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Greg Abram, Paul Navratil, David Rogers, and James Ahrens

Abstract Galaxy is a multi-tenant server platform for visualization and analysis
of data distributed across many nodes of a supercomputer. It presents an interface
through which multiple concurrent clients can connect to perform visualization and
analysis tasks on shared data. Galaxy minimizes the memory footprint of visualiza-
tion and analysis tasks to reduce the impact of analysis on the simulation. It does so by
utilizing a visualization renderer that incorporates common visualization techniques
directly in the rendering process. The client GUI provides a data-flow programming
paradigm that enables users to connect to the Galaxy Multiserver, devise complex
multi-step analytics workflows, and visualize results on their desktop.

1 Introduction

As discussed in the opening chapter, modern supercomputing-level computation
calls for in situ analysis. By analyzing the data as it is being generated, in situ anal-
ysis avoids the necessity of saving time-step data snapshots for post-processing, a
costly process that generally limits the temporal frequency at which data can be
saved. However, for current systems (e.g. ParaView/Catalyst [3], VisIt/libsim [5],
SENSEI [4]) these benefits bear significant costs. For example, the analysis to be
performed must be known prior to the start of the computation so that the necessary
changes can be made to the general-purpose simulation. Within these systems, the

G. Abram - P. Navratil (<)
Texas Advanced Computing Center, The University of Texas, Austin, TX, USA
e-mail: pnav@tacc.utexas.edu

G. Abram
e-mail: gda@tacc.utexas.edu

D. Rogers - J. Ahrens
Los Alamos National Laboratory, Los Alamos, NM, USA
e-mail: dhr@lanl.gov

J. Ahrens
e-mail: ahrens@lanl.gov

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 421
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_19


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_19&domain=pdf
mailto:pnav@tacc.utexas.edu
mailto:gda@tacc.utexas.edu
mailto:dhr@lanl.gov
mailto:ahrens@lanl.gov
https://doi.org/10.1007/978-3-030-81627-8_19

422 G. Abram et al.

distributed simulation process is instrumented with an adapter that converts the sim-
ulation’s run-time data to a form palatable for analysis. This results in a monolithic
simulation/analysis code that, when run, performs a specific simulation/analysis task,
and requires two different customizations: to the simulation, so that the simulation
provides the required internal data to the adapter, and to the analysis, to cause it to
perform the specific analysis required by the science case.

Typically, such systems co-locate simulation and analysis work in the same actual
processes. Consequently, simulation and analysis share memory, computation and
communication resources and therefore affect the performance of one another. The
available memory available to each process must be sufficient to serve the worst
cases load of each phase. Unfortunately, while the footprint of many simulations can
be determined, the footprint and computational cost of typical geometry-pipeline
visualization algorithms is hard to predict and, in the worst case, is tied to the size of
the underlying computational grid. Further, as distributed supercomputers become
ever larger, system-wide synchronization becomes costly. When the workload of a
task is not evenly distributed, synchronizing may cause much of the computational
resources assigned the task to wait for a few overburdened participants to complete.

Given these challenges, Galaxy aims to provide the following differentiating capa-
bilities: (1) separation of simulation and analysis activities so that multiple, concur-
rent and asynchronous analyses of simulation data products can attach, operate and
disconnect at run-time; and (2) performance of data visualization within bounded,
well-understood memory limits. Galaxy delivers these capabilities via a multiserver
framework, which provides each connected tenant access to Galaxy’s services for
distributed data, communication, and computation; and Galaxy’s filtering, analysis,
and visualization methods, which are designed to limit tenant resource requirements
rather than requiring full use or duplication of the input data. Galaxy replaces tradi-
tional monolithic in situ architecture with a shared distributed data- and computation-
space that is accessible to concurrent data-processing activities. These activities can
be organized adaptively, in real-time, into distinct workflows that can access shared
data at run-time to perform different science tasks concurrently. Using Galaxy, a sim-
ulation workflow consists of one or more stages “connected” by data exposed in the
shared data-space. Workflow produce data products that are stored within Galaxy’s
shared data-space. As activities attach to the Galaxy environment, they can access
data products available within the data-space to generate additional data products
and analysis results.

In the remainder of this chapter, we briefly discuss relevant related work not
covered elsewhere in this book (Sect.2). We then provide a high-level overview of
Galaxy’s architecture, focusing on the novel multi-tenant and in situ capabilities
(Sect.3; a description of additional Galaxy functionality is presented in [1]). We
then provide a deep-dive into the algorithms and structure of Galaxy’s ray tracer
and direct volume renderer, a complex Galaxy analysis that can be used in situ
with simulations (Sect. 4). Lastly, we provide examples of Galaxy’s performance on
current-generation hardware architectures (Sect. 5).
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2 Related Work

A substantial body of literature exists on in situ systems, as outlined in the intro-
ductory chapter of this book. We discuss four in situ frameworks below for their
relevance to Galaxy, for their large user bases, their ready availability, and their
deployment at many supercomputing centers around the world. We consider these
four to be divided into two subsets—closed systems, that are specific to a anal-
ysis/visualization tool, and middlewares, which connect instrumented simulations
with analysis/visualization components that have appropriate interfaces available.

ParaView Catalyst [3] and Vislt’s libsim [5] are closed systems that enable the
use of pre-existing, well-developed visualization systems in situ. In each, the simu-
lation is instrumented with an application-specific API that provides an interface to
the visualization system. In general, both operate by incorporating portions of the
visualization system’s run-time library into the simulation process to perform the
visualization. Both ParaView and Vislt’s visualization engines utilize VTK [9], a
class library of filters that leverage high-speed rasterization hardware (and software)
by extracting renderable geometry from the input data. The resulting geometry is
rendered with OpenGL and both systems use depth-compositing to combine the ren-
dered results from many parallel processes into a single image for display/storage. In
their most recent versions, both have incorporated ray tracing backends in addition
to OpenGL; however, each still utilizes depth-compositing to create final images,
which limits ray tracing effects to only process-local data.

Libsim is designed to interface a simulation with VisIt’s GUIL. By connecting the
two, libsim provides an interactive view into the running simulation using the full
capabilities of the Vislt runtime in a directly-integrated, synchronous manner. The
user can change the visualization as it is running via the VisIt GUI. Catalyst supports
the development of visualization pipelines in a pre-process step, using the ParaView
GUI and representative data, generating Python scripts that capture the pipeline to
be deployed in situ. When the simulation is started, the Catalyst run-time loads the
Python script and, when passed data from the simulation, performs the visualization
in a directly interfaced, fully synchronous manner. We note that the Python script
can use VTK’s serialized I/O capabilities to interface with an external visualization
process. ParaView itself can then connect to the simulation using this export interface
to provide an indirect, intermittent ability to interact with the simulation data as it is
running.

ADIOS [6] and SENSEI [4] are middleware for in situ analysis that facilitate
communication of data between source and destination activities. They are based on
an externally reconfigurable I/O layer that connects the output of a source application
with the inputs of the destination application. Both include an APl used to instrument
the simulation code to support a variety of I/O and analysis. Once the implementation
costs have been paid to integrate the API within the simulation, each middleware
simplifies the addition and substitution of analysis components. As middleware,
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ADIOS and SENSEI do not provide analysis/visualization components. Instead,
they provide an interface to other well developed systems, including ParaView and
Vislt.

3 Galaxy Overview

Galaxy [1] is a parallel computation environment in which distributed parallel compu-
tation is performed by applications that intercommunicate (source code is freely avail-
able at https://github.com/TACC/Galaxy/). Like ADIOS and SENSEI, Galaxy serves
as middleware that enables communication between activities (e.g., simulations and
analysis/visualization components). However, unlike those systems, Galaxy’s dis-
tributed computation model is intended for use as an algorithmic framework. Two
components are central to the Galaxy architecture: a global name-space into which
data objects are published, and an asynchronous point-to-point and broadcast mes-
saging framework for work messages. These components enable any worker to cause
one or all of its fellow workers to perform a parameterized operation on data by send-
ing a work packet containing an action, parameters, and the global names of sources
and destinations. When a work packet is processed by its recipient, the local data
objects associated with the global names of sources and destinations are identified,
and the action performed. Actions can, in turn, create and transmit additional work
packets requesting work be done elsewhere in the system.

As an example, a simple data parallel algorithm can be implemented in Galaxy
by subclassing the Work class and defining (1) its action to be the per-local-data
operation to be performed, (2) its members as the source and destination object
names and, (3) whatever parameters are necessary for the algorithm at hand. This
work code would be invoked by a driver procedure that is parameterized with the
name of a pre-existing source object, the name of a (possibly preexisting) destination
object, and the other parameters. If the destination object does not already exist, the
driver would use the Galaxy API to create local objects on the same workers that
contain partitions of the source object. The driver would then create an instance of
the Work object subclass and, using the Galaxy asynchronous broadcast capability,
request that each worker perform the requested action on its local source data and
produce results in its local destination object.

Galaxy also supports global communication. For some algorithms, the driver may
need to know that the data-parallel processes have all completed (recall that the work
messages are fully asynchronous). Furthermore, the distributed destination object
may need to acquire some global data (e.g., the data range). These examples require
the workers to communicate status/results to the driver upon completion of their data-
parallel work. For the data range example, the driver could create a data structure for
a response object, initializing a count variable with the total number of data-parallel
workers. It would then pass the response object’s address (in the driver’s memory
space) to the workers. A second application-specific Work subclass would be defined
with an action method that accesses the driver’s data structure, stores the associated
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worker’s data range, and decrements the driver’s count of worker results accumulated
thus far. After broadcasting the original work message, the driver would wait for the
worker count to decrement zero, at which time it knows (a) that all data-parallel work
is complete and, (b) it has the accumulated global data range information.

3.1 Multi-tenancy

Galaxy is intended for use as a multi-tenant, persistent co-processing environment.
In the simple examples described thus far, a single driver causes single parallel algo-
rithm to run. However, Galaxy supports multiple algorithms running concurrently,
sharing the messaging system, the global object name-space, and computational
resources. Consequently, many work messages can exist simultaneously, either in
work queues waiting for the necessary resources or in a running state. As detailed
later in the chapter, each worker supports multiple worker threads which process
messages concurrently. This enables Galaxy to support direct, co-located, shared-
memory co-processing.

The Galaxy Multiserver implements a socket-based client/server interface
enabling multiple external user interfaces to asynchronously attach to a running
Galaxy instance, install activity-specific capabilities (e.g., libraries containing sub-
classes of Galaxy’s Work class etc.) on all the workers, and run concurrently as part of
the Galaxy world. Multiserver clients communicate with the server via a simple
string-based protocol. When run as a Multiserver, one process of the Galaxy
spawns a thread that opens a socket and listens on it. When a Multiserver client
attaches, a client-specific thread is spawned on the recipient Galaxy process to han-
dle communications, and a message handler is installed for a few general purpose
actions.

One pre-installed action enables the client to send the name of a shared library
to Galaxy. Galaxy’s server-side creates and broadcasts a Work message that causes
every worker process in the Galaxy world to load the library (and its dependencies).
A string-based message handler is installed, which the client-specific server-side
thread retains to process subsequent application-specific exchanges. When subse-
quent messages atrive, the server side thread passes the message to each installed
handler in turn until one recognizes the message, enabling multiple independent
Galaxy activities to be installed by any client.

Asatrivial example of multi-tenancy, Galaxy includesmsdata,aMultiserver
client that presents a command-line interface that enables the user to interact with
the Galaxy data space. For example, the code below connects to the Galaxy instance
and discovers that there are no visible data objects available.
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An Empty Dataspace Listing in Galaxy

% msdata

? list;
datasets:

rl

We can then start a second, possibly remote, msdata instance that imports a
dataset into the Galaxy Dataspace:

Importing Data into a Galaxy Dataspace

\%$ msdata
? import { "Datasets": [

{

"name": "eightBalls",
"filename": "eightBalls.vol",
"type": "Volume" } 1};

This import statement causes the Galaxy world to load a dataset from the file
"eightballs.vol", of type "Volume", and name it "eightballs". The
loaded dataset is now visible to both msdata instances:

A Populated Dataspace Listing in Galaxy

? list;
datasets:

eightballs
?

Two user interfaces have now connected to Galaxy and installed a shared-data
capability in which they can see and access the same data space.
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3.1.1 Interactive Rendering Using the Galaxy Multiserver

Galaxy includes a Multiserver client specifically for rendering datasets resident in the
Galaxy data space. The gxyviewer application accepts a description of a rendering
that includes a camera and a set of rendering operators. Rendering operators specify
which datasets to render and how to render them using render-time visualization
operations such as colormapping, isosurfacing and slicing. These operators are more
fully discussed below.

As do all Multiserver clients, gxyviewer connects to the server via a socket and
installs server-side code to implement a command-protocol between the client and
server. In this case, gxyviewer implements two functions: one to transfer the initial
visualization operators, and one to send camera updates to the server for rendering
and to receive buffers of pixels in return. The client then creates an interactive display
window, interprets user interaction events as camera transformations, and calls the
server to render pixels that it then stores in its display window.

3.1.2 Non-Render-Time Visualization Algorithms

While gxyviewer enables the use of the Galaxy renderer directly to perform rendering-
time operations (such as slicing, volume rendering, and isosurfacing), real world visu-
alization problems may involve visualization algorithms that cannot be performed
strictly at render-time. Such algorithms can themselves be implemented in the Galaxy
framework; operating on Galaxy-resident data to create derived data objects.

One such algorithm is particle advection. To visualize flow fields, we implement
a Runge-Kutta method to trace particles through a dataset describing a vector field.
This implementation traces multiple particles (as many as there are seed points) in
parallel through the partitions of the dataset, leaving partial traces in the Galaxy work-
ers responsible for the partitions in which they pass, and using Galaxy asynchronous
point-to-point transfers to move the head of particles that encounter partition bound-
aries to the process responsible for the neighboring partition.

3.1.3 The Galaxy GUI

Galaxy includes a user interface enabling users to build complex visualizations using
a visual programming paradigm. This interface is implemented as a Multiserver
client which installs a set of visualization algorithms, as described above, to create
derived data using non-render-time algorithms and to orchestrate complex multi-
faceted visualizations.

Figure 1 shows the Galaxy GUI in use. Datasets from an asteroid-strike simulation
have been placed in the Galaxy data space by another client. The visualization shown
accesses three of these datasets, describing pressure, density and the gradient of
density. It uses a sampling algorithm to select seed points at a density level of interest,
creating a temporary particles dataset. The particles and the original gradient vector
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Fig.1 Galaxy User Interface on the author’s laptop using the Stampede2 supercomputer to visualize
data

field are received by the stream tracer, which traces streamlines that represent the
density gradient at the sample points. The particles and pathlines and the original
volumetric pressure field are passed through filters that enable the user to control
how they will be rendered - notably the radius of the spheres and stream tubes and,
in the case of the pressure field, the location of slicing planes and color maps to
apply. These results are then received by a Renderer filter, which owns an interactive
rendering window and, as above with gxyviewer, calls Galaxy to render images.

3.2 Using Galaxy In Situ

Galaxy can perform direct, co-located in situ analysis of simulation data. A sim-
ple approach to enable this entails implementing a simulation as a Galaxy client
application. In this manner, a simulation would run independently of other clients
(such as the analysis client). The simulation client would publish one or more objects
intended for access by other clients to a global dataset directory, and analyses can
browse the global dataset directory to discover data for analysis. Galaxy incorpo-
rates an event architecture (based on the observer pattern) so that upstream publishing
clients can signal that data objects (or other global capabilities) have been updated.
Downstream clients, having registered interest in data objects, will then be notified
when the objects have changed.

In order to work in this manner, preexisting simulations would be need to be
instrumented to work in the Galaxy environment. While this code transformation may
be non-trivial, we note that a client can receive its own private MPI communicator,
enabling it to run largely unchanged, interacting with the Galaxy environment only
when it explicitly needs to export published data.
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Alternatively, Galaxy and a simulation can cooperate in an indirect manner by
incorporating a communications client that presents an external parallel interface
for separate distributed-parallel applications to attach to and to transmit data. In this
approach the application is instrumented with an I/O API that negotiates and sends
data to the communications client, and need not run inside the Galaxy computational
framework.

We have implemented a simple example of this approach as the SocketConnec-
tor Galaxy client using a simple sockets-based protocol. This enables an external
application (e.g., simulation) to connect to a Galaxy Multiserver instance, to initial-
ize and publish data objects, and to periodically transfer time-step data to update
the Galaxy-side data using parallel process-to-process communication. We note that
sockets are simply a convenient communications mechanism that enable cooperation
between distributed-parallel applications on the same or different servers; alterna-
tives exist for special cases such as co-located processes using shared memory, or
using a single MPI world with separate communicators to enable MPI point-to-point
communications.

Galaxy enables different clients to communicate through a common Multiserver
instance using events on data objects. Specifically, the server-side components of
the DataSource filters on the left side of Fig. 1 attach observers on the data objects
selected by the GUI user. When these data objects are updated (by a client interfacing
with an external simulation), the observers are triggered, causing a message to be
passed to the remote GUI client process. This then triggers the data-flow execution
of the visualization and updates derived data objects and, ultimately, the rendered
result in the GUI display window.

This is in fact what is happening in Fig. 1. A demonstration client (simsim, included
in the Galaxy distribution) is given two timesteps as VTK .vti files and, according
to command-line arguments, periodically interpolates time steps in between the two
given input datasets and transfers the data to Galaxy using the Socket-Connector in
situ interface.

4 The Galaxy Ray Tracing Engine

The original motivating problem behind the development of Galaxy was to inves-
tigate the use of ray tracing and ray tracing-based direct volume rendering (DVR)
techniques for large scientific data applications. We present a deep discussion of this
application here to highlight performance and implementation considerations when
using Galaxy components for in situ analysis or other computation.
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4.1 Performance in Space and Time

In visualization contexts, ray tracing and DVR offer significant advantages over
geometry rastertization systems. Ray tracing and DVR techniques invert the basic
loop of many visualization algorithms: where geometry-based systems iterate through
the input data elements to determine how they contribute to the output image (at cost
O(N) time), ray-based systems iterate through the sample space, asking what input
elements contribute to each ray, at cost O(XY K) time, where XY reflects the res-
olution of the sample space, and K the cost of performing the algorithm along the
ray.

In the important case of structured grids (and composite grids consisting of struc-
tured subgrids) interpolating the dataset at an arbitrary point is O(1). When the grid
is unstructured, a ray-based system will first create an acceleration structure (at cost
O(N log N) time), which is amortized across all uses of the grid; once this is created,
interpolation is of cost O(log N). In the following we demonstrate this advantage in
several cases.

e Rather than extract a triangulated surface first, slicing planes can be rendered by a
ray tracer by intersecting the ray with the equation of the plane, then interpolating
the result.

e Volume rendering is implemented in a DVR system by iterating along the ray (at
cost roughly O(N 5 )). Thus the cost of evaluating each ray is K= O(N 5K ") where
K’ =0(1), for structured grids, and O(log N) for unstructured grids for a total cost
of O(XYN3) or O(XY N3 log N).

e Similarly, isosurfaces can be rendered by iterating along the ray looking for inter-
vals that contain the isovalue. The performance analysis is the same as above, for
volume rendering.

e Other algorithms that cannot be implemented as local operations along a ray can
be rendered in a two-pass manner as in geometry-pipeline systems, substituting
standard ray tracing in place of geometry-based rasterization. While this will neces-
sitate the creation of an acceleration structure, we note that the cost of this will be
O(K log K) where K is the size of the derived dataset, and K is likely much less
than N. Once this acceleration structure is available, the rendering cost reverts to
O(XY log K).

We note that current versions of both ParaView and Vislt incorporate ray tracing
back-ends. However, they simply substitute ray tracing to perform geometry-based
rasterization; each still relies fully on geometry pipelines and intermediate derived
datasets.

4.2 Adapting Galaxy to Be a Sampling Engine

The Galaxy ray tracing engine can be thought of as an abstract engine for processing
rays as they pass through data on a massively parallel system. In most cases, we want
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to use this engine to render the data, as described above. However, we can use this
engine for more abstract operations, including sampling. The simplest way to think
about this is that the sampling engine sends rays through a dataset, and produces a
new dataset of samples (particles).

A sampling operation is an abstraction of the following operations, which are
normally done in the context of rendering the data:

e Intersection of ray with data. Because the engine processes intersections with
data, we can write abstract operations evaluated instead of standard intersection
operations. For example, we can use rays to find places in the data that have certain
data values, gradients, or multi-variate properties.

e Action taken when an intersection occurs. In the case of sampling, we typically
would like to take a sample of a data when we detect an intersection or a "hit".
Thus, we can produce a dataset of samples, with each sample being taken when a
ray intersects with something in the data.

e Ray propagation. When a ray creates a sample, we can decide to stop the ray,
change its path based on data, or propagate other rays from that point in space.
This gives the engine control over how to continue sampling the space.

This sampling capability is a powerful option for exploring properties of the data
in a new way.

4.3 Ray Tracing Distributed Simulation Data

In the general case, ray tracing distributed data is difficult. Any arbitrary ray will
encounter surfaces that may be distributed anywhere across the distributed system;
therefore the closest intersection requires gathering information from each process
that contains data that might intersect the data. An arbitrary region of space may
contain surfaces that might be anywhere on the distributed system.

Ray tracing systems generally handle this issue by using a global acceleration
structure, such as a bounding volume hierarchy (BVH). If the full dataset is not
present on each node, the BVH will necessarily contain only bounding volumes of
surfaces (rather than the surfaces themselves) and these bounding volumes will often
overlap.

Tracing an arbitrary ray on a given process is done by testing the ray against the
global BVH to identify data that might contain the next hit point. The ray is then
tested against that data (either by transmitting the data to the process containing the
data or by requesting the data from that process so that the test be performed locally).
The results are then compared to find the actual closest hit points. Much work is being
done to efficiently perform this task, notably including speculative ray tracing [7],
in which each ray is traced against the data in each process.

Fortunately, simulation-based data offers us a simplifying fact: simulations are
generally based on spatially partitioned data; each cooperating process is assigned a
compact region of the computation space and, to the greatest extent possible, handles
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its data independently of other partitions using minimal regions (ghost zones) of
overlap with neighboring processes.

This means that anything that may affect a ray in a partition subspace is resident
within the process responsible for the subspace. Importantly, this is also true of any
data derived from a partition of data in a typical data-parallel process will also be
resident on the node responsible for the partition, modulo an exchange of results near
boundaries with the neighbors across the boundaries.

Given this property, the tracing of a ray with the computational space can be
performed by breaking it into an ordered set of non-overlapping intervals based on
its intersection with the partition boundaries, and that the intersection of the ray
within each interval can be processed on the node responsible for the corresponding
partition completely independently of data resident elsewhere on the system.

4.4 Ray Tracing with Asynchronous Work Messages

Based on the observations above, we have designed an algorithm for ray tracing/DVR
in-situ simulation data with global illumination based on the asynchronous passing
of rays from process to process as the ray traverses the partitioned computational
space. This process is begun by an initial one-to-all CameraMessage that carries
camera information to every node. Each recipient compares the camera information
against its local partition to find exactly those rays that enter the computation space
through their local partition. These are bundled onto RayPacketMessage objects
and queued for processing locally.

When a process processes a RayPacket, it knows that the rays in that packet
all begin in the local partition. The rays are processed against local data looking
for events that cause (potentially temporary) termination of the ray (e.g., surface hit
points or, importantly, the far, exiting surface of the partition) and each ray is ‘tagged’
to denote its terminating event type. When all the rays in the packet have terminated
(as far as the local partition is concerned) the tracing process concludes. Once the
local ray tracing of a packet of rays completes, the rays in the packet are examined
to determine what occurred in the tracing process.

Rays that struck exiting boundaries of the partition are bundled into new
RayPackets and sent to the nodes responsible for the neighboring partitionings.
Rays that strike surfaces or acquire full opacity are then handled. Two new empty
messages are initialized: a FrameBuf ferMessage, to carry results to a remotely
hosted frame buffer, and a new RayPacket to hold any generated secondary rays.

If a processed ray is a primary ray that strikes a surface, we determine
material properties, evaluate a lighting model, and place the result in the
FrameBufferMessage. If the lighting model calls for shadows and/or ambient
occlusion, secondary rays are generated and placed in the secondary-ray RayPacket
(note that these secondary rays will necessarily begin in the current partition); shadow
rays are tagged to terminate at light sources, and ambient occlusion rays are tagged
to terminate at some specific distance.
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If a processed ray is a secondary ray, its reason for terminating is examined.
Secondary rays that terminate early indicate that light was not received at the hit point.
Those secondary rays that don’t terminate early represent light that was received at
the hit point. We note here that we use a subtractive lighting model: primary rays
are lit as if they are unshadowed and receive full ambient light, and shadows are
subtracted from the pixel buffer if it is determined that the surface point is unlit.
Early terminated secondary rays are appended to the FrameBufferMessage
and the remainder are dropped.

4.5 Asynchronous Rendering in Galaxy

In the previous section we have outlined the basic distributed Galaxy ray tracing
algorithm that moves rays between processes as the rays pass through partitions of
the computation space. One process, responsible for accumulating the final image,
receives FrameBufferMessages and adds the contents of each to the frame
buffer. The image updates progressively over time, with primary Phong-lit contri-
butions tending to come in first, and shadows and ambient occlusion contributions
coming later. In an interactive session, this provides a form of incremental refine-
ment. As the user moves the camera, new frames are initiated, causing the many
rendering worker processes to spawn new primary rays, and also to ignore any fur-
ther in-flight ray- or framebuffer-messages. When we need to know that an image
has been completed (for example, to write a file), we need to know that all ray- and
frame-buffer messages have been retired. In a distributed system this is non-trivial.
Each ray- and framebuffer-message must be fully accounted for; a message sent from
node to node is the responsibility of the sender until a receipt message is received
from the recipient.

Galaxy uses a binary-tree message-based algorithm to verify that all messages
have been retired. A subtree is determined to be idle if there are no ray- or frame-
buffer messages “alive” in the subtree. When a subtree enters or exits the idle state, it
sends a notification message to its parent. These messages cause the parent to consider
its own state. Its next state will be a combination of its children’s last received state
and any live messages it is working on. Again, when its state changes, a notification
message is passed upward. When the root node enters the idle state, it knows (a) that
it itself does not own any live messages and (b) that when last informed, each child
subtree was also idle. Unfortunately, strange conditions may occur. An exchange of
message ownership from a leaf of one subtree to a leaf of the other may cause one
subtree to enter the idle state and the other to exit it; however, the idle notification
from one subtree may reach the root before the not-idle notification arrives from the
other subtree. This necessitates a final downward pass through the tree when the root
process enters the idle state. This is effectively a synchronization point of the process,
though it may be performed either using low-level synchronous communication (e.g.,
MPI collectives) or asynchronous point-to-point messages.
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4.6 Visualization Specification with Galaxy

The capabilities described above support much of what is required to do simple ray
tracing: for each ray, find the closest surface hit point, determine appropriate pixel
based on surface properties, materials and the lighting environment, and store the
results into a frame buffer. Then, transfer sets of rays across processors to evaluate
them with respect the global data of the scene.

However, for visualization, we want to do more than simply intersect rays against
pre-existing surfaces; we want to do processing along the ray, including integration
for volume rendering, the intersection of rays with planes that slice volumetric data,
and the procedural visualization of isosurfaces. Thus Galaxy requires the camera,
a lighting environment, a destination frame buffer, the objects to be displayed, and
a specification for how to visualize each data object. The visualization of an object
is, in fact, independent of the object (potentially, multiple visualizations might be
simultaneously operating on the same object). For this reason, Galaxy visualizations
do not annotate objects with parameters (isovalues, clipping planes, colormaps, etc.)
but instead refer to constituent datasets indirectly, through a Galaxy object referred to
as a Vis object, subclassed for the several currently-supported data types: volumes,
surfaces, particle sets and pathline sets.

e SurfaceVis The simplest data object to render are surfaces. Surfaces consist
of a triangle mesh with data values associated with vertices. The SurfacevVis
object refers to a surface object and associates a color map with it.

e ParticleVis Particles are 3D points with data values associated. Particles are
rendered in Galaxy as procedural spheres, where both the radius and color of
each is determined by the data value. Thus, the ParticleVis also associates
a colormap with a particles data object, but also includes a linear map of data to
radius: (v0, R0O) and (v1, R1). Particles with values less than or equal to vO will be
radius RO, values between v0O and v1 result in a linear interpolation between RO
and R1, and remaining particles will have radius R1.

e PathLineVis Pathlines are sequences of 3D points with associated data values.
Like Particles, Pathlines assign color via a colormap and determine stream-tube
radius using a (v0, RO)—(v1, R1) linear map.

e VolumeVis Volumes have the most degrees of freedom when it comes to visu-
alization. A volume can be volume rendered; a VolumeVis therefore includes
a boolean flag. If the flag is true, both a colormap and opacity map are required
and the volume is volume rendered. If the volume is not being volume rendered it
can be visualized as sets of isosurfaces and slicing planes. A VolumeVis object
therefore also manages a set of isovalues and planar equations. These also require a
colormap; all surfaces rendered using the same Vis object use the same colormap.
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4.7 Galaxy Ray Processing

As described, RayList processing involves tracing rays as they pass through a
region of space. This is implemented, at the lowest level, in ISPC [8]—an Intel
parallel computing language that effectively vectorizes kernels over multiple rays
simultaneously. This ray processing procedure receives a set of rays and a set of Vis
objects that identify the objects to visualize and how to visualize them. It assumes
that the rays begin inside the local subspace, either at an entry boundary surface, or
fully inside it.

The first action intersects the rays with the exiting surfaces of the subspace. This
determines the longest interval of the ray that might be traced locally. It then intersects
the rays with the explicit surfaces (e.g., triangle sets) and procedurally defined implicit
surfaces (e.g., particle spheres, pathline tubes, volume slicing planes) and if any are
hit, updates the farthest point of the ray interval to the hit point. If any VolumeVis
objects request isosurfaces or volume rendering, the processing iterates along the
ray from entry to closest hit point, accruing volume contributions and searching for
isosurface crossings along the way. If an integration interval traps an isovalue, a
linear interpolation is done to approximate the hit point.

4.8 Galaxy and Cinema

Cinema [2] is a means by which limited interactive exploration of the dataset can
be performed post-hoc by building a database of rendered images using visualiza-
tion parameter sweeps (e.g. camera rotation, isovalue iteration) and combining the
resulting images to mimic direct data exploration. Galaxy supports the efficient gen-
eration of Cinema databases by rendering many visualization settings simultaneously
on each data timestep. Each of these visualizations is defined by rendering context;
thus, each ray list, with its reference to a global rendering context, contains all the
information necessary to process it. Since multiple rendering contexts (each includ-
ing a reference to a destination frame buffer) can co-exist, it is possible to launch
any number of visualizations simultaneously. Since Cinema databases very often
contain many viewpoints, this serves to load-balance; rays will enter the computa-
tional space from many different sources, and will therefore engage different sets of
worker processes. We present performance results for Cinema database generation
in Sect. 5.
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5 Galaxy Performance

This section presents Galaxy performance on representative datasets across two cur-
rent hardware configurations. A deeper evaluation of Galaxy performance compared
to Intel OSPRay is presented in [1].

We evaluate Galaxy’s performance using two currently-deployed advanced com-
puting resources at the Texas Advanced Computing Center (TACC): Stampede?2, with
Intel Xeon Platinum 8160 “Skylake” processors and an Intel Omni-Path (OPA) 100-
Gb/s fat-tree interconnect; and Hikari, with Intel Xeon E5-2690 v3 “Haswell-EP”
processors and a Mellanox EDR 100-Gb/s fat-tree interconnect. Each Stampede2
Skylake node has 192 GB of RAM and two 24-core processors with two hardware
hyperthreads per core (96 total threads). Each Hikari Haswell node has 64 GB of
RAM and two 12-core processors with two hardware hyperthreads per core (48 total
threads).

For each hardware configuration, we simulate tightly-coupled in situ analysis
by rendering a camera orbit of 500 frames, each rendered at 1080p resolution. We
render fifty frames simultaneously across the available hardware resources, with new
frames initiated asynchronously as prior frames are completed. We perform these
tests using three datasets: a volumetric simulation data of a deep water asteroid impact
from Los Alamos National Laboratory (1380 x 840 x 720 grid of floats; 3.184 GB);
a geometric isosurface extraction of a limestone karst core sample from Florida
International University (5.8M vertices comprising 11.6M triangles; 0.266 GB); and
an n-body dark matter “cosmic web” particle simulation from the Enzo team at
National Center for Supercomputing Applications (1.07B particles; 12.2 GB).

As Fig.2 shows, Galaxy achieves interactive rendering rates across node counts.
We note increasing performance for the Skylake configuration as node count
increases, though with sub-linear increase from 64 to 128 nodes likely due to an
exhaustion of parallel work available. In the Haswell configuration, we attribute the
relative performance degradation at higher node counts due to relative inefficiencies
of the Mellanox interconnect versus the OPA interconnect: while both have the same

Asteroid Karst Core Cosmic Web
500 frame camera orbit 500 frame camera orbit 500 frame camera orbit

30
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& 5 & 0
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0 1
1 2 64 128 1 2 4 » 16 3 18
Node Count

Node Count
Node Count

mHaswell B Skylake mHaswell mskylake

Fig. 2 Frames per second (fps) when rendering a 500 frame camera orbit for Asteroid, Karst Core,
and Cosmic Web datasets (higher is better). Galaxy achieves interactive rendering rates for both
Haswell and Skylake architectures
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nominal bandwidth and latency, OPA can sustain higher messaging rates, particularly
for the relatively small message sizes used by Galaxy, which enables the Skylakes
on Stampede?2 to sustain performance at higher node counts.

6 Conclusion

In this chapter, we have presented the Galaxy Mul t i server, which provides multi-
tenant distributed data filtering and analysis for a variety of in situ visualization
scenarios. Galaxy can use ray tracing operations both for rendering and for data
filtering, leveraging the same hardware-optimized components for multiple steps in
a data analysis workflow. We have demonstrated that Galaxy provides interactive
performance for distributed rendering tasks on current-generation hardware. Since
Galaxy utilizes vendor-provided libraries for its internal tasks (currently the OSPRay
and Embree libraries for Intel Xeon-optimized instructions), it can seamlessly benefit
from vendor-provided improvements for current and future architectures. We plan to
continue developing Galaxy’s interfaces, both for direct use and for integration into
third-party applications that already support ray tracing, such as ParaView and Vislt.
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