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11.1  Introduction

Although the rotator cuff tears are more common 
in older individuals, this kind of pathology also 
frequently affects athletes and young workers 
engaged in repetitive overhead activities. The 
rotator cuff is a complex musculotendinous unit, 
which plays a major role in glenohumeral joint 
stability and mobilization. Injuries of the rotator 
cuff can lead to significant functional impair-
ment, resulting in time loss from sport and com-
petition, and, in the more advanced stages, in 
trouble in performing daily activities. Therefore, 
fully understand the biomechanical features of 

rotator cuff tears and repair is crucial to better 
manage and address the injuries of rotator cuff. 
This chapter provide an overview of the normal 
and injured rotator cuff biomechanics, followed 
by literature evidence and considerations about 
the biomechanical concept of the rotator cuff 
repair.

11.2  Biomechanical Properties 
of the Rotator Cuff

Rotator cuff is composed by the tendons of four 
muscles: the supraspinatus, the infraspinatus, the 
teres minor and the subscapularis. These muscles 
create compressive forces to stabilize the gleno-
humeral joint and generate torque to move the 
humerus [1]. In particular, the compressive and 
antagonistic forces of the subscapularis anteri-
orly and infraspinatus and teres minor posteri-
orly, imparts a compression on the humeral head 
into the glenoid, with a mechanism known as 
“concavity compression” [2] (Fig.  11.1). This 
tendinous connection, with the addition of liga-
ments and bone factors, allows for the articular 
stability and, at same time, for the humeral 
motion with respect to the scapula, defining the 
role for tendons as specific active restraints dur-
ing the shoulder movement [3]. The wide range 
of motion of glenohumeral joint is allowed by the 
variety of rotational moments of the cuff mus-
cles, whose tendons insert continuously around 
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the humeral head. The force and the torque that a 
muscle can generate vary with the position of the 
joint: at the extremes of the range of motion, the 
muscles of the rotator cuff are weaker, because 
they are fully contracted or extended, while the 
maximal force is in the midrange of their preten-
sion [4]). The supraspinatus has a major role in 
humeral elevation at higher glenohumeral angles, 
while at lower angles the deltoid contribution is 
higher. The subscapularis and infraspinatus also 
play a role in abduction during internal and exter-
nal humeral rotation [5]. During the arm motion, 
movements of the scapulothoracic joint are asso-
ciated with those of glenohumeral joint, perform-

ing a complex and coordinated pattern of motions 
that Codman defined the “scapulohumeral 
rhythm” [6]: while under the 90° of humeral ele-
vation scapular and clavicular motion are mini-
mal, beyond the 90° there is upward rotation, 
posterior tilting and external rotation of the scap-
ula to allow for the full range of motion in the 
upper extremity [7].

As in the shoulder there is not a fixed axis of 
rotation, the functions of the shoulder muscles 
must be balanced, working together to produce a 
net torque and neutralize opposed elements: the 
superior portion of the cuff and the deltoid neu-
tralize the adduction of the latissimus dorsi dur-
ing pure internal rotation, the posterior cuff and 
the posterior deltoid muscles neutralize the inter-
nal rotation moment of the anterior deltoid dur-
ing forward elevation without rotation [5].

The tendons of the rotator cuff are subjected to 
complex tension loads. Compressive loads stress 
the cuff between the humeral head and the cora-
coacromial arch: in  vivo subacromial pressure 
values of 8  mmHg at rest, 39  mmHg at 45° of 
flexion and 56 with the arm in elevated position 
with 1 Kg weight held in the hand were reported 
[8]. Concentric and eccentric tension loads are 
produced in abduction against resistance and in 
active resistance to downward respectively [8].

11.3  Biomechanics of Rotator Cuff 
Tears

11.3.1  Mechanical Factors in Rotator 
Cuff Tears

Rotator cuff tear aetiology is multifactorial: the 
role of extrinsic factors, which have been classi-
cally considered among the causes of rotator cuff 
tears, takes alongside to that of intrinsic factors, 
such as biologic degeneration and deficit of vas-
cularisation [3]. The extrinsic theory dominated 
the pathophysiology of the rotator cuff tears and 
the impingement syndrome for decades. In 1931, 
Meyer suggested that tears of the rotator cuff 
could develop secondary to attrition due to the 
friction between the rotator cuff and the under 
surface of the acromion [9]. In the 1972, Neer 

Fig. 11.1 Concavity compression mechanism. The com-
pressive and antagonistic forces of the subscapularis ante-
riorly and infraspinatus and teres minor posteriorly, 
imparts a compression on the humeral head into the gle-
noid, with a mechanism known as “concavity 
compression”
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introduced the theory of subacromial impinge-
ment, describing it as a mechanical phenomenon 
corresponding to impingement of the rotator cuff 
tendon beneath the anterior-inferior acromion 
[10]. Neer observed that this condition affected 
mainly the supraspinatus tendon insertion on the 
greater tuberosity, and that occurred when the 
shoulder was placed in forward flexion and 
external rotation. Moreover, he observed that 
this condition presupposed an anatomic irregu-
larity of the acromion and the presence of bony 
spurs in the site of coracoacromial ligament 
insertion on the acromion [10]. The correlation 
between the acromial shape and the cuff disease 
was supported by subsequent cadaveric studies, 
in which a higher prevalence of full-thickness 
tears of the rotator cuff was noted in association 
with the hooked or type III acromion [11, 12]. 
However, later, acromial impingement was 
found not to be the primary cause of rotator cuff 
tears [3, 5, 13]: it resulted associated with 
changes on the bursal side of the rotator cuff 
tears which is less frequently affected than the 
intra-tendinous or articular side [14], and the 
acromioplasty procedures did not avoid the 
occurrence of rotator cuff tears, leading to dam-
age of tendons in 20% of cases [15]. Furthermore, 
the morphology of the acromion seemed to be 

secondary to pathology of the bursal side of the 
cuff [16, 17]: the cuff degeneration lead to pro-
duce an acromial hook, which results in a greater 
load on the coracoacromial arch producing trac-
tion spurs in the coracoacromial ligament [18, 
19]. A contact between rotator cuff and the cora-
coacromial arch was also reported in normal 
shoulders in both cadaveric studies and healthy 
human subject, suggesting that the contact phe-
nomenon between the coracoacromial arch and 
the rotator cuff was not a pathological but a 
physiological condition [20, 21].

Further bone features has been associated 
with injuries of the rotator cuff; a glenohumeral 
joint with a higher acromial coverage index, 
which is the ratio between the distance from the 
glenoid plane to the acromion and the distance 
from the glenoid plane to the lateral aspect of the 
humeral head, is associated with an increased 
risk of rotator cuff tear [22]. The angle between 
the line connecting the inferior border to the 
superior border of the glenoid fossa, and a second 
line connecting the inferior border of the glenoid 
fossa to the most inferolateral point of the acro-
mion, represents the critical shoulder angle 
(CSA) (Fig.  11.2). Since it combines the mea-
surement of the glenoid inclination and the lat-
eral extension of the acromion, CSA has been 

a b

Fig. 11.2 Radiologic parameters associated with rotator cuff pathology. The critical shoulder angle (a) and the acro-
mial coverage index (b)
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used to predict the presence of degenerative cuff 
tears [23]. In a biomechanical simulation model, 
a larger CSA has been shown to increase the 
supraspinatus tendon load at low degrees of 
abduction compared to a control with a normal 
CSA [24].

The mechanism of rotator cuff fatigue damage 
starts with isolated changes in microstructures 
and develops into severe matrix disruption and 
kinked deformation; this degeneration, in addi-
tion to biological changes due to aging and over-
use, predispose the tendons to failure [3]. Studies 
of torn rotator cuff tendons have revealed that 
degenerative changes also appear medially from 
the tear, indicating the presence of degeneration 
before the tear occurs [25, 26]. In particular, the 
critical zone of the rotator cuff, localized at 1 cm 
medially to the supraspinatus insertion in the 
tuberculus major, resulted to have a decreased 
vascularisation [27]. This feature, associated 
with increased local pressure during humeral 
elevation and abduction, may be related with the 
degeneration process, predisposing the tendons 
to failure [3].

In patients who require to achieve a large 
range of external rotation, such as throwers, 
defects of the deep surface of the rotator cuff are 
common. Among these patients, the mechanism 
of cuff injury is explained by the abutment of the 
edge of the glenoid against the under surface of 
the supraspinatus tendon at the extreme of the 
external rotation [5].

Rotator cuff tears typically start at the deep 
surface of the supraspinatus tendon, close to the 
long head of the biceps. This site is subject to 
greater loads, even at rest. The complex and coor-
dinated actions of the rotator cuff muscles are 
coupled in a manner that produces increased 
strain on the surrounding tendons when a tear in 
one tendon occurs. For this reason, a tear of one 
tendon in the rotator cuff could potentially lead to 
an increased risk for injury in the remaining 
 muscles, determining a pattern that induces the 
tear progression and extension [28]. The loads 
are concentred at the margin of the tear, facilitat-
ing the extension of the defect. A tear of 60% of 
the tendon thickness increases of 23.8% the ten-

sile strain in the posterior tendon [29]. Tears of 
the articular side of the infraspinatus increase the 
strain in the middle and superior portions of the 
supraspinatus. Subsequently, the defects of 
supraspinatus propagate posteriorly through the 
reminder of the supraspinatus and the infraspina-
tus [5].

11.3.2  Biomechanical Effects 
of Rotator Cuff Tears

Tears in the rotator cuff result in altered glenohu-
meral joint mechanics and are frequently associ-
ated with loss of strength and stability of the 
shoulder. However, clear evidence about the rela-
tionship between the tear features and the func-
tional outcomes still lack. The superior translation 
of the humeral head represents the most impor-
tant biomechanical consequence of the rotator 
cuff tears, and the main radiograph signs of mas-
sive cuff deficiency. Large-to-massive tears may 
lead to rotator cuff tear arthropathy, which 
implies the development of progressive glenohu-
meral and acromiohumeral arthritis secondary to 
the tear, associated with joint pain and reduced 
humeral elevation [30, 31].

When the dynamic function of rotator cuff is 
compromised by a tear, the external rotation and 
the elevation are primarily decreased. Burkhart 
introduced the concept of the rotator cuff cable 
[32], a thickened area of the rotator cuff tendon 
which inserts anteriorly between the anterior 
insertion of the supraspinatus and superior half 
insertion of subscapularis, and posteriorly near 
the inferior insertion of infraspinatus tendon. 
Burkhart noted that rotator cuff tears that did not 
involve the cable, such as supraspinatus tears 
alone, were functional and biomechanically 
intact, because the cable remained intact [33].

Regarding the abduction torque, the features 
of rotator cuff tears which could affect the 
force transmission are the supraspinatus ten-
don detachment and the retraction of its mus-
cle. In a cadaveric study [34] the effect of 
different size and shape of the rotator cuff tear 
on in vitro force transmission was investigated, 
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comparing different size of supraspinatus ten-
don detachment with a defect of tendon sub-
stance and muscle retraction: authors reported 
that only after detachment of the entire width 
of the supraspinatus tendon, the transmitted 
force significantly decreased; this finding sup-
port the concept of rotator cable, pointing out 
that the muscle forces are effectively transmit-
ted by the rotator cuff as long as the rotator 
cable is intact. Furthermore, in this cadaveric 
study, the simulated muscle retraction resulted 
in significantly greater decrease in transmitted 
force compared with the isolated detachment 
of the tendon, showing that rotator cuff muscle 
retraction contributes substantially to loss of 
shoulder strength following large rotator cuff 
ruptures [34].

In order to gain more insight in the effect of 
rotator cuff tear in shoulder biomechanics, the 
kinematics of the joint with a defect of the cuff 
was analysed in literature. In particular, the 
assessment of humeral head position, external 
humeral rotation, humeral abduction and 
associated scapulothoracic rotations were inves-
tigated, and the findings showed that the shoulder 
kinematics is associated with rotator cuff tear 
size [35–37]: while isolated tears of 
supraspinatus had no significant biomechanics 
consequences, massive cuff tears involving 
supraspinatus or subscapularis altered signifi-
cantly the kinematics of the shoulder. In a cadav-
eric study [36] in which five shoulder specimens 
were subjected to different loading conditions 
with sequentially larger anterosuperior cuff tears, 
a significant increase in anterior-superior and 
superior translation resulted only after that the 
anterosuperior tears were extended to the supe-
rior half of the subscapularis. No significant bio-
mechanical consequences, in contrast, were 
reported after isolated tears of supraspinatus. 
These results support the rotator cuff cable con-
cept, suggesting that the preservation or the loss 
of the anterior cable attachment represents an 
important determinant of the biomechanics of 
anterosuperior rotator cuff tears [36]. In line with 
these findings, in another cadaveric study, in 
which the effect of 1 and 3 cm isolated supraspi-

natus tears on joint kinematics was examined, no 
significant changes were founded in glenohu-
meral translation [38].

Regarding the position of humeral head along 
the superior-inferior and anterior-posterior axis 
during scapular plane abduction in shoulder with 
rotator cuff tears, superior migration of humeral 
head, when the superior shear forces created by 
the deltoid are no longer effectively opposed, was 
described in studies employed in vitro static eval-
uation techniques [39, 40] (Fig. 11.3).

In a dynamic in vivo study, on the other hand, 
an inferior dynamic translation was founded dur-
ing scapular plane humeral abduction [41]. 
During an in vitro simulation of active shoulder 
kinematics, the effect of three sequential simu-
lated tears affecting the supraspinatus and the 
subscapularis during the unconstrained glenohu-
meral abduction was provided [35]: authors 
founded that, as the size of the simulated cuff 
tear increased, the plane of elevation became sig-
nificantly more posterior at all angles of abduc-
tion, and the position of humeral head became 
more anterior for angle of abduction greater than 
50°. No differences, on the other hand, were 
founded regarding the position of humeral head 
along the superior-inferior axis [35]. In an 
in  vivo study in which a 3D to 2D model-to-
image registration techniques was provided [42], 
a more anterior position of the humeral head 
centre was founded in shoulder with large-to-
massive full-thickness rotator cuff tear than in 
controls, at internal rotation position during 
dynamic axial rotation in adducted position. 
Moreover, authors reported a more medial posi-
tion of humeral head in patients with rotator cuff 
tear than in controls at the late phase of dynamic 
scapular plane abduction [42]. A recent in vivo 
three-dimensional bone model of ten shoulders 
with massive rotator cuff tears showed a signifi-
cantly higher humeral head position under the 
40° of abduction angle than the normal contra-
lateral shoulder [43].

Regarding the associated scapular kinematics, 
Authors of the latter study reported a significant 
increase of scapular upward rotation in the initial 
position at 20° of humeral abduction and at the 
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final elevation, over 130° of humeral abduction in 
shoulders with rotator cuff tears [43]. In another 
kinematics study, the comparison between 
patients with massive posterior-superior rotator 
cuff tear and patients with subacromial pain syn-
drome associated with intact rotator cuff showed 
a lower humero-thoracic abduction and forward 
flexion, associated with a marked increase in 
scapular upward rotation in the rotator cuff 
injured group [37]. Furthermore, decline in 
humeral abduction and increase in scapular 
upward rotation were founded in simulated mas-
sive posterior-superior rotator cuff tear created 
after a suprascapular nerve block in healthy vol-
unteers [44]. These results about the postero- 
superior massive tears, since the infraspinatus 
muscle has a direct impact on the glenohumeral 
joint and does not directly control scapula-thorax 
motion, suggested that the increased scapular 
upward rotation (i.e. scapulo-thorax lateral rota-

tion) should be compensatory in nature [37, 44] 
(Fig. 11.4).

11.4  Biomechanics of Rotator Cuff 
Repair

The rotator cuff repair must aim to fully restore 
the anatomy and function of the rotator cuff 
tendons.

Regarding isolated supraspinatus lesion, the 
biomechanical effect of repair was seen by Yu 
et al. [45] only at 10° abduction with 60 N load-
ing with an increase in percent inferior force after 
repair that may represent greater concavity com-
pression and spacer effect, which are both impor-
tant functions of the supraspinatus. This same 
increase was not observed with the deltoid loaded 
to 90 N, which could be a function of the effect of 
loading producing an offset between the inferior 

a b

Fig. 11.3 Humeral head position in shoulder with rotator cuff tear. Rotator cuff tear resulted in superior migration of 
humeral head among cadaveric static evaluations. (a): normal cuff; (b): injured cuff
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and superior forces. No changes were seen in the 
contact area, pressure, or position after repair, 
suggesting that repair of full-thickness rotator 
cuff tears does not completely recreate normal 
glenohumeral biomechanics or that no change 
existed in the pathologic tear specimens from 
normal.

By the way, when a tear is large, it may some-
times be difficult to bring the torn edges back to 
the original insertion site of the greater  tuberosity. 
In those cases, a medial shift of the insertion site 
of the cuff tendon is one of the surgical options. 
According to biomechanical studies by Yamamoto 
and those by Liu et al., a medial shift of 17 mm or 
more should be avoided from the functional point 
of view because it reduces both the moment arm 
and the range of shoulder motion [46, 47].

Several biomechanical studies investigated 
the effect of different angles anchor insertion and 
inclination in rotator cuff repair, with the aim to 
achieve greater pullout strength possible. In 1995 
Burkhart introduced the deadman theory [48], 
suggesting that an anchor inserted at 45° may 
show the greatest pullout strength theoretically. 
However, biomechanical pullout studies, have 
shown that anchors inserted at 90°, 135° or 
between 105° and 135° present the greatest pull-
out strength [49–51], advancing that the deadman 
theory depends on the friction of the anchors. In 
a review associated with additional biomechani-
cal studies, Itoi et al. [52] reported that the inser-
tion angle of 90° is the strongest for a threated 
anchor. Furthermore, authors of this latter study 

showed that the pullout strength depends on the 
inclination of the anchor, friction of the anchor–
bone interface and quality of bone. In particular, 
the insertion angle of the suture threated anchor 
should replicate the angle of applied load to 
ensure the optimum pullout strength [52]. 
(Fig. 11.5).

Regarding the rows of the anchor, there are 
single, double and triple row repair described, 
with associated different types of stiches con-
figuration. In a cadaveric study, in which a sim-
ple single-row repair construct and a linked 

a b

Fig. 11.4 Scapular associated kinematics in rotator cuff 
tears. In vivo kinematics studies reported increase in scap-
ular upward rotation (scapula-thorax lateral rotation) 

associated with a decreased humeral abduction in shoul-
ders with postero-superior massive rotator cuff tears. a: 
normal cuff; b: injured cuff

Fig. 11.5 Effect of different angle insertion of suture 
threated anchors in rotator cuff repair. In order to achieve 
the best performance of suture threated anchor with strong 
friction, surgeons must insert the anchor close to the line 
of pull
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142

single- row construct were compared, no signif-
icant differences in ultimate load to failure and 
resistance to gap formation between the simple 
and the linked single-row construct were 
founded [53].

Many biomechanical studies have already clar-
ified that the use of transosseous equivalent repair 
for rotator cuff repair was superior to other tech-
niques such as the single- or dual-row technique in 
terms of contact area or pressure between the rota-
tor cuff tendon and the footprint, and the initial 
pullout strength [54–57]. Using the transosseous 
equivalent technique, a greater initial fixation 
strength may be achieved. However, the tendon 
itself is inherently elastic. Fixing the torn tendon 
with the transosseous equivalent repair technique, 
the tendon may lose its inherent elasticity due to 
the crossover of the strong sutures. The initial 
strong fixation is needed to avoid pullout failure 
after surgery. However, the fixation is required 
only for the first few months. Yamamoto et al. [57] 
demonstrated that the rotator cuff tendon became 
stiffer after arthroscopic rotator cuff repair, espe-
cially transosseous equivalent repair, by measur-
ing the strain of the supraspinatus tendon using 
ultrasound elastography. Results showed that the 
superficial layer of the supraspinatus tendon was 
stiffer after transosseous equivalent repair than the 
contralateral side at the final follow up [57]. In 
addition, their study revealed that a high-stress 
concentration was observed around the insertion 
sites of the medial row threads.

The tying of the medial knots during transos-
seous equivalent repair is controversial. There are 
several biomechanical reports demonstrating bio-
mechanical improvement (ultimate load, contact 
pressure, and stiffness) by tying the medial row 
of a transosseous equivalent repair [58, 59]. 
Tamboli et  al. [60] investigated the effects of 
bite-size horizontal mattress stitch: whereas a 
4-mm bite fixed the tendon more tightly but at the 
cost of decreased ultimate strength, a 10-mm bite 
conveyed greater ultimate strength but with 
increased gap and strain. Authors concluded that 
for transosseous equivalent repair, large stitches 
are beneficial because the repaired tendon has a 
higher strength, and the slightly mobile medial 
knot can be tightened by lateral fixation.

Anatomic and biomechanical cadaveric stud-
ies highlighted the structural and functional rela-
tionship between superior shoulder capsule and 
the articular side of rotator cuff suggesting that 
articular-sided partial-thickness tears include 
detachment of the superior shoulder capsule from 
the greater tuberosity [61, 62]. In a cadaveric 
study a significant increase of anterior and infe-
rior glenohumeral translation was founded after 
that a tear of superior capsule was performed, 
compared with the intact capsule state [62]. 
Satisfactory results were reported about the repair 
procedure to manage articular-sided partial- 
thickness rotator cuff tear [63, 64]. In a cadaveric 
analysis of the effect of an articular-sided partial 
supraspinatus and infraspinatus tear during the 
simulated late-cocking and acceleration phases of 
throwing, no significant differences in humeral 
head apex position, internal impingement area or 
glenohumeral contact pressure were reported 
compared with the intact condition [65]. In the 
same study, authors performed a transtendon 
repair with two anchors providing a significant 
decrease of external humeral rotation, posterior 
shift of humeral apex position, decrease of gleno-
humeral contact pressure at maximum external 
rotation and decrease of internal impingement 
area compared with the intact and the torn status 
during both the two phases of throwing. These 
results suggested that transtendon repair of an 
articular-sided partial supraspinatus tear may 
cause overtightening of the torn tendon and supe-
rior capsule, minimizing secondary subacromial 
and interior impingement, and that careful evalu-
ation of patient individual shoulder laxity should 
be assessed when the transtendon repair is chosen 
for address an articular-sided partial tear [65].

11.4.1  Irreparable Tears

Rotator cuff tears are defined as irreparable when 
the lesions cannot be repaired primarily to their 
insertion on the tuberosities with conventional 
techniques of surgical release/mobilization, 
because of their size, retraction, and muscle 
impairment caused by atrophy and fatty infiltra-
tion [66].
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With the aim to better address the massive 
irreparable rotator cuff tears, Burkhart et al. [33] 
introduced the concept of the “suspension bridge” 
which lead to the development of the functional 
partial repair: the repair of the whole subscapu-
laris and the inferior half of infraspinatus, with-
out the complete coverage of the defect, can 
restore the normal shoulder mechanics, 
 recovering the transverse force couples and a 
stable fulcrum for glenohumeral kinematics [66].

Several biomechanical studies investigated 
the influence of the superior capsule reconstruc-
tion on the superior stability of the shoulder joint. 
Superior capsular reconstruction (SCR) poten-
tially improves function by re-centering the 
humeral head and improving glenohumeral kine-
matics [67].

Several techniques for performing superior 
capsule reconstruction have been described, 
characterized by different type of the graft (fas-
cia lata, extracellular matrix dermal grafts, long 
head of biceps and tendon allografts), whether 
performed in an open manner or arthroscopi-
cally, the mode of the glenoid and greater tuber-
osity fixation, and whether the anchors are all 
inserted before or after passage of the graft 
[67–73].

In a cadaveric study involving eight shoulders, 
Mihata et al. [74] compared the superior transla-
tions of the proximal humerus in five conditions: 
intact rotator cuff, excised supraspinatus, recon-
structed supraspinatus using a bridging graft con-
necting the remnant of the supraspinatus to the 
greater tuberosity, reconstructed superior capsule 
with graft attached to the glenoid and the greater 
tuberosity, reconstructed superior capsule and 
supraspinatus with the patch [74]. They demon-
strated that excising the supraspinatus tendon 
resulted in a significant increase in the superior 
translation of the proximal humerus, which was 
fully restored only when the superior capsule was 
reconstructed with the graft [74]. Supraspinatus 
reconstruction with the graft only resulted in a 
partial restoration of superior translation [74]. In 
another biomechanical study, Mihata et al. dem-
onstrated an 8 mm thick fascia lata graft resulted 
in a greater superior stability than a 4 mm thick 
graft [75]. A significant decrease in superior 

translation was only witnessed with 8 mm thick 
graft as compared to the 4 mm thick graft [75].

When performing SCR, it was also reported 
that addition of posterior side-to-side suturing 
between the graft and residual infraspinatus ten-
don increases the superior stability of the proxi-
mal humerus [76]. In a biomechanical study, 
SCR without posterior side-to-side suturing, did 
not inhibit glenohumeral superior translation, 
whereas addition of posterior side-to-side sutur-
ing resulted in significantly reduced superior 
translation [76].

The superior rotator cuff and superior capsule 
reconstruction technique using long head of 
biceps (LHB) was also proposed and described in 
literature. In a biomechanical study by Han et al. 
the superior capsule reconstruction using LHB 
permitted to reduced humeral head translation 
and subacromial contact pressure [77]. Moreover, 
Authors did not find significant differences 
between the isolated SCR using LHB procedure 
and the side-to-side repair augmentation associ-
ated procedure [77].

Recently, performing acromioplasty with a 
rotator cuff repair has become a subject of con-
troversy. There have been some clinical reports 
describing the excellent outcome after cuff repair 
without acromioplasty [78, 79]. According to the 
2011 guidelines published by the American 
Academy of Orthopaedic Surgeons, [80] the rou-
tine acromioplasty is not required at the time of 
rotator cuff repair. A biomechanical study by 
Denard et  al. [81] demonstrated that a limited 
acromioplasty, of 3  mm in thickness, might be 
enough for decompression while preserving the 
coracoacromial ligament. Because of variations 
in the distance between the undersurface of the 
acromion and the cuff surface, the level of 
acromioplasty should be decided during surgery 
on a patient specific level.

Although the results of routinely acromioplas-
tic are controversial, Mihata et al., investigating 
the effects of acromioplasty on shoulder biome-
chanics associated with superior capsule recon-
struction [82], illustrated that adding 
acromioplasty to SCR with fascia lata signifi-
cantly decreased the subacromial peak contact 
area compared to SCR without acromioplasty, 
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without altering the humeral head position, supe-
rior translation or subacromial peak contact pres-
sure [82]. Based on their findings the authors 
suggested that when performing SCR, acromio-
plasty may help to decrease the postoperative risk 
of abrasion and tearing of the graft beneath the 
acromion, without increasing the risk of superior 
translation [82].

To treat the irreparable rotator cuff tears the 
subacromial balloon spacers have been proposed. 
There is limited biomechanical literature on the 
subacromial balloon spacer and its ability to 
manage irreparable rotator cuff tears. Literature 
is also lacking on the appropriate inflation 
volumes.

The biomechanical study by Singh et al. [83] 
found out that the 25-mL balloon displaced the 
humeral head more inferior than the intact condi-
tion with a mean difference statistically signifi-
cant, but it is not likely clinically significant. 
Their study has some limitations and they only 
tested static abduction.

11.5  Conclusions

The rotator cuff tears modify shoulder biome-
chanics radically. Rotator cuff repair allows to 
restore biomechanics in order to address the clin-
ical impairment. If the tear is not completely 
reparable, adding superior capsule reconstruction 
to partial cuff repair could be a good option for 
young and active patient without rotator cuff tear 
arthropathy, with the aim to restore the native 
shoulder biomechanics.
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