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Numerous advances continue to be made and 
have contributed to the improvement of the diag-
nosis and treatment of patellofemoral (PF) disor-
ders. These include technological advances in 
imaging and computational modeling, devices 
for implantation, and developments in the field of 
orthobiologics. Developments in dynamic/three-
dimensional computed tomography (CT) imag-
ing as well as utilization of the Porto 
Patellofemoral Testing Device (PPTD) have the 
potential to serve as enhanced tools to improve 
diagnosis of PF disease. Similarly, investigation 
into finite element analysis of the PF joint has 
encouraged a greater appreciation of the implica-
tions that anatomical variants can have on PF 

mechanics. Finally, advances in internal bracing 
have emerged as a potentially useful augment in 
the treatment of patellar instability.

28.1	 �Instrumented Laxity 
Evaluation

Physical examination plays a critical role in the 
accurate diagnosis of PF disorders, however it is 
limited by its qualitative nature and variability 
among examiners [1–3]. Standard imaging 
modalities currently fail to incorporate a dynamic 
assessment of the injury [4]. Although there have 
been previous attempts at instrumented quantita-
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tive assessments [5–12], their outcomes and mea-
surement methods demonstrated a significant 
amount of heterogeneity [13].

To address this need, the Porto Patellofemoral 
Testing Device (PPTD) has emerged to provide a 
standardized tool to quantify patellar position and 
displacement [14] (Figs. 28.1 and 28.2). This device 
has the advantage to combine stress-testing system 
simultaneously during an MRI or CT scan. Leal 
et al. have demonstrated that the PPTD offers excel-
lent reliability, accuracy, precision, and low vari-
ability as compared to manual physical exam [14, 
15]. In addition, it provides a better understanding 
of the pathophysiology of the various PF disorders.

Patients with idiopathic unilateral acute knee 
pain (AKP) with morphologically equivalent 
knees demonstrate increased patellar lateral dis-
placement after stressed lateral force with the 
PPTD in their painful knee [15]. Patients with 
objective patellar instability (OPI; patients that 
had a patellar dislocation event with or without 
the presence of anatomical risk factors) and 
potential patellar instability (PPI; patients with 
risk factors but that did not have a patellar disloca-
tion event) display the same curve pattern (steep 

increase close to the final displacement), but with 
patients with PPI showing higher stiffness than 
patients with OPI, as would be expected if their 
medial soft tissue stabilizers function better than 
the OPI group where the medial restraints have 
presumably been injured. For maximum lateral 
displacement, values for patients with PPI are 
closer to the values for patients with patellofemo-
ral pain (PFP; patients with PF pain without ana-
tomical risk factors) because both presumably 
have intact medial soft tissue stabilizers and there-
fore can tolerate greater force application than the 
patients with OPI. These results suggest that the 
force–displacement curve pattern is directed by 
the anatomy and the presence of risk factors while 
the amount of displacement is related to the integ-
rity of the medial patellar restraints [16].

More research utilizing this device is needed, 
but data incorporating objective PF laxity and 
stiffness may be used to better define surgical 
indications in the setting of instability and to 
evaluate the surgical outcomes of patellar stabili-
zation techniques. This device also offers new 
insights into the origin of unilateral anterior knee 
pain, admittedly still in an investigative mode.

a b

Fig. 28.1  Porto Patella Testing Device (PPTD) setup for 
stress-testing within imaging equipment (a) initial setup 
without any stress to obtain the position of the patella at 

rest, and (b) 30° of lateral translation stress with medial 
actuator
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a b
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Fig. 28.2  Porto Patellofemoral Testing Device (PPTD) 
sequential stress testing of the right knee with a medial 
patellofemoral ligament tear. (a) Rest position (−1 mm, 
18°); (b) Lateral transition of 0.2 bar, the patella moved 
10  mm and −1° (9  mm, 17°); (c) Lateral transition of 
0.4 bar, the patella moved 15 mm and −2° (14 mm, 16°); 

(d) Lateral transition of 0.6 bar, the patella moved 15 mm 
and −1° (14 mm, 17°); (e) Lateral tilt up to pain threshold, 
the patella moved 18 mm medially and increased 1° of tilt 
(−19 mm, 19°). From A (rest) to B (0.2 bar) to C (0.4 bar) 
there is low stiffness and high stiffness from C to D 
(0.6 bar)
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28.2	 �Dynamic Computed 
Tomography (CT)

The use of dynamic CT has begun to improve our 
ability to quantify the contribution of each patho-
anatomic variant on patellar tracking throughout 
knee range of motion (ROM) and provides a bet-
ter understanding of the biomechanical effects 
that corrective surgical techniques have on patel-
lar tracking. The images can be directly evaluated 
or a 3D computational model can be recon-
structed based on the images acquired (Fig. 28.3).

Tanaka et  al. found that knee flexion angle 
during imaging is a critical factor when measur-
ing tibial tuberosity-trochlear groove distance 

(TTTG) to evaluate patellofemoral instability. 
The mean TTTG distance, which is often utilized 
to indicate osteotomy, varied by a mean 5.7 mm 
between 5 and 30° of flexion in each knee with 
symptomatic instability although this relation-
ship was not completely linear. Measurements of 
patellar lateralization and tilt mirrored this pat-
tern, suggesting that TTTG distance influences 
patellar tracking throughout knee range of motion 
[17].

In regard to abnormal tracking with patellar 
lateralization, higher grades of J-sign (>2 quad-
rants, or when the entire patella is lateral to the 
trochlear groove) have been found to be predic-
tive of symptomatic patellar instability while 

Fig. 28.3  3D reconstruction of dynamic CT imaging in 
bilateral knees demonstrates one image obtained during a 
sequence of knee flexion and extension. Visualization 
throughout range of motion allows for qualitative assess-

ment of patellar tracking, while measurements performed 
in corresponding 2D axial or sagittal cuts allow for quan-
titative measurements of patellar position and 
morphology
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milder lateralization (<2 quadrants) are not [18]. 
That suggests that the degree of patellar lateral-
ization during ROM is related to symptoms, 
which may have utility during physical examina-
tion assessment such as the J-sign. Dynamic CT 
can improve patellar tracking assessments since 
intra- and inter-observer reliability of the visual 
assessment of the J-sign is inadequate (k < 0.60) 
and the agreement between visual and dynamic 
CT is between 53 and 68% [19]. The causes of a 
J-sign can also be better understood with the use 
of dynamic CT. At low flexion angles, both troch-
lear dysplasia (represented by the lateral troch-
lear inclination (LTI)) and lateral quadriceps 
vector (represented by the tibial tuberosity to 
posterior cruciate ligament (TT–PCL) distance) 
are correlated with the bisect offset index, a sign 
of patellar lateralization. However, only lateral 
trochlear inclination has been shown to be corre-
lated with lateral tilt, another sign of maltracking. 
At high flexion angles, bisect offset index and 
lateral tilt are correlated with only lateral TT–
PCL distance [20]. Such findings help us to better 
understanding and evaluate the validity of the 
current definition of abnormal tracking; dynamic 
CT studies of larger populations of asymptomatic 
patients may better distinguish abnormal tracking 
from normal tracking evaluation with dynamic 
CT imaging modalities.

Dynamic CT can also be applied postopera-
tively to assess and evaluate the alterations in ana-
tomic parameters of various PF instability 
correction techniques (isolated MPFL reconstruc-
tion [21] vs MPFL reconstruction with tibial 
tuberosity osteotomy [22]) to determine if the 
underlying anatomic abnormalities had been cor-
rectly addressed. Gobbi et al. demonstrated a lack 
of correction of patellar tracking parameters in 
patients that underwent indicated isolated MPFL 
reconstruction [21]. Though an interesting finding, 
clinically none of the patients had recurrence of 
dislocations. On the other hand, Elias et  al. 
reported that MPFL reconstruction with tibial 
tuberosity realignment reduces patellar lateral 
shift and tilt at low flexion angles [22], suggesting 
that further investigation into the roles of each pro-
cedure at different flexion angles will continue to 
improve our understanding of maltracking and its 

(potential) role in patellar instability, patellofemo-
ral pain, and patellofemoral load/chondrosis.

28.3	 �Finite Element Analysis

Recent investigations applying finite element 
analyses have aimed to address factors that con-
tribute to PF disorders and treatments. Utilizing 
finite element modeling (FEM) [23–25], 
researchers have been able to evaluate the kine-
matic behavior of PF articulation in various dis-
ease settings and simulate morphological changes 
using patient-specific models.

Because of the complexity of patellofemoral 
joint kinematics, which include the static soft 
tissue, static osseous, dynamic and alignment-
related factors that contribute to stability, the 
application of FEM has allowed for a greater 
understanding of the individual factors, as well 
as the interaction between those factors and 
their roles in PF mechanics. Studies of articular 
geometry [26, 27], orientation of the patellar 
tendon [28], rotational alignment of the femur/
tibia [27, 29], vastus medialis obliquus (VMO) 
functionality [30] have increased our under-
standing of PF reaction forces, contact mechan-
ics, and kinematics (including patellar 
tracking).

Using a geometric statistical model, 
Fitzpatrick et al. demonstrated that the shape of 
the articular surface in the patellofemoral joint 
had the greatest influence in PF contact variations 
with larger PF size having increased contact and 
lower contact pressure. This was followed by 
patellar height (5 mm of patellar alta results in a 
25% increase in contact pressure in midflexion) 
and then the contributions of trochlear morphol-
ogy (more conformity confers lower peak contact 
pressures) [26]. Elias et al. demonstrated that an 
increase in PF contact pressures occurs with a lat-
eralized patellar tendon through a computational 
analysis of external rotation of the tibia [28]. A 
similar computational analysis by Besier et  al. 
revealed that a 15° increase in external rotation of 
the femur resulted in a 10% increase in PF con-
tract pressures (shifting the pressure from the lat-
eral patellar facet to the medial facet). In this 
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study, patellar cartilage was shown to be more 
sensitive to these changes in femoral rotation 
with a greater increase in shear stresses in the 
patellar cartilage than in the femoral cartilage 
[29]. A subsequent computational analysis per-
formed by Elias et al., looking PF contact force 
variations with VMO functionality revealed that 
with decreasing VMO force there is an analogous 
increase in lateral patellar contact forces [30]. 
Rezvanifar et al. evaluated the influence of troch-
lear dysplasia (represented by the lateral troch-
lear inclination), patella alta (represented by the 
Caton-Deschamps index; CD), and lateral tuber-
osity position (represented by the TT-PCL) on 
tracking (represented by the bisect offset Index 
and lateral patellar tilt) during knee squatting. 
Modifying the LTI, CD, and TT-PCL to represent 
mild to severe abnormalities, the authors demon-
strated that a shallow trochlear groove increases 
lateral patellar maltracking. They also found that 
a lateralized tibial tuberosity in combination with 
trochlear dysplasia increases lateral patellar 
tracking and the risk of patellar instability. In this 
study, patella alta had relatively little influence on 
patellar tracking when in combination with troch-
lear dysplasia due to the limited articular con-
straint provided by the trochlear groove [27].

Patient-specific models can be used to per-
form simulated TTO [22, 31] and MPFL recon-
struction [32–34] with analysis of the resultant 
effects on PF kinematics, contact pressures, and 
reaction forces. Application of this technique has 
also improved our understanding of the influence 
of tuberosity lateralization on the MPFL graft 
function and subsequent maltracking patterns 
[35, 36]. Through this method, simulated anteri-
orization TTO of 1.25 cm and 2.5 cm has shown 
to be effective in reducing patellofemoral contact 
forces, especially at smaller knee flexion angles. 
The total resultant PF contact force substantially 
increased with flexion but decreased as the tibial 
tubercle was moved anteriorly by 78% at 0° and 
12% at 90° of flexion. In accordance, the maxi-
mum compressive stress substantially decreased 
at full extension; however, it increased at 90° of 
flexion. Substantial effects of tuberosity elevation 
on tibial kinematics, cruciate ligament forces, 
tibiofemoral contact forces, and extensor lever 

arm were found. As TTO anteriorization 
increased posterior translation of the tibia, the 
posterior cruciate ligament and tibiofemoral con-
tact forces at larger flexion angles considerably 
increased, whereas the anterior cruciate ligament 
and tibiofemoral contact forces at near full exten-
sion angles decreased. Overall, the extent of 
changes depends on the magnitude of anterior-
ization, joint flexion angle, and loading.

Similar modeling studies have advanced our 
understanding of MPFL reconstruction by rein-
forcing anatomic placement of the femoral tun-
nel, as small deviations have been shown to result 
in increased PF contact pressures [32–34]. In a 
study performed by Oka et  al., they sought to 
determine the optimal femoral insertion site 
based on three criteria for the MPFL reconstruc-
tion: the graft should remain isometric from 0 to 
60° of knee flexion, be taut in full extension, and 
slacken at >60° of knee flexion. They showed 
that using simulated models their “optimal inser-
tion sites” were analogous to that of the anatomic 
insertion site, which was just distal to the adduc-
tor tubercle [32]. Such a model to determine fem-
oral insertion site was further reinforced by 
Sanchis et  al. comparing parametric models of 
anatomic, non-anatomic/physiometric, and non-
anatomic/non-physiometric MPFL reconstruc-
tions. In reconstructions that were anatomic/
physiometric, the contact pressures in the PF 
articulation were increased from 0 to 30° but then 
decreased from 60 to 120° of knee flexion as the 
MPFL reconstruction slackened. They showed 
that if the insertion site was moved anteriorly 
(non-anatomic) it would be non-physiometric in 
behavior by having no tension from 0–30° but 
with increased tension and PF contact from 60 to 
120° [33]. This is similar to previous findings 
based on FEM studies that showing increased 
graft tension/restraint with anteriorization of the 
femoral insertion site; however, these findings 
were performed at a static 30° knee flexion [34]. 
Anatomic reconstruction is of utmost importance 
as it can have a dramatic influence on the tension-
ing of the graft throughout ROM and the resultant 
PF contact pressures. The goal is to create a 
reconstruction that remains functional during the 
first 30° of knee flexion until the trochlear groove 
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captures the patella and then subsequently slack-
ens as the two attachment points converge 
towards each other.

Collectively, these FEM models hold great 
potential in uncovering important factors that 
affect our ability to diagnose and treat for PF 
instability, and to tailor treatments based on indi-
vidual pathoanatomy. With advances in technol-
ogy and the validation of these models, there will 
be continued insight into each PF disease process 
and their respective ideal treatments.

28.4	 �Suture Tape Augmentation 
of MPFL Stabilization 
Surgery

The primary surgical treatment of patellofemoral 
instability consists of an MPFL reconstruction. 
Most commonly, tendon autograft/allograft tis-
sue is utilized to reconstruct the MPFL. Harvesting 
hamstring autograft can lead to deleterious 
changes in joint mechanics and gait patterns [37, 
38]. Similarly, due to cost and availability of 
allograft, surgeons may be limited in their 
options. MPFL repair has been shown to have 
inferior results when compared to MPFL recon-
struction [39]. As a result, suture tape augmenta-
tion of an MPFL repair has recently been explored 
to determine if it may serve as an equivalent 
treatment option for graft-based reconstruction 
[40]. Mehl et  al. performed a biomechanical 
study comparing suture tape-augmented MPFL 
repair to MPFL reconstruction with allograft in 
ten fresh frozen cadaveric knees. They deter-
mined that suture tape-augmented repair dis-
played equivalent PF contact pressures and joint 
kinematics throughout all knee ROM at a preload 
of 2 N. While there are known higher failure rate 
with isolated MPFL repair, it is not yet known 
whether the suture tape augmentation may negate 
this risk [40]. A recent cadaveric study performed 
by Skamoto et al. demonstrated equivalent maxi-
mal patellofemoral contact pressures when com-
paring knees with suture tape MPFL 
reconstruction fixed at 60–90° of flexion with 
native knees. Fixation of the suture tape at lower 
degrees of flexion was found to result in abnor-

mally increased PF maximal contact pressures 
[41]. At this time, no clinical studies have been 
conducted to investigate this novel technique. In 
addition, similarly to the concept of its use along 
with anterior cruciate ligament reconstruction 
[42]; suture tape augmentation may be used 
along with MPFL reconstruction to increase load 
to failure and decrease elongation of the con-
struct in the early post-operative period. While 
further studies are needed to better understand 
the role of such a technique, this serves as pre-
liminary evidence that MPFL repair with suture 
tape augmentation may be a future alternative for 
reconstruction techniques with the benefit of not 
requiring a soft tissue graft.

28.5	 �Conclusion

In summary, application of these advances to 
growing areas of inquiry studying PF disease have 
led to avenues of tremendous potential to improve 
our ability to accurately diagnose and treat patel-
lofemoral disorders. From dynamic/3D-CT to 
PPTD testing, individualized diagnoses and quan-
titative assessments may be made as to the reason 
for a patient’s PF symptoms. FEM analyses may 
then be applied to understanding these diagnoses, 
identifying individual alterations of pathoanat-
omy and potentially resultant changes with 
patient-specific treatments. And lastly, we are 
breaking into a new era of biologic treatments and 
implantable materials that will undoubtedly have 
a significant impact on future surgical techniques 
in the management of PF instability.
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