Sonza Reorda, Matteo 205
Spetalnick, Samuel 323
Stevens, Kenneth S. 133
Sylvester, Dennis 65

364 Author Index

Tajalli, Armin 21
Tulloss, Caleb R. 39

Veronesi, Alessandro 87

Wawrzynek, John 113
Wentzloff, David D. 65

Yang, Kaixin 255

	Preface
	Organization
	Contents
	List of Contributors
	Low-Power High-Speed ADCs for ADC-Based Wireline Receivers in 22nm FDSOI
	1 Introduction
	2 High-Speed Wireline Receivers
	3 sub-ADC Resolution Estimation
	4 sub-ADC Architecture Selection
	5 Circuit Description
	5.1 Capacitive DAC
	5.2 Comparator and Back Gate Biasing Calibration
	5.3 SAR Logic

	6 Simulation Results
	7 Conclusion
	References

	Mixed-Mode Signal Processing for Implementing MCMC MIMO Detector
	1 Introduction
	2 System Level MCMC Detector
	2.1 Conventional MCMC Detectors
	2.2 Proposed MCMC Detector Circuit

	3 System Level Simulation Results
	4 Circuit Level Simulations
	5 Comparison and Discussion
	6 Future Works
	6.1 Algorithm-Level Improvements
	6.2 Circuit-Level Improvements

	7 Conclusion
	References

	Low Power Current-Mode Relaxation Oscillators for Temperature and Supply Voltage Monitoring
	1 Introduction
	2 Dual-Phase Current-Mode Relaxation Oscillator
	2.1 Operation Description
	2.2 Oscillator Variations and Extensions

	3 Temperature and Supply Voltage Sensing
	3.1 Supply Voltage Sensing
	3.2 Temperature Sensing
	3.3 Hybrid Oscillator Sensing both Temperature and Supply Voltage

	4 Readout Circuit
	5 Reference Current Generation
	6 Design Considerations
	6.1 Delay Model of the Amplifying Transistor
	6.2 Curvature Error/Nonlinearity

	7 Measured Performance
	7.1 State of the Art
	7.2 Hybrid nW Temperature/VDD Sensor
	7.3 Dedicated W Temperature Sensor
	7.4 Dedicated W VDD Sensor
	7.5 Performance Summary

	8 Conclusion
	References

	Fully-Autonomous SoC Synthesis Using Customizable Cell-Based Analog and Mixed-Signal Circuits Generation
	1 Introduction
	2 Overview
	3 Process Setup and Modeling
	4 Analog Generator Architecture
	4.1 PLL
	4.2 LDO
	4.3 Temperature Sensor
	4.4 SAR ADC
	4.5 Switched-Capacitor DC-DC Converter
	4.6 SRAM

	5 SoC Generation
	5.1 SoC Solver
	5.2 IP-XACT and Database
	5.3 Embedded EDA Flow

	6 Evaluation
	6.1 Analog Generation Results
	6.2 Prototype Chip Results

	7 Conclusion
	References

	Assessing the Configuration Space of the Open Source NVDLA Deep Learning Accelerator on a Mainstream MPSoC Platform
	1 Introduction
	2 Related Work
	3 The NVDLA Architecture
	3.1 Software Environment
	3.2 Hardware Architecture

	4 NVDLA Network Compiler
	4.1 Compiler Workflow
	4.2 Supported Features

	5 Software Runtime Analysis
	5.1 Bare-Metal Implementation
	5.2 Runtime Performance

	6 Hardware Synthesis
	6.1 Inspected Hardware Configurations
	6.2 Implementation Synthesis Results

	7 End-to-End HW/SW Performance and Optimizations
	8 Conclusions
	References

	SAT-Based Mapping of Data-Flow Graphs onto Coarse-Grained Reconfigurable Arrays
	1 Introduction
	2 Related Work
	3 SAT Problem
	4 Mapping Problem
	4.1 Data-Flow Graph
	4.2 CGRA
	4.3 SAT-Based Mapping
	4.4 Preliminary Experiment

	5 Enumeration-Based Transformation
	5.1 CNF Formulation
	5.2 Example: Sparse Matrix Multiplication

	6 XBTree-Based Transformation
	6.1 CNF Formulation
	6.2 Comparison: Matrix-Vector Multiplication

	7 CGRA Optimization
	8 Conclusion
	References

	Learning Based Timing Closure on Relative Timed Design
	1 Introduction
	1.1 Relative Timing

	2 Background
	3 Approach
	3.1 Data Collection and Preparation
	3.2 Machine Learning Algorithms
	3.3 Models

	4 Implementation
	4.1 Learning
	4.2 Machine Learning Algorithms
	4.3 Light Gradient Boosting (LightGBM)
	4.4 Polynomial Regression Model

	5 Designs
	6 Results
	6.1 Comparative Analysis

	7 Conclusion
	References

	Multilevel Signaling for High-Speed Chiplet-to-Chiplet Communication
	1 Introduction
	1.1 Overview

	2 Literature Survey
	2.1 2D and 2D Enhanced Architectures
	2.2 3D Architectures

	3 Channel Modelling
	4 Transceiver System Architecture
	4.1 Bundle Data Clock Forwarded Channels
	4.2 Signaling
	4.3 Transmitter
	4.4 Receiver

	5 Channel Simulation
	5.1 Setup
	5.2 Simulation
	5.3 Role of Termination Resistance
	5.4 Channel Operating Margin and Highest Signaling Rate

	6 Power Estimations
	6.1 Transmitter
	6.2 Receiver
	6.3 Phase Locked Loop (PLL)

	7 Conclusion and Future Scope
	References

	From Informal Specifications to an ABV Framework for Industrial Firmware Verification
	1 Introduction
	2 Background
	3 Methodology
	4 Formalisation of Specifications
	4.1 High-Level Formalisation
	4.2 Low-Level Formalisation
	4.3 Type System
	4.4 Testbench Generation

	5 Checker Synthesis
	6 Test Plan Generation
	6.1 Unguided Test Plan Generation
	6.2 Guided Test Plan Generation

	7 Simulation Setup
	7.1 Setup
	7.2 Report

	8 Experimental Results
	8.1 Case Study
	8.2 Results

	9 Conclusions and Future Works
	References

	Modular Functional Testing: Targeting the Small Embedded Memories in GPUs
	1 Introduction
	2 Background
	2.1 General Organization of GPUs
	2.2 FlexGripPlus
	2.3 Embedded Memories

	3 Modular Functional Testing Approach
	4 Stack Memory
	4.1 Controllability
	4.2 Observability
	4.3 Test Program Organization
	4.4 Implementation

	5 Predicate Register File
	5.1 Observability
	5.2 Test Program Organization
	5.3 Implementation

	6 Address Register File and Vector Register File
	6.1 Controllability
	6.2 Observability
	6.3 Test Program Organization
	6.4 Implementation

	7 Limitations and Constraints
	8 Experimental Results
	8.1 Performance of the Test Programs
	8.2 Fault Injection Results

	9 Conclusions
	References

	RAT: A Lightweight Architecture Independent System-Level Soft Error Mitigation Technique
	1 Introduction
	2 Fundamental Concepts and Related Works
	2.1 Fault Tolerance Taxonomy
	2.2 Software-Based Soft Error Mitigation Techniques

	3 Register Allocation Technique (RAT)
	4 Experimental Setup and Evaluation Metrics
	4.1 Reference Mitigation Technique - Selective TMR
	4.2 Evaluation Metrics

	5 RAT Efficiency Analysis
	5.1 RAT Code and Performance Overhead
	5.2 RAT Soft Error Reliability Evaluation

	6 RAT Efficiency in Distinct Processor Architectures
	6.1 ARMv7-A General-Purpose Registers
	6.2 Soft Error Reliability Assessment for the ARMv7-A Considering Different Mitigation Techniques
	6.3 RAT Soft Error Efficiency Comparison: ARMv7-A vs ARMv8-A

	7 Conclusion and Future Works
	References

	.28em plus .1em minus .1emSANSCrypt: Sporadic-Authentication-Based Sequential Logic Encryption
	1 Introduction
	2 Overview of Sequential Logic Encryption
	3 Multi-authentication-Based Sequential Encryption
	3.1 Threat Model
	3.2 Authentication Protocol
	3.3 Overview of the Encryption Scheme
	3.4 Back-Jumping Module
	3.5 Encryption Finite State Machine (ENC-FSM)
	3.6 Guaranteeing Real-Time Operation

	4 Security and Performance Analysis
	4.1 Brute-Force Attack
	4.2 Sequential SAT-Based Attack
	4.3 FSM Extraction and Structural Analysis
	4.4 Cycle Delay Analysis

	5 Simulation Results
	6 Conclusion
	References

	3D Nanofabric: Layout Challenges .28em plus .1em minus .1emand Solutions for Ultra-scaled Logic Designs
	1 Introduction
	2 Background and Related Work
	2.1 Parallel 3D
	2.2 Monolithic 3D
	2.3 Other Logic 3D Technologies
	2.4 3D NAND Memory

	3 Proposed 3D Nanofabric Concept
	3.1 General Overview
	3.2 Potential 3D Nanofabric Process Flow
	3.3 3D Nanofabric Layout Examples

	4 Layout Challenges
	4.1 Gate Layer Forming
	4.2 Single Metal Level Routing

	5 Layout Solutions
	5.1 Step 1: Resolving Loops at the Cell Level
	5.2 Step 2: Resolving Loops at the Netlist Level
	5.3 Step 3: Duplicating Signals Through Staircases and Vertical Signals
	5.4 Non-crossing Planar Graph Algorithm

	6 Experimental Results
	6.1 Experimental Methodology
	6.2 Logic Gate Area Comparison
	6.3 ALU Footprint Comparison

	7 Conclusion
	References

	3D Logic Cells Design and Results Based on Vertical NWFET Technology Including Tied Compact Model
	1 Introduction
	2 VNWFET Devices
	2.1 Technology Description
	2.2 Compact Model
	2.3 Measured and Simulated Results

	3 Logic Performance Assessment
	3.1 Simulated Structures
	3.2 Results
	3.3 Comparison with FinFET and Conclusion

	4 3D Logic Cells
	4.1 Going Vertical: Implications on Physical Circuit Design
	4.2 The 3D Architecture of the VNWFET Technology
	4.3 Footprint Estimation
	4.4 Layout Footprint Comparison Example

	5 A Custom EDA Tool
	5.1 Specifications
	5.2 Realisation
	5.3 Example of Studied Structure

	6 Insights for Large Scale Integration
	6.1 Promising Results for Further Designs
	6.2 The Future of the VNWFET Technology

	7 Conclusion
	References

	Statistical Array Allocation and Partitioning for Compute In-Memory Fabrics
	1 Introduction
	2 Background and Motivation
	2.1 Array Operation
	2.2 Array Allocation
	2.3 Maximizing Utilization

	3 Block-Wise Array Allocation
	3.1 Identifying Synchronization Barriers
	3.2 Optimizing Array Allocation
	3.3 Block-Wise Data Flow

	4 CIM-Based Architecture
	5 Results
	5.1 Power Evaluation

	6 Conclusion
	References

	abstractPIM: A Technology Backward-Compatible Compilation Flow for Processing-In-Memory
	1 Introduction
	2 Background and Related Work
	2.1 Stateful Logic
	2.2 Logic Execution Within a Memristive Crossbar Array

	3 abstractPIM: Three-Component Code Execution Flow for PIM
	4 Case Study: Vector-Matrix Multiplication
	5 abstractPIM Flow and Methodology
	6 Results
	7 Future Work
	7.1 Supporting Multi-output ISA Commands
	7.2 Architecture-Targeted Compilation
	7.3 High-Level Compilation
	7.4 Supporting Input Overwriting

	8 Conclusions
	References

	Author Index

