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Abstract. We continue our investigation on the descriptional complex-
ity of the cascade product of finite state devices started in [M. Holzer,
C. Rauch: The Range of State Complexities of Languages Resulting
from the Cascade Product—The Unary Case (Extended Abstract). Proc.
CIAA, 2021]. Here we study the general case, that is, cascade products
of reset, permutation-reset, permutation, and finite automata in general,
where the left operand automaton has an alphabet of size at least two. In
all cases, except for the cascade product of two permutation automata,
it is shown that the whole range of state complexities, namely the inter-
val [1, nm], where n is the state complexity of the left operand and m
that of the right one, is reachable. The cascade product of two permu-
tation automata produces a lot of non-reachable numbers—numbers of
this kind are called magic in the relevant literature—even for arbitrary
alphabet sizes. These results are in sharp contrast to the unary case.

1 Introduction

The Krohn-Rhodes Theorem [2] states that any finite automaton can be decom-
posed into (several) simple “automata prime factors.” Here simple means
permutation-reset automata, that is, devices where each letter induces either a
permutation or a constant function on the state set. The decomposition operation
is that of the cascade product, which shares similarity with the direct product
of automata. Although the descriptional complexity of the Krohn-Rhodes Theo-
rem is well understood [11,12], the one-time application of the cascade product
operation still lacks a descriptional complexity investigation until recently. In [6]
the descriptional complexity of the cascade product, where the left operand is a
unary automaton, is studied in detail. There a complete picture on the reachable
state complexities for the cascade product of reset (RFA), permutation (PFA),
permutation-reset (PRFA), and finite automata in general (DFA) is drawn. It
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turned out, that in the majority of the cases—in 7 out of 12 cases1—studied
in [6], state complexities were identified that cannot be reached by the applica-
tion of a single cascade operation on a minimal unary n- and a minimal m-state
finite automaton of a certain kind. This research falls into the line of operation
problems on finite state devices, see, e.g., [3,4,7,8,10], and their descriptional
complexity. Adapting the notion of [9] on the determinization of nondeterminis-
tic finite automata, state numbers that cannot be reached by a binary operation
on two state devices of a particular size are called “magic.” For instance, for
a minimal unary n-state PFA A and a minimal m-state PFA B the minimal
automaton accepting the language L(A ◦ B), where ◦ refers to the cascade prod-
uct, can only have α states with α in

{1} ∪ {nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m },

where t is a non-trivial divisor of n, that is, a divisor that is neither 1 nor n.
All other numbers in the interval [1, nm] are called magic. Interestingly, one can
show that nm − 1 is magic in all cases, where numbers exist that cannot be
reached by the cascade operation problem where at least one automaton is not
a RFA. It is worth mentioning, that the existence of these magic numbers does
not contradict the Krohn-Rhodes decomposition theorem.

Here we continue the research started in [6] by considering the descriptional
complexity of the cascade product of automata with input alphabets of size at
least two. Compared to the unary case the situation on the existence of magic
numbers completely changes for automata with larger input alphabet sizes. In
almost all cases—in 15 out of 16 cases2—no magic numbers exist and thus the
whole interval [1, nm] can be obtained. For the case of the cascade product of
two PFAs we identify numerous magic numbers. In fact, for large n with a lot of
non-trivial divisors, and small m a legion of magic numbers exist. For instance,
for n = 10 = 2 · 5 and m = 3 at least the numbers (in increasing order) 3, 7, 9,
11, 13, 17, 19, 21, 23, 27, and 29 are magic. Except for a precise characterization
of the reachable state sizes for the cascade product of two PFAs in general, we
solve the magic number problem for the cascade product completely.

2 Preliminaries

We recall some definitions on finite automata as contained in [5]. A deterministic
finite automaton (DFA) is a quintuple A = (Q,Σ, ·, q0, F ), where Q is the finite set
of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the
set of accepting states, and the transition function · maps Q ×Σ to Q. The language
accepted by the DFA A is defined as L(A) = {w ∈ Σ∗ | q0 · w ∈ F }, where the

1 There are three types of automata for the left operand of the cascade product,
namely unary reset, unary permutation(-reset), and unary finite automata in gen-
eral and four types of automata for the right operand, that are reset, permutation,
permutation-reset, and finite state device without restrictions.

2 For automata with input alphabet of size at least two we have four types of left
operands instead of three as in the unary case. This leads to 4 · 4 = 16 cases.
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transition function is recursively extended to a mapping Q ×Σ∗ → Q in the usual
way. Obviously, every letter a ∈ Σ induces a mapping from the state set Q to Q by
q �→ δ(q, a), for every q ∈ Q. A DFA is unary if the input alphabet Σ is a singleton
set, that is, Σ = {a}, for some input symbol a. Moreover, a DFA is said to be a
permutation-reset automaton (PRFA) if every input letter induces either a per-
mutation or a constant mapping on the state set. If every letter of the automaton
induces only permutations on the state set, then we simply speak of a permutation
automaton (PFA). Finally, a DFA is said to be a reset automaton (RFA) if every
letter induces either the identity or a constant mapping on the state set. The class
of reset, permutation, permutation-reset, and deterministic automata in general
are referred to as RFA, PFA, PRFA, and FA, respectively. It is obvious that
inclusions XFA ⊆ PRFA ⊆ FA, where X ∈ {P,R}, holds. Moreover, it is not
hard to see that the classes RFA and PFA are incomparable.

The cascade product [2] is originally introduced for semi-automata, which are
automata with no initial nor final states. For our needs we enrich the cascade
product with initial and final states and follow for the definition of the final states
the lines of [1]. The cascade product of two DFAs A = (QA, Σ, ·A , q0,A, FA) and
B = (QB , QA × Σ, ·B , q0,B , FB), denoted by A ◦ B, is defined as the automaton

A ◦ B = (QA × QB , Σ, · , (q0,A, q0,B), FA × FB),

where the transition function is given by

(q, p) · a = (q ·A a, p ·B (q, a)),

for q ∈ QA, p ∈ QB , and a ∈ Σ. We say that A is the first automaton and B
the second automaton in the cascade product A ◦ B. A schematic drawing of the
cascade product is given in Fig. 2. It is obvious that the cascade product of two
DFAs generalizes the direct product. In order to explain the notation we give an
example.

Example 1. Consider the PRFA A = ({q0, q1, q2}, {a, b}, ·A , q0, {q0, q2}), where

q0 ·A a = q1,

q0 ·A b = q2,

q1 ·A a = q0,

q1 ·A b = q2,

q2 ·A a = q2,

q2 ·A b = q2.

Then assume that m is an arbitrary integer greater than or equal three and let

B = ({p0, p1, . . . , pm−1}, {q0, q1, q2} × {a, b}, ·B , p0, {p1}),

be the PFA, where

pi ·B (qj , b) = pi+1 mod m, for 0 ≤ j ≤ 1 and 0 ≤ i ≤ m − 1,

pi ·B (q2, a) = pi+1 mod 3, for 0 ≤ i ≤ 2,

and all other not explicitly stated transitions are self-loops. The automata A
and B, for m = 3, are depicted in Fig. 1 on the top and lower right, respectively.
It is easy to see that both automata are minimal.
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Fig. 1. Schematic drawing of the cascade product of the DFAs A and B. The automaton
A is depicted on top and the automaton B on the right. The automaton AB is shown
in the middle, where only the transition of the state (q; p) is displayed. Note that
self-loops will be only drawn by dotted loops without letters.

By construction the cascade product of A and B is given by

A ◦ B = ({q0, q1, q2} × {p0, p1, . . . , pm−1}, {a, b}, · , (q0, p0), {q0, q2} × {p1}),

where the transitions of the initially reachable states

(q0, p0), (q1, p0), (q2, p0), (q2, p1), (q2, p2),

can be deduced from Fig. 1, too, on the lower left. Although the drawing is only
for automaton B with three states, the initially reachable part of A ◦ B remains
the same for larger B’s as defined. Observe, that A ◦ B is not a PRFA and it is
not minimal. By inspection the only equivalent states in A ◦ B are (q0, p0) and
(q1, p0). Hence, the minimal DFA accepting L(A ◦ B) has α = 4 states. 	


The following result is immediate by the lower bound results on the opera-
tional complexity of the intersection operation on finite automata [8].

Theorem 1. Let A be a n-state and B a m-state DFA. Then n · m states are
sufficient and necessary in the worst case for any DFA accepting L(A ◦ B). The
lower bound even holds for automata with binary input alphabet.

When considering the descriptional complexity of the cascade product, we
limit ourselves to the case where the involved automata are non-trivial, i.e., they
have more than one state. This is due to the fact that if the second automaton in
the operation under consideration is a singleton device, then the cascade product
accepts either the empty set or the same language as the involved other device.
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Fig. 2. The example automata A and B on the top and lower right, respectively. For
a better representability not all transitions of an automaton are shown. In particular,
this is the case for automaton AB, where only the transitions of the initially reachable
states are shown. The cascade product AB is depicted on the lower left. Additionally
the index j is a placeholder for numbers 0 and 1. Note that as before self-loops will be
only depicted by dotted loops without letters.

If the first automaton is a singleton device, then the cascade product accepts
either the empty language or the language L that is the image of the language
that the second automaton accepts under the homomorphism (q, a) �→ a, for
the letters a of the first automaton, where q is the state of the first automaton.
Therefore, only 1-, n-, or m-state automata, for n,m ≥ 1, appear as results
of a cascade product with a trivial automaton. Thus, in the following we only
consider non-trivial automata.

3 Results

We assume the reader to be familiar with the results on the cascade product of
unary automata, as contained in the forerunner paper [6]. In the following we
prove results for the general case, that is, if the input alphabet of the left operand
automaton in the cascade product is at least two. Since we are dealing with
permutation automata very often, we find the following result on the minimality
of PFAs quite useful. The following statement was already shown in [6].

Lemma 1. Let A be a PFA with a sole accepting state with all states reachable
from the initial state. Then A is minimal. Minimality is preserved even if the
initial state is changed to any other state.
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Our investigation is started with cascade products, where reset automata
are involved. Observe, that all our results on the cascade product of binary
automata remain valid for arbitrary alphabets of at least two letters, since adding
duplicitous letters does not change the complexity.

3.1 Cascade Products Where Reset Automata are Involved

The magic number problem in the binary input alphabet case of the cascade
product, where at least one reset automaton is involved, is already almost com-
pletely solved in [6]. It is easy to see that (minimal) reset automata form a very
limited class of automata, because every minimal reset automaton has at most
two states. For the cascade product of two RFAs A and B it was shown in [6]
that if A has an input alphabet of at least two letters, then the minimal DFA
accepting the language L(A ◦ B) has α states with 1 ≤ α ≤ 4, which is the
maximal range for this case. This is different from the unary case, where only
the values from the set {1, 2, 3} can be reached.

Next consider the cascade product of RFAs with PFAs, where we show that
no magic numbers exist. The upper bound on the size of the minimal automaton
equivalent to the cascade product of a non-trivial minimal reset automaton with
a minimal m-state permutation automaton is 2m. In the unary case this bound
cannot be reached, since only the interval [1,m + 1] is obtained [6].

Theorem 2. Let m ≥ 1. Then for every α with 1 ≤ α ≤ 2m, there exists a
non-trivial minimal RFA A and minimal m-state PFA B such that the minimal
DFA for the language L(A ◦ B) has α states.

Proof (Sketch). By the above mentioned result in the unary case it remains
to show that the integers within the interval [m + 2, 2m] are reachable. So let
α = m + �, for 2 ≤ � ≤ m.

Define the RFA A = ({q0, q1}, {a, b}, ·A , q0, {q1}), where the transition func-
tion is defined as

q0 ·A a = q1, q1 ·A a = q1

q0 ·A b = q0, q1 ·A b = q1.

It is easy to see that this automaton is minimal. Next let the PFA B be

B = ({p0, p1, . . . , pm−1}, {q0, q1} × {a, b}, ·B , p0, {p0}),

where

pi ·B (q0, a) = pi+1 mod m, for 0 ≤ i ≤ m − 1,

pi ·B (q0, b) = pi+1 mod �, for 0 ≤ i ≤ � − 1,

pi ·B (q0, b) = pi, for � ≤ i ≤ m − 1,
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and

pi ·B (q1, a) = pi+1 mod m, for 0 ≤ i ≤ m − 1,

pi ·B (q1, b) = pi, for0 ≤ i ≤ m − 1.

This completes the descriptions of the automaton B. By Lemma 1 the automa-
ton B is minimal.

Next we show that the set of initially reachable states of the cascade prod-
uct A ◦ B can be partitioned into the union Ea ∪ Eb, where

Ea = { (q0, p0) · ai | i ≥ 1 } and Eb = { (q0, p0) · bi | i ≥ 0 }.

Here · refers to the transition function of A ◦ B; see Fig. 3. A close inspection
reveals that Ea = {q1} × {p0, p1, . . . , pm−1} and Eb = {q0} × {p0, p1, . . . , p�−1}.
Finally, it remains to prove that the states in Ea ∪ Eb are pairwise inequivalent.
The tedious details are left to the interested reader. Then the stated claim fol-
lows, because the number of states in Ea ∪ Eb is � + m, which by construction
is equal to α. 	


Fig. 3. The initially reachable part of the automaton A ◦B.

In the remainder of this section we discuss the cases where the right operand
of the cascade product is an RFA. For the cascade product of a unary minimal
n-state PFA with an RFA it was shown in [6] that the maximal possible interval
[1, 2n] can be reached, and therefore no magic numbers exist. This result gener-
alizes to unary PRFAs and DFAs and moreover to the non-unary case. This is
summarized in the following theorem.

Theorem 3. Let n ≥ 1. Then for every α with 1 ≤ α ≤ 2n, there exists a n-
state PFA (PRFA, or DFA, respectively) A and a non-trivial RFA B such that
the minimal DFA for the language L(A ◦ B) has α states.

This settles all cases where RFAs are involved in the cascade product of two
automata. In summary, in all cases no magic numbers exist, whenever the input
alphabet of the first automaton contains at least two alphabet symbols.
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3.2 Cascade Products of Two Permutation Automata

In [6] it was shown for the cascade product of two permutation automata in the
unary case that all numbers which are relatively prime to the number of states of
the first device are magic numbers. We show that this also holds in the general
setting, i.e., for input alphabets of arbitrary size. Before we prove this, we recall
a structural result on the cascade product of two PFAs from [6].

Theorem 4. Let A and B be minimal n- and m-state PFAs, respectively. Then
there is an x with 1 ≤ x ≤ m such that for every state q in A the number of
initially reachable states in A ◦ B that have q as their first component is exactly x.
As a direct consequence the initially reachable part of A ◦ B has exactly nx states.
Moreover, the minimal deterministic finite automata that accepts L(A ◦ B) has α
states, where α is a divisor of the quantity of initially reachable states of A ◦ B.

Now we are ready to prove the above mentioned result on the existence of
magic numbers in the general case.

Lemma 2. Let n,m ≥ 2. For every α in [2, nm] that is coprime to n, there does
not exist a minimal n-state PFA A and a minimal m-state PFA B such that the
minimal DFA for the language L(A ◦ B) has α states.

Proof. We give a proof by contradiction. So we assume that α is an integer
in [2, nm], which is coprime to n, and A is a n-state and B is a m-state PFA,
such that the minimal DFA accepting L(A ◦ B) has exactly α states. Let QA be
the state set of A and QB the state set of B, respectively.

By Theorem 4 we know, that there are nx states, for some 1 ≤ x ≤ m,
that are initially reachable in A ◦ B, and that α must divide nx. Therefore, it is
possible to partition the set of initially reachable states of A ◦ B into α sets such
that each set contains exactly nx/α states which are equivalent. Let these sets
be T0, T1, . . . , Tα−1. Define

Si := { q ∈ QA | there exists p ∈ QB such that (q, p) ∈ Ti }.

Because A ◦ B is a PFA, for every pair of states there exists a word which maps
one of those states onto the other. Since every word acts directly on the first
component of a state we find that |({q} × QB) ∩ Ti| is equal for every state q
of A for which Si is not empty. Since it makes the further considerations a lot
easier we fix q as an arbitrary state of A. Again, by Theorem 4 we know, that for
every state q of A there are x states (with first component q) initially reachable
in A ◦ B. Thus, we obtain for a set Ti, which contains a state that has q as its
first component

|{( {q} × QB) ∩ Ti = ∅ | 0 ≤ i ≤ α − 1 }| · |({q} × QB) ∩ Ti| = x,

and |({q} × QB) ∩ Ti| · |QA ∩ Si| = |Ti| = n x
α . By inserting the first equation

into the second we obtain

|({q} × QB) ∩ Ti| · |QA ∩ Si|
= n · |{ ({q} × QB) ∩ Ti = ∅ | 0 ≤ i ≤ α − 1 }| · |({q} × QB) ∩ Ti|

α
.
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Dividing by |({q} × QB) ∩ Ti| gives us

|QA ∩ Si| = n · |{ ({q} × QB) ∩ Ti = ∅ | 0 ≤ i ≤ α − 1 }|
α

.

Since |QA ∩ Si| is an integer and the numbers n and α are coprime we obtain
that |{ ({q} × QB) ∩ Ti = ∅ | 0 ≤ i ≤ α − 1 }| is divisible by α. This in turn
implies that it is equal to α, since it is upward limited by α. Therefore, for every
set Ti, for 0 ≤ i ≤ α − 1, there exists a state which has q as its first component.
Because α is at least two, there must be an initially reachable accepting state
in A ◦ B. Thus, there exists an i with 0 ≤ i ≤ α − 1, such that Ti contains only
(equivalent) accepting states. In conclusion that means that q must be accepting.
Since state q was arbitrarily chosen this implies that every state of A must be
accepting, which is a contradiction to the fact that A is minimal. 	


3.3 Cascade Products with Permutation and Permutation-Reset
Automata and Beyond

Next we investigate the descriptional complexity of the cascade product of a
permutation and a permutation-reset device. For the first case, where the first
automaton of the cascade product is a PFA no magic numbers exist. This is in
contrast to the unary case [6].

Theorem 5. Let n,m ≥ 2. Then for every α with 1 ≤ α ≤ nm, there exists a
minimal binary n-state PFA A and a minimal m-state PRFA B such that the
minimal DFA accepting the language L(A ◦ B) has exactly α states.

Proof (Sketch). In [6] it was shown that in the unary case the numbers [1, 2n]
are reachable. Thus, we may assume that α > 2n. One can show that every
number α in the interval [n, nm] can be written in the form α = km+n−k+�, for
integers 0 ≤ k ≤ n− 1 and 0 ≤ � ≤ m− 1. In order to simplify the constructions
to come, we want to exclude the case � = m − 1. In case α has a representation
as above with � = m − 1, we may rewrite it to α = km + n − k + (m − 1) =
(k + 1)m + n − (k + 1), as long as k < n − 1. For k = n − 1, the value of α is
equal to nm, which can be reached by a result in [6] already in the unary case.
In summary, α belongs now to the interval [2n + 1, nm − 1] and can be written
as above with 0 ≤ k ≤ n − 1 and 0 ≤ � < m − 1.

Let A = ({q0, q1, . . . , qn−1}, {a, b}, ·A , q0, FA), with

qi ·A a = qi+1 mod n, for 0 ≤ i ≤ n − 1,

qi ·A b = qi, for 0 ≤ i ≤ n − k − 2,

qi ·A b = qi+1, for n − k − 1 ≤ i ≤ n − 3,

qn−2 ·A b = qn−k−1,

qn−1 ·A b = qn−1,

where all non-specified transitions are self-loops as usual, and FA = {qn−1}, if
n = 2 and k = 0, FA = {qn−2}, if n = 2 and k > 0, and FA = {qn−2, qn−1},
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otherwise. That A is minimal follows for n = 2 by Lemma 1. In case n > 2
the minimality of the device A is seen because the states qn−2 and qn−1 are
distinguishable by applying the word a and for every other state pair there
exists a bijection which maps at least one of them into {qn−2, qn−1}.

Next let the PRFA B be

B = ({p0, p1, . . . , pm−1}, {q0, q1, . . . , qn−1} × {a, b}, ·B , p0, {p0}),

where

pi ·B (qn−2, a) =

{
pi+1 mod m, for 0 ≤ i ≤ m − 1 and k = 0,

pi, for 0 ≤ i ≤ m − 1 and k > 0,

pi ·B (qn−2, b) =

{
pi, for 0 ≤ i ≤ m − 1 and k = 0,

pi+1 mod m, for 0 ≤ i ≤ m − 1 and k > 0,

pi ·B (qn−1, a) =

{
pi, for 0 ≤ i ≤ m − 1, n = 2 and k > 0,

p0, for 0 ≤ i ≤ m − 1, n > 2 or k = 0,

and

pi ·B (qn−1, b) = pi+1 mod �+1, for 0 ≤ i ≤ �,

and all non-specified transitions are self-loops. The given construction ensures
that all states in B are reachable (by the sole letter (qn−2, a), if k = 0, and
by the letter (qn−2, b), otherwise). Thus, Lemma 1 shows that the automaton is
minimal in all cases.

For the analysis of the cascade automaton A ◦ B we similarly proceed as in
the proof of Theorem 2. First one shows that the following three sets

Ea≤n−k−2 = { (q0, p0) · aj | 0 ≤ j ≤ n − k − 2 },

Ean−k−1b∗ =

{
{ (q0, p0) · an−k−1bi | i ≥ 0 } if k > 0,

∅ otherwise,

and

Ean−1b∗ = { (q0, p0) · an−1bi | i ≥ 0 },

where · refers to the transition function of A ◦ B, form the initially reachable
states of A ◦ B. To this end one distinguishes two cases depending on n with
appropriate subcases on k; the sets under consideration, e.g., for the case n >
2 and k > 0 are depicted in Fig. 4. In all the considered cases it turns out
that A ◦ B has α initially reachable states. Minimality of the automaton A ◦ B is
shown by proving that the states in Ea≤n−k−2 ∪Ean−k−1b∗ ∪Ean−1b∗ are pairwise
inequivalent. The cumbersome details are left to the reader. Then this proves
the stated claim. 	




State Complexities of Languages Resulting from the Cascade Product 239

Fig. 4. The initially reachable states of A ◦B in the case n > 2 and k > 0. The states
of Ea≤n−k−2 , Ean−k−1b∗ , and Ean−1b∗ are coloured dark gray, gray, and light gray,
respectively.

Obviously this theorem implies that the minimal DFA accepting L(A ◦ B)
for a n-state device A and a m-state device B can have every number of states
in the integer interval [1, nm] in the following cases:

– A is a binary PFA and B is an arbitrary DFA,
– A is a binary PRFA and B is a PRFA,
– A is an arbitrary binary DFA and B is a PRFA, and
– A is an arbitrary binary DFA and B is an arbitrary DFA,

where both automata are always assumed to be minimal.
So it only remains to study the cascade product of an n-state PRFA A and

an m-state PFA B. Recall that in the unary case magic numbers exist in this
case [6].

Theorem 6. Let n,m ≥ 2. Then for every α with 1 ≤ α ≤ nm, there exists a
minimal binary n-state PRFA A and a minimal m-state PFA B such that the
minimal DFA accepting the language L(A ◦ B) has exactly α states.

Obviously, this statement generalizes to the remaining missing cases.
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4 Conclusions

We continued our research on the magic number problem for the cascade prod-
uct on finite automata of certain types. Compared to the unary case, which was
studied in [6], where in almost all cases magic numbers were identified, here the
situation is completely the other way around. In all cases, except one (Lemma 2),
we do not find magic numbers. In fact, only for the cascade product of two min-
imal PFAs, a precise answer to the reachable states sizes are missing. Moreover,
since the cascade product as introduced here uses final states, it also remains to
study the effect on the descriptional complexity of the choice of final states in
the product automaton.
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10. Jirásková, G.: Magic numbers and ternary alphabet. Internat. J. Found. Comput.
Sci. 22(2), 331–344 (2011)

https://doi.org/10.1007/978-3-642-39310-5_26
https://doi.org/10.1007/978-3-319-08846-4_10
https://doi.org/10.1007/978-3-030-79121-6_8
https://doi.org/10.1007/978-3-030-79121-6_8
https://doi.org/10.1007/978-3-030-13435-8_14
https://doi.org/10.1007/978-3-030-13435-8_14


State Complexities of Languages Resulting from the Cascade Product 241

11. Maler, O.: On the Krohn-Rhodes cascaded decomposition theorem. In: Manna, Z.,
Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp. 260–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13754-9 12

12. Maler, O., Pnueli, A.: Tight bounds on the complexity of cascaded decomposition
of automata. In: Proceedings of the 31st Annual Symposium on Foundations of
Computer Science, pp. 672–682. IEEE Computer Society Press, St. Louis (1990)

https://doi.org/10.1007/978-3-642-13754-9_12

	The Range of State Complexities of Languages Resulting from the Cascade Product—The General Case (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Cascade Products Where Reset Automata are Involved
	3.2 Cascade Products of Two Permutation Automata
	3.3 Cascade Products with Permutation and Permutation-Reset Automata and Beyond

	4 Conclusions
	References




