
Mathematics and Visualization

In Situ
Visualization for
Computational
Science

Hank Childs · Janine C. Bennett ·
Christoph Garth Editors

Mathematics and Visualization

Series Editors

Hans-Christian Hege, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB),
Berlin, Germany

David Hoffman, Department of Mathematics, Stanford University, Stanford, CA,
USA

Christopher R. Johnson, Scientific Computing and Imaging Institute, Salt Lake
City, UT, USA

Konrad Polthier, AG Mathematical Geometry Processing, Freie Universität Berlin,
Berlin, Germany

The series Mathematics and Visualization is intended to further the fruitful
relationship between mathematics and visualization. It covers applications
of visualization techniques in mathematics, as well as mathematical theory
and methods that are used for visualization. In particular, it emphasizes
visualization in geometry, topology, and dynamical systems; geometric algorithms;
visualization algorithms; visualization environments; computer aided geometric
design; computational geometry; image processing; information visualization; and
scientific visualization.Three types of books will appear in the series: research
monographs, graduate textbooks, and conference proceedings.

More information about this series at https://link.springer.com/bookseries/4562

https://springerlink.bibliotecabuap.elogim.com/bookseries/4562

Hank Childs · Janine C. Bennett · Christoph Garth
Editors

In Situ Visualization
for Computational Science

Editors
Hank Childs
Computer and Information Science
University of Oregon
Eugene, OR, USA

Christoph Garth
Scientific Visualization Lab
University of Kaiserslautern
Kaiserslautern, Germany

Janine C. Bennett
Extreme-Scale Data Science and Analytics
Sandia National Laboratories
Livermore, CA, USA

ISSN 1612-3786 ISSN 2197-666X (electronic)
Mathematics and Visualization
ISBN 978-3-030-81626-1 ISBN 978-3-030-81627-8 (eBook)
https://doi.org/10.1007/978-3-030-81627-8

Mathematics Subject Classification: 00A66

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-81627-8

We dedicate this book to Dr. Lucy Nowell,
who played a tremendous role in organizing
and inspiring our community.

Preface

This book is devoted to in situ visualization for computational science. The definition
of the latter topic, computational science, is widely understood: using computers to
simulate scientific phenomena. The Latin phrase in situ, however, can create some
confusion. When applied to visualization, the definition of in situ is often stretched a
bit further than its literal translations, which include “on site,” “in position,” and “in
place.” For this book, we use a simple definition for in situ visualization: visualizing
data as it is generated. This definition certainly covers the case where visualization
routines run the moment data is generated and using the same compute resources, but
it also covers cases where data is sent to other compute resources for visualization.

While in situ visualization is not a new topic, with early research works dating
back to the 1990s [6–9, 11], the last decade has seen an explosion of interest. This
interest primarily comes in the context of high-performance computing and stems
from supercomputing trends. Specifically, computational power is increasing much
faster than storage capacity and transfer bandwidth, which disrupts the traditional
“post hoc” workflow where simulations save their data to disk for later exploration
by dedicated visualization programs.

Unfortunately, understanding the best approaches for in situ processing can
be difficult. It is a highly interdisciplinary field, spanning computational science,
high-performance computing, and scientific visualization communities. Further, it
comprises a broad set of topics including software systems, code coupling (i.e., inte-
gration) between simulation and visualization codes, data models, execution models,
and visualization and analysis algorithms and tools.

The Purpose Of This Book—Why Is It Needed and Who Is It For? Many other
efforts have also considered in situ visualization, exploring motivation, challenges,
best practices, and the latest research advancements. These include funding agency
reports [1, 5, 12], position papers [4, 10], a Dagstuhl seminar [3], a survey paper [2],
hundreds of research papers, and two annual workshops (The Workshop on In Situ
Infrastructures for Enabling Extreme-scale Analysis and Visualization, or “ISAV,”
and the Workshop on In Situ Visualization, or “WOIV”).

So what problem is this book trying to solve?We feel there is a spectrum of needs
when it comes to understanding in situ, and there is no resource for the “middle”

vii

viii Preface

of the spectrum. At one extreme, it is easy to gain a high-level understanding of
motivations and challenges via the excellent reports and position papers that exist
today. At the other extreme, researchers invested in becoming in situ experts can
read the hundreds of papers devoted to the topic. But there is a gap in the “middle”
of the spectrum—informing beyond the high-level understanding, but not requiring
years of study. This book is our attempt to fill this gap. Further, we feel this “middle”
audience is diverse, and so we have aimed for a book that is accessible to a wide
audience. Specifically, we hope that it will be useful to computational scientists, to
high-performance computing scientists, and to (non-in situ) visualization scientists
alike.

The History of This Book The idea for this book began at a Dagstuhl seminar, “In
Situ Visualization for Computational Science,” in July 2018. This seminar brought
together researchers and practitioners across the three aforementioned communities
(computational science, high-performance computing, and scientific visualization)
from Europe, the Americas, and Asia, to share research findings, to identify lines of
open research, and to determine a medium-term research agenda that addresses the
most pressing problems. In addition to identifying many technical areas in need of
study, some participants also identified the need for a resource that would go deeper
than a workshop report in describing the state of the art for in situ processing, which
served as the motivation for this project. After the seminar, the editors of this book
issued an open call for contributions, soliciting chapters that, together, would provide
a deeper understanding of in situ processing that has previously been available. Most
of the contributions synthesized previous research directions, while a handful were
aimed at emerging results that represent very promising new directions. Each of the
chapters went through a peer review process for both content and readability, and
the entire book went through an additional round of editing.

How to Read This Book There is no need to read this book sequentially, as
each chapter is written as a stand-alone work. That said, to prevent redundancy
between the chapters, foundational topics are summarized in an introductory chapter
(Chap. In Situ Visualization for Computational Science: Background and Founda-
tional Topics). Therefore, we recommend that readers new to in situ processing read
this chapter before going on to other chapters. The topics covered in the introductory
chapter include a historical perspective of scientific visualization on supercomputers,
why computing trends are increasingly mandating in situ processing, an overview of
the types of in situ systems, a discussion of challenges with in situ processing, and
descriptions of leading approaches.

The remainder of the book is organized into four parts. Chapters in the first three
parts each synthesize existing published works within a focused area, effectively
providing a series of “mini-surveys.” The fourth part contains new results that have
not been published previously, as well as works speculating how existing techniques
can be applied within an in situ setting. Specifically:

• Part I: Data Reduction Techniques. This part consists of four chapters, each
devoted to a different transformation/reduction idea. For these chapters, the

Preface ix

general idea is to use in situ processing to transform and reduce data to a smaller
form, so that it can be saved to disk and be explored post hoc.

• Part II: Workflows and Scheduling. This part consists of four chapters, including
discussions of how to allocate resources efficiently, how to manage workflows,
and how to manage many simultaneous simulations (ensembles) with in situ
processing.

• Part III: Tools. This part consists of five chapters, discussing different frameworks
for in situ processing, the decisions they have made, and their successes on real-
world problems.

• Part IV: Research Results and Looking Forward. This part consists of six chapters,
covering diverse topics, some of which overlap thematically with Parts I and II,
while others explore entirely new areas, such as in situ rendering and machine
learning.

In summary, this book brings together contributions from some of themost promi-
nent and recognized researchers and practitioners in the field of in situ visualiza-
tion. Its content covers summarizations of research results, discussions of the latest
research trends, and new insights into in situ visualization. In all, our goal is to provide
a valuable resource to computational scientists, high-performance computing scien-
tists, and visualization scientists for learning about in situ visualization. We also
feel this book can be a valuable reference for current practitioners and researchers.
Whichever part of the intended audience you fall into, we very much hope that you
find value in this book.

Eugene, OR, USA
Livermore, CA, USA
Kaiserslautern, Germany
January 2021

Hank Childs
Janine C. Bennett
Christoph Garth

References

1. Ahern, S., et al.: Scientific Discovery at the Exascale: Report for the DOE ASCRWorkshop
on Exascale Data Management, Analysis, and Visualization (2011)

2. Bauer,A.C.,Abbasi,H.,Ahrens, J., Childs,H.,Geveci, B.,Klasky, S.,Moreland,K.,O’Leary,
P., Vishwanath, V.,Whitlock, B., Bethel, E.W.: In SituMethods, Infrastructures, andApplica-
tions on High Performance Computing Platforms. Computer Graphics Forum (CGF) 35(3),
577–597 (2016)

3. Bennett, J.C., Childs, H., Garth, C., Hentschel, B.: In Situ Visualization for Computational
Science (Dagstuhl Seminar 18271). Dagstuhl Reports 8(7), 1–43 (2018).

4. Childs, H., Bennett, J., Garth, C., Hentschel, B.: In Situ Visualization for Computational
Science. IEEE Comput. Graph. Appl. (CG&A) 39(6), 76–85 (2019)

5. Deelman, E., Peterka, T., Altintas, I., Carothers, C.D., Kleese van Dam, K., Moreland, K.,
Parashar, M., Ramakrishnan, L., Taufer, M., Vetter, J.: The Future of Scientific Workows.
Int. J. High Perform. Comput. Appl. 32(1), 159–175 (2018)

6. Haimes, R.: PV3-A Distributed System for Large-Scale Unsteady CFD Visualization. In:
32nd Aerospace Sciences Meeting and Exhibit, p. 321 (1994)

x Preface

7. Haimes, R., Barth, T.: Application of the PV3 Co-Processing Visualization Environment
to 3-D Unstructured Mesh Calculations on the IBM SP2 Parallel Computer. In: Proc. CAS
Workshop (1995)

8. Haimes, R., Edwards, D.E.: Visualization in a Parallel Processing Environment. In: Proceed-
ings of the 35th AIAA Aerospace Sciences Meeting, number AIAA Paper, pp. 97–0348
(1997)

9. Ma, K.L.: Runtime Volume Visualization for Parallel CFD. In: Parallel Computational Fluid
Dynamics 1995, pp. 307–314. Elsevier (1996)

10. Ma, K.L.: In Situ Visualization at Extreme Scale: Challenges and Opportunities. IEEE
Comput. Graph. Appl. 29(6), 14–19(2009)

11. Parker, S.G., Johnson, C.R.: SCIRun: A Scienti_c Programming Environment for Compu-
tational Steering. In: Supercomputing ’95: Proceedings of the 1995 ACM/IEEE Conference
on Supercomputing, pp. 52–52(1995).

12. Peterka, T., Bard, D., Bennett, J.C., Bethel, E.W., Old_eld, R.A., Pouchard, L., Sweeney, C.,
Wolf, M.: Priority Research Directions for In Situ Data Management: Enabling Scienti_c
Discovery from Diverse Data Sources. Int. J. High Perfor. Comput. Appl. 34(4), 409–427
(2020)

Acknowledgements

The idea to pursue this book was inspired by conversations at the Dagstuhl Seminar
on “In Situ Visualization for Computational Science.” As such, we are indebted to
Schloss Dagstuhl Leibniz-Zentrum für Informatik for supporting the seminar, the
Dagstuhl staff for their assistance during the workshop, and all of the seminar partic-
ipants. Furthermore, we thank everyone who participated in producing this book,
including all of the chapter authors, and especially the lead authors of each chapter
who provided insightful reviews.

Fig. 1 Participants of Dagstuhl Seminar 18271, “In Situ Visualization for Computational Science.”

xi

Contents

In Situ Visualization for Computational Science: Background
and Foundational Topics . 1
Hank Childs, Janine C. Bennett, and Christoph Garth

Data Reduction Techniques

Sampling for Scientific Data Analysis and Reduction 11
Ayan Biswas, Soumya Dutta, Terece L. Turton, and James Ahrens

In Situ Wavelet Compression on Supercomputers for Post Hoc
Exploration . 37
Shaomeng Li, John Clyne, and Hank Childs

In Situ Statistical Distribution-Based Data Summarization
and Visual Analysis . 61
Soumya Dutta, Subhashis Hazarika, and Han-Wei Shen

Exploratory Time-Dependent Flow Visualization via In Situ
Extracted Lagrangian Representations . 91
Sudhanshu Sane and Hank Childs

Workflows and Scheduling

Unlocking Large Scale Uncertainty Quantification with In Transit
Iterative Statistics . 113
Alejandro Ribés, Théophile Terraz, Yvan Fournier, Bertrand Iooss,
and Bruno Raffin

Decaf: Decoupled Dataflows for In Situ Workflows 137
Orcun Yildiz, Matthieu Dreher, and Tom Peterka

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 159
Steffen Frey, Valentin Bruder, Florian Frieß, Patrick Gralka,
Tobias Rau, Thomas Ertl, and Guido Reina

xiii

xiv Contents

Resource-Aware Optimal Scheduling of In Situ Analysis 183
Preeti Malakar, Venkatram Vishwanath, Christopher Knight,
Todd Munson, and Michael E. Papka

Tools

Leveraging Production Visualization Tools In Situ . 205
Kenneth Moreland, Andrew C. Bauer, Berk Geveci, Patrick O’Leary,
and Brad Whitlock

The Adaptable IO System (ADIOS) . 233
David Pugmire, Norbert Podhorszki, Scott Klasky, Matthew Wolf,
James Kress, Mark Kim, Nicholas Thompson, Jeremy Logan,
Ruonan Wang, Kshitij Mehta, Eric Suchyta, William Godoy,
Jong Choi, George Ostrouchov, Lipeng Wan, Jieyang Chen,
Berk Geveci Chuck Atkins, Caitlin Ross, Greg Eisenhauer,
Junmin Gu, John Wu, Axel Huebl, and Seiji Tsutsumi

Ascent: A Flyweight In Situ Library for Exascale Simulations 255
Matthew Larsen, Eric Brugger, Hank Childs, and Cyrus Harrison

The SENSEI Generic In Situ Interface: Tool and Processing
Portability at Scale . 281
E. Wes Bethel, Burlen Loring, Utkarsh Ayachit, David Camp,
Earl P. N. Duque, Nicola Ferrier, Joseph Insley, Junmin Gu,
James Kress, Patrick O’Leary, David Pugmire, Silvio Rizzi,
David Thompson, Gunther H. Weber, Brad Whitlock, Matthew Wolf,
and Kesheng Wu

In Situ Solutions with CinemaScience . 307
David H. Rogers, Soumya Dutta, Divya Banesh, Terece L. Turton,
Ethan Stam, and James Ahrens

New Research Results and Looking Forward

Deep Learning-Based Upscaling for In Situ Volume Visualization 331
Sebastian Weiss, Jun Han, Chaoli Wang, and Rüdiger Westermann

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 353
Will Usher, Jefferson Amstutz, Johannes Günther, Aaron Knoll,
Gregory P. Johnson, Carson Brownlee, Alok Hota, Bruce Cherniak,
Tim Rowley, Jim Jeffers, and Valerio Pascucci

Multivariate Functional Approximation of Scientific Data 375
Tom Peterka, Youssef Nashed, Iulian Grindeanu, Vijay Mahadevan,
Raine Yeh, and David Lenz

Contents xv

A Simulation-Oblivious Data Transport Model for Flexible In
Transit Visualization . 399
Will Usher, Hyungman Park, Myoungkyu Lee, Paul Navrátil,
Donald Fussell, and Valerio Pascucci

Distributed Multi-tenant In Situ Analysis Using Galaxy 421
Greg Abram, Paul Navrátil, David Rogers, and James Ahrens

Proximity Portability and in Transit, M-to-N Data Partitioning
and Movement in SENSEI . 439
E. Wes Bethel, Burlen Loring, Utkarsh Ayachit, Earl P. N. Duque,
Nicola Ferrier, Joseph Insley, Junmin Gu, James Kress,
Patrick O’Leary, Dave Pugmire, Silvio Rizzi, David Thompson,
Will Usher, Gunther H. Weber, Brad Whitlock, Matthew Wolf,
and Kesheng Wu

In Situ Visualization for Computational
Science: Background and Foundational
Topics

Hank Childs, Janine C. Bennett, and Christoph Garth

Abstract This chapter complements the Preface to this book. For more discussion
on how to read this book, as well as information on the book itself, its purpose,
and topics covered, we refer the reader to the Preface. Instead, this chapter pro-
vides background and an overview of foundational topics for in situ visualization for
computational science. Section1 provides a historical perspective of scientific visu-
alization on supercomputers and why computing trends are increasingly mandating
in situ processing. Section2 presents an overview of in situ system types. The chapter
concludes with Sect. 3, which highlights leading challenges and solutions for in situ
processing. After reading this chapter, a beginner to this field should have sufficient
context to read any of the subsequent chapters in this book, in any order.

1 The Motivation for In Situ Processing

This section is divided into two. The first subsection introduces relevant background
material on computational simulations and post hoc processing. The second sub-
section describes how trends in high-performance computing are making post hoc
processing difficult on supercomputers, and how in situ processing mitigates the
resulting workflow challenges.

H. Childs (B)
University of Oregon, Eugene, OR, USA
e-mail: hank@uoregon.edu

J. C. Bennett
Sandia National Laboratories, Livermore, CA, USA
e-mail: jcbenne@sandia.gov

C. Garth
Kaiserslautern Technische Universität, Kaiserslautern, Germany
e-mail: garth@cs.uni-kl.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_1&domain=pdf
mailto:hank@uoregon.edu
mailto:jcbenne@sandia.gov
mailto:garth@cs.uni-kl.de
https://doi.org/10.1007/978-3-030-81627-8_1

2 H. Childs et al.

1.1 Background: Computational Simulations and Post Hoc
Processing

Up until the recent surge of interest in in situ processing, nearly all scientific visu-
alization for computational simulations was done with “post hoc” processing. With
post hoc, the computational simulation sends its data to permanent storage and the
visualization program retrieves this data from storage at some unknown time in the
future, i.e., the data is not visualized as it is generated.

The amount of data generated by computational simulations can be very large.
Simulations often represent a spatial domain using a computational mesh, consider
multiple fields on that mesh (e.g., pressure, density, temperature, velocity), and store
values for each field at each location on its mesh (e.g., on each vertex). The field val-
ues on the mesh change as the simulation advances, and in some cases the mesh itself
changes as well. Typically, these advancements occur via “cycles,” where a simula-
tion solves equations and then uses the solutions to update its field data (and possibly
its mesh) for a subsequent moment in time. As a result, the data generated by a sim-
ulation is effectively a collection of “time slices” (also referred to as “time steps”),
one for each cycle. Note that there are two types of time in this process—execution
time, i.e., how long it takes for the hardware to carry out the desired computations,
and simulation time, i.e., the time elapsed in the domain being simulated since the
simulation began. For example, a combustion simulation may take five seconds to
carry out the computations for a given cycle (execution time), but the result of that
cycle may advance the simulation forward by only a few nanoseconds (simulation
time). Both the execution time and simulation time vary from simulation to simu-
lation (and can vary from cycle to cycle within a simulation), depending on factors
such as the resolution of mesh, the quality of the mesh, the nature of the equations
being solved, and the hardware being used. Typically, the execution times per cycle
range from seconds to minutes, while the changes in simulation times depend on the
application. Coming back to the topic of data size, the total data set generated by a
simulation can be as many as quintillions of values (exabytes), as it generates values
for the cross product of its time slices (typically ranging from thousands to hundreds
of thousands), locations on its mesh (regularly in the hundreds of millions or billions
and sometimes in the trillions), and fields (rarely less than ten and sometimes one
hundred or more).

Saving all of a simulation’s data to permanent storage is often not practical, due to
both the time it would take to transfer the data to storage and the amount of storage it
would require. Themost commonapproach for this problem is temporal subsampling,
i.e., saving only some of a simulation’s time slices to disk. Fortunately, the change
from cycle to cycle is often small, and so saving all of the cycles is rarely necessary.
The mechanism for realizing temporal subsampling varies—some simulations save
every N cycles, some save every time the simulation advances T units of time, some
save every M minutes of execution time, and some save by studying phenomena
occurring within the simulation and selecting key time slices.

In Situ Visualization for Computational Science: Background and Foundational Topics 3

In the post hoc setting, the simulation data is typically visualized using a stand-
alone tool that is dedicated to visualization. The tool is normally directed by a domain
scientist, who selects the data to visualize and how to visualize it. In response to the
user’s direction, the visualization tool will load the necessary data and produce the
corresponding visualization. Importantly, the “human-in-the-loop” (HITL) nature
of this model allows for interactivity, i.e., the domain scientist specifies desired
visualizations, interprets the results, specifies new desired visualizations, and so on.
The HITL model is particularly beneficial for exploratory use cases, i.e., when the
domain scientist does not know the desired visualizations a priori. HITL is also useful
for other types of use cases, like visual debugging, confirming phenomena within the
simulation, and making visualizations to communicate results with a larger audience
(e.g., “moviemaking”). However, some of these use cases can also be accomplished
without a human-in-the-loop, as there often is a priori knowledge ofwhat to visualize.
In non-HITL scenarios, the visualization tools can be automated, to produce images,
analyses, andmovies that can be interpreted by domain scientists after the simulation
is complete.

Especially for large data sets, post hoc visualization tools normally run on the
same compute resources as the simulation. The reason for sharing compute resources
is two-fold. First, using distinct resources requires data to be moved elsewhere,
which can take a long time. Second, the amount of computations needed to carry
out visualization tasks is often proportional to the amount of computations needed
to generate the data in the first place. Using the same compute resources makes it
very likely that the visualization tasks can be completed in a reasonable amount
of time. This is particularly true in the context of supercomputers, which generate
the very largest data sets. The same supercomputer that generates a data set is often
subsequently used to visualize this data set. Finally, there are scenarios where distinct
compute resources are used for post hoc visualization. In these scenarios, the data is
typically small enough that it can be transferred in a reasonable amount of time, or
the data is reduced to a smaller form so that it has this property.

1.2 High-Performance Computing Trends Increasingly
Require In Situ Processing

Recent architectural trends are the primary driver behind the recent push for in
situ processing. During the 2010s, the ability to compute (and thus generate data)
increased on supercomputers much faster than the ability to store and load data. In
broad terms, compute increased two orders of magnitude over this decade, while I/O
performance only increased one order of magnitude. Some examples:

• OakRidgeNationalLaboratory saw threegenerations of leading supercomputers—
Jaguar (2009) to Titan (2012) to Summit (2018)—yield a 100X increase in com-
puter power (from 1.75 petaFLOPS to more than 175 petaFLOPS), but only a 10X
increase in filesystem performance (from 240 GB/s to 2.5TB/s) [1, 2].

4 H. Childs et al.

• The Texas Advanced Computing Center saw a similar trend. In 2008, they intro-
duced Ranger, the 5th fastest machine in the world, with a theoretical peak of 580
teraFLOPS and an I/O rate of 50 GB/s [3]. One decade later, Stampede2 appeared
as the 12th fastest machine in the world, with a theoretical peak 30X greater (18
petaFLOPS) [4] but an I/O rate only 2X greater (100 GB/s) [5].

These examples are not outliers, but rather representative of trends observed
community-wide.

This divergence between compute and I/Omakes post hoc processing increasingly
problematic for two reasons. First, visualization performance will likely be too slow.
In 2010, before this divergence occurred, one study, focused on performance bottle-
necks for very large data sets, showed visualization performance on supercomputers
to already be I/O-bound, with as much as 98% of the execution time spent reading
data from disk [6]. This problem has only worsened with each new generation of
hardware. Second, the temporal resolution will likely not be sufficient. Simulation
codes will not be able to afford to save time slices at the same rate, which can cause
the data to become so temporally sparse that (1) important phenomena will be lost
(i.e., a phenomenon begins after one time slice is saved and ends before the next
save) or (2) features cannot be tracked over time.

One important development to mitigate I/O costs is the usage of “burst buffers.”
The idea behind burst buffers is to create a location where computational simulations
can stage their data. This enables simulations to continue advancing, since they no
longer need to maintain the data for the current time slice. Concurrently, a separate
program running on the burst buffer transfers the data to permanent storage. This has
the benefit of hiding slow I/O costs from the computational simulation. However, it
does not affect either of the factors identified in the previous paragraph—the burst
buffer does not improve I/O performance for post hoc visualization nor does it enable
temporal subsampling to be less sparse. That said, the burst buffer is noteworthy
for in situ visualization, since it creates additional options for how computational
simulations and in situ visualization routines can share data.

2 In Situ Systems

In situ visualization software is often referred to as a “system.” As is typically the
case with computer “system” software, in situ systems need to optimize the use of
constrained resources, and also provide services to other software (the computational
simulation and possibly other software packages as well, including coordination
between different in situ components).

In situ systems are diverse. A recent effort created a taxonomy of decisions for in
situ systems [7], and we summarize the taxonomy here. The taxonomy looked at six
independent factors, and enumerated the possibilities for each. Together, they help
inform the space of possible in situ systems. The taxonomy’s six factors are:

In Situ Visualization for Computational Science: Background and Foundational Topics 5

• Integration type. Is the visualization code written specifically for the compu-
tational simulation? Does the computational simulation integrate external code?
Does it need to be aware of this? Or can it be done through library interposition?

• Proximity. Do the visualization routines run on the same compute resources that
the computational simulation uses? Do they run on nearby compute resources?
(E.g., different compute nodes on the same supercomputer?)

• Access.Are the visualization routines in the samememory space as the simulation
or not? If so, do they make a copy of the simulation’s memory?

• DivisionofExecution.Do the visualization routines and computational simulation
alternate use of the same resources (time division)? Or do they each have their own
resources (space division)?

• Operation Controls. Is there a human-in-the-loop to steer the visualization? If so,
does that block the simulation or not? If not, then can the visualizations performed
be adapted in any way?

• Output Type.Does the system output a subset of the data? Does it make a smaller,
transformed type?

3 Challenges and Solutions for In Situ Processing

In situ processing has advantages over post hoc processing, both in performance
and quality of results. Notable performance advantages stem from the fact that in
situ processing does not require I/O. Other possible performance advantages come
from operating on data while it is still in cache and in using the larger compute
resources available to the computational simulation. Significant quality advantages
stem from the ability to access higher (or even full) temporal resolution data that may
not be achievable with post hoc processing. Increased temporal resolution has many
potential benefits, including improved results for feature tracking and discovery of
phenomena, and increased accuracy for time-varying visualization techniques (like
pathlines). Further, computational simulations sometimes generate data that they do
not store at all, to save on storage costs. With in situ processing, this data can be
accessed.

In situ processing also has disadvantages compared to post hoc processing. One
disadvantage is the additional constraints imposed on the visualization algorithms
when in situ routines run alongside the computational simulation. Depending on the
specifics of the in situ system, in situ routines may need to minimize factors such
as memory usage and execution time, and possibly even factors like network and
energy usage. In situ systems also tend to be more complex. These systems connect
with computational simulations via mechanisms like a communication protocol or
via code linkage. These mechanisms, to date, have proven to be a bigger effort for
developers than the post hoc approach of exchanging data through a file system.
Fault tolerance also looms as a significant issue. In the post hoc world, there was no
penalty to having visualization programs crash, as the data from the simulation was
still available on the file system. In this setting, a bug in a visualization program could

6 H. Childs et al.

be fixed, the program could be recompiled, and visualization could then occur. In an
in situ setting, if the visualization program crashes, then the typical outcomes range
from not being able to visualize the data to possibly even causing the simulation to
crash.

In a related disadvantage, in situ places a burden on the visualization code to get
the right visualizations while the data is available. If in situ processing generates one
set of visualizations, and it is later determined that a different set of visualizations
would have been more informative, then the simulation would need to be re-run,
which can be very costly. Further, it can be complicated to control which time slices
are visualized in situ. If an interesting phenomenon occurs, then it is not possible to
go backwards in time and see what conditions led to the phenomenon, unless these
time slices are saved in auxiliary memory or, again, if the simulation is re-run. A
final issue is that of human-in-the-loop. It is possible to do in situ processing with
HITL, and there have been multiple efforts to enable domain scientists to interact
with their data as their simulations are running [8–11]. Despite these efforts, the
large majority of in situ processing occurs with no HITL. One reason to avoid HITL
is the associated computational costs. With some in situ approaches, it is possible
for HITL to cause the entire compute resource to block, which is both expensive
and wasteful. Another reason for avoiding HITL is that long-running computational
simulations often run 24h per day because the large cost of the machine promotes
constant usage. Lastly, when there is no HITL and no a priori knowledge, then it is
not clear what should be visualized. This challenge has inspired significant research,
and is the focus of Part II of this book.

At the Dagstuhl seminar mentioned in the Preface, the participants identified the
top ten research challenges. In the remainder of this section, we list the text of the
challenges verbatim from the report [12]. Five of the ten challenges stem directly
from the advantages and disadvantages listed above:

• Data quality and reduction, i.e., reducing data in situ and then exploring it post
hoc to enable exploration of large data sets on future supercomputers.

• Workflow execution, i.e., how to efficiently execute specifiedworkflows, including
workflows that are very complex.

• Software complexity, heterogeneity, and user-facing issues, i.e., the challenges that
prevent user adoption of in situ techniques because in situ software is complex,
computational resources are complex, etc.

• Exascale systems, whichwill have billion-way concurrency and disks that are slow
relative to their ability to generate data.

• Algorithmic challenges, i.e., algorithms will need to integrate into in situ ecosys-
tems and still perform efficiently.

The remaining five challenges stem from new approaches for in situ to opportunities
occurring as simulations becomemore complex or from developments in other fields:

• Workflow specification, i.e., how to specify the composition of different tools and
applications to facilitate the in situ discovery process.

In Situ Visualization for Computational Science: Background and Foundational Topics 7

• Use cases beyond exploratory analysis, i.e., ensembles for uncertainty quantifi-
cation and decision optimization, computational steering, incorporation of other
data sources, etc.

• Exascale data, i.e., the data produced by simulations on exascale machines will,
in many cases, be fundamentally different than that of previous machines.

• Cost models, which can be used to predict performance before executing an algo-
rithm and thus be used to optimize performance overall.

• The convergence of HPC and Big Data for visualization and analysis, i.e., how
can developments in one field, such as machine learning for Big Data, be used to
accelerate techniques in the other?

Acknowledgements This research was supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration, and by Deutsche Forschungsgemeinschaft (DFG, Ger-
manResearchFoundation) under project 398122172. SandiaNationalLaboratories is amultimission
laboratorymanaged and operated byNational Technology&Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525. This chapter describes
objective technical results and analysis. Any subjective views or opinions that might be expressed
in the chapter do not necessarily represent the views of the U.S. Department of Energy or the United
States Government.

References

1. File Systems: Data Storage and Transfers. https://www.olcf.ornl.gov/for-users/system-user-
guides/summit/file-systems/. Accessed: 2018-05-07

2. Bland, A.S., Kendall, R.A., Kothe, D.B., Rogers, J.H., Shipman, G.M.: Jaguar: the world’s
most powerful computer. In: Proceedings of Cray User’s Group (CUG) Meetings, pp. 62–69
(2009)

3. Minyard, T.: Managing terascale systems and petascale data archives (2010). http://www.
fujifilmsummit.com/wp-content/uploads/2017/05/2010-TACC_presentation.pdf

4. STAMPEDE2: TACC’s Flagship Supercomputer. https://www.tacc.utexas.edu/systems/
stampede2. Accessed: 2018-05-07

5. Stockyard global file system. https://www.tacc.utexas.edu/systems/stockyard.Accessed: 2018-
05-07

6. Childs, H., Pugmire, D., Ahern, S., Whitlock, B., Howison, M., Prabhat, Weber, G., Bethel,
E.W.: Extreme scaling of production visualization software on diverse architectures. IEEE
Comput. Graph. Appl. (CG&A) 30(3), 22–31 (2010)

7. Childs, H., et al.: A terminology for in situ visualization and analysis systems. Int. J. High
Perform. Comput. Appl. 34(6), 676–691 (2020)

8. Bauer, A.C., Geveci, B., Schroeder, W.: The ParaView Catalyst User’s Guide v2.0. Kitware,
Inc. (2015)

9. Parker, S.G., Johnson, C.R.: Scirun: a scientific programming environment for computational
steering. In: Supercomputing’95: Proceedings of the ACM/IEEE Conference on Supercom-
puting, p. 52 (1995)

10. Sanderson, A., Humphrey, A., Schmidt, J., Sisneros, R.: Coupling the uintah framework and
the visit toolkit for parallel in situ data analysis and visualization and computational steering.
In: International Conference on High Performance Computing, pp. 201–214. Springer (2018)

https://www.olcf.ornl.gov/for-users/system-user-guides/summit/file-systems/
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/file-systems/
http://www.fujifilmsummit.com/wp-content/uploads/2017/05/2010-TACC_presentation.pdf
http://www.fujifilmsummit.com/wp-content/uploads/2017/05/2010-TACC_presentation.pdf
https://www.tacc.utexas.edu/systems/stampede2
https://www.tacc.utexas.edu/systems/stampede2
https://www.tacc.utexas.edu/systems/stockyard

8 H. Childs et al.

11. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully
featured visualization system. In: Eurographics Symposium on Parallel Graphics and Visual-
ization, EGPGV 2011, Llandudno, Wales, UK, 2011. Proceedings, pp. 101–109 (2011)

12. Bennett, J.C., Childs, H., Garth, C., Hentschel, B..: In situ visualization for computational
science (Dagstuhl Seminar 18271). Dagstuhl Rep. 8(7), 1–43 (2018)

Data Reduction Techniques

Sampling for Scientific Data Analysis and
Reduction

Ayan Biswas, Soumya Dutta, Terece L. Turton, and James Ahrens

Abstract With exascale supercomputers on the horizon, data-driven in situ data
reduction is a very important topic that potentially enables post hoc data visual-
ization, reconstruction, and exploration with the goal of minimal information loss.
Sophisticated sampling methods provide a fast approximation to the data that can be
used as a preview to the simulation output without the need for full data reconstruc-
tion. More detailed analysis can then be performed by reconstructing the sampled
data set as necessary. Other data reduction methods such as compression techniques
can still be usedwith the sampled outputs to achieve further data reduction. Sampling
can be achieved in the spatial domain (which data locations are to be stored?) and/or
temporal domain (which time steps to be stored?). Given a spatial location, data-
driven sampling approaches take into account its local properties (such as scalar
value, local smoothness etc.) and multivariate association among scalar values to
determine the importance of a location. For temporal sampling, changes in the local
and global properties across time steps are taken into account as importance cri-
teria. In this chapter, spatial sampling approaches are discussed for univariate and
multivariate data sets and their use for effective in situ data reduction is demonstrated.

1 Introduction

Conceptually, sampling can be loosely defined as the selection of a subset from a
collection. In the context of a large-scale simulation code, sampling to decrease the
output data size is reasonably common. Choosing a regular data output scheme of

A. Biswas (B) · S. Dutta · T. L. Turton · J. Ahrens
Los Alamos National Lab, Los Alamos, NM, USA
e-mail: ayan@lanl.gov

S. Dutta
e-mail: sdutta@lanl.gov

T. L. Turton
e-mail: tlturton@lanl.gov

J. Ahrens
e-mail: ahrens@lanl.gov

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_2&domain=pdf
mailto:ayan@lanl.gov
mailto:sdutta@lanl.gov
mailto:tlturton@lanl.gov
mailto:ahrens@lanl.gov
https://doi.org/10.1007/978-3-030-81627-8_2

12 A. Biswas et al.

writing every nth time step is a ubiquitous approach to sampling. As mentioned in
the motivating chapter of this book, when very large-scale scientific simulations are
running on increasingly powerful supercomputers, one can only store a very small
fraction of the generated data. Data movement and I/O restrictions will require more
time between data dumps and naive time step selection as a data reduction technique
risks losing important events that may occur between regularly scheduled output
dumps.

Sampling techniques select m objects from the original pool of M elements with
m ≤ M for an effective data reduction method. For data reduction and sampling for
exascale codes, machine compute capability is orders of magnitude higher than I/O
rates, and this translates to m << M , i.e., m is orders of magnitude smaller than M .
Thus, for in situ large-scale data reduction purposes, simple sampling approaches are
no longer sufficient to address the data reduction needs. Adaptive and data-driven
sampling techniques become necessary to ensure that the data saved to disk has
the relevant statistical properties of the original data and that the information saved
prioritizes rare and/or important features and events in the data.

Sampling for data reduction is an attractive approach for in situ data reduction for
various reasons. Sampling allows the users to select a representative subset of the
raw data points where the true location and the data values for the sampled points are
preserved. Downsampled data statistically represents the original data, preserving
features and relationships in the data. Use of samples in the post hoc exploration
phase does not always require expensive data reconstruction as the reduced data set
can be visualized/queried to get an overview of the data.

With these benefits in mind, sampling becomes an attractive in situ solution. Sim-
ilar to the other in situ data reduction methods discussed in this book, the main goal
of sampling is preservation of important data properties or features given the limited
I/O bandwidth and storage capabilities. In this chapter, scalar and multivariate data
sets are addressed. The concept of importance is introduced with a discussion of how
to define it via an automated data-driven approach to demonstrate how sampling can
be a useful tool for preserving the important regions. Section2 briefly discusses the
foundations related to in situ sampling and visualization. Section3 describes different
scalar sampling methods for scientific data sets. Section4 focuses on the sampling
methods for multivariate data sets. In situ performance is discussed in Sect. 5, with
limitations of the sampling methods are covered in Sect. 6. Future directions for in
situ data-driven sampling are included in Sect. 7.

2 Prior Work

The development and deployment of novel sampling methods for in situ data reduc-
tion and feature preservation is built uponwork acrossmultiple disciplines. A flexible
many-core capable infrastructure is critical for modern high performance computing
simulation codes to access in situ analysis such as sampling. Bauer et al. [9] pro-
vide an overview of in situ infrastructures available to simulation codes for deploy-

Sampling for Scientific Data Analysis and Reduction 13

ment of analysis routines. As high performance computing heads towards exascale,
there are several commonly used infrastructures for scientific applications that can
be leveraged to enable in situ sampling. These include ParaView/Catalyst [1, 6],
VisIt/LibSim [14], Ascent [27], SENSEI [7], and ADIOS [32]. Each of these in situ
APIs provides the visualization and analysis support necessary for in situ sampling
use cases and details about many of these infrastructures can be found elsewhere
within this book.

Sampling is one of many possible data reduction techniques available to address
concurrency challenges at exascale. Son et al. [38] provide a survey of data compres-
sion techniques for exascale computing. Lossless compressors such as BLOSC [5]
and fpzip [30] are attractive to avoid introducing biases into the data. However, loss-
less compression typically does not provide sufficient data reduction to fully solve I/O
bandwidth and storage issues. Modern compressors usually allow both lossless and
lossy modes, allowing the user to set parameters such as error bounding. Transform
methods, such as zfp [29], speck [24] or wavelet approaches such as Li et al. [28],
model the data, retaining the most important coefficients in the modelling scheme.
Compressors based on predictive algorithms include SZ [17, 42] and fpzip [30].

Another common data reduction technique is to move data analysis, visualization,
or feature detection in situ, writing out reduced data extracts rather than full raw data
sets. Image-based data abstracts have been shown to provide post hoc data analysis
flexibility [2, 43] (see, for example, the chapter on Cinema in this book). Reduction
through statistical summarization is another approach [23, 46, 50]. Sampling as a
data reduction technique is similar to non-compression data reduction approaches.
That said, sampling techniques can often be used in combination with compression
to achieve higher levels of overall data reduction.

Information theory [16, 37, 45] forms a theoretical foundation used across many
aspects of analysis and visualization of large scientific data sets [13]. Drawing
from information theory, Nouanesengsy et al. [34] developed ADR, Analysis-Driven
Refinement, in which user-defined importancemetrics are used to select a sparse data
set for fast post hoc analysis and visualization. Entropy maximization was used by
Biswas et al. [12] in the development of an adaptive in situ sampling methodology
that prioritized rare but important events in the data. Dutta et al. [18] developed a
multivariate approach for statistical data summarization and downsampling based on
pointwise information theoretic measures.

Woodring et al. [49] introduced and demonstrated a stratified random sampling
scheme in a cosmology code. Sampling based on bitmap indexing was first used by
Su et al. [40]. Wei et al. [48] proposed IGStS, information guided stratified sam-
pling, to downsample data sets while preserving important regions in the data. Park
et al. [35] advocated for a visualization-aware sampling approach that minimized a
loss function based on visualization goals. Sampling in the context of visualization
also led Battle et al. [8] to develop ScalaR which performs data reduction on the fly
for database queries returning results too large for effective interactive visualization.
Likewise, with sampleAction, Fisher et al. [20] focused on improving the visual-
ization experience by visualizing incremental results. As described in this chapter,

14 A. Biswas et al.

data-driven sampling techniques draw heavily on importance metrics to develop
sampling algorithms that prioritize the data of interest to the domain scientist.

3 Sampling Using Scalar Data Importance

3.1 Motivation for Generic Scalar Sampling

Scalar fields are commonly found across scientific domains and simulations. In the
simplest case, a 2D or 3D spatial domain is discretized into smaller regular sized
regions and a scalar quantity, e.g., temperature T, is computed at each discrete loca-
tion. Although irregular grid discretizations are possible, this chapter will focus on
regular grid discretizations only. After the scalar field temperature is produced by
the simulation, domain scientists use that data to understand the features and phe-
nomenon of interest, e.g., temperature can be used to explore and map the critical
global currents that drive global warming and climate change.

A common workflow is for the domain scientist to analyze the features of interest
in the data and develop data reduction methods that are specific to the scalar field
and features of interest. When the scientist needs to perform a similar feature-driven
analysis of a different variable, for example, pressure P, the analysis workflow may
need to incorporate a different algorithm tuned to this new variable of interest. From
the perspective of optimizing the time and effort of the domain scientist, this can be
an inefficient workflow.

An alternative approach is to use more generic scalar field sampling methods.
This approach is particularly useful in the in situ scenario as the same algorithm can
potentially be used across multiple scalar fields during a run, significantly reducing
overall I/O and storage needs. An overview of two generic scalar field sampling
approaches is first presented before moving on to more sophisticated data-driven
sampling methods.

3.2 Methods for Scalar Field Sampling

3.2.1 Random Sampling

Random sampling methods are popular due to their simplicity and have been heavily
used for various sampling purposes. In a simple random sampling method, each data
value has equal probability of being selected. For stratified random sampling, the
data is first divided into strata (groups) and then random sampling is applied from
within each strata. A schematic example of random sampling can be seen in Fig. 1.

Neither simple nor stratified random sampling take into account domain sci-
ence knowledge or scientific goals. Likewise, neither method assigns priority to any

Sampling for Scientific Data Analysis and Reduction 15

Fig. 1 Schematic example showing random sampling for regular grid data. a Original data b after
randomly selecting 25 out of 81 data points

specific data values that might be of particular importance to the scientist. Hence,
although these methods preserve the overall data distribution, important features of
the data are not explicitly retained and some or all of these features may be uninten-
tionally lost in the sampling process.

For a regular grid data set, random sampling will produce a particle data set
as a result of the sampling. If Nrand samples are to be generated, then 4-tuples
{x, y, z, val} for each location will need to be stored where x, y, z represent the
locations of the particles and v is some variable specific to the simulation. This
amounts to 4N storage.

3.2.2 Regular Sampling

Another well known and commonly used samplingmethod is naive regular sampling.
This method sub-samples the data by regularly selecting data points using a prede-
fined interval. A schematic example is shown in Fig. 2. Similar to random sampling,
this method also preserves the overall data distribution and yields similar statistics
as the original data. However, again, there is no notion of feature preservation in
the data generated by the sub-sampling scheme. After sampling, regular sampling
keeps the regular grid structure. Thus the sampled data output is still on a regular
grid and requires Nreg storage when Nreg samples are to be stored as only the values
are stored at each grid point.

16 A. Biswas et al.

Fig. 2 Schematic example showing regular sampling for regular grid data. a Original data b after
regular selection of 25 out of 81 data points

3.2.3 Sophisticated Data-Driven Sampling Approach

Sampling approaches that are based on randomand regular selection have a limitation
when used for scientific data analysis and reduction. Although the samples generated
from such methods provide a good approximation to the original data distribution,
all the data points are given equal importance when making the selection. This is
not always the ideal way to choose a subset of values when dealing with data from
scientific simulations. Generally, such simulations contain features of interest that
are more important to the domain experts compared to the other parts of the data.
Another key point is that these features are potentially much less probable in the data
when compared to the chance of occurrence for non-feature regions. Based on these
ideas, an in situ algorithm can be devised that can still be generic (i.e., applicable to a
diverse set of simulations and scalar fields), but that prioritizes the important feature
regions of the data while sampling.

Information theory provides methods applicable to developing data-driven sam-
pling approaches that preferentially save data of interest to the domain scientist.
Using the guiding principle that rare values in a data set are more likely to be a
feature and the more abundant data values are likely to be background or non-feature
regions, a data-driven sampling method can be formulated by assigning more impor-
tance to a data value that has lower probability of occurrence, and assigning lower
importance to the samples that are more abundant. This simple procedure will likely
retain the important regions of the data. There are many different ways this can be
implemented.

Rather than introducing different user-defined parameters to the system for in
situ use, the concept of Shannon’s Entropy from information theory can be used

Sampling for Scientific Data Analysis and Reduction 17

to formulate a fast and effective algorithm. Shannon’s entropy, H , provides the
total information content [16] of a random variable X . This is given as: H(X) =
−∑

x∈X P(x) log2 P(x), where P(x) is the probability of x , where x ∈ X .
The principle of maximum entropy can be used for creating generic sampling

methods. The principle of maximum entropy states that the maximum entropy state
of a random variable is the best representation when no other information is avail-
able [26]. Using this for a generic sampling method without knowing the features of
the data, the best samples would be the ones that maximize the output entropy. Since
a uniform distribution hasmaximum entropy, the goal ofmaximum entropy sampling
will be to try to select equal number of samples for each scalar value irrespective of its
abundance in the data set. Ideally, if selecting C samples for all scalars, then scalars
that occur more frequently in the data will automatically get a lower probability of
acceptance. Similarly, rare scalar values will have higher chance of selection.

Figure3 illustrates this concept. From a Gaussian distribution with the mean,
μ = 0.0, and the variance, σ 2 = 0.01, 2000 random data points are taken. The data
histogram is shown inFig. 3a.Computing entropy for this data set using24bins results
in 3.9 bits. Selecting 20% samples from this data using the entropy-maximizing
sampling method as discussed before, results in a histogram similar to Fig. 3b with
an entropy of 4.45 bits. This method of sampling maximizes the entropy from these
samples. An acceptance histogram can now be defined as a histogram that plots
the data values along the x-axis while the y-axis denotes the probability of getting
selected for that scalar. This can be seen in Fig. 3c. From this figure, it is easy to
observe that the values with higher frequency in the original data were given lower
importance and vice versa. This algorithm is summarized in Algorithm 1.

An application of this data-driven intelligent sampling method to the Hurricane
Isabel data set [47] is shown in Fig. 4. For this data set, the feature of interest is
the hurricane eye as shown in Fig. 4a. For demonstration purposes, the Pressure
field from time step 25 is chosen. The effect of applying the three different scalar
sampling methods (random, regular, and data-driven entropy-maximizing sampling)
on this data can be seen. The sampling rates used were 0.5% for random and entropy-
based data-driven intelligent sampling method (since they store the point locations)
and 1.5% for regular sampling (as it does not need to store the locations). All the
sampled data outputs are reconstructed back to original size for comparison purposes.
As can be seen from Fig. 4, the data-driven entropy-maximizing method (as shown
in Fig. 4c) outperforms the random (Fig. 4d) and regular (Fig. 4e) sampling methods
in retaining a more complete visual representation of the hurricane eye.

3.3 Sample Analysis and Reconstruction

Often, scientists want to visualize the full-resolution data when exploring important
features interactively. Consequently, using sub-sampled data requires a technique that
can reconstruct the full-resolution data from the sampled data points. The reconstruc-
tion of the full-resolution data can be performed using a nearest-neighbor or linear

18 A. Biswas et al.

Fig. 3 Illustration of
information-driven sampling
method via entropy
maximization. a Histogram
of original data points, b
histogram of the sampled
data where the entropy of
resulting histogram is
maximized. c Acceptance
histogram showing the
probability of the values of
each bin getting accepted
after sampling. This image
is reprinted from our
previous work [12]

(a) Original data histogram

(b) After entropy maximization

(c) Acceptance histogram

Sampling for Scientific Data Analysis and Reduction 19

Input: Sim generated data at each time step
Output: Acceptance histogram
nk = samples to be taken from full data
N = total points from full data
nbins = number of bins
nsamps = nk ÷ nbins : samples to be taken from each bin
remaining-samples = N
H = CreateHistogram(Data,nbins)
count,bin-edges = SortBinsAccordingToTheirCount(H)
while not all bins are visited do

i=0;
if count[i] < nsamps then

samples-taken = count[i];
else

samples-taken = nsamps ;
end
Pi = samples-taken ÷ count[i]
remaining-samples = remaining-samples - samples-taken
remaining-bins = nbins - i
nsamps = remaining-samples ÷ remaining-bins
i=i+1;

end
Use Pi s as the probabilities for the corresponding bins of the acceptance histogram

Algorithm 1: Algorithm for the in situ generation of an acceptance histogram.

Fig. 4 Sampling results from Hurricane Isabel data set. a Original data b zoomed in view of the
feature (hurricane eye) region. c Reconstruction using data-driven sampling method (sampling ratio
0.5%). d Reconstruction using random sampling method (sampling ratio 0.5%). e Reconstruction
using regular sampling method (sampling ratio 1.5%). This image is reprinted from our previous
work [12]

20 A. Biswas et al.

Fig. 5 Volume visualization of sampling results (sampling ratio 1%) using the Nyx simulation. a
Original data and zoomed into a feature region with a dark matter halo. b Reconstruction using
data-driven intelligent samplingmethod. cReconstruction using stratified randomsamplingmethod.
This image is reprinted from our previous work [12]

interpolation based technique. Nearest-neighbor interpolation is faster but generally
less accurate. Given a location where a value is to be assigned in the reconstruction
phase, this method assigns the value of the nearest sample location. Linear inter-
polation is more time-consuming but often more accurate. In this method, first a
3D convex hull is created using the sampled points and then a polygonal mesh is
created using Delaunay triangulation. Then, for each grid point in the reconstruction
grid, the simplices in the Delaunay mesh are used and the value is linearly interpo-
lated from the simplex vertices that encloses the current grid point. Once the data
is reconstructed (using nearest-neighbor or linear), all analysis/visualization tech-
niques (including the ray casting-based volume rendering that is shown here) can be
used to explore the full-resolution data.

3.4 In Situ Analysis and Quality Comparison

To demonstrate the performance of the three sampling methods, the Nyx cosmology
simulation code [4] is used. The Nyx data resolution was 512 × 512 × 512. The Nyx
simulation produces a regular grid data set with multiple variables. Out of these, the
baryon density is one of the most important variables to analyze because it provides
the particle concentration information tracing back to the origin of universe. In this
density field, high density regions correspond to dark matter halos forming over time
in the universe. These high density regions are the most important to the scientist. In
Fig. 5, visualizations of the reconstructed samples are shown for comparison purposes
at 1% sampling rate for random and data-driven methods. Figure6 visualizes the
samples coming out of the sampling methods with even lower sampling ratios: 0.5%
sampling rate for random and data-driven methods and 1.5% for the regular method.
From both of these figures, it can be observed that the data-driven method preserves
features within the data much better than the regular and random methods.

Sampling for Scientific Data Analysis and Reduction 21

Fig. 6 Point rendering results from Nyx simulation. a Using the data-driven intelligent sampling
method (sampling ratio 0.5%), b using the regular sampling method (sampling ratio 1.5%), c using
the stratified random sampling method (sampling ratio 0.5%). This image is reprinted from our
previous work [12]

Table 1 Quantitative similarity comparison of sampling method-produced images to the image
produced by the original data under same rendering configuration

Data-driven sampling Random sampling Regular sampling

Hurricane Isabel data 0.978 0.921 0.961

Nyx cosmology data 0.987 0.865 0.881

For a quantitative comparison of the quality across these methods, Pearson’s
correlation coefficient is calculated for both the Hurricane Isabel and Nyx data sets.
This calculation is performed using volume rendered images from the original data
and from the three samplingmethods for the same camera angle and transfer function.
Then using red, blue and green as three channels, the Pearson correlation value for
each sampling method is calculated against the original data. This result is presented
inTable1.As can be seen from thisTable, the data-driven intelligent samplingmethod
clearly outperforms the other two methods.

Thus, it can be seen that intelligent scalar sampling methods can provide high
quality and light-weight data reduction capabilities for scalar fields in large-scale
data sets. The next section discusses the case where a simulation produces multiple
variables to see how information theory can motivate effective multivariate sampling
approaches.

22 A. Biswas et al.

4 Sampling Using Multivariate Association

4.1 Motivation for Multivariate Sampling

Large-scale simulations commonly produce data sets containing multiple variables.
The above section described sampling techniques that work on a single variable at a
time while sub-sampling the data. However, data analysis applications may require
analysis of multiple variables together. Hence, similar to the univariate sampling
technique, multivariate data sampling techniques are also important. Multivariate
sampling can help in reducing a set of simulation variables together. For multivariate
data sets, sub-sampled data must preserve the relationship and correlations between
variables so that when a post hoc analysis is conducted using the sub-sampled data,
the multivariate data features will be the same as an analysis done on the full data
set.

Several previous studies have shown that the relationship among multiple vari-
ables can be complicated [11, 25, 31]. To summarize such variables together, first,
one needs to identify the relationship among them. An effective way of performing
sub-sampling of multivariate data would be to sample the points with higher fidelity
from the region where the variables show strong statistical association among them.
Previous studies have shown that such statistically associated regions often con-
tain multivariate features that are of interest to the application experts for detailed
analysis. For example, in a hurricane simulation, the hurricane eye is an important
feature, which can be characterized by a spatial region with low pressure and high-
velocity values [22, 23]. Similarly, to understand the complex turbulent mixing in
a combustion simulation, the study of high valued hydroxyl regions together with
the stoichiometric mixture fraction variable reveals more information than study-
ing them individually [3]. Therefore, a multivariate data sub-sampling technique
that preserves the statistical association among variables will be able to analyze and
visualize such features with high accuracy in the post hoc analysis phase. The fol-
lowing Sections describe a multivariate data sampling algorithm that uses statistical
data associations and multivariate distributions to sub-sample several data variables
together and demonstrates the usefulness of the technique by providing various mul-
tivariate applications with qualitative and quantitative studies.

4.2 Multivariate Statistical Association-Driven Sampling

One of the primary requirements of a multivariate sampling technique algorithm is
to preserve the multivariate properties, i.e., the interdependence among the chosen
variables, and their correlation properties so that the sub-sampled data set can be used
effectively for multivariate feature analysis. To achieve this, the multivariate sam-
pling algorithm selects samples densely from the regions where the variable combi-
nations show a strong statistical association or co-occurrence. Higher co-occurrence

Sampling for Scientific Data Analysis and Reduction 23

indicates a stronger association among data values. The strength of the association is
quantified for each spatial data point considering their value combination frommulti-
ple variables. After the quantification of statistical association is done, sub-sampling
is performed according to the strength of the association values. Data points which
show stronger statistical association have a higher chance of getting selected. At the
end of the sampling process, an unstructured data set is produced and this reduced
data can be stored onto disk for post hoc analysis. Note that, based on the storage
budget, the application user can determine the percentage of data points that will be
stored for post hoc analysis and thus determine the amount of data reduction that
will be achieved through the sampling.

4.2.1 Estimation of Multivariate Pointwise Information

Multivariate data sampling first requires a criterion to quantify the importance of
each data point in the multivariate sense. Each data point in the multivariate data has
a value tuple consisting of values from each variable. Consider two variables, X and
Y . At each data point, there is a value pair (x, y)where x is a specific value of variable
X and y a value for Y . Next, a measure is needed that can quantify the importance
of each such value pair so as to select data points that are more informative than
others in order to perform sub-sampling. Using information theory, the importance
of such value pairs can be estimated using an information-theoretic measure called
pointwise mutual information (PMI). Pointwisemutual informationwas
first introduced in the works of Church and Hanks [15] for the quantification of word
association. PMI measures the strength of the statistical association of each value
pair, thus for each data point. For two random variables X and Y , the PMI value for
the value pair (x, y) can be formally defined as:

PMI (x, y) = log
p(x, y)

p(x)p(y)
(1)

Here, p(x) is the probability of a particular occurrence x of X , p(y) is the prob-
ability of y of variable Y and, p(x, y) is their joint probability. When p(x, y) >

p(x)p(y), PMI (x, y) > 0, which means x and y have higher statistical association
between them. When p(x, y) < p(x)p(y), then PMI (x, y) < 0. This condition
indicates that the two observations follow a complementary distribution. Finally,
when p(x, y) ≈ p(x)p(y), then PMI (x, y) ≈ 0 refers to the case where the vari-
ables are statistically independent. It is important to note that the mutual information
(MI) I (X; Y) is the expected PMI value over all possible instances of variables X
and Y [44].

I (X; Y) = E(X,Y)[PMI (x, y)] (2)

Given this information-theoretic measure, if a value pair has higher PMI value,
then it is more likely that the data point associated with it will be selected in the
sub-sampled data set. Previous work has shown that regions with high PMI values

24 A. Biswas et al.

(a) Pressure field visualization. (b) Velocity field visualization.

Fig. 7 Visualization of the Pressure and Velocity fields of Hurricane Isabel data set. The hurricane
eye at the center of Pressure field and the high velocity region around the hurricane eye can be
observed. This image is reprinted from our previous work [18]

often correspond to the multivariate features in the data set [19], and hence, selecting
data points using their PMI values will also ensure the preservation of important
multivariate features in the data set.

To demonstrate the concept of PMI, first consider two variables: Pressure and
Velocity from the Hurricane Isabel data set. Figure7 shows the volume visualization
of these two variables. To estimate the PMI values for each data point for these two
variables, one first estimates their probability distributions in the form of normalized
histograms. Then for each value pair in the 2D histogram bin, the PMI value is
estimated usingEq.1.A 2DPMI plot is shown in Fig. 8a. TheX-axis of the plot shows
values of Pressure and the Y-axis shows values of Velocity. Since the computation
of PMI values were done using a histogram, the axes in plot Fig. 8a show the bin
IDs. The corresponding scalar value for each bin ID can be easily estimated from
the range of data values for each variable. In this plot, the white regions in the plot
represent value pairs with zero PMI values and red regions indicate high PMI values.
It can be observed that the low Pressure and moderate to high Velocity values have
high PMI values and therefore higher statistical association. Using the PMI values
for each data point, a new scalar field can be constructed, namely the PMI field where
each data point reflects the pointwise statistical association. In Fig. 8b, the PMI field
for the Pressure and Velocity variable is shown. It can be seen that the darker brown
region has higher values of PMI and is highlighting the eye-wall of the hurricane,
an important multivariate feature in the data set. Hence, sampling using PMI values
will select more data points from the eye-wall region since the data points there have
higher PMI values and, by doing so, the eye-wall feature will be preserved with
higher detail in the sub-sampled data set.

Sampling for Scientific Data Analysis and Reduction 25

(a) PMI plot of Pressure and Veloc-
ity field.

(b) PMI volume of Pressure and Veloc-
ity field.

Fig. 8 PMI computed from the Pressure and Velocity fields of the Hurricane Isabel data set is
visualized. Figure a shows the 2D plot of PMI values for all value pairs of Pressure and Velocity,
Fig. b provides the PMI field for analyzing the PMI values in the spatial domain. It can be seen that
around the hurricane eye, the eye-wall is highlighted as high PMI-valued region which indicates a
joint feature in the data set involving Pressure and Velocity field. This image is reprinted from our
previous work [18]

GeneralizedPointwise Information.The pointwisemutual informationmeasure
allows us to analyze two variables at a time. To estimate the PMI values for more
than two variables, a generalized information theoretic measure can be used, called
specific correlation [44]. Specific correlation can be formally defined as:

SI (x1, x2, .., xn) = log
p(x1, x2, . . . , xn)

p(x1)p(x2) . . . p(xn)
(3)

where p(xi) represents the probability of an observation xi for the i th variable Xi , and
p(x1, x2, . . . , xn) refers to the joint probability of the value tuple (x1, x2, . . . , xn).
Note that, specific correlation is a generalized extension of the pointwise mutual
information and can be used to quantify association for data points when more than
two variables are used.

Thepointwise informationmeasures presented abovedependon joint distributions
of variables, raising the question of how these high-dimensional distributions can be
computed effectively. Joint probability distributions can be computed using various
modeling approaches, such as parametric distributions, non-parametric distributions,
etc. Among parametric distribution models, Gaussian mixture model (GMM) is well
known for its compactness as only model parameters need to be stored during its
calculation. However, the estimation of parameters for high-dimensional Gaussian
mixture models using an Expectation-Maximization (EM) technique [10] can be
computationally expensive. In contrast, non-parametric models such as Kernel Den-

26 A. Biswas et al.

sity Estimation (KDE) and histograms are other alternatives that can be used to esti-
mate joint probability distributions. The computation of high-dimensional KDE is
expensive since a significant number of kernel evaluations are required. Furthermore,
the storage increases as dimensionality increases. In contrast, the computation of
histogram-based distributions is comparatively faster, but standard high-dimensional
histogram representations are not storage efficient.

For a large number of variables, in general, all the above approaches suffer from the
curse of dimensionality. However, sparse histogram representations reduce storage
footprint significantly. Recently, to address the issues of dimensionality, a new tech-
nique for high-dimensional histogram estimation has been proposed [33]. This new
technique is storage efficient and can be computed efficiently in a distributed parallel
environment. Another effective and alternative way of modeling high-dimensional
distributions is the use of statistical Copula functions [23]. A Copula-based distri-
bution representation only stores individual independent distributions and the cor-
relation information among the modeled variables. From this Copula model, the
joint probability can be queried. This approach reduces the computational cost and
storage cost significantly while estimating high-dimensional distributions [23]. It
is also important to note that, in practice, multivariate features are mostly defined
using two to three variables in combination, and hence sparse histograms can be
used to estimate the joint distribution for the PMI calculation. If higher-dimensional
distributions are required, other techniques [23, 33] can be used.

4.2.2 Pointwise Information-Driven Multivariate Sampling

This section covers the multivariate sampling process that uses the aforementioned
pointwise information measures as the multivariate sampling criterion. The sam-
pling method accepts data points with a higher likelihood if they have higher values
of pointwise information. Therefore, regions with higher PMI values (such as the
hurricane eye-wall region as seen in Fig. 8b will be sampled densely compared to
regions with relatively low PMI values in the final sub-sampled data set.

The multivariate sampling method accepts a user-specified sampling fraction (α,
where 0 < α < 1) as an input parameter and produces a sub-sampled data set with
n = α × N , (n < N) data points where N represents the total number of data points.
First, a joint histogram is constructed using all the variables that will be used for sam-
pling. Note that, in the bi-variate case, this results in a 2D histogram. Each histogram
bin in this joint histogram represents a value pair and a PMI value can be estimated
for each histogram bin. Therefore, the normalized PMI values corresponding to each
histogram bin can be used as a sampling fraction for that bin and the bins with higher
PMI values will contribute more to the sample selection process.

For example, if a histogram bin has a normalized PMI value of 0.8, then 80%
of the data points from this bin will be selected. Note that selecting sample points
in this way ensures that the higher PMI valued data points are prioritized in the
sampling process and, by doing so, data points with a stronger statistical association
are preserved in the sub-sampled data. The interested reader can find more details of

Sampling for Scientific Data Analysis and Reduction 27

(a) Visualization with randomly sam-
pled points.

(b) PMI-based sampled points.

Fig. 9 Sampling result in Hurricane Isabel data set when Pressure and Velocity variables are used.
Figure a shows results of random sampling and Fig. b shows results of the PMI-based sampling
results for sampling fraction 0.03. By observing the PMI field presented in Fig. b, it can be seen
that PMI-based sampling method samples densely from the regions where the statistical association
between Pressure and Velocity is stronger (Fig. b). This image is reprinted from our previous
work [18]

this sampling method in [18]. An example of this multivariate sampling is shown in
Fig. 9. Figure9b shows the sub-sampled data points for the Hurricane Isabel data set
when Pressure and Velocity fields are used. It can be observed that data points from
the eye-wall region were selected densely since the data points in that region have
high PMI values. In Fig. 9a, a randomly sub-sampled field is shown. By comparing
Fig. 9b with Fig. 9a, it is evident that PMI-based sampling preserves the statistically
associated regions in the sub-sampled data set and accurate post hoc multivariate
feature analysis using such a data set can be performed.

4.3 Applications of Multivariate Sampling

4.3.1 Sample-Based Multivariate Query-Driven Visual Analysis

Query-driven visualization (QDV) is a popular technique for analyzing multivariate
features in a scientific data set [21, 23, 39]. Query-driven analysis helps the expert
to focus quickly on the region of interest, effectively reducing their workload. In this
example, the sub-sampled data set is used directly for answering domain specific
queries using an asteroid impact data set. The Deep Water Asteroid Impact data
set [36] was generated at the Los Alamos National Laboratory to study Asteroid
Generated Tsunami (AGT). The data set contains multiple variables. The volume
fraction of water variable, denoted by v02, and the temperature variable denoted

28 A. Biswas et al.

(a) All the data points sampled by
the PMI-based sampling method.

(b) Result of the query when ap-
plied on raw data.

(c) Result of the query when ap-
plied on PMI-based sampled data.

(d) Result of the query applied on
randomly sampled data.

Fig. 10 Visualization of multivariate query driven analysis performed on the sampled data using
the Asteroid impact data set. The multivariate query 0.13 < tev < 0.5AND0.45 < v02 < 1.0 is
applied on the sampled data sets. Figure a shows all the points selected by the PMI-based sampling
algorithm by using tev and v02 variable. Figure b shows the data points selected by the query
when applied to raw data. Figure c shows the points selected when the query is performed on the
sub-sampled data produced by the PMI-based sampling scheme and Fig. d presents the result of the
query when applied to a randomly sampled data set. The sampling fraction used in this experiment
is 0.07. This image is reprinted from our previous work [18]

by tev, are used in this study. First the data set is sub-sampled using the above
association-driven multivariate sampling algorithm, retaining 7% of the data points.
The interaction between tev and v02 can be studied by performing the following
multivariate query: 0.13 < tev < 0.5 AND 0.45 < v02 < 1.0.

The result of the query-driven analysis is shown in Fig. 10. Figure10a shows all the
7% sample points that were selected by the samplingmethod. In Fig. 10b the result of
the query is shownwhen applied to the ground truth data. Figure10c depicts the query
results when the sub-sampled data generated from multivariate PMI-based sampling
is used. Compared to the result generated from random sampling, Fig. 10(d), one

Sampling for Scientific Data Analysis and Reduction 29

can see that the multivariate association-driven sampling can answer the query with
higher accuracy.

4.3.2 Reconstruction-Based Visualization of Sampled Data

The combustion data set provides a second example. The reconstruction technique
is as discussed in Sect. 3.3. An example visualization of reconstructed data for the
Y_OHfield of a combustion data set is presented in Fig. 11. The sub-sampled data set
was generated using mixture fraction and Y_OH fields and, in this example, 5% data
points were stored. As can be seen, the reconstructed data, Fig. 11b, generated using
the data samples produced by themultivariate association-driven sampling technique,
produces a more accurate visualization compared to the reconstruction obtained
from randomly sampled data set, Fig. 11c. The black dotted regions highlighted
in Fig. 11b, c show the regions where the reconstruction error is more prominent
compared to the ground truth raw data shown in Fig. 11a.

4.3.3 Multivariate Correlation Analysis of the PMI-Based Sampling
Method

While analyzing multivariate data, application experts often study multivariate rela-
tionships among variables to explore variable interdependencies. Scientific features
in multivariate data sets typically demonstrate statistical association in the form of
linear or non-linear correlations among variable values. Therefore, it is important to
preserve such variable relationships in the sub-sampled data so that flexible post hoc
analysis can be done. In this section, the multivariate correlations obtained from the

(a) Visualization using raw
data.

(b) Reconstructed data vi-
sualization using PMI-based
sampling.

(c) Reconstructed data visual-
ization using random sampling
algorithm.

Fig. 11 Reconstruction-based visualization of Y_OH field for a turbulent combustion data set.
Linear interpolation is used to reconstruct the data from the sub-sampled data sets. Figure a shows
the result of the original raw data. Figure b provides the reconstruction result from the sub-sampled
data generated by the PMI-based sampling method. Figure c presents the result of reconstruction
from randomly sampled data. The sampling fraction used in this experiment is 0.05. This image is
reprinted from our previous work [18]

30 A. Biswas et al.

(a) ROI for Hurricane Isabel
data.

(b) ROI for combustion
data.

(c) ROI for asteroid data.

Fig. 12 Regions of interest (ROI) of different data sets used for analysis. Figure a shows the ROI
in the Isabel data set, where the hurricane eye feature is selected. Figure b shows the ROI for the
Combustion data set, where the turbulent flame region is highlighted. Finally, in Fig. c, the ROI
for the asteroid data set is shown. The ROI selected in this example indicates the region where the
asteroid has impacted the ocean surface and the splash of the water is ejected to the environment.
This image is reprinted from our previous work [18]

Table 2 Evaluation of multivariate correlation for feature regions. The feature regions for each data
set are shown in Fig. 12 indicated by a black box. This Table is reused from our previous work [18]

Raw data PMI-based sampling Random sampling

Pearson’s
correlation

Distance
correlation

Pearson’s
correlation

Distance
correlation

Pearson’s
correlation

Distance
correlation

Isabel data (Pressure
and QVapor)

−0.19803 0.3200 −0.19805 0.3205 −0.1966 0.3213

Combustion data
(mixfrac and Y_OH)

0.01088 0.4012 0.01624 0.04054 0.02123 0.4071

Asteroid data
(tev and v02)

0.2116 0.2938 0.2273 0.2994 0.2382 0.31451

reconstructed data (the reconstruction is described in Sect. 4.3.2) that used multivari-
ate association driven sampling are compared with the correlation values that were
obtained from reconstructed data that used randomly selected samples. For analysis,
a feature region (region of interest (ROI)) was selected for each data set. The ROI
for each data set is shown in Fig. 12 using a dark black box. In Table2 the results are
presented. Pearson’s correlation coefficient is again used for linear correlation and
for measuring non-linear correlation, distance correlation [41] is used. The purpose
of this study is to demonstrate that the multivariate association driven sampling tech-
nique is able to preserve the correlation among themodeled variablesmore accurately
compared to the random sampling based method. Table2 demonstrates that when the
PMI-based multivariate sampling is used, the correlation in the reconstructed data
matches closely with the correlation values obtained from the raw data. The cor-
relation values obtained from random sampling have a higher deviation from the
true correlation. This indicates that the multivariate PMI-based sampling technique
preserves both the linear and non-linear correlations more accurately compared to
the random sampling technique.

Sampling for Scientific Data Analysis and Reduction 31

5 In Situ Performance

An in situ performance study for univariate spatial sampling methods was per-
formed using the Nyx cosmology simulation code [4]. The three sampling meth-
ods were implemented in C++ and were integrated into the Nyx simulation code
in the writePlotFile(); in situ I/O routine. As mentioned earlier, the sam-
pling routines were called each time step and the test performed on a cluster with
Intel Broadwell E5_2695_v4 CPUs (18 cores per node and 2 threads per core), and
125 GB of memory per node. For the in situ scaling study, the Nyx simulation was
run for 100 time steps with 512 × 512 × 512 resolution per time step. The data-
driven univariate sampling algorithm is efficiently extended to a distributed memory
setting since histograms are additive across data blocks. Consequently, only a few
MPI-based communications are needed to compute the global data minimum and
maximum values. Local histograms are computed based on the global data minimum
and maximum and then the local histograms are “reduced” to generate the global
histogram.

The in situ results are shown in Fig. 13 where the run times for different methods
are shown. As can be seen from this figure, all the three methods scale quite well.
It is also visible that the entropy-based method is slightly more expensive since it
performsmore data analysis in situ. However, this increase in time is compensated by
the much higher quality samples generated by this method. As shown in Fig. 13b, the
in situ I/O time is similar for all the three methods. Table3 lists the time spent by the
sampling methods as a percentage of total simulation time. This table indicates that,
although the entropy-based method spends more time than other two naive methods,
the percentage time spent compared to the actual simulation time is still negligible

Fig. 13 a Comparison of in situ sampling performance among the three sampling methods:
histogram-based sampling (blue), regular sampling (orange), and random sampling (green). bCom-
parison of in situ sampled data I/O times among the three sampling methods: histogram-based
sampling (blue), regular sampling (orange), and stratified random sampling (green). This image is
reprinted from our previous work [12]

32 A. Biswas et al.

Table 3 In situ percentage timings of different sampling methods and I/O timings w.r.t the simu-
lation timings

Hist. Samp
%sim time

Reg. Samp
%sim time

StRand.
Samp %sim
time

Hist. I/O
%sim I/O

Reg. I/O
%sim I/O

StRand. I/O
%sim I/O

128 Cores 1.39 0.20 0.35 2.86 2.92 2.97

256 Cores 1.83 0.21 0.37 3.07 3.23 3.28

512 Cores 1.41 0.16 0.28 2.61 2.75 2.70

(only about 1.5%). Percentage disk I/O time for the sampled data is also shown in
this table and they are all quite a small fraction of the simulation raw I/O.

Similar performance trends are expected for the multivariate sampling algorithm
since it also uses a distribution-based approach. However, the computation of joint
probability distributions will require more time compared to the univariate distri-
butions. In this case, to achieve viable in situ computational performance, one can
follow a joint probability distribution estimation approach [33]. Another alternative
is to use the Copula-based modeling schemes that are computationally efficient for
in situ environments [23].

6 Discussions and Limitations

In this chapter, in situ sampling methods for both univariate and multivariate data
sets have been discussed in detail. Examples of data-driven approaches demonstrate
their effectiveness compared to the naive (albeit faster) regular/random methods. It
is also important to note that data-driven methods may not necessarily be applicable
for all the time steps of a simulation. Specifically, for simulations (such as Nyx) that
are initialized on a random field and for first few time steps may have no features in
the data. For such cases, it is recommended that users try to employ random/regular
sampling methods as the data-driven method may not produce any meaningful sam-
ples or capture any interesting features. Due to the lack of features in the data,
essentially, data-driven methods will reduce to behaving like random methods. Mul-
tivariate sampling methods work well when there is some association or correlation
among variables that are captured by PMI, an information-theoretic measure used to
guide the samples. When simulation variables are statistically independent, then the
univariate sampling technique can be applied instead ofmultivariate sampling, which
behaves the same as random sampling when variables are statistically independent.

Sampling for Scientific Data Analysis and Reduction 33

7 Future Directions and Conclusion

This chapter described several different sampling approaches that can be performed
in situ for data reduction. When considering univariate data for spatial sampling, the
data distribution can be used to identify and save important scalars that are more
likely to be features in the data set. Similarly, for multivariate data set, point-wise
mutual information can be leveraged to identify locations that capture multivariate
importance. Looking forward in this research area, there are additional ways to
leverage and apply information-theoretic sampling methods. For example, they can
be applied to vector fields and they can be applied across time, in addition to space.
Using these light-weight yet scalablemethods, data-driven sampling can yield results
that are more meaningful to the scientist, compared to naive methods such as random
or regular sampling.

Acknowledgements We would like to thank our Data Science at Scale Team colleagues: D. H.
Rogers, L.-T. Lo, J. Patchett, our colleague from the Statistical Group CCS-6: Earl Lawrence, our
industry partners at Kitware and other collaborators: C. Harrison, M. Larsen. This research was
supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security Administration. This
research used resources provided by the Los Alamos National Laboratory Institutional Computing
Program, which is supported by the U.S. Department of Energy National Nuclear Security Admin-
istration under Contract No. 89233218CNA000001. This research used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725. The Hurricane Isabel data set has kindly been provided by Wei
Wang, Cindy Bruyere, Bill Kuo, and others at NCAR. Tim Scheitlin at NCAR converted the data
into the Brick-of-Float format. The Turbulent Combustion data set is made available by Dr. Jacque-
line Chen at Sandia National Laboratories through US Department of Energy’s SciDAC Institute
for Ultrascale Visualization. This research was released under LA-UR-20-21090.

References

1. Ahrens, J., Geveci, B., Law, C.: Paraview: An end-user tool for large data visualization. The
Visualization Handbook, vol. 717 (2005)

2. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., Petersen, M.: An image-based
approach to extreme scale in situ visualization and analysis. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 424–
434. IEEE Press (2014)

3. Akiba, H., Ma, K., Chen, J.H., Hawkes, E.R.: Visualizing multivariate volume data from turbu-
lent combustion simulations. Comput. Sci. Eng. 9(2), 76–83 (2007). https://doi.org/10.1109/
MCSE.2007.42

4. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Van Andel, E.: Nyx: a massively parallel
AMR code for computational cosmology. apj 765, 39 (2013). https://doi.org/10.1088/0004-
637X/765/1/39

5. Alted, F.: BLOSC (2009). http://blosc.pytables.org/. [online]
6. Ayachit, U., Bauer, A., Geveci, B., O’Leary, P.,Moreland, K., Fabian, N.,Mauldin, J.: Paraview

catalyst: enabling in situ data analysis and visualization. In: Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp. 25–29.
ACM (2015)

https://doi.org/10.1109/MCSE.2007.42
https://doi.org/10.1109/MCSE.2007.42
https://doi.org/10.1088/0004-637X/765/1/39
https://doi.org/10.1088/0004-637X/765/1/39
http://blosc.pytables.org/

34 A. Biswas et al.

7. Ayachit, U.,Whitlock, B.,Wolf, M., Loring, B., Geveci, B., Lonie, D., Bethel, E.W.: The sensei
generic in situ interface. In: 2016 Second Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (ISAV), pp. 40–44 (2016). https://doi.org/10.1109/
ISAV.2016.013

8. Battle, L., Stonebraker, M., Chang, R.: Dynamic reduction of query result sets for interactive
visualizaton. In: 2013 IEEE International Conference on Big Data, pp. 1–8 (2013). https://doi.
org/10.1109/BigData.2013.6691708

9. Bauer, A.C., et al.: In Situ methods, infrastructures, and applications on high performance com-
puting platforms, a state-of-the-art (STAR) report. In: Computer Graphics Forum, Proceedings
of Eurovis 2016, vol. 35(3) (2016). LBNL-1005709

10. Bilmes, J.: A gentle tutorial on the em algorithm including gaussian mixtures and baum-welch.
Technical report, International Computer Science Institute (1997)

11. Biswas, A., Dutta, S., Shen, H., Woodring, J.: An information-aware framework for exploring
multivariate data sets. IEEE Trans. Vis. Comput. Graph. 19(12), 2683–2692 (2013). https://
doi.org/10.1109/TVCG.2013.133

12. Biswas, A., Dutta, S., Pulido, J., Ahrens, J.: In situ data-driven adaptive sampling for large-
scale simulation data summarization. In: Proceedings of the Workshop on In Situ Infrastruc-
tures for Enabling Extreme-Scale Analysis and Visualization, ISAV ’18, pp. 13–18. Associa-
tion for ComputingMachinery, NewYork, NY, USA (2018). https://doi.org/10.1145/3281464.
3281467

13. Chen, M., Feixas, M., Viola, I., Bardera, A., Shen, H., Sbert, M.: Information Theory Tools for
Visualization. CRC Press, Boca Raton, FL, USA (2006)

14. Childs, H., et al.: VisIt: an end-user tool for visualizing and analyzing very large data. In: High
Performance Visualization—Enabling Extreme-Scale Scientific Insight, pp. 357–372. CRC
Press/Francis–Taylor Group (2012)

15. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. In:
Proceedings of the 27th annual meeting on Association for Computational Linguistics, ACL
’89, pp. 76–83. Association for Computational Linguistics, Stroudsburg, PA, USA (1989).
https://doi.org/10.3115/981623.981633

16. Cover, T., Thomas, J.: Elements of Information Theory. Wiley Series in Telecommunications
and Signal Processing, 2nd edn. Wiley-Interscience, New York, NY, USA (2006)

17. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with sz. In: 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 730–739 (2016).
https://doi.org/10.1109/IPDPS.2016.11

18. Dutta, S., Biswas, A., Ahrens, J.: Multivariate pointwise information-driven data sampling and
visualization. Entropy 21(7), 699 (2019)

19. Dutta, S., Liu, X., Biswas, A., Shen, H.W., Chen, J.P.: Pointwise information guided visual
analysis of time-varying multi-fields. In: SIGGRAPHAsia 2017 Symposium on Visualization,
SA ’17, pp. 17:1–17:8. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3139295.
3139298

20. Fisher, D., Popov, I., Drucker, S., Schraefel, M.: Trust me, i’m partially right: incremental visu-
alization lets analysts explore large datasets faster. In: Proceedings of the SIGCHI Conference
onHumanFactors inComputing Systems, CHI ’12, pp. 1673–1682.Association forComputing
Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2207676.2208294

21. Gosink, L.,Anderson, J., Bethel,W., Joy,K.:Variable interactions in query-driven visualization.
IEEE Trans. Vis. Comput. Graph. 13(6), 1400–1407 (2007). https://doi.org/10.1109/TVCG.
2007.70519

22. Gosink, L.J., Garth, C., Anderson, J.C., Bethel, E.W., Joy, K.I.: An application of multivariate
statistical analysis for query-driven visualization. IEEE Trans. Vis. Comput. Graph. 17(3),
264–275 (2011). https://doi.org/10.1109/TVCG.2010.80

23. Hazarika, S., Dutta, S., Shen, H., Chen, J.: Codda: a flexible copula-based distribution driven
analysis framework for large-scale multivariate data. IEEE Trans. Vis. Comput. Graph. 25(1),
1214–1224 (2019). https://doi.org/10.1109/TVCG.2018.2864801

https://doi.org/10.1109/ISAV.2016.013
https://doi.org/10.1109/ISAV.2016.013
https://doi.org/10.1109/BigData.2013.6691708
https://doi.org/10.1109/BigData.2013.6691708
https://doi.org/10.1109/TVCG.2013.133
https://doi.org/10.1109/TVCG.2013.133
https://doi.org/10.1145/3281464.3281467
https://doi.org/10.1145/3281464.3281467
https://doi.org/10.3115/981623.981633
https://doi.org/10.1109/IPDPS.2016.11
https://doi.org/10.1145/3139295.3139298
https://doi.org/10.1145/3139295.3139298
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1109/TVCG.2007.70519
https://doi.org/10.1109/TVCG.2007.70519
https://doi.org/10.1109/TVCG.2010.80
https://doi.org/10.1109/TVCG.2018.2864801

Sampling for Scientific Data Analysis and Reduction 35

24. Islam, A., Pearlman, W.A.: Embedded and efficient low-complexity hierarchical image coder.
In: Electronic Imaging’99, pp. 294–305. International Society for Optics and Photonics (1998)

25. Jänicke, H., Wiebel, A., Scheuermann, G., Kollmann, W.: Multifield visualization using local
statistical complexity. IEEE Trans. Vis. Comput. Graph. 13(6), 1384–1391 (2007). https://doi.
org/10.1109/TVCG.2007.70615

26. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957).
https://doi.org/10.1103/PhysRev.106.620

27. Larsen, M., Ahrens, J., Ayachit, U., Brugger, E., Childs, H., Geveci, B., Harrison, C.: The
alpine in situ infrastructure: Ascending from the ashes of strawman. In: Proceedings of the
In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization, ISAV’17, pp.
42–46. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3144769.3144778

28. Li, S., Marsaglia, N., Chen, V., Sewell, C., Clyne, J., Childs, H.: Achieving portable perfor-
mance for wavelet compression using data parallel primitives. In: Proceedings of the 17th
Eurographics Symposium on Parallel Graphics and Visualization, PGV ’17, p. 73–81. Euro-
graphics Association, Goslar, DEU (2017). https://doi.org/10.2312/pgv.20171095

29. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph.
20(12), 2674–2683 (2014)

30. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Trans.
Vis. Comput. Graph. 12(5), 1245–1250 (2006)

31. Liu, X., Shen, H.W.: Association analysis for visual exploration of multivariate scientific data
sets. IEEE Trans. Vis. Comput. Graph. 22(1), 955–964 (2016). https://doi.org/10.1109/TVCG.
2015.2467431

32. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible io and integration for
scientific codes through the adaptable io system (adios). In: Proceedings of the 6th International
Workshop on Challenges of Large Applications in Distributed Environments, CLADE ’08, pp.
15–24. Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/
10.1145/1383529.1383533

33. Lu, K., Shen, H.W.: A compact multivariate histogram representation for query-driven visu-
alization. In: Proceedings of the 2015 IEEE 5th Symposium on Large Data Analysis and
Visualization (LDAV), LDAV ’15, pp. 49–56 (2015)

34. Nouanesengsy, B., Woodring, J., Patchett, J., Myers, K., Ahrens, J.: ADR visualization: a
generalized framework for ranking large-scale scientific data using analysis-driven refinement.
In: 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV), pp. 43–50
(2014). https://doi.org/10.1109/LDAV.2014.7013203

35. Park, Y., Cafarella,M.,Mozafari, B.: Visualization-aware sampling for very large databases. In:
2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 755–766 (2016).
https://doi.org/10.1109/ICDE.2016.7498287

36. Patchett, J., Gisler, G.: Deep water impact ensemble data set. Los Alamos National Laboratory,
LA-UR-17-21595 (2017). http://dssdata.org

37. Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Com-
mun. Rev. 5(1), 3–55 (2001). https://doi.org/10.1145/584091.584093

38. Son, S., Chen, Z., Hendrix, W., Agrawal, A., Liao, W., Choudhary, A.: Data compression for
the exascale computing era - survey. Supercomput. Front. Innov. Int. J. 1(2), 76–88 (2014).
https://doi.org/10.14529/jsfi140205

39. Stockinger, K., Shalf, J., Wu, K., Bethel, E.W.: Query-driven visualization of large data sets.
In: VIS 05. IEEE Visualization 2005, pp. 167–174 (2005). https://doi.org/10.1109/VISUAL.
2005.1532792

40. Su, Y., Agrawal, G., Woodring, J., Myers, K., Wendelberger, J., Ahrens, J.: Taming massive
distributed datasets: data sampling using bitmap indices. In: Proceedings of the 22nd Interna-
tional Symposium on High-Performance Parallel and Distributed Computing, HPDC ’13, pp.
13–24. Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/
10.1145/2462902.2462906

41. Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation
of distances. Ann. Stat. 35(6), 2769–2794 (2007). http://www.jstor.org/stable/25464608

https://doi.org/10.1109/TVCG.2007.70615
https://doi.org/10.1109/TVCG.2007.70615
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1145/3144769.3144778
https://doi.org/10.2312/pgv.20171095
https://doi.org/10.1109/TVCG.2015.2467431
https://doi.org/10.1109/TVCG.2015.2467431
https://doi.org/10.1145/1383529.1383533
https://doi.org/10.1145/1383529.1383533
https://doi.org/10.1109/LDAV.2014.7013203
https://doi.org/10.1109/ICDE.2016.7498287
http://dssdata.org
https://doi.org/10.1145/584091.584093
https://doi.org/10.14529/jsfi140205
https://doi.org/10.1109/VISUAL.2005.1532792
https://doi.org/10.1109/VISUAL.2005.1532792
https://doi.org/10.1145/2462902.2462906
https://doi.org/10.1145/2462902.2462906
http://www.jstor.org/stable/25464608

36 A. Biswas et al.

42. Tao, D., Di, S., Chen, Z., Cappello, F.: Significantly improving lossy compression for scientific
data sets based on multidimensional prediction and error-controlled quantization. In: 2017
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1129–1139
(2017). https://doi.org/10.1109/IPDPS.2017.115

43. Tikhonova, A., Correa, C.D., Ma, K.: Explorable images for visualizing volume data. In: 2010
IEEE Pacific Visualization Symposium (PacificVis), pp. 177–184 (2010)

44. Van de Cruys, T.: Two multivariate generalizations of pointwise mutual information. In: Pro-
ceedings of the Workshop on Distributional Semantics and Compositionality, DiSCo ’11, pp.
16–20. Association for Computational Linguistics, Stroudsburg, PA, USA (2011). http://dl.
acm.org/citation.cfm?id=2043121.2043124

45. Verdu, S.: Fifty years of Shannon theory. IEEE Trans. Inf. Theory 44(6), 2057–2078 (1998).
https://doi.org/10.1109/18.720531

46. Wang,K.,KeweiLu,Wei, T., Shareef,N., Shen,H.: Statistical visualization and analysis of large
data using a value-based spatial distribution. In: 2017 IEEE Pacific Visualization Symposium
(PacificVis), pp. 161–170 (2017)

47. Wang, W., Bruyere, C., Kuo, B., Scheitlin, T.: IEEE visualization 2004 contest data set (2004).
NCAR. http://sciviscontest.ieeevis.org/2004/data.html

48. Wei, T., Dutta, S., Shen, H.: Information guided data sampling and recovery using bitmap
indexing. In: 2018 IEEE Pacific Visualization Symposium (PacificVis), pp. 56–65 (2018).
https://doi.org/10.1109/PacificVis.2018.00016

49. Woodring, J., Ahrens, J., Figg, J., Wendelberger, J., Habib, S., Heitmann, K.: In-situ sampling
of a large-scale particle simulation for interactive visualization and analysis. Comput. Graph.
Forum 30(3), 1151–1160 (2011). https://doi.org/10.1111/j.1467-8659.2011.01964.x

50. Ye, Y.C., Neuroth, T., Sauer, F., Ma, K., Borghesi, G., Konduri, A., Kolla, H., Chen, J.: In situ
generated probability distribution functions for interactive post hoc visualization and analysis.
In: 2016 IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV), pp. 65–74
(2016)

https://doi.org/10.1109/IPDPS.2017.115
http://dl.acm.org/citation.cfm?id=2043121.2043124
http://dl.acm.org/citation.cfm?id=2043121.2043124
https://doi.org/10.1109/18.720531
http://sciviscontest.ieeevis.org/2004/data.html
https://doi.org/10.1109/PacificVis.2018.00016
https://doi.org/10.1111/j.1467-8659.2011.01964.x

In Situ Wavelet Compression on
Supercomputers for Post Hoc
Exploration

Shaomeng Li, John Clyne, and Hank Childs

Abstract Wavelet compression is a popular approach for reducing data size while
maintaining high data integrity. This chapter considers howwavelet compression can
be used for data visualization and post hoc exploration on supercomputers. There
are three major parts in this chapter. The first part describes the basics of wavelet
transforms, which are essential signal transformations in a wavelet compression
pipeline, and how their properties can be used for data compression. The second
part analyzes the efficacy of wavelet compression on scientific data, with a focus on
analyses involving scientific visualizations. The third part evaluates howwell wavelet
compression fits in an in situworkflowon supercomputers. After reading this chapter,
readers should have a high-level understanding of how wavelet compression works,
as well as its efficacy for in situ compression and post hoc exploration.

1 Motivation

As discussed in the introductory chapter, two prominent challenges for in situ pro-
cessing are the lack of a human-in-the-loop and the need to process a current time
step entirely before it is replaced by the new one. An important approach for solving
this problem is to transform and reduce the data set to a small enough form that time
steps can be saved on disk. This enables human-in-the-loop interactivity, since the
reduced data can be explored post hoc by a domain scientist using fewer resources
than were needed for the simulation. This chapter explores this direction from the
perspective of wavelets, i.e., using wavelet transformations and lossy compression

S. Li (B) · J. Clyne
National Center for Atmospheric Research, Boulder, CO, USA
e-mail: shaomeng@ucar.edu

J. Clyne
e-mail: clyne@ucar.edu

H. Childs
University of Oregon, Eugene, OR, USA
e-mail: hank@uoregon.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_3&domain=pdf
mailto:shaomeng@ucar.edu
mailto:clyne@ucar.edu
mailto:hank@uoregon.edu
https://doi.org/10.1007/978-3-030-81627-8_3

38 S. Li et al.

to reduce data sizes to the point that individual time slices can be saved in a timely
manner for post hoc exploration.

2 Introduction to Wavelet Compression

This section is broken into three parts: Sect. 2.1 gives an overview of how wavelets
can be used for compression, Sect. 2.2 describes wavelet transforms in more detail,
and Sect. 2.3 describes choices for carrying out compression.

2.1 Overview of Using Wavelets for Compression

Wavelet compression is a transform-based technique, because it relies on wavelet
transforms as its core operation. Wavelet transforms operate similarly to Fourier
transforms, in that they both transform data and represent it in another domain.
Where Fourier transforms represent data in the frequency domain, wavelet trans-
forms represent data in the wavelet domain, which contains both frequency and time
information.

Thewavelet domain representation has some desirable properties that make it use-
ful in a wide range of applications, in particular signal and image processing. Exam-
ples of such applications include edge detection [10, 42], pattern recognition [29,
38], signal-noise separation [1, 33], multi-resolution analysis [14], and of course
lossy compression (notably the JPEG 2000 image compression standard [36]). The
final entry in this list, lossy compression, and more specifically general-purpose in
situ scientific data reduction, is the focus of this chapter. That said, other visualization
works have considered wavelets as well. One important example is wavelet-based
rendering, and in particular for 3D volume renderings. These works are often GPU-
centric, with a pre-processing step to store encodedwavelet coefficients in a form that
is friendly to modern GPU architectures and graphics programming models. Then,
during the rendering phase, they approximate the original data on-the-fly while per-
forming rendering tasks on the GPU. Additional details on wavelet-based rendering
can be found in works by Wang and Shen [40], Guthe et al. [11], Ihm and Park [13],
and Kim and Shin [17]. The focus of this chapter differs in that this chapter considers
a general-purpose lossy compression technique.

Wavelet-based lossy compression is enabled by the information compaction prop-
erty of wavelet transforms: the ability to decorrelate a signal, removing redundant
information, and expressing the non-redundant information using only a small num-
ber of coefficients in the wavelet domain. Lossy compression is then achieved by
prioritizing the storage budget towards that small number of information-rich coeffi-
cients. Usually the more coherence in the input data, the better wavelets will compact
information, and thus the better data will be compressed.

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 39

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Original Sine Wave (20 Data Points)

(a) An original sine wave

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Wavelet Coefficients (20 In Total)

(b) Resulting wavelet coefficients

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Reconstructed Sine Wave (20 Data Points)

(c) Reconstructed sine wave using 10
prioritized coefficients

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Prioritized Wavelet Coefficients (10 In Total)

(d) Prioritized Wavelet coefficients with 10
largest magnitudes

Fig. 1 Demonstration of information compaction of wavelets. This figure is organized as four
subfigures, with the two figures on the left column (Subfigure a and c) representing twenty data
values and the two figures on the right column (Subfigure b and d) representing twenty wavelet
coefficients. Subfigure a shows the input data to a wavelet transformation, a discrete sine wave with
20 data points. Subfigure b shows the output of the wavelet transformation, 20 wavelet coefficients.
Importantly, the wavelet transform achieves no data savings. However, Subfigure d shows one
approach for achieving data savings, namely “prioritized coefficients.” With this approach, the
largest magnitudes are retained (10 in this case), and the rest are zeroed out. This approach achieves
a 2Xstorage saving. That said, the sinewave reconstructed fromprioritized coefficients (Subfigure c)
is no longer perfectly accurate—although it highly resembles the original input from Subfigure a,
it is not the same, and in particular the values at locations zero and six are clearly different

Figure1 illustrates an example, specificallywhen applyingwavelet transforms to a
discrete sine wave. Here, the resulting wavelet coefficients have information content
proportional to their magnitude. As the illustration shows, much of the information is
compacted into a few large-magnitude coefficients, resulting inmany near-zero coef-
ficients. Lossy compression removes these near-zero coefficients and, when recon-
structing the data later, the missing coefficients are treated as zeros. The strength of
wavelets is that the resulting impact on the reconstructed field is small.

40 S. Li et al.

2.2 Basics of Wavelet Transforms

This subsection describes the basics of wavelet transforms, and does so in three parts.
Section2.2.1 focuses on the simplest case, which is a one-dimensional wavelet trans-
form; Sect. 2.2.2 describes extensions for multi-dimensional wavelet transforms; and
Sect. 2.2.3 describes different choices for wavelet kernels.

2.2.1 One-Dimensional Wavelet Transform in Detail

One-dimensional wavelet transform is the building block for wavelet transforms in
multi-dimensional volumes. These transforms can be viewed as expressing an input
signal x(t) as an invertible, linear expansion about a set of basis functions:

x(t) = ∑

j∈Z

∑

k∈Z
a j,kψ j,k(t), (1)

where a j,k are real-valued coefficients, and ψ j,k(t) are wavelet functions typically
forming an orthonormal basis. Conceptually, the coefficients a j,k measure the simi-
larity between the input signal and the basis functions. For lossy compression, a small
subset of available wavelet transforms, namely non-expansive transforms, are often
used. With these non-expansive transforms, a finite, discrete series of data points
x[n] will result in the same number of coefficients a j,k , instead of expanding the
coefficient number. Because a wavelet transform is invertible, the original signal can
be reconstructed from all wavelet coefficients without losing any accuracy.

The resulting wavelet coefficients have two flavors: the “approximation” coeffi-
cients which provide a coarsened representation of the data, and the “detail” coef-
ficients which contain the missing information from the coarsened representation.
Figure1b illustrates this intuition: the first ten coefficients approximate the input data,
and the second ten coefficients record the deviation. Wavelet transforms can then be
applied recursively on approximation coefficients from previous wavelet transforms,
resulting in a hierarchy of coefficients. This recursive application of wavelet trans-
forms concentrates information content into fewer and fewer coefficients, and the
resulting coefficient hierarchy forms a data representation spanning multiple resolu-
tions. This hierarchy is reflected in the linear expansion in Eq.1, where j indicates
the different scales.

2.2.2 Wavelet Transform for Higher Dimensional Volumes

One-dimensional wavelet transforms can be extended tomultiple dimensions by suc-
cessively applying a one-dimensional transform along each axis, i.e., output coeffi-
cients of one transform become the input of the next transform along a different axis.
This practice takes advantage of data coherence along all dimensions, as the more
coherence being removed from the data, the more compression will be achieved.

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 41

X

Z
Y A D

AD DD

AA DA

ADA DDA

AAA DAA

ADD DDD

DAD

3D Data Volume
Coefficients after a
transform along X

Coefficients after
transforms along X, Y

Coefficients after
transforms along X, Y, Z

Fig. 2 Illustration of one level ofwavelet transform for a three-dimensional volume.Approximation
and detail coefficients are denoted using “A” and “D.” From left to right are the original data
volume, and the resulting coefficients after wavelet transforms are applied in the X , Y , and Z
axes, respectively. After each wavelet transform, every coefficient receives a label of either “A”
or “D” with respect to the axis the transform was performed. The ordering of the “A”s and “D”s
in the labels corresponds to the axis the transform was applied to (X first, followed by Y , then
Z). The “AAA” label on the bottom-left sub-volume of the right-most subfigure indicates that this
sub-volume contains approximation coefficients from transforming all three axes. This image is
adapted from our previous work [22]

Figure2 illustrates a three-dimensional wavelet transform. In this example, each
row goes through a wavelet transform pass in the X direction, resulting in approx-
imation and detail coefficients with respect to the X axis (subfigure that is second
from the left). Second, these coefficients go through wavelet transforms in the Y
direction as columns, resulting in approximation and detail coefficients with respect
to the Y axis (subfigure that is third from the left). Third, the output coefficients
from the second set of transforms go through wavelet transforms in the Z direction,
resulting in approximation and detail coefficients with respect to the Z axis (the last
subfigure). The result of these three sets of transforms is that every coefficient in the
volume now represents either approximation or detail coefficients with respect to all
three axes.

Finally, similar to recursive application of one-dimensional wavelet transforms,
multi-dimensional transforms can also be applied recursively to achieve further infor-
mation compaction. In this use case, the next level of wavelet transforms will be
applied on the sub-volume which represents approximation coefficients with respect
to all axes, i.e., the “AAA” sub-cube of Fig. 2.

2.2.3 Wavelet Kernel Choices

Wavelet kernels are used to generate basis functions, specifically the basis functions
ψ j,k(t) from Eq.1. There are various choices of wavelet kernels. For example, the
Haar wavelet is the simplest kernel whose approximation coefficients represent the
average of two neighboring data points. In this case, detail coefficients represent the
difference between this average and the twodata points. Popularwavelets besideHaar
include Coiflets [41], Daubechies wavelets [6] and Cohen-Daubechies-Feauveau
(CDF) wavelets [4], which are all families of wavelets with flexible configurations.

42 S. Li et al.

Two newly developed wavelets, namely curvelets [3] and surfacelets [25], have also
gained traction in multi-resolution analysis [30, 31]. The wide array of available
wavelet kernels enables the broad application of wavelets discussed in Sect. 2.1.

In lossy compression applications, two members from the CDF family, CDF 5/3
and CDF 9/7, are particularly popular because they have excellent information com-
paction capabilities, and they allow for non-expansive wavelet transform on aperi-
odic, finite-length inputs. The latter property is especially important since almost all
other wavelet families are expansive over aperiodic finite signals, resulting in more
coefficients than inputs. In fact, CDF 5/3 is used in the JPEG 2000 [36] standard for
lossless compression, while CDF 9/7 is used for JPEG 2000’s lossy compression,
as well as many other applications in image compression research [8, 28, 32, 34].
For lossy scientific data compression, CDF 9/7 has been demonstrated to provide
better compression efficiency compared to CDF 5/3 and the Haar kernel, with only a
modest performance disadvantage [19]. In the remainder of this chapter, the wavelet
kernel for compression will be CDF 9/7, unless specified otherwise.

2.3 Compression Strategy Options

As discussed in Sect. 2.2.1, the output of a wavelet transform is at best the same
size as the input data array using a non-expansive transform—wavelet transforms by
themselves do not reduce data. Instead, wavelet compression occurs subsequently,
and this is where loss of information occurs. This subsection focuses on this subse-
quent lossy compression step, and describes three major compression strategies and
their properties.

2.3.1 Multi-resolution

With a multi-resolution approach, data is reconstructed at lower resolutions in each
dimension. More specifically, coefficients are laid out naturally with respect to the
coefficient hierarchy that is createdby the recursive applicationofwavelet transforms.
Because each level of coefficients reconstructs an approximation of the original
data, compression is achieved by storing only some levels of coefficients from the
hierarchy, which provides approximations of the data at lower resolutions.

Each application of a wavelet transform coarsens the data array into half of its pre-
vious resolution, i.e., the approximation coefficients. As a result, the multi-resolution
compression strategy offers a pyramid representation that is strictly limited to power-
of-two reductions along each axis. In the case of three-dimensional volumes, the
applicable compression ratios are of the form 8N :1, where N is the number of iter-
ations of wavelet transforms applied. That is, applicable compression ratios include
8:1, 64:1, 512:1, etc.

Though multi-resolution provides a means for reducing data sizes on disk, it
does not fully take advantage of wavelet’s information compaction properties. This

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 43

contrasts with the compression strategies discussed in the following subsections,
which almost always provide better data integrity at any given compression ratio. The
strength of the multi-resolution approach, however, is in reducing memory footprint
and speeding up analysis during data exploration and visualization phases. This
is because performing exploratory visualizations on low resolution approximations
makes the processing speed orders of magnitude faster. Further, when interesting
phenomena are observed, domain scientists can zoom in on that region, and bring in
higher resolution data. This usage scenario fits Shneiderman’s visualization mantra:
“overview first, zoom and filter, then details-on-demand” [35].

Finally, multi-resolution takes a unique position in wavelet technologies because
it can be used in conjunction with compression strategies discussed in the following
subsections. That means a single copy of the compressed data both reduces storage
on disk and can be used to reduce memory footprint during data exploration. This
versatility of wavelets is uncommon among other compression techniques [23].

2.3.2 Coefficient Prioritization

Coefficient prioritization (illustrated in Fig. 1) is different than the multi-resolution
approach, since it focuses on the relative importance of each coefficient rather than on
a hierarchical representation. When applying recursive wavelet transforms, a small
number of coefficients typically contain the vast majority of information. The coeffi-
cient prioritization strategy, then, prioritizes all coefficients based on their infor-
mation content. Compression is then achieved by storing only the collection of
information-rich coefficients, and discarding the rest of them (effectively treating
them as zeroes).

A related issue is how to identify the coefficients that are information-rich. Fortu-
nately, with certain wavelet kernels, including CDF 9/7 and CDF 5/3, the magnitude
of a wavelet coefficient is proportional to its information content, which makes the
prioritization step easy to conduct. As a result, the largest wavelet coefficients are
saved, and the rest are discarded.

Coefficient prioritization is a lossy compression strategy, as it supports recon-
structing the mesh on its full resolution. That said, the reconstruction at individual
data points may be inaccurate. Coefficient prioritization also differs from the multi-
resolution strategy in that: (1) it supports arbitrary compression ratios, by choosing
what percentage of total coefficients to keep; and (2) it requires extra mechanisms to
keep track of where the prioritized coefficients belong in the coefficient hierarchy.
For the second point, the typical way to keep track of which coefficients are saved
is to explicitly store their addresses. Therefore, while coefficient prioritization has
benefits (i.e., arbitrary compression ratios and focusing on the most information-rich
coefficients), it also has drawbacks (i.e., storage overhead and extra complexity). On
the whole, however, research has shown that its benefits outweigh its drawbacks: the
focus on storing the most information-rich coefficients more than offsets the storage
overhead [19].

44 S. Li et al.

1 12864 9680 88

Fig. 3 Illustration of using progressive quantization to encode a quantized version of a data point
within the data range of (1, 128). The black dot represents the data point of interest. In the encoded
form, the first bit specifies that the data point is within the upper half of the data range, i.e., (64, 128);
the second bit further narrows the range to (64, 96); the next bit narrows the range to (80, 96); and
the last bit narrows the range to (88, 96). Within a data range, all data points are considered to be
at the middle of that range, so in this example, the data point of interest is quantized as 92. This
particular encoding takes four bits of storage

2.3.3 Advanced Codecs

The previous sections have described how to organizewavelet coefficient hierarchies;
this section describes data structures designed specifically to encode such hierarchies
efficiently. We refer to these data structures as advanced codecs. The process of
building and maintaining these data structures is significantly more complex than the
procedures to achieve multi-resolution and coefficient prioritization, so this section
only provides a high-level overview on these codecs.

Advanced codecs achieve efficient storage by making use of the hierarchical
structure of wavelet coefficients and the similarities between different levels. They
also use progressive quantization [7] to encode quantized versions of all coefficients,
during which process coefficients with larger magnitudes effectively receivemore bit
budget. The idea of progressive quantization is to record a series of binary decisions
on whether a data value is larger or smaller than a set of quantization thresholds. The
number of decisions recorded for a data value may vary—the more binary decisions
recorded, the more accurate the quantized approximations become. Figure3 presents
an example of progressive quantization which uses four bits to locate a data point to
a narrower range that is 1

16 th of the original data range. In advanced codecs, wavelet
coefficients are encoded by different numbers of bits. This is because a wavelet
coefficient is treated as zero without taking storage when it is below the quantization
threshold, and only starts to be encodedwhen the threshold falls below its magnitude.
As the quantization threshold always begins from a big value and decreases each
iteration, coefficients with larger magnitudes start to receive bits early, and smaller
coefficients start to receive bits later. This practice makes sure that more storage
budget is allocated to the most information-rich coefficients.

The most well-known data structures and their corresponding codecs include
ZeroTrees [34], Set Partitioning In Hierarchical Trees (SPIHT) [16, 32], Set Par-
titioned Embedded bloCKs (SPECK) [28, 37], and Embedded Block Coding with
Optimized Truncation (EBCOT) [39]. The final entry in this list, EBCOT, has been
adopted by the JPEG 2000 [36] standard.

Advanced codecs are lossy, as they support reconstruction on the mesh’s native
resolution with inaccuracy occurring on individual data points. They also sup-
port arbitrary compression ratios. Regarding storage, these special data structures
already keep coefficient locations implicitly, thus eliminating the storage overhead

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 45

incurred by addressing coefficients in the coefficient prioritization strategy. As a
result, advanced codecs represent state-of-the-art wavelet compression in terms of
rate-distortion (i.e., howmuch error is introduced given a certain compression ratio).
Finally, we note that advanced codecs have not seen significant usage outside of
the scope of image compression, indicating that more study is required to better
understand their viability in scientific simulation and in situ visualization settings.

3 Evaluating the Effects of Wavelet Compression on
Scientific Visualization

Error characteristics for wavelet compression depend on the input data. Wavelet
transforms typically compact informationmost effectivelywhen operating on smooth
input, meaning that adjacent data values change in similar fashions. An important
question, then, is on the efficacy of wavelet compression in real world settings on sci-
entific data from computational simulations. Further, an important aspect when con-
sidering efficacy is how the reconstructed data is evaluated. Inmany areas, traditional
statistics for measuring error introduced by compression, such as root-mean-square
error (RMSE) and L∞-norms, are easy to understand and applicable. However, sci-
entific visualization and visual analytics pose additional difficulties for assessing
compression, since different visualizations and visual analytics often have very dif-
ferent levels of tolerance to error in the data.

This section examines multiple visualization tasks and evaluates the effects of
wavelet compression on visual analytics tasks. Two techniques are used to conduct
this evaluation. The first includes statistics on the compressed data (RMSE and
L∞-norm). They provide a basic understanding of the compression efficiency. The
second includes visualization-specific metrics. These metrics are derived based on
the characteristics of specific visualizations, and are able to capture the direct impact
of compression on specific analysis outcomes. For each of the visualization tasks in
this section, at least one of these evaluation techniques is used.

The evaluations in the remainder of this section have some commonalities. First,
each uses coefficient prioritization as its wavelet compression strategy. Second, their
exact statistics are calculated using the following equations:

RMSE =
√

(
∑

i∈N
(v[i] − ṽ[i])2)/N , L∞−norm = max

i∈N (v[i] − ṽ[i]) . (2)

where v[i] and ṽ[i] are data values from the original and compressed data sets, and
N is the total number of data values. In practice, both RMSE and L∞-norm are often
normalized by the data range. The full details of the experiments from these studies
can be found in their original works (Sects. 3.1: [19], Sect. 3.2: [24], and Sect. 3.3:
[21]).

46 S. Li et al.

3.1 Critical Structure Identification

3.1.1 Visual Analytics Use Case Description

The first efficacy evaluation considers a visual analytics method from Gaither
et al. [9]. Their approach focuses on critical structures within a turbulent flow simu-
lation, and studied the global population of these structures. Critical structures were
defined as the output of a two-step process. The first step was to isolate regions with
enstrophy values higher than α, a fixed value provided by domain scientists, on a
4, 0963 grid. Contiguous regions were found through a connected components algo-
rithm [12]. The result of this step was millions of these high-enstrophy regions. The
second step was to eliminate structures with a volume smaller than some threshold β,
which was again a fixed value provided by domain scientists. The result of this step
was to reduce the number of critical structures down to hundreds. Figure4a shows
a screenshot of these identified critical structures in the 4, 0963 volume, and Fig. 4b
shows a close-up look at one of the critical structures.

This analysis routine can potentially be quite sensitive to changes in the enstrophy
field from compression. If the compressed enstrophy breaks a component, then the
result may put that component below β. Similarly, if the compressed enstrophy joins
two disjoint components, then the resultmay put the joined component aboveβ. Such
a change would affect the statistics of the global population of critical structures.

3.1.2 Evaluation—Structure Identification

Figure4c–f illustrate the visualization using compressed data. They show that even
with aggressive compression (i.e., 256:1), the visual analytics routine still identifies
many critical structures. Upon close examination, differences between the baseline
and compressed renderings reveal that the visual analytics routine can cause both
disappearance and creation of structures. That said, the overall trend is that there
are fewer and fewer structures being identified as compression increases. To better
understand this phenomenon and quantitatively evaluate the effect of compression,
two types of error are considered. Thefirst type of error is referred to asFalsePositives
(FP), meaning that a structure which does not exist in the baseline rendering was
falsely identified from the compressed data. The second type of error is referred to as
FalseNegatives (FN), meaning that a structure appeared in the baseline renderingwas
not identified from the compressed data. The rest of structures that are identified from
both original and compressed data are referred to as Common Structures (Comm);
details on how a structure is classified can be found in the original study [19]. The
percentage of the two types of errors introduced by compression can be calculated
as:

FP_Percentage = FP
FP + Comm × 100 , FN_Percentage = FN

FN + Comm × 100 .

(3)

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 47

(a) The Baseline Rendering
(b) One Identified Structure

(c) Compression Ratio: 8 : 1 (d) Compression Ratio: 64 : 1

(e) Compression Ratio: 128 : 1 (f) Compression Ratio: 256:1

Fig. 4 Visualization of the critical structure identification analysis with the baseline result as well
as renderings from compressed data. Within each rendering, each individual structure is colored by
a unique color. This image is reprinted from our previous work [19]

48 S. Li et al.

Table 1 False positive and false negative percentage of structure identifications

Comp. Ratio 8 : 1 64 : 1 128 : 1 256 : 1
FP Pct. 3 14 17 16

FN Pct. 3 17 20 28

Table 2 Normalized RMSE and L∞-norm values at different compression ratios

Comp. Ratio 32 : 1 64 : 1 128 : 1 256 : 1
RMSE 9.6e − 6 1.4e − 5 2.1e − 5 3.1e − 5

L∞-norm 3e − 3 5e − 3 1e − 2 3e − 2

Table1 provides the evaluation results. Both types of error grow as the compres-
sion ratio grows. Further, the false negative value is always higher than false positive,
meaning compression tends to make the visual analytics task fail in identifying cer-
tain structures. Finally, at 256:1, the false positive value falls lower than that of 128:1,
while the false negative value grows. This counter-intuitive result is really a failing in
the metric; the visual analytics identifies a much smaller total number of structures at
this compression ratio, so it becomes hard to have a high false positive value. More
discussion about this visual analytics and evaluation is available in [19], which also
includes evaluations of multiple wavelet kernels.

3.1.3 Evaluation—Statistics

Table2 provides RMSE and L∞-norm evaluations at multiple compression ratios.
These values are all normalized by the range of this data set. The average error
(RMSE) is much smaller than the maximal error (L∞-norm), with differences as
large as three orders of magnitude. Considering that the test data contained more
than 68 billion data points (4, 0963) and any one of them could set the L∞-norm
with the largest individual difference, this large disparity between RMSE and L∞-
norm is not too surprising. Overall, this analysis shows that the average error is quite
low, but that the error at a given data point can be much higher.

3.2 Pathline Integration Analysis

3.2.1 Visual Analytics Use Case Description

This evaluation was performed on a simulation of an EF5 tornado [27]. Its output
comprised a sequence of 220 time steps depicting the most violent stage of this
tornado. The mesh is sized at 4902 × 280, covering a physical space of 14, 670 ×

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 49

Fig. 5 Each subfigure visualizes the pathlines for a single seed particle being advected using the
original version of the data, as well as 3D and 4D compressed versions at the 128:1 ratio. Black
pathlines are from the original data set; red ones are from the 4D compression; and blue ones are
from the 3D compression. The top two instances show that 4D (red) and 3D (blue) pathlines have
similar ending positions, but the 4D ones more closely resemble the baseline (black) for longer
durations. The bottom two instances show a clear disadvantage of 3D pathlines (blue) both in terms
of early deviation and in terms of far apart final positions. This image is reprinted from our previous
work [24]

14, 670 × 8, 370m. The visualization task was pathline integration for 144 total
particles from different locations in the volume. All particles were advected using
the Runge–Kutta 4 method with a step size of 0.01s. Velocity values between time
steps were calculated using linear interpolation.

Compression on this data set was performed on each component of velocity (X, Y,
and Z) individually. In addition to different compression ratios (8:1, 32:1, 64:1, and
128:1), two types of wavelet compression were also performed: spatial-only (3D)
and spatiotemporal (4D) compression. While the 3D compression was individually
performed on all 220 time steps, the 4D compression was performed on groups
of time steps, with each group consisting of 18 time steps. This 4D compression
configuration is motivated by the coherence between time steps, and the desire to
exploit this coherence while performing compression. More details about this 4D
compression were provided in the original publication [24]. The total number of

50 S. Li et al.

Table 3 Our error metric for each wavelet-compressed data set and deviation tolerance, averaged
over all 144 seeds

D = 10 (%) D = 50 (%) D = 150 (%) D = 300 (%) D = 500 (%)

8 : 1, 3D 8.5 2.3 1.3 1.1 1.0

8 : 1, 4D 3.4 1.3 1.1 0.8 0.6

32 : 1, 3D 35.9 10.3 4.5 3.1 2.4

32 : 1, 4D 24.4 6.4 3.2 2.1 1.6

64 : 1, 3D 48.4 17.3 7.5 5.3 3.9

64 : 1, 4D 35.7 9.8 5.1 3.3 2.7

128 : 1, 3D 60.7 27.8 10.8 6.7 5.2

128 : 1, 4D 45.8 16.3 7.5 5.1 3.9

versions of this data set was then nine: eight compressed versions (four compression
ratios times two compression types), and one original version.

3.2.2 Evaluation—Pathline Deviation

Evaluation involved performing particle advection on all nine versions of the data,
and then examining howmuch the pathlines calculated from compressed data deviate
from theones calculated from theoriginal data. Figure5 illustrates four example seeds
and their resulting pathlines using the original and compressed data.

The metric for quantitative evaluation focused on the trajectory followed by a
pathline: let D be a fixed distance, let T be the total time of advection for a particle,
and let T0 be the first time a pathline deviates distance D away from its baseline.
Then error was defined as a percentage: (1.0 − T0/T) × 100. Taking an example: if
a particle first deviates distance D from its baseline after six seconds and travels for
a total of ten seconds, then its error would be 40%. Five values of D were tested in
this evaluation based on suggestions from a domain scientist for this particular data
set: D = 10, 50, 150, 300, and 500m.

Table3 presents results from this evaluation. Each evaluation percentage is aver-
aged over all 144 seed particles. Considering that the deviation thresholds are two to
three orders of magnitude smaller than the domain extents, these errors, especially
with lower compression ratios, are likely sufficiently small for many visualization
tasks. This test also revealed the advantage of 4D compression—with a fixed com-
pression ratio, it consistently yields smaller errors, and it sometimes achieves the
same error with a more aggressive compression ratio. This discovery is consistent
with the wavelet theory—better compression is achieved by making use of data
coherence along multiple dimensions (see discussion in Sect. 2.2.2).

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 51

3.3 Shock Wave Front Rendering

3.3.1 Visual Analytics Use Case Description

This study considers the Lulesh [15] proxy-application, a 3D Lagrangian shock
hydrodynamics code. Lulesh implements the Sedov test problem, which deposits
initial energy at one corner of a cube, and propagates a shock wave from the origin
outward to the rest of the cube. While this problem can be run for arbitrarily long
periods of time by keeping the propagation going, the phenomenon is most obvious
in the first few thousands of time steps. The evaluation, then, considered a time in this
initial, interesting period. The variable fields involved in this study include energy (e),
relative volume (v), pressure (p), artificial viscosity (q), and the x component of
velocity (xd), each on a spatial domain of resolution 1283.

Figure6 presents renderings of the pressure field using the original data (first row),
compressed data at various levels (second row), and the image difference caused by
compression (third row). While the 16:1 result looks almost indistinguishable from
the baseline, the 64:1 result has clear “ripples” along the shock wave front, since that
is where most of the energy resides and prone to error. The 128:1 result is even more
deteriorated with not only a rough front, but also artifacts in the volume.

3.3.2 Evaluation—Statistics

Evaluation of the efficacy of compression on this data set is done using RMSE and
L∞-norms. They are measured on all five variables from this simulation, and are
normalized by the range of the data. Table4 reports these statistics. The most inter-
esting finding from this study is likely that the statistics vary vastly from variable
to variable. This is because different variables exhibit different levels of data coher-
ence, while a high level of coherence is essential for effective wavelet compression.
Another observation is that the difference between RMSE and L∞-norm at each
configuration is one order of magnitude among all variables and compression ratios,
which is in contrast to the two to three orders of magnitude difference observed in
Sect. 3.1.3. This is because the smaller dimensions of this data set (1283 as opposed
to the 4, 0963 in Sect. 3.1.3) are less prone to extreme inaccuracy.

4 Wavelet Compression on High-Performance Computers

This section considers two topics regarding the viability of carrying out wavelet
compression on high-performance computers. First, Sect. 4.1 considers how to per-
form wavelets calculations efficiently on modern computing architectures. Second,
Sect. 4.2 considers the overall I/O impact of wavelets.

52 S. Li et al.

Comp. Ratio = 16 : 1 Comp. Ratio = 64 : 1 Comp. Ratio = 128 : 1

Fig. 6 Renderings of the pressure field from Lulesh depicting the shock wave front. The first row
shows the original rendering, and the second row shows renderings fromcompressed data at different
compression ratios. The third row shows rendering difference between those from the original and
compressed data, with lighter colors indicating bigger differences. This image is adapted from our
previous work [21]

Table 4 Error measurements for each compression ratio. The five data fields evaluated are: energy
(e), relative volume (v), pressure (p), artificial viscosity (q), and x-velocity (xd)

e v p q xd

16 : 1 RMSE 6.7e − 8 4.1e − 8 3.5e − 4 2.2e − 4 1.1e − 3

L∞-norm 9.2e − 7 4.7e − 7 5.3e − 3 4.4e − 3 1.5e − 2

64 : 1 RMSE 7.7e − 7 4.8e − 7 4.9e − 3 5.8e − 3 1.0e − 2

L∞-norm 1.8e − 5 1.6e − 5 1.0e − 1 1.2e − 1 2.0e − 1

128 : 1 RMSE 1.7e − 6 1.1e − 6 1.0e − 2 1.2e − 2 1.8e − 2

L∞-norm 3.8e − 5 2.3e − 5 2.6e − 1 2.9e − 1 3.4e − 1

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 53

4.1 Wavelets on Modern Computing Architectures

4.1.1 Portable Performance over CPUs and GPUs

The rise of many-core architectures on supercomputers, particular GPUs, poses both
opportunities and challenges for algorithm developers. The opportunities lie in the
great performance potential of such architectures, while the challenges lie in the
difficulties of harnessing it.

In this subsection, we consider whether wavelets are able to achieve portable per-
formance, i.e., a single code base that can execute efficiently on both CPUs andGPUs
with desired performance. This direction follows a line of research by Blelloch [2] in
defining code in terms of data-parallel primitives (DPPs). Rather than each iteration
of a loop (e.g., for or while) processing individual data elements, DPP-based
programming processes groups of data in parallel. Each data-parallel primitive, such
as map, reduce, gather, and scatter, provides a unique pattern to process a
groupof data, and a generic algorithmcan thenbe built upon availableDPPs.With this
approach, the burden of achieving good performance on a specific hardware architec-
ture (and even running on the architecture itself) shifts to the implementation of the
data-parallel primitives. This approach can save developer time when porting to new
architectures, since there are many more visualization algorithms (hundreds) than
data-parallel primitives (on the order of twenty). Further, the VTK-m project [26]
is championing this approach, and providing a framework for algorithm developers
to write portably performant code. Returning to wavelets, then, the challenge is to
design a wavelet compression algorithm out of data-parallel primitives, which would
enable wavelets to run on the variety of many-core architectures found on modern
supercomputers.

4.1.2 Wavelet Compression and Portable Performance

This section considers the performance of the wavelet compression filter in the VTK-
m framework. This implementation primarily uses two data-parallel primitives: map
and sort. The former is used in the wavelet transform step, where each input data
value is “mapped” to an output wavelet coefficient by a sequence of calculations. The
latter is used in the coefficient prioritization step, where all coefficients are sorted
based on their magnitudes. The algorithm also uses other DPPs for data movement
within multi-dimensional wavelet transforms, for example gather and scatter,
but these operations are nowhere near as computationally intensive as map and
sort. More details on the implementation can be found in the study describing this
algorithm [22].

To evaluate portable performance of wavelet compression, a study [22] compared
the data-parallel primitive-based approach with platform-specific implementations
for multi-core CPUs and CUDA GPUs, namely VAPOR [20] for multi-core CPUs,

54 S. Li et al.

Fig. 7 Execution time comparison (in seconds) between a data-parallel primitive-based implemen-
tation and a platform-specific implementation of a wavelet transform on two different architectures.
The top row compares execution time between VTK-m and VAPOR implementations on a multi-
core CPU. The bottom row compares execution time between VTK-m and CUDA implementations
on a GPU. The purple region indicates the time for wavelet transforms, and green is for sorting.
The GPU tests had one fewer set of experiments because of memory limitations for large data sets.
This image is reprinted from our previous work [22]

and a native CUDA implementation for GPUs. These implementations represented
best practices on respective architectures, so they are good comparators.

In the study, theVTK-m implementationwas compared toVAPORon amulti-core
CPU system with 32 Xeon Haswell CPU cores at 3.2GHz, while it was compared
to CUDA using an NVidia Tesla K40 GPU with 2,880 cores at 745MHz. In both
cases, the same test data set is used: a Gaussian distribution with four sizes, 2563,
5123, 1, 0243, and 2, 0483.

Figure7 shows results of the experiments. In the CPU cases, VTK-m’s data-
parallel primitive approach was faster, because it was able to sort faster by using
highly optimized routines. In the GPU cases, the comparison was not as favorable,
primarily because of overheads. On thewhole, however, performancewas considered
to be acceptable. In summary, this study provided three main takeaways: (1) wavelets
can be implemented in a hardware-agnostic manner, (2) the resulting code performed
well, and thus (3) wavelets can be viably deployed on the varied architectures of
modern supercomputers.

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 55

4.2 Overall I/O Impact

The purpose of in situ wavelet compression is to reduce the I/O cost for large-scale
simulations, both in terms of bytes to store and time to store and load for post hoc
analysis.While there is no doubt that less data requires fewer bytes of storage, the time
savings are less clear. First, in situ compression does incur additional computational
cost, and second, the parallel filesystems on supercomputers also have less intuitive
characteristics. All these factors require experiments to test the proposition that in situ
compression saves on I/O costs. Such experiments should be on a real supercomputer,
and measure the overall cost, which includes time spent both on computation and on
actual I/O. This section describes one such set of experiments.

4.2.1 Experiment Overview

The experiment was designed as a weak scaling problem over many compute nodes,
meaning that each compute node holds a fixed-sized domain, and the problem grows
by adding more compute nodes (and thus domains) into the problem being solved.
During every iteration of the execution, every compute node performed simulation,
compression, and I/O for its own fixed-sized domain. All compute nodes performed
these actions in a synchronized manner, meaning that they were each performing the
same stages of tasks at the same time. As more and more compute nodes were added
to the execution, more and more concurrent I/O requests were issued to write out
larger and larger amounts of data, resembling bursty I/O in real-world applications.
This experiment measured the overall I/O with or without in situ compression.

Software used in this experiment included Ascent [18], Lulesh [15], and the
wavelet compression implementation using VTK-m described in Sect. 4.1. Ascent
oversaw the execution, orchestrating the simulation, in situ compression, data I/O,
and communication among all compute nodes. The specifics of the simulation were
the same as those used in Sect. 3.3: a shock wave propagation with Lulesh. The
experiment was configured to have each compute node holding a domain of size
3203, while the shock wave front traveled across domains. Lulesh outputted seven
data fields, and in this experiment all data fields were compressed and written to disk.

The supercomputer used in this experiment was Cheyenne [5], the flagship super-
computer of the National Center for Atmospheric Research as of 2020. Every com-
pute node of Cheyenne is equipped with 36 Xeon Broadwell cores and 64 GB system
memory. In this experiment, the number of compute nodes used are 13, 23, 33, 43,
through 103, reflecting theweak scaling experiment design. The filesystem connected
to this cluster is aGPFSparallel filesystemwith 200GBper second bandwidth,which
is representative for modern supercomputers. On a final note, this experiment was
performed during a lull on the machine in the middle of the night, in an effort to
minimize I/O and network contention with other jobs running on the supercomputer.

56 S. Li et al.

Number of Compute Nodes

C
yc

le
 E

xe
cu

tio
n

Ti
m

e
pe

r C
yc

le
 (S

ec
on

d)

0

2

4

6

8

10

12

14

16

18

20

22

Write Compression Simulation

Execution Time Breakdown of Lulesh

 1 8 27 64 125 216 343 512 729 1000

Fig. 8 Execution time breakdown of an in situ wavelet compression experiment with Lulesh. Each
group of four uses the same number of compute nodes (X labels), but different compression ratios:
no compression, 16:1, 64:1, and 128:1 (from left to right within each group). This image is adapted
from our previous work [21]

4.2.2 Experiment Results

Figure8 presents the execution time breakdown of this experiment, from 1 compute
node to 1,000 compute nodes. The in situ compression overhead stayed mostly con-
sistent, taking around 5s per cycle regardless of compression ratio. With smaller
problem sizes (i.e., 1 to 343 domains), this overhead was greater than the I/O time
with no compression. As the problem size grew (i.e., greater than 343), the I/O time
without compression grew rapidly, making it advantageous to use in situ compres-
sion. For this particular supercomputer and this experiment, 343 concurrent write
requests were around the point where the parallel filesystem’s I/O capacity was sat-
urated, and the I/O bottleneck shifted dramatically to the filesystem itself from the
interconnection between compute nodes and the filesystem.

One main conclusion from this experiment was that in situ compression can
increase overall I/O time with small problem sizes because of its computational
overhead. At the same time, it can save on overall I/O costs with large problems,
making wavelet compression a viable in situ operator. Given the current trend of
widening gaps between computation and I/O capacities on supercomputers, in situ
wavelet compression can be expected to reduce overall I/O costs in more and more
use cases. Additional analysis on the experiment results as well as discussion on the
viability of in situ wavelet compression is available in the original study [21].

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 57

5 Conclusion

This chapter evaluated the applicability of wavelets on supercomputers for post
hoc data exploration and scientific visualization. The studies that it summarizes
established that this approach is effective, considering two major sub-questions: (1)
whether the data integrity is still acceptable after lossy wavelet compression; and (2)
whether wavelet compression is viable for in situ compression on supercomputers.
With both these sub-questions answered, wavelet compression is well positioned to
play the role in between in situ visualization and post hoc analysis: it uses in situ
processing to enable human-in-the-loop exploration of data in a post hoc fashion
and does it in a manner that minimizes the risk of “losing science.” That said, while
wavelets are useful right now, future work could make the technology even more
useful for domain scientists. We believe there are two particularly important future
directions. The first direction is in strict error bounds while performing compression,
which is a desired property of most domain scientists. The second direction is in bet-
ter understanding of the characteristics and potentials of advanced wavelet codecs,
as discussed in Sect. 2.3.3.

Acknowledgements This material is based upon work supported by the National Center for Atmo-
spheric Research, which is a major facility sponsored by the National Science Foundation under
Cooperative Agreement No. 1852977. Computing resources were provided by the Climate Simula-
tion Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL). This work
was also supported by the DOEEarly Career Award for Hank Childs, Contract No. DE-SC0010652,
Program Manager Lucy Nowell.

References

1. Abbate,A.,Koay, J., Frankel, J., Schroeder, S.C.,Das, P.: Signal detection andnoise suppression
using awavelet transform signal processor: application to ultrasonic flawdetection. IEEETrans.
Ultrason. Ferroelectr. Freq. Control 44(1), 14–26 (1997)

2. Blelloch, G.E.: Vector models for data-parallel computing, vol. 75. MIT press Cambridge
(1990)

3. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale
Model. Simul. 5(3), 861–899 (2006)

4. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported
wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)

5. Computational and Information Systems Laboratory, National Center for Atmospheric
Research: Cheyenne: A SGI ICE XA. System (2017). https://doi.org/10.5065/D6RX99HX

6. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl.
Math. 41(7), 909–996 (1988)

7. Dürst, M.J.: A new method for image compression and progressive transmission. Ph.D. thesis,
University of Tokyo (1990)

8. Fowler, J.E.: QccPack: an open-source software library for quantization, compression, and
coding. In: Proceedings of SPIE, Applications of Digital Image Processing XXIII, vol. 4115,
pp. 294–301. SPIE (2000)

https://doi.org/10.5065/D6RX99HX

58 S. Li et al.

9. Gaither, K.P., Childs, H., Schulz, K.W., Harrison, C., Barth,W., Donzis, D., Yeung, P.K.: Visual
analytics for finding critical structures in massive time-varying turbulent-flow simulations.
IEEE Comput. Graph. Appl. 32(4), 34–45 (2012)

10. Grossmann, A.: Wavelet transforms and edge detection. In: Stochastic processes in physics
and engineering, pp. 149–157. Springer (1988)

11. Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive rendering of large volume data sets.
In: Proceedings of IEEE Visualization (VIS’02), pp. 53–60. IEEE (2002)

12. Harrison, C., Childs, H., Gaither, K.P.: Data-parallel mesh connected components labeling and
analysis. In: Proceedings of EuroGraphics Symposium on Parallel Graphics and Visualization
(EGPGV), pp. 131–140. Llandudno, Wales (2011)

13. Ihm, I., Park, S.: Wavelet-based 3D compression scheme for interactive visualization of very
large volume data. In: Computer Graphics Forum, vol. 18, pp. 3–15. Wiley Online Library
(1999)

14. Jawerth, B., Sweldens,W.: An overview of wavelet based multiresolution analyses. SIAMRev.
36(3), 377–412 (1994)

15. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Technical Report LLNL-TR-
641973 (2013)

16. Kim, B.J., Pearlman, W.A.: An embedded wavelet video coder using three-dimensional set
partitioning in hierarchical trees (SPIHT). In: Proceedings of Data Compression Conference
(DCC’97), pp. 251–260. IEEE (1997)

17. Kim, T.Y., Shin, Y.G.: An efficient wavelet-based compression method for volume rendering.
In: Proceedings of the Seventh Pacific Conference on Computer Graphics and Applications,
pp. 147–156. IEEE (1999)

18. Larsen,M., Aherns, J., Ayachit, U., Brugger, E., Childs, H., Geveci, B., Harrison, C.: The alpine
in situ infrastructure: ascending from the ashes of strawman. In: Proceedings of the In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization Workshop, ISAV2017.
ACM, New York, NY, USA (2017)

19. Li, S., Gruchalla, K., Potter, K., Clyne, J., Childs, H.: Evaluating the efficacy of wavelet config-
urations on turbulent-flow data. In: IEEE Symposium onLargeDataAnalysis andVisualization
(LDAV), pp. 81–89 (2015)

20. Li, S., Jaroszynski, S., Pearse, S., Orf, L., Clyne, J.: Vapor: A visualization package tailored to
analyze simulation data in earth system science. Atmosphere 10(9) (2019). https://doi.org/10.
3390/atmos10090488. https://www.mdpi.com/2073-4433/10/9/488

21. Li, S., Larsen,M., Clyne, J., Childs, H.: Performance impacts of in situ wavelet compression on
scientific simulations. In: Proceedings of the In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization Workshop, ISAV2017. ACM, New York, NY, USA (2017)

22. Li, S., Marsaglia, N., Chen, V., Sewell, C., Clyne, J., Childs, H.: Achieving portable perfor-
mance for wavelet compression using data parallel primitives. In: Proceedings of EuroGraphics
Symposium on Parallel Graphics and Visualization (EGPGV). Barcelona, Spain (2017)

23. Li, S., Marsaglia, N., Garth, C., Woodring, J., Clyne, J., Childs, H.: Data reduction techniques
for simulation, visualization and data analysis. Comput. Graph. Forum 37(6), 422–447 (2018)

24. Li, S., Sane, S., Orf, L., Mininni, P., Clyne, J., Childs, H.: Spatiotemporal wavelet compression
for visualization of scientific simulation data. In: 2017 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 216–227 (2017)

25. Lu, Y.M., Do, M.N.: Multidimensional directional filter banks and surfacelets. IEEE Trans.
Image Process. 16(4), 918–931 (2007)

26. Moreland, K., Sewell, C., Usher, W., Lo, L., Meredith, J., Pugmire, D., Kress, J., Schroots, H.,
Ma, K.L., Childs, H., Larsen, M., Chen, C.M., Maynard, R., Geveci, B.: VTK-m: accelerating
the visualization toolkit for massively threaded architectures. IEEE Comput. Graph. Appl.
(CG&A) 36(3), 48–58 (2016)

27. Orf, L., Wilhelmson, R., Lee, B., Finley, C., Houston, A.: Evolution of a long-track violent
tornado within a simulated supercell. Bull. Am. Meteorol. Soc. 98(1), 45–68 (2017)

28. Pearlman, W.A., Islam, A., Nagaraj, N., Said, A.: Efficient, low-complexity image coding with
a set-partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11),
1219–1235 (2004)

https://doi.org/10.3390/atmos10090488
https://doi.org/10.3390/atmos10090488
https://www.mdpi.com/2073-4433/10/9/488

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration 59

29. Pittner, S., Kamarthi, S.V.: Feature extraction from wavelet coefficients for pattern recognition
tasks. IEEE Trans. Pattern Anal. Mach. Intell. 21(1), 83–88 (1999)

30. Pulido, J., Livescu, D., Kanov, K., Burns, R., Canada, C., Ahrens, J., Hamann, B.: Remote
visual analysis of large turbulence databases at multiple scales. J. Parallel Distrib. Comput.
120, 115–126 (2018)

31. Pulido, J., Livescu, D., Woodring, J., Ahrens, J., Hamann, B.: Survey and analysis of multires-
olution methods for turbulence data. Comput. Fluids 125, 39–58 (2016)

32. Said, A., Pearlman, W.A.: Image compression using the spatial-orientation tree. In: IEEE
International Symposium on Circuits and Systems (ISCAS’93), pp. 279–282. IEEE (1993)

33. Sardy, S., Tseng, P., Bruce, A.: Robust wavelet denoising. IEEE Trans. Signal Process. 49(6),
1146–1152 (2001)

34. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans.
Signal Process. 41(12), 3445–3462 (1993)

35. Shneiderman, B.: A grander goal: a thousand-fold increase in human capabilities. EducomRev.
32(6), 4–10 (1997)

36. Skodras, A., Christopoulos, C., Ebrahimi, T.: The JPEG2000 still image compression standard.
IEEE Signal Process. Mag. 18(5), 36–58 (2001)

37. Tang, X., Pearlman, W.A., Modestino, J.W.: Hyperspectral image compression using three-
dimensionalwavelet coding. In: Electronic Imaging 2003, pp. 1037–1047. International Society
for Optics and Photonics (2003)

38. Tang, Y.Y.: Wavelet theory and its application to pattern recognition, vol. 36. World Scientific
(2000)

39. Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image
Process. 9(7), 1158–1170 (2000)

40. Wang, C., Shen, H.W.: A framework for rendering large time-varying data using wavelet-based
time-space partitioning (wtsp) tree. Technical Report OSU-CISRC-1/04-TR05 (2004)

41. Wei, D.: Coiflet-type wavelets: theory, design, and applications. Ph.D. thesis, University of
Texas at Austin (1998)

42. Zhang, L., Bao, P.: Edge detection by scale multiplication in wavelet domain. Pattern Recognit.
Lett. 23(14), 1771–1784 (2002)

In Situ Statistical Distribution-Based
Data Summarization and Visual Analysis

Soumya Dutta, Subhashis Hazarika, and Han-Wei Shen

Abstract As the era of exascale computing approaches, the need for effective,
scalable, andflexible data reduction techniques is becomingmore andmoreprominent.
As discussed in the introductory chapter, this need is primarily due to the bottleneck
stemming from output data size and I/O speed compared to the ever-increasing
computing speed.With this chapter,we consider a promising solution: data summarization
techniques that work in the in situ environment while the data is getting produced,
and preserve the important information from the data compactly, which minimizes
information loss and enables a variety of post hoc analyses. Specifically, this chapter
shows that statistical distribution-based in situ data summaries are a pragmatic
solution and able to preserve important statistical data features. Using only the
in situ generated statistical data summaries, which is significantly smaller in size
compared to the original raw data, a wide range of data analysis and visualization
tasks can be performed such as feature detection, extraction, tracking, query-driven
analysis, etc. In addition, reconstruction of the full-resolution data is also possible,
in order to visualize the data in its entirety with the added advantage of uncertainty
quantification. To this end, this chapter presents several distribution-based data
modeling algorithms, considering both their in situ performance and the usefulness
of their distribution data summaries on several application studies.

1 Statistical Distribution Models for Data Summarization

Probability distributions are well known for capturing various statistical properties
of data sets. Furthermore, since these distributions are capable of representing a

S. Dutta (B) · S. Hazarika
Los Alamos National Lab, Los Alamos, NM, USA
e-mail: sdutta@lanl.gov

S. Hazarika
e-mail: shazarika@lanl.gov

H.-W. Shen
The Ohio State University, Columbus, OH, USA
e-mail: shen.94@osu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_4&domain=pdf
mailto:sdutta@lanl.gov
mailto:shazarika@lanl.gov
mailto:shen.94@osu.edu
https://doi.org/10.1007/978-3-030-81627-8_4

62 S. Dutta et al.

large set of data samples in a compact format, they have been used successfully for
modeling scientific data sets and, as a result, different types of distribution-based data
summaries have been proposed as a means of reduced data representation. Before
we go into the details of modeling large-scale simulation data using distributions, let
us first briefly discuss several statistical distribution representations that have been
used in the data science and visualization community for summarizing large-scale
data sets. Distribution-based modeling techniques can be classified into two broad
categories: (1) Non-parametric distribution models; and (2) Parametric distribution
models.HistogramandKernelDensityEstimators (KDE) are popular non-parametric
distribution models used extensively in the visualization community, whereas,
parametric distributions, such as Gaussian distributions or GaussianMixtureModels
(GMM), have also been found to be very effective in data analysis. In the following,
we briefly introduce the most popular distribution models that used in various in situ
applications and discuss their advantages and disadvantages in the in situ context.

1.1 Non-parametric Distribution Models

Given a set of discrete data samples {xi }, a non-parametric distribution in the form
of a histogram can be formally defined as:

H(s) =
∑

i

δ(x − xi) (1)

where δ is the Dirac delta function defined as:

δ(x) =
{
1, if x = 0

0, otherwise
(2)

The area under a histogram can be normalized, and such histograms are often used
as a discrete probability distribution function. Another well known non-parametric
distribution model Kernel Density Estimator (KDE) is defined as:

f (x) = 1

nb

n∑

i=1

K

(
x − xi

b

)
(3)

where f (x) denotes the probability density at x , n is the number of data samples,
b (> 0) is the bandwidth, a smoothing parameter, and K (·) is the non-negative
kernel function. A range of kernel functions such as uniform, triangular, Gaussian,
and Epanechnikov kernels can be used for estimating data density.

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 63

1.2 Parametric Distribution Models

Compared to non-parametric distribution models, parametric distribution models
offer a more compact distribution representation, since only the parameters of the
models are sufficient to represent the distribution model. The use of parametric
Gaussian distributions for data modeling is widely known across various scientific
domains. However, the assumption of the normality of data is not always true and
can introduce modeling inaccuracies. Gaussian mixture models (GMM) remove this
assumption of normality by modeling the data as a convex combination of several
Gaussian distributions. The storage footprint for a GMM consists of the parameters
of the Gaussian distributions and their weights. Formally, the probability density
p(X) of a Gaussian mixture model for a random variable X can be written as:

p(X) =
K∑

i=1

ωi ∗ N (X |μi , σi) (4)

where K is the number of Gaussian components, and ωi , μi and, σi are the weight,
mean, and standard deviation for the i th Gaussian component respectively. Note that
the sum of weights in the mixture,

∑K
i=1 ωi , is always equal to 1. The computation of

parameters for the GMMs is typically done by Expectation-Maximization (EM),
which uses an iterative approach to maximize a likelihood function [5]. For an
approximate and computationally efficient estimation of parameters of a GMM, an
alternative incremental estimation scheme is also available [32, 35] which can satisfy
the need of fast-processing in the in situ environment.

1.3 Advantages and Disadvantages of Different Distribution
Models in the Context of In Situ Data Reduction

To use distributions as a viable solution for performing in situ data summarization,
several constraints need to be discussed. Any in situ data analysis algorithm
is expected to be computationally fast so that it does not stall the underlying
scientific simulation, and also the additional memory requirement should be as small
as possible. In this context, the computation time for the non-parametric model
histogram is low as it only requires a scan of data values and counting the frequencies
of discretized data values by converting them into bins. However, the storage
requirement of histograms is not always small since the frequency of each bin needs
to be stored. Furthermore, if summarization is performed on multivariate data, then
the storage footprint of high-dimensional histograms increases exponentially. The
other widely used non-parametric model KDE is computationally more expensive
than histograms. Compared to the non-parametric models, the storage requirement
of the parametric distributions is always small since only the model parameters are

64 S. Dutta et al.

stored.While computation time for estimating parameters for a Gaussian distribution
is low, estimation ofmodel parameters can be expensive at times for high-dimensional
parametric distributions such asGaussianmixturemodels. Therefore, insteadof using
the traditional Expectation-Maximization (EM) algorithm all the time for GMM
parameter estimation, a faster and approximate incrementalmixturemodel estimation
algorithm has been explored for in situ GMM-based data summarization [12].
Another important point is that using only one type of distribution model for all the
data may not be the optimal modeling strategy. For example, based on the statistical
properties of the data, different distribution models might be suitable at different
regions of the data. Therefore, a hybrid distribution-based data summarization would
be possible where, based on various statistical tests, the most suitable distribution
models will be used for summarization [21, 22]. In the following, we briefly discuss
various statistical tests that can be done to pick the most suitable distribution model
for data summarization.

1.3.1 Various Statistical Tests for Picking the Suitable Distribution
Model

Depending on factors like initial data size, type of post hoc analyses targeted and/or in
situ computational complexity involved, both parametric and non-parametric models
have distinct advantages and disadvantages. The choice of suitable distribution
model, therefore, plays an important role in determining the efficiency of distribution-
based in situ data summarization strategies. Many standard statistical tests currently
exist to decide which distribution model can best represent the underlying data.
However, often a single test may not be enough to address all the concerns and trade-
offs associated with a real-world in situ scenario. Therefore, users have to carefully
design their tests based on their requirements. Depending on the application and scale
of operation, the task of selecting a distribution model can be as simple as graphical
validation of the shapes of distributions to as complex as solving an optimization
function with desired requirements as the function variables. Here, we put forward
some of the most commonly used practices prevalent in the fields of Statistics and
Visualization.

Normality Test: One of the simplest, yet effective, statistical tests that can be
performed is to check for Gaussian/normal behavior in the data distribution. Studies
have shown that for the same sample size, the Shapiro-Wilk test [33] is the most
powerful (i.e., statistical power1) normality test [31]. It returns a likelihood value,
commonly referred to as pValue, which lies between 0 and 1. Small pValues lead to
the rejection of the normality hypothesis, whereas, a value of 1 ascertains normality
with high confidence. A pValue in the range of [0.05, 0.1] is often considered as
a good threshold value to decide normality. For data not satisfying this threshold
further evaluations need to be done to find a more suitable distribution model.

1 Statistical power of any test is defined as the probability that it will reject a false null hypothesis.

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 65

Goodness-of-fit Test: Normality tests do not offer a means to evaluate the best-
fitted distribution model for the underlying data out of possible candidate models.
The Kolmogorov-Smirnov (KS) test [36], a type of goodness-of-fit test, is a more
generic platform for such comparative validation. It compares the cumulative density
function (CDF) of a reference distribution against the empirical CDF (ECDF) of data.
Goodness-of-fit is decided by how close the CDF of a distribution is to the ECDF. If
F(x) represents the CDF of the hypothesized distribution and Fe(x) represents the
ECDF, then the KS test measure is given as,

K = supx |F(x) − Fe(x)| (5)

Unlike many other statistical tests, the KS test can evaluate the goodness of both
parametric and non-parametric distributions at the same time.

Bayesian Information Criterion: Bayesian Information Criterion (BIC) [16] is
a commonly used metric for selecting among a finite set of parametric models. It is
based on the log-likelihood of a given model on the sample data. It is defined as,

BIC = −2L p + p log(n) (6)

where n is the sample size, L p is the maximized log-likelihood of the chosen model
and p is the number of parameters in the model. A low BIC value indicates a better
model. BIC attempts to address the risk of over-fitting by introducing a penalty
term p log(n), which grows with the number of parameters. Therefore, the BIC
score is designed to avoid overly complicated models (i.e., with a large number
of parameters), which is ideal for distribution-based in situ data summarization
approaches. The BIC test is often used for finding out the correct number of Gaussian
distributions that would best fit a sample while modeling using a Gaussian mixture
model [37, 38].

2 In Situ Distribution-Based Data Summarization
Techniques

One of the primary advantages of using distribution-based summaries is that the
distributions can capture various statistical properties of the data robustly in a
compact format. Therefore, in the absence of the full resolution raw data, during
post hoc analysis, a variety of data analysis and visualization tasks can be carried out
using such distribution-based data. Furthermore, while the generated results will
have uncertainties as the full resolution data is not available, distribution-based
data summaries will allow uncertainty quantification for the produced results by
conveying uncertainty information to the application scientists.

While modeling scientific data sets using distributions, one can use a global
distribution for the whole data domain. For example, a one-dimensional histogram

66 S. Dutta et al.

(a) Global distribution-based data model.
Data values for all the points are represented
by a probability distribution. For each data
variable, a separate distribution is created.

(b) Local distribution-based data model.Data
values for all the points inside each block are
represented by a probability distribution. For
each data variable and for each local block, a
separate distribution is created.

Fig. 1 Illustration of Local and Global distribution-based data modeling schemes. This image is
reprinted from our previous work [11]

can be used to model a data variable in a data set. In this case, the histogram will
be able to answer questions regarding the likelihood of specific values of the scalar
field in the data [6, 13, 20], but will not be able to answer questions such as where
those specific values occur in the domain. This is because the global data distribution
is only a coarse statistical summarization of the complete data domain and does not
capture any spatial information. Hence, even though significant data reduction using
global distribution models can be achieved, still, the applicability and flexibility of
such global distribution-based data summaries during the post hoc analysis phase is
minimal (Fig. 1).

In contrast, to capture the data properties in much finer detail for enabling detailed
visual analysis, local region-based distribution modeling techniques have shown
great success. In this case, the data domain is first divided into smaller regions/blocks
and then a suitable distribution is used to model the data for each region. In this way,
even though the storage footprint increases compared to the global model, such a
local model-based summarization can capture the statistical properties of the data in
muchmore detail compared to the global distributions. In the following, we introduce
different schemes of in situ local distribution-based data summarization in detail.

2.1 Local Distribution-Based In Situ Data Summarization

As discussed above, the local distribution-based summarization techniques divide
the data domain into smaller regions and then use suitable distribution models
to reduce the data at each local region. If variables are summarized individually,
then univariate distribution models are used. When relationships among multiple
variables are required to be captured in the distribution-based data summaries,
multiple variables are summarized together using multivariate distribution modeling
techniques.Whether univariate modeling is sufficient or multivariate data summaries

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 67

are needed depends on the specific application tasks. As an in situ data summarization
technique, while the univariate distribution-based modeling has its own challenges,
multivariate distribution-based modeling techniques are significantly more complex
as both the computation cost and storage footprint increase significantly. Therefore,
sophisticateddistributionmodeling schemes are oftenpreferredover standardmultivariate
distribution-based modeling techniques to address such issues. In the next section,
we first discuss various local distribution-based univariate data summarization
techniques and then introduce multivariate data summarization schemes.

2.1.1 Distribution-Based Summarization for Univariate Data

Individual data variables can be summarized compactly using univariate distribution-
based models such as univariate histograms, Gaussian distributions, GMMs, etc. An
important advantage of using the local region-based modeling approach is that it
allows modeling of the local statistical properties of the data in detail and therefore,
the generated distribution data summaries are flexible and can address a wide range
of analysis and visualization tasks in the post hoc exploration phase. Firstly, the
data domain is divided into smaller sub-regions (data blocks), and then the desired
data variables in each region are summarized using separate univariate distribution
models. Secondly, all the region-wise distributions are stored into the disk for post
hoc analyses.

A straightforward data domain decomposition scheme used in the literature
is regular non-overlapping blocks-wise partitioning. Regular partitioning based
data decomposition is computationally less expensive as well as storage efficient.
However, since regular partitioning does not consider any data properties, the
resulting distribution-based models generated from the data at each partition often
show high value variance, and consequently high uncertainty. Furthermore, the
distribution summaries only capture the statistical properties of the data values and
the spatial organization of such data values inside each block is not preserved in the
univariate distribution. Therefore the naive regular partitioning scheme is limited
in application in the post hoc analysis phase. To remedy this issue and capture
spatial information from the local univariate distribution-based data summaries, two
approaches can be taken: (1) By augmenting the spatial distribution information
directly to the regular block-wise data summaries; (2) Instead of using regular
partitioning, irregular partitioning schemes can be used where spatially contiguous
similar data values will be grouped and the distribution-based analysis error will be
reduced. Below we briefly present these two approaches.

A

• Spatial Distribution-augmented Statistical Data Summarization An explicit
approach of capturing spatial information into distribution-based data summaries
is the direct augmentation of spatial distribution data summaries with value
distribution based data summaries. In this case, the data is still partitioned using
regular blocks. Then, for a selected data variable that needs to be summarized, the

68 S. Dutta et al.

Fig. 2 This diagram shows the steps used to compute the spatial GMM for a raw data block
(shown in blue). Besides the computation of the value distribution, the raw data in the block is
used to construct the Spatial GMM. First, the locations of the data samples are collected into the
corresponding bin interval according to the data value at that location (shown in the bottom left).
Then, a Spatial GMM is constructed (shown on the right) for each bin interval using the locations
in the interval (illustrated here for Bin0). This image is reprinted from our previous work [37]

data values of each partition are first summarized using a value-based histogram
as shown in Fig. 2 (the pink box). Next, to incorporate the spatial information to
this value distribution, a spatial Gaussian mixture model (GMM) is estimated for
the data points in each histogram bin. For each bin of the value histogram, the data
points are identified and then, using their spatial locations, a multivariate GMM,
termed as spatial GMM, is estimated. Each histogram bin is associated with its
unique spatial GMM. While estimating the spatial GMMs, the suitable number of
modes for each spatial GMM can be identified by applying Bayesian Information
Criterion (BIC) as has been illustrated in Fig. 2. Therefore, for each data block,
using this approach, a value histogram and a set of spatial GMMs are stored as the
reduced summary data.
Exploration using this spatial GMMaugmented distribution-based data summaries
is done post hoc. While inferring the data value at a queried location, information
from the value histogram and the spatial GMMs are combined using Bayes’ rule.
Bayes’ rule is a popular theorem that is widely used in classification problems. It
tells us how to augment the known information with additional evidence from a
given condition. In this case, the block value distribution is the known information
and the additional evidence are the probabilities from each Spatial GMM at the
queried location. More details of this technique can be found in [37].

• Homogeneity-guided Data Partitioning and SummarizationA second implicit
approach for capturing spatial information in distribution-based modeling and

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 69

reducing error duringpost hoc analysis is the useof irregular data-drivenpartitioning
techniques. Naive regular partitioning of the data domain does not consider data
continuity, and as a result, produces partitions with high data value variance.
When distributions are used to reduce such partitions, the resulting distribution
models contain high data value variance. Consequently, post hoc analysis using
such distribution summaries produces high sampling error leading to increased
uncertainty. Therefore, to reduce the data value variation in the partitions, a
supervoxel generation algorithm SLIC (Simple Linear Iterative Clustering) [2] is
used. SLIC is a computationally efficient variant of the local K-means clustering
algorithm and produces spatially connected data clusters, which are homogeneous
in nature. Each SLIC cluster/supervoxel is treated as a local data partition and is
summarized using an appropriate distributionmodel. Since the data are partitioned
into near homogeneous regions, using normality tests often it is found that a
single Gaussian distribution is sufficient to capture the statistical data properties
of each partition. When a single Gaussian is not sufficient, a GMM can be used
for summarization. A detailed description of this hybrid distribution-based in situ
data summarization scheme can be found in [15].
Compared to the traditionalK-means clustering, SLICadopts a local neighborhood-
based approach, where similar data points within a local neighborhood are grouped
into one cluster. During the optimization stage, from each cluster center, distances
only to the points in the predefined neighborhood are compared. This reduces the
total number of distance computations significantly by limiting search in a local
neighborhood. As a result, the algorithm performance is boosted significantly.
Furthermore, SLIC uses a weighted distance measure that provides contributions
from both the spatial locality of the data points and their scalar value similarities.
The distance measure can be defined as:

D(i, j) = β · ||ci − p j ||2 + (1 − β) · |vali − val j | (7)

Here, ci is the location of the cluster center i and p j is the location of point
j . vali and val j are the data values at i th cluster center and j th data point
respectively. The mixing weight β is configured based on the importance of spatial
versus value components, such that 0 <= β <= 1, and β + (1 − β) = 1. Smaller
values of β will give higher weightage on the difference of data values than their
spatial locations. Due to these properties, SLIC partitions the data domain into
smaller sub-regions where each partition contains points which are: (a) spatially
as contiguous as possible; (b) homogeneous in value domain. In Fig. 3b, we show
an illustrative example of the SLIC algorithm applied on a 2D data. As can be
seen, SLIC partitions similar valued data points along non-axis aligned boundaries
compared to the regular partitioning scheme shown in Fig. 3a.

70 S. Dutta et al.

(a) Regular block-wise
partitioning.

(b) SLIC-based
partitioning.

Fig. 3 Different types of data partitioning schemes. This image is reprinted from our previous
work [11]

2.1.2 Distribution-Based Summarization for Multivariate Data

Many times, scientific simulations produce multiple physical variables/attributes
(like pressure, temperature, precipitation, etc.) at the same time. These variables
are used to perform various multivariate analyses to gain in-depth insights into
the underlying physical phenomenon. Therefore, instead of modeling individual
variables as independent univariate distributions, it is often necessary to model
them together as multivariate distributions in order to preserve the variable inter-
dependence. However, the benefits of distribution-based data summarization are not
always readily applicable when using standard multivariate distributions. Unlike
their univariate counterparts, it becomes increasingly difficult to work with the
corresponding standard multivariate distribution representations when the number of
variables (i.e., dimensionality) increases. In this section, we discuss the challenges
associated with multivariate distribution-based data summarization and pragmatic
solutions to address them.

• MultivariateHistogram. Compared tounivariate histograms (Sect. 1.1), computing
and storing multivariate histograms is a non-trivial task. The storage footprint of
a multivariate histogram can increase exponentially with the number of variables
and the desired level of discretization (i.e., number of bins). This makes them
ineffective for the purpose of in situ data reduction. Sparse representations of
the multivariate histograms can be constructed to bring down the exponential
storage cost [29]. Based on the sparseness of the multivariate histogram, the
large multi-dimensional array can be transformed into a much smaller size. This
transformation, encoded with dictionary-based data structures, can be used to map
the transformed multi-dimensional array back to the original array. To further

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 71

reduced the storage overhead, the multivariate histogram can be stored as a
sequence of the index and frequency pairs where the indices are represented as
bitstrings computed from a space-filling curve traversal of the multi-dimensional
array. However, such sparse representations are sensitive to how the data is
distributed and the number of histogram bins used. Therefore, despite cutting
down the exponential storage cost of multivariate histogram representations, they
are not always effective for data reduction when compared with the original size
of the raw data.

• MultivariateGMM.Asdiscussed inSect. 1.2, becauseof their compact representation
andgoodmodeling accuracy, univariateGMMsare frequently used for distribution-
based data summarization. Their multivariate counterparts can also be represented
by Eq.4 above, withmultivariate Gaussian kernels instead of univariate Gaussians.
However, the estimation of multivariate GMMusing Expectation-Maximization is
computationally expensive compared to the univariate GMMs. The computation
time and model complexity increase rapidly with the number of variables. As a
result, the in situ estimation of multivariate GMMs will only add to the overall
simulation execution time for large-scale simulations. This can overshadow the
advantages of data reduction and I/O bottleneck alleviation for distribution-based
data summarization.

• Copula-basedMultivariateDistributionModeling.Given the challenges associated
with standard multivariate distribution models, it is important to take a fresh look
at modeling multivariate distributions for in situ analysis. One such way is to use
copula functions [22]. Copula functions offer a statistically robust mechanism to
decouple the process of multivariate distribution estimation into two independent
tasks: univariate distribution estimation and dependency modeling. As a result,
the exponential cost of storage and/or distribution estimation time can be reduced
significantly because we can independently model the individual variables using
arbitrary univariate distribution types, while the copula function captures the
dependency among them separately.
A copula function is a multivariate distribution function, whose univariate
marginals are standard uniform distributions. In terms of cumulative density
functions (CDF), C : [0, 1]d → [0, 1] represents a d-dimensional copula (i.e.,
d-dimensional multivariate CDF) with uniform marginals. Sklar’s theorem [34]
stated that every joint CDF in R

d implicitly consists of a d-dimensional copula
function. If F is the joint CDF and F1, F2, . . . Fd are the marginal CDF’s for a
set of d real valued random variables, X1, X2, . . . Xd respectively, then Sklar’s
theorem can be formally represented as;

F(x1, x2 . . . xd) = C(F1(x1), F2(x2), . . . Fd(xd))

= C(u1, u2, . . . ud) (usingFi (xi) = ui ∼ U [0, 1]) (8)

where the jointCDF F is defined as the probability of the randomvariable Xi taking
values less than or equal to xi . Therefore, to model any multivariate distribution
using a copula-based strategy, we need the following two sets of information.

72 S. Dutta et al.

Fig. 4 Overview of a copula-based in situ multivariate data summarization workflow. Multivariate
data summaries are created in situ using Gaussian copula functions. The summaries can be utilized
later to perform different multivariate post hoc analysis and visualization tasks. This image is
reprinted from our previous work [22]

1. Univariate marginal distributions of the individual variables (i.e., Fi ’s).
2. A copula function that captures the dependency among the variables (i.e., C).

Copula-basedmultivariate distributionmodeling techniques generally approximate
the function C(.) using standard copula functions [30]. One such popular copula
function is the Gaussian copula, which is derived from a standard multivariate
normal distribution. For the purpose of data reduction, the Gaussian copula is
ideal because it requires the storage of only the correlation matrix, which can
be efficiently computed in an in situ environment. Using this flexible multivariate
distributionmodeling approach, for each local region, we can store themultivariate
data summaries (comprising of univariate distributions and a copula function) to
achieve multivariate relationship-aware in situ data reduction. Figure4 provides
a schematic overview of a copula-based in situ multivariate data summarization
workflow. The summaries can be utilized to carry out various multivariate post
hoc analyses.

3 Post Hoc Visual Analyses Using Distribution-Based Data
Summaries

One of the primary requirements of any in situ data summarization technique is to be
flexible during post-hoc analysis so that a variety of visualization and analysis tasks
can be performed using it. Since data analysis algorithms are often constrained by
storage and computation cost in the in situ environment, a majority of the exploration
tasks are still preferred to be done post hoc by the application scientists where they
can refine the analysis results interactively, change search criteria as new information
is learned, and visualize the data on demand. In this section, we discuss how the
various types of aforementioned in situ distribution-based data summaries can be
used to enable a wide range of analyses tasks in the post hoc exploration phase.

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 73

3.1 Stochastic Feature Analysis

Analysis and visualization of various scientific features in simulation data sets is one
of the primary tasks that application scientists perform routinely. Distribution-based
data summaries can be used to carry out this task robustly. By representing the user
specified target features in the formof a distribution, such features can be searched for
in distribution-based data summaries and the features can be extracted and visualized.
Feature extraction can be done bymatching the target feature distribution to the in situ
generated distributions of the local regions and all the regions with a high similarity
can be explored interactively. In Fig. 5 an example of distribution-based feature
extraction is shown. This example uses the homogeneity-guided SLIC-based data
partitioning scheme and the data for SLIC partitions is summarized using univariate
GMM-based modeling. As can be seen in Fig. 5c, the SLIC-based data summaries
are able to model the data accurately and hence the extracted features does not have
discontinuity and artifacts which are visible from the results generated using a naive
regular partitioning scheme (Fig. 5a), and also in aK-d tree based partitioning scheme
(Fig. 5b). More results, and a comprehensive quantitative study of this technique, can
be found in our previous work [15].

Another example of post hoc feature exploration using the spatial distribution
augmented data summaries is shown in Fig. 6. Given a target feature, a new feature
similarity field is generated where the high valued regions are highlighted as the
regions of interest. The true similarity field is shown in Fig. 6a, which is generated
using the ground truth raw data for comparison purposes. Figure6b shows the
similarity field generated using regular block-wise partitioning and GMMs are used
as the distribution model. Finally, Fig. 6c depicts the feature similarity field resulted
from spatial GMM augmented data summaries. As can be seen, the spatial GMM
based data summaries produce themost accurate feature similarity fieldwithminimal
artifact [37].

(a) Distribution similarity-
based identified feature using
regular block partitioning.

(b) Distribution similarity-
based identified feature using
K-d tree based partitioning.

(c) Distribution similarity-
based identified feature using
SLIC-based partitioning.

Fig. 5 Distribution data-driven probabilistic feature search using SLIC-based data summaries in
the Vortex data set. This image is reprinted from our previous work [15]

74 S. Dutta et al.

(a) True similarity field
generated using raw data for
comparison.

(b) Similarity field generated
using Block GMM based data
summarization.

(c) Similarity field generated
using spatial GMM augmented
data summaries.

Fig. 6 Distribution-based feature similarity field visualization using spatial GMM based data
summaries in Turbulent Combustion data set. This image is reprinted from our previous work [37]

3.2 Feature Extraction and Tracking

Feature tracking in scientific data sets is an important task. Application scientists
are often interested in extracting and tracking the temporal evolution of scientific
features (a region of interest) such as vortex cores, hurricane eye, eddies in an ocean,
etc., to learn about the temporal development of various physical phenomenon in
detail. The proposed distribution-based data summaries can be used to track such
scientific features robustly over time. In this study, a regular block-wise distribution
modeling is used where a parametric distribution Gaussian mixture model is used to
model the data for each local block. Since features in scientific simulations are often
hard to definewith a precise descriptor, a value-based distribution is used to represent
the target feature. Finally, using stochastic similarity measures and extracted motion
information from the distribution-based data summaries, the feature is extracted and
tracked over time robustly. More details of this distribution-driven feature tracking
algorithm be found in an article on this topic [14].

In Fig. 7, target feature selection in the form of a GMM is displayed where a user
can highlight a region of interest using an interactive box filter. The feature shown
here is a vortex core in a pseudo-spectral simulation of coherence vortex structures.
The tracking results of this feature is provided in Fig. 8 where the tracked vortex
feature is shown for four different time steps. Note that, even though the shape of
the feature changes over time, the tracking algorithm is still able to extract and track
the feature robustly in future time steps.

3.3 Multivariate Query-Driven Analysis and Visualization

Query-driven analysis techniques are highly effective for analyzing and visualizing
large scale data. By selecting a subset of the data domain that meets a user-defined
criteria, analysis activities can be focused only on the selected region instead

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 75

(a) Feature selection in the Vortex data set with a
zoomed in view.

(b) Estimated GMM of the user
interested feature.

Fig. 7 Selected feature in the Vortex data set, a zoomed in view and the GMM of the selected
region. This image is reprinted from our previous work [14]

(a) T=3. (b) T=6. (c) T=14. (d) T=15.

Fig. 8 Extraction and tracking using the Vortex data set. Tracked feature for 4 selected time steps
are displayed. This image is reprinted from our previous work [14]

of considering the entire domain. This makes the workflow of scientists more
manageable and effective. These type of selective analyses are particularly common
with multivariate data to trim down the variable subspace. Many query-driven
strategies rely on computing local data statistics to execute the queries efficiently.
Therefore, the use of statistical distributions as local data summaries inherently
facilitates such query-driven strategies. With distributions as the underlying data
representation, we can report queried region as a probability field. A high probability
value at a region signifies that the query of interest has high likelihood at that
region. Figure9 shows the query results on the Combustion data set for the bi-variate
query 0.3 < mix f rac < 0.7 and y_oh > 0.0006. Figure9a shows the ground truth
deterministic region of the original raw data, while Fig. 9b shows the corresponding
probabilityfield satisfying thegivenquery, i.e., P(0.3 < mix f rac < 0.7 AND y_oh >

0.0006).

76 S. Dutta et al.

(a) Ground truth (b) Probability field

Fig. 9 Multivariate query-driven analysis of the Combustion data set for the query 0.3 <

mix f rac < 0.7 and y_oh > 0.0006. This image is reprinted from our previous work [22]

3.4 Distribution Sampling-Based Data Reconstruction

Application scientists often want to visualize their data in its entirety to explore
certain data features in detail. To enable visualization on full resolution data,
distribution-based data summaries can be used to reconstruct this data. To reconstruct
the data, statistical sampling techniques [17] are used to sample data values from
distribution-baseddata summaries. In the following,wepresent reconstruction results
created from various types of distribution-based data summaries for both univariate
and multivariate data.

Figure10 shows the reconstruction result for the U-velocity field of the Hurricane
Isabel data set. In this example, GMM-based data summaries were generated from
the in situ SLIC-based partitioning scheme [15]. For comparison, in Fig. 10b, we
have shown the reconstruction result when a regular block-wise partitioning scheme
is used. As the image shows, the reconstructed result produced from the SLIC-based
data summaries (Fig. 10c) match closest to the ground truth shown in Fig. 10a. The
result of regular block-wise partitioning contains artifacts and discontinuities (as
highlighted by black dotted regions), which are corrected in reconstruction obtained
from SLIC-partitioning based data summaries.

(a) Raw data (ground truth). A
zoomed view is shown on the
right for better visual compar-
ison.

(b) Reconstruction using regu-
lar block partitioning scheme.
A zoomed view is shown on
the right.

(c) Reconstruction using pro-
posed SLIC-based scheme. A
zoomed view is shown on the
right.

Fig. 10 Visual comparison of U-velocity of Hurricane Isabel data. The reconstructed fields are
generated using Monte Carlo sampling of distribution-based summarized data. This image is
reprinted from our previous work [15]

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 77

(a) Rendering from raw data. (b) Reconstructed data render-
ing using block-wise GMM
based summary data.

(c) Reconstructed data render-
ing using spatial GMM based
summary data.

Fig. 11 Visual comparison of volume rendering in the Combustion data set. The samples are drawn
from the PDFs, which are calculated at all grid points of the raw data, using Monte Carlo sampling.
This image is reprinted from our previous work [37]

Visualizationof the reconstructed full resolutiondata using the spatial distribution-
augmented data summaries [37] is presented in Fig. 11. In this example, mixture
fraction field of turbulent combustion data is used. The rendering of the ground
truth data is depicted in Fig. 11a. For demonstrating the efficacy of the spatial
distribution-based data summaries, in Fig. 11b, we have provided the reconstruction
result generated from regular block-wise GMM-driven data summaries, which do
not use any spatial distribution information. Finally, Fig. 11c shows the result
produced from spatial distribution-augmented data summaries, which obtains a
smooth reconstruction of the data. It is evident that the augmentation of the spatial
distribution information makes the reconstruction more accurate and removes the
block boundary irregularities, which are visible in the reconstruction result created
from block-wise GMM-guided data summaries (Fig. 11b).

For multivariate data, it is important to reconstruct scalar fields of different
variables at the same time. This can be achieved only when the variable relationships
are factored in during distribution modeling. Figure12 shows the multivariate
reconstruction results for the Hurricane Isabel data set with 11 physical variables,
usingmultivariate histograms (sparse),multivariateGMM,andcopula-basedmultivariate
modeling strategy. Figure12a–d shows the qualitative reconstruction results of only
the Pressure variable. Whereas, Fig. 12e shows the quantitative results of normalized
root mean squared error (RMSE) for all the 11 variables for the three different
multivariate distribution modeling approaches. As can be seen, the flexible copula-
based multivariate distribution modeling approach performs better than standard
multivariate distribution model. The storage overhead and estimation times for the 3
different multivariate models are reported in Fig. 12f and g respectively, for both the
Isabel and Combustion data sets. The results highlight the fact that multivariate
histograms have higher storage footprint, while, multivariate GMMs have large
associated estimation time costs as compared to the flexible copula-based method.

78 S. Dutta et al.

(a) Original raw pres-
sure field

(b) Pressure field re-
constructed from mul-
tivariate histogram.

(c) Pressure field re-
constructed from mul-
tivariate GMM.

(d) Pressurefield
reconstructed from
copula-based model.

(e) Reconstruction errors for all
11 variables in Isabel data set.

(f) Storage footprint of differ- (g) Estimationtimes of differ-
ent multivariate models ent multivariate models

Fig. 12 Qualitative and quantitative results for multivariate sampling-based scalar field
reconstruction of Hurricane Isabel data set. This image is reprinted from our previous work [22]

4 Demonstration of an In Situ Distribution-Guided
End-to-End Application Study

In this section, we describe an end-to-end real-life example of an application
study using in situ generated distribution-based data summaries for solving a
practical domain-specific problem. In this application study, we explore rotating
stall phenomenon in a transonic jet engine simulation data sets. The data is generated
from a large-scale computational fluid dynamics (CFD) simulation code, TURBO [9,
10]. TURBO is a Navier-Stokes based, time-accurate simulation code, which was
developed at NASA. A TURBO simulation models the flow of air through a rotor
in the engine turbine compressor stage. The model of the rotor of the compressor
stage is shown in Fig. 13. The rotor consists of 36 blades and so there are 36 blade
passages. A zoomed-in view of the rotor is shown on the right where the tip, the hub,
and the leading edge of the blade is highlighted. It has been shown previously that
the data generated from TURBO can capture the stall phenomenon in great detail.
However, the volume of data generated from TURBO is very large, and therefore, in
situ data summarization is critical for enabling timely exploration of the simulation
data with high temporal fidelity at an interactive rate.

One of the primary goals of this study was to develop techniques that can detect
the rotating stall as early as possible such that the experts can employ stall preventing
measures. Rotating stall, if fully developed, can potentially damage the turbine
compressor blades. Therefore, early detection of the stall is critical. Furthermore,
the reasons behind the inception of rotating stall in transonic engines are still not
fully understood and hence is an open research problem. Besides identifying the
precursors of the rotating stall, the experts alsowant to understand the role of different
variables during the inception of the stall. In the following discussion, we present
two application studies for analyzing and visualizing the rotating stall phenomenon

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 79

Fig. 13 A diagram of the compressor stage of TURBO simulation and a zoomed in view of it on
the right. Different components of a blade is shown. This image is reprinted from our previous
work [12]

using both univariate and multivariate in situ distribution-based data summaries and
demonstrate their effectiveness.

4.1 Univariate Distribution Anomaly-Guided Stall Analysis

Since the rotating stall is referred to as an instability in the flow data, it can be
characterized as an abnormality in the simulation data. In an ideal condition, the
simulation is expected to be axisymmetric, and hence, variables such as Pressure
and Entropy are expected to have identical values around the compressor stage.
Any region where Pressure or Entropy values deviate from its expected behavior
can be identified as abnormalities and therefore a region containing potential stall.
To capture such regions and interactively analyze rotating stall post hoc, the large-
scale simulation data was first summarized in situ using block-wise GMM-based
data summaries. To compute the GMM-models efficiently, in this work, instead of
using the traditional Expectation-Maximization (EM) algorithm, an approximate
incremental mixture model estimation technique was used. More details of this
incremental modeling can be found here [12]. The summarization was performed
for the Pressure and Entropy variables and their distribution-based summaries were
stored into disks. Then, using the reduced GMM-based distribution data, post hoc
stall analysis was carried out. Figure14 presents a schematic of the complete end-to-
end analysisworkflow.Aswe can see, the datawas summarized in situ and then, in the
post hoc analysis phase, the data summaries were used to detect regions that showed
spatial and temporal distribution anomalies. Through interactive visualization, the
domain experts verified their hypothesis and explored the stall features efficiently.

The GMM-based data summaries were first used to estimate the spatial and
temporal region-wise anomalies in the data set. To detect such regions, block-wise

80 S. Dutta et al.

Fig. 14 Aschematic of the in situ distribution anomaly-guided stall analysis. This image is reprinted
from our previous work [12]

Fig. 15 In situ generated distribution-based spatial anomaly pattern study. The image shows spatial
anomaly of Pressure and Entropy variables where the stalled regions are highlighted in blended
purple color. This image is reprinted from our previous work [12]

GMM-based distribution-based summaries were compared over space and time for
each blade passage. Finally, the detected regions that indicated spatial anomaly were
plotted as shown in Fig. 15. This figures shows that abnormalities develop gradually
over time and, when the stall happens, such abnormal regions become pronounced
(indicated by the dark purple region in the plot). Visualization of such detected
spatially anomalous regions in the data domain is shown in Fig. 16. As can be seen,
the detected regions are near the tip of the blades as expected and the anomalies
are observed for both Pressure (the blue-colored regions) and Entropy variable (the
red-colored regions). The compressor blade passages containing such abnormalities
are identified as stalled regions. A similar analysis was also done using the temporal
anomaly plots. Using both spatial and temporal anomaly-based analysis, the domain
expert was able to confirm the effectiveness of distribution-based data summaries
in detecting rotating stall. For more information, interested readers are referred to a
detailed discussion on this topic [12].

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 81

(a) Spatial anomalies at time step 2200. (b) Spatial anomalies at time step 2540.

Fig. 16 Visualization of detected spatial anomaly regions of Pressure (in blue surfaces) andEntropy
(in red surfaces). The regions are detected near the blade tip regions of several rotor passages. These
regions act as blockage to the regular airflow and create flow instability which eventually leads to
stall. This image is reprinted from our previous work [12]

4.2 Multivariate Distribution Query-Driven Stall Exploration

Scientists were also interested in understanding the importance of the variables
Entropy, U-velocity, and Temperature towards the formation of stall-like features
in the turbine passages. This requires that the distribution-based data summaries
capture the multivariate relationship among the variables for post hoc analyses. The
copula-based multivariate distribution modeling strategy, as discussed in Sect. 2.1.2,
was employed to create multivariate data summaries for local partitions. To model
the individual variables, a Gaussian distribution was used for partitions with a high
normality test score, and a GMM (with 3 modes) was used otherwise. To retain the
spatial context of data within a partition, spatial variables (x , y, and z dimensions)
were also modeled using uniform distributions. The dependency among all these
variables (i.e., 6 total, 3 physical + 3 spatial) was modeled using Gaussian copula
functions.

The in situ multivariate data summaries were later used to perform various
multivariate post hoc analyses and visualizations. Figure17a, c, e show the original
scalar fields forEntropy,U-velocity, andTemperature respectively.The corresponding
sampled scalar fields, reconstructed from the data summaries are shown in Fig. 17b,
d, f respectively. Scientists knew that Entropy values greater than 0.8 and negative
U-velocities corresponded to potentially unstable flow structures, which can lead to
stalls. To focus the study on regions with such multivariate properties, a multivariate
query Entropy > 0.8 and Uvel < −0.05 was made to select the region. The
corresponding probability field is shown in Fig. 17g, whereas, Fig. 17h shows the
isosurfaces of probability value 0.5 across the blade structures. Figure17i shows the
distribution of Temperature values in this queried region (i.e., P(T emp|Entropy >

0.8 AND Uvel < −0.05)). The peak in the distribution suggests that Temperature
values around 0.9 can be related to potential engine stall. Figure17j and k show how
Temperature is correlated with Entropy and U-velocity respectively, in the selected
region. There is a strong positive correlation with Entropy and a significant negative

82 S. Dutta et al.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 17 Post hoc analysis results of the jet turbine data set. a Raw Entropy field. b Sampled
scalar field of entropy. c Raw U-velocity field. d Sampled scalar field of U-velocity. e Raw
temperature field. f Sampled scalar field of Temperature. g Probabilistic multivariate query result
for P(Entropy > 0.8 AND Uvel < −0.05) h Isosurface for probability value of 0.5. iDistribution
of Temperature values in the queried region i.e., P(T emp|Entropy > 0.8 AND Uvel < −0.05).
j Distribution of correlation coefficients between Entropy and Temperature for the queried region.
kDistribution of correlation coefficients betweenU-velocity andTemperature for the queried region.
This image is reprinted from our previous work [22]

correlation with U-velocity. Such exploratory analysis activity can help scientists to
gain more insights into the multivariate relationships in their simulation. For more
information, interested readers are referred to a detailed discussion on this topic [22].

From the above analyses, we can observe that the various distribution-based
techniques led to a detailed understanding of the rotating stall inception problem
and also how different variables can be used to detect stall quickly before it becomes
destructive. In the future, the early detection capabilities developed can be used
to implement some stall preventing measures. One potential measure is to install
sensors at the appropriate places that will be measuring abnormalities using the
proposed techniques for early detection of the event in the turbine stage so that when
abnormalities are detected, these sensors would recommend the users to act and
prevent engine destruction. Also, the knowledge learned from these analyses could
lead to a better turbine stage design that will make the engine safer.

4.3 Storage and Performance Evaluation

The performance studies presented here with TURBO simulation were done using a
cluster, Oakley [7, 8], at the Ohio Supercomputer Center. Oakley contains 694 nodes
with Intel Xeon x5650 CPUs (12 cores per node) and 48 GB of memory per node. A
parallel high-performance and shared disk space running Lustre was used for I/O.

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 83

4.3.1 Performance Evaluation of Univariate Data Modeling

One single revolution of the complete rotor, i.e. the full annulus model, in a TURBO
simulation generates 5.04 TB raw data. To perform the studies presented above,
8 revolutions were run, which generated a total of 40.32 TB data and a total of
28800 time steps. Since the in situ call was made at every 10th time step, it required
processing of 4.032 TBs of data. However, for this experimentation, only the rotor
was considered and the data for the two stators were not stored. The raw data for the
rotor part in PLOT3d format is 690 MB per time step, and hence, storing all the raw
data for 8 revolutions at every 10th time step would require 993.6 GB storage. In this
study, for summarizing the data using local distribution-based models, the spatial
domain was partitioned using non-overlapping regular blocks of size 53. The output
of the in situ summarized data for two variables in VTK format took only 51.8 GB
for 8 revolutions resulting in approximately 95% data reduction.

Figure18 presents timing performance for the in situ processing. This figure shows
that the in situ summarization time is significantly smaller compared to the simulation
time. Furthermore, the raw data I/O shown here can be completely removed if the
in situ pathway is taken. Table1 shows that in situ distribution-based summarization

Fig. 18 In situ timing comparison for univariate data modeling using TURBO simulation with
and without raw output. Pressure and Entropy variables were summarized using regular block-wise
partitioned data and GMMs were used as the distribution model. With the in situ pathway, the raw
I/O time can be saved. This image is reprinted from our previous work [12]

Table 1 Percentage timing of in situ GMM-based univariate summarization with half and full
annulus runs. This table is reused from our previous work [12]

Configuration 2 revs. 4 revs.

Simulation In situ (%) Simulation (%) In situ (%)

Half annl. (164
cores)

97.3 2.7 97.5 2.5

Full annl. (328
cores)

97.63 2.37 97.42 2.58

84 S. Dutta et al.

for two variables only takes about 2.5% additional time. While estimating the in situ
processing overhead, both the half-annulus model (which consists of 18 passages)
and the full-annulus model (the complete rotor with 36 passages) were tested. It is
observed that the in situ data summarization time is consistent for both these runs.
Hence, by performing in situ processing, we have demonstrated a scalable rotating
stall analysis to help the expert achieve a better understanding of the phenomenon. In
the following,wepresent performance results for themultivariate data summarization
case.

4.3.2 Performance Evaluation of Multivariate Data Modeling

For the copula-based in situmultivariate data summarization case study, the simulation
domain was partitioned regularly into non-overlapping partitions of size 53. Two full
revolutions of the turbine data comprised of 7200 time steps. In situ data summaries
for local partitions were created every 10th time step, thereby storing 720 time steps.
Since the size of the raw data produced at each time step was 690 MB, two full
revolutions of the simulation accumulated 496.8 GB of data. Compared to this size,
storing multivariate data summaries took only 19.6 GB which resulted in 96% data
reduction. Moreover, writing the raw data to the storage disk took around 13% of the
simulation execution time, whereas the combined time to estimate the multivariate
summaries and write them out to disk took 15.4% of the overall simulation time.
Besides reducing the storage footprint, the data summaries offer significantly faster
post hoc analysis time. Performing multivariate queries on a regular workstation
machine took on average 64.6 s, whereas, reconstruction of the full scalar fields from
the data summaries took only 178.3 s on average.

5 Discussion and Guidelines for Practitioners

5.1 Discussion

The above sections demonstrate the efficacy and usefulness of various in situ
distribution-based data summarization techniques for performing flexible and
explorable data analysis and visualization. It has been shown that when the data
is reduced in the form of distributions then features in such summary data can
be searched efficiently by defining the feature as a distribution. This is primarily
beneficial for scientific features which are hard to define precisely due to the
complexity of the feature [14]. In such cases, a statistical distribution-based feature
descriptor is found to be effective. Another advantage is that the distribution-based
data representations can be directly used in these cases and a full reconstruction is
not necessary for finding or tracking features. This also helps in accelerating the post
hoc analysis. However, a reconstruction of the full resolution data is also possible

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 85

from the distribution-based data summaries which can be used to explore scientific
features using traditional techniques when precise feature descriptors are available.

Another observation for the distribution-based data analysis techniques is that
typically thedistribution estimation is done in situ and feature analysis andvisualization
are conducted in the post hoc analysis phase. This strategy is adopted by keeping
in mind that a majority of the visual analysis tasks require interaction with the data,
forming new hypotheses, and then refining and verifying those hypotheses as results
are studied. This process engages application scientists in the exploration loop and
often can take a considerable amount of time. Therefore, these kinds of exploratory
analyses are not suitable for an in situ environment when the simulation is running
because doing so could slow down the simulation significantly which is undesirable.
However, we acknowledge that if the application scientists know precisely about the
data features that they are interested in, then extraction and visualization of such
features directly in the in situ environment might be a viable solution. In such cases,
visualization artifacts such as images of the features can be stored for post hoc
analysis.

Further, besides applying traditional statisticalmethods for estimatingdistributions
as discussed above, there is a recent surge in the use of deep learning-based
models to estimate data distribution in the field of machine learning. Two such
prospective methods are the Generative Adversarial Networks (GANs) [18] and
Variational Autoencoders (VAEs) [26]. Such deep learning-based models adopt
unique optimization strategies tomodel very high-dimensional distributions of awide
range of objects. They convert a purely statistical problem of distribution estimation
into an optimization problem (i.e., find the parameter values that minimize some
objective function). However, to model the distribution perfectly, deep learning
methods need multiple iterations over the data, which can be infeasible in situ
solution. Recent efforts into the application of such methods in the field of scientific
visualization [4, 19, 25] have been to mostly perform post hoc analyses. Bringing
in the advantages of such powerful models to an in situ environment is an exciting
research prospect in the near future.

5.2 Guidelines for Practitioners

In this section, we briefly provide some guidelines for users and practitioners
about how appropriate distribution models can be selected and how some of
these techniques can be implemented in a simulation. Given a particular task,
the first choice is to decide whether univariate distribution models are sufficient
or multivariate models will be needed. If multivariate models are necessary, then
we recommend using the statistical Copula-based approach. This technique is
suitable when several variables are needed to be summarized and can tackle the
curse of dimensionality problem that often arises while estimating high-dimensional
distributions. If univariate distribution-basedmodels are sufficient, thenwe found that
GMM-based summarization performed best. In Sect. 1.3, we have provided several

86 S. Dutta et al.

statistical tests that can be used to select the appropriate number of Gaussian models
when estimating a GMM. Note that using the traditional Expectation-Maximization
algorithm for estimating GMM parameters can be costly at times, and hence, if
performance is critical, an alternate incremental Gaussian mixture model estimation
strategy is suggested in [12]. The use of an incremental algorithm will trade some
estimation accuracy but will result in faster parameter estimation.

Amajority of the above techniques advocate for the local region-based distribution
models. In suchmodeling, since the data blocks are non-overlapping, the distribution
estimation for eachdata block is independent andhencenoadditional data communication
is required. So, it is straightforward to compute such models. First, the data in each
processing node needs a partitioning and then an appropriate distribution model
can be used. Users and practitioners are encouraged to consider using EDDA [1],
the open-source distribution-based analysis library, which came out of the research
done at the Ohio State University and implements building blocks of several of
the distribution estimation techniques that have been discussed in this chapter. The
library is under development and so some of the advanced techniques might not be
readily available. However, we believe this library will be a useful starting point for
the practitioners who are interested in using distributions in their analyses.

If the users are interested in conducting the feature analysis in the in situ
environment, then additional data communication among computing nodes will
be needed. Since a data feature could span across multiple computing nodes, a
strategy needs to be developed which will send data distributions to the neighboring
processing nodes so that the complete feature can be extracted and analyzed. Sending
data distributions to the neighboring blocks is expected to be a cheap operation
since the size of distribution parameters is significantly smaller compared to the
raw data. Note that this will require new research to come up with a desired and
scalable solution. However, we believe that with the present advances made in the
distribution-based analysis domain, as discussed throughout this chapter, the strategy
of estimating distributions in situ and performing feature analysis post hoc have
resulted in promising results and a variety of complex and important visual-analysis
tasks were satisfactorily performed.

6 Additional Research Possibilities and Future Scopes

The preceding sections present various in situ distribution-based data modeling
techniques for both univariate and multivariate scalar data sets. The applicability of
such distribution-based data summaries for solving various domain specific problems
is also demonstrated in Sect. 4. In order to study the usefulness of these distribution-
based data summaries in the context of a broader set of visualization tasks, we
plan to conduct a comprehensive evaluation where comparison among various
data reduction techniques such as distribution-based summaries, data compression
techniques, and sampling-based reduction approaches will be considered. Besides
analyzing scalar data sets, distribution-based data summaries can also be used

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 87

for analyzing and visualizing vector field data sets, ensemble data sets, and also
particle-based data. Several studies have already been done for summarizing vector
fields using distribution-based representations [23, 27]. To generate streamlines
from such distribution-based vector data summaries, He et al. adopted a Bayesian
framework using particle filtering technique [23]. In another work, to trace the
particles accurately using distribution-based vector fields, Li et al. used winding
angle of particles trajectories for correctly predicting the particle path using a
Bayesian approach [27]. A recent work demonstrated usefulness of distribution-
based techniques for in situ particle data reduction [28].

Amongother future possibilities, applications of distribution-baseddata summaries
have also been tested for summarizing and analyzing large ensemble data sets. In
one approach, Wang et al. [38] first captured the relationship between high and
low resolution ensemble data members. Then, for future runs of the simulation using
different parameter combinations, the datawas summarized in situ usingGMM-based
data models. During post hoc analysis, the high-resolution data was reconstructed
from the GMM-based down-sampled data summaries using the prior knowledge
to improve the reconstruction quality. The in situ study was conducted using Nyx
cosmology simulation [3]. For more details about this technique, please refer to [38].
Besides statistical super resolution, distribution-based representations of ensemble
data can also be used for studying data features which are characterized as a range of
data values. Study of such features were done by He et al. [24] using range likelihood
trees.

7 Conclusion

In this chapter we have described various methods of in situ distribution-based data
summarization techniques, which on one hand can achieve significant data reduction,
and on the other hand can also be used as a flexible data product for post hoc
visual analysis. We discussed in details the advantages and disadvantages of using
different parameter and non-parametric distribution models for data summarization
from the perspective of their in situ feasibility. Using a real world large-scale CFD
simulation, we discussed the challenges and possible solutions for distribution-
based data modeling for both univariate and multivariate cases. Additionally, several
important post hoc data analysis and visualization tasks have been briefly discussed
which highlight the effectiveness of the in situ generated distribution-based data
summaries in solving a wide range of visualization and data analysis problems.

Acknowledgements We sincerely acknowledge the contributions from Ko-Chih Wang, Wenbin
He, Cheng Li, Chun-Ming Chen, Kewei Lu, and Tzu-Hsuan Wei. This research was supported
in part by the US Department of Energy Los Alamos National Laboratory contract 47145, UT-
Battelle LLC contract 4000159447, NSF grants IIS-1250752, IIS-1065025, and US Department
of Energy grants DE-SC0007444, DE-DC0012495. We would also like to thank Prof. Jen-Ping
Chen from the Department of Mechanical and Aerospace Engineering, Ohio State University for
providing access to the TURBO simulation and offering invaluable domain feedback for the in situ

88 S. Dutta et al.

application studies. The in situ experiments used computing resources at the Ohio Supercomputer
Center [7]. The Hurricane Isabel data set has kindly been provided by Wei Wang, Cindy Bruyere,
Bill Kuo, and others at NCAR. Tim Scheitlin at NCAR converted the data into the Brick-of-Float
format described above. The Turbulent Combustion data set is made available by Dr. Jacqueline
Chen at Sandia National Laboratories through the US Department of Energy’s SciDAC Institute for
Ultrascale Visualization. This research was released under LA-UR-20-20838.

References

1. Edda—extreme-scale distribution-based data analysis library. https://sites.google.com/site/
gravityvisdb/edda

2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared
to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–
2282 (2012). https://doi.org/10.1109/TPAMI.2012.120

3. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Andel, E.V.: Nyx: A massively parallel
amr code for computational cosmology. Astrophys. J. 765(1), 39 (2013)

4. Berger, M., Li, J., Levine, J.A.: A generative model for volume rendering. IEEE Trans. Vis.
Comput. Graph. 1 (2018). https://doi.org/10.1109/TVCG.2018.2816059

5. Bilmes, J.: A gentle tutorial on the EM algorithm including gaussianmixtures and baum-welch.
Technical report, International Computer Science Institute (1997)

6. Biswas, A., Dutta, S., Shen, H., Woodring, J.: An information-aware framework for exploring
multivariate data sets. IEEE Trans. Vis. Comput. Graph. 19(12), 2683–2692 (2013). https://
doi.org/10.1109/TVCG.2013.133

7. Center, O.S.: Ohio supercomputer center (1987). http://osc.edu/ark:/19495/f5s1ph73
8. Center, O.S.: Oakley supercomputer. http://osc.edu/ark:/19495/hpc0cvqn (2012)
9. Chen, J.P., Hathaway, M.D., Herrick, G.P.: Prestall behavior of a transonic axial compressor

stage via time-accurate numerical simulation. J. Turbomach. 130(4), 041014 (2008)
10. Chen, J.P., Webster, R., Hathaway, M., Herrick, G., Skoch, G.: Numerical simulation of stall

and stall control in axial and radial compressors. In: 44th AIAA Aerospace Sciences Meeting
and Exhibit. American Institute of Aeronautics and Astronautics (2006). https://doi.org/10.
2514/6.2006-418, http://arc.aiaa.org/doi/abs/10.2514/6.2006-418

11. Dutta, S.: In situ summarization and visual exploration of large-scale simulation data
sets. Ph.D. thesis, The Ohio State University (2018). http://rave.ohiolink.edu/etdc/view?acc_
num=osu1524070976058567

12. Dutta, S., Chen, C., Heinlein, G., Shen, H., Chen, J.: In situ distribution guided analysis and
visualization of transonic jet engine simulations. IEEE Trans. Vis. Comput. Graph. 23(1),
811–820 (2017). https://doi.org/10.1109/TVCG.2016.2598604

13. Dutta, S., Liu, X., Biswas, A., Shen, H.W., Chen, J.P.: Pointwise information guided visual
analysis of time-varying multi-fields. In: SIGGRAPHAsia 2017 Symposium on Visualization,
SA ’17. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/
10.1145/3139295.3139298

14. Dutta, S., Shen, H.: Distribution driven extraction and tracking of features for time-varying
data analysis. IEEE Trans. Vis. Comput. Graph. 22(1), 837–846 (2016). https://doi.org/10.
1109/TVCG.2015.2467436

15. Dutta, S., Woodring, J., Shen, H., Chen, J., Ahrens, J.: Homogeneity guided probabilistic
data summaries for analysis and visualization of large-scale data sets. In: 2017 IEEE
Pacific Visualization Symposium (PacificVis), pp. 111–120 (2017). https://doi.org/10.1109/
PACIFICVIS.2017.8031585

16. Findley, D.F.: Counterexamples to parsimony and bic. Ann. Inst. Stat. Math. 43(3), 505–514
(1991)

https://sites.google.com/site/gravityvisdb/edda
https://sites.google.com/site/gravityvisdb/edda
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/TVCG.2018.2816059
https://doi.org/10.1109/TVCG.2013.133
https://doi.org/10.1109/TVCG.2013.133
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/hpc0cvqn
https://doi.org/10.2514/6.2006-418
https://doi.org/10.2514/6.2006-418
http://arc.aiaa.org/doi/abs/10.2514/6.2006-418
http://rave.ohiolink.edu/etdc/view?acc_num=osu1524070976058567
http://rave.ohiolink.edu/etdc/view?acc_num=osu1524070976058567
https://doi.org/10.1109/TVCG.2016.2598604
https://doi.org/10.1145/3139295.3139298
https://doi.org/10.1145/3139295.3139298
https://doi.org/10.1109/TVCG.2015.2467436
https://doi.org/10.1109/TVCG.2015.2467436
https://doi.org/10.1109/PACIFICVIS.2017.8031585
https://doi.org/10.1109/PACIFICVIS.2017.8031585

In Situ Statistical Distribution-Based Data Summarization and Visual Analysis 89

17. Gentle, J.E.: Random Number Generation and Monte Carlo Methods. Springer, New York
(2007). https://doi.org/10.1007/b97336

18. Goodfellow, I., Pouget-Abadie, J.,Mirza,M., Xu, B.,Warde-Farley, D., Ozair, S., Courville, A.,
Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z.,Welling,M., Cortes, C., Lawrence,
N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27,
pp. 2672–2680. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5423-generative-
adversarial-nets.pdf

19. Han, J., Tao, J., Wang, C.: Flownet: A deep learning framework for clustering and selection of
streamlines and stream surfaces. IEEE Trans. Vis. Comput. Graph. 1 (2018). https://doi.org/
10.1109/TVCG.2018.2880207

20. Hazarika, S., Biswas, A., Dutta, S., Shen, H.W.: Information guided exploration of scalar values
and isocontours in ensemble datasets. Entropy 20(7) (2018)

21. Hazarika, S., Biswas, A., Shen, H.W.: Uncertainty visualization using copula-based analysis in
mixed distribution models. IEEE Trans. Vis. Comput. Graph. 24(1), 934–943 (2018). https://
doi.org/10.1109/TVCG.2017.2744099

22. Hazarika, S., Dutta, S., Shen, H., Chen, J.: Codda: a flexible copula-based distribution driven
analysis framework for large-scale multivariate data. IEEE Trans. Vis. Comput. Graph. 25(1),
1214–1224 (2019). https://doi.org/10.1109/TVCG.2018.2864801

23. He, W., Chen, C., Liu, X., Shen, H.: A bayesian approach for probabilistic streamline
computation in uncertain flows. In: 2016 IEEE Pacific Visualization Symposium (PacificVis),
pp. 214–218 (2016). https://doi.org/10.1109/PACIFICVIS.2016.7465273

24. He, W., Liu, X., Shen, H., Collis, S.M., Helmus, J.J.: Range likelihood tree: a compact
and effective representation for visual exploration of uncertain data sets. In: 2017 IEEE
Pacific Visualization Symposium (PacificVis), pp. 151–160 (2017). https://doi.org/10.1109/
PACIFICVIS.2017.8031589

25. He, W., Wang, J., Guo, H., Wang, K., Shen, H., Raj, M., Nashed, Y.S.G., Peterka, T.: Insitunet:
deep image synthesis for parameter space exploration of ensemble simulations. IEEE Trans.
Vis. Comput. Graph. 26(1), 23–33 (2020)

26. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). http://arxiv.org/abs/1312.
6114. Cite arxiv:1312.6114

27. Li, C., Shen, H.W.:Winding angle assisted particle tracing in distribution-based vector field. In:
SIGGRAPH Asia 2017 Symposium on Visualization. Association for Computing Machinery,
New York, NY, USA (2017). https://doi.org/10.1145/3139295.3139297

28. Li, G., Xu, J., Zhang, T., Shan, G., Shen, H., Wang, K., Liao, S., Lu, Z.: Distribution-based
particle data reduction for in-situ analysis and visualization of large-scale n-body cosmological
simulations. In: 2020 IEEE Pacific Visualization Symposium (PacificVis), pp. 171–180 (2020)

29. Lu, K., Shen, H.W.: A compact multivariate histogram representation for query-driven
visualization. In: Proceedings of the 2015 IEEE 5th Symposium on Large Data Analysis and
Visualization (LDAV), LDAV ’15, pp. 49–56 (2015)

30. Rank, J.: Copulas: FromTheory toApplication in Finance. Bloomberg Financial.Wiley (2007).
https://books.google.com/books?id=133HkvhOHC8C

31. Razali, N.M., Wah, Y.B.: Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors
and anderson-darling tests. J. Stat. Model. Anal. 2(1), 21–33 (2011)

32. Schindler, K., Wang, H.: Smooth foreground-background segmentation for video processing.
In: Proceedings of the 7th Asian Conference on Computer Vision—Volume Part II, ACCV’06,
pp. 581–590. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11612704_58

33. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 52, 591–611 (1965)

34. Sklar,M.: Fonctions deRépartitionÀNDimensions Et LeursMarges. Université Paris 8 (1959)
35. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In:

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, p.
252 (1999). https://doi.org/10.1109/CVPR.1999.784637

36. Stephens, M.A.: EDF statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc.
69(347), 730–737 (1974). https://doi.org/10.1080/01621459.1974.10480196

https://doi.org/10.1007/b97336
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1109/TVCG.2018.2880207
https://doi.org/10.1109/TVCG.2018.2880207
https://doi.org/10.1109/TVCG.2017.2744099
https://doi.org/10.1109/TVCG.2017.2744099
https://doi.org/10.1109/TVCG.2018.2864801
https://doi.org/10.1109/PACIFICVIS.2016.7465273
https://doi.org/10.1109/PACIFICVIS.2017.8031589
https://doi.org/10.1109/PACIFICVIS.2017.8031589
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.1145/3139295.3139297
https://books.google.com/books?id=133HkvhOHC8C
https://doi.org/10.1007/11612704_58
https://doi.org/10.1109/CVPR.1999.784637
https://doi.org/10.1080/01621459.1974.10480196

90 S. Dutta et al.

37. Wang,K.,KeweiLu,Wei, T., Shareef,N., Shen,H.: Statistical visualization and analysis of large
data using a value-based spatial distribution. In: 2017 IEEE Pacific Visualization Symposium
(PacificVis), pp. 161–170 (2017). https://doi.org/10.1109/PACIFICVIS.2017.8031590

38. Wang, K., Xu, J., Woodring, J., Shen, H.: Statistical super resolution for data analysis and
visualization of large scale cosmological simulations. In: 2019 IEEE Pacific Visualization
Symposium (PacificVis), pp. 303–312 (2019). https://doi.org/10.1109/PacificVis.2019.00043

https://doi.org/10.1109/PACIFICVIS.2017.8031590
https://doi.org/10.1109/PacificVis.2019.00043

Exploratory Time-Dependent Flow
Visualization via In Situ Extracted
Lagrangian Representations

Sudhanshu Sane and Hank Childs

Abstract This chapter considers exploratory flow visualization of time-dependent
vector fields via in situ extraction of Lagrangian representations. The Lagrangian per-
spective is more capable than the traditional approach of incorporating the increased
spatiotemporal data afforded by in situ processing, creating significantly better trade-
offs with respect to accuracy and storage. For example, in situ Lagrangian-based flow
analysis has delivered the same accuracy as the traditional approach with less than
2% of the storage, or 10X greater accuracy with the same storage. The chapter begins
by discussing the Lagrangian frame of reference and how this frame of reference can
be used as an in situ operator for data reduction. Next, opportunities for achieving
maximum information per byte—where particles are placed, how they are termi-
nated, and how much information to store per particle trajectory are discussed. The
chapter then considers post hoc exploration using the Lagrangian representation, as
well as the corresponding challenges involved. Finally, the chapter concludes with a
qualitative evaluation to demonstrate the efficacy of the technique and a discussion
of the current state of the art.

1 Introduction

A flow field describes how a fluid’s velocity varies over time in a two or three dimen-
sional domain. Flowfields are produced by computational fluid dynamics (CFD) sim-
ulations and often require scientific visualization to understand, verify, and explore
phenomena of interest. Typically, the velocity of a flow field is represented within a
simulation code as a time-dependent vector field defined over a discretized mesh. To
visualize the vector field, i.e., to perform flow visualization, techniques can choose
to operate on the vector field data as “steady state” (i.e., ignoring that the vector

S. Sane (B) · H. Childs
University of Oregon, Eugene, USA
e-mail: ssane@uoregon.edu

H. Childs
e-mail: hank@uoregon.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_5

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_5&domain=pdf
mailto:ssane@uoregon.edu
mailto:hank@uoregon.edu
https://doi.org/10.1007/978-3-030-81627-8_5

92 S. Sane and H. Childs

field evolves over time, typically in order to reduce execution time by considering
less data) or as “unsteady state” (i.e., recognizing the time-dependent nature of the
field, typically at a cost of higher execution time). That said, for unsteady state flow
visualization to be accurate, it requires complete spatiotemporal data. Unfortunately,
this data rarely exists for post hoc analysis in practice since simulation codes need
to perform temporal subsampling to fit their results on disk. Worse, trends in high-
performance computing are leading temporal subsampling to become increasingly
aggressive, leading unsteady state flow visualization to become increasingly inaccu-
rate.

In situ processing represents a new opportunity to obtain sufficient temporal res-
olution to perform accurate flow visualizations. Further, when the desired visualiza-
tion are known a priori, these accurate visualizations can be achieved in a relatively
straightforward manner. However, when the desired visualizations are not known a
priori, the traditional approach for generating flow visualizations cannot take advan-
tage of the increased temporal information—while in situ processing enables access
to more data, the traditional approach has no way to take advantage of this data. This
use case—accurate, exploratory flow visualization for unsteady state flow—is the
motivation for this chapter. The main idea for enabling exploration is one already
discussed in the introductory chapter and in other chapters in this book: using in situ
processing to generate a reduced form and then doing post hoc exploration on that
reduced form. That said, a challenge and opportunity for time-dependent vector field
data is fully taking advantage of the increased temporal information provided by in
situ processing.

This chapter explores the use of the Lagrangian perspective when using in situ
processing to calculate a reduced representation of time-dependent vector fields. This
reduced representation can then be used as part of a workflow, illustrated in Fig. 1, to
enable exploratory flow visualization. This overall workflow is referred to as in situ
Lagrangian-based flow analysis. Seminal research on this approach demonstrated
improved accuracy and data storage propositions compared to traditional methods
for exploratory flow visualization [1]. These improvements are possible because

Fig. 1 Diagram showing the operations for in situ Lagrangian-based flow analysis, as well as its
relation to the simulation code and post hoc visualization workflow

Exploratory Time-Dependent Flow Visualization … 93

Lagrangian-based flow analysis is able to take advantage of the increased temporal
resolution from in situ processing.

2 Background and Motivation

This background section contains two parts. First, Sect. 2.1 discusses two frames
of reference for representing time-dependent vector data: Eulerian and Lagrangian.
Next, Sect. 2.2 discusses the limitations of the traditional, Eulerian-based paradigm
for visualizing and analyzing time-dependent vector data.

2.1 Frames of Reference in Fluid Dynamics

In fluid dynamics, the Eulerian and Lagrangian frames of reference are two ways of
looking at fluid motion. In the Eulerian frame of reference, the observer is at a fixed
position. In the Lagrangian frame of reference, however, the observer is attached to
a fluid parcel and moves through space and time. In computational fluid dynamics,
simulations can be designed to employ a fixed mesh (Eulerian), have simulation
grid points follow the simulation velocity field (Lagrangian), or use hybrid Eulerian-
Lagrangian specifications.

When a velocity field is stored in an Eulerian representation, it is typically done
by means of its vector field. A velocity field v is a time-dependent vector field that
maps each point x ∈ R

d in space to the velocity of the field for a given time t ∈ R

v : Rd × R → R
d , x, t �→ v(x, t) (1)

In a practical setting, the velocity field is typically defined over a fixed, discrete
mesh and represents the state of the velocity field at a specific instant of time, i.e., at
a specific simulation time and cycle.

In a Lagrangian representation, flow behavior is encoded via its flowmap Ft
t0 . The

flowmap considers what happens when a massless particle at some starting position,
x0, and starting time, t0, is advected by the velocity field. Themathematical definition
of the flow map is the mapping

Ft
t0(x0) : R × R × R

d → R
d , t × t0 × x0 �→ Ft

t0(x0) = x(t) (2)

of initial values x0 to the solutions of the ordinary differential equation

d

dt
x(t) = v(x(t), t) (3)

94 S. Sane and H. Childs

In a practical setting, theflowmap is stored as sets of particle trajectories calculated
in the time interval [t0, t] ⊂ R. The stored information, encoded in the form of known
particle trajectories, represents the behavior of the velocity field over an interval of
time.

Finally, the two frames of reference are theoretically equivalent [4]. For the Eule-
rian representation, particle trajectories can be calculated from the velocity field
through integration. For the Lagrangian representation, the velocities at arbitrary
locations can be calculated from the particle trajectories through differentiation.
That said, their application in practical contexts varies.

2.2 Traditional Paradigm for Visualization and Analysis of
Time-Dependent Vector Fields

There exist a rich set of flowvisualization techniques, including line integral convolu-
tion, finite-timeLyapunov exponents (FTLE), pathlines, etc. Each of these techniques
uses particle trajectories as building blocks for their respective visualizations.

The traditional approach for calculating particle trajectories is called “particle
advection” and uses the Eulerian frame of reference. The input to this operation
is Eulerian velocity data, i.e., a vector field defined on a discretized mesh. The
trajectory of a given particle is calculated iteratively, advancing the particle by small
displacements each step. Each of the steps is referred to as an “advection step” and is
calculated by solving an ordinary differential equation (ODE) using the velocity field.
There are a variety of numerical methods to solve ODEs; with scientific visualization
the most commonly used method is a fourth-order Runge-Kutta method (RK4).

Accuracy is a critical consideration for particle advection, especially for unsteady-
state flow. Numerical solvers (RK4 or otherwise) require velocity field evaluations at
various locations, typically the current location of the particle as well as nearby loca-
tions. These evaluations require interpolation, which introduces error. For unsteady-
state flow visualization, the desired evaluations are at arbitrary times, requiring tem-
poral interpolation. Therefore, the more temporal resolution available, the less error.

Unfortunately, trends in supercomputing are reducing temporal resolution, and
thus increasing error. As discussed in the introductory chapter, the growing gap
between I/O and computing capabilities of modern supercomputers compels the use
of temporal subsampling to store data. As a consequence, only a subset of data is
practically available to perform particle advection in a post hoc Eulerian settings.
For flow visualization, this means interpolation error will be high and results can be
misleading.

From an implementation perspective, the traditional Eulerian approach of storing
velocity field data on a fixed mesh yields two significant benefits: fast cell location
and easy interpolation. This makes the computational cost of the particle advec-
tion operation during post hoc flow visualization relatively inexpensive. That said,
I/O operations—writing large files to disk representing simulation output and subse-

Exploratory Time-Dependent Flow Visualization … 95

quently reading thosefiles fromdisk for post hoc exploratoryflowvisualization—will
remain bottlenecks in their respective workflows.

Overall, the challenges in accuracy and performance jeopardize the ability to per-
form time-dependent flowvisualization under the traditional paradigm, andmotivates
new approaches.

3 Lagrangian-Based Flow Analysis

This section considers howLagrangian-based flow analysis operates as aworkflow. It
is organized into two parts: Sect. 3.1 considers the two distinct phases of computation
involved in Lagrangian-based flow analysis, while Sect. 3.2 considers the differences
with the traditional, Eulerian workflow.

3.1 Phases of Computation

There are two phases of computation involved in Lagrangian-based flow analysis:
in situ extraction and post hoc exploration (described in detail in Sects. 4 and 5,
respectively). The in situ phase involves calculating a Lagrangian representation of
the vector field, i.e., tracing basis trajectories (pathlines that can be used subsequently
to infer additional pathlines). In situ access to the complete spatial and temporal
resolution of the simulation velocity field enables the extraction routine to accurately
calculate the trajectories that form the stored flow map.

With respect to a Lagrangian representation extracted in situ, the following char-
acteristics are desirable:

• It should be possible to compute within in situ constraints.
• It should maximize information per byte stored to disk.
• It should support accurate and interactive post hoc exploration.

The major research challenge with Lagrangian-based in situ reduction is to achieve
all three of these characteristics. Further, the basic framework of the Lagrangian
paradigm inherently has no constraints on how particle trajectories should be seeded,
terminated, selected, represented, or stored. In particular, selection of particle trajec-
tories requires smart sampling along both spatial and temporal axes. These important
areas of flexibility are discussed in Sects. 4.2 and 4.3.

The second phase, i.e., the post hoc exploration phase, involves performing flow
visualizations using the stored Lagrangian basis trajectories. In this phase, there are
no constraints on the types of flow visualizations performed; the flow visualiza-
tions specify seed locations, and new pathlines can be interpolated using the in situ
extracted data. That said, this interpolation step is non-trivial and also the subject of
research. Section5 discusses the factors involved in the post hoc interpolation phase
in more detail.

96 S. Sane and H. Childs

Fig. 2 Notional example showing the differences between an Eulerian-based and a Lagrangian-
based method. In this example, a simulation code runs for 24 cycles total and outputs data every
6 cycles. The Eulerian method stores time slices, denoted by FX , where X denotes the cycle. The
Lagrangian method calculates particle trajectories in situ and stores data capturing the behavior
of the vector field over an interval of time. These files are denoted by FX→Y , where X and Y
represent the cycles that begin and end the interval of calculation. The figure illustrates how each
technique interpolates the stored data to calculate a new particle trajectory. This image is adapted
from a version by Agranovsky et al. [1]

3.2 Differences Between Eulerian and Lagrangian-Based
Flow Analysis

The Lagrangian paradigm, unlike the Eulerian paradigm, introduces an encumbrance
on the simulation code when it calculates its basis trajectories. The impact of this
overhead is an important considerationwhen accessing the practicality of themethod.

To better highlight the differences between the methods, consider the notional
example in Fig. 2. There are differences in the type of data stored, the informa-
tion represented by the data, and how data is interpolated post hoc to calculate a
new particle trajectory. In particular, the Eulerian-based method stores a vector field
representing a time slice, while the Lagrangian-based method stores particle trajec-
tories representing time intervals. To calculate particle trajectories, Eulerian-based
advection solves ordinary differential equations and performs spatial and temporal
interpolation. In this case, two time slices (files) are interpolated to advance a particle
across an interval of time. For Lagrangian-based advection, a single file is used to
advance a particle across an interval of time. Although the notional example shows
identical interpolated particle trajectories for both techniques, the actual trajectories
are likely to be different. Further, in practice, the Lagrangian trajectory is typically
more accurate since the stored Lagrangian representation can encode more informa-

Exploratory Time-Dependent Flow Visualization … 97

Table 1 Differences between the Lagrangian and Eulerian paradigm from a simulation’s perspec-
tive. This table is adapted from a version by Agranovsky et al. [1]

Eulerian Lagrangian

Saved files contain Vector fields Particle trajectories

Saved files represent Time slices Time intervals

Reducing I/O, storage Less time slices Less particles

Increasing accuracy More time slices More particles

Simulation overhead I/O I/O + Lagrangian analysis
routine computation and
memory

tion per byte of storage. Section6 contains visualizations highlighting the differences
in the interpolated trajectories in practical settings.

Table1 summarizes some differences between the two methods. Although the
Lagrangian-based method has an increased encumbrance from running in situ, this
cost is offset by multiple benefits: reduced storage requirements, increased accuracy,
and improved post hoc performance [1]. For example, the Lagrangian-based method
has been demonstrated to be up to 10Xmore accurate than the Eulerian-basedmethod
when considering the same storage, and can provide comparable accuracy for data
reductions of up to 64X under sparse temporal settings. Further, depending on the
data reduction, the reduced burden on I/O write and read operations can result in
performance improvements.

4 In Situ Extraction

This section discusses the in situ extraction phase of Lagrangian-based flow analysis
in more detail. This phase involves computing Lagrangian basis trajectories that are
built by using theEulerian approach—advecting particles using numerical techniques
and the (Eulerian) vector field from the simulation code. Typically, the particle is
displaced for an amount of time corresponding to the simulation’s advancement,
i.e., if the simulation advances from cycle C to C + 1 and goes from time T to
T + ε, then the particles will advance for ε time. There are several factors that
influence the outcome of this in situ extraction phase. Specifically, Sect. 4.1 begins
with a discussion of the in situ costs and constraints. Next, Sects. 4.2 and 4.3 cover
strategies for spatial and temporal sampling of a time-dependent vector field. Finally,
Sect. 4.4 discusses options for storage of a Lagrangian representation and the impact
it can have on the overall workflow.

98 S. Sane and H. Childs

4.1 In Situ Costs and Constraints

When considering an in situ routine there are two main costs that must be accounted
for: execution time andmemory. In situ analysis routines are often allocated a limited
resource budget and then required to operate within them. Fortunately, there are
several parameters or “knobs” that exist within the Lagrangian framework that can
impact (and potentially reduce) these costs. The fivemain components that contribute
to in situ costs are:

• The particle advection workload, i.e., the number of particle trajectories being
calculated.

• The frequency and amount of I/O required by the in situ routine.
• Communication costs to exchange information in a distributed memory setting.
• Computation costs of a sampling strategy.
• Memory costs for storing particles and their trajectory information.

The limited memory available places restrictions on (1) the number of particle
trajectories that can be calculated, (2) the number of locations along each particle tra-
jectory that can be stored, and lastly, (3) the number of time slices that can be retained
in memory in situ. Remaining within in situ constraints requires selecting an appro-
priate particle advection workload and in-memory particle trajectory representation.
In cases where memory usage increases over an interval of computation (e.g., storing
many intermediate locations along a particle trajectory), the frequency at which data
is moved from memory to disk is pertinent.

Extracting a Lagrangian representation involves computing integral curves in a
distributed memory environment. Although several research works have considered
preprocessing of the vector field and redistribution of the data, these options are
unattractive within an in situ context since the simulation code has already parti-
tioned the data. Thus, using the simulation’s partitioning incurs no additional costs,
while repartitioningwill increasememory usage and take time.Depending on the dis-
tribution of the data and the underlying vector field, the number of particles crossing
node boundaries to continue advection could result in an increase of overall execution
time. With respect to a sampling strategy (spatial and temporal), the execution time
required will vary depending on the sampling algorithm and corresponding imple-
mentation. These processes should, ideally, utilize the available hardware accelera-
tion on modern supercomputer compute nodes to produce low-cost, fast techniques
that minimize the overall encumbrance on the simulation code.

Overall, in order to not exceed usage of allocated resources, these costs and
constraints must be accounted for when designing an in situ Lagrangian extraction
routine.

Exploratory Time-Dependent Flow Visualization … 99

4.2 Spatial Sampling: Seed Placement

Spatially sampling the vector field, i.e., selecting locations to seed basis particles,
plays a critical role in determining the quality of the data extracted. In general, a
spatial sampling strategy is responsible for directing the following three operations:

• An initial placement of seed particles.
• When a new seed particle should be introduced.
• When an existing seed particle should be terminated.

Seed placement or spatial sampling strategies can be guided by the desire to
achieve any of the following objectives in varying orders of priority:

• Maximize information content per byte stored to disk.
• Coverage of the domain, i.e., every region of the domain receives coverage.
• Focus on capturing regions of interest or specific features accurately.
• Minimizing in situ encumbrance, i.e., fast execution times and/or low memory
usage.

To work as an effective in situ data reduction operator, however, these objectives
are sometimes in tension and require navigating a trade-off. Although maximizing
the information per byte stored to disk might seem of highest priority, it is easy
to imagine a scenario where this characteristic is compromised for better domain
coverage or algorithmic simplicity.

Spatial sampling strategies must consider the distribution of seed particles in
both space and time. Given the nature of particle trajectories in unsteady state flow,
particles can cluster in regions while leaving voids in other regions. To address
this problem, seed particles need to either be reset periodically or added/removed
as required to maintain coverage. In the study by Agranovsky et al. [1], seeds are
placed at uniform locations in the domain and the particle trajectories are terminated
at regular intervals. Although this approach can provide good domain coverage using
short trajectories, a uniform distribution of particles is not always the best allocation
of resources. In a work by Sane et al. [12], seed particles follow the velocity field
and form long trajectories (since post hoc interpolation of long trajectories has been
shown to be more accurate [4, 9]), storing locations uniformly along the trajectory.
Further, the approach uses a Delaunay triangulation over the seeds to (1) identify
locations to add seeds andfill voids and (2) remove seeds in regions of seed clustering.
Although this approach provides improved accuracy-storage propositions, the in situ
cost of the sampling strategy is high.

There is much research to be done in this space. For example, a strategy might
benefit from seed placement guided by information derived from the velocity field
(e.g., entropy, curvature, divergence, etc.). Further, derivation of informative scalar
fields from a vector field can often be performed in parallel by leveraging hardware
acceleration. Figure3 illustrates a uniform and entropy-guided seed placement for
the Double Gyre vector field (a commonly used analytic data set). Multiple research
studies in the area of seed placement [13–15] demonstrate the efficacy of field-
guided approaches for streamline selection to visualize the velocity field, and these

100 S. Sane and H. Childs

(a) (b) (c)

Fig. 3 An illustration of two possibilities for seed placement given the Double Gyre vector field.
a shows a vector glyph visualization. b presents a simple uniform seed placement and c colormaps
an entropy field derived from the vector field and shows seed placement with a density proportional
to the value of entropy

findings may very well translate to in situ Lagrangian-based flow analysis routines.
To summarize, field-guided spatial sampling strategies have significant potential to
improve information per byte stored in a Lagrangian representation while remaining
computationally efficient.

4.3 Temporal Sampling: Curve Approximation

Temporal sampling refers to how much of a single basis trajectory should be stored.
A basis trajectory contains the entire route a particle traveled. In practical terms,
this route comprises the positions resulting from each advection step. The temporal
sampling question, then, is which of these positions along the trajectory should be
saved? Saving all of the positions along a trajectory will best capture the underlying
vector field, but incurs a large storage cost. Saving fewer positions reduces this
storage cost, at a trade-off of reduced accuracy.

For each basis trajectory, there are multiple options for sampling and storing the
trajectory. A straightforward strategy, employed by Agranovsky et al. [1], is to save
only the start and end points along the pathline computed in situ. Although this strat-
egy can provide data storage optimizations and be sufficient for approximating the
pathline, it could be an oversimplification in the event of a long interval of calcula-
tion or complex vector field behavior. The algorithm introduced by Sane et al. [12]
calculates basis trajectories of variable length and uniformly samples the trajectory.
Although their work considers basis flow of variable length, the operations of adding
or removing a basis flow can only be performed at predetermined cycles. Alter-
nate strategies might consider various curve simplification techniques, like selecting
points along a pathline that minimize its reconstruction error, or using attributes like
curvature, winding angle, or linear and angular entropy to guide a temporal sampling
strategy. Figure4 uses notional examples to illustrate a comparison between uniform
and attribute-guided curve sampling.

Complex temporal sampling strategies are challenging due to the limited in situ
memory available and the higher memory requirements of these strategies, i.e., the
requirement to store multiple points along a pathline before selecting a subset. That

Exploratory Time-Dependent Flow Visualization … 101

Fig. 4 This figure illustrates two different curve sampling strategies—uniform and attribute-
guided—on three notional basis flows. Each basis flow is colored in black, and the data saved
is indicated with dotted red lines for uniform sampling, and dotted blue lines for attribute-guided
sampling. a considers a curve whose x value remains relatively the same across time. In this case,
attribute-guided sampling can reduce storage costs and still provide the same information. b shows
a curve whose x value first increases, then decreases before increasing again. In this case, attribute-
guided sampling can place samples where they will best inform the nature of the trajectory. c shows
a curvewhose x value steadily increases across time. Its benefits are similar to (a)—reducing storage
costs

said, collective smart temporal sampling across all basis trajectories could enable a
higher fidelity reconstruction of the time-dependent vector field while further reduc-
ing storage costs.

4.4 Storage Format

Decisions for how to carry out spatial and temporal sampling affect the storage
layout for basis trajectories. In turn, this can impact storage and memory usage, I/O
times (for in situ writing and post hoc reading), and post hoc execution time (for
reconstruction and interpolation).

In general, there are two options for storage: structured and unstructured. When
considering a structured data set as output, the seed locations of basis trajectories
need to lie along a regular grid. The implicit nature of the grid eliminates the need
for storing seed locations explicitly, and promotes a natural organization of data.
Trajectory data can be stored in “grid” form, with the values at each grid point being
information about the seed that originated at that location. Agranovsky et al. [1]
adopt this approach, and store only a single value at each grid location: the ending
position of the seed particle. Of course, additional data can be stored at each grid
point. For example, a field can be used to indicate whether a particle remained within
the bounds of the domain during the interval of calculation. Although the use of a
structured storage format enables a fast post hoc exploration workflow, it is limited to
the case of spatial sampling along a regular grid. Figure5 shows direct visualizations
of a structured data output, where particle trajectories (represented as line segments)
are calculated using the displacement field of a seismology simulation over three
intervals of computation.

102 S. Sane and H. Childs

Fig. 5 This figure is an example of directly visualizing the data extracted froman in situLagrangian-
based flow analysis routine. Each image is a visualization of a Lagrangian representation of the
time-dependent vector field produced by a seismic modeling simulation studying seismic wave
propagation [10]. For this example, seeds are initially placed along a regular grid and only the
end points of the particles are saved at the end of an interval, i.e., a structured grid with an “end
point” field is stored. In each visualization, the trajectories (represented as line segments from the
grid point to the “end point”) capture the displacement caused by the underlying vector field. For
example, a shows trajectories calculated between cycle 3000 and 4000 and represents the earlier
stages of the simulation. The progressive propagation of the seismic waves can be perceived when
considering all three images

When considering the flexibility that the Lagrangian framework provides, the
unstructured storage format is a more natural fit when spatial and temporal sampling
are irregular (i.e., adapted tomaximize the information per byte). Particle trajectories
can be stored as current point locations, lines (two points), or polylines (more than
two points), each with additional attributes (for example, ID to identify data points
of the same basis trajectory across files) associated with each object. This approach,
however, results in a more expensive post hoc exploration process since cell loca-
tion and interpolation require more elaborate search structures when considering
unstructured data. Sane et al. [12] adopted an unstructured storage format to store
long particle trajectories, calculated across multiple file write cycles, as line seg-
ments with identifiers. Although the adopted approach did not increase in situ costs,
post hoc reconstruction required the use of an expensive search structure (Delaunay
triangulation) to locate relevant basis trajectories.

5 Post Hoc Exploration

After the in situ generation of basis trajectories, post hoc exploration of the time-
dependent vector field can be performed with nearly any flow visualization tech-
niques. These techniques depend on analyzing particle trajectories, and the only
difference is in how the trajectories are obtained. Where the traditional Eulerian
approach calculates the trajectories via particle advection steps, the Lagrangian
approach calculates the trajectories by interpolating between nearby basis trajecto-

Exploratory Time-Dependent Flow Visualization … 103

Fig. 6 Interpolation of a new particle trajectory (gray) using previously computed basis trajectories
(B1 and B2 in red). Each position along the new particle trajectory is calculated by following basis
trajectories. At time ti , weights ω1 and ω2 are calculated based on the distance of B1 and B2 from
xi respectively. The weights are then used to estimate x j at time t j . This process can continue to
trace the complete trajectory. This image is adapted from a version by Agranovsky et al. [1]

ries. This interpolation can be thought of as “following” basis trajectories, i.e., using
them as a guide to infer where particles in between the trajectories would travel.
This section discusses how to interpolate a new particle trajectory, as well as the
corresponding search structures that can be used to locate nearby basis trajectories.

To calculate a new particle trajectory starting at a specific location xi , a “neigh-
borhood” of basis trajectories to follow needs to be identified. Typically, depending
on the distances of the neighborhood basis trajectories from xi and the selected inter-
polation method, different weights are assigned to each basis trajectory and then
used when calculating the next location along the path of the new particle trajectory.
Interpolation methods such as barycentric coodinate interpolation, Moving Least
Squares interpolation, Shepard’s method, etc., can be used to calculate new particle
trajectories [2, 3]. A notional example for interpolation is illustrated in Fig. 6.

The determination of the particle neighborhood is largely dependent on how the
basis trajectories are stored (structured or unstructured). When the Lagrangian rep-
resentation is stored using a structured data set, the neighborhood can be identified
as the basis trajectories that are initialized at the grid points of the cell containing the
location of the new particle trajectory to be interpolated.When using an unstructured
data set, the neighborhood can be identified as the set of basis trajectories within a
specific search radius or those that form a convex hull that contains the location of
the new particle trajectory. Chandler et al. [6] use a modified k-d tree to perform a
radius search and Sane et al. [12] use a Delaunay triangulation to identify a contain-
ing cell given a Lagrangian representation stored in an unstructured data set. Further,
techniques like binning can be used to accelerate neighborhood identification.

104 S. Sane and H. Childs

The result of interpolating basis trajectories is a set of points that form a pathline.
These computed positions along the pathline are an interval in time apart. To estimate
the position of the particle in between interpolated locations, various curve fitting
techniques can be used. A simple and straightforward approach to visualize the inter-
polated positions along a pathline is the use of a C0 polygonal chain. This approach
is used to visualize pathlines interpolated from basis trajectories in Sect. 6. As the
size of the interval increases, however, the aesthetic quality of the C0 representation
of the pathline deteriorates and can be improved by using parameter curves. Bujack
et al. [4] studied and evaluated the use of multiple parameter curves (cubic Hermite
spline, Bèzier curve) to represent particle trajectories.

The complexity of a post hoc Lagrangian-based interpolation routine is depen-
dent on the format of the extracted Lagrangian representation of the time-dependent
vector field. If basis trajectories are long and span across several simulation cycles
storing multiple positions along the way, then pathline interpolation following the
same neighborhood of basis trajectories results in more accurate interpolation [4,
12]. Although following short (single interval) basis trajectories is straightforward,
changing the neighborhood frequently propagates a local truncation error [4, 9, 11].
There is scope for complex, yet efficient, and accurate post hoc Lagrangian-based
interpolation systems to be researched and developed in the future.

6 Efficacy of Lagrangian-Based In Situ + Post Hoc Flow
Analysis

For time-dependent flow visualization, the Lagrangian paradigm offers significantly
improved accuracy and data storage propositions compared to the Eulerian paradigm
under sparse temporal settings. This is possible because the Lagrangian represen-
tation of time-dependent vector data is capable of encoding more information per
byte. The Lagrangian representation captures the behavior of the underlying vector
field over an interval of time. This is in contrast to an Eulerian representation that
captures the vector data at a single time slice. Further, in situ access to the complete
spatiotemporal resolution of the simulation vector field enables accurate compu-
tation of the Lagrangian representation. This section highlights the efficacy of the
Lagrangian-based approach for time-dependent flow visualization.

The study by Agranovsky et al. [1] demonstrated the ability of the Lagrangian
representation to retain substantially better accuracy relative to the Eulerian method,
evenwith significantly less data. For example, the studydemonstrated theLagrangian-
based approach achieving comparable accuracy using a 64X data reduction. When
using the same amount of storage as the Eulerian approach, the Lagrangian represen-
tation enabled over 10X more accurate reconstruction of the velocity field. Further,
the study showed how increasing the interval between storing information to disk
is far less detrimental to the Lagrangian-based method than the Eulerian approach.
This initial quantitative evaluation was performed by comparing the “end point” of

Exploratory Time-Dependent Flow Visualization … 105

Fig. 7 Visualizations of an F-5 tornado vortex qualitatively compare the accuracy of pathlines
traced using two methods under sparse temporal settings: Lagrangian (orange trajectories) and
Eulerian (purple trajectories). The ground truth set of trajectories, calculated using every cycle of
the simulation is traced in white. The six visualizations present results for varying configurations of
howmany basis trajectories are stored in the Lagrangian representation. The configurations are: 1:1
ratio of particles to grid points in (a) and (d), 1:2 in (b) and (e), and 1:4 in (c) and (f). With respect
to temporal subsampling, every 8th simulation cycle is stored. For all Lagrangian configurations,
the method described by Agranovsky et al. [1] is used. For the post hoc visualizations, particles
are initially seeded in a rake and trace trajectories that enter the tornado vortex region from the
bottom-right (a–c) and top-right (d–f) of the figures. In a and d, the white (ground truth) and
orange (Lagrangian) pathlines following very similar trajectories. The Eulerian method pathlines
(purple) have diverged from the white trajectories in most instances. b and e show the Lagrangian
representation still performing better than the Eulerian method, even though it is using only half as
much storage. A similar trend can be observed in c and f where Lagrangian configurations use a
quarter of the storage. In these figures Lagrangian accuracy deteriorates as the number of particle
trajectories stored reduces from 1:1 to 1:4. That said, in all cases the accuracy of the Lagrangian
pathlines remains higher than the corresponding Eulerian pathlines (which are calculated using the
full spatial resolution)

106 S. Sane and H. Childs

Fig. 8 Pathline visualizations compare the accuracy of pathlines traced using twomethods: Eulerian
and Lagrangian. Lagrangian_X and Eulerian_X denote configurations that store data every X th
cycle, i.e., the size of the interval. Left: five ground truth pathlines and their corresponding Eulerian
pathlines. Overall, as the size of the interval X increases, the accuracy of the pathlines decreases
and the trajectories of the Eulerian pathlines diverge from the ground truth. Right: the same five
ground truth pathlines and their corresponding Lagrangian pathlines. The Lagrangian trajectories
closely follow the ground truth and do not significantly diverge as the value of X increases

interpolated particle trajectories to the ground truth. Further, the study presented the
accuracy of in situ Lagrangian-based flow analysis relative to the traditional Eulerian
approach. Sane et al. [11] conducted a study using multiple evaluation metrics (“end
point”, “every point”, “known interpolated points” of a particle trajectory) to compare
the absolute errors of both the methods and observe trends across a range of spa-
tiotemporal configurations. This study too demonstrated the significantly improved
accuracy-storage propositions offered by the Lagrangian method in settings of tem-
poral sparsity. To evaluate the benefits of using long basis flow trajectories, Sane
et al. [12] conducted a study and found that accuracy-storage propositions could
be improved by up to 2X in accuracy while requiring 50% less storage. However,
the strategy adopted to maintain domain coverage in this study increased in situ
computation costs. Each of these studies considered average error across all parti-
cle trajectories considered. Overall, with respect to a quantitative evaluation, studies
exploring per particle outcomes, rather than average performance across varying
non-analytical data sets, would further understanding of the approach.

To compare the Lagrangian and Eulerian methods qualitatively, Figs. 7, 8, and 9
visualize pathlines from an F-5 tornado weather simulation. The simulation has a
base grid resolution of 490 × 490 × 280 and a mature tornado vortex exists in the

Exploratory Time-Dependent Flow Visualization … 107

Fig. 9 Sets of pathlines traced from nine different seed locations using multiple Eulerian and
Lagrangian configurations. Each set shows a ground truth pathline, and fourEulerian andLagrangian
pathlines each.The color scheme is the sameas that described inFig. 8.Overall, Lagrangianpathlines
more closely follow their respective ground truth trajectories and the Eulerian pathlines are less
accurate in settings of temporal sparsity, i.e., configurations with large intervals between saving
data to disk

domain during the 512 simulation cycles considered for the visualization. The visu-
alization includes ground truth pathlines, that are interpolated using every simulation
cycle, and Lagrangian and Eulerian trajectories, that are computed under sparse tem-
poral settings. In Fig. 7, Lagrangian pathline interpolation using the same number of
particles as grid points (Fig. 7a) is nearly perfectly accurate, when compared to the
ground truth. As the number of particles used is reduced (Fig. 7b and c), although the
accuracy of Lagrangian pathline interpolation decreases, it remains more accurate
than the Eulerian method. In comparison to the Lagrangian pathline interpolation,
the pathlines generated by the Eulerian method trace much less accurate trajec-
tories. Figures8 and 9 demonstrate the effects of increasing temporal sparsity on
the Lagrangian and Eulerian methods. As expected, when the size of the interval
increases, the accuracy of the Eulerian pathlines decreases. In nearly every case,
only the Eulerian pathline computed using a small interval size remains accurate.
In contrast, the Lagrangian pathlines remain accurate and closely follow the ground
truth trajectories, irrespective of the interval size.

Overall, these examples demonstrate that the Lagrangian method is capable of
significantly improving the ability to perform exploratory time-dependent flow visu-
alizationbyprovidinghigh-integrity reconstructions of the velocityfieldwhile requir-
ing less data to be extracted from a simulation.

108 S. Sane and H. Childs

7 Discussion of State of the Art and Future Work

Over the past decade, Lagrangianmethods have been increasingly used for flow visu-
alization. Presenting a post hoc Lagrangian-based advection technique, Hlawatsch
et al. [8] explored the use of a hierarchical scheme to construct longer pathlines
using previously computed Lagrangian basis trajectories. The constructed pathlines
would be more accurate due to being constructed using fewer integration steps.
More recently, there has been an increased interest in the use of in situ processing
to extract Lagrangian basis trajectories. Agranovsky et al. [1] first demonstrated the
benefits of extracting a reduced Lagrangian representation to capture the behavior of
a time-dependent vector field. Furthering this research direction, Chandler et al. [6]
extracted a Lagrangian representation from an SPH [7] simulation and used a mod-
ified k-d tree to accelerate post hoc interpolation. Additionally, Chandler et al. [5]
conducted studies to identify correlations between Lagrangian post hoc interpolation
error and divergence in the velocity field. Other theoretical error analysis studies and
empirical evaluations have been conducted to study the absolute error of Lagrangian-
based flow analysis and error propagation during particle trajectory computation [4,
9, 11]. Building upon theoretical work, Sane et al. [12] explored the use of variable
duration basis trajectories and proposed interpolation schemes to accurately compute
pathlines by following long basis trajectories to reduce error propagation.

There are several future works and research directions when considering in situ
Lagrangian-based flow analysis. Questions surrounding whether in situ Lagrangian-
based flow analysis is capable of providing improved time-dependent flow visual-
ization in sparse temporal settings has largely been addressed. Questions regarding
best practices and the use of Lagrangian representations for specific flow visu-
alization tasks during post hoc analysis, however, remain relatively open. That
being said, existing research works provide compelling evidence to support future
research efforts on in situ Lagrangian-based flow analysis to enable exploratory
time-dependent flow visualization of large vector data.

Acknowledgements This research was supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

References

1. Agranovsky, A., Camp, D., Garth, C., Bethel, E.W., Joy, K.I., Childs, H.: Improved post hoc
flow analysis via lagrangian representations. In: 2014 IEEE 4th Symposium on Large Data
Analysis and Visualization (LDAV), pp. 67–75. IEEE (2014)

2. Agranovsky, A., Camp, D., Joy, K.I., Childs, H.: Subsampling-based compression and flow
visualization. In: Visualization and Data Analysis 2015, vol. 9397, p. 93970J. International
Society for Optics and Photonics (2015)

3. Agranovsky, A., Garth, C., Joy, K.I.: Extracting flow structures using sparse particles. In: VMV,
pp. 153–160 (2011)

Exploratory Time-Dependent Flow Visualization … 109

4. Bujack, R., Joy, K.I.: Lagrangian representations of flow fields with parameter curves. In: 2015
IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV), pp. 41–48. IEEE
(2015)

5. Chandler, J., Bujack, R., Joy, K.I.: Analysis of error in interpolation-based pathline tracing. In:
Proceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers, pp.
1–5. Eurographics Association (2016)

6. Chandler, J., Obermaier, H., Joy, K.I.: Interpolation-based pathline tracing in particle-based
flow visualization. IEEE Trans. Vis. Comput. Graph. 21(1), 68–80 (2015)

7. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics-theory and application to
non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

8. Hlawatsch,M., Sadlo, F.,Weiskopf, D.: Hierarchical line integration. IEEETrans. Vis. Comput.
Graph. 17(8), 1148–1163 (2011)

9. Hummel, M., Bujack, R., Joy, K.I., Garth, C.: Error estimates for lagrangian flow field rep-
resentations. In: Proceedings of the Eurographics/IEEE VGTC Conference on Visualization:
Short Papers, pp. 7–11. Eurographics Association (2016)

10. Petersson, N.A., Sjögreen, B.:Wave propagation in anisotropic elasticmaterials and curvilinear
coordinates using a summation-by-parts finite difference method. J. Comput. Phys. 299, 820–
841 (2015)

11. Sane, S., Bujack, R., Childs, H.: Revisiting the Evaluation of In Situ Lagrangian Analysis. In:
Childs, H., Cucchietti, F. (eds.) Eurographics Symposium on Parallel Graphics and Visualiza-
tion. The Eurographics Association (2018). https://doi.org/10.2312/pgv.20181096

12. Sane, S., Childs, H., Bujack, R.: An Interpolation Scheme for VDVP Lagrangian Basis Flows.
In: Childs, H., Frey, S. (eds.) Eurographics Symposium on Parallel Graphics and Visualization.
The Eurographics Association (2019). https://doi.org/10.2312/pgv.20191115

13. Verma, V., Kao, D., Pang, A.: A flow-guided streamline seeding strategy. In: Proceedings of
the conference on Visualization’00, pp. 163–170. IEEE Computer Society Press (2000)

14. Xu, L., Lee, T.Y., Shen, H.W.: An information-theoretic framework for flow visualization.
IEEE Trans. Vis. Comput. Graph. 16(6), 1216–1224 (2010)

15. Yu, H., Wang, C., Shene, C.K., Chen, J.H.: Hierarchical streamline bundles. IEEE Trans. Vis.
Comput. Graph. 18(8), 1353–1367 (2012)

https://doi.org/10.2312/pgv.20181096
https://doi.org/10.2312/pgv.20191115

Workflows and Scheduling

Unlocking Large Scale Uncertainty
Quantification with In Transit Iterative
Statistics

Alejandro Ribés, Théophile Terraz, Yvan Fournier, Bertrand Iooss,
and Bruno Raffin

Abstract Multi-run numerical simulations using supercomputers are increasingly
used by physicists and engineers for dealing with input data and model uncertain-
ties. Most of the time, the input parameters of a simulation are modeled as ran-
dom variables, then simulations are run a (possibly large) number of times with
input parameters varied according to a specific design of experiments. Uncertainty
quantification for numerical simulations is a hard computational problem, currently
bounded by the large size of the produced results. This book chapter is about using in
situ techniques to enable large scale uncertainty quantification studies. We provide
a comprehensive description of Melissa, a file avoiding, adaptive, fault-tolerant, and
elastic framework that computes in transit statistical quantities of interest. Melissa
currently implements the on-the-fly computation of the statistics necessary for the
realization of large scale uncertainty quantification studies: moment-based statistics
(mean, standard deviation, higher orders), quantiles, Sobol’ indices, and threshold
exceedance.

A. Ribés (B)
EDF R&D, Palaiseau, France
e-mail: alejandro.ribes@edf.fr

T. Terraz · B. Raffin
Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
e-mail: theophile.terraz@inria.fr

B. Raffin
e-mail: bruno.raffin@inria.fr

Y. Fournier · B. Iooss
EDF R&D, Chatou, France
e-mail: yvan.fournier@edf.fr

B. Iooss
e-mail: bertrand.ioss@edf.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_6

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_6&domain=pdf
mailto:alejandro.ribes@edf.fr
mailto:theophile.terraz@inria.fr
mailto:bruno.raffin@inria.fr
mailto:yvan.fournier@edf.fr
mailto:bertrand.ioss@edf.fr
https://doi.org/10.1007/978-3-030-81627-8_6

114 A. Ribés et al.

1 Introduction

Anumerical simulation is a calculation that is run on a computer following a program
that implements a mathematical model for a physical system. Nowadays, engineers
and scientists often use numerical simulation as a tool, and its use in industries or sci-
entific laboratories is very broad. From the mathematical point of view, discretized
differential equations are numerically solved, often using a mesh as spatial sup-
port. Popular methods include Finite Difference, Finite Volumes, Finite Elements,
or particle-based methods. From the computer science point of view, a numerical
simulation consists of a workflow of actions. First, the engineer or scientist prepares
the mesh or other spatial discretization such as particles, and she/he defines the initial
and boundary conditions. Second, the calculations are run in a computer and generate
results that are written to files. Finally, the results are analyzed.

Chapter “In Situ Visualization for Computational Science: Background and Foun-
dational Topics” of this book already presented an introduction to in situ techniques
for computational science. We would like to insist on the fact that engineers and
scientists are so used to the classical workflow presented above, that they currently
do not realize that a major change is occurring in current computer systems. The
sizes of the simulations are strongly increasing, and writing files is becoming cum-
bersome and time-consuming. This bottleneck, in numerous cases, limits the size
of the simulations. When executing multiple simulation runs, this problem becomes
even more critical.

Multiple simulation runs (sometimes several thousands) are required to compute
sound statistics in the context of uncertainty quantification [43]. Taking uncertain-
ties into account when dealing with complex numerical simulations is necessary to
assess their robustness, as well as to answer tighter regulatory processes (security,
safety, environmental control, health impacts, etc.). Many attempts at treating uncer-
tainty in industrial applications (e.g. automotive and aerospace engine design, nuclear
safety, agronomy, renewable energy production) have involved different mathemat-
ical approaches from many scientific domains as in metrology, structural reliability,
variational analysis, design of experiments, machine learning and global sensitivity
analysis [11]. As an example, in aeronautic and nuclear industries, uncertainty quan-
tification approaches are applied on numerical models simulating non destructive
testing procedures, in order to evaluate probability of detection curves [26]. Such
curves allow the operators to evaluate the performance of their non destructive tests
for the detection of harmful defects of the inspected structure, which is particularly
important for the system safety.

Current practice consists of performing multiple executions of a classical work-
flow. All the necessary instances with different sets of input parameters are run,
and the results are stored to disk, often called ensemble data, to later read them back
from disk to compute statistics. In this context, we are confronted with two important
problems. First, the amount of storage needed may quickly become overwhelming,
with the associated long read time that makes statistic computing time-consuming.
To avoid this pitfall, scientists reduce their study size by running low-resolution sim-

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 115

ulations or down-sampling output data in space and time. Second, humans should be
able to somehow navigate through the complexity of these large simulation results.
Down-sampling output data in space and time, extracting probes, or concentrating
on specific features of the ensemble are usually performed to reduce complexity;
this introduces strong dependences on a priori ideas related to the behavior of the
ensemble.

Novel approaches are required. In situ and in transit processing emerged as a
solution to perform data analysis starting as soon as the results are available in the
memory of the simulation. The goal is to reduce the data to store to disk and to
avoid the time penalty to write and then read back the raw data set as required by
the classical post hoc analysis approach. In recent works, we proposed the Melissa
framework for the on-line data aggregation of high-resolution ensemble runs [39, 45].
As soon as each available simulation provides the results produced to a set of staging
nodes, these nodes process them to update the statistics on a first-come-first-served
basis thanks to one-pass algorithms. This in transit processing mode enables us to
fully avoid storage of intermediate data on disks. Furthermore, this new approach
allows the computation of ubiquitous statistics: we compute multidimensional and
time-varying statistics, i.e. everywhere in space and time; instead of providing a
down-sampled subset, for a limited sample of probes or concentrating on specific
features of the ensemble, as usually done.

In the context of this book, we would like to remark that this chapter does not
present any in situ visualization system but an example of how in situ techniques
can be used for the statistical analysis of large quantities of data; which is defined
in chapter “In Situ Visualization for Computational Science: Background and Foun-
dational Topics” as “use cases beyond exploratory analysis.” As a matter of fact,
uncertainty quantification for numerical simulations is a hard computational prob-
lem, currently bounded by the large size of the produced results. This chapter is
about using in situ techniques to unleash large scale uncertainty quantification (UQ)
studies.

In the following, Sect. 2 presents the general methodology for dealing with UQ
studies; Sect. 3 introduces the iterative statistics necessary to perform on-line UQ;
Sect. 4 briefly describes the MELISSA platform which implements the statistics
introduced in Sect. 3; Sect. 5 uses a fluid mechanics example to illustrate the realiza-
tion of a large scale UQ study; finally, a short conclusion and a bibliography section
end up the chapter.

2 Uncertainty Management Methodology

2.1 Introduction

A general framework has been proposed in order to deal with various uncertainties
that arise in numerical simulations [3, 11]. The uncertainty management generic

116 A. Ribés et al.

Fig. 1 The methodology of uncertainty management in numerical simulation

methodology is schematized in Fig. 1. Based on a probabilistic modeling of the
model input variables, it consists of the following steps:

• Step A: specify the random inputs X , the deterministic inputs d, the numerical
modelG (analytical, complex computer codeor experimental process), the variable
of interest (model output) Y and the quantity of interest on the output (central
dispersion, its distribution, probability to exceed a threshold,…). The fundamental
relation writes:

Y = G(X, d) = G(X),

with X = (X1, . . . , X p) ∈ R
p.

• Step B: quantify the sources of uncertainty. This step consists in modeling the joint
probability density function (pdf) of the random input vector by direct methods
(e.g. statistical fitting, expert judgment).

• Step B’: quantify the sources of uncertainty by indirect methods using some real
observations of the model outputs. The calibration process aims to estimate the
values or the pdf of the inputs while the validation process aims to model the bias
between the model and the real system.

• Step C: propagate uncertainties to estimate the quantity of interest. With respect
to this quantity, the computational resources and the CPU time cost of a single
model run, various methods will be applied as linear-based analytical formula,
geometrical approximations, Monte Carlo sampling strategies, metamodel-based
techniques.

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 117

• Step C’: analyze the sensitivity of the quantity of interest to the inputs in order
to identify the most influential inputs (useful if one wants to reduce the output
uncertainty) and to rank the uncertainty sources.

2.2 Quantiles of Simulation Outputs

Quantiles are important order statistics for outlier detection or computation of non
parametric prediction and tolerance intervals. Then, in the context of uncertainty
quantification analysis of computer models, quantile estimation is one of the key
steps. Low or high-order quantiles are often required, especially in industrial safety
studies [11, 22, 32].

Standard approaches dealwith the problemof quantile estimation of scalar outputs
[8, 16, 17]. Let us consider a N -sample (Y1, . . . ,YN) of independent and identically
distributed random variables from an unknown distribution fY (y). We look for an
estimator q̂α of the α-quantile qα defined by:

P(Y ≤ qα) = α , (1)

which is sometimes written as

qα = inf{y|P(Y ≤ y) ≥ α} . (2)

However, simulation models most often return spatial fields varying over time.
For example, recent studies have considered quantiles of one-dimensional functional
outputs (temporal curves) [33, 36, 38, 40], that demonstrates users’ interest in com-
puting these functional quantiles.

2.3 Sensitivity Analysis via Sobol’ Indices

Sensitivity studies are an important application of uncertainty quantification in
numerical simulation [43]. The objective of such studies can be broadly viewed
as quantifying the relative contributions of individual input parameters to a simula-
tion model, and determining how variations in parameters affect the outcomes of the
simulations. In this context, multi-run studies treat simulations as black boxes that
produce outputs when a set of parameters is fixed (Fig. 2). Global sensitivity analysis
is an ensemble of techniques that deal with a probabilistic representation of the input
parameters [21, 42] to consider their overall variation range.

Variance-based sensitivity measures, also called Sobol’ indices [44], are popular
among methods for global sensitivity analysis because they can deal with nonlinear
responses. They decompose the variance of the output, Y , of the simulation into

118 A. Ribés et al.

Fig. 2 A simple solver G
taking p input parameters X1
to X p , and computing a
scalar output Y

fractions, which can be attributed to random input parameters or sets of random
inputs.

For example, with only two input parameters X1 and X2 and one output Y (Fig. 2),
Sobol’ indices might show that 60% of the output variance is caused by the variance
in the first parameter, 30% by the variance in the second, and 10% due to interactions
between both. These percentages are directly interpreted as measures of sensitivity.
If we consider p input parameters, the Sobol’ indices can identify parameters that
do not influence or influence very slightly the output, leading to model reduction
or simplification. Sobol’ indices can also measure the effect of interactions in non-
additive systems.

Mathematically, the first and second order Sobol’ indices [44] are defined by:

Si = Var(E[Y |Xi])
Var(Y)

, Si j = Var(E[Y |Xi X j])
Var(Y)

− Si − Sj , (3)

where X1, . . . , X p are p independent random variables. In Eq. (3), Si represents the
first order sensitivity index of Xi while Si j represents the effect of the interaction
between Xi and X j . Higher-order interaction indices (Si jk, . . . , S1...p) can be sim-
ilarly defined. The total Sobol’ indices express the overall sensitivity of an input
variable Xi :

STi = Si +
∑

j �=i

Si j +
∑

j �=i,k �=i, j<k

Si jk + · · · + S1...p . (4)

The previous formula applies for a scalar output Y . Some authors have proposed
the generalization of the concept of Sobol’ indices for multidimensional and func-
tional data [14] by synthesizing all the sensitivity information of themultidimensional
output in a single sensitivity value. Few authors have considered the estimation of
Sobol’ indices at each output cell (see [31] for an overview on this subject) and this
estimation has always been applied to smallmodels. Applications of these techniques
on environmental assessment can be found for example in [18, 29] for spatial outputs
and in [28, 30] for spatio-temporal outputs. All these works have shown that obtain-
ing temporal/spatial/spatio-temporal sensitivity maps leads to powerful information
for the analysts. Indeed, the parameter effects are localized in time or space, and can
be easily examined in relation with the studied physical phenomena.

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 119

3 In Transit Statistics

Computing statistics from N samples classically requires O(N) memory space to
store these samples. But if the statistics can be computed in one-pass (also called
iterative, on-line or even parallel [34]), i.e. if the current value can be updated as
soon as a new sample is available, the memory requirement goes down to O(1)
space. With this approach, not only simulation results do not need to be saved, but
they can be consumed in any order, loosening synchronization constraints on the
simulation executions.

There also exist multi-pass algorithms for the computation of statistics, where P
passes are necessary. In this case, the on-line processing system would need to have
access to the same data P times thus forcing the data to be stored till the last pass is
finished. This is not feasible for large scale use cases. These approaches, along with
the classical ones requiringO(N)memory space, are avoided in on-line applications.

3.1 Moment-Based Statistics: Mean, Std, Higher Orders

One-pass variance algorithms were proposed in [9, 12, 47]. Numerically stable,
one-pass formulas for arbitrary centered statistical moments and co-moments are
presented in [5, 34]. Reference Pébay et al. [34] also contains update formulas for
higher order moments (skewness, kurtosis and more). These works set the base for
a module of parallel statistics in the VTK scientific visualization toolkit [35]. In
this context, the one-pass algorithms enable computation of partial results in parallel
before performing a reduction to get the final result. These iterative statistics were
used for computing large scale parallel statistics for a single simulation run either
from raw data files [7], compressed data files [24] or in situ [6]. More recently
Lampitella et al. [25] proposed a general update formula for the computation of
arbitrary-order, weighted, multivariate central moments.

In Melissa, we iteratively compute the moments of a random variable Y as

μ(k),S(Y) = μ(k),S = μ(k),S1 + 1

n

(
yk − μ(k),S1

)
(5)

for k = 1, 2, 3 and 4, where S = S1 ∪ {y} and n = card(S). Then from these
moments, we compute the mean, variance, skewness and kurtosis:

Mean = μ(1) ,

Variance = n

n − 1
(μ(2) − μ2

(1)) ,

Skewness = μ(3) − 3μ(1)μ(2) + 2μ3
(1)

(μ(2) − μ2
(1))

1.5
,

120 A. Ribés et al.

Kurtosis = μ(4) − 4μ(1)μ(3) + 6μ2
(1)μ(2) − 3μ4

(1)

(μ(3) − 3μ(1)μ(2) + 2μ3
(1))

2
.

3.2 Sobol’ Indices

The information contained in this section can be found in a previously published
article [45]. We include it here for self-completeness. Thus the reader can find the
description, in this book chapter, of all iterative methods currently implemented in
Melissa.

In order to compute Sobol’ indices, we use the so-called pick-freeze scheme
that uses two random independent and identically distributed samples of the model
inputs [19, 23, 44]. One-pass iterative Sobol’ indices formulas directly derive from
the iterative variance (presented in Sect. 3.1) and iterative covariance [34]. Note that
another iterative computation of Sobol’ indices has been introduced in [15] for the
case of a scalar output.

Our goal is to compute in transit the Sobol’ indices of each input parameter Xi

(Fig. 2). We explain below the so-called pick-freeze scheme that uses two random
independent and identically distributed samples of the model inputs [19, 23, 44].

We first define the p variable input parameters of our study as a random vector,
with a given probabilistic law for each parameter. We then randomly draw two times
n sets of p parameters, to obtain two matrices A and B of size n × p (each row is a
set of parameters for one simulation):

A =
⎛

⎜⎝
a1,1 · · · a1,p
...

. . .
...

an,1 · · · an,p

⎞

⎟⎠ ; B =
⎛

⎜⎝
b1,1 · · · b1,p
...

. . .
...

bn,1 · · · bn,p

⎞

⎟⎠ .

For each k ∈ [1, p] we define the matrix Ck , which is equal to the matrix A but with
its column k replaced by column k of B. Each row of each matrix is a set of input
parameters:

Ck =

⎛

⎜⎜⎜⎜⎜⎜⎝

a1,1 · · · a1,k−1 b1,k a1,k+1 · · · a1,p
...

...
...

...
...

ai,1 · · · ai,k−1 bi,k an,k+1 · · · ai,p
...

...
...

...
...

an,1 · · · an,k−1 bn,k an,k+1 · · · an,p

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Then, a study consists in running the n × (p + 2) simulations defined by thematrices
A, B and Ck for k ∈ [1, p]. For each matrix M with n rows, ∀i ∈ [1, n], let Mi be
the i th row of M , and M[:i] the matrix of size i × p built from the i first lines of M .

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 121

For example :
Ck
i = (

ai,1 · · · ai,k−1 bi,k ai,k+1 · · · ai,p
)

and

Ck
[:i] =

⎛

⎜⎝
a1,1 · · · a1,k−1 b1,k a1,k+1 · · · a1,p
...

...
...

...
...

ai,1 · · · ai,k−1 bi,k an,k+1 · · · ai,p

⎞

⎟⎠ .

Let Y A
i be the result of G(Ai), and Y A ∈ R

n the vector built from component
i of Y A

i , ∀i ∈ [1, n]. We define Y B
i and Y B in the same way, as well as YCk

i and
YCk ∀k ∈ [1, p]. Let Var(x) be the unbiased variance estimator, and Cov(x, y) the
unbiased covariance estimator, as defined in [34]. First order Sobol’ indices Sk can
be estimated by the following formula, called Martinez estimator [2]:

Sk(f, A, B) = Cov(Y B,YCk
)

√
Var(Y B)

√
Var(YCk

)
, (6)

while total order Sobol’ indices STk are estimated by:

STk(f, A, B) = 1 − Cov(Y A,YCk
)

√
Var(Y A)

√
Var(YCk

)
. (7)

Since variances and covariances can be updated iteratively, first order and total
Sobol’ indices can be computed from these formulas. The covariance update for-
mula between two random variables X and Y writes [34]:

CovS = CovS1 + n − 1

n

[
x − μ(1),S1(X)

] [
y − μ(1),S1(Y)

]
(8)

where S = S1 ∪ {x, y}, n = card(S) and the mean update μ(1) comes from Eq. (5).
There are many other estimators than those of Eqs. (6) and (7) (see for example

[37]) relying on the matrices A, B and Ck to compute the variance and the covari-
ance with different formulas. We use the Martinez estimator because it provides an
asymptotic confidence interval [2], which is very simple to express, and is easy to
compute in an iterative fashion. In addition, it has been shown to be unbiased and
one of the most numerically stable estimators.

3.3 Order Statistics: Quantiles

The classical estimator of the α-quantile yα of the random variable Y is the empirical
quantile, based on the notion of order statistics [10]. Essentially, we associate with
the independent and identically distributed sample (Y1, . . . ,YN) the ordered sample

122 A. Ribés et al.

(Y(1), . . . ,Y(N)) in which Y(1) ≤ · · · ≤ Y(N). The empirical estimator is then:

q̂α = Y(�αN	+1), (9)

where �x	 is the integer part of x .
For an iterative statistical estimation, the Robbins-Monro estimator [41] consists

of updating the quantile estimate qα(n) at each new observation Yn+1 with the fol-
lowing rule:

qα(n + 1) = qα(n) − C

nγ

(
11Yn+1≤qα(n)

− α
)

, (10)

with n = 1 . . . N , qα(1) = Y1 an independent realization of Y , q̂α = qα(N), 11x the
indicator function,C a strictly positive constant and γ ∈]0, 1] the step of the gradient
descent of the stochastic algorithm. Under several hypotheses with γ ∈]0.5, 1], this
algorithm has been shown to be consistent and asymptotically normal. A fine tuning
of the constantC is important; several numerical tests have shown that a value ofC of
the order of the dispersion of Y (for example its standard deviation or an interquantile
interval) would be satisfactory [20].

Asymptotically (where N is large), a value γ = 1 is known to be optimal. How-
ever, in practical studies, N is often not large. For example, in nuclear safety studies
(see for example [8, 22]), α = 0.95 and N is in the order of several hundreds of
simulated values. In this case and as we look for γ values that can work for dif-
ferent distributions of Y (which are unknown in practice), we propose to define γ

as a function of n. Indeed, one can observe that a good γ value for a certain type
of probability distribution produces bad results for another type of distribution (for
example, γ = 0.6 gives good results for a normal distribution and incorrect quantile
estimates for a uniform one). We then use the following heuristic formula for γ :

γ (n) = 0.1 + 0.9
n − 1

N − 1
. (11)

The idea is to have strong mixing properties at the beginning of the algorithm (with
small γ), then to slow down the potential variation of the quantile estimation all
along the iterations of the algorithm.

Slightly different linear profiles canbeproposed asγ (n) = 0.5[1 + (n − 1)/(N −
1)]. Several tests on simple analytical functions (where the true quantile can be
known) have been performed in order to calibrate and validate these γ -profiles [20,
39]. Other algorithmic developments are currently under study to further improve
the robustness of the Robbins-Monro estimate.

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 123

3.4 Probability of Threshold Exceedance

If ycrit is a safety output value, a classical failure probability estimation problem
occurs:

p f = P(Y > ycrit) , (12)

well-known in structural reliability [4, 27]. For this issue, without loss of generality,
we can turn to:

p f = P(Y < 0) .

Computing a failure probability can be seen as a direct problem of uncertainty prop-
agation [32].

If the the failure domain is defined byD f = {x ∈ χ ⊆ R
p | G(x) ≤ 0}, the prob-

ability that the event – failure occurs is given by

p f = P(G(X) ≤ 0) =
∫

D f

fX (x)dx =
∫

χ

11G(x)≤0 fX (x)dx = E[1G(X)≤0] , (13)

where fX is the joint probability density function of X . One of the goals of a structural
reliability study is to provide an estimate of p f and the uncertainty involved. The
complexity of models and large potential number of input variables means that, in
general, we cannot calculate the exact probability of failure. The evaluation of the
integral in formula (13) is the subject of numerous mathematical techniques, laid out
in an abundant array of international scientific literature [11, 43]. The use of Monte
Carlo simulation methods is the most common. The naive Monte Carlo estimator is

p̂ f = 1

n

n∑

i=1

1{G(x (i))≤0}, (14)

where the x (i) are n independent and identically distributed randomvectors simulated
according to fX . This is an unbiased estimate of the quantity of interest, for which it
is possible to control the precision via its variance and the provision of a confidence
interval (thanks to the central limit theorem).

Of course, as this estimation is based on an expectation, the trivial iterative algo-
rithm for the mean (see Sect. 3.1) applies to compute p f on the fly.

4 The Melissa Framework

Melissa (Modular External Library for In Situ Statistical Analysis) proposes a new
approach to compute statistics at large scale by avoiding storage of the intermediate
results produced by multiple parallel simulation runs. The key enabler is the use of
iterative formulations for the required statistics. This allows for updating statistics

124 A. Ribés et al.

on-the-fly each time new simulation results are available. To manage the simulation
runs as well as the in transit computation of iterative statistics, we developed a full
framework built around an elastic and fault tolerant parallel client/server architecture.
The benefits of this framework are multiple:

• Storage saving: no intermediate files are generated. Melissa fully avoids storage
of intermediate data on disks.

• Time saving: simulations run faster when sending data to the server than when
writing their results to disk. Statistics are computed while simulations are running,
saving the time of post hoc statistic computing that, in addition, requires time to
read back simulation results once all are performed.

• Ubiquitous: performance and scalability gains enable computing ubiquitous mul-
tidimensional and time varying statistics, i.e. everywhere in space and time, instead
of providing statistics for a limited sample of probes as usually done with post hoc
approaches to reduce the amount of temporary data storage.

• Adaptive: simulations can be defined, started or interrupted on-line according to
past runs behavior or the statistics already computed.

• Elasticity: Melissa enables the dynamic adaptation of compute resource usage
according to availability. Simulations are independent and connect dynamically to
the parallel server when they start. They are submitted as independent jobs to the
batch scheduler. Thus, the number of concurrently running simulations providing
data to the server can vary during the course of a study to adapt to the availability
of compute resources.

• Fault tolerance:Melissa’s asynchronous client/server architecture supports a sim-
ple yet robust fault tolerance mechanism. Only some lightweight bookkeeping and
a few heartbeats are required to detect issues and restart the server or the simula-
tions, with limited loss of intermediate results.

4.1 Melissa Architecture

Melissa is an open source framework1 that relies on a three tier architecture (Fig. 3).
The Melissa Server aggregates the simulation results and updates iterative statistics
as soon as a new result is available. TheMelissa clients are the parallel simulations,
providing their outputs to the server.Melissa Launcher interactswith the batch sched-
uler and server, for creating, launching, and supervising the server and clients. We
present in this section an overview of the Melissa architecture. Please refer to [45]
for more details.

1 https://melissa-sa.github.io.

https://melissa-sa.github.io

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 125

Parallel
Simulation Run

Dynamic Connection to Parallel Server
(NxM communication scheme)

Checkpoints Final Results

Parallel
Simulation Run

Parallel
Simulation Run

Fig. 3 Melissa three tier architecture. The launcher oversees the execution in tight link with the
batch scheduler. The job scheduler regulates the number of simulation jobs to run according to the
machine availability, leading to an elastic resource usage. The parallel server, started first, processes
incoming data as soon as received from the connected simulations. A fault tolerance mechanism
automatically restarts failing simulation runs or a failing parallel server

4.1.1 Melissa Server

Melissa Server is parallel and runs on several nodes. The number of nodes required
for the server is driven by (1) memory needs and (2) data pressure. The amount of
memory needed for each computed statistic field is of same order as the size of the
output field of one simulation (number of timesteps × the number of cells or points
in the mesh). The number of server nodes should also be large enough to process
incoming data without stalling the simulations.

4.1.2 Dynamic Connection to Melissa Server

When a simulation starts, it dynamically connects to the Melissa Server. Each sim-
ulation process opens individual communication channels to each necessary server
process for enabling a N × M data redistribution. Every time new results are avail-
able, simulation processes push their results toward the Melissa Server.

Melissa is designed to keep intrusion into the simulation code minimal. Melissa
provides 3 functions to integrate in the simulation code through a dynamic library.
The first function (Initialize) allocates internal structures and connects the simulation
to the server.At each timestep, the second function (Send) sends the simulation data to
its correspondingMelissa Server processes. The third function (Finalize) disconnects
the simulation and releases the allocated structures.

126 A. Ribés et al.

4.1.3 Melissa Launcher

Melissa Launcher takes care of generating the parameter sets, requesting the batch
scheduler to start the server and the clients, and tracking the progress of the run-
ning server and clients jobs. It first submits to the batch scheduler a job for the
Melissa Server. Then, the launcher retrieves the server node addresses (the server is
parallelized on several nodes) and submits the simulation jobs. Each simulation is
submitted to the batch scheduler as a standalone job, making Melissa very elastic,
i.e. capable of adapting to a varying compute resource availability. Simulations can
be submitted all at once or at a more regulated pace depending on the machine policy
for job submissions.

4.1.4 Fault Tolerance

The Melissa asynchronous client/server architecture leverages the iterative statis-
tics computations to support a simple yet robust fault tolerance mechanism. Melissa
supports detection and recovery from failures (including straggler issues) of Melissa
Server and simulations, through heartbeats and server checkpointing. Melissa
Launcher communicates with the server and the batch scheduler to detect simu-
lation or server faults. As every simulation runs in a separate job, the failure of one
simulation does not impact the ongoing study:Melissa launcher simply restarts it and
the server discard already processed messages. Please refer to [45] for a complete
description of this fault tolerance system.

5 An Illustrative Example

5.1 A Large Scale Study

We used Code_Saturne [1], an open-source computational fluid dynamics tool
designed to solve the Navier-Stokes equations, with a focus on incompressible or
dilatable flows and advanced turbulence modeling. Code_Saturne relies on a finite
volume discretization and allows the use of variousmesh types, using an unstructured
polyhedral cell model, allowing hybrid and non-conformingmeshes. The paralleliza-
tion [13] is based on a classical domain partitioning using MPI, with an optional
second (local) level using OpenMP.

5.1.1 Use Case

Wevalidated our implementation on a fluidmechanics demonstration case simulating
a water flow in a tube bundle (Fig. 4). The mesh is composed of 6 002 400 hexahedra.

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 127

Varying parameters for the upper and lower inlet:

• dye concentration,
• width of the injection,
• duration of the injection,

Fig. 4 Use case: water flows from the left, between the tube bundle, and exits to the right with 6
varying parameters

We generate a multi-run sensitivity study by simulating the injection of a tracer or
dye along the inlet, with 2 independent injection surfaces, each defined by three
varying parameters (Fig. 4). The solved scalar field representing dye concentration
could be replaced by temperature or concentration of chemical compounds in actual
industrial studies.

To initialize our multi-run study, we first ran a single 1000 timesteps simulation,
to obtain a steady flow. Each simulation consisted of 100 timesteps starting from this
steady flow, with different parameter sets.

This study ran a total of 80 000 simulations for computing ubiquitous variances,
covariances, Sobol’ indices, and the 5th, 25th, 50th, 75th and 95th percentiles on the
6M hexahedra and 100 timesteps. Sobol’ index computations rely on the pick-freeze
method that requires to run groups of simulations with non-independent parameter
sets. These correlated simulations are not used for the quantiles that are computed
from the remaining independent 20 000 simulations.

The study took a total 260 000 CPU hours for the simulations and 11 112 CPU
hours for the server (4% of the total CPU time). Melissa Server processed on-line a
cumulated total of 288 TB of data coming from the simulations.

5.2 Ubiquitous Statistic Interpretation

In this sectionwe interpret the ubiquitous statistics computed during the experiments.
By ubiquitous statistics we mean the statistics of multidimensional and time varying
physical quantities, i.e. statistics everywhere in space and time. Using ParaView we
have chosen a timestep and performed a slice on amid-plane of themesh presented in
Fig. 4. This slice is alignedwith the direction of thefluid. The chosen timestep belongs
to the last temporal part of the simulation (80th timestep over 100). This operation
reduces the ubiquitions statistics to 2D spatial maps, thus allowing us to generate the
images for this section. We remark that this is just a choice for illustration purposes,
and any other visualisation pipeline can be applied to the ubiquitous statistics.

128 A. Ribés et al.

Fig. 5 Percentiles and inter-percentile ranges maps on a slice of the mesh at timestep 80. The top
two lines correspond to percentiles while the bottom line corresponds to inter-percentile ranges. All
maps share the same scale

5.2.1 Quantiles

Figure5 presents six spatial maps extracted from the ubiquitous quantiles. We con-
centrate in percentiles because they are easily interpreted. We recall that a percentile
is not a per cent but a type of quantile: a 100-quantile. Our system can also calculate
4-quantiles, the so-called quartiles that are popularmeasures in statistics, or any other
kind of quantile.

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 129

On the four top panels of Fig. 5, Fig. 5a–d, we present the 75th, 95th, 25th, 5th per-
centiles, respectively. On the two bottom panels the interpercentile ranges containing
50% and 90% of the samples are shown. Interpercentile ranges are easily computed
from percentiles by subtraction: the 50% interpercentile range corresponds to the
75th percentile minus the 25th percentile; the 90% interpercentile range corresponds
to the 95th percentile minus the 5th percentile. In Fig. 5 each column shows an inter-
percentile map on the bottom and the percentile maps that served for its calculation
above it. Looking at these maps an analyst can deduce several things:

1. Extreme high percentilemaps such as 95th, Fig. 5b, give an idea of the distribution
of the upper bounds of all simulations. In our use case, we can assess which
spatial areas contain low quantities of contaminant. Indeed areas coloured in
blue necessarily contain low contaminant concentrations for any simulation in
the multi-run study. Extreme low percentiles maps, such as 5th, has also a direct
interpretation in the opposite sense.

2. Interpercentile-range maps, such as Fig. 5e or f, are maps that show the spatial
variability of statistical dispersion. Indeed, scalar interpercentile ranges are non-
parametric measures of statistical dispersion, which means that no a priori knowl-
edge about the distribution of the data is needed. This characteristic makes these
ranges both general and robust. Visualising a map of such a measure of dispersion
enables understanding of how the data distribution is spatially concentrated. In
our use case the low percentile maps used to calculate the interpercentile maps are
mainly close to zero for all cells of the mesh, which makes these maps resemble
the higher percentiles maps. However, this is in general not true. Moreover, if we
visually compare Fig. 5a, e we realise that both maps are different.

The maps shown in Fig. 5 are static and 2D but we recall that we calculate ubiq-
uitous percentiles, thus 3D and time dependent data is available. Figure6 shows the
temporal evolution of a probe positioned in the mesh using ParaView. At a specific
location, a temporal evolution of all computed quantiles can be performed. In Fig. 6b
this evolution is plotted for the 95th, 75th, 25th and 5th percentiles. The vertical line

(a) Probe position (b) Quantiles evolution over time

Fig. 6 A probe in a cell of the mesh allows an extraction of the temporal evolution of percentiles
at a specific spatial location

130 A. Ribés et al.

Fig. 7 Percentile functions of the dye concentration at different time steps of the simulation.Vertical
axis represents dye concentration. Horizontal axis represents percentiles. Each curve corresponds
to different time steps of the simulation. All curves have been extracted from the probe position
shown in Fig. 6a

indicates the position of the current time step (80th time step). This figure clearly
shows how the output variability of the ensemble study depends on time. Indeed,
all simulations contain no dye for the first 15 time-steps, which is the time the dye
takes to propagate from the top injector to the spatial location of the probe. After
this point, we observe a moment where the variability of the dye concentration is the
highest before a general decrease.

Figure6b can be seen as the evolution of a Tukey boxplot [46] over time. In fact,
the 25th and 75th percentiles correspond to the 1st and 3rd quartiles thus delimit
the central box of the plot, while the 5th and 95th quantiles can be a choice for the
whiskers. Using this analogy, we can easily observe that the dispersion of the dye
concentration on the whole ensemble moves over time. Furthermore, the distribution
of this quantity is not symmetrical and its asymmetry is evolving over time.

Finally, Fig. 7 shows a different representation of the evolution of the dye concen-
tration at a fixed probe (the same than in Fig. 6). At different regularly sampled time
steps, the quantile functions of the concentration values are plotted (as a function
of the order of the quantiles, between 0% and 100%). One can first observe zero-
valued quantile functions for the first time steps (time steps 4 and 14). Indeed, at
the probe, the dye concentration is zero during the first times of the injection. Then,
from time step 24 to time step 44, all the values of the quantile functions regularly
increase. It means that the dye concentration values homogeneously increase from
0, reaching a maximal value close to 0.82 for the 100%-order quantile. At the end
of the simulation time, from time step 54 to time step 94, the quantile functions are
regularly displaced to the right. The values close to zero disappear and the concen-
tration of strong values becomes more and more important. As a conclusion, thanks
to the quantile functions, this graph allows to finely and quantitatively analyze the
temporal evolution of this dye concentration phenomena. We remark that, because

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 131

we have calculated the ubiquitous percentiles, it is possible to obtain Figs. 6 and 7
for any location on the simulation domain.

5.2.2 Sobol’ Indices

In this section we interpret the Sobol’ indices computed during the experiments.
Figure8 presents six spatial first order Sobol’ maps extracted from the ubiquitous
indices. Looking at these figures an analyst can deduce several things:

1. The width of the injections influence locations far up or down each injector
(Fig. 8c, d). This is because the injectors are located in the center of the inlet seg-
ments, as depicted by the arrows in Fig. 4. The parameter controlling the aperture
of an injector makes a thinner or wider aperture around a central position. When
the aperture’s width is small, all dye is injected on the center while very few will
go up and down. On the opposite, when the injector is at its maximal aperture, dye
can easily flow to extreme vertical locations. In any case, the dye always flows
in the center of the injectors which makes this parameter not influential around
these areas.

2. The Sobol’ maps for the duration of the injection (Fig. 8e, f) can be understood
by thinking about the temporal evolution of the simulation. When the simulations
are just started, they all inject dye and the duration represents the time at which
this injection is stopped. Figure8 represents a state near the end of the simula-
tion. Thus, it is not surprising that this parameter does not influence the right
part of the domain (where all simulations were injecting dye) while it strongly
influences the left side (where some simulations already stopped injecting while
others continued).

3. Finally, the dye concentrationmostly influences the areas were the other param-
eters have less influence, that is to say the center of the top and bottom channels,
and the right side of the flow (Fig. 8a, b).

We recommend co-visualizing Sobol’ indices with the variance of the whole
model output; Fig. 8g shows this variance map for the Sobol’ indices presented in
Fig. 8. One of the reasons of this co-visualization is that Var(Y) appears as a denom-
inator in Eq. (3), consequently when Var(Y) is very small or zero, the Sobol’ indices
have no sense due to numerical errors or can even produce a zero division. Further-
more, it is not conceptually interesting to try to understand which input parameters
influence lowvariance areas of the simulation oncewe know that “notmuch happens”
in these areas.

5.3 Combining Sobol’ Indices

The sum of Sobol’ indices should be 1 and they partition the total variance of the
outputs. These two characteristics allow Sobol’ indices to be grouped (added) or sub-

132 A. Ribés et al.

(a) Top injection dye concentration (b) Bottom injection dye concentration

(c) Top injection width (d) Bottom injection width

(e) Top injection duration (f) Bottom injection duration

(g) Variance map at the 80th timestep

Fig. 8 First order Sobol’ index maps on a slice of the mesh at timestep 80. The left column
corresponds to the Sobol’ indices for the upper injector while right corresponds to the bottom
injector. All maps are scaled between zero (blue) and one (red)

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 133

(a) Top injection (b) Bottom injection

(c) Sum of all first order Sobol’ indices

Fig. 9 Addition of first order Sobol’ indexmaps on a slice of themesh at timestep 80. The left panel
corresponds to the addition of the Sobol’ indices for the upper injector while right corresponds to
addition for the bottom injector. All maps are scaled between zero (blue) and one (red)

tracted. If the indices are added, the resulting “Sobol group index” keeps normalised
between zero and one. We show two examples of the use of such groups:

1. Figure9a corresponds to the sum of the Sobol’ indices for the upper injector while
Fig. 9b corresponds to the sum for the bottom injector. We clearly observe that the
three parameters that define the behavior of the upper injector have no influence
in the lowest half part of the simulation domain. This phenomenon can also be
observed by simultaneously looking at the Sobol’maps of the three parameters for
the upper injector (Fig. 8a, c, e). However, the grouped Sobol map is clearer and
gives a straightforward answer to the question “What is the influence of the upper
injector?” Respectively, the parameters of the bottom injector do not influence the
upper part of the simulation as directly observed on Fig. 9b (or looking at Fig. 8b,
d, f).

2. We also calculate S1 + · · · + Sn , with n = 6, shown in Fig. 9c, which gives us an
indication of the importance of the interactions between parameters. Red areas of
Fig. 9c indicate that the first order Sobol indices are responsible of the behaviour
of the simulation. On the contrary, when this sum is near zero (blue in themap) this
means that the kind of relationship between input parameters and model outputs

134 A. Ribés et al.

is complex and involves cross-effects among several parameters. We observe that
the areas where interactions among Sobol’ indices are important concentrates
spatially around the injectors.

6 Conclusion

Dealing with uncertainty quantification may require executing from thousands to
millions of runs of the same simulation, making it an extremely compute-intensive
process that will fully benefit from Exascale machines. However, the large amount
of data generated is a strong I/O bottleneck if the intermediate data is saved to
disk. The proposed approach, implemented in the Melissa framework, demonstrates
that combining one-pass statistics algorithms with an elastic and fault-tolerant in
transit data processing architecture drastically reduces the amount of intermediate
data stored, making it possible to compute ubiquitous statistics.

Melissa currently allows the in transit execution of large scale uncertainty quantifi-
cation studies. This open-source software2 currently implements the computation of
the statistical tools necessary for this purpose: moment-based statistics (mean, stan-
dard deviation, higher orders), quantiles, Sobol’ indices, and threshold exceedance.
Future work will include the integration of Melissa with the OpenTurns uncertainty
quantification software to consolidate and broaden their respective capabilities.

References

1. Archambeau, F., Méchitoua, N., Sakiz, M.: Code_saturne: a finite volume code for the com-
putation of turbulent incompressible flows. Int. J. Finite Vol. 1 (2004)

2. Baudin,M., Boumhaout, K., Delage, T., Iooss, B.,Martinez, J.M.: Numerical stability of sobol’
indices estimation formula. In: Proceedings of the 8th International Conference on Sensitivity
Analysis of Model Output (SAMO 2016). Le Tampon, Réunion Island, France (2016)

3. Baudin, M., Dutfoy, A., Iooss, B., Popelin, A.: Open TURNS: an industrial software for uncer-
tainty quantification in simulation. In: Ghanem, R., Higdon, D., Owhadi, H. (eds.) Springer
Handbook on Uncertainty Quantification, pp. 2001–2038. Springer (2017)

4. Bect, J., Ginsbourger, D., Li, L., Picheny, V., Vazquez, E.: Sequential design of computer
experiments for the estimation of a probability of failure. Stat. Comput. 22, 773–793 (2012)

5. Bennett, J., Grout, R., Pébay, P., Roe, D., Thompson, D.: Numerically stable, single-pass,
parallel statistics algorithms. In: Cluster Computing and Workshops, 2009. CLUSTER’09.
IEEE International Conference on, pp. 1–8. IEEE (2009)

6. Bennett, J.C., Abbasi, H., Bremer, P.T., Grout, R., Gyulassy, A., Jin, T., Klasky, S., Kolla,
H., Parashar, M., Pascucci, V., et al.: Combining in-situ and in-transit processing to enable
extreme-scale scientific analysis. In: High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for, pp. 1–9. IEEE (2012)

7. Bennett, J.C., Krishnamoorthy, V., Liu, S., Grout, R.W., Hawkes, E.R., Chen, J.H., Shepherd,
J., Pascucci, V., Bremer, P.T.: Feature-based statistical analysis of combustion simulation data.
IEEE Trans. Vis. Comput. Graph. 17(12), 1822–1831 (2011)

2 https://melissa-sa.github.io/.

https://melissa-sa.github.io/

Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 135

8. Cannamela, C., Garnier, J., Iooss, B.: Controlled stratification for quantile estimation. Ann.
Appl. Stat. 2, 1554–1580 (2008)

9. Chan, T.F., Golub, G.H., LeVeque, R.J.: Updating formulae and a pairwise algorithm for com-
puting sample variances. In: COMPSTAT 1982 5th Symposium held at Toulouse 1982, pp.
30–41. Springer (1982)

10. David, H., Nagaraja, H.: Order Statistics, 3rd edn. Wiley, New-York (2003)
11. de Rocquigny, E., Devictor, N., Tarantola, S. (eds.): Uncertainty in Industrial Practice. Wiley

(2008)
12. Finch, T.: Incremental calculation of weighted mean and variance. Technical report. University

of Cambridge (2009)
13. Fournier, Y., Bonelle, J., Moulinec, C., Shang, Z., Sunderland, A., Uribe, J.: Optimizing

code_saturne computations on petascale systems. Comput. Fluids 45(1), 103–108 (2011). 22nd
International Conference on Parallel Computational Fluid Dynamics (ParCFD 2010)ParCFD

14. Gamboa, F., Janon, A., Klein, T., Lagnoux, A.: Sensitivity analysis for multidimensional and
functional outputs. Electron. J. Stat. 8(1), 575–603 (2014)

15. Gilquin, L., Arnaud, E., Prieur, C.,Monod,H.: Recursive estimation procedure of sobol’ indices
based on replicated designs. Submitted, http://hal.univ-grenoble-alpes.fr/hal-01291769 (2017)

16. Glynn, P.W.: Importance sampling for monte carlo estimation of quantiles. In: Proceedings
of Second International Workshop on Mathematical Methods in Stochastic Simulation and
Experimental Design, pp. 180–185. Publishing House of Saint Petersburg University (1996)

17. Hesterberg, T., Nelson, B.: Control variates for probability and quantile estimation. Manag.
Sci. 44, 1295–1312 (1998)

18. Higdon, D., Gattiker, J., Williams, B., Rightley, M.: Computer model calibration using high-
dimensional output. J. Am. Stat. Assoc. 103, 571–583 (2008)

19. Homma,T., Saltelli,A.: Importancemeasures in global sensitivity analysis of non linearmodels.
Reliab. Eng. Syst. Saf. 52, 1–17 (1996)

20. Iooss, B.: Estimation itérative en propagation d’incertitudes : réglage robuste de l’algorithme
de Robbins-Monro. Preprint, https://hal.archives-ouvertes.fr/hal-02511787 (2020)

21. Iooss, B., Lemaître, P.: A review on global sensitivity analysis methods. In:Meloni, C., Dellino,
G. (eds.) Uncertainty management in Simulation-Optimization of Complex Systems: Algo-
rithms and Applications, pp. 101–122. Springer (2015)

22. Iooss, B., Marrel, A.: Advanced methodology for uncertainty propagation in computer exper-
iments with large number of inputs. Nucl. Technol. 205, 1588–1606 (2019)

23. Janon, A., Klein, T., Lagnoux, A., Nodet, M., Prieur, C.: Asymptotic normality and efficiency
of two sobol index estimators. ESAIM: Probab. Stat. 18, 342–364 (2014)

24. Lakshminarasimhan, S., Jenkins, J., Arkatkar, I., Gong, Z., Kolla, H., Ku, S.H., Ethier, S., Chen,
J., Chang, C.S., Klasky, S., et al.: Isabela-qa: query-driven analytics with isabela-compressed
extreme-scale scientific data. In: Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, p. 31. ACM (2011)

25. Lampitella, P., Inzoli, F., Colombo, E.: Note on a formula for one-pass, parallel computations
of arbitrary-order, weighted, multivariate central moments (2015)

26. Le Gratiet, L., Iooss, B., Browne, T., Blatman, G., Cordeiro, S., Goursaud, B.: Model assisted
probability of detection curves: new statistical tools and progressive methodology. J. Nonde-
struct. Eval. 36, 8 (2017)

27. Lemaire, M., Chateauneuf, A., Mitteau, J.C.: Structural Reliability. Wiley (2009)
28. Marrel, A., De Lozzo, M.: Sensitivity analysis with dependence and variance-based measures

for spatio-temporal numerical simulators. In: Stochastic Environmental Research and Risk
Assessment, In Press (2017)

29. Marrel, A., Iooss, B., Jullien, M., Laurent, B., Volkova, E.: Global sensitivity analysis for
models with spatially dependent outputs. Environmetrics 22, 383–397 (2011)

30. Marrel, A., Perot, N., Mottet, C.: Development of a surrogate model and sensitivity analysis for
spatio-temporal numerical simulators. Stoch. Environ. Res. Risk Assess. 29, 959–974 (2015)

31. Marrel, A., Saint-Geours, N.: Sensitivity analysis of spatial and/or temporal phenomena. In:
Ghanem, R., Higdon, D., Owhadi, H. (eds.) Springer Handbook on Uncertainty Quantification.
Springer (2017)

http://hal.univ-grenoble-alpes.fr/hal-01291769
https://hal.archives-ouvertes.fr/hal-02511787

136 A. Ribés et al.

32. Morio, J., Balesdent, M.: Estimation of Rare Event Probabilities in Complex Aerospace and
Other Systems. Woodhead Publishing (2016)

33. Nanty, S., Helbert, C.,Marrel, A., Pérot, N., Prieur, C.: Uncertainty quantification for functional
dependent random variables. Comput. Stat. (2016). https://doi.org/10.1007/s00180-016-0676-
0

34. Pébay, P.: Formulas for robust, one-pass parallel computation of covariances and arbitrary-
order statistical moments. Sandia Report SAND2008-6212, Sandia National Laboratories 94
(2008)

35. Pébay, P., Thompson, D., Bennett, J., Mascarenhas, A.: Design and performance of a scalable,
parallel statistics toolkit. In: 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), pp. 1475–1484. IEEE (2011)

36. Popelin, A.L., Iooss, B.: Visualization tools for uncertainty and sensitivity analyses on thermal-
hydraulic transients. In: Joint International Conference on Supercomputing in Nuclear Appli-
cations and Monte Carlo 2013 (SNA + MC 2013). Paris, France (2013)

37. Prieur, C., Tarantola, S.: Variance-based sensitivity analysis: theory and estimation algorithms.
In: Ghanem, R., Higdon, D., Owhadi, H. (eds.) Springer Handbook on Uncertainty Quantifi-
cation. Springer (2017)

38. Ribés, A., Pouderoux, J., Popelin, A.L., Iooss, B.: Visualizing statistical analysis of curves
datasets in Paraview. In: 2014 IEEE Conference on Visual Analytics Science and Technology
(VAST). Paris, France (2014)

39. Ribés, A., Terraz, T., Fournier, Y., Iooss, B., Raffin, B.: Large scale in transit computation of
quantiles for ensemble runs. Unpublished Technical Report (2019). arXiv: 1905.04180

40. Ribés, A., Pouderoux, J., Iooss, B.: A visual sensitivity analysis for parameter-augmented
ensembles of curves. J. Verif. Valid. Uncertain. Quantif. December 2019 4(4), 041007 (2020,
February 11). https://doi.org/10.1115/1.4046020

41. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407
(1951)

42. Saltelli, A., Chan, K., Scott, E. (eds.): Sensitivity Analysis. Wiley Series in Probability and
Statistics. Wiley (2000)

43. Smith, R.: Uncertainty quantification. SIAM (2014)
44. Sobol, I.: Sensitivity estimates for non linear mathematical models. Math. Model. Comput.

Exp. 1, 407–414 (1993)
45. Terraz, T., Ribés, A., Fournier, Y., Iooss, B., Raffin, B.: Melissa: large scale in transit sensi-

tivity analysis avoiding intermediate files. In: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’17). Denver (2017)

46. Tukey, J.W.: Exploratory Data Analysis, vol. 2. Reading, Mass (1977)
47. Welford, B.: Note on a method for calculating corrected sums of squares and products. Tech-

nometrics 4(3), 419–420 (1962)

https://doi.org/10.1007/s00180-016-0676-0
https://doi.org/10.1007/s00180-016-0676-0
http://arxiv.org/abs/1905.04180
https://doi.org/10.1115/1.4046020

Decaf: Decoupled Dataflows for In Situ
Workflows

Orcun Yildiz, Matthieu Dreher, and Tom Peterka

Abstract In situ workflows manage the coordination and communication in a
directed graph of heterogeneous tasks executing simultaneously in an
high-performance computing system. The communication through the graph can
be modeled as a dataflow, and Decaf is a software library for managing the dataflow
for in situ workflows. Decaf includes a Python API to define a workflow, creating a
complete stand-alone system, but the dataflow design also allows Decaf to support
the communication needs of other workflowmanagement systems, because a science
campaignmaybe composed of severalworkflow tools.Decaf creates efficient parallel
communication channels over MPI, including arbitrary data transformations ranging
from simple data forwarding to complex data redistribution. Decaf provides three
building blocks: (i) a lightweight data model that enables users to define the policies
needed to preserve semantic integrity during data redistribution, (ii) flow control
designed to prevent overflows in the communication channels between tasks, and
(iii) a data contract mechanism that allows users to specify the required data in the
parallel communication of the workflow tasks. Decaf has been used in a variety of
applications. Two examples are highlighted. The first case is from materials science,
where the science campaign consists of several workflow tools that cooperate, and
Decaf supports these tools as the dataflow layer. The second problem is motivated
by computational cosmology, where the in situ workflow consists of three parallel
tasks: synthetic particle generation, Voronoi tessellation, and density estimation.

O. Yildiz (B) · T. Peterka
Argonne National Laboratory, 9700S. Cass Ave., Lemont, IL 60439, USA
e-mail: oyildiz@anl.gov

T. Peterka
e-mail: tpeterka@mcs.anl.gov

M. Dreher
Formerly of Argonne National Laboratory, Lemont, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_7

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_7&domain=pdf
mailto:oyildiz@anl.gov
mailto:tpeterka@mcs.anl.gov
https://doi.org/10.1007/978-3-030-81627-8_7

138 O. Yildiz et al.

Fig. 1 Workflow graph,
where the nodes are tasks
and the edges represent
information exchanged
between the tasks. Tasks are
parallel programs such as
simulation, analysis, and
visualization

1 Introduction

Computational science often involves a workflow of interconnected tasks, several
of them being executed on a supercomputer, for example, simulation, analysis,
visualization, and user interaction. Theworkflow can bemodeled as a directed graph,
which is illustrated in Fig. 1, where the nodes of the graph are tasks and the edges
represent information exchanged between the tasks. The graph can have cycles where
feedback loops exist between tasks so that the result of a task can be used to modify
another one (e.g., computational steering).

Dataflow is defined as the information exchanged between tasks in a workflow.
Traditionally, tasks exchanged data through files. However, the growing mismatch
between high-performance computing (HPC) rate and I/O bandwidth motivates
shifting from file-oriented workflow models to in situ workflows, where dataflows
are through memory or the supercomputer interconnect, avoiding the storage I/O
bottleneck.

Decaf is a dataflow library for in situ workflows. Figure2 shows an overview of
Decaf and its components. Decaf is designed as a library separate from the workflow
engine because a science campaignmay consist of several workflow tools that need to
cooperate, and this design allows one dataflow library to support multiple workflow
tools simultaneously. However, several challenges need to be addressed as a result
of this design choice. The dataflow needs to manage the data exchange between
heterogeneous programming and data models because simulation and analysis tasks
are often developed independently. Workflows can be instantiated with different
numbers of resources (e.g., MPI ranks) per task, and the dataflow has to transform
and redistribute data during the exchange between tasks. The dataflow runtime needs
to support any generic directed graph because workflow graphs come in different
shapes and sizes, ranging from a simple pipeline of two or three tasks to more
complex topologies including fan-in, fan-out, and cycles. To meet these challenges,
Decaf is equipped with the following features:

Decaf: Decoupled Dataflows for In Situ Workflows 139

Fig. 2 Overview of Decaf
dataflow library and its
components

• A decoupled dataflow, a hybrid of tight and loose coupling of tasks through an
optional intermediate set of resources that can be used to transform or redistribute
data between tasks

• A flow control library designed to manage disparate data rates between tasks
• A data contract mechanism that allows users to specify the required data in the
parallel communication of the tasks

• A high-level Python API for the workflow graph definition so that Decaf can be
used as a stand-alone workflow system when it is not used in conjunction with
other workflow tools

• A design that allows composition of different workflow systems so that the
workflow can be defined in a completely different software tool with Decaf
providing only the dataflow capability

• A message-driven runtime for executing workflow tasks when all messages for a
task have been received, which supports any directed graph topology, including
cycles

• Support for the MPMD (multiple program multiple data) capability of MPI to
run multiple executables in the same job launch, a feature available on most
supercomputing and cluster platforms

The remainder of this chapter is organized as follows. Section2 gives background
for in situ workflows and presents related work. Section3 describes Decaf’s design
and key features. Section4 illustrates the capabilities of Decaf. Section5 gives a
summary and briefly describes future work.

140 O. Yildiz et al.

Fig. 3 Time division and space division in situ coupling of a producer and consumer task [17].
In time division coupling, these tasks execute sequentially on the same resource; in space division
coupling, they execute concurrently on separate resources

2 Background and Related Work

This section first provides a brief background on types of in situ workflows with
respect to the coupling mode between the workflow tasks. Then, it presents related
work by categorizing the workflows according to their coupling modes.

2.1 Types of In Situ Workflows

Figure3 illustrates the different in situ coupling modes when two tasks are connected
in the workflow graph. In time division, the two tasks, producer and consumer, share
the same resources and run sequentially in time. For example, a simulation (producer)
and analysis (consumer) task may take turns operating on the same time step of data.
The simulation computes the data for one time step and then waits while the analysis
task processes the data, which then waits while the simulation generates the next
step.

In spacedivision, the producer and consumer runondifferent resources concurrently
in time. Using the same simulation-analysis example, the simulation computes the
first time step, copies or sends it to the consumer, and then computes the second time
step while the analysis code processes the first time step. Both modes are used in
practice, and there are time-space tradeoffs between them.

2.2 In Situ Workflow Runtimes

In situ tools have been developed by various communities with performance,
programmability, and portability tradeoffs highlighted by Dorier et al. [13]. In this
section, these tools are characterized according to the type of coupling between their
tasks.

Decaf: Decoupled Dataflows for In Situ Workflows 141

2.2.1 Time Division

Scientific visualization is one of the main targets for in situ analytics, motivated
by the need for high bandwidth and temporal resolution. Yu et al. [35] integrated a
particle volume renderer synchronously in a combustion code (S3D). The renderer
processing required 10% of the total execution time to produce images. Current
production visualization tools include ParaView [3] and VisIt [2] for postprocessing.
Both have an in situ library, respectively Catalyst [21] and Libsim [34], to process
simulation data. The goal of these libraries is to convert the internal data structures
of the simulation to VTK data structures. The libraries then execute the rendering
pipeline, usually synchronously, although other configurations are possible.

2.2.2 Space Division

Other in situ tools originate in the I/O community. Originally designed for I/O
staging, these tools have subsequently coupled analysis andvisualization applications
together with simulations. ADIOS [26] is a common interface for multiple I/O
methods. Initially developed to store data efficiently in parallel, it now provides
methods to share data between codes and transform data in situ along the I/O path [6].

Several frameworks using the ADIOS interface can transfer data asynchronously
to dedicated resources. DataStager [1] can schedule data movement while the
simulation is in its computational phase, avoiding unnecessary network contention.
FlexPath [8] provides a publisher/subscribermodel to exchange data between parallel
codes having different numbers of processes (M × N communication pattern).

DataSpaces [9] implements a distributed shared-memory spacewith apublisher/subscriber
interface for external applications. DataSpaces indexes data based on a space-filling
curve. Data are then distributed among data servers based on their index. The index
is used both for pushing data into DataSpaces and for retrieving data efficiently from
it.

Damaris [11, 14] splits the globalMPI communicator of a simulation to dedicated
cores or nodes [12] in order to run the analysis concurrently with the application.
The framework was used to stage I/O and for in situ visualizations. Functional
partitioning [25] also uses dedicated cores for I/O with a FUSE interface.

HDF5 DSM [5] connects a simulation code to ParaView by using the HDF5
interface. The simulation and the ParaView servers can run in separate jobs. Both
jobs read andwrite data to the shared virtual HDF5 file layer; steering is also possible.

2.2.3 Hybrid Approaches

Time division and space division each have pros and cons, motivating flexibility in
analytics placement [36]. Several solutions now support both time and space division.
FlexIO [37] allows time division tasks on the same compute cores or space division on
dedicated cores. Bennett et al. [4] combined computations in time division followed

142 O. Yildiz et al.

by other processing on dedicated nodes using DART servers [10] to transfer data,
applying several analysis algorithms to the combustion code S3D.

FlowVR [19] couples parallel codes to form a graph of tasks. Each task is usually a
separate executable. Communication between parallel codes ismanaged by a daemon
running on each node. Decaf also adopts a hybrid approach. Similar to FlowVR,
Decaf composes multiple executables to form a workflow. However, its execution
model is designed for in situ HPC environments, and it does not rely on a sepate
daemon to manage the graph execution.

3 Design

This section provides an overview of Decaf and its main components. Decaf’s
main building block is a dataflow, which consists of a producer, a consumer, and a
communication object. Decaf implementation is defined in two parts. First, the user
defines the dataflowusingDecaf’s Python scripting interface,whichproduces a JSON
file describing the layout. Second, the user implements the producer and consumer
of that dataflow using Decaf’s C/C++ API. Besides the dataflow component, Decaf
provides three building blocks: (i) a data model to preserve semantic integrity during
data redistribution, (ii) a flowcontrol tomanagedisparate rates between tasks, and (iii)
a data contract mechanism to specify the required data in the parallel communication
of the tasks.

3.1 Decaf Dataflow

A dataflow is the association of a producer, a consumer, and a communication object
to exchange data between the producer and consumer. Producers and consumers,
called nodes in Decaf, are parallel codes such as simulation and analytics. For
instance, Gromacs [33], a molecular dynamics simulation, typically generates atom
positions, and scientists use tools such asVMD [24] to visualize and analyze the atom
positions. In an in situ context, Gromacs and VMD communicate directly through
memory. Data structures between the two codes are often different, and some data
transformationmight be required. This can be as simple as converting data units (from
nanometers to angstroms) to more complex data rearrangements such as mapping a
simulation data structure to a VMD data structure.

These data transformations can require extensive computations. To address these
needs, Decaf dataflow includes an intermediate staging area with computational
resources. This staging area is called a link, which is an intermediate parallel program
transforming data between a producer and a consumer.

Figure4 shows the organization of a simple dataflow from producer to link to
consumer. Advanced workflow graphs can be obtained by combining multiple such
dataflows. The producer, link, and consumer are all MPI programs, each with its own

Decaf: Decoupled Dataflows for In Situ Workflows 143

Fig. 4 a Decaf forms 5 communicators for a dataflow: one communicator each for producer,
consumer, and link, plus two more communicators for the overlap between producer-link and link-
consumer. b The link is optional; when not used, there are only 3 communicators

MPI communicator. The dataflow creates two additional communicators: producer-
link and link-consumer. Section3.2 explains how to describe such graphs and how
the runtime executes them. Section3.4 describes how data are exchanged through
the communicators.

The link resources are optional; one candisable the linkwhennodatamanipulations
are required between the producer and consumer. In that case, the user does not assign
any resources to the link, and the runtime creates only one communicator directly
between the producer and the consumer.

3.2 Workflow Graph Description and Runtime Execution

A Decaf workflow is the composition of multiple dataflows. For instance, to create
a pipeline of three tasks, the user declares two dataflows, where the second task is
both consumer in the first dataflow and producer in the second dataflow. Decaf does
not apply any constraints on the graph topology. In particular, the user can define
cycles in the graph for computational steering.

144 O. Yildiz et al.

The user describes the workflow graph in a Python script. Listing 1 presents the
code generating a three-task pipeline. First, the user describes individual tasks with
a name and a set of resources (MPI ranks). Second, the user describes the dataflow
linking two tasks (producer, consumer), a set of resources, and the choice of the
redistribution strategy. The same task can be used by several dataflows as producer
or consumer. Once all the tasks are described, the user calls workflowToJson
to generate a JSON file. That file contains an intermediate representation of the
workflow read by the Decaf runtime upon initialization. The graph description is
done prior to the launch of the workflow.

In a Decaf workflow, every task is an MPI program. Each task can be a separate
program, or all tasksmaybe combined in a single program.Decaf relies on theMPMD
capability ofMPI to launch all the programs.With this method, MPI_COMM_WORLD
is shared among all the executables. Based on the information provided by the JSON
file, Decaf creates either three or five communicators per dataflow (Fig. 4). This
method requires existing codes such as simulations only to replace their equivalent
of MPI_COMM_WORLD by the communicator provided by Decaf.

3.3 Structure of Task Code

To minimize the required code modifications for integration of user codes, Decaf
provides a simple put/get API that allows tasks to send/receive data to/from the rest
of the workflow. Listing 2 presents a typical program.

After the initialization of the runtime (Sect. 3.2), the code loops over incoming
data. The get(in_data) call waits until data are received on all inbound links or a
termination message is received, whereby the code exits the loop. Incoming data are
processed and sent by calling put(out_data). The terminate() call signals
to the runtime to exit the application. This API is available in both C and C++.

Decaf: Decoupled Dataflows for In Situ Workflows 145

3.4 Data Model and Data Redistribution in the Dataflow

The key question is how to maintain a valid data model that preserves the original
semanticswhendata are redistributedbetweenMproducer andNconsumer processes.
One major challenge is that none of these processes has a complete view of the
data decomposition; hence, considerable effort is required to match decomposition
between producer and consumer. Also, different scenarios require different logic, and
extra hints from the user can simplify the required computation. For example, if only
oneproducer rankhas a particular dataset andonly one consumer rankwants to read it,
then the underlying dataflowmust reconcile this information. With this goal in mind,
Bredala [16] is a library designed to build a data model with enough information to
preserve the semantics of data during data redistribution in situ dataflows.

Decaf uses both the data model and the redistribution components of Bredala.
The data model serves as the data interface to exchange data between tasks within
the workflow. For each dataflow, Decaf creates two redistribution components: one
between the producer and the link and one between the link and the consumer. When
calling put(), Decaf passes the data to the corresponding redistribution component
thatmanipulates and transmits the data to its destination.When callingget(), Decaf
receives data on the corresponding redistribution component and transmits it to the
task. These data model and redistribution components are detailed in the following
subsections.

146 O. Yildiz et al.

3.4.1 Data Model Description

Bredala protects the semantic integrity of a data model during split and merge
operations using the notion of a semantic item. This is the smallest subset of data that
contains all the fields of the original data structure while preserving its semantics. In
Bredala, the split and merge functions are embedded within the data model. These
functions divide a data model into subdata models and merge subdata models into a
larger data model safely.

Listing 3 gives an example to describe a simple data model with a global identifier
and an array of positions. First, each field is declaredwith its type (e.g., Simple/Array)
and its semantic information if any. For instance, the last argument in the fieldPos
declaration indicates that this position is composed of three floating points. This
semantic information will be used by Bredala for preserving the semantics of
this field during data redistribution. Then, each field is pushed in a container
(pConstructData). Besides the name and the field variables, the user provides
a semantic flag, a visibility flag, and flags for split and merge policies.

The semantic flag indicates whether a field has extra semantic meaning in the data
model. For instance, the flag DECAF_POS indicates that the field pos represents the
positions of the semantic items. Then, this information can be used to redistribute
data spatially. The visibility flag indicates whether the value of the field is shared
by all the items in the data model (e.g., a global identifier with DECAF_SHARED
flag) or when this value is different for each group (e.g., different position values
with DECAF_PRIVATE flag). The split and merge flags tell Bredala which method
to use during the split and merge operations. We will see an example of this in the
next section.

Decaf: Decoupled Dataflows for In Situ Workflows 147

3.4.2 Data Redistribution

Bredala provides redistribution components to transfer a data model from M to N
processes. The components use the semantic information provided by the data model
to extract individual semantic items and send them to the appropriate destination.
Bredala provides a safe way to access, extract, and merge semantic items within a
data model using three redistribution strategies: round-robin, contiguous, and block
redistribution (Fig. 5). The round-robin strategy performs the data redistribution item
by item in a round-robin fashion. The contiguous strategy redistributes all the items
while preserving their order. The block redistribution strategydivides a global domain
into subdomains and attributes each item to a particular subdomain.

In each redistribution strategy, data redistribution consists of three main steps:
(1) splitting the data model on the producer side; (2) transferring these data
models between M producer and N consumer processes over MPI; and (3) merging
the received data models on N consumer processes. Splitting and merging are
performed based on the user-defined policies in the data model. For instance, the
DECAF_SPLIT_DEFAULT policy in Listing 3 splits the array of positions in chunks
of three floating-point values based on the semantics of the field pos. The policy
MERGE_APPEND_VALUES concatenates the two arrays of position values.

3.5 Flow Control Library

In space division mode, workflow tasks run independently on dedicated resources
and exchange data asynchronously. However, tasks may run at difference rates. For
instance, a consumer might not be able to process the incoming data from a producer
fast enough, overflowing or stalling the dataflow between producer and consumer.
To mitigate such scenarios, Decaf provides a flow control library, Manala [20], to
control the flow of messages between producers and consumers.

Figure6 illustrates the operation of Manala, which manages the message queue
between producers and consumers. First, Manala intercepts the messages from
producers and stores them in a storage hierarchy consisting of main memory, shared
remote memory (i.e., distributed in-memory key/value store), and the file system.
The hierarchical design allowsManala to buffer as manymessages as possible before
blocking producers. Then, Manala selects the messages that need to be forwarded
to the consumers depending on the flow control policy defined by the user. Manala
provides four different flow control policies: all, some, latest, and hybrid. The all
policy applies FIFO flow control, Decaf’s default policy when Manala is not used,
forwarding all messages to consumers in the order they have been sent by producers.
The some policy also preserves the order of the messages, but this time Manala
stores one out of every x messages received and drops the rest of them. In the latest
policy, Manala forwards the most recent data to the consumers and drops the older
data. The hybrid policy combines the some and latest policies by forwarding one out
of every x messages received among the most recent data. These different policies

148 O. Yildiz et al.

Fig. 5 Redistribution strategies available in Bredala. a The round-robin strategy performs the data
redistribution item by item in a round-robin fashion. b The contiguous strategy redistributes all the
items while preserving their order. c The block redistribution strategy divides a global domain into
subdomains and attributes each item to a particular subdomain

Fig. 6 Manala, a flexible flow control library, controls the flow of messages between the producer
and the consumer by using a storage hierarchy consisting of main memory, shared remote memory,
and the file system

Decaf: Decoupled Dataflows for In Situ Workflows 149

Fig. 7 Sample data contract mechanism between one producer and two different consumers. The
dashed-line rectangles represent the data fields forwarded in each dataflow

provide flexibility in managing the flow of messages in the workflow in order to meet
application requirements.

3.6 Data Contract Mechanism

Decaf decouples data management between producers and consumers by handling
the exchange of messages between these tasks. Traditionally, the data to be sent to
different consumers are usually hard-coded in producers. This requiresmodifying the
producer code every time the consumer changes, which is inefficient. To address this
problem, Decaf provides a mechanism [27] where users can specify a data contract
between a producer and consumer of data. This data contract mechanism allows
the Decaf runtime to automatically extract the data from producers depending on
the requirements of the consumers, minimizing required code changes. Moreover,
the same producer can be coupled to different consumers with different data
requirements, without specializing the producer task for each consumer. Without
data contracts, a single producer would have to send the superset of data required
by all the consumers. Doing so, however, would create redundant data transfers over
the network, wasting resources.

In the contract, the data model is represented as a set of fields. The field is a triplet,
(name, type, periodicity), where periodicity is the frequency at which the producer
generates the field. The user specifies the set of fields that the producer makes
available for output, as well as the data fields needed for input to the consumer. Then,
Decaf’s data contract mechanism generates the matching list to deduce which data
fields need to be forwarded in the dataflow between the producer and the consumer.
Figure7 illustrates a simple data contract example between one producer and two
different consumers. Listing 4 shows the necessary additions to describe such a
contract in the workflow graph description.

150 O. Yildiz et al.

4 Science Drivers

Two science use cases are highlighted below: molecular dynamics and cosmology.
In the molecular dynamics example, the steering capabilities of Decaf and its
interoperability with other in situ libraries to create heterogeneous workflows are
illustrated. In the cosmological example, the scalability of Decaf is tested, and its
capacity to handle large, complex data structures is demonstrated.

4.1 Molecular Dynamics

The first example is steering a molecular dynamics simulation to trigger a biological
mechanism. In theFepAprotein, a channel in the periplasmofGram-negative bacteria
provides an entryway where compounds can traverse the membrane of the cell. This
mechanism is of interest to biologists because drugs pass through these channels,
and steering the simulation allows a biologist to push a complex within a channel
and accelerate the traversal process.

Workflows supporting computational steering pose several challenges. First,
a steering workflow needs to support cycles in the workflow graph, which can
potentially generate deadlocks. Second, the steering process must be performed
asynchronously to avoid blocking the simulation. Third, because multiple types of
interactions may be needed (force feedback, visualization, density computation),
Decaf must be able to integrate different tools from different communities into a
single workflow.

In this experiment, a steering workflow is implemented with Decaf to guide the
iron complex toward the FepA channel, based on the implementation proposed by
Dreher et al. [18]. Figure8 summarizes the workflow. First, Decaf API calls are
integrated into Gromacs [33], a molecular dynamics simulation code, to add external
forces and expose atom positions to the rest of the workflow. Second, in a link
(LinkMorton), a Morton index [30] is computed for each atom particle. Third, a

Decaf: Decoupled Dataflows for In Situ Workflows 151

Density
Gromacs Link

TargetManager

Renderer

VisIt client

Damaris/Viz

Fig. 8 Steering workflow with Decaf (blue), FlowVR (brown), and Damaris/Viz connected to the
VisIt client (green). The steering part is managed by Decaf while visualizations are handled by
Damaris and FlowVR. Decaf and FlowVR tasks and communications are in space division mode
(blue arrows) while Damaris execution is executed in time division mode (green arrow) during the
execution of Density

3D density grid (Density) is computed. Fourth, the force (TargetManager) to
guide the system is computed. The trajectory for the complex to follow is defined
by a list of target positions, provided by the user, forming a path. A path-finding
algorithm [23] based on the previously computed 3D density grid guides the iron
complex from one target to the next.

At each step of the workflow, the fields of the data model are modified. First, the
atom positions and their indices from the simulation are sent to the link. Second, the
Morton indices are added, anddata are reorganized to compute the density grid. Third,
theMorton indices are removed from the data model (no longer necessary), and a 3D
grid is appended to the data model. Then, the result is sent to TargetManager,
which broadcasts forces to the simulation.

For this application, FlowVR and Damaris/Viz [14] are used to perform in situ
visualization. First, the workflow is connected to the renderer of Dreher et al. [18]
based on Hyperballs [7] to visualize the molecular model and the state of the
steering system (Fig. 9a). This visualization is preferred by biologists to guide the
complex because the user can navigate within the molecular structure and track
the iron complex. This visualization is performed in space division mode. Second,
Damaris/Viz is used in time division mode to visualize the density grid with VisIt
(Fig. 9b). The visualization of the density grid shows the biologistswhere low-density
areas are located, which are good candidates for the iron complex to go through.
Since no tools support both visualizations, several visualization packages had to
be combined in the same workflow. Without Decaf, the biologists would normally
perform such visualizations separately, resulting in redundant data transfers among
these tools and loss of productivity.

The following tests are conducted on Froggy, a 138-node cluster from the Ciment
infrastructure. Each compute node is equipped with 2 eight-core processors, Sandy

152 O. Yildiz et al.

Fig. 9 a Visualization of the molecular system with FlowVR performed in space division mode, as
depicted in Fig. 8. b Visualization of the density grid with Damaris/Viz using VisIt in time division
mode

Bridge-EP E5-2670 at 2.6GHz with 64 GB of memory. Nodes are interconnected
through an FDR InfiniBand network. FlowVR 2.1 and Gromacs 4.6 are compiled
with Intel MPI 4.1.0. For all experiments, the molecular model of the FepA is used,
which is composed of about 70,000 atoms. For all scenarios, the atom positions are
extracted from the simulation every 100 iterations.

An experiment was conducted to study the impact of the steering pipeline on
Gromacs performance. The workflow is created as described in Fig. 8. Each task runs
in space divisionmode, where one node behaves as a staging node, and the remaining
nodes are simulation nodes. The Density (four cores) and TargetManager
(one core) tasks are hosted on one node. The Density task is limited to four
cores since the density grid is relatively small (170× 80× 180). Gromacs runs on
each simulation node using 15 cores per node. The LinkMorton task runs on
the remaining core on each simulation node to preserve the data locality. MPI is
configured to bind each MPI rank to a given core in order to avoid process migration
and reduce performance variability.

Figure10presents the timingof theGromacs execution and the steeringprocess for
100 simulation iterations. Steering indicates the accumulated execution time of
theLinkMorton, Density, and TargetManager tasks. The steering process
has a time budget of 100 simulation iterations to complete before blocking the
simulation. At 480 cores, the simulation requires on average 277 ms to compute 100
iterations. In all cases, the time spent by Gromacs in Decaf operations represents less
than 0.1% of the allocated time budget.

Decaf: Decoupled Dataflows for In Situ Workflows 153

Fig. 10 Time
decomposition of Gromacs
performance modified with
Decaf and connected to the
steering pipeline without
visualization. The measured
time is the average over a full
I/O cycle (100 iterations)

● ● ● ● ●0
20

0
40

0
60

0
80

0

Gromacs Timings with Steering

Number of Processes

T
im

e
(m

s)

●

●

●

●

●

30 60 120 240 480

● Gromacs
Get
Put
Steering

4.2 Cosmology

The second use case is the analysis of dark matter tracer particles from a Vlasov-
Poisson N-body cosmology code. This workflow converts particle positions to the
deposition of particle density onto a regular 2D and 3D grid, using a Voronoi
tessellation as an intermediate step. For high dynamic range data such as dark
matter particles, computing the Voronoi tessellation first produces more accurate
density estimates than less expensive methods that compute the density directly
from the particle data [31]. The data model produced by the cosmology code, a set of
particles, is transformed into the intermediate data model of the Voronoi tessellation,
an unstructured polyhedral mesh, before being converted into a 2D or 3D regular
grid of density scalar values.

TheN-body cosmology code isHACC [22]. The tessellation and density estimator
codes are built on the Tess library [32], which in turn is built on the DIY data-parallel
programming model [28]. The three tasks are coupled with a link between each task
in a 3-node linear workflow graph using Decaf. Decaf enables exchange of complex
data structures among these tasks, transparent to such task codes. Normally, this
would be done manually by the user by performing the data transformation for each
particular data type in the task code. For instance, the link between the simulation
and tessellation nodes rearranges the particles from the structure of arrays format
produced by HACC to an array of structures format required by Tess.

All three tasks are parallel MPI programs that scale to large numbers of MPI
processes. The intermediate tessellation has a largememory footprint, approximately

154 O. Yildiz et al.

Fig. 11 (Left to right) Output of cosmology analysis workflow at time steps 10, 30, 60, and 100

15 times as large as the simulation data, making it necessary to compute the
tessellation on a separate set of compute nodes from the simulation or density
estimation. The density image (Fig. 11) is a fraction of the simulation data size; but
because of the largememory footprints of the analysis tasks and the desire to perform
analysis simultaneously with simulation, all the nodes and links are configured in
space division mode to use separate resources. In the following experiment, all tasks
and links have the same number of processes.

The following tests were conducted on the IBM Blue Gene/Q Vesta machine at
the Argonne Leadership Computing Facility at Argonne National Laboratory. Vesta
is a testing and development platform consisting of 2K nodes, each node with 16
cores (PowerPC A2 1.6GHz), 16 GB of RAM, and 64 hardware threads. Eight MPI
processes per compute node are used. The Clang compiler, based on LLVM version
3.9, is used to compile the code with -O3 optimization.

Figure12 shows the performance of a strong-scaling test in log-log scale. In this
test, there are 1283 particles estimated onto a 5122 2D output grid. The vertical axis
is the time to simulate a total of 100 time steps and to compute the tessellation and
density estimation every 10 time steps. The horizontal axis is the total number ofMPI
processes for the entire workflow. The curves in the plot include total (end-to-end)
time as well as the time for each of the three tasks.

The overall strong-scaling efficiency is approximately 50% from 40 to 320
processes. After 320 processes, the diminishing number of particles per process
combined with the increasing imbalance between processes reduces the scalability
of the tessellation, which in turn affects the rest of the workflow. For example, at
1,280 processes, the final time step of the simulation produces only 16 particles in the
least-loaded process, and 1,972 particles in the most-loaded one. The load imbalance
as dark matter particles cluster into halos is expected; using a k-d tree instead of a
regular grid of blocks to perform the tessellation [29] can mitigate this situation.

The tasks overlap in time (space division) so that the total time is only slightly
longer than that of the longest task, which is density estimation, but much less than
the sum of the parts. This is especially true over the total of multiple time steps,
effectively hiding the analysis time from the simulation.

Decaf: Decoupled Dataflows for In Situ Workflows 155

Fig. 12 Strong scaling of
the cosmology simulation-
tessellation-density
estimation workflow. Good
scaling efficiency is shown
until the small number of
particles per process and load
imbalance of the tessellation
reduce efficiency. The time
of the analysis tasks is
effectively overlapped with
the simulation time

50
10

0
15

0
20

0

Strong Scaling

Number of Processes

T
im

e
(s

)

40 80 160 320 640 1280

Total time
Simulation
Tessellation
Density estimation
Perfect strong scaling

5 Conclusion

This chapter introduces Decaf, middleware for coupling in situ tasks to form
workflows. Decaf makes it easy to modify existing simulation or analytics codes
with its simple API. It is also simple to describe the workflow in Python as a directed
graph where nodes are tasks and edges are communication channels. Decaf does not
impose any constraints on the graph topology and canmanage graphswith cycles. The
Decaf runtime handles building the communication channels and the data exchanges.
Decaf protects the semantic integrity of data during parallel redistribution with its
lightweight data model. Decaf’s data contract mechanism allows the Decaf runtime
to automatically extract the data from producers depending on the requirements of
consumers. Decaf is also equipped with a flow control library to manage disparate
rates between tasks.

Decaf’s capabilities are demonstrated with science use cases. The first is a
steering scenario merging a molecular dynamics simulation, user analytic codes,
and visualizations with FlowVR and Damaris/Viz workflow tools. In the second
example, Decaf’s scalability up to 1,280 cores is studied with the analysis of dark
matter that involves the exchange of complex data structures.

Currently, Decaf uses a static Python configuration file to define the workflow.
In future work, bringing elasticity to Decaf will be explored, since resources may
need to be redistributed among the tasks of the graph at runtime to accommodate for
changes in requirements [15].

156 O. Yildiz et al.

The Decaf project is available in open source.1

Acknowledgements This work is supported by Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357, program manager
Laura Biven. This research used resources of the Argonne Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

References

1. Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., Zheng, F.: Datastager: scalable
data staging services for petascale applications. In: Proceedings of the 18th ACM International
Symposium on High Performance Distributed Computing, HPDC ’09, pp. 39–48. ACM,
New York, NY, USA (2009). https://doi.org/10.1145/1551609.1551618. http://doi.acm.org/
10.1145/1551609.1551618

2. Ahern, S., Brugger, E., Whitlock, B., Meredith, J.S., Biagas, K., Miller, M.C., Childs, H.: Visit:
Experiences with Sustainable Software (2013). arXiv:1309.1796

3. Ahrens, J., Geveci, B., Law, C.: 36 paraview: an end-user tool for large-data visualization. The
Visualization Handbook, p. 717 (2005)

4. Bennett, J., Abbasi, H., Bremer, P.T., Grout, R., Gyulassy, A., Jin, T., Klasky, S., Kolla, H.,
Parashar, M., Pascucci, V., Pebay, P., Thompson, D., Yu, H., Zhang, F., Chen, J.: Combining in-
situ and in-transit processing to enable extreme-scale scientific analysis. In: 2012 International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp.
1–9 (2012). https://doi.org/10.1109/SC.2012.31

5. Biddiscombe, J., Soumagne, J., Oger, G., Guibert, D., Piccinali, J.G.: Parallel computational
steering and analysis for HPC applications using a ParaView interface and the HDF5 DSM
virtual file driver. In: Kuhlen, T., Pajarola, R., Zhou, K. (eds.), Eurographics Symposium on
Parallel Graphics and Visualization. The Eurographics Association (2011). https://doi.org/10.
2312/EGPGV/EGPGV11/091-100

6. Boyuka, D., Lakshminarasimham, S., Zou, X., Gong, Z., Jenkins, J., Schendel, E., Podhorszki,
N., Liu, Q., Klasky, S., Samatova, N.: Transparent I Situ data transformations in ADIOS.
In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 256–266 (2014). https://doi.org/10.1109/CCGrid.2014.73

7. Chavent, M., Vanel, A., Tek, A., Levy, B., Robert, S., Raffin, B., Baaden, M.: GPU-accelerated
atom and dynamic bond visualization using hyperballs: a unified algorithm for balls, sticks,
and hyperboloids. J. Comput. Chem. 32(13), 2924–2935 (2011)

8. Dayal, J., Bratcher, D., Eisenhauer, G., Schwan, K., Wolf, M., Zhang, X., Abbasi, H., Klasky,
S., Podhorszki, N.: Flexpath: Type-based publish/subscribe system for large-scale science
analytics. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 246–255 (2014). https://doi.org/10.1109/CCGrid.2014.104

9. Docan, C., Parashar, M., Klasky, S.: DataSpaces: an interaction and coordination framework
for coupled simulation workflows. In: Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (HPDC ’10), pp. 25–36. ACM, New York, NY,
USA (2010). https://doi.org/10.1145/1851476.1851481

10. Docan, C., Parashar, M., Klasky, S.: Enabling high-speed asynchronous data extraction and
transfer using dart. Concurr. Comput. Pract. Exp. 22(9), 1181–1204 (2010). https://doi.org/10.
1002/cpe.1567. http://dx.doi.org/10.1002/cpe.1567

11. Dorier, M., Antoniu, G., Cappello, F., Snir, M., Orf, L.: Damaris: how to efficiently leverage
multicore parallelism to achieve scalable, Jitter-free I/O. In: CLUSTER—IEEE International
Conference on Cluster Computing. IEEE (2012)

1 https://github.com/tpeterka/decaf.

https://doi.org/10.1145/1551609.1551618
http://doi.acm.org/10.1145/1551609.1551618
http://doi.acm.org/10.1145/1551609.1551618
http://arxiv.org/abs/1309.1796
https://doi.org/10.1109/SC.2012.31
https://doi.org/10.2312/EGPGV/EGPGV11/091-100
https://doi.org/10.2312/EGPGV/EGPGV11/091-100
https://doi.org/10.1109/CCGrid.2014.73
https://doi.org/10.1109/CCGrid.2014.104
https://doi.org/10.1145/1851476.1851481
https://doi.org/10.1002/cpe.1567
https://doi.org/10.1002/cpe.1567
http://dx.doi.org/10.1002/cpe.1567
https://github.com/tpeterka/decaf

Decaf: Decoupled Dataflows for In Situ Workflows 157

12. Dorier, M., Antoniu, G., Cappello, F., Snir, M., Sisneros, R., Yildiz, O., Ibrahim, S., Peterka,
T., Orf, L.: Damaris: addressing performance variability in data management for post-petascale
simulations. ACM Transactions on Parallel Computing (ToPC) (2016)

13. Dorier, M., Dreher, M., Peterka, T., Wozniak, J.M., Antoniu, G., Raffin, B.: Lessons learned
from building in situ coupling frameworks. In: Proceedings of the First Workshop on In Situ
Infrastructures forEnablingExtreme-ScaleAnalysis andVisualization, pp. 19–24.ACM(2015)

14. Dorier, M., Sisneros Roberto, R., Peterka, T., Antoniu, G., Semeraro Dave, B.: Damaris/Viz:
a nonintrusive, adaptable and user-friendly in situ visualization framework. In: LDAV—IEEE
Symposium on Large-Scale Data Analysis and Visualization, Atlanta, USA (2013). https://hal.
inria.fr/hal-00859603

15. Dorier, M., Yildiz, O., Peterka, T., Ross, R.: The challenges of elastic in situ analysis and
visualization. In: Proceedings of theWorkshop on In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization, pp. 23–28 (2019)

16. Dreher, M., Peterka, T.: Bredala: Semantic data redistribution for in situ applications. In:
CLUSTER—IEEE International Conference on Cluster Computing. IEEE (2016)

17. Dreher, M., Peterka, T.: Decaf: Decoupled dataflows for in situ high-performance workflows.
Technical report, Argonne National Lab. (ANL), Argonne, IL (USA) (2017)

18. Dreher, M., Prevoteau-Jonquet, J., Trellet, M., Piuzzi, M., Baaden, M., Raffin, B., Férey, N.,
Robert, S., Limet, S.: ExaViz: a flexible framework to analyse, steer and interact withmolecular
dynamics simulations. Faraday Discuss. Chem. Soc. 169, 119–142 (2014). https://doi.org/10.
1039/C3FD00142C. https://hal.inria.fr/hal-00942627

19. Dreher, M., Raffin, B.: A flexible framework for asynchronous in situ and in transit analytics
for scientific simulations. In: 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, Chicago, USA (2014). https://hal.inria.fr/hal-00941413

20. Dreher, M., Sasikumar, K., Sankaranarayanan, S., Peterka, T.: Manala: a flexible flow control
library for asynchronous task communication. In: 2017 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 509–519. IEEE (2017)

21. Fabian, N., Moreland, K., Thompson, D., Bauer, A., Marion, P., Geveci, B., Rasquin, M.,
Jansen, K.: The paraview coprocessing library: a scalable, general purpose In Situ visualization
library. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 89–
96 (2011). https://doi.org/10.1109/LDAV.2011.6092322

22. Habib, S., Pope, A., Finkel, H., Frontiere, N., Heitmann, K., Daniel, D., Fasel, P., Morozov,
V., Zagaris, G., Peterka, T., et al.: HACC: simulating sky surveys on state-of-the-art
supercomputing architectures. New Astron. (2015)

23. Hart, P.E.,Nilsson,N.J., Raphael, B.:A formal basis for the heuristic determination ofminimum
cost paths. IEEETrans. Syst. Sci. Cybern.4(2), 100–107 (1968). https://doi.org/10.1109/TSSC.
1968.300136

24. Humphrey, W., Dalke, A., Schulten, K.: VMD—Visual molecular dynamics. J. Mol. Graph.
14, 33–38 (1996)

25. Li, M., Vazhkudai, S.S., Butt, A.R., Meng, F., Ma, X., Kim, Y., Engelmann, C., Shipman,
G.: Functional partitioning to optimize end-to-end performance on many-core architectures.
In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pp. 1–12. IEEE Computer Society,
Washington, DC,USA (2010). https://doi.org/10.1109/SC.2010.28. http://dx.doi.org/10.1109/
SC.2010.28

26. Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky, S., Tchoua, R.,
Lofstead, J., Oldfield, R., Parashar, M., Samatova, N., Schwan, K., Shoshani, A., Wolf, M.,
Wu, K., Yu, W.: Hello ADIOS: the challenges and lessons of developing leadership class I/O
frameworks. Concurr. Comput.: Pract. Exp. 26(7), 1453–1473 (2014). https://doi.org/10.1002/
cpe.3125. http://dx.doi.org/10.1002/cpe.3125

27. Mommessin, C., Dreher, M., Raffin, B., Peterka, T.: Automatic data filtering for in situ
workflows. In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp.
370–378. IEEE (2017)

28. Morozov, D., Peterka, T.: Block-Parallel Data Analysis with DIY2 (2016)

https://hal.inria.fr/hal-00859603
https://hal.inria.fr/hal-00859603
https://doi.org/10.1039/C3FD00142C
https://doi.org/10.1039/C3FD00142C
https://hal.inria.fr/hal-00942627
https://hal.inria.fr/hal-00941413
https://doi.org/10.1109/LDAV.2011.6092322
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/SC.2010.28
http://dx.doi.org/10.1109/SC.2010.28
http://dx.doi.org/10.1109/SC.2010.28
https://doi.org/10.1002/cpe.3125
https://doi.org/10.1002/cpe.3125
http://dx.doi.org/10.1002/cpe.3125

158 O. Yildiz et al.

29. Morozov, D., Peterka, T.: Efficient delaunay tessellation through K-D tree decomposition. In:
Proceedings of SC16. IEEE Press (2016)

30. Morton: A computer oriented geodetic data base and a new technique in file sequencing.
Technical report Ottawa, Ontario, Canada (1966)

31. Peterka, T., Croubois, H., Li, N., Rangel, E., Cappello, F.: Self-adaptive density estimation of
particle data. SIAM J. Sci. Comput. 38(5), S646–S666 (2016)

32. Peterka, T., Morozov, D., Phillips, C.: High-Performance computation of distributed-memory
parallel 3DVoronoi andDelaunay Tessellation. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 997–1007. IEEE
Press (2014)

33. Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith,
J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.: Gromacs 4.5: a high-throughput
and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7), 845–854
(2013)

34. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully
featured visualization system. In: Proceedings of the 11th Eurographics Conference on Parallel
Graphics and Visualization, EGPGV ’11, pp. 101–109. Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland (2011). https://doi.org/10.2312/EGPGV/EGPGV11/101-109.
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109

35. Yu, H.,Wang, C., Grout, R., Chen, J., Ma, K.L.: In situ visualization for large-scale combustion
simulations. Comput. Graph. Appl. IEEE 30(3), 45–57 (2010)

36. Zheng, F., Abbasi, H., Cao, J., Dayal, J., Schwan, K., Wolf, M., Klasky, S., Podhorszki, N.:
In-situ i/o processing: a case for location flexibility. In: Proceedings of the Sixth Workshop on
Parallel Data Storage, PDSW ’11, pp. 37–42. ACM, New York, NY, USA (2011). https://doi.
org/10.1145/2159352.2159362. http://doi.acm.org/10.1145/2159352.2159362

37. Zheng, F., Zou, H., Eisenhauer, G., Schwan, K., Wolf, M., Dayal, J., Nguyen, T.A., Cao, J.,
Abbasi, H., Klasky, S., Podhorszki, N., Yu, H.: FlexIO: I/O middleware for location-flexible
scientific data analytics. In: 2013 IEEE 27th International Symposium on Parallel Distributed
Processing (IPDPS), pp. 320–331 (2013). https://doi.org/10.1109/IPDPS.2013.46

https://doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
https://doi.org/10.1145/2159352.2159362
https://doi.org/10.1145/2159352.2159362
http://doi.acm.org/10.1145/2159352.2159362
https://doi.org/10.1109/IPDPS.2013.46

Parameter Adaptation In Situ: Design
Impacts and Trade-Offs

Steffen Frey, Valentin Bruder, Florian Frieß, Patrick Gralka, Tobias Rau,
Thomas Ertl, and Guido Reina

Abstract This chapter presents a study of parameter adaptation in situ, exploring
the resulting trade-offs in rendering quality and workload distribution. Four different
use cases are analyzed with respect to configuration changes. First, the performance
impact of load balancing and resource allocation variants on both simulation andvisu-
alization is investigated using the MegaMol framework. Its loose coupling scheme
and architecture enable minimally invasive in situ operation without impacting the
stability of the simulation with (potentially) experimental visualization code. Sec-
ond, Volumetric Depth Images (VDIs) are considered: a compact, view-dependent
intermediate representation that can efficiently be generated and used for post hoc
exploration. A study of their inherent trade-offs regarding size, quality, and gen-
eration time provides the basis for parameter optimization. Third, streaming for
remote visualization allows a user to monitor the progress of a simulation and to
steer visualization parameters. Compression settings are adapted dynamically based
on predictions via convolutional neural networks across different parts of images
to achieve high frame rates for high-resolution displays like powerwalls. Fourth,
different performance prediction models for volume rendering address offline sce-
narios (like hardware acquisition planning) as well as dynamic adaptation of parame-
ters and load balancing. Finally, the chapter concludes by summarizing overarching
approaches and challenges, discussing the potential role that adaptive approaches
can play in increasing the efficiency of in situ visualization.

1 Introduction

Visualization algorithms typically expose a variety of parameters. These parameters
either influence the content of the visualization (i.e., what can be seen), change its
quality or influence the workload distribution. Content can be controlled via camera

S. Frey (B)
University of Groningen, Groningen, The Netherlands
e-mail: s.d.frey@rug.nl

V. Bruder · F. Frieß · P. Gralka · T. Rau · T. Ertl · G. Reina
University of Stuttgart, Stuttgart, Germany

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_8

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_8&domain=pdf
mailto:s.d.frey@rug.nl
https://doi.org/10.1007/978-3-030-81627-8_8

160 S. Frey et al.

parameters, a transfer function, filtering, or selection. Quality, on the other hand,
can be influenced via sampling density (like ray step length and image resolution),
optimization criteria like early termination, level-of-detail rendering, or compression
settings.With this, quality and content parameters typically define the total workload.
How this workload is distributed across parallel and distributed architectures can be
specified via different schemes, considering various levels of granularity, and dif-
ferent communication patterns. Performance and/or memory (storage) requirements
of visualization algorithms result from a complex interplay of parameter settings
regarding context, quality, and distribution (e.g., cf. Bruder et al. [5]). In practice,
algorithms may strive to achieve the highest possible quality in a given amount of
time or to minimize the time required for a given workload, under the condition of
additional user-definable constraints.

This chapter addresses two challenges mentioned in the introduction of this book.
First, different approaches to reducing data sizes are described with a focus on study-
ing the impact of their different parameter settings. Second, costmodels are implicitly
or explicitly used to adequately allocate resources, distribute computations, or adjust
the total workload.

In general, to make an informed decision, the interdependency of parameters
and result needs to be understood. Two use cases are covered with this focus: Sect. 2
discusses the performance impact of different load balancing and resource allocation
schemes on both the simulation and the visualization. As a basis for this, it covers
architectural changes to the MegaMol visualization framework to support in situ
operations and describes MegaMol’s loose coupling scheme between simulation
code and visualization. Section3 describes a view-dependent volume abstraction
that allows for a limited degree of interaction. It discusses the impact of several
parameters on representation quality, size, and generation time.

Ideally, evaluation data and gained insight provide the basis to develop a model
that will allow predictions and thus serve as a basis for optimization. Another two
use cases demonstrate this strategy: Sect. 4 covers a model of the impact of image
compression settings on the resulting image quality and size. These predictions are
used to optimize image transmission in real time for interactive remote visualization
and an example is presented in which high-resolution imagery from HPC resources
is streamed to a powerwall. Last, Sect. 5 presents different performance prediction
models for volume rendering. Themodels are used to dynamically optimize rendering
parameters, balance load distribution and inform hardware acquisition.

Lastly, Sect. 6 summarizes the overarching approaches that span individual use
cases, outlines challenges, and concludes by discussing the potential benefit of adap-
tive approaches in increasing the efficiency of in situ visualization.

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 161

2 Impact of Simulation Load Balancing and Resource
Allocation

Simulation software utilizes load balancing to distribute workloads as evenly as pos-
sible across compute nodes. Visualization software that runs in situ is affected by the
resulting domain decomposition. Load balancing that is optimal for simulation codes
can have unpredictable effects on visualization performance, since the optimization
goal generally differs between simulation and analysis. As an example, molecular
dynamics simulations are affected by the number of particle interactions that occur,
usually influenced by a cutoff radius. Typical visualization tasks benefit from an even
distribution of particle numbers instead. The following use case [20] first investigates
the performance impact of two different load balancing schemes in the simulation
software ls1-MarDyn [18] on visualization using MegaMol [13].

2.1 MegaMol In Situ Loose Coupling

MegaMol, originally conceived to be an OpenGL-accelerated workstation-centric
framework, required several changes to properly operate on HPC systems. The first
change consisted in adding the ability to render efficiently on CPU-only nodes.
Therefore, the open source ray tracing engine OSPRay [23] was integrated together
with a new internal data communication paradigm into MegaMol [21]. Note that
a running MegaMol instance is always a runtime composition of interconnected
modules that load, process, or render data and acquire andpass it on to their neighbors.
Traditionally, visualizations using GPU rendering are generated via a strategy that
immediately produces output (in form ofOpenGL commands) per renderingmodule.
Thus, data is acquired from available sources, then it is processed, rendered, and
composited implicitly using the current OpenGL context (frame buffer and depth
buffer).

The CPU rendering path, on the other hand, processes the data first, but then
gathers all information that is necessary for rendering in the single existing OSPRay
instance and renders the final image in one pass. This results in a cross-module
retained mode strategy that employs data transport patterns across several layers
of modules, a setup that was not necessary for the original GPU-based use cases.
Note that, regardless of the rendering backend, in the case of distributed data ren-
dering, a compositing step across nodes will be executed. In a MegaMol instance,
the gathering of data in a central place is realized by chaining modules that process
and generate geometry. This daisy chaining allows for composition of global scenes
without requiring infrastructure or data management modules and does not generate
additional programming overhead. Furthermore, the scalability of the CPU rendering
has been demonstrated to offer increased rendering performance for medium-sized
data sets in comparison with naive GPU ray casting [21].

162 S. Frey et al.

MegaMolls1-MarDyn

request connection

connection information

connect

acknowledge intialization

Init:

MegaMolls1-MarDyn new file signal

phase-space

Write:

MegaMolls1-MarDyn

phase-space

Read:

Fig. 1 WorkflowwithinMegaMol in situ coupling. It startswith an initialization step that establishes
communication between the simulation ls1-MarDyn and MegaMol. Then the scheme enters a loop
in which checkpoints are consecutively shared with the visualization

This software-defined approach also enables off-screen rendering. In addition to
the compositing of data-distributed rendering output overMPI, the ability to transport
generated or composited images off site to allow for remote rendering has been
added. This allows for a loose coupling scheme between simulation and visualization
software for in situ rendering and analysis purposes (Fig. 1).

Data—such as the phase-space of the simulation—is communicated via shared
memory (a reserved space in the node’s volatile memory), while simulation and
visualization are synchronizedvia signals over a socket (using theLua-based (remote)
scripting interface of MegaMol [12]). This loosely-coupled in situ scheme differs
from strategies that integrate simulation and visualization in a single executable, for
example when using well-known frameworks like Ascent [15]. In these frameworks,
transient effects or bugs that could cause the (potentially experimental) visualization
to fail also lead to an interruption of the simulation, and, depending on the frequency
of checkpointing, waste of computation time and results. Therefore, an in situ setup
around this worst-case scenario has been designed that separates the MPI worlds of
simulation and visualization completely.

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 163

Fig. 2 Applied thread distribution per node between OS, simulation, and rendering for the mea-
surements. For the baseline measurements without an attached rendering framework, the rendering
threads are allocated for the OS, as well

InMegaMol’s loosely-coupled setting, data is shared as a copy, and the simulation
can continue the computation loop while the visualization is rendering. In heavily
compute-bound scenarios, such as molecular dynamics, for example, the additional
memory requirements are not an issue. The communication within the MPI world of
the visualization is restricted to the sharing of camera parameters and images within
a compositing tree driven by IceT [17]. Only if global rendering effects are enabled,
data from the simulation will be shared between MegaMol ranks.

2.2 Workload Distribution

In order to testMegaMol’s in situ coupling schemeand to evaluate performance impli-
cations of static resource allocation, a molecular dynamics simulation was conducted
and visualized using ls1-MarDyn [18]. To comprehensively assess performance, ren-
derings of the scene have been obtained from 256 different camera angles. Accord-
ingly, the output images could also be employed for post-hoc analysis, similar to the
approach of O’Leary et al. [19]. The tested workload distributions are depicted in
Fig. 2, averaging over all camera configurations. The runswere performed onTACC’s
Stampede2 that provides 48 cores per node, whereas two cores have been reserved for
the OS. Three test cases are considered with configurations of 38 + 8 cores, 42 + 4
cores, and 44 + 2 cores for simulation and rendering respectively. For the scenarios
without an attached rendering, the “rendering cores” were left unallocated for the
OS (background work such as communication, I/O, etc.).

Looking at respective results in Fig. 3, it shows that enabling the visualization
(denoted as the coupled scenario, circles) has only a small impact on the performance
of the simulation with respect to the baseline (only simulation, denoted as direct,
triangles). The captions DOM and DIF refer to the load balancing scheme of the

164 S. Frey et al.

Fig. 3 Graph of wallclock time per simulation timestep over the number of available threads
(median over all camera configurations).DOM denotes a static domain decomposition,DIF denotes
a diffusion-based load balancer. Coupled values represent simulation running in situ with visual-
ization, direct represents simulation code only. This image is adapted from our previous work [20]

simulation. Here, DOM is a static, equal-volume domain decomposition. DIF is a
diffusion-based domain decomposition. Additionally, the measurements were taken
for system states at different points in (simulation) time. While step 0 describes the
system’s initial state, step 25 represents the system after 25 · 105 iterations.

Given the relatively small number of particles per node resulting from the domain
decomposition, the visualization also does not benefit significantly from a resource
allocation of more than four threads per node (this can also be seen directly in Fig. 4
that is described below in more detail).

2.3 Load Balancing

The plots in Fig. 4 show that the rendering also benefits from the rebalancing of the
simulation domains. This is the case despite the simulation balancing for a target
that is not fully correlated to overall particle count. Additionally, the plots show that
at higher node counts the performance gain by allocating four additional cores for

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 165

Fig. 4 Plot of ray tracing performance over the number of threads allocated for this task (median
over all camera configurations). Among others, the plots show that using more than four cores only
leads to small performance improvements in some cases. Dynamic load balancing of the simulation
(DIF, compared to static DOM) has a positive impact also on rendering in the considered scenario.
This image is adapted from our previous work [20]

the rendering is not justified. The conclusion is that in this specific case, having a
rendering framework run in situ with a compute-bound simulation software has a
negligible performance hit on the simulation (and even benefits from load balancing).
In general, loosely-coupled in situ setups can be considered to be promising with
their advantage of a low integration overhead at the cost of fine-tuned optimizations
towards specific simulation software. Finally, simulation load balancing can impact
visualization performance in away that is hard to anticipate a priori. Investigating this
more closely across various cases could help to better understand occurring effects.

3 Volumetric Depth Images

Volumetric Depth Images (VDIs) are a compact, view-dependent intermediate rep-
resentation for in situ visualization that can efficiently be generated and used for post
hoc exploration from arbitrary new views [10]. Among others, VDIs have been used
for the in situ visualization of CFD simulations [1, 7]. In this use case, the focus
is on different trade-offs in the generation of VDIs, their representation itself, and
rendering properties [9].

3.1 VDI Generation and Rendering

VDIs offer a compact view-dependent representation of volumetric data that can be
explored interactively from an arbitrary new view. For a specified camera config-
uration and transfer function, VDIs represent an intermediate abstraction of color-
mapped volume samples—consisting of RGB values c and opacity T—clustered
along viewing rays originating from the respective camera position. A VDI can effi-

166 S. Frey et al.

ray

image volumecamera

c(1)
T(1)

c(2)
T(2)

c(3)
T(3)

c(4)
T(4)

c(5)
T(5)

RGBA Color

Start End

RGBA Color

Start End

VDI representation

r
< γ?

Fig. 5 VDI generation and data structure: samples are clustered along rays, only storing composited
color and depth. This image is adapted from our previous work [10]

ciently be generated during volumetric raycasting by partitioning the samples along
rays according to their similarity (Fig. 5). We consider two input parameters in this
context. First, the resolution r depicts an image resolution of r2 and consequently r2

rays. Second, the threshold γ determines the maximum color difference that allows
consecutive samples to be merged into an existing cluster along the ray. All colors
are normalized to [0; 1] and differences are computed using the Euclidean distance
between pre-multiplied colors. The resulting partitions are stored as lists of elements
called supersegments that contain the bounding depth pair (Start, End) and partial
color accumulation values (RGBA Color). Empty (i.e., fully transparent) superseg-
ments are not stored explicitly. Note that an extension to VDIs—called Space-Time
VDIs—has been developed that additionally exploits inter-ray and inter-frame coher-
ence, and introduces delta encoding for further data reduction [8].However, this study
concentrates on the representation in its original form as described above.

The storage of color alongside their respective depth values basically allows for
a depth-aware reconstruction of the volume data for rendering. Each (quadrilateral)
pixel in the image plane can be conceptually extruded along the ray with the used
camera parameters, forming a truncated pyramid. The clustered segments along rays
can then be rendered as frustum segments which represent the spatial depth range of
the respective segment along a ray. For illustration, Fig. 6 shows an actual rendering
of a low-resolution VDI featuring black edges around the frustums. Consistent with
γ , color and opacity are constant within a frustum segment, and determined during
VDI generation. For rendering, these frustums are eventually depth-ordered and
composited, taking into consideration the variable segment length to ensure correct
attenuation.

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 167

Fig. 6 Frustums
reconstructed from sample
clusters for rendering (image
adapted from our previous
work [10])

3.2 Parameters and Output Characteristics

In general, significant size reductions can be achieved, and renderings generated
from views only moderately deviating from the initial view are typically quite faith-
ful to original raycasting. However, results can potentially deviate noticeably for
strongly different directions. This degradation of quality heavily depends on the
chosen parameters for building the VDIs. A lower resolution r naturally leads to
lower rendering quality but requires less space, while a lower value for γ leads to a
more selective clustering and, with this, a higher depth resolution (resulting in both
increased quality and storage requirements). Three different types of performance
indicators are considered for quantifying the result: storage cost σ , rendering quality
q, and generation time τ . Here, the compressed size (via bzip2) of the VDI represen-
tation is used for quantifying the storage cost σ . Rendering quality q is evaluatedwith
images from different camera configurations using PSNR (peak signal-to-noise ratio,
a full-reference metric that is computed on the basis of the mean squared error). For
this, direct volumetric raycasting with the original data generates corresponding ref-
erence images. The implementation extends a standard CUDA volume raycaster, and
kernel times τ required for VDI generation are obtained using a NVIDIA GTX980.

Generally, it is expected that input parameters γ and r yield higher quality q and
require more storage space σ when they are decreased and increased, respectively.
However, the rate at which they do so effectively depends on characteristics of the
underlying volume data. It is evaluated here using a time step from a supernova
simulation (4323 scalar values on a uniform grid), with camera view angles ranging
from 10◦ to 60◦ (in steps of 10◦) around the y-axis to define characteristic extents

168 S. Frey et al.

Fig. 7 Supernova (time step 20) for different angles used in the evaluation. This image is adapted
from our previous work [9]

of deviation for visual exploration w.r.t. a given task (cf. Fig. 7). As indicated above,
the two input parameters impacting the VDI generation are resolution r ∈ [160, 768]
(step size 32) and threshold γ ∈ [0.001 − 0.26] (step size 0.004).

Results are shown in Fig. 8a. Parameters r and γ behave as expected (i.e., smaller
r and larger γ worsen image quality, but yield smaller data sizes). Furthermore,
the generation time primarily depends on the resolution r , naturally increasing with
higher resolution as more rays are sent for VDI generation. The plot also shows
that some parameter combinations seem to be better suited than others. For instance,
parameter configuration (r = 768,γ = 0.25) yields approximately the samedata size
yet much worse quality when compared to (r = 608, γ = 0.11). On this basis, an
auto-tuning approach chooses the best parameter combination for given constraints.

3.3 Evaluation Results: Auto-Tuning Toward Target
Characteristic

An offline auto-tuning approach based on the measurement series described previ-
ously is used to optimize the performance of VDIs for different constraints, based
on their compressed data size and generation time. The best parameter setting pair
(γ, r) is determined according to utility function ν. Arbitrary utility functions ν can
be specified to transform the value-tuple of performance indicators (σ, q, τ) into a
single scalar for minimization (i.e., smaller values are better). Generally, the defi-
nition of ν depends on the application use case and certain constraints induced by
the overall setup. Currently, all measurements are conducted prior to the tuning.
An integrated scheme could also involve adaptive refinement towards the respective
goal, which has both the potential to improve accuracy and to decrease the overall
computation time of the tuning (at least when tuningwith one specific ν that is known
and fixed beforehand).

Figure8(b, top) shows the results of a parameter study where the auto-tuning
approach considers different size limitations σtarget, while optimizing the achieved
quality. This figure shows the respective results for a range of different storage
constraints (each limit is 1.5× larger than the previous one). Figure8(b, bottom)
explores generation time (τtarget) as the main quantity of interest. This is important
for in situ scenarios in which simulation or measurement output data is produced
rapidly, and the visualization needs to keep up with the data being generated. The

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 169

Fig. 8 (Continued)

170 S. Frey et al.

�Fig. 8 (Continued) a Results of the parameter study for a range of values for γ and r . The chart
depicts generation time τ (edge brightness of circle), storage space σ (circle area) and quality q
(fill color of circle). Missing values are caused by VDI proxy geometry exceeding GPU memory
for rendering. b Best parameter setting pair (γ, r) with which the specified size limitation σtarget
(top) and time budget τtarget (bottom) can be undercut with maximum quality (both bar height and
color depict PSNR quality). This image is adapted from our previous work [9]

image shows results for a range of time budget constraints (each limit is 1.5× larger
than the previous one). In both cases, γ and r develop towards higher quality, whereas
the rate at which they do so depends on the structure and characteristics of the data.

Finally, Table1 captures how well the tuning results achieved on the basis of one
time step transfer to another time step within the same series. In this example, the
parameters are tuned based on a certain budget σtarget for storage cost. The example
captured in Table1 shows that the transfer would be feasible, i.e., the optimization
target still holds when looking at another time step. Furthermore, rendering quality
q and generation time τ also show similar outcomes for the same parameter configu-
ration across these different time steps. The fact that similar performance is achieved
when using a configuration that was optimized for a different time step indicates
that parameter transfer works well overall in this example. However, no guarantees
can be given without explicitly checking whether the constraints hold in a specific
case. Therefore, when optimizing for a time series, it might be beneficial to not just
base this on one but a couple of (favorably characteristic) time steps. For example,
one could simply use the parameter setting yielding the best quality overall with no
constraint violations across all considered time steps.

4 High-Resolution Streaming

Remote visualization via streaming allows a user to monitor the progress of a sim-
ulation and interactively steer visualization parameters. This chapter describes the
dynamic adaptation of compression settings based on predictions by Convolutional
Neural Networks (CNNs) [11]. CNNs have been successfully used to predict the
quality of images [2, 14, 16]. In this use case, a CNN predicts the size and quality
of image tiles for different compression settings in order to achieve high frame rates
in different environments for high-resolution displays like powerwalls. One of the
main challenges for interactive exploration is to maintain a low latency between the
user input and the displayed result. The natural approach to reduce the latency of an
image stream is to use strong compression, which significantly reduces the size of
each image. This consequently decreases the quality of the output, losing fine details
or introducing artifacts, and may greatly impact the user experience. To achieve the
best possible quality for a given transfer budget in this use case, the image is split
into smaller equally-sized tiles and then a CNN is used to predict (1) the size of
each tile after the encoding and (2) the quality in terms of similarity to the original

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 171

Ta
bl
e
1

C
ro
ss
-e
va
lu
at
io
n
of

re
su
lts

fo
r
th
e
di
ff
er
en
tp

ar
am

et
er

se
ts
ob
ta
in
ed

fr
om

tu
ni
ng

fo
r
tim

e
st
ep
s
20

an
d
40

of
th
e
Su

pe
rn
ov
a
(f
or

σ
ta
rg
et
).
In

pa
rt
ic
ul
ar
,i
t

ca
n
be

se
en

th
at
th
e
de
si
re
d
st
or
ag
e
bu
dg

et
σ
st
ill

ho
ld
s
af
te
r
th
e
tr
an
sf
er
.I
n
ad
di
tio

n,
re
nd
er
in
g
qu
al
ity

q
an
d
ge
ne
ra
tio

n
tim

e
τ
al
so

yi
el
d
co
m
pa
ra
bl
e
re
su
lts

w
he
n
us
in
g
th
e
sa
m
e
pa
ra
m
et
er

se
tti
ng

s
ac
ro
ss

th
es
e
di
ff
er
en
tt
im

e
st
ep
s

So
ur
ce

γ
r

σ
q

τ
So

ur
ce

γ
r

σ
q

τ

σ
ta
rg
et

=
0.
08

M
B

σ
ta
rg
et

=
0.
18

M
B

40 (f
ro
m

40
)

0.
07
7

16
0.
0

0.
07
5

27
.7
77

0.
07
8

40 (f
ro
m

40
)

0.
14
9

25
6.
0

0.
16
5

30
.4
74

0.
15
4

20 (f
ro
m

40
)

0.
07
7

16
0.
0

0.
10
0

28
.9
15

0.
07
7

20 (f
ro
m

40
)

0.
14
9

25
6.
0

0.
15
9

29
.6
56

0.
15
5

40 (f
ro
m

20
)

0.
08
5

16
0.
0

0.
07
2

27
.6
17

0.
07
8

40 (f
ro
m

20
)

0.
08
1

22
4.
0

0.
14
4

29
.7
24

0.
12
4

20 (f
ro
m

20
)

0.
08
5

16
0.
0

0.
07
7

28
.5
46

0.
07
6

20 (f
ro
m

20
)

0.
08
1

22
4.
0

0.
15
9

30
.5
65

0.
12
5

So
ur
ce

γ
r

σ
q

τ
So

ur
ce

γ
r

σ
q

τ

σ
ta
rg
et

=
0.
41

M
B

σ
ta
rg
et

=
0.
92

M
B

40 (f
ro
m

40
)

0.
07
3

35
2.
0

0.
36
7

32
.8
92

0.
25
0

40 (f
ro
m

40
)

0.
06
9

54
4.
0

0.
88
5

35
.6
17

0.
51
7

20 (f
ro
m

40
)

0.
07
3

35
2.
0

0.
57
0

33
.7
54

0.
24
9

20 (f
ro
m

40
)

0.
06
9

54
4.
0

1.
52
0

36
.4
64

0.
51
6

40 (f
ro
m

20
)

0.
07
7

32
0.
0

0.
29
9

32
.2
76

0.
21
1

40 (f
ro
m

20
)

0.
07
7

48
0.
0

0.
67
4

34
.7
83

0.
41
7

20 (f
ro
m

20
)

0.
07
7

32
0.
0

0.
40
0

32
.9
18

0.
21
4

20 (f
ro
m

20
)

0.
07
7

48
0.
0

0.
90
1

35
.3
09

0.
41
5

172 S. Frey et al.

Fig. 9 Comparison between the three different encoding settings. From left to right: Original image,
image encodedwith the LOW setting, image encoded with theMEDIUM setting and image encoded
with the HIGH setting. This image is adapted from our previous work [11]

image for different encoding settings. The resulting matrix is then used to optimize
the encoding process.

4.1 Encoder Settings

As shown in Fig. 9, there are three different encoding settings. The LOW setting uses
the maximum compression and leads to the smallest images sizes but with a severe
impact on the resulting quality. Therefore it should not be used for tiles that contain
fine structures or details that should be preserved. TheMEDIUM setting is a trade-off
between quality and size. The HIGH setting performs a lossless encoding. It should
only be used for finer structures since the resulting images are comparably large.

4.2 Prediction of Compressed Tile Size and Quality

CNN-based regression identifies the optimal encoding setting for each tile. Theoutput
of the network is a vector, one for each tile, containing the expected quality and
size for each of the encoding settings. In order to assess the image quality, the
structural similarity index (SSIM) [24] is used. SSIMcomputes a numerical closeness
indication which takes the luminance, contrast and also the structures of the encoded
and original images into account.

To reduce the prediction time, the network is relatively simple, and batches of
multiple tiles are used as input (Fig. 10). The first convolution layer performs the
convolution with a kernel of size 7 × 7 and 32 kernels in total. The first RELU layer
uses the output of the convolution to create a feature map of size 32 × 240 × 512.
Then maxpooling, with a kernel of size 4 × 4 pixels, is performed on the feature
map which reduces the size of the map to 32 × 60 × 128. The reduced size still
allows the network to detect features in approximate locations, while speeding up
the computation.Aftermaxpooling, the second convolution layer is applied, followed

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 173

Fig. 10 Overview of all layers of the CNN used to predict the quality and size of the tiles

by the second RELU layer and the second pooling layer. This reduces the size of the
feature map to 64 × 15 × 32. The dropout layer addresses overfitting, and the dense
layer reduces the map to the desired vector containing the six values.

The dataset in this study consists of renderings of a CT scan of a chameleon from
different viewpoints with varying transfer functions. Each image was divided into
equal-sized tiles of 240 × 512 pixels, and each tile was encoded with each of the
three encoding settings. Then the SSIM value, i.e. the quality, and the size for each
tile was computed. The network was then trained with 22, 560 images, with each
image divided into tiles and each tile encoded with each of the three settings. For
each encoded tile the SSIM value and the size in bytes were stored as well.

4.3 Optimization of Encoder Settings

The goal is to achieve the highest possible encoding setting for each tilewhile keeping
the overall size below a given threshold T . This optimization is equivalent to the
multiple-choice knapsack problem and can be optimally solved by minimizing the
respective objective function:min

∑N−1
i=0

∑M−1
j=0 xi j (1 − SSIMi j)

2, with N being the
number of tiles and M the number of encoding settings. In doing this, two constraints
are considered. The first constraint restricts each image tile to exactly one setting:
∀ j ∈ N : ∑M−1

i=0 xi j = 1, x ∈ {0, 1}. The second constraint limits the overall size
of all tiles to be less or equal to the given threshold:

∑N−1
i=0

∑M−1
j=0 xi jSIZEi j ≤ T .

In the implementation used in the evaluation below, a greedy approach approx-
imates the optimal solution, aiming to yield a fast solution of this problem. This is
done by assigning all tiles the HIGH setting and sorting them, in descending order,
according to their predicted SSIM value of theMEDIUM setting. For all tiles with an
SSIM value higher than 0.975 the setting is reduced toMEDIUM and they are sorted
again according to their predicted SSIM value of the next lower setting. This process
is repeated until there are no tiles left over where the setting can be reduced without
losing too much quality. At this point, the sum of the predicted sizes is computed
and, if it is bigger than T , the settings are again reduced where the least quality loss
is predicted until the condition is met.

174 S. Frey et al.

Fig. 11 The image on the right shows the used encoder settings for the image on the left. Tiles that
are red used the LOW settings, i.e. the maximal compression, tiles that are blue use the MEDIUM
encoder setting and the green tiles use the HIGH setting, i.e. minimal compression

4.4 Results

The prototype implementation achieves a frame rate between 15 and 20 frames
per second when encoding images with a resolution of 4096 × 1200 pixels. The
prediction takes most of the time as it takes about 40ms on average to estimate the
size and quality for all tiles. One result of the predictions of the CNN is exemplified
in Fig. 11. The left half shows the input image and the right half the tiles with the
encoding settings used to encode them. It is clearly visible that only the tiles of the
image that contain any details are encoded with either theMEDIUM (blue) orHIGH
(green) setting and the background uses the LOW (red) setting. The overall quality
of the resulting image is on the same level as if the complete image was encoded
with the MEDIUM setting. The algorithm uses 10 MBit/s on average compared to
13 MBit/s for the MEDIUM setting.

High prediction accuracy is required to provide a solid basis for adjustments. To
analyze the accuracy of the trained CNN, the mean squared error (MSE), the average
absolute error (AAE), the standard deviation (STD) of the AAE and the maximum
AAE for both the predicted SSIM values and the tile sizes are assessed. Since the
range of the SSIM values is relatively close to the maximum, the MSE decreases
from 2.43 × 10−5, for the LOW setting, to 5.38 × 10−6, for the HIGH setting. The
same trend can be observed for the AAE, the STD and the maximum AAE as well.
For the tile sizes, on the other hand, the MSE increases from 7.95 × 10−5, for the
LOW setting, to 1.1 × 10−3, for the HIGH setting. This is due to the fact that the
range of tile sizes increases with the compression quality, leading to a bigger pool
of potential values which also results in higher error values. The results indicate an
approximated error rate of roughly 5% for the prediction model, which is sufficient
for utilizing its quality and size estimations in practice.

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 175

5 Visualization Load Balancing and Performance
Prediction

During the course of a simulation, the computational effort required for rendering
with a given configuration of visualization parameters can significantly vary. This
can be due to changes in the data itself or an adapted partitioning across nodes. In
addition, the performance can also change significantly according to the visualization
parameter settings. For instance, visualization usually is rather sensitive to sampling
density in object and image space as well as the camera setup, i.e., the perspective
and distance to the rendered data set [5].

Estimating performance beforehand, e.g., by means of predictive modeling, has
various advantages. For example, general knowledge about the computational cost
of visualizing a data set of a particular size with a specific algorithm can be used for
infrastructure planning [22]. Furthermore, knowing the cost of an upcoming frame
at runtime can be used for parameter tuning (e.g., trading quality for responsive-
ness) or load balancing [4]. The former application scenario is referred to as offline
performance prediction and the latter scenario is referred to as online or real-time
prediction.

Due to the conceptual differences in requirements for these two scenarios, different
performance models are required. Those differences include which changes need to
be predicted, the required input data, and restrictions regarding the prediction run
time of the model. An online model typically has a strict budget with respect to
execution time, e.g., a few milliseconds if you consider an interactive application
with more that 25 frames per second. For offline performance prediction, longer
execution times are typically acceptable.

5.1 Real-Time Performance Prediction

Real-time performance prediction can be used as a basis to dynamically steer render-
ing quality or perform load balancing during runtime of an interactive application [3,
4]. Using volume raycasting as an example, the impact of rendering parameters
on execution times of upcoming frames can be predicted on the fly, by using only
local information. For this, a prediction model can be used that is based on a kernel
recursive least squares filter [6].

This model not only features a minimal computational footprint to make the
approach viable for real-time application, but also allows for online learning, basi-
cally improving the prediction accuracy with each additional frame. The core of the
recursive least squared filter is an optimization aimed at recursively finding coeffi-
cients that minimize a weighted linear least squares cost function. In this case the
solution is updated every frame. An extension using the kernel method with radial
basis functions allows for regression analysis on non-linear data. The minimization
regarding a weight w is formulated in Eq.1:

176 S. Frey et al.

Fig. 12 Execution times per frame (solid curves) and load distribution ratios (stacked shading),
on three different GPUs, for volume rendering a CT scan. The different GPUs are encoded by
color, one example frame of the rendered chameleon data set is depicted on the left. The data was
recorded during an interactive sequence of changes in camera configuration (viewing angle, zoom)
and transfer function. This image is adapted from our previous work [4]

min
w

(
n∑

i

λn−i (yi − XT
i × w)2

)

(1)

Here, (Xi , yi) denotes a pair of training points, where Xi is a feature vector and yi the
target scalar value. λ acts as a “forgetting factor” and is used to give exponentially
less weight to older samples. The target value to predict is the cost of a single
sample along the ray during volume raycasting. The feature vector contains different
performance-influencing values available during rendering. This includes viewing
angles, the size of a splatted voxel, the step size along the rays, and sampling depth
estimation. For the latter, the depth of all rays before they terminate, due to either
early ray termination or empty space skipping, has to be estimated. Every feature
used in the prediction approach influences caching and execution behavior at the
graphics hardware level, and thus the overall execution performance.

The predicted cost per sample combined with depth estimation, the number of
rays, and the sampling distance along the rays can directly be used to calculate the
execution time of the upcoming frame. The frame time predictions can be used for
two purposes. First, to dynamically steer the rendering quality to achieve interactive
frame rates. This is implemented by adjusting the sampling rate of the raycasting in
image space as well as in object space. Second, the information of the predicted run
time is used to perform load balancing across several devices. Here, the rendering
task is dynamically distributed evenly across multiple available graphics cards based
on a per-device prediction of the rendering time. This can be especially useful not
only for dealing with dynamically varying loads but also for systems equipped with
heterogeneous rendering hardware.

Figure12 shows a graph of recorded frame execution timeswhen using the volume
renderer and the prediction model to optimize load balancing. Depicted is a sequence
of frames of volume rendering of a CT scan of a chameleon and one exemplary frame
of the sequence. The frame sequence consists of user interactions, i.e., camera con-
figuration changes such as rotation and zoom, as well as modifications to the transfer
function. The volume raycasting is performed on three GPUs with different compu-
tational capabilities, encoded by color in the graph. Based on the real-time prediction

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 177

of the rendering times per GPU, the load across the graphics cards is dynamically
balanced. That means, the frame times per GPU (solid lines) stay comparably equal
so that single GPUs neither stall overall rendering times because of slow perfor-
mance, nor do GPUs idle for a longer period because of particularly fast execution.
The work distribution is continually adjusted based on the rendering capabilities of
the specific GPU with regard to the assigned chunk of the image.

5.2 Offline Performance Prediction

A second application scenario in this context is the static performance prediction in
high performance computing environments to support rendering hardware acquisi-
tion [22]. Here, a neural network-based approach is used to predict the performance
of a distributed GPU-based volume renderer. Using timing measurements of a sin-
gle cluster and individual GPUs, the performance gain of upgrading or extending a
cluster’s graphics hardware can be predicted. Using the model, a performance pre-
diction of upgrading the whole cluster but keeping the network configuration is also
possible.

Formally, the main objective of the approach is to predict the total render time of
a frame Tcluster based on cluster size C , data set D, the node’s hardware H , image
resolution I , and view parameters V :

(C, D, H, I, V) → Tcluster. (2)

For the neural network to make accurate predictions, training has to be done with a
large amount of data to keep the model general and avoid a possible bias. However,
different GPU clusters are rare and exchanging all GPUs of a cluster is unfeasible.
Therefore, the initial model has to be split into two levels aligned with the two
phases of an object-space distributed volume renderer: local rendering (resulting in
local render time Tlocal) and compositing. Equation2 can be divided accordingly:

(D, H, I, V) → Tlocal, (3)

(I,C, Tlocal) → Tcluster. (4)

In Eq.3, data set D, hardware H , image resolution I , and view parameters V define
a local render time Tlocal. Equation4 models the compositing phase, mapping cluster
size C , image resolution I , and local render time Tlocal to the final cluster frame time
Tcluster. The advantage of this reformulation is that Eq.4 does not contain information
about the rendering hardware used. This allows for emulation of different rendering
times on single nodes by stalling local execution time Tlocal, effectively generating
more measurement data on a single cluster. This data is used to train the neural
network that predicts Eq. 4. This model eventually captures performance character-
istics of hardware for compositing, network, and topology. This means that using

178 S. Frey et al.

Fig. 13 Evaluation of the performance prediction model in the cluster upgrade scenario: training
is done using data in single GPUmode, predicted is performance of a dual GPU cluster. This image
is adapted from our previous work [22]

this model enables meaningful predictions for a cluster on the basis of local render
time measurements from one node equipped with the target hardware.

The neural network contains an input layer for the input features I,C, Tlocal and
Tcluster. Further, the experimentally determined inner structure for the network con-
tains two hidden layers, consisting of 16 and eight neurons respectively. As activation
function, the rectified linear unit (ReLU) is chosen for faster training.

The model is evaluated using two different scenarios. In the first scenario, the
impact on volume rendering performance of a GPU upgrade in a cluster is predicted.
For this, a 33 node cluster consisting of nodes equipped with two Intel Xeon E5620
CPUs, 24 GB RAM, two NVIDIA GeForce GTX 480 GPUs and DDR InfiniBand is
used. The upgrade is emulated by deactivating one of the GPUs per node and only
using data from single GPU mode for training. Testing the renderer in dual GPU

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 179

Fig. 14 Evaluation of the performance prediction model to predict the performance of a different
cluster. Training is done using data from one cluster, predicted is the performance of a different
cluster with a similar network configuration. This image is adapted from our previous work [22]

mode enables a comparison between prediction and actual performance. Figure13
shows the results for two different configurations. As can be seen, the model is able
to accurately predict performance for different cluster sizes (R2 score of 0.95).

In the second scenario, an investigation on how accurately the model can predict
rendering performance across multiple clusters is carried out. Training is performed
on the 33 node cluster with both single and dual GPU modes. For testing, a second
cluster consisting of 20 nodes, each equipped with two Intel Xeon E5-2640 v3 CPUs,
128GBRAM, anNVIDIAQuadroM6000 andFDR InfiniBandwas used. The results
for different configurations are depicted in Fig. 14. The model is able to performwell
in this scenario also (R2 score of 0.93). However, in this case the graphs show a small
bias (prediction of slower performance) that can be attributed to the different network
interconnects used.

180 S. Frey et al.

Overall, using the model, accurate predictions can be made for the upgrade of
GPUs within a cluster as well as for upgrading to a completely new cluster with a
comparable network configuration.

6 Conclusion

The content, quality, and performance characteristics of a visualization depend on
a variety of different parameters. Identifying the best set of parameters for a given
application can generally be considered an optimization problem. An objective func-
tion can formalize and prioritize what is desired, e.g., maximum image quality, fast
response times, even distribution of load, etc. This needs to be achieved under user-
definable constraints, for instance a given number of compute resources and a time
budget.

To make an informed decision when addressing this optimization problem, the
interdependency of parameters and the resulting outcome needs to be analyzed and
understood. Earlier in this chapter, this has been exemplified with regard to per-
formance characteristics when changing the resource allocation (Sect. 2) and evalu-
ating the impact of VDI parameters on representation quality, size, and generation
time (Sect. 3).While insights gained this way can be quite helpful in supporting man-
ual configuration, this can also be tedious for the user and it is particularly challenging
in the presence of complex interdependencies. Also, this means that adjustments can-
not be flexibly made at a high rate at run-time. To enable automatic adaption, the
measured evaluation data and gained insight can be employed to develop a model
that allows predictions. For this, substantially different approaches to modeling can
be taken, ranging from fully manual design to machine learning schemes yielding
black box models. Such models can be considered surrogates of the actual visual-
ization procedure that are much cheaper to evaluate, and with this can serve as a
basis to address the aforementioned optimization problem more directly. This has
been exemplified earlier in the context of adapting encoder settings based on a CNN
model (Sect. 4), and adjusting sampling in volume raycasting to achieve the best
quality for a given latency using kernel-based models (Sect. 5).

While striving for efficiency is generally of high relevance in scientific visual-
ization, it is particularly crucial in HPC environments where small improvements,
multiplied by the number of allocated compute nodes, have a big impact (espe-
cially considering the significant cost of compute time on HPC resources). It is even
more important for in situ visualization, as the visualization can potentially have
a detrimental impact on simulation performance, either by drawing on resources
(cf. discussion in Sect. 2) or stalling computation when shipping data in transit or
otherwise copying/serializing it (cf. loose coupling scheme in Sect. 2).

However, assessing characteristics and choosing parameters accordingly is also
particularly difficult in the case of in situ visualization for various reasons. Systems
are quite complex, with a variety of integrated frameworks and codes; increasingly,
there are heterogeneous parallel processing hardware architectures such as CPUs

Parameter Adaptation In Situ: Design Impacts and Trade-Offs 181

and GPUs as well as different configurations of memory layers, storage, and inter-
connects. In particular, the coupling of data generation and visualization makes the
whole system significantly more complex. Also, in the in situ visualization context,
computational time is not the only performance metric of interest. Other important
factors include, but are not limited to, memory usage, the volume of data transfers,
and power consumption.

In conclusion, performance prediction and respective adaption can play an impor-
tant role in automatically optimizing system performance and avoiding the need for
manual adjustments. Such an approach is flexible and can adapt to changing situ-
ations, making it particularly promising for the interplay of advanced visualization
techniques with long-running simulations of complex processes. At the same time,
it is a challenging direction for future work. The involved complexity as outlined
above means that, for in situ visualization scenarios, implementing dynamic adapta-
tion schemes is particularly difficult. To address this, modular modeling and adapta-
tion approaches targeting specific parts of the overall system could prove useful for
handling the complexity of the full system as part of a divide-and-conquer approach.

Acknowledgements This work is partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2075
(SimTech)—390740016 and as part of Project A02 of SFB/Transregio 161 (project number
251654672). It was also partially funded by the German Bundesministerium für Bildung und
Forschung (BMBF) as part of project “TaLPas” (Task-based Load Balancing and Auto-tuning
in Particle Simulations). We would like to thank Intel® Corporation for additional support via
the Intel® Graphics and Visualization Institutes of XeLLENCE program (CG #35512501). The
authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas
at Austin for providing HPC resources that have contributed to the research results reported within
this chapter. Additionally, the authors would like to thank the ls1 Mardyn development team for
their support and Matthias Heinen for providing the simulation configurations.

References

1. Blom, D.S., Ertl, T., Fernandes, O., Frey, S., Klimach, H., Krupp, V., Mehl, M., Roller, S., Ster-
nel, D.C., Uekermann, B., Winter, T., Van Zuijlen, A.H.: Partitioned fluid-structure-acoustics
interaction on distributed data. In: Springer, editor, Software for Exascale Computing—
SPPEXA 2013–2015, vol. 113, pp. 267–291 (2016)

2. Bosse, S., Maniry, D., Wiegand, Samek, W.: A deep neural network for image quality assess-
ment. In: IEEE International Conference on Image Processing, pp. 3773–3777 (2016)

3. Bruder,V., Frey, S., Ertl, T.: Real-time performance prediction and tuning for interactive volume
raycasting. In: SIGGRAPH ASIA 2016 Symposium on Visualization, New York, NY, USA,
pp. 7:1–7:8. ACM (2016)

4. Bruder, V., Frey, S., Ertl, T.: Prediction-based load balancing and resolution tuning for inter-
active volume raycasting. Vis. Inf. (2017)

5. Bruder, V., Müller, C., Frey, S., Ertl, T.: On evaluating runtime performance of interactive
visualizations. IEEE Trans. Vis. Comput. Graph. 1–1 (2019)

6. Engel, Y., Mannor, S., Meir, R.: The kernel recursive least-squares algorithm. IEEE Trans.
Signal Process. 52(8), 2275–2285 (2004)

182 S. Frey et al.

7. Fernandes, O., Blom, D.S., Frey, S., Van Zuijlen, S.H., Bijl, H., Ertl, T.: On in-situ visualization
for strongly coupled partitioned fluid-structure interaction. In: VI International Conference on
Computational Methods for Coupled Problems in Science and Engineering (2015)

8. Fernandes, O., Frey, S., Sadlo, F., Ertl, T.: Space-time volumetric depth images for in-situ
visualization. In: IEEE Symposium on Large Data Analysis and Visualization, pp. 59–65
(2014)

9. Frey, S., Ertl, T.: Auto-tuning intermediate representations for in situ visualization. In: 2016
New York Scientific Data Summit (NYSDS), pp. 1–10 (2016)

10. Frey, S., Sadlo, F., Ertl, T.: Explorable volumetric depth images from raycasting. In: Conference
on Graphics, Patterns and Images, pp. 123–130 (2013)

11. Frieß, F., Landwehr, M., Bruder, V., Frey, S., Ertl, T.: Adaptive encoder settings for interactive
remote visualisation on high-resolution displays. In: Symposium on Large Data Analysis and
Visualization (LDAV) (2018)

12. Gralka, P., Becher, M., Braun, M., Frieß, F., Müller, C., Rau, T., Schatz, K., Schulz, C., Krone,
M., Reina, G., Ertl, T.:MegaMol—Acomprehensive prototyping framework for visualizations.
Eur. Phys. J. Spec. Top. 227(14), 1817–1829 (2019)

13. Grottel, S., Krone, M., Müller, C., Reina, G., Ertl, T.: Megamol—a prototyping framework for
particle-based visualization. IEEE Trans. Vis. Comput. Graph. 21(2), 201–214 (2015)

14. Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image
quality assessment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
1733–1740 (2014)

15. Larsen, M., Ahrens, J., Ayachit, U., Brugger, E., Childs, H., Geveci, B., Harrison, C.: The
alpine in situ infrastructure: Ascending from the ashes of strawman. In: Proceedings of the
In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization, ISAV’17, pp.
42–46, New York, NY, USA. ACM (2017)

16. Li, C., Bovik, A.C., Wu, X.: Blind image quality assessment using a general regression neural
network. IEEE Trans. Neural Netw. 22(5), 793–799 (2011)

17. Moreland, K., Kendall, W., Peterka, T., Huang, J.: An image compositing solution at scale. In:
Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, New York, NY, USA. ACM (2011)

18. Niethammer, C., Becker, S., Bernreuther,M., Buchholz,M., Eckhardt,W.,Heinecke,A.,Werth,
S., Bungartz, H.-J., Glass, C.W., Hasse, H., Vrabec, J., Horsch, M.: ls1 mardyn: the massively
parallel molecular dynamics code for large systems. J. Chem. Theory Comput. 10(10), 4455–
4464 (2014). PMID: 26588142

19. O’Leary, P., Ahrens, J., Jourdain, S., Wittenburg, S., Rogers, D.H., Petersen, M.: Cinema
image-based in situ analysis and visualization of MPAS-ocean simulations. Parallel Comput.
55, 43–48 (2016)

20. Rau, T., Gralka, P., Fernandes, O., Reina, G., Frey, S., Ertl, T.: The impact of work distribution
on in situ visualization: a case study. In: Proceedings of theWorkshop on In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization, ISAV âǍŹ19, New York, NY, USA,
pp. 17–22. ACM (2019)

21. Rau, T., Krone, M., Reina, G., Ertl, T.: Challenges and opportunities using software-defined
visualization in megamol. In: Workshop on Visual Analytics, Information Visualization and
Scientific Visualization (WVIS) in the 30th Conference on Graphics, Patterns and Images
(SIBGRAPI’17) (2017)

22. Tkachev, G., Frey, S., Müller, C., Bruder, V., Ertl, T.: Prediction of distributed volume visual-
ization performance to support render hardware acquisition. In: Eurographics Symposium on
Parallel Graphics and Visualization. The Eurographics Association (2017)

23. Wald, I., Johnson, G., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther, J., Navratil, P.:
OSPRay—ACPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput.
Graph. 23(1), 931–940 (2017)

24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error
visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

Resource-Aware Optimal Scheduling of
In Situ Analysis

Preeti Malakar, Venkatram Vishwanath, Christopher Knight, Todd Munson,
and Michael E. Papka

Abstract This chapter describes methodologies to perform in situ computations at
desired intervals alongwith the simulations for different executionmodes. This needs
to be done in a way such that the simulation throughput is minimally impacted and
the analysis output is available immediately within desired intervals. We describe the
formulation of optimal resource allocation for simulation and in situ analysis com-
putations as constrained integer linear programs so that the end-to-end simulation-
analysis time is minimized. In particular, we describe the scheduling of in situ analy-
ses as a numerical optimization problem to maximize the number of online analyses
and minimize overall runtime, subject to resource constraints such as I/O bandwidth,
network bandwidth, rate of computation and available memory.We also demonstrate
the effectiveness of our approach through real application case studies on supercom-
puters.

1 Resource Requirements of In Situ Data Analysis

The in situ analyses performedwith the simulations are driven by the requirements of
the scientists. These analyses may range from collecting simple descriptive statistics
to complex principal component analysis. Thus the compute and memory require-

P. Malakar (B)
Indian Institute of Technology Kanpur, Kanpur, India
e-mail: pmalakar@iitk.ac.in

V. Vishwanath · C. Knight · T. Munson · M. E. Papka
Argonne National Laboratory, Lemont, IL, USA
e-mail: venkat@anl.gov

C. Knight
e-mail: knightc@anl.gov

T. Munson
e-mail: tmunson@anl.gov

M. E. Papka
e-mail: papka@anl.gov

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_9

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_9&domain=pdf
mailto:pmalakar@iitk.ac.in
mailto:venkat@anl.gov
mailto:knightc@anl.gov
mailto:tmunson@anl.gov
mailto:papka@anl.gov
https://doi.org/10.1007/978-3-030-81627-8_9

184 P. Malakar et al.

Fig. 1 Compute and memory requirements of different analyses of molecular dynamics simula-
tions. Left y-axis depicts compute requirements, right y-axis depicts memory requirements. This
image is reprinted from our previous work [11]

ments of the different desirable analyses may vary. An example of five different anal-
yses of the LAMMPS molecular dynamics simulation code [15] is shown in Fig. 1.
Modern simulation codes have diverse resource requirements, such as memory and
compute times. Compute-intensive simulations require more processing power and
thus may have smaller tolerance for in situ analyses, which may result in lower in
situ analyses frequencies. Memory-intensive simulations may have less available
free memory for analyses, which may impact the frequency of memory-intensive
analyses. Thus, system characteristics play a key role in determining the feasibility
of the analyses. Further, slow I/O bandwidth affects the frequency of simulation and
analyses output. Therefore, it is essential to carefully schedule the analyses based on
the requirements and the feasibility.

The desired frequency of performing an analysis depends on the type of the
analysis as well as resource constraints. For certain analyses, it may be desirable
to perform the analysis as frequently as possible. However, performing analysis
after every simulation time step is nearly infeasible due to resource constraints such
as available memory and compute time overhead due to in situ analysis. Certain
analyses may also have a desirable minimum interval between two analysis steps.
For instance, statistical analyses such as weekly averages in climate simulations have
to be performed at a certain fixed frequency. Performing multiple analyses at a high
frequency, though desirable, may not be possible due to resource constraints. Thus,
the scientists need to determine the feasibility of performing each in situ analysis
and its frequency a priori. For this, we need to consider both application resource
requirements aswell as computing resource characteristics. This is important in order
to meet the science goals within desired time limits. In this chapter, we describe
optimal scheduling of in situ analysis based on the current resource configurations
and the application characteristics and requirements.

The mode of simulation and analysis execution also dictates the feasibility. In this
chapter, we describe three different modes of in situ analysis. First we describe the

Resource-Aware Optimal Scheduling of In Situ Analysis 185

modes, their resource characteristics and the coupling between the simulation and
analysis for each mode. Next, we will present the formulation of the optimization
problem for scheduling the in situ analyses. We consider the following three modes
of in situ analysis. They differ in proximity, access and division of execution.

1. Mode 1 (Same job, tightly-coupled): The simulation and analysis processes exe-
cute on the same set of processes alternately. This is the time sharing mode (time
division).

2. Mode 2 (Same job, loosely-coupled): The simulation and the analysis processes
execute on a different set of processes simultaneously. This is categorized as space
sharing (space division).

3. Mode 3 (Different jobs, loosely-coupled): The simulation and analysis runs as
two different jobs, either on the same supercomputer or different. They share data
via some common storage.

2 Effect of System Parameters on In Situ Analysis

An in situ data analysis consists of computing certain quantities. An analysis step
occurs after a certain number of simulation time steps, denoted as analysis frequency.
This is often determined by the user empirically.Here,we consider that this frequency
is set at the beginning of the job, and does not change during the execution. However,
the analysis frequency has a large range (anywhere between 1 and the total number
of simulation time steps). Since we intend to perform as many analysis computations
in situ to maximize the insight gained from the simulations, the goal is to maximize
the number of analysis steps. However, executing in situ analysis may increase the
memory and compute requirements of the overall application. For example, the higher
analysis execution times, the lower the analysis frequency must be. This may depend
on a user-specified threshold for tolerance on compute time overhead due to in situ
analysis. In the following subsections, we will describe the methodology to achieve
this goal.

In addition to memory and execution time, there are other factors that determine
the execution sequence of simulation and analysis depending on the code. Certain
implementation designs play a key role. The analysis may output its result instanta-
neously or utilize an analysis memory buffer for further computation later followed
by output. For example, the daily average temperature in a climate simulation may
be computed every 24 simulation hours and stored as running average in the local
node memory, followed by output every 48 simulation hours. The memory required
by analysis may be pre-allocated in some applications, while some may require allo-
cation at every analysis step and hence there may be an additional time overhead.
The analysis memory may be freed after computation and output or retained. For
example, in the molecular dynamics simulation code LAMMPS [15], certain analy-
ses such as the calculation of mean square displacements of molecules require a large
pre-allocated memory for subsequent analysis as well as additional memory during

186 P. Malakar et al.

the analysis. On the other hand, the multiphysics, multiscale astrophysics simulation
code FLASH [8] allocates and deallocates memory required for analysis on-the-fly.
The coupling is also influenced by the science objectives. For instance, in certain
production runs, a scientist may require a lower execution overhead (threshold) for
the total in situ analyses’ execution time while they may set a higher threshold during
exploratory and debug runs. Additionally, the problem being simulated may require
a set of analyses to be performed at simulation time, with each analysis having dif-
ferent importance values. Application developers may select any model of analysis
coupling from these wide range of options. We carefully consider and model many
such possible scenarios for in situ analysis. We present comprehensive models based
on linear optimization for the three in situ analysis modes.

3 Optimal Scheduling for Mode 1 (Same Job,
Space-Division)

Figure2 depicts a possible interleaving of simulation and analysis time steps in
this case. The figure illustrates the time steps when simulation (S) is executed and
analysis (A) is executed. It also shows the time steps when simulation output (OS)
and analysis output (OA) are written to disk. The simulation output frequency is
decided by the user. Analysis may output to disk after some number of analysis
steps. This analysis output frequency and analysis frequency impacts the overall
end-to-end simulation time. This is because the processors are blocked for analysis
and the simulation is stalled. We have developed a model to recommend the optimal
analysis frequency and its output frequency. We will next describe a mathematical
model of these executions and our assumptions with respect to resource requirements
of simulation and analysis.

3.1 Problem Parameters

Let us assume that we are given a set of desired analyses A to be performed in situ.
Each analysis is associated with time and memory requirements. Table1 describes

Fig. 2 Analysis occurs every 4 simulation time steps. Analysis outputs every 2 analysis time steps.
Simulation outputs every 5 simulation time steps. This image is reprinted from our previous work
[12]

Resource-Aware Optimal Scheduling of In Situ Analysis 187

Table 1 Input parameters for each analysis i ∈ A and available resources

Parameter Parameter description

f ti Fixed setup time required per analysis

i ti Time required per analysis per simulation time step

cti Compute time required per analysis step

oti Output time required per output step

cth Threshold (time) per simulation step for analyses

f mi Fixed memory allocated per analysis

imi Input memory allocated per analysis per simulation step

cmi Memory allocated per analysis step

omi Memory allocated per output step

mth Maximum memory available for analyses

wi Weight (importance) of each analysis

i tvi Minimum interval between analysis steps

bw Average I/O bandwidth between simulation site and disk

the input parameters for each analysis i ∈ A. Let f t and f m refer to the fixed
initialization time and memory allocation required by an analysis at the start of
the simulation execution, a one-time cost. Let i t and im be the execution time and
memory required at every simulation time step to facilitate the analysis during the
analysis step. A simple example is temporal analysis, where i t is the time required
to copy simulation data from simulation memory to temporary analysis memory
so that data is not overwritten and facilitates temporal analysis. In such cases, this
additional overhead is incurred at each simulation step to facilitate the analysis at
the analysis step. Let ct be the time required for performing the analysis during the
analysis step, and cm be the associated memory required to facilitate this analysis.
A simple example of cm is the additional memory needed by the analysis to allocate
any intermediate memory needed for the analysis computation. Let om refer to the
output memory for the results produced by the analysis after computation and ot be
the time required to write this analysis output to the storage.

Letbw be the averagewrite bandwidth to disk from the simulation site.Application
scientists may provide an upper threshold on time allowed for in situ analyses. cth
denotes the maximum threshold on analysis time per simulation time step. Let Steps
denote the total number of simulation time steps. A common usage scenario for
in situ analysis is where the application scientist provides an upper bound on the
total overhead of performing the in situ analyses. For example, one could require a
maximum of 10% overhead on the overall simulation. Let mth refer to maximum
memory available for analyses during the entire simulation. Scientists are expected
to run multiple analyses in situ wherein the analyses will be of varying importance to
the simulation. We model this importance by assigning a weight w to each analysis;
higherweight impliesmore importance.Additionally, a large class of analyses require
a minimum interval of i tv steps between consecutive analyses steps. Examples of
such analyses include daily mean average temperature in climate simulations.

188 P. Malakar et al.

3.2 Problem Formulation

The problem is to schedule these analyses such that maximum insight is gained with
minimum overhead. We formulate this problem as a mixed-integer linear program
[14] with the objective of maximizing the following:

• the number of times |Ci | each analysis i is performed.
• the total number of different analyses, |A|.
• the total importance of analyses performed in situ. This is denoted by wi ∗ |Ci |.
The decision variables are the set of feasible in situ analysesA, the set of simulation
time steps at which analysis is performed C, and the set of simulation time steps at
which the analysis output is writtenO. The objective function of the linear program
is given as

maximize

(
|A| +

∑
i∈A

wi ∗ |Ci |
)

(1)

Next, we describe and model the two main constraints – the execution time asso-
ciated with various components of the in situ analyses and their associated memory
costs.
Time constraint: The desirable in situ analyses must complete within a stipulated
additional time such that the simulation time is not significantly increased. This addi-
tional time for all analyses should be less than the maximum allowable threshold as
specified by the scientist. This time includes the time for all additional computations
and I/O such as the initialization/setup time per analysis (f t), time required for anal-
ysis per simulation time step (i t), time required for performing analysis (ct), and
time required for writing the analysis output (ot). These times depend on the type
of analysis and its implementation, and therefore may not be present in some cases.
Time constraints are shown in Eqs. 2–3. t Analyzei, j is the cumulative time spent on
the i th in situ analysis from start of simulation to j th time step. The initialization
cost (time) is added only once at step 0 for t Analyze for each feasible analysis as
shown in Eq.3.

t Analyzei, j = t Analyzei, j−1 + i ti
+ cti (if j ∈ C) + oti (if j ∈ O)

∀i ∈ A, j ∈ {1, . . . , Steps} (2)

t Analyzei,0 = f ti ∀i ∈ A (3)∑
i∈A

t Analyzei,Steps ≤ cth · Steps (4)

i t is the cost (time) paid every simulation step. ct is the time required to perform
the analysis computation at every analysis step, and ot is paid whenever analysis
output is written to disk. ot can be substituted by omi

bw . Note that it is not required that

Resource-Aware Optimal Scheduling of In Situ Analysis 189

the time spent on performing analysis at one analysis step is less than the allowed
threshold per simulation time step, cth. However, at the end of the simulation, the
sum of the total time spent on all in situ analyses should be less than the threshold
cth · Steps. This is shown in inequality Eq.4.
Memory constraint: The analysis computations are feasible only when required
memory is available on the compute nodes. An analysis may allocate a fixed amount
of memory at the beginning of the simulation or may allocate new memory at every
simulation time step. In situ analysis may also allocate memory at every analysis step
and deallocate memory at every output step. These choices depend on the analysis
type and its implementation. The total memory required by an analysis will be the
sum of its input and output memory requirements. This sum should be less than the
available memory on the nodes. Here, we consider these different scenarios through
the constraints defined in Eqs. 5–8. mStart and mEnd are the amounts of memory
used by an analysis at the start and end of each simulation step. Equation5 shows the
equation formStart . At every step, the variable memory im may be allocated, hence
it is added tomStart along with the available memory at the end of the previous time
step j − 1. At every analysis step, cm may be additionally allocated, and hence it is
conditionally added to mStart . At every output step, analysis may allocate separate
buffer om for output. Therefore, om is also conditionally added to mStart . mEnd
is the available memory after the end of each step, which is equal to mStart at
all steps, except for output step. At the end of output step, the additional analysis
memory buffers are assumed to be freed, and reset to the initial memory allocation
f m as shown in Eq.6. Memory is constrained by mth, hence the sum of mStart for
all analyses in all time steps should be less than mth as shown in Eq.8.

mStarti, j = mEndi, j−1 + imi

+ cmi (if j ∈ C) + omi (if j ∈ O)

∀i ∈ A, j ∈ {1, . . . , Steps} (5)

mEndi, j =
{
f mi (if j ∈ O)

mStarti, j (otherwise)

∀i ∈ A, j ∈ {1, . . . , Steps} (6)

mEndi, 0 = f mi ∀i ∈ A (7)∑
i∈A

mStarti, j ≤ mth ∀ j ∈ {1, . . . , Steps} (8)

Interval constraint: The minimum interval between analysis steps i tvi provides an
upper bound for the number of analysis steps during Steps simulation times steps.
Steps
i tvi

denotes the maximum number of analysis steps for i th analysis. We keep a
running total of the number of steps in which analysis is not performed and require
this running total to exceed i tvi before an analysis can be performed. The running
total is reset after the analysis is performed.

190 P. Malakar et al.

|Ci | ≤ Steps

i tvi
∀i ∈ A (9)

Solution: The solution for C and O are obtained from the above constraints by
introducing 0–1 variables for the conditional equations. For example, in Eq.5, the
third termof the right hand expression cmi (if j ∈ C) is replaced by omi · analysisi, j .
Here, the binary variable analysisi, j is 0 when there is no analysis after the j th
simulation step and 1 when there is an analysis. Similarly, in Eq.5, the last term
omi (if j ∈ O) is replaced by omi · outputi, j where the binary (0 or 1) variable
output is 0 when there is no output after an analyses performed in step j and 1
otherwise. Hence, the count of analysis and output for each analysis inA gives the
solution to our problem. The analyses for which the counts are positive form the set
A.

4 Optimal Scheduling for Mode 2 (Same Job,
Time-Division)

The simulation and analysis processes are part of the same job in the time sharing
case. They execute on different set of nodes. The simulation processes transfer data
directly to the analysis processes, alleviating I/O cost for analysis. We assume that
each analysis process receives data from one or more simulation processes. Here,
we consider blocking sends. The simulation does not stall for the analysis, except
for data transfer. We also assume that data for all feasible analysis is transferred at
the same time. Here, the total simulation and analysis time depends on the number
of processes allocated to each, along with the transfer time, the data size, and the
transfer frequency from simulation to analysis processes. Several code changes may
be required in the simulation and analysis codes, depending on the application imple-
mentation. The simulation and analysis should set up different MPI communicators.
Thus, in order to minimize the total execution time of the simulation and analysis,
the analysis processes must be ready to receive data when the simulation processes
send. The goal is to determine the optimal transfer frequency from the simulation
to the analysis processes, without stalling the simulation and performing as many
analyses as possible within that time. First we discuss the problem parameters for
this case, followed by our mathematical formulation.

4.1 Problem Parameters

Table2 illustrates the systemand simulation parameters for this case. Thefirst column
depicts the notation for the various parameters used in the formulation. LetA be the
set of desired analyses. steps denotes the total number of simulation time steps. stime
denotes the simulation time per time step, which depends on the number of processes

Resource-Aware Optimal Scheduling of In Situ Analysis 191

Table 2 System parameters and application (simulation+analysis) parameters

Parameter Parameter description

steps Total number of simulation time steps

stime Simulation time per time step

atimei Analysis time per time step for i th analysis

impi Importance of i th analysis

executei Execution feasibility of i th analysis

n Analysis interval

x f eri Time required to transfer data for i th analysis

amemi Memory required for i th analysis

maxmem Maximum available memory in analysis processes

x f er_UB Transfer time upper bound

n_LB Analysis interval lower bound

allocated for the simulation job. m denotes the number of desired analyses for the
simulation. atimei denotes the computation time for the i th analysis, which depends
on the number of processes allocated for the analysis and the scalability of the analysis
computation. impi denotes the importance of the i th analysis. The importance of
the analysis can be taken into account when resource constraints do not permit the
execution of all the various analysis computations along with the simulation. n is
the number of simulation time steps between two consecutive analysis steps. amemi

is the required memory and x f eri is the data transfer time for the i th analysis.
This depends on the data size and the network bandwidth between the simulation
and analysis processes. The maximum available memory in the analysis processes
is denoted by maxmem. Typically analysis runs on fewer cores than simulation.
Thus the available memory in the analysis processes is limited. Also, the memory
requirement for the data transfer in the analysis cores is significantly high for large-
scale simulations. Hence it is essential to consider the memory requirements of every
analysis to determine its in situ execution feasibility.

x f er_UB and n_LB (last two rows in the table) are user-specified thresholds.
x f er_UB is the upper bound on the time to transfer data from simulation to analysis.
This is effectively a bound on the stall time of simulationwhile the data is transferred.
This can be determined by the user based on resource availability. n_LB is the lower
bound on analysis interval. This may be determined by the user based on the type of
analysis and simulation. The goal is to perform multiple analyses at the maximum
possible frequency. However, we are constrained by the total execution time and
the available memory. We have formulated this problem as a mixed integer linear
program as described next.

192 P. Malakar et al.

4.2 Problem Formulation

The two objectives are (1) to maximize the execution of the most important analy-
ses and (2) to minimize the number of simulation time steps between two analysis
steps. These objectives ensure that maximum insight from the simulation is available
quickly and we do not miss important events. We apply the weighted sum method
to find the Pareto optimal solution [6]. We construct a single-objective optimization
problem using linear scalarization. The objective function has two weighted terms
as shown in Eq.10. The decision variables are the feasibility, executei , for each
analysis and analysis interval, n. The i th analysis is executed if executei (binary
decision variable) is 1. The first term denotes the overall importance of the feasible
analyses and the second term denotes the analysis interval n multiplied by a weight
w, which can be chosen based on the subjective preference of the user. Such multi-
objective optimization problems often require human intervention to determine a
useful solution. w can be set according to the user’s preference to minimizing the
analysis interval over the number of analyses.

maximize

(∑
i∈A

impi × executei

)
− w · n (10)

The constraints related to time, memory and bounds are shown in Eqs. 11–14.
Equation11 signifies the constraint on execution time of all feasible analyses. We
assume that all the analyses are executed one after another in an analysis time step.
Thus, the time to compute all feasible analyses should be less than the time between
two analysis steps (= n × stime). This ensures that in situ analysis does not stall
simulation, and the analysis processes are done with the analyses and are ready to
receive data aftern simulation time steps. Equation12 ensures that the sumofmemory
required by all feasible analyses is less than the available memory in the analysis
processes. Equation13 specifies that the total transfer time for the feasible analyses
for steps

n times is less than the user-specified threshold x f er_UB. This bound is
useful in case of low network bandwidths and high transfer times for large data.
Finally, the recommended analysis interval n should be greater than the minimum
analysis interval (Eq.14).

∑
i∈A

atimei · executei ≤ n · stime (11)

∑
i∈A

amemi · executei ≤ maxmem (12)

∑
i∈A

x f eri · executei · steps ≤ n · x f er_UB (13)

n ≥ n_LB (14)

Resource-Aware Optimal Scheduling of In Situ Analysis 193

Table 3 Analysis and system parameters for Mode 3

Parameter Parameter description

t f reqi Number of time steps required for 1 analysis step of i th analysis

wsizei Output size for 1 analysis step of i th analysis

wtimei Write time for 1 analysis step of i th analysis

rtimei Read time for 1 analysis step of i th analysis

nai Number of times i th analysis can be performed

D Available storage space

WT _UB Upper bound on write time

AT _UB Upper bound on analysis time

4.3 Optimal Scheduling for Mode 3 (Different Jobs)

In thismodeof execution,we assume that the simulation and analysis jobs are loosely-
coupled, executing on a different set of nodes as different jobs. The simulation job
writes output to a shared storage at a specified output frequency. This storage may be
based on non-volatile memory [13], SSD or spinning disks. The amount of available
storage space and its I/O bandwidth depends on the storage medium. We assume
that there is a finite storage space to write the output. The analysis job reads the
output while the simulation is running and performs various analysis computations.
In contrast to traditional post-processing, the analysis job starts processing the output
as soon as a new time step is written by the simulation. The simulation updates
this information to a configuration file. This approach requires minimal changes to
the simulation code. The simulation is typically a more compute-intensive job and
requires a large number of processes, while the analysis requires fewer processes.
Using this approach, the simulation can continue progressing efficiently without
stalling for the analysis phase. The rate of the simulation (throughput) depends on
the number of processors used by the simulation and the time required to write
the output. The analysis job’s throughput depends on the time to read the output
and to compute its analysis. Large-scale simulations write outputs typically at an
empirically determined output frequency. However, due to storage space limitations,
large-scale simulations such as billion-atom molecular dynamics simulations and
trillion particle cosmological simulations may quickly overflow their storage limits.
Hence, an optimal output frequency needs to be determined. The goal is to perform
the most desired analyses at simulation-time as frequently as possible, constrained
to minimizing the overall runtime. Next we describe the problem parameters and
formulation.

Table2 shows some of the parameters used in this formulation. Additional param-
eters are shown in Table3. The first column shows the notation for the various param-
eters used in this formulation. We assume that one analysis computation step for an
analysis requires simulation output of t f reqi time steps. t f reqi is 1 for non-temporal
analysis. Temporal analyses such as time series analysis may require more than 1

194 P. Malakar et al.

time step to perform the analysis. wsizei denotes the size of output of 1 analysis step
for i th analysis in A. wtimei denotes the time to write the simulation output for 1
analysis time step of the i th analysis. rtimei denotes the read time for 1 analysis step
of i th analysis. nai is the frequency of i th analysis.

Large-scale simulations are capable of producing terabytes of output within a
few hours [9]. For example, a 100 million-atom molecular dynamics simulation can
generate 3 TB of data in less than 30 minutes when the output frequency is high.
Therefore the total available storage space, D, is an important factor in the formula-
tion. We also consider two user-defined parameters—WT _UB, the upper bound on
write time by the simulation, and AT _UB, the upper bound on analysis time by the
analysis. These thresholds may be decided by the user based on available compute
resources. The objective of our problem is to determine the optimal frequency and
feasibility of each analysis, given the various input parameters specified in Tables2
and 3. We formulate this as a mixed integer linear program (MILP) [4, 14] with the
objective function shown in Eq.15.

maximize

(∑
i∈A

impi × nai +
∑
i∈A

executei

)
(15)

nai ≤
(
D · impi

total_importance/wsizei
)

· executei ∀i ∈ A (16)∑
i∈A

wsizei · nai ≤ D (17)

∑
i∈A

wtimei · nai ≤ WT _UB (18)

∑
i∈A

rtimei · nai +
∑
i∈A

atimei · nai ≤ AT _UB (19)

This ensures that wemaximize the frequency and number of themost important anal-
yses. The decision variables are feasibility of an analysis, executei , and its frequency
nai . Equations16–19 show the various constraints that we have considered, related
to the total execution time and the available storage space. Equation16 specifies the
bound on the number of executions of the i th analysis. total_importance is the sum
of importance (impi) of all analyses in A. The multiplier of execute_i denotes the
available storage space for i th analysis proportional to its importance impi .

The sum of output sizes of all feasible analyses should be less than the total
available storage space to avoid storage overflow (see Eq.17). The bandwidth of
NVRAM is higher but the available space on NVRAM may be limited, whereas
the hard disk drive may have lower write bandwidth but the available space may be
higher. Therefore we consider both the total storage space as well as the time to write
to the storage. Equation18 specifies an upper bound on the write time. Equation19
specifies the analysis time constraint, which includes the time to read from storage
and analysis computation time. The threshold for this, AT _UB, can be decided
based on resource availability. We have not considered the memory constraint in

Resource-Aware Optimal Scheduling of In Situ Analysis 195

Table 4 Analyses for simulation of water and ions in LAMMPS

Analysis Description

rdf Compute hydronium-water, hydronium-hydronium, hydronium-ion (A1) and
ion-water, ion-ion (A2) RDFs averaged over all molecules

vacf Compute velocity auto-correlation function for the water-oxygen,
hydronium-oxygen, and ion atoms (A3)

msd Compute mean squared displacements averaged over all hydronium and ions
(A4)

histo histogram of atom positions and velocities (A5)

fft 1D fast fourier transform of atom positions and velocities (A6)

this mode because the number of analysis cores can be chosen based on the memory
requirement of the most memory-intensive analysis. Next, we demonstrate the utility
of the formulations through experimental results.

5 Experimental Evaluations

We evaluate using two codes—(1) the Large-scale Atomic/MolecularMassively Par-
allel Simulator (LAMMPS) classical molecular dynamics simulation code [10, 15]
and (2) the FLASH multiphysics multiscale simulation code [8]. The LAMMPS
problem investigated is a box of water molecules solvating two types of ions. Table4
lists the analyses investigated for this problem. These are representative analyses
for molecular dynamics simulation—radial distribution functions (rdf), mean square
displacements (msd) of molecules/ions, velocity auto-correlation functions (vacf),
histograms (histo) and fast fourier transforms (fft) which is a temporal analysis.
Combined, these physical observables provide key information on understanding
the structure and dynamics of liquids and materials [3]. Additionally, their respec-
tive algorithms (e.g. accumulating histograms, computing time averages, evaluating
correlation functions) are representative of those employed in the calculation of a
large class of physical observables. We ran the FLASH simulation for the Sedov
problem using three dimensions with 163 cells per block. Each block consists of 10
mesh variables and we can vary the problem size by adjusting the global number
of blocks to simulate larger domain sizes. We perform three different analyses for
FLASH—(1) vorticity, (2) L1 error norm for density and pressure and (3) L2 error
norm for x, y, z velocity variables.

The first optimization model is implemented in the GAMS [5] modeling language
and solved using theCPLEX 12.6.1 solver.We used theAMPL [7]modeling language
for the second and third formulations. This was solved using the MINLP solver
which implements branch and bound method. Maximum solve time for all problem
configurations was 0.3 s. The recommended parameters (output of the solver) is used
to run the experiments. The execution times were required by the solver as input

196 P. Malakar et al.

parameters, and were empirically determined by running a small number of time
steps on few process counts followed by interpolation [12]. Memory estimates were
obtained through application profiling (e.g. MPI timers and IBM profiler HPCT).
We show the results of experimental runs from the IBM Blue Gene/Q system, Mira,
at Argonne Leadership Computing Facility, Argonne National Laboratory [1, 2].

5.1 Results for Mode 1 (Same Job, Space-Division)

5.1.1 Efficacy of In Situ Scheduling

We demonstrate the utility of the optimization approach to allow the user to spec-
ify a threshold on the additional time allocated for in situ analyses, which is very
important while requesting for resources on a supercomputer. In Table5, we show
results for varying thresholds from 20% to 1% (column 1), specified as a percentage
of the simulation time. Columns 2–5 show the feasibilities of the analyses hydro-
nium rdf (A1), ion rdf (A2), vacf (A3) and msd (A4) during a simulation of 1000
steps within the specified time thresholds. The solver recommends that A1, A2, A3
may be performed 10 times, i.e. the minimum analysis interval is 100. Note that the
optimization model recommends fewer A4 analysis with decreasing threshold. This
is because A4 requires higher analysis execution time and output time as well as
more memory. Column 6 depicts the total execution time actually taken by the in situ
analyses based on this solution. The ratio (%) of the actual execution time for the in
situ analyses with respect to the specified threshold limit is shown in the last column.
We observe that the total in situ analyses time is always within the specified thresh-
old. Higher threshold (5–20%) allows more time and hence the solver recommends
higher number of in situ analyses. The solver does not recommend performing A4
in situ at a threshold of 1% as the execution requirements of A4 exceed the threshold
limit. Thus, the optimization model recommends optimal parameters (analyses fre-
quencies) for a given set of application and system parameters. The model accounts
for user-specified thresholds and proposes an optimal schedule for the desired in situ
analyses. We expect this to play an important role as scientists start adopting in situ
analysis.

5.1.2 Efficacy of In Situ Scheduling for Moldable Jobs

Moldable jobs are typically strong scaling jobs accommodated by job schedulers to
improve the system utilization. Figure3 shows strong scaling results on 2048–32768
Mira cores for three analyses—A1, A2 and A4 (see Table4) in the 100 million atom
LAMMPSwater+ions simulation. Figure3 is reprinted from our previous work [12].
The simulation times per time step are 4.16, 2.12, 1.08, 0.61 and 0.4 s on 2048, 4096,
8192, 16384 and 32768 cores of Mira respectively. The stacked bars illustrate the
per-analysis execution times (y-axis) in a 1000-step simulation at each core count

Resource-Aware Optimal Scheduling of In Situ Analysis 197

Table 5 Threshold (%) and analyses frequencies of 4 analyses for 100 million-atom simulation in
LAMMPS on 16384 cores of Mira

Threshold % (time in
sec)

A1 A2 A3 A4 Analyses
time (s)

% within
threshold

20 (129.35) 10 10 10 4 103.47 80

10 (64.69) 10 10 10 2 52.79 81.6

5 (32.34) 10 10 10 1 27.45 84.87

1 (6.46) 10 10 10 0 2.11 32.66

Fig. 3 Strong scaling (analyses) on 2048–32768 Mira cores in 100 million atom LAMMPS simu-
lation. This image is reprinted from our previous work [12]

on x-axis. These are based on solver recommendations. Since the simulation time
decreases with increasing core count, the allowed time for analysis decreases when
the threshold is specified as a percentage of simulation time (10% in this case).
The solver recommends a frequency of 10 for A1 and A2 in all cases, whereas the
recommended frequency of A4 decreases from 10 on 2048 cores to 1 on 32768 cores.
This is because msd (A4) does not scale well. However, A1 and A2 can be performed
at a higher frequency even at higher core counts due to their scalabilities. Thus, our
proposed optimization model effectively determines in situ analyses schedule based
on core counts.

5.1.3 Impact of the Importance of Analyses

Table6 shows the solver recommendations for three in situ analyses frequencies
in FLASH simulation—vorticity (F1), L1 error norm (F2) and L2 error norm (F3)
for two different sets of importance values. The simulation and analysis alternate
on 16384 cores of Mira. The user-specified threshold on the analyses time was 5%

198 P. Malakar et al.

Table 6 Analyses frequencies in FLASH Sedov simulation on 16384 cores of Mira for different
importance values of the analyses

Vorticity (F1) L1 error norm (F2) L2 error norm (F3)

Importance (I1) 1 1 1

Frequency 1 10 10

Importance (I2) 2 1 2

Frequency 5 0 10

of the simulation time, which was 0.87 s on an average. This implies that the user
allows a maximum execution time of 43.5 s for all the analyses during a 1000-step
simulation (870s). Importance (weight) of each analysis are shown in first and third
rows. A higher importance value implies higher priority of the analysis. F1 being
more compute intensive than F2 and F3 is recommended only once to maximize
the total number of analyses because the importance of all analyses is 1. If the user
prefers F1 and F3 over F2 and increases the weights of F1 and F3, the optimization
model solution results in a higher frequency of F1 and F3 (fourth row), based on the
user’s preference. The frequency of F3 is more than F1 because F3 consumes lesser
time and memory than F1. Thus our formulation gives immense flexibility to a user
to choose the optimal number of analyses based on their importance within resource
constraints.

5.2 Results for Mode 2 (Same Job, Time-Division)

In this section, we elaborate solutions from the linear program for second mode
of in situ analysis (Sect. 4). Table7 shows the feasibility results for 6 million atom
1000-step LAMMPS simulation on 3960 Mira nodes with 4 ranks per node (15,840
processes) and 4 OpenMP threads per process. The simulation, being more compute
intensive, is run on 15,360 processes and all the analyses are consecutively run
on 480 processes. The simulation time per time step was 0.06 s. The analyses have
distinct time andmemory characteristics (Fig. 1). Their transfer times, analysis times,
memory requirements, and importance values are input to the optimization model,
which determines the feasibilities of the analyses executions. We set the weight w of
the second objective term in Eq. 10 to 0.1 and 0.01 (column 1). w may be selected
based on the user’s preference betweenmaximizing the number of important analyses
and minimizing the interval between two successive analysis steps. The minimum
interval, n_LB was 20 (refer Sect. 4). The allowed transfer time overhead, x f er_UB,
was 1% of simulation time. The solution to the linear program are shown in columns
2–6 (Y implies executei = 1, i.e. the analysis can be feasibly executed) and the last
column (the analysis interval, n). The linear program recommends execution of all
analyses at an interval of 79when lower preference (w = 0.01) is given to the analysis

Resource-Aware Optimal Scheduling of In Situ Analysis 199

Table 7 Analyses feasibilities for 6 million-atom LAMMPS simulation on 15,840 processes on
Mira

w rdf msd msd1d msd2d vacf Interval

0.1 Y N Y Y N 27

0.01 Y Y Y Y Y 79

interval between two analysis steps. The analysis compute times for rdf, msd, msd1d,
msd2d and vacf on 480 processes are 0.49, 2.21, 0.49, 0.61, 0.91 s respectively.When
higher preference is given to minimizing analysis interval, i.e. w = 0.1, the linear
program does not recommend in situ execution of msd and vacf due to their higher
compute times. Thus our model is useful in systematically determining the analyses
feasibilities based on user’s preferences and resource parameters.

5.3 Results for Mode 3 (Different Jobs)

In this section, we present results to evaluate the usefulness of our formulation when
simulation and analysis execute as separate jobs on same/different clusters. Table8
shows the solution from our linear program when the simulation and analysis run
as separate jobs, and the data is shared via a common 240GBps GPFS filesystem
with total available storage of 4 TB. The 500 million atom molecular dynamics
simulation for 1000 time steps ran on 1024 nodes (with 4 ranks/node) of Mira. The
feasible analyses were simultaneously done on 512 nodes (4 ranks/node) of Mira
as a separate job. The importance of all analyses was assumed to be 1. The lower
bound on the analysis interval was 50 time steps. The simulation time for 1 time
step was 0.75 s. The first column of the table shows varying write time threshold
WT_UB. The second column shows varying analysis time threshold AT_UB. These
thresholds are specified as percentage of the simulation time. Columns 3–8 show the
frequency of each analysis as recommended by the solver (see Sect. 4.3). This is also
the frequency at which the simulation writes output data for each feasible analyses.
The total number of feasible analyses steps increases from 26 to 84 with increase in
the allowed time limit for output and analysis. Note that msd analysis requires higher
compute times and the temporal analysis, fft, incur higher output times. Thus these
are not recommended at lower allowed thresholds (first two rows). Our model helps
the user to determine the feasible analysis frequencies based on the thresholds (that
can be varied) and resource constraints.

We next show the results for variation in available storage space D and the time
thresholds WT_UB and AT_UB. The various analyses feasibilities of a billion atom
molecular dynamics simulation of 1000 time steps are shown in Table9. The simula-
tion ran on 1024 nodes (4 ranks/node) ofMira, where execution time for 1 simulation
time step is 1.48 s. We variedWT_UB and AT_UB from 250 to 1000s. Columns 2–7
show the recommended analysis frequency, with 0 implying that it is infeasible to

200 P. Malakar et al.

Table 8 Number of times each analysis can be performed within constraints. Analysis runs on
2048 processes and simulation runs on 4096 processes on Mira. Total number of feasible analyses
shown in the last column

WT_UB

(%)
AT_UB

(%)
vacf msd histo

position

histo

velocity

fft position fft velocity Total

#analyses

5 10 7 0 0 19 0 0 26

10 10 20 0 7 19 0 0 46

20 20 20 20 20 20 3 1 84

Table 9 Frequency of each analysis for simulation of 1 billion atoms on 4096 processes of Mira

Available
storage
(TB)

vacf msd histox histov fftx fftv Total
#analyses

WT_UB = 250s, AT_UB = 250s

1 1 1 19 20 0 0 41

10 1 1 19 20 0 0 41

WT_UB = 500s, AT_UB = 500s

1 6 6 20 20 5 1 58

10 1 18 20 20 1 1 60

WT_UB = 1000s, AT_UB = 1000s

1 6 5 20 20 20 11 82

10 20 20 20 20 13 1 94

perform within the given constraints. The histogram computations (histox and his-
tov) can be feasibly executed in all cases. This is because they have lower resource
requirements. We observe that the total number of feasible analyses (last column)
increases from 41 to 94with increase in available storage (column 1) and time thresh-
olds. In the first two rows (WT_UB = 250s, AT_UB = 250s), the total number of
analyses does not increase with increase in storage space. This implies that the main
constraints were the time thresholds. WhenWT_UB and AT_UB are 1000s, the total
number of analyses increase with increase in available storage space from 1 to 10 TB,
which implies space is also a constraint. However, note that the number of fft anal-
yses is decreased to allow execution of vacf and msd more frequently to satisfy the
maximization criteria of our optimization problem. This is because the importance
was set to 1 for all analyses.

The solver recommends that vacf and msd can be feasibly executed once and 18
times respectively (fourth row). This is one of the configurations that can be feasibly
computed within the time thresholds. There may be other feasible configurations
because there may be multiple optimal solutions as is the case typically in linear
programming. The user can attach higher importance value to an analysis if it is
more important than the rest, the user may also order the important analyses using
the importance values. For example, when the importance of vacf is increased from

Resource-Aware Optimal Scheduling of In Situ Analysis 201

1 to 2, keeping the importance of the rest at 1, the model recommends a solution of
20, 2, 20, 20, 0, 0 for the 6 analyses respectively. However, note that the objective
functionwill be optimizedwithin all the specified constraints related to time,memory
and storage. Thus, the important analyses will be recommended only if they can be
feasibly performed. The importance of an analysis depends on the application, the
science requirement and the user’s preference. Our model can effectively help the
user determine the feasible frequencies for various selections of importance values
as per the user’s choice. This demonstrates the utility of our formulation to decide
the optimal execution frequency of any number of desired analyses within resource
constraints and user requirements. This is helpful to plan the large-scale science
campaigns which are capable of producing huge volumes of data and hence it is
imperative to carefully plan the in situ analysis executions.

The readers are referred to [11, 12] for more detailed experimental evaluation of
the methodologies presented in this chapter.

6 Conclusions

In this chapter, we described our formulations for different in situ executions, namely
tightly-coupled execution of simulation and analysis as the same job (mode 1),
loosely-coupled simulation and analysis on different processes of the same job (mode
2) and loosely-coupled simulation and analysis as different jobs (mode 3).We consid-
ered the resource constraints such as availablememoryor storage, network bandwidth
and the application requirements such as minimum analysis interval and importance
of analysis. We also considered the execution times and memory to decide the fea-
sibility of execution. Additionally, we accounted for transfer time, data size, output
time, additional memory requirements and importance of analysis. There can be
multiple (may be more than 10) different analysis needed for a simulation. Rec-
ommending the optimal number of analyses and their frequencies is an NP-hard
problem. Thus it is inefficient and sub-optimal to manually solve, and a formulation
like ours proves very valuable to the scientists. While we have shown the results for
analysis computations, the same formulations can be used for in situ visualizations.

This formulation is especially practical and desirable at exascale when the speed
of producing data will overwhelm the speed of consuming data. Hence it is extremely
crucial to carefully plan the rate at which the simulation produces data, when and
where can the analysis be feasibly executedwithout stalling the simulation, orwithout
taking too long for data transfer. These questions will bemore relevant when exascale
machines arrive, due to the increasing gap between the compute rates and the network
and I/O speeds. The three modes presented in this chapter are subject to the resource
availability and constraints, the application code, and the user’s preference. Given
the comprehensive knowledge of system parameters in these three cases, our models
can help determine the feasibilities of various in situ analysis modes a priori to the
production runs.

202 P. Malakar et al.

Acknowledgements This research has been funded in part and used resources of the Argonne
Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract no. DE-AC02-06CH11357. This research
used resources of the NERSC supported by the Office of Science of the U.S. Department of Energy
under contract no. DE-AC02-05CH11231. This work was supported in part by the DOE Office of
Science, ASCR, under award numbers 57L38, 57L32, 57L11, 57K50, and 5080500.

References

1. Argonne Leadership Computing Facility’s Supercomputer Mira. http://www.alcf.anl.gov/mira
2. Computing Resources at Argonne Leadership Computing Facility. https://www.alcf.anl.gov/

computing-resources
3. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford Science Publications

(1989)
4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
5. Brooke, A., Kendrick, D., Meeraus, A.: GAMS: A User’s Guide. The Scientific Press, South

San Francisco, California (1988)
6. Multi-objective Management in Freight Logistics: Increasing Capacity, Service Level and

Safety with Optimization Algorithms. Multi-objective Optimization, pp. 11–36. Springer Lon-
don, London (2008)

7. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical
Programming, 2 edn. Duxbury Press (2003)

8. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P.,
Rosner, R., Truran, J.W., Tufo,H.: FLASH: an adaptivemesh hydrodynamics code formodeling
astrophysical thermonuclear flashes. Astrophys. J. Suppl. 131, 273–334 (2000)

9. Gerber, R., Allcock, W., Beggio, C., Campbell, S., Cherry, A., Cholia, S., Dart, E., England,
C., Fahey, T., Foertter, F., Goldstone, R., Hick, J., Karelitz, D., Kelly, K., Monroe, L., Prabhat,
Skinner, D., White, J.: DOE High Performance Computing Operational Review (HPCOR):
Enabling Data-Driven Scientific Discovery at HPC Facilities. Techmical report, Berkeley, CA
(US) (2014)

10. LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov
11. Malakar, P., Vishwanath, V., Knight, C., Munson, T., Papka, M.E.: Optimal execution of co-

analysis for large-scale molecular dynamics simulations. In: SC16: International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 702–715 (2016)

12. Malakar, P., Vishwanath, V., Munson, T., Knight, C., Hereld, M., Leyffer, S., Papka, M.E.:
Optimal scheduling of in-situ analysis for large-scale scientific simulations. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis (2015)

13. Mittal, S., Vetter, J.S.: A survey of software techniques for using non-volatile memories for
storage and main memory systems. IEEE Trans. Parallel Distrib Syst (TPDS) (2015)

14. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York,
NY (1988)

15. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
117(1), 1–19 (1995)

http://www.alcf.anl.gov/mira
https://www.alcf.anl.gov/computing-resources
https://www.alcf.anl.gov/computing-resources
http://lammps.sandia.gov

Tools

Leveraging Production Visualization
Tools In Situ

Kenneth Moreland, Andrew C. Bauer, Berk Geveci, Patrick O’Leary,
and Brad Whitlock

Abstract The visualization community has invested decades of research and devel-
opment into producing large-scale production visualization tools. Although in situ is
a paradigm shift for large-scale visualization, much of the same algorithms and oper-
ations apply regardless of whether the visualization is run post hoc or in situ. Thus,
there is a great benefit to taking the large-scale code originally designed for post hoc
use and leveraging it for use in situ. This chapter describes two in situ libraries, Lib-
sim and Catalyst, that are based on mature visualization tools, VisIt and ParaView,
respectively. Because they are based on fully-featured visualization packages, they
each provide a wealth of features. For each of these systems we outline how the
simulation and visualization software are coupled, what the runtime behavior and
communication between these components are, and how the underlying implemen-
tation works. We also provide use cases demonstrating the systems in action. Both of
these in situ libraries, as well as the underlying products they are based on, are made
freely available as open-source products. The overviews in this chapter provide a
toehold to the practical application of in situ visualization.

K. Moreland (B)
Sandia National Laboratories, Albuquerque, NM, USA
e-mail: kmorel@sandia.gov

A. C. Bauer
United States Army Corps of Engineers, Washington, DC, USA
e-mail: andrew.c.bauer9.civ@mail.mil

B. Geveci · P. O’Leary
Kitware, Inc., Clifton Park, NY, USA
e-mail: berk.geveci@kitware.com

P. O’Leary
e-mail: patrick.oleary@kitware.com

B. Whitlock
Intelligent Light, Rutherford, NJ, USA
e-mail: bjw@ilight.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_10

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_10&domain=pdf
mailto:kmorel@sandia.gov
mailto:andrew.c.bauer9.civ@mail.mil
mailto:berk.geveci@kitware.com
mailto:patrick.oleary@kitware.com
mailto:bjw@ilight.com
https://doi.org/10.1007/978-3-030-81627-8_10

206 K. Moreland et al.

1 Introduction

Although in situ is a paradigm shift for large-scale visualization, much of the same
algorithms and operations apply regardless of whether the visualization is run post
hoc or in situ. Thus, there is a great benefit to taking the large-scale code originally
designed for post hoc use and leveraging it for use in situ. Two of the most popular
post hoc visualization tools areVisIt [9] andParaView [2]. Contributing to the success
of these tools is that they each are feature rich, have proven parallel scalability, have
automated scripting capabilities, are free, and have a large development community.
To leverage these capabilities for an in situ environment, each tool now provides a
library that allows data and control to pass from another software tool. VisIt provides
a library named Libsim [32], and ParaView provides a library named Catalyst [5]. In
this chapterwe review these libraries anddemonstrate how they are used to implement
in situ visualization.

The introduction of this book lists many important features of in situ visualization
that motivate the implementation and use of Libsim and Catalyst. However, the
introduction also lists several limitations of in situ visualization that do not apply to
post hoc visualization. The upshot is that for the foreseeable future both in situ and
post hoc visualization will be important for discovery at large computing scales, and
so providing both types of visualization is important. Because Libsim and Catalyst
each derive functionality from their respective classic tools, they immediately make
available both in situ and post hoc visualization. Furthermore, visualizations made
post hoc are easily made in situ and vice versa.

We present Libsim and Catalyst together in this chapter because there are many
common features the two libraries share. The two systems share the same in situ
taxonomy described in the introduction.

Integration Type Both tools are general purpose and designed to work well with
a variety of simulation codes. However, their primary function is specific to visu-
alization and the simulation must be modified to use the library.

Proximity Libsim and Catalyst assume they are running in close proximity using
the same resources as the simulation.

Access Because Libsim and Catalyst are libraries that share the same memory
space as the simulation, it is possible for these codes to directly access the simu-
lation’s memory. However, they only access memory specifically given to them,
and the data must be in a specified format.

Division of Execution Libsim and Catalyst use time division to alternate use of
the simulation’s resources.

Operation Controls The main mode of operation is to perform visualizations
according to a predefined batch script. However, both Libsim and Catalyst are
capable of performing human-in-the-loop visualization by attaching a remote
GUI to a running simulation.

Output Type Libsim and Catalyst are each capable of producing a wide variety
of outputs. Images and image databases [3] are common outputs, but derived
geometric structures and statistics are also possible data products.

Leveraging Production Visualization Tools In Situ 207

In addition to having similar properties, Libsim andCatalyst share similarmethods to
interface with simulations, to specify what visualization operations to perform, and
to instantiate the visualization operation. Both Libsim and Catalyst are interfaced to
a simulation by writing an “adapter.” The adapter is primarily responsible for con-
verting the data representation used by the simulation to the data representation used
by Libsim and Catalyst. Both Libsim and Catalyst use VTK [25] as their underlying
implementation, and thus the adapter for either must convert the simulation’s data
format to VTK’s data format. VTK can reference data in external arrays, so often
the adaption of a simulation’s data structures to VTK’s data structures can be done
without copying the data.

Also similar among the two libraries is their runtime behavior. Each allows the
simulation to operate in its own execution loop. At the simulation’s discretion, it
periodically invokes Libsim or Catalyst with an updated collection of data. Under
typical batch operation, the library processes the data, saves whatever visualization
product is generated, and returns control back to the simulation. Both libraries also
support a mode in which a live, remote GUI is updated. In this mode control can
either be immediately returned to the simulation, or the simulation may be blocked
while a remote user interactively explores the data, which is particularly useful for
debugging the simulation.

The following two sections provide details for Libsim and Catalyst. Each section
describes how the respective library is integrated with a simulation, how the library
behaves at runtime, and the underlying implementation of the library. Because of
their similarity there is redundancy in these descriptions. For clarity,we have repeated
descriptions in each section to provide a thorough explanation of each.

2 Libsim

Libsim [33] is a library that enables in situ visualization using VisIt [9], a massively
parallel visualization and data analysis tool built on VTK. VisIt contains a rich set
of data readers, operators, and plots. These features read, filter or transform data,
and ultimately provide a visual representation of the data to allow for exploration
and analysis. Many of these features can be chained together to build pipelines that
create sophisticated visualizations. Libsim satisfies multiple use cases, shown in
Fig. 1. Libsim was conceived originally as an online visualization mechanism for
debugging simulations with the aid of the VisIt GUI. Over time, Libsim evolved to
allow both interactive and batch uses cases that allows it to generate a host of data
products without a user in the loop. Today, virtually anything that is possible in the
VisIt GUI is also possible from Libsim. This flexibility has enabled Libsim to be
integrated into diverse simulations related to fields of study such as Computational
Fluid Dynamics (CFD) or Cosmology. Libsim is highly scalable and has been run at
levels of concurrency surpassing 130K cores.

208 K. Moreland et al.

Fig. 1 Libsim supports interactive and batch use cases

2.1 Integration with Simulation

Libsim integrates with applications as a set of library calls that are usually encap-
sulated into a module called a data adaptor (depicted in Fig. 2). Libsim provides C,
FORTRAN, and Python bindings to minimize the amount of cross-language pro-
gramming that is asked of application scientists. Libsim provides a relatively low-
level application programming interface (API) so it can be integrated flexibly into
host simulations. Libsim can be used directly, or it can be used within other infras-
tructures that integrate into the simulation, such SENSEI [4] or Damaris [10]. The
typical procedure for instrumenting a simulation with Libsim involves writing a data
adaptor and proceeding through four stages: initialization, exposing data, iteration,
and adding user interface. During initialization, the simulation sets up the relevant
environment and calls functions to either prepare for interactive connections or for
batch operations. Writing the data adaptor involves exposing simulation data to Lib-
sim. The next stages are optional. Iteration involves adding code that will produce any
plots or data extracts. The final stage adds a user interface and registers simulation
functions to respond to user-interaction via the VisIt GUI.

Leveraging Production Visualization Tools In Situ 209

Fig. 2 Simulations instrumented with Libsim link to the Libsim library. The simulation supplies
data adaptor functions that expose data to VisIt pipelines. The VisIt pipelines can supply a running
VisIt instance with data or produce in situ data products

The Libsim API can be thought of as having two components: a control interface
and a data interface. The control interface is responsible for setting up environment,
event handling, and registering data callback functions. The data interface is respon-
sible for annotating simulation memory and packaging related data arrays into mesh
data structures that can be used as inputs to VisIt. Data arrays are passed by pointer,
allowing both zero-copy access to simulation data and transfer of array ownership
to VisIt so data can be freed when no longer needed. Arrays can be contiguous
in memory as in structure-of-array (SOA) data layouts or they can use combina-
tions of strides and offsets to access simulation data as in array-of-structures (AOS)
data structures. Libsim supports commonly used mesh types, including rectilinear,
curvilinear, Adaptive Mesh Refinement (AMR), and unstructured grids consisting of
finite element cell types. Libsim also can also support computational domains that
are not actually meshes such as Constructive Solid Geometry (CSG). However data
are represented, Libsim usually relies on the simulation’s data decomposition when
exposing data to VisIt, and the simulation can expose multiple meshes with their own
domain decompositions. Libsim permits simulations to add field data on the mesh
centered on the cells or on the points. Field data consists of scalars, vectors, tensors,

210 K. Moreland et al.

labels, and arrays with an arbitrary number of tuples per element. Libsim includes
additional data model concepts, allowing simulations to specify domain adjacency,
ghost data, mixed material cells, and material species.

During the instrumentation process, a decision must be made whether to support
interactive connections or batch operations via Libsim, or both. The paths differ
somewhat, though in both cases there are some upfront calls that can be made to set
up the environment for Libsim. This consists of VisIt’s environment and the parallel
environment. When interactive connections are expected, Libsim will write a small
.sim2 file containing network connection information that VisIt can use to initiate
a connection to the simulation. This file is not needed for batch-only operation. The
following code example includes the Libsim header files, sets up Libsim for parallel
operation, discovers environment settings needed to load VisIt runtime libraries, and
finally creates the .sim2 file needed for interactive connections.

#include <VisItControlInterface_V2.h>

#include <VisItDataInterface_V2.h>

/* Broadcast callbacks */

static int

bcast_int(int *value , int sender , void *cbdata)

{

return MPI_Bcast(value , 1, MPI_INT , sender , MPI_COMM_WORLD);

}

static int

bcast_string(char *str , int len , int sender , void *cbdata)

{

return MPI_Bcast(str , len , MPI_CHAR , sender , MPI_COMM_WORLD);

}

void libsim_initialize(int interactive)

{

/* Parallel setup */

int rank , size;

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

MPI_Comm_size(MPI_COMM_WORLD , &size);

VisItSetBroadcastIntFunction2(bcast_int , NULL);

VisItSetBroadcastStringFunction2(bcast_string , NULL);

VisItSetParallel(size > 1);

VisItSetParallelRank(rank);

/* Get VisIt environment */

char *env = NULL;

if(rank == 0)

env = VisItGetEnvironment ();

VisItSetupEnvironment2(env);

if(env != NULL)

free(env);

if(rank == 0 && interactive)

{

/* Write out .sim2 file that VisIt uses to connect. */

VisItInitializeSocketAndDumpSimFile(

"simulation_name"

"Comment about the simulation",

"/path/to/where/sim/was/started",

NULL , NULL , "simulation_name.sim2");

}

}

When integrating Libsim for interactive operation, calls to the control interface to
handle events must be inserted into the simulation. Libsim provides the
VisItDetectInput() function for this purpose. It listens for connections from

Leveraging Production Visualization Tools In Situ 211

a VisIt client. Simulations can build event loops using the VisItDetectInput function
or call it in a polling manner from their own event loops. When a connection request
is detected, the function will return a value indicating that other Libsim functions
must be called to complete the connection request and load the runtime library. Once
the runtime library is loaded, the developer may register data callback functions
that expose simulation data as Libsim objects. Data callback functions are called by
VisIt’s runtime library to inquire about simulationmetadata andwhen specificmeshes
and fields are needed in order to create a specific data product. Data callbacks must
be installed once the VisIt runtime library has been loaded. In a batch-style integra-
tion, this can occur immediately after the call toVisItInitializeRuntime(),
whereas for interactive use, the data callbacks must be installed after a successful call
to VisItAttemptToCompleteConnection(), which signifies a successful
connection of VisIt’s viewer application to the simulation.

static void

libsim_bcast_cmd_cb(int *command , void *cbdata)

{

MPI_Bcast(command , 1, MPI_INT , 0, MPI_COMM_WORLD);

}

static void

libsim_control_cb(

const char *cmd , const char *args , void *cbdata)

{

/* Optional: Respond to text commands */

}

/* MetaData and Mesh callbacks shown later ...*/

static void libsim_setup_callbacks(void)

{

void *cbdata = /* Point this at application data */;

VisItSetCommandCallback(libsim_cmd_cb , cbdata);

VisItSetSlaveProcessCallback2(libsim_bcast_cmd_cb , cbdata);

VisItSetGetMetaData(libsim_metadata_cb , cbdata);

VisItSetGetMesh(libsim_mesh_cb , cbdata);

}

/* Simplified example - invoked by the simulation. */

void libsim_interactive(void)

{

switch(VisItDetectInput(blocking , -1))

{

case 0:

/* No input from VisIt , return control to sim. */

break;

case 1:

/* VisIt is trying to connect to sim. */

if(VisItAttemptToCompleteConnection () == VISIT_OKAY)

libsim_setup_callbacks ();

break;

case 2:

/* VisIt wants to tell the engine something. */

if(! VisItProcessEngineCommand())

VisItDisconnect ();

break;

}

}

212 K. Moreland et al.

The deferred nature of Libsim data requests ensures that the simulation does not
have to waste time computing results that might not be used, as when computing
derived fields for visualization. Data requests are assembled inside of the VisIt run-
time libraries from its execution contract, which includes a manifest of all of the data
needed to create a visualization. Libsim’s callback function design enables the VisIt
runtime library to request data on demand from the Libsim adaptor in the simulation.
Data are requested in stages, first metdata is obtained to inform the VisIt runtime
about the meshes and variables provided by the simulation. Simulations can expose
as little data or as much data as they like. The callback functions include a user-
defined data argument that allows application data to be associated with callbacks
when they are registered in order to make it easier to access application data from
callbacks when they are invoked by the VisIt runtime library.

visit_handle

libsim_metadata_cb(void *cbdata)

{

visit_handle md = VISIT_INVALID_HANDLE ,

mmd = VISIT_INVALID_HANDLE;

/* Create metadata. */

if(VisIt_SimulationMetaData_alloc (&md) == VISIT_OKAY)

{

/* Access application data */

application_data *app = (application_data *) cbdata;

/* Set the simulation state. */

VisIt_SimulationMetaData_setMode(md,

VISIT_SIMMODE_RUNNING);

VisIt_SimulationMetaData_setCycleTime(md, app ->cycle ,

app ->time);

/* Add mesh metadata. */

if(VisIt_MeshMetaData_alloc(&mmd) == VISIT_OKAY)

{

/* Set the mesh’s properties.*/

VisIt_MeshMetaData_setName(mmd , "mesh");

VisIt_MeshMetaData_setMeshType(

mmd , VISIT_MESHTYPE_RECTILINEAR);

VisIt_MeshMetaData_setTopologicalDimension(mmd , 3);

VisIt_MeshMetaData_setSpatialDimension(mmd , 3);

VisIt_MeshMetaData_setNumDomains(

mmd , app ->total_num_domains);

VisIt_SimulationMetaData_addMesh(md, mmd);

}

/* We could expose more meshes , variables , etc. */

}

return md;

}

Once the data requirements are determined for a visualization, Libsim invokes the
registered mesh callback to obtain mesh data on a per-domain basis. Libsim is flex-
ible and can represent several mesh types. Meshes, as with most Libsim data con-
structs, are constructed from arrays. Libsim provides functions that enable simulation
data arrays to be annotated with size, type, offset, and stride information so arrays
can be passed back to VisIt to be used zero-copy as much as possible. In addition,
simulation callback functions can wrap temporary memory that VisIt is allowed to
free in case zero-copy representations are not feasible. Once the mesh callback has

Leveraging Production Visualization Tools In Situ 213

been executed, variables and then other types of data are requested, each from their
respective callback function. As a simulation adaptor grows more complete, addi-
tional callbacks can be registered to support variables, materials, AMR nesting, mesh
decompositions, etc.

visit_handle

libsim_mesh_cb(int domain , const char *name , void *cbdata)

{

visit_handle h = VISIT_INVALID_HANDLE;

if(VisIt_RectilinearMesh_alloc(&h) != VISIT_ERROR)

{

visit_handle hx, hy, hz;

/* Access application data */

application_data *app = (application_data *) cbdata;

VisIt_VariableData_alloc(&hx);

VisIt_VariableData_alloc(&hy);

VisIt_VariableData_alloc(&hz);

VisIt_VariableData_setDataD(hx, VISIT_OWNER_SIM , 1,

app ->dims[0], app ->xc);

VisIt_VariableData_setDataD(hy, VISIT_OWNER_SIM , 1,

app ->dims[1], app ->yc);

VisIt_VariableData_setDataD(hz, VISIT_OWNER_SIM , 1,

app ->dims[2], app ->zc);

VisIt_RectilinearMesh_setCoordsXYZ(h, hx, hy, hz);

}

return h;

}

With simulations able to produce an ever increasing amount of data, Libsim’s empha-
sis gradually shifted from being a tool for debugging simulation codes towards pro-
duction of data products without massive amounts of I/O. To generate data products,
the simulation can call Libsim functions to set up VisIt plots and VisIt operators and
to set their attributes before saving images or exporting processed datasets. These
operations can also be set up via a VisIt session file rather than relying on fixed sets
of plots. This allows the user to connect using VisIt interactively to set up the desired
visualization, save the configuration to a session file, and then apply the recipe in
batch to produce movies and other data products.

/* Save plots designated by a session file. */

VisItRestoreSession("setup.session");

VisItSaveWindow("a0000.png", 1024, 1024, VISIT_IMAGEFORMAT_PNG);

/* Set up some plots directly */

VisItAddPlot("Mesh", "mesh");

VisItAddPlot("Pseudocolor", "pressure");

VisItDrawPlots ();

VisItSaveWindow("a0001.png", 1048, 1024, VISIT_IMAGEFORMAT_PNG);

Libsimhas beenused increasinglywithCFDcodeswith commonneeds for producing
lightweight surface-based data extracts that can be explored using desktop visual-
ization tools. Surface data extracts often consist of slices, isosurfaces, or boundary
surfaces plus field data. Generating such extracts in situ results in a drastic reduction
in saved data and time needed compared to extracting such data from bulk volume
data during post-processing. To permit general surface extracts to be specified via
an external configuration file and simplify multiple aspects of instrumenting codes
using Libsim (particularly for parallel event loops), we have created a companion

214 K. Moreland et al.

library called “extract control”. Extract control enables multiple extract types (e.g.,
surfaces, images, or Cinema databases [3]) to be requested via a convenient YAML
file that the user can change, as opposed to direct Libsim function calls or using VisIt
session files. The extract control library also encapsulates some of the usual boiler-
plate code needed to support interactive event loops as well as batch-style Libsim
integrations, resulting in fewer lines of code.

Interactive instrumentation using Libsim allows the VisIt GUI to use the simula-
tion as a normal compute engine, making it possible to do most kinds of analysis or
data interrogation with large file-based datasets. Interactive simulations benefit from
other features provided by VisIt and Libsim. For instance, Libsim provides functions
that let the simulation provide sample data that can be aggregated into strip charts
that plot quantities of interest over time. Strip charts can display arbitrary sample
data, though time and memory measurements are commonly plotted. The VisIt GUI
displays strip charts and other simulation state in the Simulation window. The simu-
lation window also exposes controls published by the simulation. These controls take
the form of command buttons in the simplest case that, when pressed, can invoke
callback functions in the simulation adaptor. This allows the user to initiate actions
in the simulation based on button clicks in the VisIt GUI. The VisIt GUI also allows
for simulation-specific custom user interfaces. Custom user interfaces are designed
using Qt Designer and the VisIt GUI can replicate such user interfaces as exten-
sions within the Simulation window. Custom user interfaces enable the VisIt GUI to
alter simulation parameters to affect more complicated steering actions. This feature
was successfully used by Sanderson et al. [24] to create a customized simulation
dashboard for the Uintah software suite.

2.2 Runtime Behavior

Libsim accepts control from the simulation and then enters an event loop or other
batch-oriented code in the simulation adaptor to generate data extracts and imme-
diately return. When Libsim’s operations complete, control is returned to the sim-
ulation. Libsim’s runtime behavior depends on how it was used to instrument the
simulation, and its behavior varies between human-in-the-loop-blocking to nobody
in the loop, non-blocking. The behavior for interactive use cases is determined by
how the VisItDetectInput() functionwas called when instrumenting the sim-
ulation. The function can be used to implement blocking event loops or polling event
loops that are invoked periodically from the simulation. Blocking calls return when
commands have been received by the VisIt GUI and may result in additional calls
that request user input. Blocking calls may also include a timeout that enables the
function to return after a specified period of inactivity to return control to the simula-
tion. Libsim includes other functions that can be called in conjunction with the event
loop to notify VisIt’s runtime library of new simulation data so it can be used to push
data to the VisIt GUI. This feature allows the VisIt GUI to connect to the running
simulation and recompute its plots in response to updates from the simulation so the

Leveraging Production Visualization Tools In Situ 215

user can watch the simulation evolve. Connecting to the running simulation, making
plots, watching for a while, and then disconnecting is supported in simulations that
use Libsim and this cycle can be repeated over the life of the simulation.

2.3 Underlying Implementation

VisIt functionality is divided into different processes, according to function. VisIt
provides client programs such as the GUI so users can analyze data interactively.
VisIt’s viewer acts as a central hub, which manages state, communication with other
programs, and rendering data. VisIt’s compute “engine” reads data and executes any
plot and operator pipelines to generate geometry or image data for the viewer. The
compute engine can run locally or on other HPC systems via client/server mode.
Libsim enables a simulation to act as a proxy for the VisIt compute engine. Libsim is
actually separated into a front-end library and a runtime library. The front-end library
is minimal and is linked to the simulation. The front-end library provides all of the
user-facing functions such as event handling while providing an interface to runtime
library functions that are loaded later once Libsim is actually told to do work. This
separation allows simulations to link with Libsim once but dynamically change the
version of VisIt used at runtime. An important function of the front end library is to
write a sim2 file, which is a file containing networking information that the VisIt
GUI can use to initiate a socket connection to the simulation. Since VisIt relies on
the sim2 file for connecting to simulations, from a user’s point of view, accessing a
running simulation is essentially the same as accessing any file-based dataset. Upon
opening the sim2 file, VisIt initiates a socket connection to the simulation and once
a successful connection is made via the VisItDetectInput() function, the
simulation dynamically loads the Libsim runtime library and calls additional data
adaptor code to register data-producing callback functions with Libsim.

The Libsim runtime library incorporates parts of the VisIt engine and viewer so it
can manage plots and execute visualization pipelines to deliver VisIt functionality.
Whenplots are created,VisIt instantiates a visualizationpipeline consistingof various
data analysis filters. The pipeline uses a contract mechanism to build a list of data that
is needed to produce the desired visualization. The list of data in the contract is used
to request simulation data via a specialized database plug-in. Libsim’s database plug-
in invokes callback functions from the simulation data adaptor to obtain data rather
than reading from files. A callback function is responsible for returning different
types of data such as a mesh domain or a specific variable on that mesh domain.
Data are returned by making Libsim function calls that package simulation data into
Libsim objects. The Libsim objects ferry data from the simulation into the Libsim
database reader where they are unpacked and used to assemble VTK datasets that
VisIt can use internally in its visualization pipelines.

216 K. Moreland et al.

Fig. 3 The Evolution of Temporal Mixing Layer from Initial to Vortex Breakdown

2.4 Use Case

Libsim has been used in a variety of domains and applications. Libsim automati-
cally produces batch data extracts (such as geometry, rendered images, or Cinema
databases) at scale and lets VisIt connect to running simulations for interactive explo-
ration, monitoring, and steering. In the CFD domain, Libsim has been used to gener-
ate in situ data extracts consisting of reduced sets of geometry suitable for post hoc
data analysis of engineering datasets [11, 14]. Forsythe et al. [13] successfully used
this approach in CREATE-AV Kestrel to generate geometric extracts to accelerate
analysis of fully coupled high-fidelity simulations of a rotorcraft in a ship’s airwake.
Helicopters landing on sea-based landing platforms experience turbulent airflows
resulting from their surroundings such as the ship airwake produced from air mov-
ing around the structures on naval ships. Airwakes produces nonlinear aerodynamic
effects that must be taken into account in order to accurately simulate landing in such
a setting, as in this flight simulator coupling. Libsim was integrated into Kestrel to
produce geometric data extracts in FieldView XDB format representing 45s in 2700
time steps, taken every 5 simulation time steps. The resulting extract-based simula-
tion data are drastically smaller than a corresponding volume dataset, and the system
“rendered the animations in hours rather than the days it would have otherwise taken
[23].”

In a larger computation, Libsim was used as an in situ analysis infrastructure cou-
pled to the AVF-LESLIE [28, 29] combustion code by SENSEI. AVF-LESLIE was
configured to simulate unsteady dynamics of a temporally evolving planar mixing
layer at the interface between two fluids. This interface results in a type of fundamen-
tal flow that mimics the dynamics encountered when two fluid layers slide past one
another and is found in atmospheric and ocean fluid dynamics as well as combustion
and chemical processing. Visualizations of the flowfield in Fig. 3 show isosurfaces of
the vorticity field, at 10,000, 100,000, and 200,000 time steps where the flow evolves
from the initial flow field, vortex braids begin to form, wrap and then the flow breaks
down leading to homogeneous turbulence, respectively.

Leveraging Production Visualization Tools In Situ 217

AVF-LESLIE was statically linked to Libsim and VisIt and run on Titan at Oak
Ridge Leadership Class Computing Facility on 131,072 cores. Static linking was
selected because of an observation that Libsim’s usual deferred loading of the VisIt
runtime library incurred significant overhead when running at large scale on Titan.
A SENSEI data adaptor was created for AVF-LESLIE. It passed structured mesh
and field data from the main FORTRAN-based simulation through a C-language
compatibility layer where data pointers were used to create VTK datasets that were
passed into SENSEI. VTK datasets were exposed to Libsim inside SENSEI via an
additional data adaptor that ultimately passed data to the VisIt runtime library to
create data products. Two types of in situ computations were performed: a render-
ing workflow, and an extract-based workflow. The rendering workflow generated
1600× 1600 pixel images of a vorticity isosurface and composited partial images
into a single PNG image using tree-based compositing within VisIt’s runtime library.
The vorticity quantity was computed on demand in the SENSEI adaptor for AVF-
LESLIE. The extract workflow saved the same isosurface to FieldView XDB files,
aggregating geometry to smaller subgroups of 96 ranks to reduce file system con-
tention. A typical extract from this dataset was approximately 200 times smaller
than the full volume data, and this enabled the project to save data 20 times more
frequently while remaining still 10 times smaller than when using volume data.

Libsim continues to provide in situ capabilities for frameworks and codes that
need to run at large scale and want to leverage the capabilities in a fully-featured
visualization tool such as VisIt.

3 Catalyst

The ParaView Catalyst library is a system that addresses challenges of in situ visu-
alization and is designed to be easily integrated directly into large-scale simulation
codes. Built on and designed to interoperate with the standard visualization toolkit
VTK and scalable ParaView application, it enables simulations to perform analy-
sis intelligently, generate relevant output data, and visualize results concurrent with
a running simulation. The ability to concurrently visualize and analyze data from
simulations is synonymous with in situ processing, co-processing, co-analysis, con-
current visualization, and co-visualization. Thus ParaView Catalyst, or Catalyst, is
often referred to as a co-processing, or in situ, library for high-performance comput-
ing (HPC).

Figure4 demonstrates a typical workflow using Catalyst for in situ processing. In
this figure, we assume a simulation code is integrated with Catalyst. The end-user
initiates the workflow by creating a Python script using the ParaView application
graphical user interface (GUI), which specifies the desired output from the sim-
ulation. Next, when the simulation starts, it loads the Python script; then, during
execution, Catalyst generates synchronously (i.e. while the simulation is running)
any analysis and visualization output. Catalyst can produce images (i.e. screenshots)

218 K. Moreland et al.

Fig. 4 In situ workflow with a variety of Catalyst outputs

and image databases [3], compute statistical quantities, generate plots, and extract
derived information such as polygonal data, such as iso-surfaces, to visualize.

A variety of simulation codes have used Catalyst. A subset list of these codes
instrumented to use Catalyst include PHASTA from the University of Colorado,
Boulder [22]; MPAS-Atmosphere and MPAS-Ocean from the climate modeling
group at Los Alamos National Laboratory (LANL) and the National Center for
Atmospheric Research (NCAR) [31]; XRAGE, NPIC, and VPIC from LANL [20];
HPCMP CREATE-AVTM Helios from the U.S. Army’s CCDC AvMC Technology
Development Directorate; CTH, Albany and the Sierra simulation framework from
SandiaNational Laboratories [18]; H3D from theUniversity of California, SanDiego
(UCSD), and Code Saturne from Électricité de France (EDF) [16].

The most significant scale run to date used over 1 million MPI processes on
Argonne National Laboratory’s BlueGene/Q Mira machine [4]. The scaling studies
utilized PHASTA, a highly scalable CFD code, developed by Kenneth Jansen at the
University of Colorado, Boulder, for simulating active flow control on complex wing
design.

3.1 Integration with Simulation

In this section, we describe how developers can interface a simulation code with
the ParaView Catalyst libraries. The interface to the simulation code is called an
adaptor. Its primary function is to adapt the information in internal data structures
of the simulation code and transform these data structures into forms that Catalyst
can process. We depict this process in Fig. 5.

Leveraging Production Visualization Tools In Situ 219

Fig. 5 ParaView Catalyst interface architecture

A developer creating an adaptor needs to know the simulation code data structures,
the VTK data model, and the Catalyst application programming interface (API).

3.1.1 Simulation Codebase Footprint

Although interfacing Catalyst with a simulation code may require significant effort,
the impact on the codebase is minimal. In most situations, the simulation code only
calls three functions.

First, we must initialize Catalyst in order to place the environment in the proper
state. For codes that depend on the message-passing interface (MPI), we place this
method after the MPI_Init() call.

MPI_Init(argc , argv);

#ifdef CATALYST

CatalystInitialize(argc , argv);

#endif

Next, we call the coprocess method to check on any computations that Catalyst
may need to perform. This call needs to provide the simulation mesh and field data
structures to the adaptor as well as time and time step information. It may also
provide additional control information, but that is not required. Typically, we call
the coprocess method at the end of every time step in the simulation code after
updating the fields and possibly the mesh.

for (int timeStep =0; timeStep < numberOfTimeSteps; timeStep ++) {

// < simulation does its thing >

// < update fields and possibly mesh after timeStep >

#ifdef CATALYST

CatalystCoProcess(timeStep , time , <grid info>, <field info>);
#endif

}

Finally,wemust finalizeCatalyst state and adequately clean up. For codes that depend
on MPI, we place this method before the MPI_Finalize() call.

#ifdef CATALYST

CatalystFinalize ();

#endif

MPI_Finalize ();

In general, we colocate the initialize and the finalize methods with the
coprocess method in the adaptor and the developer implements the adaptor code
in a separate source file, which simplifies the simulation code build process.

220 K. Moreland et al.

3.1.2 Instrumentation Details

As shown in Fig. 5, the adaptor code is responsible for the interface between the
simulation code and Catalyst.

Core to the adaptor is the vtkCPProcessor class, which manages the in situ
analysis and visualization pipelines, which in turn automate the flow of data through
a series of tasks. Given

vtkCPProcessor* Processor = NULL; // static data

we can define an example initialize method, CatalystInitialize, as

void CatalystInitialize(int numScripts , char* scripts []) {

if (Processor == NULL) {

Processor = vtkCPProcessor ::New();

Processor ->Initialize ();

}

// scripts are passed in as command line arguments

for (int i=0; i<numScripts; i++) {

vtkCPPythonScriptPipeline* pipeline =

vtkCPPythonScriptPipeline::New();

pipeline ->Initialize(scripts[i]);

Processor ->AddPipeline(pipeline);

pipeline ->Delete ();

}

}

In this way, we provide pipeline scripts passed in as command-line arguments to an
instantiation of vtkCPProcessor to manage. For our example, the finalize
method,CatalystFinalize, simplydeletes the storage for anydefinedpipelines.

void CatalystFinalize () {

if (Processor) {

Processor ->Delete ();

Processor = NULL;

}

}

Besides being responsible for initializing and finalizing Catalyst, the other respon-
sibilities of the adaptor are:

• Determining whether or not to perform co-processing.
• Mapping the simulation fields and mesh to VTK data objects for co-processing.

For this example, we specify the mesh as a uniform, rectilinear grid defined by the
number of points in each direction and the uniform spacing between points. There
is only one field associated with this mesh, which is called temperature and defined
over the points (vertices or nodes) of the mesh. Thus, the coprocess method,
CatalystCoProcess, performs the following commonly required tasks:

void CatalystCoProcess(

int timeStep , double time , unsigned int numPoints[3],

unsigned int numGlobalPoints[3], double spacing[3],

double* field) {

vtkCPDataDescription* dataDescription =

Leveraging Production Visualization Tools In Situ 221

vtkCPDataDescription::New();

dataDescription ->AddInput("input");

// 1. Specify the current time and time step for Catalyst.

dataDescription ->SetTimeData(time , timeStep);

// 2. Check whether Catalyst has anything to do at this time.

if (Processor ->RequestDataDescription(dataDescription) != 0) {

// 3. Create the mapped VTK mesh.

vtkImageData* grid = vtkImageData::New();

grid ->SetExtents(

0, numPoints[0]-1, 0, numPoints[1]-1, 0, numPoints [2] -1);

// 4. Identify the VTK mesh for Catalyst to use.

dataDescription ->GetInputDescriptionByName("input")->

SetGrid(grid);

dataDescription ->GetInputDescriptionByName("input")->

SetWholeExtent (0, numGlobalPoints[0]-1,

0, numGlobalPoints[1]-1,

0, numGlobalPoints [2] -1);

grid ->Delete ();

// 5. Associate mapped VTK fields with the mapped VTK mesh.

vtkDoubleArray* array = vtkDoubleArray ::New();

array ->SetName("temperature");

array ->SetArray(field , grid ->GetNumberOfPoints(), 1);

grid ->GetPointData()->AddArray(array);

array ->Delete ();

// 6. Call CoProcess to execute pipelines.

Processor ->CoProcess(dataDescription);

}

dataDescription ->Delete ();

}

In Sect. 3.3 we’ll discuss the details of the API to help solidify the understanding of
the flow of information.

3.2 Runtime Behavior

The analysis and visualization methods can be implemented in C++ or Python and
can run in situ, in transit, or a hybrid of the two methods. Python scripts can be
crafted from scratch or using the ParaView GUI to set up prototypes and export as
Catalyst scripts interactively.

We designed Catalyst to run synchronously (tightly coupled) with the simulation
supporting in situ workflows, where we execute analysis methods and visualization
pipelines alongside the simulation, leveraging the same address space.

Catalyst can support in transit workflows using two sub-groups of a global MPI
communicator: one for simulation processes and one for analysis and visualiza-
tion processes. However, the data movement from the simulation processes is not
automatic and requires the writing of an additional communication routine during
instrumentation.

Muchmore commonly, Catalyst enables hybridworkflows using either VTK’s I/O
capabilities or by leveraging additional middleware such as ADIOS [4]. For example,
analysis methods and visualization pipelines could send intermediate results to burst
buffers, and ParaView or another application would pull data from the burst buffers
for interaction and further analysis.

222 K. Moreland et al.

Also, Catalyst can connect to a separately running ParaView Live session for
exploring results on the fly. The Live method can facilitate a Monitoring/Steering
workflow. This capability, in turn, enables subtly unique steering workflows, where
the analysis methods and visualization pipelines are modified interactively through
user feedback.

Finally, we aligned synchronous and asynchronous communication patterns
with specific Catalyst workflows. Live supports both, and communications can be
changed, as described above with hybrid workflows, utilizing third-party software.

3.3 Underlying Implementation

The core of our implementation is how the adaptor passes information back and
forth between the simulation code and Catalyst. We need to exchange three types
of information: VTK data objects, pipelines, and control information. The VTK
data objects are the information containing the input to the pipelines. The pipelines
specify what operations to perform on the data and how to output the results. The
control information specifies when each pipeline should execute, and the required
information from the VTK data objects needed to execute the pipelines properly.

Before providing the details of theAPI,wewant to describe theflowof information
and its purpose. This information affords a higher level of understanding of how the
pieces work together.

First, we initialize Catalyst, which sets up the environment and establishes the
pipelines to execute. Next, we execute the pipelines as required. Finally, we finalize
Catalyst.

The initialize and finalize steps are reasonably straightforward, but the interme-
diate step has a lot happening in the underlying implementation. Principally, the
intermediate step queries the pipelines to see if any of the pipelines require process-
ing. If not, then control returns immediately to the simulation code. This query is
nearly instantaneous, where the expectation of many calls wastes negligible com-
pute cycles. On the other hand, if one or more pipelines demand re-execution, then
the adaptor needs to update the VTK data objects representing the mesh and fields
from the simulation, and then execute the desired pipelines with Catalyst. The exe-
cution time can vary widely depending on the quantity and type of tasks. Once the
re-executing pipelines finish, then control returns to the simulation code.

The main classes of interest for the Catalyst API are vtkCPProcessor,
vtkCPPipeline, vtkCPDataDescription, vtkCPInputData
Description, and the derived classes that are specialized for Python. When Cat-
alyst is built with Python support, all of these classes are Python wrapped as well.
vtkCPProcessor is responsible for managing the pipelines. This manage-

ment includes storing them, querying them, and executing them. Note that the
AddPipeline method fundamentally adds a pipeline (vtkCPPipeline or
vtkCPPythonScriptPipeline) for execution at requested times. This class
mimics the structure of the simulation instrumentation.

Leveraging Production Visualization Tools In Situ 223

First, theInitializemethod initializes the object and sets upCatalyst. The ini-
tialization method uses either MPI_COMM_WORLD or an API suppliedMPI commu-
nicator. Note that the Initialize method can depend on
vtkMPICommunicatorOpaqueComm, defined in vtkMPI.h, and is used to
avoid directly having to include the mpi.h header file. Next, the CoProcess
method executes the proper pipelines based on information in the required argu-
ment description. When applying this method, we update and add the description to
the vtkDataObject representing the mesh and fields. We use the helper method,
RequestDataDescription, to determine, for a given description, if we desire execution
of any pipelines. For this method, the description argument should have the current
time and time step set and the identifier for available inputs. Finally, the Finalize
method releases all resources used by Catalyst. If a Catalyst Python script includes
a Finalize method, we execute this method at this point.

The vtkCPDataDescription class stores information passed between the
adaptor and the pipelines. The provided information comes from either the adaptor
for the pipeline or the pipeline for the adaptor. The adaptor needs to provide the
pipelines with the current time, the current time step, and the names for input meshes
produced by the simulation. For most use cases, the adaptor will provide a single
input mesh to Catalyst called input. Naming the inputs is needed for situations where
the adaptor provides multiple input meshes with each mesh treated independently.

The vtkCPInputDataDescription class is similar to
vtkCPDataDescription in that it passes information between the adaptor and
the pipelines. The difference is that vtkCPInputDataDescription passes
information about the meshes and fields.

Finally, there are a variety of other methods to increase the efficiency of the
adaptor. For example, to streamline data preparation for coprocessing, other methods
may inform the adaptor of the requested fields for the pipelines.

3.4 HPCMP CREATE-AVTM Helios Use Case

The U.S. Department of Defense’s High-Performance Computing Modernization
Program’s (HPCMP) Computational Research and Engineering Acquisition Tools
and Environments for Air Vehicles (CREATE-AV) project has overseen the develop-
ment of a rotorcraft simulation tool called Helios [26, 27, 34], a high-fidelity, multi-
disciplinary computational analysis platform for rotorcraft aeromechanics simula-
tions. Used by academia, government, and industry, Helios handles the aerodynamics
solutions using a dual-mesh paradigm: body-fitting meshes in the near-body region
and adaptive mesh refinement (AMR) meshes in the off-body region.

The Helios package contains tools for a near-complete workflow, except geom-
etry creation and post-processing tools. These tools include specifying rotor blade
geometry and movement, mesh assembly and partitioning, a graphical user interface
(GUI) for defining simulation input parameters, the parallel simulation environment,
and management of simulation results. The default computational fluid dynamics

224 K. Moreland et al.

(CFD) libraries include SAMCart for CFD solution in the off-body region and a
choice of using kCFD and mStrand for the near-body region. Additionally, FUN3D
and OVERFLOW can be used as plugins CFD solvers for the near-body region.

3.4.1 Specialized Workflow for Rotorcraft Analysis

Helios handles specialized complex high-fidelity simulations of coupled fluid-
structure interaction for a variety of flight conditions, including rotorcraft flying
in their turbulent wake. Likewise, the Helios development team tailored the in situ
processing.

The first Helios release that used ParaView Catalyst for in situ capabilities was
version 3, which only included streamlines, slices, and contours and required the
end-user to hand-edit Python input files. December 2019 marked the latest Helios
release, version 10. Since version 3, the developers enhanced the in situ operations
with particle paths, Cartesian extracts, taps, and derived variable calculations, defined
through Helios’s pre-processing GUI, shown in Fig. 6. Helios can utilize custom
Catalyst scripts created with the ParaView GUI, but end-users seem to prefer using
the pre-processing GUI due to the specialized nature of rotorcraft analysis.

The widely varying post-processing experience with specific tools by Helios end-
users dictated the use of data extracts for the in situ outputs. Thus, enabling the
end-user to manage their regular post-processing workflow with familiar tools.

3.4.2 Specialized Catalyst Edition

ParaView is a large software project with a variety of functionalities not required for
the batch in situ processing done with Helios. Since Helios does not generate in situ
images, all rendering components can be excluded from the Helios specific Catalyst
in situ library. In addition, we can remove most data readers and writers except the
readers for in situ restart and the writers for extracts (no requirement for input/output
libraries like HDF5 or NetCDF). Customizing ParaView Catalyst specific to Helios
provides the following benefits:

• Reduction in the number of source code files and associated compile time.
• Decrease in the number of third-party library dependencies and simplifying the
build and install process.

• Reduction in the Catalyst library size and faster shared library load times due to
smaller library size and a smaller number of linked libraries [7].

Version 10 of Helios uses a specialized Catalyst edition based off of the ParaView
5.6 release that includes Python wrapping.1 Table1 shows the memory load for three
different Helios shared library build configurations: without Catalyst, with Catalyst

1 This ParaView edition is available at https://github.com/acbauer/
ParaViewParticleTrackingCatalystEdition.

https://github.com/acbauer/ParaViewParticleTrackingCatalystEdition
https://github.com/acbauer/ParaViewParticleTrackingCatalystEdition

Leveraging Production Visualization Tools In Situ 225

Fig. 6 Example set up of the in situ panel of Helios’s pre-processing GUI

226 K. Moreland et al.

Table 1 Helios memory reporting on node 1 on a Cray XC40/50

In Situ build type Memory usage (MB)

None 24,450

Standard ParaView Catalyst 29,798

Helios Catalyst Edition 26,958

Fig. 7 In situ slice and surface extract showing the Helios near-body grids (green) and off-body
grids (grey)

5.6, and the specialized Catalyst edition. The in situ extracts for these comparison
runs were the internal surface and slice. The simulation runs used the Department of
Defense’s Onyx HPC machine at the Engineer Research and Development Center,
which is a Cray XC40/50 with the memory reported from the first node by Helios’s
memory reporting routines.

3.4.3 Combination of Bespoke and VTK Functionality

Helios uses a dual-grid paradigmwhere an AMR grid is used sufficiently far from the
rotorcraft body and a curve-fitting grid around the rotorcraft body, as shown in Fig. 7.
Depending on the setup, the end-user may select different solvers on the near-body
grid and over the computational domain.

For example, kCFD could be used to compute the CFD solution on the grid for
the rotorcraft fuselage, OVERFLOW could be used to compute the CFD solution
for the rotor blades, and SAMCart could be used to compute the CFD solution over
the off-body AMR grid. The rotor blade grids rotate, and their intersection with the
other grids will change as the simulation proceeds. Thus, the grid overlap needs to
be computed dynamically along with the blanking on the overlapping portion of the
grids.

Leveraging Production Visualization Tools In Situ 227

Fig. 8 In situ particle path and surface extract outputs for Higher-harmonic control Aeroacoustics
Rotor Test II case. Images used with permission from Andrew Bauer courtesy of Kitware Source
Quarterly Magazine

PUNDIT is a library that computes the overlap and blanking while transferring
fields between grids. One of the Helios in situ outputs is an interpolated result onto a
Cartesian grid where PUNDIT performs the interpolation computation. The Python-
wrapped PUNDIT seamlessly operates within VTK’s Python wrapping to interface
with both Numpy and the VTKwriters to output the desired information for a variety
of post-processing tools. This combination of bespoke Helios and VTK functionality
provides a convenient way to implement essential in situ functionality.

3.4.4 Temporal Analysis

Traditionally, modifying an in situ temporal analysis with an associated post-
processing tool to work in situ has been difficult principally due to the pipeline
architecture employed by these visualization tools. ParaView has a separate in situ
particle path filter that works around this limitation. This filter is responsible for
caching the dataset from previous time steps to relieve the visualization pipeline of
this obligation. Additionally, it supports a simulation restarting the in situ particle
path computation by reading specified particle locations from a file. The in situ parti-
cle path computation must behave the same regardless of whether the simulation was
restarted or continuously computed from the initial conditions. Figure8 demonstrates
this functionality for the popular Higher-harmonic control Aeroacoustics Rotor Test
II (HART-II) test case that maintains a good validation database.

Besides in situ particle paths, Helios supports temporal averaging of the interpo-
lated output onto the Cartesian grid. The reason for implementing this functionality
in a bespoke manner was the simplicity in computing the temporal average natively
within Helios. As with the previous bespoke solution, it supports simulation restart
using VTK writers and readers to dump out and read back in, respectively, restart
information.

3.4.5 Zero-Copy Issues

For the in situ particle path filter to update the particle path location at a time step, it
requires the full solution at both the current and previous time steps. This requirement

228 K. Moreland et al.

prevents the adaptor from using a zero-copy of the simulation data arrays on the full
dataset since the CFD solvers are not caching their meshes or fields for previous time
steps. Also, because Helios uses multiple CFD solvers in a single CFD simulation,
each of these CFD solvers will have a different non-dimensionalization scheme and
store fields in the solver specific non-dimensionalized form.

Also, the Helios in situ output is always in the SAMCart, or off-body CFD solver,
non-dimensionalized form. Thus, all near-body CFD fields require conversion to this
non-dimensionalization form. This conversion prevents using zero-copying of the
near-body fields, even without requesting in situ particle path output. In the future,
after ParaView 5.6, the vtkScaledSOADataArrayTemplate class2 will be
used to alleviate this limitation.

3.4.6 Common Output Benefit

There are multiple reasons that the Helios tools and workflow support multiple CFD
solvers for the near-body grids. A primary reason is the validation by comparing
the results of different CFD solvers for the same simulation case. Comparing results
through full data dumps in each CFD solver’s native format is a complex and bur-
densome task. With in situ data extracts, both the near-body and off-body grids use a
common data format, and all of the fields are in a consistent non-dimensionalization
scheme, regardless of which near-bodyCFD solver used, enabling easy comparisons.

4 Conclusion

Libsim and Catalyst provide extensive tools for performing in situ visualization.
They are likely the most feature-rich in situ libraries available to date.

That said, other similar in situ libraries exist. Lighter weight scripting libraries
like Mayavi [8, 21] and yt [30] have been leveraged to perform in situ visualization.
Other libraries like Ascent [15] are being designed from the ground up with in situ
in mind. In contrast, some simulation frameworks, such as SCIRun [19], incorporate
their own visualization functionality that can be used in situ.

Directly using the Libsim or Catalyst library requires what is often referred to as
a “closely coupled” or “on-node proximity” in which the library is linked with the
data producing program. However, they can be used with a general interface layer
such as SENSEI [4] or Damaris/Viz [10] to decouple the in situ library from the data
production. I/O libraries such as ADIOS [1, 17] can similarly be used for decoupling.

See Bauer, et al. [6] for a broader literature review of current in situ tools.
We have seen in this chapter that Libsim and Catalyst share many features and

design decisions.When they initially started, each had their own focus. Libsim got its
early start as an interactive simulation debugging tool, but as file I/O became a major

2 https://vtk.org/doc/nightly/html/classvtkScaledSOADataArrayTemplate.html.

https://vtk.org/doc/nightly/html/classvtkScaledSOADataArrayTemplate.html

Leveraging Production Visualization Tools In Situ 229

bottleneck on HPC, Libsim’s main mode shifted to batch processing. Conversely,
Catalyst got its start as a batch coprocessing library [12], but as use grew, interactive
capabilities were added. Today, the functionality of the two tools overlap. The major
difference is in the post-processing tool that each best interfaces with (VisIt versus
ParaView), and simulation teams would do well to integrate the in situ library that
works best with the other visualization tools used by the team.

Acknowledgements This research was supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. This chapter describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the chapter do not necessarily represent the
views of the U.S. Department of Energy or the United States Government. SAND 2020-8456 B.

Material presented in this chapter is a product of the CREATE (Computational Research and
Engineering for Acquisition Tools and Environments) element of the U.S. Department of Defense
HPC Modernization Program Office (HPCMO). Detailed input from the CREATE-AVTM Helios
development team was provided in order to properly customize the in situ workflow for rotorcraft
analysis. Mark Potsdam of the U.S. Army’s CCDC AvMC Technology Development Directorate
was the main technical point of contact for Army SBIRs and has contributed significantly to the
vision of Catalyst.

References

1. Abbasi, H., Lofstead, J., Zheng, F., Schwan, K., Wolf, M., Klasky, S.: Extending I/O through
high performance data services. In: IEEE International Conference on Cluster Computing and
Workshops (2009). https://doi.org/10.1109/CLUSTR.2009.5289167

2. Ahrens, J., Geveci, B., Law, C.: ParaView: An end-user tool for large data visualization. In:
Visualization Handbook. Elesvier (2005). ISBN 978-0123875822

3. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., Petersen, M.: An image-based
approach to extreme scale in situ visualization and analysis. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage andAnalysis, pp. 424–434
(2014). https://doi.org/10.1109/SC.2014.40

4. Ayachit, U., Bauer, A., Duque, E.P.N., Eisenhauer, G., Ferrier, N., Gu, J., Jansen, K.E., Lor-
ing, B., Lukić, Z., Menon, S., Morozov, D., O’Leary, P., Ranjan, R., Rasquin, M., Stone, C.P.,
Vishwanath, V., Weber, G.H., Whitlock, B., Wolf, M., Wu, K.J., Bethel, E.W.: Performance
analysis, design considerations, and applications of extreme-scale in situ infrastructures. In:
SC ’16: Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (2016). https://doi.org/10.1109/SC.2016.78

5. Ayachit, U., Bauer, A., Geveci, B., O’Leary, P.,Moreland, K., Fabian, N.,Mauldin, J.: Paraview
catalyst: Enabling in situ data analysis and visualization. In: Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV 2015),
pp. 25–29 (2015). https://doi.org/10.1145/2828612.2828624

6. Bauer, A.C., Abbasi, H., Ahrens, J., Childs, H., Geveci, B., Klasky, S., Moreland, K., O’Leary,
P., Vishwanath,V.,Whitlock, B., Bethel, E.W.: In situmethods, infrastructures, and applications
on high performance computing platforms. Comput. Gr. Forum 35(3), 577–597 (2016). https://
doi.org/10.1111/cgf.12930

https://doi.org/10.1109/CLUSTR.2009.5289167
https://doi.org/10.1109/SC.2014.40
https://doi.org/10.1109/SC.2016.78
https://doi.org/10.1145/2828612.2828624
https://doi.org/10.1111/cgf.12930
https://doi.org/10.1111/cgf.12930

230 K. Moreland et al.

7. Boeckel, B., Ayachit, U.: Why is paraview using all that memory? (2014) https://blog.kitware.
com/why-is-paraview-using-all-that-memory/

8. Buffat, M., Cadiou, A., Penven, L.L., Pera, C.: In situ analysis and visualization of massively
parallel computations. Int. J. High Perform. Comput. Appl. 31(1), 83–90 (2017). https://doi.
org/10.1177/1094342015597081

9. Childs, H.R., Brugger, E., Whitlock, B.J., Meredith, J.S., Ahern, S., Biagas, K., Miller, M.C.,
Weber, G.H., Harrison, C., Pugmire, D., Fogal, T., Garth, C., Sanderson, A., Bethel, E.W.,
Durant,M.,Camp,D., Favre, J.M.,Rubel,O.,Navratil, P.:VisIt:An end-user tool for visualizing
and analyzing very large data. In: High Performance Visualization: Enabling Extreme-Scale
Scientific Insight, pp. 357–368. Chapman and Hall (2012)

10. Dorier, M., Sisneros, R., Peterka, T., Antoniu, G., Semeraro, D.: Damaris/Viz: a nonintrusive,
adaptable and user-friendlyin situ visualization framework. In: IEEE Symposium on Large-
Scale Data Analysis and Visualization (LDAV) (2013). https://doi.org/10.1109/LDAV.2013.
6675160

11. Duque, E.P., Whitlock, B.J., Stone, C.P.: The impact of in situ data processing and analytics
upon weak scaling of CFD solvers and workflows. In: ParCFD (2015)

12. Fabian, N., Moreland, K., Thompson, D., Bauer, A.C., Marion, P., Geveci, B., Rasquin, M.,
Jansen, K.E.: The ParaView coprocessing library: A scalable, general purpose in situ visual-
ization library. In: Proceedings of the IEEE Symposium on Large-Scale Data Analysis and
Visualization, pp. 89–96 (2011). https://doi.org/10.1109/LDAV.2011.6092322

13. Forsythe, J.R., Lynch, E., Polsky, S., Spalart, P.: Coupled flight simulator and cfd calculations
of ship airwake using kestrel. In: 53rd AIAA Aerospace Sciences Meeting (2015). https://doi.
org/10.2514/6.2015-0556

14. Kirby, A., Yang, Z., Mavriplis, D., Duque, E., Whitlock, B.: Visualization and data analytics
challenges of large-scale high-fidelity numerical simulations of wind energy applications. In:
2018 AIAA Aerospace Sciences Meeting (2018). https://doi.org/10.2514/6.2018-1171

15. Larsen, M., Ahrens, J., Ayachit, U., Brugger, E., Childs, H., Geveci, B., Harrison, C.: The
ALPINE in situ infrastructure: Ascending from the ashes of strawman. In: Proceedings of the
In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization (ISAV ’17), pp.
42–46 (2017). https://doi.org/10.1145/3144769.3144778

16. Lorendeau, B., Fournier, Y., Ribes, A.: In-situ visualization in fluid mechanics using cata-
lyst: A case study for Code Saturne. In: IEEE Symposium on Large-Scale Data Analysis and
Visualization (LDAV) (2013). https://doi.org/10.1109/LDAV.2013.6675158

17. Moreland, K., Oldfield, R., Marion, P., Jourdain, S., Podhorszki, N., Vishwanath, V., Fabian,
N., Docan, C., Parashar, M., Hereld, M., Papka, M.E., Klasky, S.: Examples of in transit
visualization. In: Petascale Data Analytics: Challenges and Opportunities (PDAC-11) (2011)

18. Oldfield, R.A., Moreland, K., Fabian, N., Rogers, D.: Evaluation of methods to integrate anal-
ysis into a large-scale shock physics code. In: Proceedings of the 28th ACM international
Conference on Supercomputing (ICS ’14), pp. 83–92 (2014). https://doi.org/10.1145/2597652.
2597668

19. Parker, S.G., Johnson, C.R.: SCIRun: A scientific programming environment for computational
steering. In: Proceedings ACM/IEEE Conference on Supercomputing (1995)

20. Patchett, J., Ahrens, J., Nouanesengsy, B., Fasel, P., Oleary, P., Sewell, C., Woodring, J.,
Mitchell, C., Lo, L.T., Myers, K., Wendelberger, J., Canada, C., Daniels, M., Abhold, H.,
Rockefeller, G.: LANL CSSE L2: Case study of in situ data analysis in asc integrated codes.
Technical Report LA-UR-13-26599, Los Alamos National Laboratory (2013)

21. Ramachandran, P., Varoquaux, G.: Mayavi: 3D visualization of scientific data. Comput. Sci.
Eng. 13(2), 40–51 (2011). https://doi.org/10.1109/MCSE.2011.35

22. Rasquin, M., Smith, C., Chitale, K., Seol, E.S., Matthews, B.A., Martin, J.L., Sahni, O., Loy,
R.M., Shephard,M.S., Jansen, K.E.: Scalable implicit flow solver for realistic wing simulations
with flow control. Comput. Sci. Eng. 16, 13–21 (2014). https://doi.org/10.1109/MCSE.2014.
75

23. Rintala, R.: In situ XDB Workflow Allows Coupling of CFD to Flight Simulator for
Ship Airwake/Helicopter Interaction (2015). http://www.ilight.com/en/news/in-situ-

https://blog.kitware.com/why-is-paraview-using-all-that-memory/
https://blog.kitware.com/why-is-paraview-using-all-that-memory/
https://doi.org/10.1177/1094342015597081
https://doi.org/10.1177/1094342015597081
https://doi.org/10.1109/LDAV.2013.6675160
https://doi.org/10.1109/LDAV.2013.6675160
https://doi.org/10.1109/LDAV.2011.6092322
https://doi.org/10.2514/6.2015-0556
https://doi.org/10.2514/6.2015-0556
https://doi.org/10.2514/6.2018-1171
https://doi.org/10.1145/3144769.3144778
https://doi.org/10.1109/LDAV.2013.6675158
https://doi.org/10.1145/2597652.2597668
https://doi.org/10.1145/2597652.2597668
https://doi.org/10.1109/MCSE.2011.35
https://doi.org/10.1109/MCSE.2014.75
https://doi.org/10.1109/MCSE.2014.75
http://www.ilight.com/en/news/in-situ-xdb-workflow-allows-coupling-of-cfd-to-flight-simulator-for-ship-airwake-helicopter-interaction

Leveraging Production Visualization Tools In Situ 231

xdb-workflow-allows-coupling-of-cfd-to-flight-simulator-for-ship-airwake-helicopter-
interaction (Accessed January 15, 2020)

24. Sanderson, A., Humphrey, A., Schmidt, J., Sisneros, R.: Coupling the uintah framework and
the visit toolkit for parallel in situ data analysis and visualization and computational steering.
In: Weiland, M., Alam, S., Shalf, J., Yokota, R. (eds.) High Performance Computing - ISC
High Performance 2018 International Workshops, Revised Selected Papers, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), pp. 201–214. Springer (2018). https://doi.org/10.1007/978-3-030-
02465-9_14

25. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object Oriented
Approach to 3D Graphics, fourth edn. Kitware Inc. (2004). ISBN 1-930934-19-X

26. Sitaraman, J., Potsdam, M., Wissink, A., Jayaraman, B., Datta, A., Mavriplis, D., Saberi, H.:
Rotor loads prediction using helios: a multisolver framework for rotorcraft aeromechanics
analysis. J. Aircr. 50(2), 478–492 (2013). https://doi.org/10.2514/1.C031897

27. Sitaraman, J., Wissink, A., Sankaran, V., Jayaraman, B., Datta, A., Yang, Z., Mavriplis, D.,
Saberi, H., Potsdam, M., O’Brien, D., Cheng, R., Hariharan, N., Strawn, R.: Application of
the helios computational platform to rotorcraft flowfields. In: 48th AIAA Aerospace Sciences
Meeting Including the NewHorizons Forum and Aerospace Exposition (2010). https://doi.org/
10.2514/6.2010-1230

28. Smith, T.M., Menon, S.: The structure of premixed flame in a spatially evolving turbulent flow.
Combust. Sci. Technol. 119 (1996)

29. Stone, C.P., Menon, S.: Open loop control of combustion instabilities in a model gas turbine
combustor. J. Turbul. 4 (2003)

30. Turk, M.J., Smith, B.D., Oishi, J.S., Skory, S., Skillman, S.W., Abel, T., Norman, M.L.: yt: a
multi-code analysis toolkit for astrophysical simulation data. Astrophys. J. Suppl. Ser. 192(9)
(2011). https://doi.org/10.1088/0067-0049/192/1/9

31. Turuncoglu, U.U.: Towards in-situ visualization integrated earth system models: RegESM 1.1
regional modelling system. Geoscientific Model Development Discussions (2018). https://doi.
org/10.5194/gmd-2018-179

32. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully
featured visualization system. In: Eurographics Symposium on Parallel Graphics and Visual-
ization (2011). https://doi.org/10.2312/EGPGV/EGPGV11/101-109

33. Whitlock, B.J., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully
featured visualization system. In: Proceedings of the 11th Eurographics conference on Parallel
Graphics and Visualization, pp. 101–109. Eurographics Association (2011). https://doi.org/10.
2312/EGPGV/EGPGV11/101-109

34. Wissink, A.M., Potsdam, M., Sankaran, V., Sitaraman, J., Mavriplis, D.: A dual-mesh unstruc-
tured adaptive cartesian computational fluid dynamics approach for hover prediction. J. Am.
Helicopter Soc. 61(1), 1–19 (2016). https://doi.org/10.4050/JAHS.61.012004

http://www.ilight.com/en/news/in-situ-xdb-workflow-allows-coupling-of-cfd-to-flight-simulator-for-ship-airwake-helicopter-interaction
http://www.ilight.com/en/news/in-situ-xdb-workflow-allows-coupling-of-cfd-to-flight-simulator-for-ship-airwake-helicopter-interaction
https://doi.org/10.1007/978-3-030-02465-9_14
https://doi.org/10.1007/978-3-030-02465-9_14
https://doi.org/10.2514/1.C031897
https://doi.org/10.2514/6.2010-1230
https://doi.org/10.2514/6.2010-1230
https://doi.org/10.1088/0067-0049/192/1/9
https://doi.org/10.5194/gmd-2018-179
https://doi.org/10.5194/gmd-2018-179
https://doi.org/10.2312/EGPGV/EGPGV11/101-109
https://doi.org/10.2312/EGPGV/EGPGV11/101-109
https://doi.org/10.2312/EGPGV/EGPGV11/101-109
https://doi.org/10.4050/JAHS.61.012004

The Adaptable IO System (ADIOS)

David Pugmire, Norbert Podhorszki, Scott Klasky, Matthew Wolf,
James Kress, Mark Kim, Nicholas Thompson, Jeremy Logan, Ruonan Wang,
Kshitij Mehta, Eric Suchyta, William Godoy, Jong Choi, George Ostrouchov,
Lipeng Wan, Jieyang Chen, Berk Geveci Chuck Atkins, Caitlin Ross,
Greg Eisenhauer, Junmin Gu, John Wu, Axel Huebl, and Seiji Tsutsumi

Abstract TheAdaptable I/OSystem (ADIOS) provides a publish/subscribe abstrac-
tion for data access and storage. The framework provides various engines for produc-
ing and consuming data through different mediums (storage, memory, network) for
various application scenarios. ADIOS engines exist to write/read files on a storage
system, to couple independent simulations together or to stream data from a simu-
lation to analysis and visualization tools via the computer’s network infrastructure,
and to stream experimental/observational data from the producer to data processors
via the wide-area-network. Both lossy and lossless compression are supported by
ADIOS to provide for seamless exchange of data between producer and consumer.
In this work we provide a description for the ADIOS framework and the abstractions
provided. We demonstrate the capabilities of the ADIOS framework using a number
of examples, including strong coupling of simulation codes, in situ visualization run-
ning on a separate computing cluster, and streaming of experimental data between
Asia and the United States.

D. Pugmire (B) · N. Podhorszki · S. Klasky · M. Wolf · J. Kress ·M. Kim · N. Thompson ·
J. Logan · R. Wang · K. Mehta · E. Suchyta ·W. Godoy · J. Choi · G. Ostrouchov · L. Wan ·
J. Chen
Oak Ridge National Laboratory, Oak Ridge, TN, USA
e-mail: pugmire@ornl.gov

B. G. C. Atkins · C. Ross
Kitware, Inc., Clifton Park, NY, USA

G. Eisenhauer
Georgia Institute of Technology, Atlanta, GA, USA

J. Gu · J. Wu · A. Huebl
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

S. Tsutsumi
Japan Aerospace Exploration Agency, Tokyo, Japan

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_11

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_11&domain=pdf
mailto:pugmire@ornl.gov
https://doi.org/10.1007/978-3-030-81627-8_11

234 D. Pugmire et al.

1 Introduction

The Adaptable I/O System (ADIOS) was designed with the observation that applica-
tions almost universally read and write files from storage, and that this can be used as
an abstraction for access to data [13]. ADIOS is a middleware layer that sits between
the application and the computing system to manage the movement of data. This
middleware layer makes it possible for an application to write data to a target that is
determined at runtime. One possible target is traditional file storage. Other targets are
able to support in situ processingmethods, and include a memory buffer on the nodes
where the application is running, or over the network to a memory buffer on another
set of resources. Applications (e.g., visualization and analysis codes) can read data
from any of the file or in situ targets. A schematic showing examples of these use
cases in given in Fig. 1. The advantage of this design is that the sharing and move-
ment of data is decoupled from the producer and the consumer, and can be modified
at runtime as needed. This advantage addresses several of the challenges described
in the Background chapter. Workflow execution is made easier when data producers
and consumers can be connected together without modifying the source codes. Soft-
ware complexity is reduced because the issues related to data access across evolving
systems are provided by the middleware layer. Better resilience is possible because
the producer and consumer need not run together in the same memory space.

In terms of the taxonomy described in the Background chapter, ADIOS can be
classified in the followingways. Integration type: Apart from the usage of theADIOS
API for I/O, no additional instrumentation is needed by the application. Proximity:
The visualization can run on the same or different computing resources. Access:
The visualization can directly access memory in the simulation, or it can be copied
to a memory buffer on the same or on different computing resources. Division of
Execution: Synchronous or asynchronous are both possible, providing support for
both time and space division. Operation Controls: Human in the loop is possible
using both synchronous (blocking) or asynchronous (non-blocking) modes.

Fig. 1 Examples of ADIOS usage. In this example, the producer can write data to disk, to a
visualization process sharing the same resource as the simulation, to a separate set of nodes, or
across the network to a remote computing center

The Adaptable IO System (ADIOS) 235

TheADIOS framework designwas based on the goal to provide an I/O abstraction
for parallel and distributed applications that expresses what data is produced for
output andwhen that data is ready for output, orwhat data an applicationwants to read
and when [16, 22, 23]. This is achieved in ADIOS through the use of different types
of I/O engines.When an applicationwrites a set of data, it uses the appropriate engine
(e.g., File engine, In situ engine, etc.) to do the actual data movement. Similarly for a
reader, it uses the appropriate Engine to request the data that it needs. For flexibility,
the types of engine used by producer and consumer can be specified in a configuration
file for runtime selection. In this way, applications that either read or write data need
only select the appropriate output engine, and do not need to be concerned with the
implementation details needed to achieve scalable performance.

The separation of concerns, namely that an application only need to be concerned
about the data production and consumption but not how the data should be delivered,
allows for creating optimized ADIOS engines that all can work with the same appli-
cation code. Using the ADIOS interface makes application I/O scalable, a primary
goal of the ADIOS framework, which is designed to work well on the largest super-
computers. ADIOS regularly runs on the largest supercomputers in the world for
applications that consume and produce multiple petabytes of data during the course
of a simulation run.

In this chapter we describe details of the ADIOS framework and how it can
be used for in situ visualization. In Sect. 2, we describe the I/O abstractions used
by ADIOS and how applications and visualization codes can use them. Section2.1
provides a description of the engines provided by ADIOS and how they handle the
movement of data. Advanced features in ADIOS are described in Sect. 2.2, followed
by a discussion on the relative strengths of each engine and coding examples in
Sects. 2.3 and 2.4. In Sect. 3 we describe the use of ADIOS for in situ visualization
with application partners, followed by some concluding remarks in Sect. 4.

2 ADIOS I/O Abstraction

A parallel application that produces data uses ADIOS to define variables (n-
dimensional distributed arrays of a particular type) and attributes (labels associated
with individual variables or the entire output data set). It also specifies when the
data is available for output. The output is organized around output Steps, instead of
individual variables. A Step includes all the variables and attributes that are to be sent
to the target at once. There is nothing in the ADIOS interface that prescribes how to
handle the data (e.g. data aggregation among the processes, targeting a single file or
one file per process, handling multiple readers, and handling the disappearance of
a potential reader). These belong to the IO strategy and are implemented in various
ways by different Engines. The user can control the behavior of the application by
choosing a specific engine, and parameterizing it with available options.

Similarly, a reading application only declares what data it wants to retrieve from
a source, each process of the parallel application declaring what it needs, and when

236 D. Pugmire et al.

it expects the data to be in its memory. The input is also organized around Steps, not
individual variables. The semantics of the ADIOS API ensure that a reader never
gets into an inconsistent state where portion of the data of some variables belong to
a certain step, and other portion to another step.

Analysis and visualization are typically data-hungry operations [7]. This makes
scalable access to data key. In an in situ environment, the ability to maintain clear
boundaries between simulation and analysis tasks can promote fault tolerance, inter-
operability, programmability and maintainability.

The flexibility of the data movement abstractions provided by ADIOS makes it
easy to integrate with analysis and visualization applications. The “file-like” API
provided by ADIOS allows seamless reads from disk, from memory, or streaming
over the network. Likewise, on the write side, outputs produced by analysis and
visualization applications can be written to disk, or shared with other applications
through memory or streamed over the network. The abstraction used by ADIOS
makes it easy to move data as it does something that the application is already doing,
namely, reading and writing from files.

The abstraction provides the same access to data regardless of where the data are
located, be it disk, memory or streaming. As examples, the VisIt [6] and ParaView [1]
visualization tools have support for reading data from ADIOS in this manner. Both
tools provide access to ADIOS data using a data reader plugin. The plugin reads
the ADIOS data and creates mesh-based data that can be visualized by the VisIt
and ParaView tools. An example of VisIt visualizing streaming data is described in
Sect. 3.3.

When visualization is used in an in situ environment, the ability to have clear
boundaries between the simulation and analysis and visualization, and rely on a
middleware layer for the sharing and exchange of data is valuable in a number of
ways. (1) It makes it much easier to reconfigure components in a workflow based on
the needs of the scientific campaign. (2) Fault tolerance is increased because the sim-
ulation can be separated from the visualization. (3) The mechanism for sharing data
between producer and consumer can more easily be modified, changed or replaced.

In the remainder of this section we describe ADIOS in more detail. In Sect. 2.1
and 2.2 we describe the ADIOS engines used to move data and some advanced
topics on reduction and data interpretation. In Sect. 2.3 we discuss the characteristics
of these engines and how they relate to visualization and analysis needs and costs.
Finally, in Sect. 2.4 we show some code examples of how ADIOS is used for both
data producers and data consumers.

2.1 ADIOS Engines

The mechanism in ADIOS for moving data is called an engine. An engine is tasked
with executing the I/O heavy operations associated with the movement of data.
Each engine supports a unified interface that allows data producers to put data,
and data consumers to get data. The details of moving the data between source

The Adaptable IO System (ADIOS) 237

and destination are left to particular implementation details of each engine. ADIOS
provides a number of engines, which are described below.

2.1.1 File-Based Engines

ADIOS provides two types of engines for performing parallel IO of data to disk
storage:

BPFile Engine. The BPFile engine is the default engine for storage. The output file
target is a directory, which contains both metadata and data files. The number of files
is tailored to the capability of the file system, not to the number of writers or readers,
which ensures scalable I/O performance. The steps stored in a single file target, can
be read by other applications step-by-step simultaneously. Therefore, this engine can
be used for in situ processing through the file system.

HDF5 Engine. This engine can be used to write and read HDF5 formatted files. It
uses the Parallel HDF5 library, so it provides only a compatibility layer to process
HDF5 files in an ADIOS application workflow and is only as scalable as the HDF5
library itself. Streaming access to data is not currently available, but will be available
once it is supported by HDF5.

2.1.2 Data Staging Engines

Data staging is a generic concept in ADIOS for providing concurrent access to data
to one or more consumers through memory or streamed over the network. It can map
onto both time and space division of the taxonomy from the Background chapter.
Data staging engines are typically used for doing in situ analysis and visualization
and code coupling. With staging engines, the data producer will write the data using
the ADIOS API. The data are then available to be read by the consumers using the
ADIOS API. Each staging engine has the ability to move the data in different ways,
which are described below.

Scalable Staging Transport (SST). The most versatile and flexible staging engine
uses either RDMA, TCP, UDP, or shared memory to move data from a producer (par-
allel application) to other consumers (multiple independent parallel applications).
Consumers can come and go dynamically without affecting the producer. The out-
put step is buffered in the producer’s memory, and readers pull out portions of the
buffered data with RDMA operations or communicate with a thread in the producer
to receive it via TCP. The requirement of all engines to always provide a consistent
view of a step to a reader may result in blocking the producer from progressing if
the consumer is slower than the producer. The SST writer engine aggregates meta-
data for every step, and shares it with all readers. Readers then issue remote reading
operations based on the I/O pattern in metadata. This allows the I/O pattern to vary
over time. SST also allows readers to disconnect and reconnect while writers keep

238 D. Pugmire et al.

writing. To address different application requirements, the SST buffering policy can
be configured at run-time. This includes keeping only the most recent step, buffering
a fixed window of consecutive steps, or blocking until the step is consumed. In cases
where strong coupling is required between applications, the buffer limit can be set to
1, which ensures that every step is consumed by the reader before the producer moves
to the next data step. For use cases like interactive visualization, buffering only the
latest step is useful since the user typically does not want to block the simulation
while a particular time step is explored. While SST aims to provide the flexibility for
addressing various application requirements, the fact that it manages metadata for
every single step may be overkill for uses cases where the metadata does not change
frequently, or at all.

Insitu-MPI. This engine focuses on the speed of data movement for use cases where
the metadata is constant across the workflow and a single metadata aggregation at
the first data step will suffice. After this first step, each writer and reader knows the
exact I/O pattern and direct communication is performed using asynchronous send
and receive operations using an MPI communicator. Since it uses MPI, the producer
and consumer applications must be launched within a single mpiexec command
using theMultiple ProgramMultiple Data (MPMD)mode. The engine directly sends
the application data to the consumer, hence, the producer is synchronized to the
consumer at every step to avoid modifying the data before it is received. For very
large applications with constant I/O patterns, the Insitu-MPI engine can provide CPU
savings for metadata management. However, since it must be launched in MPMD
mode under MPI, the flexibility of readers dynamically join or leave is not supported
at run-time.

Staging for Strong Coupling (SSC). The SSC engine is also designed for applica-
tions that have constant metadata over time. Similar to the Insitu-MPI engine, the
SSC engine aggregates metadata once on the first time step. The main differences
between SSC and Insitu-MPI are that SSC uses one-sided MPI communication and
that the producer output is buffered. The one sided MPI paradigm does not require
the send and receive calls to be paired. Instead, it allows direct access to remotemem-
ory of another process. The buffering of application data, on the other hand, enables
the producer to continue with the computation while the data is transferred to the
consumer. In very large scale coupling use cases this approach saves the overhead of
one side waiting for the other side to complete the send and receive pairs, and makes
it possible for applications to very quickly, and frequently exchange data.

DataMan. This engine focuses on providing good bandwidth over wide-area-
networks (WAN. It uses the publish and subscribe communication mechanism of the
ZeroMQ library and has been optimized specifically for long-distance low-latency
data movement. Unlike other staging engines, such as SSC described above, Data-
Man does not guarantee that every data step is transferred. Instead, the subscriber
is designed to read only the latest data steps, while ignoring the previous steps.
This saves the two-way communications for checking step completion, which usu-
ally means several hundred milliseconds in inter-continental data transfers. Because

The Adaptable IO System (ADIOS) 239

of this, the data transfer latency is greatly reduced and can support near-real-time
analysis better than other engines over the WAN.

2.2 Advanced Data Management Services

ADIOS has a number of internal and external supports for advanced management of
data. These include data compression, and schemas for providing additional informa-
tion about ADIOS data to help downstream processing applications, such as analysis
and visualization to properly interpret the raw data.

2.2.1 Data Compression

ADIOS supports operators as a mechanism for performing calculations on the data
before it is written by an engine. A general purpose operator, called a Callback pro-
vides the user with the ability to perform arbitrary calculations and manipulations to
the data inside the engine. Data compression is provided in ADIOS using this mech-
anism. It provides support for a number of different lossless and lossy compression
methods, which are described below.

In the classical workflow for high-performance scientific simulations, the entire
data set is written to storage after generation. This will no longer be viable at the
exascale, simply because the amount of data will swamp the filesystem. To accelerate
scientific discovery, we must prioritize information over data. It will be vital to take
advantage of a priori user information to prioritize themost useful data so that I/O can
be completed under standard HPC time constraints. (For example, on Summit [27],
jobs are limited to 24h.) One solution is data compression. ADIOS supports storing
or transporting data in compressed form to reduce the I/O cost while preserving key
information, which in turns speed up simulations or in situ data analysis and visual-
ization [5]. Enabling compression requires minimal development effort from users.
Simply specifying an operator for each variable enables ADIOS to automatically
compress or decompress at the point of data publication or subscription. Lossless
compressors such as BZip2 [25] preserve every bit of the data, but compression ratios
observed in practice areminimal. Lossy compressors such asMGARD [2–4], SZ [10,
20, 26], and ZFP [21] provide much higher compression ratios (usually more than
an order of magnitude than lossless), but information is lost. However, most lossy
compressors allow control of the loss through parameters, which can be easily set
in ADIOS. Also, as derived quantities in data are particular important for scientific
discovery, one of the compressors supported by ADIOS, MGARD, can consider
one or more relevant quantities of interest and reduce the data so as to preserve
these quantities. Furthermore, ADIOS supports the meta-compressor Blosc which
provides further lossless compressors (Zstd, Snappy, BloscLZ, LZ4HC) as well as
shuffle pre-conditioners. In GPU-centric applications, using ADIOS with Blosc’s
threaded-chunked compressor variants regularly trades unutilized CPU-cycles for
I/O speedup [15].

240 D. Pugmire et al.

2.2.2 Schemas

Schemas provide the ability to annotate the semantics of the array-based layout of
data in ADIOS. These provide the meaning of each data array, and the relationship
between groups of arrays in an ADIOS file or stream. This capability makes it easier
for tools using ADIOS to be used together in, for example, a complex scientific
workflow. Two examples of such schemas are described below.

ADIS Visualization Schema. The Adaptable Data Interface for Services (ADIS) is
a schema for describing mesh-based data that are used by visualisation tools. ADIS
uses a JavaScript Object Notation (JSON) formatted strings to describe the content of
ADIOSdata. For example, forADIOSdata arrays representingfield data on a uniform
grid, the ADIS schema will specify that there is a uniform mesh of a given size, and
the names of the arrays in the ADIOS stream for each field and the association on
the mesh (e.g., zone centered, point centered, etc.). For more complex mesh types,
like unstructured grids, ADIS specifies the names of the arrays for specifying the
relevant mesh structures (e.g., point coordinate values, cell information, etc.).

ADIS also supports the creation of data sets from ADIOS in the VTK-m [24]
format. Given a schema, and anADIOSfile/stream,ADISwill read data fromADIOS
and construct the appropriate VTK-m data object.

openPMD Schema. The Open Standard for Particle-Mesh Data Files (openPMD)
is a schema for describing mesh- and particle-based data. Its primary focus is the
exchange, archival and replicability of scientific data via aminimal set of conventions
and meta information. The schema is defined in the so-called “base standard” and
“extensions”. The former is agnostic of the data’s scientific domain and can be auto-
matically verified/parsed, visualized, scaled and dimensionally analyzed (describing
units and quantities). The base standard also provides means to document author-
ship, hardware and software environments towards reproducible research. Based on
this, standardized meta-information in openPMD schema “extensions” add further
meaning for domain-scientists, e.g. by documenting algorithms and methods that
generated a data set.

Contrary to visualization-focused and domain-specific schemas, openPMD is a
notion for scientifically self-describing data in general, providing a unified descrip-
tion for data in scientific workflows from source, over processing, analysis and visu-
alization to archival in (open) data repositories. openPMD is widely adopted in
plasma-physics, particle-accelerator physics, photon-science, among others.1

The schema can be added to data described via hierarchical, self-describing
(portable) data formats. Open implementations are available in C++, Python and
Fortran and currently range fromMPI-parallel ADIOS1, ADIOS2 and HDF5 library
backends to serial JSON files. The openPMD schema is versioned, citable and devel-
oped on GitHub. Its release is version 1.1.0 and data files using the schema are
forward-updatable via lightweight meta-data transformations [14].

1 Curated list available at https://github.com/openPMD/openPMD-projects.

https://github.com/openPMD/openPMD-projects

The Adaptable IO System (ADIOS) 241

2.3 Discussion

The number of engines available in ADIOS provides a large amount of flexibility
when selecting a configuration. Further, multiple executables can be connected using
the read/write API of an ADIOS engine to support a range of different types of work-
flows. The example workflow in Fig. 2 shows ADIOS (indicated with red arrows)
being used as the data movement mechanism for a number of tasks. It is used to
couple two simulations, in situ visualization on the HPC resource, in transit visual-
ization on a cluster in the HPC center, and transfer data over the WAN to remote site
for analysis. Additionally, data from a sensor/experiment is streamed over the WAN
for analysis that uses simulation results.

When designing a visualization workflow, the choice of engine for each compo-
nent is dependent on a number of factors. Broadly speaking these classes of visual-
ization are post hoc, in situ (time division), and in transit (space division). Post hoc
visualization is the traditional mode of visualization where the data are read from
disk. As discussed in the Background chapter, in situ visualization, while a broadly
defined term, is for simplicity, the case where the visualization and simulation use
the same set of resources. In transit visualization uses two distinct sets of resources,
one dedicated to the simulation and the other dedicated to the visualization. The
network is used to transfer data between the two sets of resources. Below, we discuss

Fig. 2 Example workflow using ADIOS for simulation coupling, in situ visualization, in transit
visualization, and streaming of both simulation and experimental data over the WAN to a remote
site for analysis

242 D. Pugmire et al.

these three modes from the ADIOS and visualization perspectives and the impact of
choices made have on visualization functionality and performance.

2.3.1 ADIOS Perspective

From an ADIOS perspective, the following three characteristics are important: (1)
data access and movement, (2) fault tolerance, and (3) programmability.

Data Access andMovement.Data access is defined as howmuch of the total spatio-
temporal data are available, as the temporal range of data that are available. Data
movement is the amount of data that must be moved from producer to consumer.

• Post hoc:Has access to all the spatio-temporal data that have been saved.However,
the data movement cost is highest, and may restrict the amount of data available.

• In situ/time division: Has the highest access and lowest movement costs for
spatio-temporal data as resources are shared with the producer. Access to multiple
temporal steps requires additional on-node resources.

• In transit/space division: Data access is configurable based on needs. The ded-
icated resource can be sized to control the amount of spatio-temporal access, as
well as temporal range. Since data movement occurs over the internal network, it
is much faster than I/O.

Fault Tolerance. Fault tolerance describes the relative robustness of the system with
respect to faults occurring in either the producer or the consumer.

• Post hoc: The consumer is independent from the data producer, so fault tolerance
is very high.

• In situ/time division: Because resources are shared, the producer and consumer
can impact each other. This includes faults, memory corruption, memory usage,
etc.

• In transit/space division: Like post hoc, the consumer is independent from the
data producer. Faults occurring on the dedicated nodeswill not impact the producer.

Programmability Programmability describes the relative ease and flexibility of con-
necting a simulation with visualization. This includes composing a workflow, con-
necting components in a workflow, and modifying the underlying data movement
mechanism. Since all three classes of visualization use the same abstraction, the
programmability is improved by simply changing the engine used.

Table1 provides a visual representation of the relative strengths of each ADIOS
engine with respect the characteristics described above. A score for each engine is
assigned based on how well the engine performs with respect to each characteris-
tic described above. A “+” signifies a favorable evaluation, “−” a less favorable
evaluation, and “0” for in between.

The Adaptable IO System (ADIOS) 243

Table 1 Characterization of each ADIOS engine

Engine type

ADIOS
characteristics

BPFile HDF5 SST Insitu-
MPI

SSC DataMan

Data access
and data
movement

Spatial Access + + 0 0 0 0

Temporal
Fidelity

− − + + + 0

Temporal
Range

+ + 0 0 0 0

Movement − − 0 0 + 0

Fault
Tolerance

+ + + + 0 +

Programability + 0 + + + +

2.3.2 Visualization Perspective

From a visualization perspective, a different set of characteristics are important (see
for example, [19]).Wediscuss the following characteristics below: (1) scalability and
resource requirements, (2) interactivity, (3) fault tolerance, and (4) programmability.

Scalability and Resource Requirements. Scalability is defined as how efficiently
the visualization task can use the allocated resources. Resource requirements is
defined as the need for additional resources beyond that of the simulation.

• Post hoc: Has the flexibility to allocate resources suitable for the required tasks,
however I/O can be slow for large data.

• In situ/time division: Since the visualization must run at the scale of the visu-
alization, the performance will depend on the operation. Communication heavy
algorithms could suffer poor performance at larger scales.

• In transit/space division: Has the flexibility to allocate resources suitable for the
required tasks. Since I/O is avoided, access to data can be much faster.

Interactivity. Interactivity is defined as the ability for a user to interact with the data,
select regions of interest, and plot the data to extract understanding.

• Post hoc: Because visualization is independent from the simulation, full interac-
tivity is possible with all data available.

• In situ/time division:Visualization has full access to all of the data that are avail-
able on the simulation resources. Due to limited available resources, the temporal
range of data could be limited. If the data are shared, the simulation could be
blocked while visualization occurs.

• In transit/spacedivision:Visualization has full access to all of the spatio-temporal
data that are moved to the dedicated resources. Because the data are not shared
with the simulation, blocking can be avoided.

244 D. Pugmire et al.

FaultTolerance.Asabove, fault tolerance refers to the robustness of the visualization
to avoid impacting the simulation.

• Post hoc: Visualization is independent from the simulation, so fault tolerance is
very high.

• In situ/time division: Because resources are shared, it is possible for the visual-
ization task to negatively impact the simulation.

• In transit/space division: Like post hoc, the visualization is independent from the
simulation. Errors occurring on the dedicated nodes will not impact the simulation.

Programmability

As above, programmability describes the ease of using visualization tools with sim-
ulation data in a variety of configurations. This includes performing visualization
tasks within a workflow, connecting analysis and visualization tasks together, and
the ability to access data from different sources. Since all three classes of visualiza-
tion use the same abstraction, the programmability is improved by simply changing
the engine used.

Table2 provides a visual representation of the relative strengths of each ADIOS
engine with respect the important visualization characteristics described above. As
above, a “+” signifies a favorable evaluation, “−” a less favorable evaluation, and
“0” for in between.

Table 2 Characterization of each ADIOS engine for visualization

Engine type

Visualization
characteristics

BPFile HDF5 SST Insitu-
MPI

SSC DataMan

Scalability Data − − + + + −
Communication + + + − − +
Resource + + − + + −

Interactivity Spatial − − 0 + + 0

Temporal − − 0 + + 0

Temporal Range + + 0 − − 0

Block Simulation + + + − − +
Fault Tolerance + + + + 0 +
Programability + 0 + + + +

The Adaptable IO System (ADIOS) 245

2.3.3 In Situ Data Placement and the Associated Performance
Implications

Placement (in-line, in-transit, hybrid methods) is an important aspect to consider
when planning for the use of in situ techniques. Performance can vary drastically
depending on what analysis operations are used, how often they are performed, and
at what scale they are performed. This performance difference is due primarily to the
scaling characteristics of the analysis algorithms in relation to that of the underlying
simulation, and can have a large effect on the overall cost of a simulation plus its
visualization and analysis components.

In a work by Kress et al. [17] they look specifically at the cost of performing
isocontours and ray tracing with parallel compositing both in-line and in-transit,
and observe large cost variations based on placement as the simulation was scaled.
Their work found that as the simulation was scaled to 16K cores, that visualization
algorithms suffered large slowdowns in-line. However, if the data was transferred
from the simulation over the network to a set of dedicated visualization nodes that
the visualization routines completed much faster. They bring up a couple of general
guidelines in that work: (1) if fastest time to solution is your goal at scale, moving the
data and performing the visualization in-transit is the best solution; (2) if the lowest
total combined cost of the simulation and visualization routines are the overall goal,
the solution becomes more complicated. In general though, as the simulation scales
if the visualization routines do not scale as well, moving the visualization routine
to a smaller in-transit allocation is the best choice. However, careful consideration
has to be given to how large of an in-transit allocation to reserve, and how often the
visualization should be performed. A follow on work [18] develops a cost model to
evaluate the use of in situ methods at scale.

2.4 Code Examples

This section contains examples using ADIOS to read and write data. The first exam-
ple, shown in Listing 1, illustrates how a simulation code would write output data
to disk using the BPFile engine. The engine type is specified in line 11.

246 D. Pugmire et al.

Listing 1 Example of simulation writing outputs to a file.
1 adios2 ::ADIOS adios(MPI_COMM_WORLD);

2 // Declare named IO process

3 adios2 ::IO io = adios.DeclareIO("output");

4
5 // Declare output type and size.

6 adios2 ::Variable <double > var =

7 io.DefineVariable <double >("var", globalDims , offset , localDims);

8
9
10 // Set engine output to BPFile

11 io.SetEngine("BPFile");

12 adios2 :: Engine engine = io.Open("output.bp", adios2 ::Mode::Write);

13
14 // Run Simulation

15 for (...)

16 {

17 double *data = Simulation ();

18
19 engine.BeginStep ();

20 engine.Put(var , data);

21 engine.EndStep ();

22 }

23 engine.Close ();

Listing 2 shows a program that reads data from the output file and performs
visualization on the data.

Listing 2 Example of a visualization program reading data from a file
1 adios2 ::ADIOS adios(MPI_COMM_WORLD);

2 adios2 ::IO io = adios.DeclareIO("input"); // Declare named IO process

3 io.SetEngine("BPFile");

4 adios2 :: Engine reader = io.Open("output.bp", adios2 ::Mode::Read);

5
6 std::vector <double > data;

7
8 while (reader.BeginStep(adios2 :: StepMode::Read) == adios2 :: StepStatus ::OK)

9 {

10 adios2 ::Variable <double > var = reader.InquireVariable <double >("var");

11 if(var)

12 reader.Get <double >(var , data);

13 reader.EndStep ();

14
15 Visualize(data);

16 }

17 engine.Close ();

To change the simulation output mode from file based to the SST in situ mode, the
only change required in Listings 1 and 2, is to change lines 11 and 3, respectively,
from

io.SetEngine("BPFile");

to

io.SetEngine("SST");

The visualization program will now read the outputs produced by the simulation
from the ADIOS stream named “output.bp”, which in this case, will be coming from

The Adaptable IO System (ADIOS) 247

the SST engine in the simulation writer process. All of the engine types support by
ADIOS can be changed in this way.

An alternative to specifying engine type in the source code is to use a configuration
file, which is parsed at runtime and specifies the engines type and IO processes to
be used. Both XML and YAML are supported as configuration file formats. the only
change required in Listings 1 and 2, is to change line 1 from

adios2::ADIOS adios(MPI_COMM_WORLD);

to

adios2::ADIOS adios(’’config.xml’’, MPI_COMM_WORLD);

This allows the underlying data movement mechanism to be changed without re-
compiling anything.

Listing 3 Configuration file, "config.xml" for examples shown in Listing 1 and 2
1
2 <!-- adios2 config file in XML format -->

3 <?xml version="1.0"?>

4 <adios -config >

5 <io name="output">

6 <!-- engine type can be set at runtime: BPFile , SST , etc. -->

7 <engine type="BPFile">

8 </engine >

9 </io>

10 <io name="input">

11 <engine type="BPFile" />

12 </io>

13 </adios -config >

Listing 4 Alternative configuration file, "config.yaml" for examples shown in Listing 1 and 2
1 ---

2 # adios2 config file in YAML format

3
4 - IO: "output"

5 Engine:

6 # engine type can be set at runtime: BPFile , SST , etc.

7 Type: "BPFile"

8
9 - IO: "input"

10 Engine:

11 Type: "BPFile"

Basic XML and YAML configuration files for ADIOS are shown in Listings 3 and 4
respectively. Changing the “type” field on line 7 from “BPFile” to “SST” will con-
figure ADIOS to use the SST engine when the executables are run.

Listing 5 illustrates how to read ADIOS data using the Python high-level API.
ADIOS provides a “pythonic” interface of an iterable container of steps using a
generic “read” function that always return a numpy array for easy integration with
the Python data analysis ecosystem. Similarly, switching between Engines is done
through a parameter in the open function or using a config file as described above.

248 D. Pugmire et al.

Listing 5 Python High-Level API Read Example
import adios2

with adios2.open("euler.bp", "r", engine_type="BPFile") as fh:

for fstep in fh:

retrieve current step

step = fstep.current_step()

inspect variables dictionary in current step

step_vars = fstep.available_variables()

for name , info in step_vars.items ():

print("variable_name: " + name)

for key , value in info.items ():

print("\t" + key + ": " + value)

print("\n")

if(step == 0):

size_in = fh_step.read("size")

read variables in current step

returning a numpy array for easy integration

with data science frameworks (e.g. pandas , scipy)

T = fstep.read("T")

3 Example Use Cases

In this section we demonstrate how the I/O abstraction and engines described above
in Sect. 2 can be used with different applications. These examples show how ADIOS
engines can be used in different ways to accomplish the in situ processing required
by a scientific campaign. The examples show how in situ can be used in both shared
and separate resource configurations, and also include an example where data was
streamed across the wide area network (WAN). In each example, we motivate the
purpose of each scientific example and howADIOSwas used to provide the solution.

3.1 Strong Coupling in a Fusion Simulation

High-Fidelity Whole Device Modeling (WDM) of Magnetically Confined Fusion
Plasmas is among the most computationally demanding and scientifically challeng-
ing simulation projects. The ten-year goal is to have a complete and comprehensive
application that will include all the important physics components required to sim-
ulate a full toroidal discharge in a tokamak fusion reactor. The main driver is based
on the strong coupling of two advanced and highly scalable gyrokinetic codes, XGC
and GENE, where the former is a particle-in-cell code optimized for the treating the
edge plasmawhile the other is a continuum code optimized for the core. Applications

The Adaptable IO System (ADIOS) 249

for additional physics are intended to be coupled in the future, e.g. ones for material
wall interactions or for high energy particles.

In the WDM workflow, the ADIOS BPFile engine is used to save check-
point/restart files, offloads variables for in situ analysis and visualization [8]. For
in-memory data exchange, the SST and Insitu-MPI engines are used for coupling of
the core and edge simulations [11]. To date, three-dimensional field information has
been shared between XGC and GENE, but a five-dimensional distribution function-
based coupling is now under development. Published results [8, 11] have all relied
on synchronous exchange, but asynchronicity will need to be explored in order to
mitigate blocking while data are not available. The ADIOS SSC engine is designed
to support the asynchronous WDM coupling workflow. ADIOS affords both perfor-
mant scalability as data sizes grow with increased dimensionality, as well as APIs
that support asynchronous operation.

3.2 Streaming Experimental Data

Fusion experiments provide critical information to validate and refine simulations
that model complex physical processes in the fusion reactor as well as to test and
validate hypotheses. Recent advances in sensors and imaging systems, such as sub-
microsecond data acquisition capabilities and extremely fast 2D/3D imaging, allow
researchers to capture very largevolumesof data at high rates formonitoring anddiag-
nostic purposes as well as post-experiment analyses. For example, JET, the world’s
largest magnetic confinement plasma physics experiment in the UK, is producing
about 60 GB of diagnostic data per pulse [12]. A 2-D spatial imaging system, called
Electron Cyclotron Emission Imaging (ECEI), in KSTAR, Korea, alone can capture
10 GB of image data per 10 s shot [29].

A system using ADIOS has been developed for KSTAR to support various data
challenges by executing remote experimental data processing workflows in fusion
science. It is one of the drivers for the development of the DataMan engine to support
science workflows execution over the wide-area network (WAN) for near-real-time
(NRT) streaming of experiment data to and from an experiment site and remote
computing resource facilities.

An example ofKSTARworkflow is shown in Fig. 3. Thisworkflow is amulti-level
workflow in that each box consists of one or more sub-workflows, each of which can
be composed with ADIOS engines. One of the main goals is to stream online fusion
experiment data from KSTAR in Korea to a computing facility in USA in order
to perform various computational intensive analyses, such as instability prediction
and disruption simulation. While our previous effort [9] focused on building remote
workflows with data indexing, we are currently working on composing the KSTAR
workflowwith DataMan. In this workflow, we use ADIOS’ DataMan engine to move
raw observational data as streams from Korea to the USA. Once data streams arrived
in a USA computing facility, we launch a set of analysis and visualization workflows
to perform denoising, segmentation, feature detection, and selection for detecting any

250 D. Pugmire et al.

Fig. 3 Fusion instability monitoring and mitigation workflow

instabilities. Visualization results can be delivered back to Korea for designing the
next upcoming shots. In short, ADIOS engines enable researchers to compose and
executeworkflows spanning local resources and remote large-scale high performance
computing facilities for NRT analysis and decision-making.

3.3 Interactive in Transit Visualization

The Japan Aerospace Exploration Agency (JAXA) has implemented various ways
for visualizing one of their CFD simulations, upacs-mc-LES. The visualization of
CFD data consists of both batch and interactive visualization. Batch visualization
is performed to create preset view images of the flowfield. Interactive visualization
is conducted by interactively using Visit to understand the physics of the flowfield.
While interactive visualization is not performed all the time during simulation, it is
essential to have the capability to launch and attach the visualization process to the
simulation when necessary, then to seamlessly detach when finished.

The agency has a heterogeneous HPC system, the Supercomputer System Gen-
eration 2 (JSS2). The main computer is a Fujitsu supercomputer with FX100 CPUs
specialized for vector computations. Another cluster with x86 processors and GPUs
is available for visualization and GPU-based analysis. There is a shared Lustre file
system, which can be used for post-processing. An Ethernet and InfiniBand network
connects the twomachines, but only a portion of the nodes can communicate between
the two machines. Most of the nodes can only communicate with other nodes on the
internal network.

Batch visualization in post-processing is an easy way to produce movies of preset
3D visualizations on the GPU cluster, but it is stressing the file system and cannot
support the largest simulations due to the I/O overhead. In situ visualization based
on LibSim [28] is another approach, where the main computer is used to produce
the images within the simulation code. In situ not only allows for producing a movie

The Adaptable IO System (ADIOS) 251

Fig. 4 Two steps of staging of data necessary on the JAXA heterogeneous system for interactive
visualization. Simulation data is staged to a concurrent staging service on nodes that have network
connections to the GPU cluster. The data is further staged to the visualization server running on the
GPU cluster. The visualization client then visualizes the data. The visualization on the left shows
acoustic waves on the cross section and exhaust jet are visualized by normalized pressure fluctuation
and iso-surface of temperature, respectively

without dumping all data to disk but it also allows for interactive data exploration.
ADIOS makes another approach feasible: in transit visualization where the simula-
tion data is streamed from the main computer to another application, which in turn
uses LibSim to create the visualizations. The visualization can be performed either
on the main computer or on the GPU cluster (see Fig. 4). In all cases, Visit is used
as the GUI for attaching to the visualization in case the user wants to interactively
explore the data set.

The main drawback of in situ visualization with LibSim, for interactive explo-
ration, is that the simulation process stops during interactive visualization. JAXA
users want the simulation to progress with the computation while they are looking at
a snapshot in time. In transit visualization using the ADIOS SST engine solves that
problem and is as easy to use as in situ visualization when launching them as two
separate applications together on the main computer in a single job.

Another advantage of in transit visualization (both for batch and interactive visu-
alization) is that the simulation is not affected by the visualization process in terms of
computing performance, nor by abnormal termination of the visualization process.
The simulation progresses independently from the visualization and therefore the
cost of visualization is amortized. On the other hand, data movement also has a cost
and this offsets some of the advantages. As discussed in Sect. 2.3.3, there are trade-
offs between the in situ and in transit approaches, and it depends on the simulation
size, data size and visualization cost in order to determine which approach works
best. Therefore, JAXAwants to maintain and provide all approaches to visualization
for its users.

In transit visualization also provides the capability to use the GPU cluster for
the visualization. The main difficulty with using a separate machine is that two jobs
need to be submitted to two different machines and run at the same time. Current
job scheduling policies only support batch processing. Therefore, the only way to
do interactive visualization on the GPU cluster is to submit an interactive job once

252 D. Pugmire et al.

the simulation is running. This is fine for interactive visualization where the user
is present. Although ADIOS makes it possible to run the visualization application
immediately and let it wait for the connection to the simulation indefinitely, for a
batch visualization of an overnight job, this is still a waste of resources (on the GPU
cluster).

Lastly, note that usingADIOS in the simulation to output the data, the target for the
data can be a concurrent application for batch visualization on the main computer, or
an application on the GPU cluster for interactive/batch visualization, or it can be the
Lustre file system for storing data for post-processing. The visualization application
is also the same for all the three cases. It is only a matter of the runtime setup and
the choice of the ADIOS Engine to run any of these cases.

4 Conclusion

ADIOS was designed from the observation that the API describing traditional I/O
to the file system could be abstracted to describe more complicated data move-
ment. Since applications almost always read and/or write data to storage it becomes
straightforward to replace the traditional I/O mechanism with an abstraction layer
that supports much more complex movement of data with minimal changes to the
flow of execution.

In this chapterwehavedescribed the high level designof theADIOS library aswell
as a description of the currently available engines. We also provided a comparative
discussion on each engine and discussed their strengths, weaknesses, and where each
is most suitable. To provide some concrete examples of how ADIOS has been used
in practice, we described a number of experimental and simulation examples that
use ADIOS in their workflow for in situ processing and visualization.

Acknowledgements This research was supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

References

1. Ahrens, J., Geveci, B., Law, C.: Visualization in the paraview framework. In: Hansen, C.,
Johnson, C. (eds.) The Visualization Handbook, pp. 162–170 (2005)

2. Ainsworth, M., Tugluk, O., Whitney, B., Klasky, S.: Multilevel techniques for compression
and reduction of scientific data-the univariate case. Comput. Vis. Sci. 19(5–6), 65–76 (2018)

3. Ainsworth, M., Tugluk, O.,Whitney, B., Klasky, S.: Multilevel techniques for compression and
reduction of scientific data–the multivariate case. SIAM J. Sci. Comput. 41(2), A1278–A1303
(2019)

4. Ainsworth, M., Tugluk, O., Whitney, B., Klasky, S.: Multilevel techniques for compression
and reduction of scientific data-quantitative control of accuracy in derived quantities. SIAM J.
Sci. Comput. 41(4), A2146–A2171 (2019)

The Adaptable IO System (ADIOS) 253

5. Chen, J., Pugmire, D., Wolf, M., Thompson, N., Logan, J., Mehta, K., Wan, L., Choi, J.Y.,
Whitney, B., Klasky, S.: Understanding performance-quality trade-offs in scientific visualiza-
tion workflows with lossy compression. In: 2019 IEEE/ACM 5th International Workshop on
Data Analysis and Reduction for Big Scientific Data (DRBSD-5). IEEE (2019). https://doi.
org/10.1109/drbsd-549595.2019.00006

6. Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller,
M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel,
E.W., Camp, D., Rübel, O., Durant, M., Favre, J.M., Navrátil, P.: VisIt: An End-User Tool For
Visualizing and Analyzing Very Large Data. In: High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, Chapman and Hall/CRC Computational Science, pp. 357–
372. Chapman and Hall/CRC (2012)

7. Childs, H., Pugmire, D., Ahern, S., Whitlock, B., Howison, M., Prabhat, Weber, G.H., Bethel,
E.W.: Extreme scaling of production visualization software on diverse architectures. IEEE
Comput. Gr. Appl. 30(3), 22–31 (2010). https://doi.org/10.1109/MCG.2010.51

8. Choi, J.Y., Chang, C., Dominski, J., Klasky, S., Merlo, G., Suchyta, E., Ainsworth, M., Allen,
B., Cappello, F., Churchill, M., Davis, P., Di, S., Eisenhauer, G., Ethier, S., Foster, I., Geveci,
B., Guo, H., Huck, K., Jenko, F., Kim, M., Kress, J., Ku, S., Liu, Q., Logan, J., Malony, A.,
Mehta, K., Moreland, K., Munson, T., Parashar, M., Peterka, T., Podhorszki, N., Pugmire,
D., Tugluk, O., Wang, R., Whitney, B., Wolf, M., Wood, C.: Coupling exascale multiphysics
applications: Methods and lessons learned. In: 2018 IEEE 14th International Conference on
e-Science (e-Science), pp. 442–452 (2018). https://doi.org/10.1109/eScience.2018.00133

9. Choi, J.Y., Wu, K., Wu, J.C., Sim, A., Liu, Q.G., Wolf, M., Chang, C., Klasky, S.: Icee: Wide-
area in transit data processing framework for near real-time scientific applications. In: 4th SC
Workshop on Petascale (Big) Data Analytics: Challenges and Opportunities in conjunction
with SC13, vol. 11 (2013)

10. Di, S., Cappello, F.: Fast error-bounded lossy hpc data compressionwith sz. In: 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium (ipdps), pp. 730–739. IEEE (2016)

11. Dominski, J., Ku, S., Chang, C.S., Choi, J., Suchyta, E., Parker, S., Klasky, S., Bhattacharjee,
A.: A tight-coupling scheme sharing minimum information across a spatial interface between
gyrokinetic turbulence codes. Phys. Plasmas 25(7), 072308 (2018). https://doi.org/10.1063/1.
5044707

12. Farthing, J., Budd, T., Capel, A., Cook, N., Edwards, A., Felton, R., Griph, F., Jones, E.: Data
management at jet with a look forward to iter. In: International Conference on Accelerator and
Large Experimental Physics Control Systems (2006)

13. Godoy, W.F., Podhorszki, N., Wang, R., Atkins, C., Eisenhauer, G., Gu, J., Davis, P., Choi,
J., Germaschewski, K., Huck, K., Huebl, A., Kim, M., Kress, J., Kurc, T., Liu, Q., Logan, J.,
Mehta, K., Ostrouchov, G., Parashar, M., Poeschel, F., Pugmire, D., Suchyta, E., Takahashi, K.,
Thompson, N., Tsutsumi, S., Wan, L., Wolf, M., Wu, K., Klasky, S.: ADIOS 2: The adaptable
input output system. a framework for high-performance data management. SoftwareX 12,
100561 (2020). https://doi.org/10.1016/j.softx.2020.100561

14. Huebl, A., Lehe, R., Vay, J.L., Grote, D.P., Sbalzarini, I.F., Kuschel, S., Sagan, D., Pérez, F.,
Koller, F., Bussmann, M.: Openpmd 1.0.0: A meta data standard for particle and mesh based
data. (2015). https://doi.org/10.5281/ZENODO.591699, https://zenodo.org/record/591699

15. Huebl, A., Widera, R., Schmitt, F., Matthes, A., Podhorszki, N., Choi, J.Y., Klasky, S., Buss-
mann,M.:On the scalability of data reduction techniques in current and upcomingHPC systems
from an application perspective. Lect. Notes Comput. Sci. 10524(4), 15–29 (2017). https://doi.
org/10.1007/978-3-319-67630-2_2

16. Klasky, S., et al.: A view fromORNL: Scientific data research opportunities in the big data age.
In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp.
1357–1368. IEEE (2018)

17. Kress, J., Larsen, M., Choi, J., Kim, M., Wolf, M., Podhorszki, N., Klasky, S., Childs, H., Pug-
mire, D.: Comparing the efficiency of in situ visualization paradigms at scale. In: International
Conference on High Performance Computing, pp. 99–117. Springer (2019)

https://doi.org/10.1109/drbsd-549595.2019.00006
https://doi.org/10.1109/drbsd-549595.2019.00006
https://doi.org/10.1109/MCG.2010.51
https://doi.org/10.1109/eScience.2018.00133
https://doi.org/10.1063/1.5044707
https://doi.org/10.1063/1.5044707
https://doi.org/10.1016/j.softx.2020.100561
https://doi.org/10.5281/ZENODO.591699
https://zenodo.org/record/591699
https://doi.org/10.1007/978-3-319-67630-2_2
https://doi.org/10.1007/978-3-319-67630-2_2

254 D. Pugmire et al.

18. Kress, J., Larsen, M., Choi, J., Kim, M., Wolf, M., Podhorszki, N., Klasky, S., Childs, H., Pug-
mire, D.: Opportunities for cost savings with in-transit visualization. In: ISCHigh Performance
2020. ISC (2020)

19. Kress, J., et al.: Loosely coupled in situ visualization: A perspective on why it’s here to stay.
In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization, ISAV2015, pp. 1–6. ACM, New York, NY, USA (2015). https://
doi.org/10.1145/2828612.2828623

20. Liang, X., Di, S., Tao, D., Chen, Z., Cappello, F.: An efficient transformation scheme for lossy
data compression with point-wise relative error bound. In: 2018 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 179–189. IEEE (2018)

21. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Visual Comput. Gr.
20(12), 2674–2683 (2014)

22. Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky, S., Tchoua, R., Lof-
stead, J., Oldfield, R., et al.: Hello ADIOS: the challenges and lessons of developing leadership
class I/O frameworks. Concur. Comput.: Pract. Exp. 26(7), 1453–1473 (2014)

23. Logan, J., Ainsworth, M., Atkins, C., Chen, J., Choi, J.Y., Gu, J., Kress, J.M., Eisenhauer, G.,
Geveci, B., Godoy,W., Kim,M.B., Kurc, T., Liu, Q., Mehta, K.V., Ostrouchov, G., Podhorszki,
N., Pugmire, D., Suchyta, E.D., Thompson, N., Tugluk, O., Wan, L., Wang, R., Whitney,
B., Wolf, M.D., Wu, K., Klasky, S.A.: Extending the publish/subscribe abstraction for high-
performance i/o and data management at extreme scale. Bull. IEEE Tech. Commit. Data Eng.
43(1) (2020)

24. Moreland, K., Sewell, C., Usher,W., Lo, L.T.,Meredith, J., Pugmire, D., Kress, J., Schroots, H.,
Ma, K.L., Childs, H., Larsen, M., Chen, C.M., Maynard, R., Maynard, B.: Vtk-m: accelerating
the visualization toolkit formassively threaded architectures. IEEEComput.G.Appl. 36, 48–58
(2016). https://doi.org/10.1109/MCG.2016.48

25. Seward, J.: bzip2 and libbzip2. avaliable at http://www.bzip.org (1996)
26. Tao, D., Di, S., Chen, Z., Cappello, F.: Significantly improving lossy compression for scientific

data sets based on multidimensional prediction and error-controlled quantization. In: 2017
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1129–1139.
IEEE (2017)

27. Vazhkudai, S.S., de Supinski, B.R., Bland, A.S., Geist, A., Sexton, J., Kahle, J., Zimmer,
C.J., Atchley, S., Oral, S., Maxwell, D.E., Larrea, V.G.V., Bertsch, A., Goldstone, R., Joubert,
W., Chambreau, C., Appelhans, D., Blackmore, R., Casses, B., Chochia, G., Davison, G.,
Ezell, M.A., Gooding, T., Gonsiorowski, E., Grinberg, L., Hanson, B., Hartner, B., Karlin,
I., Leininger, M.L., Leverman, D., Marroquin, C., Moody, A., Ohmacht, M., Pankajakshan,
R., Pizzano, F., Rogers, J.H., Rosenburg, B., Schmidt, D., Shankar, M., Wang, F., Watson,
P., Walkup, B., Weems, L.D., Yin, J.: The design, deployment, and evaluation of the coral
pre-exascale systems. In: SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 661–672 (2018)

28. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel In Situ Coupling of Simulation with a Fully
Featured Visualization System. In: Kuhlen, T., Pajarola, R., Zhou, K. (eds.) Eurographics
Symposium on Parallel Graphics and Visualization. The Eurographics Association (2011).
https://doi.org/10.2312/EGPGV/EGPGV11/101-109

29. Yun, G., Lee, W., Choi, M., Kim, J., Park, H., Domier, C., Tobias, B., Liang, T., Kong, X., Luh-
mann, N., Jr., et al.: Development of kstar ece imaging system for measurement of temperature
fluctuations and edge density fluctuations. Rev. Sci. Instrum. 81(10), 10D930 (2010)

https://doi.org/10.1145/2828612.2828623
https://doi.org/10.1145/2828612.2828623
https://doi.org/10.1109/MCG.2016.48
http://www.bzip.org
https://doi.org/10.2312/EGPGV/EGPGV11/101-109

Ascent: A Flyweight In Situ Library
for Exascale Simulations

Matthew Larsen, Eric Brugger, Hank Childs, and Cyrus Harrison

Abstract This chapter describes Ascent, a production library for in situ visualiza-
tion and analysis on exascale architectures. It begins by describing the library’s focal
points: minimizing encumbrance on simulation codes and enabling diverse and pow-
erful capabilities. The chapter then describes Ascent’s abstractions, interface, and
design. It concludes with success stories that highlight its capabilities: in situ visual-
ization of a 97.8 billion element inertial confinement fusion simulation using 16,384
GPUs, delivering radiography capabilities for a Kelvin-Helmholtz simulation, and
native rendering of higher-order elements.

1 Introduction

This chapter describes theAscent library for in situ visualization and analysis. Ascent
was “born in situ,” meaning that it was created for the express purpose of perform-
ing in situ processing, and all implementation decisions follow this mandate. It was
designed to deliver on two goals which are often in tension: (1) minimizing encum-
brance on simulation codes that incorporate Ascent, i.e., a “flyweight” design (dis-
cussed in Sect. 1.1), and (2) providing diverse and powerful capabilities, especially
for modern supercomputers (discussed in Sect. 1.2). In terms of the taxonomy for in
situ systems presented in the Introduction chapter:

• Ascent has anAPI for visualization and analysis that is directly used by a computa-
tional simulation. It is primarily controlled by specifying the desired visualization
and analyses a priori, but it also has an option to perform human-in-the-loop via
Jupyter notebooks [13].

• Ascent can be run in multiple ways, but the primary usage is for Ascent to share
the same resources as the simulation code (space division), with direct access

M. Larsen (B) · E. Brugger · C. Harrison
Lawrence Livermore National Laboratory, Livermore, CA, USA
e-mail: larsen30@llnl.gov

H. Childs
University of Oregon, Eugene, OR, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_12

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_12&domain=pdf
mailto:larsen30@llnl.gov
https://doi.org/10.1007/978-3-030-81627-8_12

256 M. Larsen et al.

to the simulation code’s memory. In particular, Ascent typically does not make a
copy of simulation data, but rather uses the simulation’s in-memory representation
directly.

Finally, while not a focus of this chapter, Ascent is built for production use by com-
putational simulation codes—it has documentation, examples, engages in modern
software engineering practices, etc.

1.1 Flyweight Design

Since Ascent was designed to run on the same resources as a simulation code, it is
critical that it minimizes its usage of those resources. In particular, Ascent aims to
minimize execution time, memory usage, binary size, and integration effort.

The first two aims, minimizing execution time and memory usage, benefit from
directly incorporating VTK-m [21] into Ascent. For minimizing memory, VTK-m’s
data model supports many array layouts (e.g., row major versus column major, array
of structures versus structures of arrays) in a zero-copy manner. In most cases, the
majority of the memory needed by Ascent is only for storing intermediate results,
such as the triangles produced by an isosurface algorithm. To minimize execu-
tion time, VTK-m provides native support for many-core architectures, including
NVIDIA GPUs, various Intel architectures, and planned support for AMD GPUs.
Further, Ascent complements VTK-m’s shared-memory parallelism with its own
layer for distributed-memory parallelism based on the Message Passing Interface
(MPI) library. In all, Ascent is able to perform its algorithms very quickly, since it
can make full use of the underlying hardware architecture.

In terms of binary size, Ascent has far fewer dependencies than more mature
community visualization tools. Not only does this reduce build complexity, but it
results in smaller binary sizes, lessening the linking burden on the simulation. The
only required libraries for Ascent are VTK-m and Conduit (described in Sect. 3.1).
Ascent also adds its own libraries, specifically VTK-h (an MPI wrapping around
VTK-m) and Flow (described in Sect. 4.1). All other libraries are optional.

Finally, Ascent’s API was designed to be simple to learn, easy to integrate for
novice users, and small in overall code size. Integrations can be as short as ten lines
of code. The API uses Conduit [15] to simplify describing hierarchical data, in situ
actions, and to support zero-copy of simulation data. This topic is explored more in
Sect. 3.

1.2 Ascent Capabilities

Ascent takes multiple approaches to deliver diverse and powerful capabilities: inte-
grating with many technologies, supporting both visualization and analysis routines,

Ascent: A Flyweight In Situ Library for Exascale Simulations 257

developing algorithms specifically designed for in situ processing, and providing
support for modern supercomputers.

Ascent’s strongest component for delivering capabilities is likely through integrat-
ing many additional technologies. In terms of integrations with other visualization
and I/O products, Ascent is able to produce Cinema and HDF5 files, interact with
ADIOS and Catalyst, and, as previously mentioned, utilizes VTK-m directly for
much of its data model and visualization algorithms. It also provides many options
for integration, including bindings for controlling Ascent with C, C++, Python, and
Fortan. Further, it provides options for controlling Ascent via its code API, YAML
files (which can be changed dynamically at runtime), or a Jupyter notebook integra-
tion [13]. Finally, Ascent is able to integrate arbitrary code, including Python scripts
and C/C++ code. This pathway also enables access to machine learning infrastruc-
tures, such as TensorFlow and PyTorch. To demonstrate this pathway concretely,
Ascent was recently used in situ to train and leverage a distributed-memory Random
Forest on simulation data. A successful integration of Ascent with a simulation code
is described in Sect. 5.3. Specifically, this integration incorporated the Devil Ray
code for ray-tracing higher order elements.

Ascent has embraced analysis alongside visualization.Noteworthy analysis exam-
ples include simulated radiographs and its query infrastructure to get quantitative
results such as volumes, surfaces areas, and integrated quantities (e.g., integrate the
density field to get the mass). Of course, Ascent supports typical visualization algo-
rithms, such as slicing, isosurfacing, volume rendering, and multiple plot types.

With respect to algorithms specifically for in situ processing, Ascent has a signif-
icant investment in its “trigger” system [17], which adapts when visualization and
analysis routines are executed, based on the conditions in the system. Ascent also has
algorithms for extracting reduced forms of the data, such as a module for extracting
Lagrangian flow [5, 23] and the aforementioned Cinema output.

Finally, Ascent has been designed from the beginning with modern supercomput-
ers in mind. Especially because of the integration of VTK-m, Ascent is able to run
efficiently on these architectures. In particular, it is able to support GPUs (including
multiple GPUs per node) and multi-core CPUs.

1.3 Organization of This Chapter

The remainder of this chapter focuses on key elements of Ascent:

• Section2 discusses the five abstractions for using Ascent.
• Section3 discusses Ascent’s APIs for inputting data and for controlling execution.
• Section4 discusses Ascent’s design.
• Section5 discusses success stories using Ascent.
• Section6 discusses additional resources about Ascent and related software.

258 M. Larsen et al.

2 Key Abstractions for Ascent

This section describes Ascent’s primary abstractions and surveys its general capabil-
ities. Ascent organizes its capabilities into five types of in situ tasks, which it refers
to as actions. Its five actions are:

• Pipelines transform data from one form to another.
• Scenes render images.
• Extracts are used to move data out of Ascent, i.e., to file I/O or to another frame-
work.

• Queries provide quantitative summarizations of the data.
• Triggers adapt when other actions are executed, based on the conditions of the
simulation.

These actions are highly interoperable, and Ascent can employ multiple actions
of the same type at once. Consider the following example of Ascent doing in situ
analysis on an input data set, D, for a given cycle of a simulation. Ascent begins
by applying an isosurfacing operation to D to make a new data set D′ (pipeline). It
then applies a trigger to D′—it takes the surface area of the isosurface (query) and
compares the total area with the area from the previous time it was executed. If the
total area has changed by more than 5%, then Ascent would render an image of D′
(scene) and also save the original data set D to disk (extract). Going beyond this
example, it is possible to have multiple triggers, arbitrary conditions for the triggers
(queries or otherwise), aswell asmany pipelines, scenes, and extracts. Figure1 shows
an example of this, specifically two pipelines and two extracts.

Fig. 1 An example of how Ascent actions can be combined. In this example, simulation data is
published to Ascent and that data is relayed into two pipelines (labeled #1 and #2). The first pipeline
applies a contour operation, while the second applies threshold and clip operations. The results of
these pipelines are used in multiple ways. A scene uses both pipelines as input, while two extracts
use only the second pipeline as input, outputting using two different I/O libraries

Ascent: A Flyweight In Situ Library for Exascale Simulations 259

2.1 Pipelines

Pipelines allows users to describe a series of data transformations, also known as
filters, to execute on simulation data. Figure1 shows typical filters for visualization:
contour, threshold, and clip. Ascent allows users to define an arbitrary number of
pipelines. In terms of inputs and outputs, the input to a pipeline is either the simulation
data or another pipeline, and the outputs of a pipeline can go to scenes, extracts, and
queries. Further, triggers canmake use of pipelines, and their relationship is discussed
further in Sect. 2.5.

Notable filters currently supported by Ascent include:

• Clipping
• Contour
• Histogram
• Isovolume

• Particle Advection
• Statistics
• Slice
• Threshold

There are also filters that create new fields: Divergence, Gradient, Logarithm,
Q-Criterion, Vector Magnitude, and Vorticity. Finally, Ascent contains two filters
targeted specifically for in situ—Lagrangian Flow and Sampling—that reduce data
size significantly enough that it can be saved to disk and explored post hoc.

2.2 Scenes

Scenes create images. They typically operate on the output of pipelines, but they also
can work directly on the original simulation data. Scenes do not return anything to
Ascent that can interact with other actions, but they do save the images they produce
to disk for later inspection.

A scene is made up of “renders” and “plots”. Renders can be thought of as sub-
scenes, i.e., each scene is made up of many sub-scenes (renders), which contain
camera specifications, image dimensions, background and foreground colors, and
annotation controls. There can be an arbitrary number of renders for a scene. Plots
are the things to render. A plot consists of two things: what data to render and how
to render it. The data comes from the input (usually a pipeline), and the method for
rendering the data can vary. Currently, Ascent supports four plot types: pseudocolor,
mesh, volume rendering, and radiograph plots (see Fig. 2). Each of these plot types
contain parameters that control the input data (name of the pipeline to consume,
which scalar field to operate on, etc.) and how to carry out the rendering (color
tables, scalar ranges, etc.).

In terms of camera placement, Ascent uses the data set’s bounding box to create
a default camera that faces the data set. Renders inherit the default camera parame-
ters, simplifying creation of useful cameras positions. Ascent also provides simple
controls to rotate the camera on the sphere circumscribing the data set. Of course,
the user is free to set all camera parameters explicitly as well.

260 M. Larsen et al.

Fig. 2 Example images of Ascent’s four plot types: pseudocolor (top left), mesh (top right, which
also includes a pseudocolor plot), volume rendering (bottom left), and radiograph (bottom right).
The data for these images comes from CloverLeaf3D, a hydrodynamics proxy-application included
with Ascent

Finally, scenes can create Cinema [6] databases, i.e., a large set of images that
can be explored after the simulation.

2.3 Extracts

The extracts action covers a broad range of activities. The common theme among
these activities is moving data outside Ascent. The word extract is meant to convey
“extracting” data fromAscent to somewhere else. Extracts can be as simple as saving
data to HDF5 files. That said, extracts are also the mechanism to integrate other tools
with Ascent—a gateway to a larger workflow. This is important because Ascent

Ascent: A Flyweight In Situ Library for Exascale Simulations 261

does not have the long tail of functionality that tools like ParaView or VisIt provide,
which were built over decades of development. Through extracts, Ascent can pass
data directly to ParaView Catalyst [8]. Another example of using extracts to provide
additional functionality is the ADIOS [19] extract, which allows Ascent to link to in
transit workflows.

Ascent supports connections to the Python ecosystem through its Python and
Jupyter extracts [13, 14]. Python extracts execute custom analysis code provided by
the user, and the Jupyter extracts allow for incoming Jupyter notebooks connections
from a web browser.

We feel that the Jupyter notebook interface is an important future direction for
Ascent, and for in situ as a whole. One of in situ’s greatest weaknesses is the reliance
on a priori knowledge, and one strategy to mitigate this weakness is incorporating
a human-in-the-loop. Through the Jupyter notebook interface, users can pause a
running simulation and interact with the data. Additionally, Jupyter widgets enable
fast prototyping of domain specific GUIs.

In all, currently supported extracts include:

• ADIOS
• Babel Flow [22]
• Jupyter Notebooks
• ParaView Catalyst
• Python

2.4 Queries

Queries enable users to ask quantitative questions. The inputs to a query can take a
varied form: the simulation data directly, the data produced by a pipeline, or even a
combination of multiple pipelines and simulation data. That said, typical queries are
used to access the current state of the simulation and to summarize data. The results
of queries are saved in Ascent’s state. These results can then be used to interact with
other actions—a query’s return value can be turned into the parameter for another
action (for example setting the camera position in a scene based on the result of a
bounding box query) or it can be used to affect triggers.

The mechanism behind queries enables powerful operations. Queries are formed
via a Python-like language that enables expressions for math operations, calling
functions, and evaluating conditionals. Further, since the results of queries are stored
into named identifiers, subsequent queries can build on the results of other queries,
allowing for complex combinations. This also enables creating a “time history,” since
Ascent can call the same query every time step and accumulate the result.

Examples of queries include:

• cycle(): calling a function that returns the current simulation cycle and storing it
into a variable.

• max(f ield(′ pressure′)): the maximum value of the pressure field.

262 M. Larsen et al.

• entropy(histogram(f ield(′gyre′), num_bins = 128)): calculating a histogram
of the gyre field with 128 bins, and then calculating the entropy of that histogram.

2.5 Triggers

Triggers are designed to balance the tensions between cost and capturing important
phenomena. In a typical scenario, in situ visualization is performed at regular inter-
vals, e.g., every X simulation cycles or every M minutes of wall clock time. This
approach creates a tension between two important goals: (1) achieving the visual-
izations and analyses at the right times within the simulation and (2) minimizing
costs. On the one hand, performing visualization frequently maximizes the chances
of having visualizations at the right times (and likely also some uninteresting times),
but is costly, e.g., adding substantial overhead on top of the simulation. On the other
hand, performing visualization infrequently minimizes costs, but also makes it less
likely that the visualizations will occur during important phenomena.

Triggers operate in two phases: inspection and action/inaction. The purpose of
the inspection phase is to determine if the action should be taken. The trigger should
“fire” if the action should be taken. Further, if the inspection routine is cheap (i.e.,
executes quickly) and accurate (i.e., fires at the right times), then triggers can be
an effective strategy. In this case, triggers can be called frequently (possibly every
cycle) and still minimize cost (since the visualization in the action/inaction phase
is called only when necessary) and get the right information (since the trigger is
accurate). Of course, triggers make the most sense when the desired visualization
is quite expensive to calculate; if the desired visualization could be calculated as
quickly as the inspection, then there is no cost benefit.

A trigger is made up of two parts; for clarity, we term these two parts as
trigger-condition and trigger-action. (A trigger-action is only executed if the trigger-
condition is true.) In Ascent, any conditional expression can be a trigger-condition,
although most trigger-conditions incorporate the queries and expressions infrastruc-
ture from Sect. 2.4. Trigger-actions utilize Ascent’s other actions: pipelines, extracts,
scenes, and queries. For example, a trigger-action may be to calculate an isosur-
face (pipeline) and save an image (scene). In practice, triggers are often used for
debugging (e.g., saving data to a file when invalid values are found) or for captur-
ing information when some phenomenon occurs (e.g., saving an image when the
maximum value of a field exceeds a threshold from the previous value).

Examples of trigger-conditions in Ascent include:

• cycle() > 100 and cycle() < 200: the simulation cycle is between 100 and 200.
• max(f ield(′ pressure′)) > 100.0: the max value of the pressure field exceeds
100.

• magnitude(max(f ield(′ pressure′)).posi tion − vector(0, 0, 0)) > 20.0: the
distance of the max value of the pressure field from the origin exceeds 20.

Ascent: A Flyweight In Situ Library for Exascale Simulations 263

2.6 Interactions Between Actions

Although some of the interactions between Ascent actions have been mentioned pre-
viously, this subsection formalizes and summarizes these interactions. The key take-
away is that connections between actions in Ascent is important and well-supported.
This is not always the case; in some projects, interoperability between different types
of actions can be difficult or impossible.

Figure3 shows interactions between Ascent’s actions. It shows three types of
interactions via arrow glyphs:

• Takes as input: the action at the tail of the arrow may serve as input for the action
at the head of the arrow.

• Used to set parameter for action: the action at the tail of the arrowmay set parameter
values for the action at the head of the arrow.

• Generates this action: the action at the tail of the arrow may generate actions of
the type at the head of the arrow.

Two of these interaction types are simply described. First, queries are the only
action that can set parameters for other actions, and it does so for pipelines, scenes,
and extracts, as well as for other queries. Second, trigger-actions are the only action
that can spawn new actions, and the types it spawns are pipelines, scenes, extracts,
and queries.

The last interaction type is on inputs. Simulation data is input to pipelines, scenes,
extracts, and queries. Pipelines are input to the same types of actions, meaning that
pipelines can serve as input to other pipelines. Further, in these cases, there can be
multiple inputs, e.g., one query can have multiple pipelines as input. The last input

Fig. 3 Interactions between Ascent actions

264 M. Larsen et al.

involves queries and trigger-conditions. In this case, the queries would have their
own inputs (i.e., simulation data or pipelines), but the trigger-condition would be
firing or not based on the result of the query—the simulation data or pipeline is one
step removed.

Finally, Fig. 3 shows simulation data as only being at the tails of arrows, and never
the heads, i.e., nothing is ever sent to the simulation. In reality, Ascent does have a
mechanism to send data back to the simulation. This is most useful for queries, but
also applies to the other actions. For example, it is possible to have a scene return an
image (instead of writing it to disk) and then pass that image back to the simulation
(as bytes).

3 Ascent APIs

This section describes the API for Ascent. It begins, in Sect. 3.1, by describing Con-
duit, which is the underlying interface for passing information to Ascent. Ascent
then has two main APIs, both of which are built on top of Conduit. The first API,
described in Sect. 3.2, is the “data interface,” i.e., how to pass simulation data to
Ascent. This API exists outside Ascent, and has its own product name—Blueprint.
The second API, described in Sect. 3.3, is the “control interface,” i.e., how to instruct
Ascent to carry out the actions described in Sect. 2. Finally, Sect. 3.4 discusses typical
experiences when integrating with Ascent.

3.1 Conduit: A Foundation for In-Memory Data Exchange

This subsection describes the basics of Conduit [15], a library for describing hierar-
chical scientific data in C++, C, Fortran, and Python. The API was designed to be
intuitive, and is inspired by JSON. While primarily used for data coupling between
packages in-core, Conduit also provides easy access to serialization and I/O func-
tions.

The primary data structure in Conduit is a Node. Nodes stores data through a
key-value interface. Figure4 shows how to store the string “value” with the key “K”
into a Node.

Node n ;
n [”K”] = ” va l u e ” ;
n . p r i n t () ;

K: ” v a l u e ”

Fig. 4 On the left, an example of storing a string inside a Conduit Node. On the right, the YAML
equivalent

Ascent: A Flyweight In Situ Library for Exascale Simulations 265

Node n ;
n [” d i r 1 / d i r 2 / v a l 1 ”] = 1 0 0 . 5 ;
n . p r i n t () ;

d i r 1 :
d i r 2 :

v a l 1 : 100 .5

Fig. 5 On the left, an example of using a hierarchical key to store a number. On the right, the YAML
equivalent. The YAML has increasing indentation to indicate increasing depth in a hierarchy

cons t i n t s i z e = 4 ;
i n t A[s i z e] = {0 , 1 , 2 , 3 };
Node n ;
n [” my ar r ay ”] . s e t (A, s i z e) ;
n . p r i n t () ;

my a r r ay : [0 , 1 , 2 , 3]

Fig. 6 On the left, an example of setting the value of a Node to an Array. On the right, the YAML
equivalent

Data in Nodes can be created and accessed through hierarchical keys, and the key
string looks much like a UNIX directory structure. Key paths are completely up to
the user. Figure5 illustrates creating a Node hierarchy and storing a floating-point
value in a leaf Node. In this example, several Nodes are actually created with parent
child relationships defined by the key. Node n has a child Node dir1, which in turn
has a child dir2, and the tree ends at the leaf Node val1, which stores the data. Nodes
can contain many basic data types such as strings, floating-point values, and integers.

Nodes can also contain arrays, and the set method copies the values from an array
into a Node. Figure6 shows how to set a Node to the contents of an array. Alterna-
tively, the set_external method copies only the pointer (i.e., a shallow copy), and
any change to the underlying array would be reflected in both the original array and
the data contained inside the Node. Using set_external is desirable for large data,
such as simulation mesh data, and in environments where memory is constrained.

As already mentioned, Conduit lays the foundation for Ascent’s API. That said,
Conduit enjoys widespread use outside Ascent. It is being used for simulation code
coupling, effectively as a data store, among other use cases.

3.2 Mesh Blueprint: An In-Memory Mesh Description
Interface

In-memory sharing of scientific data is an important use case, certainly for in situ
visualization, but also for computational science in general. One barrier to in-memory
sharing is how scientific data is represented. If a simulation code hands an array to
an in situ visualization routine, then the routine needs to know if this array is a scalar
field, coordinate information, connectivity information for an unstructuredmesh, etc.
Conduit alone is not helpful in addressing this barrier, as it provides a foundation for
sharing data, but it provides no guidance on how to arrange data into a data model.
This is where Blueprint [16] comes in.

266 M. Larsen et al.

The goal of Blueprint is to facilitate a set of shared higher-level conventions
for using Conduit Nodes to hold common simulation data structures. Blueprint is
able to describe a wide range of scientific data. Its design emerged through two
efforts. First, by surveying existing projects that provide scientific mesh-related APIs
including:ADIOS [19], Damaris [10], EAVL [20],MFEM[4], Silo, VTK [24], VTK-
m [21], and Xdmf [2]. In this way, lessons learned from previous taxonomies and
concrete scientific data models have been incorporated in Blueprint. Second, through
discussion with simulation application teams. These discussions were about general
in-memory sharing (i.e., including code-to-code sharing), but haveproven tobeuseful
for in situ visualization use cases as well. Finally, Blueprint’s mesh conventions are
not a replacement for existing mesh data models or APIs. Instead, Blueprint is trying
to provide a comprehensive-but-small set of options for describing meshes in-core
that simplifies the process of adapting data to several existing mesh-aware APIs.

Blueprint uses four concepts to describe meshes:

• Coordinate Sets describe coordinate systems in 1D, 2D, and 3D, using Cartesian,
spherical, or cylindrical frames of reference. Blueprint supports not only explicit
coordinate sets, but also implicit representations, such as uniform and rectilinear.

• Topologies describe the topological structure of the mesh elements. As with coor-
dinate sets, both implicit (e.g., uniform) and explicit (e.g., completely unstructured)
topologies are supported.

• Fields describe the data associated with the mesh. Fields can be associated with
vertices or with elements, and can be scalars or have multiple components. Addi-
tionally, Blueprint supports the description of high-order topologies and fields,
which are becoming increasingly common.

• Domain Decomposition Information is important for distributed-memory appli-
cations. In these cases, the mesh is typically distributed among MPI tasks, into
“domains,” andmanyalgorithmsneed information at the boundaries of the domains
to proceed. There are many ways to describe how domains abut, and Blueprint’s
domain decomposition information allows for capturing the specifics.

A Blueprint data set minimally needs a topology and a coordinate system, but
Blueprint supports having any number of topologies and coordinate systems, as
well as any number of fields.

Listing 1 shows a Blueprint description of a uniform mesh. Blueprint’s form
follows Conduit’s key-value approach. That said, the challenge in learning Blueprint
is in learning the reserved words associated with concepts. In the figure’s description
of the coordinate system, there are many reserved words: coordsets, type, dims, i,
j, k, and uniform. Each of these have the expected meaning. The figure also creates
a variable, my_coords. Blueprint does provide help in setting a data set through
its protocols—methods to verify if a Conduit Node instance conforms to known
conventions.

Ascent: A Flyweight In Situ Library for Exascale Simulations 267

Listing 1: An example showing how to specify a 103 uniform grid in Blueprint.

Node mesh;
/ / 10x10x10 uniform coordinate system
mesh["coordsets /my_coords/ type"]="uniform" ;
mesh["coordsets /my_coords/dims/ i "] = 10;
mesh["coordsets /my_coords/dims/ j "] = 10;
mesh["coordsets /my_coords/dims/k"] = 10;

/ / optional origin
mesh["coordsets /my_coords/ origin /x"]= −10;
mesh["coordsets /my_coords/ origin /y"]= −10;
mesh["coordsets /my_coords/ origin /z"]= −10;

mesh["coordsets /my_coords/ spacing /dx"]= 1.0;
mesh["coordsets /my_coords/ spacing /dy"]= 1.0;
mesh["coordsets /my_coords/ spacing /dz"]= 1.0;

mesh["topologies /my_topo/ type"] = "uniform" ;
mesh["topologies /my_topo/ coordset"] = "my_coords" ;

3.3 Control Interface

Ascent’s API consists of five calls:

• open initializes Ascent. It can optionally take arguments, for passing along infor-
mation such as the MPI communicator.

• publish is the method that enables a simulation code to pass (“publish”) its data
to Ascent.

• execute specifies which Ascent actions (see Sect. 2) to perform.
• info is the mechanism for getting data out from Ascent into the simulation.
• close directs Ascent to finalize execution.

Ascent usage typically consists of only four calls: open, publish, execute, and
close. These calls are available with multiple language bindings: C, C++, Fortran,
and Python.

Listing 2: Typical Ascent usage in C++. The code for “fill data_set” can be found in Listing 1,
while the code for “fill actions” can be found in Listing 3.

conduit : :Node data_set , actions ;
/ / f i l l data_set
/ / f i l l actions
ascent : :Ascent ascent ;
ascent .open() ;
ascent . publish(data_set) ;

268 M. Larsen et al.

ascent . execute(actions) ;
ascent . close () ;

The major work in an Ascent integration is setting up the data passed to “publish”
and “execute.” The data passed to “publish” (“data_set” in the example) is in the
Conduit-Blueprint form, which was discussed in Sect. 3.2. To support distributed-
memory processing usingMPI, eachMPI task describes localmesh data (one ormore
domains) and passes them to Ascent using a single “publish” call. Ascent operates on
all domains published across all MPI Tasks as a larger coherent distributed-memory
mesh. The format for the data passed to “execute” (“actions” in the example) is the
subject of the remainder of this section.

There are two forms for specifying actions to Ascent. One form is to write code
that specifies actions. This code would set up Conduit Nodes, and be passed in as
the “actions” in the code listing above. The code would be part of the simulation
code, and compiled into the simulation. The other form is to encode the information
in a YAML file. In this case, the code for the simulation code would simply direct
Ascent to read the YAML file and get the directions for the actions to take from that
file. The advantage of this latter form is that is that it decouples the visualization
operations from the simulation code. Specifically, the simulation can be compiled
into binary form, and yet the visualization operations to be performed can still be
changed. It also allows one person to do code integration (setting up publishing of
data) and other people to control the visualization without having to understand the
code integration.

Despite the advantages of the YAML approach, we demonstrate setting up actions
with the code interface where the visualization operations are compiled into the code.
The result of this code listing is to create the “actions” from Listing 2.

Listing 3: Setting up Ascent actions using the C++ bindings. This listing is broken into three parts.
The first part makes a pipeline named “pl1” with one filter named “f1.” The second part makes
a scene named “s1” which is connected to pipeline “pl1.” The third part tells Ascent to add the
pipeline, add the scene, and then execute both.

/ / Part 1: make a pipeline
Node pipelines ;
pipelines ["pl1 / f1 / type"] = "contour" ;
Node contour_params;
contour_params[" field"] = "pressure" ;
double iso_vals [2] = {0.2, 0.4};
contour_params["iso_values"] . set_external (iso_vals ,2) ;
pipelines ["pl1 / f1 /params"] = contour_params;

/ / Part 2: make a scene to render the dataset
Node scenes ;
scenes["s1 / plots /p1/ type"] = "pseudocolor" ;
scenes["s1 / plots /p1/ pipeline"] = "pl1" ;

Ascent: A Flyweight In Situ Library for Exascale Simulations 269

scenes["s1 / plots /p1/ field"] = "pressure" ;
scenes["s1 / image_prefix"] = "pressure_iso" ;

/ / Part 3: prepare Conduit node for Ascent ’s execute () method
Node actions ;
Node &add_act = actions .append() ;
add_act["action"] = "add_pipelines" ;
add_act["pipelines"] = pipelines ;
Node &add_act2 = actions .append() ;
add_act2["action"] = "add_scenes" ;
add_act2["scenes"] = scenes ;
actions .append()["action"] = "execute" ;

Please see Sect. 6 for links to Ascent’s documentation and more resources that
provide details about getting started with Ascent and learning its APIs.

3.4 Typical Experiences Integrating Ascent

Consistent with its flyweight approach, the typical experience integrating Ascent
involves a relatively short amount of time and small amount of code. While specifics
vary based on the complexity of the simulation code and the amount of things to
integrate, a typical integration would involve 50 to 100 lines of code. Build issues
tend to be manageable, since the amount of API exposed to a simulation code is
small, and since there is strong CMake support. (Native Makefile options are also
available.) If a single individual had expertise in both Ascent and a simulation code,
then an integration can be done in a few hours or less. Of course, the more typical
situation is that an individual has expertise in either Ascent or the simulation code. In
this case, additional time is needed to learn the other technology, increasing overall
integration time. Finally, reiterating discussion from Sect. 3.3, most integrations are
smaller since they focus on only passing data, and leave the work for specifying
Ascent controls to YAML files that can be specified at run-time.

4 System Architecture

In the previous section, we described Ascent’s high-level abstractions and capabil-
ities. This section discusses Ascent’s system architecture starting at its inner layer,
Flow, and moving outward.

270 M. Larsen et al.

4.1 Flow: A Data-Type Agnostic Data-Flow Based
Architecture

Ascent uses a graph-based data-flow architecture. The data-flow architecture allows
Ascent to track, re-use, and cleanup intermediate results efficiently while implement-
ing complex visualization pipelines. The design also abstracts how we register and
execute operations, which simplifies adding new features.

At Ascent’s core is a simple data-flow library known as Flow, that composes and
executes filters, which are the basic unit of execution in Ascent. Flow is an evolution
of a Python data-flow network [11], but unlike its ancestor, Flow is a C++ library.
Flow supports composing and executing directed acyclic graphs (DAGs) composed
of filters [18].

There are four components to Flow:

• Filter: basic unit of execution.
• Graph: contains the filter graph and manages the adding of filters.
• Registry: manages the lifetime of filter results.
• Workspace: contains both the registry and filter graph, coordinates graph execu-
tion.

4.1.1 Flow Filters

Flow filters are the basic unit of execution inside of Ascent, and almost all func-
tionality inside of Ascent is implemented as a Flow filter. Adding new capabilities
to Ascent means wrapping that functionality inside a flow filter. Filters declare an
interface, i.e., how many inputs a filter has and if there is an output, and filters are
passed a set of parameters inside of a Conduit node (see Sect. 3.1). Filter inputs are
tracked as arbitrary pointers and runtime features allow filters to identify and obtain
concrete types for processing. In terms of Ascent actions, pipeline filters become
part of a chain of data transformations and would minimally have an input data set
and an output data set, while scenes and extracts become sinks that have an input
data set and no output.

4.1.2 Graph

The graph is a series of Flow filters connected together into a DAG. The graph is
responsible for storing filters and connections between filters. The primary graph
interface supports adding filters and connecting filter ports (e.g., inputs and outputs)
together.

Ascent: A Flyweight In Situ Library for Exascale Simulations 271

4.1.3 Registry

The registry is a key-value data store used to manage the intermediate results of
filters inside the data-flow network. Keys within the registry are reference counted,
and data contained inside the registry is deleted when its reference count reaches
zero. While the data associated with a key can be a pointer to any type, the majority
of the data stored in the registry are Conduit Nodes or VTK-m data sets.

4.1.4 Workspace

The workspace is a container for both the graph and the registry, and the workspace
is responsible for executing the DAG. Additionally, the workspace manages the lists
of known filters. A filter must be registered with the workspace in order to be added
to the graph, and once registered, a filter can be added to the graph by name. Flow
uses a topological sort to ensure proper filter execution order, to track all intermediate
results, and to provide basicmemorymanagement capabilities. During execution, the
workspace provides the registry with reference counts that reflect graph connections,
allowing intermediate results to be efficiently managed.

Multiple workspaces can co-exist, and in fact, Ascent uses a separate Flow
workspace to evaluate expressions within the Ascent runtime.

4.2 Runtime

TheAscent runtimebuilds on topofFlow, and themain responsibility of the runtime is
to translate user actions into data-flownetworks. For example,when a user describes a
series of data transformations inside of a pipeline, the runtime adds the corresponding
filter for each transformation to the internal Flow graph. Some actions, like the
contour filter, have exactly one filter that the runtime adds when translating actions,
while other actions add more than one filter to the graph. Figure7 shows a simplified
view of a data-flow network constructed by the runtime to create contours of a
simulation field and render an image of the result.

Internally, the runtime maintains a list of registered filters to map user-facing API
names to the corresponding Flow filters which are hidden from the user. In addition
to mapping API calls to Flow filters, the filter map also specifies in what actions a
filter can be used. Runtime Filters can be registered as either a “transform” or an
“extract.” Transforms are only callable inside of pipelines and extracts can only be
called at the end of a pipeline. Built-in functionality is registered internally with the
Ascent runtime when Ascent is initialized.

The runtime also exposes the filter registration of the underlying data flownetwork
which allows the runtime to inherit Flow’s flexibility. Simulations, or other analysis
libraries, are free to register custom capabilities at runtime, and this allows outside
functionality to build off the capability provided by Ascent. Just like internal filters,

272 M. Larsen et al.

Fig. 7 An example data
flow network using Flow
assembled by the Ascent
runtime

custom filters can either be registered as transforms or extracts, and can directly
connect with simulation data or consume the results of a pipeline.

The other responsibility of the runtime is to interface with the simulation through
Ascent’s main API calls. The runtime consumes configuration options like MPI
communicators, exception handling, and what backends (e.g., OpenMP or CUDA)
to execute code on. Additionally, the simulation’s mesh data and the actions are all
passed to the runtime.

4.2.1 Parallelism in Ascent

Ascent is a hybrid-parallel library, meaning that it uses both distributed-memory
(e.g., MPI) and shared-memory parallelism (e.g., CUDA and OpenMP), and Ascent
is primarily tightly-coupled with simulations. In the tightly-coupled paradigm, simu-
lations control how parallelism is used, so it is imperative that Ascent’s functionality
be capable of running on the same architectures using the same types of parallelism
as the simulations. Ascent supports many different parallel configurations including
one MPI rank per core (i.e., no shared-memory parallelism), one rank per GPU, and
one rank per node.WhileAscent does internally leverage shared-memory parallelism
for expressions, the majority of the shared-memory parallelism comes fromAscent’s
components such as VTK-m and Devil Ray.

Distributed-Memory Parallelism
Within Ascent, all MPI ranks receive the same set of actions. Since the actions are
the same, all MPI ranks create and execute the same graph, meaning that all flow
filters execute on all ranks. Ascent guarantees that each filter is given full control of
MPI communication, and filters are free to use MPI anyway they see fit, including
creating asynchronous tasks. Some filters, such as threshold, do not need to use any
MPI communication, i.e., each block of data is processed independently, but other

Ascent: A Flyweight In Situ Library for Exascale Simulations 273

filters, such as particle advection, use MPI to pass particles from one rank to another.
Formesh data, as discussed in Sect. 3.3, eachMPI rank receives data published by the
simulation, and Ascent does not redistribute the data. That said, filters can change the
data distribution (e.g., resampling an unstructured grid onto a uniform grid), although
this can be a costly operation.

Shared-Memory Parallelism
Ascent’smain components use portable performance abstraction layers to take advan-
tage of the different types of shared-memory parallelism onmodern supercomputers.
For example, VTK-m is itself a portable performance layer designed specifically for
visualization and currently supports OpenMP,CUDA, andTBB.Devil Ray, while not
itself a portable performance layer, uses RAJA to execute on different architectures,
supporting OpenMP, CUDA, HIP, and TBB.

4.2.2 Data Set Representations

Ascent uses an internal data abstraction, called the data object, as the input andoutputs
of filters. The data object is responsible for transforming data from one in-memory
format to another without unnecessary copies. By using this abstraction, filters can
ask for whatever data set representation they need, however, the conversions between
data representations are not always one-to-one andmay not always result in a shallow
copy.

To support multiple data set representations, there must be a common set of sup-
ported features, but not all data models Ascent uses support the same set of features.
Since Ascent uses Blueprint (see Sect. 3.2) as its data interface to simulations, all
other data models must sometimes be adapted to support additional features. For
example, Blueprint supports multiple topologies in the same data set but VTK-m
only supports a single topology. To handle this correctly within Ascent, we wrap the
data sets in a container that treats each topology as individual VTK-m data sets.

5 Success Stories

5.1 In Situ Visualization of an Inertial Confinement Fusion
(ICF) Simulation

Ascent was used to visualize the results of an unprecedented 3D simulation of two-
fluid mixing in a spherical geometry to better understand hydrodynamic instability
and the transition to turbulence process that is important to the field of inertial confine-
ment fusion andHigh EnergyDensity (HED) Physics. High resolution simulations of
instability growth are not practical for routine use, so high resolution simulations like
this help guide the development of sub-grid models that capture instability effects
with much less computational cost, which are used for ICF calculations.

274 M. Larsen et al.

The simulation was run on the Lawrence Livermore National Laboratory’s
(LLNL) Sierra system, a 125 Petaflop peak system from IBM that has 4,320 nodes,
each with 2 IBM POWER9 processors, 4 NVIDIA Tesla V100 GPUs, 320 GiB of
fast memory (256 GiB DDR4 memory and 64 GiB HBM4), and 1.6TB of NVMe
memory. The specific simulation was a 97.8 billion element simulation run across
16,384 GPUs on 4,096 compute nodes. The simulation application used CUDA via
RAJA to run on theGPUs. The time-varying evolution of themixingwas visualized in
situ with Ascent, also leveraging 16,384 GPUs. The last time step was also exported
by Ascent to the parallel file system for detailed post-hoc visualization using VisIt
[9]. The simulation data was accessed by Ascent directly from the GPU memory,
eliminating any extra data copies. Figure8 shows one of the many images generated
in situ during this run. For this visualization, we used an isovolume filter to isolate
a subset of the mixing layer, and then we used a clip filter to expose the interior of
the mesh before rendering an image. For each visualization cycle, the total time used
for the filters (i.e., isovolume and clip) was approximately 340ms and the rendering
time was approximately 350ms, while the overall simulation ran for several days.

5.2 MARBL Simulation Integration

Ascent has been integrated and released with LLNL’s MARBL [7] simulation code,
a new next-generation multi-physics code currently under development. One of
MARBL’s components is a high-order finite element solver build on MFEM [3],
and Ascent supports the MFEM data model. In order to leverage Ascent’s visual-
ization capabilities, Ascent refines the high-order elements to low-order (i.e., linear
elements). Ascent can be activated through the simulation’s input deck, and in addi-
tion to adding in situ visualization capabilities, Ascent can be used to save out the

Fig. 8 This image is of an
idealized Inertial
Confinement Fusion (ICF)
simulation of a
Rayleigh–Taylor instability
with two fluids mixing in a
spherical geometry. An
isovolume filter was used to
show only the mixing region
of the heavy and light fluids,
and then a clip filter was
added to show the interior of
the sphere

Ascent: A Flyweight In Situ Library for Exascale Simulations 275

mesh and only the fields that the user specifies. Previously, MARBL only saved out
full checkpoints, and only saving a subset of the data allows users to save data for
post-hoc analysis at much higher temporal resolution.

As a new code, simulation validation plays an important role, and one method for
simulation validation is comparing the results of experimental data to the simulated
experiments. One such experiment is a radiation drivenKelvin-Helmholtz shear layer
experiment [12]. The experiment captured radiographs of the instability as it was
driven through the material. Comparing experimental radiographs with radiographs
created from the simulation data is a useful simulation validation approach. MARBL
ran a simulation of this problem using 2304 MPI ranks for 120h. Figure9 shows a
volume rendering and simulated radiograph generated as a result of this simulation.

5.3 Devil Ray Rendering

High-order finite element simulations, likeMARBL, are becoming more common as
supercomputing architectures continue to become more heterogeneous. One reason
for this is that, by simply adjusting the polynomial order of the mesh elements,
high-order simulations can tune the FLOPS/byte ratio to optimize performance on a
specific architecture.Additionally, high-order finite elementmethods can improve the
overall solution accuracy.Analysis and visualization play a key role in understanding,
debugging, and communicating simulation results, but analysis and visualization
frameworks have traditionally only targeted low-order meshes.

The geometry of a high-order data set is traditionally converted to a low-order
approximation using element subdivision, and in order to maintain the accuracy of
the solution, low-order refinement can in some cases dramatically increase the size
of data representation. To make matters worse, the best refinement level is unknown,
and the error propagated by the refinement is not easily understood by users. With

Fig. 9 A volume rendering (left) and simulated radiograph (right) created by Ascent during a
Kelvin-Helmholtz simulation

276 M. Larsen et al.

the rise of in situ analysis, low-order refinement imposes additional memory and
time constraints on the simulation.

By default, Ascent performs low-order refines to visualize high-order meshes, but
Ascent has recently integrated Devil Ray [1], a library for natively ray tracing high-
order element meshes. Ascent leverages Devil Ray to provide users an alternative to
rendering images via low-order refinement. Figure10 shows an extreme case of the
differences between native support for high-order and element subdivision. TheDevil
Ray integration in Ascent is a first step in offering native high-order visualization
support to simulations, such as MARBL.

In terms of capability, Devil Ray rendering integrated intoAscent includes volume
plots, pseudocolor plot, mesh plots, isosurfacing and slicing (Fig. 11). The Devil Ray
plotting capabilities are all image-based. For example, both isosurfacing and slicing
are rendered through ray tracing and do not create actual geometry. Plots can be
combined through image compositing.

6 Additional Resources

This section highlights additional resources for those readers whowish to learnmore.
As a starting point, we suggest that readers begin with Ascent and Conduit. Ascent
and its dependencies have public source code repositories and documentation. The
source code repositories can be found at:

• Ascent https://github.com/Alpine-DAV/ascent
• Conduit https://github.com/LLNL/conduit
• VTK-m https://gitlab.kitware.com/vtk/vtk-m
• Devil Ray https://github.com/LLNL/devil_ray

Fig. 10 Two renderings of a single 20th order hexahedral element. On the left, an image rendered
by Devil Ray, and on the right, an image rendered in VisIt by subdividing the element into 9,261
low-order hexahedrons

https://github.com/Alpine-DAV/ascent
https://github.com/LLNL/conduit
https://gitlab.kitware.com/vtk/vtk-m
https://github.com/LLNL/devil_ray

Ascent: A Flyweight In Situ Library for Exascale Simulations 277

Fig. 11 Two examples of Devil Ray rendering. On the left, a volume plot of the Taylor-Green
vortex, and on the right, a pseudocolor plot combined with a volume plot of the triple point problem

TheAscent, Conduit, andVTK-mdocumentation provide resources for both users
and developers, and the documentation is a great starting point for learning more
about Ascent and its enabling technologies. Additionally, the Ascent documenta-
tion contains numerous tutorials that outline basic Conduit usage, Blueprint mesh
examples, and Ascent API examples. The documentation can be found at:

• Ascent https://ascent.readthedocs.io
• Conduit https://llnl-conduit.readthedocs.io
• Conduit Blueprint https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
• VTK-m http://m.vtk.org/documentation

Acknowledgements This research was supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration. This work performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
(LLNL-BOOK-814190).

References

1. Devil ray: A high-order element ray tracer. https://github.com/LLNL/devil_ray/. Accessed:
2020-1-31

2. extensible data model and format, http://www.xdmf.org
3. Mfem: Finite element discretization library. https://github.com/mfem/mfem/. Accessed: 2020-

1-30
4. MFEM: Modular finite element methods (2017), http://mfem.org
5. Agranovsky, A., Camp, D., Garth, C., Bethel, E.W., Joy, K.I., Childs, H.: Improved Post Hoc

Flow Analysis via Lagrangian Representations. In: Proceedings of the IEEE Symposium on
Large Data Visualization and Analysis (LDAV), pp. 67–75. Paris, France (2014)

https://ascent.readthedocs.io
https://llnl-conduit.readthedocs.io
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
http://m.vtk.org/documentation
https://github.com/LLNL/devil_ray/
http://www.xdmf.org
https://github.com/mfem/mfem/
http://mfem.org

278 M. Larsen et al.

6. Ahrens, J., et al.: An image-based approach to extreme scale in situ visualization and analysis.
In: Proceedings of the InternationalConference forHighPerformanceComputing,Networking,
Storage and Analysis, pp. 424–434. SC ’14. IEEE Press, Piscataway, NJ, USA (2014). https://
doi.org/10.1109/SC.2014.40

7. Alexander, F., Almgren, A., Bell, J., Bhattacharjee, A., Chen, J., Colella, P., Daniel, D.,
DeSlippe, J., Diachin, L., Draeger, E., et al.: Exascale applications: skin in the game. Phi-
los. Trans. R. Soc. A 378(2166), 20190056 (2020)

8. Ayachit, U., et al.: Paraview catalyst: Enabling in situ data analysis and visualization. In: Pro-
ceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization, pp. 25–29. ACM (2015)

9. Childs, H., et al.: VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data.
In: High Performance Visualization—Enabling Extreme-Scale Scientific Insight, pp. 357–372.
CRC Press/Francis–Taylor Group (2012)

10. Dorier, M., Sisneros, R., Peterka, T., Antoniu, G., Semeraro, D.: Damaris/viz: A nonintrusive,
adaptable and user-friendly in situ visualization framework. In: 2013 IEEE Symposium on
Large-Scale Data Analysis and Visualization (LDAV), pp. 67–75 (2013). https://doi.org/10.
1109/LDAV.2013.6675160

11. Harrison, C., Navratil, P., Moussalem, M., Jiang, M., Childs, H.: Efficient dynamic derived
field generation on many-core architectures using python. In: Proceedings of the 2012 SC
Companion: High Performance Computing, Networking Storage and Analysis. p. 583–592.
SCC ’12, IEEE Computer Society, USA (2012). https://doi.org/10.1109/SC.Companion.2012.
82

12. Hurricane, O., Hansen, J., Robey, H., Remington, B., Bono,M., Harding, E., Drake, R., Kuranz,
C.: A high energy density shock driven kelvin-helmholtz shear layer experiment. Phys. Plasmas
16(5), 056305 (2009)

13. Ibrahim, S., Stitt, T., Larsen,M.,Harrison, C.: Interactive in situ visualization and analysis using
ascent and jupyter. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, pp. 44–48. ISAV ’19, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3364228.3364232

14. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley,
K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C.: Jupyter
notebooks - a publishing format for reproducible computational workflows. In: Loizides, F.,
Schmidt, B. (eds.) Positioning and Power in Academic Publishing: Players, Agents and Agen-
das, pp. 87–90. IOS Press (2016). https://doi.org/10.3233/978-1-61499-649-1-87

15. Laboratory, L.L.N.: Conduit: Simplified data exchange for hpc simulations (2017., https://llnl-
conduit.readthedocs.io

16. Laboratory, L.L.N.: Conduit: Simplified data exchange for hpc simulations - conduit blueprint
(2017). https://llnl-conduit.readthedocs.io/en/latest/blueprint.html

17. Larsen,M.,Woods,A.,Marsaglia, N., Biswas,A., Dutta, S., Harrison, C., Childs, H.: AFlexible
System for In Situ Triggers. In: Proceedings of the Workshop on In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization (ISAV), pp. 1–6. Dallas, TX (2018)

18. Larsen, M., et al.: The alpine in situ infrastructure: Ascending from the ashes of strawman.
In: Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visu-
alization, pp. 42–46. ISAV’17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/
3144769.3144778

19. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible io and integration for
scientific codes through the adaptable io system (adios). In: Proceedings of the 6th Interna-
tional Workshop on Challenges of Large Applications in Distributed Environments, pp. 15–24.
CLADE ’08, ACM, New York, NY, USA (2008). https://doi.org/10.1145/1383529.1383533

20. Meredith, J.S., Ahern, S., Pugmire, D., Sisneros, R.: EAVL: The Extreme-scale Analysis and
Visualization Library. In: Eurographics Symposium on Parallel Graphics and Visualization.
The Eurographics Association (2012)

21. Moreland, K., et al.: VTK-m: Accelerating the visualization toolkit for massively threaded
architectures. IEEE Comput. Gr. Appl. (CG&A) 36(3), 48–58 (2016)

https://doi.org/10.1109/SC.2014.40
https://doi.org/10.1109/SC.2014.40
https://doi.org/10.1109/LDAV.2013.6675160
https://doi.org/10.1109/LDAV.2013.6675160
https://doi.org/10.1109/SC.Companion.2012.82
https://doi.org/10.1109/SC.Companion.2012.82
https://doi.org/10.1145/3364228.3364232
https://doi.org/10.3233/978-1-61499-649-1-87
https://llnl-conduit.readthedocs.io
https://llnl-conduit.readthedocs.io
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
https://doi.org/10.1145/3144769.3144778
https://doi.org/10.1145/3144769.3144778
https://doi.org/10.1145/1383529.1383533

Ascent: A Flyweight In Situ Library for Exascale Simulations 279

22. Petruzza, S., Treichler, S., Pascucci, V., Bremer, P.T.: Babelflow: An embedded domain spe-
cific language for parallel analysis and visualization. In: 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 463–473. IEEE (2018)

23. Sane, S., Childs, H., Bujack, R.: An Interpolation Scheme for VDVP Lagrangian Basis Flows.
In: Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), pp. 109–118.
Porto, Portugal (2019)

24. Schroeder, W.J., Martin, K.M., Lorensen, W.E.: The design and implementation of an object-
oriented toolkit for 3d graphics and visualization. In: Proceedings of Seventh Annual IEEE
Visualization ’96, pp. 93–100 (1996)

The SENSEI Generic In Situ Interface:
Tool and Processing Portability at Scale

E. Wes Bethel, Burlen Loring, Utkarsh Ayachit, David Camp,
Earl P. N. Duque, Nicola Ferrier, Joseph Insley, Junmin Gu, James Kress,
Patrick O’Leary, David Pugmire, Silvio Rizzi, David Thompson,
Gunther H. Weber, Brad Whitlock, Matthew Wolf, and Kesheng Wu

Abstract One key challenge when doing in situ processing is the investment
required to add code to numerical simulations needed to take advantage of in situ
processing. Such instrumentation code is often specialized, and tailored to a specific
in situ method or infrastructure. Then, if a simulation wants to use other in situ
tools, each of which has its own bespokeAPI [4], then the simulation code team will
quickly become overwhelmed with having a different set of instrumentation APIs,
one per in situ tool ormethod. In an ideal situation, such instrumentation need happen
only once, and then the instrumentation API provides access to a large diversity of
tools. In this way, a data producer’s instrumentation need not be modified if the user
desires to take advantage of a different set of in situ tools. The SENSEI generic
in situ interface addresses this challenge, which means that SENSEI-instrumented
codes enjoy the benefit of being able to use a diversity of tools at scale, tools that
include Libsim, Catalyst, Ascent, as well as user-defined methods written in C++ or
Python. SENSEI has been shown to scale to greater than 1M-way concurrency on

E. W. Bethel (B) · B. Loring · D. Camp · J. Gu · G. H. Weber · M. Wolf · K. Wu
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
e-mail: ewbethel@lbl.gov

B. Loring
e-mail: loring@lbl.gov

D. Camp
e-mail: DCamp@lbl.gov

J. Gu
e-mail: jgu@lbl.gov

G. H. Weber
e-mail: ghweber@lbl.gov

K. Wu
e-mail: kwu@lbl.gov

U. Ayachit · P. O’Leary · D. Thompson · M. Wolf
Kitware, Inc., Clifton Part, NY, USA
e-mail: utkarsh.ayachit@kitware.com

P. O’Leary
e-mail: patrick.oleary@kitware.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_13

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_13&domain=pdf
mailto:ewbethel@lbl.gov
mailto:loring@lbl.gov
mailto:DCamp@lbl.gov
mailto:jgu@lbl.gov
mailto:ghweber@lbl.gov
mailto:kwu@lbl.gov
mailto:utkarsh.ayachit@kitware.com
mailto:patrick.oleary@kitware.com
https://doi.org/10.1007/978-3-030-81627-8_13

282 E. W. Bethel et al.

HPC platforms, and provides support for a rich and diverse collection of common
scientific data models. This chapter presents the key design challenges that enable
tool and processing portability at scale, some performance analysis, and example
science applications of the methods.

1 Introduction and Overview

A fact of life in in situ processing is the need to add instrumentation code to
data producers, such as numerical simulations, in order to invoke tools for in
situ processing. Over the years, tools like Libsim and Catalyst have evolved to
include in situ APIs, but these are incompatible with one another. As a result, an
application that wants to use both Libsim and Catalyst would need to have tool-
specific instrumentation. This problem compounds as we consider the use of more
and more tools, tools that include not only visualization, but also those for statistical
analysis, machine learning, preparation of derived data products, among others.

The SENSEI generic in situ interface project has focused on solving this problem
of tool portability in a directway. Its key objective is tomake it possible for a SENSEI-
instrumented data producer, such as a numerical simulation, to make use of any of a
number of different external tools and applications for in situ processing, and to do
so without requiring any instrumentation code changes when going from one tool to
another. This concept may be thought of as “tool portability”, or more colloquially
as “write once, run everywhere”. A related concept, proximity portability, refers to
the notion of being able to run either in situ on the same set of nodes, or in transit
on different set of nodes, and also without any instrumentation changes.

D. Thompson
e-mail: david.thompson@kitware.com

J. Kress · D. Pugmire ·M. Wolf
Oak Ridge National Laboratory, Oak Ridge, TN, USA
e-mail: james@jameskress.com

D. Pugmire
e-mail: pugmire@ornl.gov

E. P. N. Duque · B. Whitlock · M. Wolf
Intelligent Light, Rutherford, NJ, USA
e-mail: epd@ilight.com

B. Whitlock
e-mail: bjw@ilight.com

N. Ferrier · J. Insley · S. Rizzi · M. Wolf
Argonne National Laboratory, Lemont, IL, USA
e-mail: nferrier@anl.gov

J. Insley
e-mail: insley@anl.gov

mailto:david.thompson@kitware.com
mailto:james@jameskress.com
mailto:pugmire@ornl.gov
mailto:epd@ilight.com
mailto:bjw@ilight.com
mailto:nferrier@anl.gov
mailto:insley@anl.gov

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 283

In this chapter, we focus on the design and implementation issues for the purposes
of achieving tool portability. One central idea is the design of the SENSEI in situ
interface itself (Sect. 2), which includes a solution to a challenging data modeling
problem.We present several examples that illustrate tool portability (Sect. 3), explore
the costs of in situ processing using this generic interface at scale (Sect. 4), and
illustrate its application to specific science applications (Sect. 5).

The SENSEI project website1 provides direct access to the SENSEI interface
source code, documentation, code examples, and other project-related information.

2 The SENSEI Generic In Situ Interface Design

Given the high level objective of tool portability—being able to have a SENSEI-
instrumented code connect in situwith various tools like Libsim, Catalyst, or custom
analysis codes—we identify three design considerations.

First, if a simulation is instrumented with SENSEI, it should be able to use any
of the different runtimes transparently, without any coding changes needed on the
simulation side to use a different tool. In other words, in an ideal world, once a
simulation has been instrumented with SENSEI, then any effort needed to leverage
any other in situ tool should occur outside the simulation instrumentation code.

Second, if an analysis routine works with SENSEI, it should be portable, in
the specific sense that it should be a straightforward process to move that piece of
analytics to a different scientific simulation that uses SENSEI. The porting concerns
should be at the level of datamanagement (specifying the change in names of variable
arrays), instead of wholesale rewriting of code.

Third is the desire to simplify the creation of in situ methods and tools for
simulation scientists, data analysts, and visualization experts. This concept is related
to the tool portability objective, but it is also worth mentioning separately. Given that
there exist multiple in situ frameworks, each with its own capabilities, advantages,
and expected coding patterns, it is quite challenging for simulation scientists to
instrument their code to each of the frameworks separately. The same idea applies
for in situ tool/method developers as they consider which of the in situ frameworks
for implementing and deploying their method.

As presented in earlier work [2], the approach used to meet these design
considerations focuses on two separate, but related, issues. First is solving a data
model problem so that producers and consumers are able to exchange data. Second
is defining an API that is suitable for use in instrumenting both data producers
and consumers in a way that is representative of common design patterns and use
scenarios.

S. Rizzi
e-mail: srizzi@anl.gov

1 http://www.sensei-insitu.org/.

mailto:srizzi@anl.gov
http://www.sensei-insitu.org/

284 E. W. Bethel et al.

Fig. 1 The SENSEI bridge includes a DataAdaptor, seen by the simulation code or data producer,
an AnalysisAdaptor, seen by the analysis code or data consumer, a bridge data model, and
machinery to link the two adaptors. This image adapted from our previous work, Ayachit et al. [2]

2.1 SENSEI Data Model

A key part of the design of the common interface was a decision on a common data
description model. Our choice was to extend a variant on the VTK data model. There
were several reasons for this choice. The VTK data model is already widely used
in applications like VisIt [5] and ParaView [16], which are important codes for the
post hoc development of the sorts of analysis and visualization that are required in
situ. The VTK data model has native support for a plethora of common scientific
data structures, including regular grids, curvilinear grids, unstructured grids, graphs,
tables, and AMR. There is also already a dedicated community looking to carry
forward VTK to exascale computing [12].

Despite its many strengths, there were some key additions we added for the
SENSEI model. To minimize effort and memory overhead when mapping memory
layouts for data arrays from applications toVTK,we extended theVTKdatamodel to
support arbitrary layouts formulticomponent arrays through a newAPI calledgeneric
arrays [6]. Through this work, this capability has been back-ported to the core VTK
data model. VTK now has native support for the commonly encountered structure-
of-arrays and array-of-structures layouts utilizing zero-copy memory techniques.

2.2 SENSEI Interface

The SENSEI interface is comprised of three components, which are shown in Fig. 1.
The data adaptor performs a mapping from the simulation data model to the VTK
data model. The analysis adaptor performs a mapping from the VTK data model to
that used by the in situ analysis methods. The bridge links together the data adaptor
and the analysis adaptor, and provides the API that a simulation uses to trigger the
invocation of the in situ methods. In this design and implementation, the VTK data
model is the bridge data model between producer and consumer.

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 285

The data adaptor defines an API to fetch the simulation data packaged as VTK
data objects. The analysis adaptor uses this API to access the data to pass to the
analysis method. To instrument a simulation code for SENSEI, one has to provide a
concrete implementation for this data adaptor API. The API treats connectivity and
attribute array information separately, providing specific API calls for requesting
each. As a result, we can avoid using compute cycles needed to map the connectivity
and/or data attributes to theVTKdatamodel unless actually needed by active analysis
methods. The main parts of the originally released sensei::DataAdaptorAPI are
shown in Listing 1. Subsequent releases of the sensei::DataAdaptor API have
added methods: for exposing multiple named datasets; for fetching ghost zone and
adaptive mesh refinement (AMR) covered cell masks information; and, for fetching
light weight metadata useful for load balancing and planning data movement in in
transi t configurations [10].

namespace sensei {
class DataAdaptor : ... {
/// provide the mesh. if structure_only is true,
/// then only the container data object is
/// returned without geometry or topology
/// information.
vtkDataObject* GetMesh(bool structure_only);
/// add an attribute array to the mesh container,
/// if not already added.
bool AddArray(vtkDataObject* mesh,

int association,
const std::string& arrayname);

/// enquire about available attribute arrays.
unsigned int GetNumberOfArrays(int association);
std::string GetArrayName(int association,

unsigned int index);
/// release data.
void ReleaseData();

}; }

Listing 1: SENSEI Data Adaptor API.

The analysis adaptor’s role is to take the data adaptor and pass the data to the
analysis method, doing any transformations as necessary. For a specific analysis
method, the analysis adaptor is provided the data adaptor in its Execute method.
Using the sensei::DataAdaptor API, the analysis adaptor can obtain the mesh
(geometry, and connectivity) and attribute or field arrays necessary for the analysis
method. The main elements of the analysis adaptor API is shown in Listing 2.

286 E. W. Bethel et al.

namespace sensei {
class AnalysisAdaptor : ... {

public:
/// Execute the analysis routine.
virtual int Execute(DataAdaptor* data) = 0;

/// Finalize the analyis routine
virtual int Finalize() = 0;

}; }

Listing 2: SENSEI Analysis Adaptor API.

2.3 Data Types Supported in the SENSEI Interface

Conceptually SENSEI expects a simulation to expose a number of “meshes” for in
situ processing. Here a “mesh” can represent a spatially geometric data set. However,
collections of non-spatially oriented data such as arrays, tables, and graphs are also
supported. Irrespective of the type of data, each mesh that a simulation exposes
represents a logical grouping of array based data partitioned and distributed for
parallel execution. Meshes are therefore comprised of collections of distributed
“blocks” such that eachMPI rank has zero or more “blocks” of data. We liberally use
the term “block” when referring to the subsets of a mesh which are distributed among
a simulation’s MPI ranks for parallel execution. The so called “blocks” can, but do
not need to, have a Cartesian structure. For instance the subsets of points allocated
to each MPI rank in particle in cell (PIC) simulation are referred to as blocks of data.

TheSENSEI datamodelmakes use ofVTK to internally represent simulation data.
VTK is widely used in the analysis of HPC simulation data already and supports a
diverse array of dataset types ranging for finite element method (FEM) datasets to
graphs. VTK supports zero copy transfer of array based data and is extensible at both
compile and run time. The SENSEI APIs make use of the base class in the VTK data
model, vtkDataObject, so that any VTK dataset type including user defined types
may be passed through the API without modification. A high level depiction of some
of the types of data supported in the SENSEI data model are enumerated in Table1.

2.4 SENSEI Data Producer Coding Example

To better understand the steps involved in instrumenting a simulation and analysis
code with SENSEI, we present coding examples showing how to use the SENSEI
interface. Here, we focus on the steps needed to instrument a data producer (e.g., a
simulation) for use with SENSEI. We call this instrumentation the “bridge” code.
The bridge code is not a part of SENSEI. Rather it is a concept that enables us to
discuss simulation instrumentation in a general way.

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 287

Table 1 SENSEI supports a rich collection of common scientific datamodels, ranging from simple,
like the uniform Cartesian mesh, to more complex, like AMR

Type Description

AMR Adaptive Mesh Refinement (AMR) is a
specialization of a multi-block dataset where
blocks have differing resolutions. Different
organization schemes exist such as block
structured overlapping and oct-tree

Multi-“block” The general mesh type used in the SENSEI
data model. All array based data passed
through the simulation interface is multi-block.
Blocks are used to partition subsets of the data
to MPI ranks for parallel execution

Uniform Cartesian A block type where data exists on regular
Cartesian mesh. Geometry is fully implicit

Stretched Cartesian A block type where data exists on a stretched
Cartesian mesh. Geometry is defined by 3
coordinate axes

Curvilinear A block type with hexahedral elements in a
regular ordering such that element indexing is
logically Cartesian. Geometry is fully explicit

Unstructured/FEM A block type with collections of potentially
mixed types of finite element method (FEM)
cells with an arbitrary ordering. Geometry is
full explicit

PIC/Point cloud A block type where data exists at points in
space. Implemented as unstructured mesh

Molecular A block type specifically designed for
molecular dynamics with representations of
atoms and bonds between them

Tabular A block type where data is organized as a
collection of rows and columns

Graph A block type where data is organized on nodes
and edges without spatial information

Array collection A block type consisting of an arbitrary set of
arrays without any spatial information

The bridge code does three things: initializes SENSEI, including passing user
provided XML that selects the data consumer; periodically invokes in situ processing
through the SENSEI APIs as the simulation state evolves; and finalizes SENSEI.
Listing 3 shows an example in C++. Conditionals protect each of the three bridge
code blocks, as the code is only executed if and when the simulation determines it
would like to do in situ processing.

288 E. W. Bethel et al.

int main(...) {
// initialize the simulation
...

// initialize SENSEI
if (doInSitu) {

ca = sensei::ConfigurableAnalysisAdaptor::New();
ca->Initialize(userXMLFile);

}

// simulation main loop
for (int timestep=first; timestep < last; ++timestep) {

// advance simulation
...

if (doInSitu) {
// create and initialize the data adaptor
DataAdaptor *da = DataAdaptor::New();
da->Initialize(...);
// invoke in situ processing
ca->Execute(da);
// clean up
da->Delete();

}
}

// SENSEI shutdown and cleanup
if (doInSitu) {

ca->Finalize();
ca->Delete();

}

// simulation specific cleanup
...

}

Listing 3: Data producer, data bridge setup and use.

2.5 SENSEI Data Consumer Coding Example

Next, in Listing 4 we present the view from an in situ method where we set
up the analysis adaptor. This particular example is from the SENSEI histogram
endpoint, which is part of the SENSEI code distribution. When instrumenting for
an in situ analysis method, one has to provide a sensei::AnalysisAdaptor
subclass that implements the Execute(sensei::DataAdaptor*) method. In the
simplest case, the analysis method’s data model is based on the VTK data model, in
which case the AnalysisAdaptor subclass obtains the VTK data object using the

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 289

sensei::DataAdaptor and then does the necessary computation. This listing does
not show computation of the histogram, only setting up the “inbound” bridge.

namespace sensei {
bool Histogram::Execute(sensei::DataAdaptor* data) {
...
// request light-weight mesh without connectivity info
vtkDataObject* mesh = data->GetMesh(/*structure_only*/true);
// request the array to histogram
data->AddArray(mesh, this->Association, this->ArrayName);
...
// * compute histogram using the array available on mesh
// * cell or point data locally and then reduce local
// * result across ranks using MPI Reduce.
} }

Listing 4: In Situ data consumer, data bridge setup and use.

If the analysis method uses a different data model other than the VTK data model,
then the Executemethod needs to obtain the raw array pointers from the VTK data
object and then do any needed transformations.

3 SENSEI Tool Portability

One of the main strengths of the SENSEI design and implementation is the idea of
tool portability. The design objective is to be able to instrument a data producer code
once with SENSEI, and then use any number of different in situ or in transit methods
without any coding changes. This section explores the different ways that SENSEI
achieves tool portability by presenting examples of use with a diverse set of in situ
tools, ranging from user-written Python, to in situ endpoints from both the SENSEI
and Ascent projects.

3.1 Configurable Analysis Adaptor

Reviewing briefly, in SENSEI there are data producers that are instrumented with
SENSEI to invoke a DataAdaptor that is specific to the data producer code. There are
also data consumers, or endpoints, which have associated AnalysisAdaptors. The
purpose of the DataAdaptor and AnalysisAdaptor is to perform any necessary
transformations between a native data model and the bridge data model.

In addition, SENSEI provides a configurable analysis adaptor, which uses an
XML file to select and configure one or more back ends at run time. Run time
selection of the back end via XML means one user can access Catalyst, Libsim, or

290 E. W. Bethel et al.

Fig. 2 Leveraging SENSEI’s configurable analysis adaptor, a single data producer has access to
any number of potential in situ or in transit methods. The runtime choice of which in situ or in
transit method or endpoint, along with its associated parameters, is specified in a human-readable
XML configuration file. Image courtesy B. Loring

a Python-based method with no changes to the simulation code. In Fig. 2, we see a
simulation data producer’s bridge code pushes data through the configurable analysis
adaptor to the back end that was selected at runtime via the SENSEI configuration
file.

3.2 Connecting SENSEI to Libsim, Catalyst, Ascent, or
ADIOS

To illustrate tool portability, Fig. 3 presents an example of a single data producer, the
oscillators miniapplication, which is part of the SENSEI software distribution,
coupled to three different in situ endpoints that perform visualization. Figures3a, b,
and c show sample images and the associatedXML configuration file used to produce
the image with Libsim, Catalyst, and Ascent, respectively. The runtime selection of
endpoint is performed by SENSEI’s configurable analysis adaptor. This example
reinforces the idea of tool portability, one of SENSEI’s design objectives, whereby
no instrumentation code changes are needed on the data producer sidewhen changing
between in situ endpoints.

For in transit configurations, where data must be explicitly moved from producer
ranks to consumer ranks, SENSEI can take advantage of several different potential
data transport mechanisms. Continuing the example of connecting the oscillators

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 291

Fig. 3 Example of SENSEI’s tool portability, where the oscillators miniapplication is used
with three different in situ infrastructures: Libsim, Catalyst, and Ascent. In all cases, there are no
coding changes needed to the oscillators miniapplication. Instead, the only difference is in the
configuration file, which specifies the specific in situ method to be run and using what parameters.
Note that these three backends all make use of their own separate configuration files as well. Image
courtesy B. Loring

292 E. W. Bethel et al.

<sensei>
<transport type="adios1" filename="random_2d_64.bp"

method="FLEXPATH" enabled="1" />
</sensei>

Listing 5: This XML configures runs to use ADIOS as a data transport. The filename
in this example is used to establish a connection between sender and receiver. SENSEI
has the ability to switch between several different potential data transport tools at
runtime via XML-based configuration files.

miniapplication to one of several potential endpoints, Listing 5 shows the SENSEI
configuration file that connects the data producer to the ADIOS data transport. That
data transport could then be connected to any of the endpoints shown earlier in Fig. 3
to produce exactly the same visual results as when those endpoints are invoked in
situ.

Using this idea to implement in transit processing, and building on the adaptor
and endpoint strategy, one can construct in situ and in transit workflows by “daisy
chaining” together transport layers and endpoints that perform specific types of
processing. This has been demonstrated at scale on HPC systems with several
different scientific simulations and different types of endpoints [1, 2, 10].

3.3 Coupling with User-Written Python Tools

Due to the growing collectionofPython-based tools andmethods for diverse activities
ranging from visualization to analysis and machine learning, the SENSEI project
includes the ability to invoke Python-based methods for use in situ, including
parallel Python-based methods and use of such methods at scale on HPC platforms.
This section provides a high-level overview of how to invoke user-supplied Python
code in situ, and in parallel, from a SENSEI-instrumented application, and is a
consolidation of a more detailed discussion of design principles and implementation
details discussed elsewhere [11].

Focusing on the user-supplied Python analysis code only, the basic idea is
that the user-supplied Python code needs to contain three functions: Initialize,
Execute, andFinalize. The PythonAnalysis forwards calls fromSENSEI’sC++
AnalysisAdaptor API to those three user-provided Python functions. Those three
functions are contained in the user Python file that is passed as an argument to the
PythonAnalysis class. During initialization, the PythonAnalysis class reads the
user Python script file on Rank 0, and then broadcasts that script to all other ranks.
No specific action is required on the part of the user Python code for this to happen.
The function signatures are shown in Listing 6.

The runtime selection of the user-supplied Python method is accomplished via
SENSEI’s ConfigurableAnalysis. The ConfigurableAnalysis allows users

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 293

def Initialize():
your initialization code here
return

def Execute(dataAdaptor):
your in situ analysis code here
return

def Finalize():
your tear down code here
return

Listing 6: The user-supplied Python file must contain three functions: Initialize,
Execute, and Finalize, which are invoked by the SENSEI AnalysisAdaptor at
runtime.

to select one of the analysis back ends at run time via an XML configuration file.
Example XML is shown in Listing 7, which contains the name of the user-supplied
Python script, along with some initialization values that are specific to the variables
in that script.

<sensei>
<analysis type="python" script_file="userPythonFile.py"

enabled="1">
<initialize_source>

threshold=1.
mesh=’mesh’
array=’data’
cen=1

</initialize_source>
</analysis>

</sensei>

Listing 7: The XML initialization file used by SENSEI’s ConfigurableAnalaysis
to invoke the user-supplied Python code, as well as to provide some initialization
values specific to the user script. Having initialization values in the configuration file
helps to avoid having hard-coded parameters inside the Python code itself

The user-supplied XML file shown in Listing 7 includes Python code that can
be thought of as initialization steps. The idea is that this ini tiali zation source is
injected by SENSEI and executed as source code in the interpreter. This channel is
only used for initialization, and as a result, is only run once at start up. This channel
can be used to set global variables that control execution of the user-defined analysis
script. Once the ini tiali zation source has been run, the user-provided Initialize
function, if present, is invoked.

During a simulation run, the simulation periodically invokes the analysis back
end and will provide it with a data adaptor instance so the analysis method can

294 E. W. Bethel et al.

access the data it needs from the simulation. In the case of a user-supplied Python
code running in situ, when the C++ implementation’s Execute override is called (by
the simulation), it creates a SWIG wrapped instance of the data adaptor passed to
it, builds an argument list containing the wrapped adaptor instance, and invokes the
user-supplied Python Execute function. The Python analysis code uses the wrapped
data adaptor to query metadata and then selectively access data objects containing
the desired set of arrays. The data adaptor returns a VTK-wrapped vtkDataObject
instance. The user Python code makes use of VTK’s numpy_support module to
access simulation data. A complete example is show in Listing 8.

The parallel user Python code may need to make use of MPI for tasks like
interprocess communication. SENSEI uses an isolated MPI communication space,
which can be overridden by the simulation if desired. The communicator is accessible
in the Python script via a global variable named comm.

Since many parallel simulations make use of ghost zones, the corresponding
analysis methods will require access to them for their computations. SENSEI has
adopted the ghost zone convention now used by both ParaView [9] and VisIt [17].
SENSEI’s DataAdaptor provides methods for querying the presence of ghost zones
and accessing mask arrays identifying them.

We leverage this capability to perform a conditional in situ computation of a
time-varying data producer running in parallel on an HPC system.We configured the
oscillatorminiapplicationwith 256 randomly positioned and initialized harmonic
oscillators on a 163842 plane. This configuration serves as a proxy for a simulation
of a chemical reaction on a 2D substrate where the output represents the reaction
rate. Data generated by the miniapplication at simulation time 1 is shown on the
left of Fig. 4, including an isoline at 1.0. In the original study [11], we ran this
miniapplication at four concurrency levels (512, 1024, 2048 and 4096 cores) for 100
timesteps and invoked the in situmethod, in this case our custom Python code shown
in Listing 8, at each timestep. Note that this code uses SENSEI’s ghost zone mask
array to support selective computations. In each invocation, we calculate the area of
the domain where the reaction rate exceeds a given threshold, here set to 1.0, and
accumulate the value over all timesteps. At the end of the run we use matplotlib
to generate the x-y plot shown in the right of Fig. 4, which shows the time-evolving
area computation.

3.4 In Situ Analysis of AMR Data

Adaptivemesh refinement (AMR) is a computational technique introduced byBerger
and Colella [3]. It is used for solving systems of partial differential equations
whereby computational resources are targeted to areas of the simulated domain
where numerical errors have become unacceptably large. As the simulation evolves,
it internally computes an estimate of numerical errors that result from the current
mesh discretization.When these errors become too large, the cellswith high errors are
flagged to be replaced with a new discretization of higher spatial resolution, which

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 295

import numpy as np, matplotlib.pyplot as plt
from vtk.util.numpy_support import *
from vtk import vtkDataObject, vtkCompositeDataSet

default values of control parameters
threshold = 0.5
mesh = ’’
array = ’’
cen = vtkDataObject.POINT
out_file = ’area_above.png’
times = []
area_above = []

def pt_centered(c):
return c == vtkDataObject.POINT

def Execute(adaptor):
get the mesh and arrays we need
dobj = adaptor.GetMesh(mesh, False)
adaptor.AddArray(dobj, mesh, cen, array)
adaptor.AddGhostCellsArray(dobj, mesh)
time = adaptor.GetDataTime()

compute area above over local blocks
vol = 0.
it = dobj.NewIterator()
while not it.IsDoneWithTraversal():

get the local data block and its props
blk = it.GetCurrentDataObject()

get the array container
atts = blk.GetPointData() if pt_centered(cen) \

else blk.GetCellData()

get the data and ghost arrays
data = vtk_to_numpy(atts.GetArray(array))
ghost = vtk_to_numpy(atts.GetArray(’vtkGhostType’))

compute the area above
ii = np.where((data > threshold) & (ghost == 0))
vol += len(ii[0])*np.prod(blk.GetSpacing())

it.GoToNextItem()

compute global area
vol = comm.reduce(vol, root=0, op=MPI.SUM)

rank zero writes the result
if comm.Get_rank() == 0:

times.append(time)
area_above.append(vol)

def Finalize():
if comm.Get_rank() == 0:

plt.plot(times, area_above, ’b-’, linewidth=2)
plt.xlabel(’time’)
plt.ylabel(’area’)
plt.title(’area Above %0.2f’%(threshold))
plt.savefig(out_file)

return 0

Listing 8: A complete, working example of user-written Python code run in situ by
SENSEI to produce the results shown in Figure 4. This code uses SENSEI’s ghost
zone mask array to perform a conditional computation.

296 E. W. Bethel et al.

Fig. 4 The reaction rate on a planar substrate as computed in the miniapplication is shown here at
simulation time 1, including an iso-line of 1 in black (left). At each time step the in situ analysis
(Listing 8) computes the area of the substrate where the reaction rate is greater or equal to 1. The
area is accumulated and plotted at the end of the run (right). This image is reprinted from our
previous work Loring et al. [11]

is intended to reduce numerical error due to discretization. Cells with acceptable
errors remain at their existing resolution. In overlapping block-structured AMR, the
domain is decomposed in to groups of blocks organized by refinement level. The
blocks in higher levels fully overlap those in lower levels. Metadata accompanying
the set of blocks is used to describe the hierarchical nesting of the blocks.

The SENSEI data and analysis adaptor APIs and data model includes support for
AMR-capable data producers. Among these capabilities are APIs for fetching mask
arrays, which indicate where mesh cells are covered by more refined cells, and for
fetching metadata, which describes the hierarchical structure of the AMR data [10].
These extensions enable seamless movement and processing of AMR data by the
supported in situ and in transit methods and endpoints.

Figure5 shows two examples of in situ processed AMR data. The left panel shows
a pseudocolored image produced using SENSEI’s Python back-end in conjunction
with the Yt visualization module, and the image reveals the hierarchical structure
of an AMR advection miniapplication that ships with the AMReX framework [11].
In the right panel, blue lines on an extracted isosurface show the refined nature of
the mesh. In both cases, the mask arrays obtained through SENSEI’s data adaptor
API are critical for correct processing of the refined data. Cells that are covered by
refined cells in higher levels as indicated by the mask need to be discarded during in
situ processing so that only the highest resolution data is used.

The SENSEI analysis adaptors for in situ and in transit methods and endpoints
with AMR processing capabilities handle translation of AMR data from SENSEI’s
data model. As in the case of other SENSEI instrumented data producers, AMR
simulationsmake use of runtime providedXML to select one of the in situ or in transit
data processing, analysis, or movement methods. No changes to the simulation are
required to switch between the various in situ and in transit methods and endpoints.

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 297

Fig. 5 Adaptive mesh refined (AMR) data has a hierarchical structure where mesh cells in regions
of the simulation where numerical error is unacceptably large are refined, increasing the spatial
resolution, to reduce the error. SENSEI’s data model and adaptor APIs are designed for use with
AMR data producers. Left: In this in situ pseudocolored rendering, using SENSEI’s Yt back-end,
overset lines show the hierarchical mesh structure. Data produced by an AMReX advection mini-
application. This image is reprinted from our previous work Loring et al. [11]. Right: In this
image an isosurface extracted with SENSEI’s Catalyst back-end is rendered. The blue lines show
the refined mesh structure. Data produced with the AMReX IAMR compressible Navier-Stokes
simulation. Image courtesy B. Loring

Figure6 shows renderings of results produced by IAMR, a compressible Navier-
Stokes solver implemented on top of AMReX. These IAMR runs were executed
using 2048 MPI ranks on NERSC’s Cori, a Cray XC40 system. The simulation was
configured using a Rayleigh-Taylor instability initial condition and set to use 3 levels
with a base mesh of 2562× 512 giving an effective resolution of 10242× 2048. The
top most panel shows 10 isosurfaces rendered with Libsim, the middle panel shows
the same isosurfaces rendered with Catalyst, and the bottom most panel shows them
again rendered with Ascent. The SENSEI XML used to switch between the different
renderers is shown next to the corresponding image. In each case, theXMLfile points
to a library-specific configuration file that contains the configuration information in
the rendering library’s native format. These library specific configurations, in the
case of Libsim and Catalyst, can be generated using their respective GUIs.

298 E. W. Bethel et al.

Fig. 6 This SENSEI data producer, the AMReX IAMR Rayleigh-Taylor simulation instrumented
with the SENSEI interface, is shown here running in parallel on a large HPC platform with 3 levels
of refinement. Three runs were made, the first using the SENSEI Analysis Endpoint that invokes a
Libsim-based renderer (top), the second one that invokes a Catalyst-based renderer (middle), and
the third using one that invokes an Ascent-based renderer (bottom). Switching between the different
rendering back-ends required no changes to the simulation code. Instead, runtime provided XML,
shown to the right of each figure, was used to effect the change. Images courtesy B. Loring

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 299

Fig. 7 Performance analysis to measure the potential impact to a code of invoking a method
directly as a subroutine call compared to invoking the method through the SENSEI interface.
In this particular test configuration, which entails using in situ processing of a structured mesh
using an autocorrelation operation, there are no significant differences between the two when
measuring and comparing time to solution (Fig. 7a) and memory footprint (Fig. 7b). This image is
reprinted from our previous work [1]

4 SENSEI In Situ Performance Analysis at Scale

There are several potential different dimensions of performance analysis of in situ
systems andmethods.Of these,we focus on two specific questions in this section. The
first is to examine the degree to which use of in situmethods impacts the performance
of a simulation running at scale on an HPC system. The second is to compare the
performance of a typical scientific visualization task when run in post hoc and in
situ configurations so as to gain an understanding of potential gains that might result
from using an in situ approach.

4.1 Performance Impact of In Situ Processing

One key question is “how much does the use of in situ methods impact simulation
code” in terms of memory footprint and runtime. Ayachit, et al. [1] approach this
problem by setting up a test matrix that consists of the several configurations aimed
to revealing performance differences when invoking methods directly as compared
to when invoking them using in situ infrastructure. The study involves the use of
several different in situ analysis methods that have embarrassingly parallel scaling
characteristics. The test battery includes runs at varying concurrencies (1K-, 6K-, and
45K-way parallel) on a large HPC platform, and include measurements of runtime
and memory use.

The results of those tests, shown in Fig. 7, reveal there was no appreciable
difference in either runtime or memory footprint when invoking the method directly
as a subroutine compared to invoking themethod through the SENSEI infrastructure.
In other words, the use of in situmethods at scale had no appreciable difference when
compared to the application just making a subroutine call. This result means the in

300 E. W. Bethel et al.

Fig. 8 From a 1M-way parallel PHASTA run on mira at Argonne National Laboratory, this image
is a zoomed-in view of a 2D slice from 3D volume. This numerical simulation models the flow over
a vertical tail-rudder assembly for a geometry that exactly matches the configuration of an ongoing
wind tunnel experiment. This image is reprinted from our previous work [1]

situ interface did not “get in the way“ of the application, or otherwise incur any
significant cost in terms of runtime or memory footprint.

Some of the characteristics of the SENSEI interface and the study that enabled
this type of result are as follows. First, this particular study focused on processing
structured, 3D meshes. Such data types require relatively little metadata, and are
amenable to zero copy sharing between the simulation and in situmethod. The results
would have likely been somewhat different with a different type of data model that
incurs a larger cost in terms of metadata, such as AMR meshes. At the time of that
study, the SENSEI interface provided support for zero copy data sharing between
the simulation and in situmethod for structure mesh data models. More recent work
enables shallow- and zero-copy data sharing for other types of datawhenever possible
and feasible. Some of the science examples studied include unstructured meshes,
where portions of the data required shallow- or deep-copies, including a large-scale
CFD run at greater than 1M-way parallel, results of which are shown in Fig. 8.

This particular study from Ayachit, et al. [1] focuses on a relatively narrow set of
configurations to explore performance impact at scale for in situ processing. Other
studies have examined different dimensions of performance in in transit processing.
For example, Morozov and Lukić [13] compare time to solution in situ and in transit
work processes. Kress, et al. [8] examine cost estimation for in transit configurations
of some commonvisualization rendering scenarios. This particular area, performance
analysis of in situ and in transit processing, is a vibrant area of research with a long
history in distributed computing.

4.2 Cost Savings of In Situ Over Post Hoc

Another dimension of performance analysis for in situ processing is to examine time-
to-solution for a workflow consisting of a simulation producing numerical results
that are then processed either in situ or in a post hoc configuration. Ayachit, et al. [1]
include such a study, which shows significant differences in time-to-solution for in
situ and post hoc configurations run at varying levels of concurrencies and workload

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 301

configurations. In their study, they run a data producer over 100 timesteps at a range
of concurrencies: 1K-, 6K-, and 45K-way parallel. The results of this computation
are then analyzed using a set of simple, embarrassingly parallel methods (histogram,
point-wise autocorrelation) and visualized with ParaView/Catalyst.

In the post hoc configuration, data from each time step is written to disk using
a file-per-processor configuration. Then, these data files are read back in from disk
and processed by the analysis and visualization methods. The post hoc configuration
uses 1/10 the number of ranks used to produce the data, since this ratio is typical of
many post hoc workflows where there are typically far fewer ranks used for analysis
than were used to compute the data.

In the in situ configuration, the analysis and visualization are performed at the
same concurrency as the simulation. This configuration is also representative ofmany
common in situ configurations: using a differing number of ranks for producer and
consumer would likely entail data movement or redistribution, which is essentially
an in transit use scenario.

The findings from this study, presented in detail in Ayachit, et al. [1], show that the
expensive cost of disk I/O, both for writing and reading, is a significant impediment.
It is no surprise that avoiding disk I/O altogether results in a huge performance
gain. In addition, running the analysis and visualization at the same scale as the
simulation results in significantly lower runtimes for that portion of theworkload. The
disparity between in situ andpost hoc configurations growswith scale: as concurrency
increases, the difference in performance between these twomodalities also increases.
This study makes a strong case for performance gains that result when using in situ
processing.

5 SENSEI In Situ Applications to Science Problems

The next two sections present results where the SENSEI interface facilities in situ
processing for specific science applications. The first, in Sect. 5.1, shows how in
situ processing helps to validate mesh configurations for the Nek5000 code, where
the idea is to detect problematic configurations during debug runs prior to full-scale
production runs. The second, in Sect. 5.2, shows use of in situ processing to produce
data extracts for post hoc analysis, where the data extract is significantly smaller in
size than the underlying computational mesh.

5.1 In Situ Mesh Validation in Combustion Simulations

Nek5000 is a massively-parallel high-order spectral element computational fluid
dynamics (CFD) solver written in Fortran and used for more than 30years [14].
Domain scientists use it for large-scale simulations of fluid flow, thermal convection,
combustion,magnetohydrodynamics, and electromagnetics.During a typical simulation,

302 E. W. Bethel et al.

Fig. 9 a Simulation mesh. b In situ visualization highlighting very small and vanishing Jacobians.
These images are representativerinted from our previous work [15]

spectral (mesh) elementsmay deform, sometimes causing the Jacobian of some of the
elements to become zero or negative. In those cases the simulation can not proceed.

Users of Nek5000 frequently encounter the problem of needing to identify the
exact location of problematic individual mesh elements within the whole mesh.
Employing the standard post hoc approach to address this problem is both time
consuming and requires vast storage space. To alleviate this problem, Shudler et al.
[15] demonstrated Nek5000 instrumented with SENSEI as a tool to enable users to
find problematic regions of the simulation mesh in situ.

The left side of Fig. 9 shows the input mesh for a Nek5000 simulation of an
experimental combustion engine. The hexahedral elements of the mesh may be valid
(i.e., non-vanishing Jacobians) at the start of a production run, butmay become highly
skewed or distorted (vanishing Jacobians) during the mesh motion. The goal of this
in situ workflow with SENSEI is to determine when and where vanishing Jacobians,
if any, occur. The desired outcome is to provide a capability to users where they
can validate the mesh before running any production-level simulations at scale. The
right side of Fig. 9 shows an in situ rendering with SENSEI and Catalyst where the
problematic areas of the mesh are highlighted in red (low values of the Jacobian).
In situ detection and visualization of vanishing Jacobians helps users to locate the
problematic regions of the mesh more quickly by providing visual feedback as well
as a list of the problematic elements that can be fixed in preparation for large-scale
production runs.

5.2 In Situ Processing and Analysis in Wind Energy
Applications

One area of study in wind energy applications is the numerical modeling of wind
turbines as individuals and as groups in wind farms. As individuals, some studies
focus on stresses and other factors of the wind turbine elements, including the blades,

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 303

Fig. 10 Downstream cross flow cut-planes at various positions of the NREL WindPACT-1.5MW
wind turbine. This image is reprinted from our previous work [7]

the nacelle, and the tower. As groups, in farms, some studies seek to analyze the
interplay of turbulence and its impact when the downstream wake from one wind
turbine intersects other wind turbines.

A recent study from Kirby, et al. [7] explores the use of in situ methods in a
numerical modeling and analysis workflow. Here, the W2A2KE3D code is used to
model the NREL WindPACT-1.5MW wind turbine (as well as other models, which
are presented in cited work). Figure10 demonstrates in situ extracts visualized in
VisIt showing the wake evolution through seven cut-planes across the wake as a
function of rotor diameter at fixed locations downstream of the wind turbine. Here,
the in situ operation is to extract and produce 7 cut-planes at 400× 400 resolution,
each containing five flowvariables and three coordinates. Additionally, a center plane
of resolution 2000× 400 with the same variables is extracted and is shown in the
top of Fig. 11. An isocontour of velocity magnitude is shown the bottom of Fig. 11,
which reveals the complex tip vortex phenomenon evolving downstream of the wind
turbine.

For this study, one of the benefits reported by the authors is a significant cost
savings. For their particular workflow, which entails performing analysis of wake
turbulence, they realize a data reduction factor of approximately 246.2 that results
when using in situ methods to produce data extracts at each timestep as opposed to
doing I/O at full spatiotemporal resolution.

For problems such wind turbine and wind farm modeling, the authors suggest
that in situ workflows “provide opportunities for increased productivity as the data
extraction and visualization is co-produced with simulation results at run-time.” The
productivity increase results from a decrease in data sizes, and provides the ability

304 E. W. Bethel et al.

Fig. 11 (Top) Visualization of instantaneous tangential flow velocity computed by the NREL
WindPACT-1.5MW wind turbine model. The image shows the downstream wake propagation,
which is annotated by rotor diameter lengths. (Bottom) An isocontour of the velocity magnitude
demonstrating the vortex structure evolution of the NREL WindPACT-1.5WM wind turbine. The
data extracts were created in situ using Libsim, and were rendered in a post-processing step using
VisIt. These images are representativerinted from our previous work [7]

to perform analysis at high spatiotemporal resolution with only a fraction of the I/O
and computational cost required by a post hoc workflow.

6 Conclusion

The SENSEI generic in situ interface has made it possible for a parallel simulation
code to be instrumented once but then take advantage of any number of different
potential in situ or in transit methods or tools for analysis and visualization. The
primary design feature that makes this code coupling possible is the adaptor model
whereby implementation-specific code that maps from native to bridge data models.
The feature provides a high degree of portability between data producers and data
consumers. The examples in this chapter show SENSEI being used with a diverse set
of visualization and analysis endpoints, including Libsim, Catalyst, Ascent, and user-
written Python code. This latter capability, being able to invoke user-written Python
code both in situ and in parallel, opens the doors to a vast world of third-party Python
tools for analysis, computer vision, and machine learning.

This system has been studied extensively at scale, including at over 1M-way
concurrency. Thefindings show thatwhen there is a high degree of alignment between
data models, as would be the case with something like a 3D structured mesh, that
the in situ operations are highly efficient due to SENSEI’s ability to use zero copy
wherever possible. SENSEI’s rich support for a wide diversity of different scientific

The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale 305

data models means that it is readily usable by nearly all scientific simulation codes
in existence today.

Acknowledgements This work was supported by the Director, Office of Science, Office of
Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract Nos.
DE-AC02-05CH11231 and DE-AC01-06CH11357, through the grant “Scalable Analysis Methods
and In Situ Infrastructure for Extreme Scale Knowledge Discovery,” program manager Dr. Laura
Biven. This research used resources of the National Energy Research Scientific Computing Center,
a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. Argonne National Laboratory’s work was
supported by and used the resources of the Argonne Leadership Computing Facility, which is a
U.S. Department of Energy, Office of Science User Facility supported under contract DE-AC02-
06CH11357.

References

1. Ayachit, U., Bauer, A., Duque, E.P.N., Eisenhauer, G., Ferrier, N., Gu, J., Jansen, K.E., Loring,
B., Lukić, Z., Menon, S., Morozov, D., O’Leary, P., Ranjan, R., Rasquin, M., Stone, C.P.,
Vishwanath, V., Weber, G.H., Whitlock, B., Wolf, M., Wu, K.J., Bethel, E.W.: Performance
analysis, design considerations, and applications of extreme-scale in situ infrastructures. In:
Proceedings of the International Conference for High Performance Computing, Networking,
Storage andAnalysis, SC ’16, pp. 79:1–79:12. IEEE Press, Piscataway, NJ, USA (2016). http://
dl.acm.org/citation.cfm?id=3014904.3015010

2. Ayachit, U., Whitlock, B., Wolf, M., Loring, B., Geveci, B., Lonie, D., Bethel, E.W.: The
SENSEI generic in situ interface. In: Proceedings of the 2ndWorkshop on InSitu Infrastructures
for Enabling Extreme-scale Analysis and Visualization, ISAV ’16, pp. 40–44. IEEE Press,
Piscataway, NJ, USA (2016). https://doi.org/10.1109/ISAV.2016.13

3. Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput.
Phys. 82(1), 64–84 (1989)

4. Childs, H., Ahern, S., Ahrens, J., Bauer, A.C., Bennett, J., Bethel, E.W., Bremer, P.T., Brugger,
E., Cottam, J., Dorier, M., Dutta, S., Favre, J., Fogal, T., Frey, S., Garth, C., Geveci, B., Godoy,
W.F., Hansen, C.D., Harrison, C., Hentschel, B., Insley, J., Johnson, C., Klasky, S., Knoll, A.,
Kress, J., Larsen, M., Lofstead, J., Ma, K.L., Malakar, P., Meredith, J., Moreland, K., Navratil,
P., O’Leary, P., Parashar, M., Pascucci, V., Patchett, J., Peterka, T., Petruzza, S., Podhorszki,
N., Pugmire, D., Rasquin, M., Rizzi, S., Rogers, D.H., Sane, S., Sauer, F., Sisneros, R., Shen,
H.W., Usher, W., Vickery, R., Vishwanath, V., Wald, I., Wang, R., Weberr, G.H., Whitlock, B.,
Wolf, M., Yu, H., Ziegler, S.B.: A terminology for in situ visualization and analysis systems.
Int. J. High Perform. Comput. Appl. 0(0) (2020). https://doi.org/10.1177/1094342020935991

5. Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller,
M., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E.W., Camp,
D., Rübel, O., Durant, M., Favre, J., Navratil, P.: VisIt: an end-user tool for visualizing and
analyzing very large data. In: Bethel, E.W., Childs, H., Hansen, C. (eds.) High performance
visualization—enabling extreme-scale scientific insight,Chapman&Hall,CRCComputational
Science, pp. 357–372. CRC Press/Francis–Taylor Group, Boca Raton, FL, USA (2012). http://
www.crcpress.com/product/isbn/9781439875728. LBNL-6320E

6. David Lonie: vtkArrayDispatch and Related Tools. http://www.vtk.org/doc/nightly/
html/VTK-7-1-ArrayDispatch.html. http://www.vtk.org/doc/nightly/html/VTK-7-1-
ArrayDispatch.html, last accessed Aug, 2016

7. Kirby, A.C., Yang, Z., Mavriplis, D.J., Duque, E.P., Whitlock, B.J.: Visualization and
data analytics challenges of large-scale high-fidelity numerical simulations of wind energy

http://dl.acm.org/citation.cfm?id=3014904.3015010
http://dl.acm.org/citation.cfm?id=3014904.3015010
https://doi.org/10.1109/ISAV.2016.13
https://doi.org/10.1177/1094342020935991
http://www.crcpress.com/product/isbn/9781439875728
http://www.crcpress.com/product/isbn/9781439875728
http://www.vtk.org/doc/nightly/html/VTK-7-1-ArrayDispatch.html
http://www.vtk.org/doc/nightly/html/VTK-7-1-ArrayDispatch.html
http://www.vtk.org/doc/nightly/html/VTK-7-1-ArrayDispatch.html
http://www.vtk.org/doc/nightly/html/VTK-7-1-ArrayDispatch.html

306 E. W. Bethel et al.

applications. In: 2018 AIAA Aerospace Sciences Meeting (2018). https://doi.org/10.2514/6.
2018-1171. https://arc.aiaa.org/doi/abs/10.2514/6.2018-1171

8. Kress, J., Larsen, M., Choi, J., Kim, M., Wolf, M., Podhorszki, N., Klasky, S., Childs,
H., Pugmire, D.: Comparing the efficiency of in situ visualization paradigms at scale. In:
International Conference on High Performance Computing, pp. 99–117. Springer (2019)

9. Lipsa, D., Geveci, B.: Ghost and blanking (visibility) changes. https://blog.kitware.com/ghost-
and-blanking-visibility-changes/ (2015). Last accessed: Aug 2018

10. Loring, B., Gu, J., Ferrier, N., Rizzi, S., Shudler, S., Kress, J., Logan, J.,Wolf, M., Bethel, E.W.:
Improving performance of m-to-n processing and data redistribution in in transit analysis and
visualization. In: EuroGraphics Symposium on Parallel Graphics and Visualization (EGPGV).
Norrköping, Sweden (2020)

11. Loring, B.,Myers, A., Camp, D., Bethel, E.: Python-based in situ analysis and visualization. In:
Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization—ISAV ’18. ACM Press (2018). https://doi.org/10.1145/3281464.3281465

12. Moreland, K., Sewell, C., Usher, W., Lo, L., Meredith, J., Pugmire, D., Kress, J., Schroots, H.,
Ma, K.L., Childs, H., Larsen, M., Chen, C.M., Maynard, R., Geveci, B.: VTK-m: accelerating
the visualization toolkit for massively threaded architectures. IEEE Computer Graphics and
Applications (CG&A) 36(3), 48–58 (2016)

13. Morozov, D., Lukić, Z.: Master of puppets: cooperative multitasking for in situ processing. In:
Proceedings of High-Performance Parallel and Distributed Computing (HPDC) (2016)

14. Offermans, N., Marin, O., Schanen, M., Gong, J., Fischer, P., Schlatter, P., Obabko, A.,
Peplinski, A., Hutchinson, M., Merzari, E.: On the strong scaling of the spectral element solver
Nek5000 on petascale systems. In: Proceedings of the Exascale Applications and Software
Conference 2016, EASC ’16, pp. 5:1–5:10. ACM, New York, NY, USA (2016). https://doi.
org/10.1145/2938615.2938617

15. Shudler, S., Ferrier, N., Insley, J., Papka, M.E., Patel, S., Rizzi, S.: Fast mesh validation
in combustion simulations through in-situ visualization. In: Childs, H., Frey, S. (eds.)
Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics
Association (2019). https://doi.org/10.2312/pgv.20191105

16. Utkarsh Ayachit: The ParaView Guide: A parallel visualization application. Kitware, Inc.
(2015)

17. Whitlock, B.: Representing ghost data (2012). http://www.visitusers.org/index.php?title=
Representing_ghost_data. Last accessed: June 2020

https://doi.org/10.2514/6.2018-1171
https://doi.org/10.2514/6.2018-1171
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1171
https://blog.kitware.com/ghost-and-blanking-visibility-changes/
https://blog.kitware.com/ghost-and-blanking-visibility-changes/
https://doi.org/10.1145/3281464.3281465
https://doi.org/10.1145/2938615.2938617
https://doi.org/10.1145/2938615.2938617
https://doi.org/10.2312/pgv.20191105
http://www.visitusers.org/index.php?title=Representing_ghost_data
http://www.visitusers.org/index.php?title=Representing_ghost_data

In Situ Solutions with CinemaScience

David H. Rogers, Soumya Dutta, Divya Banesh, Terece L. Turton,
Ethan Stam, and James Ahrens

Abstract Cinema is a flexible in situ visualization ecosystem that combines data
extracts with viewers and analysis capabilities to support in situ, post hoc and hybrid
approaches for data processing. With data extracts that include metadata, images,
meshes, and other data types, Cinema databases generated in situ are a central com-
ponent of post hoc analysis workflows. These workflows support visualization and
exploration of data, verification and validation tasks, and leverage computer vision
and statistical techniques for post hoc analysis. This chapter describes the Cinema
approach, its database specification, and demonstrates its use through example work-
flows.

1 Introduction

As mentioned in the introductory chapter, data analysis and visualization workflows
are traditionally based on a post-processing model. Data is saved at regular intervals
and then visualized post hoc with a standard visualization application. With this
model, data sizes—over all and for a single time step—can be quite large. This
impacts the amount of data that can be saved, usually requiring significant temporal

D. H. Rogers · S. Dutta · D. Banesh · T. L. Turton (B) · E. Stam · J. Ahrens
Los Alamos National Lab, Los Alamos, NM, USA
e-mail: tlturton@lanl.gov

D. H. Rogers
e-mail: dhr@lanl.gov

S. Dutta
e-mail: sdutta@lanl.gov

D. Banesh
e-mail: dbanesh@lanl.gov

E. Stam
e-mail: stam@lanl.gov

J. Ahrens
e-mail: ahrens@lanl.gov

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_14

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_14&domain=pdf
mailto:tlturton@lanl.gov
mailto:dhr@lanl.gov
mailto:sdutta@lanl.gov
mailto:dbanesh@lanl.gov
mailto:stam@lanl.gov
mailto:ahrens@lanl.gov
https://doi.org/10.1007/978-3-030-81627-8_14

308 D. H. Rogers et al.

Fig. 1 Cinema is a novel way to capture, store and interact with data extracts from a wide variety
of sources. It is well suited for hybrid in situ coupled with post hoc data workflows, and has been
integrated into the most common visualization and analysis applications in use at extreme scale

down-sampling, and limits the ability of the scientist to effectively render and explore
the data in a post hoc workflow (Fig. 1).

One consequence of moving analysis algorithms and data reduction into the in
situ workflow is that the data output may change as a result of an in situ computation.
In particular, in situ workflows may result in the generation of small subsets of
data—data extracts. For example, if an algorithm finds an interesting feature at a
specific time and location, the algorithm may create a data extract that allows closer
inspection of a relevant portion of the data. That data extract could be a visualization,
a subset of the data, a statistical representation of the data, or some other form of
data extract.

In contrast to long-standing practice where a simulation outputs a standard data
format (which may be specific to that simulation), these data extracts can be widely
different from each other in time and scope (spatial dimensions, variables saved,
mesh-based versus image-based, etc.). Thus, output from algorithm-driven in situ
pipelines can be a heterogeneous set of data extracts for which complementary
human-in-the-loop post hoc analysis tools and pipelines are needed to enable the
domain scientist to generate scientific insights from these reduced data extracts.

Cinema provides a novel way of interacting with related sets of data extracts pro-
duced in situ. This approach, first introduced in [2], is a way of capturing, recording,
analyzing and interacting with related sets of extracts from scientific data. A Cinema
workflow is based on a well-defined database for these extracts, as detailed in the
Cinema specification [10]. Cinema databases provide a very compact data repre-
sentation that can provide many of the benefits of interacting with extremely large
data, while also defining a flexible infrastructure for analyzing and interacting with
the data. Cinema databases work together with Cinema writers, Cinema viewers and
Cinema based analysis algorithms to form the Cinema ecosystem.

In Situ Solutions with CinemaScience 309

The goal of this chapter is to motivate the use of Cinema as part of an in situ work-
flow and to describe it sufficiently so as to allow the interested reader to understand
which aspects of the Cinema ecosystem best fit their needs. This will be accom-
plished by a survey of Cinema functionality starting with an overview of the Cinema
ecosystem, Sect. 2. The Cinema database is described in Sect. 2.2 with an overview
of alternate data types in Sect. 2.5. The set of writers available for in situ export of
Cinema databases is discussed in Sect. 2.3. Standard viewers can be found in Sect. 2.4
alongwith prototype work. Analysis capabilities are discussed in Sect. 3, showcasing
examples leveraging computer vision techniques, Sect. 3.1, and statistical methods,
Sect. 3.2. A task-based workflow, typical for in situ production of Cinema databases,
is described in Sect. 4. Although Cinema is a general approach to data capture and
analysis applicable to both experimental and simulated data, this chapter focuses on
the application of Cinema to scientific simulation data, related to the context of this
book.

The Cinema ecosystem is constantly evolving and adding new functionality to
meet the needs of scientists. Throughout the paper, examples and references to pub-
lications demonstrate how scientists are leveraging the Cinema ecosystem to enable
scientific insight. A full list of the many publications utilizing Cinema can be found
on the CinemaScience website [11].

2 The Cinema Ecosystem

Cinema is an ecosystem of capabilities organized around a database of extracts. The
Cinema ecosystem, shown in Fig. 2, organizes material from various sources into
a database that associates data parameters with data extracts. A Cinema database
includes metadata about data written to permanent storage. These databases can
be written by any application, operated on by algorithms, and interactively viewed
with a set of viewers and viewer components. The simplicity and flexibility of the
database means that it is quite easy to integrate and experiment with Cinema as an
in situ analysis workflow.

Cinema provides the following capabilities:

• A novel image-based data extract, the cinema composable image [10], which
provides interactive data exploration for extreme-scale data. Interactions include:
smoothly varying camera positions, so the user can interactwith the data, the ability
to interactively compose images so that elements can be turned on and off, and
interactive post hoc recoloring of data to tune visualizations after the simulation
is complete. More details can be found in Sect. 2.1.

• Writers that extract data to awell-specifieddatabase format, discussed inSect. 2.2.
• Viewers that allow interaction with data in a movie-like or interactive application-
like manner. This is shown in Sect. 2.4.

• Algorithms that query, analyze and filter sets of results in entirely new ways,
discussed in Sect. 3.

310 D. H. Rogers et al.

Fig. 2 Cinema is an ecosystemof capabilities organized around a database of extracts. This includes
metadata about data written to permanent storage. Most common is a database of images that
captures a set of rendered views of the data. These databases can be written by any application,
operated on by algorithms, and interactively viewed with a set of viewers and viewer components.
The simplicity and flexibility of the database means that it is easy to get started and take advantage
of some of the power of Cinema. (Versions of this image have been previously used in internal
ECP [14] documents and, for example, in [8, 27])

2.1 Simple Use Case: Cinema Image Databases

The application of Cinema as an image database is a simple use case of the ecosystem
that illustrates its functionality. For example, a usermight render images from specific
camera positions for all time steps of an extreme-scale simulation. These images
provide a compact representation and Cinema can be used to organize, and interact
with the images via its viewers. For example, the simulation can be ‘rotated’ through
a series of images captured at different spatial locations. The progression of the
simulation over time can be viewed through images captured temporally. Figure3
shows the results of exporting a Cinema image database from ParaView and viewing
the images with a Cinema viewer. Sliders in the viewer allow users to rotate the data
and scroll through time interactively.

The cinema composable image, an extension of rendered images, allows a viewer
to interactively compose elements of an image and recolor them post hoc. Therefore,
in addition to manipulating parameters such as camera position, a Cinema viewer
can also turn elements on and off, and interactively recolor images. Figure4 shows
how different elements of a cinema composable image can be combined together
to provide a more complete picture of a data set while allowing components to be
viewed and hidden interactively.

The following sections of the chapter delvemore deeply into the database concept,
writers, and viewers that comprise the Cinema system.

In Situ Solutions with CinemaScience 311

Fig. 3 A Cinema web-based viewer showing a Cinema database of images from the Deep Water
Impact Ensemble Data Set [22]. The viewer enables an interactive exploration of data. In these
images, the user operates a time-based slider to scroll through time steps of the simulation. At the
top is an image from the beginning and middle of an asteroid impact simulation. At the bottom
is an image from late in the simulation. Due to constraints on loading large data sets, this type of
interaction would be impossible with raw full sized data. This interaction is a powerful feature of
Cinema, demonstrating that even extreme-sized data can be explored interactively via images

2.2 The Cinema Database

At a high level, Cinema maps metadata to data extracts saved on disk or other
permanent storage. A Cinema database does not encode specific meaning in the
metatdata—that is left up to the user. This was a deliberate choice when creating
the specification, to retain simplicity at Cinema’s core, and allow flexibility for user-
written applications. For consistency, tools (viewers, writers) operate on parameters
and extracts across the ecosystem.

Cinema’s database specification provides simplicity and adaptability. Rows repre-
sent database entries, e.g. time steps in a simulation, and columns are the parameters
and data extracts available for each entry. The minimal Cinema database is a direc-
tory that contains a required data.csv file. Optional data files and directories can

312 D. H. Rogers et al.

Fig. 4 These images represent elements of a cinema composable image, demonstrating how these
can be composited by a Cinema viewer. The renderings show four clusters of roughly 5,000 highly
turbulent regions of a computational fluid dynamics simulation. On the left is a composite image
showing all four regions together. On the right are the four separate regions, each stored in a different
component of a cinema composable image. Each of the clusters can be viewed independently, but
also, through the cinema composable image specification, they can be combined together (compos-
ited) to show a complete picture of the data. These components can be interactively composited,
producing the effect of turning elements ‘on’ and ‘off’ in any view of the data. This makes the
resulting Cinema database highly interactive and explorable (Images courtesy of J. Lukasczyk,
Arizona State University)

include data extracts such as images, small mesh files, other CSV files, text files, or
other relevant files. The specification allows for other files to be present in the main
directory, so that applications can add additional information that core Cinema tools
will ignore. Typically, each row in a Cinema database maps a set of parameters to
one or more data extracts. The database specification, [10], contains full details of
the current specification for the interested user.

2.2.1 Fully Populated Versus Sparse Metadata

One possibility for a Cinema database is that the metadata has a fully populated
cross-product of values. This can be achieved by, for example, writing an image
from a set of camera positions for each time step. Table1 is an example of a fully
populated metadata database. A data set such as shown in Fig. 3 is an example of a
fully populated cross-product Cinema database that can be read by a Cinema viewer
designed to view a fully populated metadata database, such as Cinema:View.

A second option is that the columns are not full cross-products. This is a frequent
occurrence in scientific data sets, where all values for all parameters may not be

In Situ Solutions with CinemaScience 313

Table 1 This example data.csv file is for a Cinema database containing images for a simple
phi/theta camera move over two time steps. Time varies over [0,1], phi over [0,45] and theta
over [45,90], and the PNG images each have a unique filename

Time phi theta File

0 0 45 000.png

0 0 90 001.png

0 45 45 002.png

0 45 90 003.png

1 0 45 004.png

1 0 90 005.png

1 45 45 006.png

1 45 90 007.png

Table 2 This is a sparse database, in which data values (columns) may be missing, valued as
Nan, or duplicates of other values. This is commonly seen in tables of values from, for example,
experimental scientific data sets. Cinema viewers are still able to view data sets like this, through
UI widgets other than continuous sliders

Time Isovar Isovalue File

0 000.png

1 001.png

2 Temperature 100.0 002.png

3 Temperature 150.0 003.png

defined, and all combinations of the variables may not be defined. Consider this
example, in which the variable isovar is defined on time step 2, but not
time step 0 or 1. In this case, the Cinema database would look like the one
in Table2. The Cinema ecosystem provides a set of standard viewers (Sect. 2.4) to
handle either case—sparse or full cross-product databases.

2.3 Cinema Writers

As part of an in situ workflow, Cinema image database export is available in com-
mon open source scientific visualization applications and infrastructures. ParaView
[1] provides post-processing Cinema export and in situ export is available through
the ParaView Catalyst [4, 15] in situ library. VisIt [9] also provides post-processing
export capability. Ascent [17], a new flyweight infrastructure under development
as part of the Exascale Computing Project [14], also contains Cinema export func-
tionality. As an example, the MPAS-Ocean [24] simulation was instrumented with
Catalyst’s in situ capability to export a Cinema database [20]. ParaView was used
post-processing to generate Cinema databases from the Nyx [3] cosmology simu-

314 D. H. Rogers et al.

lation, used in [8] and as seen in Figs. 5 and 7. Common to each of these export
capabilities is the ability to choose a static view, i.e., a single camera angle, or a
phi-theta view with a user-specified number of steps in (φ, θ). By default, the φ

and θ steps are regularly spaced.
It is useful to note that Cinema databases can also be built post hoc. Simple Python

or bash scripts can be used to organize already existing images or output plots into
Cinema databases. While this chapter focuses on the in situ use of Cinema, Cinema
databases built post hoc have been used for both simulation and experimental data
sets. The Foresight framework [16] has used Cinema databases to allow scientists
to interactively explore the impact of compression on simulation data. Cinema has
also been used for a variety of experimental analysis workflows that output images.
These include shock physics experiments [21], experimental diffraction images [29],
and Bragg peak detection and tracking as discussed in [27].

Lastly, we note that most while most of the in situ writers work in a tightly coupled
mode, Cinema can also be implemented in a loosely coupled or in transit environment
such as described in various chapters in this book.

2.4 Cinema Viewers

A core concept in Cinema is the viewer—flexible applications that can read in any
specification-compliant Cinema database and enable analysis workflows. Cinema
includes three standard viewers, Cinema:Scope, Cinema:View and Cinema:Explorer
thatwillmeet the needs ofmost users. There is also a library of individual viewer com-
ponents that can be used to build workflow-specific viewers. This section overviews
each of the standard viewers, providing example use cases. The Cinema ecosystem
constantly evolves to meet user needs and prototype viewer development is also
discussed.

2.4.1 Cinema:Scope

Cinema:Scope is a cross-platform application built on Qt and C++. It has slider
controls mapped to the database parameters. By default, Cinema:Scope loads the
first set of images in a Cinema database and provides intuitive mouse controls that
are mapped to phi and theta. The mouse control mapping and image set can be
changed within the application. Figure5 shows an example of a cosmology simula-
tion [3] viewed within Cinema:Scope. The database parameters are time, phi, and
theta where phi and theta are mapped to the mouse controls.

Cinema:Scope provides the post hoc interactive exploratory functionality needed
by the scientist while avoiding the computationally expensive part in the post hoc
workflow. It gives the user the feel of using a full visualization application such as
ParaView or VisIt but without the overhead of rendering each image post hoc. This
functionality is one of the attractive features of Cinema:Scope.

In Situ Solutions with CinemaScience 315

Fig. 5 CinemaScope is used to view a Nyx cosmology simulation showing the formation of dark
matter halos over time. The three sliders, timestep, phi, theta, are mapped to the mouse controls to
enable intuitive movement through the Cinema image database

2.4.2 Cinema:View

Cinema:View is a basic browser-based viewer used to visually explore images in a
Cinema database. Cinema:View is based on JavaScript and D3. It features slider con-
trols and can be used to view a single Cinema image database or multiple databases
with common parameter sets. Figure6 usesCinema:View to view threeways to detect
voids or bubbles in an MFiX-Exa [26] bubbling fluid bed simulation.

2.4.3 Cinema:Explorer

Also browser-based using JavaScript and D3, Cinema:Explorer leverages parallel
coordinates to explore data within a Cinema database. The use of parallel coordinates
for Cinema databases was first explored in [31]. Parallel coordinates are a common
approach to exploring high dimensional data.

Cinema:Explorer includes a parallel coordinates view, an image spread view, and
a scatterplot view. The view panel information is linked so that a selection in the
parallel coordinates panel brings up the associated images in the image spread view
and the scatterplot. This can be used, for example, to identify outliers or explore
correlations in large data sets.

The screenshot in Fig. 7 showsCinema:Explorer being used to query a large image
database using the parallel coordinates interactive view. For this example, a Nyx cos-
mology Cinema database has had computer vision algorithms applied to generate
image-based statistics. Cinema:Explorer displays the database parameters and statis-

316 D. H. Rogers et al.

Fig. 6 Cinema:View is used to view the detection of voids (bubbles) in an MFiX-Exa bubbling
fluid bed simulation. From left to right, a subset of the original data, downsampled to 5% of the
data (see the chapter on Sampling In situ); a density field is used to find bubbles; a bubble finding
algorithm using the density field calculation shows only the voids. The three views of the bubbling
bed simulation can be compared over time using the slider. Image size can also be changed to fit the
user browser. MFiX-Exa data courtesy of A. Almgren and J. Blaschke, Lawrence Berkeley National
Laboratory; bubble images courtesy of A. Biswas, Los Alamos National Laboratory

tical quantities in parallel coordinates. Standard parallel coordinate techniques can
be used to hide/show axes or select ranges on the axes. In this example, the user
has selected images early in time and with low entropy. Cinema:Explorer shows all
images in the database that match this query. Cinema:Explorer allows scientists to
quickly view queries on data ranges across all samples extracted, making it possible
to explore and compare large sets of data very quickly. This example illustrates a
typical Cinema-enabled workflow: saving parameters and data extracts such as pre-
rendered visualizations in situ, extending the analysis post hoc, and using the viewer
to select, query, and explore the information within the database.

2.4.4 Jupyter-Based Viewers

Many simulation scientists use the Python scientific analysis stack and notebooks are
becoming an increasingly common workflow analysis tool for simulations. NERSC
has a dedicated JupyterHub to connect notebooks to HPC resources. To accommo-
date Python users, a prototype Jupyter notebook-based viewer is available at https://
github.org/cinemascience/cinema_jnc. Figure8 shows a WarpX [28] simulation of
a plasma-driven accelerator in the Cinema:JNC viewer. Currently, this has similar
functionality to Cinema:View, allowing the user to use sliders to view a Cinema
database through time and spatial angles. This viewer could be included in a Jupyter-
based workflow, leveraging Python’s data analysis capabilities for post hoc analysis.
Including multiple data types in a Cinema database, as described in Sect. 2.5, allows

https://github.org/cinemascience/cinema_jnc
https://github.org/cinemascience/cinema_jnc

In Situ Solutions with CinemaScience 317

Fig. 7 In this image, Cinema:Explorer is used to query a large image database, using the paral-
lel coordinates interactive view. For this example, the Nyx cosmology Cinema database has had
computer vision algorithms applied to generate image-based statistics. Cinema:Explorer displays
the database parameters and statistical quantities in the parallel coordinates view. Standard parallel
coordinate techniques can be used to hide/show axes or to select ranges on the axes. Using the axes,
the user has selected images early in time and with low entropy. The results of the query can be
seen in the image spread view

workflows that, for example, use Python/VTK [25] based pipelines within a Jupyter
notebook-based analysis framework.

2.4.5 Cinema Components

In addition to the standard viewers, Cinema also has a library of components that
can be combined to create a viewer specific to the needs of the scientist.

These components include a parallel coordinates plot, image spread, scatter plot,
query generator, and glyph-style plots. An example use case of an analysis-specific
viewer built with individual components (beyond those used in Cinema:Explorer)
can be found in [29]. In addition to these components, users can develop and combine
new components as needed. Cinema:Bandit [21] is one such instance of a viewer built
for a specific scientific application.

318 D. H. Rogers et al.

Fig. 8 Two views showing field streamlines in a WarpX plasma accelerator simulation. The proto-
type Jupyter notebook based viewer, Cinema:JNC, is used to explore the WarpX Cinema database.
An early time step is on the left, evolving to a later time step on the right. Cinema database courtesy
of R. Bujack, Los Alamos National Laboratory

2.5 Data Types Beyond Images

Cinema works on any data type and supports multiple data extracts and mixed data
types for each parameter set (row in the database). For example, an in situ analysis
could identify a specific feature of interest. The Cinema database export might save
both a visualization of that feature and a small VTK-based mesh containing that

Fig. 9 A simple sphere Cinema database demonstrates the multiple data types in Cinema:Explorer.
For each [φ-θ] set of parameters, there is an image. Additionally, some of the [φ-θ] parameter sets
have other data types such as a vtk file or pbd file. Clicking on the thumbnail for each extract (vtk
or pbd file) will bring up the data in a viewer for that specific data type, see Fig. 10

In Situ Solutions with CinemaScience 319

Fig. 10 Different file types: ParaView pbd file on the left and a ParaView vti file on the right. These
are displayed in a modal view when selected by clicking on the file name in the Cinema:Explorer
image spread

feature. This is an effective way to downsample the data by not saving the full
simulation mesh. That VTK-based file is then included in the Cinema database,
associated with the same set of parameters (e.g., view angles and time) that identify
the corresponding image.

An example of multiple data types can be seen using the Cinema:Explorer viewer.
In Fig. 9, aCinemadatabase of a simple sphere contains the visualization of the sphere
for different φ and θ values. Some of the rows also have an associated VTK or PBD
file. Clicking on file types brings up the vti or pbd data for interactive viewing in a
modal view, see Fig. 10. Rows where the vti or pbd datafile is not available have an
informational message displayed.

3 Analysis Algorithms

Asdiscussed in this chapter’s introduction,Cinema is a hybrid approach that produces
heterogeneous data extracts in situ. These extracts can become the input for post
hoc analysis workflows. The light-weight nature of the Cinema database approach
enables flexible real-time exploration. This exploration may be conducted through
the Cinema:View viewer, the parallel coordinates plot in Cinema:Explorer and in
the case of image databases with associated saved parameters, through computer
vision and statistical algorithms applied to the images and saved data parameters.
Large image databases with several columns of associated numerical information can
easily be produced through the methods discussed in Sect. 2.3. Standard tools to help
users explore and understand these data products are an essential facet of the Cinema
ecosystem. Two examples of algorithms for Cinema image database exploration—a
computer vision framework and a set of statistical methods—illustrate how users
may employ such techniques for in-depth analysis.

As shown in Fig. 2, the image-based Analysis Algorithms are part of an iterative
workflow. The results of analysis algorithms, either computer vision or the statistical
methods, are collated back into the Cinema database as additional images or columns

320 D. H. Rogers et al.

of numerical data. Therefore, a user who needs to compute a series of steps on their
data can accomplish this goal through a sequential set of commands.

It is important to note thatwhen analyzing images, the format inwhich the image is
saved becomes highly pivotal. ForRGBcolor-mapped images, the usermust be aware
of the potential effects of the colormap on their data and subsequent post-processing
analyses. Alternatively, the user may opt to save their data as cinema composable
images, where the simulation data is directly projected into the 32-bit pixels of the
image. This allows for a more direct application of the Analysis Algorithms to the
underlying data.

3.1 Computer Vision Framework

There exists a wide body of image-based computer vision techniques that can be
exploited in a Cinema database workflow. However, a computer vision framework
for data analysis and visualizationmust ensure that each component of the framework
helps the user identify and and examine features that directly correspond to attributes
of the simulation. Therefore, the methods currently included in this framework help
to identify common physical properties of interest in scientific data. For example, a
gradient-based edge-detection algorithm is included to identify regions with sharp
discontinuities. An examination of the Western Boundary of the Gulf Stream dis-
cussed in [27] is an example of an application of this edge-detection technique.

Another capability of the computer vision framework is contour detection, to
locate closed regions at and above (or below) a given threshold, i.e., superlevel or
sublevel sets. These extracted features may then be matched temporally or spatially
based on attributes and metrics such as location, pixel intensities, area or derived
quantities such as Hu moments. Given a particular matching metric, these matched
features can be tracked temporally to identify events such as splits, merges, deaths
or births. An example of this computer vision based workflow is discussed below
and the interested reader can find further details in [6, 27].

3.1.1 Case Study: MPAS-Ocean Eddy Tracking

A Cinema-enabled computer vision workflow for eddy analysis is described in [6].
This is an example of a typical analysis workflow leveraging the Cinema ecosystem.
This system allows the user to identifymesoscale ocean eddies, track their movement
and visualize these results over time through count and tracking graphs. The input
to the application is a Cinema database of MPAS-Ocean floating point images, to
which the feature analysis algorithms are applied. The Cinema database images have
the relevant physical variables, in this example, kinetic energy, embedded within the
images allowing the user access to the simulation data at the resolution of the saved
images.

In Situ Solutions with CinemaScience 321

Fig. 11 Visualization of eddy feature tracking in the Agulhas Retroflection Region of an MPAS-
Ocean Simulation. The computer vision framework includes a control panel (upper left, see Fig. 12
for more detail) with sliders to select images and set algorithm parameters; visualization panels
for overview and zoomed display; and output information such as the eddy count (upper right) and
tracking chart (lower right). (Image is adapted from our previous work [6])

An interface such as the one shown, allows certain areas of domain expertise to
be inherently captured. What is considered an “eddy” is intuitively understood by
the scientist even though a rigorous mathematical definition of an eddy eludes ocean
scientists. The eddy tracking application, shown in Fig. 11, allows the user to select
contour detection as the computer vision technique and flexibly set thresholds to
identify a set of eddies spatially. The application then tracks and creates a timeline
of eddy progression. To track big eddies or small eddies, to include weaker eddies
or only allow stronger eddies, and to determine over which region the eddy analysis
will occur are all actions enabled by the interface. The user can choose to output
a running count of the number of eddies found and a tracking graph that indicates
the death/birth/merge events in eddy formation (upper and lower right of Fig. 11,
respectively). This combination of low-cost Cinema database images and optimized
computer vision algorithms enables an interface for scientists where exploration of
the data is possible in real-time. The real-time Cinema-based approach can be com-
pared to mesh-based analysis methods such as geometric eddy detection algorithms.
Running those types of algorithms on large data sets requires far more time, limiting
the exploratory capabilities for the user.

3.2 Statistical Methods

Statistical tools in the Cinema ecosystem are another data analysis approach within a
Cinema workflow. Statistical tools are a ubiquitous choice for analysis of numerical
data. The data may be derived from a Cinema image database, obtained during in situ
processing, extracted from simulation data or added to the Cinema database from
external sources. cinema [12] is a command line python-based tool that allows
users to extract typical image properties such as mean, standard deviation, Shannon

322 D. H. Rogers et al.

Fig. 12 Close-up of the computer vision framework control panel. At the top are sliders for the
database parameters: time, theta, and phi. Underneath are algorithm parameters such as thresholds
and ranges. User interface options allow the user to customize the views. Brief overview of the
algorithm output is also included. (Image is adapted from our previous work [6])

entropy and joint entropy into numerical quantities added to the Cinema database.
Maack et al. [18] leveraged the Cinema framework to apply statistical metrics to find
features of interest.

Another approach enabled by Cinema is statistical change point detection (see
for example, [23] for a discussion of the concept of change point detection). Within
a physical system, change often denotes an interesting time step or event. Visually
scanning thousands of imagesmay be too time-intensive for a domain scientist to find
events of interest. Change point detection can be applied to properties of simulation
images to identify time steps or parametric values of interest. Both [5, 7] are examples
of the application of change point detection within the body of Cinema literature.
The change point detection algorithm available as part of the Cinema ecosystem,
[13], allows the user to identify locations in a sequence of numbers where change
has occurred [19], as defined through a linear regression model.

In Fig. 13, the Cinema statistical change point detection algorithm is applied to a
simulation of the Deep Water Impact Ensemble Data Set [22], the same simulation

In Situ Solutions with CinemaScience 323

Fig. 13 Statistical change point detection for the ‘xdt’ parameter of the DeepWater Impact Ensem-
ble Data Set [22]. Change detection parametric values are: B = 4, α = 0.8, δ2 = 1. The change
points are noted in blue while the red lines drawn show the best fit line to the data between change
points

shown in Fig. 3. Instead of using images stored in a Cinema database, the parameters
in the database can be used for the statistical change point detection analysis. In this
analysis, a representative slice is taken in the z-plane through the center of the data and
the data values on that slice are averaged. This process is repeated for each of the 476
saved time steps spanning about 50,000 steps in simulation time. Change detection is
then applied to a parameter of interest from the simulation parameters. The selected
parameter, xdt, is the x component of the velocity in each cell, in centimeters per
second. Change point detection is applied to this parameter over time to identify
points of interest.

During the first 25000 time units of the simulation, as the asteroid is descending
towards earth, there is very little activity and therefore, no change points detected.
Intense and frequent change points are seen as the asteroid strikes the ocean surface.
The algorithm identifies points in time where moderate to large amounts of change
occur. Even in the latter part of the simulation, regions of time with smaller amount
of change are still grouped together. The algorithm enables the flexibility to adjust
the change detection parameters so as to find smaller or larger amounts of change,
as desired by the user for their particular analysis and data set.

4 Task-Based Workflow Examples

To streamline in situ Cinema database production, a task-based workflow has been
developed that works in a distributed parallel environment. In this workflow, the user
first specifies the parameters thatwill be used to generate theCinema database and the
range of values for each parameter. The user also can select if the parameter ranges
will be divided regularly or randomlywhile creating specificparameter combinations.
For example, the user can specify the ranges of the viewing angle parameters (e.g.,
240 ≤ φ ≤ 360 and 50 ≤ θ ≤ 100) and howmanyvisualization samples are needed
from this range.Then the frameworkwill sample the parameter ranges either regularly
or randomly as specified by the user to produce combinations of (φ, θ) values. For

324 D. H. Rogers et al.

Fig. 14 Visualization of a Cinema database produced by our task-based workflow using the Aster-
oid impact data set [22]. The database produced visualization of Temperature field using volume
visualization technique

each such (φ, θ) combination, a visualization extract will be added to the Cinema
database. The user can also specify the type of visualization algorithm such as surface
rendering or volume rendering that will be used to produce the visualization data
extracts.

In this workflow, a unit task is characterized as the production of a visualization
extract for a specific parameter combination (phi , theta, etc). Since the visualization
and rendering in parameter space is high-dimensional in nature, and can be quite
large, a through exploration of such space while producing a Cinema database may
need a very large number of such unit tasks. Therefore, the task-based workflow
first generates the list of tasks that will be needed in order to produce the complete
Cinema database as specified by the user. Those tasks are then distributed among
the different compute nodes of a high performance cluster (HPC). Finally, the tasks
are executed in parallel. At the end of the task-based workflow, a Cinema database
is created with all the visualization extracts. Finally, the workflow installs a Cinema
database viewer customized for the resultant Cinema database so that the results
can be readily explored interactively. Figure14 shows an example Cinema database
generated using this task-based workflow and viewed using the Cinema:Explorer
viewer, Sect. 2.4.

The current version of the task-basedworkflow is implemented in Python using the
mpi4py library for distributed processing. The visualizations are produced using
ParaView [1] in off-screen rendering mode. User control is through a JSON file
specifying the range of parameters and types of visualizations needed. The task-

In Situ Solutions with CinemaScience 325

Fig. 15 Strong scaling study of Cinema’s task-based workflow for (left) the asteroid impact data
set and (right) the Hurricane Isabel data set

based workflow will then generate the list of tasks and execute them in parallel on
the HPC machine.

Performance testing of the task-based workflow was done on Snow, an Insti-
tutional Computing (IC) Commodity Technology System Phase I cluster (CTS-1)
located at Los Alamos National Laboratory. Snow has two integrated Scalable Units
(SU) and each unit forms a building-block to assemble the CTS-1 cluster. Each
SU has 184 compute nodes plus other nodes for services, I/O, etc. Each node in
the SU has 36 Processor cores: 2 × (E5 2695v4 2.1GHz, 18 cores, 45MB cache),
128GB Memory, and Intel OmniPath OP HFI, Single-port, PCIe-gen3 x16 Network
Interconnect.

In Fig. 15, the result of a strong scaling study of the task-based workflow is shown
for two sets of data: the asteroid impact data [22] and Hurricane Isabel data [30]. The
asteroid data used volume rendering for visualization and the Hurricane Isabel data
used an isocontour visualization technique. Each test case consisted of 10000 tasks
and the number of processing cores were varied from 32 to 1024. Since the tasks
were distributed among different processing nodes and the tasks are independent, it
can be observed that with increased number of processing cores, the computation
time goes down and the workflow scales as expected for both the data sets. This
study demonstrates the practicality of a task-based workflow for in situ generation
of image-based Cinema databases.

5 Conclusion

Cinema provides a powerful ecosystem for extracting, storing and interacting with
scientific and experimental data at any scale—from small tables of data to extreme-
scale simulations running on the largest supercomputers. As an open data definition,
a Cinema database is a data set that any application can read and write, making it
simple to start using Cinema, adding capabilities as needed. In contrast to mono-
lithic applications, Cinema provides an opportunity to participate by re-using small

326 D. H. Rogers et al.

components from open source libraries. Cinema-enabled data analysis and visual-
ization workflows have been used across a wide range of data. Already included in
many standard applications and frameworks for large scale science, Cinema is a good
option for complex scientific data analysis.

Acknowledgements Many collaborators have contributed to the development of Cinema. We
thank everyone who contributed and would like to acknowledge our LANL Data Science at Scale
team members: A. Biswas, C. Biwer, R. Bujack, L-T. Lo, D. Orban, J. Patchett, C. Tauxe, J. Q.
Wofford; our science collaborators: G. Gisler, M. Petersen, J. Schoonover, Z. Lukić, J-L. Vay, J.
Musser, A. Almgren; our industry partners at Kitware and Intelligent Light and other collaborators:
J. Lukasczyk, C. Harrison, M. Larsen, J. Woodring, G. Aldrich, G. Streletz. This research was
supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security Administration. This
research used resources provided by the Los Alamos National Laboratory Institutional Computing
Program, which is supported by the U.S. Department of Energy National Nuclear Security Admin-
istration under Contract No. 89233218CNA000001. This research used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725. This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facil-
ity operated under Contract No. DE-AC02-05CH11231. The Hurricane Isabel data was provided by
Wei Wang, Cindy Bruyere, Bill Kuo, and others at NCAR with Tim Scheitlin at NCAR converting
the data into the Brick-of-Float format. This research was released under LA-UR-20-20649.

References

1. Ahrens, J., Geveci, B., Law, C.: Paraview: An end-user tool for large data visualization. The
Visualization Handbook, vol. 717 (2005)

2. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., Petersen, M.: An image-based
approach to extreme scale in situ visualization and analysis. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 424–
434. IEEE Press (2014)

3. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Andel, E.V.: Nyx: a massively parallel
AMR code for computational cosmology. Astrophys. J. 765(1), 39 (2013). https://doi.org/10.
1088/0004-637x/765/1/39

4. Ayachit, U., Bauer, A., Geveci, B., O’Leary, P.,Moreland, K., Fabian, N.,Mauldin, J.: Paraview
catalyst: enabling in situ data analysis and visualization. In: Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp. 25–29.
ACM (2015)

5. Banesh, D., Petersen, M., Wendelberger, J., Ahrens, J., Hamann, B.: Comparison of piecewise
linear change point detection with traditional analytical methods for ocean and climate data.
Environ. Earth Sci. 78(21), 623 (2019)

6. Banesh, D., Schoonover, J.A., Ahrens, J.P., Hamann, B.: Extracting, visualizing and tracking
mesoscale ocean eddies in two-dimensional image sequences using contours and moments.
In: Rink, K., Middel, A., Zeckzer, D., Bujack, R. (eds.) Workshop on Visualisation in Envi-
ronmental Sciences (EnvirVis). The Eurographics Association (2017). https://doi.org/10.2312/
envirvis.20171103

7. Banesh, D., Wendelberger, J., Petersen, M., Ahrens, J., Hamann, B.: Change point detection
for ocean eddy analysis. In: Workshop on Visualisation in Environmental Sciences (EnvirVis).
The Eurographics Association (2018). https://doi.org/10.2312/envirvis.20181134

https://doi.org/10.1088/0004-637x/765/1/39
https://doi.org/10.1088/0004-637x/765/1/39
https://doi.org/10.2312/envirvis.20171103
https://doi.org/10.2312/envirvis.20171103
https://doi.org/10.2312/envirvis.20181134

In Situ Solutions with CinemaScience 327

8. Bujack, R., Rogers, D., Ahrens, J.: Reducing occlusion in cinema databases through
feature-centric visualizations. In: Leipzig Symposium on Visualization in Applica-
tions (LEVIA) (2018). https://datascience.dsscale.org/wp-content/uploads/2019/01/
ReducingOcclusioninCinemaDatabasesthroughFeature-CentricVisualizations.pdf

9. Childs, H., et al.: VisIt: an end-user tool for visualizing and analyzing very large data. In: High
Performance Visualization—Enabling Extreme-Scale Scientific Insight, pp. 357–372. CRC
Press/Francis–Taylor Group (2012)

10. Cinema: Cinema specification (2018). https://github.com/cinemascience/cinema/blob/master/
specs/dietrich/01/cinema_specD_v012.pdf. Accessed Jan 2020

11. Cinema-Developers: Cinema publications (2018). (List of Cinema publications, available on
CinemaScience website.) https://cinemascience.github.io/publications.html

12. Cinema-Developers: Cinema science (2018). http://cinemascience.org/. Accessed 11Dec 2019
13. Cinema-Developers: Cinema change point detection (2019). https://github.com/

cinemascience/cinema_change_detection. Accessed 22 Jan 2020
14. ECP: Exascale Computing Project (2017). https://www.exascaleproject.org/. Accessed Jan

2020
15. Fabian, N., Moreland, K., Thompson, D., Bauer, A.C., Marion, P., Gevecik, B., Rasquin, M.,

Jansen, K.E.: The ParaView coprocessing library: a scalable, general purpose in situ visual-
ization library. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV),
pp. 89–96. IEEE (2011)

16. Grosset, P., Biwer, C.M., Pulido, J., Mohan, A.T., Biswas, A., Patchett, J., Turton, T.L., Rogers,
D.H., Livescu, D., Ahrens, J.: Foresight: analysis that matters for data reduction (2020). To
appear in SC ’20: International Conference on High Performance Computing, Data, and Ana-
lytics., November 2020

17. Larsen, M., Ahrens, J., Ayachit, U., Brugger, E., Childs, H., Geveci, B., Harrison, C.: The
alpine in situ infrastructure: ascending from the ashes of strawman. In: Proceedings of the
In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization, ISAV’17, pp.
42–46. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3144769.3144778

18. Maack, R., Rogers, D., Gillmann, C.: Exploring cinema databases using multi-dimensional
image measures. In: Leipzig Symposium on Visualization in Applications (LEVIA) (2019)

19. Myers, K., Lawrence, E., Fugate, M., Bowen, C.M., Ticknor, L., Woodring, J., Wendelberger,
J., Ahrens, J.: Partitioning a large simulation as it runs. Technometrics 58(3), 329–340 (2016)

20. O’Leary, P., Ahrens, J., Jourdain, S.,Wittenburg, S., Rogers,D.H., Petersen,M.: Cinema image-
based in situ analysis and visualization of mpas-ocean simulations. Parallel Comput. 55(C),
43–48 (2016). https://doi.org/10.1016/j.parco.2015.10.005

21. Orban, D., Banesh, D., Banesh, C., Biwer, C., Biswas, A., Saavedra, R., Sweeney, C., Sandberg,
R.,Bolme,C.A.,Ahrens, J., Rogers,D.:Cinema:bandit: a visualization application for beamline
science demonstrated on xfel shock physics experiments. J. Synchrotron Rad. 27(1) (2020).
https://doi.org/10.1107/S1600577519014322

22. Patchett, J.M., Gisler, G.R.: Deep water impact ensemble data set. Technical Report, Los
Alamos National Laboratory (2017). LA-UR-17-21595

23. Ray, B.K., Tsay, R.S.: Bayesian methods for change-point detection in long-range dependent
processes. J. Time Series Anal. 23(6), 687–705 (2002)

24. Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W., Maltrud, M.: A multi-
resolution approach to global ocean modeling. Ocean Model. 69, 211–232 (2013). https://doi.
org/10.1016/j.ocemod.2013.04.010

25. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn. Kitware, Clifton,
New York (2006)

26. Syamlal, M., Musser, J., Almgren, A., Bell, J., Hrenya, C., Hauser, T., Liu, P.: MFIX-Exa: a
CFD-DEM code for exascale computer architectures. Abstract and Presentation in Computa-
tional Modeling and Validation for Fluidization Processes at AIChE Annual Meeting (2018)

27. Turton, T.L., Banesh, D., Overmyer, T., Sims, B.H., Rogers, D.H.: Enabling domain expertise in
scientific visualization with cinemascience. IEEE Comput. Graph. Appl. 40(1), 90–98 (2020).
https://doi.org/10.1109/MCG.2019.2954171

https://datascience.dsscale.org/wp-content/uploads/2019/01/ReducingOcclusioninCinemaDatabasesthroughFeature-CentricVisualizations.pdf
https://datascience.dsscale.org/wp-content/uploads/2019/01/ReducingOcclusioninCinemaDatabasesthroughFeature-CentricVisualizations.pdf
https://github.com/cinemascience/cinema/blob/master/specs/dietrich/01/cinema_specD_v012.pdf
https://github.com/cinemascience/cinema/blob/master/specs/dietrich/01/cinema_specD_v012.pdf
https://cinemascience.github.io/publications.html
http://cinemascience.org/
https://github.com/cinemascience/cinema_change_detection
https://github.com/cinemascience/cinema_change_detection
https://www.exascaleproject.org/
https://doi.org/10.1145/3144769.3144778
https://doi.org/10.1016/j.parco.2015.10.005
https://doi.org/10.1107/S1600577519014322
https://doi.org/10.1016/j.ocemod.2013.04.010
https://doi.org/10.1016/j.ocemod.2013.04.010
https://doi.org/10.1109/MCG.2019.2954171

328 D. H. Rogers et al.

28. Vay, J.L., et al.: Warp-X: a new exascale computing platform for beam-plasma simulations
(2018). arXiv:1801.02568 [physics.acc-ph]

29. Vogel, S.C., Biwer, C.M., Rogers, D.H., Ahrens, J.P., Hackenberg, R.E., Onken, D., Zhang,
J.: Interactive visualization of multi-dataset rietveld analyses using cinema:debye-scherrer. J.
Appl. Crystallogr. 51 (2018). https://doi.org/10.1107/S1600576718003989

30. Wang, W., Bruyere, C., Kuo, B., Scheitlin, T.: IEEE visualization 2004 contest data set (2004).
http://sciviscontest.ieeevis.org/2004/data.html. NCAR

31. Woodring, J., Ahrens, J.P., Patchett, J., Tauxe, C., Rogers, D.H.: High-dimensional scientific
data exploration viaCinema. In: 2017 IEEEWorkshop onData Systems for InteractiveAnalysis
(DSIA), pp. 1–5 (2017). https://doi.org/10.1109/DSIA.2017.8339086

http://arxiv.org/abs/1801.02568
https://doi.org/10.1107/S1600576718003989
http://sciviscontest.ieeevis.org/2004/data.html
https://doi.org/10.1109/DSIA.2017.8339086

New Research Results and Looking
Forward

Deep Learning-Based Upscaling for In
Situ Volume Visualization

Sebastian Weiss, Jun Han, Chaoli Wang, and Rüdiger Westermann

Abstract Complementary to the classical use of feature-based condensation and
temporal subsampling for in situ visualization, learning-based data upscaling has
recently emerged as an interesting approach that can supplement existing in situ vol-
ume visualization techniques. By upscaling we mean the spatial or temporal recon-
struction of a signal from a reduced representation that requires less memory to
store and sometimes even less time to generate. The concrete tasks where upscaling
has been shown to work effectively are geometry upscaling, to infer high-resolution
geometry images from given low-resolution images of sampled features; upscaling in
the data domain, to infer the original spatial resolution of a 3D dataset from a down-
scaled version; and upscaling of temporally sparse volume sequences, to generate
refined temporal features. In this book chapter, we aim at providing a summary of
existing learning-based upscaling approaches and a discussion of possible use cases
for in situ volume visualization. We discuss the basic foundation of learning-based
upscaling, and review existing works in image and video super-resolution from other
fields. We then show the specific adaptations and extensions that have been proposed
in visualization to realize upscaling tasks beyond color images, discuss how these
approaches can be employed for in situ visualization, and provide an outlook on
future developments in the field.

S. Weiss · R. Westermann (B)
Technical University of Munich, Garching bei München, Germany
e-mail: westermann@tum.de

S. Weiss
e-mail: sebastian13.weiss@tum.de

J. Han · C. Wang
University of Notre Dame, Notre Dame, IN, USA
e-mail: jhan5@nd.edu

C. Wang
e-mail: chaoli.wang@nd.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_15

331

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_15&domain=pdf
mailto:westermann@tum.de
mailto:sebastian13.weiss@tum.de
mailto:jhan5@nd.edu
mailto:chaoli.wang@nd.edu
https://doi.org/10.1007/978-3-030-81627-8_15

332 S. Weiss et al.

1 Introduction

For in situ volume visualization, two commonly employed approaches are feature-
based data reduction and spatial or temporal subsampling. In the former approach,
each dataset is condensed in situ to a few important features, and these features are
used to analyze the data. Since extracted features usually require far lessmemory than
the original data, memory bandwidth and capacity limitations can be overcome. On
the other hand, features not selected are lost, and some feature extraction techniques
require global data access operations not well supported by the data distribution
scheme on the parallel computing architecture. In the latter approach, volumetric
data are downscaled spatially or only every nth timestep is stored, thus reducing the
amount of memory needed. Then, spatial or temporal features can get lost, since
classical interpolation schemes cannot reconstruct these features from the reduced
data in general.

Complementary to these approaches, learning-based data upscaling has recently
emerged as an interesting approach that can supplement existing in situ volume
visualization techniques. By upscaling (which is also referred to as super-resolution),
we refer here to the spatial or temporal reconstruction of a physical field from a
reduced representation. The concrete tasks where learning-based upscaling has been
demonstrated for scientific data are

1 Image upscaling: Upscaling in the visualization image domain by inferring high-
resolution images from given low-resolution images of sampled 3D features.

2 Spatial upscaling: Upscaling in the spatial domain by inferring a higher resolution
of a 3D dataset from a downscaled version for reconstructing spatial features.

3 Temporal upscaling: Upscaling in the temporal domain by inferring temporally
dense volume sequences from sparse sequences for refining temporal features.

Option (1) requires focusing on specific features that are visualized at low image
resolution. Yet, resulting images require less data access operations to generate,
can be generated at higher speed, and decrease the memory required to store and
transmit them, e.g., for use over low bandwidth channels in remote visualization
environments. With options (2) and (3), storing a dataset becomes faster, and more
datasets can be stored in a given a certain disk capacity. Depending on the size of the
downsampled dataset, it can be even feasible to stream an entire dataset to a remote
client where the visualization occurs. This can be an interesting option to monitor
the running simulation.

The challenge in upscaling is to infer the structure of a coarsely sampled dataset
from a low-resolution spatial or temporal sampling, beyond what can be predicted
from the given samples by classical upscaling filters like bilinear or bicubic interpo-
lation. In general, this seems impossible without any further assumptions about the
structures that are contained in the dataset. Recent works in learning with artificial
neural networks (ANNs), however, have demonstrated that such networks have the
capabilities to learn such assumptions.

In abstract terms, upscaling seeks a mapping function from inputs to outputs,
called the generator. In the in situ scenario, the generator learns to map a multi-

Deep Learning-Based Upscaling for In Situ Volume Visualization 333

dimensional field, e.g., a 2D color or geometry image, or a 2D or 3D and possibly
time-varying scalar or vector field, to a higher spatial or temporal resolution, option-
ally including additional parameters, i.e., channels, that are inferred from the given
input samples.

With ANNs, the generator internally builds a so-called latent space represen-
tation that encodes the nonlinear mapping function. The generator tries to learn
an identity mapping, which gives for every low-resolution input the corresponding
high-resolution output. Since the dimension of the latent space is not sufficient to
achieve such a mapping for every input, the network learns to encode relevant fea-
tures that have a significant impact on the inference quality. Thus, the generator learns
assumptions about the occurrence of structures by using corresponding pairs of low-
and high-resolution fields in the training process. Learned assumptions can then be
transferred to a new low-resolution input, to generate a high-resolution variant that
adheres to the structures seen at training time.

Learning-based image and video super-resolution have achieved remarkable
results, by training networks using corresponding pairs of low- and high-resolution
color images [9, 26]. Learned assumptions can then be transferred to a new low-
resolution input, to generate a high-resolution variant in which structures that have
been seen at training time are well recovered. Similar approaches have been used in
the context of numerical fluid simulation, in particular, to add turbulent sub-structures
to low-resolution input simulations [6, 57].

In this book chapter, we aim to bring the readers’ attention to the possibilities
of learning-based upscaling in the context of in situ volume visualization. Even
though learning-based upscaling has not yet been integrated into existing in situ
visualization systems, especially in this context, we see it as an interesting technique
that can effectively complement existing approaches. In particular, recent works on
spatial and temporal upscaling of physical fields indicate that networks do not learn a
specificfield, but rather that networks can generalize and learn properties of structures
that occur in such fields.

On the other hand, as recent works have shown, a network cannot infer the miss-
ing data samples accurately in all but very simple scenarios. In particular, when
structures appear which have never be seen by the network in the training process,
or the sampling frequency is so low that structures are missed entirely, an accurate
reconstruction cannot be expected in general. While some networks tend to halluci-
nate new structures in this case, other network variants prefer a smooth continuation
similar to classical smoothing filters.

One way to address this problem is to build specialized networks for certain types
of simulations to learn the specific features (and their spatial and temporal relation-
ships) that can occur. To achieve this, further research is required to explore the limits
of predictability using network-based inference, including in particular a thorough
investigation of their specialization capabilities in different application areas. In this
context, it will be important to shed light on the use of additional information sources,
besides low-resolution versions of the data, that can be generated efficiently in a run-
ning simulation and can help to improve the prediction. For instance, to investigate
whether certain feature indicators can be derived and stored together with the low-

334 S. Weiss et al.

resolution version, so that the inference step can learn to combine both sources in a
meaningful way and improve the inference results.

Another limitation of current network architectures for upscaling tasks is perfor-
mance, which is essentially bound by the many data access operations a network
needs to perform to reconstruct a full resolution dataset from the low-resolution
version. We are confident that with faster deep-learning hardware and performance-
optimized network architectures the performance and scalability of upscaling net-
works will increase significantly over the next years. Furthermore, in recent work
it has been shown that ANNs can even learn the importance of samples for data
reconstruction [54], by training an adaptive sampling network and a reconstruction
network end-to-end. This work, in particular, gives evidence that networks can be
trained to convert a dataset into a sparse, yet feature-preserving representation from
which another network has learned to generate a visualization in turn, i.e., without
having to reconstruct the full resolution field. Such an approach can significantly
reduce the number of data access operations and, thus, increase the visualization
performance accordingly.

2 Background and Related Work

2.1 Artificial Neural Networks

In the following, we will briefly discuss some of the basic machine learning mecha-
nisms underlying neural network-based upscaling, together with a short description
of the specific architectures used in upscaling for visualization. For a thorough intro-
duction to and an exhaustive summary of the developments in neural network-based
learning, we refer readers to the overviews by Schmidthuber [45] and Goodfellow et
al. [13].

In recent years, ANNs have gained tremendous attention due to their superior per-
formance to alternative methods in many pattern recognition and machine learning
tasks. The power of these networks comes from their ability to form representations
of categories by “learning” from large sets of samples in which these categories are
present. The learned representations are then used to recognize, classify and infer
about properties of objects and events in unknown samples. An ANN aims to solve
problems in a similar way as a human brain. It consists of interconnected nodes
akin to the vast network of neurons in the brain. Artificial neurons are aggregated
into layers, and different layers perform different kinds of transformations on their
inputs. A deep neural network (DNN) is an ANN with multiple layers between the
input and output layers [32]. These extra hidden layers result in a deep network,
enabling the composition of features from lower layers, potentially modeling com-
plex data with fewer units than a similarly performing shallow network [2]. As an
essential branch of machine learning, deep learning has been successfully applied
to many applications such as computer vision, speech recognition, natural language

Deep Learning-Based Upscaling for In Situ Volume Visualization 335

processing, and computer graphics, achieving results comparable or even superior
to human experts. In recent years, fully connected network layers were replaced by
deep hierarchies using only local convolutional update operations, and massively
parallel graphics processing units (GPU) equipped with high-performance memory
interfaces made learning with large datasets and many layers practicable. Convolu-
tional neural networks (CNNs) have proven very successful for supervised image
recognition and classification. The hidden layers of a CNN include several stages
of local convolutional and pooling layers, sometimes followed by one or several
fully-connected layers. A neuron z(i+1)

j at convolutional layer i + 1 detects local
combinations of features by aggregating information from the previous layer i via
convolution operations and non-linear state updates:

a j = Wj ∗ zi + b j , (1)

z(i+1)
j = f (a j), (2)

where Wj is a linear convolution operator with trainable weights, and b j is a bias
used to allow for absolute shifts in the output values. A non-linear function f is
used to compute a neuron’s final state, its so-called activation, to enable the network
to perform a non-linear mapping of its inputs without affecting the receptive fields
of the convolutional layers. Typical activation functions are Sigmoid(x) = 1

1+e−x or
ReLU(x) = max(0, x). A pooling layer aggregates features into smaller and smaller
feature maps via down sampling, i.e., it merges semantically similar features into
one by computing a summary (e.g., maximum or average). The fully-connected layer
learns global features from local ones by connecting neurons to all activations in the
previous layer. This is used, for instance, in classification tasks to generate the final
classificationmask from the activations of all neurons in the final convolutional layer.
Today, deep learning [30, 48] refers to the use of high-throughput architectures for
learning hierarchical representations of categories, which are formed via non-linear
models for transforming the representation at one level into a more abstract one.

For network learning, a loss function is used to measure the difference between
the predicted network output and the desired result, e.g., a class label in classification
tasks or a high-resolution ground truth image in image-based upscaling. Minimizing
the loss function is usually achieved with an optimization method such as stochas-
tic gradient descent (SGD). SGD first calculates the gradient of the loss function
with respect to the network’s weights and biases, and then updates the parameters
according to a given learning rate. The network’s weights and biases are the only
parameters that can be modified to make the loss as low as possible. Because the
loss is calculated through the composition of the neurons’ activation functions, it is
a continuous and piecewise differentiable function of the parameters. This gives rise
to minimization via an iterative process of gradient descent. As such, the learning
process reduces to calculating the gradient of a network function with respect to its
weights. This is what is performed in the training step.

A simple yet often surprisingly effective class of loss functions considers regular
vector norms, i.e., L1 or L2, over the data domain. Perceptual losses [10, 12, 25]

336 S. Weiss et al.

have been widely adopted in image and video upscaling to guide networks towards
additional image details instead of smoothedmean values. The idea is that two images
are similar if they have similar activations in the latent space of a trained network.
Let φ be the function that extracts the layer activations when feeding an input image
into the network, and let OEST and OGT , respectively, be the inferred output and the
ground-truth image. The perceptual loss function aims at minimizing the distance

LP =
∑

s

||φ(OGT
s) − φ(OEST

s)||22. (3)

Autoencoders [29] can learn latent features from data in an unsupervisedmanner,
e.g., to use these features for dimensionality reduction. An autoencoder consists of
two networks: an encoder and a decoder. The encoder encodes an input data sample
to a compressed representation in the latent space. The decoder decodes the latent
representation back to reconstruct the data sample as close as possible. Generative
adversarial networks (GAN) [14] are explicitly designed to optimize for generative
tasks. A GAN consists of two networks: a generator and a discriminator, which
contest with each other in a zero-sum game. The generator maps from a latent space
to a particular data distribution of interest. The discriminator discriminates between
instances from the true data distribution and candidates produced by the generator. In
adversarial training, this discriminator is thenused in the loss functionof the generator
network. A popular loss function in adversarial training is the binary cross-entropy
loss. Let z be the input over all timesteps and G(z) the generated results, and let
D(x) be the discriminator that takes the generated results as input and produces a
single scalar score. Then the discriminator is trained to distinguish fake from real
structures by minimizing

LGAN,D = − log(D(x)) − log(1 − D(G(z))). (4)

The generator is trained to minimize

LGAN,G = − log(D(G(z))). (5)

Recurrent neural networks (RNN) [15, 42] can capture the dynamics of a sequence
or a time series and are widely used in speech recognition, text synthesis, and hand-
writing recognition. As the most popular deep RNN architecture, the long short-term
memory (LSTM) [22] addresses the vanishing gradient problem in traditional RNNs
by adding forget gates in the units. To strengthen the temporal coherence of time
series predictions, one can use loss functions that explicitly penalize differences
between predictions and different timesteps. To cope with motion in images, letWi, j

be a warping operator that aligns the output at time i with the output at time j with
respect to some motion field. Then, the temporal loss can be defined as

Ltemp =
∑

t

||OEST t − Wt−1,t (O
EST t−1)||22. (6)

Deep Learning-Based Upscaling for In Situ Volume Visualization 337

2.2 Related Work in Upscaling

Upscaling Image and Video Data. In recent years, deep learning approaches have
been used successfully for single-image super-resolution tasks [8, 31, 47, 49, 51],
i.e., the upscaling of images and videos from a lower to some higher resolution.
Many previous works let the networks learn to optimize for losses between the
inferred and ground-truth images based on direct vector norms [27, 28]. GANs were
introduced to prevent the undesirable smoothing of direct loss formulations [33,
43], and instead use a second discriminator network that discriminates real from
generated samples and guides the generator. Convolutional architectures [8] with
residual blocks [21] are popular generator architectures that offer training stability as
well as high-quality inference. Losses based on the feature-space differences of image
classification networks, e.g., a pre-trained VGG network [25] or the discriminator
in a GAN setting, have shown to mimic well the human’s capability to assess the
perceptual similarity between two images. In the context of synthetic images, existing
work focuses on enhancing path-traced images. A common application is image
denoising, e.g., for Monte-Carlo raytracing [4, 58].

In contrast to image super-resolution, video super-resolution tasks introduce the
time dimension, and as such, require temporal coherence and consistent image con-
tent. While many methods use multiple low-resolution frames [24, 34, 50], the
FRVSR-Net [44] reuses the previously generated high-resolution image to achieve
better temporal coherence.Byusing a spatiotemporal discriminator, theTecoGAN[7]
network produced results with spatial detail without sacrificing temporal coherence.
Multiframe approaches benefit from aligning the frames via warping, which requires
an estimation of the image-space motions. As this is usually not readily available for
natural videos, optical flow estimation networks are a popular choice [3]. EDVR [52]
uses alignment modules on a U-Net [41] to align features of different frames. Recur-
rent architectures employ feedback loops to address sequence, time, and video pre-
diction tasks [5]. Chaitanya et al. [4] used recurrent connections to propagate a latent
state over time inside the network, while other methods use the previously generated
high-resolution output as input [44].

Upscaling Scientific Data. Thanks to the tremendous advances of deep learning
solutions, visualization researchers have begun to explore the capabilities of DNNs
for upscaling and reconstruction of 2D/3D steady and time-varying scientific data,
including both scalar and vector fields. Closely related to scientific visualization,
Zhou et al. [60] presented a CNN-based solution that upscales a volumetric dataset
using three hidden layers designed for feature extraction, non-linear mapping, and
reconstruction, respectively. Han et al. [17] took a two-stage approach for vector field
reconstruction via deep learning. The first stage initializes a low-resolution vector
field based on the input streamline set. The second stage refines the low-resolution
vector field to a high-resolution one via CNN. The use of neural network-based
inference of data samples in the context of in situ visualization was demonstrated by
Han andWang [18], by letting networks learn to infer missing timesteps between 3D
simulation results. Guo et al. [16] designed a deep learning framework that produces

338 S. Weiss et al.

coherent spatial super-resolution of 3Dvector field data.With a recommended scaling
factor of 4 or 8, they can downsample vector field data by 64 or 512 times at simulation
time and upsample these reduced data back to their original resolution with good
quality.

Beyond scientific visualization, severalworks aim to upscale physical fields result-
ing from volumetric flow simulations. For example, Xie et al. [57] presented tem-
poGAN to synthesize spatial super-resolution volume sequences. Temporal coher-
ence is ensured by wrapping velocity and vorticity fields into the synthesized vol-
umes. Xiao et al. [56] proposed a CNN-based flow correction method for a fast
preview of the smoke animation results based on low-resolution simulations, which
was achieved through the use of a grid-layer feature vector along with a special
loss function. Werhahn et al. [55] designed a multi-pass method to upsample 3D
spatiotemporal functions with GANs. They decomposed generative problems on the
Cartesian field functions into multiple smaller subproblems for efficient learning.
Bai et al. [1] proposed a dynamic upsampling approach to generate high-resolution
turbulent smoke flows using a dictionary-based neural network.

3 Upscaling Scenarios—Image-Based Upscaling

Rendering an accurate image of a volumetric field typically requires a large number
of data samples, and reducing this number lies at the core of research in volume ren-
dering. In the following, we shed light on the use of CNNs for learning the upscaling
of a low-resolution rendering of an isosurface to a higher resolution [53], with recon-
struction of spatial detail and shading. What makes this approach interesting for in
situ visualization is the reduced number of data samples that need to be accessed to
obtain the final high-resolution image. Since the high-resolution image is inferred
from a low-resolution image with only 1/16 (about 6%) of the pixels in the high-
resolution version, the number of data access operations that are required to generate
the high-resolution image decreases correspondingly. Due to this, in in situ environ-
ments where a dataset is so large that volume rendering must be performed while
the data is being generated, increasing rendering performance can be expected. In
addition, the low-resolution image can be streamed in turn to a remote visualiza-
tion client, reducing bandwidth requirements by 16:1 and requiring no additional
compression stage on the machine where the data is being generated.

The input and output of the image-based upscaling (IU) network in [53] are 2D
images of an isosurface in a 3D scalar field. In contrast to classical image- and video-
upscaling approaches, however, there are differences in what these images represent
and what the network learns to infer. First, the upscaling task does not work on
color images. Instead, it uses a geometry image of the isosurface, including depth
and gradient information. As illustrated in Fig. 1, this leads to improved learning of
geometric surface properties and avoids color bleeding effects when different color
maps are used in the training process. Second, instead of learning a mapping from a
low-pass filtered version of a given high-resolution image to that image, the network

Deep Learning-Based Upscaling for In Situ Volume Visualization 339

Fig. 1 Left: IU using depth and normal maps with screen-space shading. Right: upscaling of color
images introduces color bleeding from color mappings seen during training. This image is adapted
from our previous work [53]

is trained to learn a mapping from a low-resolution sampling of the isosurface in the
high-resolution dataset to a version that is sampled at high image resolution. Third,
the network learns to generate additional attribute channels from the given inputs.
In particular, it infers global illumination values from the given geometry images by
learning the relation between low-resolution geometry and global illumination in the
high-resolution data.

Processing Pipeline. In every frame t , the network receives the low-resolution
input I LRt , which comprises multiple 2D fields, the so-called channels. The binary
mask MLR

t ∈ {−1,+1}H×W indicates for every pixel whether or not the isosurface
is hit. The normal map NLR

t ∈ [−1,+1]3×H×W stores the the screen-space normal
vectors at the rendered surface points. The depth map DLR

t ∈ [0, 1]H×W stores the
distance of each point to the viewing plane.

From these input fields, the network infers the high-resolution image of the
isosurface OEST

t , including additional output channels that were not given in
the low-resolution input, such as high-resolution ambient occlusion (AO) val-
ues. Therefore, in the training process, the network is fed with ground-truth AO
maps (generated via volumetric raycasting) and learns to predict them according
to the low-resolution geometry. Screen-space Phong shading with AO is finally
applied as a post-processing step. Optionally, a map of 2D displacement vectors
FLR
t ∈ [−1,+1]2×H×W—indicating the screen-space flow from the previous view

to the current view—is computed internally to let the network smooth the differences
between subsequent predictions.

Architecture Details. The network architecture builds upon a fully convolu-
tional frame-recurrent neural network (FRVSR-Net) consisting of a series of residual
blocks [44]. In a residual network, some layers feed their output not only into the
next layer but also directly into the layers many stages away. By using these so-called
skip connections, the layers can learn the residual between the true output and the

340 S. Weiss et al.

Fig. 2 The IU network architecture. ⊕ indicates component-wise addition of the residual. All
convolutions use 3 × 3 kernels with stride 1. Bilinear interpolation is used for the upsampling
layers. This image is reprinted from our previous work [53]

prediction. Furthermore, larger gradients can be propagated to initial layers, thus
avoiding the problem of vanishing gradients in deep networks. The FRVSR-Net is
a rather small network that provides a good tradeoff between quality and inference
speed, i.e., the inference of FullHD images at 60 fps is possible, which is difficult to
achieve with more complex architectures like the U-Net [41]. An illustration of the
network’s building blocks and its topology is given in Fig. 2.

The residual architecture network improves the network’s capability to generalize
to new data, as it can focus on generating the residual content [21]. Hence, the
input channels are bilinearly upsampled and added to the channels of the output,
producing MEST

t , NEST
t , and DEST

t . The only exception is AOEST
t , which is inferred

from scratch, as there is no low-resolution input AO map.
Training and Loss Function Characteristics. For training and validation,

images of isosurfaces in a supernova simulation (dataset Ejecta) on a 2563 grid
are used. The dataset is rendered at different timesteps to provide the network with
a variety of different geometric structures, ranging from very small details to rather
smooth low-frequency parts. The input images were subdivided into smaller parts so
that multiple inputs can be processed at once and benefit from batch processing in
the optimizer.

Weiss et al. [53] compare networks with different weighted combinations of the
individual losses described in Sect. 2.2. Figure3 shows a visual comparison of the
surface structures (without AO) that are inferred from the low-resolution input image
using these networks.

The evaluation indicates that a network which is trained only with L1-losses and a
minor objective on temporal coherence gives the best results. This network only sees
shaded colors in the temporal coherence loss during the training process and is thus
forced to focus primarily on the reconstruction of geometry. Adding a perceptual loss
on the normal andAOfields does not lead to anyvisual differences. This is because the
perceptual loss network VGG-19 is trained on color images and does not explicitly
consider the relation between geometry and shaded output. Further experiments
using an adversarial loss indicate that theGANproducesmore high-frequency details

Deep Learning-Based Upscaling for In Situ Volume Visualization 341

Fig. 3 Comparing networks with different loss function configurations. Top row: the normal map.
Bottom row: the shaded output color. Since the “Shaded” network acts directly on color images, a
normal map is not used. Left to right: low-resolution input, shaded, L1-color, L1-geometry (final),
perceptual, GAN, and ground truth. This image is adapted from our previous work [53]

that actually decrease the quality of the reconstruction. Furthermore, it significantly
increases both training time and memory requirements of the discriminator.

Quality and Performance Evaluation. The following comparison sheds light on
the quality and performance of network-based upscaling. The comparison involves
images of isosurfaces in Ejecta that were never seen during training, as well as
images of isosurface in other datasets (see Fig. 4): A numerical simulation of a
Richtmyer–Meshkov (RM) instability at 10243 and of a Rayleigh-Bernard process
at 1200 × 1200 × 80, CT scans of human anatomies (Skull, Thorax) at a resolution
of 2563, and a flow simulation (Flow) at 2563. For all datasets, even though some of
them exhibit geometric features that are different from those in Ejecta, the inference
results are very close to the ground truth. The results indicate that the network can
effectively infer meaningful details in line with the geometric surface properties, and
can furthermore predict a highly accurate distribution of AO values from the inferred
geometry.

The quantitative assessment of the quality of IU using the peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM) on the normal map in Table1
confirm the high reconstruction fidelity of network-based inference.

Compared to volumetric raycasting on the GPU without the simulation of AO
values, the performance of isosurface image upscaling typically ranges from equal
to a factor of 2 faster, including the inference of AO values. Once the renderer also
needs to simulate AO, it is outperformed by the upscaling network by two orders of
magnitude, due to the computational complexity of AO simulation using ray-based
approaches.

4 Upscaling Scenarios—3D Spatial Upscaling

Besides upscaling in image space, spatial upscaling (SU) can also be performed
directly in the data space. A possible integration with in situ implementation is as
follows. The simulation first outputs, for example, 40% of samples from the entire

342 S. Weiss et al.

Fig. 4 Comparing upscaling quality on Ejecta, RM, Skull, Thorax, two isosurfaces of a Rayleigh-
Bernard process and a single jet. The network was trained only on Ejecta, but on different views
than shown. The other datasets were never seen during training. Left to right: input, bilinear, IU,
and ground truth with AO. This image is adapted from our previous work [53]

Table 1 Comparing average PSNR and SSIM values of the normal map for different methods

Dataset PSNR (dB) SSIM

Nearest Linear Cubic IU Nearest Linear Cubic IU

Clouds 59.18 65.51 56.03 69.88 0.92 0.94 0.88 0.96

Ejecta 60.71 64.99 58.03 69.43 0.91 0.92 0.87 0.95

RM 25.21 27.26 24.02 28.50 0.74 0.76 0.69 0.80

Thorax 43.76 46.74 41.69 49.36 0.75 0.76 0.68 0.78

Skull 25.46 27.36 24.55 29.10 0.91 0.92 0.87 0.95

Deep Learning-Based Upscaling for In Situ Volume Visualization 343

volume sequence as high-resolution volumes, as the training data. The simulation
then resumes andonly outputs subsequent low-resolution volumes, as the testing data.
For network training, the corresponding low-resolution volumes can be obtained by
downsampling the high-resolution ones using the bicubic kernel with a downscaling
factor of four (thus, each volume is 1/64 of the original size). Once trained offline,
the network can perform real-time inference to predict high-resolution volumes from
low-resolution ones.

Given a time-varying volumetric dataset, Han and Wang [19] designed a network
architecture similar to tempoGAN [57] for SU of each volume in the sequence.
The network includes a generator G and two discriminators (spatial discriminator
Ds and temporal discriminator Dt). With this architecture, the network produces
spatiotemporally coherent spatial super-resolution of the given volume sequence
using adversarial learning. Formally, the goal is to estimate a mapping function F
from a low-resolution volume sequence VLR to a high-resolution volume sequence
VEST , while taking into account temporal coherence.Namely,VEST = F (VLR). The
network is then trained byminimizing the loss function that considers (1) adversarial
loss [35] which trains G with the goal of fooling Ds and Dt , (2) content loss [23, 40]
which mixes the adversarial loss with a more traditional loss, such as L2 distance,
and (3) feature loss [59] which constrains G to produce similar features between
synthesized and ground-truth volumes at different scales.

Preliminary Results. For same-variable inference, Fig. 5 compares the isosur-
faces extracted from the synthesized volumes via bicubic interpolation and SU. A
single isovalue is picked and the results for a single timestep are shown. Clearly, SU
generates closer results with respect to the ground truth. Figure6 compares volume
rendering of the synthesized volumes via bicubic interpolation, CNN, and SU. The
CNN-based baseline model utilizes a post-upsampling framework [33]. It is clear
that CNN generates the worst result while SU yields the best result. Besides same-
variable inference, the framework can perform different-variable inference. That is,
a variable X of a dataset is used for training. For inference, X is used to infer another
variable Y of the same dataset (X → Y). Such an example is shown in Fig. 7, where

Fig. 5 Comparing same-variable inference results of the Ionization (He+) dataset at timestep 73
using isosurface rendering. The chosen isovalue is −0.84 (the value range is normalized to [−1,
1]). Left to right: bicubic, SU, and ground truth

344 S. Weiss et al.

Fig. 6 Comparing same-variable inference results of the Hurricane (QVAPOR) dataset using vol-
ume rendering. Left to right: bicubic, CNN, SU, and ground truth

Fig. 7 Comparing different-variable inference results of the Combustion (MF → YOH) dataset
using volume rendering. Left to right: bicubic, SU, and ground truth

the MF variable is used for training and the YOH variable is used for inference.
Again, SU produces higher-quality and more detailed visual results than bicubic
interpolation.

5 Upscaling Scenarios—Temporal Upscaling

Temporal upscaling (TU) is particularly useful as a large-scale scientific simulation
often runs a long sequence but could only afford to store the volume sequence rather
sparsely (e.g., every 100th timestep). The upscaling aims to synthesize the interme-
diate timesteps by providing temporally resolved details to support a more detailed
analysis and visualization of dynamic temporal features. A possible integration with
in situ implementation is as follows. The simulation also first outputs, for example,
40% of samples from the entire volume sequence as the training data. The simula-
tion then resumes and only sparsely outputs subsequent volumes (says every tenth
or hundredth timestep), as the testing data. For network training, it takes pair-wise
timesteps at two ends as input and aims to predict intermediate timesteps in between
through forward and backward predictions (where intermediate timesteps are known
for loss computation). Once training offline, the work can perform real-time infer-
ence to predict intermediate timesteps given a pair of timesteps in the testing set
(where no intermediate timesteps are known).

Deep Learning-Based Upscaling for In Situ Volume Visualization 345

Fig. 8 The TU network has a generator G (including the predicting and blending modules) and a
discriminator D. During inference, the network performs either same-variable inference or different-
variable inference using G. This image is adapted from our previous work [18]

The TU solution given by Han andWang [18] uses a recurrent generative network
that combines RNN and GAN, to generate the intermediate volumes between a
given pair of volumes (i.e., two-end timesteps). Given a pair of volumes (Vi , Vi+k)

from timesteps i and i + k (where k > 1), a function F is sought that satisfies
F (Vi , Vi+k) ≈ V, whereV = {Vi+1, Vi+2, . . . , Vi+k−1} are the intermediate volumes
between Vi and Vi+k .

Network Design and Loss Function. As sketched in Fig. 8, the network includes
a generator G and a discriminator D. G uses two modules: the predicting module
(FPRED) and blending module (FBLD), to estimate F . FPRED is a volume predic-
tion network that produces a forward prediction VFW through Vi and a backward
prediction VBW through Vi+k , respectively. FPRED includes three components: (1)
feature learning componentwhich extracts feature representations from the volumes,
(2) temporal component, which bridges the spatial and temporal information among
different volumes, and upscaling component, which recovers the volumes from the
spatiotemporal features. FBLD takes Vi , Vi+k , and Vi+ j (0 < j < k) from VFW and
VBW as input, and blends them into the predicted volume Ṽ. The discriminator D
distinguishes Ṽ from V. Given an input, D produces a score to indicate whether or
not the input is from the real data. That is, D(V) ≈ 1 and D(Ṽ) ≈ 0. Note that the
goal of G is to fool D so that D cannot distinguish Ṽ as fake volumes In this regard,
D serves the role of a binary classifier as the score from D can guide G in synthe-
sizing high-quality volumes. Similar to spatial upscaling, the network is trained by
minimizing the loss function that considers adversarial loss, content loss, and feature
loss.

Architecture Details. With a traditional residual block, the resolution of the
input [21] cannot be changed. Therefore, Han andWang [18] opt to enhance the resid-

346 S. Weiss et al.

Fig. 9 Comparing same-variable inference results of the Combustion (MF) dataset using volume
rendering. Top to bottom: linear, TU, and ground truth. Left to right: five consecutive timesteps.
The synthesized results show that TU solution can preserve temporal coherence well while linear
interpolation fails to do so (refer to the evolution of a volumetric feature highlighted in ellipses)

ual block by allowing downscaling or upscaling the input. For the feature learning
component, each residual block is designed to contain two parts, which are bridged
by skip connection. The first part has four convolutional layers, followed by spectral
normalization [37] and ReLU [38]. The second part has one convolutional layer, fol-
lowed by spectral normalization and ReLU. For the temporal component, to enable
the network to predict volumes, ConvLSTM [46] is applied to transfer the spatial
features into spatiotemporal features. The advantage of ConvLSTM over traditional
LSTM [22] lies in its weight-sharingmechanism in convolution.Weight-sharing uses
fewer parameters to train ConvLSTM, thus savingmemory and speeding up training.
For the upscaling component, the spatiotemporal features fromConvLSTMare taken
as input and a synthesized volume is output. Although common, using deconvolu-
tional layers to recover resolution from max-pooling or convolutional layers would
incur a high computational cost. Therefore, right after the last spectral normalization
layer, Han andWang [18] add the voxel shuffle layer, a sub-voxel convolutional layer,
for upscaling. Assuming a feature of size [L ,W, H] needs to be upscaled with a fac-
tor f , voxel shuffle applies a periodic shuffle operation to rearrange the elements of
a [c f 3, L ,W, H] tensor to a tensor of [c, f L , f W, f H], where c is the number of
channels.

Qualitative Results. Figure9 shows the comparison of volume rendering images
of synthesized volumes generated using linear interpolation and inferred using TU.
The ground-truth results are displayed for reference. The comparison shows that
linear interpolation fails to capture the temporal evolution of features while TU can.

Deep Learning-Based Upscaling for In Situ Volume Visualization 347

Fig. 10 Comparing different-variable inference results of the Combustion (MF → HR) dataset
using volume rendering. Left to right: linear, TU, and ground truth

Fig. 11 Comparing same-variable inference results of the Supernova (E) dataset using isosurface
rendering. The chosen isovalue is 0.255. Top row: timestep 35. Bottom row: timestep 51. Left to
right: linear, TU, ground truth, and the two-end ground-truth timesteps (i.e., 33 and 37 for timestep
35, 49 and 53 for timestep 51)

For example, the ground-truth rendering image sequence shows that the volume
feature highlighted in ellipses actually shifts from left to right (note that the feature
at the two-end timesteps do not overlap spatially). However, due to the non-overlap of
this feature at the two-end timesteps, linear interpolation would interpret this as two
separate features: the feature on the left shrinks and disappears while the feature on
the right appears and grows. TU can learn temporal evolution for accurate inference
of intermediate timesteps. The different-variable inference results shown in Fig. 10
also confirms the effectiveness of TU over linear interpolation.

Figure11 compares the isosurfaces extracted from the synthesized volumes via
linear interpolation and TU. A single isovalue is picked and the results for two
different timesteps are shown. Compared with the ground-truth results, it can be seen
that at timestep 33, linear interpolation generates a similar isosurface; at timestep
51, linear interpolation fails to construct the isosurface. However, in both cases, TU
clearly generates closer results with respect to the ground truth.

Quantitative Results. For quantitative comparison, PSNR and SSIM are used to
evaluate the quality of synthesized volumes at the data and image levels, respectively.
In addition to linear interpolation, two baseline deep learning solutions based on
RNN and CNN are implemented. For the training of RNN, the architecture of TU

348 S. Weiss et al.

Table 2 Comparing average PSNR and SSIM values for different methods

Dataset (variable) PSNR (dB) SSIM

Linear RNN CNN TU Linear RNN CNN TU

Combustion
(HR)

25.61 26.13 25.72 25.81 0.66 0.70 0.69 0.72

Combustion
(MF)

25.12 25.86 25.43 25.62 0.71 0.73 0.73 0.74

Supernova (E) 22.34 24.31 23.81 23.74 0.61 0.64 0.63 0.66

Vortex 26.62 27.42 26.85 26.90 0.73 0.75 0.75 0.75

is followed but the discriminator is excluded. For the training of CNN, the same
TU architecture is leveraged but ConvLSTM is removed. Table2 reports the average
PSNR and SSIM values over the entire volume sequence for linear interpolation,
RNN, CNN, and TU. At the data level, RNN performs the best in terms of PSNR.
Such a result is expected, as RNN is a PSNR-oriented solution. In contrast, TU is
also constrained by adversarial and feature losses. At the image level, TU performs
the best in terms of SSIM.

6 Concluding Remarks and Future

The current results of deep learning-based data upscaling indicate that such methods
have the potential to overcome some of the limitations in current high-performance
simulation environments. The trained networks infer well the geometric properties
of isosurfaces in 3D scalar fields, and they can even predict missing spatial and
temporal features in static and time-resolved fields. As such, there is evidence that
deep learning-based upscaling methods can (1) reduce the number of samples that
need to be reconstructed (and transmitted in a remote environment) whenmonitoring
a running simulation in situ, (2) reduce the resolution at which data needs to be stored,
and (3) reduce the number of timesteps that need to be stored.

In computer vision, a single neural network model trained on various types of
images could effectively upscale unseen images from multiple categories. However,
this is not the case for scientific data since the training data is limited, and different
scientific datasets may not follow a single data distribution (e.g., Gaussian distribu-
tion). Still, we believe that one can train a model on a certain type of datasets and
later apply it to upscale or infer a different dataset of the same type (e.g., a different
variable sequence or ensemble run). For example, Han et al. [20] recently designed
V2V, a framework for variable to variable transfer using GAN.

For future work regarding the use of learning-based upscaling for in situ visual-
ization, we envision in particular the following approaches.

When using 2D image-based upscaling in combinationwith 3Dupscaling, itmight
be possible to let networks infer on the raw data frommultiple (low-resolution) views

Deep Learning-Based Upscaling for In Situ Volume Visualization 349

of selected features in this data, facilitating a feature-based encoding of physical
fields. An interesting research question is which features and how many of them are
required by a network to infer the original dataset, and whether networks can locally
infer the data from these features.

Even more important seems the question whether ANNs can convert the data to a
compact feature-preserving representation (a code) that can be permanently stored,
and directly decoded by the visualization tool into a visual representation, without
having to decode the initial data. In this context, it will be interesting to revisit data
compression techniques in light of the so-called “task-dependency principle" from
psychology. This principle suggests that a code is optimal if it considers the behav-
ioral goals of a user of this code,which is a perceptual investigation of the information
encoded in the data when performing visual data analysis tasks. Following the task-
dependency principle, codes should allocate resources according to how the user
makes use of the encoded information, and the encoding of data that are irrelevant
should be allocated minimal resources. This principle is fundamental to data visual-
ization, since it asks for the reconstruction of data from a perceptual point of view,
rather than a signal processing standpoint that argues in terms of numerical accuracy.
It is an interesting question whether ANNs can generate such task-dependent, i.e.,
perception-aware, codes that can be intertwined with a visualization tool in the envi-
sioned way. Answers to this question might be obtained by looking at recent works
related to scene representation networks [36] and differentiable rendering [39], where
reconstruction networks and networks that learn to generate rendered imagery from
the resulting latent space representations have been trained end-to-end.

References

1. Bai, K., Li, W., Desbrun, M., Liu, X.: Dynamic upsampling of smoke through dictionary-based
learning (2019). arXiv:1910.09166

2. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Lear. 2(1), 1–127 (2009)
3. Caballero, J., Ledig, C., Aitken, A.P., Acosta, A., Totz, J., Wang, Z., Shi, W.: Real-time

video super-resolution with spatio-temporal networks and motion compensation (2016).
arXiv:1611.05250

4. Chaitanya, C.R.A., Kaplanyan, A.S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai, D.,
Aila, T.: Interactive reconstruction ofMonte Carlo image sequences using a recurrent denoising
autoencoder. ACM Trans. Graph. 36(4), 98:1–98:12 (2017)

5. Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Ben-
gio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine
translation (2014). arXiv:1406.1078

6. Chu, M., Thuerey, N.: Data-driven synthesis of smoke flows with CNN-based feature descrip-
tors. ACM Trans. Graph. 36(4), 69:1–69:14 (2017)

7. Chu, M., Xie, Y., Leal-Taixé, L., Thuerey, N.: Temporally coherent gans for video super-
resolution (TecoGAN) (2018). arXiv:1811.09393

8. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image
super-resolution. In: Proceedings of European Conference on Computer Vision, pp. 184–199
(2014)

9. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional net-
works. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

http://arxiv.org/abs/1910.09166
http://arxiv.org/abs/1611.05250
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1811.09393

350 S. Weiss et al.

10. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep
networks. In: Proceedings of Annual Conference on Neural Information Processing Systems,
pp. 658–666 (2016)

11. Eckert, M.-L., Um, K., Thuerey, N.: ScalarFlow: a large-scale volumetric data set of real-world
scalar transport flows for computer animation andmachine learning. ACMTrans. Graph. 38(6),
239:1–239:16 (2019)

12. Gatys, L.A., Ecker, A.S., Bethge,M.: Image style transfer using convolutional neural networks.
In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–
2423 (2016)

13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
14. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., Bengio, Y.: Generative adversarial nets. In: Proceedings of Annual Conference on Neural
Information Processing Systems, pp. 2672–2680 (2014)

15. Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel
connectionist system for improved unconstrained handwriting recognition. IEEETrans. Pattern
Anal. Mach. Intell. 31(5), 855–868 (2009)

16. Guo, L., Ye, S., Han, J., Zheng, H., Gao, H., Chen, D.Z., Wang, J.-X., Wang, C.: SSR-VFD:
Spatial super-resolution for vector field data analysis and visualization. In: Proceedings of
IEEE Pacific Visualization Symposium, pp. 71–80 (2020)

17. Han, J., Tao, J., Zheng, H., Guo, H., Chen, D.Z., Wang, C.: Flow field reduction via recon-
structing vector data from 3D streamlines using deep learning. IEEE Comput. Graph. Appl.
39(4), 54–67 (2019)

18. Han, J., Wang, C.: TSR-TVD: temporal super-resolution for time-varying data analysis and
visualization. IEEE Trans. Vis. Comput. Graph. 26(1), 205–215 (2020)

19. Han, J., Wang, C.: SSR-TVD: spatial super-resolution for time-varying data analysis and visu-
alization. IEEE Trans. Vis. Comput. Graph. (Under Minor Revision) (2020)

20. Han, J., Zheng, H., Xing, Y., Chen, D.Z., Wang, C.: V2V: a deep learning approach to variable-
to-variable selection and translation for multivariate time-varying data. IEEE Trans. Vis. Com-
put. Graph. 27(2) (2021). In Press

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceed-
ings of International Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

23. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adver-
sarial networks. In: Proceedings of International Conference on Computer Vision and Pattern
Recognition, pp. 1125–1134 (2017)

24. Jo, Y., Oh, S.W., Kang, J., Kim, S.J.: Deep video super-resolution network using dynamic
upsampling filters without explicit motion compensation. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3224–3232 (2018)

25. Johnson, J., Alahi, A., Li, F.-F.: Perceptual losses for real-time style transfer and super-
resolution. In: Proceedings of European Conference on Computer Vision, pp. 694–711 (2016)

26. Kappeler, A., Yoo, S., Dai, Q., Katsaggelos, A.K.: Video super-resolution with convolutional
neural networks. IEEE Trans. Comput. Imaging 2(2), 109–122 (2016)

27. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-
resolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1637–1645 (2016)

28. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional
networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1646–1654 (2016)

29. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks.
AIChE J. 37(2), 233–243 (1991)

30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Proceedings of Advances in Neural Information Processing Systems, pp.
1097–1105 (2012)

Deep Learning-Based Upscaling for In Situ Volume Visualization 351

31. Lai, W.-S., Huang, J.-B., Ahuja, N., Yang, M.-H.: Deep Laplacian pyramid networks for fast
and accurate superresolution. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pp. 624–632 (2017)

32. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–444 (2015)
33. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A.P., Tejani,

A., Totz, J., Wang, Z., Shi, W.: Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of International Conference on Computer Vision and
Pattern Recognition, pp. 4681–4690 (2017)

34. Liu, D., Wang, Z., Fan, Y., Liu, X., Wang, Z., Chang, S., Huang, T.: Robust video super-
resolution with learned temporal dynamics. In: Proceedings of International Conference on
Computer Vision, pp. 2526–2534 (2017)

35. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative
adversarial networks. In: Proceedings of International Conference on Computer Vision, pp.
2813–2821 (2017)

36. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf:
representing scenes as neural radiance fields for view synthesis (2020). arXiv:2003.08934

37. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adver-
sarial networks. In: Proceedings of International Conference for Learning Representations
(2018)

38. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Pro-
ceedings of International Conference on Machine Learning, pp. 807–814 (2010)

39. Nimier-David, M., Vicini, D., Zeltner, T., Wenzel, J.: Mitsuba 2: a retargetable forward and
inverse renderer. ACM Trans. Graph. 38(6), 203:1–203:17 (2019)

40. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: Feature
learning by inpainting. In: Proceedings of International Conference on Computer Vision and
Pattern Recognition, pp. 2536–2544 (2016)

41. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image
segmentation. In: Proceedings of International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 234–241 (2015)

42. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323, 533–536 (1986)

43. Sajjadi,M.S.M., Schólkopf, B.,Hirsch,M.: EnhanceNet: single image super-resolution through
automated texture synthesis. In: Proceedings of IEEE International Conference on Computer
Vision, pp. 4501–4510 (2017)

44. Sajjadi, M.S.M., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution. In: Pro-
ceedings IEEEConference onComputerVision andPatternRecognition, pp. 6626–6634 (2018)

45. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117
(2015)

46. Shi,X., Chen, Z.,Wang,H.,Yeung,D.-Y.,Wong,W.-K.,Woo,W.-C.: Convolutional LSTMnet-
work: a machine learning approach for precipitation Nowcasting. In: Proceedings of Advances
in Neural Information Processing Systems, pp. 802–810 (2015)

47. Shi,W.,Caballero, J.,Huszár, F., Totz, J.,Aitken,A.P., Bishop,R., Rueckert,D.,Wang,Z.: Real-
time single image and video super-resolution using an efficient sub-pixel convolutional neural
network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1874–1883 (2016)

48. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition (2014). arXiv:1409.1556

49. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3147–
3155 (2017)

50. Tao, X., Gao, H., Liao, R., Wang, J., Jia, J.: Detail-revealing deep video super-resolution. In:
Proceedings of IEEE International Conference on Computer Vision, pp. 4482–4490 (2017)

51. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In:
Proceedings of IEEE International Conference on Computer Vision, pp. 4809–4817 (2017)

http://arxiv.org/abs/2003.08934
http://arxiv.org/abs/1409.1556

352 S. Weiss et al.

52. Wang, X., Chan, K.C., Yu, K., Dong, C., Loy, C.C.: EDVR: Video restoration with enhanced
deformable convolutional networks. In: Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition Workshops (2019)

53. Weiss, S., Chu, M., Thuerey, N., Westermann, R.: Volumetric isosurface rendering with deep
learning-based super-resolution. IEEE Trans. Vis. Comput. Graph. (Accepted) (2019)

54. Weiss, S., Işık, M., Thies, J., Westermann, R.: Learning adaptive sampling and reconstruction
for volume visualization (2020). arXiv:2007.10093

55. Werhahn, M., Xie, Y., Chu, M., Thuerey, N.: Amulti-pass GAN for fluid flow super-resolution.
Proc. ACM Comput. Graph. Inter. Tech. 2(1), 10:1–10:21 (2019)

56. Xiao, X., Wang, H., Yang, X.: A CNN-based flow correction method for fast preview. Comput.
Graph. Forum 38(2), 431–440 (2019)

57. Xie, Y., Franz, E., Chu, M., Thuerey, N.: tempoGAN: a temporally coherent, volumetric GAN
for super-resolution fluid flow. ACM Trans. Graph. 37(4), 95:1–95:15 (2018)

58. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual
learning of deep CNN for image denoising (2016). arXiv:1608.03981

59. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of
deep features as a perceptual metric. In: Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pp. 586–595 (2018)

60. Zhou, Z., Hou, Y., Wang, Q., Chen, G., Lu, J., Tao, Y., Lin, H.: Volume upscaling with convo-
lutional neural networks. In: Proceedings of Computer Graphics International, pp. 38:1–38:6
(2017)

http://arxiv.org/abs/2007.10093
http://arxiv.org/abs/1608.03981

Scalable CPU Ray Tracing for In Situ
Visualization Using OSPRay

Will Usher, Jefferson Amstutz, Johannes Günther, Aaron Knoll,
Gregory P. Johnson, Carson Brownlee, Alok Hota, Bruce Cherniak,
Tim Rowley, Jim Jeffers, and Valerio Pascucci

Abstract In situ visualization increasingly involves rendering large numbers of
images for post hoc exploration. As both the number of images to be rendered
and the data being rendered are large, the scalability of the rendering component
is of key concern. Furthermore, the renderer must be able to support a wide range
of data distributions, simulation configurations, and HPC systems to provide the
flexibility required for a portable, general purpose in situ rendering package. In
this chapter, we discuss recent developments in OSPRay’s support for MPI-parallel
applications to provide a flexible and scalable rendering API, with a focus on
how these developments can be applied to enable scalable, high-quality in situ
visualization.

1 Introduction

Rendering images is a common task performed in situ, as the resulting images are
small in size compared to the full data sets and can be saved out frequently and
viewed post-hoc. The images rendered in situ have been used in a number of ways,
e.g., to produce static visualizations [41, 42], movies [14], Cinema databases [3],
and other explorable extracts [17, 28, 52, 57], or for interactive visualization during
the simulation [23, 40, 43, 45, 55]. Although these applications differ widely in the

W. Usher (B) · J. Günther · A. Knoll · G. P. Johnson · C. Brownlee · A. Hota · B. Cherniak ·
J. Jeffers
Intel Corporation, Mountain View, USA
e-mail: will.usher@intel.com

J. Amstutz
Intel, Now with Nvidia, Santa Clara, USA

T. Rowley
Intel, Now with Google, Mountain View, USA

V. Pascucci
SCI Institute, University of Utah, Salt Lake City, USA
e-mail: pascucci@sci.utah.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_16

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_16&domain=pdf
mailto:will.usher@intel.com
mailto:pascucci@sci.utah.edu
https://doi.org/10.1007/978-3-030-81627-8_16

354 W. Usher et al.

number and type of images rendered, they share some common requirements for the
underlying renderer used to produce the images.

First, the renderer must support distributed rendering across a cluster, as the
simulation data are frequently too large to aggregate to a single node for processing.
Moreover, this distributed rendering component must scale with the simulation to
prevent the visualization component from becoming a bottleneck. It is also desirable
for the renderer to support more advanced effects to provide high-quality images, be
extendable with support for new geometric and volumetric representations, and be
capable of sharing memory directly with the simulation.

In this chapter, we will discuss how recent developments in OSPRay’s distributed
rendering capabilities [44] can be leveraged to enable scalable in situ visualization
applications. OSPRay [49] is an open-source, scalable, portable ray tracing library.
OSPRay provides users powerful scalable distributed rendering capabilities, with
support for a range of data configurations, representations, and high-quality local
illumination effects. The API also provides the flexibility needed to interoperate
with different simulation data layouts and configurations. We first provide a brief
overview of OSPRay and the new 2.0 API (Sect. 2), and then discuss the distributed
rendering capabilities provided by OSPRay’s distributed device (Sect. 3), evaluate
the scalability of the current distributed renderer (Sect. 4), and discuss some example
use cases (Sect. 5).

2 OSPRay

Although originally conceived as an API and CPU-based engine for scientific
visualization rendering, OSPRay has evolved into a higher level general-purposeAPI
for rendering geometric and volumetric data with multi-node distributed rendering.
OSPRay sits at the highest level of Intel’s oneAPI Rendering Toolkit software
stack [24]. The libraries in the Rendering Toolkit follow a paradigm of software-
defined visualization, in which features are driven by user needs, and implemented
in software before potentially being specialized in hardware. The lower level libraries
in the Rendering Toolkit are:

• Embree [51], a collection of high-performance ray tracing kernels, providing
efficient acceleration structure traversal and geometry intersection methods;

• Open Volume Kernel Library (OpenVKL) [26], which provides high-performance
volume traversal and sampling kernels for visualization and film; and

• OpenImageDenoise [25], a recursive autoencoder neural-net-based solution for
postprocessing noisy ray-traced and path-traced images.

Figure1 illustrates this software stack. OSPRay and the other components of the
oneAPI Rendering Toolkit are released open-source under the Apache 2.0 license.

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 355

Fig. 1 The Intel® oneAPI
Rendering Toolkit [24]
software stack.
OpenImageDenoise,
OSPRay, Embree, and
OpenVKL are all released
under the Apache 2.0 license

Application (e.g., ParaView, VisIt)

OpenGL, Mesa, etc.

Intel® OpenImageDenoise

Intel® OSPRay

Intel® Embree Intel® OpenVKL

Intel® Xeon®, Xeon Phi™, future GPUs

ISPC Device MPI Distributed Device

2.1 OSPRay 2.0 Features for In Situ Visualization

OSPRay 2.0, released in January 2020, features several improvements over v1.x. At
a high level, these include architectural changes centered around API sustainability,
as well as integration of new lower level libraries in the oneAPI Rendering Toolkit.
Highlights specifically relevant to in situ visualization include:

• Improved volume rendering performance and quality through the integration of
OpenVKL and more advanced renderers;

• Asynchronous frame rendering, which enables applications to continue processing
while OSPRay renders, and to render multiple frames simultaneously;

• The separation of an object’s underlying data from its appearance, through the
introduction of volumetric and geometric models; and

• Modules can implement new distributed rendering algorithms to extend OSPRay’s
built in renderer.

2.2 OSPRay Actors and Objects

OSPRay provides a hierarchy of OSPObjects for specifying data, geometry, scene,
camera, and lighting information. At the lowest level, multidimensional data arrays
are specified through OSPData objects, which are set as parameters on OSPGeometry
or OSPVolume objects to specify the underlying data for the primitive, e.g., vertex
positions, voxels, etc. The OSPData objects can share pointers with the application,
providing a zero-copy interface. Geometries and volumes are then associated with
the desired appearance information (e.g., materials, transfer functions) through an
OSPGeometricModel or OSPVolumetricModel. Groups of such models can then
be positioned in the world to setup the scene to be rendered, along with a set of lights.

To render the scene, the application creates an OSPRenderer, selecting the
renderingmodality desired (e.g., scientificvisualization, path tracing), anOSPCamera
to place the viewpoint, and an OSPFrameBuffer to output the rendered image to. The

356 W. Usher et al.

world, renderer, camera, and framebuffer are then passed to ospRenderFrameAsync
to begin rendering.

2.3 OSPRay Modules

OSPRay is designed to be programmable and expandable via custom user modules.
Modules serve applications that require additional functionality beyond that provided
by the built-in objects in OSPRay, but do not require modifying the API itself.
These modules can be used for experimental development and bespoke applications,
involving, for example, largeparticle data structures [50], customgeometric primitives [21,
29, 46], volumes [48], or tailoring OSPRay to the needs of a larger visualization
system, as was done for VisIt [54].

2.4 OSPRay Devices

The underlying implementation of the OSPRay API is provided through “Devices,”
which map OSPRay API calls to an execution backend (e.g., CPUs, GPUs).
OSPRay’s current CPU backend, the ISPCDevice, uses the Intel SPMD Program
Compiler (ISPC) [38] as a data-parallel kernel programming language, which allows
for efficiently vectorized code on Intel and other CPU architectures. However, the
OSPRay API is designed to be independent from the backend implementation, and
is not tied to CPUs exclusively. Efforts are currently underway to implement a GPU
backend and generalize the API to foster contributions from other communities
and vendors. In the context of distributed and in situ visualization, OSPRay’s
MPI module provides an MPI-based device, the MPIDistributedDevice, that
coordinates execution of a local device (currently the ISPCDevice) across multiple
nodes. The MPI Distributed Device is discussed in detail in the following section.

3 Distributed Rendering in OSPRay

OSPRay’s distributed rendering capabilities are provided through the distributed
device in the MPI module. The distributed device allows applications to make
OSPRay API calls on each rank to set up a scene containing unique or shared
data across the ranks. Rendering is performed collectively across the ranks using
the distributed rendering algorithms described by Usher et al. [44]. We provide an
overview of these algorithms (Sect. 3.1), but focus primarily on the end application
perspective. We present an overview of the distributed API and a distributed
application (Sect. 3.2), then discuss in detail key aspects of the API for in situ
visualization: zero-copy data sharing (Sect. 3.3), asynchronous rendering (Sect. 3.4),

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 357

TileOperation

Finished Tile

PixelOp

Final Tile

Send to display

Tile Task Dependencies

Rank 1

Rank 0

Gen: 1
Children: 0

Gen: 1
Children: 0

Gen: 0
Children: 2

Local Function Call Optional OperationSent over MPI

Legend:

Fig. 2 An example of the Distributed FrameBuffer’s tile processing pipeline in a data-parallel
renderer. Dependencies are specified on the fly per-tile and can be further extended by child tiles.
To compute the highlighted tile owned by rank 0, the owner renders a background color tile that tells
the tile operation to expect two child tiles in generation 1. These tiles correspond to the rendered
data from each rank. After these tiles are received, they are composited, optionally processed by a
pixel operation, and sent to rank 0 for display. This image is reproduced from our previous work [44]

renderingmore complex data distributions (Sect. 3.5), and extending theAPI through
modules (Sect. 3.6).

3.1 The Distributed FrameBuffer and Rendering Algorithms

OSPRay’s distributed renderers are built on top of a common distributed framebuffer
abstraction, the Distributed FrameBuffer (DFB) [44]. The DFB is an asynchronous
image-processing framework for multi-node rendering that works by distributing the
ownership of tiles in the image among the ranks (Fig. 2). Each rank is responsible
for performing compositing operations for the tiles it is assigned and can render tiles
that are owned by other ranks, allowing the rendering work distribution to differ
from the compositing work distribution. Tiles rendered on each rank are sent over
the network to the rank that owns the image tile for compositing. The DFB does not
assume a specific compositing algorithm, and provides the flexibility to implement
image-, data-, and hybrid-parallel renderers.

A renderer using the DFB requires two components: a local renderer run on each
rank that produces input tiles to the processing pipeline, and a tile operation run by
the DFB in the pipeline to combine input tiles into a single finished tile. In contrast to
existing special-purpose approaches for image [7, 12, 27, 47] and data [16, 19, 20,
22, 30, 31, 33, 37, 56] parallel rendering, OSPRay’s DFB provides the flexibility to
cover the spectrum of image- and data-parallel work distributions, without requiring
changes to the application.

The local renderer’s work distribution is not tied to the DFB’s tile distribution, as
the DFB will route tiles as needed using MPI. It is also possible for multiple ranks to
render input tiles for a single image tile. The tile operation is responsible for defining
how the input tiles should be combined to produce an output tile, e.g., by averaging

358 W. Usher et al.

Fig. 3 The spectrum of image- to data-parallel rendering supported by OSPRay’s distributed
renderer. Each configuration uses the same DFB infrastructure and requires no code changes to the
end user application. The sort-last data-parallel rendering image is reproduced from our previous
work [44]

the inputs together or performing sort-last compositing. Each input tile is specified
as a member of some generation of inputs and as having some number of additional
children, which can be used to specify a tree or ordering of the tiles as needed for
sort-last compositing (Fig. 3).

OSPRay currently provides two distributed renderers built on top of the DFB,
an image-parallel renderer and a data-parallel renderer. The image-parallel renderer
(Sect. 3.1) is well suited to rendering replicated data or data that can be fetched as
neededby each rank through somecachingmechanism.Renderingwork is distributed
among the ranks by assigning each rank a unique subset of tiles to render. The tile
operation takes a single input tile for each image tile which is passed through as the
finished tile.

The data-parallel renderer (Sect. 3.1) is a sort-last renderer for distributed data,
where each rank is assigned a different piece of data to render. Each rank renders
its local data to the tiles it projects to, and for those tiles owned by the rank it is
responsible for providing a background tile. The background tile is filled with the
scene background color, and tells the tile operation howmany input tiles to expect and
composite together, i.e., how many ranks’ data projects to that tile. After receiving

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 359

the set of input tiles, the tile operation sorts them by their sort order and composites
them to produce the finished tile. It is possible for a rank to have more than one piece
of unique data, in which case an independent partial tile is rendered for each image
tile touched by each data region.

The distributed renderer is also capable of rendering hybrid data distributions
(Sect. 3.1), where the data is partially replicated among the ranks. In a hybrid
configuration, the rendering work is distributed image-parallel among those ranks
sharing each piece of data and data-parallel among rankswith different data, allowing
applications tomix the standard image- or data-parallel rendering algorithms. Hybrid
configurations can be used to achieve better load balance when rendering large data
(see [18, 44]), or to combine replicated and distributed data in the same scene. The
tile operation is the same sort-last compositing one used in the data-parallel renderer,
and the only change is in which rank provides an input tile for a specific pair of data
region and image tile.

The data- and hybrid-parallel renderers determine the scene distribution solely
by inspecting the bounding boxes of the data on each node, referred to as regions.
The region information is used by each rank to set the number of children to expect
on the background tiles it renders for sort-last compositing, and to determine if two
ranks are sharing the same piece of data and should thus share the rendering work
using the hybrid-parallel renderer. The renderer works only at the abstract level of
the bounds of each rank’s data and imposes no restrictions on the types of volumes,
geometries, etc., which are contained within these bounds. The sole requirement is
that the bounds of different regions do not overlap, and for shared regions should
be identical, to allow the compositor to order the partial image tiles and find shared
regions correctly.

3.2 The Distributed API

To use the distributed API, applications can load the MPI module and select the
MPI distributed device (Listing 1). Each rank can then make independent API calls
to set up its local geometries and volumes, after which the distributed scene can
be rendered collectively using the algorithms described above. As OSPRay’s data-
parallel renderer needs only the bounding boxes of each rank’s portion of the data,
we are able to expose an API for distributed rendering that is nearly identical to local
rendering, and that can support existing user geometry and volume modules without
changes.

The bulk of the distributedAPI is similar to local rendering inOSPRay, and should
appear familiar to existing users (Listing 2). However, the distributed API makes a
distinction between “distributed” and “local” objects. Distributed objects track the
global rendering configuration or scene layout (e.g., the framebuffer, renderer, world,
and futures), and they must be created and committed collectively by the ranks,
to ensure the objects are synchronized properly. With the exception of the list of
instances and regions on the world, each rank should set the same parameter values

360 W. Usher et al.

#include <ospray/ospray.h>

#include <ospray/ospray_util.h>

int main(int argc, char **argv) {

...

// If not using asynchronous rendering, MPI_THREAD_SERIALIZED is sufficient

int thread_support = 0;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &thread_support);

// Load the MPI module and select the distributed device

ospLoadModule("mpi");
OSPDevice mpiDevice = ospNewDevice("mpiDistributed");
ospDeviceCommit(mpiDevice);
ospSetCurrentDevice(mpiDevice);

Listing 1: Initializing theMPI distributed device to use the distributedAPI in anMPI-
parallel application. Thread multiple support is required for asynchronous rendering
if the application will make MPI calls during rendering; otherwise, thread serialized
support is sufficient.

on distributed objects. Local objects represent local data, geometries, and volumes
and are created independently by the ranks. When using the distributed API, only
rank 0 will be able to map the framebuffer to access the rendered image.

For rendering data- or hybrid-distributed configurations, applicationsmust use the
mpiRaycast renderer, which implements the rendering algorithms discussed above.
The distributed API also adds an optional “regions” parameter to the OSPWorld, that
is used to specify one or more boxes that bound the local data owned by the rank
to configure the compositor. The region list can be used to clip ghost zones, or to
partition nonconvex local data distributions into sets of convex regions that can be
composited by OSPRay’s sort-last compositor. If no regions are specified, the union
of the bounds of the local geometries and volumes is implicitly set as the rank’s
region bounds. It is also valid for some ranks to have no data in the scene, and thus
no regions or instances in with world.

Finally, it is also possible to specify a subset of ranks that should participate in
rendering by specifying the communicator OSPRay should use. By default, OSPRay
will use all ranks in the MPI world; however, OSPRay uses an MPI + threads model
for parallelism, which, when integrating with an MPI-only simulation, may lead to
oversubscribing the nodes. Instead, the application could create a subcommunicator
with one rank per-node and set this as OSPRay’s communicator. The data from other
ranks on the node can then be gathered to this OSPRay rank using shared memory.

3.2.1 Overview of a Distributed Application

A distributed application begins by setting up the local OSPRay objects representing
the geometries and volumes it wishes to render (Listing 2). The creation of local
objects is identical to single-node rendering with OSPRay.

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 361

OSPVolume volume = ospNewVolume("structuredRegular");
float *data = // Local 64$ˆ\texttt{3}$ simulation volume data

OSPData volumeData = ospNewSharedData(data, OSP_FLOAT, 64, 64, 64);

ospSetObject(volume, "data", volumeData);

ospSetVec3i(volume, "dimensions", 64, 64, 64);

ospCommit(volume);

OSPTransferFunction tfcn = ospNewTransferFunction("piecewiseLinear");
... // Set color and opacity params for transfer function

ospCommit(tfcn);

OSPVolumetricModel volumeModel = ospNewVolumetricModel(volume);
ospSetObject(volumeModel, "transferFunction", volumeModel);

ospCommit(volumeModel);

OSPGroup group = ospNewGroup();
OSPData volumeList = ospNewSharedData1D(&volumeModel, OSP_VOLUMETRIC_MODEL, 1);

ospSetObject(group, "volume", volumeList);

ospCommit(group);

OSPInstance instance = ospNewInstance(group);
// Optional 3x4 column major transform to place this brick in the global scene

float tfm[12] = {...};

ospSetParam(instance, "xfm", OSP_AFFINE3F,
tfm); ospCommit(instance);

Listing 2: Local object setup for distributed rendering. Each rank has a 643 volume
brick from the simulation, and shares a pointer to this data with OSPRay to create
the volume object. Local object setup is identical to using OSPRay’s existing local
rendering APIs.

To set up the distributed objects required to render the scene, the application first
collectively creates an OSPWorld (Listing 3) and adds its local instances to the world,
which provides each rank a shared view of the distributed scene. The application then
collectively creates an mpiRaycast renderer, which will use the region information
from the world to configure the compositor. Finally, the application collectively
creates a framebuffer to store the output image. To render a frame the ranks
collectively call ospRenderFrame as in local rendering, and wait for completion.

3.3 Sharing Data with the Application

When rendering in situ, it is highly desirable for the visualization code to share
memory directly with the simulation, to minimize memory pressure on each node
and the time spent copying data. With OSPRay, the application can directly share
memory with the renderer through the creation of shared OSPData objects, which
share a pointer directly with the application. OSPRay 2.0 has made it easier for
applications to share data with OSPRay, in both local and distributed rendering use

362 W. Usher et al.

OSPInstance instances[] = // List of local instances

OSPData instance_list = ospNewSharedData1D(instances, OSP_INSTANCE, num_instances);

box3f regions[] = // Optional list of regions

OSPData region_list = ospNewSharedData1D(regions, OSP_BOX3F, num_regions);

OSPWorld world = ospNewWorld();
ospSetObject(world, "instance", instance_list);

ospSetObject(world, "regions", region_list);

ospCommit(world);

OSPRenderer renderer = ospNewRenderer("mpiRaycast");
ospCommit(renderer);

OSPFrameBuffer fb = ospNewFrameBuffer(1024, 1024, OSP_FB_SRGBA,
OSP_FB_COLOR | OSP_FB_ACCUM);

OSPFuture future = ospRenderFrame(fb, renderer, camera, world);

ospWait(future, OSP_TASK_FINISHED);

Listing 3: Distributed object setup for distributed rendering. The ranks collectively
create a world and add their local instances to it. The renderer and framebuffer are
also created collectively, after which the scene can be rendered across the ranks.

cases. The new APIs for passing data to OSPRay, ospNewSharedData*D, allow
applications to specify a byte stride to be used between elements, rows, or planes
in 1D, 2D, or 3D arrays. Thus, if the simulation data are not natively ordered or
packed to match the layout required by the geometry or volume type, the stride can
be used to provide a view into the data that does match the layout. OSPData are local
objects and support the same memory sharing and parameters as in local rendering.
The OSPData objects and the referenced data are local to each rank and are not
transferred between ranks, ensuring predictable memory and network usage patterns
by the renderer.

3.4 Asynchronous Rendering

OSPRay 2.0 has recently switched to asynchronous rendering by default, enabling
applications to render multiple images in parallel, or to more easily perform
other computation during rendering. The ospRenderFrame function returns an
OSPFuture, which can be tested or waited on to monitor the progress of the frame
(Listing 3). Asynchronous rendering is also supported in the distributed API, and
is especially useful for in situ image database generation for applications such as
Cinema [3].

To generate an image database, the application renders a large number of
different view points and scene parameter configurations, which can then be explored
interactively post hoc using, e.g., Cinema. The cost of rendering each image on each
rank depends on the camera position and scene configuration, potentially leading
to underutilizing some nodes. With asynchronous rendering, multiple images can

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 363

be rendered simultaneously, allowing for better utilization of each node’s compute
capabilities. However, care should be taken to avoid oversubscribing the node by
limiting the number of frames being rendered in parallel at a time.

To rendermultiple frames in parallel, the applicationwill need one framebuffer for
each active render, along with per-render cameras, groups, instances, and worlds for
each active renderwith different parameters for the respective objects. The underlying
geometric or volumetric data are kept distinct from their appearance information, so
creating new geometric or volumetric models to change the object’s appearance does
not require duplicating the underlying data. OSPRay objects used in an asynchronous
render should not be modified until the render has completed to avoid conflicts.

Although OSPRay’s MPI communication is performed by a single thread, if the
application will make MPI calls during asynchronous rendering, the MPI runtime
must support thread multiple; otherwise, thread serialized is sufficient.

3.5 Configuring the Scene Distribution Using Regions

The optional regions parameter on the OSPWorld allows each rank to set one or more
bounding boxes that contain the data it owns for rendering. Arbitrary geometric and
volumetric data can be placed within the regions, including objects provided by user
modules. Each region corresponds to a unique piece of data that is owned the rank.
Each rank can have zero or more such regions, and can share ownership of regions
with other ranks. When rendering, only data contained within the region bounds on
a rank will be visible to camera rays, though data outside are available for volume
interpolation and secondary rays. The regions allow applications to provide ghost
zones for interpolation and AO, render nonconvex and nondisjoint data distributions
(Sect. 3.5.1), or share data between ranks for hybrid-distributed and data-replicated
rendering (Sect. 3.5.2).

3.5.1 Using Regions to Clip Ghost Zones and Ensure Convexity

Ghost zones, or sometimes “halos,” are used in distributed rendering to ensure the
image produced by the distributed renderermatches that whichwould be produced by
a renderer running on one rank with the entire data set. For example, an extra layer of
voxels is stored around the volume subpiece owned by the rank to avoid interpolation
artifacts between neighboring ranks. Similarly, when rendering secondary effects
such as ambient occlusion, additional ghost geometries are used to prevent bright
spots appearing at rank boundaries where geometry would otherwise be missing.
Regions are only used to clip camera rays, allowing secondary rays to still intersect
any ghost geometry which may exist outside the region bounds.

The regions can also be leveraged to allow rendering nonconvex or nondisjoint
data distributions that would otherwise require redistributing the data when using
other sort-last compositors. OSPRay, as with other sort-last compositors, requires

364 W. Usher et al.

0

1 3

4

52

Fig. 4 An example of virtually partitioning an Octree AMR data set using regions. The data are
distributed among two ranks along the orange line and virtually partitioned using regions to create a
set of disjoint bricks that can be composited by OSPRay’s DFB. The three regions created by each
rank only virtually partition the data, leaving the underlying data unchanged

the partial images being composited to correspond to convex, disjoint bricks of data.
Without this requirement, sorting and ordering the partial images to produce a correct
final image may not be possible. However, OSPRay’s distributed API allows each
rank to specify one or more regions that it owns. Each such region is treated as if it
were owned by a unique rank, and rendered to produce an independent set of partial
image tiles that are given to the compositor. Nonconvex data-distributions, such as
those potentially arising in adaptive mesh refinement simulations [2, 4, 5, 8, 10,
32, 35], can be virtually partitioned into a set of disjoint bricks that are suitable for
sort-last compositing (Fig. 4). This partitioning takes place only when clipping rays
against the region bounds in the renderer, and requires no movement or adjustment
of the underlying data.

3.5.2 Rendering of Partially and Fully Replicated Scenes

The regions list can also be used to tell OSPRay that two ranks are sharing one ormore
regions, by specifying the same region bounds on each rank. If additional memory is
available to duplicate some or all of the scene data, ranks can share regions for better
load balancing, or even share the entire scene to enable high-quality path-traced
rendering.

During the region exchange step when the world is committed, these shared
regions are found and merged in the global list of regions. Each unique region in
the list corresponds to a unique piece of data that must be rendered and composited
independently. When multiple ranks are found to share the same region, they switch
to the hybrid-distributed rendering algorithm (Fig. 3). For example, if a region is
found to be especially expensive to render, that region can be duplicated onto other
ranks for load balancing, leaving the rest of the data as is.

If enough memory is available to fit the entire scene on each rank, the same data
and regions can be specified on all ranks, in which case OSPRay will switch to the

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 365

Fig. 5 A visualization of the
10243 Miranda [11] data set
rendered interactively using
OSPRay’s volumetric path
tracer, with support for
scattering and volumetric
lighting effects

image-parallel rendering algorithm (Fig. 3). The image-parallel renderer can use any
of OSPRay’s local renderers, e.g., the path tracer, to provide advanced secondary
illumination effects (Fig. 5). Although in a tightly coupled in situ application there is
unlikely to be sufficient available memory to replicate the entire scene on each node,
it may be possible for a loosely coupled application that is run on a distinct set of
nodes.

3.6 Extending OSPRay’s Distributed API with Modules

A key goal in the design of OSPRay’s distributed API was to allow existing OSPRay
user modules, which extend OSPRay with new geometries and volumes, written for
single-node rendering, to work seamlessly in a distributed setting as well. Creating
local OSPRay objects in the distributed API works exactly as in local rendering, and
modules extending OSPRaywith local objects should work directly in the distributed
API without change. For example, a user module that adds support for tensor glyph
geometry would be used exactly as in single-node rendering, with the only change
being that each rank now specifies only its local data. The application using the
module will likely want to duplicate glyphs crossing rank boundaries for continuity
at boundaries, and use regions to clip each rank’s glyphs to the region it owns for
rendering, to avoid ranks’ overlapping each other.

User modules can also add new distributed objects to extend features specific to
OSPRay’s distributed API, e.g., adding new distributed rendering algorithms. New
distributed renderers can be implemented inOSPRay by extending the Distributed
Renderer and overriding the methods to render a specific region for some tile and to

366 W. Usher et al.

return the tile operation used by the renderer. The “region for tile” rendering method
will be used to render local data to the image tiles they project to. The tile operation
will be executed in the DFB pipeline to combine the rendered tiles into a finished
image tile (Fig. 2).

By default, renderers will use the scheduler included with the MPI module,
which supports the spectrum of data-, hybrid-, and image-parallel rendering modes
(Sect. 3.1). However, developers wishing to use a custom scheduler can extend this
aspect as well, and use the information about the distributed scene provided in
the world to inform their scheduler. The existing rendering and communication
infrastructure in OSPRay and the flexibility provided by the API should make
it possible to implement variants of Galaxy [1], SpRay [36], or other rendering
algorithms that send rays or data [6, 34, 39] as modules, to provide support for
global illumination effects on distributed data.

4 Scalability

We evaluate the scalability of OSPRay’s Distributed FrameBuffer and rendering
algorithms using a similar set of benchmarks as in [44]. However, our evaluation
is conducted using the 2.0 version of OSPRay, which includes numerous changes,
fixes, and improvements to both the local and distributed renderers, which can affect
performance compared to the results in [44]. Moreover, we compare performance
against a more typical use case of OSPRay with IceT [33], which uses the scientific
visualization renderer locally and IceT for compositing, instead of amodified version
of the MPI raycast renderer that locally renders only the tiles the ranks’ data projects
to, as done in [44]. Although the latter is better tuned to benchmark the compositing
differences between the two approaches, the former is more representative of the
performance achievable by end users when using OSPRay for local rendering and
IceT for compositing. The former approach is currently used in ParaView and VisIt.
See Wu et al. [54] for further details on this approach as used in VisIt.

The benchmark application generates a 1283 volume brick on each rank and
renders a camera orbit around the volume. The code for the benchmark is available
on GitHub.1 An example image rendered by the benchmark is shown in Fig. 6. We
record both the total frame time and compositing overhead. Compositing overhead
is defined as the additional time spent compositing after the slowest local rendering
task has completed [19].

The distributedAPI version usesOSPRay’sMPImodule for distributed rendering,
performing compositing with the Distributed FrameBuffer. The IceT version uses
OSPRay’s scientific visualization style renderer to render the ranks’ local data,
and IceT to composite the partial images. We measure the compositing overhead
in OSPRay as the shortest time between local rendering finishing and the frame

1 https://github.com/Twinklebear/osp-icet.

https://github.com/Twinklebear/osp-icet

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 367

Fig. 6 An image from the
scaling benchmark. Each
rank generates a 1283

volume brick colormapped
by its rank and collectively
render a camera orbit around
the data. The bricks are
relatively small and mostly
opaque to focus the
benchmark on the
compositing overhead
incurred

finishing. For IceTwe take theminimum value returned for ICET_COMPOSITE_TIME
across all ranks.

We evaluate strong scaling on Stampede2 at the Texas Advanced Computing
Center (TACC), on both the Skylake Xeon (SKX) and Xeon Phi Knight’s Landing
(KNL) nodes (Fig. 7). At lower node counts, the IceT-based renderer outperforms the
DFB-based renderer. This difference appears to be attributable to amix of differences
in local rendering performance and compositing overhead. On SKX at low node
counts, the total frame time difference is more evenly split between local rendering
and compositing, whereas on KNL the difference is primarily attributable to local
rendering performance, as the difference in total frame time is much larger than that
in compositing overhead.

We observe better scalability when using the distributed API, with performance
matching or surpassing the IceT version at higher node counts. This difference is
especially stark on the highly parallel KNL architecture, where the IceT version’s
total time increases beyond 64 nodes on the 20482 image benchmark. At 512 SKX
nodes, we begin to observe a similar slowdown with IceT on the 20482 benchmark.
We do observe an odd increase in compositing time with IceT on 128 to 512 KNL
nodes in the 20482 case,which resolves at 1024nodes. This increasewas reproducible
over multiple jobs, and may be attributable to differences in the network topology or
job placement when running at these node counts.

Beyond 1024 nodes we still observe increasing total frame time for IceT on the
20482 benchmark on KNL, which is attributable to the scivis renderer processing
tiles that its data do not project to. In contrast, the distributed API version processes
only the tiles that the ranks’ data projects to. When using OSPRay’s existing local
renderers, this optimization is not used, and some threads will be assigned to render

368 W. Usher et al.

2 4 8 16 32 64 128 256 512
Nodes

0

10

20

30

40

50

60

70
Ti

m
e

(m
s)

DFB 1024x1024
IceT 1024x1024
DFB 2048x2048
IceT 2048x2048

(a) Total frame time, SKX.

4 16 64 256 1024
Nodes

0
25
50
75

100
125
150
175
200

Ti
m

e
(m

s)

(b) Total frame time, KNL.

2 4 8 16 32 64 128 256 512

Nodes

0

5

10

15

20

25

30

35

Ti
m

e
(m

s)

DFB 1024x1024
IceT 1024x1024
DFB 2048x2048
IceT 2048x2048

(c) Compositing overhead, SKX.

4 16 64 256 1024

Nodes

0

10

20

30

40

50

60

70

80

Ti
m

e
(m

s)

(d) Compositing overhead, KNL.

Fig. 7 Strong scaling results on the compositing performance benchmark, comparing a typical IceT
+OSPRay renderer versus one using the distributed API. The benchmark renders a 300-frame orbit
around the volume. We plot the average frame and compositing overhead time for each run after
discarding the first 10 frames as warm-up frames. We find that the distributed APIs local renderer
does not perform as well as OSPRay’s scivis renderer; however, the DFB’s compositor scales better
at higher node counts, especially on highly parallel architectures

image tiles that the rank’s local data is not visible on, thereby reducing the number
of threads that do perform useful rendering work. This effect is less visible on SKX
systems where each individual core is relatively powerful; however, as the core count
grows or the ratio of pixels touched by local data to those not touched decreases, we
would expect to observe a similar effect.

Moreover, the distributed API is able to support more complex data distributions
and workloads, providing greater flexibility to in situ visualization systems than
traditional compositors such as IceT. For example, in a tightly coupled use case,
the regions can be used to create a virtual set of bricks that partition nonconvex
or nondisjoint data-distributions into convex, disjoint sets that can be composited,
without redistributing the data (Fig. 4). In an in transit use case, the hybrid-data
parallel mode can be used to partially replicate data among the visualization ranks
to achieve better load balancing, as demonstrated in [44].

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 369

5 Example Use Cases

Although OSPRay’s distributed API is relatively new, it has found some early
adoption for in situ visualization. Usher et al. [43] used the distributed API to
implement an interactive in transit visualization system for LAMMPS simulations,
and they reported good weak scaling of the renderer on Theta and Stampede2. The
renderer used in their application is available on GitHub.2 Demiralp et al. [13]
used the distributed API to render streamlines traced by a data-parallel particle
advection analysis code for 3D-Polarized Light Imaging data. With the addition
of asynchronous rendering and usability improvements made to the distributed API
in OSPRay 2.0, we hope to see wider adoption of the distributed API for in situ
visualization, and distributed applications in general. Below we present an example
application for rendering image databases similar to those used by Cinema, which
showcases these improvements.

5.1 Image Database Generation

Rendering image databases for applications such as Cinema requires rendering a
large number of images, corresponding to a sweep of the visualization parameter
space. A large number of images corresponding to multiple viewpoints, different
isovalues, transfer functions, etc., will be rendered in situ, producing hundreds to
thousands of individual images. The rendering load on each rank will vary based
on the visualization parameters, and, for any individual image, a subset of nodes is
likely to be underutilized. For example, the rank’s data may not overlap the isovalue
or be made fully transparent by the transfer function.

To more fully utilize the nodes, multiple images can be rendered in parallel to
each other across the ranks using OSPRay’s asynchronous API. The nodes that
are underutilized for one image can compute another image in parallel, without
oversubscribing the node.Asynchronous rendering is still collective across the nodes,
and thus the number of frames in flight should be chosen to avoid oversubscribing
those nodes that are more heavily utilized for ongoing frames. The number of frames
in flight is controlled by the application and can be set to a fixed value or dynamically
adjusted based on load.

We implement a mini-app to demonstrate the new asynchronous rendering
capability’s applicability to image database generation, called mini-cinema3 (Fig. 8).
The application supports volume rendering and isosurface rendering, by either
explicitly extracting triangles using VTK or using OSPRay’s implicit isosurfaces.
The application supports transparent isosurfaces and can compute ambient occlusion
on the isosurface by duplicating it across the ranks to provide ghost zones. The mini-
app can be configured to render a specific number of frames in flight, to limit memory

2 https://github.com/Twinklebear/ospray_senpai.
3 https://github.com/Twinklebear/mini-cinema.

https://github.com/Twinklebear/ospray_senpai
https://github.com/Twinklebear/mini-cinema

370 W. Usher et al.

Fig. 8 Example images rendered using the image database generation test app, mini-cinema. The
app uses OSPRay’s asynchronous rendering API to render multiple frames in parallel to better
utilize the nodes. The Richtmyer-Meshkov [9] (left) uses ghost zones for ambient occlusion on the
isosurface, and Miranda [11] (right) combines a semitransparent isosurface with the volume

consumption and avoid oversubscribing those nodes that are more heavily utilized
for a frame. After an asynchronous render has completed, the image is written to
disk on a background thread managed by TBB.

As the underlying geometry and volume data are kept separate from their
appearance information, the data can be shared bymultiple ongoing renders. For each
transfer function being rendered, only a new OSPVolumetricModelmust be created,
which associates a transfer function with existing volume data. Each triangle mesh
geometry stores both the triangle data and BVH and is associated with its material by
creating an OSPGeometricModel. For each unique set of volumetric and geometric
models, a new group, instance, and world are created to represent the scene. The
world stores the Embree [51] BVH over the instances; however, the bulk of these
objects are just references to existing ones, and they incur little memory overhead.
Each unique camera position requires a unique OSPCamera. The largest amount of
additional memory required for each asynchronous render is the framebuffer, which
is required to be unique per active frame to avoid write conflicts.

We measure the effect of the number of frames in flight on the total time to task
completion in the app using the 10243 Miranda data set. We render two isosurfaces,
containing 62.47M and 67.65M triangles, combined with the volume from 250
camera positions in an orbit around the volume, for a total of 500 frames. Each image
rendered is 1024× 1024. The benchmark is run on 16 Stampede2 SKX nodes, with
the number of frames in flight varied from1up to 128.Wefind thatmoving from1 to 4
frames in flight yields an improvement of 8.9s in total task time, improving from23.7s
to 14.8s. Increasing the allowed number of frames in flight further does not positively
or negatively affect the total task time, likely due to the images completing quickly

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 371

enough that not many more than four frames are in flight at a time. We note that the
best number of frames in flight is highly dependent on the rendering configuration.
More expensive individual frames may result in more in flight at a time, and lead to
reduced performance if oversubscribing the nodes.

6 Conclusion

OSPRay’s distributed API provides a compelling option for flexible, scalable, and
high-quality in situ visualization. The distributed API is straightforward to learn
for those familiar with using OSPRay for single-node rendering, and easily enables
the most common data-parallel rendering use cases. Improvements to OSPRay’s
API for sharing data enable it to directly share data with a wider range of existing
memory layouts, and the new asynchronous rendering API is highly useful for image
database generation. To more easily allow moving post hoc rendering applications
in situ, existing user geometry and volume modules work seamlessly with the
distributed API. To make OSPRay’s distributed rendering more widely accessible
to end visualization and simulation users, we are working on integrating it into
Catalyst [15]. Integration into LibSim [53] would provide similar benefits to VisIt
users.

The flexibility provided by OSPRay’s compositor with regard to data distribution
is especially useful to support a wide range of simulations. Applications with more
complex data layouts, which standard compositing libraries previously may not have
been able to render in place, can be virtually partitioned using OSPRay’s regions
to enable rendering them in place. In transit applications can also leverage hybrid-
parallel rendering for load balancing to improve performance.

However, OSPRay’s distributed renderer is not without limitations. For a simple
data-parallel renderer, we do find poorer rendering performance at lower node
counts compared to using OSPRay for local rendering and compositing with IceT.
This performance difference is attributable to a combination of local rendering
performance and compositing overheads.We find that OSPRay’s distributed renderer
performs better than or similar to the IceT version at higher node counts, and is
capable of rendering a much wider range of data distributions in place.

In contrast to distributed ray tracers [1, 34, 36], which send rays or move data
between ranks to compute global illumination lighting effects, OSPRay’s distributed
renderer is restricted to local illumination effects with ghost zones. It should now be
possible to integrate such renderers into the distributed API as a module to provide
high-fidelity imagery in situ, although moving data in the presence of user modules
poses significant interesting challenges.

Acknowledgements The Miranda data set is courtesy Andrew W. Cook, William Cabot, and Paul
L. Miller, the Richtmyer-Meshkov is courtesy Ronald H. Cohen, William P. Dannevik, Andris M.
Dimits, Donald E. Eliason, Arthur A. Mirin, and Ye Zhou. Both data sets were made available
through the Open Scientific Visualization Datasets repository. This work is supported in part by the

372 W. Usher et al.

Intel Graphics and Visualization Institute of eXcellence at the Scientific Computing and Imaging
Institute, University of Utah. This work is supported in part by NSF: CGV Award: 1314896,
NSF:IIP Award: 1602127, NSF:ACI Award: 1649923, DOE/SciDAC DESC0007446, CCMSC
DE-NA0002375 and NSF:OAC Award: 1842042. The authors acknowledge the Texas Advanced
Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that
have contributed to the research results reported in this paper.

References

1. Abram, G., Navrátil, P., Grosset, A.V.P., Rogers, D., Ahrens, J.: Galaxy: asynchronous ray
tracing for large high-fidelity visualization. In: 2018 IEEE Symposium on Large Data Analysis
and Visualization (2018)

2. Aftosmis, M., Berger, M., Adomavicius, G.: A parallel multilevel method for adaptively
refined cartesian grids with embedded boundaries. Technical Report AIAA-00-0808, American
Institute ofAeronautics andAstronautics (2000). 38thAerospace SciencesMeeting andExhibit

3. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., Petersen, M.: An image-based
approach to extreme scale in situ visualization and analysis. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (2014)

4. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput.
Phys. (1989)

5. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations.
J. Comput. Phys. (1984)

6. Biedert, T., Werner, K., Hentschel, B., Garth, C.: A Task-Based Parallel Rendering Component
For Large-Scale Visualization Applications. In: Eurographics Symposium on Parallel Graphics
and Visualization (2017)

7. Bigler, J., Stephens, A., Parker, S.G.: Design for parallel interactive ray tracing systems. In:
2006 IEEE Symposium on Interactive Ray Tracing (2006)

8. Burstedde, C., Wilcox, L.C., Ghattas, O.: P4est: scalable algorithms for parallel adaptive mesh
refinement on forests of octrees. SIAM J. Sci. Comput. (2011)

9. Cohen, R.H., Dannevik,W.P., Dimits, A.M., Eliason, D.E., Mirin, A.A., Zhou, Y., Porter, D.H.,
Woodward, P.R.: Three-dimensional simulation of a Richtmyer-Meshkov instability with a
two-scale initial perturbation. Phys. Fluids (2002)

10. Colella, P., Graves, D., Ligocki, T., Martin, D., Modiano, D., Serafini, D., Van Straalen, B.:
Chombo software package for amr applications design document (2000)

11. Cook, A.W., Cabot, W., Miller, P.L.: The mixing transition in Rayleigh–Taylor instability. J.
Fluid Mech. (2004)

12. DeMarle, D.E., Gribble, C.P., Boulos, S., Parker, S.G.: Memory sharing for interactive ray
tracing on clusters. Parallel Comput. (2005)

13. Demiralp, A.C., Zielasko, D., Axer, M., Vierjahn, T., Kuhlen, T.W.: Parallel particle advection
and lagrangian analysis for 3D-PLI fiber orientation maps. In: 2019 IEEE 9th Symposium on
Large Data Analysis and Visualization (LDAV), Posters (2019)

14. Ellsworth, D., Green, B., Henze, C., Moran, P., Sandstrom, T.: Concurrent visualization in a
production supercomputing environment. IEEE Trans. Vis. Comput. Graph. (2006)

15. Fabian,N.,Moreland,K., Thompson,D.,Bauer,A.,Marion, P.,Geveci,B.,Rasquin,M., Jansen,
K.E.: The paraview coprocessing library: a scalable, general purpose in situ visualization
library. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (2011)

16. Favre, J.M., dos Santos, L.P., Reiners, D.: Direct send compositing for parallel sort-last
rendering. In: Eurographics Symposium on Parallel Graphics and Visualization (2007)

17. Fernandes, O., Frey, S., Sadlo, F., Ertl, T.: Space-time volumetric depth images for in-situ
visualization. In: 2014 IEEE4thSymposiumOnLargeDataAnalysis andVisualization (LDAV)
(2014)

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay 373

18. Frey, S., Ertl, T.: Load balancing utilizing data redundancy in distributed volume rendering.
In: Eurographics Symposium on Parallel Graphics and Visualization (2011)

19. Grosset, A.P., Knoll, A., Hansen, C.: Dynamically scheduled region-based image compositing.
In: Eurographics Symposium on Parallel Graphics and Visualization (2016)

20. Grosset, A.V.P., Prasad, M., Christensen, C., Knoll, A., Hansen, C.: TOD-tree: task-overlapped
direct send tree image compositing for hybrid MPI parallelism and GPUs. IEEE Trans. Vis.
Comput. Graph. (2017)

21. Han, M.,Wald, I., Usher, W.,Wu, Q., Wang, F., Pascucci, V., Hansen, C.D., Johnson, C.R.: Ray
tracing generalized tube primitives: method and applications. Comput. Graph. Forum (2019).
https://doi.org/10.1111/cgf.13703

22. Hsu, W.M.: Segmented ray casting for data parallel volume rendering. In: Proceedings of the
1993 Symposium on Parallel Rendering (1993)

23. Ibrahim, S., Stitt, T., Larsen,M.,Harrison, C.: Interactive in situ visualization and analysis using
ascent and jupyter. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization. Denver Colorado (2019)

24. Intel: OneAPI Rendering Toolkit. https://software.intel.com/en-us/rendering-framework
25. Intel: Open Image Denoise. https://www.openimagedenoise.org
26. Intel: Open Volume Kernel Library. https://www.openvkl.org
27. Ize, T., Brownlee, C., Hansen, C.D.: Real-time ray tracer for visualizing massive models on a

cluster. In: Eurographics Symposium on Parallel Graphics and Visualization (2011)
28. Kageyama,A.,Yamada, T.:An approach to exascale visualization: interactive viewing of in-situ

visualization. Comput. Phys. Commun. (2014)
29. Karlsson, J., Abdellah, M., Speierer, S., Foni, A., Lapere, S., Schürmann, F.: High fidelity

visualization of large scale digitally reconstructed brain circuitrywith signeddistance functions.
In: 2019 IEEE Visualization Conference (VIS) (2019)

30. Kendall, W., Peterka, T., Huang, J., Shen, H.W., Ross, R.B.: Accelerating and benchmarking
radix-k image compositing at large scale. In: Eurographics Symposium on Parallel Graphics
and Visualization (2010)

31. Ma, K.L., Painter, J.S., Hansen, C.D., Krogh, M.F.: Parallel volume rendering using binary-
swap compositing. IEEE Comput. Graph. Appl. (1994)

32. MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: PARAMESH: a parallel
adaptive mesh refinement community toolkit. Comput. Phys. Commun. (2000)

33. Moreland, K., Kendall, W., Peterka, T., Huang, J.: An image compositing solution at scale. In:
Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (2011)

34. Navrátil, P.A., Fussell, D., Lin, C., Childs, H.: Dynamic scheduling for large-scale distributed-
memory ray tracing. In: Eurographics Symposium on Parallel Graphics and Visualization
(2012)

35. O’shea, B.W., Bryan, G., Bordner, J., Norman, M.L., Abel, T., Harkness, R., Kritsuk, A.:
Introducing Enzo, an AMR cosmology application. In: Adaptive Mesh Refinement-Theory
and Applications, Lecture Notes in Computational Science and Engineering. Springer (2005)

36. Park,H., Fussell, D., Navrátil, P.: SpRay: speculative ray scheduling for large data visualization.
In: 2018 IEEE Symposium on Large Data Analysis and Visualization (2018)

37. Peterka, T., Goodell, D., Ross, R., Shen, H.W., Thakur, R.: A configurable algorithm for parallel
image-compositing applications. In: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (2009)

38. Pharr, M., Mark, W.R.: ispc: A SPMD compiler for high-performance CPU programming. In:
Innovative Parallel Computing (InPar) (2012)

39. Reinhard, E., Chalmers, A., Jansen, F.W.: Hybrid scheduling for parallel rendering using
coherent ray tasks. In: Proceedings of the 1999 IEEE Symposium on Parallel Visualization
and Graphics (1999)

40. Rizzi, S., Hereld, M., Insley, J., Papka, M.E., Uram, T., Vishwanath, V.: Large-scale co-
visualization for lammps using Vl3. In: 2015 IEEE 5th Symposium on Large Data Analysis
and Visualization (LDAV) (2015)

https://doi.org/10.1111/cgf.13703
https://software.intel.com/en-us/rendering-framework
https://www.openimagedenoise.org
https://www.openvkl.org

374 W. Usher et al.

41. Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Ma, K.L., O’hallaron, D.R.: From
mesh generation to scientific visualization: an end-to-end approach to parallel supercomputing.
In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (2006)

42. Turuncoglu, U.U., Önol, B., Ilicak, M.: A new approach for in situ analysis in fully coupled
earth system models. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization - ISAV ’19. Denver, Colorado (2019)

43. Usher, W., Rizzi, S., Wald, I., Amstutz, J., Insley, J., Vishwanath, V., Ferrier, N., Papka, M.E.,
Pascucci, V.: libIS: A lightweight library for flexible in transit visualization. In: ISAV: In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (2018)

44. Usher, W., Wald, I., Amstutz, J., Günther, J., Brownlee, C., Pascucci, V.: Scalable ray tracing
using the distributed framebuffer. Comput. Graph. Forum (2019)

45. Usher, W., Wald, I., Knoll, A., Papka, M.E., Pascucci, V.: In situ exploration of particle
simulations with CPU ray tracing. Supercomput. Front. Innov. (2016)

46. Vierjahn, T., Schnorr, A., Weyers, B., Denker, D., Wald, I., Garth, C., Kuhlen, T.W., Hentschel,
B.: Interactive exploration of dissipation element geometry. In: Eurographics Symposium on
Parallel Graphics and Visualization (2017)

47. Wald, I., Benthin, C., Slusallek, P.: A flexible and scalable rendering engine for interactive 3D
graphics. Saarland University, Technical report (2002)

48. Wald, I., Brownlee, C., Usher, W., Knoll, A.: CPU volume rendering of adaptive mesh
refinement data. In: SIGGRAPH Asia 2017 Symposium on Visualization (2017)

49. Wald, I., Johnson, G.P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther, J., Navrátil, P.:
OSPRay—a CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput.
Graph. (2017)

50. Wald, I., Knoll, A., Johnson, G.P., Usher, W., Pascucci, V., Papka, M.E.: CPU ray tracing large
particle data with balanced P-k-d trees. In: 2015 IEEE Scientific Visualization Conference
(SciVis), pp. 57–64 (2015)

51. Wald, I., Woop, S., Benthin, C., Johnson, G.S., Ernst, M.: Embree: A kernel framework for
efficient CPU ray tracing. ACM Trans. Graph. (2014)

52. Wang, K.C., Shareef, N., Shen, H.W.: Image and distribution based volume rendering for large
data sets. In: 2018 IEEE Pacific Visualization Symposium (PacificVis) (2018)

53. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a
fully featured visualization system. In: Eurographics Symposium on Parallel Graphics and
Visualization (2011)

54. Wu, Q., Usher, W., Petruzza, S., Kumar, S., Wang, F., Wald, I., Pascucci, V., Hansen, C.D.:
VisIt-OSPRay: toward an exascale volume visualization system. In: Eurographics Symposium
on Parallel Graphics and Visualization (2018)

55. Yu, H., Wang, C., Grout, R.W., Chen, J.H., Ma, K.L.: In situ visualization for large-scale
combustion simulations. IEEE Comput. Graph. Appl. (2010)

56. Yu, H., Wang, C., Ma, K.L.: Massively parallel volume rendering using 2–3 swap image
compositing. In: SC-International Conference for High Performance Computing, Networking,
Storage and Analysis (2008)

57. Yucong, Y., Miller, R., Ma, K.L.: In situ pathtube visualization with explorable images. In:
Proceedings of the 13th Eurographics Symposium on Parallel Graphics and Visualization
(2013)

Multivariate Functional Approximation
of Scientific Data

Tom Peterka, Youssef Nashed, Iulian Grindeanu, Vijay Mahadevan,
Raine Yeh, and David Lenz

Abstract While our computational capability to generate raw data grows, the ability
to store, transform, and draw conclusions from scientific data is lagging. Beginning
with the introductory chapter and continuing throughout much of this book, we see
numerous examples of how in situ processing can help close the gap between data
generation and data analysis. This chapter expands the discussion of in situ methods
beyond when and where data are processed, to how data are represented. Rethinking
theway that scientific data are represented can empower subsequent visualization and
analysis, especially when such data transformations are performed in situ. Scientific
data may be transformed by recasting to a data model fundamentally different from
the discrete pointwise or element-wise datasets produced by computational models.
InMultivariate FunctionalApproximation, orMFA, scientific datasets are redefined
in a hypervolume of piecewise-continuous basis functions. Compared with existing
discrete models, the continuous functional model can save space while affording
many of the same spatiotemporal analyses without reverting back to the discrete
form. In this chapter, modeling the MFA, in situ, is presented. The data model and
modeling approach are parallelized for high-performance computing. A lightweight
and efficient method of enforcing high-degree continuity across subdomains in the
parallel decomposition is also included. The MFA can subsequently be used post
hoc to evaluate points and derivatives anywhere in the domain, facilitating numerous
analysis and visualization applications.

1 Introduction

Three observations motivate the approach described in this chapter. The first two
reasons are common to other in situ methods. The growing disparity between com-
putational and I/O rates with each new generation of supercomputer requires more

T. Peterka (B) · Y. Nashed · I. Grindeanu · V. Mahadevan · D. Lenz
Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
e-mail: tpeterka@mcs.anl.gov

R. Yeh
Purdue University, West Lafayette, IN, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_17

375

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_17&domain=pdf
mailto:tpeterka@mcs.anl.gov
https://doi.org/10.1007/978-3-030-81627-8_17

376 T. Peterka et al.

data analysis and visualization to be conducted at the source of the data. For exam-
ple, the rate of data that can be computed on the Summit supercomputer at the Oak
Ridge Leadership Computing Facility (assuming 1 byte generated per clock cycle)
is five orders of magnitude greater than the bandwidth of its parallel file system [40].
Beyond performance, in situ analyses can also improve the quality of science. While
the fidelity of post hoc analysis is hamstrung by the low temporal frequency of writ-
ing data to persistent storage, in situ analysis can have much higher fidelity because
analysis tasks have access to all the data directly, not only the tiny fraction saved for
postprocessing.

The third motivation, specifically in this chapter, addresses the type of processing
to conduct in situ. In addition to reducing data size, the objective is to transform
the data model into a more useful form for analysis. Both in situ and post hoc,
many operations involving managing, analyzing, and visualizing scientific data can
be streamlined when data are in a continuous functional form, rather than a discrete
set of points. Converting discrete data into piecewise-continuous basis functions
multiplied by a sparse set of control points results in a hypervolume of NURBS or
B-splines. This transformation is called Multivariate Functional Approximation, or
MFA. The objective of this chapter is to represent scientific data in situ, in an MFA
model, and to use that model instead of the original discrete dataset for post hoc
analysis and visualization.

TheMFAmodel can represent numerous types of data because it is agnostic to the
mesh, field, or discretization of the input dataset. Compared with existing discrete
data models, the MFA model can enable many spatiotemporal analyses, without
converting the entire dataset back to the original discrete form. The MFA often
occupies less storage space than the original discrete data do, providing some data
reduction, depending on data complexity and intended usage. For example, noise
may be intentionally smoothed by using a small number of control points and high-
degree basis functions; alternatively, high-frequency data features may be preserved
with more control points and lower degree. Post hoc, the MFA enables analytical
closed-form evaluation of points and derivatives, to high order, anywhere inside the
domain, without being limited to the locations of the input data points.

A key decision in functional data analysis is the choice of basis function family.
Fourier [6], wavelet [22, 25], and geometric (i.e., spline) [13] bases are commonly
used; recentlyAustin et al. [1] proposed theTucker decomposition as a low-rank alter-
native. Majdisova and Skala proposed radial basis functions for particle data [31].
The MFA uses geometric (specifically, nonuniform rational B-spline) bases because
they mirror the space-time properties in the original data and retain these geometric
properties in analytics and visualization. Computing geometric bases requires min-
imal memory overhead, and the parallel decomposition of the original space-time
domain is identical in the geometric functional domain, an important consideration
for minimizing data movement at scale.

NURBS (nonuniform rational B-splines) are piecewise continuous, differentiable,
have local support, and are invariant to affine transformations. In order to compute the
MFA in d dimensions, a d-dimensional tensor product of NURBS bases is computed.
Both field geometry (space-time vertex positions) and science variables (pressure,

Multivariate Functional Approximation of Scientific Data 377

Fig. 1 One 2-d slice of an
S3D dataset partitioned into
20 blocks and modeled in
parallel, blocks colored by
process ID

density, temperature, etc.) are modeled. The model is efficiently represented by a set
of control points and knots. The control points are reference points that “push and
pull” the representation through their linear combination with basis functions. The
knots map partitions of the data to the control points and associated basis functions.

The MFA is designed to model scientific data in situ, in parallel, on high-
performance computing (HPC) platforms. The model is adaptively refined until a
user-set error threshold is achieved, and it includes a lightweight and efficient method
of enforcing high-degree continuity across subdomains in the parallel decomposition,
to the same degree of continuity as the blocks’ interior MFA models (Fig. 1).

What makes the MFA unique is that the transformed data retain geometric
properties: spatial and temporal contiguity, derivatives, and statistical distributions
are all preserved. The goal of analyzing scientific data—which are inherently
spatiotemporal—is usually to understand the relationship of science variables to
their position in space and time. Thus, once data are modeled in the MFA, many data
analyses and visualizations are possible directly from it.

Two fundamental operations are required in an MFA: building a model from an
input discrete dataset, and evaluating points and derivatives from the model. The
former is usually performed in situ; the latter is often done post hoc. Both stages are
covered in this chapter. Following a discussion of related work in the next section,
in situ modeling is presented in Sect. 3, and post hoc uses of the MFA are explained
in Sect. 4. Parallel implementations of both modeling and evaluation are covered in
Sect. 5. The chapter concludes with a look at some scientific use cases and a glimpse
at the future of functional approximation for scientific data.

2 Related Work

Multivariate functional approximation borrows ideas from several fields: compres-
sion, statistics, modeling, visualization, and analysis. Piecewise functional approx-

378 T. Peterka et al.

imations replace discrete data points with linear combinations of basis functions
and a small number of reference points called control points. Statisticians call this
method functional data analysis [17, 46], with low-dimensional serial implementa-
tions available in popular statistics packages [45].

NURBS are used extensively within computer-aided design (CAD) software
tools [48]. Fitting NURBS to existing data is not straightforward, however, because
the inclusion of rational weights results in a nonlinear problem. Hence, most NURBS
implementations resort to using uniform weights (all set to 1.0), which are then man-
ually tweaked by users for additional model shape control. This is the approach
taken in the MFA as well. Rational weights are implemented and supported, but for
performance reasons the weights are currently set to 1.0 (i.e., reverting to B-splines).

Previous research demonstrated that B-splines can faithfully represent scientific
data in up to three dimensions: 2-d triangular surfaces and 3-d tetrahedral meshes
can be converted into bivariate and trivariate models. Martin and Cohen first devel-
oped the data model and framework in 2001 [34], and Martin et al. described how
to parameterize triangular and tetrahedral data as tensor products in 2008 [33] for
modeling exterior surfaces and interior volumes of medical datasets.

Geometric functional representations can replace data models used today in visu-
alization algorithms. Martin and Cohen derived isosurfacing, slicing, and ray tracing
algorithms directly from B-spline models [34]. Raviv and Elber [47] showed direct
rendering from trivariate B-splines for isosurface extraction, planar slicing, and vol-
ume rendering. Park and Lee [39] visualized trivariate NURBS for flow data. Hua
et al. [23] modeled 3-d solids using simplex splines and showed that visualization
algorithms such as isosurfacing and volume rendering can operate on the same data
model.

Functional data models are used in mechanical and fluid engineering simulations.
One example is isogeometric analysis (IGA) [24], which uses NURBS models for
mechanical simulations. Recently, a parallel IGA toolkit [11] built on PETSc [4]
was developed for solving high-order partial differential equations over NURBS
basis domains. Spectral methods are another example of a discretization that uses
basis functions to evaluate data: the Nek5000 Navier–Stokes solver [14] is based on
a weighted sum of basis functions defined over a coarse set of control points.

Such engineering simulations usually take as input a mesh that was created in a
CAD system, and NURBS modeling is a rich and mature topic in CAD literature.
Lin et al. [28] summarized numerous approaches to reverse engineering NURBS
surfaces given a set of 3-d input points. Partition of unity methods [3, 7] allow local
approximation to extend to the entire domain by blending basis functions of local
approximations into a global solution with the desired continuity across boundaries
of local regions.

The local regions of a global model can be organized in various ways. Sederberg
et al. [5, 49] introduced T-splines to conserve space and to ensure continuity along
B-spline patches. The idea is to localize the addition of knots and control points
in refined regions, rather than extending the refinement in all dimensions over the
entire domain, as in a traditional tensor product representation. T-splines, however,

Multivariate Functional Approximation of Scientific Data 379

increase the bookkeeping effort to keep track of the irregular T-shaped connectivity
of refined regions.

3 In Situ Modeling of the MFA

We begin by introducing the minimum background, consisting of common notation
and a few equations, needed to understand the rest of the chapter. Afterwards, we
describe the method to build an MFA model approximating an input dataset to a
desired tolerance; first with a fixed number of control points and thenwith an adaptive
scheme where the resolution of the model varies with complexity of the dataset.

3.1 Mathematical Background

A curve (Fig. 2 left) can be parameterized as a vector-valued function of a single
parameter u such that

C(u) =
n−1∑

i=0

Ni,p(u)P i . (1)

Ni,p are the pth degree basis functions, and P is the set of n control points; n, the
number of output control points, is usually less than m, the number of input data
points. The definition extends to higher manifold dimensions (surfaces, volumes,
hypervolumes) as a tensor product of multiple parameters u1, u2, . . . , ud . The right
panel of Fig. 2 shows a surface, and in general a d-dimensional hypervolume is
parameterized as follows:

V (u1, . . . , ud) =
∑

i1

· · ·
∑

id

Ni1,p(u1) × · · · × Nid ,p(ud)P i1,...,id . (2)

The basis functions are computed by using the recurrence formula of Cox [10] andDe
Boor [12]. The recursive computation of Ni,p(u) requires computing O(p2) nonzero
coefficients. The degree p is a small number, usually between 1 and 10.

The n control points P are found by solving a linear least-squares optimization
problem (NT N)P = R, where R is computed from the m input data points and
basis functions in O(m + n) time [27]. The matrix of basis functions NT N (in
normal form) is n2 in size, positive definite, and sparse with 2p + 1 nonzero entries
along the diagonal [13]. The vector of control points can be solved without pivoting
in O(n3) time.

380 T. Peterka et al.

Fig. 2 Left: a B-spline curve. Right: a tensor product of B-spline curves in a surface. Tensor
products extend to higher-dimensional hypervolumes

3.2 Modeling with Fixed Size and Separable Dimensions

In this section, we describe the basic steps to model the MFA: specifically, how to
model the dimensions separately in a multidimensional domain, thereby reducing
the computational complexity and memory footprint. In the separable-dimension
approach, the memory to compute the matrix of basis functions is allocated only
once for each new dimension and is reused; hence, memory size does not grow with
the number of dimensions.

Understanding the steps needed to build an MFA model that approximates a set
of m input points is easiest if one begins with a fixed number of control points, n.
In addition to n, the user specifies the polynomial degree, p, for the model. The
first step is to compute parameter values in the range [0.0, 1.0] for all the input data
points. In the current MFA implementation, parameters are assigned to input points
according to the spacing of input points in each of the principal domain dimensions,
specifically by translating and scaling each input point by the extents of the domain
in each dimension. Other parameterizations based on chord length between points,
and other metrics, are possible. In general, however, the parameterization problem is
ill-posed for arbitrary input points. Piegl and Tiller [44] provided a comprehensive
overview of parameterization approaches.

Knots are the breakpoints in the parameter space between different basis functions.
The number of knots per dimension is n + p + 1 by definition. Absent any local
adaptive refinement (the subject of the next section), the default knot placement for
the internal knots is to follow the distribution of the parameters of the input points.
Both the parameters and the knots are represented by one vector per dimension, with
the total number being the sum over the dimensions rather than the product.

Instead of fitting all the dimensions simultaneously, it is less expensive to decom-
pose the dimensions and fit each dimension separately. In the work of Peterka et
al. [41], the approach of Piegl and Tiller [43] was extended to any number of dimen-
sions, as illustrated in Fig. 3 for 3-d input points. Assume that the number of input

Multivariate Functional Approximation of Scientific Data 381

Fig. 3 Iterative fitting over separable dimensions reduces the complexity with each dimension
because the control points from the previous dimension are the input points to the next dimension

points is (mx ,my,mz) in the x, y, z dimensions and that the number of control points
is (nx , ny, nz). The original data are approximated as a set of 1-d curves in the first
dimension, for example, the x direction. The number of curves is the product of the
number of points in the remaining dimensions, my × mz . The linear least-squares
system described in the preceding section is solved for each curve in O(n3x) time.

Before solving in the second dimension, the nx control points for each solved
curve in the first dimension replace the input data points. The input points now
consist of fewer points (assuming fewer control points than input points), specifically
nx × my × mz . We now take curves in the y dimension, and to each curve we fit a
set of control points by solving the same linear system, of ny control points in O(n3y)
time, for each curve. There are nx × mz number of those curves.

Once again, the resulting control points replace the input data points, becoming
the new input for the third dimension. The new input data points now consist of
nx × ny × mz points. Taking curves in the z direction and fitting nz control points
for each of the nx × ny curves, the resulting control points are the final solution.

The method extends to any number of dimensions, and the result is the same as if
a full-dimensional system were solved in one step. However, the cost of performing
separate steps, solving for 1-d curves in each dimension, is lower. Assuming that
the number of domain dimensions is d and that the number of control points is n in
each dimension, solving the full-dimensional least-squares problem in a single step
would take O(n3d) time complexity and O(n2d) space complexity. By comparison,
the separable method takes O(nd+2) time complexity and O(n2) space complexity,
producing identical results in shorter time and less space. The savings of the separable
method over the full-dimensional method improve as the dimensionality grows.

3.3 Local Adaptive Refinement

A model built on a fixed number of control points and predetermined knot spacing,
without taking features in the data into account, cannot represent complex input
signals accurately or efficiently. An alternative is to begin with some initial set of

382 T. Peterka et al.

control points and knots, as described above, and then adaptively add more detail
as needed. The user provides the allowable error, emax , for example, the maximum
relative error normalized by the extent of the data values. Other error metrics such as
the L2-normor rootmean squared (RMS) error are possiblewith no loss of generality.

Figure4 illustrates the steps to adaptively fit the MFA, refining regions of high
error until the error everywhere is below a user-prescribed threshold emax . Beginning
with an initial knot distribution for the minimum number of control points, control
points and knots are adaptively added until all the evaluated points in each span of
knots are within emax of the original points. Knot spans with error greater than emax

are subdivided, and the MFA is recomputed.
Recomputing all the control points anew during every iteration is inefficient

because a global solution and evaluation of the error at every input point are required
during every adaptive iteration. Because the global solution procedure ignores the
results of the previous iteration, the global procedure solves the entire domain of
input points from scratch each time. To address these shortcomings,Nashed et al. [37]
developed a local adaptive algorithm that is able to incrementally refine an existing
model without recomputing the MFA over the entire input domain or compromising
the continuity of the model.

This local incremental method takes advantage of B-spline local support to refine
regions of the approximated model, acting locally on both input and model subdo-
mains, without affecting other regions of the global approximation. The method is

Fig. 4 Overall adaptive
refinement algorithm

Multivariate Functional Approximation of Scientific Data 383

Fig. 5 Steps to locally refine a region while maintaining high-order continuity at the junction
between the original region (at the edges of each diagram) and the new region (in the center of
each diagram) This example is for p = 3 in 1-d. The net effect of adding one new control point
is accomplished by (left image) removing p − 1 control points, (center image) adding p control
points, and (right image) solving for the new p control points constrained by existing p control
points on either side

diagrammed in Fig. 5 for p = 3 and proceeds as follows. Insert a knot where the
error is highest, by removing p − 1 control points (red circles, left panel of Fig. 5)
and adding p new control points (black circles, center panel), without changing the
decoded curve/surface. Perform a local fitting (right panel of Fig. 5) for the new
control points (black circles) with equality constraints for p boundary control points
(red circles). Repeat for the next highest error location.

This approach reduces the computational burden by restricting the iterative opti-
mization locally in subdomains of both the approximation and the input domains, and
it naturally lends the algorithm to a parallel implementation. In contrast, the global
refinement method performs global modeling and evaluation operations in each iter-
ation, which eventually become more expensive than those in the local refinement
method. Figure6 shows that the local refinement algorithm results in higher com-
pression (left panel) and lower time to solution (right panel) once the input size is
large enough, compared with the global algorithm.

The local adaptive refinement method is directly generalizable to high dimensions
and is able tomodel scientific data, as shown in Fig. 7. The adaptive spacing of control
points that results is clearly visible, as well as the relationship between the control
point spacing in the upper portion of the figure and the varying complexity of the
data in the lower portion.

The adaptive method and the resulting accuracy of the model are driven by a
user-supplied error bound. At present, we apply this error bound only to values,
not to derivatives, when fitting the model. However, one could modify the adaptive
algorithm described above to control the error of derivatives or some combination
of values, derivatives, and other application-specific constraints, if desired.

384 T. Peterka et al.

0 5000 15000 25000 35000

0
10

0
20

0
30

0
Local vs. Global Compression Factor

Input Points

O
ut

pu
t C

om
pr

es
si

on
 F

ac
to

r Local
Global

0 5000 15000 25000 35000

50
10

0
15

0
20

0
25

0
30

0

Local vs. Global Solution Time

Input Points

Ti
m

e
(s

)

Local
Global

Fig. 6 Comparison of local refinement with global refinement in terms of resulting compression
factor on the left and solution time on the right

Decoded

Control

75

50

25

Fig. 7 A 2-d slice of S3D [8] turbulent combustion data [20] modeled by the MFA. Below, the
surface evaluated from the model. Above, the mesh of control points

Multivariate Functional Approximation of Scientific Data 385

3.4 Modeling Scientific Data

An assortment of scientific use cases demonstrates how the MFA can be used to
fit actual scientific datasets consisting of turbulence, shocks, and high-frequency
variation. Exemplar applications include combustion, computational fluid dynamics,
turbulent mixing, and global climate. Data relating the size of the MFA and error of
the approximation, along with an image of reconstructed points evaluated from the
MFA model, are presented for each dataset. The relative RMS error reported is the
root mean squared error normalized by the extent of the data range.

Turbulent combustion. The turbulent combustion dataset is generated by an S3D
simulation [8] of fuel jet combustion in the presence of an external crossflow [18, 20].
The domain is 3-d (x, y, z) (704 × 540 × 550), and the range variable f (x, y, z) is
the magnitude of the 3-d velocity. Figure8 shows a volume rendering of the resulting
evaluated points from an MFA modeled with p = 3.

Thermal hydraulics. A 3-d vector field representing the numerical results of a
large-eddy simulation of Navier–Stokes equations for the MAX experiment [35]
is representative of turbulent mixing and thermal striping that occur in the upper
plenum of liquid sodium fast reactors. The data, generated by the Nek5000 solver,
have been resampled from their original topology onto a 200 × 200 × 200 regular
grid, and the magnitude of the velocity vector is associated with each 3-d domain
point. Figure9 shows a volume rendering of reconstructed data when the MFA is
modeled with p = 3.

Rayleigh-Taylor instability. Rayleigh-Taylor instability [30] occurs at the interface
between a heavy fluid overlying a light fluid, under a constant acceleration, and is
of fundamental importance in a multitude of applications ranging from astrophysics
to ocean and atmosphere dynamics. Small perturbations at the interface between the
two fluids interact nonlinearly and eventually become turbulent. The dataset was
generated by the CFDNS [29] Navier–Stokes solver. One time step of 288 × 512 ×
512 velocity vector magnitude data was modeled with p = 3, and Fig. 10 shows a
volume rendering of the reconstructed data from the MFA.

Fig. 8 S3D dataset showing velocity magnitude evaluated from the MFA model

386 T. Peterka et al.

Fig. 9 Volume rendering of data evaluated from the MFA of the Nek5000 dataset

Fig. 10 Volume rendering of data evaluated from the MFA of the CFDNS dataset

Atmospheric climate. The Community Earth System Model (CESM) is a global
climate model providing data of the Earth’s oceans, atmosphere, land, and sea ice.
The dataset in this example is the FLDSC (clear-sky downwelling longwave flux at
surface) variable of the Community Atmosphere Model developed at the National
Center for Atmospheric Research [38], and the data lie on an 1800 × 3600 2-d
domain with one value of FLDSC at each grid point. Figure11 shows the evaluated
points when modeled with p = 3.

The MFA, in contrast to floating-point lossy compression methods, is a trans-
formed datamodel that retains geometric properties and enables analytical operations
directly. Rather than reducing the number of bits used to encode the input data points,
the adaptive MFA fitting algorithm automatically selects the number and location of
control points. The resulting accuracy and size of the model depend on the complex-
ity of the data, as the previous examples show. The MFA and lossy compression can
be seen as complementary methods with different objectives. The two methods can

Multivariate Functional Approximation of Scientific Data 387

Fig. 11 Surface rendering of CESM data evaluated from the MFA model

be combined; for example, compression can further reduce the storage size of MFA
control points and knots. In other instances, one or the other method may be more
appropriate depending on the purpose of the in situ operation and its post hoc uses.

4 Post Hoc Use of the MFA

The MFA is a surrogate data model that is solved once (typically in situ) and then
used many times for data analysis and visualization post hoc, facilitating applica-
tions beyond simply reproducing the input data points. The MFA is designed to
be used directly for subsequent data analysis and visualization, distinguishing it
from other basis representations such as wavelets, cosine transformations, and com-
pression algorithms that require the inverse transform to be applied first. Several
operations are possible directly from the MFA without reverting to the original dis-
crete data model. Moreover, they are possible in the full order and accuracy of the
model, without linear interpolation or finite difference estimation. While the model
itself is an approximation to the original data, subsequent applications of the MFA
are exact, analytical, high order, and closed form. No additional error is introduced
when evaluating or differentiating points from a model that has previously been
approximated.

Once the model is computed in situ, one can evaluate the model at any point in the
domain, not just at the original input points, and differentiate the model up to p − 1
times in any combination of partial derivatives in the domain dimensions. Because
the model is intrinsically high-order, all point evaluations are done at the same high
order or degree to which the model is fitted. Affine transformations can be applied
directly to the control points. Statistical and machine learning algorithms using the
MFA, such as clustering, topological analysis, and principal components analysis,
are areas of further research. The following sections explain point evaluation and
differentiation—basic building blocks for post hoc usage of the MFA—followed by
applications of these building blocks.

388 T. Peterka et al.

Fig. 12 This example shows the steps to evaluate a point from the MFA with degree p = 2 in 2-d,
but the same idea extends to any dimension and degree

4.1 Multidimensional Point Evaluation

Points in any dimensionality are evaluated by computing Eq.2. Figure12 shows an
example of evaluating a 2-d pointwith p = 2 in both dimensions. The number of basis
functions and control points multiplied in each dimension is p + 1; hence, 9 control
points are shown in image (a). First, each curve in the first (horizontal) dimension
is collapsed into a single point by the matrix multiplication of basis functions and
control points. This step is shown in images (b) and (c).Next, the three resulting points
form a curve in the vertical direction, which is collapsed in (d) throughmultiplication
of basis functions to become the resulting evaluated point in (e).

This algorithm, which extends naturally to any number of dimensions, has two
main steps: computing the basis functions and multiplying basis functions by control
points. The basis functions are computed in O(p2) time, and the control points are
multiplied by basis functions in O((p + 1)d) time, in d dimensions.

4.2 High-Order Differentiation

To compute derivatives from a previously modeled MFA, one needs only to dif-
ferentiate the basis functions, replacing Ni,p with N ′

i,p in Eq.2. Because the basis
functions are p-degree polynomials, they are differentiable p times except at knot
locations, where they are differentiable p − 1 times. The derivatives of a p-degree
basis function are computed with a similar recurrence formula as the basis function
values, in O(p2) time. In fact, the original basis functions for the values can be
thought of as the zero-degree derivatives. For example, the basis functions for p = 3
polynomials and their first two derivatives are shown in Fig. 13.

Derivatives of the MFA use the same knots and control points as the original
MFA does, allowing the MFA to be computed once in situ and stored in a file. Basis
functions and their derivatives are not stored; instead, they are recomputed as needed.
A single model, consisting of knots and control points, allows all the values and all

Multivariate Functional Approximation of Scientific Data 389

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Degree 3 Basis Functions

Domain

R
an

ge

0.0 0.2 0.4 0.6 0.8 1.0

4
2

0
2

4

Degree 3 Basis Functions 1st Derivatives

Domain
R

an
ge

0.0 0.2 0.4 0.6 0.8 1.0

30
10

0
10

20
30

Degree 3 Basis Functions 2nd Derivatives

Domain

R
an

ge

Fig. 13 Basis functions for p = 3 values and derivatives

derivatives (total, partial, and mixed) to be available post hoc. The only requirement
is to model the original MFA with high enough degree p that any derivatives needed
later are less than or equal to p − 1 in degree.

4.3 Applications

High-order point evaluation and differentiation enable a multitude of visualization
and analysis operations. Some applications are possible directly from the control
points and knots of the MFA, while others take advantage of being able to evaluate
and differentiate points (sample the data) at arbitrary positions, in closed form. The
MFA can be used to visualize high-order data, to compute Jacobian and Hessian
fields, as a surrogate representation in machine learning algorithms, to compare and
remap data points from one discretization to another, and to smooth data and filter
noise.

High-order visualization. High-order data such as those resulting from finite ele-
ment and spectral methods have traditionally been problematic for scientific visu-
alization algorithms such as isosurfacing, slicing, and volume rendering. Solutions
were limited to either linearly approximating high-order elements—still the most
common approach—or calling custom functions provided by the simulation. Linear
approximations introduce error, while custom callbacks require complex software
interconnections between simulations and visualization, which are difficult post hoc
when the simulation no longer is running. TheMFAsolves this problembecause high-
order evaluation of data points in any resolution is a closed-form operation with no
additional error. In fact, all of the visualizations in this chapter were generated by
evaluating a dense set of points from high-order MFAmodels of at least degree three
and then applying existing visualization tools. In the future, the algorithms in those
tools, such as volume rendering, can be written to ingest the MFA model directly,
essentially moving theMFA point evaluation to be inside the visualization algorithm.

390 T. Peterka et al.

Fig. 14 Demonstration of post hoc evaluation and differentiation of an MFA model. Top: points
evaluated from the MFA model of a 2-d sinc function. Bottom: first partial derivative with respect
to x from the same model

Derivative fields. Differentiation, including high-order derivatives, is a staple of
visualization and data analysis. Gradient fields, velocities, Jacobian matrices, edge
detection, topological segmentation, and uncertainty quantification all require first
derivatives. Second derivatives are used for computing curvature, acceleration, and
Hessian matrices. For example, ridge and valley features are defined in terms of
gradients and eigenvalues of the Hessian [15]. Applying lighting and shading to
ridge features requires their normal, or the third derivative of the original model.
Smooth derivatives are also required for optimization algorithms, used in machine
learning (segmentation, classification, and regression, e.g.) that search for minima
along directions of steepest descent. Figure14 demonstrates computing a gradient
field, showing evaluated points in the upper image and showing in the lower image
the gradient field where the z coordinate is the first partial derivative of the MFA
with respect to x . Both the upper and lower images were computed post hoc from the
same previously computed and saved MFA model. It is easy to visually confirm that
the slope in the top image corresponds to the value in the lower image. Other combi-
nations of derivative degree (second derivative, e.g.) and partial and total derivatives
are possible to compute from the same model post hoc.

Comparison of datasets with different discretizations. The ability to evaluate data
points at arbitrary locations, not limited to locations of the input dataset, facilitates
several analysis operations. One such operation is to compare two datasets whose
resolutions or, more generally, discretizations differ. Discretization here includes
element type, order, and resolution. Each of the input datasets can be modeled in a
separate MFA, and then the twoMFAmodels can be evaluated at the same parameter
locations. Because theMFA is meshless, the field data of two heterogeneous datasets
can be compared at uniform locations, independent of themesh representation of each
dataset.

Multivariate Functional Approximation of Scientific Data 391

Fig. 15 Filtering noise with the MFA. Top row from left to right: Input dataset with 0% noise, 2%
noise, and 5% noise. Bottom row: output of the MFA for the same input dataset as above shows
that noise can be intentionally smoothed

Remapping between coupled multiphysics simulations. A related problem mak-
ing use of high-order arbitrary evaluation is the transferring of a field from one
discretization to another, as occurs in coupled multiphysics simulations. This pro-
cess is usually called remapping. A further challenge in remapping is to satisfy
physical constraints such as conservation of integrals and derivatives, for example,
total energy of a system or flux across an interface. The linear least-squares method
of solving the MFA can be replaced with nonlinear constrained optimization—as
was done in Sect. 3.3—with penalty terms added for the physics constraints. Once
modeled, points are evaluated from the MFA as described above.

Smoothing, simplification, filtering. Smoothing, simplification, and filtering are
related operations that extract the underlying signal from a noisy dataset. Data aris-
ing from sensors and experiments usually contain noise that can mask the underlying
behavior, which is oftenmore smooth and has lower frequency than the rawdata have.
The MFA provides smoothing capability, being built from piecewise-continuous
functions of high order. Compared with mesh simplification and topological simpli-
fication methods, the MFA is agnostic to mesh discretization and topology. Simpli-
fication or smoothing is accomplished by decreasing the number of control points
while optionally increasing the degree of the MFA. These are common geometric
editing operations of NURBS and B-splines [43]. Figure15 demonstrates smoothing
of a synthetic dataset [32] with different degrees of input noise, by using a high
degree of p = 10 and half as many control points in each dimension as input points.
The MFA in the lower row retains more of the low-frequency structure of the data
than the input points in the upper row, where the structure is masked as the amount
of noise increases. Alternatively, instead of being smoothed, high-frequency features
could be retained by reducing the degree and increasing the number of control points
(not shown).

392 T. Peterka et al.

5 Parallel Approximation and Evaluation

Computation of the MFA is parallelized on three levels. First, block parallelism (i.e.,
data parallelism) is used to decompose the domain into blocks and execute each block
in distributed-memory compute nodes of a supercomputer or computing cluster.
The DIY library [36] provides block parallelism. Within a block, task parallelism
is utilized to approximate curves and evaluate points by using thread-level tasks.
Currently, TBB [42] is the threading model used for CPU threading, but other task-
parallel programming models can be used. For example, a SYCL [26] kernel is
under development to parallelize the evaluation of multiple point locations, which
can run on a GPU as well as on a CPU. Linear algebra operations, for example, to
invert matrices, are SIMD (single instruction, multiple data) vectorized by using the
Eigen [21] linear algebra library.

Each block of the parallel datamodel is a tensor product defined by n control points
and n + p + 1 knots in each dimension. Control points are in the same coordinate
system as original data points are, and therefore the same spatiotemporal domain
decomposition used for input data can be reused for the MFA, minimizing data
movement. The basis functions are not stored and are recomputed as needed.

The output MFA is stored in a binary file in DIY format, which is read and written
in parallel by using MPI-I/O. There is also a serial utility to convert the file to VTK
format so that the results are compatible with visualization and analysis tools derived
from VTK such as ParaView [2] and VisIt [9]. In future work, it is anticipated that
those tools will read the DIY file in parallel, andVTKfilters will be written to operate
directly on the MFA. One of the reasons for choosing a NURBS geometric basis for
the MFA is its compatibility with such downstream tasks.

When computing anMFA approximation in parallel over multiple blocks in a spa-
tial domain decomposition, the interior of each block will beC p-continuous, p being
the polynomial degree, but discontinuities exist across neighboring block boundaries.
Grindeanu et al. [19] developed an efficient and scalable solution to this problem that
involves blending neighboring approximations to ensure C p continuity across block
boundaries. They showed that after decomposing the domain in structured, overlap-
ping blocks and approximating blocks independently to the desired accuracy, the
local solution can be extended post hoc to the global domain by using compact,
multidimensional smoothstep functions. This approach, which can be viewed as an
extended partition of unity approximation method, is scalable on HPC architectures.

The global domain is first decomposed into rectangular blocks,which are extended
by a fraction (ghost zone) to overlap the neighboring blocks. The MFA is then
computed locally, in situ, independently for each extended block. The only difference
between this step and the modeling algorithms presented earlier is that the blocks
of input data are slightly enlarged by the ghost zone; otherwise, the modeling is
identical.

Post hoc, additional communication is involved when evaluating points from the
MFA. Blocks send requests for evaluated points in ghost zones to neighboring blocks
and receive the evaluated points from their neighbors. The evaluated points frommul-

Multivariate Functional Approximation of Scientific Data 393

Fig. 16 Left: blocks modeled independently are discontinuous at the block boundaries. Right:
blending using high-degree smoothstep functions restores continuity of the desired degree across
block boundaries

tiple blocks that intersect in a ghost zone are blended together by using a smoothstep
function, selected from a family of functions of varying degrees p, depending on the
desired continuity C p. These functions [16], used in computer graphics and visual-
ization, are simple to evaluate, since they involve only polynomials of degree 2p + 1.
The value of the smoothstep function, α, is used in 1-d to blend two points P1 and
P2 as αP1 + (1 − α)P2. By induction, Grindeanu et al. [19] extended the blending
to higher dimensions and also proved that the error, with respect to the input data,
of the blended point in the ghost zone is guaranteed to be within the same bounds as
the user-specified error that was used to model the block interiors.

Blending occurs independently per dimension, with different blending functions
and different ghost zone sizes possible in each dimension. The number of points being
blended together depends on the dimensionality of the domain and on the number
of neighboring blocks meeting at a face or corner. The result is a multidimensional
partition of unity of the corresponding point evaluations that satisfies the same degree
of continuity and same error bounds as the block interiors. Figure16 shows a close-
up of the junction between 4 independent blocks, before and after blending. Point
evaluations are local operations per block, and blending is also a local operation after
the values are received from neighboring blocks. For structured data, the communi-
cation pattern is predictable and localized to exchanging information only between
neighboring blocks.

In order to evaluate the cost of the blending, parallel scaling studies were con-
ducted on the Bebop cluster at Argonne’s Laboratory Computing Resource Center.
Bebop has 1,024 compute nodes, with Intel Broadwell processors having 36 cores
and 128GBofmemory per node, connected by anOmni-Path fabric. Figure17 shows
a strong-scaling study on an S3D scientific dataset. The turbulent combustion dataset
generated by an S3D simulation [8] of fuel jet combustion in the presence of an exter-
nal crossflow [20] is 3-d (704 × 540 × 550); the field variable is themagnitude of the
3-d velocity, and p = 3 was used to model the MFA. The experiment measures how
much time the post hoc point evaluation takes with and without blending, in parallel,

394 T. Peterka et al.

Fig. 17 Strong-scaling
efficiency for the S3D
dataset is 54%. The
additional blending step
generates high-degree
continuity without changing
the strong-scaling efficiency

5e
−0

1
5e

+0
0

5e
+0

1
5e

+0
2

Strong Scaling

MPI Processes
Ti

m
e

(s
)

1 2 4 8 32 128 512 2048

Total blend
Ideal scalability
Evaluate only

using a previously computed and saved MFA model. Results show that blending
added a factor of approximately 2X to the cost of evaluating, and the strong-scaling
efficiency is 54% at 2,048 MPI processes.

6 Ongoing and Future Work

The techniques presented in this chapter are freely available for others to test and
use in their own research,1 and community contributions are welcome.

Research efforts continue along several fronts. Currently, the MFA for each block
is computed in situ independently, without continuity constraints, and it is only
during the evaluation of points from the MFA post hoc that continuity is achieved by
blending evaluated points from neighboring blocks. An alternative approach is being
investigated that enforces continuity constraints while neighboring MFA blocks are
being solved in situ.

Research also is ongoing to determine an optimal set of knots—both number
and location—based on properties of the discrete data. The choice of knot vector
influences the resulting accuracy of the approximation. Methods to automatically
determine a knot vector that achieves high approximation quality are being devel-
oped. At the core of the approach is a feature function that characterizes the amount
and spatial distribution of geometric details in the input data by accumulating deriva-
tives. Knots are then selected to evenly distribute the feature contents across their
intervals. A solution to this problem in 1-d has recently been published [50], with
future extensions to higher-dimensional and unstructured input data being pursued.

1 Freely available at https://github.com/tpeterka/mfa.

https://github.com/tpeterka/mfa

Multivariate Functional Approximation of Scientific Data 395

Also being developed is an alternative data model representation for the MFA
based onT-splines. This is an adaptivemodel, analogous to adaptivemesh refinement,
consisting of regions with various levels of adaptivity (numbers of knots and control
points). In the current tensor product representation, every time a new control point
is added, it is duplicated in every dimension of the hypervolume, essentially adding
a hyperplane of control points in each dimension. The T-spline formulation sidesteps
this requirement, at the expense of added complexity of the datamodel and potentially
increased cost of computing the MFA and evaluating points from it. It is anticipated
that the storage savings will be a favorable trade-off given the added complexity.

Acknowledgements This work is supported by Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357, program man-
ager Margaret Lentz. This research used resources of the Argonne Leadership Computing Facil-
ity (ALCF), which is a DOE Office of Science User Facility supported under Contract No. DE-
AC02-06CH11357, theArgonne Laboratory ComputingResource Center (LCRC), and theNational
Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of
Science User Facility operated under Contract No. DE-AC02-05CH11231.

References

1. Austin, W., Ballard, G., Kolda, T.G.: Parallel tensor compression for large-scale scientific data
(2015). arXiv:1510.06689

2. Ayachit, U.: The ParaViewGuide: A Parallel VisualizationApplication. Kitware Inc, NewYork
(2015)

3. Babuska, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng.
40(4), 727–758 (1997). https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<3c727::
AID-NME86>3e3.0.CO;2-N

4. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in
object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P.
(eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Basel
(1997)

5. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A.,
Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng.
199(5–8), 229–263 (2010)

6. Boashash, B.: Time-frequency Signal Analysis and Processing: A Comprehensive Reference.
Academic, New York (2015)

7. Cavoretto, R., Rossi, A.D., Perracchione, E.: Partition of unity interpolation on multivariate
convex domains. Int. J. Model. Simul. Sci. Comput. 06(04) (2015). https://doi.org/10.1142/
S1793962315500348

8. Chen, J.H., Choudhary, A., de Supinski, B., DeVries,M., Hawkes, E.R., Klasky, S., Liao,W.K.,
Ma, K.L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., Yoo, C.S.: Terascale
direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2, 015001
(2009)

9. Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller,
M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E.W.,
Camp,D., Rübel, O., Durant,M., Favre, J.M., Navrátil, P.: VisIt: an end-user tool for visualizing
and analyzing very large data. In: High Performance Visualization–Enabling Extreme-Scale
Scientific Insight, pp. 357–372 (2012)

10. Cox, M.G.: The numerical evaluation of B-splines. IMA J. Appl. Math. 10(2), 134–149 (1972)

http://arxiv.org/abs/1510.06689
https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<3c727::AID-NME86>3e3.0.CO;2-N
https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<3c727::AID-NME86>3e3.0.CO;2-N
https://doi.org/10.1142/S1793962315500348
https://doi.org/10.1142/S1793962315500348

396 T. Peterka et al.

11. Dalcin, L., Collier, N., Vignal, P., Cortes, A., Calo, V.: PetIGA: a framework for high-
performance isogeometric analysis. Comput. Methods Appl. Mech. Eng. 308, 151–181 (2016).
https://doi.org/10.1016/j.cma.2016.05.011

12. De Boor, C.: On calculating with B-splines. J. Approx. Theory 6(1), 50–62 (1972)
13. De Boor, C.: A Practical Guide to Splines (revised ed.). New York (2001)
14. Deville, M.O., Fischer, P.F., Mund, E.H.: High-order methods for incompressible fluid flow

(2002)
15. Eberly, D.: Ridges in Image and Data Analysis, vol. 7. Springer Science & Business Media,

Berlin (2012)
16. Ebert, D.S., Musgrave, F.K., Peachey, D., Perlin, K., Worley, S.: Texturing & Modeling: A

Procedural Approach. Morgan Kaufmann, Burlington (2003)
17. Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and Practice. Springer

Science & Business Media, Berlin (2006)
18. Fric, T.F., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279,

1–47 (1994)
19. Grindeanu, I., Peterka, T., Mahadevan, V.S., Nashed, Y.S.: Scalable, high-order continuity

across block boundaries of functional approximations computed in parallel. In: 2019 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 1–9. IEEE (2019)

20. Grout, R.W., Gruber, A., Yoo, C., Chen, J.: Direct numerical simulation of flame stabilization
downstream of a transverse fuel jet in cross-flow. Proc. Combust. Inst. 33, 1629–1637 (2011)

21. Guennebaud, G., Jacob, B., et al.: Eigen Version 3 (2010). http://eigen.tuxfamily.org
22. Heil, C.E., Walnut, D.F.: Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–

666 (1989)
23. Hua, J., He, Y., Qin, H.: Multiresolution heterogeneous solid modeling and visualization using

trivariate simplex splines. In: Proceedings of the Ninth ACM Symposium on Solid Modeling
and Applications, pp. 47–58. Eurographics Association (2004)

24. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry andmesh refinement. Comput.MethodsAppl.Mech. Eng. 194(39), 4135–4195
(2005)

25. Jansen, M.H., Oonincx, P.J.: Second Generation Wavelets and Applications. Springer Science
& Business Media, Berlin (2005)

26. Khronos Group: SYCL Overview (2020). https://www.khronos.org/sycl
27. Lancaster, P., Salkauskas, K.: Curve and Surface Fitting. Academic, New York (1986)
28. Lin, H., Maekawa, T., Deng, C.: Survey on geometric iterative methods and their applications.

Comput.-Aided Des. 95, 40–51 (2018)
29. Livescu, D., Khang, Y., Mohd-Yusof, J., Petersen, M., Grove, J.: CFDNS: a computer code

for direct numerical simulation of turbulent flows. Technical Report (2009). Technical Report
LA-CC-09-100, Los Alamos National Laboratory

30. Livescu, D., Ristorcelli, J., Petersen, M., Gore, R.: New phenomena in variable-density
rayleigh-taylor turbulence. Physica Scripta (2010). In press

31. Majdisova, Z., Skala, V.: Radial basis function approximations: comparison and applications.
Appl. Math. Model. 51, 728–743 (2017)

32. Marschner, S.R., Lobb, R.J.: An evaluation of reconstruction filters for volume rendering. In:
Proceedings Visualization’94, pp. 100–107. IEEE (1994)

33. Martin, T., Cohen, E., Kirby, M.: Volumetric parameterization and trivariate B-spline fitting
using harmonic functions. In: Proceedings of the 2008 ACMSymposium on Solid and Physical
Modeling, pp. 269–280. ACM (2008)

34. Martin, W., Cohen, E.: Representation and extraction of volumetric attributes using trivariate
splines: a mathematical framework. In: Proceedings of the sixth ACM symposium on Solid
modeling and applications, pp. 234–240. ACM (2001)

35. Merzari, E., Pointer, W., Obabko, A., Fischer, P.: On the numerical simulation of thermal
striping in the upper plenum of a fast reactor. In: Proceedings of ICAPP 2010. San Diego, CA
(2010)

https://doi.org/10.1016/j.cma.2016.05.011
http://eigen.tuxfamily.org
https://www.khronos.org/sycl

Multivariate Functional Approximation of Scientific Data 397

36. Morozov, D., Peterka, T.: DIY2: Data-parallel out-of-core library. In: Proceedings of the 2016
IEEE Large Data Analysis and Visualization Symposium LDAV’16. Baltimore, MD (2016)

37. Nashed, Y.S., Peterka, T., Mahadevan, V., Grindeanu, I.: Rational approximation of scientific
data. In: International Conference on Computational Science, pp. 18–31. Springer (2019)

38. Neale, R.B., Chen, C.C., Gettelman, A., Lauritzen, P.H., Park, S., Williamson, D.L., Conley,
A.J., Garcia, R., Kinnison, D., Lamarque, J.F., et al.: Description of the NCAR community
atmosphere model (CAM 5.0). Technical Report (2010)

39. Park, S., Lee, K.: High-dimensional trivariate NURBS representation for analyzing and visu-
alizing fluid flow data. Comput. & Graph. 21(4), 473–482 (1997)

40. Peterka, T., Bard, D., Bennett, J.C., Bethel, E.W., Oldfield, R.A., Pouchard, L., Sweeney, C.,
Wolf,M.: Priority research directions for in situ datamanagement: enabling scientific discovery
from diverse data sources. Int. J. High Perf. Comput. Appl. 34(4), 409–427 (2020)

41. Peterka, T., Youssef, S., Grindeanu, I., Mahadevan, V.S., Yeh, R., Tricoche, X., et al.: Founda-
tions ofmultivariate functional approximation for scientific data. In: 2018 IEEE8th Symposium
on Large Data Analysis and Visualization (LDAV), pp. 61–71 (2018)

42. Pheatt, C.: Intel® threading building blocks. J. Comput. Sci. Coll. 23(4), 298–298 (2008)
43. Piegl, L., Tiller, W.: The NURBS Book (1997)
44. Piegl, L.A., Tiller, W.: Parametrization for surface fitting in reverse engineering. Comput.-

Aided Des. 33(8), 593–603 (2001)
45. Ramsay, J.O., Hooker, G., Graves, S.: Functional DataAnalysis with R andMATLAB. Springer

Science & Business Media, Berlin (2009)
46. Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis: Methods and Case Studies,

vol. 77. Princeton, Citeseer (2002)
47. Raviv, A., Elber, G.: Interactive direct rendering of trivariate B-spline scalar functions. IEEE

Trans. Vis. Comput. Graph. 7(2), 109–119 (2001)
48. Rogers, D.F.: An Introduction to NURBS: With Historical Perspective. Elsevier, Amsterdam

(2000)
49. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans.

Graph. (TOG) 22(3), 477–484 (2003)
50. Yeh, R., Nashed, Y.S., Peterka, T., Tricoche, X.: Fast Automatic knot placement method for

accurate B-spline curve fitting. Comput.-Aided Des. 102905 (2020)

A Simulation-Oblivious Data Transport
Model for Flexible In Transit
Visualization

Will Usher, Hyungman Park, Myoungkyu Lee, Paul Navrátil, Donald Fussell,
and Valerio Pascucci

Abstract In transit visualization offers a desirable approach to performing in situ
visualization by decoupling the simulation and visualization components. This
decoupling requires that the data be transferred from the simulation to thevisualization,
which is typically done using some formof aggregation and redistribution.As the data
distribution is adjusted to match the visualization’s parallelism during redistribution,
the data transport layer must have knowledge of the input data structures to partition
or merge them. In this chapter, we will discuss an alternative approach suitable
for quickly integrating in transit visualization into simulations without incurring
significant overhead or aggregation cost. Our approach adopts an abstract view of
the input simulation data andworks only on regions of space owned by the simulation
ranks, which are sent to visualization clients on demand.

W. Usher (B)
Intel Corporation, Mountain View, USA
e-mail: will.usher@intel.com

H. Park
Electrical and Computer Engineering, Texas Advanced Computing Center, The University of
Texas at Austin, Austin, USA
e-mail: hyungman@utexas.edu

M. Lee
Sandia National Laboratories, Albuquerque, USA
e-mail: mklee@ua.edu

The Department of Aerospace Engineering and Mechanics, The University of Alabama,
Tuscaloosa, AL, USA

P. Navrátil
Texas Advanced Computing Center, The University of Texas at Austin, Austin, USA
e-mail: pnav@tacc.utexas.edu

D. Fussell
Computer Science, The University of Texas at Austin, Austin, USA
e-mail: fussell@cs.utexas.edu

V. Pascucci
SCI Institute, University of Utah, Salt Lake City, USA
e-mail: pascucci@sci.utah.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_18

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_18&domain=pdf
mailto:will.usher@intel.com
mailto:hyungman@utexas.edu
mailto:mklee@ua.edu
mailto:pnav@tacc.utexas.edu
mailto:fussell@cs.utexas.edu
mailto:pascucci@sci.utah.edu
https://doi.org/10.1007/978-3-030-81627-8_18

400 W. Usher et al.

1 Introduction

As discussed in the introduction chapter, two of the axes alongwhich an in situ system
can be classified are proximity and access. In situmethods can be roughly categorized
on these axes as “tightly coupled” (same process, direct access) or “loosely coupled”
(different process, indirect access). Loosely coupled approaches have also been
referred to as in transit, and we adopt this terminology throughout the chapter. A
tightly coupled approach provides clear benefits by eliminating data copies or the
need to synchronize between multiple processes to transfer data; however, loosely
coupled approaches can provide a desirable alternative at scale [11].

A loosely coupled approach can run the simulation and visualization on distinct
nodes, reducing the impact of the visualization on the simulation [8, 30]. This
separation is highly desirablewhen scalability or resource contention is of concern, as
is often the case in large-scale simulations. Furthermore, the visualization component
is free to run at a different level of parallelism than the simulation, or can run
in parallel to the simulation to perform additional computation [3, 8, 18, 29, 30]
or enable interactive visualization [23, 25]. The visualization can also be run on
demand, starting and stopping as desired in a separate process or job, based on,
e.g., simulation triggers [12]. However, the application must now deal with the
challenge of coordinating the two processes to transfer data from the simulation
to the visualization.

When considering applying in transit visualization in practice, several challenges
remain. Most off-the-shelf libraries for in situ visualization target tightly coupled
use cases [9, 28]. The few libraries that do support in transit typically do so
by repurposing an existing I/O API [16, 26], and perform data aggregation and
redistribution using a general distributed data access strategy (e.g., DataSpaces [5],
FlexIO [31], Flexpath [4]).Although such approachesfitwell into simulations already
using the repurposed I/O API, migrating to a new I/O API for the express purpose
of enabling in transit visualization may not be desirable, especially for simulations
leveraging a custom optimized I/O library, such as HACC [10].

This chapter discusses the simulation-oblivious data transport model employed
by libIS [23] for in transit visualization, which lowers the bar to using in transit
visualization in practice. By adopting an abstract view of the simulation data, this
approach can be integrated into a range of simulations employing arbitrary mesh
types. This approach is alsowell suited toM : N configurations, whereM simulation
ranks communicate with N visualization ranks, allowing each task to be run in its
ideal configuration. This strategy natively supports asynchronous and on-demand in
transit visualization, is portable across a range of HPC or ad hoc cluster systems,
and does not require significant changes to the simulation to integrate. Moreover, we
discuss developments extending libIS which allow greater portability across HPC
systems and simulation codes.

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization 401

Fig. 1 A 4 : 3 mapping of
simulation data (left) to
visualization clients (right).
With M > N each rank is
assigned M

N simulation
states, with any remainder
distributed among the clients

2 A Simulation-Oblivious Data Transport Model

Our simulation-oblivious data model treats each simulation rank as an opaque block
of bytes, the interpretation ofwhich is left up to the simulation and client. Specifically,
the model does not inspect, adjust, or redistribute the input data distribution provided
by the simulation, but instead simply forward each rank’s data to the assigned client.
Each client receives one simulation state from each simulation rank it is assigned to
process data from, allowing for M : N configurations (see Fig. 1).

If the simulation and visualization differ in their parallelismmodel (i.e., MPI-only
vs.MPI+ threads) or scalability, anM : N configuration can be used to run each in its
ideal configuration. In a 1 : 1 configuration, each client is assigned a single simulation
rank’s data.WhenM > N each client is assigned data from M

N simulation ranks, with
any remainder distributed among the clients. The client application is then free to
merge its assigned data together, or keep it distinct. Depending on the simulation
and visualization configuration, it may not be possible for each client to combine
the received set of simulation states into a single convex region. We note that this
oblivious model supports only M ≥ N , since it does not support splitting a rank’s
data to redistribute it. However, it is typically the case that the simulation is run at
the same or higher level of parallelism than the visualization.

Although a somewhat primitive data model, this simplified view provides some
desirable benefits over redistribution-based approaches. Removing the restructuring
process reduces computational cost and library complexity, and eases integration into
simulations with more exotic mesh types or primitives that may not be supported by
the chosen redistribution strategy. Moreover, this approach is able to achieve high
network utilization when querying data from the simulation, as little computation is
performed during the process to assign data to clients, in turn reducing the simulation
time spent performing data transfers to the clients. From a practical standpoint, this
approach does not rely on more complex distributed data models or libraries, and can
be easily deployed on a variety of systems, making it useful for lightweight in transit
integrations, or as the underlying data transport layer for in full-featured systems
(e.g., SENSEI [2]).

402 W. Usher et al.

2.1 Implementation in libIS

The libIS library1 [23] implements our oblivious data transport model to provide
a lightweight library for asynchronous in transit visualization. A simulation using
libIS acts as a data server that clients can connect to and query data from. Data are
transferred to clients each timestep using the model described above. The library is
split into a simulation and client library: the simulation library provides a C API
to support simulations written in most languages, and the client library provides
a C++ API to fit well with C++ based visualization software (e.g., VTK [22]).
Visualization clients using libIS can connect and disconnect as desired from the
simulation, to support on-demand execution of the visualization. Furthermore, libIS
does not impose requirements on where the clients are run. The clients can be run
on the same nodes as the simulation, distinct nodes on the same HPC resource, or
an entirely separate HPC resource. The clients can be started manually by the user
or automatically using, e.g., in situ triggers [12].

While our previously publishedwork [23] established someof the benefits of libIS,
this chapter describes recent efforts to improve portability across MPI runtimes and
simulations, and to improve usability and performance. The library now includes a
Fortran wrapper over the C API to ease integration into Fortran-based simulations
and a fallback socket-based intercommunicator for portability across different HPC
systems and MPI configurations. Moreover, this chapter presents an extensive
evaluation of the performance of libIS and the impacts of libIS and visualization
clients on the simulation in the supported configurations and communication modes.

2.1.1 Portable Communication Between the Simulation and Client

LibIS allows clients to connect and disconnect from the simulation as desired to
enable on-demand execution. Rank 0 of the simulation spawns a background thread
that listens for incoming connections on a socket. To establish an intercommunicator
(Fig. 2), rank 0 of the client connects to this socket and sends the simulation its
hostname and port to connect back to. The client is then able to request data from
the simulation and can disconnect when its analysis is complete.

The initial version of libIS used anMPI intercommunicator, and thus required the
MPI_Open_port, MPI_Comm_accept and MPI_Comm_connect APIs to establish
it. In practice these APIs are not always available. For example, Theta at Argonne
NationalLaboratorydoes not provide theseAPIs,whichmotivated the implementation
of an MPI multilaunch mode in our initial work on libIS. However, the MPI
multilaunch mode does not support on-demand execution of the visualization, as
the visualization processes must be started together with the simulation in the same
mpirun command, using MPI’s MPMD launch mode.

To portably support on-demand connection in libIS, we have implemented a
socket-based fallback intercommunicator. When attempting to connect, both the

1 https://github.com/Twinklebear/libIS.

https://github.com/Twinklebear/libIS

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization 403

Simulation

Client

socket handshake Intercommunicator

Simulation

Client

(a) Shared node configuration.
Client

socket handshake

Simulation Simulation Client

Intercommunicator

(b) Separate node configuration.

Fig. 2 Visualization clients using libIS can be run on the same nodes as the simulation (a), and
thus take advantage of shared memory data transfers at the cost of oversubscription, or separate
nodes (b), where the applications will not impact each other at the cost of communicating over the
network. a shows a 4 : 1 configuration run on two nodes, b shows a 2 : 1 configuration on four
nodes. The figures are reproduced from our previous work [23]

simulation and client test if the MPI_Open_port API is available. If the API is
not available, they fall back to a socket-based intercommunicator. In this case, each
client opens a socket and listens for connections from the simulation. Rank 0 of the
simulation broadcasts rank 0 of the client’s hostname and port number to the other
ranks, which each connect to client rank 0 and receive the hostname and port numbers
for the other clients. The simulation ranks then connect to the remaining clients to
establish an all-to-all socket intercommunicator. When setting up a connection the
simulation rank sends its rank number to the client, which sends back its rank number.
Each socket on a process is indexed by the rank of the process on the other end to
provide a send and receive API identical toMPI. Finally, to avoid flooding each client
with incoming connections from a large simulation run, we rate limit the simulation
ranks’ connection requests. Without rate limiting the OS would see the large number
of incoming connections as a network flooding attack.

The socket intercommunicator also enables running the clients on entirely different
hardware and software stacks orHPCresources. Performing the in transit visualization
on an entirely distinct cluster can be useful in sensitive or time critical applications,
as discussed by Ellsworth et al. [8].

2.1.2 Querying Data

After establishing the intercommunicator, the client can request to receive data from
the simulation. The simulation will probe for incoming messages from rank 0 of
the client after each timestep when calling libISProcess. The client can request a
new timestep or disconnect from the simulation. If a new message is received, it is
broadcast to the other simulation ranks and processed collectively.

Data are transferred from the simulation ranks to the clients using the data model
and M : N mapping discussed above. We compute N groups of M

N : 1 simulation
to client groupings to assign data to clients. Each such group transfers data to
the client rank independently and in parallel to the others. When using the MPI
intercommunicator, data are transferred using point-to-point communication. When

404 W. Usher et al.

// Set the world bounds (per-rank local/ghost bounds identical)
void libISSetWorldBounds(libISSimState *state, const libISBox3f box);

// Convenience method to set a 3D regular grid field
void libISSetField(libISSimState *state, const char *fieldName,

const uint64_t dimensions[3], const libISDType type, const void *data);

// Convenience method to set an array of local and optional ghost particles
void libISSetParticles(libISSimState *state, const uint64_t numParticles,

const uint64_t numGhostParticles, const uint64_t particleStride,
const void *data);

// Set an arbitrary 1D buffer of data
void libISSetBuffer(libISSimState *state, const char *bufferName,

const uint64_t size, const void *data);

// Call after each timestep to send data to any clients
void libISProcess(const libISSimState *state);

Listing 1: The libIS simulation API is used to configure a simulation state object,
which stores pointers to the rank’s local data. Convenience methods are provided for
regular 3D fields and particles; arbitrary 1D buffers of data can be sent via the buffer
API.

using the socket intercommunicator, data are transferred using the socket connection
established on each simulation rank to the assigned client. The data transfer avoids
global all-to-all communication and scales well with the number of simulation and
client ranks.

LibIS does not buffer the previous timestep to send to clients that requested data
during computation. Clients requesting data will wait until the current timestep
finishes and the data can be sent directly from the simulation’s memory. By not
buffering the previous timestep, libIS does not need to keep an additional copy of
the simulation state, reducing memory pressure.

2.1.3 The Simulation API

The simulation library provides a C API and a Fortran wrapper. Simulations begin
listening for clients by calling libISInit and passing the port number to listen on.
To make data available to clients, each rank configures a libISSimState, which
stores pointers to the simulation data and metadata describing it (Listing 1).

The current API provides convenience wrappers for setting regular 3D fields and
particles, along with a generic API to pass arbitrary 1D buffers of data. Internally,
3D fields and particles are treated the same as 1D buffers, since the data are not
inspected or redistributed when sent to clients. Simulations using more complex data
representations, e.g., unstructuredmeshes, octree AMR, block-structuredAMR, etc.,

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization 405

struct SimState {
libISBox3f world, local, ghost;
// The rank we received this data from
int simRank;
// The 3D fields and 1D buffers sent by the simulation
std::unordered_map<std::string, Buffer> buffers;
// The particles sent by the simulation, if any
Particles particles;

};

// Connect to the simulation listening on rank 0 at host:port
void connect(const std::string &host, const int port,

MPI_Comm ownComm, bool *sim_quit = nullptr);

// Query the next timestep, blocking until it is ready
std::vector<SimState> query(bool *sim_quit = nullptr);

// Asynchronously query the next timestep.
// The future can be monitored for completion
std::future<std::vector<SimState>> query_async(bool *sim_quit = nullptr);

// Disconnect from the simulation
void disconnect();

// Check if the simulation has terminated
bool sim_connected();

Listing 2: The libIS client API is used to connect to a running simulation and query
data from it. Each client will receive M

N simulation states, containing data from the
simulation ranks it is assigned to receive data from.

can use the buffer API to send the local mesh data to clients. The clients must be
tailored to the simulation and know how to interpret and process the incoming data.

The libISProcess function is called collectively by the simulation ranks to
send data to any clients that have requested to receive the latest timestep. Data are
sent directly from the simulation pointers shared with libIS when configuring the
simulation state to avoid data copies.

2.1.4 The Client API

The libIS client library provides a C++ API (Listing 2) to integrate well into
existing visualization software, which primarily uses C++. Clients first connect to the
simulation by calling connect, after which they can query data using the blocking or
asynchronousAPI.Once the desired analysis has completed, the client can disconnect
and exit. The client can also check if the simulation has quit by passing an optional
parameter to the API calls, or explicitly checking sim_connected.

406 W. Usher et al.

Each client receives a vector of simulation states, containing the M
N simulation

ranks the client is assigned to receive data from. Each state contains the 3D and 1D
buffers sent by the simulation, associated with their name, and any particles.

3 Example Use Cases

We evaluated the scalability and portability of libIS on two simulations, LAMMPS
(Sect. 3.1) andPoongback (Sect. 3.2), using twoHPCsystems.We ranour benchmarks
on Stampede2 at the Texas Advanced Computing Center (TACC) and Theta at
Argonne National Laboratory. Both systems contain roughly similar Intel Xeon Phi
Knight’s Landing (KNL) nodes: KNL 7250 on Stampede2 and KNL 7230 on Theta.
Stampede2 contains an additional partition of Intel Skylake Xeon (SKX) nodes.

Although the KNL nodes are similar on the two systems, the network architecture
differs significantly. Stampede2 employs a fat-tree topology Omnipath network,
whereas Theta uses a 3-level Dragonfly topology CrayAries network. On Stampede2
MPI uses the Omnipath network, which can provide up to 100Gbps of bandwidth;
however, sockets use the 1Gbps ethernet network. Theta does not provide an ethernet
network. Instead, sockets use the Aries network and can achieve a peak bandwidth
of 14Gbps.

The following sections compare the MPI and socket intercommunicators on
Stampede2 and Theta using LAMMPS, to evaluate network performance portability
and scalability with a test client application that queries data repeatedly (Sect. 3.1.1).
We also present example use cases of in transit image database generation with
LAMMPS (Sect. 3.1.2) and Poongback (Sect. 3.2.3) on Stampede2, and measure
rendering performance of the client and impact on simulation performance. Finally,
we provide a brief comparison against the existing redistribution-based data transfer
method used in ADIOS (Sect. 3.3).

The in transit image database rendering benchmark is an example of using libIS
in combination with an OSPRay-based [27] rendering application to render image
databases, similar to those used in Cinema [1]. We modify the OSPRay mini-cinema
example2 to query data using libIS. After receiving the data mini-cinema renders a
camera orbit around it using OSPRay’s data-distributed API [24] for data-parallel
rendering. When the image set is finished, the application queries the next timestep
and repeats for a specified number of timesteps.

3.1 LAMMPS

LAMMPS [19, 20] is a large-scale molecular dynamics simulation code, which we
runMPI-parallel. To integrate libIS intoLAMMPS,we leverage existingmechanisms

2 https://github.com/Twinklebear/mini-cinema.

https://github.com/Twinklebear/mini-cinema

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization 407

1 2 4 8 16 32 64 128

Client Nodes

0

5

10

15

20

25
B
an
dw

id
th

pe
r-
cl
ie
nt

(G
bp

s) Stampede2 MPI shared

Stampede2 MPI separate

Stampede2 Sockets shared

Stampede2 Sockets separate

(a) Bandwidth per client on Stampede2 SKX.

1 2 4 8 16 32 64 128

Client Nodes

0

5

10

15

20

25

B
an
dw

id
th

pe
r-
cl
ie
nt

(G
bp

s) Stampede2 MPI shared

Stampede2 MPI separate

Stampede2 Sockets shared

Stampede2 Sockets separate

Theta Sockets separate

(b) Bandwidth per client on KNL.

Fig. 3 Bandwidth per client rank achieved in the weak scaling benchmark. We find that the
independent communication strategy employed by libIS achieves good weak scaling and high
network utilization. Shared node runs are able to leverage shared memory for improved bandwidth

for coupling LAMMPS with other codes [21]. We build a wrapper application that
behaves as the regular LAMMPS executable, with the difference that before the
simulation starts, our wrapper initializes libIS and installs a fix callback to call
libISProcess each timestep. This application is available as an example on the
libIS GitHub.3 After each timestep, the simulation will send its local and ghost
particles to clients querying data.

3.1.1 Performance Portability and Scalability

The weak scaling benchmark uses the Lennard Jones benchmark problem included
with LAMMPS, which we replicate to store 131k particles per simulation rank.
We measure the bandwidth achieved when querying data using the example client
included with libIS, which simply prints out the received metadata. The benchmarks
are run in a 16 : 1 configuration, where each client receives approximately 2.1M
particles, which amounts to roughly 45MB of data per client after including ghost
zones. Each group of 16 simulation ranks is placed on one node, and the client is run
with one process per-node.

The benchmark is run on 1–128 client nodes, corresponding to 16 : 1 to 2048 : 128
configurations, using the SKX nodes on Stampede2 (Fig. 3a) and the KNL nodes on
Stampede2 and Theta (Fig. 3b). In the shared node configuration, the client and
simulation are run across the entire set of nodes, using the same resources. In the
separate node configuration, we split the allocation of nodes in half between the
simulation and client. The benchmark records bandwidth per client, and we compare
the shared and separate configurations and the MPI and socket intercommunicators.

Wefind that the independent communicationmode employed by libISweak scales
well, and can nearly saturate the 1Gbps ethernet network when using sockets on
Stampede2. When using MPI over Omnipath on Stampede2, libIS is not network

3 https://github.com/Twinklebear/libIS.

https://github.com/Twinklebear/libIS

408 W. Usher et al.

bound, and averages 11% network utilization on SKX and 2% on KNL. When using
sockets on Stampede2, libIS averages 88% network utilization on SKX and 74% on
KNL. When using sockets on Theta, libIS averages 30% network utilization. The
relatively low network utilization achieved with MPI could potentially be resolved
by parallelizing the data transfer from the simulation ranks to their clients. Although
each group of simulation ranks and clients communicates in parallel, the simulation
ranks within a group send their data to the client in serial.

When run in the shared node configuration, shared memory can be used for
higher bandwidth by both the MPI and sockets intercommunicators, and we find the
sockets intercommunicator achieves performance similar to MPI. The shared node
configuration avoids the practical challenges of queuing and running a second job
on the HPC system and is likely to be a common use case for in transit visualization.
The ability of both MPI and sockets to use shared memory for higher bandwidth is
especially promising for performance portability.

3.1.2 In Transit Image Database Rendering

For the image database rendering example, we use the Rhodopsin benchmark input
and run LAMMPS in the same 16 : 1 configuration as before. OSPRay uses an MPI
+ Threads model and is run with a single rank per node, whereas LAMMPS is run
MPI-parallel with 16 ranks per node. The Rhodopsin benchmark stores 32k particles
per simulation rank, resulting in each client rank receiving 512k particles in the
16 : 1 configuration. After accounting for ghost zones, this corresponds to roughly
20MB of data per-client. The additional ghost particles are used to compute ambient
occlusion to provide better depth cues (see Fig. 4). The benchmark renders an orbit
of 80 camera positions around the data, and does so for 50 timesteps. OSPRay’s
asynchronous rendering support is used to reduce the total time to render the set
of by rendering eight images in parallel. We measure the total time to render all
80 frames for each timestep at 10242 pixels, and compare the shared and separate
configurations using the MPI and sockets intercommunicators (Fig. 5).

We find that at low node counts, the difference in the total render time between the
MPI and socket intercommunicators is unexpectedly large.Thedifferent communicators
affect only the data query with libIS, which is not timed in the benchmark, and
we would expect to observe similar performance. At higher node counts, the
MPI and socket modes converge to similar render times, with the separate node
configuration achieving slightly better performance than the shared node one, as
expected. The shared node configuration runs both the simulation and renderer on
the same nodes, and some performance degradation of both is to be expected. On
KNL each configuration achieves roughly similar performance, potentially due to the
larger number of available cores for the renderer, and the relatively weaker per-core
performance compared to SKX. We note that the overall render time decreases in
the benchmark, which is a result of each client’s local data projecting to a smaller
region of the image as the data set is scaled up.

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization 409

Fig. 4 TheLAMMPSRhodopsin benchmark renderedwith ambient occlusion. Left: the simulation
data on a single rank. Right: replicated in our weak scaling benchmark for 1024 ranks. By using the
ghost particles already computed by LAMMPS, our in transit renderer is able to compute ambient
occlusion effects using only the local data available on each rank

1 2 4 8 16 32 64 128

Client Nodes

0

5

10

15

20

25

Im
ag
e
D
at
ab
as
e
R
en
de
r
Ti
m
e
(s
)

Stampede2 MPI shared

Stampede2 MPI separate

Stampede2 Sockets shared

Stampede2 Sockets separate

(a) Stampede2 SKX.

1 2 4 8 16 32 64 128

Client Nodes

0

10

20

30

40

50

60

70

Im
ag
e
D
at
ab
as
e
R
en
de
r
Ti
m
e
(s
)

Stampede2 MPI shared

Stampede2 MPI separate

Stampede2 Sockets shared

Stampede2 Sockets separate

(b) Stampede2 KNL.

Fig. 5 Camera orbit render times on SKX and KNL for each timestep. We find that the image
database render task scales well, with the shared node configuration slightly impacted by the
simulation. We find a performance decrease at 128 clients in the separate configuration, which may
be due to a different network placement for the 256 node job impacting compositing performance

3.1.3 Impact on Simulation Performance

Finally, we measure the impact on simulation performance for each configuration by
comparing the time taken to compute each timestepwith andwithout themini-cinema
client running (Fig. 6). In the separate node configuration, the simulation and client
are run on distinct nodes, and do not contend for resources. Thus, the simulation
is impacted only by the time spent sending data to the clients. On the Stampede2
SKX nodes, libIS has a negligible impact when using MPI or sockets, though we do
observe an outlier at 128 nodeswhere a larger impact when using sockets is observed.

410 W. Usher et al.

1 2 4 8 16 32 64 128
Client Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
C
om

pu
te

Ti
m
es
te
p
(s
)

No libIS
Stampede2 MPI Separate
Stampede2 Sockets Separate
Stampede2 MPI Shared
Stampede2 Sockets Shared

(a) Stampede2 SKX.

1 2 4 8 16 32 64 128
Client Nodes

0

2

4

6

8

C
om

pu
te

Ti
m
es
te
p
(s
)

(b) Stampede2 KNL.

Fig. 6 The impact of the image database rendering client on LAMMPS performance. Bars show the
average time to compute each timestep in the differentmodes,with standard deviation shown as error
bars. As expected, the shared node configuration significantly impacts performance, whereas the
separate node configuration has relatively little effect. On 16 SKX nodes the LAMMPS simulation
became unstable, and we were unable to run benchmarks in that configuration. The plots share the
same legend

On the KNLs the simulation is 4% slower on average when usingMPI, with a similar
impact observed for sockets, though we do observe an outlier at 16 nodes where a
greater impact when using sockets is measured. The greater impact on KNL can be
attributed to the lower single-core performance compared to SKX, which increases
the time spent transferring data to the clients.

The shared node configuration runs the simulation and client on the same nodes,
potentially leading to significant resource contention and impacting simulation
performance. On SKX simulation takes 82% longer when using MPI and 104%
longerwhen using sockets.OnKNL the simulation takes 44% longerwhen usingMPI
and 44% longerwhen using sockets. The reduced impact onKNL is likely attributable
to the larger number of cores available, which may reduce resource contention for
processors, and the availability of MCDRAM, which in this configuration is large
enough to hold the data of both LAMMPS and mini-cinema.

3.2 Direct Numerical Simulation of Turbulent Channel Flow
with Poongback

We simulate a large-scale turbulent channel fluid flow using Poongback [13–15, 17],
and use libIS to transfer data to the mini-cinema clients as before. Poongback is a
computational fluid dynamics (CFD) solver for direct numerical simulation (DNS) of
incompressible turbulent channel flowswritten in Fortran. The simulation generates a
3D volume data set and runs MPI-parallel. To integrate libIS into Poongback, we use
libIS’s Fortran wrapper.Minimal modifications to the simulation code are required to
integrate in transit visualization through libIS. First, before the Poongback simulation
begins, we initialize libIS and configure the libIS simulation state on each rank with

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization 411

Table 1 Weak scaling configurations for the Poongback benchmark, targeting roughly 1.4GB of
volume data per client rank

Client ranks Total voxels Total volume size (GB)

1 384 × 768 × 576 1

2 768 × 768 × 576 3

4 768 × 768 × 1152 5

8 1536 × 768 × 1152 11

16 1536 × 768 × 2304 22

32 3072 × 768 × 2304 43

64 3072 × 768 × 4608 87

128 6144 × 768 × 4608 174

the bounds of its local volume data. After each timestep we call the libISProcess
wrapper to send the data on to any clients requesting the current timestep. Poongback
stores its data row-major, and does not require a transpose to be done after receiving
data on the client.

3.2.1 Evaluation Setup

We evaluate libIS with Poongback using mini-cinema for in transit image database
rendering, and record network utilization, rendering performance, and the impact on
simulation performance. The Poongback benchmarks are run on Stampede2 SKX
and KNL nodes, using a weak scaling benchmark for Poongback. To create the weak
scaling benchmark, we proportionally increase the simulation dimensions based on
the number of clients, to maintain roughly 1.4GB of volume data per client (Table1).
The simulation and clients are run in a 32 : 1 configuration. Poongback is run MPI-
parallel with 32 ranks per node, whereas the mini-cinema clients are run usingMPI +
Threads with one rank per node. In our benchmark we compare both the shared and
separate configurations and theMPI and socket intercommunicators.When using the
shared node configuration, the simulation and application are run on the same nodes,
whereas in the separate configuration half the nodes are assigned to the simulation
and half to the client. The benchmarks are run up to an aggregate of 128 SKX nodes
and 256 KNL nodes. For shared node runs, we scale from a 32 : 1 configuration up to
a 4096 : 128 one on SKX and KNL. For separate node runs, we scale from a 32 : 1
configuration up to a 2048 : 64 one on SKX and a 4096 : 128 one on KNL.

3.2.2 Performance Portability and Scalability

We measure the average data transfer bandwidth achieved on each client over 50
timesteps (Fig. 7). When using MPI in the separate node configuration, data are

412 W. Usher et al.

1 2 4 8 16 32 64 128

Client Nodes

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

Ba
nd

w
id
th

pe
r-
cl
ie
nt

(G
bp

s)

Stampede2 MPI shared
Stampede2 MPI separate
Stampede2 Sockets shared
Stampede2 Sockets separate

(a) Bandwidth per client on Stampede2 SKX.

1 2 4 8 16 32 64 128

Client Nodes

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

Ba
nd

w
id
th

pe
r-
cl
ie
nt

(G
bp

s) Stampede2 MPI shared
Stampede2 MPI separate
Stampede2 Sockets shared
Stampede2 Sockets separate

(b) Bandwidth per client on Stampede2 KNL.

Fig. 7 Bandwidth per client rank achieved in the Poongback weak scaling benchmark. We find
that the independent communication strategy employed by libIS achieves good weak scaling, and
performs well when transferring the larger portion of data sent by each Poongback rank

transferred over the 100Gbps Omnipath network, and libIS achieves an average
of 20% network utilization on SKX and 6% on KNL. When using sockets in the
separate node configuration, data are transferred over the 1Gbps ethernet network,
and libIS achieves 90% network utilization on SKX and 78% on KNL. As discussed
previously, parallelizing the data transfer within each set of simulation ranks and
client could improve network utilization when using MPI, especially for the larger
aggregate data transfer performed for the Poongback simulation.

In the shared node configuration, each set of 32 : 1 ranks is run on the same node,
ensuring communication is local to each node. As a result, data can be transferred
using shared memory instead of over the network to achieve higher bandwidth. A
notable exception is on SKX (Fig. 7a), where higher bandwidth is achieved in the
separate configuration than in the shared one when using MPI. This result is counter
to our results on KNL with Poongback and on KNL and SKX with LAMMPS, and
warrants further investigation.

Overall, we achieve higher bandwidth on SKX than KNL, likely due to the higher
per-core performance of SKX. Similar to our findings with LAMMPS in Sect. 3.1.1,
MPI achieved higher bandwidth than sockets, as MPI is able to leverage the faster
Omnipath network. However, in the shared configuration both can leverage shared
memory and the gap between the two narrows. In terms of overall weak scalability,
the independent data transfer strategy employed by libIS scales well with the number
of clients, with per client bandwidth remaining nearly constant across each scaling
run.

3.2.3 In Transit Image Database Rendering

For each of the 50 timesteps queried during the benchmark, the mini-cinema client
renders an 80-position camera orbit around the data set. Each image is rendered at
a 10242 resolution, with one sample per pixel and a volume sampling rate of one
sample per voxel. In the largest run with 128 client ranks, the application queries

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization 413

Fig. 8 Images of the Poongback turbulent channel-flow simulation rendered using ourmini-cinema
libIS client. Both volumes are 6144 × 768 × 4608 voxels in double-precision floating-point values
(174GB). Left: The simulation state at timestep 0, the initial condition used in our weak scaling
benchmarks. Right: A checkpoint of the same simulation (fully developed turbulence)

and renders a total of 8.7TB of volume data over the course of the 50 timesteps.
We disable the asynchronous rendering functionality of mini-cinema to reduce the
impact of the client in the shared node configuration, and disable it in the separate
configuration for consistency (Fig. 8).

The time taken to render each camera orbit is shown in Fig. 9. In contrast to the
results observed with LAMMPS, the overall rendering time increases as additional
client ranks are added. We believe this to be due to the differing data distributions
of the two simulations. Compared to LAMMPS, where each simulation rank has a
cube of data, Poongback partitions its data using a pencil decomposition [13]. After
multiple pencil-pencil data transposes, the set of regions assigned to each client is a
group of these x-pencils along the axis of flow, so that each pencil spans the entire
x-axis of the data set. The set of regions assigned to each client is a group of these
x-pencils, where each pencil spans the entire x axis of the data set. The set of regions
project to a large number of pixels formost of the viewpoints in the orbit. The number
of pixels covered does not reduce significantly as more ranks are added, leading to a
significant amount of rendering and compositing work. One measure that could be
taken to alleviate the compositing work is to merge the 32 regions assigned to each
client rank into a single OSPRay rendering region, allowing them to be rendered and
composited as a single brick, instead of 32 separate ones. This optimization would
reduce the compositing work by a factor of 32, allow for faster local rendering, and
provide a meaningful performance improvement.

We find similar results as those observed with LAMMPS when comparing the
relative rendering performance of the different configurations and communicators.
Although we find little impact of the communication method used (MPI versus
sockets) on render time, we find a significant impact on performance when using the
shared configuration. The shared configuration can lead to contention between the
simulation and client, and impacts the performance of both.

3.2.4 Impact on Simulation Performance

Finally, we measure the impact of connecting the mini-cinema client in the different
configurations on simulation performance (Fig. 10). We find that the overhead is

414 W. Usher et al.

1 2 4 8 16 32 64 128

Client Nodes

0

10

20

30

40

50
Im

ag
e
D
at
ab

as
e
Re

nd
er

Ti
m
e
(s
) Stampede2 MPI separate

Stampede2 MPI shared
Stampede2 Sockets separate
Stampede2 Sockets shared

(a) Stampede2 SKX.

1 2 4 8 16 32 64 128

Client Nodes

0

20

40

60

80

100

120

140

Im
ag

e
D
at
ab

as
e
Re

nd
er

Ti
m
e
(s
)

Stampede2 MPI shared
Stampede2 MPI separate
Stampede2 Sockets shared
Stampede2 Sockets separate

(b) Stampede2 KNL.

Fig. 9 Camera orbit render times on SKX and KNL for each timestep in our weak scaling
benchmark. We achieve better total rendering performance on SKX, and in the separate node
configurations, as the shared node configuration oversubscribes the nodes. In contrast to the
LAMMPS results, we find poorer scaling at higher node counts, potentially due to the differences
in data distribution and compositing workload

1 2 4 8 16 32 64 128

Client Nodes

0

5

10

15

20

25

C
om

pu
te

Ti
m
es
te
p
(s
)

No libIS
Stampede2 MPI Separate
Stampede2 Sockets Separate
Stampede2 MPI Shared
Stampede2 Sockets Shared

(a) Stampede2 SKX.

1 2 4 8 16 32 64 128

Client Nodes

0

5

10

15

20

25

C
om

pu
te

Ti
m
es
te
p
(s
)

No libIS
Stampede2 MPI Separate
Stampede2 Sockets Separate
Stampede2 MPI Shared
Stampede2 Sockets Shared

(b) Stampede2 KNL.

Fig. 10 The impact of the image database rendering client on Poongback performance. Bars show
the average time to compute each timestep in the different modes, with standard deviation shown as
error bars. Overall, the time-consuming socket-based communication in the separate configuration
incurs the most overhead. By not rendering multiple frames in parallel, the renderer’s impact on the
simulation is reduced in the shared configurations

primarily determined by the ratio of compute time and data transfer time for each
timestep. Depending on how large this ratio is, the simulation becomes either
compute bound or communication bound. Thus, the impact on simulation time
is related to the network performance measured in Sect. 3.2.2. We also observe a
much higher standard deviation in the overhead, which is likely tied to varying
network performance when using sockets, while MPI and local sockets are able
to provide more consistent performance. Moreover, when not rendering multiple
frames in parallel, the rendering client has little impact on the simulation in the
shared configuration.

When using the socket communicator in the separate mode, the simulation
becomes communication bound, and must wait for the data transfer to complete

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization 415

before advancing, thereby impactingperformance.The sockets separate configuration
has the greatest impact on simulation performance of the different modes, increasing
compute time by 78% on SKX and 34% on KNL. The impact is greater on SKX as
faster nodes lead to a1.7× faster simulation, exacerbating the impact of the simulation
becoming bound by the data transfer. In the other configurations, the impact is less
severe. The MPI separate mode increases simulation time by 4 and 6%, on SKX and
KNL, respectively; the MPI shared mode by 18 and 14%; and the sockets shared
mode by 22 and 17%.

3.3 Comparison to Existing Libraries

Tocomparedata transfer performance against existing restructuring-based techniques
we provide a brief comparison against the widely used ADIOS [16] I/O library
(version2.5.0).ADIOS repurposes its existing I/OAPI to support in transit visualization,
allowing users to simply change the I/O “engine” being used by the simulation and
client. ADIOS adopts a lightweight data model, processing one-,
two-, or three-dimensional arrays of primitive types which are passed to the I/O
engine. However, in contrast to libIS’s oblivious data model, ADIOS supports
redistributing the data to the clients. Each client specifies a starting offset within an
array and number of elements to be read, as if reading from a file. ADIOS will then
make the requested data available on that rank. Though this provides a transparent
transition from a file-based pipeline, in an in transit scenario this requires some form
of data redistribution, potentially adding overhead to the data transfer.

We write a test application which generates 131k particles per rank and run
the simulation and client in a 16 : 1 configuration, matching the Lennard Jones
benchmark configuration in Sect. 3.1.1. Each particle attribute (x, y, z, type) is passed
to ADIOS as a global array. Clients request the subregion of this array corresponding
to their assigned set of simulation ranks. To transfer data we use the “SST” engine,
which supports M : N data transfer and will make use of RDMA enabled networks
where available.

In both the shared and separate configurations ADIOS achieves similar data
transfer speeds, averaging 0.5Gbps per client on SKX and KNL when run with 16
clients onStampede2. In contrast, libIS averages 13Gbps and11Gbps respectively on
SKX, and 5Gbps and 1.5Gbps respectively on KNL (see Fig. 3). The potential need
for more global communication among ranks to perform data redistribution comes
at a cost compared to our independent model, though is convenient for applications.

SENSEI [2], which provides adapters to bridge between the multitude of in
situ frameworks to ease portability, could select between ADIOS or libIS for data
transport, depending on the application’s needs. For example, if the visualization
task work on subblocks of data instead of requiring redistribution, libIS can be used
for increased bandwidth. If this is not the case, ADIOS could be used to redistribute
the data to meet the client’s needs.

416 W. Usher et al.

4 Conclusion

Wehavepresented a simulation-oblivious data transportmodel for in transit visualization.
Although a relatively primitive model, this approach is desirable in a number of
scenarios. When time spent by the simulation in data aggregation and redistribution
is of concern, our oblivious approach eliminates this step to enable high bandwidth
communication, in turn reducing impact on simulation performance. This approach
also imposes no restrictions on the simulation runtimeconfigurationor data structures,
supporting M : N configurations and arbitrary buffers of data.

From a practical standpoint, our implementation in libIS provides an easy-to-use
CAPI that can be integrated into simulations with minimal changes to the simulation
code. The data model does not require advanced networking functionality, and can
use MPI or sockets to transfer data between the simulation and client. Although the
sockets intercommunicator may not be able to take advantage of some high-speed
interconnects, it ensures portability across different HPC or ad hoc clusters. The ease
of use, flexibility, and portability of libIS also make it a useful building block for
more full-featured libraries (e.g., SENSEI [2]), where libIS can serve as a base data
transport layer.

In our evaluation we compared the separate and shared node configurations, and
the MPI and socket intercommunicators on two HPC systems using two simulation
codes.We found that the independent communicationmodel employed by libISweak
scales well across the systems and network architectures. The fast data transfer to
clients achieved by libIS means the simulation performance is not severely impacted
when running the visualization on separate nodes. The library also allows clients to
connect and disconnect as desired, which is suitable for spurious and on-demand
visualization tasks.

Through our evaluation we have found further areas for improvement in libIS’s
networking model. When sending data to a client rank, each of the assigned M

N
simulations ranks sends its data serially to the client. This serialization of the data
transfer leads to underutilizing the higher bandwidth network architectures, and
makes it more likely for the simulation compute time to become bound by the libIS
data transfer time, as observed with Poongback. Parallelizing the data transfer within
each set of simulation ranks and client would further improve network utilization,
and alleviate these issues.

In practice, we recommend using the separate node configuration for long-lived
visualization tasks, and the shared node configuation for short-lived on-demand tasks.
Short-lived tasks do not impact the simulation performance for a long period, and
from a practical standpoint it may not be possible to start an additional job quickly
enough to run the task in time. Oversubscribing the nodes for a short period to run the
task is a better option than blocking the simulation until the task starts, or missing the
desired timestep entirely. Potential future changes to HPC job schedulers to enable
co-scheduling [6, 7] could make it easier to run on-demand tasks on separate nodes
to reduce the impact of the visualization.

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization 417

Acknowledgements Thiswork is supported in part by the IntelGraphics andVisualization Institute
of eXcellence at the Scientific Computing and Imaging Institute, University of Utah and at the
Texas Advanced Computing Center at the University of Texas at Austin. This work is supported
in part by NSF: CGV Award: 1314896, NSF:IIP Award: 1602127, NSF:ACI Award: 1649923,
DOE/SciDAC DESC0007446, CCMSC DE-NA0002375 and NSF:OAC Award: 1842042. The
software development of PoongBack is supported by NSF PetaApps grants: OCI-0749223 and
NSF PRAC Grant 0832634. This work used resources of the Argonne Leadership Computing
Facility, which is a U.S. Department of Energy Office of Science User Facility supported under
Contract DE-AC02-06CH11357. The authors acknowledge TACC for providing HPC resources
that have contributed to the research results reported in this paper. Sandia National Laboratories
is a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525.

References

1. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., Petersen, M.: An Image-based
approach to extreme scale in situ visualization and analysis. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (2014)

2. Ayachit, U., Whitlock, B., Wolf, M., Loring, B., Geveci, B., Lonie, D., Bethel, E.W.: The
SENSEI generic in situ interface. In: Proceedings of the 2ndWorkshop on InSitu Infrastructures
for Enabling Extreme-scale Analysis and Visualization, ISAV ’16 (2016)

3. Bennett, J.C., Abbasi, H., Bremer, P.T., Grout, R., Gyulassy, A., Jin, T., Klasky, S., Kolla,
H., Parashar, M., Pascucci, V.: Combining in-situ and in-transit processing to enable extreme-
scale scientific analysis. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (2012)

4. Dayal, J., Bratcher, D., Eisenhauer, G., Schwan, K., Wolf, M., Zhang, X., Abbasi, H., Klasky,
S., Podhorszki, N.: Flexpath: type-based publish/subscribe system for large-scale science
analytics. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (2014-05)

5. Docan, C., Parashar, M., Klasky, S.: DataSpaces: an interaction and coordination framework
for coupled simulation workflows. Cluster Comput. (2012)

6. Dorier, M., Dreher, M., Peterka, T., Wozniak, J.M., Antoniu, G., Raffin, B.: Lessons learned
from building in situ coupling frameworks. In: Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (2015)

7. Dorier, M., Yildiz, O., Peterka, T., Ross, R.: The challenges of elastic in situ analysis and
visualization. In: Proceedings of theWorkshop on In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization - ISAV ’19. Denver, Colorado (2019)

8. Ellsworth, D., Green, B., Henze, C., Moran, P., Sandstrom, T.: Concurrent visualization in a
production supercomputing environment. IEEE Trans. Vis. Comput. Graph. (2006)

9. Fabian, N., Moreland, K., Thompson, D., Bauer, A., Marion, P., Geveci, B., Rasquin, M.,
Jansen, K.: The paraview coprocessing library: a scalable, general purpose in situ visualization
library. In: Symposium on Large Data Analysis and Visualization (LDAV) (2011)

10. Habib, S., Pope, A., Finkel, H., Frontiere, N., Heitmann, K., Daniel, D., Fasel, P., Morozov,
V., Zagaris, G., Peterka, T., et al.: HACC: simulating sky surveys on state-of-the-art
supercomputing architectures. New Astron. (2016)

11. Kress, J., Klasky, S., Podhorszki, N., Choi, J., Childs, H., Pugmire, D.: Loosely coupled in situ
visualization: a perspective on why it’s here to stay. In: Proceedings of the First Workshop on
In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, ISAV (2015)

418 W. Usher et al.

12. Larsen, M., Woods, A., Marsaglia, N., Biswas, A., Dutta, S., Harrison, C., Childs, H.: A
flexible system for in situ triggers. In: Proceedings of the Workshop on In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization—ISAV ’18. Dallas, Texas (2018)

13. Lee, M., Malaya, N., Moser, R.D.: Petascale direct numerical simulation of turbulent channel
flowonup to 786KCores. In: Proceedings of the InternationalConference onHighPerformance
Computing, Networking, Storage and Analysis, SC’13 (2013)

14. Lee, M., Moser, R.: Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200.
J. Fluid Mech. (2015)

15. Lee, M., Ulerich, R., Malaya, N., Moser, R.D.: Experiences from leadership computing in
simulations of turbulent fluid flows. Comput. Sci. Eng. (2014)

16. Lofstead, J., Zheng, F., Klasky, S., Schwan, K.: Adaptable, metadata rich IO methods for
portable high performance IO. In: IEEE International Symposium on Parallel & Distributed
Processing, 2009. IPDPS (2009)

17. Malaya, N., McDougall, D., Michoski, C., Lee, M., Simmons, C.S.: Experiences porting
scientific applications to the intel (KNL) Xeon Phi platform. In: Proceedings of the Practice
and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact
(2017)

18. Moreland, K., Oldfield, R., Marion, P., Jourdain, S., Podhorszki, N., Vishwanath, V., Fabian,
N., Docan, C., Parashar, M., Hereld, M.: Examples of in transit visualization. In: Proceedings
of the 2nd International Workshop on Petascal Data Analytics: Challenges and Opportunities
(2011)

19. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
(1995)

20. Sandia National Laboratories: LAMMPS Molecular Dynamics Simulator. https://lammps.
sandia.gov

21. Sandia National Laboratories: Coupling LAMMPS toOther Codes. Accessed Jan 2020. https://
lammps.sandia.gov/doc/Howto_couple.html

22. Schroeder, W., Martin, K., Lorenson, B.: The Visualization Toolkit, 4th edn. Kitware, New
York (2006)

23. Usher, W., Rizzi, S., Wald, I., Amstutz, J., Insley, J., Vishwanath, V., Ferrier, N., Papka, M.E.,
Pascucci, V.: libIS: a lightweight library for flexible in transit visualization. In: ISAV: In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization, ISAV’18 (2018)

24. Usher, W., Wald, I., Amstutz, J., Günther, J., Brownlee, C., Pascucci, V.: Scalable ray tracing
using the distributed framebuffer. Comput. Graph. Forum (2019)

25. Usher,W.,Wald, I., Knoll,A., Papka,M., Pascucci,V.: In situ exploration of particle simulations
with CPU Ray tracing. Supercomput. Front. Innov. (2016)

26. Vishwanath, V., Hereld, M., Morozov, V., Papka, M.E.: Topology-aware data movement and
staging for I/O acceleration on blue gene/P supercomputing systems. In: Proceedings of 2011
InternationalConference forHighPerformanceComputing,Networking, Storage andAnalysis.
ACM (2011)

27. Wald, I., Johnson, G.P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther, J., Navrátil, P.:
OSPRay—a CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput.
Graph. (2017)

28. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully
featured visualization system. In: Proceedings of the 11th Eurographics Conference on Parallel
Graphics and Visualization, EGPGV ’11 (2011)

29. Zanúz, H.C., Raffin, B., Mures, O.A., Padrón, E.J.: In-transit molecular dynamics analysis
with apache flink. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization—ISAV ’18. Dallas, Texas (2018)

30. Zhang, F., Lasluisa, S., Jin, T., Rodero, I., Bui, H., Parashar, M.: In-situ feature-based objects
tracking for large-scale scientific simulations. In: High Performance Computing, Networking,
Storage and Analysis (SCC), SC Companion (2012)

https://lammps.sandia.gov
https://lammps.sandia.gov
https://lammps.sandia.gov/doc/Howto_couple.html
https://lammps.sandia.gov/doc/Howto_couple.html

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization 419

31. Zheng, F., Zou, H., Eisenhauer, G., Schwan, K., Wolf, M., Dayal, J., Nguyen, T.A., Cao,
J., Abbasi, H., Klasky, S., Podhorszki, N., Yu, H.: FlexIO: I/O middleware for location-
flexible scientific data analytics. In: 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing (2013)

Distributed Multi-tenant In Situ Analysis
Using Galaxy

Greg Abram, Paul Navrátil, David Rogers, and James Ahrens

Abstract Galaxy is a multi-tenant server platform for visualization and analysis
of data distributed across many nodes of a supercomputer. It presents an interface
through which multiple concurrent clients can connect to perform visualization and
analysis tasks on shared data. Galaxy minimizes the memory footprint of visualiza-
tion and analysis tasks to reduce the impact of analysis on the simulation. It does so by
utilizing a visualization renderer that incorporates common visualization techniques
directly in the rendering process. The client GUI provides a data-flow programming
paradigm that enables users to connect to the Galaxy Multiserver, devise complex
multi-step analytics workflows, and visualize results on their desktop.

1 Introduction

As discussed in the opening chapter, modern supercomputing-level computation
calls for in situ analysis. By analyzing the data as it is being generated, in situ anal-
ysis avoids the necessity of saving time-step data snapshots for post-processing, a
costly process that generally limits the temporal frequency at which data can be
saved. However, for current systems (e.g. ParaView/Catalyst [3], VisIt/libsim [5],
SENSEI [4]) these benefits bear significant costs. For example, the analysis to be
performed must be known prior to the start of the computation so that the necessary
changes can be made to the general-purpose simulation. Within these systems, the

G. Abram · P. Navrátil (B)
Texas Advanced Computing Center, The University of Texas, Austin, TX, USA
e-mail: pnav@tacc.utexas.edu

G. Abram
e-mail: gda@tacc.utexas.edu

D. Rogers · J. Ahrens
Los Alamos National Laboratory, Los Alamos, NM, USA
e-mail: dhr@lanl.gov

J. Ahrens
e-mail: ahrens@lanl.gov

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_19

421

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_19&domain=pdf
mailto:pnav@tacc.utexas.edu
mailto:gda@tacc.utexas.edu
mailto:dhr@lanl.gov
mailto:ahrens@lanl.gov
https://doi.org/10.1007/978-3-030-81627-8_19

422 G. Abram et al.

distributed simulation process is instrumented with an adapter that converts the sim-
ulation’s run-time data to a form palatable for analysis. This results in a monolithic
simulation/analysis code that, when run, performs a specific simulation/analysis task,
and requires two different customizations: to the simulation, so that the simulation
provides the required internal data to the adapter, and to the analysis, to cause it to
perform the specific analysis required by the science case.

Typically, such systems co-locate simulation and analysis work in the same actual
processes. Consequently, simulation and analysis share memory, computation and
communication resources and therefore affect the performance of one another. The
available memory available to each process must be sufficient to serve the worst
cases load of each phase. Unfortunately, while the footprint of many simulations can
be determined, the footprint and computational cost of typical geometry-pipeline
visualization algorithms is hard to predict and, in the worst case, is tied to the size of
the underlying computational grid. Further, as distributed supercomputers become
ever larger, system-wide synchronization becomes costly. When the workload of a
task is not evenly distributed, synchronizing may cause much of the computational
resources assigned the task to wait for a few overburdened participants to complete.

Given these challenges, Galaxy aims to provide the following differentiating capa-
bilities: (1) separation of simulation and analysis activities so that multiple, concur-
rent and asynchronous analyses of simulation data products can attach, operate and
disconnect at run-time; and (2) performance of data visualization within bounded,
well-understood memory limits. Galaxy delivers these capabilities via a multiserver
framework, which provides each connected tenant access to Galaxy’s services for
distributed data, communication, and computation; and Galaxy’s filtering, analysis,
and visualization methods, which are designed to limit tenant resource requirements
rather than requiring full use or duplication of the input data. Galaxy replaces tradi-
tionalmonolithic in situ architecture with a shared distributed data- and computation-
space that is accessible to concurrent data-processing activities. These activities can
be organized adaptively, in real-time, into distinct workflows that can access shared
data at run-time to perform different science tasks concurrently. Using Galaxy, a sim-
ulation workflow consists of one or more stages “connected” by data exposed in the
shared data-space. Workflow produce data products that are stored within Galaxy’s
shared data-space. As activities attach to the Galaxy environment, they can access
data products available within the data-space to generate additional data products
and analysis results.

In the remainder of this chapter, we briefly discuss relevant related work not
covered elsewhere in this book (Sect. 2). We then provide a high-level overview of
Galaxy’s architecture, focusing on the novel multi-tenant and in situ capabilities
(Sect. 3; a description of additional Galaxy functionality is presented in [1]). We
then provide a deep-dive into the algorithms and structure of Galaxy’s ray tracer
and direct volume renderer, a complex Galaxy analysis that can be used in situ
with simulations (Sect. 4). Lastly, we provide examples of Galaxy’s performance on
current-generation hardware architectures (Sect. 5).

Distributed Multi-tenant In Situ Analysis Using Galaxy 423

2 Related Work

A substantial body of literature exists on in situ systems, as outlined in the intro-
ductory chapter of this book. We discuss four in situ frameworks below for their
relevance to Galaxy, for their large user bases, their ready availability, and their
deployment at many supercomputing centers around the world. We consider these
four to be divided into two subsets—closed systems, that are specific to a anal-
ysis/visualization tool, and middlewares, which connect instrumented simulations
with analysis/visualization components that have appropriate interfaces available.

ParaView Catalyst [3] and VisIt’s libsim [5] are closed systems that enable the
use of pre-existing, well-developed visualization systems in situ. In each, the simu-
lation is instrumented with an application-specific API that provides an interface to
the visualization system. In general, both operate by incorporating portions of the
visualization system’s run-time library into the simulation process to perform the
visualization. Both ParaView and VisIt’s visualization engines utilize VTK [9], a
class library of filters that leverage high-speed rasterization hardware (and software)
by extracting renderable geometry from the input data. The resulting geometry is
rendered with OpenGL and both systems use depth-compositing to combine the ren-
dered results frommany parallel processes into a single image for display/storage. In
their most recent versions, both have incorporated ray tracing backends in addition
to OpenGL; however, each still utilizes depth-compositing to create final images,
which limits ray tracing effects to only process-local data.

Libsim is designed to interface a simulation with VisIt’s GUI. By connecting the
two, libsim provides an interactive view into the running simulation using the full
capabilities of the VisIt runtime in a directly-integrated, synchronous manner. The
user can change the visualization as it is running via the VisIt GUI. Catalyst supports
the development of visualization pipelines in a pre-process step, using the ParaView
GUI and representative data, generating Python scripts that capture the pipeline to
be deployed in situ. When the simulation is started, the Catalyst run-time loads the
Python script and, when passed data from the simulation, performs the visualization
in a directly interfaced, fully synchronous manner. We note that the Python script
can use VTK’s serialized I/O capabilities to interface with an external visualization
process. ParaView itself can then connect to the simulation using this export interface
to provide an indirect, intermittent ability to interact with the simulation data as it is
running.

ADIOS [6] and SENSEI [4] are middleware for in situ analysis that facilitate
communication of data between source and destination activities. They are based on
an externally reconfigurable I/O layer that connects the output of a source application
with the inputs of the destination application. Both include an API used to instrument
the simulation code to support a variety of I/O and analysis. Once the implementation
costs have been paid to integrate the API within the simulation, each middleware
simplifies the addition and substitution of analysis components. As middleware,

424 G. Abram et al.

ADIOS and SENSEI do not provide analysis/visualization components. Instead,
they provide an interface to other well developed systems, including ParaView and
VisIt.

3 Galaxy Overview

Galaxy [1] is a parallel computation environment inwhichdistributed parallel compu-
tation is performedbyapplications that intercommunicate (source code is freely avail-
able at https://github.com/TACC/Galaxy/). LikeADIOS and SENSEI, Galaxy serves
as middleware that enables communication between activities (e.g., simulations and
analysis/visualization components). However, unlike those systems, Galaxy’s dis-
tributed computation model is intended for use as an algorithmic framework. Two
components are central to the Galaxy architecture: a global name-space into which
data objects are published, and an asynchronous point-to-point and broadcast mes-
saging framework forwork messages. These components enable any worker to cause
one or all of its fellowworkers to perform a parameterized operation on data by send-
ing a work packet containing an action, parameters, and the global names of sources
and destinations. When a work packet is processed by its recipient, the local data
objects associated with the global names of sources and destinations are identified,
and the action performed. Actions can, in turn, create and transmit additional work
packets requesting work be done elsewhere in the system.

As an example, a simple data parallel algorithm can be implemented in Galaxy
by subclassing the Work class and defining (1) its action to be the per-local-data
operation to be performed, (2) its members as the source and destination object
names and, (3) whatever parameters are necessary for the algorithm at hand. This
work code would be invoked by a driver procedure that is parameterized with the
name of a pre-existing source object, the name of a (possibly preexisting) destination
object, and the other parameters. If the destination object does not already exist, the
driver would use the Galaxy API to create local objects on the same workers that
contain partitions of the source object. The driver would then create an instance of
the Work object subclass and, using the Galaxy asynchronous broadcast capability,
request that each worker perform the requested action on its local source data and
produce results in its local destination object.

Galaxy also supports global communication. For some algorithms, the driver may
need to know that the data-parallel processes have all completed (recall that the work
messages are fully asynchronous). Furthermore, the distributed destination object
may need to acquire some global data (e.g., the data range). These examples require
theworkers to communicate status/results to the driver upon completion of their data-
parallel work. For the data range example, the driver could create a data structure for
a response object, initializing a count variable with the total number of data-parallel
workers. It would then pass the response object’s address (in the driver’s memory
space) to the workers. A second application-specificWork subclass would be defined
with an action method that accesses the driver’s data structure, stores the associated

https://github.com/TACC/Galaxy/

Distributed Multi-tenant In Situ Analysis Using Galaxy 425

worker’s data range, and decrements the driver’s count of worker results accumulated
thus far. After broadcasting the original work message, the driver would wait for the
worker count to decrement zero, at which time it knows (a) that all data-parallel work
is complete and, (b) it has the accumulated global data range information.

3.1 Multi-tenancy

Galaxy is intended for use as a multi-tenant, persistent co-processing environment.
In the simple examples described thus far, a single driver causes single parallel algo-
rithm to run. However, Galaxy supports multiple algorithms running concurrently,
sharing the messaging system, the global object name-space, and computational
resources. Consequently, many work messages can exist simultaneously, either in
work queues waiting for the necessary resources or in a running state. As detailed
later in the chapter, each worker supports multiple worker threads which process
messages concurrently. This enables Galaxy to support direct, co-located, shared-
memory co-processing.

The Galaxy Multiserver implements a socket-based client/server interface
enabling multiple external user interfaces to asynchronously attach to a running
Galaxy instance, install activity-specific capabilities (e.g., libraries containing sub-
classes of Galaxy’sWork class etc.) on all theworkers, and run concurrently as part of
the Galaxy world. Multiserver clients communicate with the server via a simple
string-based protocol. When run as a Multiserver, one process of the Galaxy
spawns a thread that opens a socket and listens on it. When a Multiserver client
attaches, a client-specific thread is spawned on the recipient Galaxy process to han-
dle communications, and a message handler is installed for a few general purpose
actions.

One pre-installed action enables the client to send the name of a shared library
to Galaxy. Galaxy’s server-side creates and broadcasts a Work message that causes
every worker process in the Galaxy world to load the library (and its dependencies).
A string-based message handler is installed, which the client-specific server-side
thread retains to process subsequent application-specific exchanges. When subse-
quent messages arrive, the server side thread passes the message to each installed
handler in turn until one recognizes the message, enabling multiple independent
Galaxy activities to be installed by any client.

As a trivial example ofmulti-tenancy,Galaxy includesmsdata, aMultiserver
client that presents a command-line interface that enables the user to interact with
the Galaxy data space. For example, the code below connects to the Galaxy instance
and discovers that there are no visible data objects available.

426 G. Abram et al.

An Empty Dataspace Listing in Galaxy

% msdata

? list;

datasets:

?

We can then start a second, possibly remote, msdata instance that imports a
dataset into the Galaxy Dataspace:

Importing Data into a Galaxy Dataspace

\% msdata

? import { "Datasets": [

{

"name": "eightBalls",

"filename": "eightBalls.vol",

"type": "Volume" }]};

?

This import statement causes the Galaxy world to load a dataset from the file
"eightballs.vol", of type "Volume", and name it "eightballs". The
loaded dataset is now visible to both msdata instances:

A Populated Dataspace Listing in Galaxy

? list;

datasets:

eightballs

?

Two user interfaces have now connected to Galaxy and installed a shared-data
capability in which they can see and access the same data space.

Distributed Multi-tenant In Situ Analysis Using Galaxy 427

3.1.1 Interactive Rendering Using the Galaxy Multiserver

Galaxy includes aMultiserver client specifically for rendering datasets resident in the
Galaxy data space. The gxyviewer application accepts a description of a rendering
that includes a camera and a set of rendering operators. Rendering operators specify
which datasets to render and how to render them using render-time visualization
operations such as colormapping, isosurfacing and slicing. These operators are more
fully discussed below.

As do all Multiserver clients, gxyviewer connects to the server via a socket and
installs server-side code to implement a command-protocol between the client and
server. In this case, gxyviewer implements two functions: one to transfer the initial
visualization operators, and one to send camera updates to the server for rendering
and to receive buffers of pixels in return. The client then creates an interactive display
window, interprets user interaction events as camera transformations, and calls the
server to render pixels that it then stores in its display window.

3.1.2 Non-Render-Time Visualization Algorithms

While gxyviewer enables theuseof theGalaxy renderer directly to perform rendering-
timeoperations (such as slicing, volume rendering, and isosurfacing), realworld visu-
alization problems may involve visualization algorithms that cannot be performed
strictly at render-time. Such algorithms can themselves be implemented in theGalaxy
framework; operating on Galaxy-resident data to create derived data objects.

One such algorithm is particle advection. To visualize flow fields, we implement
a Runge-Kutta method to trace particles through a dataset describing a vector field.
This implementation traces multiple particles (as many as there are seed points) in
parallel through the partitions of the dataset, leaving partial traces in theGalaxywork-
ers responsible for the partitions in which they pass, and using Galaxy asynchronous
point-to-point transfers to move the head of particles that encounter partition bound-
aries to the process responsible for the neighboring partition.

3.1.3 The Galaxy GUI

Galaxy includes a user interface enabling users to build complex visualizations using
a visual programming paradigm. This interface is implemented as a Multiserver
client which installs a set of visualization algorithms, as described above, to create
derived data using non-render-time algorithms and to orchestrate complex multi-
faceted visualizations.

Figure1 shows theGalaxyGUI in use. Datasets from an asteroid-strike simulation
have been placed in the Galaxy data space by another client. The visualization shown
accesses three of these datasets, describing pressure, density and the gradient of
density. It uses a sampling algorithm to select seed points at a density level of interest,
creating a temporary particles dataset. The particles and the original gradient vector

428 G. Abram et al.

Fig. 1 GalaxyUser Interface on the author’s laptop using the Stampede2 supercomputer to visualize
data

field are received by the stream tracer, which traces streamlines that represent the
density gradient at the sample points. The particles and pathlines and the original
volumetric pressure field are passed through filters that enable the user to control
how they will be rendered - notably the radius of the spheres and stream tubes and,
in the case of the pressure field, the location of slicing planes and color maps to
apply. These results are then received by a Renderer filter, which owns an interactive
rendering window and, as above with gxyviewer, calls Galaxy to render images.

3.2 Using Galaxy In Situ

Galaxy can perform direct, co-located in situ analysis of simulation data. A sim-
ple approach to enable this entails implementing a simulation as a Galaxy client
application. In this manner, a simulation would run independently of other clients
(such as the analysis client). The simulation client would publish one or more objects
intended for access by other clients to a global dataset directory, and analyses can
browse the global dataset directory to discover data for analysis. Galaxy incorpo-
rates an event architecture (based on the observer pattern) so that upstreampublishing
clients can signal that data objects (or other global capabilities) have been updated.
Downstream clients, having registered interest in data objects, will then be notified
when the objects have changed.

In order to work in this manner, preexisting simulations would be need to be
instrumented towork in theGalaxy environment.While this code transformationmay
be non-trivial, we note that a client can receive its own private MPI communicator,
enabling it to run largely unchanged, interacting with the Galaxy environment only
when it explicitly needs to export published data.

Distributed Multi-tenant In Situ Analysis Using Galaxy 429

Alternatively, Galaxy and a simulation can cooperate in an indirect manner by
incorporating a communications client that presents an external parallel interface
for separate distributed-parallel applications to attach to and to transmit data. In this
approach the application is instrumented with an I/O API that negotiates and sends
data to the communications client, and need not run inside the Galaxy computational
framework.

We have implemented a simple example of this approach as the SocketConnec-
tor Galaxy client using a simple sockets-based protocol. This enables an external
application (e.g., simulation) to connect to a Galaxy Multiserver instance, to initial-
ize and publish data objects, and to periodically transfer time-step data to update
the Galaxy-side data using parallel process-to-process communication. We note that
sockets are simply a convenient communications mechanism that enable cooperation
between distributed-parallel applications on the same or different servers; alterna-
tives exist for special cases such as co-located processes using shared memory, or
using a single MPI world with separate communicators to enable MPI point-to-point
communications.

Galaxy enables different clients to communicate through a common Multiserver
instance using events on data objects. Specifically, the server-side components of
the DataSource filters on the left side of Fig. 1 attach observers on the data objects
selected by the GUI user.When these data objects are updated (by a client interfacing
with an external simulation), the observers are triggered, causing a message to be
passed to the remote GUI client process. This then triggers the data-flow execution
of the visualization and updates derived data objects and, ultimately, the rendered
result in the GUI display window.

This is in factwhat is happening inFig. 1.Ademonstration client (simsim, included
in the Galaxy distribution) is given two timesteps as VTK .vti files and, according
to command-line arguments, periodically interpolates time steps in between the two
given input datasets and transfers the data to Galaxy using the Socket-Connector in
situ interface.

4 The Galaxy Ray Tracing Engine

The original motivating problem behind the development of Galaxy was to inves-
tigate the use of ray tracing and ray tracing-based direct volume rendering (DVR)
techniques for large scientific data applications. We present a deep discussion of this
application here to highlight performance and implementation considerations when
using Galaxy components for in situ analysis or other computation.

430 G. Abram et al.

4.1 Performance in Space and Time

In visualization contexts, ray tracing and DVR offer significant advantages over
geometry rastertization systems. Ray tracing and DVR techniques invert the basic
loopofmanyvisualization algorithms:where geometry-based systems iterate through
the input data elements to determine how they contribute to the output image (at cost
O(N) time), ray-based systems iterate through the sample space, asking what input
elements contribute to each ray, at cost O(XY K) time, where XY reflects the res-
olution of the sample space, and K the cost of performing the algorithm along the
ray.

In the important case of structured grids (and composite grids consisting of struc-
tured subgrids) interpolating the dataset at an arbitrary point is O(1). When the grid
is unstructured, a ray-based system will first create an acceleration structure (at cost
O(N log N) time), which is amortized across all uses of the grid; once this is created,
interpolation is of cost O(log N). In the following we demonstrate this advantage in
several cases.

• Rather than extract a triangulated surface first, slicing planes can be rendered by a
ray tracer by intersecting the ray with the equation of the plane, then interpolating
the result.

• Volume rendering is implemented in a DVR system by iterating along the ray (at
cost roughly O(N

1
3)). Thus the cost of evaluating each ray is K = O(N

1
3 K ′) where

K ′ = O(1), for structured grids, and O(log N) for unstructured grids for a total cost
of O(XY N

1
3) or O(XY N

1
3 log N).

• Similarly, isosurfaces can be rendered by iterating along the ray looking for inter-
vals that contain the isovalue. The performance analysis is the same as above, for
volume rendering.

• Other algorithms that cannot be implemented as local operations along a ray can
be rendered in a two-pass manner as in geometry-pipeline systems, substituting
standard ray tracing in place of geometry-based rasterization.While thiswill neces-
sitate the creation of an acceleration structure, we note that the cost of this will be
O(K log K) where K is the size of the derived dataset, and K is likely much less
than N . Once this acceleration structure is available, the rendering cost reverts to
O(XY log K).

We note that current versions of both ParaView and VisIt incorporate ray tracing
back-ends. However, they simply substitute ray tracing to perform geometry-based
rasterization; each still relies fully on geometry pipelines and intermediate derived
datasets.

4.2 Adapting Galaxy to Be a Sampling Engine

The Galaxy ray tracing engine can be thought of as an abstract engine for processing
rays as they pass through data on a massively parallel system. In most cases, we want

Distributed Multi-tenant In Situ Analysis Using Galaxy 431

to use this engine to render the data, as described above. However, we can use this
engine for more abstract operations, including sampling. The simplest way to think
about this is that the sampling engine sends rays through a dataset, and produces a
new dataset of samples (particles).

A sampling operation is an abstraction of the following operations, which are
normally done in the context of rendering the data:

• Intersection of ray with data. Because the engine processes intersections with
data, we can write abstract operations evaluated instead of standard intersection
operations. For example, we can use rays to find places in the data that have certain
data values, gradients, or multi-variate properties.

• Action taken when an intersection occurs. In the case of sampling, we typically
would like to take a sample of a data when we detect an intersection or a "hit".
Thus, we can produce a dataset of samples, with each sample being taken when a
ray intersects with something in the data.

• Ray propagation. When a ray creates a sample, we can decide to stop the ray,
change its path based on data, or propagate other rays from that point in space.
This gives the engine control over how to continue sampling the space.
This sampling capability is a powerful option for exploring properties of the data
in a new way.

4.3 Ray Tracing Distributed Simulation Data

In the general case, ray tracing distributed data is difficult. Any arbitrary ray will
encounter surfaces that may be distributed anywhere across the distributed system;
therefore the closest intersection requires gathering information from each process
that contains data that might intersect the data. An arbitrary region of space may
contain surfaces that might be anywhere on the distributed system.

Ray tracing systems generally handle this issue by using a global acceleration
structure, such as a bounding volume hierarchy (BVH). If the full dataset is not
present on each node, the BVH will necessarily contain only bounding volumes of
surfaces (rather than the surfaces themselves) and these bounding volumes will often
overlap.

Tracing an arbitrary ray on a given process is done by testing the ray against the
global BVH to identify data that might contain the next hit point. The ray is then
tested against that data (either by transmitting the data to the process containing the
data or by requesting the data from that process so that the test be performed locally).
The results are then compared to find the actual closest hit points.Muchwork is being
done to efficiently perform this task, notably including speculative ray tracing [7],
in which each ray is traced against the data in each process.

Fortunately, simulation-based data offers us a simplifying fact: simulations are
generally based on spatially partitioned data; each cooperating process is assigned a
compact region of the computation space and, to the greatest extent possible, handles

432 G. Abram et al.

its data independently of other partitions using minimal regions (ghost zones) of
overlap with neighboring processes.

This means that anything that may affect a ray in a partition subspace is resident
within the process responsible for the subspace. Importantly, this is also true of any
data derived from a partition of data in a typical data-parallel process will also be
resident on the node responsible for the partition, modulo an exchange of results near
boundaries with the neighbors across the boundaries.

Given this property, the tracing of a ray with the computational space can be
performed by breaking it into an ordered set of non-overlapping intervals based on
its intersection with the partition boundaries, and that the intersection of the ray
within each interval can be processed on the node responsible for the corresponding
partition completely independently of data resident elsewhere on the system.

4.4 Ray Tracing with Asynchronous Work Messages

Based on the observations above, we have designed an algorithm for ray tracing/DVR
in-situ simulation data with global illumination based on the asynchronous passing
of rays from process to process as the ray traverses the partitioned computational
space. This process is begun by an initial one-to-all CameraMessage that carries
camera information to every node. Each recipient compares the camera information
against its local partition to find exactly those rays that enter the computation space
through their local partition. These are bundled onto RayPacketMessage objects
and queued for processing locally.

When a process processes a RayPacket, it knows that the rays in that packet
all begin in the local partition. The rays are processed against local data looking
for events that cause (potentially temporary) termination of the ray (e.g., surface hit
points or, importantly, the far, exiting surface of the partition) and each ray is ‘tagged’
to denote its terminating event type. When all the rays in the packet have terminated
(as far as the local partition is concerned) the tracing process concludes. Once the
local ray tracing of a packet of rays completes, the rays in the packet are examined
to determine what occurred in the tracing process.

Rays that struck exiting boundaries of the partition are bundled into new
RayPackets and sent to the nodes responsible for the neighboring partitionings.
Rays that strike surfaces or acquire full opacity are then handled. Two new empty
messages are initialized: a FrameBufferMessage, to carry results to a remotely
hosted frame buffer, and a new RayPacket to hold any generated secondary rays.

If a processed ray is a primary ray that strikes a surface, we determine
material properties, evaluate a lighting model, and place the result in the
FrameBufferMessage. If the lighting model calls for shadows and/or ambient
occlusion, secondary rays are generated andplaced in the secondary-rayRayPacket
(note that these secondary rayswill necessarily begin in the current partition); shadow
rays are tagged to terminate at light sources, and ambient occlusion rays are tagged
to terminate at some specific distance.

Distributed Multi-tenant In Situ Analysis Using Galaxy 433

If a processed ray is a secondary ray, its reason for terminating is examined.
Secondary rays that terminate early indicate that lightwas not received at the hit point.
Those secondary rays that don’t terminate early represent light that was received at
the hit point. We note here that we use a subtractive lighting model: primary rays
are lit as if they are unshadowed and receive full ambient light, and shadows are
subtracted from the pixel buffer if it is determined that the surface point is unlit.
Early terminated secondary rays are appended to the FrameBufferMessage
and the remainder are dropped.

4.5 Asynchronous Rendering in Galaxy

In the previous section we have outlined the basic distributed Galaxy ray tracing
algorithm that moves rays between processes as the rays pass through partitions of
the computation space. One process, responsible for accumulating the final image,
receives FrameBufferMessages and adds the contents of each to the frame
buffer. The image updates progressively over time, with primary Phong-lit contri-
butions tending to come in first, and shadows and ambient occlusion contributions
coming later. In an interactive session, this provides a form of incremental refine-
ment. As the user moves the camera, new frames are initiated, causing the many
rendering worker processes to spawn new primary rays, and also to ignore any fur-
ther in-flight ray- or framebuffer-messages. When we need to know that an image
has been completed (for example, to write a file), we need to know that all ray- and
frame-buffer messages have been retired. In a distributed system this is non-trivial.
Each ray- and framebuffer-messagemust be fully accounted for; a message sent from
node to node is the responsibility of the sender until a receipt message is received
from the recipient.

Galaxy uses a binary-tree message-based algorithm to verify that all messages
have been retired. A subtree is determined to be idle if there are no ray- or frame-
buffer messages “alive” in the subtree. When a subtree enters or exits the idle state, it
sends a notificationmessage to its parent. Thesemessages cause the parent to consider
its own state. Its next state will be a combination of its children’s last received state
and any live messages it is working on. Again, when its state changes, a notification
message is passed upward. When the root node enters the idle state, it knows (a) that
it itself does not own any live messages and (b) that when last informed, each child
subtree was also idle. Unfortunately, strange conditions may occur. An exchange of
message ownership from a leaf of one subtree to a leaf of the other may cause one
subtree to enter the idle state and the other to exit it; however, the idle notification
from one subtree may reach the root before the not-idle notification arrives from the
other subtree. This necessitates a final downward pass through the tree when the root
process enters the idle state. This is effectively a synchronization point of the process,
though it may be performed either using low-level synchronous communication (e.g.,
MPI collectives) or asynchronous point-to-point messages.

434 G. Abram et al.

4.6 Visualization Specification with Galaxy

The capabilities described above support much of what is required to do simple ray
tracing: for each ray, find the closest surface hit point, determine appropriate pixel
based on surface properties, materials and the lighting environment, and store the
results into a frame buffer. Then, transfer sets of rays across processors to evaluate
them with respect the global data of the scene.

However, for visualization, we want to do more than simply intersect rays against
pre-existing surfaces; we want to do processing along the ray, including integration
for volume rendering, the intersection of rays with planes that slice volumetric data,
and the procedural visualization of isosurfaces. Thus Galaxy requires the camera,
a lighting environment, a destination frame buffer, the objects to be displayed, and
a specification for how to visualize each data object. The visualization of an object
is, in fact, independent of the object (potentially, multiple visualizations might be
simultaneously operating on the same object). For this reason, Galaxy visualizations
do not annotate objects with parameters (isovalues, clipping planes, colormaps, etc.)
but instead refer to constituent datasets indirectly, through aGalaxy object referred to
as a Vis object, subclassed for the several currently-supported data types: volumes,
surfaces, particle sets and pathline sets.

• SurfaceVis The simplest data object to render are surfaces. Surfaces consist
of a triangle mesh with data values associated with vertices. The SurfaceVis
object refers to a surface object and associates a color map with it.

• ParticleVis Particles are 3D points with data values associated. Particles are
rendered in Galaxy as procedural spheres, where both the radius and color of
each is determined by the data value. Thus, the ParticleVis also associates
a colormap with a particles data object, but also includes a linear map of data to
radius: (v0, R0) and (v1, R1). Particles with values less than or equal to v0 will be
radius R0, values between v0 and v1 result in a linear interpolation between R0
and R1, and remaining particles will have radius R1.

• PathLineVis Pathlines are sequences of 3D points with associated data values.
Like Particles, Pathlines assign color via a colormap and determine stream-tube
radius using a (v0, R0)–(v1, R1) linear map.

• VolumeVis Volumes have the most degrees of freedom when it comes to visu-
alization. A volume can be volume rendered; a VolumeVis therefore includes
a boolean flag. If the flag is true, both a colormap and opacity map are required
and the volume is volume rendered. If the volume is not being volume rendered it
can be visualized as sets of isosurfaces and slicing planes. A VolumeVis object
therefore alsomanages a set of isovalues and planar equations. These also require a
colormap; all surfaces rendered using the same Vis object use the same colormap.

Distributed Multi-tenant In Situ Analysis Using Galaxy 435

4.7 Galaxy Ray Processing

As described, RayList processing involves tracing rays as they pass through a
region of space. This is implemented, at the lowest level, in ISPC [8]—an Intel
parallel computing language that effectively vectorizes kernels over multiple rays
simultaneously. This ray processing procedure receives a set of rays and a set of Vis
objects that identify the objects to visualize and how to visualize them. It assumes
that the rays begin inside the local subspace, either at an entry boundary surface, or
fully inside it.

The first action intersects the rays with the exiting surfaces of the subspace. This
determines the longest interval of the ray thatmight be traced locally. It then intersects
the rayswith the explicit surfaces (e.g., triangle sets) andprocedurally defined implicit
surfaces (e.g., particle spheres, pathline tubes, volume slicing planes) and if any are
hit, updates the farthest point of the ray interval to the hit point. If any VolumeVis
objects request isosurfaces or volume rendering, the processing iterates along the
ray from entry to closest hit point, accruing volume contributions and searching for
isosurface crossings along the way. If an integration interval traps an isovalue, a
linear interpolation is done to approximate the hit point.

4.8 Galaxy and Cinema

Cinema [2] is a means by which limited interactive exploration of the dataset can
be performed post-hoc by building a database of rendered images using visualiza-
tion parameter sweeps (e.g. camera rotation, isovalue iteration) and combining the
resulting images to mimic direct data exploration. Galaxy supports the efficient gen-
eration of Cinema databases by renderingmany visualization settings simultaneously
on each data timestep. Each of these visualizations is defined by rendering context;
thus, each ray list, with its reference to a global rendering context, contains all the
information necessary to process it. Since multiple rendering contexts (each includ-
ing a reference to a destination frame buffer) can co-exist, it is possible to launch
any number of visualizations simultaneously. Since Cinema databases very often
contain many viewpoints, this serves to load-balance; rays will enter the computa-
tional space from many different sources, and will therefore engage different sets of
worker processes. We present performance results for Cinema database generation
in Sect. 5.

436 G. Abram et al.

5 Galaxy Performance

This section presents Galaxy performance on representative datasets across two cur-
rent hardware configurations. A deeper evaluation of Galaxy performance compared
to Intel OSPRay is presented in [1].

We evaluate Galaxy’s performance using two currently-deployed advanced com-
puting resources at the TexasAdvancedComputingCenter (TACC): Stampede2,with
Intel Xeon Platinum 8160 “Skylake” processors and an Intel Omni-Path (OPA) 100-
Gb/s fat-tree interconnect; and Hikari, with Intel Xeon E5-2690 v3 “Haswell-EP”
processors and a Mellanox EDR 100-Gb/s fat-tree interconnect. Each Stampede2
Skylake node has 192 GB of RAM and two 24-core processors with two hardware
hyperthreads per core (96 total threads). Each Hikari Haswell node has 64 GB of
RAM and two 12-core processors with two hardware hyperthreads per core (48 total
threads).

For each hardware configuration, we simulate tightly-coupled in situ analysis
by rendering a camera orbit of 500 frames, each rendered at 1080p resolution. We
render fifty frames simultaneously across the available hardware resources, with new
frames initiated asynchronously as prior frames are completed. We perform these
tests using three datasets: a volumetric simulation data of a deepwater asteroid impact
from Los Alamos National Laboratory (1380 × 840 × 720 grid of floats; 3.184 GB);
a geometric isosurface extraction of a limestone karst core sample from Florida
International University (5.8M vertices comprising 11.6M triangles; 0.266 GB); and
an n-body dark matter “cosmic web” particle simulation from the Enzo team at
National Center for Supercomputing Applications (1.07B particles; 12.2 GB).

As Fig. 2 shows, Galaxy achieves interactive rendering rates across node counts.
We note increasing performance for the Skylake configuration as node count
increases, though with sub-linear increase from 64 to 128 nodes likely due to an
exhaustion of parallel work available. In the Haswell configuration, we attribute the
relative performance degradation at higher node counts due to relative inefficiencies
of the Mellanox interconnect versus the OPA interconnect: while both have the same

Fig. 2 Frames per second (fps) when rendering a 500 frame camera orbit for Asteroid, Karst Core,
and Cosmic Web datasets (higher is better). Galaxy achieves interactive rendering rates for both
Haswell and Skylake architectures

Distributed Multi-tenant In Situ Analysis Using Galaxy 437

nominal bandwidth and latency, OPA can sustain highermessaging rates, particularly
for the relatively small message sizes used by Galaxy, which enables the Skylakes
on Stampede2 to sustain performance at higher node counts.

6 Conclusion

In this chapter, we have presented theGalaxyMultiserver, which providesmulti-
tenant distributed data filtering and analysis for a variety of in situ visualization
scenarios. Galaxy can use ray tracing operations both for rendering and for data
filtering, leveraging the same hardware-optimized components for multiple steps in
a data analysis workflow. We have demonstrated that Galaxy provides interactive
performance for distributed rendering tasks on current-generation hardware. Since
Galaxy utilizes vendor-provided libraries for its internal tasks (currently the OSPRay
and Embree libraries for Intel Xeon-optimized instructions), it can seamlessly benefit
from vendor-provided improvements for current and future architectures. We plan to
continue developing Galaxy’s interfaces, both for direct use and for integration into
third-party applications that already support ray tracing, such as ParaView and VisIt.

Acknowledgements This work was funded in part by a DOE ASCR program award, Dr. Laura
Biven, program manager; US NSF award ACI-1339863; and an Intel Graphics and Visualization
Institute of eXcellence award.

References

1. Abram, G., Navrátil, P., Grossett, P., Rogers, D., Ahrens, J.: Galaxy: asynchronous ray tracing
for large high-fidelity visualization. In: 2018 IEEE 8th Symposium on Large Data Analysis and
Visualization (LDAV), pp. 72–76 (2018)

2. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D., Petersen, M.: An image-based
approach to extreme scale in situ visualization and analysis. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’14, pp.
424–434. IEEE Press, Piscataway, NJ, USA (2014). https://doi.org/10.1109/SC.2014.40

3. Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., Mauldin, J.: Paraview
catalyst: enabling in situ data analysis and visualization. In: Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp. 25–29
(2015)

4. Ayachit, U., Whitlock, B., Wolf, M., Loring, B., Geveci, B., Lonie, D., Bethel, E.W.: The sensei
generic in situ interface. In: 2016 Second Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (ISAV), pp. 40–44. IEEE (2016)

5. Kuhlen, T., Pajarola, R., Zhou, K.: Parallel in situ coupling of simulation with a fully featured
visualization system. In: Proceedings of the 11th Eurographics Conference on Parallel Graphics
and Visualization (EGPGV), vol. 10, pp. 101–109. Eurographics Association Aire-la-Ville,
Switzerland (2011)

6. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible io and integration for
scientific codes through the adaptable io system (adios). In: Proceedings of the 6th international
workshop on Challenges of large applications in distributed environments, pp. 15–24 (2008)

https://doi.org/10.1109/SC.2014.40

438 G. Abram et al.

7. Park, H., Fussell, D., Navrátil, P.: Spray: Speculative ray scheduling for large data visualization.
In: 2018 IEEE 8th Symposium on Large Data Analysis and Visualization (LDAV), pp. 77–86
(2018)

8. Pharr, M., Mark, W.R.: ispc: A SPMD compiler for high-performance CPU programming. In:
2012 Innovative Parallel Computing (InPar), pp. 1–13. IEEE (2012)

9. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn. Kitware (2006)

Proximity Portability and in Transit,
M-to-N Data Partitioning and Movement
in SENSEI

E. Wes Bethel, Burlen Loring, Utkarsh Ayachit, Earl P. N. Duque,
Nicola Ferrier, Joseph Insley, Junmin Gu, James Kress, Patrick O’Leary,
Dave Pugmire, Silvio Rizzi, David Thompson, Will Usher, Gunther H. Weber,
Brad Whitlock, Matthew Wolf, and Kesheng Wu

Abstract In high-performance parallel in situ processing, the term in transit pro-
cessing refers to those configurations where data must move from a producer to a
consumer that runs on separate resources. In the context of parallel and distributed
computing on an HPC platform one of the central challenges is to determine a map-
ping of data from producer ranks to consumer ranks. This problem is complicated by
the heterogeneity that arises in producer-consumer pairs, such as when producer and
consumer codes have different levels of concurrency, different scaling characteris-
tics, or different data models. The resulting mapping and movement of data from M
producer to N consumer ranks can have a significant impact on aggregate application
performance, particularly when the data consumer requires only a subset of the over-

E. W. Bethel (B) · B. Loring · J. Gu · G. H. Weber · M. Wolf · K. Wu
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
e-mail: ewbethel@lbl.gov

B. Loring
e-mail: loring@lbl.gov

J. Gu
e-mail: jgu@lbl.gov

G. H. Weber
e-mail: ghweber@lbl.gov

K. Wu
e-mail: kwu@lbl.gov

U. Ayachit · P. O’Leary · D. Thompson
Kitware, Inc., Clifton Part, NY, USA
e-mail: utkarsh.ayachit@kitware.com

P. O’Leary
e-mail: patrick.oleary@kitware.com

D. Thompson
e-mail: david.thompson@kitware.com

J. Kress · D. Pugmire
Oak Ridge National Laboratory, Oak Ridge, TN, USA
e-mail: james@jameskress.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Childs et al. (eds.), In Situ Visualization for Computational Science,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-81627-8_20

439

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81627-8_20&domain=pdf
mailto:ewbethel@lbl.gov
mailto:loring@lbl.gov
mailto:jgu@lbl.gov
mailto:ghweber@lbl.gov
mailto:kwu@lbl.gov
mailto:utkarsh.ayachit@kitware.com
mailto:patrick.oleary@kitware.com
mailto:david.thompson@kitware.com
mailto:james@jameskress.com
https://doi.org/10.1007/978-3-030-81627-8_20

440 E. W. Bethel et al.

all data for its task. This chapter focuses on the design considerations that underlie
SENSEI’s implementation to this challenging problem. These design considerations
extend the core SENSEI architecture and include ideas like the need to accommo-
date flexibility in the choice of different partitioning methods, the ability for a data
consumer to request and receive only the subset of data needed for its particular oper-
ation, and the ability to leverage any of several different data transport tools. The idea
of proximity portability, being able to use different data transport methods as part
of an in transit workflow, is illustrated through the use of three different transport
layers where switching from one transport tool to another is accomplished with only
a configuration file change. The chapter also includes a performance analysis sum-
mary showing the performance gains that are possible in terms of multiple metrics,
such as memory footprint, time to solution, and amount of data moved, when using
optimized partitioners in an in transit setting, gains that are made possible by the
implementation shaped by specific design considerations.

1 Introduction and Overview

In the regime of in situ processing, one ofmany particular configurations is a scenario
where data is moved across a network as it is produced to a different application, such
as analysis or visualization, which runs on a separate set of hardware resources. In
this scenario, data produced byM simulation ranks is then consumed by N consumer
ranks, where typically M � N .

In this configuration, a central challenge is the problem of M-to-N data redistri-
bution from producer to consumer ranks. Data redistribution refers to the process of

D. Pugmire
e-mail: pugmire@ornl.gov

E. P. N. Duque · B. Whitlock
Intelligent Light, Rutherford, NJ, USA
e-mail: epd@ilight.com

B. Whitlock
e-mail: bjw@ilight.com

N. Ferrier · J. Insley · S. Rizzi
Argonne National Laboratory, Lemont, IL, USA
e-mail: nferrier@anl.gov

J. Insley
e-mail: insley@anl.gov

S. Rizzi
e-mail: srizzi@anl.gov

W. Usher
University of Utah, USA and Intel Corp., Salt Lake City, UT, USA
e-mail: will@willusher.io

mailto:pugmire@ornl.gov
mailto:epd@ilight.com
mailto:bjw@ilight.com
mailto:nferrier@anl.gov
mailto:insley@anl.gov
mailto:srizzi@anl.gov
mailto:will@willusher.io

Proximity Portability and in Transit … 441

mapping data from M to N ranks, and also moving data from one place to another.
One challenge is when producer and consumer run at different levels of concurrency
resulting in no clear and obvious mapping from one to another. Second is when pro-
ducer and consumer each use different data models, which would entail some level
of data model reconciliation. Another is when producer and consumer have vastly
different scaling characteristics, which in turn lead to different levels of concurrency
M and N for a given producer-consumer pairing on a given problem configuration.
Finally, it is often the case that the consumer ranks do not require the complete prob-
lem domain from the producer, a situation that can occur during data reduction or
subsetting operations, such as slicing or isocontouring.

This chapter focuses on design, implementation, and performance analysis issues
of a general purpose solution to the M-to-N data redistribution problem encountered
in in transit processing scenarios. The design considerations (Sect. 2) include topics
related to SENSEI’s adaptor architecture that focus on in transit scenarios, the central
role of metadata, and how a partitioner uses metadata to compute a mapping from
M-to-N ranks. These design principles allow SENSEI’s implementation of the M-
to-N in transit data redistribution methods to achieve proximity portability, whereby
SENSEI-instrumented codes can make use of one of several different tools, such as
HDF5, libIS, and ADIOS, for moving data between in transit processing stages with
only a configuration file change (Sect. 3). A summary of an in-depth performance
study of SENSEI’s M-to-N in transit implementation at scale on a large HPC plat-
formwithmultiple applications (Sect. 4) includes use of a full-scale physics code that
uses adaptive mesh refinement (AMR), and analyzes performance across a number
of metrics that include runtime performance, amount of data moved, time to solution,
cost of solution, and memory footprint. The results show generality, broad applica-
bility across a set of different data producers, data consumers, levels of concurrency,
and varying partitioning algorithms.

2 Data and Execution Model Design Considerations
for M-to-N, In Transit Processing

In transit processing is fundamentally different than in situ processing when consid-
ering how data is decomposed across the parallel ranks of producer and consumer.
For example, consider an in situ configuration where a simulation code is running
M-way parallel and invokes in situ methods that are also run, implicitly, at M-way
concurrency. The simulation’s data decomposition dictates what data is processed
by each of the in situ ranks: the in situ method’s data decomposition is imposed by
the simulation’s data decomposition. In contrast, in an in transit scenario, while an
M-way parallel simulation code uses one data decomposition, the N -way parallel
analysis code may use a completely different data decomposition. The central chal-
lenge is to determine how to map from one data decomposition to another in the
M-to-N setting, as well as to actually move the data from the M producer ranks to
N consumer ranks.

442 E. W. Bethel et al.

This section presents several design considerations on different aspects of this
complex problem: defining a mapping of data fromM-to-N ranks, doing so in a way
that can accommodate a variety of different producer/consumer code pairs, executing
at varying concurrency, and using a number of different potential mechanisms for
moving data.

The discussion begins with background material about SENSEI’s endpoint and
adaptor design patterns, which are foundational to the ability to swap in and out
different endpoints without having to recompile the simulation, or data producer
code. The focus here is primarily on topics related to in transit processing scenarios.
Metadata, which is required to describe the producer’s data model to the in transit
consumer ranks (Sect. 2.3), is input to the partitioner (Sect. 2.4), which is responsible
for computing a mapping of data from M producer to N consumer ranks. These
elements are brought together to enable data movement (Sect. 3), which includes
the idea of proximity portability, or the use of multiple data transport tools with the
ability to switch between tools at runtime simply by changes to a configuration file.

2.1 Endpoint

The in transit configurations of interest are those consisting of multiple MPI parallel
applications that run concurrently on HPC systems, where one parallel MPI job is a
data producer and the other parallel MPI job is a data consumer. The term endpoint
refers to these parallel applications that are compiled and linked with SENSEI and
other related libraries and that consume and process data. In some circumstances, a
data producer might be a data consumer, in which case it would be considered to be
an endpoint as well.

Figure1 shows an illustrative in transit example, with the endpoint shown as
Fig. 1f. The challenge in this particular configuration is to find a partitioning from a
simulation with 5 blocks of data distributed on 5 MPI ranks to the endpoint, which
is running on 2 MPI ranks.

The endpoint is universal in the sense that it may be configured at run time to
receive and process data from any SENSEI-instrumented simulation without modifi-
cations to either the endpoint or the simulation. This is achieved via XML configura-
tions files. One type of configuration file specifies the methods and their parameters
that will be used in situ or in transit; the other type of configuration file specifies the
method of data transport.

2.2 Adaptor Pattern

SENSEI’s design pattern consists of two actions: invoke and fetch. In situ processing
and by extension, in transit processing, which includes analysis, visualization, and

Proximity Portability and in Transit … 443

Fig. 1 SENSEI in transit architecture. A transport comprised of a pair of adaptors moves data from
the simulation running on M MPI ranks to the endpoint running on N MPI ranks. Data is processed
by any of the usual SENSEI analyses via its configurable analysis adaptor. The system is comprised
of the following components: a simulation, b simulation specific data adaptor, c transport specific
analysis adaptor, d partitioner, e transport specific data adaptor, f endpoint, g configurable analysis
adaptor. As shown on the left, the simulation has 5 blocks distributed on 5 ranks, and the partitioner
has mapped these approximately evenly onto the endpoint’s 2 ranks. This image adapted from our
previous work [15]

I/O, is periodically invoked by a simulation. In response to the invoke action, the data
consumer code fetches data to process.

This design pattern is realized by two fundamental SENSEI adaptor types, the
analysis adaptor, which has APIs used by the producer to invoke processing, and the
data adaptor, which has API’s to fetch the data to be processed. The adaptors define
APIs that enable the invocation of a specific action without the need for the invoking
code to know anything about the underlying implementation. The pattern allows for
a change in the underlying implementation without the need to modify the code that
invokes the adaptor methods.

The data adaptor fetches data in both in situ and in transit configurations. Any
consumer of data, whether it be for I/O, visualization, or analysis, makes use of the
data adaptor to fetch data. Every simulation needs to provide a simulation specific
data adaptor (Fig. 1b) that is passed as part of invoking in situ processing.

Similarly, the fetch operations of every I/O library are exposed to the system via an
I/O library specific data adaptor (Fig. 1e), which is passed as part of the invocation
of processing on the endpoint. Through the use this adaptor design pattern, data
processing codes that consume data need not be modified to run specifically in
either an in situ or an in transit configuration. A detailed figure illustrating these
relationships appears in other publications (cf. Loring et al. [15], Fig. 4).

To copewith the additional complexities of the in transit configuration, I/O library
specific data adaptors are derived from the in transit data adaptor (Fig. 1e), which

444 E. W. Bethel et al.

is itself derived from the DataAdaptor type. The in transit data adaptor adds
APIs for use by the endpoint for managing and controlling the connection and data
movement from the simulation as well as APIs for interfacing with partitioning
mechanisms (Fig. 1d and Sect. 2.4).

The analysis adaptor is used by the simulation to invoke processing for both in
situ and in transit configurations. New analysis and I/O capabilities are exposed to
simulators through the introduction of transport specific analysis adaptors (Fig. 1c).
The role of transport specific analysis adaptors is to initialize and configure an in situ
or I/O library for some user-specified processing or data movement. For example, in
response to invocation by the simulation, the transport specific analysis adaptor will
fetch and transform data, and then potentially provide that data to the I/O library for
processing or movement to the endpoint.

The simulation initiates the invocation in both in situ and in transit configurations.
In the in transit configuration, this invocation initiates a data movement phase where
data is transferred to the endpoint for processing. In the endpoint, an I/O library
specific in transit data adaptor (Fig. 1e) listens for the invocation, and forwards it
into a library specific analysis adaptor.

The system implements dynamic configurability through a process of runtime
delegation. Configurable adaptor implementations create and initialize a library-
specific adaptor instance from a user-provided XML configuration file (cf. Fig. 1g)
and SENSEI’s Configurable Analysis Adaptor.

Calls made to a configurable analysis adaptor are forwarded directly to the library-
specific instance. Therefore, a simulation or endpoint instrumented to use the con-
figurable analysis adaptor gains access to all available I/O and in situ libraries.

2.3 Metadata

In the context of in situ and in transit processing, the term metadata refers to “infor-
mation about data” that is shared and exchanged between producer and consumer.
This metadata includes values like the size and dimensionality of the mesh on the
sender side. It also includes much more detailed information that spans four dif-
ferent categories, including: data sets, arrays, data blocks, and where appropriate,
AMR-specific information.

The role of metadata is central to manage data in support of M-to-N redistribu-
tion for in transit use scenarios. It describes simulation data and its mapping onto
the simulation’s M MPI ranks. Partitioners (Sect. 2.4) use the simulation metadata
to compute the desired mapping of data onto the endpoint’s N MPI ranks. Data
transports use metadata from multiple sources—the simulation and partitioner—to
coordinate datamovement between producer and consumer. The richmetadata object
in SENSEI, which includes 34 different metadata values [15], enables transports to
perform in-flight data transformations such as mapping one mesh onto another, and
enables partitioners to implement a number of load balancing strategies.

Proximity Portability and in Transit … 445

2.4 Partitioner

Data partitioning in an M-to-N in transit scenario refers to the process of defining
a mapping from an M-way parallel data producer to an N -way parallel data con-
sumer. The process of partitioning may be straightforward, such as when M == N
in the case of traditional in situ processing, or it may be substantially more complex.
Consider for example how some global parallel FFT implementations may require
“pencil” or “slab” domain decomposition [17], or how two common approaches for
parallelizing streamline computations—parallelize over blocks or parallelize over
seeds—each require a different type of data partitioning [3] that may not be the same
as the partitioning used by the simulation that produces the data. Given the diversity
of potential ways data may need to be transformed and redistributed in in transit
use cases, one of our design objectives is to make it straightforward to use any of a
number of different potential partitioning methods.

One implementation characteristic that results from this design objective is that
the partitioner is separate and distinct from both data producer and data consumer.
The idea is to allow use of different partitioningmethods with different combinations
of producer and consumer. Similarly, the partitioner is separate and distinct from the
data transport so that it is possible to use any of a number of potential implementations
of in transit data movement tools (Sect. 3).

A later section that examines the performance of in transitM-to-N configurations
at scale (Sect. 4) makes use of two types of partitioners: a default partitioner and an
optimized partitioner. A default partitioner will move the entire dataset regardless
of how much is needed by the consumer. The default partitioner simply invokes a
default block-based equipartitioning algorithm over the entire simulation domain.
In contrast, an optimized partitioner will provide only the subset of data actually
needed by the consumer. An optimized partitioner uses the metadata provided by the
simulation as well as the characteristics of the analysis or visualization operation to
be performed to determine the minimum subset of data blocks needed for a particular
operation.

Byway of example for these two partitioner types, default and optimized, consider
two use scenarios where only a subset of data is needed to complete the operation.
One is a slice extract, which takes a 2D slice from a 3D volume, and another is an
isosurface extract, which is computing an isosurface from a 3D volume. In the case
of the slice extract, per-block bounding box metadata is tested for intersection with
the slice plane. Only those blocks intersecting the plane are needed to compute the
extract. In the case of the isosurface extract, per-block array rangemetadata are tested
for intersectionwith the set of isocontouring values. Only those blockswhere the data
range brackets an isocontouring value are needed to compute the extract. Blocks not
needed in the calculation are not assigned to any rank and as a result are not moved
to nor processed by the consumer. Once the needed set of blocks are identified the
block-based equipartitioning algorithm assigns them to available endpoint ranks.

446 E. W. Bethel et al.

3 Proximity Portability and SENSEI’s Use of Multiple
Data Transport Tools

One of SENSEI’s design objectives is to enable a “write once, run everywhere”
capability. In this approach, the key idea is the addition of SENSEI instrumentation
code to a data producer, like a numerical simulation, then enables use of multiple
potential in situ endpoints and tools without the need for any further instrumentation
code changes on the data producer side. In other words, once a simulation is instru-
mented with SENSEI, selection of a variety of different in situ tools is accomplished
by changes to a configuration file.

This concept of tool portability extends to the notion of in transit processing as
well, where a SENSEI-instrumented data producer code can run either in situ or in
transit without any instrumentation changes, and may also take advantage of a grow-
ing collection of tools that perform data movement, a concept referred to as proximity
portability. This design objective is shown in Fig. 2, where an M-way parallel simu-
lation produces data that is sent over one of several potential transports to an N -way
parallel endpoint that performs visualization, analysis, or some other data-intensive
operation. The subsections that follow present information about the SENSEI’s in
transit proximity portability through its use of three differentmechanisms formoving
data between producer and consumer: HDF5, ADIOS, and libIS.

Simulation
Ranks (M)

Endpoint
Ranks (N)

Visualization
Or

Analysis
In Transit In Transit

Data
Transport

Tools

Data
Transport

Tools
SENSEI

SENSEI

Fig. 2 An M-way parallel simulation sends data to an N -way parallel data consumer over one of
several different potential data transport tools: HDF5, libIS, or ADIOS. Image courtesy W. Bethel
and B. Loring

Proximity Portability and in Transit … 447

3.1 HDF5 In Transit Data Transport

HDF5 is a mature parallel I/O library and file format that is widely deployed and
used on HPC systems around the world [8] by projects ranging from parallel I/O
for some of the world’s largest computer codes, to providing a storage format for
long-lived data from observations and experiments. Its prevalence as a parallel I/O
library motivated recent work aimed at cultivating a better understanding of design
and performance issues that would arise when leveraging HDF5 for in transit data
staging and movement.

Gu et al. [10] studied use of HDF5 for in transit data movement and staging, and
specifically with a configuration that uses NVRAM Burst Buffers (BB) presented
as a filesystem on an HPC platform. The resulting design and implementation is an
HDF5-based mechanism for in transit data transport that is accessible to SENSEI-
instrumented codes. This data transport capability for M-to-N, in transit processing
is accessible as one of several potential in transit transport mechanisms that can be
selected through an XML-based configuration file.

Figure3 shows a block diagram of the SENSEI-HDF5 transport mechanism,
where HDF5 in this case uses NVRAM-based Burst Buffers (BB) for data staging.
Following the design patterns used by other data transport mechanisms in SENSEI,
the SENSEI-HDF5 transport mechanism consists of two related adaptors, the Anal-
ysis Adaptor and the Data Adaptor. The Analysis Adaptor implements the SENSEI
interface for outputting data from data producers, and the Data Adaptor implements
the input interface for consumers to ingest data.As of the time of thiswriting, SENSEI
uses the VTK data model as a bridge between Analysis and Data adaptors. There-
fore, in the SENSEI-HDF5 transport, the Analysis Adaptor receives VTK data, and
stores to HDF5, while the Data Adaptor reads from HDF5 and returns VTK data for
SENSEI.

TheHDF5-based in transit data transport is able to leverage specialized hardware,
such as BBs, for data staging.When the BB is presented as a filesystem to users, then
the HDF5-based transport can make use of the BB when the filename in the HDF5-
SENSEI configuration file points to a location on the BB-resident filesystem. One
benefit of using BBs for in transit data transport is capacity: this staging mechanism
may provide a larger maximum data footprint than is possible with conventional
DRAM, memory-based methods. In other words, the total amount of BB storage
on an HPC system may be significantly larger than the total distributed memory
footprint. When using a BB presented as a filesystem one might expect its use for
data staging would be slower than a purely memory-based approach for staging.

Recent studies [10] measure and compare the performance of the SENSEI-HDF5
in transit data transport over BBwith one that uses a socket-based, memory-memory
copy from one node to another. What is unexpected is that the BB configuration
often completes the analysis use cases in less time than the socket-based transport
mechanism as seen in both sets of test results reported in Fig. 4. When compared
to using a traditional disk-based filesystem for staging, both socket- and BB-based
approaches are significantly faster, as is visible in the left image of Fig. 4.

448 E. W. Bethel et al.

Simulation
Ranks (M)

Endpoint
Ranks (N)

Visualization
Or

Analysis
In Transit In Transit

Write Read

Burst Buffer/NVRAM

SENSEI

SENSEI

Fig. 3 The HDF5 transport layout. This particular illustration shows a configuration where Burst
Buffers serve to stage data as it is moved from parallel producer to consumer. This image adapted
from our previous work [10]

Fig. 4 Left: Time to solution for socket-based (ADIOS-Flexpath), NVRAM/Burst Buffer (HDF5),
and disk (HDF5) approaches. Right: Time to solution for socket-based (ADIOS-Flexpath) and Burst
Buffer (HDF5) approaches. These images are reprinted from our previous work [10]

The right of Fig. 4 shows only two data transport options: socket and BB, but with
more test configurations than in the chart on the left. At the outset of this experiment,
the expectation was that the socket-based option would runmore quickly than the BB
configuration because it uses memory-memory transfers. However, these particular
experiments show the opposite: the BB configurations run more quickly than the
memory-memory configuration; this result was a surprise. The most likely reason
for this performance difference is that HPC systems architects and developers tend
to optimize for file-based I/O, as opposed to socket-based operations. In this case,
the NVRAM/BB, file-based approach is faster than a socket-based approach due to
system software architecture and its optimizations for file-based I/O.

In addition to runtime as a performance measure, this same work also examines
other metrics, such as memory consumption. One observation is that the memory

Proximity Portability and in Transit … 449

Fig. 5 Configuration files that show how to use HDF5 (left, a) or ADIOS-Flexpath (right, b).
Changing from one transport to the other requires no coding changes, only a different configuration
file

footprint requirements of the memory-based staging approach in these tests are sig-
nificantly larger than the memory footprint of the HDF5/BB-based approach. On the
simulation side for the memory-based staging, data is buffered in memory pools,
the size of which grows as a function of how quickly the data can be moved to the
in transit method. In contrast, the HDF5/BB approach does not exhibit these same
memory requirements. See Gu et al. [10] for more details.

Switching between data transports is a simple as changing a configuration file. For
the test configurations in these studies, Fig. 5 shows two configuration files: one for
HDF5/BB, and the other for ADIOS-Flexpath. In the HDF5 configuration file, the
pathname points to a location on the BB filesystem. In the ADIOS configuration file,
the “method” of FLEXPATH requires a unique name, which in this case, is encoded
into the filename field of the configuration file.

3.2 libIS In Transit Data Transport

libIS [19] is a lightweight library for in transit data transport. It uses a client-server
model where clients (consumers) can request data from servers (producers) on an
as-needed basis. libIS has been specifically designed for asynchronous, in transit
analysis, where the simulation and analysis run decoupled from one another. The
simulation-side library, coupled to the simulation either through our SENSEI inter-
face or directly, exposes the simulation as a data server. The client-side library queries
this server for new timesteps (Fig. 6). libIS supports the ability for clients to connect
and disconnect over the course of a run, so viewers may be used sporadically, e.g.,
to check in on a long running simulation, or to begin monitoring after some event
without requiring that additional nodes be set aside for the entire run.

libIS has been demonstrated at scale on Theta (Argonne National Laboratory)
and Stampede 2 (Texas Advanced Supercomputing Center) supercomputers. Usher
et al. [20] explored interactive in transit visualization of molecular dynamics simula-
tions, the visual results of which appear in Fig. 7. They instrumented the LAMMPS
molecular dynamics simulation code with SENSEI and libIS to move simulation

450 E. W. Bethel et al.

Simulation
Ranks (M)

Endpoint
Ranks (N)

Visualization
Or

Analysis
In Transit In Transit

 Server

 Client SENSEI HPC

System
Network

SENSEI

Fig. 6 libIS in transit architecture with SENSEI. Image courtesy S. Rizzi, N. Ferrier, andW. Bethel

Fig. 7 Interactive in transit
visualization of a 172k atom
simulation of silicene
formation with 128
LAMMPS ranks sending to
16 OSPRay renderer ranks,
all executed on Theta in the
mpi-multi configuration.
This image is reprinted from
our previous work [20]

data over the network to a set of nodes running OSPRay, a high performance ray
tracer for CPUs [21]. In this M-to-N configuration, the distributed-memory parallel
renderer continues to query for data as the simulation runs, thus enabling the user
to monitor the simulation state while it evolves over time. Along with rendering the
data, the render side also supports running some local pipelines to process data, e.g.,
to compute bonds between atoms. The libIS performance study used a simulation
input deck that is part of an active scientific research project at Argonne National
Laboratory that performs atomic-level simulations of the formation of silicene [4].

Proximity Portability and in Transit … 451

3.3 ADIOS In Transit Data Transport

ADIOS is a parallel I/O library with a POSIX-like API [13]. The API requests to
write/read (or put/get) are separated from the engines that perform the requested ser-
vices, allowing for a variety of optimizations for functionality and performance, such
as in transit implementations utilizingRDMA interconnect hardwarewhen available.
SENSEI has implementations based on the 1.X and 2.X versions of the ADIOS API.
The ADIOS 2.X series has a complete redesign of the internals in order to better
prepare for exascale computing needs [14], so some terminology changes between
these release versions. In ADIOS 1.X, in transit processing through memory-based
staging methods is provided by several transports: Flexpath [6], Dataspaces [7], and
DIMES [22]. Similarly, in ADIOS 2.X there are different engines that provide both
in transit and in situ solutions: SST, SSC, and Inline.

From a SENSEI perspective, these differences only show up as slight differences
in the configuration file. A simple cartoon of this process and how ADIOS serves to
connect them within SENSEI can be seen in Fig. 8. ADIOS supports data movement
and I/O through a number of engines.1 When using ADIOS, SENSEI selects and
configures the ADIOS engine based on settings in user provided XML.

Figure9 shows an example of utilizing the 2.X version of the ADIOS library
with the SST transport for in transit. ADIOS provides both metadata queries and
data selection methods. An ADIOS reader sees a global summary of all of the data
available from all of the M writers without respect to who originally wrote it. By
default, whenmoving data between a simulation and an analysis job, SENSEI applies
an equipartitioning algorithm mapping from the simulation’s P data blocks decom-
posed on the simulation’s M MPI ranks to the N ranks of the analysis.

SENSEI’s data model incorporates lightweight metadata that describe both the
simulation data available and its mapping onto the simulation’sMPI ranks. The avail-
ability of compact, cheap-to-move metadata in in transit applications facilitates load
balancing and remeshing operations, and makes it possible to improve the perfor-
mance of in transit execution through judicious data downselection as described in
Sect. 4.

Amonganumber of useful features, such as easily switchingbetween conventional
disk based I/O and network based data movement, ADIOS also includes advanced
features like dynamic disconnection and reconnection and a number of buffering
controls. An example of the benefit of ADIOS buffering is shown in Fig. 10. Here,
ADIOS hides the time spent by a slow analysis from the simulation by buffering
data until the analysis can catch up. After each time step is buffered, control returns
immediately to the simulation. The simulation completes in less than 400s (label (c))
while the analysis continues well passed 1400s. Were it not for ADIOS’s buffering
scheme, the simulation would run substantially slower.

1 Called transports in ADIOS 1.x.

452 E. W. Bethel et al.

Simulation
Ranks (M)

Endpoint
Ranks (N)

Visualization
Or

Analysis
In Transit

Read

In Transit

Write

SENSEI

Transports:
RDMA
TCP

Burst Buffer
Files

SENSEI

Fig. 8 The ADIOS transport layout in a SENSEI in transit use scenario. Image courtesy M. Wolf
and W. Bethel

Fig. 9 SENSEI XML used to select and configure ADIOS

4 Performance Analysis of SENSEI’s M-to-N In Transit
Infrastructure

Themain focus of the performance study summaries that follow is to quantify the per-
formance gains that can result when leveraging metadata so that only the data needed
to solve a particular problem is moved from the producer to consumer in realistic,
at-scale M-to-N scenarios. These studies were conducted at scale on an HPC system
using a benchmarkminiapplication from theSENSEI distribution (Sect. 4.1), and also
using a state-of-the-art production science code that uses adaptive mesh refinement
configured for a Rayleigh-Taylor instability calculation (Sect. 4.2). These studies
reveal the types of significant performance gains that aremade possiblewhen the data
partitioning step can leverage metadata and consumer-side knowledge to make data
requests from the producer. The complete studies appear in other publications [15].

Proximity Portability and in Transit … 453

Fig. 10 ADIOS provided buffering hides the cost of a slow analysis from the simulation. Gantt
charts from the simulation and analysis ranks with the largest resident set size (RSS) high water
mark. Black line above the Gantt chart shows memory usage. Labels indicate: a time spent in
the simulation computing one time step; b time spent in the analysis processing one time step;
c simulation completes; and d ADIOS internally serves buffered data as fast as the analysis can
consume it. Image courtesy B. Loring

4.1 Data Source: Oscillators Miniapplication

One of the design objectives for our M-to-N architecture and implementation is to
make it possible to move only the data that is needed for a particular operation. This
section summarizes an earlier study [15] that focuses on the cost savings that result
when leveraging metadata to move only the relevant data needed to solve a problem.

The study focuses on two types of in transit operations where only a subset of
data is required. One operation is a slice extract: in this case only those mesh cells
or data blocks that intersect the slice plane are required to be moved to the in transit
data consumer. The other operation is an isosurface extract: in this case, only those
mesh cells that intersect the isosurface are required to be moved to the in transit data
consumer. These operations are representative of two classes of methods that need
only a subset of the original domain: one is based on some geometric constraints,
in this case, a slice plane; the other is a data-dependent criteria, in this case, an
isocontour.

The data producer is one of the SENSEIminiapplications,oscillators, which
was run on NERSC’s Cori Cray XC40 supercomputer. The code was configured to
perform its computations on a 40963 mesh, which was decomposed evenly across
8192MPI ranks. This study uses ADIOS 1.13.1 I/O library with the Flexpath staging
method as the in transit data transport mechanism.

For each of the two extract operations, the study examines four different perfor-
mance measures under varying levels of endpoint concurrency when using default
and optimized partitioners. The battery of tests aims to better understand a broad set

454 E. W. Bethel et al.

Fig. 11 Optimized partitioners determine which blocks are needed by the consumer and assign
them to endpoint ranks while excluding all other blocks from the dataset. Top row: isosurface
extract. Middle row: planar slice extract. Left column: extracted geometry. Center column: blocks
needed to compute the extract. Right column: all blocks. Line plot: the fraction of simulation cells
moved as a function of simulation time. This image is reprinted from our previous work [15]

of performance metrics and at varying levels of concurrency. The slice plane value
and three isocontour levels are intended to result in non-trivial extracts, which are
shown in the top portion of Fig. 11. The left column shows the extracted geometry,
the middle column shows the set of blocks that were used in the calculation, and
the right columns shows all the blocks. When the optimized partitioner is in use,
the white colored blocks were not moved from the simulation to the endpoint nor
processed by the endpoint.

In the bottom portion of Fig. 11, the chart shows, at varying simulation time steps,
the fraction of total data moved from producer to consumer in each of the optimized

Proximity Portability and in Transit … 455

partitioner configurations. For the three isosurfaces computed, about 25% of the data
contributes to a solution, and only this portion of data needs to be moved. An excep-
tion is at the first timestep, where the simulation has not evolved the computation to
the point where the output has any cells that contain the isovalue. In the case of the
slice, about 10% of the mesh cells intersect the slice plane and contribute to the final
solution.

The original study goes into much greater depth examining configurations using
default and optimized partitioners, with multiple endpoints, and measuring multiple
metrics at varying concurrency. Thosemetrics include the amount of datamoved from
producer to consumer in bytes, the maximum memory footprint across all endpoint
ranks, time to solution (which is akin to runtime), and cost of solution in terms of
CPU hours.

Two of the lessons learned from the study are that different ratios of M-to-N
produce vastly different results in terms of performance, and that problem specific
factors can influence the choices for M and N . For example, when comparing the
isosurface and slice endpoints, many more data blocks intersect the isocontour than
the slice plane, about 25 versus 10%, as shown in Fig. 11. As a result, when increasing
the concurrency level of an endpoint, one encounters diminishing returns at different
concurrencies, depending on the nature of the problem. There is no “one-size-fits-all”
ratio that works best in all settings.

4.2 Data Source: AMReX-Based IAMR Code

The summary of an earlier study [15] continues with a focus on examining the
potential cost savings that might result when using an optimized rather than a default
partitioner but with a full-scale scientific simulation rather than a miniapplication.
The authors instrumented the AMReX framework [23] for use with SENSEI. That
gave access to a wide variety of block-structured adaptive mesh refinement (AMR)
simulations for testing. Those experiments made use of the AMReX-based IAMR
compressible Navier-Stokes code [1] configured for the simulation of a Rayleigh-
Taylor instability modeling the mixing of two fluids of different densities under
the influence of gravity. The Rayleigh-Taylor instability produces a set complex
isosurfaces that evolve in time.

The runs consisted of IAMR configured for a base level of 10242 x 2048 cells,
one level of refinement, and executed on M = 8192 ranks, with 4 OpenMP cores per
rank, on 1025 KNL nodes of NERSC’s Cori system. The total number of cores used
by IAMR was 32768. The endpoint was run on 9 nodes with N = 128 MPI ranks.
This ratio of M to N was chosen based upon the results of the miniapplication study
in Sect. 4.1, which showed better performance gains for the optimized partitioner
when M � N .

One challenge in processing AMR data is that data blocks from refined levels
duplicate and cover, either partially or fully, data blocks from coarser levels. Care
must be takenwhen computingmetadata and applying partitioning algorithms.When

456 E. W. Bethel et al.

Fig. 12 Top: Isosurface
extracted in transit from the
AMR mesh produced by the
IAMR code. Middle: Blocks,
colored by block identifier,
from the AMR mesh that
contain the isosurface. These
images are reprinted from
our previous work [15]

computing the per-block array minimum and maximum data values to determine if
an isosurface intersects a block, care must be taken to not make use of data from the
cells of blocks that are covered by cells from a block in a more refined level. The
reason is that covered cells are duplicated in the refined level and hence the isosurface
will be duplicated as well. The AMReX-specific data adaptor handles this aspect of
the metadata calculation. As a result, the optimized isosurface partitioner can run
without any modification for AMR-based meshes. The ability to handle complex
dataset types such as AMR meshes illustrates the flexibility of SENSEI M-to-N in
transit design and implementation.

The isosurface extracted at time step 420 is shown in Fig. 12 in the top panel,
along with the 4771 level-1 blocks that intersect this isosurface in the bottom panel.
Figure13 shows the amount of the data moved at each time step for isosurface
extraction with the optimized partitioner (red line) compared to the total data size
(blue line). In the worst case, the optimized partitioner moves no more than 40% of
the data.

The original study goes into more depth, including additional performance mea-
sures like maximummemory footprint, time to solution, and cost of solution in terms
of CPU hours [15]. Collectively, the studies described here and in Sect. 4.1 show the
flexibility and performance gains that can result when leveraging rich metadata to
solve a complex M-to-N data mapping problem.

Proximity Portability and in Transit … 457

Fig. 13 The amount of data
moved during runs of the
IAMR Rayleigh-Taylor
problem using the optimized
partitioner (red line) is
substantially less than when
using the default partitioner
(blue line). This image is
reprinted from our previous
work [15]

5 Related Work

The idea of processing data as it is generated has been around for decades, with some
of the earliest work consisting of a direct-to-film recording process from the 1960s.
That work, along with a thorough survey of work in the in situ and in transit space
is in a 2016 Eurographics STAR report [2]. Early work on in transit infrastructure in
the HPC space includes the CUMULVS project, which is middleware for coupling
codes running at different levels of concurrency and formoving data between them in
a M-to-N fashion [9]. A more recent CUMULVS report from [11] includes a survey
of related projects focusing on M-to-N data partitioning and distribution on HPC
platforms, some of which go back to the mid 1990s.

Over the years, several efforts have studiedwhether an in situ or in transit configu-
ration will produce lowest cost for a given problem configuration typically measured
in runtime or time-to-solution. Oldfield et al. [18] evaluate post hoc, in situ, and
in transit in the context of analysis and tracking of features in simulation output.
They identify situations in which in transit or in situ approaches are more or less
advantageous, such as in transit being advantageous when analysis computations
are more complex and time consuming. Morozov and Lukić [16] examine in situ
and in transit configurations of a cosmological simulation coupled with a two-stage
analysis pipeline and find it advantageous to use in transit configurations when the
analysis and simulation codes have different scaling properties. Kress et al. [12]
study scalable rendering and aim to find the best balance of M to N producer and
consumer ranks across different levels of concurrency by considering cost models
that measure time-to-solution for both in situ and in transit configurations.

The focus of our work here is on the design, implementation, and performance
evaluation of a method for performing robust, flexible, and general purpose M-to-
N data redistribution for use in an in transit setting at scale on HPC platforms. In
particular, we are interested in understanding the performance gains that can result
when leveraging metadata for partitioning and moving data from producer to con-
sumer ranks in an in transit configuration. A similar idea appears in Childs et al. [5],
which describes the “contract” system in the VisIt application. That capability results
in optimizations of data movement through the visualization pipeline: downstream

458 E. W. Bethel et al.

processing stages inform upstream stages of the data subsets needed to perform a
specific computation.

Our performance study uses some of the same use scenarios, namely planar slic-
ing and isocontouring, to illustrate the gains that result from moving only the data
the consumer needs to perform its computation. Whereas the Childs et al. project
measured and reported runtime improvement in the setting of an interactive GUI
based post processing visualization application where the stages of their pipelines
ran in the same process address space and data was provided by disk based I/O, our
work here investigates a similar approach but applied toM-to-N in transit processing
and that is truly distributed-memory parallel along the direction of the pipeline. We
look beyond runtime to examine deeper levels of performance analysis and consider
the impact of heterogeneity in concurrency that occurs in M-to-N processing. For
each of the default and optimized partitioner configurations, we measure and report,
in addition to runtime, the amount of data moved between producer and consumer
ranks, and the memory footprint of producer and consumer ranks. These additional
measurements and at varying concurrency levels for M and N provide significantly
deeper insight into the benefit of the optimizations for in transit data partitioning and
placement.

6 Conclusion and Future Work

In in transit processing, one of the central challenges is determining a mapping
of data from M producer ranks to N consumer ranks. This chapter has presented
design considerations and design patterns for a flexible, general purpose solution
to this challenging problem. An in-depth performance study consisting of 32K-way
parallel runs of a production scientific simulation code, AMReX/IAMR, on a large
HPC platform demonstrates its usefulness and also reveals the performance gains
that result when leveraging the system characteristics to send only the data needed by
an in transit consumer to solve its particular problem. The performance evaluation
measures runtime, amount of data moved, and time to solution to help reveal the
nature of performance gains possible when using an optimized partitioner, which
moves only those portions of the data needed by the consumer.

A central theme of the design considerations is the idea of proximity portability,
which means having the ability to run either in situ or in transit without any code
modifications, and if run in transit, to be able to leverage any number of different
potential tools for moving data between producer and consumer ranks. SENSEI’s
adaptor design pattern makes this possible, and this work shows use of three dif-
ferent mechanisms for moving data between in transit producers and consumers:
HDF5, libIS, and ADIOS. This capability opens new avenues of research that lever-
age the advantages offered by an in transit approach, namely being able to overlap
computation and communication, and being able to better load balance between M
simulation ranks and N consumer ranks. We anticipate an explosive growth in appli-
cations of methods for doing learning, analysis, and cooperative computing when

Proximity Portability and in Transit … 459

science code teams are easily able to couple codes in a flexible way as shown by
the design principles, examples, and performance studies we have presented in this
chapter.

Acknowledgements This work was supported by the Director, Office of Science, Office of
Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract Nos.
DE-AC02-05CH11231 and DE-AC01-06CH11357, through the grant “Scalable Analysis Methods
and In Situ Infrastructure for Extreme Scale Knowledge Discovery,” program manager Dr. Laura
Biven. This research used resources of the National Energy Research Scientific Computing Center,
a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. Argonne National Laboratory’s work was
supported by and used the resources of the Argonne Leadership Computing Facility, which is a
U.S. Department of Energy, Office of Science User Facility supported under contract DE-AC02-
06CH11357.

References

1. Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: A conservative adaptive
projection method for the variable density incompressible Navier-Stokes equations. J. Comput.
Phys. 142(1), 1–46 (1998)

2. Bauer, A.C., Abbasi, H., Ahrens, J., Childs, H., Geveci, B., Klasky, S., Moreland, K., O’Leary,
P., Vishwanath, V., Whitlock, B., Bethel, E.W.: In Situ Methods, Infrastructures, and Applica-
tions on High Performance Computing Platforms, a State-of-the-art (STAR) Report. Computer
Graphics Forum (Special Issue: Proceedings of EuroVis 2016) vol. 35, issue 3 (2016). LBNL-
1005709

3. Camp, D., Garth, C., Childs, H., Pugmire, D., Joy, K.I.: Streamline integration using MPI-
hybrid parallelism on a large multicore architecture. IEEE Trans. Vis. Comput. Graph. 17(11),
1702–1713 (2011). http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.259

4. Cherukara, M.J., Narayanan, B., Chan, H., Sankaranarayanan, S.K.R.S.: Silicene growth
through island migration and coalescence. Nanoscale 9, 10186–10192 (2017)

5. Childs, H., Brugger, E., Bonnell, K.S., Meredith, J.S., Miller, M.C., Whitlock, B., Max, N.L.:
A Contract-Based System for Large Data Visualization. In: Proceedings of IEEE Visualization
(Vis05). Minneapolis, MN (2005)

6. Dayal, J., et al.: Flexpath: Type-based publish/subscribe system for large-scale science analyt-
ics. In: 2014 14th IEEE/ACMInternational SymposiumonCluster, Cloud andGridComputing,
pp. 246–255. IEEE (2014)

7. Docan, C., Parashar, M., Klasky, S.: Dataspaces: an interaction and coordination framework
for coupled simulation workflows. Clust. Comput. 15(2), 163–181 (2012)

8. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the HDF5 technol-
ogy suite and its applications. In: Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, pp. 36–47. ACM (2011). Software at http://www.hdfgroup.org/HDF5/

9. Geist, G.A., Kohl, J.A., Papadopoulos, P.M.: CUMULVS: providing fault-tolerance, visualiza-
tion and steering of parallel applications. Int. J. High Perform. Comput. Appl. 11(3), 224–236
(1997)

10. Gu, J., Loring, B., Wu, K., Bethel, E.W.: HDF5 as a vehicle for in transit data movement.
In: Proceedings of the SC19 Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization, ISAV ’19, pp. 39–43. Association for Computing Machinery, New
York, NY, USA (2019). https://doi.org/10.1145/3364228.3364237

11. Kohl, J.A., Wilde, T., Bernholdt, D.E.: Cumulvs: interacting with high-performance scientific
simulations, for visualization, steering and fault tolerance. Int. J. High Perform. Comput. Appl.
20(2), 255–285 (2006)

http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.259
http://www.hdfgroup.org/HDF5/
https://doi.org/10.1145/3364228.3364237

460 E. W. Bethel et al.

12. Kress, J., et al.: Comparing the efficiency of in situ visualization paradigms at scale. In: Inter-
national Conference on High Performance Computing, pp. 99–117. Springer (2019)

13. Liu, Q., et al.: Hello ADIOS: the challenges and lessons of developing leadership class I/O
frameworks. Concurr. Comput.: Pract. Exp. 26(7), 1453–1473 (2014)

14. Logan, J., Ainsworth, M., Atkins, C., Chen, J., Choi, J.Y., Gu, J., Kress, J.M., Eisenhauer, G.,
Geveci, B., Godoy,W., et al.: Extending the publish/subscribe abstraction for high-performance
i/o and data management at extreme scale. Bull. Tech. Comm. Data Eng. 43(1) (2020)

15. Loring, B., Gu, J., Ferrier, N., Rizzi, S., Shudler, S., Kress, J., Logan, J.,Wolf, M., Bethel, E.W.:
Improving performance of m-to-n processing and data redistribution in in transit analysis and
visualization. In: EuroGraphics Symposium on Parallel Graphics and Visualization (EGPGV).
Norrköping, Sweden (2020)

16. Morozov, D., Lukić, Z.: Master of puppets: Cooperative multitasking for in situ processing.
In: Proceedings of the Symposium on High-Performance Parallel and Distributed Computing
(HPDC), pp. 285–288 (2016)

17. Mortensen, M., Dalcin, L., Keyes, D.: mpi4py-fft: Parallel fast fourier transforms with mpi for
python. J. Open Source Softw. 4, 1340 (2019)

18. Oldfield, R.A., et al.: Evaluation of methods to integrate analysis into a large-scale shock shock
physics code. In: Proceedings of the 28th ACM International Conference on Supercomputing,
ICS ’14, pp. 83–92 (2014)

19. Usher, W., Rizzi, S., Wald, I., Amstutz, J., Insley, J., Vishwanath, V., Ferrier, N., Papka, M.E.,
Pascucci, V.: Libis: A lightweight library for flexible in transit visualization. In: Proceedings of
theWorkshopon InSitu Infrastructures forEnablingExtreme-ScaleAnalysis andVisualization,
ISAV ’18, pp. 33–38. Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3281464.3281466

20. Usher, W., Rizzi, S., Wald, I., Amstutz, J., Insley, J., Vishwanath, V., Ferrier, N., Papka, M.E.,
Pascucci, V.: libis: a lightweight library for flexible in transit visualization. In: 2018 Workshop
on InSitu Infrastructures forEnablingExtreme-ScaleAnalysis andVisualization (ISAV) (2018)

21. Wald, I., Johnson, G.P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther, J., Navrátil,
P.: Ospray-a CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput.
Graph. 23(1), 931–940 (2016)

22. Zhang, F., et al.: In-memory staging and data-centric task placement for coupled scientific
simulation workflows. Concurr. Comput.: Pract. Exp. 29(12), e4147 (2017)

23. Zhang, W., Almgren, A., Beckner, V., Bell, J., Blaschke, J., Chan, C., Day, M., Friesen, B.,
Gott, K., Graves, D., Katz, M.P., Myers, A., Nguyen, T., Nonaka, A., Rosso, M., Williams,
S., Zingale, M.: Amrex: a framework for block-structured adaptive mesh refinement. J. Open
Source Softw. 4(37), 1370 (2019). https://doi.org/10.21105/joss.01370

https://doi.org/10.1145/3281464.3281466
https://doi.org/10.21105/joss.01370

	Preface
	Acknowledgements
	Contents
	 In Situ Visualization for Computational Science: Background and Foundational Topics
	1 The Motivation for In Situ Processing
	1.1 Background: Computational Simulations and Post Hoc Processing
	1.2 High-Performance Computing Trends Increasingly Require In Situ Processing

	2 In Situ Systems
	3 Challenges and Solutions for In Situ Processing
	References

	-22pt Data Reduction Techniques
	 Sampling for Scientific Data Analysis and Reduction
	1 Introduction
	2 Prior Work
	3 Sampling Using Scalar Data Importance
	3.1 Motivation for Generic Scalar Sampling
	3.2 Methods for Scalar Field Sampling
	3.3 Sample Analysis and Reconstruction
	3.4 In Situ Analysis and Quality Comparison

	4 Sampling Using Multivariate Association
	4.1 Motivation for Multivariate Sampling
	4.2 Multivariate Statistical Association-Driven Sampling
	4.3 Applications of Multivariate Sampling

	5 In Situ Performance
	6 Discussions and Limitations
	7 Future Directions and Conclusion
	References

	 In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration
	1 Motivation
	2 Introduction to Wavelet Compression
	2.1 Overview of Using Wavelets for Compression
	2.2 Basics of Wavelet Transforms
	2.3 Compression Strategy Options

	3 Evaluating the Effects of Wavelet Compression on Scientific Visualization
	3.1 Critical Structure Identification
	3.2 Pathline Integration Analysis
	3.3 Shock Wave Front Rendering

	4 Wavelet Compression on High-Performance Computers
	4.1 Wavelets on Modern Computing Architectures
	4.2 Overall I/O Impact

	5 Conclusion
	References

	 In Situ Statistical Distribution-Based Data Summarization and Visual Analysis
	1 Statistical Distribution Models for Data Summarization
	1.1 Non-parametric Distribution Models
	1.2 Parametric Distribution Models
	1.3 Advantages and Disadvantages of Different Distribution Models in the Context of In Situ Data Reduction

	2 In Situ Distribution-Based Data Summarization Techniques
	2.1 Local Distribution-Based In Situ Data Summarization

	3 Post Hoc Visual Analyses Using Distribution-Based Data Summaries
	3.1 Stochastic Feature Analysis
	3.2 Feature Extraction and Tracking
	3.3 Multivariate Query-Driven Analysis and Visualization
	3.4 Distribution Sampling-Based Data Reconstruction

	4 Demonstration of an In Situ Distribution-Guided End-to-End Application Study
	4.1 Univariate Distribution Anomaly-Guided Stall Analysis
	4.2 Multivariate Distribution Query-Driven Stall Exploration
	4.3 Storage and Performance Evaluation

	5 Discussion and Guidelines for Practitioners
	5.1 Discussion
	5.2 Guidelines for Practitioners

	6 Additional Research Possibilities and Future Scopes
	7 Conclusion
	References

	 Exploratory Time-Dependent Flow Visualization via In Situ Extracted Lagrangian Representations
	1 Introduction
	2 Background and Motivation
	2.1 Frames of Reference in Fluid Dynamics
	2.2 Traditional Paradigm for Visualization and Analysis of Time-Dependent Vector Fields

	3 Lagrangian-Based Flow Analysis
	3.1 Phases of Computation
	3.2 Differences Between Eulerian and Lagrangian-Based Flow Analysis

	4 In Situ Extraction
	4.1 In Situ Costs and Constraints
	4.2 Spatial Sampling: Seed Placement
	4.3 Temporal Sampling: Curve Approximation
	4.4 Storage Format

	5 Post Hoc Exploration
	6 Efficacy of Lagrangian-Based In Situ + Post Hoc Flow Analysis
	7 Discussion of State of the Art and Future Work
	References

	-22pt Workflows and Scheduling
	 Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics
	1 Introduction
	2 Uncertainty Management Methodology
	2.1 Introduction
	2.2 Quantiles of Simulation Outputs
	2.3 Sensitivity Analysis via Sobol' Indices

	3 In Transit Statistics
	3.1 Moment-Based Statistics: Mean, Std, Higher Orders
	3.2 Sobol' Indices
	3.3 Order Statistics: Quantiles
	3.4 Probability of Threshold Exceedance

	4 The Melissa Framework
	4.1 Melissa Architecture

	5 An Illustrative Example
	5.1 A Large Scale Study
	5.2 Ubiquitous Statistic Interpretation
	5.3 Combining Sobol' Indices

	6 Conclusion
	References

	 Decaf: Decoupled Dataflows for In Situ Workflows
	1 Introduction
	2 Background and Related Work
	2.1 Types of In Situ Workflows
	2.2 In Situ Workflow Runtimes

	3 Design
	3.1 Decaf Dataflow
	3.2 Workflow Graph Description and Runtime Execution
	3.3 Structure of Task Code
	3.4 Data Model and Data Redistribution in the Dataflow
	3.5 Flow Control Library
	3.6 Data Contract Mechanism

	4 Science Drivers
	4.1 Molecular Dynamics
	4.2 Cosmology

	5 Conclusion
	References

	 Parameter Adaptation In Situ: Design Impacts and Trade-Offs
	1 Introduction
	2 Impact of Simulation Load Balancing and Resource Allocation
	2.1 MegaMol In Situ Loose Coupling
	2.2 Workload Distribution
	2.3 Load Balancing

	3 Volumetric Depth Images
	3.1 VDI Generation and Rendering
	3.2 Parameters and Output Characteristics
	3.3 Evaluation Results: Auto-Tuning Toward Target Characteristic

	4 High-Resolution Streaming
	4.1 Encoder Settings
	4.2 Prediction of Compressed Tile Size and Quality
	4.3 Optimization of Encoder Settings
	4.4 Results

	5 Visualization Load Balancing and Performance Prediction
	5.1 Real-Time Performance Prediction
	5.2 Offline Performance Prediction

	6 Conclusion
	References

	 Resource-Aware Optimal Scheduling of In Situ Analysis
	1 Resource Requirements of In Situ Data Analysis
	2 Effect of System Parameters on In Situ Analysis
	3 Optimal Scheduling for Mode 1 (Same Job, Space-Division)
	3.1 Problem Parameters
	3.2 Problem Formulation

	4 Optimal Scheduling for Mode 2 (Same Job, Time-Division)
	4.1 Problem Parameters
	4.2 Problem Formulation
	4.3 Optimal Scheduling for Mode 3 (Different Jobs)

	5 Experimental Evaluations
	5.1 Results for Mode 1 (Same Job, Space-Division)
	5.2 Results for Mode 2 (Same Job, Time-Division)
	5.3 Results for Mode 3 (Different Jobs)

	6 Conclusions
	References

	-22pt Tools
	 Leveraging Production Visualization Tools In Situ
	1 Introduction
	2 Libsim
	2.1 Integration with Simulation
	2.2 Runtime Behavior
	2.3 Underlying Implementation
	2.4 Use Case

	3 Catalyst
	3.1 Integration with Simulation
	3.2 Runtime Behavior
	3.3 Underlying Implementation
	3.4 HPCMP CREATE-AVTM Helios Use Case

	4 Conclusion
	References

	 The Adaptable IO System (ADIOS)
	1 Introduction
	2 ADIOS I/O Abstraction
	2.1 ADIOS Engines
	2.2 Advanced Data Management Services
	2.3 Discussion
	2.4 Code Examples

	3 Example Use Cases
	3.1 Strong Coupling in a Fusion Simulation
	3.2 Streaming Experimental Data
	3.3 Interactive in Transit Visualization

	4 Conclusion
	References

	 Ascent: A Flyweight In Situ Library for Exascale Simulations
	1 Introduction
	1.1 Flyweight Design
	1.2 Ascent Capabilities
	1.3 Organization of This Chapter

	2 Key Abstractions for Ascent
	2.1 Pipelines
	2.2 Scenes
	2.3 Extracts
	2.4 Queries
	2.5 Triggers
	2.6 Interactions Between Actions

	3 Ascent APIs
	3.1 Conduit: A Foundation for In-Memory Data Exchange
	3.2 Mesh Blueprint: An In-Memory Mesh Description Interface
	3.3 Control Interface
	3.4 Typical Experiences Integrating Ascent

	4 System Architecture
	4.1 Flow: A Data-Type Agnostic Data-Flow Based Architecture
	4.2 Runtime

	5 Success Stories
	5.1 In Situ Visualization of an Inertial Confinement Fusion (ICF) Simulation
	5.2 MARBL Simulation Integration
	5.3 Devil Ray Rendering

	6 Additional Resources
	References

	 The SENSEI Generic In Situ Interface: Tool and Processing Portability at Scale
	1 Introduction and Overview
	2 The SENSEI Generic In Situ Interface Design
	2.1 SENSEI Data Model
	2.2 SENSEI Interface
	2.3 Data Types Supported in the SENSEI Interface
	2.4 SENSEI Data Producer Coding Example
	2.5 SENSEI Data Consumer Coding Example

	3 SENSEI Tool Portability
	3.1 Configurable Analysis Adaptor
	3.2 Connecting SENSEI to Libsim, Catalyst, Ascent, or ADIOS
	3.3 Coupling with User-Written Python Tools
	3.4 In Situ Analysis of AMR Data

	4 SENSEI In Situ Performance Analysis at Scale
	4.1 Performance Impact of In Situ Processing
	4.2 Cost Savings of In Situ Over Post Hoc

	5 SENSEI In Situ Applications to Science Problems
	5.1 In Situ Mesh Validation in Combustion Simulations
	5.2 In Situ Processing and Analysis in Wind Energy Applications

	6 Conclusion
	References

	 In Situ Solutions with CinemaScience
	1 Introduction
	2 The Cinema Ecosystem
	2.1 Simple Use Case: Cinema Image Databases
	2.2 The Cinema Database
	2.3 Cinema Writers
	2.4 Cinema Viewers
	2.5 Data Types Beyond Images

	3 Analysis Algorithms
	3.1 Computer Vision Framework
	3.2 Statistical Methods

	4 Task-Based Workflow Examples
	5 Conclusion
	References

	-22pt New Research Results and Looking Forward
	 Deep Learning-Based Upscaling for In Situ Volume Visualization
	1 Introduction
	2 Background and Related Work
	2.1 Artificial Neural Networks
	2.2 Related Work in Upscaling

	3 Upscaling Scenarios—Image-Based Upscaling
	4 Upscaling Scenarios—3D Spatial Upscaling
	5 Upscaling Scenarios—Temporal Upscaling
	6 Concluding Remarks and Future
	References

	 Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay
	1 Introduction
	2 OSPRay
	2.1 OSPRay 2.0 Features for In Situ Visualization
	2.2 OSPRay Actors and Objects
	2.3 OSPRay Modules
	2.4 OSPRay Devices

	3 Distributed Rendering in OSPRay
	3.1 The Distributed FrameBuffer and Rendering Algorithms
	3.2 The Distributed API
	3.3 Sharing Data with the Application
	3.4 Asynchronous Rendering
	3.5 Configuring the Scene Distribution Using Regions
	3.6 Extending OSPRay's Distributed API with Modules

	4 Scalability
	5 Example Use Cases
	5.1 Image Database Generation

	6 Conclusion
	References

	 Multivariate Functional Approximation of Scientific Data
	1 Introduction
	2 Related Work
	3 In Situ Modeling of the MFA
	3.1 Mathematical Background
	3.2 Modeling with Fixed Size and Separable Dimensions
	3.3 Local Adaptive Refinement
	3.4 Modeling Scientific Data

	4 Post Hoc Use of the MFA
	4.1 Multidimensional Point Evaluation
	4.2 High-Order Differentiation
	4.3 Applications

	5 Parallel Approximation and Evaluation
	6 Ongoing and Future Work
	References

	 A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization
	1 Introduction
	2 A Simulation-Oblivious Data Transport Model
	2.1 Implementation in libIS

	3 Example Use Cases
	3.1 LAMMPS
	3.2 Direct Numerical Simulation of Turbulent Channel Flow with Poongback
	3.3 Comparison to Existing Libraries

	4 Conclusion
	References

	 Distributed Multi-tenant In Situ Analysis Using Galaxy
	1 Introduction
	2 Related Work
	3 Galaxy Overview
	3.1 Multi-tenancy
	3.2 Using Galaxy In Situ

	4 The Galaxy Ray Tracing Engine
	4.1 Performance in Space and Time
	4.2 Adapting Galaxy to Be a Sampling Engine
	4.3 Ray Tracing Distributed Simulation Data
	4.4 Ray Tracing with Asynchronous Work Messages
	4.5 Asynchronous Rendering in Galaxy
	4.6 Visualization Specification with Galaxy
	4.7 Galaxy Ray Processing
	4.8 Galaxy and Cinema

	5 Galaxy Performance
	6 Conclusion
	References

	 Proximity Portability and in Transit, M-to-N Data Partitioning and Movement in SENSEI
	1 Introduction and Overview
	2 Data and Execution Model Design Considerations for M-to-N, In Transit Processing
	2.1 Endpoint
	2.2 Adaptor Pattern
	2.3 Metadata
	2.4 Partitioner

	3 Proximity Portability and SENSEI's Use of Multiple Data Transport Tools
	3.1 HDF5 In Transit Data Transport
	3.2 libIS In Transit Data Transport
	3.3 ADIOS In Transit Data Transport

	4 Performance Analysis of SENSEI's M-to-N In Transit Infrastructure
	4.1 Data Source: Oscillators Miniapplication
	4.2 Data Source: AMReX-Based IAMR Code

	5 Related Work
	6 Conclusion and Future Work
	References

