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Abstract. The projected language of a general deterministic automa-
ton with n states is recognizable by a deterministic automaton with
2n´1 `2n´m ´1 states, where m denotes the number of states incident to
unobservable non-loop transitions, and this bound is best possible. Here,
we derive the tight bound 2n´rm2 s ´ 1 for permutation automata. For a
state-partition automaton with n states (also called automata with the
observer property) the projected language is recognizable with n states.
Up to now, these, and finite languages projected onto unary languages,
were the only classes of automata known to possess this property. We
show that this is also true for commutative automata and we find com-
mutative automata that are not state-partition automata.

Keywords: State complexity · Finite automata · Projection ·
Permutation automata · State-partition automata · Commutative
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1 Introduction

The state complexity of a regularity-preserving operation is the minimal num-
ber of states needed in a recognizing automaton for the result of this operation,
dependent on the size of the input automaton. The study of the state complex-
ity was initiated in [18] and systematically started in [33]. As the number of
states of a recognizing automaton could be interpreted as the memory required
to describe the recognized language and is directly related to the runtime of
algorithms employing regular languages, obtaining state complexity bounds is a
natural question with applications in verification, natural language processing
or software engineering [7,15,21,25,30].

Here, in terms of state complexity, we are concerned with determin-
istic automata only. There were also investigations using nondeterministic
automata [8]. However, deterministic automata have better algorithmic proper-
ties: (1) equality could be done in almost linear time [10], (2) the minimal automa-
ton is unique up to isomorphism [11] and (3) there is an O(n log n)-time minimiza-
tion algorithm [9]. Contrary, for nondeterministic automata, equality testing is
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PSPACE-complete [27], minimal automata are not unique and minimization is a
PSPACE-complete problem [8].

The state complexity of the projection operation was investigated in [13,31].
In [31], the tight upper bound 3 · 2n´2 ´ 1 was shown, and in [13] the refined,
and tight, bound 2n´1 ` 2n´m ´ 1 was shown, where m is related to the number
of unobservable transitions for the projection operator.

The projection operator has applications in engineering, verification, fault
diagnosis and supervisory control [5,16,17,32], as it corresponds to the observ-
able behavior, a simplified or a restricted view of a modeled system. However,
as, in general, the resulting automaton could be exponentially large, in practical
applications only those projections that avoid this blow-up are interesting. Moti-
vated by this, in [14] state-partition automata for a projection were introduced,
a class of automata for which the projection is recognizable with n states, if the
input automaton has n states.

Permutation automata were introduced in [29] and by McNaugthon [19] in
connection with the star-height problem. The languages recognized by permu-
tation automata are called (pure-)group languages [19,23,24]. However, one
could argue that, if not viewed as language recognizing devices, but as mere
state-transition systems, sometimes also just called semi-automata, permuta-
tion automata were around under the disguise of finite permutation groups, i.e.,
subgroups of the group of all permutation on a finite set, since the beginning
of the 19th century, starting with the work of Galois, Lagrange, Jordan and
others [3,22]. However, certainly, the viewpoint was different.

Languages recognized by permutation automata are not describable by first-
order formulae using only the order relation [20] and commutative regular lan-
guages correspond to threshold and modulo counting of letters [24]. The lan-
guages recognized by certain permutation automata, for example whose transfor-
mation monoids are solvable or supersoluble groups, were described in [4,6,28].
Investigation of the state complexity of common operations on permutation
automata was initiated on last years edition of this conference [12].

Here, we investigate the projection operator on permutation automata. We
give a better tight bound for permutation automata, also parameterized by the
number of unobservable transitions, that, however, also grows exponentially. We
give sufficient conditions, related to normal subgroups, to yield a state-partition
permutation automaton for a given projection. Then, we investigate projections
for commuting letters, this in particular encompasses commutative languages
and automata. We show that if we delete commuting letters by a projection
operator, then we also just need n states for an n-state input automaton for
the projected language. In particular this applies to commutative automata. We
find commutative automata that are not state-partition automata for a given
projection. This is in particular interesting, as in [13], it was noted that up to
then, only state-partition automata and automata describing finite language
with a unary projected language were known to have the property that we only
need n states for the projected languages.

Lastly, we derive that the projection operator preserves every variety of com-
mutative languages. This includes, for example, the commutative aperiodic, the
commutative group languages or the commutative piecewise-testable languages.
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2 General Notions

By Σ we denote a finite set of symbols, also called an alphabet. By Σ˚ we denote
the set of all words over Σ, i.e., finite sequences with the concatenation operation.
The empty word is denoted by ε. A language L is a subset L Ď Σ˚. Languages
using only a single symbol are called unary languages.

If X is a set, by P(X) “ {Y | Y Ď X} we denote the power set of X.
If x is a non-negative real number, by rxs we denote the smallest natural

number greater or equal to x and by txu the largest natural number smaller or
equal to x.

Let Γ Ď Σ. The homomorphism πΓ : Σ˚ Ñ Γ ˚ given by πΓ (x) “ x for x P Γ
and πΓ (x) “ ε for x P ΣzΓ is called a projection (for Γ ). If p, q P Q, x P Σ, then
a transition δ(p, x) “ q is said to be unobservable with respect to the projection
πΓ if x P ΣzΓ , i.e., πΓ (x) “ ε. Here, only non-loop unobservable transitions are
of interest, i.e., those such that p �“ q.

A (partial) deterministic finite automaton (DFA) is denoted by a quintuple
A “ (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ the input alphabet,
δ : Q ˆ Σ Ñ Q is a partial transition function, q0 the start state and F Ď Q the
set of final states. The DFA is said to be complete if δ is a total function. In the
usual way, the transition function δ can be extended to a function δ̂ : QˆΣ˚ Ñ Q
by setting, for q P Q, u P Σ˚ and a P Σ, δ̂(q, ε) “ q and δ̂(q, ua) “ δ(δ̂(q, u), a). In
the following, we drop the distinction between δ and δ̂ and denote both functions
simply by δ.

For S Ď Q and u P Σ˚, we set δ(S, u) “ {δ(s, u) | s P S and δ(s, u) is defined}.
The language recognized by A is L(A) “ {u P Σ˚ | δ(q0, u) P F}. A language

L Ď Σ˚ is called regular, if there exists an automaton A such that L “ L(A).
For u P Σ˚, we write δ(p, u) “ δ(q, u) if both are defined and the results are

equal or both are undefined.
We say that q is reachable from p (in A) if there exists a word u P Σ˚

such that δ(p, u) “ q. The DFA A is called initially connected, if every state is
reachable from the start state.

The DFA A “ (Q,Σ, δ, q0, F ) is called commutative, if, for each a, b P Σ and
q P Q, we have δ(q, ab) “ δ(q, ba).

Let A “ (Q,Σ, δ, q0, F ) be a complete DFA. For a word u P Σ˚, the transition
function (in A) associated to u is the function δu : Q Ñ Q given by δu(q) “
δ(q, u) for q P Q. The transformation monoid is TA “ {δu | u P Σ˚}. Note that
we defined the transformation monoid only for complete DFAs, as this is the
only context where we need this notion here.

To denote transitions in permutation DFAs, we use a cycle notation also used
in [2,12]. More formally, (q1, . . . , qk) denotes the cyclic permutation mapping qi

to qi`1 for i P {1, . . . , k ´ 1} and qk to q1. For example, a “ (1, 2)(3, 4, 5) means
the letter a swaps the states 1 and 2, cyclically permutes the states 3, 4 and 5 in
the indicated order and fixes all other states.

A variety (of formal languages) V [6,23,24] associates, to each alphabet Σ,
a class of recognizable languages V(Σ˚) over Σ such that (1) V(Σ˚) is a boolean
algebra, (2) if ϕ : Σ˚ Ñ Γ ˚ is a homomorphism, then L P V(Γ ˚) implies ϕ´1(L) P
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V(Σ˚) and (3) if L P V(Σ˚) and x P Σ, then {u P Σ˚ | xu P L} and {u P Σ˚ |
ux P L} are in V(Σ˚).

3 Orbit Sets, Projected Languages and Permutation
Automata

First, we introduce the orbit set of a set of states for a subalphabet. An orbit set
collects those states that are reachable from a given set of states by only using
words from a given subalphabet. This is also called unobservable reach in [5].

Definition 1. Let A “ (Q,Σ, δ, q0, F ) be a DFA. Suppose Σ′ Ď Σ and S Ď Q.
The Σ′-orbit of S is the set

OrbΣ′(S) “ {δ(q, u) | δ(q, u) is defined, q P S and u P Σ′˚}.

Also, for q P Q, we set OrbΣ′(q) “ OrbΣ′({q}).

Let A “ (Q,Σ, δ, q0, F ) be a DFA and Γ Ď Σ. Set Δ “ ΣzΓ . Next, we define
the projection automaton of A for Γ as RΓ

A “ (P(Q), Γ, μ,OrbΔ(q0), E) with,
for S Ď Q and x P Γ , the transition function

μ(S, x) “ OrbΔ(δ(S, x)) (1)

and E “ {T Ď Q | T X F �“ H}. In general, RΓ
A is not initially connected.

However, non-reachable states could be omitted. Actually, by the definition of
the start state and transition function, we can restrict the state set to subsets
of the form OrbΔ(S) for H �“ S Ď Q.

Theorem 2. Let A be a DFA and Γ Ď Σ. Then, πΓ (L(A)) “ L(RΓ
A).

We do not introduce ε-NFAs formally here, but only refer to the litera-
ture [11]. However, we note in passing that, usually, an automaton for a pro-
jected language of a regular language is constructed by replacing the letters to
be deleted by ε-transitions and then determinizing the resulting ε-NFA [11,13].
Our construction is a more direct formulation of these steps, where the orbit sets
are used in place of the ε-closure computations.

In [13,14], an automaton was called a state-partition automaton with respect
to a projection πΓ (or, for short, a state-partition automaton for Γ ), if the
states of the resulting automaton from the above procedure, after discarding
non-reachable subsets, form a partition of the original state set. Hence, in our
terminology, an automaton A is a state partition automaton if the reachable
states of RΓ

A form a partition of the states of A.
A permutation automaton (or permutation DFA) is a DFA A “

(Q,Σ, δ, q0, F ) such that every letter permutes the state set, i.e., the function
δx : Q Ñ Q given by δx(q) “ δ(q, x) is a permutation, or bijection, of Q for
every x P Σ. The languages recognized by permutation automata are called
group languages. Note that permutation DFAs are complete DFAs.
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The identity transformation (on Q) is the permutation id : Q Ñ Q given by
id(q) “ q for each q P Q.

Next, we take a closer look at the orbit sets for permutation automata. But
first, a general property of permutation automata.

Lemma 3. Let A “ (Q,Σ, δ, q0, F ) be a permutation automaton and Σ′ Ď Σ˚.
Then, for every u P Σ′˚ there exists u′ P Σ′˚ such that δ(q, uu′) “ q for each
q P Q, i.e., the word uu′ represents the identity transformation on Q.

With the previous lemma, we can show that the orbit sets for permutation
automata partition the state set. This property is crucial to derive our state
complexity bound for projection, as it vastly reduces the possible subsets that
are reachable in RΓ

A, namely only unions of orbit sets.

Lemma 4. Let A “ (Q,Σ, δ, q0, F ) be a permutation automaton. Suppose Σ′ Ď
Σ. Then, the sets OrbΣ′(q), q P Q, partition Q and for every S Ď Q, OrbΣ′(S) “⋃

qPS OrbΣ′(q).

4 Projection on Permutation Automata

Here, we state a tight upper bound for the number of states of the projection of
a language recognized by a permutation automaton.

Our bound is parameterized by the number of states of the input automaton
and by the number of non-loop unobservable transitions. More specifically, we
consider the number of states that are incident with non-loop unobservable tran-
sitions. Hence, we disregard unobservable multi-transitions and do not take the
direction into account, i.e., counting multiple transitions resulting from multiple
letters between the same states only once and do not take their direction into
account. This is the same usage of this parameter as in [14] for the general case.

Theorem 5. Let A “ (Q,Σ, δ, q0, F ) be a permutation DFA and Γ Ď Σ. Set
m “ |{ p, q P Q | p �“ q and q P δ(p,ΣzΓ )}|. Then, if m ą 0, the projected
language πΓ (L) is recognizable by a DFA with at most 2|Q|´rm2 s ´ 1 states and if
m “ 0, the projected language is recognizable by a DFA with at most |Q| states.
Proof. Set Δ “ ΣzΓ , S “ {p, q P Q | p �“ q and q P δ(p,Δ)} and T “ {p P Q |
@x P Δ : δ(p, x) “ p}. Then, as A is a permutation automaton, Q is the disjoint
union of S and T and

q P T ⇔ OrbΔ(q) “ {q} and q P S ⇔ | OrbΔ(q)| ě 2. (2)

Set B “ RΓ
A. If m “ 0, then Q “ T and every a P Δ induces a self-loop at every

state. In this case, it is clear that we can simply leave out all the transitions
labeled with letters from Δ and the resulting permutation automaton recognizes
πΓ (L(A)). More formally, in the definition of B, in this case, the starting state
is {q0} and as A is deterministic we have |δ(R, x)| ď |R| for every R Ď Q. So, as
the empty set is never reachable for permutation DFAs, only the singleton sets
{q} are reachable in B.

Now, suppose m “ |S| ą 0, which implies m ě 2.
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Claim: Let m ą 0. Then, in B at most 2|Q|´rm2 s ´ 1 states are reachable from the
start state.

Proof of the Claim: With the assumption m ą 0, there exists q P Q such that
| OrbΔ(q)| ą 1. By Equation (2) and Lemma 4, we have at most |T | `

Y |S|
2

]

many Δ-orbits, where the maximum number of Δ-orbits is reached if every Δ-
orbit of a state from S has size exactly two if |S| is even or every such orbit
has size two, except one that has size three, if |S| is odd. By Lemma 4, the
sets OrbΔ({q}), q P Q, partition the state set and, for every R Ď Q, we have⋃

qPR Orba(q) “ Orba(R). So, by Equation (1), every set reachable is a union
of Δ-orbits, i.e., every such set corresponds uniquely to a subset of Δ-orbits for
a single state. Finally, note that, as A is a permutation automaton, and hence
complete, we have δ(R, x) �“ H for every non-empty R Ď Q, which also gives
that in B the empty set is not reachable. So, in total, we find that at most

2
|T |`

Y
|S|
2

]
´ 1 “ 2|Q|´m`tm2 u ´ 1 “ 2|Q|´rm2 s ´ 1

subsets of states are reachable. [End, Proof of the Claim]
So, we have shown the upper bound. ��
Next, we show that the bound stated in the previous theorem is actually

tight for permutation automata.

Theorem 6. Let n,m ą 0 be such that 0 ă 2m ` 1 ă n, Σ “ {a, b, c, d, e, f, g}
and Γ “ {b, c, d, e, f, g}. Then, there exists a permutation automaton A “
(Q,Σ, δ, q0, F ) with 2m states incident to non-loop unobservable transitions
for πΓ , i.e.,

2m “ |{ p, q P Q | p �“ q and q P δ(p,ΣzΓ )}|,
such that every DFA for πΓ (L(A)) needs at least 2n´m ´ 1 states.

Proof (sketch). See Fig. 1 for a permutation automaton giving the lower bound.
The automaton has n states, and the letters act the following way:

a “ (1, 2)(3, 4) · · · (2m ´ 1, 2m),
b “ (2m ` 1, 2m ` 2), c “ (2m ` 1, 2m ` 2, . . . , n),
d “ (1, 3)(2, 4), e “ (1, 3, . . . , 2m ´ 1)(2, 4, . . . , 2m),
f “ (1, n), g “ (1, n)(2, n ´ 1).

With Δ “ {a}, the Δ-orbits are {1, 2}, {3, 4}, . . . , {2m ´ 1, 2m}, {2m `
1}, . . . , {n}. The letters b, c are chosen such that every permutation of the states
{2m ` 1, . . . , n} could be written as a word over them, and the letters d and e
such that every permutation on the Δ-orbits {1, 2}, . . . , {2m ´ 1, 2m} could be
written as a word over them. The letters f and g help to map between these
Δ-orbits in such a way that every non-empty union of Δ-orbits is reachable, and
all these Δ-orbits give distinguishable states. By mapping onto the two element
Δ-orbits and back, we can enlarge the sets that are reachable. ��
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Fig. 1. All transitions not shown, for example for the letter b at the state n, corre-
spond to self-loops, as permutation automata are complete. Then, the permutation
automaton shown reaches the upper bound stated in Theorem 5 for the projection
πΓ : {a, b, c, d, e, f, g}˚ Ñ Γ ˚ with Γ “ {b, c, d, e, f, g}.

Remark 1. Note that if A “ (Q,Σ, δ, q0, F ) is initially connected and has the
property that from every state q P Q a final state is reachable, then also RΓ

A has
this property. As permutation DFAs are complete by definition, this implies that
the tight bound stated in Theorem 5 remains the same if we would additionally
demand the resulting DFA for the projection to be complete.

We used an alphabet of size seven to match the bound. So, the question arises
if we can reach the bound using a smaller alphabet. I do not know the answer yet,
but by using a result from [13, Theorem 6] that every projection onto a unary
language needs less than exp((1 ` o(1))

√
n ln(n)) states, we can deduce that we

need at least a ternary alphabet to reach the bound stated in Theorem 5. For the
bound stated in Theorem 5 is lowest possible, apart from the trivial case m “ 0,
if m “ n. Then, the bound is 2tn/2u ´1. However, asymptotically, this grows way
faster than exp((1 ` o(1))

√
n ln(n)), in fact, the ratio of both expressions could

be arbitrarily large.

Proposition 7. Each permutation automaton A such that πΓ (L(A)) for a non-
empty and proper subalphabet Γ Ď Σ attains the bound stated in Theorem 5 with
m ą 0 must be over an alphabet with at least three letters and |Γ | ě 2.

5 State-Partition Automata and Normal Subgroups

First, we derive a sufficient condition for a permutation automaton to be a state-
partition automaton for a projection. Then, we introduce normal subgroups and
show that if the letters generate a normal subgroup, this condition is fulfilled.
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Proposition 8. Let A “ (Q,Σ, δ, q0, F ) be a permutation automaton and Γ Ď
Σ. Set Δ “ ΣzΓ . Then, A is a state-partition automaton for πΓ if the Δ-orbits
of the form OrbΔ(q) are permuted, i.e., for each x P Σ and q P Q, we have
δ(OrbΔ(q), x) “ OrbΔ(δ(q, x)).

With Lemma 4, if the orbits for some Δ Ď Σ are permuted, then, for each
q P Q and x P Σ, δ(OrbΔ(q), x) “ OrbΔ(q) or δ(OrbΔ(q), x) X OrbΔ(q) “ H.

Remark 2. The following example shows that A being a state-partition
automaton for Γ does not imply that the sets OrbΔ(q) are permuted.
Let A “ ({1, 2, 3, 4, 5, 6, 7, 8}, {a, b}, δ, 1, {1}) with the transitions a “
(1, 2, 3, 4)(5, 6)(7, 8) and b “ (1, 5)(2, 6)(3, 7)(4, 8). Then, for Γ “ {b} the
automaton is a state-partition automaton, as the reachable states in RΓ

A are
{1, 2, 3, 4} and {5, 6, 7, 8}, but the a-orbits are {1, 2, 3, 4}, {5, 6} and {7, 8}.

Recall that TA denotes the transformation semigroup of A. A subgroup of
TA, if A is a finite permutation automaton, is a subset containing the identity
transformation and closed under function composition. As we are only concerned
with finite automata, this also implies closure under inverse functions.

Next, we show that when the symbols deleted by a projection generate a
normal subgroup, then the automaton is a state-partition automaton for this
projection.

Normal subgroups are ubiquitous [3,26] in abstract group theory as well as
in permutation group theory. We give a definition for subgroups of TA, when A
is a permutation automaton, using our notation. We refer to more specialized
literature for other definitions and more motivation [3,26].

Definition 9. Let A “ (Q,Σ, δ, q0, F ) be a permutation automaton. Then, a
subgroup N of TA is called normal, if, for each δu, δv P TA (u, v P Σ˚),

(Dδw P N : δu “ δwv) ⇔ (Dδw′ P N : δu “ δvw′).

If a set of letters generates a normal subgroup, then the orbits of these
letters are permuted by the other letters. As they are invariant under the letters
themselves that generate these orbits, every word over Σ permutes these orbits.
This is the statement of the next lemma.

Lemma 10. Let A “ (Q,Σ, δ, q0, F ) be a permutation automaton and Σ′ Ď Σ
be such that N “ {δu : Q Ñ Q | u P Σ′˚} is a normal subgroup of TA. Then, for
each x P Σ and q P Q, we have δ(OrbΣ′(q), x) “ OrbΣ′(δ(q, x)).

So, combining Proposition 8 and Lemma 10.

Theorem 11. Let Γ Ď Σ, Δ “ ΣzΓ and A “ (Q,Σ, δ, q0, F ) be a permutation
automaton. Set N “ {δu : Q Ñ Q | u P Δ˚}, the subgroup in TA generated by Δ.
If N is normal in TA, then A is a state-partition automaton for πΓ . Hence, in
this case, πΓ (L(A)) is recognizable by an automaton with at most |Q| states.
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6 Commuting Letters

Let A “ (Q,Σ, δ, q0, F ) be a DFA. We say that two letters a, b P Σ commute
(in A), if δ(q, ab) “ δ(q, ba) for each q P Q. Hence, an automaton A is commu-
tative precisely if all letters commute pairwise.

Here, we investigate commuting letters with respect to the projection oper-
ation. Our first lemma states that if we can partition the alphabet of an n-state
DFA into two subalphabets of letters such that each letter in the first set com-
mutes with each letter in the second set, then for a projection onto one subal-
phabet, the projected language is recognizable by an n-state automaton. By this
result, the projected language of every n-state commutative automaton is recog-
nizable by an n-state automaton. We construct commutative automata that are
not state-partition automata. Hence, we have new examples of automata whose
projected languages are recognizable by automata with no more states than the
original automaton, but which are not state-partition automata. Lastly, by inves-
tigating the proofs, we can show, with not much more effort, that varieties of
commutative languages are closed under projections.

Lemma 12. Suppose A “ (Q,Σ, δ, q0, F ) is an arbitrary DFA. Let Γ Ď Σ be
such that, for each a P ΣzΓ , b P Γ and q P Q, we have δ(q, ab) “ δ(q, ba). Then,
πΓ (L) is recognizable by a DFA with at most |Q| states.
Proof. Intuitively, we take the input automaton and leave out all unobservable
transitions and make a state accepting if, in the input automaton, we can go
from this state to a final state by a word formed out of the deleted letters.

Let B “ (Q,Γ, δ|Γ , q0, E) be the DFA with δ|Γ (q, x) “ δ(q, x), the same
start state q0 and E “ {p P Q | Dq P F Du P (ΣzΓ )˚ : δ(p, u) “ q}. Then,
L(B) “ πΓ (L(A)).

If δ|Γ (q0, u) P E, then there exists v P (ΣzΓ )˚ such that δ(q0, uv) P F . So,
uv P L(A) and u “ πΓ (uv).

Conversely, suppose u “ πΓ (v) for some v P L(A). By assumption, as
we can successively push all letters in ΣzΓ to the end, we have δ(q0, v) “
δ(q0, πΓ (v)πΣzΓ (v)). So, δ(q0, πΓ (v)πΣzΓ (v)) P F , which yields δ|Γ (q0, πΓ (v)) P
E, hence u P L(B). ��

So, with Lemma 12, we get the next result.

Theorem 13. Let A “ (Q,Σ, δ, q0, F ) be a DFA such that L(A) is commu-
tative. If Γ Ď Σ, then πΓ (L(A)) is recognizable by a DFA with at most |Q|
states.

The definition of normality could be seen as a generalization of commutativ-
ity. Hence, with Theorem 11, we can deduce the next statement.

Proposition 14. Let A “ (Q,Σ, δ, q0, F ) be a commutative permutation
automaton and Γ Ď Σ. Then, A is a state-partition automaton for πΓ .

However, there exist commutative automata that are not state-partition
automata, as shown by Example 1.
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Example 1. Let A “ ({qε, qa, qb}, {a, b}, δ, qε, {qε, qb}) with

δ(qx, y) “

⎧
⎪⎪⎨

⎪⎪⎩

qa if x “ ε, y “ a;
qb if x “ ε, y “ b;
qb if x “ a, y “ b;
qx otherwise.

Then, L(A) “ {u P {a, b}˚ | |u|a “ 0 or |u|b ą 0}. However, we see that
Orb{b}(qε) “ {qε, qb}, Orb{b}(qb) “ {qb} and Orb{b}(qa) “ {qa, qb}. Hence,
A is not a state-partition automaton for the projection π{a} : {a, b}˚ Ñ {a}˚.
Also, it is not a state-partition automaton for the projection onto {b}˚.

The proofs of Lemma 12 and Theorem 13 also show that the projected lan-
guage of a commutative permutation automaton is recognizable by a permuta-
tion automaton, i.e., a group language. On the other hand, in the general case,
Example 2 below gives a permutation automaton whose projected language is
not a group language. Also, most properties defined in terms of automata are pre-
served by projection in the commutative case. For example the property of being
aperiodic [6,23,24]. We give a more general statement next, showing that many
classes from the literature [6,23,24] are closed under projection when restricted
to commutative languages.

Theorem 15. Let Σ be an alphabet and Γ Ď Σ. Suppose V is a variety of
commutative languages. If L P V(Σ˚), then πΓ (L) P V(Γ ˚). In particular, the
variety of commutative languages is closed under projection.

Hence, for example commutative locally-testable, piecewise-testable, star-free
or group languages are preserved under every projection operator, as these classes
form varieties [23].

Remark 3. In [13] it was stated that languages satisfying the observer property,
i.e., that are given by a state-partition automaton for a given projection operator,
and the finite languages projected onto unary finite languages were the only
known languages for which we can recognize the projected language with at most
the number of states as the original language. Note that Theorem 13 provides
genuinely new instances for which this holds true, see Example 1.

Example 2. Also, for projections, consider the group language given by the
permutation automaton A “ ({a, b}, {0, 1, 2}, δ, 0, {2}) with a “ (0, 1) and
b “ (0, 1, 2). Then, π{b}(L(A)) “ bb˚, which is not a group language. For exam-
ple, b is the projection of ab P L(A), or bbb the projection of abbab P L(A).

7 Conclusion

We have continued the investigation of the state complexity of operations on
permutation automata, initiated in [12], and the investigation of the projection
operation [13,31]. We improved the general bound to the tight bound 2n´rm2 s ´1
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in this case. Note that the general bound 2n´1 ` 2n´m ´ 1 for the projection is
only achieved for automata with precisely m ´ 1 non-loop unobservable transi-
tions [13]. However, if we have more such unobservable transitions, then it was
also shown in [13] that we have the better tight bound 2n´2`2n´3`2n´m´1. For
our lower bound stated in Theorem 6 in the case of permutation automata, we
have precisely the same number of non-loop unobservable transitions as states
incident with them. Lastly, note that the condition in Proposition 8 could be
easily checked. Likewise, checking if a subset of letters Δ generate a normal
subgroup could also be checked efficiently using results from [1].

Acknowledgement. I sincerely thank the anonymous reviewers for careful reading
and detailed feedback that helped me in finding better formulations or fixing typos.
Also, Sect. 5 was restructured after this feedback and the cycle notation was pointed
out to me by one reviewer.
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