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Abstract. Traditionally, graph algorithms get a single graph as input,
and then they should decide if this graph satisfies a certain property Φ.
What happens if this question is modified in a way that we get a possibly
infinite family of graphs as an input, and the question is if there exists one
graph satisfying Φ? We approach this question by using formal languages
for specifying families of graphs. In particular, we show that certain
graph properties can be decided by studying the syntactic monoid of the
specification language.
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1 Introduction

When dealing with algorithms on graphs, a graph is often specified by its adja-
cency matrix, i.e., a graph comes with a linear order on the vertices, and there are
no multiple edges. We follow these conventions in our paper. Moreover, we repre-
sent graphs by words from a regular set G over the binary alphabet Σ = {a, b}.
Given w ∈ G, we denote by ρ(w) the corresponding graph. Hence, every subset
L ⊆ G defines a family of graphs ρ(L). Although our results go beyond regular
sets L, the focus and the motivation comes from a situation when L is regu-
lar. A typical question could be if some (or all) graphs in ρ(L) satisfy a graph
property Φ. For example: “are there some planar graphs in ρ(L)?” Solving this
type of decision problems was the motivation to study regular realizability prob-
lems in [1,13] and, independently, calling them intReg-problems (intersection
non-emptiness with regular languages) in [6,14,15].

Typical graph properties ignore the linear vertex orders and the direction
of edges. For example, consider the property that the number of vertices is
even. The linear order helps describe this property in Monadic Second-Order
logic, MSO for short. As we will see, we encounter only four different classes
C1 ⊂ · · · ⊂ C4 of graphs ρ(L).
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1. ρ(L) ∈ C1 if and only if the set ρ(L) is finite.
2. ρ(L) ∈ C2 implies that ρ(L) has bounded tree-width.
3. ρ(L) ∈ C3 implies that every connected finite bipartite graph appears as a

connected component of some G ∈ ρ(L).
4. ρ(L) ∈ C4 implies that every connected finite graph appears as a connected

component of some G ∈ ρ(L).

Moreover, if L is regular, then we can compute the smallest � such that ρ(L) ∈ C�.
We use a straightforward encoding of vertices and edges: the i-th vertex ui of a
graph is encoded by abia and the edge (ui, uj) is encoded by abiaaabja. Since
the syntactic monoid of a regular language is finite, we find some t, p ∈ N with
p ≥ 1, threshold and period, such that for every n ∈ N there is some c ≤ t+p−1
with bc ≡L bn where ≡L denotes the syntactic equivalence. The threshold t tells
us that bc ≡L bn implies n = c for all 0 ≤ c < t and bn ≡L bn+p ⇐⇒ n ≥ t.
This is the key observation when proving that we have no more than these four
classes above. If L ⊆ G is not regular, then the syntactic monoid ML is infinite.
We find interesting examples where ML satisfies the Burnside condition that
all cyclic submonoids of ML are finite. If so, then there exist t, p ∈ N with
p ≥ 1 such that the syntactic properties stated above hold for the powers of
the letter b. In this case, we say that L satisfies the (b, t, p)-torsion property.
This is a strong restriction, as Theorem 1 shows that for every subset L ⊆ G

satisfying the (b, t, p)-torsion property, there exists a regular set R ⊆ G such that
ρ(L) = ρ(R). This is quite an amazing result. Its proof relies on the fact that
ρ(L) is determined once we know the Parikh-image πC(rf(L)) ⊆ N

C , where for
w ∈ G, the reduced form rf(w) is obtained by replacing every bn by bc, where c
is the smallest 0 ≤ c ≤ t+ p− 1 such that bc ≡L bn. Hence, for deciding whether
some graph G ∈ ρ(L) satisfies a property, we can assume that L is regular.
We are interested in decidable properties Φ, only. Thus, we assume that the set
{G is a finite graph | G |= Φ} is decidable.

First consider that ρ(L) is finite. Then, we can compute all graphs in ρ(L) and
we can output all G ∈ ρ(L) satisfying Φ. Finiteness of ρ(L) is actually quite inter-
esting and important. It is a case where a representation of L by a DFA or a regular
expression can be used for data compression. The minimal size of a regular expres-
sion (or the size of a DFA) for L is never worse than listing all graphs in ρ(L), but
it might be exponentially better. For a concrete and illustrative case, we refer to
Example 2 for a succinct representation of all so-called crowns with atmost n cusps.
The compression rate becomes even better if we use a context-free grammar which
produces a finite set L of words in Σ∗, only.

The second class C2 implies that ρ(L) has bounded tree-width. In this case,
by [2,3,11] we know that given any property Φ which is expressible in MSO,
it is decidable whether there is a graph in ρ(L) satisfying Φ. For languages
L ⊆ G satisfying the (b, t, p)-torsion property, we understand when ρ(L) has
finite tree-width. Hence, we have Theorem 2: The satisfiability problem for MSO-
sentences is decidable for language in the second class. For the other two classes,
the picture changes drastically: the First-Order theory (FO for short) becomes
undecidable [12]. Conversely, we are not aware of any “natural” graph property Φ
where the satisfiability problem for Φ is not trivial for C3 and C4.
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2 Notation and Preliminaries

We let N = {0, 1, 2, . . .} be the set of natural numbers and N∞ = N ∪ {∞}.
Throughout, if S is a set, then we identify a singleton set {x} ⊆ S with the
element x ∈ S. The power set of S is identified with 2S (via characteristic
functions). If E ⊆ X × Y is a relation, then E−1 denotes its inverse relation
E−1 = { (y, x) ∈ Y × X | (x, y) ∈ E }. By idX , we mean the identity relation
idX = { (x, x) ∈ X × X | x ∈ X }. Recall that Y X denotes the set of mappings
from a set X to a set Y . If f : X → Y and g : Y → Z are mappings, then
gf : X → Z denotes the mapping defined by gf(x) = g(f(x)). If convenient,
we abbreviate f([x]) as f [x]. Throughout, Γ denotes a finite alphabet and we
fix Σ = {a, b} with a = b. Each alphabet is equipped with a linear order on its
letters. For Σ, we let a < b. The linear order on Γ induces the short-lex linear
order ≤slex on Γ ∗. That is, for u, v ∈ Γ ∗, we let u ≤slex v if either |u| < |v| or
|u| = |v|, u = pcu′, and v = pdv′ where c, d ∈ Γ with c < d. Here, |u| denotes
the length of u. Similarly, |u|a counts the number of occurrences of letter a in u.
A language L ⊆ Γ ∗ is a code if c1 · · · cm = d1 · · · dn ∈ Γ ∗ with ci, dj ∈ L implies
m = n and ci = di for all 1 ≤ i ≤ m. If M is a monoid, then u ≤ v means
v ∈ MuM , i.e., u is a factor of v. This notation is used for the monoids Γ ∗ and
N

Γ . Elements in N
Γ are called vectors. For w ∈ Γ ∗, ←−w is the reversal of w.

Every subset R ⊆ Γ ∗ has a syntactic monoid M = MR, see, e.g., [5]. The
elements of MR are the congruence classes [u] = { v ∈ Σ∗ | v ≡R u } w.r.t.the
syntactic congruence ≡R. If R is regular, then MR is finite. Monoids with a
single generator are called cyclic. Every finite cyclic monoid M is defined by two
numbers t, p ∈ N with p ≥ 1 such that M is isomorphic to the quotient monoid
Ct,p of (N,+, 0) with the defining relation t = t + p. Hence, the carrier set of
Ct,p equals {0, 1, . . . , t + p − 1}. If t = 0 and p = 1, then Ct,p is trivial.
Parikh-Images. If v, w ∈ Γ ∗, then |w|v denotes the number how often v appears
as a factor in w, i.e., |w|v = |{u ∈ Γ ∗ | ∃s : uvs = w}|. If V ⊆ Γ ∗, then the
Parikh-mapping w.r.t.V is defined by πV : Γ ∗ → N

V , mapping a word w to its
Parikh-vector (|w|v)v∈V ∈ N

V . The classical case is V = Γ ; then the Parikh-
vector becomes (|w|a)a∈Γ and the Parikh-mapping is the canonical homomor-
phism from the free monoid Γ ∗ to the free commutative monoid N

Γ .
A subset S ⊆ N

Γ is called positively downward-closed if, for all v ∈ S, (a)
v(z) ≥ 1 for all z ∈ Γ , and (b) u ≤ v and u(z) ≥ 1 for all z ∈ Γ imply u ∈ S.
The complement of a positively downward-closed set S ⊆ N

Γ is upward-closed,
i.e., u ≥ v and v ∈ S imply u ∈ S. An upward-closed set S is determined by
its set MS of minimal elements. By Dickson’s Lemma, for every upward-closed
subset S ⊆ N

Γ , MS is finite. Hence, every upward-closed subset is semi-linear.
As the set of all semi-linear sets in N

Γ is closed under Boolean operations, every
positively downward-closed set S ⊆ N

Γ is also semi-linear, a key for Theorem 1.
Retractions and retracts. Let ρ : X → Y and γ : Y → X be mappings between
sets. Then, ρ is called a retraction and Y is called a retract of X with section γ
if ρ(γ(y)) = y for all y ∈ Y . Then, ρ−1(y) is the fiber of y ∈ Y . If ρ : X → Y is
a homomorphism of groups X and Y and H = ker(ρ) is the kernel, then ρ is a
retraction if and only if X is a semi-direct product of H by Y .
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3 Graphs

All graphs are assumed to be (at most) countable, given as a pair G = (V,E)
where E ⊆ V ×V . An undirected graph is the special case where E = E−1. If G =
(V,E) is a directed graph, then G also defines the undirected graph (V,E∪E−1);
and it defines the undirected graph without self-loops (V, (E∪E−1)\idV ). A graph
without isolated vertices is called an edge-graph; hence, specifying the edge set
suffices. If G′ = (V ′, E′) and G = (V,E) are graphs such that V ′ ⊆ V and
E′ ⊆ E, then G′ is a subgraph of graph G and we denote this fact by G′ ≤ G. If
U ⊆ V is any subset, then G[U ] = (U,E ∩ U × U) denotes the induced subgraph
of U in G. A graph morphism ϕ : (V ′, E′) → (V,E) is given by a mapping
ϕ : V ′ → V such that (u, v) ∈ E′ implies (ϕ(u), ϕ(v)) ∈ E. If (V ′, E′) and (V,E)
are undirected graphs without self-loops, then ϕ : (V ′, E′) → (V,E) is a graph
morphism when (ϕ(u), ϕ(v)) ∈ E ∪ idV . If ϕ is surjective on vertices and edges,
i.e., ϕ(V ′) = V and ϕ(E′) = E, ϕ is a projection. We consider graphs up to
isomorphism, only. Hence, writing G = G′ means that G and G′ are isomorphic.
A graph F = (V,E) is a retract of a graph F ′ = (V ′, E′) if there are morphisms
ϕ : F ′ → F and γ : F → F ′ where ϕγ is the identity on vertices and edges of
(V,E), i.e., F appears in F ′ as the induced subgraph F ′[γ(V )].

In our paper, every word w ∈ Σ∗ represents a directed finite graph ρ(w) =
(V (w), E(w)) with a linear order on vertices as follows.

V (w) =
{

abma ∈ ab+a
∣
∣ abma ≤ w

}

E(w) =
{

(abma, abna) ∈ ab+a × ab+a
∣
∣ abmaaabna ≤ w

}

The empty word represents the empty graph: there are no vertices and no edges.
We extend ρ to 2Σ∗

by ρ(L) = {ρ(w) | w ∈ L}. Vice versa, if G = (V,E) denotes
a finite graph with a linear order on its vertices, then, for 1 ≤ i, j ∈ N, the i-th
vertex is represented by the factor abia, and an edge from the i-th vertex to the
j-th vertex is represented by the factor abiaaabja. Thus, vertices are encoded by
elements in the set V =

{
abia

∣
∣ 1 ≤ i ∈ N

}
and edges are encoded by elements

is the set E =
{

abiaaabja
∣
∣ 1 ≤ i, j ∈ N

}
. Note that V ∩ E = ∅ and V ∪ E is

an infinite regular code. Using these conventions, the regular set G = (V ∪ E)∗

as well as its subset E
∗
V

∗ represents all finite graphs. The set E
∗ represents

all edge-graphs, i.e., graphs without isolated vertices. Every nonempty finite
graph has infinitely many representations. For example, there are uncountably
many subsets L ⊆ (aba)+ ⊆ V

+ and each ρ(L) represents nothing but the
one-point graph without self-loop. In order to choose a unique (and minimal)
representation for a finite graph G = (V,E), we choose the minimal word γ(G) =
u1 · · · umv1 · · · vn ∈ G in the short-lex ordering on Σ∗ such that ργ(G) = G,
uk ∈ E for 1 ≤ k ≤ m and v� ∈ V for 1 ≤ � ≤ n. Each uk is of the form
abiaaabja representing an edge and each v� is of the form abia representing an
isolated vertex. We call γ(G) the short-lex representation of G. Since γ(G) is
minimal w.r.t.≤slex, we have m = |E| and n is the number of isolated vertices.
For a graph without isolated vertices, this means that it is given by its edge
list. The set of all γρ(G) is context-sensitive but not context-free. The uvwxy-
Theorem does not hold for γρ(G).
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A subset L ⊆ G is viewed as a description of the set of graphs ρ(L). The
mapping ρ : ρ−1(L) → L is a retraction in the sense of Sect. 2, since ργ(G) = G
for any finite graph G. The main results of the paper are: (1) for L ⊆ G satisfying
the b-torsion property, there is a regular language R ⊆ G with ρ(L) = ρ(R)
and (2) for a context-free language satisfying the b-torsion property (e.g., any
regular language) R ⊆ G, we have an effective geometric description of ρ(R). The
description is obtained as follows. Using the fact that R is regular, in a first step,
we find effectively a semi-linear description of ρ(R). In a second step, we compute
a finite set of finite graphs. Each member F in that finite family is a retraction
of some possibly infinite graph F∞. The description of each G ∈ ρ(L) is given
by selecting some F and the cardinality of every fiber. The precise meaning will
become clear later. As a consequence of the description, we are able to show
various decidability results. The following example serves as an illustration.

Example 1. In the following, we let R ⊆ E
∗ and t, p ∈ N with p ≥ 1, t > 1, such

that bn ≡R bn+p for all n ≥ t. Since t > 1, we have [b] = {b}. By a star, we
denote a graph (V,E) such that there exists a vertex z ∈ V with the property
E = { (z, s) | s ∈ V \ {z} }. Thus, a star has a center z and the directed edges
are the outgoing rays of the star.

Furthermore, we assume that R ⊆ (abaaabn(bp)∗a)+ for some fixed n ≥ t.
This implies t ≤ n < t + p. Let w ∈ R. We have w ∈ (abaaabn(bp)∗a)m for
m = |w|a/5, i.e., w = (abaaabd1a) · · · (abaaabdma) where di = n + kip with
ki ∈ N for 1 ≤ i ≤ m. The set { di | 1 ≤ i ≤ m } can have any cardinality s in
{1, . . . , m}. Therefore, ρ(w) is a single star with at least one ray and at most m
rays. If R is finite, then F = ρ(R) is an effective finite collection of stars with at
least one ray and at most r rays where r = max { |w|a/5 | w ∈ R }.
Claim: F is infinite if and only if there is some M ≥ |MR| with (abaaabna)M ∈ R.
The claim holds if sup { |w|a/5 | w ∈ R } < ∞, as in this case F is finite. Thus,
let sup { |w|a/5 | w ∈ R } = ∞. Then, there is some w ∈ R such that abaaabna
appears at least |MR| times as a factor. This implies that there is some M ≥ |MR|
such that (abaaabna)M ∈ R. The claim follows. Moreover, if F is infinite, then
F is the set of all finite stars with at least one ray.

One can show that S = (abaaab2b∗a)∗(aba) is locally testable and therefore
star-free. Hence, the set of all finite stars is specified by a star-free subset of Σ∗.

We study properties of graphs specified by languages L ⊆ G. If L can be arbi-
trary, then we can specify uncountably many families of graphs. So, we cannot
expect any general decidability results. Hence, we restrict our attention to sub-
sets L ⊆ G where membership for ρ(L) is decidable. In fact, membership for ρ(L)
might be decidable although membership for L is undecidable. By Corollary 1,
the following definition yields a sufficient condition for decidability of ρ(L).

Definition 1. Let b ∈ Γ be a letter. A subset L ⊆ Γ ∗ satisfies the (b, t, p)-torsion
property if we have: bt ≡L bt+p. It satisfies the b-torsion property if there are
t, p ∈ N with p ≥ 1 such that L satisfies the (b, t, p)-torsion property.

Every regular language R ⊆ Γ ∗ satisfies the b-torsion property because the
syntactic monoid MR is finite. The language {wa←−w | w ∈ {aba, ab2a}∗} is not
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regular, but it satisfies the b-torsion property for t = 3 and p = 1. The b-torsion
property is exceptional if R is not regular: even deterministic linear context-
free one-counter languages do not satisfy this property, in general. Consider
{ anbn | n ∈ N }. Clearly, bk ≡R bm ⇐⇒ k = m.

Remark 1. Let b ∈ Γ and |Γ | = m. Let L ⊆ Γ ∗ with ML as its syntactic monoid.
If all cyclic submonoids of ML are finite, L satisfies the b-torsion property. In the
following, let 1 ≤ p ∈ N. Recall that the quotient monoid Γ ∗/ {xp = 1 | x ∈ Γ ∗}
defines the free Burnside group B(m, p). It is a group because every x has the
inverse element xp−1 as p ≥ 1. For p large enough, Adjan showed in the 1970s
that B(2, p) is infinite, answering a question of Burnside from 1902. A group is
called p-periodic if it is the homomorphic image of some B(m, p).

Let ϕ : Γ ∗ → G be a surjective homomorphism to a group G. Then, the Word
Problem of G denotes the set WP(G) = {w ∈ Γ ∗ |ϕ(w) = 1}. It is a classical fact
that the syntactic monoid of WP(G) is the group G itself. Kharlampovich con-
structed in [7] a periodic group B(2, p) where the Word Problem is undecidable.
Since the B(2, p) is periodic, the b-torsion property holds trivially. Therefore, as
we will see, there exists a regular subset R such that ρ(WP(B(2, p))) = ρ(R).

For the rest of the paper, if L ⊆ Σ∗ satisfies the b-torsion property, then the
cyclic submonoid of ML generated by the letter b is isomorphic to Ct,p. That is,
we have t, p ∈ N with p ≥ 1, where t + p is minimal such that { [bn] | n ∈ N } =
{ [bc] | 0 ≤ c ≤ t + p − 1 }. Moreover, we assume that L is specified such that
on input n ∈ N, we can compute the value 0 ≤ c ≤ t + p − 1 with bn ≡L bc.
This assumption is satisfied if L is regular and specified, say, by some NFA. For
L ⊆ G, we have [abca] = a[bc]a and [abcaaabda] = a[bc]aaa[bd]a.

Definition 2. Let L ⊆ G satisfy the (b, t, p)-torsion property according to
Definition 1. For every [bn], we define its reduced form by rf[bn] = bc if [bc] = [bn]
and 0 ≤ c ≤ t+p−1. Given w ∈ G, we define the reduced form rf(w) by replacing
every factor abma ≤ w by a rf[bm]a. The saturation ŵ of w is defined by replacing
every factor abma ≤ w by the set a[bm]a. Hence, rf(w) ∈ ŵ ⊆ G.

Remark 2. Let L ⊆ G satisfy the (b, t, p)-torsion property. By possibly decreas-
ing t and/or p, we may assume that for every 1 ≤ c ≤ t + p − 1, there is some
w ∈ L such that abca ≤ rf(w). Moreover, we have [bc] = {bc} if and only if c < t.

Lemma 1. Let L ⊆ G satisfy the (b, t, p)-torsion property. Then, for every w ∈
G, w ∈ L ⇐⇒ ŵ ⊆ L ⇐⇒ rf(w) ∈ L .

The (b, t, p)-torsion property is trivially satisfied if L ⊆ G is a finite set, an
interesting case motivated by data compression. As mentioned in Sect. 1: if L is
finite, then the minimal size of a regular expression for L is never worse than
listing all graphs in ρ(L), but it might be exponentially better. This type of data
compression with formal language methods is also applied in practice [8,9].

Example 2. Let G = ([n], E) be a connected planar graph with vertices 1, . . . , n.
Then, for every subset S ⊆ {n + 1, . . . , 2n}, we define a graph GS by GS =
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([n] ∪ S,E ∪ {(s, s − n) | s ∈ S}). The family Cn = {GS |S ⊆ {n + 1, . . . , 2n}}
might contain up to 2Ω(n) connected planar graphs, e.g., if G is a cycle of n
nodes. If we embed G in the 2-dimensional sphere where the additional edges are
spikes pointing out of the sphere, then GS can be visualized as a discrete model
of a 3-dimensional “crown with at most n cusps”. One can write down a 2n-fold
concatenation of finite sets describing a finite set Ln ⊆ G with ρ(Ln) = Cn. The
size of the corresponding regular expression is O(n2). This leads to a polynomial-
size blueprint potentially producing a family of exponentially many “crowns”.

Definition 3. Let L ⊆ G satisfy the (b, t, p)-torsion property. We introduce two
new finite and disjoint alphabets (depending on L)

A = { rf(abmaaabna) | m,n ∈ N,m, n ≥ 1 } ⊆ E,

B = { rf(abma) | m ∈ N,m ≥ 1 } ⊆ V.

Note that A ⊆ BaB. By C, we denote the union of A and B, which is also a finite
alphabet with a linear order between letters given by the following definition:

x ≤C y ⇐⇒ xy ∈ AB ∨ (xy ∈ (AA ∪ BB) ∧ x ≤slex y). (1)

The linear order ≤C on C defines a short-lex ordering on C∗. Actually, C is a
code. Moreover, if uxv ∈ C+ with x ∈ A and u, v ∈ Σ∗, then u, v ∈ C∗. The
analogue for y ∈ B does not hold, in general. As C is a code, the inclusion
C ⊆ Σ∗ yields an embedding hC : C+ → Σ+. If G is a finite graph, then the
minimal element in H = h−1

C (ρ−1(G)) ∩ A∗B∗ w.r.t.the short-lex ordering for
words in C∗ is the same as the minimal element in hC(H) w.r.t.the ordering
a < b. We assume henceforth that C only contains factors of words from L.

Lemma 2. Let L, C, and rf as in Definitions 2 and 3. Let v ∈ C∗ and w ∈ L
such that πC(v) ≤ πC(rf(w)). If πC(v)(z) ≥ 1 for all z ∈ C, then we have
ρ(v) ∈ ρ(L).

Theorem 1. Let L ⊆ G be any language satisfying the b-torsion property. Then,
there is a regular set R ⊆ G such that ρ(L) = ρ(R) .

Corollary 1. Let L ⊆ G satisfy the b-torsion property. Then, given a finite
graph G = (VG, EG) as an input, it is decidable whether G ∈ ρ(L).

Corollary 2. Let L ⊆ G be context-free satisfying the (b, t, p)-torsion property.
Then, we can effectively calculate a regular set R ⊆ G such that ρ(R) = ρ(L).

Let R ⊆ G be regular. Then, it is well-known that there might be a much
more concise representation by some context-free language K ⊆ G such that
πC(K) = πC(R) and hence ρ(K) = ρ(R).

By Theorem 1, we know that regular languages suffice to describe all sets ρ(L)
where L ⊆ G satisfies the b-torsion property. Therefore, we restrict ourselves to
regular languages. In the following, R ⊆ G denotes a regular language. Hence, we
can calculate numbers t ≥ 0 and p ≥ 1 such that R satisfies the (b, t, p)-torsion
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property. As R is regular, the set L = h−1
C (R)∩A∗B∗ is regular; its Parikh-image

πC(L) ⊆ N
C is effectively semi-linear. Thus, for some finite set J :

πC(L) =
⋃

j∈J

(qj +
∑

i∈Ij

Npi) , (2)

where qj , pi ∈ N
C are vectors. Splitting πC(L) into more linear sets by making

the index set J larger and the sets Ij smaller (if necessary), we can assume with-
out restriction that for all j ∈ J and z ∈ C we have

∑
i∈Ij

pi(z) ≤ qj(z). To see
this, let 1 ∈ Ij . Then, we have

qj +
∑

i∈Ij
Npi = (qj +

∑
i∈Ij\{1} Npi) ∪ (qj + p1 +

∑
i∈Ij

Npi) .

Splitting L into even more but finitely many cases, we can assume without
restriction (for simplifying the notation) that the set J is a singleton. Thus,
πC(L) = q +

∑
i∈I Npi for some q, pi ∈ N

C such that
∑

i∈I pi(z) ≤ q(z). By
possibly reducing A,B,C, we may assume that q(z) ≥ 1 for all z ∈ C and
C = A ∪ B. In order to understand the set of graphs in ρ(R), it suffices to
understand the set of finite graphs defined by linear sets of the form S = q +∑

i∈I Npi ⊆ N
C , where q(z) ≥ 1 for all z ∈ C and

∑
i∈I pi ≤ q. For that purpose,

we let r =
∑

i∈I pi ≤ q and we define a function α : C → N∞ as follows.

α(z) =

⎧
⎪⎨

⎪⎩

q(z) if r(z) = 0 ∧ ∃m ∈ N : t ≤ m ∧ abma ≤ z

∞ if r(z) ≥ 1 ∧ ∃m ∈ N : t ≤ m ∧ abma ≤ z

1 otherwise. That is: ∀m ∈ N : abma ≤ z =⇒ m < t.

(3)

For all z ∈ C, let Lz ⊆ Σ∗. Then, we write
∏

z∈C Lz = Lz1 · · · Lz|C| , where
zi ≤ zj for all i ≤ j according to the linear order defined in Eq. (1). Observe
that

∏
z∈C Lz is regular if all Lz are regular. With this notation, we define:

Rα =
∏

z∈C

zα(z) and Lα =
∏

z∈C

[z]α(z) (4)

Notice that L∞ is just another notation for L+ if L is any set of words.

Lemma 3. The sets Rα, Lα of Eq. (4) are regular with Rα ⊆ Lα, ρ(Lα) = ρ(R).

Now, we define for α a finite family of finite graphs Fα and then, for each F ∈ Fα,
we define a possibly infinite graph F∞, using the notion of marked graphs.

Definition 4. For z ∈ C, let α′(z) = α(z) if α(z) < ∞ and α′(z) = 1, other-
wise. We let R′

α =
∏

z∈C zα′(z), and we define Fα = ρ(R′
α).

Since R′
α is a finite set of words, Fα is a finite set of finite graphs. Now, we define

the crucial notion of a marked graph, with some vertices and edges marked.

Definition 5. A marked graph is a tuple F = (VF , EF , μ), where (VF , EF ) is a
finite graph and μ ⊆ VF ∪ EF denotes the set of marked vertices and edges. Iso-
lated vertices may appear, but if an isolated vertex is marked, then there is exactly
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one isolated vertex. We also require that whenever an edge (u, v) is marked, then
at least one of its endpoints is marked, too. A marked edge-graph is a marked
graph without isolated vertices.

In the following, each graph (VF , EF ) ∈ Fα as in Definition 4 defines a marked
graph F = (VF , EF , μ) as follows, where μ denotes a marking (as in Definition 5)
that we call the canonical marking. We begin by marking those vertices and edges
z ∈ C where α(z) = ∞. In particular, if z ∈ C is marked, then [z] = {z} and [z]
is an infinite set. In the second step, we mark also all vertices u which satisfy
[u] = {u} and which appear as an endpoint in some marked edge. Thereafter,
every marked edge contains at least one marked endpoint. In the third step, if
an isolated vertex is marked, then remove all isolated marked vertices y ∈ B
except one isolated vertex which is marked. In particular, after that procedure,
if a marked isolated vertex y appears, then α(y) = ∞.

Now, we switch to a more abstract viewpoint. We let F be any finite fam-
ily of marked graphs. For each F = (VF , EF , μ) ∈ F , we define a possibly
infinite graph F∞ where (VF , EF ) appears as an induced subgraph, and we
define a family of finite graphs GF . We consider finitely many Fα, and then
we study

⋃ {GF | (VF , EF ) ∈ Fα}, where F = (VF , EF , μ) is the marked graph
obtained by the canonical marking procedure above (which might have removed
isolated marked vertices). For understanding ρ(R), we need to describe sets GF

for marked graphs F = (VF , EF , μ). This requires to define F∞ as follows.

Definition 6. Let F = (VF , EF , μ) be a marked graph as in Definition 5. Then,
the graph F∞ = (V ∞

F , E∞
F ) is defined as follows.

V ∞
F = VF × {0} ∪

⋃

u∈VF

{(u, k) | u is marked ∧ k ∈ N} ,

E∞
F = EF × {0} ∪ {((u, k), (v, �)) ∈ V ∞

F × V ∞
F | (u, v) ∈ EF ∧ (u, v) is marked},

with EF ×{0} = {((u, 0), (v, 0)) | (u, v) ∈ EF }. The family GF is the set of finite
subgraphs of F∞ containing (VF × {0}, EF × {0}) as an induced subgraph.

Observe that F∞ = F if and only if there is no marking, i.e., if μ = ∅. We embed
F into F∞ by a graph morphism γ which maps each vertex u ∈ VF to the pair
γ(u) = (u, 0) ∈ V ∞

F . The projection onto the first component ϕ(u, k) = (u)
yields a retraction for every G ∈ GF with retract F . If no isolated vertex is
marked, then F∞ has at most |VF | isolated vertices, but if there are marked
vertices, then for every sufficiently large k, there is some graph in GF which has
exactly k isolated vertices. In order to understand the graphs in GF (which is
our goal), it is enough to understand the graphs G satisfying F ≤ G ≤ F∞. For
F = F∞, we know everything about that set. Let us hence consider F = F∞.
Proposition 1 shows that ρ(R) is rather rich as soon as some F ∈ Fα satisfies
F = F∞. Confer the next result with the classification C1 ⊂ · · · ⊂ C4 of graphs
from Sect. 1.
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Proposition 1. Let F = (VF , EF , μ) be any marked graph.

1. If F contains a marked edge (u, v) where v is marked, then every finite star
with center (u, 0) appears as an induced subgraph of some G ∈ GF .

2. Suppose we represent a bipartite graph as a triple (U, V,E) where U ∩ V = ∅
and E ⊆ U × V . Let H be any finite bipartite edge-graph. If F contains a
marked edge (u, v) where u and v are marked, then a disjoint union of F and
H appears in GF .

3. Let H be any finite graph. If F contains a marked self-loop (u, u), then the
disjoint union of F and H belongs to GF .

4. Let F be any marked graph such that one or two vertices are marked. Then,
the following holds. A disjoint union of F and any non-bipartite graph appears
in GF if and only if there is some marked self-loop in F .

By Schützenberger’s classical theorem [10] characterizing star-freeness via finite
and aperiodic syntactic monoids, this case distinction entails:

Corollary 3. Let L ⊆ G be any language satisfying the b-torsion property. If
there is a star-free language R such that ρ(L) = ρ(R), then there is no F ∈ Fα

such that a disjoint union of F and a triangle appears in GF .

4 Graph Properties

Throughout this section, F denotes a marked graph and GF denotes the family
of graphs defined in Definition 6. A graph property is a decidable subset Φ ⊆ G.
For a finite graph G, we write G |= Φ if the short-lex representation γ(F ) belongs
to Φ. Given a word w ∈ G, we can compute γρ(w). Hence, we can assume
ρ−1(ρ(Φ)) = Φ. As ρ(w) is realized as a graph with a natural linear order on the
vertices, we have abca ≤ abda ⇐⇒ c ≤ d. We consider properties of undirected
finite graphs, only: if u ∈ G represents the graph ρ(u) = (V,E), then ρ(u) |= Φ if
and only if (V,E ∪E−1) |= Φ. We focus on the satisfiability problem Sat(GF , Φ):

– Input: A marked graph F .
– Question: “∃G ∈ GF : G |= Φ?”

For various well-studied graph properties, Sat(GF , Φ) is decidable. For example,
when Φ states that a graph is planar, or k-colorable, etc. This follows from:

Proposition 2. Let either GF be finite or Φ be any graph property which is
closed under taking induced subgraphs (or both). Then, Sat(GF , Φ) is decidable.

In many cases, graph properties are expressible either in MSO or even in FO.
MSO is a rich and versatile class to define graph properties1. Since w ∈ G defines
graphs with a linear order, we can express in MSO, for example, that the num-
ber of vertices is even. We use the following well-known results as black boxes.
First, (Trakhtenbrot’s Theorem) [12]: given an FO-sentence Φ, it is undecidable
whether there exists a graph (resp. bipartite graph) satisfying Φ. Second, given
an MSO-sentence Φ and k ∈ N, it is decidable whether there exists a graph of
tree-width at most k satisfying Φ, see, e.g., [2,3,11].
1 For our purposes, we allow quantification over both sets of vertices and sets of edges.
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Theorem 2. Let Φ be an MSO-sentence. Then, Sat(GF , Φ) is decidable for
marked graphs F = (VF , EF , μ) if at most one endpoint of each edge is marked.

Theorem 3. Let Φ be an FO-sentence. Then, Sat(GF , Φ) is undecidable for
marked graphs F = (VF , EF , μ) where both endpoints of some edge are marked.

Some graph properties where the problem Sat(GF , Φ) is trivially decidable
are covered by the next theorem, including the problem whether GF contains
a non-planar graph, and various parametrized problems like: “Is there some
(VG, EG) ∈ GF with a clique bigger than

√|VG|?”.

Theorem 4. Let F be any marked graph and Φ be a non-trivial graph property
such that G |= Φ if and only if there is a connected component G′ of G such that
G′ |= Φ. Then, the answer to Sat(GF , Φ) is “Yes” in the following two cases.
[3] (a) The property Φ is true for some bipartite edge-graph and there is some
marked edge where both endpoints are marked. (b) There is some marked self-
loop.

Example 3 lists a few graph properties which are not covered by the results
above, but nevertheless the satisfiability problem is decidable.

Example 3. Let F = (VF , EF , μ) denote a marked graph as input. Then, the
following problems are decidable. Is there some G ∈ GF (a) with a Hamiltonian
cycle (See [4]), or (b) with a perfect matching, or (c) with a dominating set of
size at most

√|VG|?
Perfect Matching. Let VF = {x1, . . . , xk} and suppose some G = (VG, EG) ∈
GF has a perfect matching. We have VF ⊆ VG. Hence, all xi ∈ VF are matched
by vertices yi ∈ VG. The induced subgraph G[VF ∪ {y1, . . . , yk}] has a perfect
matching with at most 2|VF | vertices. All such small G ∈ GF can be enumerated.

Dominating Set. If F contains no marked edge, then decide if the property
holds for (VF , EF ). Otherwise, there is a marked edge (u, v) ∈ EF . Let VG =
(VF ×{0})∪({v}×{1, . . . , |VF |2}) and EG = EF ∪{((u, 0), (v, i)) | 1 ≤ i ≤ |VF |2}.
Then, G = (VG, EG) ∈ GF . Also, VF is a sufficiently small dominating set of G.

With the results above, we have a meta-theorem for graph properties Φ with a
decidable satisfiability problem, covering all cases where we have positive results.

Theorem 5. Let r : N → N be a non-decreasing computable function and let Φ
be a graph property such that, for each marked graph F = (VF , EF , μ), if some
graph in GF satisfies Φ, then there is a graph G = (V,E) ∈ GF such that G |= Φ
and |V | ≤ r(|VF |). Then, given as input a context-free language L ⊆ G satisfying
the (b, t, p)-torsion property, Sat(ρ(L), Φ) is decidable.

5 Conclusion and Open Problems

The starting point of our paper was the following idea: Decide a graph property Φ
not for a single instance as in traditional algorithmic graph theory, but generalize
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this question to a set of graphs specified by a regular language. We chose a natural
representation of graphs by words over a binary alphabet Σ, but other choices
would work equally well. Next, pick your favorite graph property Φ. For example,
Φ says that the number of vertices is a prime number. The property does not
look very regular, there is no way to express the property, say, in MSO. Still,
given a context-free language L ⊆ Σ∗ which satisfies the b-torsion property and
which encodes sets of graphs, we can answer the question if there exists a graph
represented by L and which satisfies Φ. This is a consequence of Theorem 5 and
Bertrand’s postulate that for all n ≥ 1, there is a prime between n and 2n.

Various problems remain open. For instance, given a graph property Φ, we can
define G(Φ) = {G is a finite graph |G |= Φ}. Suppose that ρ−1(G(Φ)) is regular.
Given a regular language R ⊆ Σ∗, can we decide whether G(Φ) ⊆ ρ(R)? What
about the equality G(Φ) = ρ(R)? We can ask the same two questions if R is
context-free. Future research should address complexity issues. For example,
given a typical NP-complete graph property Φ and ask how complex it is to
decide the satisfiability for GF if the input is a marked graph F .
Note: Missing proofs can be found in [4].
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