
Active Learning of Sequential Transducers
with Side Information About the Domain

Raphaël Berthon1,2 , Adrien Boiret1(B), Guillermo A. Pérez2 ,
and Jean-François Raskin1

1 Université libre de Bruxelles, Brussels, Belgium
adrien.boiret@ulb.be

2 University of Antwerp – Flanders Make, Antwerp, Belgium

Abstract. Active learning is a setting in which a student queries a
teacher, through membership and equivalence queries, in order to learn
a language. Performance on these algorithms is often measured in the
number of queries required to learn a target, with an emphasis on costly
equivalence queries. In graybox learning, the learning process is acceler-
ated by foreknowledge of some information on the target. Here, we con-
sider graybox active learning of subsequential string transducers, where
a regular overapproximation of the domain is known by the student. We
show that there exists an algorithm to learn subsequential string trans-
ducers with a better guarantee on the required number of equivalence
queries than classical active learning.

1 Introduction

Active learning is a way for a non-expert user to describe a formal object through
behavioral examples and counterexamples, or to obtain formal models for the
behavior of legacy or black-box systems which can subsequently be formally
verified [14]. In this context, additional information about black-box systems
can make learning more efficient in practice [7,13].

The L∗ algorithm from [2] has been extended to learn various classes of formal
object, e.g. probabilistic automata [5] and, more relevant to this paper, (subse-
quential deterministic) transducers on words [15]. In this work, we aim to learn
transducers, and focus on a specific class of side information: an upper bound on
the domain of the transduction. The advantage of this graybox model is twofold.
First and more directly, it can be used to skip some membership queries outside
the transformation’s domain. Second, by looking for transducers with the proper
behavior when limited to the upper bound, we allow for solutions that are smaller
than the canonical objects learned by L∗. This, in turn, offers better guarantees
than L∗ when we consider the number of equivalence queries required to learn a
target. This is relevant, as in cases like non-expert description or legacy-system

This work was supported by the ARC “Non-Zero Sum Game Graphs” project
(Fédération Wallonie-Bruxelles), the EOS “Verilearn” project (F.R.S.-FNRS & FWO),
and the FWO “SAILor” project (G030020N).

c© Springer Nature Switzerland AG 2021
N. Moreira and R. Reis (Eds.): DLT 2021, LNCS 12811, pp. 54–65, 2021.
https://doi.org/10.1007/978-3-030-81508-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81508-0_5&domain=pdf
http://orcid.org/0000-0002-2580-5193
http://orcid.org/0000-0002-1200-4952
http://orcid.org/0000-0002-3673-1097
https://doi.org/10.1007/978-3-030-81508-0_5

Learning Transducers Given an Overapproximation of the Domain 55

learning, the equivalence test is realistically unreliable, or prohibitively costly,
when compared to the rest of the operations.

One motivation to focus on learning transducers, and more specifically Mealy
machines, with an upper bound on the domain comes from games. In multi-
player verification games, assumptions about other players have been proposed to
facilitate strategy synthesis [4,6, for instance]. Such assumptions also make sense
when a strategy has already been obtained (via synthesis [3] or some alternative
means) and one wishes to “minimize” it or its encoding. A simple way to do so is
to restrict the domain of the strategy to the reachable set of game configurations
(under the assumptions made about the adversaries). Finally, when the game
formalism considered allows for delays or multiple choices made unilaterally
by some player—as is the case in regular infinite games [8]—strategies are not
implementable by Mealy machines but rather require general transducers.

Related Work. The classical algorithm for active learning is L∗ [2]. It saturates
a table of observations with membership queries, then building a minimal deter-
ministic automaton compatible with those observations to send as candidate for
an equivalence query. A polynomial number of membership queries and at most
n equivalence queries are always sufficient to learn the automaton.

For transducers, the OSTIA algorithm [15] generalizes L∗, follows a similar
structure, and offers comparable guarantees. Like in L∗, the number of queries
is polynomial in the size of the minimal normal form of the target transducer.

In the case of graybox learning, the methods differ and this alters the com-
plexity guarantees. For instance, when learning languages from so-called “inexpe-
rienced teachers” [11], one considers a case where the teacher sometimes answers
a membership query with “I don’t know”. Under those circumstance, it is impos-
sible to learn a unique minimal automaton. This leads to a trade-off in com-
plexity. On the one hand, finding the minimal automaton compatible with an
incomplete table of observations necessitates calls to NP oracles (a SAT encod-
ing is used in [11]). On the other hand, obscuring a regular language by replacing
some information with “I don’t know” will always make the size of the minimal
solution smaller or equal to the canonical minimal DFA.

Another work on the topic [1] concerns Mealy machines, i.e. transducers that
write one letter exactly for each letter they read. It is shown that one can learn
a composition of two Mealy machines if the first one is already known. Just like
in [11], the L∗-type algorithm uses oracles to find minimal machines compatible
with an incomplete table of observations (as we can only know the behavior
of the second machine on the range of the first) and offers a guarantee in the
number of equivalence queries bound to the number of states of the minimal
second machine, rather than that of the composition in whole.

Contributions. We show how to use string equations that can be encoded into
SAT to find a minimal transducer compatible with incomplete observations, and
to use this in an L∗-like algorithm to learn transducers. Our algorithm is guar-
anteed to issue a number of equivalence query that is bounded by the minimal
compatible transducer, rather than the canonical one. This difference can be a

56 R. Berthon et al.

huge benefit when our upper bound is the result of known complex logical prop-
erties or elaborate formats respected by the input, and the transformation we
wish to learn is simple.

We note the differences with [1,11] in objects learned, learning frame-
works, and available queries. We focus on transducers, a class that subsumes
automata and Mealy machine. As an added benefit, transducers are as compact
as automata, and as or more compact than Mealy machines they are equivalent
to. This compactness preserves or improves the equivalence queries guarantees.
In our learning framework, the upper bound is supposed to be known by the
student. This is in contrast to the inexperienced teacher case, where the scope of
possible observations is unknown, and has to be assumed regular and learned on
the fly. When it comes to available queries, [11] assumes the student has access
to containment queries i.e. student can ask teacher if the candidates’ language
contains or is contained in the target, this to obtain better the guarantees. In
our model, a simple equivalence query is considered. Conversely, in [1], the only
way to do a membership query is to do so on the composition of both machines.
In that regard, learning a composition is more constraining than learning with a
domain upper bound. However, since finding a reverse image to an output word
through a transducer is possible with good complexity, our algorithm can be
adapted to learn a composition of two transducers, in the framework of [1].

2 Preliminaries

A (subsequential string) transducer M is a tuple (Σ,Γ,Q, q0, w0, δ, δF) where
Σ is the finite input alphabet, Γ is the finite output alphabet, Q is the finite
set of states, q0 ∈ Q is the initial state, w0 ∈ Γ ∗ is an initial production, δ is
the transition function, a partial function Q × Σ → Q × Γ ∗ and δF is the final

function, a partial function Q → Γ ∗. If δ(q, a) = (q′, w) we note q
a|w−−→ q′. If

δF (q) = w we say that q is final, and note q
w−→ �. We define the relation →∗

by combining the input and output of several transitions: →∗ is the smallest

relation such that q
ε|ε−−→∗ q, and if q

u|w−−→∗ q′ and q′ a|w′
−−−→ q′′ then q

ua|w·w′
−−−−−→∗ q′′.

We write q0
u|w−−→∗ q when u reaches the state q with partial output w.

For every state q ∈ Q, we associate a partial function [[Mq]](u) to M from
input words over Σ to output words over Γ . Formally, [[Mq]](u) = w · w′ if

q
u|w−−→∗ qF and qF

w′
−→ � for some qF ∈ Q and is undefined otherwise. Finally,

we define [[M]] := w0 · [[Mq0]] and write that M implements [[M]].
We write dom([[M]]) to denote the domain of [[M]], that is the set of all

u ∈ Σ∗ that reach a final state qF ∈ Q. We often consider the restriction of [[M]]
to a given domain D ⊆ Σ∗, and denote it [[M]]|D.

Example 1. Consider the function τabc with domain Upabc = (a + bc)c∗ and
τabc(acn) = τabc(bcn) = 1n. It is implemented by the left transducer in Fig. 1.

We note that if we want to restrict a transducer’s function to a regular
language L for which we have a deterministic word automaton A, a classic con-
struction is to build the product transducer M × A, where the states are the

Learning Transducers Given an Overapproximation of the Domain 57

Fig. 1. On the left, a transducer compatible with the merging map in the center, on
the right the transducer resulting from this merging map.

Cartesian products of both state spaces, and the final function δF is only defined
for pairs (q, p) where q is in the domain of the final function of M and p is final
in A. This transducer implements the function [[M]]A.

We write |M| to denote the size of M, i.e. its number of states. For conve-
nience, we only consider trim transducers, that is to say that every state q is
reachable from q0 and co-reachable from a final state. This is no loss of gener-
ality, as every transducer is equivalent to a trimmed one with as many or fewer
states, and we only consider minimal transducers.

Active Learning. Let Σ and Γ be finite input and output alphabets respectively.
Further, let τ : Σ∗ → Γ ∗ be a partial function implementable by a transducer.
In this work we will be interested in actively learning a transducer implement-
ing τ by interacting with a teacher who knows τ and can answer questions
our algorithm asks about τ . Formally, the teacher is an oracle that can answer
membership and equivalence queries.

Given u ∈ Σ∗, a membership query answers τ(u) if u ∈ dom(τ), and
⊥ otherwise. Given M a transducer, an equivalence query answer true if
[[M]] = τ , otherwise it provides u ∈ Σ∗, a non-equivalence witness such that
u ∈ dom([[M]])\dom(τ), or u ∈ dom(τ)\dom([[M]]), or u ∈ dom([[M]]) ∩ dom(τ)
but [[M]](u) �= τ(u). The goal of a learning algorithm in this context is to produce
a transducer M such that [[M]] = τ .

Side Information About the Domain. We generalize the active learning problem
by introducing side information available to the learning algorithm. Concretely,
we assume that an upper bound on the domain of τ is known in advance. That is,
we are given a DFA AUp whose language Up is such that dom(τ) ⊆ Up. The goal
of the learning algorithm is to produce a transducer M such that [[M]]|Up = τ .

The domain upper bound Up may allow us to learn simpler transducers M
than the canonical minimal transducer describing τ—i.e. the class of transducers
learnt by OSTIA. For instance, consider the domain Up is the set of BibTeX
references where n different properties appear (title, author, year. . .), but in any
order. The automaton recognizing this domain has O(2n) states. Learning it, or
any transformation on this domain, with a blackbox algorithm may thus require
O(2n) equivalence tests. However, if the transformation we want to learn is just
to extract the title, ignoring every other property, then there exists a very simple
transducer, whose size does not increase with n and that, when restricted to Up,
performs the desired transformation.

58 R. Berthon et al.

3 Learning Transducers with Side Information

Our algorithm uses an observation table T based on a finite prefix-closed subset
P of Σ∗ and a finite suffix-closed subset S of Σ∗. Formally, we define T as a
function (P ∪P ·Σ)·S → Γ ∗∪{#,⊥} and maintain the following invariant for all
u ∈ (P ∪P ·Σ) and all v ∈ S. If u·v �∈ Up then T (u·v) = #. If u·v ∈ Up\dom(τ)
then T (u · v) = ⊥, otherwise T (u · v) = τ(u · v). For technical reasons, proper to
graybox learning [11], we often consider the set PT of prefixes of the elements of
(P ∪ PΣ) · S.

Definition 2 (Compatible transducer). Let T be an observation table and
M a transducer of input alphabet Σ and output alphabet Γ . We say that M is
compatible with T when for all u, v ∈ P ∪PΣ, if T (u ·v) ∈ Γ ∗ then [[M]](u ·v) =
T (u, v) whereas if T (u · v) = ⊥ then u · v �∈ dom([[M]]).

To “fill” the table so as to satisfy the invariant, we pose membership queries to
the teacher. Once T has certain satisfactory properties (as defined in the OSTIA
algorithm and elaborated upon briefly), we are able to construct a transducer
M from it. As a table T can be filled with #, multiple minimal transducers may
be compatible with T . To minimize the number of equivalence queries posed, we
will send an equivalence query only if there is a unique minimal transducer M
(up to equivalence in Up) compatible with T .

Instead of searching directly for transducers, we work only with the infor-
mation on how those transducers behave on PT . We represent this information
using objects we call merging maps. We show that we can characterize when there
exist two competing minimal transducers with two different merging maps, or
two competing minimal transducers with the same merging map. If neither is the
case, then there is a unique minimal compatible transducer M , and we build it
by guessing its merging map. We then pose an equivalence query to the teacher
in order to determine whether AUp × M implements the target function τ .

Satisfactory Properties. The following properties are those that allow the OSTIA
algorithm [15] to work. Under these properties, we are sure that a transducer
can be derived from the table T . They are defined on a specific table T : (P ∪
PΣ) · S → Γ ∗ ∪ {⊥}. Given u ∈ P ∪ PΣ, we call lcpT (u) the longest common
prefix of all the T (u · v) in Γ ∗. For u, u′ ∈ P ∪ PΣ∗, we say that u ≡T u′ iff for
all v ∈ S, we have both T (u ·v) = ⊥ ⇐⇒ T (u′ ·v) = ⊥ and if T (u ·v) ∈ Γ ∗ then
lcpT (u)−1T (u · v) = lcpT (u′)−1T (u′ · v). A table T is closed if for all ua ∈ PΣ
there exists u′ ∈ P such that ua ≡T u′; ≡-consistent, if for all u, u′ ∈ P , a ∈ Σ
such that ua, u′a ∈ P ∪ PΣ∗, then u ≡T u′ =⇒ ua ≡T u′a; lcp-consistent, if
for all ua ∈ P ∪ PΣ, we have that lcpT (u) is a prefix of lcpT (ua).

The role of these notions in Algorithm 2 is twofold. First, it guarantees
that the algorithm could, at worst, find the same transducer as the OSTIA
algorithm [15] as a candidate for an equivalence query from a closed, ≡-
consistent, lcp-consistent table. Second, it can be seen as an efficient way to
acquire information for a learner, as the set of words witnessing non-closure

Learning Transducers Given an Overapproximation of the Domain 59

(resp. non-consistency) gives new elements to add to P (resp. S). We can see
closed, ≡-consistent, lcp-consistent tables as those that are saturated with mem-
bership queries, such that no further information can be obtained by a learner
without resorting to more costly operations, e.g. an equivalence query.

Difficulties to Overcome. For any given table T there are infinitely many
compatible transducers. This was already the case in automata or Mealy
Machines [1,11]. However, where transducers differ, is that even when limiting
ourselves to transducers with a minimal number of states, this might still be the
case. Indeed, on some transitions, the output can be arbitrary (see Example 9).
As a consequence, the method we will use to obtain a compatible transducer from
a finite search space combines the methods of [11] with the addition of partial
output information and an additional constraint on the output of transitions.

We want to obtain concomitantly an equivalence ≡ on PT that describes the
set of states of the transducer and a partial output function f : PT → Γ ∗ that
describe which output is produced while reading an input. In the context of
transducers, side information adds another restriction: a transducer can contain
transitions that link together elements of PT for which we have no output infor-
mation in T . This is a problem, as the output of such transitions is arbitrary
and leads to an infinite number of candidates.

We will represent the behavior of a transducer on PT but keep only the
output information that can be corroborated in T . We call PΓ ⊆ PT the set of
all u ∈ PT such that there exists v ∈ Σ∗ for which T (u·v) ∈ Γ ∗. We call P∅ ⊆ PT

the set of all u ∈ PT such that there is no v ∈ Σ∗ for which T (u · v) ∈ Γ ∗.

Definition 3 (Merging map). Let T be an observation table. A merging map
(MM) on T is a pair (≡, f) where ≡ is an equivalence relation on PT , and f is
a partial function from PT to Γ ∗, such that for all u, u′ ∈ PT and a ∈ Σ:

1. PT is a single equivalence class of ≡.
2. If f(ua) exists, then f(u) exists and is a prefix of f(ua).
3. If T (u) ∈ Γ ∗ then f(u) is a prefix of T (u).
4. If we have that f(u) exists, u ≡ u′ and ua, u′a ∈ PT then ua ≡ u′a.

Furthermore, if f(ua) exists then f(u)−1f(ua) = f(u′)−1f(u′a).
5. If T (u) ∈ Γ ∗, u ≡ u′ then T (u′) �= ⊥.

Furthermore, if T (u′) ∈ Γ ∗ then f(u)−1T (u) = f(u′)−1T (u′).
6. If f(ua) exists, but there is no v ∈ PT such that v ≡ u, and va ∈ PΓ , then

f(ua) = f(u).

The intuition is that a MM (≡, f) contains the information necessary to
model the behavior on PT of a transducer compatible with T . Rule 1 defines
an equivalence class for all elements of PT that would end up in a sink state.
Rule 2 and 3 ensure that the output function f only grows with each transition
and the final function respectively. Rule 4 and 5 ensure that the output value is
properly defined for each transition and the final function respectively. Finally,
rule 6 ensures we only keep output information from PΓ . If such a pair (u, a)
exists, we say that it is muted.

60 R. Berthon et al.

Every transducer M compatible with T has an underlying MM (≡, f), and
conversely, every MM (≡, f) can be used to build a transducer M compatible
with T . The size of a MM is the number of equivalence classes of ≡ in dom(f).
Below, we write qu for the state associated with u ∈ PT .

Definition 4 (Resulting Transducer). Let T be an observation table and
(≡, f) a MM on T . In the transducer M resulting from (≡, f) the set of states
is the set of equivalence classes of ≡ in dom(f), the initial state is qε, the initial

production is f(ε), the transitions are qu
a|f(u)−1f(ua)−−−−−−−−−→ qua for u, ua ∈ dom(f),

and for each u such that T (u) ∈ Γ ∗, we have δF (qu) = f(u)−1T (u).

Definition 5 (Induced MM). Let T be an observation table and M a trans-
ducer compatible with T . The MM (≡, f) induced by the transducer M is such
that we have (A) u ≡ v iff u and v reach the same state of M; (B) for all
u ∈ PT , a ∈ Σ such that ua ∈ PT reaches a state q of M: (B.I) if there exists
v ∈ PT such that v ≡ u, and va ∈ PΓ , then f(ua) = f(u) · δ(q, a) (B.II) and if
(u, a) is muted, then f(ua) = f(u).

We note that these transformations are not one-to-one: some transducers
compatible with T cannot be obtained with this method. For instance, let us
consider a table full of #. Since no T (u) is ever in Γ ∗, there is no final state
in any transducer created with this method. This is the goal of projecting the
transducers’ behavior on PT : the MM induced by M only contains information
on its behavior on PT , and the transducer resulting from a MM is the transducer
with the smallest amount of states and transitions whose behavior on PT matches
what is described in the MM.

Learning Algorithm. Our learning algorithm works as follows: (1) We build up T
until it is closed and ≡ and lcp-consistent. (2) If two minimal compatible trans-
ducers exist, we find them and a word u to tell them apart. We use a membership
query on u and start again. (3) If only one minimal compatible transducer M
remains, we find it. We use an equivalence query on AUp × M. Such an algo-
rithm allows using the knowledge of Up to propose more compact candidates,
as the minimal transducer compatible with a table T is always smaller than the
canonical transducer that can be derived from T if we substitute ⊥ for the #.
This smaller model size leads to a better guarantee when it comes to the number
of required equivalence queries. The full algorithm is in Algorithm 2. It uses the
subprocedures CompetingMingGen and MinGen which we elaborate upon later.

Theorem 6. Algorithm 2 terminates and makes a number of equivalence queries
bounded by the number of states of a minimal M such that [[M]]|Up = τ .

Proof (Sketch). We first assume termination and focus on the bound on equiv-
alence queries. Note that, by construction of the tables, any minimal M such
that [[M]]|Up = τ is compatible with all of them. Thus, it suffices to argue that
every equivalence query our algorithm poses increases the size of a minimal
transducer compatible with it. For termination, it remains to bound the number

Learning Transducers Given an Overapproximation of the Domain 61

Algorithm 2 MinTransducerUp(AUp)
Input: The DFA AUp of an upper-bound
Output: A minimal DFA M such that L = M ∩ AUp

1: Let P = S = {ε} and T (P, S) the associated table
2: while True do � With u, u′ ∈ P , a ∈ Σ, v, v′ ∈ S
3: if (u, a, v, v′) is a witness of non-lcp-consistency then add av, av′ to S
4: else if (u, u′, a, v) is a witness of non-≡-consistency then add av to S
5: else if ua is a witness of non-closure then add ua to P
6: else if u := CompetingMinGen(T (P, S)) �= ∅ then add u and its suffixes to S
7: else M := MinGen(T (P, S))
8: if u is a non-equiv. witness for AUp × M then add all its suffixes to S
9: else return M

of membership queries and calls to the subprocedures. Note that it is impossi-
ble to enumerate all n-state transducers compatible with an observation table.
Termination will follow from the fact that we enumerate a finite subset of them. �

4 Merging Maps to Guess a Minimal Transducer

Algorithm 2 relies on CompetingMinGen(T) and MinGen(T) to find one or sev-
eral competing transducers compatible with an observation table. This type of
procedures is absent from blackbox learning algorithms, but central to graybox
learning algorithm [11]. In the automata case, an oracle that guesses a minimal
compatible automaton only needs to guess an equivalence relation on PT . For
transducers, we guess a function f that associates to each element of PT an out-
put in Γ ∗. Since this is not a finite search space, we aim to restrict ourselves to a
finite subspace that allows us to find one unique or two non-equivalent minimal
candidates. We will limit the scope of this search with Definition 10 and 11 of
muted and open transitions, to fix arbitrary outputs at ε.

To combine the two subprocedures, we characterize a necessary and sufficient
condition for two possible minimal candidates to exist. This condition is tested by
CompetingMinGen(T). When the minimal candidate is unique up to equivalence
on Up, we use MinGen(T) to generate it, then send an equivalence query.

MinGen(T) Using MMs. Recall that there are transducers compatible with a
table T that do not result from a MM on T . We will show that to implement
MinGen(T) and CompetingMinGen(T), it is enough to focus on minimal MMs
and to take the resulting transducers as candidates. To justify that this method
provides the right result, we prove that it provides valid candidates.

Lemma 7. Let (f,≡) be a minimal MM on a table T and M its resulting trans-
ducer. Then, M is compatible with T .

Among the minimal transducers compatible with T , there is one resulting from
a MM. Indeed, from a transducer M compatible with T one can create a smaller
one using the MM induced by M and Definition 4.

62 R. Berthon et al.

Proposition 8. Let T be a table, M a transducer compatible with T . There is
a transducer M′, with as many states, compatible with T resulting from a MM.

CompetingMinGen(T) Using MMs. While guessing a MM is enough to guess
a minimal transducer, it does not provide a reliable way to decide whether
two non-equivalent minimal compatible transducers exist. For the subroutine
CompetingMinGen(T), we must find a way to detect whether this is the case.
A natural first step is to say that if we can find minimal MMs whose result-
ing transducers are non-equivalent on Up, then we have found a solution to
CompetingMinGen(T). Unfortunately, this condition is not necessary. Indeed,
there are minimal MM induced by several non-equivalent transducers. This arises
when a transition going out of the state associated to some u ∈ PT can have an
arbitrarily defined output, because ua ∈ P∅, or ua �∈ PT .

Example 9. In Fig. 1, we note the special case of two transitions in the left trans-

ducer: the transition qa
c|1−−→ qa linking a ∈ PΓ to ac ∈ Pε, and the transition

qb
a|ε−−→ qa linking b ∈ PΓ to ba /∈ PT . In both cases, the transition is never used

by any u ∈ PT such that T (u) ∈ Γ ∗. The right transducer is also compatible

with T , but the output of qa
c|1−−→ qa is ε and qb

a|ε−−→ qa has been deleted.

The first case, ua ∈ P∅, is the one we aimed to eliminate by erasing the
output in muted pairs (u, a). We call muted transitions those whose output has
to be ε in a transducer induced from a MM.

Definition 10. Let T be a table, (≡, f) a MM, and M its resulting transducer.

For all u ∈ PT , a ∈ Σ, (u, a) is a muted pair of (≡, f), and qu
a|ε−−→ qua is a

muted transition of M, if u, ua ∈ dom(f) but there is no v ∈ PT such that u ≡ v
and va ∈ PΓ .

The second case, ua �∈ PT , is new. We formalize this as follows: An open end
is a place where a transition could be added without influencing the behavior of
the resulting transducer on PT . We fix the output of such transitions to ε.

Definition 11. Let T be a table and (≡, f) a MM. For all u ∈ PT , a ∈ Σ, (u, a)
is an open end of the map if there is no v ∈ PT s.t. v ≡ u and va ∈ PT . Let M
be the resulting transducer of (≡, f). We say that M′ is an open completion of
(≡, f) (or of M) if it is the transducer with at most one additional transition

u
a|ε−−→ u′ per open end (u, a). We call such transitions open transitions.

Muted and open transitions allow arbitrary output: if there exists a word
u ∈ Up that goes through a muted transition, that is sufficient to build several
compatible transducers that give different outputs on u. This condition together
with the existence of competing minimal MMs give a necessary, sufficient and
effective, condition for CompetingMinGen(T).

Lemma 12. Let T be an observation table, (≡, f) a MM on T and M its result-
ing transducer. If there exists an open completion M′ and an element u ∈ Up
such that u ∈ dom([[M′]]) and u uses a muted or open transition in its run in
M′, then there exist competing minimal transducers compatible with T .

Learning Transducers Given an Overapproximation of the Domain 63

Implementation: We prove that the following is a possible implementation of
CompetingMinGen(T). (1) Search for two minimal MMs with non-equivalent
corresponding transducers, (2) if these do not exist, search for a minimal MM
and an open completion as in Lemma 12; (3) otherwise, we have a unique minimal
transducer up to equivalence on Up.

Proposition 13. Let T be a table. If there exist two minimal transducers M1

and M2 compatible with T but not equivalent on Up, one of the following exists:
(i) two minimal MMs with non-equivalent resulting transducers M′

1,M′
2, or

(ii) an open completion M′ of a minimal MM compatible with T and a word
u ∈ dom([[M′]]) ∩ Up using at least one open or muted transition of M′.

5 Encoding into String Equations

Algorithm 2 would work as long as its subroutines return the desired results.
While it is impossible to enumerate all compatible transducers, one way to find
compatible transducers would be to enumerate all MM. For complexity’s sake
and to align our result with other graybox algorithms [1,11], we encode the
minimal generation subroutines into an NP problem like SAT. While a direct
encoding is possible, it is easier to go through a first encoding into string equa-
tions. We only use operations that are easily encoded into SAT: word (in)equality,
concatenation, Boolean operators, and a restricted use of quantifiers.

This setting has the advantage of being more directly relevant to the notions
we consider, while keeping the NP theoretical bound. Furthermore, SMT solvers
have specialized tools [12,16] to solve such equations, that may yield better
practical results than a direct SAT encoding.

We encode a table T , merging maps (≡, f), and runs of u ∈ Up with output
w ∈ Γ ∗ in the resulting transducer of T . We use word variables Tu for T (u),
booleans Eu,v for u ≡ v, word variables fu for f(u), word variable u and letter
variables ai ∈ [1, k] with u = a1 · · · · · ak for an input word of length k, and word
variables w = w0 · w1 · · · · · wk · wk+1 for their output step by step. The bounds
on the size of u is given by small model theorems in automata and transducers.

We use string equation formulae to encode the properties we combine in
the minimal generation subroutines. We classically build φeq that ensures Eu,v

denotes an equivalence. Then, each point of Definition 3 can be seen as a simple
combination of string equations on Tu and fu using the binary variables Eu,v for
u, v ∈ PT . We can thus build φmm that ensures Eu,v and fu denote a MM.

For the transducer resulting from (≡, f), and its open completions, we add
booleans mu,a, ou,a that indicate leaving qu with a is a muted or open transition.

To model runs, we use φrun(u,w) ensuring u has a run with output w in
the transducer resulting from Eu,v and fu. We build it by making sure the run
starts in the initial state with production w0, ends in a final state with production
wk+1, and at the ith step, the input letter is ai and the output word is wi.

To encode MinGen(T) we only need to find Eu,v, fu that respect φmm with
n states, where n starts at 1 and increases until a solution is found.

64 R. Berthon et al.

For CompetingMinGen(T), we use Proposition 13 to split the encoding in
two. To encode the case where there exist two non-equivalent MMs, we use vari-
ables Eu,v and fu respecting φmm for a first MM, copies E′

u,v and f ′
u respecting

φmm for a second MM, and φUp and φrun to encode the existence of u ∈ Up
whose run differs in the transducers resulting from both MMs.

It is easy to encode the case where there exist an open completion and a
word u ∈ Up that uses an open or muted transition, by using mu,a and ou,a on
the run of u in the transducer resulting from the MM of Eu,v and fu.

Combined together, they encode the minimal generating subroutines in string
equations, that could then be encoded in SAT, leading to our result:

Proposition 14. Let T be an observation table. The subroutines MinGen(T)
and CompetingMinGen(T) can be effectively implemented.

Note on Complexity: As this string-equation encoding is a polynomial shorthand
for a SAT encoding, each oracle call solves an NP problem. Coarsely, MinGen(T)
and CompetingMinGen(T) are of complexity PNP. To find a minimal MM of
size n, we need n − 1 of those oracles to fail on sizes 1 ≤ i < n. If we take
Algorithm 2 in its entirety, each call to MinGen(T) and CompetingMinGen(T)
need not make use of n oracle calls since we can cache current minimal size for
future calls.

6 Conclusion

Adapting graybox learning to transducers revealed more complex than expected.
Our solution relies on merging maps, muted and open transitions while offering
better bounds on equivalence queries than OSTIA. Two main questions remain
open: (1) The bound on the number of equivalence queries was the aim of this
paper, but the number of membership queries or call to string equations solvers
are not considered. Providing tight bounds or proposing a potential tradeoff, like
the one described in [1], would increase the viability of the implementation of
such an algorithm. (2) We could consider other classes of side information like
general upper bound that cut sections of Σ∗ × Γ ∗.

As practical future work, we plan to apply our learning algorithm to the mini-
mization of strategies synthesized by tools participating in the Reactive Synthesis
Competition [9]. In one of the tracks from the competition, specifications are even
given in a format where assumptions about the environment are explicit [10].
We expect our algorithm to work best for that setup.

References

1. Abel, A., Reineke, J.: Gray-box learning of serial compositions of mealy machines.
In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 272–287.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 21

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

https://doi.org/10.1007/978-3-319-40648-0_21

Learning Transducers Given an Overapproximation of the Domain 65

3. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis.
In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking, pp. 921–962. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 27

4. Brenguier, R., Raskin, J., Sankur, O.: Assume-admissible synthesis. Acta Infor-
matica 54(1), 41–83 (2017). https://doi.org/10.1007/s00236-016-0273-2

5. de la Higuera, C., Oncina, J.: Learning stochastic finite automata. In: Paliouras, G.,
Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp. 175–186. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30195-0 16

6. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12002-2 16

7. Garhewal, B., Vaandrager, F., Howar, F., Schrijvers, T., Lenaerts, T., Smits, R.:
Grey-box learning of register automata. In: Dongol, B., Troubitsyna, E. (eds.)
IFM 2020. LNCS, vol. 12546, pp. 22–40. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-63461-2 2

8. Holtmann, M., Kaiser, L., Thomas, W.: Degrees of lookahead in regular infinite
games. Log. Methods Comput. Sci. 8(3) (2012). https://doi.org/10.2168/LMCS-
8(3:24)2012

9. Jacobs, S., et al.: The 4th reactive synthesis competition (SYNTCOMP 2017):
benchmarks, participants & results. In: Fisman, D., Jacobs, S. (eds.) Proceedings
Sixth Workshop on Synthesis, SYNT@CAV 2017, Heidelberg, Germany, 22 July
2017. EPTCS, vol. 260, pp. 116–143 (2017). https://doi.org/10.4204/EPTCS.260.
10

10. Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1.
In: Piskac, R., Dimitrova, R. (eds.) Proceedings Fifth Workshop on Synthesis,
SYNT@CAV 2016, Toronto, Canada, 17–18 July 2016. EPTCS, vol. 229, pp. 112–
132 (2016). https://doi.org/10.4204/EPTCS.229.10

11. Leucker, M., Neider, D.: Learning minimal deterministic automata from inex-
perienced teachers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol.
7609, pp. 524–538. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34026-0 39

12. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An
efficient SMT solver for string constraints. FMSD 48(3), 206–234 (2016)

13. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for automata
learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.)
Models, Mindsets, Meta: The What, the How, and the Why Not? LNCS, vol.
11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22348-9 23

14. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://
doi.org/10.1145/2967606

15. Vilar, J.M.: Query learning of subsequential transducers. In: Miclet, L., de la
Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147, pp. 72–83. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0033343

16. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a z3-based string solver for web appli-
cation analysis. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pp. 114–124 (2013)

https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/s00236-016-0273-2
https://doi.org/10.1007/978-3-540-30195-0_16
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.2168/LMCS-8(3:24)2012
https://doi.org/10.2168/LMCS-8(3:24)2012
https://doi.org/10.4204/EPTCS.260.10
https://doi.org/10.4204/EPTCS.260.10
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.1007/978-3-642-34026-0_39
https://doi.org/10.1007/978-3-642-34026-0_39
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1007/BFb0033343

	Active Learning of Sequential Transducers with Side Information About the Domain
	1 Introduction
	2 Preliminaries
	3 Learning Transducers with Side Information
	4 Merging Maps to Guess a Minimal Transducer
	5 Encoding into String Equations
	6 Conclusion
	References

