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Chapter 13
Cardiovascular Calcification in Systemic 
Diseases

Paolo Raggi and Rekha Garg

�Chronic Kidney Disease

�Epidemiology of Cardiovascular Calcification in CKD

Numerous studies have shown a relationship between vascular calcification and 
increased risk of cardiovascular (CV) events in patients with CKD as well as 
increased prevalence of CV calcification (CVC) with declining renal function. In 
the MESA study, the prevalence and severity of coronary artery calcium (CAC) 
among 1284 subjects with non-dialysis dependent CKD was higher compared to 
5296 subjects with normal renal function [1]. Similar results were reported in the 
Dallas Heart Study. Patients with CKD, defined as microalbuminuria and an esti-
mated glomerular filtration rate (eGFR) <60 ml/min × min × 1.73 m2, had an almost 
three-fold increase in risk of extensive CAC compared to patients with normal renal 
function (odds ratio of CAC greater than 100 units: 2.85; 95% confidence interval, 
0.92 to 8.80 in CKD vs no-CKD subjects) [2].

Gorriz et al. [3] showed a stepwise age-independent increase in prevalence and 
severity of vascular calcification in a cohort of 572 non-dialysis dependent CKD 
patients. Using simple imaging tools such as planar X-rays of the abdomen, hips 
and hands, to detect arterial calcification, the authors reported calcifications in one 
or more territories in 79% of the study participants; in 47% of the patients CVC was 
graded as severe. At dialysis inception the prevalence of CVC is about 60% and it 
increases to about 80% in patients on maintenance dialysis (Fig. 13.1) [4, 5]. Unlike 
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Fig. 13.1  Volume rendered images of the (a) heart and (b) thoracic aorta in a patient receiving 
maintenance hemodialysis showing heavy calcification of the coronary arteries, aorta and cardiac 
valves. LAD left anterior descending coronary artery, LCX left circumflex coronary artery, RCA 
right coronary artery (image courtesy of Dr. An de Vriese, AZ Sint-Jan, Bruges, Belgium)

the general population, there is no difference in markers of vasculopathy (namely 
thoracic aorta calcification, CAC or arterial stiffness) in patients receiving mainte-
nance hemodialysis (HD) regardless of race or sex [6]. This suggests that dialysis is 
noxious for the CV system independent of clinical characteristics that may differen-
tiate patients in the general population. Data on whether renal function restoration 
after kidney transplantation reduces the risk of CVC are limited and likely con-
founded by the concomitant use of various immunosuppressants [7].

Studies evaluating CVC using simple imaging modalities such as vascular ultra-
sound and planar X-ray in the radial, femoral, iliac arteries [8–11], abdominal aorta 
[12, 13], and CAC on chest CTs [14, 15] have all shown CVC as a marker of risk in 
CKD.  In both subjects with normal renal function and patients with CKD, the 
MESA study showed an association between CAC and CV events independent of 
age, sex, race and comorbid conditions [1]. In addition, CAC was a better predictor 
of outcome than markers of arterial stiffness (ankle-brachial index) and carotid 
intima media thickness. Similarly, the Chronic Renal Insufficiency Cohort study of 
1541 non-dialysis patients with CKD showed that CAC predicted myocardial 
infarction, congestive heart failure and all-cause mortality, independent of baseline 
CV risk evaluated by traditional risk score algorithms [16]. Inclusion of CAC in a 
risk algorithm led to a small albeit significant increase in the accuracy of cardiovas-
cular events prediction.

Vascular calcification has been shown to be an independent predictor of all-cause 
mortality irrespective of demographic, risk factors or comorbidities in patients with 
CKD receiving maintenance HD or peritoneal dialysis (PD) and after kidney trans-
plantation [17, 18]. A simple cardiovascular calcification index (CCI) that included 

P. Raggi and R. Garg



261

patient’s age, dialysis vintage, calcification of the cardiac valves, and abdominal 
aorta was linearly associated with risk of all-cause mortality in patients on HD, such 
that the unadjusted hazard risk (HR) increased by 12% for each point increase in 
CCI (P < 0.001) [19]. Adjustment for confounders did not substantially change the 
strength of the association. In contrast, as seen in the general population, the absence 
of CVC is a harbinger of an excellent prognosis. Block et al. showed that within a 
few weeks to months of initiating dialysis, CAC predicted mortality after adjust-
ment for age, race, gender, and diabetes mellitus with an increase in mortality pro-
portional to the baseline score (P = 0.002) [5]. Conversely, the mortality rate was 
low at 5  years in patients without CAC (3.3/100 patient years without CAC vs 
14.7/100 patients years for CAC > 400). In a series of 179 patients receiving PD, in 
the absence of CAC, subjects had a significantly lower risk of all-cause mortality, 
cardiovascular mortality and cardiovascular events, even after adjustment for demo-
graphic and comorbid factors [18].

Observational studies have shown that deposition of hydroxyapatite in the arte-
rial wall is linked to a decrease in arterial compliance and subsequently increased 
CV risk [20, 21]. Di Iorio et al. reported a significant association of CAC and arte-
rial stiffness (assessed via pulse wave velocity) as well as abnormal myocardial 
repolarization (assessed via QT dispersion on EKG) in 132 incident hemodialysis 
patients [22]. In studies of patients with CKD not receiving dialysis, worsening 
CKD stage was associated with a stepwise increase in arterial stiffness [23, 24]. 
Similarly, Raggi and coworkers showed that patients on maintenance HD with evi-
dence of valvular, thoracic and abdominal aorta calcification have reduced aortic 
compliance [25]. Observational data confirmed the cardiovascular risk inherent 
with decreasing arterial compliance.

Similar to vascular calcification, the prevalence and severity of aortic and mitral 
valve calcification are higher in patients with CKD compared to the general popula-
tion and associated with an unfavourable outcome. Valvular calcification leads to 
disturbed leaflet mobility, increased transvalvular pressure gradients, left ventricu-
lar hypertrophy (for aortic stenosis) and left atrium enlargement (with mitral valve 
stenosis and regurgitation) leading to poor outcomes [26, 27]. The increased risk 
associated with valvular calcification appears independent of its reported associa-
tion with coronary artery or aortic calcification [28].

The debate on whether calcium deposition is a repair mechanism versus pro-
moter of vascular damage is still ongoing. There are data suggesting that the mineral 
content of a plaque is a predictor of survival along with the extent of CVC. Bellasi 
et al. showed that a higher CAC density was independently associated with increased 
all-cause mortality with and without adjustment for confounders in a series of 140 
consecutive HD patients [29]. These results are in conflict with data reported in the 
general population. In fact, an inverse association between plaque density and sur-
vival was reported in the general population by the MESA investigators [30]. 
Reverse epidemiology is a plausible explanation. Since most patients with CKD die 
primarily and prematurely of CV related events [31], patients receiving mainte-
nance hemodialysis may not be comparable age- and sex matches for individuals 
with normal renal function.
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�Pathophysiology of Vascular Calcification in CKD

There is a linear relationship between CV mortality and decreased eGFR and 
increased proteinuria [31]. The all-cause and CV mortality rates for patients on 
dialysis are at least 15–20 times higher than the general age- and gender-matched 
population [32, 33]. This burden of CV disease is evident upon the initiation of renal 
replacement therapy when 40% of patients already have evidence of coronary heart 
disease and up to 80% have abnormalities in left ventricular structure and function 
by echocardiographic criteria [32, 34].

It has been postulated that accelerated CV senescence is one of the mechanisms 
responsible for development of CVC and CV risk in patients with impaired renal 
function [35]. Independent of age, CVC becomes more prevalent and severe as renal 
function declines [1]. A large body of evidence supports a biologically plausible, 
temporal [36] and dose-response [37] relationship between vascular calcification 
and CV risk in patients with CKD. Seminal findings by Goodman et al. demon-
strated that CAC starts accumulating in young patients with end-stage renal disease 
(ESRD), decades before this pathology is observed in the normal population [38]. 
CAC scores in adult patients on HD have been reported to be over five-fold higher 
than age- and sex-matched individuals with established coronary artery disease, but 
normal kidney function [39]. A tendency for fast progression of CVC over 1 year 
has been reported in patients receiving HD [40]. Risk factors for greater progression 
of CVC in HD patients include age, diabetes mellitus, time since initiation of renal 
replacement therapy, and elevated levels of serum phosphorous and inflammatory 
markers. In addition to the extent of CVC, the rate of progression of CVC appears 
to be an important risk factor for CV events including mortality.

Intimal calcification is associated with the development and maturation of ath-
erosclerotic lesions and is associated with traditional risk factors such as dyslipid-
emia, hypertension, diabetes and smoking and is not specific to CKD [41]. Medial 
calcification is more specific to CKD being associated with derangement of bone 
and mineral metabolism [42]. In addition, medial calcification is associated with 
vascular stiffening and arteriosclerosis observed with age and metabolic disorders 
including diabetes and ESRD.  Beyond traditional risk factors, numerous non-
traditional risk factors have been associated with CV aging and vascular calcifica-
tion in CKD, namely inflammation, oxidative stress, metabolic derangements and 
accumulation of uremic toxins [35, 43].

Vascular calcification is considered an actively regulated process that may arise 
via a number of cellular mechanisms that include loss of calcification inhibitors, 
development of an osteogenic phenotype in vascular smooth muscle cells (VSMC), 
accumulation of protein aggregates and apoptotic bodies that serve to nucleate the 
development of hydroxyapatite, and disordered mineral metabolism.

In physiologic conditions, inhibitors such as pyrophosphate, matrix-GLA pro-
tein (MGP) or fetuin-A prevent transformation of amorphous calcium-phosphate 
complexes into insoluble crystals of hydroxyapatite and their precipitation in soft 
tissue including the blood vessels [42, 43]. In-vitro and in-vivo data also suggest the 
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role of micronutrients in vascular calcification propagation [44]. Preclinical data 
showed that VSMC incubated with high serum levels of calcium and phosphate 
undergo a osteochondrogenic phenotypic switch and become capable of secreting 
bone matrix in the context of the arterial wall, triggering calcification deposition 
and progression [42]. In addition, chronically elevated serum concentration of cal-
cium and phosphate may lead to precipitation of mineral nanocrystals and the acti-
vation of resident macrophages, pro-inflammatory cytokine secretion and cellular 
apoptosis in an attempt to eliminate calcium-phosphate crystals [43].

An imbalance in pro- and anti-inflammatory cytokines leads to a state of chronic 
subclinical inflammation in CKD. The synthesis of anti-calcifying factors such as 
fetuin-A and the anti-ageing α-klotho [45] is reduced due to over-expression of pro-
inflammatory cytokines such as interleukin 6 (IL-6) or tumor necrosis factor alpha 
(TNFα). Fetuin-A is a glycoprotein synthesized in the liver and essential for the 
formation of the highly soluble calciproteins (a complex of fetuin-A and plasma 
calcium-phosphate crystals) that keep calcium and phosphorus from forming crys-
tal in the circulation. The protein α-klotho modifies the binding of fibroblast growth 
factor 23 (FGF-23) to its receptor in the kidney increasing urinary phosphate wast-
ing [43]. Downregulation of α-klotho expression has been linked with accelerated 
vascular ageing. Furthermore, dysregulation of the α-klotho/FGF-23 axis has been 
implicated in the development and progression of CVC although the exact role of 
this complex is not fully understood [46]. FGF-23 and α-klotho control phosphate 
excretion through the kidneys and may have a direct vascular protective role by 
modulating different signaling pathways such as FGF-receptor 1 and mTOR [43]. 
Further elucidation of the contribution of the FGF-23/α-klotho complex to the 
development of CVC in patients with CKD is needed.

Oxidative stress and advanced glycation end products (AGEs) generation, for 
which oxidative stress is partly responsible, have been implicated in the pathogen-
esis of CVC [43]. AGEs promote RANKL activation in osteoblasts and calcium/
phosphate removal from the bone. In addition, experimental data suggest that AGEs 
may induce VSMC osteogenic differentiation through p38/mitogen-activated pro-
tein kinase (MAPK) and Wnt/β catenin signaling. Finally, AGEs together with other 
uremic toxins synergistically trigger inflammation by inducing the synthesis of pro-
inflammatory cytokines (IL-1, IL-6, TNFα) linked to endothelial dysfunction and 
vascular calcification [43].

As renal function declines, uremic toxins such as indoxyl sulfate (IS) accumulate 
and may directly affect the vasculature [43]. IS triggers the expression of the 
sodium-phosphate co-transporter Pit-1 that leads to the osteogenic differentiation of 
VSMCs induced by calcium and phosphorus. In addition, IS suppresses liver syn-
thesis of fetuin-A further predisposing CKD patients to vascular calcification devel-
opment. Finally, epidemiological observations suggest that patients with CKD are 
deficient in vitamin K (cofactor for MGP carboxylation and activation), and pyro-
phosphate (a major endogenous inhibitor of calcium-phosphate crystals formation), 
and are thus further predisposed to the crystallization of calcium-phosphorus in soft 
tissues [47].
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�Therapeutic Approaches

Several treatments have been implemented to target various steps in the deranged 
metabolism of bone and minerals in CKD. The primary ones consisted of normal-
izing Ca, P, and parathyroid hormone serum levels, minimizing Vitamin D use or 
considering calcium sensing receptor activating drugs (“calcimimetics”) to control 
secondary hyperparathyroidism (see section on secondary hyperparathyroidism). 
Other approaches included administration of pyrophosphate (inhibitor of calcifica-
tion), bisphosphates (inhibitors of bone osteoclastic activity), and Vitamin K (to 
favour the formation of active MGP) in patients with known CVC [48]. Only a few 
of these agents have demonstrated effectiveness in slowing progression of CVC.

Statins, primarily lipophilic, appear to accelerate rather than inhibit calcification 
progression probably due to the inhibition of vitamin K synthesis [49]. MGP is a 
potent inhibitor of calcification and requires activation through a Vitamin 
K-dependent pathway. One trial comparing Vitamin K antagonists vs direct oral 
anticoagulants has been reported, while two more ongoing trials are evaluating the 
effect of vitamin K supplementation on CVC progression. De Vriese et  al. [50] 
randomized 132 maintenance hemodialysis patients to coumadin vs rivaroxaban or 
rivaroxaban plus Vitamin K supplementation. Despite a reduction in the serum level 
of decarboxylated MGP (i.e. inactive MGP) with rivaroxaban or rivaroxaban plus 
Vitamin K2 supplementation, there was no significant slowing of progression of 
coronary artery, valvular and aortic calcification. The VitaVasK study of 348 patients 
on maintenance HD will evaluate the impact of Vitamin K1 on progression of tho-
racic aortic calcification and CAC compared to placebo [51]. The IRIVASC-Trial 
will evaluate the impact of rivaroxaban compared to coumadin/phenprocoumon on 
coronary and aortic valve calcification in 190 patients with an eGFR >15  mL/
min/1.73 m2, and either atrial fibrillation or pulmonary embolism. (https://clinical-
trials.gov/ct2/show/NCT02066662?term=IRIVASC&draw=2&rank=1; last verified 
April 6, 2020).

Phosphate and its associated effects on FGF23 and PTH have been linked to 
CVC [5, 52], and inhibitors of intestinal phosphate absorption, either calcium-
containing or calcium-free, are commonly used to correct hyperphosphatemia in 
patients with advanced CKD [53]. Several studies showed that calcium-based bind-
ers in CKD [54–56] and calcium supplements in patients without renal dysfunction 
[57, 58] promote formation of CVC, while inhibiting bone formation [59, 60]. 
These results were accompanied by an increase in mortality in randomized clinical 
trials of patients with CKD stage 3 to dialysis [61–63], and in a meta-analysis of 
randomized trials comparing calcium-based binders to the non-calcium based bind-
ers lanthanum and sevelamer [64]. Calcium-based binders had a detrimental effect 
on CAC progression and were associated with a significant increase in mortality in 
patients receiving HD compared to non-calcium phosphate binders [64]. Thus, cur-
rent guidelines on bone and mineral metabolism management in patients with CKD 
suggest limiting the dose of calcium-based phosphate binders for all patients with 
renal impairment [65].
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Animal and laboratory experiments suggested that magnesium modulates the 
development of phosphate-induced calcification in a dose-dependent manner [66–
69]. Small clinical studies showed that magnesium either directly slowed CAC pro-
gression or indirectly reduced the propensity for calcification in patients with 
moderate to end-stage CKD [70–72]. An open label randomized trial in 120 patients 
with stage 3–4 CKD showed that magnesium significantly slowed progression of 
CAC compared to standard of care (median change: 11.3%, IQR 0–30.8 vs 39.5%, 
IQR 19.0–81.3; p < 0.001) in patients [73].

There are a few new compounds under investigation that might impact develop-
ment and progression of CVC. Sotatercept, an anti-anemia compound that inhibits 
the Activin A receptor, in preclinical data showed an increase in bone mineralization 
and reduction in deposition of hydroxyapatite in the vasculature [74]. The immuno-
suppressant everolimus appears to increase the synthesis of Klotho by inhibiting 
mTOR, while the chemotherapeutic agent bortezomib may exert some protective 
effect against CVC progression by increasing Wnt/B-catenin signaling [74]. Finally, 
several Wnt inhibitor antagonists (sclerostin, DKK1-secreted frizzeled related pro-
teins) are in early stage of preclinical development [74]. SNF472 targets a novel 
pathway by selectively inhibiting the formation and growth of hydroxyapatite crys-
tals, which are thought to be the final pathway in the development of vascular calci-
fication. In the recently completed CaLIPSO, a double-blind, placebo-controlled 
phase 2b trial, SNF472 significantly attenuated the progression of CAC volume 
score (11% vs 20%, p = 0.016) compared to placebo in patients with ESRD receiv-
ing HD [75].

The pharmacological and surgical therapy of hyperparathyroidism are discussed 
in the next section.

�Disorders of the Parathyroid Glands and Mineral Metabolism

The parathyroid hormone (PTH) is secreted by 4 small parathyroid glands located 
behind the thyroid gland. Until recently PTH was believed to be the primary regula-
tor of phosphorus and calcium metabolism. However, a family of proteins known as 
phosphatonins described in the mid 1990s [76] is now thought to contribute very 
closely to the control of phosphorus metabolism along with PTH. The main actions 
of PTH include stimulating bone resorption, promoting phosphaturia, hydroxyl-
ation of 25-hydroxy vitamin D2 to its active form 1–25 dihydroxy vitamin D (Vit 
D3) in the kidney, as well as inducing calcium reabsorption from the distal renal 
tubule. Vit D3, in turn, promotes absorption of phosphorus and calcium from the gut 
and reabsorption of calcium from the distal tubule. The parathyroid glands are espe-
cially sensitive to calcium serum levels through the action of a cell membrane 
receptor known as calcium sensing receptor [77]. Of interest, this receptor is present 
in numerous other tissues and organs throughout the body. A low calcium level is 
rapidly detected at the parathyroid level by the calcium sensing receptor and it 
induces a powerful release of PTH.  Several feedback mechanisms are operative 
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between serum calcium and phosphorus levels, PTH, Vit D3, calcitonin (produced 
in the medulla of the thyroid gland) and fibroblast growth factor 23 (FGF-23) such 
that the serum levels of calcium and phosphorus are tightly controlled (Fig. 13.2a) [79].

FGF-23 is produced by osteoblasts and osteocytes and it is the best-known mem-
ber of the phosphatonin family. Its primary functions are inactivation of the enzyme 
1-α hydroxylase in the kidney to slow the formation of active Vit D3, induction of 
the 24-hydroxylase enzyme (that results in the formation of inactive 1-24-25(OH)3 
vitamin D3), and induction of phosphaturia in the kidney proximal tubule. Essential 
to the functions of FGF-23 is its soluble protein α-Klotho. This protein binds to the 
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Inhibits 1α-hydroxylase

HypophosphatemiaInhibits PTH
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secretion
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1,25(OH)2D

Increased
phosphate
excretion

Parathyroid gland

Fig. 13.2  (a) Physiological maintenance of serum calcium and phosphorus levels through the 
interaction of parathyroid hormone, vitamin D3 and FGF-23. (b) As kidney injury occurs and 
chronic kidney disease progresses several feed-back mechanisms are ignited. This results in hyper-
plasia of the parathyroid glands, reduced production of active vitamin D3 and α-Klotho with 
increased production of FGF-23 and parathyroid hormone. This cascade of events eventually leads 
to progressive bone resorption and weakening along with increasing soft-tissue calcification 
(reproduced with permission from Komaba H [78])
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Fig. 13.2  (continued)

FGF-23 receptor increasing the affinity of the receptor for FGF-23 and rendering 
the latter more efficient. PTH and FGF-23 levels rise very soon after renal function 
declines below a glomerular filtration rate of 60 ml/min/1.73 m2 [80], and are part 
of a complex cascade of events involved in the development of the mineral-bone-
and vascular disorder typical of advanced stages of chronic kidney disease 
(Fig. 13.2b).

�Hyperparathyroidism

Primary hyperparathyroidism (PHPT) is characterized by high parathyroid hormone 
(PTH) and calcium serum levels with low serum phosphorus. It is usually due to an 
adenoma (80% of the times) or hyperplasia of a parathyroid gland, although it can 
also rarely be due to a carcinoma of one of the glands or be part of a hereditary 
multiple endocrine neoplasia syndrome [81]. More frequently encountered is sec-
ondary hyperparathyroidism (SHPT) that typically develops in patients with 
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advanced CKD. Other rare causes of SHPT include osteomalacia, rickets, and mal-
absorption. In CKD the high serum levels of parathyroid hormone (PTH) is due to 
hyperplasia of one or more parathyroid glands in response to the progressive reten-
tion of phosphate as renal failure declines, along with reduced activation of 
25-hydroxycholecalciferol to VitD3. The loss of VitD3 eliminates an important 
negative feed-back on PTH suppression and causes reduced calcium absorption 
from the intestine along with reduced calcium retention at the level of the distal 
tubule. The declining serum calcium levels are detected by the calcium sensing 
receptor in the parathyroid glands chief cells and ignite a powerful release of PTH 
to restore balance. High PTH levels promote the maturation of osteoblasts into 
osteoclasts that act by removing calcium and phosphorus from the bone. 
Simultaneously, and likely preceding the rise in PTH, FGF-23 is released in a coun-
ter regulatory feed-back (Fig.  13.2b) [78]. Eventually the bone of patients with 
advanced CKD becomes resistant to the effects of minerals and hormones respon-
sible for bone remodelling, while the parathyroid glands become progressively less 
responsive to the inhibitory effects of FGF-23. The end result is a progressive weak-
ening of the bone architecture and loss of tensile strength leading to repetitive frac-
tures. As many as 20–30% of patients with SHPT develop tertiary HPT most 
commonly in the setting of renal transplant, where patients continue to have elevated 
PTH levels even after receiving a renal allograft [82]. It is believed that prolonged 
hypocalcemia may induce parathyroid gland hyperplasia that does not regress 
despite the renal transplant. Although tertiary HPT is usually caused by hyperplasia 
of all four glands, in some cases the disorder can be caused by adenomas of one or 
more parathyroid glands [83, 84]. Serum levels of minerals and hormones involved 
in the metabolism and remodeling of bone have been associated with subclinical 
cardiovascular disease and cardiovascular morbidity and mortality as well as all-
cause death both in the general population and in patients with CKD. Onufrak et al. 
[85] showed an association between serum levels of phosphorus and thickness of the 
carotid intima-media layer in the general population. Adeney et  al. [86] demon-
strated that patients with moderate kidney dysfunction with higher serum phosphate 
levels, albeit still in the normal range, had more extensive vascular and valvular 
calcification than those with lower phosphate levels. High-normal serum phosphate 
levels were associated with a greater incidence of cardiovascular morbidity and 
mortality and/or all cause death in several population studies [87–90] Similarly, 
associations have been reported between PTH levels and subclinical and clinical 
cardiovascular disease [91, 92] all-cause death [93], heart failure [94, 95] and even 
vascular dementia [96] in the general population. FGF-23 levels have been associ-
ated with cardiac events [97–99] and ischemic stroke [100, 101], in subjects with 
normal renal function. Older studies reported an association between serum calcium 
levels and risk of myocardial infarction [102], cardiovascular and non-cardiovascu-
lar death in the community [103, 104] as well as valvular calcification [105].

In the quest for a potential mechanism of action to explain these findings, asso-
ciations have been reported between traditional cardiovascular risk factors and 
higher serum levels of phosphorus [88] FGF-23 [106, 107] and calcium [102, 108]. 
In animal experiments, PTH has been shown to be independently able to induce 
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extensive cardiovascular calcifications [109, 110]. Therefore, it should come as no 
surprise that patients affected by PHPT tend to suffer a higher than expected inci-
dence of cardiovascular events compared to the general population [111, 112]. This 
is likely due to a combination of endothelial dysfunction [113], systemic hyperten-
sion [114, 115], left ventricular hypertrophy and dysfunction [116–118], cardiac 
arrhythmias and cardiac calcification. Calcium deposition is particularly frequent 
on the cardiac valves and in the myocardium of patients with PHPT [119, 120]. 
However, there does not appear to be an increased prevalence and severity of CAC 
especially in patients with mild hypercalcemia [121–123]. Surgical treatment for 
PHPT caused by adenomas restores endothelial and coronary microvascular dys-
function [124, 125]. Additionally, halted progression of cardiac and valvular calci-
fication was reported both at one year and after 3.5 years from surgical intervention 
[126, 127]. Although a significant correlation between LVH and valvular calcifica-
tion has been reported [119], as well as between LVH and myocardial calcifications 
[126], data on the effectiveness of parathyroidectomy in reversing structural and 
functional left ventricular changes are inconclusive [128].

An extensive body of literature documented an association between abnormali-
ties of mineral metabolism and adverse events in ESRD [129]. For patients with 
moderate CKD, PTH levels have been associated with all-cause death but not car-
diovascular events [130]. An association has been reported between FGF-23 and 
development of congestive heart failure but not atherosclerotic events in one study 
[131], and both types of events in another [132]. In a prospective cohort study, 
FGF-23 was not predictive of cardiovascular events or death in patients with CKD 
stage 3, while low VitD3 and elevated PTH levels were [133]. Finally, a recent meta-
analysis concluded that the association between FGF-23 levels and cardiovascular 
outcomes may be non-causal, and therefore FGF-23 may be a bystander rather than 
a causative factor [134]. The inconsistent epidemiological evidence surrounding 
FGF-23 may be due to the heterogeneity of studies included in the analyses as well 
as the small number of subjects and events in some of the studies. Nonetheless, 
there is an undoubtful connection between the extensive vascular and valvular cal-
cification of patients with advanced CKD and untoward outcomes [3, 21, 29, 135–
137]. As described in the section dedicated to CKD, multiple trials directed at 
slowing the progression of calcification have been conducted. The compounds used 
to slow progression tested so far include: calcium-based and non calcium-based 
phosphate binders such as sevelamer, lanthanum and magnesium; molecules capa-
ble of stimulating the calcium sensing receptor (calcimimetics) such as cinacalcet 
and etelcalcetide to reduce the release of PTH from the parathyroid glands; and 
direct inhibitors of the formation of crystals of hydroxyapatite. Numerous publica-
tions have demonstrated the ability of non-calcium-based phosphate binders to slow 
the progression of cardiovascular calcification, and one meta-analysis showed that 
these compounds may also reduce mortality [64]. A randomized clinical trial com-
pared the effectiveness of cinacalcet plus low dose VitD3 versus liberal doses of 
VitD3 to control SHPT in patients receiving hemodialysis [138]. The primary study 
results showed a borderline effectiveness of the calcimimetic to slow cardiovascular 
calcification progression. However, in the per-protocol analyses cinacalcet and low 
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dose VitD3 were very effective at slowing progression of CAC, and valvular calci-
fication [139]. The related outcome trial failed to show a reduction in all-cause 
mortality and major cardiovascular events [140], although a subanalysis showed a 
potential role of cinacalcet in reducing non-atherosclerotic cardiovascular events 
[141]. In a subanalysis of the INDEPENDENT trial, patients with ESRD who 
received the non-calcium based phosphate binder sevelamer along with cinacalcet 
showed a lower mortality rate than those receiving calcium-based binders with cina-
calcet or patients receiving VitD3 with any binder [142]. These results highlighted 
the importance of phosphorus control while avoiding imbalances of calcium metab-
olism. The most recent trial directed at slowing progression of cardiovascular calci-
fication in ESRD explored the potential of a direct inhibitor of hydroxyapatite [75]. 
The drug reduced further expansion of CAC by 45–75% in the intention to treat and 
per-protocol analyses. No outcome data are yet available related to this compound. 
Parathyroidectomy has a role in SHPT when medical therapy fails to control the 
biochemical alterations of this conditions often associated with severe bone and 
vascular abnormalities. In observational studies parathyroidectomy has been associ-
ated with slowing of CAC progression [143] and reduction in cardiovascular mor-
tality [144–146]. However, no randomized controlled study has been conducted to 
compare medical therapy versus surgical intervention for SHPT [147], often leaving 
the choice of treatment to the preference of the treating physician.

�Hypoparathyroidism

Sporadic idiopathic hypoparathyroidism (SIH), either due to an autoimmune dis-
ease or caused by complex genetic abnormalities, is a rare endocrinological disorder 
characterized by low serum levels of parathyroid hormone and calcium, and eleva-
tion in serum phosphate [148]. The disease can manifest with a variety of neuro-
muscular and sensory symptoms such tetany, muscle cramping, airway obstruction, 
laryngospasm, chronic fatiguability, peri-oral numbness and generalized paresthe-
sia, but also seizures, parkinsonism, depression, irritability and cognitive impair-
ment. Ectopic deposition of crystals of calcium and phosphorus has been reported 
to involve several tissues. Calcification of the cerebral basal ganglia has been clas-
sically associated with this disorder (Fig. 13.3) [149]. Although its true pathogene-
sis remains unclear, it is probably related to prolonged hypocalcemia and 
simultaneous hyperphosphatemia [150]. Calcification of the eyes and kidneys is 
also frequent and associated with cataract formation and progressive renal function 
decline [151]. Peripheral vascular calcification and coronary artery calcification 
have been reported, but with a much lower prevalence [152]. Therefore, the impact 
of CAC on the incidence of cardiovascular events in patients affected by hypopara-
thyroidism is unknown. Nonetheless, other types of cardiovascular complications 
have been reported such as supraventricular and ventricular cardiac arrhythmias, the 
latter probably secondary to prolonged QT, and left ventricular systolic 
dysfunction.
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a b

Fig. 13.3  Head computed tomography scan showing extensive calcification of the basal ganglia 
(horizontal arrows in section a and solid vertical arrow in section b), and cerebellum (open vertical 
arrow in section b) (reproduced with permission from Harada K [149])

A form of relative hypoparathyroidism, known as low turnover bone disease, has 
been described in patients with ESRD. In this condition serum levels of PTH are 
relatively lower than needed to induce periodic bone remodeling, and this causes 
progressive bone weakening and worsening cardiovascular calcification. As in the 
case of very high PTH levels, low levels of PTH have also been associated with 
increased mortality in patients undergoing hemodialysis [153, 154]. The use of high 
calcium concentrations in the dialysate fluid, large doses of calcium-based phos-
phate binders and VitD3 appear to be the most frequent mechanisms inducing sup-
pression of pulsatile release of PTH that is necessary for its activity on bone 
remodeling and mineral metabolism. In a subanalysis of a randomized clinical trial 
in ESRD, the authors showed that the progression of CAC was more pronounced in 
patients with diabetes mellitus, particularly in those receiving calcium-based phos-
phate binders compared to those receiving a calcium free binder [155]. Confirming 
the significance of this observation, in a longitudinal study of over 53,500 Japanese 
patients receiving dialysis, the highest incidence of myocardial infarction was 
observed in patients with high dialysate calcium and low serum PTH levels [156].

�Human Immunodeficiency Syndrome

After the introduction of highly active antiretroviral therapy (HAART) patients liv-
ing with human immunodeficiency virus (PLWH) have had a significant increase in 
life expectancy [157, 158]. As a result, cardiovascular diseases (CVD) have become 
a leading cause of mortality and morbidity in PLWH [159, 160]. An intense debate 
has revolved around the pathophysiology of CVD development, spurred by the 
observation that traditional risk factors are highly prevalent in PLWH but do not 
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appear to justify the entire risk [161]. The consensus appears to be that a combina-
tion of traditional and non-traditional risk factors is contributory [162]. Several 
investigators have raised the possibility that some HAART, especially abacavir and 
those in the protease inhibitor family, may raise the risk of cardiovascular events 
[163–165]. Additionally, smoldering inflammation and a state of ongoing immune 
activation due to chronic HIV infection, enhanced permeability of the gastrointesti-
nal barrier to bacteria, and co-infection with other viruses are likely sources of 
ongoing vascular damage [166]. As a result PLWH are believed to experience an 
accelerated ageing process in the context of a highly inflamed environment (inflam-
ageing of HIV). In fact, several publications have demonstrated an increased inflam-
matory arterial burden in PLWH [167, 168].

Despite the increased risk, most of the tools utilized to predict atherosclerotic 
cardiovascular events in the general population perform poorly in PLWH [169]. 
Therefore, imaging of sub-clinical atherosclerosis has received mounting attention 
in this population for early detection of disease, enhanced risk prediction and -ulti-
mately- improved prognosis.

�Subclinical Atherosclerosis in HIV

Early publications remarked on the increased carotid intima-media thickness (IMT) 
as an indirect marker of atherosclerosis in PLWH. Hsue et al. reported that PLWH 
had a thicker IMT than matched controls; HIV infection was an independent predic-
tor of carotid IMT after adjustment for age, sex, smoking, hypertension, dyslipid-
emia and diabetes mellitus [170]. Additionally, a nadir CD4 count <200 cells/mL 
was a predictor of IMT progression in these patients. Similarly, Salmazo et  al. 
reported that PLWH had a thicker carotid IMT than controls [171]. Furthermore, 
carotid plaques were detected with ultrasound imaging in 37% of PLWH and 4% of 
controls (p < 0.001). PLWH with carotid plaques had higher serum lipid levels and 
poorer glycemic control. Infection with HIV increased the odds of having a carotid 
plaque by five fold after adjustment for obesity, smoking and age. Chest computed 
tomography has provided valuable insight into the prevalence and development of 
atherosclerotic disease in PLWH. Post et al. reported a higher prevalence of non-
calcified coronary artery plaques detected by means of computed tomography angi-
ography (CTA) in PLWH compared to controls, although they did not observe an 
increased prevalence or extent of coronary artery calcium (CAC) [172]. On the con-
trary, Guaraldi et al. remarked on the utility of CAC as a marker of ageing and car-
diovascular risk in PLWH [173]. Using previously validated CAC equations, they 
showed that as many as 40% of PLWH have a vascular age on average 15-year older 
than age and sex matched controls. Cardiometabolic risk factors such as elevated 
serum triglycerides and cholesterol lipoproteins were associated with increased vas-
cular age in univariate analyses, although the only multivariable predictor of older 
vascular age was the current CD4 cell count. Additional indirect evidence of accel-
erated ageing and atherosclerosis accrual in PLWH was provided by the observation 
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that high CAC scores are associated with a lower bone mineral density of the femo-
ral head [174].

The importance of altered cardiometabolism as a predisposing factor to the 
development of subclinical atherosclerosis in PLWH was addressed in several pub-
lications. Guaraldi et al. described an association of CAC with the presence of lipo-
dystrophy in long-term users of HAART [175]. Epicardial adipose tissue (EAT) is 
visceral adipose tissue layered directly over the coronary arteries and is a source of 
adipocytokines that can stimulate the development of atherosclerosis both via para-
crine and endocrine mechanisms [176]. EAT volume is increased in PLWH [177], 
and is associated with high CAC scores as well as lipodystrophy, serum lipoprotein 
levels, markers of HIV infection such as CD4 cell count and duration of HAART 
use [178]. The increase of EAT over time was shown to parallel progression of CAC 
and to be associated with male sex and CD4 cell count [179]. Finally, both EAT and 
CAC were shown to be predictive of incident myocardial infarction and death in an 
observational study of 843 PLWH followed for a median of 2.8 years [180]. Not 
only is CAC more abundant and prevalent in PLWH, marking the presence of more 
extensive atherosclerosis, but it also progresses more rapidly than in the general 
population [181]. Its progression is associated with age, LDL cholesterol serum 
level, abdominal visceral adipose tissue and CD4 cell count [182]. As noted, there 
are recurrent factors involved in the development and progression of CAC in PLWH, 
supporting the notion that traditional and non-traditional risk factors are involved. 
Nuclear-based molecular imaging provides a more sophisticated approach to detect-
ing subclinical atherosclerosis and accrual of vascular calcification. 18F-sodium 
fluoride (NaF) is a tracer used in positron emission tomography imaging with high 
affinity for growing microcrystals of hydroxyapatite [183]. Its primary use is for the 
detection of bone metastases. However, recent evidence suggests that it avidly 
adheres on the surface of microcrystals in the context of unstable atherosclerotic 
plaques [184, 185]. In a recent experiment, areas of high uptake of NaF were 
detected in 50% of 300 arterial territories in metabolically stable PLWH receiving 
long-term HAART (Fig. 13.4) [186]. Furthermore, coronary artery uptake of NaF 
was significantly more frequent than FDG uptake in PLWH [187]. The high preva-
lence of NaF uptake in PLWH contrasted with a much lower prevalence than in 
ambulatory patients with diabetes mellitus, considered at equally increased cardio-
vascular risk [188]. Using molecular imaging another interesting observation was 
made by Zanni et al. [189] In a proof of concept study in 12 HAART naïve patients, 
the author compared baseline vascular and systemic (i.e. axillary and mediastinal 
lymph nodes) inflammation assessed with FDG, as well as biomarkers of immune 
activation prior to and after initiation of HAART. Patients were treated with a com-
bination HAART and followed for a median of 7 months before imaging and sero-
logical markers were repeated. Although systemic inflammation and markers of 
immune activation decreased, there was parallel increase in vascular inflammation. 
Therefore, based on these preliminary results, there seems to be a disconnect 
between the cardiovascular and systemic effects of HAART, supporting the notion 
that HAART may be responsible for part of the increased risk reported in PLWH.
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Fig. 13.4  Positron emission tomography/computed tomography merged images on the carotid 
arteries of a patient living with HIV. The crosshair and white arrows point at an area along the right 
carotid artery where a calcified lesion shows a high uptake of 18F-sodium-fluoride. (reproduced 
with permission from Raggi P [186]. under the Creative Commons Attribution 4.0 International 
License; http://creativecommons.org/licenses/by/4.0/)

�Pseudoxanthoma Elasticum

This autosomal recessive disease affects 1:100.000 to 1:25.000 live births and it is 
due to a defect in the ATP binding cassette-6 (ABCC6) gene [190, 191]. The hall-
mark of the disease is a yellowish discoloration and loss of elasticity of the skin, 
especially in the neck, nape and axillary areas, visual impairment and vascular cal-
cification [192]. The actual pathophysiology of calcification is unclear, but the 
defective ABCC6 gene is likely associated with a low level of the naturally occur-
ring inhibitor of calcification pyrophosphate [193]. Other inhibitors of systemic cal-
cification, such as MGA and fetuin-A, as also seen in patients with CKD [194], may 

P. Raggi and R. Garg

http://creativecommons.org/licenses/by/4.0/


275

be defective or reduced. The resulting imbalance between inhibitors of calcification 
and serum phosphate and calcium levels leads to the creation of an environment 
favouring the development of systemic calcification. Crystals of amorphous calcifi-
cation (calcium, hydrogen and phosphate), as well as true hydroxyapatite are found 
in the context of disrupted elastic fibers in the mid dermis, and in the intima and 
media of small to mid-size arteries (Fig.  13.5). Calcifications can also be found 
amid disrupted collagen fibers in the myocardium and pericardium of affected 
patients. The typical eye lesions are known as angioid streaks of the fundus; despite 
looking like proliferating vessels they are due to disruption of the Bruch’s mem-
brane by fibrocalcific deposits. Eventually the retina is invaded by proliferating neo-
vessels that can lead to severe macular damage and blindness [195]. The most 
frequent cardiovascular manifestations of pseudoxanthoma elasticum (PXE) are 
claudication of the upper and lower extremities and transient ischemic attacks and 
stroke [196, 197], while the risk of myocardial infarction does not appear to be sig-
nificantly increased above that of the general population. However, an increased 
risk of ischemic heart disease and vascular calcification has been reported in hetero-
zygous carriers of ABBC6 mutations [198]. Aortic aneurysms, stenosis of the radial 
and carotid arteries have also been reported, along with asymptomatic calcification 
of kidneys, spleen, pancreas, breast, testicles and liver. Progressive loss of kidney 

a

c

b

Fig. 13.5  Histological findings in a patient with pseudoxantoma elasticum, showing disrupted (a) 
and calcified (b) elastic fibers in the dermis; (c) the electronmicroscopy image shows high resolu-
tion details of the calcified elastic fibers. (reproduced with permission from Germain DP [191] 
under the Creative Commons Attribution 4.0 International License; http://creativecommons.org/
licenses/by/4.0/)
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function has been reported as well as frequent gastrointestinal bleeding. Eventually, 
increased peripheral resistance and pulse pressure due to medial calcification may 
also induce brain damage and cognitive impairment leading to another highly unde-
sirable cardiovascular complication [199, 200].

A recent trial demonstrated that slowing of peripheral arterial calcification in 
PXE can be obtained with etidronate, a bisphosphonate with a mechanism of action 
similar to that of pyrophosphate normally used for the treatment of osteoporosis 
[201]. Other potentially effective new therapies are the newly developed direct 
inhibitors of hydroxyapatite crystals formation [202]. These derivatives of the natu-
rally occurring inhibitor of vascular calcification, myo-inositol hexakisphosphate, 
have been shown to inhibit inception and growth of cardiovascular calcification in 
animal experiments independent of the underlying pathophysiologic mechanism 
[203]. These drugs hold great promise for the treatment of systemic calcification not 
only in rare diseases, but for patients with advanced CKD [75] and the general 
population as well.
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