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Biomechanics of the Knee

Farid Amirouche and Jason Koh

21.1	 �Introduction

Accurate knowledge of knee kinematics is criti-
cal to evaluate the knee joint and how it relates to 
changes in cartilage, ligament injuries, recon-
struction or repairs and function. The knee is 
characterized by its geometry, forms and shapes 
of femoral condyles and their articulation on the 
tibia plateau, cartilage role in lubrication and 
support, and the balancing act of ligaments and 
muscle forces to accommodate different surface 
conditions during walking, and finally how the 
stability of the knee is maintained during flexion-
extension under different loading conditions.

Clinical interest in the knee joint remains an 
interesting topic of research as biologics, nanotech-
nology, stem cells regenerative medicine is changing 
the fundamental role each of the knee substructure 
work and the ability to potentially being able to have 
them regenerated [32, 38, 20, 76].

The kinematics of the knee and its relation to 
different pathologies has been the subject of 
numerous research with different perspectives 
in light of the experiments conducted, models 
proposed, and outcome measures related to gait 
motion tracking analysis [43, 65, 50, 72, 53, 71, 
45, 89]. To extract kinematic information in a 
single and dual plane, several researchers used 
fluoroscopy imaging techniques to analyze a 
quasi-static situation where a knee flexion is 
performed through a range of motion incremen-
tally and radiographs were taken [100, 2, 27, 
102]. Moreover, mobile fluoroscopic systems 
emerged and analysis of the knee during full 
dynamic flexion movements were examined 
during gait [42, 34].

The different joint rotations of the knee have 
been described from data collected by 3D camera 
and markers posted along the lower and upper 
part of the leg during gait. Most studies describe 
the knee flexion with a peak value observed after 
toe-off and the internal tibia rotation yielding its 
max at heel strike [44, 56, 34, 63, 64]. The tibia is 
shown to rotate externally through mid-stance, 
before rotating internally once again prior to toe-
off [56, 54, 10, 81].
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The tibiofemoral joint is still at the center 
stage of knee kinematic research and importantly, 
we still see different methods being used in 
describing the condylar anterior posterior transla-
tion following either the contact path, the condy-
lar geometric center or other points on the 
condylar axis [88, 57, 73, 85, 91, 48].

The kinematics of a healthy knee or a knee 
with different pathologies or reconstruction 
depend great deal on the connective tissues 
around the knee in balancing and maintaining a 
stable and well-performing knee. The variation in 
knee analysis is also affected by other factors 
such as gender, anatomy, and articular surface 
behaviors which are all contributing factors to 
knee kinematics and kinetics.

Additional studies have investigated the tibia 
femoral joint contact surfaces during flexion-
extension to investigate the cartilage effect on 
knee kinematics using both in vitro and in vivo 
experimental studies [35].

In silico 3D knee joint models were developed 
[37, 87], along with in  vivo imaging measure-
ments to provide a reliable validation of the 
results [13, 18, 92, 94, 61, 46]. These techniques 
have opened the door to advancing our under-
standing of modeling limitations, assumptions 
that clinically are relevant and acceptable versus 
additional knowledge needed to build better com-
putational models on knee joint biomechanics.

The articular surface geometry as stated above 
at the contact area is also an important variable 
that affects the articular contact behaviors, such 
as contact stress and knee joint stability. Any 
changes to the cartilage contact area trigger a 
change in kinematics. Osteoarthritis (OA) of the 
knee is also a contributing factor to knee loading 
unbalance of forces and moments. The modula-
tion of the knee joint results in large knee adduc-
tion moment and higher joint dynamic load 
during gait causally related to the severity of tib-
iofemoral OA [6, 52].

The complexity of the knee can also be seen in 
the role muscles in lower limb play in the knee 
joint stability and locomotion. To assess the con-
tribution of different muscles to the knee, one 
needs to rely on 3D modeling techniques to eval-

uate contact pressure and forces generated from 
supporting structures at the knee using Opensim, 
life modeler among others [79, 84, 29]. Popular 
methods in gait analysis rely on knee joint flexion 
moment and knee joint power which are the pre-
dictors of load distribution across the tibiofemo-
ral joint reflecting a special time point during gait 
stance phase.

The knee biomechanics teach us that optimi-
zation and coordination of the tibia femoral 
bones, patella-femoral articulating surface and 
muscles, ligament, and tendons interaction work 
together to achieve the desired joint movement. 
The complex interaction of these structures 
allows the knee to withstand tremendous forces 
during various normal movements.

Knee kinematics and its connective tissues 
was studied by Masouros, Parker, Hill, Amis, & 
Bull [67] and they pointed out its importance to 
diagnosis and treatments. Modeling and simula-
tion methods used in the simulation of the knee 
during different walking conditions are studied 
by several researchers including to name a few 
[4, 106, 3, 1].

This chapter discusses the importance of the 
knee anatomy in joint biomechanics, provides a 
description of the knee joint kinematics and dif-
ferent methods used to assess knee performance 
and discusses the importance of the biomechan-
ics of the knee, the current state of FE modeling 
and its clinical benefits. Understanding the knee 
biomechanics is an essential tool in designing 
prosthesis, provides guidance to rehabilitation 
exercises programs that will assist the patient 
knee stability, mobility and regain his or her knee 
normal function. A comprehensive understand-
ing of the knee joint kinematics could signifi-
cantly improve the future of patient’s knee 
injuries and treatment outcomes.

21.2	 �Basic Knee Anatomy

The knee joint consists of two basic articulations 
coordinated in a fashion to provide the knee mus-
cles and ligaments the ability to power and drive 
its desired movements and function. The knee 
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articulations are between the distal femur, proxi-
mal tibia, and patella riding on femoral groove. 
The geometry of the femoral condyles is asym-
metric, with the medial condyle projecting more 
distal than the lateral femoral condyle. The medial 
condyle is also larger and wider and conforms to 
the tibia plateau condyle where it articulates, on 
the other hand, the lateral condyle projects more 
anteriorly. The condyles join through a femoral 
groove anteriorly and the femoral notch at their 
distal aspect to allow for the patella to slide, glide, 
and rotate to maintain the direction of the quadri-
ceps and patella tendon forces. The lateral con-
dyle can be identified by its terminal sulcus and 
groove of the popliteus insertion [26, 33].

The femoral condyles articulate on a tibia pla-
teau that is also divided in two conforming sur-
faces: the medial tibial plateau is concave, 
whereas the lateral plateau has an anteroposterior 
convexity. This topography accounts for the so-
called screw-home mechanism, or internal rota-
tion, of the femur on the fixed tibia as the knee 
approaches extension [55, 104]. Load bearing on 
the tibia cartilage is usually due to excess stress 
on the knee which might lead to arthritis [23, 16, 
47]. The distribution of the load on the tibia pla-
teau is asymmetric, and occurs depending on the 
loading conditions not only centrally on the 
medial and lateral sides but also on the sloping 
edges on the medial and lateral part of the tibial 
eminences [83].

On each side of the tibia plateau, medial and 
lateral menisci help maintain conformity of the 
condyles during the knee flexion-extension and 
eliminate the high impact forces at the edges of 
the tibia plateau when subjected to high loads. 
Further description of the menisci shows that the 
anterior horn geometrical shape of the medial 
meniscus, the anterior cruciate ligament (ACL), 
and the anterior part of the lateral meniscus attach 
anterior to the tibial spine. The posterior cruciate 
ligament (PCL) and the posterior part of the 
medial and lateral menisci attach posterior to the 
tibial spine [33].

The patella consists of medial and lateral fac-
ets, separated by a vertical ridge to allow it to 
move within the prescribed femoral groove. The 

patella is totally embedded within the tendon. 
The front face of the patella is convex in shape 
and is divided up into 3 parts. The top surface is 
where the patella and the quadriceps tendon 
intersect and this lightly covers the anterior sur-
face of the patella and forms a deep fascia, which 
acts as a protector to the bone [77]. The patella 
tendons and femoral contact reaction forces need 
to be balanced during knee motion to maintain 
knee stability. The patella contact stress makes it 
vulnerable to wear and potential injury [7, 70, 
103].

21.3	 �Knee Joint Axis of Rotation

The primary knee joint motion is easily explained 
in the sagittal plane during flexion-extension. A 
joint used for such description is referred to as a 
hinge joint (see Fig.  21.1). In mechanical term 
describing such a joint with the context of refer-
ence Cartesian frame the knee is also a revolute 
joint as used in a few multibody dynamics mod-
eling of locomotion where the angle of rotation is 
defined as the tibia rotation relative to the femur. 
The knee has six degrees of freedom and can 
rotate along three different planes as shown in 
Fig. 21.2. The complex three-dimensional motion 
also allows for translation along each of the axis 
of rotation. The ligaments act as supporting struc-
ture and constraint the knee joint motion by keep-
ing it stable and limiting its range of motion.

Full extension is usually defined when the 
tibia is extended to become fully aligned with the 
femur in the sagittal plane. Active knee flexion is 
possible primarily through hamstring contraction 
and usually reaches 130°, whereas passive flex-
ion can reach 160°.

To better understand the kinematics of the 
knee researchers used gait analysis to describe 
both human locomotion, and its relation to joint 
forces used to control such a movement. The 
position of the body upper part has always been 
an indicator of body posture in relation the body 
center of gravity. During gait ankle, knee and hip 
joint are actuators driven by muscles and hence 
generate torque necessary to move the body for-
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ward. Knee motion is dictated by the consider-
ation of energy that requires the body center of 
gravity to move forward with ease.

During the swing phase of gait, the knee 
flexes to roughly 60° so the toe of the swinging 
leg does not be dragged on the ground. Also, 
during gait, as the swinging leg passes the stand-
ing leg and just before heel strike, the quadriceps 
muscle contracts which brings the knee to full 
extension and the foot forward. Flexion is not the 
only rotation that takes place during the gait 
cycle, as the knee extends 30° to 0°, the tibia 
externally rotates up to 30° before heel strike. 
The term used to describe this is “screw-home 
mechanism.” This mechanism occurs to tighten 
the soft tissue structures as well as locking the 
knee geometry before the impact load of weight 
bearing [66, 67].

21.4	 �Functional Role of Ligaments

The ACL is the main restraint to anterior tibial 
movement. The viscoelastic properties of the liga-
ments allow it to act against hyperextension to 
prevent injury, and act as a secondary restraint to 
prevent internal and valgus rotation when the 
knee is at full extension. The ACL essentially con-
trols the “screw-home motion” of the knee joint 
[66]. The primary function of the ACL is to pre-
vent anterior translation of the tibia and provide 
further knee stability. In full extension, the ACL 
absorbs 75% of the anterior translation load, and 
85% between 30° and 90° of flexion [74, 59].

Fig. 21.1  Knee hinge joint model
Fig. 21.2  The definition of knee joint angles and translation 
along 3 axes. Both tibia and femur translation are explained 
by the compression-distraction and each of the axis as shown. 
Internal-external, flexion-extension, and Abduction-
adduction are the possible rotations at the knee joint
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Knee injury can result into an ACL tear which 
lead to anterior knee instability and decrease in 
knee performance. ACL under load to failure 
testing reaches the ultimate stress at approxi-
mately 15% strain, and complete failure occurs 
between 15% and 30% strain, with a stretch close 
to 1 cm [60, 33]. The ACL has been reported to 
have an average maximal tensile stress to failure 
of 2100 N to 2500 N, but this is less under cyclic 
loading, creep, and age [93, 82, 19, 5].

The posterior tibia translation is controlled by 
the posterior cruciate ligament (PCL) and is most 
effective in mid to deep flexion. As stated by [66] 
the ACL and PCL together control the anterior 
posterior rolling and sliding kinematics of the TF 
joint during flexion and extension.

The PCL has an average tensile strength of 
6.1 N at 0°, and a tensile strength of 112.3 N at 
90°. [82]. The orientation of the PCL which 
inserts onto the lateral part of the medial femoral 
condyle allows for adequate tensioning of the 
PCL during the rolling of the lateral femoral con-
dyle posteriorly in early flexion.

The interplay between the ACL and PCL is 
often referred to as the “four-bar cruciate 
linkage system” [39]. The intersection of the 
ACL and PCL shows that the center of joint 
rotation moves posterior with knee flexion. 
This allows both sliding and rolling movements 
of the femur during flexion and prevents the 
femur from rolling off the tibial plateau at 
extremes of flexion [11].

The axes of rotation of the knee are fundamen-
tal to kinematic models. The hinge model is not 
necessarily used for the current knee motion 
analysis as it is contradicted by the geometrical 
shape of the femoral condyles and the fact that 
the knee center of rotation is not fixed. The con-
cept of “instant center of motion” has been 
linked to 4-bar mechanism where the ACL and 
PCL are viewed as rigid bars linking the tibia and 
femoral part the knee (see Fig. 21.3). The four-
bar linkage theory can then be used to describe 
the knee motion and defines the instantaneous 
center of rotation associated with such mecha-
nism. Assuming that the four bars are obliquely 
planar we can refer to such a system as a planar 
4-bar linkage. The ligaments tension and stiff-
ness alter the bars length and orientation in space 
which makes the 4-bar linkage not a reliable 
model for the knee. The cruciate ligaments can be 
assumed inextensible fibers and the IC can be 
tracked in relation to the tibia femoral joint as the 
knee flexes.

Different aspects of knee rotations and contact 
in both sagittal and coronal planes can be 
described assuming a center of rotation for the 
femoral component and tibia during the flexion-
extension of the knee as shown in Fig. 21.4. The 
contact area is highlighted by the intersection of 
the tibial and femoral curvature radiuses. If the 
circles are tangent, we have a point contact other-
wise there are two points of intersection defining 
a line contact. A surface contact is more realistic 

PCL ACL PCL ACL PCL

ACL

Fig. 21.3  Four-bar linkage system interplay of the ACL and PCL at 0°, 45°, and 90° degrees of flexion
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as both the line and point contacts are simply a 
representation of the contact area.

The role of the medial and lateral collateral 
ligaments can be described as follows: medial 
collateral ligament (MCL) is the restraint force to 
valgus angulation and internal tibial rotation and 
is a secondary restraint to external tibial rotation. 
It is also a secondary restraint to anterior tibial 
translations when the tibia is externally rotated. 
The lateral collateral ligament (LCL) on the hand 
is the restraint to varus angulation. It also assists 
in restraining the posterior translation, and 
becomes a restraining element with the PCL to 
external tibial rotation [66].

21.5	 �Function of the Menisci

The menisci wedge shape aids in providing con-
formity to the femoral and tibial articular surfaces. 
The primary functions of the menisci are to bear 
loads, to distribute the load of the knee joint medi-
ally and laterally passing the tibia–femur joint 

[105]. It also plays the role of a damper absorbing 
and damping energy during impact. This is done 
by the menisci inherent structure to deform under 
compressive loads by increasing the contact area 
[25]. The tensile stiffness and strength of the 
menisci are approximately 10 times greater than 
those of articular cartilage [101]. This allows the 
menisci to withstand the large hoop stresses gen-
erated by the knee joint [41, 68]. The menisci may 
also function as a secondary restraint to anterior 
translation in an ACL-deficient knee.

21.6	 �Gait Analysis of the Knee 
Joint

Gait analysis has gained popularity in the last 
decade due in part to better mathematical tech-
niques and graphics display of the human muscu-
loskeletal system with reliable solvers for inverse 
dynamics. Clinically gait analysis provides an 
insight into the motion limitations of the knee 
under different conditions, which when com-
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Fig. 21.4  Description of the medial and lateral contact points between the femoral and tibial in the sagittal and coronal 
planes
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bined with imaging helps the physician develop a 
comprehensive idea on motion effects on patient 
problems. Hence, biomechanical gait analysis 
objective is the evaluation of the knee joint move-
ment for a better understanding and diagnosis of 
knee joint injuries and pathologies. Several stud-
ies of OA have recognized the importance of bio-
mechanical gait analysis in the pathogenesis of 
the knee joint and its supporting soft tissue 
structure.

Gait analysis combines both kinematical data 
of the lower and upper limbs collected through 
vision cameras and markers and uses mathemati-
cal models based on multibody dynamics to com-
pute the inverse dynamics problem where it 
provides an estimation of the joint forces and 
moments. For this reason, biomechanical assess-
ment has become important for knee joint prob-
lem diagnosis; it provides quantitative 
information about the structure and motion of the 
knee joint to complement the common orthope-
dic physical evaluation exam for more accurate 
diagnosis. Moreover, the experiments can be tai-
lored such that gait phases can become indicators 
for sports and rehabilitation.

Walking, running, and stair climbing are 
activities that have been investigated by several 
researchers using gait analysis. While the main 

function of the knee joint is complex, gait simpli-
fied models can evaluate the joints forces and 
moments in relation to the body weight (BW) and 
walking speed. This of course is done for both the 
stance and swing phase of a gait cycle. The peak 
load at the knee joint varies from person to per-
son and is estimated at 2–3 BW during walking, 
4–6 BW during stair climbing, and 7–12 BW 
during running [23, 86, 40, 69].

The walking gait is characterized by two 
phases stance phase and swing phase as shown in 
Fig. 21.5. A full gait cycle is denoted by 100% 
and starts from the time foot heel strikes the 
ground and going through the swing phase to the 
time it strikes the ground again. The stance is the 
initial 65% of the gait cycle and the swing phase 
is the rest 35% of the cycle [49]. The stance phase 
consists of three sub-phases: initial (heel strike to 
foot flat), middle (foot flat to opposite heel strike), 
and terminal stance (opposite heel strike to toe-
off) [22, 30, 49].

21.7	 �FEA Modeling of the Knee

Finite Element (FE) methods are widely used in 
orthopedics implant and prosthesis design. FEA 
is becoming a clinical tool for simulation of com-

Heel Strike
(HS)

Heel Strike
(HS)

Heel Off
(HO)

Stance Phase Swing Phase

Toe Off
(TO)

Mid Swing
(MS)

Fig. 21.5  Gait stance and swing phases defined as a per-
centage of 100% full gait cycle (Y.  Qi, C.  B. Soh, 
E. Gunawan, K. Low and R. Thomas, IEEE Transactions 

on Neural Systems and Rehabilitation Engineering, vol. 
24, no. 1, pp. 88–97, Jan. 2016)
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plex cases where new concepts or design are 
tested virtually before implementation. FE com-
bined with imaging have provided considerable 
insight into understanding knee joint biomechan-
ics, including ligament function, ligament recon-
struction technique, and implant design. FEA is a 
mathematical tool that uses the law of mechanics 
to provide solutions to clinical problems in terms 
of stress-strains, force-deformations, work-
energy, and other parameters used to describe the 
problem at hand. Due to inherent challenges 
associated with experiments (in vivo and ex vivo), 
FEA has long been recognized and trusted by 
researchers and government agencies such as the 
FDA as a reliable alternative method to the study 
of human joints-implant testing and validation.

Subject-specific FE modeling based on mod-
els obtained from CT-MRI data of that specific 
patient is useful in the study of OA as it can 
investigate the true interaction between multiple 
tissues and how changes in one can lead to impli-
cations in an adjacent tissue, which may lead to 
disease initiation or progression [17, 75]. 
Specifically, this FEA can investigate through 
different iterations of the same model by chang-
ing the material properties, the boundary condi-
tions, and loading conditions (walk versus run) to 
assess such change on the model function. 
Sensitivity of design parameters associated with 

prostheses is studied without the burden of exper-
iments cost [8, 14, 95].

FEA relies great deal on building realistic 
models and making the right assumptions to 
build high fidelity into the solutions provided by 
the FEA simulation studies (see Fig. 21.6). In the 
context of joint biomechanics, modeling of soft 
tissues such as ligaments becomes crucial to 
understanding how, to design corrective thera-
peutics and restore joint function [90, 21, 36].

FEA is still being developed to address multi-
tude of questions and whether current models can 
be used to investigate a multiscale of substructure 
elements simultaneously while performing 
flexion-extension of the knee. Since multiple 
measurements are difficult and most experiments 
are designed for a specific purpose, additional 
techniques must be developed for validation pur-
poses where both rigid, deformations and fluid-
structure interaction are possible.

21.8	 �FEA Modeling of Knee 
Ligaments

Ligaments are complex viscoelastic structures that 
generate the necessary forces to maintain knee sta-
bility and smooth articulations within the kinemat-
ical range of motion they can sustain within 

Fig. 21.6  FE modeling steps using CT/MRI scans (images), CAD model generated using MIMICS, and mesh and 
assembled model with connective tissues using ANSYS

F. Amirouche and J. Koh



279

injuries. How are these supporting structures-
ligaments modeled in FEA. Models must be real-
istic, simple and capture the essential information 
for the task explored and analyzed. Early FE stud-
ies of the knee joint used uniaxial discrete line ele-
ments which can be viewed as springs with 
assigned material properties such as young modu-
lus of elasticity found through testing and cadav-
eric experiments [9]. These models limitations can 
be overcome by high resolution imaging (MRI), 
and close look into the fibers alignments and 
mechanical testing to build a 3D ligament model 
that can be incorporated into the 3D FEA of the 
knee [9, 24]. A combination of accurate geometry, 
isotropic and transverse hyperelastic constitutive 
material models [51, 80] were developed in the 
study of the knee [97, 28, 12, 99]. The three liga-
ments models stated above are shown in Fig. 21.7.

The knee mathematical modeling seems to rely 
great deal on the understanding of the anatomy of 
ligaments, menisci, tendons, and patellofemoral 
and tibia articulations. While FEA and other 
dynamic tools have advanced the state of the art of 
modeling, the problem has become obviously 
important that additional computational tools are 

needed to appropriately diagnose and treat pathol-
ogies at early stage of their development.

21.9	 �Knee Biomechanics 
and Joint Acoustic 
Assessments

An area that needs further studies in knee biome-
chanics is acoustic and vibration. Knee joint 
sounds provide unique characteristics of how bio-
material structures respond to load. During the 
joint motion, the knee ligaments, tendons, carti-
lage and menisci inherent natural frequencies 
associated with their healthy geometry can be 
altered in the presence of injuries. Acoustic emis-
sions are part of the knee biomechanics and their 
properties can be used as indicators when examin-
ing the knee (See Fig. 21.8). Vibration methods, 
such as acoustic and modal analysis, have been 
used in other industries with a lot of success to 
diagnose structural faults such as rattling effects, 
stress risers, and structural designs. Better under-
standing of the vibroacoustic characteristics of the 
knee must be developed. This work can pave the 

2D1D 3D

LCL

Fig. 21.7  CAD 
modeling and FEA of 
different LCL models 
(1D, 2D, and 3D)
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way for future studies aimed at employing acous-
tic emission and modal analysis approaches for 
knee health monitoring outside of clinical set-
tings, such as for field-deployable diagnostics 
[15]. Other imaging techniques used to diagnose 
knee lesions expose the patient to potential radia-
tion and are not suitable for outside clinical set-
tings, such as on the sports field. Another example, 
the meniscus has shown to be an important factor 
impacting knee acoustic emissions, by influenc-
ing the width of joint space and, thus, the contact 
pressure of the tibiofemoral joint [98, 62].

This acoustic tool is still a new research tool in 
knee biomechanics but it is a well-developed 
method in other industries. Possible predictors to 
the signal at the knee are still unknown due to the 
complexity of anatomy and how other elements 
can be elicited during the knee motion. Only 
when most of the contributing factors to the 
sound signal are identifiable and become known, 
proper diagnosis of the knee can be performed.

21.10	 �Advances, Challenges, 
and Future Directions 
in Knee Biomechanics

Today surgeons are regularly performing major 
complex reconstructive knee surgery, with highly 
encouraging results. Navigation and robotics are 

leading the way along with new operating scopes 
and devices assisting the surgeon achieve the 
most desirable outcome. Virtual reality and aug-
mented reality are both being tested in the educa-
tion and preparedness of surgeons in a world of 
complexity never seen before. Interactive surgery 
and access to vital information in real time is key 
to future advances.

Some of the knee challenges tend to be related 
to soft tissue repairs and regenerative cartilage. A 
simple ligament or menisci tear tends to raise 
questions on what procedure is most suitable.

The menisci can cause pain, clicking, giving 
way, locking, and swelling in the knee. If a 
meniscal tear is symptomatic, then it is likely to 
need surgery, and unfortunately only a minority 
of meniscal tears are repairable. The literature 
suggests that maybe only about 15 per cent of 
tears are repairable [58, 78, 31, 96]. The alter-
native of waiting then having knee replacement 
needs to be revisited. The idea of replacing the 
torn menisci with a new one is what is done by 
surgeons who perform menisci transplantation. 
This complex procedure allograft must be sized 
correctly and match the side of the knee. The 
meniscus itself is made of collagen, and every-
one’s collagen is the same so there is no rejection. 
This area of research is improving, and each knee 
component plays an important role in the biome-
chanics of the knee.

Fig. 21.8  Knee sound recording, Knee acoustic emis-
sions were recorded using two high-performance, top port 
silicon acoustic sensors (size: 3 cm in diameter and 1 cm 
in depth, SPU0414HR5H-SB, Knowles Electronics, 
LLC.  Itasca, IL, USA). One microphone was placed on 

the medial tibial plateau and one in the center of the 
patella. The sound signals were digitized with a sampling 
rate of 16,000 Hz. (Kalo et al. Journal of Biomechanics 
109, 2020)
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The future of knee repair and surgery lies in 
advances in biological reconstruction, with 
allografts, with 3D printed biological scaffolds, 
with tissue engineering, growth factors and stem 
cells, augmented reality and artificial intelligence 
and simulation assisted surgeries. Knee biome-
chanics will play an important role in the future 
of knee repair and surgery which is set to be inno-
vative and different from current practice.

Finite element methods together with other 
advance techniques in multibody dynamics, mul-
tiphysics will advance the state of simulation of 
the mechanical response of the complete knee 
under different loading and pathological condi-
tions. FEA have benefited and will continue to 
benefit from increased computational power. 
However, the computer power never seems to be 
sufficient for real-time simulation of the load 
response of a knee joint. Improved numerical 
procedures or brand-new techniques are still nec-
essary for better and faster understanding of sur-
face contact solutions. The challenge to verify 
and validate a knee joint model is still work in 
progress.

Integrating FEA into gait analysis is required 
to determine the contact pressures in the knee in 
order to understand an abnormal gait. An FE 
knee model with a single-phase incompressible 
material law may be sufficient for the analysis of 
gait cycles but will not provide any information 
on the nutrient transport in articular cartilage that 
is performed by fluid flow in the tissue. A better 
FEA model will be needed to help understand the 
load share between the solid matrix and fluid 
pressurization, and the stress in the collagen.

Biomechanics in general is becoming a field 
of multi-disciplinary sciences and physics and 
mechanics working together to build anatomical 
realistic models to help us simulate conditions 
that are impossible in vivo or vitro. Another chal-
lenge remains on developing computationally 
and efficient parallel processing computers to 
meet future demands and challenges in knee bio-
mechanics including surgical procedures.

Another aspects of biomechanics future stud-
ies are the classification of knee data into different 
diseases classes. Both clinical and modeling tech-
niques including gait will benefit from the use of 
these large data samples. The use of AI (artificial 

intelligence) and deep learning neural networks 
could formulate a new knee joint biomechanical 
data classification that could easily be ready for 
access when diagnosis and treatments for com-
plex cases are not available. Augmented reality, 
AI, biologics, and surgical innovations are the 
future for orthopedics.
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