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Preface

The 25th International Conference on Developments in Language Theory (DLT 2021)
was held in Porto, Portugal, during August 16–20, 2021. The conference took place in
an hybrid format with both in-person and online participation. It was organized by the
Center of Mathematics of the University of Porto (Centro de Matemática da Univer-
sidade do Porto, CMUP) and the Faculty of Science of the University of Porto (FCUP).

The DLT conference series provides a forum for presenting current developments in
formal languages and automata. Its scope is very general and includes, among others,
the following topics and areas: grammars, acceptors, and transducers for words, trees
and graphs; algebraic theories of automata; algorithmic, combinatorial, and algebraic
properties of words and languages; variable length codes; symbolic dynamics; cellular
automata; polyominoes and multidimensional patterns; decidability questions; image
manipulation and compression; efficient text algorithms; relationships to cryptography,
concurrency, complexity theory, and logic; bio-inspired computing; quantum
computing.

Since its establishment by Grzegorz Rozenberg and Arto Salomaa in Turku (1993),
the DLT conference had been held biennially, taking place in Magdeburg (1995),
Thessaloniki (1997), Aachen (1999), and Vienna (2001). Since 2001 the conference
has been held annually, taking place in Europe in every odd year and outside Europe in
every even year: Kyoto (2002), Szeged (2003), Auckland (2004), Palermo (2005),
Santa Barbara (2006), Turku (2007), Kyoto (2008), Stuttgart (2009), London (2010),
Milano (2011), Taipei (2012), Marne-la-Vallée (2013), Ekaterinburg (2014), Liverpool
(2015), Montréal (2016), Liège (2017), Tokyo (2018), and Warsaw (2019). In 2020,
the DLT conference was planned to be held in Tampa, Florida, but due to the
COVID-19 pandemic it was canceled. However, accepted papers of DLT 2020 were
published in volume 12086 of Lecture Notes in Computer Science. Authors of these
papers were welcome to present their work at DLT 2021.

In 2018, the DLT conference series instituted the Salomaa Prize, to honour the work
of Arto Salomaa, as well as the success of automata and formal languages theory. The
prize is founded by the University of Turku. The ceremony for the Salomaa Prize 2020
took place during DLT 2021, and we here by congratulate the winners Joël Ouaknine
and James Worrell.

This volume contains the invited contributions and the accepted papers of DLT
2021. There were 48 submissions by 101 authors from 18 countries: Belgium, Czech
Republic, Ecuador, Finland, France, Germany, India, Italy, Japan, Latvia, Netherlands,
Poland, Russia, Slovakia, South Korea, Switzerland, UK and USA. Each of the sub-
missions was reviewed by three referees, except for three submissions that only had
two reviews each. All submissions were thoroughly discussed by the Program Com-
mittee (PC) who decided to accept 27 papers (56% acceptance rate) to be presented at
the conference. We would like to thank the members of the Program Committee, and



all external referees, for their work in evaluating the papers and the valuable comments
that led to the selection of the contributed papers.

There were five invited talks, that were presented by the following speakers:

– Jean-Paul Allouche (CNRS, IMJ-PRG, and UPMC, France)
– Henning Fernau (Universität Trier, Germany)
– Michal Koucký (Charles University, Czech Republic)
– Alexandra Silva (University College London, UK)
– Benjamim Steinberg (City College of New York, USA)

We warmly thank the invited speakers, as well as all authors of submitted papers.
Their efforts were the basis for the success of the conference.

The EasyChair conference system provided excellent support in the selection of the
papers, the preparation of these proceedings, and the production of the conference
schedule. We would like to thank Springer’s editorial staff, and in particular Anna
Kramer, Guido Zosimo-Landolfo, Christine Reiss, and Raghuram Balasubramanian for
their help during the process of publishing this volume.

We are grateful to the Organizing Committee members: Sabine Broda, Bruno Loff,
António Machiavelo, and Shinnosuke Seki. A special thank goes to Inês Maia from Pé
de Cabra, Lda. Thanks are also due to our colleague Samuel Lopes, head of CMUP.

DLT 2021 was financially supported by Fundação para a Ciência e Tecnologia
(FCT) through Centro de Matemática da Universidade do Porto (UIDB/00144/ 2020),
Universidade do Porto, CRACS (INESC-TEC), Turismo de Portugal, and Câmara
Municipal do Porto.

Finally, we would like to thank all participants who, either in-person or virtually,
made the 25th edition of DLT a scientific and successful event, and the departure point
for new research and collaborations.

We look forward to DLT 2022 at the University of South Florida, Tampa, USA.

June 2021 Nelma Moreira
Rogério Reis

vi Preface
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Computing Edit Distance

Michal Koucký

Computer Science Institute of Charles University,
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

koucky@iuuk.mff.cuni.cz
https://iuuk.mff.cuni.cz/koucky/

Abstract. Edit distance (or Levenshtein distance) is a measure of similarity of
strings. The edit distance of two strings x, y is the minimum number of character
insertions, deletions, and substitutions needed to convert x into y. It has
numerous applications in various fields from text processing to bioinformatics
so algorithms for edit distance computation attract lot of attention. In this talk I
will survey recent progress on computational aspects of edit distance in several
contexts: computing edit distance approximately, computing edit distance in
streaming model, and exchanging similar strings in communication complexity
model. I will point out many problems that are still open in those areas.

Keywords: Edit distance • Approximation algorithms • Streaming algorithms •

Document Exchange Problem



Guarded Kleene Algebra with Tests

Alexandra Silva

University College London, UK
alexandra.silva@ucl.ac.uk
https://alexandrasilva.org

Abstract. Guarded Kleene Algebra with Tests (GKAT) is an efficient fragment
of KAT, as it allows for almost linear decidability of equivalence. In this talk,
we will review the basics of GKAT and describe its (co)algebraic properties. We
will describe two completeness results and an automaton model that plays a key
role in their proof. We will show examples of different models of GKAT that
can be used in program verification and discuss future directions of research.

Keywords: Kleene algebra • Program verification • Decision procedures •

Program equivalence � Coequations

The material in this talk is based on the publications [1, 2].

References

1. Schmid, T., Kappé, T., Kozen, D., Silva, A.: Guarded Kleene algebra with tests: coequations,
coinduction, and completeness. In: 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021. LIPIcs (2021)

2. Smolka, S., Foster, N., Hsu, J., Kappé, T., Kozen, D., Silva, A.: Guarded Kleene algebra with
tests: verification of uninterpreted programs in nearly linear time. Proc. ACM Program. Lang.
4(POPL), 61:1–61:28 (2020). https://doi.org/10.1145/3371129

https://doi.org/10.1145/3371129
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Morphic Sequences Versus Automatic
Sequences

Jean-Paul Allouche(B)

CNRS, IMJ-PRG, Sorbonne, 4 Place Jussieu, 75005 Paris, France
jean-paul.allouche@imj-prg.fr

Abstract. Two classical families of infinite sequences with some regu-
larity properties are the families of morphic and of automatic sequences.
After recalling their definitions, we survey some recent work trying to
“separate” between them.

Keywords: Automatic sequences · Morphic sequences ·
Combinatorics on words

1 Introduction

Combinatorics on Words is the study of finite or infinite sequences, usually tak-
ing their values in a finite set of symbols. To learn more about the history of
Combinatorics on Words, the reader can look at the nice paper by Berstel and
Perrin [6]. We will only mention the pioneering 1906 and 1912 papers by Thue
[18,19]: Thue was interested in infinite sequences that contain no “squares” or no
“cubes”, where a square (resp., a cube) is a block of two (resp., three) identical
consecutive blocks of symbols.

We will concentrate on two classes of (infinite) sequences with many proper-
ties that are studied in Combinatorics on Words: the class of morphic sequences
and its subclass of automatic sequences. Actually these two kinds of sequences
are both easy to generate, “reasonably regular”, and, for the non-periodic ones,
they can simulate some sort of disorder: some authors have spoken of a “con-
trolled disorder”.

We will quickly revisit the definition of these two classes of sequences. To
learn more about the subject the reader can consult the books [1,7,10,11,13–16],
where one can read in particular that these sequences are used in many domains:
e.g., Combinatorics on Words, Number Theory (transcendence, continued frac-
tions, Dirichlet series, distribution modulo 1, ...), Iteration of continuous maps
of the interval, Fractals, Theoretical Physics (quasicrystals), ...

Then we will discuss how one can “separate” these two classes—namely,
both contain sequences with some kind of “regularity properties”, but automatic
sequences have more precise properties, including arithmetic properties. In par-
ticular, some sequences given as morphic happen to be automatic: which ones?
Also most morphic sequences are not automatic: given a morphic sequence, how
can it be proved that it is not automatic? We will in particular try to propose a
synthesis of three recent papers [2–4].
c© Springer Nature Switzerland AG 2021
N. Moreira and R. Reis (Eds.): DLT 2021, LNCS 12811, pp. 3–11, 2021.
https://doi.org/10.1007/978-3-030-81508-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81508-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-81508-0_1


4 J.-P. Allouche

2 Words, Morphisms, Sequences

We start with a few basic definitions in Combinatorics on Words.

Definition 1.
– An alphabet is a finite set. Its elements are called letters. A finite sequence

of elements taken from an alphabet A is called a word on A. The word
a1, a2, . . . , ad over A is denoted a1a2 · · · ad, and d is called its length: nota-
tion d = |a1a2 · · · ad|. The empty word is the word with no letter: its length
is defined to be 0.

– If w = a1a2 · · · ad and z = b1b2 · · · be are two words over A, the concatenation
of w and z, denoted w.z or wz, is the word defined by

wz := a1a2 · · · ad b1b2 · · · be.

Its length is d + e, i.e., |wz| = |w| + |z|.
– We let A∗ denote the set of all words (including the empty word) over the

alphabet A.
– If u, v, w, z are four words over some alphabet such that z = uvw, then u is

called a prefix of z and w is called a sufix of z. Any of the words u, v, w, z
is called a factor of z. If (un)n≥0 is a sequence over some alphabet, then the
finite sequence u0u1 · · · uk−1 can be also considered as a word (of length k)
over this alphabet: it is called a prefix (of length k) of the sequence (un)n≥0;
the finite sequence ujuj+1 · · · uk−1 is called a factor of the sequence (un)n≥0.

Remark 1. A word is equal to the concatenation of its letters.

Remark 2. The set A∗ equipped with the concatenation operation is a monoid
(actually a free monoid).

Remark 3. Some authors use the term “words” for either a finite or for an infinite
sequence: we will use “word” for a finite sequence only. What some authors call
“infinite word” will always be called a sequence.

Definition 2. Let A and B be two alphabets. A morphism ϕ from A∗ to B∗ is
a map from A∗ to B∗ such that ϕ(wz) = ϕ(w)ϕ(z), for all words w and z over
A. A morphism ϕ is called uniform if all the words ϕ(a) for a ∈ A have the
same length. If this length is equal to q ≥ 1, the morphism is called q-uniform.
If A = B: a morphism from A∗ to itself is called a morphism on A.

Remark 4. Note that concatenation is written in the same way for the two
monoids A∗ and B∗.

Remark 5. A morphism ϕ is completely defined by its values on letters.

Example 1. Let A := {0, 1}.
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– Define the morphism ϕ on A by

ϕ(0) = 01, ϕ(1) = 10.

This morphism is called the Thue-Morse morphism on {0, 1}. It is 2-uniform.
To compute, e.g., ϕ(001), one writes

ϕ(001) = ϕ(0.0.1) = ϕ(0).ϕ(0).ϕ(1) = 01.01.10 = 010110.

– Define the morphism ψ on A by

ψ(0) = 01, ψ(1) = 0.

This morphism is called the Fibonacci morphism on {0, 1}. It is not uniform
(the terminology “Fibonacci morphism” will be explained later on).

Definition 3. Let ϕ be a morphism on A, with A := {a0, a1, . . . , ar−1}. Its
adjacency matrix (or transition matrix) is the matrix M = (mi,j), where, for all
i and j in {0, 1, . . . , r − 1}, mi,j is the number of letters ai in the word ϕ(aj).
The length vector of ϕ is the vector L = (L0, L1, . . . , Lr−1}, where Lj := |ϕ(aj)|,
i.e., Lj is the sum of the entries of the column indexed by j of the adjacency
matrix of ϕ.

3 (Purely) Morphic Sequences. Automatic Sequences

Taking the Thue-Morse morphism above, one can iterate it starting from 0:

ϕ0(0) := 0
ϕ1(0) := ϕ(0) = 01
ϕ2(0) := ϕ(ϕ(0)) = ϕ(01) = 0110
ϕ3(0) := ϕ(ϕ2(0)) = ϕ(0110) = 01101001

...

It is not difficult to see that there exists a unique sequence (an)n≥0 such that,
for all k ≥ 0, the word ϕk(0) is a prefix of the sequence (an)n≥0. Thinking a bit
more shows that this is due to the fact that ϕ(0) begins with 0, and that |ϕk(0)|
tends to infinity when k → ∞. We say that the sequence of words ϕk(0) tends
to this infinite sequence (an)n≥0 = 011010011001 . . .. Note that it is possible
to interpret this with the usual topological meaning by equipping the set of all
finite and infinite sequences with a topology, but we will not give more details
here.

Here is another example. Take the Fibonacci morphism ψ defined above
(ψ(0) = 01, ψ(1) = 0). Iterating ψ starting from 0, we obtain the set of words:

ψ0(0) := 0
ψ1(0) := ψ(0) = 01
ψ2(0) := ψ(ψ(0)) = ψ(01) = 010
ψ3(0) := ψ(ψ2(0)) = ψ(010) = 01001

...
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which, as previously, tends to an infinite sequence 01001010010 . . .. This sequence
is called the binary Fibonacci sequence: the reason for calling “Fibonacci” this
sequence and the morphism ψ is because the lengths of the successive words
ψ0(0), ψ(0), ψ2(0) . . . are the usual Fibonacci numbers.

Definition 4. Let ϕ be a morphism on the alphabet A. Suppose that there exists
a ∈ A such that ϕ(a) begins with a, and such that |ϕk(a)| tends to infinity when
k → ∞, where ϕk denotes the k-th iterate of ϕ. There exists a unique infinite
sequence over A admitting all words ϕk(a) as its prefixes (of length |ϕk(a)|).
This sequence is called the fixed point beginning with a of the morphism ϕ. We
let lim

k→∞
ϕk(a) denote this fixed point.

If a sequence is a fixed point of some morphism, it is called purely morphic.

Remark 6. The terminology comes from the fact that the infinite sequence
obtained by iterating ϕ is a fixed point of the extension of ϕ to infinite sequences
defined by: ϕ(a0a1 . . . an . . .) := ϕ(a0)ϕ(a1) . . . ϕ(an) . . . (in the topological ter-
minology that we skipped, this is an extension of ϕ by continuity).

We can extend a bit the notion of purely morphic sequences.

Example 2. Let B := {a, b, c, d}. Define a morphism ϕ on B by

ϕ(a) = ab, ϕ(b) = (ac), ϕ(c) = db, ϕ(d) = dc.

The fixed point of ϕ beginning with a is: lim
k→∞

ϕk(a) = a b a c a b d b . . ..

Let f denote the map: a → 0, b → 0, c → 1, d → 1. This map can be
considered as a 1-morphism from B to {0, 1}. The Golay-Shapiro sequence (also
called the Rudin-Shapiro sequence) is then defined as the sequence:

f

(
lim
k→∞

ϕk(a)
)

= 0 0 0 1 0 0 1 0 . . .

Definition 5. Let ϕ be a morphism on the alphabet B. Suppose that there exists
a ∈ B such that ϕ(a) begins with a, and such that |ϕk(a)| tends to infinity when
k → ∞, where ϕk denotes the k-th iterate of ϕ. Let f be a map (a 1-morphism)

from B to some alphabet A. The sequence f

(
lim
k→∞

ϕk(a)
)

is called a morphic

sequence over A.

Remark 7. Every purely morphic sequence is a morphic sequence.

We end this lengthy set of definitions with the following one.

Definition 6. A sequence is said to be q-automatic if it is morphic and if the
morphism in the definition has constant length q ≥ 2. A sequence that is q-
automatic for some q ≥ 2 is called automatic (or uniformly morphic).
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Remark 8. The term “automatic” comes from the fact that a sequence is q-
automatic if and only if there exists a deterministic finite automaton with output,
whose transitions are labelled by 0, 1, . . . , q − 1, that generates the n-th term of
the sequence when fed with the base-q digits of n.

Example 3. The Thue-Morse sequence (fixed point beginning with 0 of the Thue-
Morse morphism seen above: ϕ(0) = 01, ϕ(1) = 10) is 2-automatic. So is the
Golay-Shapiro sequence seen in Example 2.

Definition 7. We will say that a sequence is non-uniformly morphic if it is
morphic, and if the morphism involved in the definition is not uniform.

Remark 9. Note that the property of being “non-uniformly morphic” is not the
same as being “not uniformly morphic”. In the first case, the sequence is the
image by a 1-morphism of a fixed point of a non-uniform morphism, but it may
happen that this sequence is also the image by a 1-morphism of a fixed point of
some uniform morphism. In the second case, there is no uniform morphism such
that the sequence is the image by a 1-morphism of this uniform morphism (such
a sequence can also be called a “non-automatic” sequence).

4 Comparing the Classes of Morphic and of Automatic
Sequences

This section will expand on Remark 9 above. It contains the main result of [2].
Let us begin with an example (the details are taken from [3]): the Thue-Morse
sequence, fixed point of the morphism ϕ(0) = 01, ϕ(1) = 10, is also the fixed
point of ϕ3. We define two letters different from 0 and 1, say b and c. We also
define two words on the alphabet {0, 1, b, c}: z = 0, t = 110100110010110. (Note
that z and t have different lengths, and that zt = ϕ3(0).) Now let γ be the
morphism defined on {0, 1, b, c} by

γ(0) = 011bc001, γ(1) = γ(1), γ(b) = z, γ(c) = t.

Finally define D by: D(0) = 0,D(1) = 1,D(b) = 0,D(c) = 1. It is easy to see
that the image by D of the infinite fixed point of γ starting with 0 is also the
fixed point of ϕ3 starting with 0, hence is equal to the Thue-Morse sequence.

Actually, this situation is quite general as proven in the following theorem.

Theorem 1 ([2]). Let (an)n≥0 be an automatic sequence taking its values in
the alphabet A. Then (an)n≥0 is also non-uniformly morphic. Furthermore, if
(an)n≥0 is a fixed point of a uniform morphism, then there exist an alphabet
B of cardinality (3 + #A) and a sequence (a′

n)n≥0 with values in B, such that
(a′

n)n≥0 is a fixed point of some non-uniform morphism on B and (an)n≥0 is the
image of (a′

n)n≥0 under a 1-morphism.

This result may seem surprising. Automatic sequences have a somehow more
rigid structure, but they can also be generated in a seemingly strictly less
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demanding way. In other words the family of all morphic sequences is equal
to its subfamily of non-uniformly morphic sequences. This immediately implies
a natural question: given a morphic (or even a pure morphic) sequence, how can
we see whether it is automatic or how can we prove that it is not automatic?
This will be the subject of the next two sections.

5 Hidden Automatic Sequences

One of the first unexpected examples of a morphic sequence that happens to
be also automatic was given by Berstel [5], who discovered and proved that the
Istrail squarefree sequence [12], defined as the fixed point beginning with 1 of
the morphism σIS, given by

σIS(0) = 12, σIS(1) = 102 , σIS(2) = 0,

can also be obtained by first considering the fixed point beginning with 1 of the
uniform morphism 0 → 12, 1 → 13, 2 → 20, 3 → 21, then taking its image by
the 1-morphism that consists in reducing modulo 3.

As asked at the end of Sect. 4, is it possible, given a morphic sequence, to
“recognize” whether it is automatic? A 1978-result of Dekking gives a sufficient
condition.

Theorem 2 ([9]). Let σ be a morphism on {0, . . . , r − 1} with length vector
L = (|σ(0)|, . . . , |σ(r−1)|), for some integer r > 1. Suppose that σ is non-erasing
(i.e., for all i in {0, . . . , r − 1}, one has |σ(i)| ≥ 1). Let x be a fixed point of σ,
and let M be the adjacency matrix of σ. If L is a left eigenvector of M , then x
is q-automatic, where q is the spectral radius of M .

Weaker but more “visual” conditions are given in the following two theorems.

Theorem 3 ([3], “Rank 1 Theorem”). Let σ be a morphism as in Theorem 2
above. Let x be a fixed point of σ. If M has rank 1, then x is q-automatic, where
q is the spectral radius of M .

Theorem 4 ([3], “Anagram Theorem”). Let A be a finite set. Let W be a
set of anagrams over A (the words in W are also said to be abelian equivalent).
Let ψ be a morphism on A such that the image of each letter is a concatenation
of words in W . Then, if a sequence is a fixed point of ψ, it must be q-automatic,
where q is the quotient of the length of ψ(w) by the length of w, which is the
same for all w ∈ W .

Several “hidden automatic sequences”, i.e., morphic sequences that happen
to be automatic, can be found in the literature:

Example 4. The following examples are taken from [3].

– The fixed point beginning with a of the Lysënok morphism a → aca, b → d,
c → b, d → c is 2-automatic. It is the fixed point beginning with a of the
morphism a → ac, b → ad, c → ab, d → ac.

– The four sequences A284878, A284905, A285305, and A284912 in [17] are
3-automatic.
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6 How to Prove that a Sequence Is Not Automatic

Theorem 2 and Theorem 3 give a sufficient condition for a pure morphic sequence
to be automatic. We can also explore necessary conditions. More precisely, look-
ing at various properties of automatic sequences, we can state conditions imply-
ing that a given sequence (and in particular a morphic sequence) is not auto-
matic. Below we give a catalog of such statements (more details, proofs, and
references can be found in [4]).

Let u = (un)n≥0 a fixed point of a non-uniform morphism ϕ, whose adjacency
matrix M has spectral radius ρ.

– First suppose that the morphism ϕ is primitive, i.e., the matrix M is primitive,
which means that there exists an integer d such that all entries of Md are
positive.

• If ρ is not an integer, then u is not q-automatic for any q ≥ 2.
• Compute the dynamical eigenvalues of the dynamical system Xu (this

aspect is not studied here; see [4] for a definition and some results).

– Now suppose that there is no primitivity hypothesis for the morphism ϕ, and
that ρd is never an integer for d positive integer.

• Then the sequence (un)n≥0 is not q-automatic for any q ≥ 2. Note that
this is in particular the case if there exists some integer t ≥ 1 such that
ρt is a rational number but not an integer.

– Finally suppose that there is no primitivity hypothesis for the morphism ϕ,
and that ρk = d for some integer d ≥ 2. Then, from a result of Durand [8],
proving that the sequence (un)n≥0 is not q-automatic for q ≥ 2 is the same
as proving that it is not d-automatic. Up to replacing ϕ with ϕk, one can
suppose that ρ = d for some integer d ≥ 2. In order to prove that (un)n≥0 is
not d-automatic, one can try one of the following strategies.

• Exhibit infinitely many distinct elements in the d-kernel of (un)n≥0, i.e.,
the set of subsequences Kerd u = {(udkn+r)n≥0, k ≥ 0, r ∈ [0, dk − 1]}.

• Prove that some factor occurs in (un)n≥0 with irrational frequency.
• Prove that the factor-complexity of (un)n≥0 (i.e., the number of factors

occurring in (un)n≥0) is not in O(n).
• Find gaps of “wrong” size in the sequence of integers {n, un = a} for

some value a.
• Look at the poles of the (continuation of the) Dirichlet series associated

with (un)n≥0.
• Study the closed orbit of (un)n≥0 under the shift (we skip this aspect in

this survey; see, e.g., [4]).

Example 5. The following examples are taken from [4].

– The binary Fibonacci sequence, fixed point of 0 → 01, 1 → 0 is not q-
automatic for any q ≥ 2. Namely the adjacency matrix is minimal, and its
dominant eigenvalue is not an integer.
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– The infinite fixed point v = (vn)n≥0 of the morphism a → aab, b → b is not
2-automatic: it can be proved that its 2-kernel is infinite; more precisely that
the sequences (v2kn+2k−k)n≥0 for k ≥ 1 are all distinct.

7 Towards a (Partially) Automated Approach?

Is it possible to test in an automated (or semi-automated) way whether a
(purely) morphic sequence is automatic? While the general question of recog-
nizing whether a morphic sequence is automatic is probably undecidable, some
of the conditions listed above can be tested in an automated way. For example,
it is decidable whether the dominant eigenvalue of a matrix is an integer. Some
other conditions that are not listed above might also be tested in some semi-
automated way: for example J. Shallit suggested a way of proving that the fixed
point of the morphism a → aab, b → b is not automatic as follows. Define the
function f by: f(n) is the index of the leftmost term of the first occurrence of
a run of length n in this fixed point. If the fixed point were q-automatic then f
would be q-synchronized, and hence in O(n). But the first occurrence of a run
of length n begins at position 2n+1 − n − 1, which is clearly not in O(n) (see [4]
for details).

Acknowledgements. We warmly thank F. Durand and J. Shallit for discussions and
comments.
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Abstract. Throughout the history of Formal Languages, one of the
research directions has always been to describe computational complete-
ness using only a small amount of possibly scarce resources. We review
some of these results in the form of an essay.
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1 Introduction: A Historical Perspective

Automata. Nearly from the beginning of the development of the theory of
Formal Languages, the question was raised if computational completeness can
be reached by restricting available resources. For instance, Claude Shannon [69]
has shown that, concerning Turing machines, 2-element state sets or 2-element
tape alphabets suffice for this purpose. Also, Shannon argued that singleton state
sets are not sufficient to allow for arbitrarily complex computations.

Shannon is probably best known for his “invention” of information the-
ory [68], and so is Marvin Minsky, our next protagonist in this historical essay,
nowadays rather hailed for his contributions to the foundations of Artificial Intel-
ligence, maybe starting out from [54], than for his contributions in Formal Lan-
guages. In videos 72&731, Minsky describes how a problem of Emil Post that
he was told by his former advisor Martin Davis led him to the “invention” of
what is nowadays often called a Minsky machine, or a register machine, or a
counter automaton. But as Minsky acknowledges in the description of “program
machines” (as he called them) in his textbook [55], his line of research was highly
influenced by Hao Wang. Wang wrote in the introduction of his paper [76]: The
principle purpose of this paper is to offer a theory which is closely related to
Turing’s but is more economical in the basic operations. Here, economy refers to
a very reduced instruction set, combined with a 2-way infinite tape: moving the
‘Turing head’ left or right (shifting), marking a square (i.e., there is a single non-
blank tape symbol) or a conditional jump (if the current tape symbol is marked,
go to instruction n). But, just by definition, the computational completeness of
1 Out of a series of 151 short videos showing interviews with Minsky within the Web

of Stories - Life Stories of Remarkable People.

c© Springer Nature Switzerland AG 2021
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Wang’s machine re-proves the mentioned completeness result of Shannon about
binary tape alphabets.

Although this economy or parsimony was first introduced more out of math-
ematical curiosity, and this kind of intrinsic motivation continues to exist until
today, there is also another (more practical) aspect to the word economy : It
could well be that certain resources of computational devices are very expen-
sive, so it would literally pay off to save on these resources. To substantiate this
claim with a modern example, consider existing quantum computers: qbits are
still a rare and expensive resource.

Let us return to the reduced instruction set machines of Wang and Minsky: in
their most parsimonious form, 2-counter machines can simulate Turing machines,
as Minsky proved [55].2 However, there is a caveat to this assertion (if it comes to
using it for proving other computational completeness results): it is not that clear
how input is first fed into these machines; this has to be done first ‘somehow’.
A similar problem is faced with Wang’s B-machines (as he called them), and
Wang clearly pronounced it in his treatment [76]. Interestingly enough, a similar
problem is faced nowadays with quantum computers: before running them, a
‘classical input’ has to be fed into them, which is kind of destroying the idea of
running sub-linear algorithms. So, this aspect is not just a mathematical artefact.

Another variety of computationally complete devices are tag systems [53,62].
Also here, the parsimony principle was applied: it is known that it is sufficient
to remove a prefix of two symbols and append two encoded words at the end to
describe a Turing-equivalent mechanism [5]. Again, this leads to a reduced set
of instructions for this type of machinery, and it is possibly no coincidence that
the first author of this paper, John Cocke, then working with the IBM Research
Division, reported on the evolution of RISC technology at IBM in [4], a processor
architecture that was literally implementing this parsimony idea.

Grammars. While the benefits of parsimony in machine models is pretty obvi-
ous, this might be less the case with grammatical models, as there is no direct
hardware implementation. This starts by their very motivation, that was purely
linguistic, as elaborated by Noam Chomsky in [2]. Chomsky later proved [3] that
phrase structure grammars can be used to describe all recursively enumerable
languages, this way linking his linguistic theory with the already developed the-
ory of recursive functions via Turing machines. But what should now take the

2 If somebody wonders about how one of the ‘fathers of AI’ and the philosophy behind
could write one of the first textbooks on Automata Theory, let Minsky himself make
the link in the preface of his book: The abstract theory—as described in this book—
tells us in no uncertain terms that the machines’ potential range is enormous, and
that its theoretical limitations are of the subtlest and most elusive sort. There is no
reason to suppose machines have any limitations not shared by man. But this role
of Minsky created some peculiar situations until today; for instance, the said book
is collected within the ‘methodological books’ in the part of our university library
dedicated to psychology. Presumably, this was because one part of the book explains
a mathematical model of neural networks.
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role of internal states or of tape symbols, two quantities discussed above for
Turing machines?

In a sense, both combine into one entity in phrase structure grammars,
namely, into nonterminal symbols. This very fact is already interesting, as it
also (implicitly) raises the question if one could limit both the number of inter-
nal states and the number of tape symbols with Turing machines; for instance,
Shannon’s constructions [69] discussed above limit either of these quantities but
not both at the same time. This question for Turing machines is, in a sense,
answered by constructing small universal Turing machines; see [57] for a survey.
There is also an answer in a different direction: Turing machines that both have
a small number of states and a small number of tape symbols can only accept
very restricted languages, mostly regular ones, as shown in [8,47] (giving also
quite some references to other, often Russian, publications in this direction).

As the nonterminal complexity forms quite an interesting topic of its own
interest, we defer its discussion to Sect. 2.

From a historical perspective, it should be also noted that normal forms
that restrict the structure of rules in grammars are what has been considered
next. Concerning context-free grammars, the possibly best known examples (also
taught in classical textbooks on Formal Languages) are the Chomsky and the
Greibach normal forms. However, more important for the present discussion are
normal forms for type-1 or type-0 grammars. Here, the linguist Sige-Yuki Kuroda
proved [48] that for each type-1 grammar (without erasing productions), there
is an equivalent grammar3 that uses only rules of the following forms: A → a,
A → B, A → BC, AB → CD, where A,B,C,D are nonterminals and a is a
terminal symbol. Notice that the first three types of rules are ‘simple’ in the
sense of being context-free. We could therefore consider rules of the fourth type
as being an expensive resource. We are not aware of any results that bound the
number of rules of the form AB → CD for monotone grammars. However, when
admitting erasing rules, we also get a Kuroda normal form for type-0 grammars.
As detailed in Sect. 2, it is possible to bring down the number of rules of the
form AB → CD to two. It seems to be unknown if one such rule suffices for
describing every recursively enumerable language.

Let us return to the Kuroda normal form. There have been several attempts
to further simplify it. For instance, Kuroda himself [48] suggested on page 211
to replace rules of the form AB → CD by AB → A′B, A′B → A′D and
A′D → CD (where A′ is a fresh nonterminal) in order to turn Kuroda normal
form grammars into context-sensitive grammars. This is a tempting construction,
but unfortunately, it is wrong, as observed by György E. Révész in [64]. He
suggested to consider the following set of rules as a basis for a counter-example:
S → AB, B → DE, AB → CD. Clearly, S ⇒∗ CDE is not possible with these
rules. However, after the replacements suggested by Kuroda,

S ⇒ AB ⇒ A′B ⇒ A′DE ⇒ CDE

3 A further restricted form thereof Kuroda himself termed linear-bounded grammar,
but our definition corresponds to what is nowadays called Kuroda normal form.
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is a possible derivation. This mistake is quite instructive and shows that one has
to be quite careful with checking ‘simple constructions’. Révész also offered a
fix in his paper, sometimes referred to as “Révész’s trick”. One has to take two
fresh nonterminals A′, B′ and four replacement rules for AB → CD: AB → A′B,
A′B → A′B′, A′B′ → CB′ and CB′ → CD. Furthermore, Révész explained how
to get rid of the chain rules A → B. Again, this is not completely trivial, and an
incorrect idea was published before. Further improvements of this normal form
are due to Martti Penttonen: each type-1 grammar (without erasing productions)
can be replaced by a context-sensitive grammar only having rules of the forms
A → a, A → BC, AB → AC, where A,B,C are nonterminals and a is a terminal
symbol. Here, not only chain rules were eliminated and all rules are context-
sensitive, but also context-sensitivity is only used in a left context. Again, when
admitting additional erasing rules, we arrive at a Penttonen normal form for
recursively enumerable languages. However, it is open if it is possible to delimit
the number of context-sensitive rules of the form AB → AC in a Penttonen
normal form grammar.

Another type of normal form was achieved by Walter A. Savitch [67]: He
showed that every recursively enumerable languages can be generated by some
type-0 grammar that contains, apart from context-free rules, only erasing rules
of the form AB → λ. The natural question if one can delimit the number of these
erasing non-context-free rules. Again, this question will be answered affirmatively
in Sect. 2.4 Notice that Savitch’s normal form also implies Kuroda’s for type-0
grammars, as one can choose a fresh nonterminal Λ with a rule Λ → λ and then
replace AB → λ by AB → ΛΛ.

2 Nonterminal Complexity

In [66], it was shown that three nonterminals suffice to describe every recur-
sively enumerable language with a type-0 grammar. However, this proof is a bit
cheating, because it heavily uses possible replacements of terminal symbols. Can
we achieve similar results if further replacements of terminal symbols are not
allowed? This question was solved by Villiam Geffert in his PhD thesis [38]. For
our exposition, the most important material can be also found in [40]. As also
the intermediate results of Geffert are quite interesting in our context, let us
present these in some more breadth.

Extended Post Correspondences. Geffert’s construction starts with so-
called g-systems, a computationally complete mechanism introduced by Geffert’s
PhD advisor Branislav Rovan [65]. By simulating g-systems, it is then shown that
also so-called extended Post correspondences (or EPC for short) characterize the
recursively enumerable languages. They are defined by a language alphabet Σ

4 With different arguments, the fact that two such erasing non-context-free rules suffice
to reach computational completeness was also explained in [41], pointing to several
earlier papers. We also refer to [38,39].
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and a tuple P = ({(ui, vi) | 1 ≤ i ≤ r}, {za | a ∈ Σ}), where the elements
ui, vi, za are all words over the binary alphabet {0, 1}. This also defines a homo-
morphism h : Σ → {0, 1}∗, a �→ za. Then, the language L(P ) ⊆ Σ∗ is defined
as

L(P ) = {w ∈ Σ∗ | ∃i1, . . . i� : vi1 · · · vi�
= ui1 · · · ui�

h(w)}.

The classical Post correspondence problem (also known as PCP) was introduced
by Post [63] and, interestingly enough, one of its motivations that helped intro-
duce the PCP in any standard textbook on Automata Theory and Formal Lan-
guages was the particular simplicity of the PCP as an undecidable problem.5

The PCP could be formally introduced as the question if, for a given EPC P
(with Σ = ∅), L(P ) 
= ∅. It is known that PCPs with two word pairs (i.e., � = 2)
give a decidable problem, but with five (and more) word pairs, PCP is (already)
undecidable, while the case of three or four word pairs is still open; see [9,56].
Also, it is unclear if these bounds on the number of word pairs translate to EPC.

Geffert Normal Form. The computational completeness result for EPC is
then used by Geffert to prove that each recursively enumerable language can
be generated by a type-0 grammar that contains only five nonterminals, say,
S,A,B,C,D and only context-free rules (of the form S → v) but the two erasing
rules AB → λ and CD → λ. This is also known as Geffert normal form. To
show this result, consider an EPC P = ({(ui, vi) | 1 ≤ i ≤ r}, {za | a ∈ Σ})
and the homomorphisms g1 : 0 �→ A, 1 �→ C and g2 : 0 �→ B, 1 �→ D. For each
a ∈ Σ, introduce the rule S → ←−−−

g1(za)Sa.6 For each i, 1 ≤ i ≤ r, introduce S →←−−−
g1(ui)Sg2(vi) and S → ←−−−

g1(ui)g2(vi). Together with the mentioned erasing rules,
this specifies a type-0 grammar GP . Now, vi1 · · · vi�

= ui1 · · · ui�
h(w) means that

the sentential form
←−−−−−−
g1(h(w))

←−−−−
g1(ui�

) · · · ←−−−−
g1(ui1)g2(vi1) · · · g2(vi�

)w can be derived
in GP , and then the erasing rules test if, indeed, vi1 · · · vi�

= ui1 · · · ui�
h(w). If the

test succeeds, then the terminal word w is produced. For the reverse direction,
it is important to show that indeed first the rules S → ←−−−

g1(za)Sa have to be used
and then the other rules with left-hand side S. When simulating Geffert normal
form grammars, this has to be taken into account, to avoid malicious derivations.

Coding Tricks. Recall the role of the two morphisms g1 and g2 whose purpose
was to differentiate between left and right sides with respect to the ‘central’
nonterminal S, this way preparing the matching test with the rules AB → λ
and CD → λ. With using different morphisms, possibly forgoing the distinction
between left and right sides concerning S, Geffert could show further computa-
tional completeness results.

5 Observe that according to our definition, PCPs are collections of word pairs over a
binary alphabet; of course, one could also consider such word pair collections over
arbitrary alphabets, but we stick to this simpler case in our treatment.

6 We use ←−w to denote the mirror (or reversal) of word w.
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G′
P with the morphisms g′

1 : 0 �→ CAA, 1 �→ CA and g′
2 : 0 �→ CBB, 1 �→

CB: sentential forms like
←−−−−−−
g′
1(h(w))

←−−−−
g′
1(ui�

) · · · ←−−−−
g′
1(ui1)g

′
2(vi1) · · · g′

2(vi�
)w can

be derived in G′
P that can be checked with rules AB → λ and CC → λ.

G′′
P with the morphisms g′′

1 : 0 �→ BBA, 1 �→ BA and g′′
2 : 0 �→ BA, 1 �→ BBA:

sentential forms like
←−−−−−−
g′′
1 (h(w))

←−−−−
g′′
1 (ui�

) · · · ←−−−−
g′′
1 (ui1)g

′′
2 (vi1) · · · g′′

2 (vi�
)w can be

derived in G′′
P that can be checked with rules AA → λ and BBB → λ,

or, alternatively, with the single (but longer) erasing rule ABBBA → λ.
G′′′

P with the morphisms g′′′
1 : 0 �→ BA, 1 �→ A and g′′′

2 : 0 �→ C, 1 �→ BC:
sentential forms like

←−−−−−−
g′′′
1 (h(w))

←−−−−−
g′′′
1 (ui�

) · · · ←−−−−−
g′′′
1 (ui1)g

′′′
2 (vi1) · · · g′′′

2 (vi�
)w can be

derived in G′′′
P that can be checked with the single erasing rule ABC → λ.

Although G′′
P offers the strongest normal form result for type-0 grammars with

respect to nonterminal complexity (three nonterminals suffice to generate every
recursively enumerable language), other normal forms offer some ‘structural
advantages’, so that it is not always advisable to choose G′′

P in order to prove
computational completeness results, as shown below. For the ease of reference,
we write (n, r)-GNF to refer to the Geffert normal form that uses n nonterminals
and r non-context-free (erasing) rules. Hence, so far we presented (5, 2)-GNF,
(4, 2)-GNF, (3, 2)-GNF, (3, 1)-GNF, and (4, 1)-GNF, in this order.

We strongly conjecture that one single nonterminal is not sufficient to
describe every recursively enumerable language with some type-0 grammar, but
as far as we know, neither this question is settled nor the question if two non-
terminals suffice to generate every recursively enumerable language.

Sometimes, further modifications are necessary to produce useful normal
forms. For instance, correctness proofs might become easier when the two ‘uses’
of the nonterminal S in S → ←−−−

g1(za)Sa and S → ←−−−
g1(ui)Sg2(vi) are separated

by introducing a further nonterminal, as made explicit in [32]. Tomas Masopust
and Alexander Meduna [51] developed the idea to forgo the use of the coding
functions gi (i.e., they are the identity) but to rather use a new nonterminal
$ to indicate the test phase that is maintained (and finally left) with the rules
0$0 → $, 1$1 → $, $ → λ. Now, sentential forms like

←−−
h(w)←−ui�

· · · ←−ui1$vi1 · · · vi�
w

can be derived and then tested. We call this normal form MMNF for short. We
even found an application of the variant where the morphism ¬ : 0 �→ 1, 1 �→ 0 is
used, in combination with the rules 0$1 → $, 1$0 → $, $ → λ. Sentential forms
like

←−−
h(w)←−ui�

· · · ←−ui1$¬vi1 · · · ¬vi�
w can be derived and then tested. We called this

variant modified Masopust-Meduna normal form, or MMMNF for short, in [32].

Special Geffert Normal Form. The idea of this normal form, also called SGNF for
short, was due to Rudi Freund et al. [36]; it is particularly useful in the context
of insertion-deletion systems (see Sect. 3). In that context, maybe surprisingly,
the challenging part of the simulation is often posed by the context-free rules.
Here, it is important to have right-hand sides of length at most two, only. This
can be enforced by ‘spelling out’ longer strings, but then, one clearly pays with
additional nonterminals. So, this story-line is more about structural simplicity.
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Regulated Rewriting. There are only rare occasions of grammatical mecha-
nisms where the exact borderline between computational completeness and com-
putational incompleteness is known with respect to the nonterminal complexity.
For instance, it is shown in [16] that any recursively enumerable language can be
generated by some graph-controlled grammar (using context-free core rules) with
only two nonterminals, while we also proved that one nonterminal is insufficient.

These results come with some anecdotes that fit into this essay. Jürgen Das-
sow showed in [6] that eleven nonterminals suffice to generate each recursively
enumerable set with a programmed grammar, based on [66]. In the same year,
Gheorghe Păun proved in [59] that six nonterminals are sufficient for computa-
tional completeness in matrix grammars. As programmed and matrix grammars
are special cases of graph-controlled grammars (also see [12,15,35]), correspond-
ing results for graph-control hold. Then, on my first flight to Australia, more
than 20 years ago, I had an idea how to further bring down the number of non-
terminals. I took my laptop computer and started typing my ideas, and when
touching down-under, most of the paper was ready, so that I could still submit
it [13] to MCU 2001. What I did not know at that time was that, independently,
Freund and Păun worked on this topic and also sent another paper to the same
conference [37]. The approaches were different: while I started out with simu-
lating Turing machines [13,14], Freund and Păun took register machines. How-
ever, with hindsight, the approaches were not that different. Namely, the Turing
machine simulation used the nonterminals to store numbers encoding configu-
rations, switching between different nonterminal representations to access and
move the head position. Although I was not aware of this fact by that time,
this is quite similar to Minsky’s constructions [55] of ‘program machines’ using
few registers (as discussed in Sect. 1), the basis of the approach of Freund and
Păun. Then, we joined forces [16], and with two more colleagues we could further
improve these descriptional complexity results, partially to provable optimality.

3 Indian Connections

Recently, I have been pretty active and involved in various aspects of descrip-
tional complexity concerning especially computational complete variations of
insertion-deletion systems. How did I get involved? About five years ago, I was
visiting India. More precisely, I delivered some talks on invitation of Madras
Christian College (MCC), the university where my (at that time) PhD student
Meenakshi Paramasivan [58] graduated. Also, I traveled to Kerala to present
a paper on a completely different topic [1]. Actually shortly before traveling
to India, I started being in contacts with Lakshmanan Kuppusamy. Hence,
together with his family, he came down from Vellore to Chennai to talk to me.
This was triggering quite some active collaboration, both on insertion-deletion
systems [17,20–25,27,29–31,33,72] and on more classical regulated rewriting
[18,19,26,28,32]. As the (growing) list of co-authors indicates, the collabora-
tion was later enriched and deepened by meeting with Sergey Verlan in Paris (in
fact, a trip to Paris could be quite an adventure, as Kuppusamy and me expe-
rienced, but this is another story) and by visits in Trier both of Kuppusamy, of
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Indhumathi Raman, and of Rufus Oladele from Nigeria. We now report on the
connections of these research projects to the topics discussed so far in this essay.

Insertion-Deletion Systems. Since the 1990s, there have been various
attempts to create a formal basis of models for DNA computing; see [45,61].
One of the key observations here is that insertions and deletions play a central
role in such formalisms [44]. Research of formal systems based on these opera-
tions was initiated by Lila Kari [42]. For the ease of possible implementations in
vitro, quite from the early days of this area onwards, one of the main research
questions was to look into the simplest possible models that can still achieve
computational completeness, giving further motivation to study the parsimony
principle.7

An insertion-deletion system, or ins-del system for short, is a construct γ =
(V, T,A,R), where V is an alphabet, T ⊆ V is the terminal alphabet, A is a finite
language over V , R is a finite set of triplets of the form (u, η, v)ins or (u, δ, v)del,
where (u, v) ∈ V ∗ × V ∗ denotes the left and right context and η, δ ∈ V + are
the strings that are inserted or deleted. For x, y ∈ V ∗, we write x ⇒ y if y
can be obtained from x by using either an insertion rule or a deletion rule. More
formally, applying (u, η, v)ins on x ∈ V ∗ means to find the substring uv in x, i.e.,
x = x1uvx2, resulting in y = x1uηvx2. To apply (u, δ, v)del on x ∈ V ∗, we have
to find the substring uδv in x, i.e., x = x1uδvx2, and the result is y = x1uvx2.
The language generated by γ is L(γ) = {w ∈ T ∗ | x ⇒∗ w, for some x ∈ A},
where ⇒∗ denotes the reflexive and transitive closure of the relation ⇒. A tuple
(n, i′, i′′;m, j′, j′′) is associated with an ins-del system to denote its size, where n
denotes the maximal length of the insertion string, i′ denotes the maximal length
of the left context for insertion, i′′ the maximal length of the right context for
insertion; m is the maximal length of the deletion string, j′ is the maximal length
of the left context for deletion, and j′′ is the maximal length of the right context
for deletion. For instance, it is known that insertion-deletion systems of sizes
(1, 1, 1; 1, 1, 1), (1, 1, 1; 2, 0, 0), (2, 0, 0; 1, 1, 1), (2, 0, 0; 3, 0, 0) or (3, 0, 0; 2, 0, 0) are
computationally complete (see [50,70]), while upon decreasing any of the non-
zero size parameter bounds, we arrive at systems that are not capable to simulate
every Turing machine; see [46,52]. We also refer to Verlan’s survey [71]. Some of
the proofs make use of Kuroda normal form grammars, as described above.

To further improve on the size bounds, the effect of regulation mechanisms
put on ins-del systems has been studied. For instance, matrix control can be seen
as (small) program fragments that prescribe in which order certain rules have
to be executed. For instance, in [24], it was shown that with matrices containing
at most three ins-del rules, for all c1, c2, c3, c4 ∈ {0, 1} with c1 + c2 + c3 + c4 =
2, matrix ins-del systems of size (1, c1, c2; 1, c3, c4) characterize the recursively
enumerable languages. For matrix ins-del systems with at most two rules per
matrix, sizes (2, 0, 0; 1, c, c′), (1, 1, 1; 1, c, c′), (1, c, c′; 2, 0, 0) and (1, c, c′; 1, 1, 1),

7 For a discussion of programming languages tailored towards DNA computing, we
refer to the study [49] conducted by Microsoft Research.
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with c, c′ ∈ {0, 1} and c + c′ = 1, reach computational completeness. All proofs
were based on simulating type-0 grammars in SGNF.

Alternatively, one could allow further operations. Based on suggestions con-
tained in [43], we studied the effect of adding so-called substitutions (allowing to
replace a symbol a by another symbol b in a certain context) to ins-del systems.
Indeed, they allow to decrease some of the mentioned descriptional complexity
measures; we refer to [73–75] for the precise progress both compared to tradi-
tional ins-del systems and to matrix ins-del systems. This detour also allowed
us to obtain new variations of Penttonen-style normal forms.

Back to Regulated Rewriting. About a quarter of a century ago, I was
quite interested in this branch of Formal Languages, also, because it is focused
on grammatical mechanisms that are ‘kind of context-free’ (and hence appear
to be simple), yet they (often) reach the power of Turing machines. One vari-
ant, namely semi-conditional grammars, was introduced by Păun in 1985 [60].
Here, to each context-free rule A → w, two strings w+ and w− are (possibly)
attached, and the rule can only be applied to a sentential form x (in the usual
manner) if w+ is a substring (factor) of x (i.e., w+ is a permitting string) and
w− is not a substring of x, (i.e., w− is a forbidding string). Apart from the num-
ber n of nonterminals, also the so-called degree (d+, d−) is a natural measure of
descriptional complexity, where d+ upper-bounds the length of any w+, and d−
upper-bounds the length of any w−. Also, it is interesting to upper-bound the
number c of rules that are conditional, i.e., at least one permitting or one for-
bidding string is attached to a conditional rule. In order to bound (n, d+, d−, c)
so that semi-conditional grammars are still computationally complete, various
Geffert normal forms turned out to be useful. For instance, the (4, 2)-GNF was
the starting point to simulate the rule AB → λ by the rules labeled 1, 2, 3, 6, 6, 7
and the rule CC → λ by the rules labeled 4, 5, 6, 6, 7 in the following list of rules
from [18]. This corresponds to a bound of (6, 2, 1,∞). There is no finite bound
on the number of conditional rules, because the start symbol S was ‘recycled’.

1: (A → $S, AB, S ) 2: (B → # , $S , #)
3: (S → $ , S#, 0 ) 4: (C → $$, CC, $ )
5: (C → # , $$ , #) 6: ($ → λ , $# , 0 )
7: (# → λ , 0 , $ ) w: (S → w , 0 , $ )

Here, 0 indicates that there is no context needed in the rule. It is clearly
tempting to further ‘optimize’ this grammar by taking, say,

1: (A → $, AB, S) 2: (B → #, $B, #)

as the first two rules. So, we are hoping for a bound like (6, 2, 1, 6), as the start
symbol S is not re-used. However, consider a sentential form with a factor of
the form CCCB. Such sentential forms might be derivable in the original type-
0 grammar G, but (as Geffert has proved) they would never lead to terminal
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strings. Yet, in the simulating grammar G′, we might apply the rules 4, 2, 6, 6, 7,
converting the factor CCCB into CC, so that from now on, a terminal string
might be derivable in G′. This explains how subtle these simulations could be.

All Geffert-like normal forms that we described are useful in simulations,
having their pros and cons. We employed (nearly) all of them in our papers.
More specifically, (5, 2)-GNF was used in [19], (4, 2)-GNF in [18,28], (3, 1)-GNF
in [18,28], (4, 1)-GNF in [19,28,32], MMNF in [19], and MMMNF in [32].

4 Some Weird Grammars to Conclude

Finally, I would like to point to some grammatical mechanisms that were proven
to be computationally complete, but which have, for instance, a decidable empti-
ness problem. This sounds weird, as the said mechanisms look quite innocent.
For me, this adventure started out when proving that so-called 1-limited ET0L
systems (introduced in [77]) have an undecidable membership problem [10], a
result that is also true for k-limited ET0L systems in general [11]. (It is unknown
if the language classes that can be described by 1-limited ET0L systems and by
2-limited ET0L systems coincide.) By [7,12], there are a number of character-
izations of the class of languages describable by 1-limited ET0L systems by
regulated grammars with unconditional transfer. Yet, it is unknown if 1-limited
ET0L systems characterize the recursively enumerable languages. This could
only be achieved when adding a certain form of leftmost derivations [34]. With-
out going into details, it is at least possible to give a high-level explanation how
computational completeness can be proved in such a situation. Namely, the trick
is to use Higman’s Lemma to infer that every language L can be decomposed
in a finite collection of languages, each of which contains a certain subsequence
(sparse subword) that is contained in L. Then, if a certain type of mistake in
a simulation is detected, the derivation will continue and deliver the mentioned
subsequence. The only non-constructive part of this ‘construction’ is indeed the
mentioned decomposition. The descriptional complexity of these devices has not
yet been investigated. Notice, however, that although the mentioned construction
starts out with a traditional programmed grammar, we cannot use the fact that
we might assume that they only have three nonterminals, because we must use
different sets of nonterminals for the grammar parts forming the decomposition
of L and there is no universal bound on the number of sets in this decomposition.
Hence, this offers ample room to investigate the parsimony principle.
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64. Révész, G.E.: Comment on the paper “error detection in formal languages”. J.
Comput. Syst. Sci. 8(2), 238–242 (1974)

65. Rovan, B.: A framework for studying grammars. In: Gruska, J., Chytil, M. (eds.)
MFCS 1981. LNCS, vol. 118, pp. 473–482. Springer, Heidelberg (1981). https://
doi.org/10.1007/3-540-10856-4 115

66. Rozenberg, G., Vermeir, D.: On the effect of the finite index restriction on several
families of grammars; Part 2: context dependent systems and grammars. Found.
Control Eng. 3(3), 126–142 (1978)

67. Savitch, W.J.: How to make arbitrary grammars look like context-free grammars.
SIAM J. Comput. 2(3), 174–182 (1973)

68. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27,
379–423 & 623–656 (1948)

69. Shannon, C.E.: A universal Turing machine with two internal states. In: Shannon,
C.E., McCarthy, J. (eds.) Automata Studies, Annals of Mathematics Studies, vol.
34, pp. 157–165. Princeton University Press, Princeton (1956)

70. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. Nat. Comput. 2(4), 321–336 (2003)

71. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J.
Moldova 18(2), 210–245 (2010)

72. Verlan, S., Fernau, H., Kuppusamy, L.: Universal insertion grammars of size two.
Theoret. Comput. Sci. 843, 153–163 (2020)

73. Vu, M., Fernau, H.: Insertion-deletion systems with substitutions I. In: Anselmo,
M., Della Vedova, G., Manea, F., Pauly, A. (eds.) CiE 2020. LNCS, vol. 12098, pp.
366–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51466-2 33

74. Vu, M., Fernau, H.: Insertion-deletion with substitutions II. In: Jirásková, G.,
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1 Pointlike Sets: Definitions and Reformulations

This article is a short survey on old and new results about pointlike sets and
separation, focusing primarily on areas in which I have worked, and including
occasional personal anecdotes. My first paper [47] was on pointlike sets and I
have revisited the topic many times since. In the early seventies, motivated by
the question of computing the Krohn-Rhodes complexity of a semigroup [27],
John Rhodes introduced the notion of a pointlike set. First let me recall some
preliminary notions. The power set P (S) of a semigroup S is again a semigroup
under the usual operation XY = {xy | x ∈ X, y ∈ Y }. A relational morphism
of semigroups ϕ : S → T is a mapping ϕ : S → P (T ) such that ϕ(s) �= ∅ for all
s ∈ S and ϕ(s)ϕ(s′) ⊆ ϕ(ss′) for all s, s′ ∈ S. A pseudovariety is a class of finite
semigroups closed under subsemigroups, finite direct products and homomorphic
images.

If V is a pseudovariety of semigroups, then a subset X of a finite semigroup
S is V-pointlike if it is covered by a point with respect to any relational mor-
phism into V; that is, if ϕ : S → V is a relational morphism with V ∈ V, then
there is v ∈ V with X ⊆ ϕ−1(v). For example, any subgroup of S is pointlike
with respect to the pseudovariety of aperiodic semigroups (semigroups with only
trivial subgroups). Rhodes believed that to compute Krohn-Rhodes complexity,
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it would be important to be able to compute aperiodic pointlikes and possibly
group pointlikes.

Note that the decidability of V-pointlike pairs (two-element pointlikes)
implies the decidability of membership in V since S belongs to V if and only if
no two-element subset of S is V-pointlike. What makes this work is the following
observation. Because S has only finitely many subsets and V is closed under finite
direct products, one can show that there exists a relational morphism ϕ : S → V
with V ∈ V that witnesses V-pointlikes in the sense that X ⊆ S is V-pointlike
if and only if X ⊆ ϕ−1(v) for some v ∈ V . More precisely, for each non-pointlike
subset X ⊆ S, we can find a relational morphism ϕX : S → VX with VX ∈ V
and with no element v ∈ VX such that X ⊆ ϕ−1(v). Then take ϕ : S → ∏

VX

to be the product of these relational morphisms over all non-pointlike subsets
X; this ϕ will witness V-pointlikes. A witnessing relational morphism will be
a division when there are no V-pointlike pairs. The reader is referred to [40,
Chapter 2] for background on pointlike sets and their various generalizations,
and for proofs of the witnessing argument. Note that if one can compute the V-
pointlikes, then one can effectively find a witnessing relational morphism via an
enumeration of relational morphisms argument (which has no reasonable time
complexity bound). Many proofs that pointlike sets are computable explicitly
produce a witnessing relational morphism, but not all do.

In the late nineties, when I was a Ph. D. student under John Rhodes, he told
me that he had this proof he had shown Pascal Weil a few years earlier, but
had never written up, that there is a profinite interpretation of pointlike sets.
Namely, if S is an A-generated semigroup and F̂V(A) is the free pro-V semi-
group on A [4,40] (the inverse limit of all A-generated semigroups in V), then
there is a natural ‘continuous’ relational morphism ρV : S → F̂V(A) respecting
the generating set A. Rhodes observed that X ⊆ S is V-pointlike if and only
if there is v ∈ F̂V(A) with X ⊆ ρ−1

V (v), that is, ρV witnesses V-pointlike sets.
Since F̂V(A) is usually uncountable, this is not often feasible to use. But it shows
immediately that pointlike sets are decidable with respect to (order computable)
locally finite pseudovarieties (ones where F̂V(A) is finite and you can algorith-
mically compute this semigroup). I also showed in my thesis [46], using that
the free pro-J semigroup is countable with a decidable word problem [4], that
the J-pointlikes could be computed using this approach [47,53]. Here J is the
pseudovariety of J -trivial semigroups. Rhodes’s observation was independently
made by Jorge Almeida, whose work on profinite semigroups was pioneering,
and Almeida and Marc Zeitoun also computed the J-pointlikes [3]. The profinite
method is a powerful tool in understanding pointlikes although making things
algorithmic can be difficult from that perspective.

In the nineties, Almeida gave a translation of the notions of pointlike pairs
and pointlike sets into formal language theory [5]. I’ll stick here to the case
of pointlike pairs. If L1, L2 ⊆ A+ are regular languages, then they can be V-
separated if there is a V-recognizable language L with L1 ⊆ L and L ∩ L2 =
∅. Recall that L is V-recognizable if its syntactic semigroup belongs to V.
Almeida showed that decidability of V-separation is equivalent to decidability of
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V-pointlike pairs. So, for example, since the pseudovariety J recognizes the
piecewise testable languages by Simon’s theorem [45], decidability of J-pointlikes
implies the decidability of separation by piecewise testable languages. The decid-
ability of V-pointlike sets is equivalent to what Thomas Place and Zeitoun call
the covering problem [35].

2 Aperiodic Pointlikes

A semigroup is aperiodic if all its subgroups are trivial, that is, it satisfies xω =
xω+1 where xω denotes the idempotent power of x. Schützenberger’s theorem
says that the aperiodic languages are the first order definable languages [44];
see Straubing’s book for a nice introduction [54]. The pseudovariety of aperiodic
semigroups is denoted A.

The first major result about pointlike sets was by Karsten Henckell, in his
thesis under John Rhodes (published in [22]), who proved the decidability of
aperiodic pointlikes and hence the decidability of separation of regular languages
by first order definable languages.

The collection PLV(S) of V-pointlike subsets of S is a subsemigroup of P (S),
closed downwards in the order. Note that the power semigroup construction is
a monad [28]. There is a semigroup homomorphism

⋃
: P (P (S)) → P (S),

natural in S, given by X �→ ⋃
X and a natural inclusion η : S → P (S) sending s

to {s}, which is the unit of the monad. Rhodes observed that PLV is a submonad,
meaning ⋃

: PLV(PLV(S)) → PLV(S)

and singletons are pointlikes. This is useful because, for example, any subgroup
is aperiodic pointlike. Therefore, if H is a subgroup of PLA(S), then

⋃
H ∈

PLA(S). The general philosophy used by Henckell and Rhodes for computing
pointlikes in the early days was to find some obvious types of subsets that are
always V-pointlike (like subgroups are A-pointlike) and prove that PLV(S) is
the smallest subsemigroup of P (S) containing the singletons, closed downward in
the order and closed under unions of obvious V-pointlikes. A similar philosophy
also appears in Place and Zeitoun [32,34], both in the context of ordered and
unordered semigroups.

Henckell proved that PLA(S) is the smallest subsemigroup of P (S) that
contains the singletons, is closed downward in the order and is closed under
taking unions of subgroups. In fact, he showed it is enough to take unions of cyclic
subgroups. So, in other words, if X ⊆ S is A-pointlike, then so is Xω ·⋃n≥0 Xn.

Henckell’s proof explicitly constructs a relational morphism witnessing ape-
riodic pointlikes and is based on the holonomy proof of the Krohn-Rhodes theo-
rem [23]. Henckell’s proof is notoriously difficult to read, and so Henckell, Rhodes
and I provided a simpler proof that Henckell’s construction works in [21]. We also
expanded on his result. Let π be a set of prime numbers. Then the semigroups
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satisfying an identity of the form xω = xω+n for some n whose prime factors
belong to π is a pseudovariety. When π = ∅, this is the pseudovariety of aperi-
odic semigroups. The result of [21] shows that pointlikes for the pseudovariety
corresponding to π are decidable if and only if π is recursive. Although our proof
is simpler to follow and shorter than Henckell’s, it is still not so easy. Nonethe-
less, it is one of the few papers I have ever written that the referee completely
understood; the referee even found a nice trick to shave off a page of the most
technical part of the argument. A simplified version of the argument, covering
just the aperiodic case, is given in the book [40, Chapter 4.18].

Recently, Place and Zeitoun used a different approach to prove Henckell’s
theorem [33]. Their main idea is based on a pointlike analogue of the induc-
tive approach to the Krohn-Rhodes theorem that uses groups and cyclic semi-
groups as the base case and then uses the ideal structure for induction [26,40].
(Place and Zeitoun cite Wilke [59] for their idea, but Wilke is using exactly the
Krohn-Rhodes scheme.) Place and Zeitoun’s result uses the language theoretic
formulation of the covering problem and essentially gives an upper bound on the
quantifier depth of first order languages needed to witness the covering problem
(or separation). In particular, they make explicit use of Schützenberger’s theo-
rem [44], and at a certain point perform constructions on first order definable
languages and give a high level description of how to build sentences showing
that the result is still first order definable.

Sam van Gool and I took Place and Zeitoun’s inductive scheme, but replaced
the use of logic and languages by a new bilateral semidirect product decompo-
sition [20]. We showed that this decomposition leads to extremely short (and
we would argue readable) proofs of both the two-sided Krohn-Rhodes theorem
and Henckell’s aperiodic pointlike theorem. Our proof leads to a slightly bet-
ter bound on the quantifier depth of formulas witnessing the covering problem
than that of Place and Zeitoun. Although the proof does not explicitly construct
a relational morphism witnessing aperiodic pointlikes, the bound on quantifier
depth implicitly provides such a relational morphism.

3 Group Pointlikes

For the Krohn-Rhodes complexity problem, the decidability of group pointlikes
seemed like an important step. Let G denote the pseudovariety of finite groups.
Henckell and Rhodes formulated a conjectural (algorithmic) description of the G-
pointlike sets in [25] that was proved by Ash in his famous solution to the Rhodes
Type II conjecture [12]. An alternative, independent proof of Ash’s theorem was
obtained by Ribes and Zalesskii [42] using the theory of profinite groups acting
on profinite graphs. These are truly deep results; see [24] for a survey.

From the algorithmic point of view, the most elegant and efficient approach
to computing G-pointlikes was given by me twenty years ago in [51]. I’ll explain
the algorithm for the case of separation. The case of separation is also handled
in book form in [40, Chapter 4.17] (see, in particular, Exercise 4.17.27). Let L
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be a regular language over the alphabet A given by a not necessarily determin-
istic automaton A computing L. First we modify A to make each strongly con-
nected component both deterministic and codeterministic by identifying edges
in a strong component with the same label beginning or ending at the same
state to get a new automaton A′. Then whenever there is an edge labelled by
a in a strong component of A′ from a state v to a state w, we add a reverse
edge from w to v labelled by a−1. This results in a new automaton A′′ over
the alphabet A ∪ A−1. There is a well-known construction, due to Benois [15],
that builds an automaton AL over A∪A−1 accepting exactly the freely reduced
words accepted by A′′. It is shown in [40,51] that AL accepts precisely the clo-
sure of L in the profinite topology on the free group on A. Now two languages
L,L′ can be separated by a group language if and only if their closures in the
profinite topology on the free group do not intersect, that is, the intersection of
the languages accepted by AL and AL′ is empty; this can, of course, be tested
algorithmically. My proof of correctness of the algorithm uses the Ribes and
Zalesskii theorem [42]; a more elementary proof (avoiding profinite groups) is
given by me and Karl Auinger in [14], and a textbook variant appears in [40,
Chapter 4.19].

If p is a prime, let Gp denote the pseudovariety of finite p-groups. The results
of Ribes and Zalesskii [43] imply that Gp-pointlikes are decidable. I considered
pseudovarieties of abelian groups in [48], but will discuss this in detail at a
later point in the survey. More recently, Almeida, Shahzamanian and I proved
separation is decidable for the pseudovariety of nilpotent groups [2]; pointlike
sets in general remain open for nilpotent groups.

4 Join Results and Tameness

In my thesis [46] (and the resulting papers [47,53]) I proved that the join J ∨
G of the pseudovarieties J of J -trivial monoids and G of finite groups has
decidable pointlikes. At the time, membership in this pseudovariety was an open
question posed by Rhodes 10 years earlier. Almeida, Assis and Zeitoun solved
the separation problem for J ∨ G independently, slightly afterward [6].

My approach was based on a criterion I discovered for a set to be pointlike
with respect to a join. Namely, I showed [47,53] that a subset X of a finite
semigroup S is V ∨ W-pointlike, if and only if, for each relational morphism
ϕ : S → W with W ∈ W, there is w ∈ W with X ⊆ ϕ−1(w) and the slice subset
X × {w} a V-pointlike subset of the graph of the relation ϕ (the graph is a
subsemigroup of S × W ). Rhodes dubbed this the “Slice Theorem.” It was the
first result I ever proved. This result immediately implies that if W is an order
computable locally finite pseudovariety, then V∨W has decidable pointlikes (or
pointlike pairs) whenever V does because one need only test the slice condition
when W is the relatively free semigroup in W on a generating set of S and ϕ is
the relational morphism respecting generators. For example, any pseudovariety
of bands (semigroups with all elements idempotent) is order computable locally
finite [4, Chapter 5.5]. Zeitoun showed in his thesis [60] that the join of the
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pseudovariety of bands with J is decidable. But since J has decidable pointlikes,
one can deduce from the Slice Theorem that the join of J with any pseudovariety
of bands has decidable pointlikes and hence membership.

The proof of decidability of J ∨ G was via an enumeration procedure. The
idea is that since the pseudovariety J∨G is obviously recursively enumerable, we
can enumerate all relational morphisms from a finite semigroup S to semigroups
in J ∨ G and if a subset of X is not J ∨ G-pointlike we will eventually find a
relational morphism showing this to be the case. That is, the J ∨ G-pointlike
sets form a corecursively enumerable set. To show that the pointlike sets are
recursively enumerable, I introduced a certain relational morphism from S to the
direct product of the free pro-J-semigroup and the free group on the generating
set of S. I showed that this relational morphism to a countable semigroup with
decidable word problem witnesses J∨G-pointlikes using the Slice Theorem and
Ash’s Theorem [12]. One can then recursively enumerate the J ∨ G-pointlike
subsets of a finite semigroup using this computable relational morphism.

This approach was explored in an axiomatic fashion by me and Jorge Almeida
during my postdoc in Portugal, leading to the notion of tameness of pseudova-
rieties [10,11]; see [40, Chapter 3] for further developments. Roughly speaking,
a decidable pseudovariety of semigroups V is tame with respect to pointlikes if
we can find some reasonably nice set σ of implicit operations [4,38] (like the ω-
power) so that if we view finite semigroups as universal algebras with signature
consisting of σ and multiplication, then the free σ-semigroup in the variety of
σ-semigroups generated by V on any finite set has a decidable word problem and
the natural relational morphism of σ-semigroups from a finite semigroup S to
this free σ-semigroup in V witnesses V-pointlikes. Tameness implies decidability
of V-pointlikes via an enumeration algorithm.

A number of other pseudovariety joins were computed using the tameness
approach, e.g. [7,16].

5 Undecidability of Pointlikes

Decidability of pointlikes or separation implies decidability of membership, so it
is natural to ask about the converse direction.

Albert, Baldinger and Rhodes showed that the identity problem is undecid-
able for finite semigroups [1]. They show that there is a fixed finite set E of
identities over an alphabet A, for which there is no algorithm which given input
(u, v) ∈ A+ can determine whether u = v is a consequence of E in finite semi-
groups, that is, whether every finite semigroup that satisfies all the identities in
E must also satisfy the identity u = v. Let V(E) be the pseudovariety defined
by the identities E. Then it is shown in [1] that V(E) ∨ ACom has undecid-
able membership where ACom is the pseudovariety of aperodic commutative
semigroups. In light of my results [47,53] relating membership in joins to the
separation problem via the Slice Theorem, Rhodes conjectured that V(E) has
undecidable pointlike pairs; since it obviously has decidable membership, this
conjecture, if true, would yield an example where the separation and pointlike
problems are undecidable, but the membership problem is decidable.
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At the excursion for the Conference on Algebraic Engineering for Rhodes’s
60th birthday, held in Aizu-Wakematsu, Japan, in 1997, there was a trip to the
public baths. Rhodes and I skipped out on the baths and instead proved the
following theorem [39].

Theorem 1. If V is a variety of semigroup and u, v ∈ A+ with n =
max{|u|, |v|}, then every semigroup in V satisfies the identity u = v if and
only if {u, v} is a V-pointlike subset of S = A+/In where In is the ideal of
words of length greater than n.

The proof of the theorem is quite simple since under the generator pre-
serving relational morphism ρV : S → F̂V(A), ρV(u) = {u} and ρV(v) = {v}
as these words belong to singleton congruence classes in A+/In. Therefore,
ρV(u) ∩ ρV(v) �= ∅ if and only if u = v in F̂V(A), which is the same as say-
ing that V satisfies the identity u = v. It follows that if E is a finite set of
identities with undecidable identity problem as per [1], then V(E) has decidable
membership but undecidable pointlike pairs (i.e., separation).

Incidentally, I first spoke about this theorem during a workshop in Kyoto in
1999. Volker Diekert, who I met then for the first time, came up to me after
the talk to tell me that he now finally understood why people like Jean-Éric Pin
were interested in pointlike sets.

I observed in my thesis that if H is any decidable pseudovariety of finite
groups, then the H-pointlikes subsets of a finite group are computable. In fact,
relational morphisms of groups were studied by Wedderburn in 1941 [58]. I had
essentially rediscovered his results, and so I guess I missed my chance for an
Annals paper by 57 years.

It was then natural to ask if there are pseudovarieties of groups with decidable
membership but undecidable pointlikes. I proved in [48] that such examples can
not be found among pseudovarieties of abelian groups.

Theorem 2. A pseudovariety of finite abelian groups has decidable pointlikes if
and only if it has decidable membership.

The decidability of pointlikes for the pseudovariety of all finite abelian groups
was first obtained by Delgado [17].

A group is metabelian (or two-step solvable) if its commutator subgroup is
abelian. With Auinger, I proved the following result [13].

Theorem 3. There is a pseudovariety of metabelian groups with decidable mem-
bership and undecidable pointlike pairs (separation).

The proof uses a diagonalization argument to construct the pseudovariety
directly from a Turing machine which computes a recursively enumerable but
nonrecursive set of prime numbers.
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6 Transference Results

There has been a lot of work on pseudovarieties of the form V ∗ D with V
a nontrivial pseudovariety of monoids and D the pseudovariety of semigroups
whose idempotents are right zeros (i.e., satisfying xyω = yω). Here ∗ denotes the
semidirect product of pseudovarieties of semigroups [4,18,40]. Roughly speaking,
V ∗ D can recognize inverse images of V-recognizable languages under sliding
block codes. For example, the locally testable languages are recognized by SL∗D
where SL is the pseudovariety of semilattices.

The earliest result on pseudovarieties of the form V ∗ D is a result in Eilen-
berg [18], due to Bret Tilson, called Tilson’s Trace-Delay Theorem. Howard
Straubing then improved upon the result [55] and finally Tilson proved the defini-
tive Delay Theorem [57], relating membership in V ∗D to category membership
in V. It follows from Tilson’s results that under very weak assumptions on V,
the decidability of V is equivalent to that of V ∗ D. This is important because
it provides the connection between the quantifier alternation hierarchy for first
order definable languages and the classical dot-depth hierarchy of Brzozowski
and Cohen.

Note that V ∗D can have undecidable membership, even if V has decidable
membership. Auinger used our results on group pseudovarieties with undecid-
able pointlikes and a construction of Kad’ourek to give an example of a decid-
able pseudovariety of monoids V such that V ∗D has undecidable membership.
The pseudovariety V consists of all finite monoids whose regular J -classes are
groups belonging to a certain decidable pseudovariety of groups with undecidable
pointlikes constructed by me and Auinger in [13].

In [50], I proved the following transference result.

Theorem 4 (Delay Theorem for Pointlikes). If V is a pseudovariety of
monoids, then V ∗ D had decidable pointlikes (or separation) if and only if V
does.

So the operation V �→ V ∗D is better behaved at the level of pointlikes than
at the level of membership. This theorem was recently reproved by Place and
Zeitoun [37] in the language theoretic formulation, with the added feature that V
is allowed to be a pseudovariety of ordered semigroups. I’m fairly confident that
my original argument can also be easily adapted to this more general setting
using the results of [29] in place of those of Tilson [57], although I have not
verified all the details.

Since semilattices are locally finite, and hence have decidable pointlikes, my
result yields decidability of separation and the covering problem for locally
testable languages (and also locally threshold testable languages), which was
later reproved by Place and Zeitoun [31].

Place and Zeitoun [36] have proven recently a beautiful transference result
for hierarchies associated to group pseudovarieties. I showed in [49] that if H is
a pseudovariety of groups, then the pseudovariety of semigroups corresponding
to the Boolean polynomial closure of the H-recognizable languages is J ∗H. As
a consequence of this and the results of [36] one can deduce the following.
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Theorem 5 (Place and Zeitoun). Let H be a pseudovariety of groups with
decidable pointlikes (separation). Then J ∗ H has decidable pointlikes (separa-
tion).

In particular, J ∗ G is the pseudovariety of block groups, which plays an
important role in semigroup theory [24]. Ash’s theorem, combined with the the-
orem of Place and Zeitoun, gives that pointlikes are decidable for block groups. It
should be mentioned that I had proven long ago [51,52] that decidability of sep-
aration for H implies decidability of membership in J ∗H, which can be viewed
as a forerunner of this result. Decidability of H is not enough to guarantee decid-
ability of J ∗H since Auinger and I showed that for our decidable pseudovariety
H of metabelian groups with undecidable separation, the pseudovariety J ∗ H
has undecidable membership problem [13].

7 A New Result: Separation for Modular Quantifiers

If H is a pseudovariety of finite groups, then H denotes the pseudovariety of semi-
groups all of whose subgroups belong to H. For example, if 1 is the pseudovariety
containing just the trivial group, then 1 is the pseudovariety of aperiodic semi-
groups.

Recall that modular quantifiers allow you to form logical sentences of the
form: the number of positions x in a word w for which the formula φ(x) is true
is congruent to k modulo n. Details can be found in [56].

Straubing showed that if Gsol is the pseudovariety of solvable groups, then the
Gsol recognizes those languages that can be defined in first order logic enhanced
with modular quantifiers [56]. Straubing showed that Gp, for a prime p, recog-
nizes those languages definable in first order logic enhanced with mod-p quan-
tifiers [56]. The classes of solvable groups and p-groups are closed under wreath
product.

The paper [21] showed that Gp-pointlikes are decidable and hence the prob-
lem of separation by languages defined in first order logic with mod-p quantifiers
is decidable.

The two-sided Krohn-Rhodes theorem [40, Chapter 5] implies that if H is
closed under wreath product, then H is the smallest pseudovariety containing
the finite simple groups in H and the two-element semilattice that is closed
under bilateral semidirect product (or block product).

Originally, van Gool and I had hoped that our proof of Henckell’s aperi-
odic pointlikes theorem and the two-sided Krohn-Rhodes theorem, using bilat-
eral semidirect product decompositions [20], could be extended to compute H-
pointlikes when H is closed under wreath product. But the base case of the
induction turned out to become quite complicated at this level of generality
(although the inductive step worked fine).

Instead, we found a simplification in the proof in [21] of Henckell’s theorem
that allowed us to make things works for any pseudovariety H of finite groups.
If H is a pseudovariety of finite groups, then ever finite group G has a smallest
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normal subgroup KH(G) (called the H-kernel) such that G/KH(G) ∈ H. For
example, if H is the pseudovariety of abelian groups, then the H-kernel is the
commutator subgroup. If 1 is the trivial pseudovariety, then K1(G) = G. The
H-kernel is clearly computable if and only if H has decidable membership.

I proved with van Gool the following theorem describing the H-pointlikes [19].
The monad property for pointlikes once again played a crucial role.

Theorem 6. Let H be a pseudovariety of finite groups and S a finite semigroup.
Then PLH(S) is the smallest subsemigroup T of the power semigroup P (S) such
that:

1. T contains the singletons;
2. T is closed downward under the inclusion ordering;
3. if G is a subgroup of T , then

⋃
KH(G) ∈ T .

Clearly, we can effectively construct PLH(S) from the above description if
we can solve the membership problem for H. The proof explicitly constructs a
witness to H-pointlikes. Notice that H can have decidable pointlikes while H
has undecidable pointlikes.

A related result, involving modular predicates, was proved by Place et al.
in [30]. As far as I understand, their results give conditions on a pseudovariety
V of (possibly ordered) semigroups so that V ∗ Ab has decidable separation or
covering problem, where Ab is the pseudovariety of abelian groups.

8 Two More of My Favorite Results About Pointlike Sets

It was shown by Almeida and Silva [9] that pointlikes sets are decidable for the
pseudovariety of R-trivial semigroups. A cleaner argument for R-trivial and J -
trivial semigroups is given in [8]. I was impressed by this result because I had
tried very hard to prove it in my thesis and failed utterly.

My favorite recent result on pointlike sets is the famous Place-Zeitoun result
on separation (and later pointlikes) for the pseudovariety of dot-depth two semi-
groups [34]. Their brilliant realization that separation was crucial for going up
the dot-depth hierarchy (or equivalently the quantifier alternation hierarchy for
first order definable languages) allowed them to solve the very old open ques-
tion of membership in dot-depth two in their seminal paper [32]. Place and
Zeitoun have done an excellent job of showing the importance and applicability
of pointlike sets in Computer Science and have generated renewed interest and
enthusiasm in the subject. Their work certainly re-inspired me to revisit this
subject, which I had stopped thinking about for a number of years.

9 Some Open Problems

Decidability of separation and pointlikes is still open for most of the dot-depth
(quantifier alternation) hierarchy and is an active area of research, in particular,
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by Place and Zeitoun, and I am probably behind on the state of the art of this
rapidly developing subject.

One of the most intriguing open problems concerning pointlikes and sepa-
ration is that of deciding pointlikes (or separation) for the semidirect product
G ∗ A of finite groups G and finite aperiodic semigroups A. This is generated
by all wreath products G � A = GA

� A with G a finite group and A a finite
aperiodic semigroup. Using the Presentation Lemma [40, Chapter 4.14], it was
shown in [41] that decidability of whether a semigroup has Krohn-Rhodes com-
plexity one reduces to the separation problem for G ∗A, that is, decidability of
G ∗ A-pointlike pairs. In fact, it is enough to compute pointlike pairs restricted
to a special class of finite semigroups called group mapping semigroups. An algo-
rithm to compute the G∗A-pointlikes of a group mapping semigroup is proposed
in [41], where soundness is proved but not completeness.
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Abstract. We propose a strong non-overlapping set of Dyck paths hav-
ing variable length. First, we construct a set starting from an elevated
Dyck path by cutting it in a specific point and inserting suitable Dyck
paths (not too long...) in this cutting point. Then, we increase the car-
dinality of the set by replacing the first and the second factor of the
original elevated Dyck path with suitable sets of prefixes and suffixes.

Keywords: Variable length non-overlapping codes · Dyck paths ·
Cross bifix-free codes

1 Introduction

Non-overlapping codes (or cross bifix-free codes) have been widely studied since
their introduction by scientists and engineers [5,6,8], motivated by applica-
tions in telecommunication systems theory and engineering. Typically, a non-
overlapping code is a set of words, over a given finite alphabet, where any two
words have some specific properties relating to the overlap between them. For
example, one can require that one of them is not a prefix or a suffix of the
other one, in this case the set is either a prefix-free code or a suffix-free code.
Often, the constraint requires that any prefix of any word must be different from
any suffix of any other word in the set (cross bifix-free set or equivalently non-
overlapping set) as in [1,11], where issues about frame synchronization in digital
communication systems are investigated.

In [3] different approaches for the construction of non-overlapping sets are
presented. One of them provides a non-overlapping set of words such that any
its word does not occur as an inner factor in any other word of the set (a set
having this property is said to be strong non-overlapping code). The elements
of this set are constructed using the notion of forbidden consecutive patterns:
each word is not allowed to contain particular consecutive sequences (patterns).
A different method uses the well known elevated Dyck paths with restricted
length: the author shows that the set EDn (see Sect. 2) of elevated Dyck path
having length less than 2n constitutes a non-overlapping set of binary words
(each Dyck path can be easily encoded by a binary word) but it is not a strong
non-overlapping set. For example, the two words w = 110100 e w′ = 11101000
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encode two elevated Dyck paths, then they are non-overlapping words but w is
an inner factor of w′ (in bold).

Nevertheless, the set EDn has two important features: it is a non-expandable
set and each element has the same number of 0’s and 1’s, which constitute the
alphabet which Dyck paths are constructed with. This last property is interesting
since non-overlapping codes are used in the study of DNA-based storage system
[12,13], where the balance between the letters of the codewords is crucial (see
Theorem 3 in [12]).

In this paper we are interested in the construction of a variable-length strong
non-overlapping set of binary words. We also use elevated Dyck paths having
constraints on the length but we also require some properties on their prefixes
and suffixes. We could carry on our discussion always referring to Dyck words
(which are a subset of binary words), nevertheless, throughout the paper, we
prefer to refer to Dyck paths since in our opinion most of the treated arguments
will be better understood. We are also interested in the cardinality of such a set.
The motivation for it is twofold. Firstly, it is interesting by itself by a combi-
natorics point of view, moreover it could be useful to a potential user about a
choice among the various existing sets.

2 Preliminary Notations

A Dyck path is a lattice path in Z
2 from (0, 0) to (2n, 0) with steps in

{(1, 1), (1,−1)} (up and down step, respectively) never crossing the x-axis. The
number of up steps in any prefix of a Dyck path is greater or equal to the number
of down steps and the total number of steps (the length of the path) is 2n. We
denote the set of Dyck paths having length 2n by Dn.

A Dyck path can be codified by a binary word, replacing the up steps by 1’s
and the down steps by 0’s, so that the set Dn of all 2n-length Dyck paths is a
subset of B = {1, 0}∗ where B is the set of all the binary words.

If P ∈ Dn, then 1P0 is said to be an elevated Dyck path (the only points
on the x- axis are the first one and the last one). We collect the elevated Dyck
paths in the set EDn = {1P0|P ∈ Di, 0 ≤ i ≤ n − 1}, having length greater
than or equal to 2 and less than 2n.

If P is a path (not necessarily a Dyck path), we denote its length by |P | and,
given a prefix A of P , we denote by hA its final height which is the ordinate of
its final point. If S is a lattice point, its height is its ordinate yS .

If P ∈ Dn, then for any prefix A of P , we have |A|1 ≥ |A|0 where |A|1
and |A|0 denote the numbers of 1’s and 0’s in A, respectively. Clearly, for any
P ∈ Dn, it is |P |1 = |P |0 and |P | = 2n. Moreover, it is straightforward that
hA = |A|1 −|A|0. A pattern of k consecutive 1’s (0’s) can be denoted by 1k (0k),
therefore if P = 1110110000, we could use the notation P = 1301204 to refer to
P .

The set Dn is enumerated by the n-th Catalan number Cn = 1
n+1

(
2n
n

)

(sequence A000108 in [9]).
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Given a finite alphabet Σ, a word v ∈ Σ∗ is said to be bifix-free (often
said unbordered or equivalently self non-overlapping) if any proper prefix of v is
different from any proper suffix of v (a prefix (suffix) u of v is a proper prefix
(suffix) if u �= v and u �= ε, where ε is the empty word).

Two bifix-free words v, v′ ∈ Σ∗ are said to be cross bifix-free (or equivalently
non-overlapping) if any proper prefix of v is different from any proper suffix of
v′, and vice versa. A set of words is said to be a cross bifix-free set (or non-
overlapping set) of words if each element of the set is a bifix-free word and if
any two words are cross bifix-free.

The cross bifix-free property does not exclude that the word v is an inner
factor of v′ (or vice versa). For example, the words v = 1100 and v′ = 11100100
are cross bifix-free and v′ contains an occurrence of v (in bold). For our purpose,
we require that this is not allowed as follows. Two cross bifix-free words are said
to be strong non-overlapping if the smallest one does not occur as inner factor
in the largest one. More precisely, the word v is an inner factor of v′ if v′ = αvβ
for some α, β, possibly empty but not both.

A set of words is said to be a strong non-overlapping set if any two words
are strong non-overlapping. For the sake of clearness, we point out that any
element of a strong non-overlapping set is a self non-overlapping word, and any
two elements of the set are strong non-overlapping.

In the next section we are going to define a strong non-overlapping set of
Dyck paths. The notions of self non-overlapping, non-overlapping, and strong
non-overlapping words can be easily transferred to Dyck paths, thanks to the
above mentioned encoding of a Dyck path in a binary word.

3 The Construction

The leading idea moves from the simple guess that, given an elevated Dyck path
P , if you split P in some point and insert in the cutting point two different
Dyck paths, one at a time, say D and D′, then two new different Dyck paths Q
and Q′ are obtained which surely are non-overlapping paths (since they are still
two elevated Dyck paths [3]) and most likely are strong non-overlapping paths.
In other words, it is not easy to find an occurrence of the shortest one inside
the longest one since these two new paths (Q and Q′) have been generated by
the inflation of P by means of two different Dyck paths (D and D′). Our aim
is the investigation on the hypothesis under which the strong non-overlapping
property is guaranteed.

First of all, we observe that the length of the inserted paths can not be too
large, otherwise in the construction of the second path Q′ one could insert in
P the whole path Q obtained with the first inflation. We illustrate this remark
with an example.

If P = 111000, consider the factorization P = A1A2 with A1 = 1110 and
A2 = 00. The choice D = 10 (which is the only Dyck path with minimal length)
leads to the first path Q = 11101000. If D′ = Q, then the second path Q′ =
1101110100000 clearly contains Q.
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Which is the maximal length for D′ such that the above fact can not occur?
Clearly, it is |D′| < |Q| and to be sure we have to consider the minimal length
that Q can have. For this purpose, note that, given a Dyck prefix A1, the shortest
suffix A2 useful to complete the Dyck path P = A1A2 is A2 = 0k, with k = hA1 .
Moreover, the minimal length of a Dyck path is 2, given by D = 10. Therefore,
the minimal length for Q = A1DA2 is |Q| = |A1| + 2 + hA1 .

A second consideration concerns with the feature of the prefix A1 of P . It is
illustrated in the following example, where P is factorized in two different ways.

Let P be the Dyck path P = 1101110000 and let factorize it in P = A1A2

where A1 = 1101110 and A2 = 000. We choose D = 10 and D′ = 11101000.
The Dyck paths Q and Q′ we obtain after inflating P with D and D′ are Q =
110111010000 and Q′ = 110111011101000000. As the reader can easily check,
the path Q′ contains an occurrence of Q, highlighted in bold.

Nevertheless, if P = A1A2 with A1 = 11011100 and A2 = 00, using the
same Dyck paths D and D′ as before, we obtain Q = 110111001000 and Q′ =
1101111001110100000 which are strong non-overlapping paths. The reason why
in this second case Q does not occur as a subpath in Q′ lies in the fact that A1

is a bifix-free prefix, differently from the previous factorization.
In the following proposition we formalize the two arguments above.

Proposition 1. Let P = A1A2 be an elevated Dyck path such that A1 is a bifix-
free prefix of P . Let |A1| be the length of A1 and hA1 its final height. If D,D′

(with |D| < |D′|) denote two Dyck path such that |D|, |D′| ≤ |A1| + hA1 , then
the Dyck paths

Q = A1DA2

and
Q′ = A1D

′A2

are strong non-overlapping.

Proof. The paths Q and Q′ are elevated Dyck paths, then they are non-
overlapping [3]. Since |D| < |D′| (so that |Q| < |Q′|), we have to prove that
there is not any occurrence of Q inside Q′.

We proceed ad absurdum, supposing that there exists an occurrence of Q in
Q′. We denote by S the starting point of Q. Then, recalling that Q starts with
the prefix A1, the point S cannot be an inner point of A1 in Q′ since A1 is a
bifix-free prefix, by hypothesis. Moreover, the point S can not coincide with the
first point of A1 in Q′ since, in this case, the final point E of Q would be a point
in Q′ with height yE = 0. This is not possible since Q′ is an elevated Dyck path
where the only points with height 0 are the first one and the last one.

A different possibility for S is that S coincides with an inner point of D′.
First, suppose that yS > hA1 . The final point E of Q can neither coincide with
the final point B of D′ nor coincide with a point in A2, since yB = hA1 < yS

and Q would not be a Dyck path. Therefore, there are two cases:

1. E is an inner point of D′;
2. yS = hA1 .
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The former one can not occur since in this case |Q| < |D′| ≤ |A1| + hA1 while
|Q| > |A1| + hA1 , by construction. If the latter one would occur, then E could
neither coincide with an inner point of D′ nor coincide with B for the argument
above. Moreover, the point E can not lie in A2 since, in this case, the path Q
would not be an elevated Dyck path, due to the presence of B whose height is
yB = yS = yE .

The last possibility for S is that S is either an inner point of A2 or coincides
with its first point. Clearly, this is not possible since |A2| < |Q|.

�

We can now define the set WA1A2 collecting all the Dyck paths we can obtain
by the described construction and give the following proposition.

Proposition 2. Let P be an elevated Dyck path and consider a factorization
P = A1A2 where A1 is a bifix-free prefix with |A1| = � and hA1 = h. The set

WA1A2 = {A1DA2|D ∈ Di, i ≤ (� + h)/2}
is a strong non-overlapping set of paths whose cardinality is

|WA1A2 | =
(�+h)/2∑

i=1

Ci .

Proof. For any two paths in WA1A2 we can apply Proposition 1 so that the
set is strong non-overlapping. Easily, the cardinality is given by the sum of the
cardinality of the sets of Dyck paths having length from 2 up to �+h. Note that
� and h have the same parity, so that � + h is even.

�

The set WA1A2 clearly depends on the factorization of P and all the elevated
Dyck paths contained in WA1A2 have the same prefix A1 and the same suffix A2.
In the next section we expand the set by working at first on the suffixes, then
on the prefixes.

4 Expansion of the Set

A deeper inspection shows that, given a path in WA1A2 , it is possible to replace
the suffix A2 with other different and suitable ones, in order to construct a new
set WA1 . Clearly, the new suffixes have to be suffixes of elevated Dyck paths.
Moreover, roughly speaking, they can not be too long, otherwise it would be
possible to choose one that contains some other Dyck path of WA1 . In other
words, there is a maximum length for the new suffixes.

We start by considering the set F = {A1D0h | D ∈ Di, i ≤ (�+h)/2} which
is surely strong non-overlapping thanks to Proposition 2 (in this case A2 = 0h).
Note that 0h is the smallest suffix to append after A1D in order to have an
(elevated) Dyck path. The smallest Q ∈ F is obtained with D = 10 and it is
Q = A1100h whose length is |Q| = � + 2 + h.
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Which is the length of one largest suffix R useful to replace 0h in F in order
to keep the non-overlapping property? Let T be the smallest suffix containing
Q. The path G = A110T (obtained by replacing 0h with T ), clearly, contains Q,
so that F ∪ {G} is not strong non-overlapping. But if the suffix 0h is replaced
with a smaller suffix than T , then the new path H is such that F ∪{H} is strong
non-overlapping (see next Proposition). Therefore it is |R| < |T |.

It is not difficult to see that T = Q0h where the factor 0h is the shortest which
can be appended to Q in order to make G a Dyck path. Since |T | = �+2+h+h,
it must be |R| ≤ � + 2h + 1. Note that it can not be |R| = � + 2h + 1 since |R|
and h must have the same parity (recall that � has the same parity of h). Then,
|R| ≤ � + 2h.

Let A2 be the set containing the suffixes of the elevated Dyck paths starting
with a down step. We summarize the expansion of WA1A2 : starting from WA1A2 ,
where A1 is a bifix-free prefix, we replace the fixed suffix A2 with any suffix
R ∈ A2 with |R| ≤ � + 2h + 1, in order to obtain the new set

WA1 = {A1DR|D ∈ Di, i ≤ (� + h)/2, R ∈ A2, h ≤ |R| ≤ � + 2h} .

The suffix must start with a down step since, otherwise, we can get an iden-
tical path twice. Indeed, if Z = A1DR and D = D1D2 with D1,D2 Dyck
paths, then Z can be obtained also by considering Z = A1D

′R′ with D′ = D1

and R′ = D2R. If the suffix starts with a down step, it is not possible to get
R′ = D2R.

Proposition 3. The set WA1 is strong non-overlapping and its cardinality is

|WA1 | =
(�+h)/2∑

i=1

Ci

�+2h∑

j=h

s
(h)
j ,

where s
(h)
j is the number of the suffixes of length j of elevated Dyck paths, starting

at height h with a down step.

Proof. Given two paths V, V ′ ∈ WA1 , with V = A1DR and V ′ = A1D
′R′

suppose that |V | < |V ′|. We have to exclude a consecutive occurrence of V in
V ′. Again, we proceed ad absurdum.

As in Proposition 1, the starting point S of V can not be in A1 in V ′, since
A1 is a bifix-free prefix.

Suppose that the point S is an inner point of R′. Then, the final point E
of V is either an inner point of R′ or coincides with its final point. This latter
case can not occur, otherwise V would not be a Dyck path. Suppose E is an
inner point of R′. Recalling that |R′| ≤ � + 2h and |V | ≥ � + 2 + h, we have that
|R| − |V | < h is the number of steps in R′ not involved in the occurrence of V .
But they are not sufficient to reach the x-axis even if they would be all down
steps, since the suffix R′ starts from height h.

It can not even be that S is an inner point of D′, since in this case, by
arguments similar to the ones used in Proposition 1, the path V either would
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not be an elevated Dyck path (in the case we suppose that E is inside R′), or
would not be contained in D′ (in the case we suppose E is inside D′).

As far as the cardinality is concerned, we observe that we can append all the
suffixes A2 to the paths A1D having length from h up to � + 2h. The number of

these suffixes is
�+2h∑

j=2

s
(h)
j . The thesis easily follows.

�

A similar method can be applied starting from WA1 in order to replace the
fixed prefix A1 with other different and suitable ones, obtaining a new set W .
In this case, we fix only the height h reached by the prefixes, rather than a
particular prefix as in the set WA1 .

As before, we consider the set F ′ = {1h+10D0h | D ∈ Di, i ≤ (� + h)/2}
which is strong non-overlapping by Proposition 2. Note that the bifix-free prefix
1h+10 is the smallest bifix-free prefix useful to reach a point with height h,
starting from the x-axis. The smallest Q ∈ F ′ is obtained with D = 10 and it is
Q = 1h+10100h whose length is |Q| = 2h + 4.

Which is the length |L| of a largest bifix-free prefix L useful to replace 1h+10
in F ′ in order to keep the non-overlapping property? A similar argument to the
one used for the construction of WA1 shows that |L| ≤ 3h + 2. Moreover, all
the bifix-free prefixes one can use to replace 1h+10 must be non-overlapping one
each other, i.e. they must form up a cross bifix-free set of Dyck prefixes ending
at height h.

Let A1 be the set containing the bifix-free prefixes of the elevated Dyck paths
ending at height h. Let X ⊂ A1 be a cross bifix-free subset of A1. We define the
set

W (h) = {LDR | L ∈ X, h + 2 ≤ |L| ≤ 3h + 2, D ∈ Di, i ≤ (|L| + h)/2,

R ∈ A2, h ≤ |R| ≤ |L| + 2h, } .

We have the following

Proposition 4. The set W (h) is strong non-overlapping and its cardinality is

|W (h)| =
3h+2∑

k=h+2

p
(h)
k

(k+h)/2∑

i=1

Ci

k+2h∑

j=h

s
(h)
j , (1)

where p
(h)
k is the number of prefixes of length k belonging to X.

Proof. Recalling that |L| ≤ 3h + 2, the arguments used in the prof of Proposi-
tion 3 can be easily adapted to exclude that a prefix L could contain an occur-
rence of an element of W (h).

For each allowed length k for a prefix, there are p
(h)
k possible prefixes, so that

the total number of the choices for the prefixes L is
3h+2∑

k=h+2

p
(h)
k .

�
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Finally we provide a cross bifix-free subset X ⊂ A1. Its definition is

X = {1h1D0 | D ∈ Dt, t ≥ 0} .

Clearly, each x ∈ X is a prefix of an elevated Dyck path, having final height h.
We will prove that X is a non-overlapping set.

First, we recall the following Lemma [7]:

Lemma 1. Given a word p of length n over a finite alphabet, a necessary and
sufficient condition for p to be bifix-free is that it does not have any bifix b having
length |b| ≤ �n

2 	.
We have the following

Proposition 5. The set X is a non-overlapping set.

Proof. We first prove that x ∈ X is bifix-free. Let d be the length of a prefix α
and a suffix β of x. Note that |α|1 > |α|0 and this is true for each prefix of x.

If d ≤ 2t + 2, then |β|0 ≥ |β|1 (the equality holds when β coincides with the
elevated Dyck path 1D0), than α �= β. If 2t+2 < d ≤ �|x|/2	, then α = 1d while
β surely contains some 0’s, so that α �= β, again. Then, for Lemma 1, the prefix
x is bifix-free.

Given two distinct prefixes x, x′ ∈ X, with x = 1h1D0 and x′ = 1h1D′0, let
β′ be a proper suffix of x′. If |β′| ≤ 2 + |D′|, then α �= β′ for a similar argument
on the number of 1’s in α and 0’s in β′, as in the previous paragraph. Then,
suppose |β′| > 2+ |D′|, so that β′ = 1r1D′0, with r < h. If α = β′, then x would
have the prefix α ending at height r < h, so that it should be α = 1r, since the
only prefixes of x ending under the line y = h are constituted only by a certain
number of 1’s. Therefore, α �= β′.

With similar arguments we can exclude that x is a proper prefix or a proper
suffix of x′. Then, x and x′ are cross bifix-free and X is non-overlapping.

�

Moreover, we can prove that it is a non-expandable set in A1. In other words,
for each prefix a ∈ A1 \X, there exists a prefix x ∈ X such that a and x are not
non-overlapping (or, equivalently, such that X ∪ a is not a non-overlapping set).

Proposition 6. The set X is non-expandable in A1.

Proof. Let a ∈ A1 \X, then a = 1r0β with r > 1 and β (possibly empty) ending
with 0. There are two possibilities: either r ≤ h + 1 or r ≥ h + 2. In the former
case, the prefix 1r0 of a coincides with a suffix of 1h+10 ∈ X, so that X ∪ a is
not non-overlapping.

If r ≥ h + 2, then the element a, after crossing the line y = h + 1 with the
first h+2 consecutive up steps, must cross this line at least once (actually twice)
more, otherwise a would be an element of X. Therefore a can be factorized in
a = a′γ with ha′ = h. Then a′ would be an element of X since it is a prefix
starting with at least h+2 up steps and ending at height h. Again, the set X ∪a
is not non-overlapping.

�
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5 Enumeration

Let us consider the subset X(3h+2) ⊂ X with

X(3h+2) = {1h1D0 | D ∈ Dt, 0 ≤ t ≤ h}
containing prefixes x of length h+2 ≤ |x| ≤ 3h+2, we focus on the enumeration
of the subset W ′ ⊂ W where

W ′(h) = {LDR | L ∈ X(3h+2),D ∈ Di, i ≤ (|L| + h)/2,

R ∈ A2, h ≤ |R| ≤ |L| + 2h, } .

Obviously, it is |X(3h+2)| =
h∑

t=0

Ct, and if x ∈ X(3h+2) we have |x| = 2t+h+2,

so that the expression for |W ′|, recalling expression (1) for |W (h)|, is

|W ′(h)| =
h∑

t=0

Ct

t+h+1∑

i=1

Ci

2t+3h+2∑

j=h

s
(h)
j . (2)

The number s̄
(h)
j of the suffixes of Dyck paths of length j starting at height

h is given by (sequence A053121 in [9])

s̄
(h)
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if either j < h or j − h is odd,

h + 1
j + 1

(
j + 1
j−h
2

)
, otherwise

,

then, the number s
(h)
j of the suffixes of elevated Dyck path of length j starting

at height h with a down step is

s
(h)
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if either j < h or j − h is odd,

h − 1
j − 1

(
j − 1
j−h
2

)
, otherwise

since s
(h)
j = s̄

(h−2)
j−2 (just add a down step at the beginning and at the end of

a Dyck suffix to obtain a suffix of an elevated Dyck path starting with a down
step).

We now look for a lower bound for |W ′(h)| as a function of the parameter h,
on which the lengths d of the paths of W ′(h) depend. From Proposition 4 it is
2h + 2 ≤ d ≤ 12h + 6.

|W ′(h)| ≥
h∑

t=0

Ct

t+h+1∑

i=1

Ci ·s(h)2t+3h+2 ≥
h∑

t=1

Ct

t+h+1∑

i=1

Ci · h − 1

2t + 3h + 1

(
2t + 3h + 1

t + h + 1

)
. (3)
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It is known [4] that Ct > 22t−1

t(t+1)
√

π/(4t−1)
for t ≥ 1 and that

(
n
k

) ≥ (
n
k

)k.

Moreover, from [10], we have
∑n

i=1 Ci > 4n+1

3(n+1)
√

πn3 . After some manipulations
on the above expression for |W ′| it is possible to deduce:

|W ′(h)| ≥ Θ1(h) =
128
45π

· h + 1
(2h + 1)5

· 4h(16h − 1) . (4)

If the binomial coefficient in expression (3) is estimated by using the Stirling’s
approximation for factorial

√
2π nn+ 1

2 e−n ≤ n! ≤ e nn+ 1
2 e−n we obtain:

|W ′(h)| ≥ Θ2(h) =
128
45e

· (h + 3)h−5 · 16h − 1
eh

(5)

which holds for h ≥ 2.
It is possible to show that Θ2(h) > Θ1(h) for h ≥ 8 so that we can estimate

|W ′(h)| for small values of h using expression (4). Experimental results show
that for h = 7 the cardinality of |W ′(7)| is larger than 4, 2 × 107, while using
expression (5) for h = 30, we find that |W ′(30)| > 1, 6 × 1061.

The above discussion surely does not complete the analysis of the cardinality
of our set. It should be more deeply investigated by means of analytic techniques
similar to the ones used in [3] and [2], in order to better evaluate its asymptotic
behaviour. Here, our aim in this direction is only providing a first evaluation of
|W ′(h)| which may indicate useful information for applications even if loose. We
also point out that the computations of this section are referred to a particular
subset X(3h+2) ⊂ A1 and that a more general discussion could reveal even more
useful indications.

6 Conclusions and Further Developments

The aim of the present paper is the construction of a strong non-overlapping set
W ′(h) of binary words by using elevated Dyck paths. Given h ≥ 1, the length d
of the words is 2h + 2 ≤ d ≤ 12h + 6. Moreover, in each word the number of 1’s
is equal to the number of 0’s. Any element of the set is essentially constituted
by three parts: an elevated Dyck prefix (belonging to a cross bifix-free set), a
Dyck path, and an elevated Dyck suffix. After the details for the generation of
that set, we provide a non-overlapping set X which the prefixes can be chosen
from, also proving that X is a non-expandable set. The construction allows to
find the formula (2) for the cardinality of the set. We give also a lower bound
for the cardinality of W ′(h).

Surely, a further development should concern the search for the generating
function of the sequence {|W ′(h)|}h≥1, depending on h. The extraction of each
generic coefficient would let to compare the cardinality of the set herein devel-
oped against the other ones in the literature.
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Abstract. Active learning is a setting in which a student queries a
teacher, through membership and equivalence queries, in order to learn
a language. Performance on these algorithms is often measured in the
number of queries required to learn a target, with an emphasis on costly
equivalence queries. In graybox learning, the learning process is acceler-
ated by foreknowledge of some information on the target. Here, we con-
sider graybox active learning of subsequential string transducers, where
a regular overapproximation of the domain is known by the student. We
show that there exists an algorithm to learn subsequential string trans-
ducers with a better guarantee on the required number of equivalence
queries than classical active learning.

1 Introduction

Active learning is a way for a non-expert user to describe a formal object through
behavioral examples and counterexamples, or to obtain formal models for the
behavior of legacy or black-box systems which can subsequently be formally
verified [14]. In this context, additional information about black-box systems
can make learning more efficient in practice [7,13].

The L∗ algorithm from [2] has been extended to learn various classes of formal
object, e.g. probabilistic automata [5] and, more relevant to this paper, (subse-
quential deterministic) transducers on words [15]. In this work, we aim to learn
transducers, and focus on a specific class of side information: an upper bound on
the domain of the transduction. The advantage of this graybox model is twofold.
First and more directly, it can be used to skip some membership queries outside
the transformation’s domain. Second, by looking for transducers with the proper
behavior when limited to the upper bound, we allow for solutions that are smaller
than the canonical objects learned by L∗. This, in turn, offers better guarantees
than L∗ when we consider the number of equivalence queries required to learn a
target. This is relevant, as in cases like non-expert description or legacy-system
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learning, the equivalence test is realistically unreliable, or prohibitively costly,
when compared to the rest of the operations.

One motivation to focus on learning transducers, and more specifically Mealy
machines, with an upper bound on the domain comes from games. In multi-
player verification games, assumptions about other players have been proposed to
facilitate strategy synthesis [4,6, for instance]. Such assumptions also make sense
when a strategy has already been obtained (via synthesis [3] or some alternative
means) and one wishes to “minimize” it or its encoding. A simple way to do so is
to restrict the domain of the strategy to the reachable set of game configurations
(under the assumptions made about the adversaries). Finally, when the game
formalism considered allows for delays or multiple choices made unilaterally
by some player—as is the case in regular infinite games [8]—strategies are not
implementable by Mealy machines but rather require general transducers.

Related Work. The classical algorithm for active learning is L∗ [2]. It saturates
a table of observations with membership queries, then building a minimal deter-
ministic automaton compatible with those observations to send as candidate for
an equivalence query. A polynomial number of membership queries and at most
n equivalence queries are always sufficient to learn the automaton.

For transducers, the OSTIA algorithm [15] generalizes L∗, follows a similar
structure, and offers comparable guarantees. Like in L∗, the number of queries
is polynomial in the size of the minimal normal form of the target transducer.

In the case of graybox learning, the methods differ and this alters the com-
plexity guarantees. For instance, when learning languages from so-called “inexpe-
rienced teachers” [11], one considers a case where the teacher sometimes answers
a membership query with “I don’t know”. Under those circumstance, it is impos-
sible to learn a unique minimal automaton. This leads to a trade-off in com-
plexity. On the one hand, finding the minimal automaton compatible with an
incomplete table of observations necessitates calls to NP oracles (a SAT encod-
ing is used in [11]). On the other hand, obscuring a regular language by replacing
some information with “I don’t know” will always make the size of the minimal
solution smaller or equal to the canonical minimal DFA.

Another work on the topic [1] concerns Mealy machines, i.e. transducers that
write one letter exactly for each letter they read. It is shown that one can learn
a composition of two Mealy machines if the first one is already known. Just like
in [11], the L∗-type algorithm uses oracles to find minimal machines compatible
with an incomplete table of observations (as we can only know the behavior
of the second machine on the range of the first) and offers a guarantee in the
number of equivalence queries bound to the number of states of the minimal
second machine, rather than that of the composition in whole.

Contributions. We show how to use string equations that can be encoded into
SAT to find a minimal transducer compatible with incomplete observations, and
to use this in an L∗-like algorithm to learn transducers. Our algorithm is guar-
anteed to issue a number of equivalence query that is bounded by the minimal
compatible transducer, rather than the canonical one. This difference can be a
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huge benefit when our upper bound is the result of known complex logical prop-
erties or elaborate formats respected by the input, and the transformation we
wish to learn is simple.

We note the differences with [1,11] in objects learned, learning frame-
works, and available queries. We focus on transducers, a class that subsumes
automata and Mealy machine. As an added benefit, transducers are as compact
as automata, and as or more compact than Mealy machines they are equivalent
to. This compactness preserves or improves the equivalence queries guarantees.
In our learning framework, the upper bound is supposed to be known by the
student. This is in contrast to the inexperienced teacher case, where the scope of
possible observations is unknown, and has to be assumed regular and learned on
the fly. When it comes to available queries, [11] assumes the student has access
to containment queries i.e. student can ask teacher if the candidates’ language
contains or is contained in the target, this to obtain better the guarantees. In
our model, a simple equivalence query is considered. Conversely, in [1], the only
way to do a membership query is to do so on the composition of both machines.
In that regard, learning a composition is more constraining than learning with a
domain upper bound. However, since finding a reverse image to an output word
through a transducer is possible with good complexity, our algorithm can be
adapted to learn a composition of two transducers, in the framework of [1].

2 Preliminaries

A (subsequential string) transducer M is a tuple (Σ,Γ,Q, q0, w0, δ, δF ) where
Σ is the finite input alphabet, Γ is the finite output alphabet, Q is the finite
set of states, q0 ∈ Q is the initial state, w0 ∈ Γ ∗ is an initial production, δ is
the transition function, a partial function Q × Σ → Q × Γ ∗ and δF is the final

function, a partial function Q → Γ ∗. If δ(q, a) = (q′, w) we note q
a|w−−→ q′. If

δF (q) = w we say that q is final, and note q
w−→ �. We define the relation →∗

by combining the input and output of several transitions: →∗ is the smallest

relation such that q
ε|ε−−→∗ q, and if q

u|w−−→∗ q′ and q′ a|w′
−−−→ q′′ then q

ua|w·w′
−−−−−→∗ q′′.

We write q0
u|w−−→∗ q when u reaches the state q with partial output w.

For every state q ∈ Q, we associate a partial function [[Mq]](u) to M from
input words over Σ to output words over Γ . Formally, [[Mq]](u) = w · w′ if

q
u|w−−→∗ qF and qF

w′
−→ � for some qF ∈ Q and is undefined otherwise. Finally,

we define [[M]] := w0 · [[Mq0 ]] and write that M implements [[M]].
We write dom([[M]]) to denote the domain of [[M]], that is the set of all

u ∈ Σ∗ that reach a final state qF ∈ Q. We often consider the restriction of [[M]]
to a given domain D ⊆ Σ∗, and denote it [[M]]|D.

Example 1. Consider the function τabc with domain Upabc = (a + bc)c∗ and
τabc(acn) = τabc(bcn) = 1n. It is implemented by the left transducer in Fig. 1.

We note that if we want to restrict a transducer’s function to a regular
language L for which we have a deterministic word automaton A, a classic con-
struction is to build the product transducer M × A, where the states are the
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Fig. 1. On the left, a transducer compatible with the merging map in the center, on
the right the transducer resulting from this merging map.

Cartesian products of both state spaces, and the final function δF is only defined
for pairs (q, p) where q is in the domain of the final function of M and p is final
in A. This transducer implements the function [[M]]A.

We write |M| to denote the size of M, i.e. its number of states. For conve-
nience, we only consider trim transducers, that is to say that every state q is
reachable from q0 and co-reachable from a final state. This is no loss of gener-
ality, as every transducer is equivalent to a trimmed one with as many or fewer
states, and we only consider minimal transducers.

Active Learning. Let Σ and Γ be finite input and output alphabets respectively.
Further, let τ : Σ∗ → Γ ∗ be a partial function implementable by a transducer.
In this work we will be interested in actively learning a transducer implement-
ing τ by interacting with a teacher who knows τ and can answer questions
our algorithm asks about τ . Formally, the teacher is an oracle that can answer
membership and equivalence queries.

Given u ∈ Σ∗, a membership query answers τ(u) if u ∈ dom(τ), and
⊥ otherwise. Given M a transducer, an equivalence query answer true if
[[M]] = τ , otherwise it provides u ∈ Σ∗, a non-equivalence witness such that
u ∈ dom([[M]])\dom(τ), or u ∈ dom(τ)\dom([[M]]), or u ∈ dom([[M]]) ∩ dom(τ)
but [[M]](u) �= τ(u). The goal of a learning algorithm in this context is to produce
a transducer M such that [[M]] = τ .

Side Information About the Domain. We generalize the active learning problem
by introducing side information available to the learning algorithm. Concretely,
we assume that an upper bound on the domain of τ is known in advance. That is,
we are given a DFA AUp whose language Up is such that dom(τ) ⊆ Up. The goal
of the learning algorithm is to produce a transducer M such that [[M]]|Up = τ .

The domain upper bound Up may allow us to learn simpler transducers M
than the canonical minimal transducer describing τ—i.e. the class of transducers
learnt by OSTIA. For instance, consider the domain Up is the set of BibTeX
references where n different properties appear (title, author, year. . . ), but in any
order. The automaton recognizing this domain has O(2n) states. Learning it, or
any transformation on this domain, with a blackbox algorithm may thus require
O(2n) equivalence tests. However, if the transformation we want to learn is just
to extract the title, ignoring every other property, then there exists a very simple
transducer, whose size does not increase with n and that, when restricted to Up,
performs the desired transformation.
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3 Learning Transducers with Side Information

Our algorithm uses an observation table T based on a finite prefix-closed subset
P of Σ∗ and a finite suffix-closed subset S of Σ∗. Formally, we define T as a
function (P ∪P ·Σ)·S → Γ ∗∪{#,⊥} and maintain the following invariant for all
u ∈ (P ∪P ·Σ) and all v ∈ S. If u·v �∈ Up then T (u·v) = #. If u·v ∈ Up\dom(τ)
then T (u · v) = ⊥, otherwise T (u · v) = τ(u · v). For technical reasons, proper to
graybox learning [11], we often consider the set PT of prefixes of the elements of
(P ∪ PΣ) · S.

Definition 2 (Compatible transducer). Let T be an observation table and
M a transducer of input alphabet Σ and output alphabet Γ . We say that M is
compatible with T when for all u, v ∈ P ∪PΣ, if T (u ·v) ∈ Γ ∗ then [[M]](u ·v) =
T (u, v) whereas if T (u · v) = ⊥ then u · v �∈ dom([[M]]).

To “fill” the table so as to satisfy the invariant, we pose membership queries to
the teacher. Once T has certain satisfactory properties (as defined in the OSTIA
algorithm and elaborated upon briefly), we are able to construct a transducer
M from it. As a table T can be filled with #, multiple minimal transducers may
be compatible with T . To minimize the number of equivalence queries posed, we
will send an equivalence query only if there is a unique minimal transducer M
(up to equivalence in Up) compatible with T .

Instead of searching directly for transducers, we work only with the infor-
mation on how those transducers behave on PT . We represent this information
using objects we call merging maps. We show that we can characterize when there
exist two competing minimal transducers with two different merging maps, or
two competing minimal transducers with the same merging map. If neither is the
case, then there is a unique minimal compatible transducer M , and we build it
by guessing its merging map. We then pose an equivalence query to the teacher
in order to determine whether AUp × M implements the target function τ .

Satisfactory Properties. The following properties are those that allow the OSTIA
algorithm [15] to work. Under these properties, we are sure that a transducer
can be derived from the table T . They are defined on a specific table T : (P ∪
PΣ) · S → Γ ∗ ∪ {⊥}. Given u ∈ P ∪ PΣ, we call lcpT (u) the longest common
prefix of all the T (u · v) in Γ ∗. For u, u′ ∈ P ∪ PΣ∗, we say that u ≡T u′ iff for
all v ∈ S, we have both T (u ·v) = ⊥ ⇐⇒ T (u′ ·v) = ⊥ and if T (u ·v) ∈ Γ ∗ then
lcpT (u)−1T (u · v) = lcpT (u′)−1T (u′ · v). A table T is closed if for all ua ∈ PΣ
there exists u′ ∈ P such that ua ≡T u′; ≡-consistent, if for all u, u′ ∈ P , a ∈ Σ
such that ua, u′a ∈ P ∪ PΣ∗, then u ≡T u′ =⇒ ua ≡T u′a; lcp-consistent, if
for all ua ∈ P ∪ PΣ, we have that lcpT (u) is a prefix of lcpT (ua).

The role of these notions in Algorithm 2 is twofold. First, it guarantees
that the algorithm could, at worst, find the same transducer as the OSTIA
algorithm [15] as a candidate for an equivalence query from a closed, ≡-
consistent, lcp-consistent table. Second, it can be seen as an efficient way to
acquire information for a learner, as the set of words witnessing non-closure
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(resp. non-consistency) gives new elements to add to P (resp. S). We can see
closed, ≡-consistent, lcp-consistent tables as those that are saturated with mem-
bership queries, such that no further information can be obtained by a learner
without resorting to more costly operations, e.g. an equivalence query.

Difficulties to Overcome. For any given table T there are infinitely many
compatible transducers. This was already the case in automata or Mealy
Machines [1,11]. However, where transducers differ, is that even when limiting
ourselves to transducers with a minimal number of states, this might still be the
case. Indeed, on some transitions, the output can be arbitrary (see Example 9).
As a consequence, the method we will use to obtain a compatible transducer from
a finite search space combines the methods of [11] with the addition of partial
output information and an additional constraint on the output of transitions.

We want to obtain concomitantly an equivalence ≡ on PT that describes the
set of states of the transducer and a partial output function f : PT → Γ ∗ that
describe which output is produced while reading an input. In the context of
transducers, side information adds another restriction: a transducer can contain
transitions that link together elements of PT for which we have no output infor-
mation in T . This is a problem, as the output of such transitions is arbitrary
and leads to an infinite number of candidates.

We will represent the behavior of a transducer on PT but keep only the
output information that can be corroborated in T . We call PΓ ⊆ PT the set of
all u ∈ PT such that there exists v ∈ Σ∗ for which T (u·v) ∈ Γ ∗. We call P∅ ⊆ PT

the set of all u ∈ PT such that there is no v ∈ Σ∗ for which T (u · v) ∈ Γ ∗.

Definition 3 (Merging map). Let T be an observation table. A merging map
(MM) on T is a pair (≡, f) where ≡ is an equivalence relation on PT , and f is
a partial function from PT to Γ ∗, such that for all u, u′ ∈ PT and a ∈ Σ:

1. PT is a single equivalence class of ≡.
2. If f(ua) exists, then f(u) exists and is a prefix of f(ua).
3. If T (u) ∈ Γ ∗ then f(u) is a prefix of T (u).
4. If we have that f(u) exists, u ≡ u′ and ua, u′a ∈ PT then ua ≡ u′a.

Furthermore, if f(ua) exists then f(u)−1f(ua) = f(u′)−1f(u′a).
5. If T (u) ∈ Γ ∗, u ≡ u′ then T (u′) �= ⊥.

Furthermore, if T (u′) ∈ Γ ∗ then f(u)−1T (u) = f(u′)−1T (u′).
6. If f(ua) exists, but there is no v ∈ PT such that v ≡ u, and va ∈ PΓ , then

f(ua) = f(u).

The intuition is that a MM (≡, f) contains the information necessary to
model the behavior on PT of a transducer compatible with T . Rule 1 defines
an equivalence class for all elements of PT that would end up in a sink state.
Rule 2 and 3 ensure that the output function f only grows with each transition
and the final function respectively. Rule 4 and 5 ensure that the output value is
properly defined for each transition and the final function respectively. Finally,
rule 6 ensures we only keep output information from PΓ . If such a pair (u, a)
exists, we say that it is muted.
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Every transducer M compatible with T has an underlying MM (≡, f), and
conversely, every MM (≡, f) can be used to build a transducer M compatible
with T . The size of a MM is the number of equivalence classes of ≡ in dom(f).
Below, we write qu for the state associated with u ∈ PT .

Definition 4 (Resulting Transducer). Let T be an observation table and
(≡, f) a MM on T . In the transducer M resulting from (≡, f) the set of states
is the set of equivalence classes of ≡ in dom(f), the initial state is qε, the initial

production is f(ε), the transitions are qu
a|f(u)−1f(ua)−−−−−−−−−→ qua for u, ua ∈ dom(f),

and for each u such that T (u) ∈ Γ ∗, we have δF (qu) = f(u)−1T (u).

Definition 5 (Induced MM). Let T be an observation table and M a trans-
ducer compatible with T . The MM (≡, f) induced by the transducer M is such
that we have (A) u ≡ v iff u and v reach the same state of M; (B) for all
u ∈ PT , a ∈ Σ such that ua ∈ PT reaches a state q of M: (B.I) if there exists
v ∈ PT such that v ≡ u, and va ∈ PΓ , then f(ua) = f(u) · δ(q, a) (B.II) and if
(u, a) is muted, then f(ua) = f(u).

We note that these transformations are not one-to-one: some transducers
compatible with T cannot be obtained with this method. For instance, let us
consider a table full of #. Since no T (u) is ever in Γ ∗, there is no final state
in any transducer created with this method. This is the goal of projecting the
transducers’ behavior on PT : the MM induced by M only contains information
on its behavior on PT , and the transducer resulting from a MM is the transducer
with the smallest amount of states and transitions whose behavior on PT matches
what is described in the MM.

Learning Algorithm. Our learning algorithm works as follows: (1) We build up T
until it is closed and ≡ and lcp-consistent. (2) If two minimal compatible trans-
ducers exist, we find them and a word u to tell them apart. We use a membership
query on u and start again. (3) If only one minimal compatible transducer M
remains, we find it. We use an equivalence query on AUp × M. Such an algo-
rithm allows using the knowledge of Up to propose more compact candidates,
as the minimal transducer compatible with a table T is always smaller than the
canonical transducer that can be derived from T if we substitute ⊥ for the #.
This smaller model size leads to a better guarantee when it comes to the number
of required equivalence queries. The full algorithm is in Algorithm 2. It uses the
subprocedures CompetingMingGen and MinGen which we elaborate upon later.

Theorem 6. Algorithm 2 terminates and makes a number of equivalence queries
bounded by the number of states of a minimal M such that [[M]]|Up = τ .

Proof (Sketch). We first assume termination and focus on the bound on equiv-
alence queries. Note that, by construction of the tables, any minimal M such
that [[M]]|Up = τ is compatible with all of them. Thus, it suffices to argue that
every equivalence query our algorithm poses increases the size of a minimal
transducer compatible with it. For termination, it remains to bound the number
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Algorithm 2 MinTransducerUp(AUp)
Input: The DFA AUp of an upper-bound
Output: A minimal DFA M such that L = M ∩ AUp

1: Let P = S = {ε} and T (P, S) the associated table
2: while True do � With u, u′ ∈ P , a ∈ Σ, v, v′ ∈ S
3: if (u, a, v, v′) is a witness of non-lcp-consistency then add av, av′ to S
4: else if (u, u′, a, v) is a witness of non-≡-consistency then add av to S
5: else if ua is a witness of non-closure then add ua to P
6: else if u := CompetingMinGen(T (P, S)) �= ∅ then add u and its suffixes to S
7: else M := MinGen(T (P, S))
8: if u is a non-equiv. witness for AUp × M then add all its suffixes to S
9: else return M

of membership queries and calls to the subprocedures. Note that it is impossi-
ble to enumerate all n-state transducers compatible with an observation table.
Termination will follow from the fact that we enumerate a finite subset of them. �

4 Merging Maps to Guess a Minimal Transducer

Algorithm 2 relies on CompetingMinGen(T) and MinGen(T) to find one or sev-
eral competing transducers compatible with an observation table. This type of
procedures is absent from blackbox learning algorithms, but central to graybox
learning algorithm [11]. In the automata case, an oracle that guesses a minimal
compatible automaton only needs to guess an equivalence relation on PT . For
transducers, we guess a function f that associates to each element of PT an out-
put in Γ ∗. Since this is not a finite search space, we aim to restrict ourselves to a
finite subspace that allows us to find one unique or two non-equivalent minimal
candidates. We will limit the scope of this search with Definition 10 and 11 of
muted and open transitions, to fix arbitrary outputs at ε.

To combine the two subprocedures, we characterize a necessary and sufficient
condition for two possible minimal candidates to exist. This condition is tested by
CompetingMinGen(T ). When the minimal candidate is unique up to equivalence
on Up, we use MinGen(T ) to generate it, then send an equivalence query.

MinGen(T) Using MMs. Recall that there are transducers compatible with a
table T that do not result from a MM on T . We will show that to implement
MinGen(T ) and CompetingMinGen(T ), it is enough to focus on minimal MMs
and to take the resulting transducers as candidates. To justify that this method
provides the right result, we prove that it provides valid candidates.

Lemma 7. Let (f,≡) be a minimal MM on a table T and M its resulting trans-
ducer. Then, M is compatible with T .

Among the minimal transducers compatible with T , there is one resulting from
a MM. Indeed, from a transducer M compatible with T one can create a smaller
one using the MM induced by M and Definition 4.
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Proposition 8. Let T be a table, M a transducer compatible with T . There is
a transducer M′, with as many states, compatible with T resulting from a MM.

CompetingMinGen(T) Using MMs. While guessing a MM is enough to guess
a minimal transducer, it does not provide a reliable way to decide whether
two non-equivalent minimal compatible transducers exist. For the subroutine
CompetingMinGen(T ), we must find a way to detect whether this is the case.
A natural first step is to say that if we can find minimal MMs whose result-
ing transducers are non-equivalent on Up, then we have found a solution to
CompetingMinGen(T ). Unfortunately, this condition is not necessary. Indeed,
there are minimal MM induced by several non-equivalent transducers. This arises
when a transition going out of the state associated to some u ∈ PT can have an
arbitrarily defined output, because ua ∈ P∅, or ua �∈ PT .

Example 9. In Fig. 1, we note the special case of two transitions in the left trans-

ducer: the transition qa
c|1−−→ qa linking a ∈ PΓ to ac ∈ Pε, and the transition

qb
a|ε−−→ qa linking b ∈ PΓ to ba /∈ PT . In both cases, the transition is never used

by any u ∈ PT such that T (u) ∈ Γ ∗. The right transducer is also compatible

with T , but the output of qa
c|1−−→ qa is ε and qb

a|ε−−→ qa has been deleted.

The first case, ua ∈ P∅, is the one we aimed to eliminate by erasing the
output in muted pairs (u, a). We call muted transitions those whose output has
to be ε in a transducer induced from a MM.

Definition 10. Let T be a table, (≡, f) a MM, and M its resulting transducer.

For all u ∈ PT , a ∈ Σ, (u, a) is a muted pair of (≡, f), and qu
a|ε−−→ qua is a

muted transition of M, if u, ua ∈ dom(f) but there is no v ∈ PT such that u ≡ v
and va ∈ PΓ .

The second case, ua �∈ PT , is new. We formalize this as follows: An open end
is a place where a transition could be added without influencing the behavior of
the resulting transducer on PT . We fix the output of such transitions to ε.

Definition 11. Let T be a table and (≡, f) a MM. For all u ∈ PT , a ∈ Σ, (u, a)
is an open end of the map if there is no v ∈ PT s.t. v ≡ u and va ∈ PT . Let M
be the resulting transducer of (≡, f). We say that M′ is an open completion of
(≡, f) (or of M) if it is the transducer with at most one additional transition

u
a|ε−−→ u′ per open end (u, a). We call such transitions open transitions.

Muted and open transitions allow arbitrary output: if there exists a word
u ∈ Up that goes through a muted transition, that is sufficient to build several
compatible transducers that give different outputs on u. This condition together
with the existence of competing minimal MMs give a necessary, sufficient and
effective, condition for CompetingMinGen(T ).

Lemma 12. Let T be an observation table, (≡, f) a MM on T and M its result-
ing transducer. If there exists an open completion M′ and an element u ∈ Up
such that u ∈ dom([[M′]]) and u uses a muted or open transition in its run in
M′, then there exist competing minimal transducers compatible with T .
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Implementation: We prove that the following is a possible implementation of
CompetingMinGen(T ). (1) Search for two minimal MMs with non-equivalent
corresponding transducers, (2) if these do not exist, search for a minimal MM
and an open completion as in Lemma 12; (3) otherwise, we have a unique minimal
transducer up to equivalence on Up.

Proposition 13. Let T be a table. If there exist two minimal transducers M1

and M2 compatible with T but not equivalent on Up, one of the following exists:
(i) two minimal MMs with non-equivalent resulting transducers M′

1,M′
2, or

(ii) an open completion M′ of a minimal MM compatible with T and a word
u ∈ dom([[M′]]) ∩ Up using at least one open or muted transition of M′.

5 Encoding into String Equations

Algorithm 2 would work as long as its subroutines return the desired results.
While it is impossible to enumerate all compatible transducers, one way to find
compatible transducers would be to enumerate all MM. For complexity’s sake
and to align our result with other graybox algorithms [1,11], we encode the
minimal generation subroutines into an NP problem like SAT. While a direct
encoding is possible, it is easier to go through a first encoding into string equa-
tions. We only use operations that are easily encoded into SAT: word (in)equality,
concatenation, Boolean operators, and a restricted use of quantifiers.

This setting has the advantage of being more directly relevant to the notions
we consider, while keeping the NP theoretical bound. Furthermore, SMT solvers
have specialized tools [12,16] to solve such equations, that may yield better
practical results than a direct SAT encoding.

We encode a table T , merging maps (≡, f), and runs of u ∈ Up with output
w ∈ Γ ∗ in the resulting transducer of T . We use word variables Tu for T (u),
booleans Eu,v for u ≡ v, word variables fu for f(u), word variable u and letter
variables ai ∈ [1, k] with u = a1 · · · · · ak for an input word of length k, and word
variables w = w0 · w1 · · · · · wk · wk+1 for their output step by step. The bounds
on the size of u is given by small model theorems in automata and transducers.

We use string equation formulae to encode the properties we combine in
the minimal generation subroutines. We classically build φeq that ensures Eu,v

denotes an equivalence. Then, each point of Definition 3 can be seen as a simple
combination of string equations on Tu and fu using the binary variables Eu,v for
u, v ∈ PT . We can thus build φmm that ensures Eu,v and fu denote a MM.

For the transducer resulting from (≡, f), and its open completions, we add
booleans mu,a, ou,a that indicate leaving qu with a is a muted or open transition.

To model runs, we use φrun(u,w) ensuring u has a run with output w in
the transducer resulting from Eu,v and fu. We build it by making sure the run
starts in the initial state with production w0, ends in a final state with production
wk+1, and at the ith step, the input letter is ai and the output word is wi.

To encode MinGen(T ) we only need to find Eu,v, fu that respect φmm with
n states, where n starts at 1 and increases until a solution is found.
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For CompetingMinGen(T ), we use Proposition 13 to split the encoding in
two. To encode the case where there exist two non-equivalent MMs, we use vari-
ables Eu,v and fu respecting φmm for a first MM, copies E′

u,v and f ′
u respecting

φmm for a second MM, and φUp and φrun to encode the existence of u ∈ Up
whose run differs in the transducers resulting from both MMs.

It is easy to encode the case where there exist an open completion and a
word u ∈ Up that uses an open or muted transition, by using mu,a and ou,a on
the run of u in the transducer resulting from the MM of Eu,v and fu.

Combined together, they encode the minimal generating subroutines in string
equations, that could then be encoded in SAT, leading to our result:

Proposition 14. Let T be an observation table. The subroutines MinGen(T )
and CompetingMinGen(T ) can be effectively implemented.

Note on Complexity: As this string-equation encoding is a polynomial shorthand
for a SAT encoding, each oracle call solves an NP problem. Coarsely, MinGen(T )
and CompetingMinGen(T ) are of complexity PNP. To find a minimal MM of
size n, we need n − 1 of those oracles to fail on sizes 1 ≤ i < n. If we take
Algorithm 2 in its entirety, each call to MinGen(T ) and CompetingMinGen(T )
need not make use of n oracle calls since we can cache current minimal size for
future calls.

6 Conclusion

Adapting graybox learning to transducers revealed more complex than expected.
Our solution relies on merging maps, muted and open transitions while offering
better bounds on equivalence queries than OSTIA. Two main questions remain
open: (1) The bound on the number of equivalence queries was the aim of this
paper, but the number of membership queries or call to string equations solvers
are not considered. Providing tight bounds or proposing a potential tradeoff, like
the one described in [1], would increase the viability of the implementation of
such an algorithm. (2) We could consider other classes of side information like
general upper bound that cut sections of Σ∗ × Γ ∗.

As practical future work, we plan to apply our learning algorithm to the mini-
mization of strategies synthesized by tools participating in the Reactive Synthesis
Competition [9]. In one of the tracks from the competition, specifications are even
given in a format where assumptions about the environment are explicit [10].
We expect our algorithm to work best for that setup.
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Abstract. Conjecture 11 of [Lagoutte, Maletti: Survey—Weighted
extended top-down tree transducers—Part III: Composition. Proc. AFCS,
LNCS 7020, p. 272–308, Springer 2011] is confirmed. It is demonstrated
that the composition of a constant weighted extended tree transducer with
a linear weighted top-down tree transducer can be computed by a single
weighted extended tree transducer. Whereas linearity and the top-down
property are syntactic, the constant property is semantic. The decidabil-
ity of the constant property is investigated in several restricted settings.
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1 Introduction

Weighted tree transducers [5,7,16] are a straightforward generalization of classi-
cal tree transducers [23–25] such that each rule carries a weight from a semiring.
They compute a weighted relation on trees, which assigns a weight to each pair
of an input and an output tree. Overall, they thus allow a much more fine-
grained classification of the input-output relation. A good overview of weighted
tree transducers is presented in [8].

The weighted extended tree transducers [12,18,20] have been introduced to
model certain syntax-based translation systems in machine translation [15] and
have also been utilized in that capacity [12]. Whereas (non-extended) tree trans-
ducers permit only a single input symbol in the left-hand side of each rule, the
extended variants allow arbitrary many input symbols in the left-hand side of
their rules, which makes the model more symmetric. In the unweighted case, this
asymmetry was noted much earlier and has been thoroughly investigated [2,3].

In this contribution we study compositions of certain weighted extended
tree transducers. Composition is one of the basic operations on relations and
can straightforwardly be extended to weighted relations. More precisely, given
weighted relations τ1 : A × B → Q and τ2 : B × C → Q with weights in the
rational numbers Q, their composition is the weighted relation τ1 ; τ2 given for
every a ∈ A and c ∈ C by

(τ1 ; τ2)(a, c) =
∑

b∈B

τ1(a, b) · τ2(b, c) .
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Note that this composition is essentially a matrix product. Compositions of
weighted relations naturally occur in the development of speech recognition
systems [22], where the standard methodology composes from right-to-left a
language-model transducer, a lexicon transducer, a context-dependency trans-
ducer, and a final HMM transducer each computing corresponding weighted
relations. While the transducers for speech recognition usually work on strings,
the transducers in syntax-based machine translation operate on trees [27] and
individual components of the cascade reorder the subtrees of the input, insert
additional subtrees, and finally translate the lexical entries. Representing the
composed weighted relation computed by the cascade by just a single trans-
ducer offers significant advantages [1,12,21].

We continue the investigation started in [17] and confirm [17, Conjecture 11].
To this end, we show how to compose an arbitrary constant weighted extended
tree transducer with a linear weighted top-down tree transducer. In other words,
we require that the first transducer is constant, which is a semantic property and
essentially states that a certain weight total does not depend on the actual input
tree, but only on the state of the transducer. The second transducer needs to
be linear (i.e., is not allowed to copy subtrees) and non-extended (i.e., handles a
single input symbol in each rule). However, we place no constraints on the utilized
weight structure. Our construction works for any commutative semiring [11,14].
Both main features, commutativity and distributivity, of the weight structure are
heavily utilized in the construction. The history and corresponding unweighted
composition results are discussed at length in [17].

Besides the construction, we offer an illustration of the problem that occurs
in the standard composition construction of [17] and motivate the adjustment in
this manner. A proof sketch for the correctness of the composition construction
is provided. Since the constant property is semantic, it is not trivially decidable
whether a given transducer is constant. In the final section, we explore a few
cases, in which decidability of the constant property can be established.

2 Preliminaries

The nonnegative integers are N, and we let [n] = {i ∈ N | 1 ≤ i ≤ n} for
every n ∈ N. We use the countable set X = {xi | i ∈ N} of (formal) variables and
its finite subsets Xk =

{
xi | i ∈ [k]

}
for every k ∈ N. Given relations R ⊆ A×B

and S ⊆ B × C their composition R ; S is

R ; S =
{
(a, c) ∈ A × C | ∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S

}
.

The inverse R−1, domain dom(R), and range ran(R) of R are
R−1 = {(b, a) | (a, b) ∈ R}, dom(R) =

{
a ∈ A | ∃b ∈ B : (a, b) ∈ R

}
and

ran(R) = dom(R−1).
For any set A we let A∗ be the set of all finite words (i.e. sequences) over A

including the empty word ε. Finite sets are also called alphabets. The length of a
word w ∈ A∗ is written as |w|, and for all k ∈ N we let A≤k = {w ∈ A∗ | k ≥ |w|}
be the words of length at most k.
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A ranked alphabet (Σ, rk) consists of an alphabet Σ together with a map-
ping rk: Σ → N that assigns a rank to each element of Σ. For every k ∈ N we
let Σ(k) = {σ ∈ Σ | rk(σ) = k} be the set of all symbols of Σ that have rank k.
We write σ(k) to indicate that rk(σ) = k. To simplify the notation, we often
refer to the ranked alphabet (Σ, rk) by Σ alone. The set TΣ(A) of all trees is the
smallest set T such that A ⊆ T and σ(t1, . . . , tk) ∈ T for all k ∈ N, σ ∈ Σ(k), and
t1, . . . , tk ∈ T . Instead of TΣ(∅) we simply write TΣ . Given a finite set Q and a
subset T ⊆ TΣ(A), we let Q(T ) = {q(t) | q ∈ Q, t ∈ T} ⊆ TΣ∪Q(A), where each
element of q is considered as a unary symbol. The positions of a tree t ∈ TΣ(A)
are inductively defined by pos(a) = {ε} for all a ∈ A and

pos
(
σ(t1, . . . , tk)

)
= {ε} ∪ {

iw | i ∈ [k], w ∈ pos(ti)
}

for all k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(A). Note that the positions pos(t)
are totally ordered by the usual lexicographic order ≤lex. We write t(w), t|w,
and t[u]w to refer to the symbol at position w ∈ pos(t) in the tree t ∈ TΣ(A),
the subtree of t rooted in w, and the tree obtained from t by replacing the subtree
rooted in w by the tree u ∈ TΣ(A), respectively. Formally, a(ε) = a|ε = a and
a[u]ε = u for all a ∈ A and for t = σ(t1, . . . , tk)

t(ε) = σ t(iw) = ti(w) t|ε = t t|iw = ti|w
t[u]ε = u t[u]iw = σ(t1, . . . , ti−1, ti[u]w, ti+1, . . . , tk)

for all k ∈ N, σ ∈ Σ(k), t1, . . . , tk ∈ TΣ(A), i ∈ [k], and w ∈ pos(ti). Given
labels L ⊆ Σ ∪ A we let posL(t) = {w ∈ pos(t) | t(w) ∈ L} be the set of
positions of t labeled by elements of L, and posa(t) = pos{a}(t) for all a ∈ A.
We let var(t) =

{
x ∈ X | posx(t) 
= ∅}

for every tree t ∈ TΣ(A ∪ X). The
tree t is called linear if |posx(t)| ≤ 1 for all x ∈ X. For every V ⊆ X, we
let CΣ(V ) =

{
t ∈ TΣ(V ) | var(t) = V, t linear

}
be the set of those trees that

contain exactly one position labeled v for every v ∈ V . Given a substitu-
tion θ : V → TΣ(A∪X) with V ⊆ X finite, its application to a tree t ∈ TΣ(A∪X)
is given by vθ = θ(v) for all v ∈ V , xθ = x for all x ∈ X \ V , aθ = a
for all a ∈ A, and σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ) for all k ∈ N, σ ∈ Σ(k),
and t1, . . . , tk ∈ TΣ(A ∪ X). For every t ∈ TΣ we let

match(t) =
{
(c, θ) | k ∈ N, c ∈ CΣ(Xk), θ : Xk → TΣ , t = cθ

}
.

A (commutative) semiring [11,14] is an algebraic structure (S,+, ·, 0, 1), in
which (S,+, 0) and (S, ·, 1) are both commutative monoids, s ·0 = 0 for all s ∈ S,
and multiplication · distributes over addition +. The semiring is idempotent
if 1 + 1 = 1. Moreover, the semiring is zero-sum free if s + s′ = 0 implies s = 0
for all s, s′ ∈ S, and zero-divisor free if s·s′ = 0 implies 0 ∈ {s, s′} for all s, s′ ∈ S.
Note that every idempotent semiring is zero-sum free. If there exists (−1) ∈ S
such that 1 + (−1) = 0, then S is a ring. Finally, given a mapping f : A → S,
we let supp(f) = {a ∈ A | f(a) 
= 0}.

3 Weighted Extended Tree Transducers

Let us start by introducing the main tree transducer model, the weighted
extended tree transducer [12,18,20], for which we want to study composition.
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It is the weighted version of the bimorphism model studied in [2,3]. For conve-
nience we use the minor syntactic variant of [17, Definition 3], which introduces
an additional indirection via rule identifiers. For the rest of the contribution,
let (S,+, ·, 0, 1) be an arbitrary commutative semiring.

Definition 1 (see [17, Definition 3]). A weighted extended tree transducer
(for short: wxtt) is a tuple (Q,Σ,Δ,Q0, I, χ), in which

– Q is a finite set of states
– Σ and Δ are ranked alphabets of input and output symbols, respectively,

such that Q ∩ (Σ ∪ Δ) = ∅,
– Q0 ⊆ Q is a set of initial states,
– I is a finite set of rule identifiers, and
– χ : I → Q

(
TΣ(X)

) × S × TΔ

(
Q(X)

)
assigns a weighted rule χ(i) = 〈	, s, r〉

to each identifier i ∈ I such that 	 /∈ Q(X), 	 is linear, and var(r) ⊆ var(	).

In the following, let M = (Q,Σ,Δ,Q0, I, χ) be a wxtt. To simplify the
notation, we also write 	

s→ r instead of 〈	, s, r〉. Moreover, for every i ∈ I we
let 	i, si, and ri be such that χ(i) = 〈	i, si, ri〉. Since we can select the identifiers
such that they uniquely determine M (i.e., different wxtt have disjoint sets of
identifiers), the notation 	i, si, and ri should not lead to confusion. The wxtt M is
called linear if ri is linear for every i ∈ I, and it is called Boolean if si ∈ {0, 1}
for every i ∈ I. Finally, M is a weighted top-down tree transducer (for short:
wtdtt), if |posΣ(	i)| = 1 for all i ∈ I.

Next, we introduce the semantics of M . Later in our composition construc-
tion it proves to be convenient to handle symbols and states of another wxtt. To
this end, we consider ranked alphabets Σ′ and Δ′ such that Σ ⊆ Σ′ and Δ ⊆ Δ′.
Moreover, let q ∈ Q, i ∈ I, and ξ ∈ TΔ′

(
Q(TΣ′(X))

)
, which we treat as a tree

of TΔ′∪Q∪Σ′(X). This treatment entails certain technical difficulties since the
rank of each symbol needs to be unique, but we largely ignore those issues here in
the interest of clarity. A position w ∈ posq(ξ) is i-reducible if there exists a substi-
tution θ : var(	i) → TΣ′(X) such that ξ|w = 	iθ. Note that if such a substitution
exists, then it is unique. Let w ∈ posQ(ξ) be the lexicographically least position
labeled by a state. If w is i-reducible, then we let i(ξ) = ξ

[
riθ

]
w
, which we also

write as ξ
i⇒M

[
riθ

]
w
. Otherwise, i(ξ) is undefined. Given i1, . . . , in ∈ I we

let (i1 · · · in)(ξ) = in
(· · · i1(ξ) · · · ), which we also write as ξ

i1···in=⇒ M (i1 · · · in)(ξ).
A sequence d ∈ I∗ is called derivation for ξ if d(ξ) is defined, and the finite set
of all such derivations is denoted by DM (ξ). Moreover, we let

D⊥
M (ξ) =

{
d ∈ DM (ξ) | d(ξ) ∈ TΔ

}

be the subset of terminal derivations. Given a derivation i1 · · · in ∈ DM (ξ)
with n ∈ N and i1, . . . , in ∈ I we let wtM (i1 · · · in) =

∏n
j=1 sij

. Finally, we
define the mapping τ ′

M : TΔ′
(
Q(TΣ′(X))

) × TΔ′
(
Q(TΣ′(X))

) → S by

τ ′
M (ξ, ζ) =

∑

d∈DM (ξ)
d(ξ)=ζ

wtM (d)
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Fig. 1. Rules of the wtdtt M ′ of Example 3.

for all ξ, ζ ∈ TΔ′
(
Q(TΣ′(X))

)
. The semantics of M is the weighted relation

τM : TΣ × TΔ → S given by

τM (t, u) =
∑

q∈Q0

τ ′
M

(
q(t), u

)

for all trees t ∈ TΣ and u ∈ TΔ. The wxtt M is total if for all states q ∈ Q and
input trees t ∈ TΣ there is an output tree u ∈ TΔ such that

(
q(t), u

) ∈ supp(τ ′
M ).

Finally, M is unambiguous if for every state q and input tree t ∈ TΣ there exists
at most one derivation d ∈ D⊥

M

(
q(t)

)
.

Next, let us introduce the special property, for which we provide a composi-
tion construction. The property constant was introduced in [17, Definition 9] and
essentially says that for any given state q ∈ Q there exists a constant cq such that
for every input tree t ∈ TΣ the sum of all weights of derivations d ∈ D⊥

M

(
q(t)

)

is exactly cq.

Definition 2 (see [17, Definition 9]). Let q ∈ Q and c ∈ S. State q is c-
constant if c =

∑
d∈D⊥

M (q(t)) wtM (d) for every t ∈ TΣ. The wxtt M is constant
if for every state q ∈ Q there exists cq ∈ S such that q is cq-constant.

To conclude this section, let us quickly discuss a small example to illustrate
the notions introduced in this section.

Example 3. Let M ′ = ({q′}, Σ,Δ, {q′}, {1, 2, 3}, χ′) be the wtdtt over the semi-
ring (R,+, ·, 0, 1) with Σ = {γ(1), α(0)}, Δ = {γ(1), α(0), β(0)} and χ′ presented
in Fig. 1. Then for

t = γ
(· · · γ

︸ ︷︷ ︸
n times γ

(α) · · · ) we have D⊥
M ′

(
q′(t)

)
=

{
1 · · · 1︸ ︷︷ ︸
n times

2, 1 · · · 1︸ ︷︷ ︸
n times

3
}

and those derivations have weight s1 · . . . · s1 · s2 = .5 and s1 · . . . · s1 · s3 = .5.
The derivations are illustrated in Fig. 2 for n = 2. This illustrates that state q′

is 1-constant, which also proves that M ′ is constant.

4 Composition

Our overall goal is to settle [17, Conjecture 11], which deals with composi-
tions of the weighted relations computed by certain wxtt. Before stating the
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Fig. 2. Illustration of derivations of M ′ discussed in Example 3.

conjecture let us settle the relevant notion of composition first. A weighted rela-
tion τ : TΣ × TΔ → S is finitary if the set

{
u ∈ TΔ | (t, u) ∈ supp(τ)

}
is finite

for every t ∈ TΣ . The weighted relation τM computed by a wxtt M is always
finitary by [6, Note before Lemma 2], which also applies to nonlinear wxtt.
Now, let us first formally introduce the composition of 2 weighted relations. Let
τ ′ : TΣ × TΔ → S and τ : TΔ × TΓ → S be weighted relations such that τ ′ is
finitary. Their composition τ ′ ; τ : TΣ × TΓ → S is given by

(τ ′ ; τ)(t, t′′) =
∑

t′∈TΔ

τ ′(t, t′) · τ(t′, t′′)

for all t ∈ TΣ and t′′ ∈ TΓ , where the sum is finite since τ ′ is finitary. Now we
can state the conjecture. Given a constant wxtt M ′ and a linear wtdtt M , [17,
Conjecture 11] claims that the composition τM ′ ;τM can be computed by a wxtt.

Let us first provide some insight into the difficulties that arise when attempt-
ing the standard composition constructions. Let M ′ = (Q′, Σ,Δ,Q′

0, I
′, χ′) be

the constant wxtt and M = (Q,Δ, Γ,Q0, I, χ) be the linear wtdtt. Moreover, for
every state q′ ∈ Q′, let cq′ ∈ S be such that q′ is cq′ -constant. We first investigate
the composition of M ′ and M using the generic composition construction of [17,
Definition 6] to highlight the problem. Afterwards we provide a solution and
prove that it is correct. We start with the exposition of the generic construction
and an illustration of the inherent problem on a simplistic example.

Example 4. We reconsider the constant wtdtt M ′ = (Q′, Σ,Δ,Q′, I ′, χ′) of
Example 3 together with the linear wtdtt M =

({q}, Δ, {α(0)}, {q}, {4}, χ
)
,

where χ(4) = q
(
γ(x1)

) 1→ α. For the sake of illustration, we adjust M ′ such that
s2 = s3 = 2; i.e., the weight of rules 2 and 3 is adjusted to weight 2. It can be
verified as in Example 3 that q′ is 4-constant in the adjusted wtdtt M ′. Now,
let us consider the input tree t = γ

(
γ(α)

)
. As illustrated in Example 3 there are

exactly 2 derivations in D⊥
M ′

(
q′(t)

)
, which are 112 and 113 as demonstrated in

Fig. 2. Their weights are s1 · s1 · s2 = 1 · 1 · 2 = 2 and s1 · s1 · s3 = 1 · 1 · 2 = 2.
There exists a single derivation d1 ∈ D⊥

M

(
q(γ(γ(α)))

)
on the output tree γ

(
γ(α)

)

of derivation 112 and a single derivation d2 ∈ D⊥
M

(
q(γ(γ(β)))

)
on the output

tree γ
(
γ(β)

)
of derivation 113. In both cases the derivation is d1 = d2 = 4, and

it is illustrated in Fig. 3. Its weight is obviously s4 = 1.
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Fig. 3. Illustration of derivations discussed in Example 4.

The main idea of the generic composition construction is to apply rules of M
immediately after the input symbol it consumes has been produced by a rule
of M ′. In this manner we avoid the explicit construction of the intermediate trees,
which were γ

(
γ(α)

)
and γ

(
γ(β)

)
in our example. Every rule i′ of M ′ together

with the rules of M that consume the symbols output by i′ will form a new rule
in the composed wxtt. In this manner we mix the rule applications of M ′ and M
and obtain the derivation 14 starting at q

(
q′(t)

)
, which is illustrated right-most

in Fig. 3. Note that since rule identifier 1 belongs to M ′, it will select the least
occurrence of a state in the set {q′} of states of M ′. This derivation 14 has
weight s1 · s4 = 1 · 1 = 1. It is evident that applications of rules 1, 2, and 3
are missing since the subtree q′(γ(α)

)
is deleted by the application of rule 4.

This has no impact on the generated output tree, but the missing application of
rules 1, 2, and 3 impacts the weight. Indeed the rule weights might even contain
a factor 0 (directly or as a product of factors), which would potentially remove
the pair of the input and output tree from the support of the computed weighted
relation altogether.

This change of weight, which in our case always amounts to missing factors
due to missing rule applications, needs to be corrected in an adjusted composition
construction. We also remark that in the derivation presented the subtree γ(α) in
the input tree was never processed and could potentially been processed utilizing
different rules. As presented in the example, we could utilize derivation 12 or 13
to process the remaining subtree q′(γ(α)

)
. The newly constructed rule needs to

account for all derivations that would have been possible starting in q′(γ(α)
)
,

which have total weight cq′ by the definition of cq′-constant. Moreover, due to
the definition of cq′ -constant, we know that cq′ is the total weight irrespective
of the actual subtree that would need to still be processed.

The solution is relatively straightforward. Whenever M deletes a subtree (i.e.,
a variable x ∈ X occurs in the left-hand side of a rule, but does not occur in the
corresponding right-hand side), we charge the weight cq′ for every occurrence
of state q′ in the deleted part. Since the wtdtt M is linear, it will not copy
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subtrees and thus not duplicate occurrences of states q′ ∈ Q′. This motivates
the following composition of the given wxtt.

Definition 5. (see [17, Definition 6]). Let M ′ = (Q′, Σ,Δ,Q′
0, I

′, χ′) be
a constant wxtt and M = (Q,Δ, Γ,Q0, I, χ) be a linear wtdtt. Moreover, for
every q′ ∈ Q′, let cq′ ∈ S be such that q′ is cq′-constant. Finally, let b ∈ N

be such that |pos(ri′)| ≤ b for every i′ ∈ I ′. The composed wxtt M ′ ; M is the
wxtt (Q × Q′, Σ, Γ,Q0 × Q′

0, P, ρ) such that P = I ′ × Q × I≤b and

ρ
(〈i′, q, d〉) =

{(
q(	i′), s, r

)
if r = d

(
q(ri′)

) ∈ TΔ

(
Q

(
Q′(X)

))

0 otherwise

for every identifier i′ ∈ I ′, state q ∈ Q, and identifier sequence d ∈ I≤b, where

s = si′ · wtM (d) ·
∏

q′∈Q′
c
|posq′ (ri′ )|−|posq′ (r)|
q′ .

Note that we identify Q
(
Q′(T )

)
with (Q × Q′)(T ).

For the given example derivation in Fig. 3 we observe that the application
of rule 4 deletes a subtree containing 1 occurrence of state q′, for which cq′ =
4. Hence the newly constructed rule with identifier 〈1, q, 4〉 would be assigned
weight s1 ·s4 ·cq′ . Let us state the main result, which confirms [17, Conjecture 11].

Theorem 6. Let M ′ be a constant wxtt and M be a linear wtdtt. Then there
exists a wxtt N such that τN = τM ′ ; τM .

Proof (sketch). Let M ′ = (Q′, Σ,Δ,Q′
0, I

′, χ′). Without loss of generality, we
can assume that for every i′ ∈ I ′ there exists ki′ ∈ N such that var(	i′) = Xki′ .
We call a tree c ∈ CΣ(Xk) normalized if the leafs labeled x1, . . . , xk occur exactly
in this order when read left-to-right. Following [19, Definition 3] we define the
mapping hM ′ : Q′(TΣ) × TΔ → S for every ξ ∈ Q′(TΣ) and u ∈ TΔ by

hM ′(ξ, u) =
∑

i′∈I′
(li′ ,θ′)∈match(ξ)
(c,θ′′)∈match(u)

c normalized
θ : var(c)→Q′(Xk

i′ )
ri′=cθ

si′ ·
∏

x∈var(c)

hM ′(xθθ′, xθ′′) .

The proof of [19, Theorem 5] shows that hM ′(ξ, u) = τ ′
M ′(ξ, u) for all ξ ∈ Q′(TΣ)

and u ∈ TΔ. The same alternative semantics also applies to M and N naturally.
The following statement can be proven for every t ∈ TΣ and t′′ ∈ TΓ by induction
on t

hN

(〈q, q′〉(t), t′′) =
∑

t′∈TΔ

hM ′
(
q′(t), t′

) · hM

(
q(t′), t′′

)
.
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This directly yields

τN (t, t′′)

=
∑

〈q,q′〉∈Q0×Q′
0

τ ′
N

(〈q, q′〉(t), t′′) =
∑

〈q,q′〉∈Q0×Q′
0

t′∈TΔ

τ ′
M ′

(
q′(t), t′

) · τ ′
M

(
q(t′), t′′

)

=
∑

t′∈TΔ

( ∑

q′∈Q′
0

τ ′
M ′

(
q′(t), t′

)) ·
( ∑

q∈Q0

τ ′
M

(
q(t′), t′′

))
=

∑

t′∈TΔ

τM ′(t, t′) · τM (t′, t′′)

= (τM ′ ; τM )(t, t′′)

and thus the desired τN = τM ′ ; τM . An alternative argumentation based on the
original derivation semantics is provided in the appendix. ��

5 Decidability of Constant Property

To make Theorem 6 effective, we would like to decide whether a given state
is c-constant for a given c ∈ S and, more generally, whether a given wxtt is
constant. In the following let M = (Q,Σ,Δ,Q0, I, χ) be a wxtt, for which we
want to check whether it is constant. Some straightforward results are already
mentioned in [17, Example 10] for wtdtt, which we generalize easily to wxtt here.

Lemma 7 (see [17, Example 10]). Every state q ∈ Q is 1-constant if

1. M is Boolean and total and the semiring S is idempotent, or
2. M is Boolean, total, and unambiguous.

Clearly, totality of M is necessary for every state q ∈ Q to be 1-constant
because otherwise there exists a state q ∈ Q and input tree t ∈ TΣ such that
τ ′
M

(
q(t), u

)
= 0 for all output trees u ∈ TΔ. Consequently, for that q and t the

sum in the definition of 1-constant (see Definition 2) is 0, which shows that q
is not 1-constant. Already [17] mentions that totality is not sufficient. Next, we
demonstrate that none of the properties mentioned in Lemma 7 besides totality
are necessary for every state q ∈ Q to be 1-constant.

Example 8. Recall the wxtt M ′ over the semiring (R,+, ·, 0, 1) of Example 3.
We already observed in Example 3 that q′ is 1-constant, but M ′ is neither
unambiguous nor Boolean. In addition, the semiring (R,+, ·, 0, 1) is clearly
not idempotent.

Next we investigate some special cases, for which we can decide the constant
property. We start with the Boolean semiring as a starting point. Clearly,
the Boolean semiring ({0, 1},max,min, 0, 1) is idempotent and all wxtt over the
Boolean semiring are trivially Boolean, so according to Lemma 7 we only
need to check totality. We present a slightly more general statement, which states
decidability of totality for all Boolean wxtt over an idempotent semiring.

Lemma 9. Totality of Boolean wxtt over an idempotent semiring is decidable.
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Proof. Clearly, rules with weight 0 are useless, so without loss of generality, let
M = (Q,Σ,Δ,Q0, I, χ) be a Boolean wxtt such that si = 1 for all i ∈ I;
i.e., all rules have weight 1. For every state q ∈ Q we also consider the vari-
ant Mq = (Q,Σ,Δ, {q}, I, χ), which is essentially M but with the single initial
state q. Clearly, the subsemiring of S generated by {0, 1}, which are the only
weights permitted in M (as well as Mq for all q ∈ Q), is isomorphic to the
Boolean semiring ({0, 1},max,min, 0, 1) because S is idempotent. Let q ∈ Q
be an arbitrary state. Hence Mq is essentially a wxtt over the Boolean semiring,
and thus also an (unweighted) extended tree transducer of [20]. By [20, Theo-
rem 4.8] such a transducer can equivalently be presented as a top-down tree
transducer Nq with regular look-ahead [4]. It is well-known [4, Corollary 2.7]
that the domain dom(τNq

) of the tree transformation τNq
⊆ TΣ × TΔ computed

by Nq is a recognizable tree language [9,10].
Obviously, M is total if and only if dom(τNq

) = TΣ for every q ∈ Q.
Since dom(τNq

) is recognizable and universality is decidable [9,10] for recog-
nizable tree languages, totality is also decidable.

A closer analysis of the proof shows that a (semiring) homomorphism [11,14]
from the subsemiring S′ of S generated by the weights in M into the Boolean
semiring would be sufficient. Such a homomorphism exists if S′ is not a ring
by [26, Theorem 2.1]. Additionally, the restrictions on the addition can be
avoided, if the wxtt is restricted such that multiple derivations for the same
state, input and output tree are impossible. Using similar techniques we can
thus also show that totality is decidable for

– Boolean wxtt over zero-sum free semirings,
– wxtt over zero-sum and zero-divisor free semirings,
– Boolean unambiguous wxtt, and
– unambiguous wxtt over zero-divisor free semirings.

Thus the conditions of the first item of Lemma 7 can effectively be checked
in an idempotent semiring. It is beyond the scope of this contribution to develop
general decidability results for unambiguity. However, a simpler condition exists
for wtdtt. Suppose that M is a wtdtt. It is called deterministic if for every
state q ∈ Q and σ ∈ Σ there exists at most one rule identifier i ∈ I such
that 	i(ε) = q and 	i(1) = σ. Every deterministic wtdtt is guaranteed to be
unambiguous.

Let us provide another relevant scenario. Let M be a deterministic wtdtt
without useless rules, which can efficiently be checked, and no rules of weight 0
(i.e., si 
= 0 for all i ∈ I). Moreover, suppose that S is multiplicatively can-
cellative (i.e., s · s′ = s · s′′ implies s′ = s′′ for all s, s′, s′′ ∈ S with s 
= 0).
For example, every field S is multiplicatively cancellative. Then S is zero-divisor
free and by the last item of the previous list, totality is decidable. In fact, due
to the special shape of left-hand sides of a wtdtt it suffices to check whether
for every state q ∈ Q and σ ∈ Σ there exists a rule identifier i ∈ I with
	i(ε) = q and 	i(1) = σ. Together with determinism there is thus exactly one
rule identifier i ∈ I with 	i(ε) = q and 	i(1) = σ for every state q ∈ Q and σ ∈ Σ.
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Due to the cancellation property of S we can now utilize the weight pushing strat-
egy [13,22] to determine whether a given state q ∈ Q is c-constant for some c ∈ S.
The standard pushing strategy cannot be applied directly since M might copy
or delete. We consider it interesting to extend the existing pushing strategies
to these scenarios where (i) weights might not be applied due to deletion or
(ii) weights might be applied multiple times due to copying. We leave the details
of this adaptation to future work, but believe that this avenue allows an efficient
test of the constant property in this relevant scenario (without requiring the
wtdtt to be Boolean).
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Abstract. The largest known reset thresholds for DFAs are equal to
(n − 1)2, where n is the number of states. This is conjectured to be
the maximum possible. PFAs (with partial transition function) can have
exponentially large reset thresholds. This is still true if we restrict to
binary PFAs. However, asymptotics do not give conclusions for fixed n.
We prove that the maximal reset threshold for binary PFAs is strictly
greater than (n − 1)2 if and only if n ≥ 6.

These results are mostly based on the analysis of synchronizing word
lengths for a certain family of binary PFAs. This family has the follow-
ing properties: it contains the well-known Černý automata; for n ≤ 10
it contains a binary PFA with maximal possible reset threshold; for all
n ≥ 6 it contains a PFA with reset threshold larger than the maximum
known for DFAs.

Analysis of this family reveals remarkable patterns involving the
Fibonacci numbers and related sequences such as the Padovan sequence.
We prove that the family asymptotically still gives reset thresholds of poly-
nomial order. For a few sequences in the family, we derive explicit formulas
for the reset thresholds, which turn out to be no pure polynomials.

Keywords: Finite automata · Synchronization · Černý conjecture

1 Introduction and Preliminaries

1

23

4

a

a

a

a, b
b

bb
The DFA C4

The diagram on the right depicts the deterministic
finite automaton (DFA) C4. Starting in any state
q and reading the word ba3ba3b leads to state 1.
Therefore, w is called a synchronizing word for C4.
It is also the only synchronizing word of length at
most 9.

Formally, a DFA A is defined as a triple
(Q,Σ, δ). Here Σ is a finite alphabet, Q a finite
set of states, which we generally choose to be [n] =
{1, 2, . . . , n} and δ : Q × Σ → Q the transition
function. For w ∈ Σ∗ and q ∈ Q, we define qw inductively by qε = q and
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qwa = δ(qw, a) for a ∈ Σ, where ε is the empty word. So qw is the state where
one ends, when starting in q and reading the symbols in w consecutively, and
qa is a short hand notation for δ(q, a). We extend the transition function to sets
S ⊆ Q by Sw := {qw : q ∈ S}. A word w ∈ Σ∗ is called synchronizing, if a state
qs ∈ Q exists such that qw = qs for all q ∈ Q. The length of a shortest word
with this property is the reset threshold of A.

A central conjecture in the field (standing since 1964) is due to Černý [2]:

Conjecture 1. Every synchronizing DFA on n states admits a synchronizing word
of length ≤ (n − 1)2.

We denote the maximal possible reset threshold for a DFA on n states by d(n),
rephrasing the conjecture to d(n) = (n − 1)2. The best known upper bounds are
still cubic in n. In 1983 Pin [4] established the bound 1

6 (n3 − n), using a combina-
torial result by Frankl [3]. More than thirty years later, the leading constant was
improved to 0.1664 by Szyku�la, and subsequently to 0.1654 by Shitov [5]. For a
survey on synchronizing automata and Černý’s conjecture, we refer to [6].

If Conjecture 1 holds true, the bound is sharp. The DFA C4 is one in a
sequence found by Černý [2]. For n ≥ 2, the DFA Cn has n states which we
denote by Q = [n], a symbol a sending q to q+1 (mod n) and a symbol b sending
n to 1 and being the identity in all other states. The shortest synchronizing word
for Cn is b(an−1b)n−2 of length (n − 1)2, so that d(n) ≥ (n − 1)2.

The picture changes drastically if we consider partial finite automata (PFAs).
In a PFA, the transition function is allowed to be partial. This means that qa may
be undefined for q ∈ Q and a ∈ Σ. In this case a word w is called synchronizing
for a PFA if there exists qs ∈ Q such that qw is defined and qw = qs for all
q ∈ Q. In the literature this is sometimes called careful synchronization, while
also other notions of synchronization exist.

For PFAs the maximal reset thresholds grow asymptotically like an exponen-
tial function of n, in contrast with the polynomial growth for DFAs. Also the
behaviour in terms of alphabet size is different. The upper bound of Conjecture
1 is attained by binary DFAs. For PFAs there is evidence that the alphabet size
has to grow with n to attain the maximal reset thresholds [1]. Still, also binary
PFAs give exponentially growing reset thresholds. We denote the maximal val-
ues by p(n, 2). For 2 ≤ n ≤ 10 the values as found in [1] are given below. For
n ≥ 11, the maximum is unknown.

n

p(n, 2)
2
1

3
4

4
9

5
16

6
26

7
39

8
55

9
73

10
94

For all 2 ≤ n ≤ 10, these reset thresholds are attained by members of what
we will call the Černý family. This family will be introduced in Sect. 2. In Sect. 3
we relate the problem of finding reset thresholds for this family to a minimiza-
tion problem involving racing pawns. A recursive solution for this problem is
presented in Sect. 4, from which it follows that the maximal reset thresholds in
the family grow like n2 log(n). Finally, in Sect. 5, we give explicit formulas for
the reset thresholds of a few sequences in the family.
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2 Extending the Černý Sequence to a Family

This family of binary PFAs, denoted by Cc
n, contains the Černý sequence Cn =

C0
n of binary DFAs. For fixed c ∈ N and n ≥ c + 2, we define the PFA Cc

n with
n states and alphabet Σ = {a, b} by

qa =

⎧
⎨

⎩

q + 1 1 ≤ q ≤ n − c − 1
⊥ n − c ≤ q ≤ n − 1
1 q = n

qb =

⎧
⎨

⎩

q 1 ≤ q ≤ n − c − 1
q + 1 n − c ≤ q ≤ n − 1
1 q = n

The PFA Cc
n is depicted in Fig. 1 for n = 8 and c = 2, next to the DFA C0

n of
Černý. By analyzing this family, we obtain our main results. In particular, we
will conclude that p(n, 2) > (n − 1)2 if and only if n ≥ 6.

Fig. 1. The DFA C0
8 and the PFA C2

8

Before deriving general formulas for the reset thresholds, we present the
values for 2 ≤ n ≤ 15 and 0 ≤ c ≤ 4 in the following table. Independent of the
analysis that will follow, these values were found by an algorithm computing the
reset threshold for a given PFA.

n

c = 0
c = 1
c = 2
c = 3
c = 4

2
1

3

2
4

4

7
3

9
5

15
10
4

16
6
25

21
13
5

26

7
36

35
27
16

39

8
49

52
44
33

55

9
64

72
65
53

73

10
81
93

89
78

94

11
100
116

115
106

119

12
121
141

144
136

146

13
144
168

169

176
176

14
169
197
208

206
211

15
196
228
242

246
248

Values in boldface represent the maximal reset threshold in the family for
a given n. Later we will see that for large n, the optimal c is close to n/2. For
2 ≤ n ≤ 10, these maxima exactly match the values of p(n, 2). This means that
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the Černý family contains a binary PFA on n states with maximal possible reset
threshold for all 2 ≤ n ≤ 10. In fact, for 6 ≤ n ≤ 10, there exists only one binary
PFA reaching this maximum [1].

The first line of the table shows the squares (n − 1)2 for the Černý sequence
C0

n. To give explicit expressions for subsequent lines is much harder. The order
of growth is still quadratic for every c, but no formula of the form a2n

2+a1n+a0

exists in general, as we will see later in this paper.
We now turn to the analytic derivation of reset thresholds for the Černý

family. We use the following interpretation of synchronization: let a pawn be
placed in every state of a PFA, let them simultaneously follow the same word
w and let two of them merge if they are in the same state after reading some
prefix of w. A synchronizing word is then a word that merges all pawns.

3 Reduction to a Pawn Race Problem

Our first result reduces the question of synchronizing Cc
n to the following prob-

lem.

Problem 1 (Pawn race problem). We have n pawns on the integers 1, 2, . . . , n.
In every iteration, every pawn has the choice to move from its location k to
k + 1 or to stay at k. Moving costs c + 1, staying costs c. After every iteration,
if two pawns are in the same position, they merge. What is the minimum cost
for which it is possible to merge all the pawns?

Theorem 1. Let fc(n) be the solution to Problem 1 and denote n′ = n − c − 1.
The reset threshold of Cc

n is equal to

n′(n′ − 1) + c + 1 + fc(n′).

The rest of this section will be devoted to the proof of Theorem 1.

Lemma 1. Cc
n = (Q,Σ, δ) has a synchronizing word.

Proof. We denote [k] := {1, 2, . . . , k} and note that Qbc+1 = [n−c−1] ⊂ [n−c].
Define ã = bca and b̃ = bc+1. Then ã acts as a cyclic permutation on [n − c] and
b̃ sends n − c to 1 and is the identity otherwise. Here we recognize the Černý
automaton C0

n−c, so that Cc
n is synchronizing. 	


Inspired by the proof of Lemma 1, we define the PFA C∗
n−c with state set

[n − c], alphabet Γ = {a, ã, b̃}, and the transition function of Cc
n restricted to

[n − c]. We define the weighted length |w| of a word w ∈ Γ ∗ as the sum of the
weights of the symbols, counting multiplicities, with weight 1 for a and weight
c + 1 for ã and b̃.

Lemma 2. Let w be a shortest synchronizing word for S ⊆ Q with |S| > 1.

(i) If S = Q, then w starts with bc+1.
(ii) If S ⊆ [n − c] and n − c ∈ S, then w starts with bca or bc+1.
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(iii) If S ⊆ [n − c] and n − c �∈ S, then w starts with a.
(iv) If S = Q or S ⊆ [n − c], then w corresponds to a synchronizing word of

minimum weighted length in C∗
n−c, for [n − c] or S respectively.

Proof. Since qbc+2 = qbc+1 for all states q, the word w can not contain bc+2. Fur-
thermore, (n − c)bma is not defined for m = 0, 1, . . . , c − 1. These observations
together with |Sbc| = |S| imply the second statement. It also follows that w starts
with bc if S = Q. If it starts with bca, then it has (by the second statement) to
start with bcabc since Qbca = [n − c]. But this contradicts the assumption that w
is a shortest synchronizing word, since Qbc = Qbcabc. So w starts with bc+1. The
third statement follows by observing that Sb = S in this case. The last statement
follows by induction from the first three statements and the proof of Lemma 1. 	


We see a subset of the state set [n − c] as a collection of pawns on those
states. Symbols a and ã move these pawns without merging, but if both n − c
and 1 are occupied by a pawn, then symbol b̃ merges both pawns. We call a
pawn a chaser if its next merge will be with a pawn in front of it, and a resigner
otherwise. So a chaser is on state n− c when it merges and a resigner on state 1.

If a pawn which results from a merge advances as a chaser, then we see the
chaser assigned to the merge as the continuation of it, so the resigner dies. But
if a pawn which results from a merge advances as a resigner, then the chaser
dies. We call the resigner of the last merge the yellow jersey, and the chaser of
the last merge the lanterne rouge.

Lemma 3. Let n − c ∈ S ⊆ [n − c] and let w ∈ Γ ∗ be synchronizing for S with
|w| minimal. If the pawn in n − c is a chaser, w starts with b̃ or c = 0. If the
pawn in n − c is a resigner, w starts with ã.

Proof. Write w = w∗
1 . . . w∗

k with w∗
i ∈ Γ . Assume that the pawn in n − c is the

lanterne rouge (so it is a chaser) and that w∗
1 = ã. After reading w∗

1 , it is in state 1.
Each time it visits n− c, it chooses ã or b̃. The last time before merging, it chooses
w∗

m = b̃ for some m to merge with the pawn in 1. We will construct a shorter
synchronizing word starting with b̃. This gives a contradiction, so that w∗

1 = b̃.
Starting with b̃a instead of ã, the lanterne rouge would already be in state 2,

while it makes no difference for any of the other pawns. By keeping the choices
of the lanterne rouge in subsequent visits to n − c the same as in w, it will stay
one step ahead of its original position. We can therefore replace w∗

m by ε, saving
c letters in total. The yellow jersey can be treated similarly.

Now suppose the pawn in n − c is a chaser, but not the lanterne rouge.
Let v be any synchronizing word for all other pawns. We can make this into a
synchronizing word u for all pawns as follows. Start reading v and each time
the chaser is in n − c, either insert b̃ or replace a by ã. Inserting b̃ minimizes
the length of u, since it always brings the chaser one step closer to its target,
thus reduces the number of visits to n− c. Since u still synchronizes the lanterne
rouge and the yellow jersey, it synchronizes S. Finally, note that w has to be
the extension of some word v as above, completing the proof in this case. If the
pawn starting in n − c is a resigner, a similar (slightly simpler) proof works. 	
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Suppose the yellow jersey starts in j ∈ [n′]. To simplify the further inves-
tigation, we will first look to the shortest full synchronizing word, which is the
shortest word that synchronizes all pawns into state j. Now consider an arbitrary
set S ⊆ [n′]. By Claim 2(ii) and (iii) a shortest full synchronizing word for S has
a prefix of the form

w = awn′awn′−1a . . . aw3aw2aw1awn, with wk ∈ {ε, bc, bc+1}. (1)

A word of this form will be called an iteration word. If w is a prefix of a shortest
full synchronizing word for S and wb is not, then w is an optimal iteration word.

Lemma 4. Let w be an optimal iteration word for S ⊆ [n′] which agrees with
the strategy of Lemma 3. Then

(i) For k �∈ S, we have wk = ε. For k ∈ S, we have wk = bc or wk = bc+1.
(ii) For all k ∈ S,

kw =
{

k if wk = bc,
k + 1 mod n′ if wk = bc+1.

(iii) If wn′ = bc+1, then wn = bc+1. If wn′ �= bc+1, then wn = ε.

Proof. The word w has the following properties for 1 ≤ k ≤ n′:

kw =

⎧
⎨

⎩

⊥ if wk = ε
k if wk = bc

k + 1 if wk = bc+1, k �= n′.
(2)

Since wk only can affect a pawn in state k, we observe that wk = ε if and only
if k �∈ S, proving the first statement. Now consider a pawn starting in state
n′. If wn′ = bc+1, then it follows from Lemma 3 that this pawn is a chaser.
Write w = vwn. Then n′v = n − c and kv = kw �= n − c for all k �= n′.
Therefore, the pawn under consideration did not merge yet and is still chasing.
Hence, again using Lemma 3, it is optimal to choose wn = bc+1. This means that
n′w = n′vwn = (n − c)bc+1 = 1. Together with Eq. (2), this proves the second
statement.

If wn′ = bc or wn′ = ε, then Sv ⊆ [n′]. By Lemma 2 (iii), a shortest synchro-
nizing word for S then starts with va so that wn = ε. 	

Proof (of Theorem 1). The idea of Lemma 4 is that an iteration word can be
used to decide for every pawn if it has to move one step (at the cost of c + 1
letters b and possible more if we needed wn = bc+1), or to stay where it is (at
the cost of c letters b). The optimal choice depends on the pawn being a chaser
or a resigner. After applying an optimal iteration word, all pawns will be located
on a subset of [n′]. Consequently, every shortest full synchronizing word can be
partitioned into iteration words.

As the yellow jersey starts in j ∈ [n′], the lanterne rouge starts in j + 1
mod n′. Observe that after each iteration, the lanterne rouge (being a chaser)
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will have moved from � to � + 1 (mod n′), while the yellow jersey is still at j.
After n′ − 1 iterations, both the lanterne rouge and the yellow jersey and hence
all initial pawns are in j. For the shortest synchronizing word, we can delete
aj−1 from the shortest full synchronizing word.

Hence the number of letters a in a shortest synchronizing word equals (n′−1)·
(n′ +1)−(j −1). We have used c+1 letters b in the beginning and at least fc(n′)
letters b in all iteration words. By Lemma 4 (iii), there is an additional cost of
c + 1 letters b for each iteration word with wn′ = bc+1. Now suppose the yellow
jersey starts in j = n′. This minimizes the number of a’s. Furthermore, since
the yellow jersey is always a resigner, wn′ = bc in each iteration. Consequently,
there will be no additional costs for wn, so that the minimal possible length as
given in Theorem 1 is attained for j = n′. 	


4 Recursive and Asymptotic Results

We will now turn our attention to the analysis of Problem 5. The following
proposition gives a recursive formula for the solution.

Proposition 1. The function fc satisfies fc(1) = 0 and fc(n) = min{fc(i) +
fc(n − i) + (c + 1)n − i | n

2 ≤ i ≤ n − 1}.

Proof. In Problem 1, we define chasers and resigners as before. Since we now
work on Z, the pawn at 1 is the lanterne rouge and the pawn at n is the yellow
jersey. In total we will need n − 1 iterations. Let σj(k) be the position after
j iterations of the pawn that starts in k. After n − 2 iterations, all pawns are
merged into the lanterne rouge at n − 1 and the yellow jersey at n. Let I =
σ−1

n−2(n−1) = {1, 2, . . . , i} (being the peloton) and J = σ−1
n−2(n) = {i+1, . . . , n}

(being the first group). See also Fig. 2.
Now note that i is a resigner until the full peloton has merged into one pawn

in position i. The minimal cost for this is equal to fc(i). In each of the remaining
n − i iterations, this pawn will be a chaser at cost c + 1. Similarly, the pawn
starting in i + 1 is a chaser until the first group has merged into one pawn in
position n. This takes n − i − 1 iterations and the minimal cost to merge the
first group is fc(n − i). In the remaining i iterations, the pawn at n is a resigner
at cost c.

So the minimum cost is indeed fc(i)+ fc(n− i)+ (c+1)n− i, where we have
to minimize over all possible 1 ≤ i ≤ n−1. Since fc(i)+fc(n− i) is a symmetric
function around n

2 and (c+1)n−i is decreasing in i, we also know n
2 ≤ i ≤ n−1,

Hence we have determined the recursion for the function fc. 	

In Fig. 2 we have presented three ways in which the minimum cost can be

attained when c = 1 and n = 7 (the pawn at place 3 having two choices in the
right part). Here resigners are drawn amber (light) and chasers red (dark). In
the optimal races in this example, there are either 8 chasers and 13 resigners or
9 chasers and 11 resigners. The total cost f1(7) therefore is

f1(7) = 8 · 2 + 13 · 1 = 9 · 2 + 11 · 1 = 29.



Extremal Binary PFAs in a Černý Family 85

1 12 23 34 45 56 67 7

1

2

3

4

5

6

Fig. 2. The three optimal races for n = 7 and c = 1. The positions are indicated above
and the iterations are numbered in the middle. The peloton has size 5 in the left race
and size 4 in the other two races.

Computing f1(1), . . . , f1(5) by the recursion gives 0, 3, 7, 12, 17 which can be
used to alternatively express the total cost f1(7) by

f1(7) = f1(5) + f1(2) + 2 · 7 − 5 = f1(4) + f1(3) + 2 · 7 − 4 = 29.

We will not solve the recursion analytically for all c, but the next result does
determine the order of growth of the function fc(n).

Proposition 2. For all c ≥ 0 and n ≥ 1, we have

cn log2(n) ≤ fc(n) ≤ (c + 1)n�log2(n).
Proof. Both bounds can be proven by induction, the base case for n = 1 being
true. For the lower bound, fix n and assume that ci log2 i ≤ fc(i) for i < n. This
implies that for every 1 ≤ i ≤ n − 1 we have that

fc(i) + fc(n − i) + (c + 1)n − i ≥ c (i log2 i + (n − i) log2(n − i) + n) .

Note that i log2 i+(n−i) log2(n−i) is minimized when i = n
2 since its derivative

(as a function of i for n fixed) is log2 i − log2(n − i). Plugging in i = n
2 gives

cn log2 n on the right hand side. So, we have cn log2 n ≤ fc(n) and we conclude
by mathematical induction.

For the upper bound, assuming it is true for values strictly smaller than n
(where n > 1), we have

fc(n) ≤ fc

(⌊n

2

⌋)
+ fc

(⌈n

2

⌉)
+ (c + 1)n

≤ (c + 1)n
⌈
log2

(⌈n

2

⌉)⌉
+ (c + 1)n

= (c + 1)n�log2(n).
So again by mathematical induction the bound does hold for every n. 	
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As a corollary of this result, we determine the asymptotic growth of maximal
reset thresholds in the Černý family.

Theorem 2. Denoting the reset threshold of Cc
n by r(Cc

n), we have

max
c

r(Cc
n) ∼ n2

4
log2(n).

The optimal choice for c satisfies c = n
2 − o(n).

Proof. By Theorem 1 and the fact that n′(n′ − 1) + c + 1 ≤ n2 = o(n2 log2(n))
for n′ = n − c − 1, it is sufficient to prove that maxc fc(n − c − 1) ∼ n2

4 log2(n).
By Proposition 2, we have for the upper bound that

fc(n−c−1) ≤ (c+1)(n−c−1)�log2(n−c−1)� ≤ n2

4
�log2(n)� = (1+o(1))

n2

4
log2(n).

For the lower bound, we choose c =
⌊

n−1
2

⌋
and from the lower bound in Propo-

sition 2 we get that

fc(n − c − 1) ≥ c(n − c − 1) log2(n − c − 1)

≥ (n − 1)2 − 1
4

log2(n/2 − 1)

= (1 − o(1))
n2

4
log2(n).

The two bounds together imply the result. It is not hard to see from these
computations that the optimal choice for c satisfies c = n

2 − o(n). 	


5 Explicit Solution of the Pawn Race Problem for Small c

In this section, we determine the exact solution of Problem 1 for small c, from
which by Theorem 1 the exact expressions for the reset thresholds of Cc

n for all
n follow as well.

When c = 0, we see that the lanterne rouge has to move n−1 times and if the
other pawns do not move, we get the minimum cost of n − 1, i.e. f0(n) = n − 1.
This result can also immediately be derived from Proposition 1. Theorem 1 now
gives that the reset threshold of C0

n is indeed equal to (n−1)(n−2)+1+(n−2) =
(n − 1)2, thus giving an alternative proof for the well-known reset thresholds of
the Černý sequence.

When c = 1, our approach is based on solving the recursion given in Propo-
sition 1 for f1(n), which will be abbreviated to f(n). The Fibonacci numbers
(Fn)n play an important role in the analysis. They are recursively defined by
F0 = 0, F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for every n ≥ 3.

Lemma 5. For any integer n ≥ 1 and the unique corresponding m such that
Fm−1 < n ≤ Fm, we have f(n) = nm − Fm+1.



Extremal Binary PFAs in a Černý Family 87

We illustrate the statement for n = 7. Since F5 = 5, F6 = 8 and F7 = 13, we
find m = 6 and therefore f(7) = 7 · 6 − 13 = 29, in agreement with the example
in the previous section.

Proof. We will prove this lemma by induction.

Induction Basis. Proposition 1 gives f(1) = 0 and f(2) = 3. We verify the result
of Lemma 5. When n = 1, we find m = 1 and f(n) = 1 ·1−F2 = 0. When n = 2,
we find m = 3 and f(n) = 2 · 3 − F4 = 3. So the base case is true.

Induction Hypothesis. For any integer 2 ≤ m ≤ k − 1 and any n with Fm−1 <
n ≤ Fm, we have f(n) = nm − Fm+1.

Induction Step. Take any n for which Fk−1 < n ≤ Fk. We first prove that
f(n) ≥ nk − Fk+1. For this, we have to do some case distinction. By observing
that Fk−3 < n

2 ≤ i ≤ n − 1 < Fk, there are only three cases to consider.

1. Case Fk−3 < i ≤ Fk−2. Note that Fk−3 = Fk−1 − Fk−2 < n − i ≤ i ≤ Fk−2

and hence

f(i) + f(n − i) + 2n − i = (k − 2)i − Fk−1 + (k − 2)(n − i) − Fk−1 + 2n − i

= (k − 2)n − 2Fk−1 + 2n − i

= nk − 2Fk−1 − i ≥ nk − Fk+1,

with equality if and only if i = Fk−2.
2. Case Fk−2 < i ≤ Fk−1. We have Fk′−1 < n − i ≤ Fk′ for some 1 ≤ k′ ≤ k − 1

in this case. If k′ = k − 1, we have

f(i) + f(n − i) + 2n − i = kn − 2Fk + n − i > kn − 2Fk + Fk−2 = kn − Fk+1.

If k′ ≤ k − 2, we note that

f(i) + f(n − i) + 2n − i = (k − 1)i − Fk + k′(n − i) − Fk′+1 + 2n − i

= nk − Fk − Fk′+1 − (k − 2 − k′)(n − i)
≥ nk − Fk − Fk′+1 − (k − 2 − k′)Fk′

≥ nk − Fk − Fk′+1 − (Fk′ + Fk′+1 + . . . + Fk−3)

= nk − Fk − Fk′+1 −
k−1∑

i=k′+2

(Fi − Fi−1)

= nk − Fk − Fk−1 = nk − Fk+1.

Equality holds if k′ = k − 2 or if k′ = k − 3 and n − i = Fk′ . Also k′ = k − 4
can still give equality if 2(n − i) = 2Fk−4 = Fk−4 + Fk−3, which gives k = 5,
k′ = 1, n = 4 and i = 3. To have equality for k′ ≤ k − 5, we would need at
least three consecutive terms in the Fibonacci sequence to be equal. So no
more cases of equality exist.
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3. Case Fk−1 < i < Fk. Choose k′ such that Fk′−1 < n − i ≤ Fk′ (note k′ ≤
k − 2), we have

f(i) + f(n − i) + 2n − i = ki − Fk+1 + k′(n − i) − Fk′+1 + 2n − i

= nk − Fk+1 − (k − k′ − 2)(n − i) − Fk′+1 + i

> nk − Fk+1 − (k − k′ − 2)Fk′ − Fk′+1 + Fk−1

= nk − Fk − Fk′+1 − (k − 2 − k′)Fk′ ≥ nk − Fk+1,

where the last inequality was already proved in the previous case.

We conclude that f(n) = min{f(i) + f(n − i) + 2n − i | n
2 ≤ i ≤ n − 1} ≥

nk − Fk+1 and since equality occurs for i = Fk−2 when n ≤ 2Fk−2 and for
i = n − Fk−2 when n > 2Fk−2, we have f(n) = nk − Fk+1. By mathematical
induction, the result holds for all positive integers. 	

Furthermore one can observe that there is a unique i such that f(n) = f(i) +
f(n − i) + 2n − i if and only if n is of the form Fk, in which case i = Fk−1.

This result leads to the following theorem, which appeared in [1] without
proof and without the uniqueness claim. As a corollary, it follows that for every
n ≥ 6 there is a binary PFA with reset threshold larger than the maximum
known for DFAs. To our best knowledge, so far this was only proved to hold
asymptotically and for 6 ≤ n ≤ 10, see [1].

Theorem 3. For n ≥ 3, let m be the unique integer for which Fm−1 < n − 2 ≤
Fm. If w is a shortest synchronizing word for C1

n, then

|w| = n2 + mn − 5n − Fm+1 − 2m + 8 = n2 +
n log(n)
log(φ)

− Θ(n).

Furthermore, |w| > (n − 1)2 for n ≥ 6 and the shortest synchronizing word is
unique if and only if n − 2 is a Fibonacci number.

Proof. The exact expression follows from Theorem 1 and Lemma 5. Hence

|w| − (n − 1)2 = (m − 3)n − Fm+1 − 2m + 7
≥ (m − 3)(Fm−1 + 3) − Fm+1 − 2m + 7
= (m − 6)Fm−1 + Fm−3 + m − 2 ≥ 1

whenever m ≥ 5. This is the case for n ≥ F4 + 3 = 6.
A closed form for the Fibonacci numbers can be given by Binet’s formula,

Fk = (φk − (−φ)−k)/
√

5, where φ = (1+
√

5)/2 is the golden ratio. We therefore
obtain m = log(n)

log(φ) + O(1) from which the asymptotic expression can be derived
by checking the coefficients of the linear terms. 	

Corollary 1. If the Černý conjecture holds, then p(n, 2) > d(n) for all n ≥ 6.
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For c = 2, it turns out that the Padovan sequence is the key for the analysis
of the pawn race problem. The Padovan sequence is defined by P1 = 0, P2 =
P3 = P4 = 1 and Pn = Pn−2 + Pn−3 for every n ≥ 4. This sequence grows
exponentially with a rate equal to ψ which is the real solution for x3 = x + 1.
An analogous case analysis as has been done for Lemma 5 can be executed to
obtain the following results, presented without proof due to space limitations.

Lemma 6. For any integer n ≥ 1 and corresponding m such that Pm−1 < n ≤
Pm, we have f2(n) = nm − Pm+4.

Theorem 4. For n ≥ 4, let m be the unique integer for which Pm−1 < n − 3 ≤
Pm. If w is a shortest synchronizing word for C2

n, then

|w| = n2 + mn − 7n − Pm+4 − 3m + 15 = n2 +
n log(n)
log(ψ)

+ O(n).

We wrap up with some concluding remarks. We are working on an extended
version of this paper, in which we give a more insightful proof of Lemma 5 which
works for all c. The Černý family presented in this paper contains for all n ≤ 10 a
binary PFA with n states and maximal possible reset threshold. The asymptotic
growth in the family can be bounded by a polynomial in n (Theorem 2). On the
other hand, constructions with exponential growth are known to exist. So for
n large enough, the PFAs in this family are not extremal. In our forthcoming
extended version, we will show that for every n ≥ 41, there exists a binary PFA
with n states and larger reset threshold than the PFAs with n states in this
family. This still leaves a significant range open.
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Problem for Free Groups
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Abstract. The Post Correspondence Problem is a classical decision
problem about equalisers of free monoid homomorphisms. We prove
connections between several variations of this classical problem, but in
the setting of free groups and free group homomorphisms. Among other
results, and working under certain injectivity assumptions, we prove that
computing the rank of the equaliser of a pair of free group homomor-
phisms can be applied to computing a basis of this equaliser, and also to
solve the “generalised” Post Correspondence Problem for free groups.

Keywords: Post Correspondence Problem · Free group · Rational
constraint

1 Introduction

In this article we connect several variations of the classical Post Correspondence
Problem in the setting of free groups. The problems we consider have been
open since the 1980s, and understanding how they relate and compare to their
analogues in free monoids could bring us closer to their resolution. All problems
are defined in Table 1, while their status in free groups and monoids is given in
Table 2. However, three of these problems deserve proper introductions.

We first consider the Post Correspondence Problem (PCP) for free groups.
This is analogous to the classical Post Correspondence Problem, which is about
free monoids rather than free groups and has numerous applications in mathe-
matics and computer science [11]. The PCP for other classes of groups has been
successfully studied (see for example [17, Theorem 5.8]), but it remains open for
free groups, where it is defined as follows. Let Σ and Δ be two alphabets, let
g, h : F (Σ) → F (Δ) be two group homomorphisms from the free group over Σ
to the free group over Δ, and store this data in a four-tuple I = (Σ,Δ, g, h),
called an instance of the PCP. The PCP is the decision problem:

Given I = (Σ,Δ, g, h), is there x ∈ F (Σ) \ {1} such that g(x) = h(x)?

That is, if we consider the equaliser Eq(g, h) = {x ∈ F (Σ) | g(x) = h(x)}
of g and h, which is a subgroup of F (Σ), the PCP asks if Eq(g, h) is non-
trivial. Determining the decidability of this problem is an important question [6,
Problem 5.1.4] [17, Section 1.4].
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Our second problem asks not just about the triviality of Eq(g, h), but for a
finite description of it. We write PCPinj (see Table 1) for the PCP with at least
one map injective, in which case the subgroup Eq(g, h) is finitely generated [10]
and a finite description relates to bases (as defined in Sect. 2): The Basis Problem
(BP) takes as input an instance I = (Σ,Δ, g, h) of the PCPinj and outputs a
basis for Eq(g, h). In Sect. 8 we show that the BP is equivalent to the Rank
Problem (RP), which seeks the number of elements in a basis, and was asked by
Stallings in 1984. Recent results settle the BP for certain classes of free group
maps [2–4,8], but despite this progress its solubility remains open in general. The
analogous problem for free monoids, which we call the Algorithmic Equaliser
Problem (AEP) (see [4, page 2]) because it aims to describe the equaliser in
terms of automata rather than bases, is insoluble [14, Theorem 5.2].

Our third problem is the generalised Post Correspondence Problem (GPCP),
which is an important generalisation of the PCP for both free groups and
monoids from 1982 [7]. For group homomorphisms g, h : F (Σ) → F (Δ) and
fixed elements u1, u2, v1, v2 of F (Δ), an instance of the GPCP is an 8-tuple
IGPCP = (Σ,Δ, g, h, u1, u2, v1, v2) and the GPCP itself is the decision problem:

Given IGPCP = (Σ,Δ, g, h, u1, u2, v1, v2),
is there x ∈ F (Σ) \ {1} such that u1g(x)u2 = v1h(x)v2?

Table 1. Summary of certain decision problems related to the PCP

Fixed: finite alphabets Σ and Δ and free groups F (Σ), F (Δ).

Problems Input: homomorphisms g, h : F (Σ) → F (Δ)

(for free groups)

Additional input for GPCP: u1, u2, v1, v2 ∈ F (Δ)

Additional input for PCPR: rational set R ⊆ F (Σ)

Additional input for PCPEL: a, b ∈ Σ±1, Ω ⊂ Σ

Is it decidable whether:

PCP there exists x ∈ F (Σ) \ {1} s.t. g(x) = h(x)?

GPCP there exists x ∈ F (Σ) \ {1} s.t. u1g(x)u2 = v1h(x)v2?

PCPR there exists x �= 1 in R s.t. g(x) = h(x)?

PCPEL there exists x ∈ F (Σ) \ {1} s.t. g(x) = h(x) and
x decomposes as a freely reduced word ayb for some y ∈ F (Ω)

PCP(¬ inj,¬ inj) PCP with neither g, nor h injective

PCP(¬ inj,inj) PCP with exactly one of g, h injective

PCP(inj,inj) PCP with both g, h injective

PCPinj PCP(¬ inj,inj) ∪ PCP(inj,inj) (i.e. PCP with at least one of g, h injective)

PCPCI PCP with g, h s.t. g(y) �= u−1h(y)u for all u ∈ F (Δ), y ∈ F (Σ) \ {1}
PCPinj +CI PCPinj ∩ PCPCI

PCP(n) PCP(n) for alphabet size |Σ| = n

variants for
GPCP& PCPEL

GPCPinj, PCPinj
EL, GPCPinj +CI, GPCP(n), PCPEL(n), etc.

analogue to PCP variants
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For free monoids, the PCP is equivalent to the GPCP [11, Theorem 8]. The
corresponding connection for free groups is more complicated, and explaining
this connection is the main motivation of this article. In particular, the GPCP
for free groups is known to be undecidable [17, Corollary 4.2] but this proof does
not imply that the PCP for free groups is undecidable (because of injectivity
issues; see Sect. 3). In Theorem 4 we connect the PCP with the GPCP via a
sequence of implications, and require at least one map to be injective.

Main Theorem. Theorem A summarises the connections established in this
paper (arrows are labeled by the section numbers where the implications are
proven), and Sect. 9 brings all the results together. Given two algorithmic prob-
lems P and Q, we write P =⇒ Q to mean that Q is Turing reducible to P (that
is, if we can solve P then we can solve Q). Note that asking for both maps to
be injective refines the results in this theorem, as does restricting the size of the
source alphabet Σ (see Theorem 9). All our result are for finitely generated free
groups, which we abbreviate to f.g. free groups.

Theorem A (Theorem 9). The following implications hold in f.g free groups.

Rank Problem (RP)

Basis Problem (BP) GPCPinj PCP GPCPinj +CI

PCPinj
R

6

4

8

6 7.2

Establishing the decidability of Stallings’ Rank Problem is thus of central
importance, as the chain RP ⇒ GPCPinj ⇒ PCP obtained above would lead to
the decidability of the PCP.

Rational Constraints. The proof of the implication BP ⇒ GPCPinj above
uses the PCPinj with a certain rational constraint, namely the problem PCPinj

EL
(see Table 1). The relationship between the GPCP and the PCPEL still holds if
neither map is injective. As the GPCP for free groups is undecidable in general,
this connection yields Theorem B, which specifies a rational constraint R such
that the PCPR is undecidable.

Theorem B (Theorem 3). The PCPEL is undecidable in f.g. free groups.

Random Homomorphisms and Generic Behaviour. A different perspec-
tive on the PCP and its variations is to consider the behaviour of these problems
when the pairs of homomorphisms are picked randomly (while the two alpha-
bets Σ = {x1, . . . , xm} and Δ, and ambient free groups F (Σ) and F (Δ) remain
fixed). Any map is completely determined by how it acts on the generators, and
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so picking g and h randomly is to be interpreted as picking (g(x1), . . . , g(xm)) and
(h(x1), . . . , h(xm)) as random tuples of words in F (Δ) (see Sect. 7 for details).
There is a vast literature (see for example [13]) on the types of objects and
behaviours which appear with probability 1, called generic, in infinite groups. In
this spirit, the generic PCP refers to the PCP applied to a generic set (of pairs)
of maps, that is, a set of measure 1 in the set of all (pairs of) homomorphisms,
and we say that the generic PCP is decidable if the PCP is decidable for ‘almost
all’ instances, that is, for a set of measure 1 of pairs of homomorphisms.

In Sect. 7 we describe the setup used to count pairs of map and compute
probabilities, and show that among all pairs of homomorphisms g, h, the property
of being conjugacy inequivalent (that is, for every u ∈ F (Δ) there is no x �= 1
in F (Σ) such that g(x) = u−1h(x)u; defined in Table 1 as PCPCI) occurs with
probability 1; that is, conjugacy inequivalent maps are generic. This follows from
the fact that ‘most’ pairs of maps are injective and conjugacy inequivalent:

Theorem C (Theorem 5). With probability 1, an arbitrary pair of homo-
morphisms consists of injective homomorphisms that are conjugacy inequivalent.
That is, instances of the PCPinj +CI are generic instances of the PCP.

Theorem C shows that the implication PCP ⇒ GPCPinj +CI in Theorem A
is the generic setting, and hence for ‘almost all maps’ we have PCP ⇔ GPCP.

We conclude the introduction with a summary of the status of the PCP and
its variations for free monoids and groups. We aim to study the computational
complexity of these problems and how this complexity behaves with respect to
the implications proved in this paper in future work.

Table 2. Status of results for free monoids and free groups

Problems In free monoids References In free groups References

for free monoids for free groups

general PCP undecidable [19] unknown [4]

general AEP / BP undecidable [14, Theorem 5.2] unknown [4]

PCP(¬ inj,¬ inj) undecidable [19] decidable Lemma 1

PCPinj undecidable [15] unknown

GPCP undecidable [11, Theorem 8] undecidable [17, Corollary 4.2]

GPCP(¬ inj,¬ inj) undecidable [11, Theorem 8] undecidable Lemma 2

GPCPinj undecidable [15] unknown

GPCPinj +CI N/A unknown

PCPR undecidable [19] undecidable Theorem B

PCPinj +CI N/A unknown

generic PCP decidable [9, Theorem 4.4] decidable [5]
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2 Free Group Preliminaries

For an alphabet Σ, let Σ−1 be the set of formal inverses of Σ, and write Σ±1 =
Σ ∪ Σ−1. For example, if Σ = {a, b} then Σ±1 = {a, b, a−1, b−1}.

We denote the free group with finite generating set Σ by F (Σ), and view
it as the set of all freely reduced words over Σ±1, that is, words not containing
xx−1 or x−1x as subwords, where x ∈ Σ±1, together with the operations of
concatenation and free reduction (that is, the removal of any xx−1 that might
occur when concatenating two words). If S ⊂ F (Σ) is a set in the free group,
then 〈S〉 denotes the subgroup generated by S, which is the minimal subgroup
of F (Σ) containing S (equivalently, it is the subgroup of F (Σ) consisting of
elements corresponding to words over S±1). If S has minimal cardinality among
all generating sets of 〈S〉 then S is a basis for 〈S〉, and |S| is the rank of 〈S〉,
written rk(〈S〉); in particular, Σ is a basis for F (Σ) and rk(F (Σ)) = |Σ|. We
will often use the fact that a homomorphism f : F (Σ) → F (Δ) is injective if
and only if the image Im(f) has rank |Σ| as a subgroup of F (Δ).

The above definition of free groups is similar to the definition of the free
monoid Σ∗ as words over Σ under concatenation. However, the presence of
inverse elements is an important difference and gives rise to specific notation:
If u, v ∈ F (Σ) then vu denotes the element u−1vu, and we say that v and vu

are conjugate, while if H ⊆ F (Σ) then Hu denotes the set {xu | x ∈ H}. If
u, v ∈ F (Σ) then we write [u, v] := u−1v−1uv for their commutator.

3 Non-injective Maps: PCP(¬ inj,¬ inj) and GPCP(¬ inj,¬ inj)

The PCP for Non-injective Maps. We first prove that the PCP(¬ inj,¬ inj)

is trivially decidable, with the answer always being “yes”.

Lemma 1. If g, h : F (Σ) → F (Δ) are both non-injective homomorphisms then
Eq(g, h) is non-trivial.

Proof. We prove that ker(g) ∩ ker(h) is non-trivial, which is sufficient. Let u ∈
ker(g) and v ∈ ker(h) be non-trivial elements. If 〈u, v〉 ∼= Z = 〈x〉, there exist
integers k, l such that u = xk and v = xl. Then g(xkl) = 1 = h(xkl) so xkl ∈
ker(g) ∩ ker(h) with xkl non-trivial, as required. If 〈u, v〉 � Z then g([u, v]) =
1 = h([u, v]), so [u, v] ∈ ker(g) ∩ ker(h) with [u, v] non-trivial, as required. ��

As we can algorithmically determine if a free group homomorphism is injec-
tive (e.g. via Stallings’ foldings), Lemma 1 gives us that PCP ⇔ PCPinj for fixed
alphabet sizes:

Proposition 1. PCP(n) ⇐⇒ PCPinj(n)
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The GPCP for Non-injective Maps. Myasnikov, Nikolaev and Ushakov
defined the PCP and GPCP for general groups in [17]. Due to this more general
setting their formulation is slightly different to ours but, from a decidability
point of view, the problems are equivalent for free groups. They proved that the
GPCP is undecidable for free groups; however, from their proof we observe that
it assumes both maps are non-injective. Therefore, GPCPinj remains open.

Lemma 2. The GPCP(¬ inj,¬ inj) is undecidable.

Proof. Let H be a group with undecidable word problem and let 〈x | r〉 be a
finite presentation of H. Let Δ := x, and let F (Σ) have basis

Σ := {(x, x−1) | x ∈ x}∪{(x−1, x) | x ∈ x}∪{(R, 1) | R ∈ r}∪{(R−1, 1) | R ∈ r}.

Define maps g : (p, q) �→ p and h : (p, q) �→ q for (p, q) ∈ Σ. Neither g nor h is
injective as the product (x, x−1)(x−1, x) ∈ F (Σ) is in the kernel of both g and
h. Taking w ∈ F (Δ), the instance (Σ,Δ, g, h, w, 1, 1, 1) of the GPCP(¬ inj,¬ inj)

has a solution if and only if the word w defines the identity of H [17, Proof of
Proposition 4.1]. The result now follows as H has undecidable word problem. ��

4 The PCP Under Rational Constraints: PCPR

For an alphabet A, a language L ⊆ A∗ is regular if there exists some finite state
automaton over A which accepts exactly the words in L. Let π : (Σ±1)∗ → F (Σ)
be the natural projection that maps any word over Σ±1 to the corresponding
element in the free group F (Σ). A subset R ⊆ F (Σ) is rational if R = π(L) for
some regular language L ⊆ (Σ±1)∗.

In this section we consider the PCPinj
R , which is the PCPinj subject to a

rational constraint R (see Table 1). We prove that the PCPinj
R under any rational

constraint R can be solved via the Basis Problem (BP) (so BP ⇒ PCPinj
R from

Theorem A). In Sect. 5 we apply this to prove BP ⇒ GPCPinj from Theorem A,
as the PCPinj

EL is simply the PCPinj under a specific rational constraint.
Our results here, as in much of the rest of the paper, are broken down

in terms of injectivity, and also alphabet sizes; see Table 1. Understanding for
which sizes of alphabet Σ the classical Post Correspondence Problem is decid-
able/undecidable is an important research theme [7,11,18].

Theorem 1. The following implications hold in f.g. free groups.

1. BP(¬ inj,inj)(n) =⇒ PCP(¬ inj,inj)
R (n)

2. BP(inj,inj)(n) =⇒ PCP(inj,inj)
R (n)

Proof. Let g, h be homomorphisms from F (Σ) to F (Δ) such that at least one
of them is injective. Their equaliser Eq(g, h) is a finitely generated subgroup of
F (Σ) [10], so Eq(g, h) is a rational set (see for example Sect. 3.1 in [1]).
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By assumption the Basis Problem is soluble, so we can compute a basis for
Eq(g, h). This is equivalent to finding a finite state automaton A (called a “core
graph” in the literature on free groups; see [12]) that accepts the set Eq(g, h).

Let R be a rational set in F (Σ). The PCPR for g and h is equivalent to deter-
mining if there exists any non-trivial x ∈ R ∩ Eq(g, h). Since the intersection of
two rational sets is rational, and an automaton recognising this intersection is
computable by the standard product construction of automata, one can deter-
mine whether R ∩ Eq(g, h) is trivial or not, and thus solve PCPR. ��

In the next section we consider the PCPEL, which is the PCP under a certain
rational constraint, and so is a specific case of PCPR.

5 The GPCP and Extreme-Letter Restrictions

In this section we connect the GPCP and the PCPEL, as defined in Table 1. This
connection underlies Theorem B, as well as the implications BP ⇒ GPCPinj and
PCP ⇒ GPCPinj +CI in Theorem A.

Connecting the GPCP and the PCP. We start with an instance IGPCP =
(Σ,Δ, g, h, u1, u2, v1, v2) of the GPCP and consider the instance

IPCP = (Σ � {B,E},Δ � {B,E,#}, g′, h′)

of the PCP, where g′ and h′ are defined as follows.

g′(z) :=

⎧
⎪⎨

⎪⎩

#−1g(z)# if z ∈ Σ

B#u1# if z = B

#−1u2#E if z = E

h′(z) :=

⎧
⎪⎨

⎪⎩

#h(z)#−1 if z ∈ Σ

B#v1#−1 if z = B

#v2#E if z = E

Injectivity is preserved by this construction as rk(Im(g′)) = rk(Im(g)) + 2
(see Sect. 2 for the connection between injectivity and rank): this can be seen via
Stallings’ foldings [12], or directly by noting that the image of g′ restricted to
F (Σ) is isomorphic to Im(g), that B only occurs in g′(d) and E only occurs in
g′(e). Analogously, h′ is an injection if and only if h is, as again rk(Im(h))+2 =
rk(Im(h′)). Thus we get:

Lemma 3. The map g′ is injective if and only if g is, and the map h′ is injective
if and only if h is.

We now connect the solutions of IGPCP to those of IPCP.

Lemma 4. A word y ∈ F (Σ) is a solution to IGPCP if and only if the word
‘ByE’ is a solution to IPCP.
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Proof. Starting with y being a solution to IGPCP, we obtain the following
sequence of equivalent identities:

u1g(y)u2 = v1h(y)v2
B#(u1g(y)u2)#E = B#(v1h(y)v2)#E

B#u1# · #−1g(y)# · #−1u2#E = B#v1#−1 · #h(y)#−1 · #v2#E

g′(B)g′(y)g′(E) = h′(B)h′(y)h′(E)
g′(ByE) = h′(ByE).

Therefore ByE is a solution to IPCP, so the claimed equivalence follows. ��
We now have that PCPinj

EL(n + 2) =⇒ GPCPinj(n).

Theorem 2. The following implications hold in f.g. free groups.

1. PCP(¬ inj,inj)
EL (n + 2) =⇒ GPCP(¬ inj,inj)(n)

2. PCP(inj,inj)
EL (n + 2) =⇒ GPCP(inj,inj)(n)

Proof. Let IGPCP be an instance of the GPCPinj, and construct from it the
instance IPCPEL = (Σ � {B,E},Δ � {B,E,#}, g′, h′, B,Σ,E) of the PCPEL,
which is the instance IPCP defined above under the constraint that solutions
have the form ByE for some y ∈ F (Σ).

By Lemma 3, IPCPEL is an instance of the PCP(¬ inj,inj)
EL (n + 2) if and only if

IGPCP is an instance of GPCP(¬ inj,inj)(n), and similarly for PCP(inj,inj)
EL (n + 2)

and GPCP(inj,inj)(n). The result then follows from Lemma 4. ��
The above does not prove that PCPinj ⇔ GPCPinj, because IPCP might

have solutions of the form BxB−1 or E−1xE. For example, if we let IGPCP =
({a}, {a, c, d}, g, h, c, ε, ε, d) with g(a) = a and h(a) = cac−1, then there is no
x ∈ F (a) such that cg(a) = h(a)d, but defining g′, h′ as above then BaB−1 ∈
Eq(g′, h′). In Sect. 7.2 we consider maps where such solutions are impossible,
and there the equivalence PCPinj ⇔ GPCPinj does hold.

Undecidability of PCPEL. The link between the GPCP and PCPEL yields
the following theorem, which immediately implies Theorem B.

Theorem 3 (Theorem B). PCP(¬ inj,¬ inj)
EL is undecidable in f.g. free groups.

Proof. We have PCP(¬ inj,¬ inj)
EL ⇒ GPCP(¬ inj,¬ inj) by Lemmas 3 and 4. The

result follows as GPCP(¬ inj,¬ inj) is undecidable by Lemma 2. ��

6 Main Results: Part 1

Here we combine results from the previous sections to prove certain of the impli-
cations in Theorem A. The implications we prove refine Theorem A, as they
additionally contain information on alphabet sizes and on injectivity.
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Theorem 4. The following implications hold in f.g. free groups.

1. BP(¬ inj,inj)(n + 2) =⇒ GPCP(¬ inj,inj)(n) =⇒ PCP(¬ inj,inj)(n)
2. BP(inj,inj)(n + 2) =⇒ GPCP(inj,inj)(n) =⇒ PCP(inj,inj)(n)

Proof. As PCP(¬ inj,inj)
EL is an instance of the PCPinj under a rational constraint,

Theorem 1 gives us that BP(¬ inj,inj)(n+2) ⇒ PCP(¬ inj,inj)
EL (n+2), while Theorem

2 gives us that PCP(¬ inj,inj)
EL (n + 2) ⇒ GPCP(¬ inj,inj)(n), and the implication

GPCP(¬ inj,inj)(n) ⇒ PCP(¬ inj,inj)(n) is obvious as instances of the PCP are
instances of the GPCP but with empty constants ui, vi. Sequence (1), with one
map injective, therefore holds, while the proof of sequence (2) is identical. ��

Removing the injectivity assumptions gives the following corollary; the impli-
cations BP ⇒ GPCPinj ⇒ PCP of Theorem A follow immediately.

Corollary 1. BP(n + 2) =⇒ GPCPinj(n) =⇒ PCP(n)

Proof. Theorem 4 gives that BP(n + 2) ⇒ GPCPinj(n) ⇒ PCPinj(n), while
PCP(n) ⇔ PCPinj(n) by Proposition 1. ��

7 Conjugacy Inequivalent Maps: PCPCI and PCPinj+CI

In this section we prove genericity results and give conditions under which the
PCP implies the GPCP. In particular, we prove Theorem C, and we prove the
implication PCP ⇒ GPCPinj +CI from Theorem A.

A pair of maps g, h : F (Σ) → F (Δ) is said to be conjugacy inequivalent if for
every u ∈ F (Δ) there does not exist any non-trivial x ∈ F (Σ) such that g(x) =
u−1h(x)u (see Table 1). For example, if the images of g, h : F (Σ) → F (Δ) are
conjugacy separated, that is, if Im(g)∩u−1 Im(h)u is trivial for all u ∈ F (Δ), then
g and h are conjugacy inequivalent. We write PCPinj +CI/GPCPinj +CI for those
instances of the GPCPinj/PCPinj where the maps are conjugacy inequivalent.

7.1 Random Maps and Genericity

Here we show that among all pairs of homomorphisms g, h : F (Σ) → F (Δ),
the property of being conjugacy inequivalent occurs with probability 1; that is,
conjugacy inequivalent maps are generic. In fact, a stronger result holds: injective
conjugacy inequivalent maps are already generic, as we show below.

Theorem 5 (Theorem C). With probability 1, an arbitrary pair of maps con-
sists of injective maps that are conjugacy inequivalent. That is, instances of the
PCPinj +CI are generic instances of the PCP.

Before we prove the theorem, we need to describe the way in which proba-
bilities are computed. We consider maps sending generators to words of length
≤ n, and consider asympotics as n → ∞. Formally: Fix the two alphabets
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Σ = {x1, . . . , xm} and Δ = {y1, . . . , yk}, m, k ≥ 2, and ambient free groups
F (Σ) and F (Δ), and pick g and h randomly by choosing (g(x1), . . . , g(xm))
and (h(x1), . . . , h(xm)) independently at random, as tuples of words of length
bounded by n in F (Δ). If P is a property of tuples (or subgroups) of F (Δ),
we say that generically many tuples (or finitely generated subgroups) of F (Δ)
satisfy P if the proportion of m-tuples of words of length ≤ n in F (Δ) which
satisfy P (or generate a subgroup satisfying P), among all possible m-tuples of
words of length ≤ n, tends to 1 when n tends to infinity.

Proof. Let n > 0 be an integer, and let (a1, . . . , am) and (b1, . . . , bm) be two
tuples of words in F (Σ) satisfying length inequalities |ai| ≤ n and |bi| ≤ n for
all i. We let the maps g, h : F (Σ) → F (Δ) that are part of an instance of PCP be
defined as g(xi) = ai and h(xi) = bi, and note that the images Im(g) and Im(h)
in F (Δ) are subgroups generated by (a1, . . . , am) and (b1, . . . , bm), respectively.

We claim that among all 2m-tuples (a1, . . . , am, b1, . . . , bm) with |ai|, |bi| ≤ n,
a proportion of them tending to 1 as n → ∞ satisfy (1) the subgroups
L = 〈a1, . . . , am〉 and K = 〈b1, . . . , bm〉 are both of rank m, and (2) for every
u ∈ F (Δ) we have Lu ∩ K = {1}. Claim (1) is equivalent to g, h being
generically injective, and follows from [16], while claim (2) is equivalent to
Im(g)u ∩ Im(h) = {1} for every u ∈ F (Δ), which implies g and h are gener-
ically conjugacy separated, and follows from [5, Theorem 1]. More specifically,
[5, Theorem 1] proves that for any tuple (a1, . . . , am), ‘almost all’ (precisely com-
puted) tuples (b1, . . . , bm), with |bi| ≤ n, give subgroups L = 〈a1, . . . , am〉 and
K = 〈b1, . . . , bm〉 with trivial pullback, that is, for every u ∈ F (Δ), Ku∩L = {1}.
Going over all (a1, . . . , am) with |ai| ≤ n and counting the tuples (b1, . . . , bm)
(as in [5]) satisfying property (2) gives the genericity result for all 2m-tuples. ��

7.2 The GPCP for Conjugacy Inequivalent Maps

We now prove that the PCP implies the GPCPinj +CI and hence that, generi-
cally, the PCP implies the GPCP. Recall that if IGPCP is a specific instance of
the GPCP we can associate to it a specific instance IPCP = (Σ � {B,E},Δ �
{B,E,#}, g′, h′), as in Sect. 5. We start by classifying the solutions to IPCP.

Lemma 5. Let IGPCP be an instance of the GPCPinj, with associated instance
IPCP of the PCPinj. Every solution to IPCP is a product of solutions of the form
(BxE)±1, E−1xE and BxB−1, for x ∈ F (Σ).

We now have:

Theorem 6. Let IGPCP = (Σ,Δ, g, h, u1, u2, v1, v2) be an instance of GPCPinj,
such that there is no non-trivial x ∈ F (Σ) with u1g(x)u−1

1 = v1h(x)v−1
1 or

u−1
2 g(x)u2 = v−1

2 h(x)v2. Then IGPCP has a solution (possibly trivial) if and
only if the associated instance IPCP of the PCPinj has a non-trivial solution.

Proof. By Lemma 4, if IGPCP has a solution then IPCP has a non-trivial solution.
For the other direction, note that the assumptions in the theorem are equivalent
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to IGPCP having no solutions of the form BxB−1 or E−1xE, and so by Lemma
5, every non-trivial solution to IGPCP has the form Bx1E · · · BxnE for some
xi ∈ F (Σ). The BxiE subwords block this word off into chunks, and we see
that each such word is a solution to IPCP. By Lemma 4, each xi is a solution to
IGPCP. Hence, if IPCP has a non-trivial solution then IGPCP has a solution. ��

Theorem 6 depends both on the maps g and h and on the constants ui,
vi. The definition of conjugacy inequivalent maps implies that the conditions of
Theorem 6 hold always, independent of the ui, vi. We therefore have:

Theorem 7. The following implications hold in f.g. free groups.

1. PCP(¬ inj,inj)(n + 2) =⇒ GPCP(¬ inj,inj)+CI(n)
2. PCP(inj,inj)(n + 2) =⇒ GPCP(inj,inj)+CI(n)

Removing the injectivity assumptions gives the following corollary; the impli-
cation PCP ⇒ GPCPinj +CI of Theorem A follows immediately.

Corollary 2. PCP(n + 2) =⇒ GPCPinj +CI(n)

Proof. Theorem 7 gives us that PCPinj(n + 2) ⇒ GPCPinj +CI(n), while the
PCP(n) and PCPinj(n) are equivalent by Proposition 1. ��

8 The Basis Problem and Stallings’ Rank Problem

In this section we link the Basis Problem to Stallings’ Rank Problem. Clearly
the Basis Problem solves the Rank Problem, as the rank is simply the size of
the basis. We prove that these problems are equivalent, with Lemma 6 providing
the non-obvious direction of the equivalence. Combining this equivalence with
Corollary 1 gives: RP ⇒ GPCPinj ⇒ PCP.

Lemma 6 is proven using the “derived graph” construction of Goldstein–
Turner [10].

Lemma 6. There exists an algorithm with input an instance I = (Σ,Δ, g, h) of
the PCPinj and the rank rk(Eq(g, h)) of the equaliser of g and h, and output a
basis for Eq(g, h).

The following shows that Stallings’ Rank Problem is equivalent to the BP.

Theorem 8. The following implications hold in f.g. free groups.

1. BP(¬ inj,inj)(n) ⇐⇒ RP(¬ inj,inj)(n)
2. BP(inj,inj)(n) ⇐⇒ RP(inj,inj)(n)

Proof. Let IPCP be an instance of the PCPinj. As the rank of a free group is
precisely the size of some (hence any) basis for it, if we can compute a basis
for Eq(g, h) then we can compute the rank of Eq(g, h). On the other hand, by
Lemma 6 if we can compute the rank of Eq(g, h) then we can compute a basis
of Eq(g, h). ��
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9 Main Results: Part 2

We now combine results from the previous sections to the following result, from
which Theorem A follows immediately.

Theorem 9. The following implications hold in f.g. free groups.

RP(n + 2)

BP(n + 2) GPCPinj(n) PCP(n) GPCPinj +CI(n − 2)

PCPinj
R (n + 2)

Proof. The proof is a summary of the results already established in the rest of
the paper, and we give a schematic version of it here.

RP(n + 2) ⇔ BP(n + 2) holds by Theorem 8.
BP(n + 2) ⇒ PCPinj

R (n + 2) holds by Theorem 1.
BP(n + 2) ⇒ GPCPinj(n) ⇒ PCP(n) holds by Corollary 1.
PCP(n) ⇒ GPCPinj +CI(n − 2) holds by Corollary 2. ��
Removing the GPCPinj(n)-term gives a different picture of alphabet sizes:

Theorem 10. BP(n + 2) =⇒ PCP(n + 2) =⇒ GPCPinj +CI(n)
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Abstract. A recognizable picture language is defined as the projection
of a local picture language defined by a set of two-by-two tiles, i.e. by a
strictly-locally-testable (SLT) language of order 2. The family of recog-
nizable picture languages is also defined, using larger k by k tiles, k > 2,
by the projection of the corresponding SLT language. A basic measure
of the descriptive complexity of a picture language is given by the size of
the SLT alphabet using two-by-two tiles, more precisely by the so-called
alphabetic ratio of sizes: SLT-alphabet/picture-alphabet. We study how
the alphabetic ratio changes moving from two to larger tile sizes, and
we obtain the following result: any recognizable picture language over an
alphabet of size n is the projection of an SLT language over an alpha-
bet of size 2n. Moreover, two is the minimal alphabetic ratio possible in
general. This result reproduces into two dimensions a similar property
(known as Extended Medvedev’s theorem) of the regular word languages,
concerning the minimal alphabetic ratio needed to define a language by
means of a projection of an SLT word language.

1 Introduction

To present our research in the framework of formal language studies, we observe
that language families can be defined by means of different approaches, pri-
marily by automata, by generative rules, by logical formulas, and by mapping
one language family into another one. Within the Chomsky hierarchy, the regu-
lar language family, originally defined by means of finite automata and regular
expressions, has been later supplemented with other definitions, in particular by
means of the homomorphic image of the simpler language family known as local
languages. The latter definition is also referred to as Medvedev’s theorem [9,10],
for short MT. Each local language is characterized by stating that a word is
valid if and only if, its 2-factors, i.e., its substrings of length two, are included
in a given set. Then, Medvedev’s theorem says that for each regular language
R over an alphabet Σ there exists a local language L over an alphabet Λ and a
letter-to-letter morphism h : Λ → Σ such that R = h(L).

The present work deals with languages whose elements, called pictures, are
rectangular arrays of cells each one containing a letter. Clearly, a word language is
c© Springer Nature Switzerland AG 2021
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also a picture language that only comprises rectangles with unitary (say) height.
A well-known family of picture languages, named tiling recognizable REC [6],
has its natural definition through the analog of MT. The definition relies on a
tiling system (TS), consisting of a local picture language and of a morphism
from the local alphabet Λ to the picture alphabet Σ. More precisely, the local
language is specified by a set of tiles, that are pictures of size two-by-two and
play the role of the 2-factors of the local word languages. Other definitions of the
REC family, by means of automata and logical formulas [6], are less convenient
than the corresponding definitions for word languages.

Returning to the MT definition of a regular word language, the letters of
the local alphabet Λ correspond to the elements of the state set Q of a finite
automaton (FA) recognizing the regular language. Hence, the ratio |Λ|/|Σ| is
a meaningful measure of the descriptive complexity of the FA, and obviously
induces an infinite hierarchy under set inclusion, for certain series of regular
languages. For REC the situation is similar, but less investigated. What we
have to retain is that any limitation of the alphabetic ratio of tiling systems
would restrict the language family.

Local word languages are located at the lowest level of an infinite language
hierarchy (under set inclusion) called k-strictly locally testable (SLT) [8], each
level k ≥ 2 using of a sliding window of width k that scans the input and checks
that each k-factor belongs to a given set of allowed factors. A similar hierarchy
for picture languages [5] uses k-by-k tiles instead of k-factors. The corresponding
picture language family is here called k-strictly locally testable (k-SLT), simply
SLT when the value k is unspecified.

The first basic question one can address is: if in the tiling system definition of
REC we allow k-SLT languages with k > 2, do we obtain a language family larger
than REC? The answer is known to be negative [5,7]. Then, the next interesting
question is: using k-by-k tiles with k > 2, can we reduce the alphabetic ratio,
and how much?

In the case of word languages, the answer to the latter question is known
[3], and we refer to it as Extended Medvedev’s Theorem (EMT): the minimal
alphabetic ratio is 2 and can always be achieved by assigning to the SLT param-
eter k a value in the order of the logarithm of the FA recognizer size. We hint
to its proof, which is the starting point of the present development for pictures.
Given an FA, the construction in the proof samples in each computation the sub-
sequences made by a series of k state-transitions. Then, a binary code of length
k suffices to encode all such FA sub-sequences. To prevent mistakes, the proof
resorts to comma-free codes [2], that can be decoded without synchronization
by using a 2k-SLT DFA as decoder.

Moving from words to pictures complicates matters, but we succeeded in
lifting EMT from regular word languages to REC: any picture language is the
projection, by means of a letter-to-letter morphism, of an SLT picture language,
with a (minimal) alphabetic ratio 2. We may rephrase the result in an artistic
vein for binary pictures: any black and white picture is the projection of an SLT
picture using just four colors.
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Outline. Section 2 contains the basic notions of picture languages. Section 3 deals
with k-SLT picture languages and their use in tiling systems. It also introduces
the comma-free codes in picture. Section 4 proves the main result on the alpha-
betic ratio and its minimality. The Conclusions raise a general question about the
validity of similar results for other families of languages. The Appendix presents
an example.

2 Preliminaries

All the alphabets to be considered are finite. The following concepts and nota-
tions for picture languages follow mostly [6]. A picture is a rectangular array of
letters over an alphabet. Given a picture p, |p|row and |p|col denote the num-
ber of rows and columns, respectively; |p| = (|p|row, |p|col) denotes the picture
size. Pictures of identical size are called isometric. The set of all pictures over
Σ of size (m,n) is denoted by Σm,n. The set of all non-empty pictures over Σ
is denoted by Σ++. This notation is naturally extended from an alphabet to a
finite set X of pictures, by writing X++.

A picture language over Σ is a subset of Σ++. In the following, the term
“language” always stands for picture language, and word languages are qualified
as such.

A picture of size (r, c) over an alphabet Γ will be also denoted as [γi,j ], with

every γi,j ∈ Γ , which stands for the picture
γ1,1 . . . γ1,c

. . .
γr,1 . . . γr,c

. We extend the notation

to denote a picture of size (kr, kc) in X++ with X ∈ Γ++ as follows: [xi,j ], with
xi,j ∈ Γ k,k, stands for the picture (x1,1 � . . . x1,c) � · · · � (xr,1 � . . . xr,c).

A subpicture of p, denoted by p(i,j;i′,j′) is the portion of p defined by the
top-left coordinates (i, j) and by the bottom right coordinates (i′j′), with 1 ≤
i ≤ i′ ≤ |p|row, and 1 ≤ j ≤ j′ ≤ |p|col.

Bordered Pictures and k-tiles. Since the symbols on the boundary of picture p
play often a special role for recognition, it is convenient to surround them by
a frame of width one comprising only the special symbol # �∈ Σ. The bordered
picture p̂ has size (|p|row + 2), (|p|col + 2) and domain {0, 1, · · · , |p|row + 1} ×
{0, 1, · · · , |p|col + 1}.

We denote by Bk,k (p), k ≥ 2, the set of all subpictures, named k-tiles, of
picture p having size (k, k). When one or both dimensions of p are smaller than
k, we posit Bk,k (p) = ∅. The set of all subpictures of size (k, k) of a language L
is defined as Bk,k (L) =

⋃

p∈L Bk,k (p̂).

Concatenations. Let p, q ∈ Σ++. The horizontal (or column) concatenation p� q
is defined when |p|row = |q|row as: p q . The vertical (or row) concatenation

p�q is defined when |p|col = |q|col as: p
q . We also use the power operations p�k

and p�k, k ≥ 1, and we extend the concatenations to languages in the obvious
way.
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Definition 1 (picture morphism). Given two alphabets Γ,Λ, a (picture)
morphism is a mapping ϕ : Γ++ → Λ++ such that, for all p, q ∈ Γ++ :
{

i) ϕ(p � q) = ϕ(p) � ϕ(q)
ii) ϕ(p � q) = ϕ(p) � ϕ(q)

Since � is a partial operation, to satisfy i) we need that for all p, q ∈ Γ++, p� q
is satisfied iff ϕ(p)�ϕ(q); and similarly for � to satisfy ii). This implies that the
images by ϕ of the elements of alphabet Γ are isometric, i.e., for any x, y ∈ Γ ,
|ϕ(x)|row = |ϕ(y)|row and |ϕ(x)|col = |ϕ(y)|col.

Tiling Recognition. Let Γ and Σ be alphabets; given a mapping π : Γ → Σ, to
be termed projection, we extend π to isometric pictures p′ ∈ Γ++, p ∈ Σ++ by:
p = π(p′) such that pi,j = π(p′

i,j) for all (i, j) ∈ dom(p′). Then, p′ is called the
pre-image of p.

Definition 2 (tiling system). A tiling system (TS) is a quadruple T =
(Σ,Γ, T, π) where Σ and Γ are alphabets, T is a finite 2-tile set over Γ ∪ {#},
and π : Γ → Σ is a projection. A language L ⊆ Σ++ is recognized by such a TS
if L = π(L(T )). We also write L = L(T). The family of all tiling recognizable
languages is denoted by REC.

3 Strictly Locally Testable Picture Languages

Definition 3. Given k ≥ 2, a language L ⊆ Σ++ is k-strictly-locally-testable
(k-SLT) if there exists a finite set Tk of k-tiles in (Σ ∪ {#})k,k such that
L = {p ∈ Σ++ | Bk,k (p̂) ⊆ Tk}; we also write L = L(Tk). A language L is called
strictly-locally-testable (SLT) if it is k-SLT for some k ≥ 2.

In other words, to check that a picture is in a k-SLT language, we check that
each subpicture of size (k, k) of the bordered picture is included in a given set
of k-tiles. Local languages correspond to the special case k = 2. This definition
ignores pictures with size less than (k, k), which anyway amount to a finite
language, to be ignored in the following, when we compare k-SLT languages.

Since k-SLT picture languages include as a special case k-SLT word lan-
guages, the following proposition derives immediately from known properties.

Proposition 1. The family of k-SLT languages for k ≥ 2 is strictly included
in the family of (k + 1)-SLT languages, when ignoring pictures smaller than
(k + 1, k + 1).

If we apply a projection to k-SLT languages, the hierarchy of Proposition 1
collapses (proved in [5,7]). We state it to prepare the concepts needed in later
developments.

Theorem 1. Given a k-SLT language L ⊆ Σ++ defined by a set of k-tiles Tk

(i,e, L = L(Tk)), there exists an alphabet Γ , a local language L′ ⊆ Γ++ and a
projection π : Γ → Σ such that L = π(L′).
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Remark 1. Both proofs in [5,7] consider an alphabet Γ of size |Γ | = |Σ| · |Tk|.
Since Tk is a subset of (Σ ∪ {#})k,k, one has |Tk| ≤ (|Σ| + 1)k2

and |Γ | ≤
(|Σ| + 1)k2+1.

The family of SLT languages is strictly included in REC [6]. An immediate
consequence of Theorem 1 is that the use of larger tiles does not enlarge the
family REC.

Corollary 1. The family of languages obtained by projections of SLT languages
coincides with the family REC of tiling recognizable languages.

Thus any REC language over Σ can be obtained both as a projection of a local
language over the alphabet Γ2, and as a projection of a k-SLT language (with
k > 2) over an alphabet Γk. However, if we use 2-tiles instead of k-tiles, we need
an alphabet Γ2 which can be larger than Γk. The trade-off is represented by the
ratio |Γ2|

|Γk| . By Remark 1, this ratio is proportional to the area k2 of the k-tiles:
|Γ2|
|Γk| = Θ(k2).

Next, we show the unsurprising fact that the family REC constitutes an
infinite hierarchy with respect to the size of the local alphabet.

Proposition 2. For every 	 ≥ 1, let REC� be the family of languages recognized
by tiling systems with a local alphabet of cardinality at most 	. Then, REC� �

REC�+1.

Proof. Let 	 ≥ 1 and consider a TS T = ({a, b}, Γ, T, π) accepting the word
language R� = {a�−1b}+ –a word is just a special case of (say) a one-row picture.
We claim that |Γ | ≥ 	. By contradiction, assume that there is a TS recognizing
R� such that Γ = {1, 2, . . . , j} for some j < 	. Let α = i1i2 . . . ij , . . . i� ∈ L(T )
(whose projection is a�−1b), for suitable i1, i2, . . . , ij , . . . , i� ∈ Γ . Therefore, the

tiles of the form # #
ih ih+1

, for all 1 ≤ h < 	 must be in T . Since j < 	, there exist

m,n, with 1 ≤ m < n ≤ 	 such that α = i1i2 . . . imim+1 . . . in−1in . . . i� with
im = in.

Therefore, the picture β = i1i2 . . . imim+1 . . . inim+1 . . . in−1in . . . i� has the
same tiles of α, hence also β ∈ L(T ), with π(β) = a�−1+m−nb, a contradiction.

��
An example illustrates Proposition 2.

Fig. 1. Tilings for Example 1. The obvious projection is: for all c ∈ Γ3 or c ∈ Γ2,
π(c) = a.
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Example 1. The language R ⊆ {a}++ such that for any p ∈ R, |p|col = 2·|p|row−
1, is defined by the TS consisting of the 2-tiles T2 ⊆ Γ3

2,2 with Γ3 = {b,↘,↗}
which are in the pre-image (Fig. 1, column 1). If we merge together the letters
↘ and ↗ by reducing the local alphabet to Γ2 = {b,→}, the corresponding
pre-image is shown in column 2; let T ′

2 be its tiles. But then illegal pictures,
e.g. the one having the pre-image in column 3, would be tiled using a subset
T ′
2, hence π(L(T ′

2)) ⊃ R. On the other hand, the smaller alphabet Γ2 suffices
to eliminate the illegal picture in column 3 if, instead of a 2-TS, we use a 3-TS
with the 3-tiles occurring in column 2.

3.1 Comma-Free Picture Codes

In later constructions we use picture codes comprising a set of isometric square
pictures, that we call code-pictures (the analog of code-words). The codes we use
have the property that for any picture overlaid with code-pictures it is impossible
to overlay a code-picture in a position where it overlaps other code-pictures.
Such property characterizes comma-free codes, and we keep the name for picture
codes.

We introduce the notion of picture code by means of a picture morphism,
then we define the comma-free codes, we state a known result on the cardinality
of codes that cannot overlap, and we finish with the statement that the set of
pictures overlaid with a comma-free code is an SLT language.

Definition 4 (code-picture). Given two alphabets Γ,Λ and a one-to-one
morphism ϕ : Γ++ → Λ++, the set X = ϕ(Γ ) ⊆ Λ++ is called a (uniform)
picture code; its elements are called code-pictures. For convenience, the mor-
phism “ϕ” is denoted as �−�X : Γ++ → Λ++.

Let p be a picture of size (r, c); a subpicture p(i,j;n,m), such that 1 < i ≤ j < r
and 1 < n ≤ m < c is called internal.

Given a set X ⊆ Λk,k, consider X2,2, i.e., the set of all pictures p of size
(2k, 2k) of the form (X � X) � (X � X).

Definition 5 (comma-free code). Let Λ be an alphabet and let k ≥ 2. A
(finite) set X ⊆ Λk,k is a comma-free picture code (“cf code” for short) if, for
all pictures p ∈ X2,2, there is no internal subpicture q ∈ Λk,k of p such that
q ∈ X.

Although the exact cardinality of a cf code X ⊆ Λ++ is unknown, the fol-
lowing result from [1] states a useful lower bound for a family of binary codes
that cannnot overlap. Since the non-overlapping condition is stronger than the
comma-free one, we have:

Theorem 2. For all k ≥ 4 there exist comma-free codes X ⊆ {0, 1}k,k of cardi-
nality |X| ≥ (

2k−2 − 1
)k−2 · 2k−3.

The next proposition states in 2D a property of 1D cf codes.

Proposition 3. Let X ⊆ Λk,k be a cf code. The language X++ is 2k-SLT.
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Proof. We show that L (B2k,2k (X++)) = X++ (hence the statement). If p ∈
X++ then of course B2k,2k (p) ⊆ B2k,2k (X++). If p ∈ L(B2k,2k (X++)), then we
claim that if a 2k-tile q ∈ B2k,2k (X++) is such that the picture qnw = q(1,1;k,k) ∈
X, then q ∈ X2,2. In fact, to be in B2k,2k (X++), q must be a subpicture of a
picture z ∈ X++, of size (kr, kc), with z = [xi,j ], xi,j ∈ X. Since X is comma free,
if qnw ∈ X, then qnw must coincide with one of subpictures xi,j , else qnw would
be an internal subpicture of a 2k-tile in X2,2, against Definition 5. Therefore,
q ∈ X2,2. Consider now the following “northwest” (k + 1)-tile of p̂, which, for
some x11 ∈ X, has the form: # #�k

#�k x11
. By the above claim, a 2k-tile having

x11 in the nw position must be in X2,2. Hence, the nw corner of p can only be

extended to:
# #�k #�k

#�k x11 x12

#�k x21 x22

with xi,j ∈ X and x11 x12

x21 x22
∈ X2,2. Repeating this

construction by a simple induction, p must be in X++. ��
Next, we consider a local language defined by a set of 2-tiles, encoding each

symbol using a cf code. The following lemma states that the resulting language
is SLT.

Lemma 1. Let T ⊆ Γ 2,2 be a set of 2-tiles defining a local language L(T ) and
let X ⊆ Λk,k be a cf code such that |X| = |Γ |. The language �L(T )�X is 2k-SLT.

Proof. Let T be the complement of T , i.e., T = Γ 2,2−T , which can be interpreted
as the set of “forbidden” 2-tiles of L(T ). Let M2k = B2k,2k (X++) − �T �X . We
claim that L(M2k) = �L(T )�X , thus proving the thesis.

Let p ∈ �L(T )�X ⊆ X++, hence there exists q ∈ Γ++ such that p = �q�X . If
picture q = [γi,j ], γi,j ∈ Γ , has size (r, c), with r, c ≥ 1, then p has size (kr, kc),
with p = [xi,j ], for xi,j ∈ X and xi,j = �γi,j�X .

By contradiction, assume that p �∈ L(M2k); hence, there is a 2k-tile ρ ∈
B2k,2k (p) such that ρ �∈ M2k. Since p ∈ X++, it must be ρ ∈ B2k,2k (X++): by
definition of M2k, ρ ∈ �T �X . Therefore, ρ = �θ�X for some θ ∈ T , thus ρ ∈ X2,2.
Since X is a cf code, no subpicture in X of ρ can be an internal subpicture of
the 2k-tiles in X2,2 of p, hence ρ = xi,j xi,j+1

xi+1,j xi+1,j+1
for some i, j. It follows that

ρ = �θ�X for θ = γi,j γi,j+1

γi+1,j γi+1,j+1
∈ T . Since ��X is one-to-one, ρ cannot also be

equal to �θ�X for θ �= θ, a contradiction.
Now, let p ∈ L(M2k). Since, by definition of M2k, p ∈ X++ and, by Propo-

sition 3, X++ is 2k-SLT, we have that p has size (kr, kc), with p = [xi,j ], for
xi,j ∈ X. Since ��X is a bijection from Γ to X, there exists one, and only one,
γi,j ∈ Γ such that xi,j = �γi,j�X . Therefore, we can define a picture q = [γi,j ],
with p = �q�X , xi,j = �γi,j�X . Consider a 2k-tile ξ ∈ M2k ∩ X2,2, denoted by

ξ = xi,j xi,j+1

xi+1,j xi+1,j+1
. Since ξ �∈ �T �X , it must be ξ ∈ �T �X , i.e., there is θ ∈ T such

that ξ = �θ�X , with θ = γi,j γi,j+1

γi+1,j γi+1,j+1
∈ T . Therefore, all the tiles in q are in

θ, hence q ∈ L(T ). ��
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4 Main Result

We are ready to present the main result that any recognizable language is the
projection of an SLT language having alphabetic ratio two, but we pause a while
to show that for some language in REC a ratio smaller than two does not suffice.

Theorem 3. There exists a tiling recognizable language R over an alphabet Σ
such that for every alphabet Γ and SLT language L ⊆ Γ++, if R is the image of
L under a projection, then the alphabetic ratio is |Γ |

|Σ| ≥ 2.

Proof. For a generic letter a, let Ra be the language of all square pictures over
{a}, of size at least (2, 2). It is obvious that Ra can only be recognized by TSs
having a local alphabet Γ of cardinality at least 2. In fact, if |Γ | = 1, then a
non-square (rectangular) picture and a square picture can be covered by the
same set of 2-tiles.

Let Σ = {b, c}; we prove the thesis for R = Rb ∪ Rc. If |Γ | < 4, consider two
pictures: p′ ∈ Rb, p

′′ ∈ Rc. Let β, γ ∈ Γ++ be their respective pre-images. Since
p′ only includes symbol b, every symbol of β must be projected to b; similarly,
every symbol of γ must be projected to c. Since |Γ | < 4 (e.g. |Γ | = 3) and the
symbols in β must be different from the symbols in γ, one of the two pictures,
say, β, must be composed of just one type of symbol (i.e., it is on a unary
alphabet), but we already noticed that each Ra requires two local symbols. The
generalization to an alphabet Σ of larger cardinality is immediate, by considering
R =

⋃

a∈Σ Ra. ��
The above theorem leaves open the possibility that the alphabetic ratio two

may suffice for all recognizable languages. This is indeed the case, as stated
and proved next. Let R ⊆ Σ++ be in REC and let k ≥ 2. We denote with
R(k) ⊆ (Σ ∪ {$})++, where $ /∈ Σ, the language obtained by concatenating
vertically and then horizontally each picture of R with two rectangular pictures
in {$}++, such that the resulting picture has size (m,n), where both m and n
are multiple of k. This “padding” of a picture with $ symbols is formalized next
and illustrated in the Appendix.

Definition 6. Let R ⊆ Σ++ be in REC and let k ≥ 2. Let Vk,Hk ⊆
{$}++ be the languages such that: Vk =

{{$}n,h | n > 0, h < k
}

and Hk =
{{$}h,n | n > 0, h < k

}

. Then the padded language over the alphabet Σ$ =
Σ ∪ {$} is:

R(k) = (R ∪ (R � Vk) ∪ (R � Hk) ∪ ((R � Vk) � Hk)) ∩
(

(Σ$)
k,k

)++

. (1)

Lemma 2. For all R in REC and for all k ≥ 2, the padded language R(k) can
be defined by a TS such that its local alphabet has size |Γk| < C · k2 for some
constant C.
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Proof. The languages Vk,Hk ∈ REC. In fact, Vk (and similarly Hk) can be
defined by a TS with a local alphabet {$i | 0 ≤ i < k}, where the index i is used
to count up to k − 1. We show a few of the tiles:

{

##
$0$0

, ##
#$0

, ##
$0#

}

∪
{

#$i

#$j
, $i #

$j # , $i $i

$j $j
, · · · | 0 ≤ i < k − 1, j = i + 1

}

Hence, if R ∈ REC then also R(k) ∈ REC. We show how to obtain a TS T(k) for
R(k), given a TS T for R. In the identity (1) we have: in the TSs of Vk, of Hk and
of (Σk,k)

$ )++, the local alphabets have size O(k); in the TS defining the union
(resp. the intersection) of two REC languages, the local alphabet size is the sum
(the product) of the local alphabet sizes of the individual TSs. Therefore, the
size of the local alphabet of T(k) satisfies the statement. ��
Theorem 4. For any R ⊆ Σ++ in REC, there exist an SLT language L over
an alphabet Λ with |Λ| = 2|Σ|, and a projection ρ : Λ → Σ such that R = ρ(L).

Proof. Let k ≥ 2 be an integer. Let R(k) be the padded language of Definition 6.
We first prove the statement using the REC language R(k) instead of R. Let
T = (Σ$, Γ, T, π) be a TS recognizing R(k), i.e., R(k) = π(L(T )). Consider the
set of k-tiles: Bk,k (L(T )) = {r ∈ Bk,k (q) | q ∈ L(T )} . Remark that L(T ) ⊆
(Bk,k(L(T ))++. For any picture p ∈ Γ k,k, define the frame, denoted by f(p), as
the quadruple of words

f(p) = (pn, pe, ps, pw), pn, pe, ps, pw ∈ Γ k (2)

such that pn is the subpicture p(1,1;k,1) (north row), pe is p(k,1:k,k) (east column),
and so on for ps, pw. (The four words are not independent since any corner of p
is shared by two of them.)

For any element r ∈ Bk,k (L(T )), consider the pair (γr, pr) defined as follows:
{

γr =f(r) = (nr, er, sr, wr) ∈ Γ 4k

pr =π(r) ∈ Σk,k
$ .

Introduce a new alphabet Bk ⊆ Γ 4k×Σk,k
$ as: Bk = {(γr, pr) | r ∈ Bk,k (L(T ))} .

Let πk : B++
k → Σ++

$ be the morphism defined by associating each element
x = (γ, p) ∈ Bk with its second component: πk(x) = p (which is a frame).
Denote further by ϕ the mapping associating each element x = (γ, p) ∈ Bk with
its first component: ϕ(x) = γ. In the sequel, when no confusion can arise, ϕ(x)
is simply denoted by (nx, ex, sx, wx). Moreover, it is convenient to denote by Qk

the set:
Qk = {ϕ(x) | x ∈ Bk} ⊆ Γ 4k; therefore |Qk| ≤ |Γ |4k. (3)

The definition of the set M of 2-tiles, over the alphabet Bk ∪ {#}, that we
now introduce, translates the adjacency in L(T ) of the k-tiles of B(k,k)(L(T )) in
terms of the elements of Bk. The idea is that this adjacency is determined only
by the tiles of T in the frames of the adjacent k-tiles. Now, we define the set
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M ⊆ (Bk ∪{#})2,2 of 2-tiles over the alphabet Bk ∪{#}, distinguishing between
internal, border and corner tiles.

The bordered picture of size (2k, 2k) (below), composed of four k-tiles x, y, z, t
and with their frames (e.g., nx, ex, sx, wx) highlighted, may clarify the notation
used below.

# . . . . . . # # . . . . . . #
# a nx ny b #
. . . . . .

wx x ex wy y ey

. . . . . .
# sx sy #
# nz nt #
. . . . . .

wz z ez wt t et

. . . . . .
# c sz st d #
# . . . . . . # # . . . . . . #

Internal tiles. Given x, y, z, t ∈ Bk, x y
z t

∈ M if the subpictures of size

(2, 2) identified by the neighboring frames of k-tiles x, y, z, t are in T . This
is formalized by requiring that B2,2 (sx � sy) � (nz � nt)) ⊆ T and that
B2,2 (ex � ey) � (wz � wt)) ⊆ T .

Border Tiles.
##
x y

∈ M iff B2,2

(

#2k� � (nx � ny)
) ∈ T ; #x

# z
∈ M iff

B2,2

(

#2k�
� (wx � wz)

) ∈ T ;
z t
## ∈ M iff B2,2

(

(sz � st) � #2k�
) ∈ T ; x #

z # ∈ M iff

B2,2

(

(ex � ez) � #2k�) ∈ T .

Corner Tiles. As in the above picture, let a be the first symbol of nx, b the last
symbol of ny, c the first symbol of sz, and d the last symbol of st.

##
#x

∈ M iff ##
#a

∈ T ; ##
y # ∈ M iff ##

b # ∈ T ;

# z
## ∈ M iff # c

## ∈ T ; t #
## ∈ M iff d #

## ∈ T .

Let L(M) ⊆ B++
k be the local language defined by the tile set M . From the

above construction, one derives that R = πk(L(M)).

A comma-Free Picture Code for Bk. Let a cf code Z ⊆ ({0, 1} × Σ$)k,k be the
composition of a cf binary code X ⊆ {0, 1}k,k with the pictures in Σk,k

$ :

Z = X ⊗ Σk,k
$ . (4)

where the operator ⊗ merges two pictures into one, symbol by symbol. E.g.,
if u = 0 0

1 1 and y = a b
b a

then u ⊗ y = 〈0, a〉 〈0, b〉
〈1, b〉 〈1, a〉 . The operator can be

immediately extended to a pair of sets of isometric pictures.



Reducing Local Alphabet Size in Recognizable Picture Languages 113

From Theorem 2, there exists a comma-free code X ⊆ {0, 1}k,k with car-
dinality |X| ≥ (

2k−2 − 1
)k−2 · 2k−3 ≥ (

2k−3
)k−2 · 2k−3 =

(

2k−3
)k−1. Hence,

lg(|X|) ≥ (k − 1) · (k − 3) ∈ Θ(k2), while lg(|Qk|) ≤ 4k lg(|Γ |) as shown in (3).
Since by Lemma 2, |Γ | < C ·k2 for a constant C, we have lg(|Qk|) ≤ 4k lg C+

8k lg k ∈ Θ(k lg k). Therefore, for a fixed Γ , there exists a sufficiently large integer
k and a cf code X ⊆ {0, 1}k,k such that |X| = |Qk|.

We now encode the elements of Qk, i.e., we consider the morphism � �X :
Qk → X that associates each element γ ∈ Qk with a different code-picture �γ�X .

The cf code Z in Eq. (4) is then defined by morphism � �Z : B++
k → ({0, 1}×

Σ$)++ associating each x = (γ, p) with the code-picture �x�Z = �γ�X ⊗ p.
We set the alphabet Λ of the statement to {0, 1} × Σ$. By Lemma 1, the

language �L(M)�Z ⊆ Λ++ is 2k-SLT. Let M2k denote the set of 2k-tiles over the
alphabet Λ defining the language �L(M)�Z . Let ρ : Λ → Σ$ be the projection
of each element (b, a) ∈ {0, 1} × Σ$ to its second component a. We prove that
ρ (�L(M)�Z) = R(k).

If p ∈ R(k), with p of size (kr, kc) with r, c ≥ 1, then there exists a picture
q ∈ L(T ) such that π(q) = p. Let q̃ = �q�Z . By definition of Z, ρ(q̃) = π(q) = p,
hence p = ρ(�q�Z) ∈ ρ (�L(M)�Z).

If p ∈ ρ (�L(M))�Z , with p of size (kr, kc) for some r, c ≥ 1, then there is
q ∈ L(M) such that p = ρ(�q�Z). By definition of ρ and π, we have π(q) = p,
i.e., p ∈ R(k).

We now sketch the proof of the statement of the theorem for R. We define
a set of 2k-tiles M ′ over an alphabet Λ′, defining a 2k-slt language L(M ′) and
a projection ρ′ : Λ′ → Σ such that R = ρ′(L(M ′)). Let Λ$ ⊆ Λ be the set
{(0, $), (1, $)}, let Λ′ be Λ − Λ$. Hence, |Λ′| = 2|Σ$| − 2 = 2|Σ|. Define the
projection ρ′ as the restriction of ρ induced by Λ′. The set M ′ of 2k-tiles is
constructed in two steps:

1. Delete, from the set M2k, the tiles having at least two rows and/or at least
two columns containing elements in Λ$;

2. Substitute (in the set obtained after the first step) all the occurrences of the
elements in Λ$ with the symbol #.

For instance, in step 1 the 2k-tile
z z′

s with s ∈ (Λ′)2k,2k−2, z, z′ ∈ Λ�2k
$ , is

deleted; in step 2 the 2k-tiles:
z

t and
z

u
z′′

, with t ∈ (Λ′)2k,2k−1, z ∈ Λ�2k
$ ,

u ∈ (Λ′)2k−1,2k−1 and z′′ ∈ Λ�2k
$ , are respectively replaced by:

#

t . . .
#
, and

#
u . . .

# . . . #

From the above construction, one can derive: R = ρ′(L(M ′)). ��
The Appendix may help to understand the proofs of Lemma2 and Theorem 4.
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5 Conclusion

Our main result (Theorem 4) can be placed next to the similar ones pertaining
to regular word languages (v.s. Sect. 1 and [3]) and to tree languages [4], which
says that every regular tree language is the letter-to-letter homomorphic image
of a strictly locally testable tree language that uses 2 as alphabetic ratio. Alto-
gether, they give evidence that, for a quite significant sample of formal language
families, the same property, that we may call Extended Medvedev’s theorem,
holds: more explicitly, the alphabetic ratio of two is sufficient and necessary to
characterize a language as a morphic image an SLT language. The three cases
encompass mathematical objects of quite different kinds: words, pictures and
trees. What is common is, of course, the prerequisite that a (non-extended)
Medvedev’s theorem exists, which is based on a notion of locality, respectively,
for words, for rectangular arrays, and for acyclic tree graphs. In the future, it
would be interesting to see if any family endowed with the basic Medvedev’s
theorem also has the extended form with alphabetic ratio two.

Acknowledgements. We thank the anonymous reviewers for their useful suggestions.

A Appendix: Example 1 Continued to Illustrate the Main
Theorem

The following example aims to show the entities used in the proof of Theorem4,
though not an exhaustive construction.

The picture sizes in language R (Example 1) are (r, c) = (r, 2r − 1), therefore
the language has to be padded according to Definition 6, before applying the
construction in the main theorem. In fact, it suffices to concatenate language R
with the column $�r, to obtain the language R′ over Σ$ = Σ ∪ {$} with picture
sizes (r, c) = (r, 2r). For simplicity, consider the language R(4) ⊂ R′ having sizes
multiple of 4; it is defined by a TS T′ that for brevity we represent by means of
the pre-image of a8,15

� $8,1 below.

1 a a a a a a a a a a a a a a a $
a a a a a a a a a a a a a a a $
a a a a a a a a a a a a a a a $
a a a a a a a a a a a a a a a $
a a a a a a a a a a a a a a a $
a a a a a a a a a a a a a a a $
a a a a a a a a a a a a a a a $

8 a a a a a a a a a a a a a a a $
1 8 16

1 1 n n n n n n n n n n n n n ↗ g
n 2 n n n n n n n n n n n ↗ n g
n n 3 n n n n n n n n n ↗ n n g
n n n 0 n n n n n n n ↗ n n n g
n n n n 1 n n n n a ↗ n n n n g
n n n n n 2 n n a ↗ n n n n n g
n n n n n n 3 n ↗ n n n n n n g

8 n n n n n n n 0 n n n n n n n g
1 8 16

Pr
e-
im

ag
e

The alphabet is Σ$ = {a, $} and the local alphabet is Γ ′ = {0, 1, 2, 3, g, n,↗};
notice that the symbols 0 . . . 3 are used to ensure that the picture size is multiple
of four. The image returned by the projection is π′(g) = $ and elsewhere a.

Next, we apply the constructions in the proof of Theorem4. We have to
compute the set B4,4(L(T4)), for brevity we list just four elements easily visible
in the above pre-image:
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1 n n n
n 2 n n
n n 3 n
n n n 0

n n n n
n n n n
n n n n
n n n n

n n n g
n n n g
n n n g
n n n g

n n n ↗
n n ↗ n
n ↗ n n
↗ n n n

Then, we compute the new alphabet B4 = {(γr, pr) | r ∈ B4,4(L(T4))}. It
comprises, among others, the following elements:

x1 =

⎛

⎜

⎜

⎝

1 n n n
n n
n n
n n n 0

,

a a a a
a a a a
a a a a
a a a n

⎞

⎟

⎟

⎠

x2 =

⎛

⎜

⎜

⎝

n n n n
n n
n n
n n n n

,

a a a a
a a a a
a a a a
a a a n

⎞

⎟

⎟

⎠

x3 =

⎛

⎜

⎜

⎝

n n n g
n g
n g
n n n g

,

n a a $
a a a $
a a a $
a a a $

⎞

⎟

⎟

⎠

Then, we define the tile set M ⊆ (B4 ∪ {#})2,2, classified into internal, border
and corner tiles; we show just one internal and one border tile.

x1 x2

x2 x1

∈ M since B2,2

⎛

⎝

sx1 sx2

nx2 nx1

⎞

⎠ = B2,2

⎛

⎝

n n n 0 n n n n

n n n n 1 n n n

⎞

⎠ =

⎧

⎨

⎩

n n

n n
,
n 0

n n
,

0 n

n 1
,
n n

1 n

⎫

⎬

⎭

⊆ T4

# #

x1 x2

∈ M since B2,2

⎛

⎝

#�4 #�4

nx1 nx2

⎞

⎠ = B2,2

⎛

⎝

# # # # # # # #

1 n n n n n n n

⎞

⎠ =

⎧

⎨

⎩

# #

1 n
,
# #

n n

⎫

⎬

⎭

⊆ T4.

Assuming M is completed, we have to choose the cf code Z ⊆ ({0, 1} × Σ)k,k

for encoding all the elements of B4. (We have not figured out how many they
are and it may be that with k = 4 the code cardinality for the code family in [1]
does not suffice; then a larger value for k will do.)

First, we assign to the second component ϕ of each elements x1, x2, . . . ∈ B4

a binary code-picture in X ⊆ {0, 1}4,4. Then we build the code-pictures of Z:

ϕ(x) � ϕ(x)�X � x�Z

x1 =

1 n n n
n n
n n
n n n 0

1 1 1 1
1 0 1 0
0 1 1 1
0 0 0 0

(1, a) (1, a) (1, a) (1, a)
(1, a) (0, a) (1, a) (0, a)
(0, a) (1, a) (1, a) (1, a)
(0, a) (0, a) (0, a) (0, a)

x2 =

n n n n
n n
n n
n n n n

1 1 1 1
1 0 0 0
0 1 1 0
0 0 0 0

(1, a) (1, a) (1, a) (1, a)
(1, a) (0, a) (0, a) (0, a)
(0, a) (1, a) (1, a) (0, a)
(0, a) (0, a) (0, a) (0, a)

C
od

in
g

(Incidentally, the symbols in bold in column �ϕ(x)�X are fixed in the code
family [1].)
The h-SLT language L in the thesis has h = 2 · 4 and is defined by such 8-tiles
as the following one: � x1�Z � x2�Z

� x2�Z � x1�Z
.
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Abstract. Traditionally, graph algorithms get a single graph as input,
and then they should decide if this graph satisfies a certain property Φ.
What happens if this question is modified in a way that we get a possibly
infinite family of graphs as an input, and the question is if there exists one
graph satisfying Φ? We approach this question by using formal languages
for specifying families of graphs. In particular, we show that certain
graph properties can be decided by studying the syntactic monoid of the
specification language.

Keywords: Graph properties · Regular languages · Periodic
semigroups

1 Introduction

When dealing with algorithms on graphs, a graph is often specified by its adja-
cency matrix, i.e., a graph comes with a linear order on the vertices, and there are
no multiple edges. We follow these conventions in our paper. Moreover, we repre-
sent graphs by words from a regular set G over the binary alphabet Σ = {a, b}.
Given w ∈ G, we denote by ρ(w) the corresponding graph. Hence, every subset
L ⊆ G defines a family of graphs ρ(L). Although our results go beyond regular
sets L, the focus and the motivation comes from a situation when L is regu-
lar. A typical question could be if some (or all) graphs in ρ(L) satisfy a graph
property Φ. For example: “are there some planar graphs in ρ(L)?” Solving this
type of decision problems was the motivation to study regular realizability prob-
lems in [1,13] and, independently, calling them intReg-problems (intersection
non-emptiness with regular languages) in [6,14,15].

Typical graph properties ignore the linear vertex orders and the direction
of edges. For example, consider the property that the number of vertices is
even. The linear order helps describe this property in Monadic Second-Order
logic, MSO for short. As we will see, we encounter only four different classes
C1 ⊂ · · · ⊂ C4 of graphs ρ(L).
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1. ρ(L) ∈ C1 if and only if the set ρ(L) is finite.
2. ρ(L) ∈ C2 implies that ρ(L) has bounded tree-width.
3. ρ(L) ∈ C3 implies that every connected finite bipartite graph appears as a

connected component of some G ∈ ρ(L).
4. ρ(L) ∈ C4 implies that every connected finite graph appears as a connected

component of some G ∈ ρ(L).

Moreover, if L is regular, then we can compute the smallest � such that ρ(L) ∈ C�.
We use a straightforward encoding of vertices and edges: the i-th vertex ui of a
graph is encoded by abia and the edge (ui, uj) is encoded by abiaaabja. Since
the syntactic monoid of a regular language is finite, we find some t, p ∈ N with
p ≥ 1, threshold and period, such that for every n ∈ N there is some c ≤ t+p−1
with bc ≡L bn where ≡L denotes the syntactic equivalence. The threshold t tells
us that bc ≡L bn implies n = c for all 0 ≤ c < t and bn ≡L bn+p ⇐⇒ n ≥ t.
This is the key observation when proving that we have no more than these four
classes above. If L ⊆ G is not regular, then the syntactic monoid ML is infinite.
We find interesting examples where ML satisfies the Burnside condition that
all cyclic submonoids of ML are finite. If so, then there exist t, p ∈ N with
p ≥ 1 such that the syntactic properties stated above hold for the powers of
the letter b. In this case, we say that L satisfies the (b, t, p)-torsion property.
This is a strong restriction, as Theorem 1 shows that for every subset L ⊆ G

satisfying the (b, t, p)-torsion property, there exists a regular set R ⊆ G such that
ρ(L) = ρ(R). This is quite an amazing result. Its proof relies on the fact that
ρ(L) is determined once we know the Parikh-image πC(rf(L)) ⊆ N

C , where for
w ∈ G, the reduced form rf(w) is obtained by replacing every bn by bc, where c
is the smallest 0 ≤ c ≤ t+ p− 1 such that bc ≡L bn. Hence, for deciding whether
some graph G ∈ ρ(L) satisfies a property, we can assume that L is regular.
We are interested in decidable properties Φ, only. Thus, we assume that the set
{G is a finite graph | G |= Φ} is decidable.

First consider that ρ(L) is finite. Then, we can compute all graphs in ρ(L) and
we can output all G ∈ ρ(L) satisfying Φ. Finiteness of ρ(L) is actually quite inter-
esting and important. It is a case where a representation of L by a DFA or a regular
expression can be used for data compression. The minimal size of a regular expres-
sion (or the size of a DFA) for L is never worse than listing all graphs in ρ(L), but
it might be exponentially better. For a concrete and illustrative case, we refer to
Example 2 for a succinct representation of all so-called crowns with atmost n cusps.
The compression rate becomes even better if we use a context-free grammar which
produces a finite set L of words in Σ∗, only.

The second class C2 implies that ρ(L) has bounded tree-width. In this case,
by [2,3,11] we know that given any property Φ which is expressible in MSO,
it is decidable whether there is a graph in ρ(L) satisfying Φ. For languages
L ⊆ G satisfying the (b, t, p)-torsion property, we understand when ρ(L) has
finite tree-width. Hence, we have Theorem 2: The satisfiability problem for MSO-
sentences is decidable for language in the second class. For the other two classes,
the picture changes drastically: the First-Order theory (FO for short) becomes
undecidable [12]. Conversely, we are not aware of any “natural” graph property Φ
where the satisfiability problem for Φ is not trivial for C3 and C4.
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2 Notation and Preliminaries

We let N = {0, 1, 2, . . .} be the set of natural numbers and N∞ = N ∪ {∞}.
Throughout, if S is a set, then we identify a singleton set {x} ⊆ S with the
element x ∈ S. The power set of S is identified with 2S (via characteristic
functions). If E ⊆ X × Y is a relation, then E−1 denotes its inverse relation
E−1 = { (y, x) ∈ Y × X | (x, y) ∈ E }. By idX , we mean the identity relation
idX = { (x, x) ∈ X × X | x ∈ X }. Recall that Y X denotes the set of mappings
from a set X to a set Y . If f : X → Y and g : Y → Z are mappings, then
gf : X → Z denotes the mapping defined by gf(x) = g(f(x)). If convenient,
we abbreviate f([x]) as f [x]. Throughout, Γ denotes a finite alphabet and we
fix Σ = {a, b} with a = b. Each alphabet is equipped with a linear order on its
letters. For Σ, we let a < b. The linear order on Γ induces the short-lex linear
order ≤slex on Γ ∗. That is, for u, v ∈ Γ ∗, we let u ≤slex v if either |u| < |v| or
|u| = |v|, u = pcu′, and v = pdv′ where c, d ∈ Γ with c < d. Here, |u| denotes
the length of u. Similarly, |u|a counts the number of occurrences of letter a in u.
A language L ⊆ Γ ∗ is a code if c1 · · · cm = d1 · · · dn ∈ Γ ∗ with ci, dj ∈ L implies
m = n and ci = di for all 1 ≤ i ≤ m. If M is a monoid, then u ≤ v means
v ∈ MuM , i.e., u is a factor of v. This notation is used for the monoids Γ ∗ and
N

Γ . Elements in N
Γ are called vectors. For w ∈ Γ ∗, ←−w is the reversal of w.

Every subset R ⊆ Γ ∗ has a syntactic monoid M = MR, see, e.g., [5]. The
elements of MR are the congruence classes [u] = { v ∈ Σ∗ | v ≡R u } w.r.t.the
syntactic congruence ≡R. If R is regular, then MR is finite. Monoids with a
single generator are called cyclic. Every finite cyclic monoid M is defined by two
numbers t, p ∈ N with p ≥ 1 such that M is isomorphic to the quotient monoid
Ct,p of (N,+, 0) with the defining relation t = t + p. Hence, the carrier set of
Ct,p equals {0, 1, . . . , t + p − 1}. If t = 0 and p = 1, then Ct,p is trivial.
Parikh-Images. If v, w ∈ Γ ∗, then |w|v denotes the number how often v appears
as a factor in w, i.e., |w|v = |{u ∈ Γ ∗ | ∃s : uvs = w}|. If V ⊆ Γ ∗, then the
Parikh-mapping w.r.t.V is defined by πV : Γ ∗ → N

V , mapping a word w to its
Parikh-vector (|w|v)v∈V ∈ N

V . The classical case is V = Γ ; then the Parikh-
vector becomes (|w|a)a∈Γ and the Parikh-mapping is the canonical homomor-
phism from the free monoid Γ ∗ to the free commutative monoid N

Γ .
A subset S ⊆ N

Γ is called positively downward-closed if, for all v ∈ S, (a)
v(z) ≥ 1 for all z ∈ Γ , and (b) u ≤ v and u(z) ≥ 1 for all z ∈ Γ imply u ∈ S.
The complement of a positively downward-closed set S ⊆ N

Γ is upward-closed,
i.e., u ≥ v and v ∈ S imply u ∈ S. An upward-closed set S is determined by
its set MS of minimal elements. By Dickson’s Lemma, for every upward-closed
subset S ⊆ N

Γ , MS is finite. Hence, every upward-closed subset is semi-linear.
As the set of all semi-linear sets in N

Γ is closed under Boolean operations, every
positively downward-closed set S ⊆ N

Γ is also semi-linear, a key for Theorem 1.
Retractions and retracts. Let ρ : X → Y and γ : Y → X be mappings between
sets. Then, ρ is called a retraction and Y is called a retract of X with section γ
if ρ(γ(y)) = y for all y ∈ Y . Then, ρ−1(y) is the fiber of y ∈ Y . If ρ : X → Y is
a homomorphism of groups X and Y and H = ker(ρ) is the kernel, then ρ is a
retraction if and only if X is a semi-direct product of H by Y .
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3 Graphs

All graphs are assumed to be (at most) countable, given as a pair G = (V,E)
where E ⊆ V ×V . An undirected graph is the special case where E = E−1. If G =
(V,E) is a directed graph, then G also defines the undirected graph (V,E∪E−1);
and it defines the undirected graph without self-loops (V, (E∪E−1)\idV ). A graph
without isolated vertices is called an edge-graph; hence, specifying the edge set
suffices. If G′ = (V ′, E′) and G = (V,E) are graphs such that V ′ ⊆ V and
E′ ⊆ E, then G′ is a subgraph of graph G and we denote this fact by G′ ≤ G. If
U ⊆ V is any subset, then G[U ] = (U,E ∩ U × U) denotes the induced subgraph
of U in G. A graph morphism ϕ : (V ′, E′) → (V,E) is given by a mapping
ϕ : V ′ → V such that (u, v) ∈ E′ implies (ϕ(u), ϕ(v)) ∈ E. If (V ′, E′) and (V,E)
are undirected graphs without self-loops, then ϕ : (V ′, E′) → (V,E) is a graph
morphism when (ϕ(u), ϕ(v)) ∈ E ∪ idV . If ϕ is surjective on vertices and edges,
i.e., ϕ(V ′) = V and ϕ(E′) = E, ϕ is a projection. We consider graphs up to
isomorphism, only. Hence, writing G = G′ means that G and G′ are isomorphic.
A graph F = (V,E) is a retract of a graph F ′ = (V ′, E′) if there are morphisms
ϕ : F ′ → F and γ : F → F ′ where ϕγ is the identity on vertices and edges of
(V,E), i.e., F appears in F ′ as the induced subgraph F ′[γ(V )].

In our paper, every word w ∈ Σ∗ represents a directed finite graph ρ(w) =
(V (w), E(w)) with a linear order on vertices as follows.

V (w) =
{

abma ∈ ab+a
∣
∣ abma ≤ w

}

E(w) =
{

(abma, abna) ∈ ab+a × ab+a
∣
∣ abmaaabna ≤ w

}

The empty word represents the empty graph: there are no vertices and no edges.
We extend ρ to 2Σ∗

by ρ(L) = {ρ(w) | w ∈ L}. Vice versa, if G = (V,E) denotes
a finite graph with a linear order on its vertices, then, for 1 ≤ i, j ∈ N, the i-th
vertex is represented by the factor abia, and an edge from the i-th vertex to the
j-th vertex is represented by the factor abiaaabja. Thus, vertices are encoded by
elements in the set V =

{
abia

∣
∣ 1 ≤ i ∈ N

}
and edges are encoded by elements

is the set E =
{

abiaaabja
∣
∣ 1 ≤ i, j ∈ N

}
. Note that V ∩ E = ∅ and V ∪ E is

an infinite regular code. Using these conventions, the regular set G = (V ∪ E)∗

as well as its subset E
∗
V

∗ represents all finite graphs. The set E
∗ represents

all edge-graphs, i.e., graphs without isolated vertices. Every nonempty finite
graph has infinitely many representations. For example, there are uncountably
many subsets L ⊆ (aba)+ ⊆ V

+ and each ρ(L) represents nothing but the
one-point graph without self-loop. In order to choose a unique (and minimal)
representation for a finite graph G = (V,E), we choose the minimal word γ(G) =
u1 · · · umv1 · · · vn ∈ G in the short-lex ordering on Σ∗ such that ργ(G) = G,
uk ∈ E for 1 ≤ k ≤ m and v� ∈ V for 1 ≤ � ≤ n. Each uk is of the form
abiaaabja representing an edge and each v� is of the form abia representing an
isolated vertex. We call γ(G) the short-lex representation of G. Since γ(G) is
minimal w.r.t.≤slex, we have m = |E| and n is the number of isolated vertices.
For a graph without isolated vertices, this means that it is given by its edge
list. The set of all γρ(G) is context-sensitive but not context-free. The uvwxy-
Theorem does not hold for γρ(G).
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A subset L ⊆ G is viewed as a description of the set of graphs ρ(L). The
mapping ρ : ρ−1(L) → L is a retraction in the sense of Sect. 2, since ργ(G) = G
for any finite graph G. The main results of the paper are: (1) for L ⊆ G satisfying
the b-torsion property, there is a regular language R ⊆ G with ρ(L) = ρ(R)
and (2) for a context-free language satisfying the b-torsion property (e.g., any
regular language) R ⊆ G, we have an effective geometric description of ρ(R). The
description is obtained as follows. Using the fact that R is regular, in a first step,
we find effectively a semi-linear description of ρ(R). In a second step, we compute
a finite set of finite graphs. Each member F in that finite family is a retraction
of some possibly infinite graph F∞. The description of each G ∈ ρ(L) is given
by selecting some F and the cardinality of every fiber. The precise meaning will
become clear later. As a consequence of the description, we are able to show
various decidability results. The following example serves as an illustration.

Example 1. In the following, we let R ⊆ E
∗ and t, p ∈ N with p ≥ 1, t > 1, such

that bn ≡R bn+p for all n ≥ t. Since t > 1, we have [b] = {b}. By a star, we
denote a graph (V,E) such that there exists a vertex z ∈ V with the property
E = { (z, s) | s ∈ V \ {z} }. Thus, a star has a center z and the directed edges
are the outgoing rays of the star.

Furthermore, we assume that R ⊆ (abaaabn(bp)∗a)+ for some fixed n ≥ t.
This implies t ≤ n < t + p. Let w ∈ R. We have w ∈ (abaaabn(bp)∗a)m for
m = |w|a/5, i.e., w = (abaaabd1a) · · · (abaaabdma) where di = n + kip with
ki ∈ N for 1 ≤ i ≤ m. The set { di | 1 ≤ i ≤ m } can have any cardinality s in
{1, . . . , m}. Therefore, ρ(w) is a single star with at least one ray and at most m
rays. If R is finite, then F = ρ(R) is an effective finite collection of stars with at
least one ray and at most r rays where r = max { |w|a/5 | w ∈ R }.
Claim: F is infinite if and only if there is some M ≥ |MR| with (abaaabna)M ∈ R.
The claim holds if sup { |w|a/5 | w ∈ R } < ∞, as in this case F is finite. Thus,
let sup { |w|a/5 | w ∈ R } = ∞. Then, there is some w ∈ R such that abaaabna
appears at least |MR| times as a factor. This implies that there is some M ≥ |MR|
such that (abaaabna)M ∈ R. The claim follows. Moreover, if F is infinite, then
F is the set of all finite stars with at least one ray.

One can show that S = (abaaab2b∗a)∗(aba) is locally testable and therefore
star-free. Hence, the set of all finite stars is specified by a star-free subset of Σ∗.

We study properties of graphs specified by languages L ⊆ G. If L can be arbi-
trary, then we can specify uncountably many families of graphs. So, we cannot
expect any general decidability results. Hence, we restrict our attention to sub-
sets L ⊆ G where membership for ρ(L) is decidable. In fact, membership for ρ(L)
might be decidable although membership for L is undecidable. By Corollary 1,
the following definition yields a sufficient condition for decidability of ρ(L).

Definition 1. Let b ∈ Γ be a letter. A subset L ⊆ Γ ∗ satisfies the (b, t, p)-torsion
property if we have: bt ≡L bt+p. It satisfies the b-torsion property if there are
t, p ∈ N with p ≥ 1 such that L satisfies the (b, t, p)-torsion property.

Every regular language R ⊆ Γ ∗ satisfies the b-torsion property because the
syntactic monoid MR is finite. The language {wa←−w | w ∈ {aba, ab2a}∗} is not
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regular, but it satisfies the b-torsion property for t = 3 and p = 1. The b-torsion
property is exceptional if R is not regular: even deterministic linear context-
free one-counter languages do not satisfy this property, in general. Consider
{ anbn | n ∈ N }. Clearly, bk ≡R bm ⇐⇒ k = m.

Remark 1. Let b ∈ Γ and |Γ | = m. Let L ⊆ Γ ∗ with ML as its syntactic monoid.
If all cyclic submonoids of ML are finite, L satisfies the b-torsion property. In the
following, let 1 ≤ p ∈ N. Recall that the quotient monoid Γ ∗/ {xp = 1 | x ∈ Γ ∗}
defines the free Burnside group B(m, p). It is a group because every x has the
inverse element xp−1 as p ≥ 1. For p large enough, Adjan showed in the 1970s
that B(2, p) is infinite, answering a question of Burnside from 1902. A group is
called p-periodic if it is the homomorphic image of some B(m, p).

Let ϕ : Γ ∗ → G be a surjective homomorphism to a group G. Then, the Word
Problem of G denotes the set WP(G) = {w ∈ Γ ∗ |ϕ(w) = 1}. It is a classical fact
that the syntactic monoid of WP(G) is the group G itself. Kharlampovich con-
structed in [7] a periodic group B(2, p) where the Word Problem is undecidable.
Since the B(2, p) is periodic, the b-torsion property holds trivially. Therefore, as
we will see, there exists a regular subset R such that ρ(WP(B(2, p))) = ρ(R).

For the rest of the paper, if L ⊆ Σ∗ satisfies the b-torsion property, then the
cyclic submonoid of ML generated by the letter b is isomorphic to Ct,p. That is,
we have t, p ∈ N with p ≥ 1, where t + p is minimal such that { [bn] | n ∈ N } =
{ [bc] | 0 ≤ c ≤ t + p − 1 }. Moreover, we assume that L is specified such that
on input n ∈ N, we can compute the value 0 ≤ c ≤ t + p − 1 with bn ≡L bc.
This assumption is satisfied if L is regular and specified, say, by some NFA. For
L ⊆ G, we have [abca] = a[bc]a and [abcaaabda] = a[bc]aaa[bd]a.

Definition 2. Let L ⊆ G satisfy the (b, t, p)-torsion property according to
Definition 1. For every [bn], we define its reduced form by rf[bn] = bc if [bc] = [bn]
and 0 ≤ c ≤ t+p−1. Given w ∈ G, we define the reduced form rf(w) by replacing
every factor abma ≤ w by a rf[bm]a. The saturation ŵ of w is defined by replacing
every factor abma ≤ w by the set a[bm]a. Hence, rf(w) ∈ ŵ ⊆ G.

Remark 2. Let L ⊆ G satisfy the (b, t, p)-torsion property. By possibly decreas-
ing t and/or p, we may assume that for every 1 ≤ c ≤ t + p − 1, there is some
w ∈ L such that abca ≤ rf(w). Moreover, we have [bc] = {bc} if and only if c < t.

Lemma 1. Let L ⊆ G satisfy the (b, t, p)-torsion property. Then, for every w ∈
G, w ∈ L ⇐⇒ ŵ ⊆ L ⇐⇒ rf(w) ∈ L .

The (b, t, p)-torsion property is trivially satisfied if L ⊆ G is a finite set, an
interesting case motivated by data compression. As mentioned in Sect. 1: if L is
finite, then the minimal size of a regular expression for L is never worse than
listing all graphs in ρ(L), but it might be exponentially better. This type of data
compression with formal language methods is also applied in practice [8,9].

Example 2. Let G = ([n], E) be a connected planar graph with vertices 1, . . . , n.
Then, for every subset S ⊆ {n + 1, . . . , 2n}, we define a graph GS by GS =
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([n] ∪ S,E ∪ {(s, s − n) | s ∈ S}). The family Cn = {GS |S ⊆ {n + 1, . . . , 2n}}
might contain up to 2Ω(n) connected planar graphs, e.g., if G is a cycle of n
nodes. If we embed G in the 2-dimensional sphere where the additional edges are
spikes pointing out of the sphere, then GS can be visualized as a discrete model
of a 3-dimensional “crown with at most n cusps”. One can write down a 2n-fold
concatenation of finite sets describing a finite set Ln ⊆ G with ρ(Ln) = Cn. The
size of the corresponding regular expression is O(n2). This leads to a polynomial-
size blueprint potentially producing a family of exponentially many “crowns”.

Definition 3. Let L ⊆ G satisfy the (b, t, p)-torsion property. We introduce two
new finite and disjoint alphabets (depending on L)

A = { rf(abmaaabna) | m,n ∈ N,m, n ≥ 1 } ⊆ E,

B = { rf(abma) | m ∈ N,m ≥ 1 } ⊆ V.

Note that A ⊆ BaB. By C, we denote the union of A and B, which is also a finite
alphabet with a linear order between letters given by the following definition:

x ≤C y ⇐⇒ xy ∈ AB ∨ (xy ∈ (AA ∪ BB) ∧ x ≤slex y). (1)

The linear order ≤C on C defines a short-lex ordering on C∗. Actually, C is a
code. Moreover, if uxv ∈ C+ with x ∈ A and u, v ∈ Σ∗, then u, v ∈ C∗. The
analogue for y ∈ B does not hold, in general. As C is a code, the inclusion
C ⊆ Σ∗ yields an embedding hC : C+ → Σ+. If G is a finite graph, then the
minimal element in H = h−1

C (ρ−1(G)) ∩ A∗B∗ w.r.t.the short-lex ordering for
words in C∗ is the same as the minimal element in hC(H) w.r.t.the ordering
a < b. We assume henceforth that C only contains factors of words from L.

Lemma 2. Let L, C, and rf as in Definitions 2 and 3. Let v ∈ C∗ and w ∈ L
such that πC(v) ≤ πC(rf(w)). If πC(v)(z) ≥ 1 for all z ∈ C, then we have
ρ(v) ∈ ρ(L).

Theorem 1. Let L ⊆ G be any language satisfying the b-torsion property. Then,
there is a regular set R ⊆ G such that ρ(L) = ρ(R) .

Corollary 1. Let L ⊆ G satisfy the b-torsion property. Then, given a finite
graph G = (VG, EG) as an input, it is decidable whether G ∈ ρ(L).

Corollary 2. Let L ⊆ G be context-free satisfying the (b, t, p)-torsion property.
Then, we can effectively calculate a regular set R ⊆ G such that ρ(R) = ρ(L).

Let R ⊆ G be regular. Then, it is well-known that there might be a much
more concise representation by some context-free language K ⊆ G such that
πC(K) = πC(R) and hence ρ(K) = ρ(R).

By Theorem 1, we know that regular languages suffice to describe all sets ρ(L)
where L ⊆ G satisfies the b-torsion property. Therefore, we restrict ourselves to
regular languages. In the following, R ⊆ G denotes a regular language. Hence, we
can calculate numbers t ≥ 0 and p ≥ 1 such that R satisfies the (b, t, p)-torsion
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property. As R is regular, the set L = h−1
C (R)∩A∗B∗ is regular; its Parikh-image

πC(L) ⊆ N
C is effectively semi-linear. Thus, for some finite set J :

πC(L) =
⋃

j∈J

(qj +
∑

i∈Ij

Npi) , (2)

where qj , pi ∈ N
C are vectors. Splitting πC(L) into more linear sets by making

the index set J larger and the sets Ij smaller (if necessary), we can assume with-
out restriction that for all j ∈ J and z ∈ C we have

∑
i∈Ij

pi(z) ≤ qj(z). To see
this, let 1 ∈ Ij . Then, we have

qj +
∑

i∈Ij
Npi = (qj +

∑
i∈Ij\{1} Npi) ∪ (qj + p1 +

∑
i∈Ij

Npi) .

Splitting L into even more but finitely many cases, we can assume without
restriction (for simplifying the notation) that the set J is a singleton. Thus,
πC(L) = q +

∑
i∈I Npi for some q, pi ∈ N

C such that
∑

i∈I pi(z) ≤ q(z). By
possibly reducing A,B,C, we may assume that q(z) ≥ 1 for all z ∈ C and
C = A ∪ B. In order to understand the set of graphs in ρ(R), it suffices to
understand the set of finite graphs defined by linear sets of the form S = q +∑

i∈I Npi ⊆ N
C , where q(z) ≥ 1 for all z ∈ C and

∑
i∈I pi ≤ q. For that purpose,

we let r =
∑

i∈I pi ≤ q and we define a function α : C → N∞ as follows.

α(z) =

⎧
⎪⎨

⎪⎩

q(z) if r(z) = 0 ∧ ∃m ∈ N : t ≤ m ∧ abma ≤ z

∞ if r(z) ≥ 1 ∧ ∃m ∈ N : t ≤ m ∧ abma ≤ z

1 otherwise. That is: ∀m ∈ N : abma ≤ z =⇒ m < t.

(3)

For all z ∈ C, let Lz ⊆ Σ∗. Then, we write
∏

z∈C Lz = Lz1 · · · Lz|C| , where
zi ≤ zj for all i ≤ j according to the linear order defined in Eq. (1). Observe
that

∏
z∈C Lz is regular if all Lz are regular. With this notation, we define:

Rα =
∏

z∈C

zα(z) and Lα =
∏

z∈C

[z]α(z) (4)

Notice that L∞ is just another notation for L+ if L is any set of words.

Lemma 3. The sets Rα, Lα of Eq. (4) are regular with Rα ⊆ Lα, ρ(Lα) = ρ(R).

Now, we define for α a finite family of finite graphs Fα and then, for each F ∈ Fα,
we define a possibly infinite graph F∞, using the notion of marked graphs.

Definition 4. For z ∈ C, let α′(z) = α(z) if α(z) < ∞ and α′(z) = 1, other-
wise. We let R′

α =
∏

z∈C zα′(z), and we define Fα = ρ(R′
α).

Since R′
α is a finite set of words, Fα is a finite set of finite graphs. Now, we define

the crucial notion of a marked graph, with some vertices and edges marked.

Definition 5. A marked graph is a tuple F = (VF , EF , μ), where (VF , EF ) is a
finite graph and μ ⊆ VF ∪ EF denotes the set of marked vertices and edges. Iso-
lated vertices may appear, but if an isolated vertex is marked, then there is exactly
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one isolated vertex. We also require that whenever an edge (u, v) is marked, then
at least one of its endpoints is marked, too. A marked edge-graph is a marked
graph without isolated vertices.

In the following, each graph (VF , EF ) ∈ Fα as in Definition 4 defines a marked
graph F = (VF , EF , μ) as follows, where μ denotes a marking (as in Definition 5)
that we call the canonical marking. We begin by marking those vertices and edges
z ∈ C where α(z) = ∞. In particular, if z ∈ C is marked, then [z] = {z} and [z]
is an infinite set. In the second step, we mark also all vertices u which satisfy
[u] = {u} and which appear as an endpoint in some marked edge. Thereafter,
every marked edge contains at least one marked endpoint. In the third step, if
an isolated vertex is marked, then remove all isolated marked vertices y ∈ B
except one isolated vertex which is marked. In particular, after that procedure,
if a marked isolated vertex y appears, then α(y) = ∞.

Now, we switch to a more abstract viewpoint. We let F be any finite fam-
ily of marked graphs. For each F = (VF , EF , μ) ∈ F , we define a possibly
infinite graph F∞ where (VF , EF ) appears as an induced subgraph, and we
define a family of finite graphs GF . We consider finitely many Fα, and then
we study

⋃ {GF | (VF , EF ) ∈ Fα}, where F = (VF , EF , μ) is the marked graph
obtained by the canonical marking procedure above (which might have removed
isolated marked vertices). For understanding ρ(R), we need to describe sets GF

for marked graphs F = (VF , EF , μ). This requires to define F∞ as follows.

Definition 6. Let F = (VF , EF , μ) be a marked graph as in Definition 5. Then,
the graph F∞ = (V ∞

F , E∞
F ) is defined as follows.

V ∞
F = VF × {0} ∪

⋃

u∈VF

{(u, k) | u is marked ∧ k ∈ N} ,

E∞
F = EF × {0} ∪ {((u, k), (v, �)) ∈ V ∞

F × V ∞
F | (u, v) ∈ EF ∧ (u, v) is marked},

with EF ×{0} = {((u, 0), (v, 0)) | (u, v) ∈ EF }. The family GF is the set of finite
subgraphs of F∞ containing (VF × {0}, EF × {0}) as an induced subgraph.

Observe that F∞ = F if and only if there is no marking, i.e., if μ = ∅. We embed
F into F∞ by a graph morphism γ which maps each vertex u ∈ VF to the pair
γ(u) = (u, 0) ∈ V ∞

F . The projection onto the first component ϕ(u, k) = (u)
yields a retraction for every G ∈ GF with retract F . If no isolated vertex is
marked, then F∞ has at most |VF | isolated vertices, but if there are marked
vertices, then for every sufficiently large k, there is some graph in GF which has
exactly k isolated vertices. In order to understand the graphs in GF (which is
our goal), it is enough to understand the graphs G satisfying F ≤ G ≤ F∞. For
F = F∞, we know everything about that set. Let us hence consider F = F∞.
Proposition 1 shows that ρ(R) is rather rich as soon as some F ∈ Fα satisfies
F = F∞. Confer the next result with the classification C1 ⊂ · · · ⊂ C4 of graphs
from Sect. 1.
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Proposition 1. Let F = (VF , EF , μ) be any marked graph.

1. If F contains a marked edge (u, v) where v is marked, then every finite star
with center (u, 0) appears as an induced subgraph of some G ∈ GF .

2. Suppose we represent a bipartite graph as a triple (U, V,E) where U ∩ V = ∅
and E ⊆ U × V . Let H be any finite bipartite edge-graph. If F contains a
marked edge (u, v) where u and v are marked, then a disjoint union of F and
H appears in GF .

3. Let H be any finite graph. If F contains a marked self-loop (u, u), then the
disjoint union of F and H belongs to GF .

4. Let F be any marked graph such that one or two vertices are marked. Then,
the following holds. A disjoint union of F and any non-bipartite graph appears
in GF if and only if there is some marked self-loop in F .

By Schützenberger’s classical theorem [10] characterizing star-freeness via finite
and aperiodic syntactic monoids, this case distinction entails:

Corollary 3. Let L ⊆ G be any language satisfying the b-torsion property. If
there is a star-free language R such that ρ(L) = ρ(R), then there is no F ∈ Fα

such that a disjoint union of F and a triangle appears in GF .

4 Graph Properties

Throughout this section, F denotes a marked graph and GF denotes the family
of graphs defined in Definition 6. A graph property is a decidable subset Φ ⊆ G.
For a finite graph G, we write G |= Φ if the short-lex representation γ(F ) belongs
to Φ. Given a word w ∈ G, we can compute γρ(w). Hence, we can assume
ρ−1(ρ(Φ)) = Φ. As ρ(w) is realized as a graph with a natural linear order on the
vertices, we have abca ≤ abda ⇐⇒ c ≤ d. We consider properties of undirected
finite graphs, only: if u ∈ G represents the graph ρ(u) = (V,E), then ρ(u) |= Φ if
and only if (V,E ∪E−1) |= Φ. We focus on the satisfiability problem Sat(GF , Φ):

– Input: A marked graph F .
– Question: “∃G ∈ GF : G |= Φ?”

For various well-studied graph properties, Sat(GF , Φ) is decidable. For example,
when Φ states that a graph is planar, or k-colorable, etc. This follows from:

Proposition 2. Let either GF be finite or Φ be any graph property which is
closed under taking induced subgraphs (or both). Then, Sat(GF , Φ) is decidable.

In many cases, graph properties are expressible either in MSO or even in FO.
MSO is a rich and versatile class to define graph properties1. Since w ∈ G defines
graphs with a linear order, we can express in MSO, for example, that the num-
ber of vertices is even. We use the following well-known results as black boxes.
First, (Trakhtenbrot’s Theorem) [12]: given an FO-sentence Φ, it is undecidable
whether there exists a graph (resp. bipartite graph) satisfying Φ. Second, given
an MSO-sentence Φ and k ∈ N, it is decidable whether there exists a graph of
tree-width at most k satisfying Φ, see, e.g., [2,3,11].
1 For our purposes, we allow quantification over both sets of vertices and sets of edges.
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Theorem 2. Let Φ be an MSO-sentence. Then, Sat(GF , Φ) is decidable for
marked graphs F = (VF , EF , μ) if at most one endpoint of each edge is marked.

Theorem 3. Let Φ be an FO-sentence. Then, Sat(GF , Φ) is undecidable for
marked graphs F = (VF , EF , μ) where both endpoints of some edge are marked.

Some graph properties where the problem Sat(GF , Φ) is trivially decidable
are covered by the next theorem, including the problem whether GF contains
a non-planar graph, and various parametrized problems like: “Is there some
(VG, EG) ∈ GF with a clique bigger than

√|VG|?”.

Theorem 4. Let F be any marked graph and Φ be a non-trivial graph property
such that G |= Φ if and only if there is a connected component G′ of G such that
G′ |= Φ. Then, the answer to Sat(GF , Φ) is “Yes” in the following two cases.
[3] (a) The property Φ is true for some bipartite edge-graph and there is some
marked edge where both endpoints are marked. (b) There is some marked self-
loop.

Example 3 lists a few graph properties which are not covered by the results
above, but nevertheless the satisfiability problem is decidable.

Example 3. Let F = (VF , EF , μ) denote a marked graph as input. Then, the
following problems are decidable. Is there some G ∈ GF (a) with a Hamiltonian
cycle (See [4]), or (b) with a perfect matching, or (c) with a dominating set of
size at most

√|VG|?
Perfect Matching. Let VF = {x1, . . . , xk} and suppose some G = (VG, EG) ∈
GF has a perfect matching. We have VF ⊆ VG. Hence, all xi ∈ VF are matched
by vertices yi ∈ VG. The induced subgraph G[VF ∪ {y1, . . . , yk}] has a perfect
matching with at most 2|VF | vertices. All such small G ∈ GF can be enumerated.

Dominating Set. If F contains no marked edge, then decide if the property
holds for (VF , EF ). Otherwise, there is a marked edge (u, v) ∈ EF . Let VG =
(VF ×{0})∪({v}×{1, . . . , |VF |2}) and EG = EF ∪{((u, 0), (v, i)) | 1 ≤ i ≤ |VF |2}.
Then, G = (VG, EG) ∈ GF . Also, VF is a sufficiently small dominating set of G.

With the results above, we have a meta-theorem for graph properties Φ with a
decidable satisfiability problem, covering all cases where we have positive results.

Theorem 5. Let r : N → N be a non-decreasing computable function and let Φ
be a graph property such that, for each marked graph F = (VF , EF , μ), if some
graph in GF satisfies Φ, then there is a graph G = (V,E) ∈ GF such that G |= Φ
and |V | ≤ r(|VF |). Then, given as input a context-free language L ⊆ G satisfying
the (b, t, p)-torsion property, Sat(ρ(L), Φ) is decidable.

5 Conclusion and Open Problems

The starting point of our paper was the following idea: Decide a graph property Φ
not for a single instance as in traditional algorithmic graph theory, but generalize
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this question to a set of graphs specified by a regular language. We chose a natural
representation of graphs by words over a binary alphabet Σ, but other choices
would work equally well. Next, pick your favorite graph property Φ. For example,
Φ says that the number of vertices is a prime number. The property does not
look very regular, there is no way to express the property, say, in MSO. Still,
given a context-free language L ⊆ Σ∗ which satisfies the b-torsion property and
which encodes sets of graphs, we can answer the question if there exists a graph
represented by L and which satisfies Φ. This is a consequence of Theorem 5 and
Bertrand’s postulate that for all n ≥ 1, there is a prime between n and 2n.

Various problems remain open. For instance, given a graph property Φ, we can
define G(Φ) = {G is a finite graph |G |= Φ}. Suppose that ρ−1(G(Φ)) is regular.
Given a regular language R ⊆ Σ∗, can we decide whether G(Φ) ⊆ ρ(R)? What
about the equality G(Φ) = ρ(R)? We can ask the same two questions if R is
context-free. Future research should address complexity issues. For example,
given a typical NP-complete graph property Φ and ask how complex it is to
decide the satisfiability for GF if the input is a marked graph F .
Note: Missing proofs can be found in [4].
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Abstract. Parenn is the typical generalisation of the Dyck language to
multiple types of parentheses. We generalise its notion of balancedness to
allow parentheses of different types to freely commute. We show that bal-
anced regular and ω-regular languages can be characterised by syntactic
constraints on regular and ω-regular expressions and, using the shuffle on
trajectories operator, we define grammars for balanced-by-construction
expressions with which one can express every balanced regular and ω-
regular language.

Keywords: Dyck language · Shuffle on trajectories · Regular
languages

1 Introduction

The Dyck language of balanced parentheses is a textbook example of a context-
free language. Its typical generalisation to multiple types of parentheses, Parenn,
is central in characterising the class of context-free languages, as shown by the
Chomsky-Schützenberger theorem [1]. Many other generalisations of the Dyck
language have been studied over the years [2,4,5,8,9].

The notion of balancedness in Parenn requires parentheses of different types
to be properly nested: [1[2]2]1 is balanced but [1[2]1]2 is not. In this paper,
we consider a more general notion of balancedness, in which parentheses of the
same type must be properly nested but parentheses of different types may freely
commute. This notion of balancedness is of particular interest in the context of
distributed computing, where different components communicate by exchanging
messages: if we assign a unique type of parentheses to every communication chan-
nel between two participants, and interpret a left parenthesis as a message send
event and a right parenthesis as a receive event, then balancedness characterises
precisely all sequences of communication with no lost or orphan messages.

Specifically, we are interested in specifying languages that are balanced by
construction, which correspond to communication protocols that are free of lost
and orphan messages. More precisely, we aim to answer the question: can we
define balanced atoms and a set of balancedness-preserving operators with which
one can express all balanced languages?
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Our main result is that we answer this question positively for the classes of
regular and ω-regular languages. Our contributions are as follows:

– In Sect. 2 we show how balancedness of regular languages corresponds to
syntactic properties of regular expressions.

– In Sect. 3 we show that, by using a parametrised shuffle operator, we can
define a grammar of balanced-by-construction expressions with which one
can express all balanced regular languages.

– In Sect. 4 we extend these results to ω-regular languages and expressions.

Related work and detailed proofs appear in a technical report [3].

Notation. N = {1, 2, . . .}, N0 = {0, 1, . . .} and Z is the set of integers. Let Σn

be the alphabet {[1, ]1, . . . , [n, ]n}. Its size is typically clear from the context,
in which case we omit the subscript. We write λ for the empty word. We write
Σ∗ for the set of finite words over Σ. We write Σω for the set of infinite words
{w | w : N → Σ} over Σ. We write Σ∞ = Σ∗ ∪Σω. We write w(i) to refer to the
symbol at position i in w. We write w(i, . . . , j) for the substring of w beginning
at position i and ending at position j. Let v, w ∈ Σ∞. Then v is a prefix of
w, denoted v � w, if v = w or if there exists v′ ∈ Σ∞ such that vv′ = w. We
write |w|, |w|σ ∈ N0 ∪ {ℵ0} respectively for the length of w and for the number
of occurrences of symbol σ in w. Let E be the set of all regular expressions over
⋃

n≥1 Σn. For e1, e2 ∈ E, we write e1 ≡ e2 iff L(e1) = L(e2).

2 Balanced Regular Languages

In this section, we formally define our notion of balancedness and characterise
balanced regular languages in terms of regular expressions.

Balancedness. A word w ∈ Σ∗ is i-balanced if |w|[i
= |w|]i

and if, for all prefixes
v of w, |v|[i

≥ |v|]i
. It is balanced if it is i-balanced for all i. We extend this

terminology to languages and expressions in the expected way.

Regular Expressions. Using standard algebraic rules, we can rewrite any regular
expression representing a non-empty language into an equivalent expression that
does not contain ∅. Therefore, without loss of generality, we may assume that
regular expressions do not contain ∅, unless they are simply ∅.

To every regular expression e and for every i, we assign a value which we call
its i-balance, denoted ∇(e, i). We show that this value corresponds to the number
of unmatched left i-parentheses in every word of its language (see Lemma 1(i)),
if such a number exists. Also, to differentiate between words such as [i]i and
]i[i, we assign a second value to regular expressions which we call its minimum
i-balance, denoted ∇min(e, i), which we show to correspond to the smallest i-
balance among every prefix of every word in its language (see Lemma 1(ii–iii)).
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Fig. 1. The i-balance and minimum i-balance of regular expressions, where i 6= j.

Formally, we define partial functions ∇, ∇min : E × N 7→ Z as in Fig. 1.
Lemma 1 states that ∇(e, i) and ∇min(e, i) have the intended properties we
described and Lemma 2 states that if the number of unmatched i-parentheses of
words in L(e) is uniquely defined, then both ∇(e, i) and ∇min(e, i) are defined.
We note that ∇ is partial. For instance, ∇([1 + λ, 1) and ∇([∗

1, 1) are both
undefined since their languages contain [1 and λ, which have different numbers
of unmatched left i-parentheses. As ∇min relies on ∇, ∇min is partial as well.

Lemma 1. If ∇(e, i) and ∇min(e, i) are defined, then:

(i) |w|[i
− |w|]i

= ∇(e, i) for every w ∈ L(e);
(ii) |v|[i

− |v|]i
≥ ∇min(e, i) for every prefix v of every w ∈ L(e); and

(iii) |v|[i
− |v|]i

= ∇min(e, i) for some prefix v of some w ∈ L(e).

Lemma 2. If |v|[i
− |v|]i

= |w|[i
− |w|]i

for every v, w ∈ L(e) and L(e) 6= ∅,
then ∇(e, i) and ∇min(e, i) are defined.

The proofs are straightforward by structural induction on e. Applying them
gives us the following characterisation:

Theorem 1. Let e ∈ E. Then e is balanced iff ∇(e, i) = ∇min(e, i) = 0 for every
i or if e = ∅.

3 Balanced-By-Construction Regular Languages

The main contribution of this section is a grammar of balanced-by-construction
expressions, E� in Fig. 2, with which one can express all balanced regular lan-
guages. It differs from regular expressions in two ways:

– Parentheses can syntactically occur only in ordered pairs instead of separately,
so the atoms are all balanced.

– We add a family of operators �n
θ (e1, . . . , en), called shuffle on trajectories, in

order to interleave words of subexpressions.

The shuffle on trajectories operator is a powerful variation of the traditional
shuffle operator, which adds a control trajectory (or a set thereof) to restrict
the permitted orders of interleaving. This allows for fine-grained control over
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Fig. 2. A grammar E
� for expressing balanced regular languages.

orderings when shuffling words or languages. The binary operator was defined—
and its properties thoroughly studied—by Mateescu et al. [6]; the slightly later
introduced multiary variant [7] is formally defined as follows.

Let w1, . . . , wn ∈ Σ∗ and let t ∈ {1, . . . , n}
∗

be a trajectory. Then:

�
n
t (w1, . . . , wn) =

{

σ�n
t′ (w1, . . . , w

′
i, . . . , wn) if t = it′ ∧ wi = σw′

i,

λ if t = w1 = . . . = wn = λ.

The operator naturally generalises to languages and expressions:

�
n
T (L1, . . . , Ln) = {�n

t (w1, . . . , wn) | t ∈ T, w1 ∈ L1, . . . , wn ∈ Ln} .

L(�n
θ (e1, . . . , en)) = �n

L(θ)(L(e1), . . . , L(en)).

As the operator’s arity is clear from its operands, we generally omit it. For the
trajectories, we allow any regular expression over N.

Note that�n
t (w1, . . . , wn) is defined only if |t|i = |wi| for every i. If |t|i = |wi|,

we say that t fits wi. For example,�121332([1]1, [2]2, [3]3) = [1[2]1[3]3]2 and
�121([1]1, [2]2) is undefined since 121 does not fit [2]2. Similarly, �12+21([1 +
[2]2, ]1) ≡ [1]1 + ]1[1, �12+22([1, ]1) ≡ [1]1 and �(12)∗(([1]1)

∗, ([2]2)
∗) ≡

([1[2]1]2)
∗, while �12+11([1, λ) ≡ �(12)∗([1]1, [2(]2[2)

∗) ≡ ∅ since in both
cases no trajectory fits at least one word in every operand. Additionally, we say
that T fits Li if every t ∈ T fits some wi ∈ Li and that θ fits ei if L(θ) fits L(ei).

In the remainder of this section, we show that the grammar E
� can express

all (completeness) and only (soundness) balanced regular languages.

Soundness. Showing that every expression in E
� represents a balanced regular

language is straightforward. The base cases all comply and both balanced and
regular languages are closed under nondeterministic choice, concatenation and
finite repetition. The shuffle on trajectories operator yields an interleaving of
its operands: a simple inductive proof will show closure of balanced languages
under the operation. Mateescu et al. show that regular languages are closed
under binary shuffle on regular trajectory languages by constructing an equiva-
lent finite automaton [6, Theorem 5.1]; their construction can be generalised in
a straightforward way to fit the multiary operator, which shows that:

Theorem 2. {L(e) | e ∈ E
�} ⊆ {L | L is a balanced and regular language}.

Completeness. To show that every balanced regular language has a representa-
tion in E

�, we take a balanced regular expression e, rewrite it into a disjunctive
normal form e1 + . . . + en such that all ei contain no ∅ or choice operators—
unless e = ∅, but since ∅ ∈ E

� we do not need to consider that specific case.
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Fig. 3. Factors, with i ∈ N, k ∈ N0; balanced factors in the top row, unbalanced factors
in the bottom row. We omit the superscript when it is not relevant. The ω-factors will
be used in Sect. 4.

Fig. 4. Merging common pairs of factors, with i ∈ N and k, ℓ ∈ N0.

We then show that, for every i, ei ≡ �θ(ei,1, . . . , ei,m) for some ei,1, . . . , ei,m,
where every ei,j is essentially of the form ([k]k)∗ for some k.

To do this, we show the more general result that, in fact, any regular expres-
sion containing no ∅ or +, and whose every i-balance is defined, can be written
as the shuffle of the expressions in Fig. 3, which we call factors. Additionally,
this can be done in such a way that the number of unbalanced i-factors is lim-
ited by the expression’s i-balance and minimum i-balance, which implies that
if the expression is balanced then it can be written as a shuffle of balanced
factors—which is in E

�. To prove this inductively for the concatenation case, we
use that�θ1

(e1, . . . , en)·�θ2
(en+1, . . . , en+m) ≡ �θ3

(e1, . . . , en, en+1, . . . , en+m)
for some θ3. We then merge certain pairs of factors to retain the correspondence
between unbalanced factors and i-balance; for example, +

i and −
i into i.

Lemma 3 justifies this merging operation and specifies the conditions under
which it may be applied. We note that in particular these conditions, with the
right T , hold for the pairs of factors in Fig. 4. Using this, Lemma 4 justifies the
rewriting of regular expressions into shuffles of factors.

Lemma 3 (Merge). Let L = �T (L1, . . . , Lm). If

(a) T fits every Li,
(b) for every t ∈ T , if t(i) = m − 1 and t(j) = m then i < j, and
(c) for all v, w ∈ Lm−1Lm, if |v| = |w| then v = w,

then L = �T ′(L1, . . . , Lm−1Lm) for some T ′ such that T ′ fits L1, . . . , Lm−1Lm.

Proof. Let ϕ be a homomorphism such that ϕ(m − 1) = 1, ϕ(m) = 2 and
ϕ(i) = λ for all other i. Let ψ be a homomorphism such that ψ(m) = m− 1 and
ψ(i) = i for all other i. We proceed to show that L = �ψ(T )(L1, . . . , Lm−1Lm).
Since T fits every Li, ψ(T ) also fits L1, . . . , Lm−1Lm. ⊓⊔

Lemma 4 (Rewrite). Let posi(e1, . . . , en), negi(e1, . . . , en), neuti(e1, . . . , en)
be the number of +

i, −
i and [ ±

i or ⋆
i] among e1, . . . , en.
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Let e ∈ E containing no +, whose i-balance is defined for every i. Then there
exist θ and factors e1, . . . , en such that e ≡ �θ(e1, . . . , en) and, additionally,

(a) posi(e1, . . . , en) − negi(e1, . . . , en) = ∇(e, i) for every i,
(b) −negi(e1, . . . , en) − neuti(e1, . . . , en) = ∇min(e, i) for every i,
(c) there are not both +

i and −
i among e1, . . . , en for some i, and

(d) θ fits every ei.

Proof. This is a proof by induction on the structure of e.
The base cases λ, [i and ]i are covered by �1

λ( 0
i ), �

1
1( + 0

i ) and �1
1( − 0

i ).
Since e contains no +, this leaves us with two inductive cases:

– Let e = ê∗. The induction hypothesis gives us some ê1, . . . , ên and θ̂ sat-
isfying all conditions for ê. It should be clear that L((�

θ̂
(ê1, . . . , ên))∗) ⊆

L((�
θ̂
(ê∗

1, . . . , ê
∗
n))∗) ⊆ L(�

θ̂∗(ê∗
1, . . . , ê

∗
n)). Since ∇(e, i) is defined for all i,

∇(ê, i) = 0 for all i. It then follows from (a) and (c) that ê1, . . . , ên contain
no +

i or −
i, so all ê∗

i are also factors.
To prove inclusion in the other direction, we show in two steps that
L(�

θ̂∗(ê∗
1, . . . , ê

∗
n)) ⊆ L((�

θ̂
(ê∗

1, . . . , ê
∗
n))∗) ⊆ L((�

θ̂
(ê1, . . . , ên))∗).

The balances, minimum balances and factor counts are unchanged, so (a–c)

are satisfied. Finally, since θ̂ fits every êi, θ̂∗ fits every ê∗
i , so (d) also holds.

– Let e = ê1 · ê2. The induction hypothesis gives us some e1,1, . . . , e1,m1
and θ1

satisfying all conditions for ê1, and similarly for ê2. Let ϕ be a homomorphism
such that ϕ(i) = i+m1. Then e′ = �θ1ϕ(θ2)(e1,1, . . . , e1,m1

, e2,1, . . . , e2,m2
) ≡

e and e′ satisfies (d), but not necessarily (a–c). We resolve the latter by
merging operands e1,j, e2,k where applicable by Lemma 3. We merge pairs of
factors from Fig. 4, taking care to prioritise pairs containing both +

i and −
i

over pairs containing only one of these, and pairs containing only one over
pairs containing none. By Lemma 3, the resulting expression is equivalent to
e′ and satisfies (d). It also satisfies (a–c). ⊓⊔

Since a balanced regular expression has an i-balance and minimum i-balance
of 0 for every i (Theorem 1), the following theorem follows directly from
Lemma 4.

Theorem 3. {L(e) | e ∈ E
�} ⊇ {L | L is a balanced and regular language}.

As an example, consider e = [1([1]1 + ]1[1)(]1[1)
∗]1. We first rewrite e as

[1[1]1(]1[1)
∗]1 + [1]1[1(]1[1)

∗]1. We proceed to show how to construct an
expression in E

� for the first part of the disjunction:

[1[1]1(]1[1)
∗
]1 ≡ �1( + 0

1)�1 ( + 0
1)�1 ( −

0
1)(�1( −

0
1)�1 ( + 0

1))
∗
�1 ( −

0
1)

≡ �12( + 0
1, + 0

1)�1 ( −
0
1)(�1( −

0
1)�1 ( + 0

1))
∗
�1 ( −

0
1)

≡ �121(
1
1, + 0

1)(�1( −
0
1)�1 ( + 0

1))
∗
�1 ( −

0
1)

≡ �121(
1
1, + 0

1)(�11( ±
0
1))

∗
�1 ( −

0
1)

≡ �121(
1
1, + 0

1)�(11)∗ ( ⋆ 0
1)�1 ( −

0
1)

≡ �121(22)∗( 1
1, + 0

1)�1 ( −
0
1)

≡ �121(22)∗2(
1
1,

1
1).
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4 Balanced-By-Construction ω-regular Languages

We generalise the notion of balancedness to also include bounded infinite words
and ω-languages: a word w ∈ Σ∞ is i-balanced iff |w|[i

= |w|]i
, |v|[i

≥ |v|]i
for all

finite prefixes v of w, and w is bounded, as defined below. A language L ⊆ Σ∞

is i-balanced if all of its words are and if it is bounded. This is extended to
balancedness and expressions in the expected way. We note that all finite words
and balanced regular languages are bounded by default; boundedness is only a
restriction on infinite words and ω-languages.1

Boundedness. A word w ∈ Σ∞ is i-bounded by n ∈ N0 if |v|[i
− |v|]i

≤ n for
all finite prefixes v of w. A language is i-bounded by n if all of its words are. A
word or language is bounded if it is i-bounded for all i. The minimal i-bound of
a word or language is the smallest n for which it is i-bounded. We extend these
definitions to expressions in the expected way.

We note that by this definition [i([i]i)
ω is balanced, but [

∗
i ([i]i)

ω is not
since it is not bounded, even though all of its words are.

4.1 Balanced ω-Regular Expressions

We use Ω for the set of all ω-regular expressions. It is defined as follows:

∅ ∈ Ω

e ∈ E λ /∈ L(e)

eω ∈ Ω

e1 ∈ E e2 ∈ Ω

e1 · e2 ∈ Ω

e1, e2 ∈ Ω

e1 + e2 ∈ Ω
(1)

As before, we assume without loss of generality that an ω-regular expression
e does not contain ∅, unless e = ∅, to simplify definitions and proofs.

Our characterisation of balanced ω-regular expressions is a generalisation of
that of balanced regular expressions. We note two main complications:

– We need to distinguish between finite and infinite numbers of parentheses:
[1([1]1)

ω is balanced but [1([2]2)
ω is not. We introduce two predicates for

expressions: ξ(e, i) and ξω(e, i), as defined in Fig. 5. Intuitively, and as shown
in Lemma 5, ξ(e, i) iff every word in L(e) contains at least one i-parenthesis,
and ξω(e, i) iff every word in L(e) contains infinitely many.

– Not every subexpression of a balanced ω-regular expression can be assigned
a unique i-balance: (λ + [i)([i]i)

ω is balanced, but (λ + [i) has no unique
i-balance. Instead, we now assign an upper bound ∇U and a lower bound
∇L to an expression’s i-balance instead of a single value. These are defined
in Fig. 6. The definition of minimum i-balance is unchanged, other than the
addition of ∇min(eω, i) = ∇min(e, i) and the redefinition of ∇min(e1 · e2, i) =
min(∇min(e1, i), ∇

L(e1, i)+∇min(e2, i)). We note that, for any regular expres-
sion e ∈ E, ∇L(e, i) = ∇U (e, i) = ∇(e, i).

1 Our choice for boundedness stems from our interest in communication protocols
(Sect. 1), where channels often require buffers of finite size.
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Fig. 5. The i-occurrence of regular and ω-regular expressions.

∇†(λ, i) = 0 ∇†([i, i) = 1 ∇†(]i, i) = −1 ∇†([j , i) = ∇†(]j , i) = 0

∇†(e1 · e2, i) =

{

∇†(e2, i) if ξω(e2, i)

∇†(e1, i) + ∇†(e2, i) otherwise

∇†(e∗
, i) = ∇†(eω

, i) = 0 if ∇†(e, i) = 0

∇L(e1 + e2, i) = min(∇L(e1, i), ∇
L(e2, i)) ∇U (e1 + e2, i) = max(∇U (e1, i), ∇

L(e2, i))

Fig. 6. The i-balance bounds of ω-regular expressions, where i 6= j and † ∈ {L, U}.

Lemma 5. Let e ∈ E ∪ Ω such that e 6= ∅. Then:

(i) ξ(e, i) if and only if |w|[i
+ |w|]i

> 0 for every w ∈ L(e);
(ii) ξω(e, i) if and only if |w|[i

+ |w|]i
= ℵ0 for every w ∈ L(e).

We extend Lemmas 1 and 2 about properties of i-balance and minimum
i-balance to i-balance bounds and ω-regular expressions in Lemmas 6 and 7.

Lemma 6 (cf. Lemma 1). Let e ∈ E∪ Ω. If ∇L(e, i), ∇U (e, i) and ∇min(e, i)
are defined, then:

(i) For every w ∈ L(e), |w|[i
and |w|]i

are either both finite or both infinite;
(ii) For every w ∈ L(e), if |w|[i

, |w|]i
are finite, then ∇L(e, i) ≤ |w|[i

− |w|]i
≤

∇U (e, i);
(iii) If e ∈ E, then there exist w1, w2 ∈ L(e) such that |w1|[i

− |w1|]i
= ∇L(e, i)

and |w2|[i
− |w2|]i

= ∇U (e, i);
(iv) If ξω(e, i), then ∇L(e, i) = ∇U (e, i) = 0;
(v) |v|[i

− |v|]i
≥ ∇min(e, i) for every finite prefix v of every w ∈ L(e);

(vi) |v|[i
− |v|]i

= ∇min(e, i) for some finite prefix v of some w ∈ L(e);
(vii) L(e) is i-bounded.

Lemma 7 (cf. Lemma 2). Let e ∈ E∪Ω. If e 6= ∅, e is i-bounded and if there
exists some n such that |(|v|[i

−|v|]i
)−(|w|[i

−|w|]i
)| ≤ n for all v, w ∈ L(e) with

finite i-parenthesis counts, then ∇L(e, i), ∇U (e, i) and ∇min(e, i) are defined.

The proofs are straightforward by structural induction on e. Applying these
lemmas gives us the following characterisation:

Theorem 4. Let e ∈ E ∪ Ω. Then e is balanced iff ∇L(e, i) = ∇U (e, i) =
∇min(e, i) = 0 for every i or if e = ∅.
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4.2 Balanced-By-Construction ω-Regular Languages

The grammar in Fig. 2 can be extended with ω as in (1) to obtain an expression
grammar Ω� for balanced ω-regular languages [3, Appendix B].

Since the inductive definition of the shuffle on trajectories operator does not
support words of infinite length, we redefine it as follows. Let w1, . . . , wn ∈ Σ∞

and let t ∈ {1, . . . , n}
∞

. If t fits w1, . . . , wn, i.e., if |t|i = |wi| for every i, then
�t(w1, . . . , wn) = w(1)w(2) . . . w(|t|) if t has finite length and w(1)w(2) . . . if t
has infinite length, where w(i) = wj(k) for j = t(i) and k = |t(1, . . . , i)|j. As
before, this naturally extends to languages and expressions.

Soundness. Balanced languages being closed under shuffle follows immediately
from its definition. To show that �T (L1, . . . , Ln) is ω-regular if T is ω-regular
and all Li are either regular or ω-regular, we can further generalise the construc-
tion used by Mateescu et al. [6] to build a Muller automaton for the resulting
language. Recall that a Muller automaton differs from a finite automaton only
in its acceptance criterion: instead of a single set of final states it has a set of
sets of final states F , and it accepts all infinite words for which the set of states
that are visited infinitely often is an element of F .

The construction of the new Muller automaton is analogous to the construc-
tion of a finite automaton for a shuffle of regular languages and differs only in the
construction of F . Let Q be the set of states of our new Muller automaton. Let
Fi be the acceptance criterion of the automaton for Li, whether a finite automa-
ton or a Muller automaton. If Li is regular, then without loss of generality we
may assume that no state in Fi has any outgoing transition. Furthermore, since
ω-regular languages are closed under intersection and the language of all trajec-
tories containing infinitely many i is ω-regular for every i, we may also assume
without loss of generality that T only contains trajectories with infinitely many
occurrences of every i.

We define F as the cross product of all the Fi: F is the set of sets of states
such that, if Li is ω-regular then the projection of these states on i is an element
of Fi, and if Li is regular then the projection of these states on i is a single state
in Fi. Formally: if ϕi((qt, q1, . . . , qn)) = qi and ϕi(S) = {ϕi(q) | q ∈ S}, then
F = {S | S ⊆ Q ∧ (ϕi(S) ∈ Fi ∨ (ϕi(S) ⊆ Fi ∧ |ϕi(S)| = 1))}. The automaton
for T forces that every Muller automaton for some Li takes infinitely many steps.
By our assumption that the final states of finite automata have no outgoing
transitions, all finite automata only take a finite number of steps. It follows
that our constructed Muller automaton accepts the language of �T (L1, . . . , Ln),
which then is ω-regular. In other words:

Theorem 5. {L(e) | e ∈ Ω�} ⊆ {L | L is a balanced ω-regular language}.

Completeness. Our approach to showing that every balanced ω-regular expres-
sion has an equivalent expression in Ω� mirrors that of Sect. 3: we first rewrite
an expression into a disjunctive normal form and then recursively construct an
expression in Ω� for every term of the disjunction by merging pairs of factors.
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Let e 6= ∅ be a balanced ω-regular expression. Without loss of generality,
we may assume that e = e1e

ω
2 + . . . + e2m−1e

ω
2m, where every ei is a regular

expression containing no +. Otherwise, we can rewrite it as such. We show how
to construct an expression in Ω� for e1e

ω
2 .

Since ∇L(e, i) = ∇U (e, i) = ∇min(e, i) = 0 by Theorem 4, it follows that
∇min(e1, i) = ∇L(e2, i) = ∇U (e2, i) = 0. Then, by Lemma 4, we can write e1 as
a shuffle of i, λ i, +

i and e2 as a shuffle of i, λ i, ±
i, ⋆

i. The idea is to:
(a) rewrite eω

2 in terms of i, λ i,
ω
i , ± ω

i and then; (b) merge every +
i in

e1 with a ± ω
i in eω

2 into ω
i , using Lemma 3. We run into two complications:

– In step (a), eω
2 may not necessarily be expressible as a single shuffle of factors:

if e2 = [1]1([2]2)
∗, then eω

2 contains both words with finite and infinite
numbers of [2, ]2. The latter requires a factor ω

2 , while the former requires
its absence. To remedy this, we write eω

2 as a disjunction of shuffles of factors;
one for every combination of finite and infinite versions of i, λ i. This is
further detailed in Lemma 8.

– In step (b), the number of ± ω
i in a term of eω

2 may not necessarily match
the number of +

i in e1: if e1 = [1 and e2 = [1]1, then e1 contains one + 1

and e2 contains one factor 1. To solve this, we use two observations:
• We can apply Lemma 3 to split a i into +

i and −
i.

• eω
2 ≡ (e2 · e2)

ω, so we can essentially multiply the factors in e2.
Thus, we can always split a i into +

i and −
i, then create copies of them

and merge them back into one i and one ±
i. Since we can merge all other

factors with their own copy, this effectively adds one ±
i. Now that we have

at least one, we can create more: we create a copy of every factor, then merge
every factor with its own copy except for some number of ±

i. This is further
detailed in Lemma 9.

Lemma 8. Let e = �θ(e1, . . . , en) ∈ E
� be a shuffle of factors i, λ i, ±

i

such that θ fits every ej and contains no +. Then eω ≡ ê1 + . . . + êm, where
êk = �θk

(ek,1, . . . , ek,n) is a shuffle of factors i, λ i,
ω
i , ± ω

i for every k
such that the number of ±

i in e is the same as the number of ± ω
i in êk for

every i, and θk fits every ek,j.

Proof. Let ϕ : E 7→ 2E∪Ω such that ϕ( k
i ) =

{

k
i , ω

i

}

, ϕ( λ
k
i ) =

{

λ
k
i , ω

i

}

and ϕ( ± k
i ) = { ± ω

i }. We can then show that eω ≡ ê1 + . . . + êm, where
{ê1, . . . , êm} = {�θω(e′

1, . . . , e
′
n) | e′

1 ∈ ϕ(e1), . . . , e
′
n ∈ ϕ(en)}.

Moreover, since ϕ maps ±
i to ± ω

i , the number of factors ± ω
i in every

êk matches the number of factors ±
i in e. However, if êk = �θω(e′

1, . . . , e
′
n),

then θω may not necessarily fit every e′
j : if e′

j is one of i, λ i, then there are
t ∈ L(θω) with infinitely many j, while every word in L(e′

j) is finite. Instead of
θω , we can use the trajectory θ∗ · ψ(θ)ω , where ψ is a homomorphism such that
ψ(j) = λ if e′

j is one of i, λ i and ψ(j) = j otherwise. This covers exactly the
part of θω that fits every e′

j . ⊓⊔

Lemma 9. Let �θ(e1, . . . , en) ≡ e ∈ E be a shuffle of factors i, λ i, ±
i, ⋆

i

such that θ fits every ej and contains no +, and ξ(e, i). If there are ℓ factors
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±
i, ⋆

i among e1, . . . , en, then for every k ≥ ℓ (such that k > 0), there exists
some shuffle of factors ê = �

θ̂
(ê1, . . . , êm) such that eω ≡ êω, ê contains k

factors ±
i and no ⋆

i and θ̂ fits every êj.

Proof. This proof consists of three steps. First, we need to make sure that we
have at least one ±

i. Second, we replace any remaining factors ⋆
i with ±

i.
Third, we create additional copies of ±

i as needed.

1. Suppose that there are no ±
i among e1, . . . , en. Then our first step con-

sists of creating one. Since ξ(e, i) and θ contains no +, there exists some
ej ∈ { i, λ i, ⋆

i} such that |t|j > 0 for every t ∈ L(θ). Without loss of
generality, we may assume that j = n.
If en = ⋆ k

i , since |t|n > 0 for every t then e ≡ �θ(e1, . . . , ± k
i ) and we

can proceed with step 2. Otherwise, if en = λ
k
i , then e ≡ �θ(e1, . . . ,

k
i )

and if en = 0
i , then e ≡ �θ(e1, . . . ,

1
i ). Going forward, we may thus

assume that en = k
i with k ≥ 1. Since |t|n > 0 for every t ∈ L(θ) and

θ contains no +, it follows that θ = θ1 · θ2 such that both θ1 and θ2 only
contain trajectories with odd numbers of n. We can then apply the proof of
Lemma 3 to show that e ≡ �θ3

(e1, . . . , en−1, +
k1

i , −
k2

i ) for some θ3, k1, k2.
If e1, . . . , en−1 contain a ⋆

i, then without loss of generality we may assume
that en−1 = ⋆

k3

i . We may assume that there exists some t ∈ L(θ) such
that |θ|n−1 = 0; otherwise we would have selected this factor as en earlier
in this step and then proceeded with step 2. It follows that all trajectories
in θ1 and θ2, and therefore in θ3, contain even numbers of n. Then, in the
same way that we split k

i into +
k1

i and −
k2

i before, we can show that

e ≡ �θ4
(e1, . . . , en−2, ⋆

k4

i , ⋆
k5

i , +
k1

i , −
k2

i ) for some θ4, k4, k5. As seen in

Fig. 4, we can then merge ⋆
k4

i with −
k2

i and ⋆
k5

i with +
k1

i to obtain

e ≡ �θ5
(e1, . . . , en−2, +

k1

i , −
k2

i ) for some θ5. This takes care of the special
case where k = ℓ > 0 but there are no factors ±

i. We may thus assume
without loss of generality that e ≡ �θ6

(e1, . . . , +
k1

i , −
k2

i ) for some θ6.
Since we still lack a ±

i, we use that eω ≡ (e · e)ω to construct e′ =
�θ6

(e1, . . . , +
k1

i , −
k2

i ) ·�θ6
(e1, . . . , +

k1

i , −
k2

i ) ≡ �θ7
(e1, . . . , +

k1

i , −
k2

i ,

e1, . . . , +
k1

i , −
k2

i ) for some θ7. We can then merge the first +
k1

i with the

second −
k2

i into k1+k2+1
i and merge the second +

k1

i with the first −
k2

i

into ±
k1+k2

i . We can merge every other factor with its own copy, which

gives us e′ ≡ �θ8
(e′

1, . . . ,
k1+k2+1
i , ±

k1+k2

i ) and e′ω
1 ≡ eω.

2. Now that we have at least one ±
i, we can reuse methods applied in the

first step to replace any remaining ⋆
i: create a copy of every factor using

eω ≡ (e · e)ω, then merge the two copies of ⋆
i with the copies of some ±

i

as in Fig. 4. By merging every other factor with its own copy, we effectively
replace one ⋆

i with one ±
i. We repeat this step until there are no ⋆

i

left.
3. Finally, by copying every factor and then merging every factor with its

own copy except for a number of ±
i, we can create any additional number

of ±
i, until we have some ê = �

θ̂
(ê1, . . . , êm) with k ±

i. Since every
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rewriting step preserves equivalence of the ω-closures and the fitting of the
trajectories, it follows that êω ≡ eω and that θ̂ fits every êj . ⊓⊔

Summarising, given e1 · eω
2 , by applying Lemmas 9 and 8 we can rewrite e1

as a shuffle of factors i, λ i, +
i, and eω

2 as a disjunction of shuffles of factors

i, λ i,
ω
i , ± ω

i , such that the number of ± ω
i in every term of the disjunction

equals the number of +
i in e1. By applying the laws of distributivity, we can then

rewrite e1 · eω
2 as a disjunction of concatenations of shuffles. Since the numbers

of +
i and ± ω

i match in every term of this disjunction, we can apply Lemma 3
to merge every pair into ω

i . Since all factors are now balanced, every balanced
ω-regular language has a corresponding expression in Ω�:

Theorem 6. {L(e) | e ∈ Ω�} ⊇ {L | L is a balanced ω-regular language}.

As an example, we show how to build an expression in Ω� for e = [1([1]1)
ω.

[1([1]1)
ω ≡ �1( + 0

1)(�11(
1
1))

ω

≡ �1( + 0
1)(�1( + 0

1)�1 ( −
0
1))

ω

≡ �1( + 0
1)(�1( + 0

1)�1( −
0
1)�1 ( + 0

1)�1 ( −
0
1))

ω

≡ �1( + 0
1)(�1( + 0

1)�11 ( ±
0
1)�1 ( −

0
1))

ω

≡ �1( + 0
1)(�1221(

1
1, ±

0
1))

ω

≡ �1( + 0
1)�(1221)ω ( ω

1 , ±
ω
1 )

≡ �1(2112)ω ( ω
1 , ω

1 ).

References

1. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Computer Programming and Formal Systems, Studies in Logic and the Founda-
tions of Mathematics, vol. 26, pp. 118–161. Elsevier (1959)

2. Duchon, P.: On the enumeration and generation of generalized Dyck words. Discret.
Math. 225(1–3), 121–135 (2000). https://doi.org/10.1016/S0012-365X(00)00150-3

3. Edixhoven, L., Jongmans, S.S.: Balanced-by-construction regular and ω-regular lan-
guages (technical report). Tech. Rep. OUNL-CS-2021-1, Open University of the
Netherlands (2021)

4. Labelle, J., Yeh, Y.: Generalized Dyck paths. Discret. Math. 82(1), 1–6 (1990).
https://doi.org/10.1016/0012-365X(90)90039-K

5. Liebehenschel, J.: Lexicographical generation of a generalized Dyck language. SIAM
J. Comput. 32(4), 880–903 (2003). https://doi.org/10.1137/S0097539701394493

6. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: syntactic con-
straints. Theor. Comput. Sci. 197(1–2), 1–56 (1998). https://doi.org/10.1016/
S0304-3975(97)00163-1

7. Mateescu, A., Salomaa, K., Yu, S.: On fairness of many-dimensional trajectories. J.
Autom. Lang. Comb. 5(2), 145–157 (2000). https://doi.org/10.25596/jalc-2000-145

https://doi.org/10.1016/S0012-365X(00)00150-3
https://doi.org/10.1016/0012-365X(90)90039-K
https://doi.org/10.1137/S0097539701394493
https://doi.org/10.1016/S0304-3975(97)00163-1
https://doi.org/10.1016/S0304-3975(97)00163-1
https://doi.org/10.25596/jalc-2000-145


142 L. Edixhoven and S.-S. Jongmans

8. Moortgat, M.: A note on multidimensional Dyck languages. In: Casadio, C., Coecke,
B., Moortgat, M., Scott, P. (eds.) Categories and Types in Logic, Language, and
Physics. LNCS, vol. 8222, pp. 279–296. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54789-8 16

9. Prodinger, H.: On a generalization of the Dyck-language over a two letter
alphabet. Discret. Math. 28(3), 269–276 (1979). https://doi.org/10.1016/0012-
365X(79)90134-1

https://doi.org/10.1007/978-3-642-54789-8_16
https://doi.org/10.1007/978-3-642-54789-8_16
https://doi.org/10.1016/0012-365X(79)90134-1
https://doi.org/10.1016/0012-365X(79)90134-1


Weighted Prefix Normal Words:
Mind the Gap

Yannik Eikmeier, Pamela Fleischmann(B), Mitja Kulczynski,
and Dirk Nowotka

Kiel University, Kiel, Germany
stu204329@mail.uni-kiel.de, {fpa,mku,dn}@informatik.uni-kiel.de

Abstract. A prefix normal word is a binary word whose prefixes contain
at least as many 1s as any of its factors of the same length. Introduced by
Fici and Lipták in 2011, the notion of prefix normality has been, thus far,
only defined for words over the binary alphabet. In this work we inves-
tigate a generalisation for finite words over arbitrary finite alphabets,
namely weighted prefix normality. We prove that weighted prefix nor-
mality is more expressive than binary prefix normality. Furthermore, we
investigate the existence of a weighted prefix normal form, since weighted
prefix normality comes with several new peculiarities that did not already
occur in the binary case. We characterise these issues and finally present
a standard technique to obtain a generalised prefix normal form for all
words over arbitrary, finite alphabets.

1 Introduction

Complexity measures of words are a central topic of investigation when deal-
ing with properties of sequences, e.g., factor complexity [2,4,6,26], binomial
complexity [19,22,23,25], cyclic complexity [12]. Characterising the maximum
density of a particular letter in the set of factors of a given length, hence consid-
ering an abelian setting, falls into that category (see for instance [5,13,24] and
the references therein). Such characterisations inevitably prompt the search for
and investigation of normal forms representing words with equivalent measures.
Prefix normality is the concept considered in this paper and was first introduced
by Fici and Lipták in 2011 [17] as a property describing the distribution of a
designated letter within a binary word. A word over the binary alphabet {0, 1} is
prefix normal if every prefix contains at least as many 1s as any of its factors of
the same length. For example, the word 1101001 is prefix normal. Thus, prefixes
of prefix normal words give an upper bound for the amount of 1s any other factor
of the word may contain. For a given binary word w the maximum-1s function
maps n to the maximum amount of 1s, a length-n factor of w can have. Burcsi et
al. [11] show that there exists exactly one prefix normal word (the prefix normal
form) in the set of all binary words that have an identical maximum-1s function,
e.g., the prefix normal form of 1001101 is 1101001.
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From an application point of view this complexity measure is directly
connected to the Binary Jumbled Pattern Matching Problem (BJPM) (see
e.g., [1,7,9] and for the general JPM, see e.g., [21]). The BJPM problem is
to determine whether a given finite binary word has factors containing given
amounts of 1s and 0s. In [17] prefix normal forms were used to construct an index
for the BJPM problem in O(n) time where n is the given word’s length. The
fastest known algorithm for this problem has a runtime of O(n1.864) (see [14]).
Balister and Gerke [3] showed that the number of length-n prefix normal words
is 2n−Θ(log2(n)), and the class of a given prefix normal word contains at most
2n−O(

√
n log(n)) elements. In more theoretical settings, the language of binary

prefix normal words has also been extended to infinite binary words [16]. Pre-
fix normality has been shown to be connected to other fields of research within
combinatorics on words, e.g., Lyndon words [17] and bubble languages [10]. Fur-
thermore, efforts have been made to recursively construct prefix normal words,
via the notions of extension critical words (collapsing words) and prefix normal
palindromes [10,15,18]. The goal therein was to learn more about the number
of words with the same prefix normal form and the number of prefix normal
palindromes. Very recently in [8] a Gray code for prefix normal words in amor-
tized polylogarithmic time per word was generated. Four sequences related to
prefix normal words can be found in the OEIS [20]: A194850 (number of prefix
normal words of length n), A238109 (list of prefix normal words over the binary
alphabet), A238110 (maximum number of binary words of length n having the
same prefix normal form), and A308465 (number of prefix normal palindromes
of length n).

Our Contribution. In this work, we investigate a generalisation of prefix nor-
mality for finite words over arbitrary finite alphabets. We define a weight mea-
sure, which is a morphic function assigning a weight (an element from an arbi-
trary but a priori chosen monoid) to every letter of an arbitrary finite alphabet.
Based on those weights we can again compare factors and prefixes of words over
this alphabet w.r.t. their weight. A word is prefix normal w.r.t. a weight measure
if no factor has a higher weight than that of the prefix of the same length. Note
that for some weight measures not every word has a unique prefix normal form.
We prove basic properties of weight measures and weighted prefix normality and
give a characterisation of weight measures for which every word has a prefix
normal form. Finally, we define a standard weight measure which only depends
on the alphabetic order of the letters and a unique weighted prefix normal form
that does not depend on the choice of a weight measure.

Structure of the Paper. In Sect. 2, we define the basic terminology. Following
that, in Sect. 3, we prove that weighted prefix normality is a proper generalisation
of the binary case and present our results on the existence of a weighted prefix
normal form. Finally, in Sect. 4, we present our main theorem on the standard
weight measure, as well as the weighted prefix normal form.
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2 Preliminaries

Let N denote the positive natural numbers {1, 2, 3, . . . }, Z the integer numbers,
and P ⊂ N the set of prime numbers. Set N0 := N ∪ {0}. For i, j ∈ N, we define
the interval [i, j] := {n ∈ N | i ≤ n ≤ j} and for n ∈ N, we define [n] := [1, n] and
[n]0 := [0, n]. For two monoids A and B with operations ∗ and ◦ respectively, a
function μ : A → B is a morphism if μ(x∗y) = μ(x)◦μ(y) holds for all x, y ∈ A.
Note that if the domain A is a free monoid over some set S, a morphism from
A → B is sufficiently defined by giving a mapping from S to B.

An alphabet Σ is a finite set of letters. A word is a finite sequence of letters
from a given alphabet. Let Σ∗ denote the set of all finite words over Σ, i.e., the
free monoid over Σ. Let ε denote the empty word and set Σ+ := Σ∗\{ε} as the
free semigroup over Σ. We denote the length of a word w ∈ Σ∗ by |w|, i.e., the
number of letters in w. Thus |ε| = 0 holds. Let w be a word of length n ∈ N.
Let w[i] denote the ith letter of w for i ∈ [|w|], and set w[i . . . j] = w[i] · · · w[j]
for i, j ∈ [|w|] and i ≤ j. Let w[i . . . j] = ε if i > j. The number of occurrences
of a letter a ∈ Σ in w is denoted by |w|a = |{i ∈ [|w|] | w[i] = a}|. We say
x ∈ Σ∗ is a factor of w if there exist u, v ∈ Σ∗ with w = uxv. In this case u is
called a prefix of w. We denote the set of w’s factors (prefixes resp.) by Fact(w)
(Pref(w) resp.) and Facti(w) (Prefi(w) resp.) denotes the set of factors (prefixes)
of length i ∈ [|w|]. Given a total order < over Σ let <lex denote the extension
of < to a lexicographic order over Σ∗. Fixing a strictly totally ordered alphabet
Σ = {a1, a2, . . . , an} with ai < aj for 1 ≤ i < j ≤ n, the Parikh vector of a word
is defined by p : Σ∗ → N

n : w 
→ (|w|a1 , |w|a2 , . . . , |w|an
). For a function f set

f(A) = {f(a) | a ∈ A} for A ⊆ dom(f).
Before we define the weight measures and weighted prefix normality we recall

the definition for binary prefix normality as introduced by Fici and Lipták in [17].

Definition 1. ([17]) Given w ∈ {0, 1}∗ the maximum-ones function fw and
the prefix-ones function pw are respectively defined by fw : [|w|]0 → N0, i 
→
max(|Facti(w)|1) and pw : [|w|]0 → N0, i 
→ |Prefi(w)|1. The word w is called
prefix normal if fw = pw holds.

Our generalisation of binary prefix normality is based on weight measures,
i.e., we apply weights represented by elements from a strictly totally ordered,
cancellative monoid A to every letter of the alphabet. In the following we denote
the neutral element of an arbitrary monoid A by 1A, its operation by ◦A, and
its total order by <A (in the case of existence).

Definition 2. Let A be a totally ordered and cancellative monoid. A morphism
μ : Σ∗ → A is a weight measure over the alphabet Σ w.r.t. A if μ(vw) = μ(wv)
and μ(w) <A μ(wv) hold for all words w ∈ Σ∗ and v ∈ Σ+. We refer to the
second property as the increasing property. We say the weights of the letters of
Σ are the base weights of μ, so μ(Σ) is the set of all base weights.

Remark 3. Note that if there exists a weight measure μ w.r.t. the monoid A then
|A| is infinite, ◦A is commutative on μ(Σ∗), and μ(ε) = 1A holds. Moreover, the
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increasing property of weight measures ensures that only the neutral element ε
of Σ∗ is mapped to the neutral element 1A. Hence, we will see that our factor-
and prefix-weight functions are strictly monotonically increasing, in contrast to
the functions defined in [17]. However, if we allow letters from Σ to be also
assigned the neutral weight 1A, we get the known results for binary alphabets.

Remark 4. Note that a weight measure μ can be defined for any alphabet Σ
in two steps: choose some infinite commutative monoid with a total and strict
order and assign a base weight that is greater than the neutral element to each
letter in Σ. Since μ is a morphism, the weight of a word w ∈ Σ∗ is well defined.

In the following definition we introduce seven (for us the most intuitive)
special types of weight measures.

Definition 5. A weight measure μ over the alphabet Σ w.r.t. the monoid A is

� injective if μ is injective on Σ,
� alphabetically ordered if μ(a) ≤A μ(b) holds for all a, b ∈ Σ with a ≤ b for
a total order ≤ on Σ,
� binary if |μ(Σ)| = 2 holds, and non-binary if |μ(Σ)| > 2,
� natural if A is N0 or N with <A being the usual order < on integers,
� a sum weight measure if it is natural and the operation on A is +,
� a product weight measure if it is natural and the operation on A is ∗,
� prime if it is a product weight measure and μ(Σ) ⊆ P holds.

Consider, for instance, the alphabet Σ = {a, b, c}. The weight measure μ
over Σ with μ(a) = 1, μ(b) = 2, and μ(c) = 3 is non-binary, natural, and with
the monoid (N0,+) it is a sum weight measure. It cannot be a product weight
measure with (N, ∗) since then μ(a) = 1 would violate the increasing property.
However, the weight measure ν over Σ w.r.t. (N, ∗) with ν(a) = 2, ν(b) = 3, and
ν(c) = 5 is not only a product weight measure, but also a prime weight measure.

Remark 6. For the binary alphabet Σ = {0, 1} a sum weight measure μ with
μ(w) = |w|1 for all w ∈ Σ∗ cannot exist since we would have μ(0) = 0 = μ(ε)
which is a contradiction to the increasing property. Later on we are going to
circumvent this problem by setting μ(w) = |w|1 + |w| for all w ∈ Σ∗ when
implementing binary prefix normality via the usage of weight measures. Alter-
natively, we may relax the increasing property and allow μ(0) = 0; this results
exactly in the same properties as discussed in [17].

We now define the analogues to the maximum-ones and prefix-ones functions.

Definition 7. Let w ∈ Σ∗ and μ be a weight measure over the alphabet Σ
w.r.t. the monoid A. Define the factor-weight function fw,μ and prefix-weight
function pw,μ respectively by fw,μ : [|w|]0 → A, i 
→ max(μ(Facti(w))) and
pw,μ : [|w|]0 → A, i 
→ μ(Prefi(w)).

For instance, let μ be a sum weight measure with the base weights μ(a) = 1,
μ(n) = 2, μ(b) = 3 for the alphabet Σ = {a, n, b}.

Now consider the words banana and nanaba. Table 1 shows the mappings of
their prefix- and factor-weight functions. The factor-weight function of nanaba
is realised by the factors b, ab, nab, anab, nanab, nanaba.
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i 1 2 3 4 5 6
pnanaba,μ(i) 2 3 5 6 9 10
fnanaba,μ(i) 3 4 6 7 9 10

pbanana,μ(i), fbanana,μ(i) 3 4 6 7 9 10

Table 1. Comparing banana’s and
nanaba’s prefix- and factor-weights.

Finally, we define a generalised app-
roach for prefix normality, namely the
weighted prefix normality for a given
weight measure μ. As in the binary case,
for a prefix normal word the factor-weight
function and the prefix-weight function
have to be identical.

Definition 8. Let w ∈ Σ∗ and let μ be a weight measure over Σ. We say w is
μ-prefix normal (or weighted prefix normal w.r.t. μ) if pw,μ = fw,μ holds.

In the example above we see pbanana,μ = fbanana,μ holds and hence banana
is prefix normal w.r.t. μ. On the other hand we have pnanaba,μ(1) = 2 < 3 =
fnanaba,μ(1) and therefore nanaba is not prefix normal w.r.t. μ.

3 Weighted Prefix Normal Words and Weighted Prefix
Normal Form

In this section we show that weighted prefix normality is a proper generali-
sation of binary prefix normality and further investigate the weighted prefix
normal form. By examining special properties of weight measures, we intend
to guide the reader from the general approach to a characterisation of special
weight measures for which every word has a weighted prefix normal equivalent,
namely injective and gapfree weight measures. Before we define the analogue
to the prefix-equivalence for factor weights, we show that weighted prefix nor-
mality is more general and more expressive than binary prefix normality, i.e.,
every statement on binary prefix normality can be expressed by weighted prefix
normality but not vice versa.

Proposition 9. Binary prefix normality is expressible by weighted prefix nor-
mality, i.e., there exists a weight measure μ such that μ-prefix normality is equiv-
alent to binary prefix normality.

With the binary sum weight measure μ over Σ = {0, 1} where μ(1) = 2
and μ(0) = 1, we can transform any statement on binary prefix normality into
an analogue in the weighted setting. For example, for w = 11001101 we have
fw(4) = 3 and pw(4) = 2 (so w is not prefix normal) and in the weighted setting
we have fw,μ(4) = 7 = fw(4) + 4 and pw,μ(4) = 6 = pw(4) + 4; or in general
fw(i) = fw,μ(i) − i holds for all w ∈ Σ∗ and i ∈ [|w|]. Therefore, w is μ-prefix
normal if and only if it is prefix normal.

Definition 10. Let μ be a weight measure over Σ. Two words w,w′ ∈ Σ∗ are
factor-weight equivalent w.r.t. μ (denoted by w ∼μ w′) if fw,μ = fw′,μ holds. We
denote the equivalence classes by [w]∼μ

:= {w′ ∈ Σ∗ | w ∼μ w′}.
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In the following we highlight three peculiarities about the factor-weight equiv-
alence that do not occur in the binary case: the existence of factor-weight equiv-
alent words with different Parikh vectors, the existence of multiple words that
are weighted prefix normal and factor-weight equivalent, and the absence of a
factor-weight equivalent word that is weighted prefix normal. The words banana
and nanaba over Σ = {a, n, b} with the weight measure μ(a) = 1, μ(n) = 2, and
μ(b) = 3 are factor-weight equivalent. The complete equivalence class is given by
[banana]∼μ

= {ananab, anaban, abanan, nanaba, nabana, banana}. Note that all
words in the class have the same Parikh vector but only banana is μ-prefix nor-
mal. If we were to add c to Σ and expand μ by μ(c) = μ(n) = 2 then [banana]∼μ

contains all words previously in it, but also those where some ns are substi-
tuted by c. So [banana]∼μ

contains four μ-prefix normal words, namely banana,
bacana, banaca, and bacaca. Lastly, consider the sum weight measure ν over
the alphabet Σ = {a, n, x} with the base weights ν(a) = 1, ν(n) = 2, ν(x) = 4.
Now [xaxn]∼ν

only contains xaxn and its reverse nxax. Interestingly none of
the two words are ν-prefix normal, witnessed by fxaxn,ν = fnxax,ν = (4, 6, 9, 11),
pxaxn,ν = (4, 5, 9, 11), and pnxax,ν = (2, 6, 7, 11) (the functions are written as
sequences for brevity). In order for a weighted prefix normal word to exist in
the class, a letter with weight fxaxn,ν(3) − fxaxn,ν(2) = 9 − 6 = 3 is missing. For
example with such a letter b in Σ with ν(b) = 3 the word xnbn is ν-prefix nor-
mal and in [xaxn]∼ν

. These examples show that factor-weight equivalence classes
can contain words with different Parikh vectors, multiple prefix normal words,
and even no prefix normal words at all. We now investigate the question which
weight measures lead to such peculiar equivalence classes and characterise the
equivalence classes that contain a single weighted prefix normal word, a normal
form, as it always exists for the binary case (see [17]).

Definition 11. For w ∈ Σ∗ and a weight measure μ over Σ we define the μ-
prefix normal subset of the factor-weight equivalence class of w by Pμ(w) := {v ∈
[w]∼μ

| pv,μ = fv,μ}.
In the example above, multiple prefix normal words in a single class are a

direct result of ambiguous base weights, i.e., non-injective weight measure: all
letters with the same weights are interchangeable in any word with no effect on
the weight of that word; thus there exist multiple prefix normal words for such
a word. By choosing an injective weight measure we can avoid this behaviour.
However, the problematic case where some equivalence classes contain no prefix
normal words at all, still remains. We give a characterisation of special, referred
to as gapfree, weight measures and show that they guarantee the existence of a
prefix normal word in every equivalence class of the factor-weight equivalence.
Before we prove the claims just stated, we formally define the previous observa-
tions of gaps.

Definition 12. A weight measure μ over the alphabet Σ w.r.t. the monoid A
is gapfree if for all words w ∈ Σ∗ and all i ∈ [|w|] there exists a ∈ Σ such
that fw,μ(i) = fw,μ(i − 1) ◦A μ(a) holds. Otherwise, if for any word w ∈ Σ∗ and
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i ∈ [|w|] there exists no a ∈ Σ such that fw,μ(i) = fw,μ(i − 1) ◦A μ(a) holds, we
say μ is gapful and has a gap over the word w at the index i.

Consider, for example, the sum weight measure over Σ = {a, b, c} with
μ(a) = 2, μ(b) = 4, and μ(c) = 6. We show that μ is gapfree by proving
the existence of letters in Σ with weight xi = fw,μ(i) − fw,μ(i − 1) ∈ N for all
w ∈ Σ∗ and i ∈ [|w|]. Since the factor-weight function is defined as a maximum,
we get xi ≤ μ(c) = 6. On the other hand xi ≥ μ(a) = 2 because the factor-
weight function is strictly increasing. Since all the base weights μ(Σ) = {2, 4, 6}
are even, the same is true for fw,μ(i) and fw,μ(i − 1). Thus, xi has to be even
as well. This implies xi ∈ {2, 4, 6} = μ(Σ). Hence, there exist letters in Σ with
the appropriate weight to fill every possible gap, i.e., μ is gapfree. As a counter
example, the sum weight measure ν over Σ with ν(a) = 1, ν(b) = 3, and ν(c) = 4
is gapful. Consider the word w = bcac then ν has a gap over w at the index 3
since fw,ν(3) = 9 (witnessed by the factor cac) and fw,ν(2) = 7 (witnessed by
the factor bc) and there is no letter with weight 2.

Coming back to the original question of multiple prefix normal words, the
following theorem characterises exactly when an equivalence class contains zero,
exactly one, or more than one weighted prefix normal word.

Theorem 13. Let μ be a weight measure over Σ. Then
- there exists w ∈ Σ∗ such that |Pμ(w)| = 0 iff μ is gapful,
- there exists w ∈ Σ∗ such that |Pμ(w)| > 1 iff μ is not injective, and
- for all w ∈ Σ∗ we have |Pμ(w)| = 1 iff μ gapfree and injective.

Definition 14. Let μ be a gapfree and injective weight measure over Σ and let
w ∈ Σ∗. Then |Pμ(w)| = 1 and its element is the μ-prefix normal form of w.

Again with the alphabet Σ = {a, n, b, x} and the sum weight measure μ
over Σ with base weights μ(a) = 1, μ(n) = 2, μ(b) = 3, and μ(x) = 4 we
have Pμ(nanaba) = {banana} and Pμ(xaxn) = {xnbn}. So banana is the μ-
prefix normal form of nanaba and xnbn is the μ-prefix normal form of xaxn.
Additionally, note xaxn is an example of a word such that its Parikh vector is
different from that of its prefix normal form.

Remark 15. Let μ be a gapfree and injective weight measure over the alphabet
Σ w.r.t. the monoid A and w ∈ Σ∗. Then the μ-prefix normal form w′ of w
can be constructed inductively: w′[1] = a if fw,μ(1) = μ(a) and for all i ∈ [|w|],
i > 1 set w′[i] = a ∈ Σ if fw,μ(i) = fw,μ(i − 1) ◦A μ(a). In contrast, for a
weight measure that is gapfree but not injective this inductive construction can
be used to non-deterministically construct all prefix normal words within the
factor-weight equivalence class of a word.

4 Gapfree Weight Measures

In this section we investigate the behaviour of gapfree weight measures in more
detail. In order to present a natural and gapfree standard weight measure for
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ordered alphabets that is equivalent to every other injective, alphabetically
ordered, and gapfree weight measure (over arbitrary monoids), and thus works
as a representative, we give an alternative condition for gapfree weight measures;
which we refer to as weight measures with stepped based weights.

First of all, by their definition we can infer that every binary weight measure
is gapfree. Consequently we consider non-binary weight measures for the rest of
this section.

Lemma 16. All binary weight measures are gapfree.

Remark 17. By Lemma 16, we see that when modelling binary prefix normality
by means of weighted prefix normality we automatically have the existence of a
unique binary prefix normal form as expected.

In the last section we saw that we have exactly one weighted prefix normal
form in a factor-weight equivalence class if and only if the weight measure is
injective and gapfree. We now give an alternative condition under which a weight
measure is gapfree, which in most cases is easier to check. Later we will also see
that this condition is part of a characterisation for gapfree weight measures.

Definition 18. Let A be a strictly totally ordered monoid. A step function is a
right action of an element s ∈ A (the step) on A, i.e., σs : A → A; a 
→ a ◦A s.
The weight measure μ over Σ w.r.t the monoid A is said to have stepped base
weights if there exists a step function σs for some s ∈ A such that μ(Σ) =
{σi

s(min(μ(Σ))) | i ∈ [0, |μ(Σ)| − 1]} holds.

In the previous example for Σ = {a, b, c}, the gapfree sum weight measure μ
over Σ with μ(a) = 2, μ(b) = 4, and μ(c) = 6 has stepped base weights with the
step of 2. In contrast, the gapful sum weight measure ν over Σ with ν(a) = 1,
ν(b) = 3, and ν(c) = 4 does not, because ν(b) − ν(a) = 2 but ν(c) − ν(b) = 1.
In general, stepped base weights imply gapfreeness but not vice versa.

Proposition 19. All weight measures with stepped base weights are gapfree.

For further investigations of gapfree weight measures we define an equivalence
on weight measures based on their behaviour on words of the same length.

Definition 20. Let μA and μB be weight measures over the same alphabet Σ
w.r.t. the monoids A and B. We say that μA and μB are equivalent if for all
words v, w ∈ Σn, for all n ∈ N, we have μA(v) <A μA(w) iff μB(v) <B μB(w).

The reasoning behind such an equivalence of weight measures lies in the fact
that using different but equivalent weight measures does not change their rela-
tive behaviour. Most notably, Definition 20 and the totality of the orders imply
μA(v) = μA(w) iff μB(v) = μB(w) and therefore, the prefix normal form remains.

For instance, considering again the alphabet Σ = {a, b, c} and the gapfree
sum weight measure μ over Σ with μ(a) = 2, μ(b) = 4, and μ(c) = 6 as well as
the product weight measure ν over Σ with ν(a) = 2, ν(b) = 6, and ν(c) = 18.
Then μ and ν are equivalent since they both are alphabetically ordered and
2 + 3

μ(w)
2 −1 = ν(w) holds for all w ∈ Σ∗. Therefore, since μ is gapfree so is ν,

and for instance Pμ(bcac) = {cbbb} = Pν(bcac) holds.
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Proposition 21. If μ and ν are equivalent weight measures, the prefix normal
form of any word is the same w.r.t. equivalent weight measures, i.e., Pμ(w) =
Pν(w) holds for all w ∈ Σ∗.

Before we present the generalised weight measure, we prove three auxiliary
lemmata and give the definition of the standard weight measure.

Lemma 22. For any two equivalent weight measures, if one of them is gapfree,
injective, or alphabetically ordered then so is the other.

Finally, we define the standard weight measure as an injective gapfree weight
measure that is innate to any strictly totally ordered alphabet.

Definition 23. Let Σ = {a1, a2, . . . , an} be a strictly totally ordered alphabet,
where n ∈ N. We define the standard weight measure μΣ as the alphabetically
ordered sum weight measure over Σ with base weights μΣ(ai) = i for all i ∈ [n].

For instance, considering again the alphabet Σ = {a, b, c} with the usual
order, the standard weight measure μΣ has the base weights μΣ(a) = 1, μΣ(a) =
2, and μΣ(a) = 3. And in the following, we will see that indeed μΣ is equivalent
to both μ and ν from the previous example.

Lemma 24. The standard weight measure is gapfree, injective, and alphabeti-
cally ordered.

The definition of the equivalence on weight measures raises the question
whether the standard weight measure is suitable as a representative for all
gapfree, injective, and alphabetically ordered weight measures. If there were
other equivalence classes of such weight measures then the standard weight mea-
sure would merely represent one of many choices. To answer this question we first
present a peculiar property every gapfree weight measure has and then present
our main theorem on the equivalence class of the standard weight measure.

Lemma 25. Let μ be an injective and alphabetically ordered weight measure
over Σ w.r.t. the monoid A. Let Σ be strictly totally ordered by <Σ and let Σ =
{a1, . . . , an} with n ∈ N>2 and a1 <Σ a2 <Σ · · · <Σ an. If μ has no gap over any
word of the form cacb where a <Σ b <Σ c ∈ Σ then μ(aiai+x) = μ(ai+yai+x−y)
holds for all i, x, y ∈ N with y < x and i + x ≤ n.

Theorem 26. Let μ be a non-binary, injective, and alphabetically ordered weight
measure over the alphabet Σ which is strictly ordered by <Σ. The following
statements are equivalent:
1. μ is gapfree.
2. μ has no gap over any word of the form cacb where a <Σ b <Σ c ∈ Σ.
3. μ is equivalent to the standard weight measure μΣ.
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Note, with (1. ⇔ 2.) in the above we know that any gapful weight measure

Fig. 1. Visualisation of the
factor-weight function’s gap
for w = ccabccb.

over Σ = {a, b, c} already has a gap over bcac.
For instance, consider the sum weight measure
μ over Σ with μ(a) = 1, μ(b) = 2, and
μ(c) = 4. We see that μ is gapful, since it has
a gap over the word w = ccabccb at index 5,
witnessed by the factor-weight function fw,μ =
(4, 8, 10, 12, 15, 19, 21) and the fact that there is
no letter with weight 15 − 12 = 3. We visualise
this gap in Fig. 1. However, we already have a gap
within the even shorter word bcac at index 3, witnessed by fbcac,μ = (4, 6, 9, 11).

On the other hand, with (1. ⇔ 3.) in Theorem 26 we immediately see there
only exists one equivalence class of gapfree, injective, and alphabetically ordered
weight measures w.r.t. the same alphabet, justifying our choice of μΣ as the stan-
dard weight measure. Also, since by transitivity all gapfree, injective, and alpha-
betically ordered weight measures w.r.t. to the same alphabet are equivalent,
they therefore yield the same prefix normal form (by Proposition 21). In other
words, assuming a strictly totally ordered alphabet, every word has exactly one
weighted prefix normal form that is independent of any chosen gapfree, injective,
and alphabetically ordered weight measure over the same alphabet. With that
in mind, paralleling the work presented by Fici and Lipták in [17], we introduce
the weighted prefix normal form of a word w ∈ Σ∗.

Definition 27. Let Σ be a strictly totally ordered alphabet and let w ∈ Σ∗. We
say the μΣ-prefix normal form is the weighted prefix normal form of w or simply
the prefix normal form of w.

For instance, consider the strictly totally ordered alphabet Σ = {a, b, c}, with
the standard weight measure μΣ such that μΣ(a) = 1, μΣ(b) = 2, μΣ(c) = 3.
The weighted prefix normal form of bcac is cbbb, since PμΣ

(bcac) = {cbbb}
holds as seen in previous examples. With Theorem 26 the same also holds for
any other gapfree, injective, and alphabetically ordered weight measure.

Remark 28. By Theorem 26 we immediately see that the gapfree property of a
weight measure is decidable. Since any gapful weight measure already has a gap
over a word of length four using three letters, one can check whether a weight
measure is gapfree in the following way: test for all

(|Σ|
3

)
possible enumerations

of three letters a <Σ b <Σ c whether there exist x ∈ Σ with μ(bx) = μ(ac). We
obtain a running time of O(|Σ|4).

5 Conclusions

In this work we presented the generalisation of prefix normality on binary alpha-
bets as introduced by [17] to arbitrary alphabets by applying weights to the
letters and comparing the weight of a factor with the weight of the prefix of the
same length.
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Since one of the main properties of binary prefix normality, namely the exis-
tence of a unique prefix normal form, does not hold for weighted prefix normality
with arbitrary weight measures, we investigated necessary restrictions to obtain
a unique prefix normal form even in the generalised setting. Here, it is worth
noting that we did not only generalise the size of the alphabet but also the
weights are rather general: they belong to any (totally ordered) monoid. This
is of interest because some peculiarities do not occur if N or N0 are chosen. In
Sect. 3 we proved that there always exists a unique prefix normal form if the
weight measure is gapfree and injective. In Sect. 4 we further demonstrated that
all gapfree weight measures over the same alphabet are equivalent and there-
fore every word has the same weighted prefix normal form w.r.t. each of them.
Which led to the definition of the standard weight measure and ultimately to a
unique prefix normal form in the generalised setting that exists independent of
chosen weight measures. Additionally, we showed that gapfreeness as a property
of weight measures is decidable and can easily be checked in time O(|Σ|4).

However, the exact behaviour of the weighted prefix normal form, or gener-
ally factor-weight equivalent words, especially regarding changes in their Parikh
vectors, remains an open problem. Moreover, a reconnection of weighted prefix
normality to the initial problem of indexed jumbled pattern matching would be
of some interest and might prove useful when investigating pattern matching
problems w.r.t. a non-binary alphabet.

Finally, we like to mention that an easier, but weaker, approach to work with
prefix normality on arbitrary alphabets can be achieved by considering a subset
X of Σ: each letter a in a word is treated like a 1 if a ∈ X and 0 otherwise,
which can also be expressed by weighted prefix normality.
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Abstract. We consider two-tape automata where one tape contains
the input word w, and the other contains an advice string α(|w|) for
some function α : N → Σ∗. Such an automaton recognizes a language
L if there is an advice function for which every word on the input
tape is correctly classified. This model has been introduced by Küçük
with the aim to model non-uniform computation on finite automata. So
far, most of the results concerned automata whose tapes are both 1-
way. First, we show that making even one of the tapes 2-way increases
the model’s power. Then we turn our attention to the case of both
tapes being 2-way, which can also be viewed as a restricted version
of the non-uniform families of automata used by Ibarra and Raviku-
mar to define the class NUDSPACE. We show this restriction to be
not very significant since, e. g., L (2I

2ADFA/poly), i. e., languages recog-
nized by automata with 2-way input and advice tape with polyno-
mial advice equals NUDSPACE(O(log(n))). Hence, we can show that
many interesting problems concerning the state complexity of families
of automata carry over to the problems concerning advice size of non-
uniform automata. In particular, the question whether there can be
a more than polynomial gap in advice between determinism and non-
determinism is of great interest: e. g., the existence of a language that
can be recognized by some 2-way NFA with some k heads on the advice
tape and with polynomial (resp. logarithmic) advice, while a corre-
sponding 2-head DFA would need exponential (resp. polynomial) advice,
would imply L �= NL (resp. LL �= NLL). We show that for advice of size
(log n)o(1) there is no gap between determinism and non-determinism. In
general, we can show that the gap is not more than exponential.

1 Non-uniformity in Finite Automata

Uniformity, i. e., the property that a single, finitely described device is used
to process inputs of infinitely many lengths is a central notion in the theory
of computational models. Some models, like Turing machines, are inherently
uniform, others, like circuits, are inherently non-uniform, and uniformity greatly
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influences both the power of the model, and the techniques that can be employed
for its analysis. To investigate the role of uniformity, non-uniform versions of
uniform models, and vice versa, have been extensively studied. A general way
to define a non-uniform version of a uniform model is as follows: Instead of a
machine M that recognizes a language L (M), one considers a family {Mn}n≥0

of machines such that Mn recognizes the corresponding slice, i. e., L (Mn) ∩
Σn = L (M) ∩ Σn. Following Karp and Lipton’s seminal paper [10], a non-
uniform version of Turing machines, known as oracle machines, have become the
standard. An oracle machine working with an advice function f : N → Σ∗ is
a Turing machine that works on a tape on which the input word x is prefixed
by the string f(|x|). Since Turing machines are powerful enough to include the
universal machine, the two definitions are obviously equivalent, but for weaker
models, a Karp-Lipton-like definition should be weaker.

In this paper we focus on the non-uniform versions of finite automata since
finite automata are considered the most basic computational devices whose
understanding should be conducive to insight into more powerful models. When
considering their non-uniform version based on families of automata, it is to
be noted that since all slices L ∩ Σn are finite languages, a family of finite
automata can recognize any language. Ibarra and Ravikumar [7] considered the
state complexity of a family of 2-way automata to investigate sub-logarithmic
non-uniform space complexity. Also closely related is the so called minicomplex-
ity, a term coined by Kapoutsis [8] to describe the theory of state complexity of
finite automata.

On the side of Karp-Lipton-like definitions, several models have been con-
sidered: Damm and Holzer [1] considered a direct analogue of oracle Turing
machines with the advice word prefixed to the input. To overcome the bottle-
neck that only finite information can be carried between the advice string and
the input word, the model introduced by Tadaki et al. [12] considers the advice
written on a separate track. In this paper we adopt the model introduced by
Küçük [11] where the advice string is written on a separate tape, allowing the
automaton to simultaneously read different positions from the input and the
advice words. A similar model has been proposed by Freivalds [5] with the addi-
tional property that an advice string that is valid for input words of length n
must be also valid for all shorter words.

The model we consider has been investigated in a series of papers [2,3,11] for
deterministic, non-deterministic, and randomized automata with 1-way input.
However, results for 2-way automata have been scarce, and in this paper we
provide more results about them. Our motivation for this is two-fold.

First, the non-uniform model behaves very differently from the uniform one
in the sense that versions of automata that have the same expressive power in
the uniform setting can exhibit significant differences in the non-uniform setting.
E.g., there are languages that can be recognized by a 1-way non-deterministic
automaton with a very little advice but cannot be recognized by a 1-way deter-
ministic automaton, regardless of the amount of the advice [2]. We are trying to
understand how the expressive power of the non-uniform model depends on the
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type of the automaton used. In this respect the 2-way automata are a natural
choice to study.

Second, 2-way non-uniform automata can be viewed as a restricted version
of non-uniform space complexity. In a relationship similar to that of an oracle
machine to a family of Turing machines, in a non-uniform automaton the non-
uniformity is restricted only to the contents of the advice tape. Of course, unlike
Turing machines, finite automata are expected to become weaker with such
a restriction. However, we show that for 2-way automata, this is not always
true, as L (2I

2ADFA/poly) = NUDSPACE(log), i. e., deterministic automata with
2-way input and 2-way advice of polynomial size recognize exactly the languages
with logarithmic non-uniform space complexity (Corollary 1). This means that
proving results about 2-way non-uniform automata could have consequences in
complexity theory.

2 Model

We consider two-tape automata with one input tape and one advice tape, both
containing words with delimiters on both ends. For an input word x, the advice
tape contains an advice word α(|x|) (a ‘best-case’ advice that depends only on
the length of the input).

For a formal definition we use the model of multi-tape automata; see, e. g., [4].
A non-deterministic finite two-tape automaton (NFA, for short) is a tuple
A = (Q,Σ1, Σ2, δ, q0, F ), where Q is a finite set of states, Σ1, Σ2 are the finite
alphabets of the two tapes, q0 is the initial state, F ⊆ Q is the set of accepting
states, and the transition function is δ : Q×(Σ1 ∪ {�, �})×(Σ2 ∪ {�, �}) �→ 2OUT ,
where OUT = Q × {→,←,⊥} × {→,←,⊥}. The meaning is the usual one: The
transition is based on the current state of the automaton, and the symbols or
end-delimiters scanned by both heads. The transition results in an action that
changes the state, and possibly moves each of the heads independently to the fol-
lowing or preceding symbol. The automaton A accepts a word (w1, w2) ∈ Σ∗

1×Σ∗
2

if there is an accepting computation of A starting from (q0, �w1�, �w2�). If
|δ(q, a, b)| = 1 for all q ∈ Q, a ∈ Σ1 ∪ {�, �}, and b ∈ Σ2 ∪ {�, �}, then the
automaton is called deterministic (DFA).

For any automaton A, the recognized language is denoted by L (A). The
symbol X denotes any class of considered automata: DFA or NFA. The non-
uniformity is modeled according to [2,11], and the class of languages recognized
by automata of type X with advice of size f(n) is denoted by L (X )/f(n):

Definition 1. Let X be a class of automata. Let α : N �→ Σ∗
2 be a function such

that ∀n, |α(n)| = f(n). Let Σ∗α
1 = {(w,α(n)) | w ∈ Σ∗

1 , n = |w|} ⊆ (Σ∗
1 × Σ∗

2 ).
For a language L ⊆ Σ∗

1 , let Lα = {(w,α(n)) | w ∈ L, n = |w|} ⊆ (Σ∗
1 × Σ∗

2 ).
Then a language L is recognized by an X automaton A with advice α if each word
(w1, w2) ∈ Lα is accepted, and each word (w1, w2) ∈ Σ∗α

1 − Lα is not accepted.
The class of recognized languages is

L (X )/f(n) := {L ⊆ Σ∗
1 | some A ∈ X recognizes L with advice of length f(n)}.
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We write L (X )/∗ if the size of the advice is unlimited, and L (X )/poly if it is
at most polynomial in the input length.

For i, j ∈ {1, 2}, we denote by iI
jADFA (resp. iI

jANFA) the deterministic (resp.
non-deterministic) automaton with i-way input tape and j-way advice tape. We
always consider one input head. For k > 1 advice heads we write iI

jADFA(k) (resp.
iI
jANFA(k)).

We use the standard complexity classes. Following [8], we denote LL (resp.
NLL) the counterpart of L (resp. NL) for space O(log log n). For non-uniform
complexity we follow the definition by Ibarra and Ravikumar (compare [7]):

Definition 2. A language L has non-uniform space complexity s(n) if there
exists a collection {Mn}n≥1 of 2-way DFAs such that Mn has at most 2s(n)

states, and L (Mn)∩Σn = L∩Σn. The set of languages with non-uniform space
complexity s(n) is denoted NUDSPACE(s(n)).

Note that the original definition aimed at asymptotic complexity, so instead
of 2s(n) states it required 2O(s(n)) states. For our purposes, we need to be slightly
more precise. Closely connected to non-uniform space complexity is minicom-
plexity, a term coined by Kapoutsis [8] for the theory of state complexity of finite
automata. A problem is formalized as a family of languages {Lp}p≥1 parame-
terized by a parameter p. The problem is solved with state complexity s(p) by a
family of automata {Mp}p≥1 such that L (Mi) = Li, and Mi has at most s(p)
states. The distinction of non-uniform space complexity is that the languages
in the considered family are all finite languages parameterized by the length of
the words in the respective language, whereas in minicomplexity the languages
may be arbitrary. However, several minicomplexity results concern families of
languages with bounded size. E.g., a notable result is

Theorem 1 ([8,9]). ShortTWL∈ 2D ⇐⇒ L/poly ⊇ NL.

Here, ShortTWL is a family of languages where the ith language TWLi

contains the (binary-encoded) instances of 2-way liveness of height i and length
at most polynomial in i (so it is a finite language). One can pad the words of
TWLi to have a distinct common length, so Definition 2 can be used.

3 Previous Work

The model we use has been studied in a series of papers [2,3,11]. The main focus
has been on deterministic, non-deterministic, and randomized automata with 1-
way input and 1-way advice. Generally, increasing the advice size up to polyno-
mial size (resp. n2n) for deterministic and randomized (resp. non-deterministic)
automata increases the power, larger advice does not help. Also, one cannot
in general trade determinism or randomization for larger advice. With enough
advice, the automata can usually recognize all languages; notable exceptions are
1-way DFAs and 1-way PFAs. Here we present a selection of known facts that
are relevant for this paper:
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[11] L (1I
1ADFA(2))/n2n = L (2I

1ADFA)/n2n = ALL (1)

[11] ∀k : L (1I
1ADFA)/nk � L (1I

1ADFA)/nk+1 (2)

[3, 11] L (1I
1ADFA)/∗ � L (2I

1ADFA)/O(n2) (3)

because {ww} ∈ L (2I
1ADFA)/O(n2) − L (1I

1ADFA)/ ∗ .

[2] L (1I
1ANFA)/n2n = ALL (4)

[3] L (1I
1ADFA)/poly = L (1I

1ADFA)/∗ (5)

[2] ∀f(n) ∈ ω(1) : L (1I
1ANFA)/o(f(n)) �⊆ L (1I

1ADFA)/∗ (6)

[2] Let g(n) ≤ n2
n
2 , and f(n) log(f(n)) = o(g(n)).

Then L (1I
1ANFA)/g(n) − L (1I

2ANFA)/f(n) �= ∅. (7)

[2] Let f(n) ≤ n, and g(n) = o(f(n)).
Then L (1I

1ADFA)/f(n) �⊆ L (1I
1ANFA)/g(n). (8)

In particular, if both input and advice are 1-way, we know (6) that an arbi-
trarily slowly growing advice is sufficient for 1I

1ANFAs to recognize languages that
are not in L (1I

1ADFA)/∗. On the other hand, (8) for sub-linear advice even a
slight increase of the advice gives 1I

1ADFA s power outside that of 1I
1ANFAs.

4 The Power of Two-Way Advice

In this section we study how the 2-way tapes (input and/or advice) affect the
power of automata. It has been known that 2-way input increases the power of
DFAs significantly: 2I

1ADFAs can, with enough advice, recognize all languages (1),
but the language {ww} ∈ L (2I

1ADFA/O(n2)) cannot be recognized by 1I
1ADFAs

with any advice (3).
We ask how much power 2-way advice can add. For 1-way input, bigger

advice cannot be fully compensated by making the advice 2-way (7). On the
other hand, we show now that even arbitrarily small non-constant 2-way advice
is sufficient, even for a DFA with 1-way input, to recognize languages for which
even an NFA with 2-way input needs linear 1-way advice.

Theorem 2. Let s(n) be any growing function. Then there is a language L such
that L ∈ L (1I

2ADFA)/s(n) but L �∈ L (2I
1ANFA)/o(n).

Proof. Without loss of generality suppose that s(n) = o(n). Consider the fol-
lowing language L: For each n, L contains a single word of length n, namely the
prefix of length n of the sequence 0s(n)1s(n)0s(n) · · · . Suppose that L is recog-
nized by a 2I

1ANFA automaton A with r states, working with advice of size o(n).
Let Δ be a suitable constant (depending only on r) specified later. Fix a suffi-
ciently large n, and consider the single word w ∈ L of length n. Partition w into
n/Δ blocks of size Δ, and disregard all blocks that contain both 0 and 1. Since
there are at most n/s(n) = o(n) blocks containing both 0 and 1 overall, we end
up regarding Ω(n) blocks. Now consider a shortest accepting computation ξ of
A on w. Each position i on the input tape may be visited many times in this
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computation; call a position i clean, if the advice head is never moved during
any of the visits. Since the advice tape is 1-way and the advice size is o(n), there
are Ω(n) blocks containing clean positions exclusively. Consider any such clean
block B. Call window any maximal subsequence of ξ that moves the head within
B. For each window, we call the interface the tuple consisting of the following:
the letter on the advice tape, the incoming direction of the input head (i. e.,
whether the block is entered from left or from right), the state when entering B,
the outgoing direction of the input head, and the state when leaving B. Overall,
there are 8r2 interfaces. We can easily alter ξ in such a way that in each block
A’s behavior is identical for all windows with the same interface. Now consider
an arbitrary position i ∈ {1, . . . , Δ} within B. In each window, there is a cross-
ing sequence of states at position i, and there are at most c := rO(r) distinct
crossing sequences. Since the crossing sequence depends only on the interface of
the window, the position i can be described by its characteristic, which is an
8r2-tuple of crossing sequences (one for each interface). Choosing a Δ > c8r2

ensures that there are two positions iB and jB within each clean block B with
the same characteristics. The interval in the input word between these positions
can be cut out or duplicated without affecting the outcome of the computation.
However, care must be taken, since altering the length of the input word alters
the advice as well. However, for a clean block B there are only Δ possibilities
for the length of the interval between iB and jB . Since Δ is constant, for large
enough n there are two clean blocks B and B′ with jB − iB = jB′ − iB′ . Cutting
out one interval and duplicating the other produces a word not in L with an
accepting computation.

Finally, it is trivial to see how L can be recognized using 2-way advice of size
s(n), so the theorem follows. ��

5 Relation to Non-uniform Space Complexity

As we discussed in the introduction, 2-way non-uniform automata can be seen
as a restricted model of non-uniform space complexity. On the one hand, any
language has non-uniform space complexity at most O(n), and also any language
over a binary alphabet can be recognized by a 2I

2ADFA with advice O(n2n). On
the other hand, clearly NUDSPACE(O(1)) = L (2I

2ADFA/O(1)). We are interested
in the relation to non-uniform space complexity for the intermediate values.

Lemma 1. Languages from L (2I
2ADFA(k))/s(n) can be recognized by a family

of DFAs with O(s(n)k) states, i. e., have non-uniform space complexity at most
k log s(n) + O(1).

Proof. Suppose there is a 2-way DFA A with advice of size s(n), with k heads on
the advice tape. Fix n. We construct a 2-way 1-head DFA A′ recognizing the same
slice of n-letter words. The states of A′ will consist of tuples 〈c1, c2, . . . , ck, q〉
where the ci’s represent positions of A’s advice heads and q is A’s state. For each
letter a, the transition from 〈c1, c2, . . . , ck, q〉 is constructed based on the values
of the advice (which is fixed for fixed n) on the corresponding positions. ��
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Lemma 2. Let L be a language with non-uniform space complexity s(n). Then

L ∈ L (2I
2ADFA(2))/O(s(n)2s(n)).

Proof. Since the non-uniform space complexity of L is s(n), there is, for each n,
an automaton Mn with 2s(n) states that recognizes the corresponding slice of L.
We construct an automaton A with two heads on the advice tape working with
advice in such a way that for each n the advice contains a description of Mn

such that A is able to simulate it.
The advice tape is divided into blocks, each block describing one state of Mn.

The blocks are separated by delimiters. Each block starts with a header encoding
the number of the current state in binary, and then contains two actions, one
for each letter of the alphabet. An action consists of a binary encoding of the
number of the new state, and constant-sized information about the movement
of the input head.

In the simulation, A keeps the input head on the input position of Mn, and
the first advice head on the beginning of the block corresponding to the current
state of Mn. Based on the input letter, A finds the corresponding action block
and moves the input head appropriately. It then uses the second advice head to
scan through all blocks on the advice tape and locate the one that matches the
new block specified by the current action. Technically, each block can encode
the three parts (the header and the two actions) in space O(s(n)) using a self-
delimited encoding. For the size of the advice tape note that there are 2s(n)

blocks (equal to the number of states). ��
The observations by Ibarra and Ravikumar [7] directly yield a hierarchy result

for 2I
2ADFA: Let f be any increasing function such that f(n) ≤ n/2. Consider the

language Lf = {ww0i | |w| = f(n), i = n − 2f(n)}. Following the arguments
by Ibarra and Ravikumar [7] one can observe that Lf cannot be recognized
by a family of automata with o(f(n)/ log(f(n))) states. Following Lemma 1
Lf �∈ L (2I

2ADFA)/(o(f(n)/ log(f(n)))). On the other hand, it is easy to see that
Lf ∈ L (2I

2ADFA)/f(n).
Note that there is still a gap between the simulations: E.g., for 2I

2ADFA(2),
advice of size s(n) yields a family with s(n)2 states, but a family with s(n)2 states
yields advice of size O(s(n)2 log s(n)). However, the two lemmas are sufficient to
translate several questions from minicomplexity into the language of non-uniform
automata. E.g., if one shows that the version of the 2-way liveness language from
Theorem 1 requires more than polynomial advice for 2I

2ADFA(2), from Lemma 2
one can conclude that L/poly �⊇ NL.

The previous result needed 2 advice heads in order to maintain the counters.
For short advice, however, the input head can be used as one counter, so we can
save one head at the expense of larger advice:

Lemma 3. Let L be a language with space complexity s(n) ≤ k log n for some
k. Then L ∈ L (2I

2ADFA)/O(n2k+1).

Proof. The proof goes the same way as the previous one, only this time the
advice tape contains a block for each pair of state and input position; so there are
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altogether n2s(n) blocks. The blocks are arranged in such a way that the blocks
for a given input position form a consecutive sequence. Each block contains a
unary counter storing the current input position, and two actions. An action
consists of a unary counter indicating how many blocks the head should move.
Due to the ordering of the blocks, each action can move the current block only
among 2 · 2s(n) neighboring blocks; the input head can move at most by one.
Hence, we get n+4 ·2s(n) for the length of a block. Overall, the size of the advice
is O(n2s(n)(n + 2s(n))) = O(n2k+1) since s(n) ≤ k log n.

During the simulation, A uses the input head to store the counter from the
action; note that the input tape is long enough for that. Then it recovers the
input head using the counter in the target block. ��

Lemma 3 together with Lemma 1 give the following

Corollary 1. We have L (2I
2ADFA/poly) = NUDSPACE(O(log(n))).

6 Determinism Vs Non-determinism

The relation between determinism and non-determinism is a central question
in many computational models. For 1-way non-uniform automata the situation
is easier, since the deterministic automata are less expressive than their non-
deterministic counterparts. Even arbitrarily small non-constant advice makes
non-determinism stronger than determinism with unlimited advice (6).

In this section we consider 2-way automata. In this case, both determin-
istic and non-deterministic automata can recognize all languages, so the cen-
tral question is the increase in the advice size between non-determinism and
determinism. First, we show that for advice of size (log n)O(1) there is no differ-
ence between determinism and non-determinism, basically due to the fact that
NSPACE(o(log log n)) = REG. Note, however, that no such threshold is in the
NUDSPACE class where the hierarchy continues all the way down to O(1) [7].

Definition 3. Let A be a (deterministic or non-deterministic) automaton work-
ing with advice of size s(n) ≤ n. Consider an input word x = x1, . . . , xn. First,
pad the word by some special blank symbol so that the new length n′ is divisible by
s(n). Let the advice for length n be a1a2 · · · as(n). We call extended word x the
word ext(x) = x1a1x2a2 · · · xs(n)as(n)xs(n)+1a1xs(n)+2a2 · · · xn′as(n). Note that
2n ≤ |ext(x)| ≤ 2(n + s(n)).

We shall interpret ext(x) as a two-track word (of length between n and
n + s(n)) where consecutive copies of the advice string are placed on top of the
input word:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 B B B

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

Two-track version of ext(x) where x = x1 · · ·x17 and the advice for n = 17 is a1 · · · a5.
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We use the standard definition of promise problems as a pair (YES,NO) of
sets of positive and negative instances. We can also assume that the advice is
self-delimited, i. e., a Turing machine can determine the value s(n) for ext(x) in
space log(s(n)).

Lemma 4. Let A be a 2I
2ANFA(k) working with advice of size s(n) and recog-

nizing some language L. Then there is an NSPACE(log s(n)) Turing machine
recognizing the promise problem ({ext(x) | x ∈ L}, {ext(x) | x �∈ L}).

Proof. Consider the following non-deterministic Turing machine MA that will,
on a two-track word ext(x) simulate the computation of A on x. MA will keep
A’s state in internal memory, and will use k counters c1, . . . , ck, each storing an
integer up to s(n), to represent the positions of A’s advice heads. Specifically, the
counter ci stores the distance from the current input head position (on ext(x))
to a position where the upper track contains the same letter as read by the ith
advice head of A on x.

MA works in rounds. At the beginning of each round, MA fetches the advice
symbols read by the respective heads using the counters c1, . . . , ck, and returns
the head to the current input position. This can be done with the use of an
extra auxiliary counter. MA then non-deterministically chooses a transition of
A, updates the counters c1, . . . , ck, the internal state, and moves the input head.
The counter updates are done in modulo s(n), which can be done because MA

can recover the value of s(n) from the self-delimited advice. ��
Theorem 3. Let s be any non-decreasing function such that s(n) = (log n)o(1).
Then for any fixed k ≥ 1, we have L (2I

2ANFA(k))/s(n) = L (1I
2ADFA)/s(n).

Proof. The “⊇” is trivial. For the other direction, consider a 2I
2ANFA(k) automa-

ton A recognizing some language L with some advice α of size s(n). From
Lemma 4 it follows that there is an NSPACE(log s(n)) Turing machine MA

accepting all words ext(x) for x ∈ L, and rejecting all words ext(x) for x �∈ L.
However, since the space of MA is O(log s(n)) = o(log log n), due to [6] it
recognizes some regular language. Hence, there is a 1-way DFA A′ such that
ext(x) ∈ L (A′) for all x ∈ L and ext(x) �∈ L (A′) for all x �∈ L.

Finally, a 1I
2ADFA B with advice α can simulate A′ on words ext(x) by sup-

plementing A′ with a virtual tape containing ext(x): B starts by serving the
symbols from input and advice tape in an alternating order, when the advice
head reaches the end, B rewinds it and starts from the beginning. ��

We have seen that for small advice, there is no difference between determin-
ism and non-determinism. For larger advices, however, the question becomes
more difficult since we have:

Theorem 4. If DSPACE(log s(n)) = NSPACE(log s(n)), then for any fixed k ≥ 1
it holds that L (2I

2ANFA(k))/s(n) ⊆ L (2I
2ADFA(2))/poly(s(n)).

Proof. Let L ∈ L (2I
2ANFA(k))/s(n) be given. Following Lemma 4 there is an

NSPACE(log s(n)) Turing machine – whose exact space depends on k; it is at
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least (k + 1) log s(n) – accepting all words ext(x) for x ∈ L, and rejecting all
words ext(x) for x �∈ L. From the theorem’s hypothesis it follows that there exist
an equivalent DSPACE(log s(n)) machine MA. (Note that since the definition of
DSPACE involves asymptotic notation, we are not able to determine the exact
degree of the polynomial in the statement of the theorem.)

We shall simulate MA on a 2I
2ADFA(2) with advice. The advice tape will con-

sists of blocks; there is one block for each combination of the possible content of
the working tape of MA, the position of the working head, and the input position
(on the two-track word ext(x)) modulo s(n). Hence, if MA has a working tape
of size m = O(log s(n)), there are N = 2mms(n) blocks. Each block starts by a
binary encoding of its number, the letter read by the working head, the advice
letter on the upper track – which is fully determined by the position of the input
head modulo s(n) –, and a block number representing the action of MA for each
possible input letter.

The 2I
2ADFA(2) machine keeps the position of the input head (on the word x)

the same as the position of MA’s input head (on the two-track word ext(x)),
and the first advice head is located at the beginning of the corresponding block.
The second advice head is used to navigate to the appropriate block.

The length of a block is O(log N), so the overall length of the advice is
O(N log N) = O(2mms(n)(m + log m + log s(n))) = poly(s(n)). ��

This means, for example, that the existence of a language that can be recog-
nized by an NFA with some k advice heads with polynomial (resp. logarithmic)
advice, while a corresponding 2-head DFA would need exponential (resp. poly-
nomial) advice, would imply L �= NL (resp. LL �= NLL).

Again, for short advices we can save one head in the simulation by using the
input head as a counter:

Theorem 5. Let s(n) = no(1). If DSPACE(log s(n)) = NSPACE(log s(n)), then
for any fixed k ≥ 1 it holds that L (2I

2ANFA(k))/s(n) ⊆ L (2I
2ADFA)/n2poly(s(n)).

Proof. The proof goes the same way as in the previous theorem, only this time
there will be one block for each combination of the content of the working tape,
the position of the working head, and the input position (not modulo s(n)), so
that overall there are N = nm2m blocks (where m ≤ c log s(n) for some c is
the space of the DSPACE machine MA). A block does not contain its binary
number but contains a unary encoding of the input head position. Also, the
pointers in the actions in each block are encoded in unary. The blocks are sorted
according to the input position, so each action requires to navigate to a block in
the neighborhood of m2m from the current block. That means that the unary
counters in the block are of length at most m2m ≤ c log s(n)s(n)c ≤ c′n for some
c′ since s(n) = no(1). Hence, it is possible to navigate using the input head.

The overall length of the advice is O(Nm2m) = n2poly(s(n)). ��
This means that, for example, the existence of a language that can be rec-

ognized with logarithmic advice by some NFA with k heads but would require
more than n2polylog(n) advice for a 1-head DFA, would imply LL �= NLL.
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As the previous discussion shows, we would like to know if there can be a
superpolynomial gap in advice between determinism and non-determinism of
automata with 2-way advice and input. We can prove that the gap cannot be
more that exponential:

Theorem 6. For each fixed k, and each s(n) it holds that

L (2I
2ANFA(k))/s(n) ⊆ L (2I

2ADFA(2))/2O(s(n)2k).

Proof (sketch). Let DSPACE(f(n))/s(n) be the class of Turing machines with
working tape of size O(f(n)) and advice tape of size s(n). Conceptually, the
proof can be split in two steps.

First show that L (2I
2ANFA(k))/s(n) ⊆ DSPACE(s(n)2k)/s(n). This can be

done by observing that a configuration of the 2I
2ANFA(k) when reading the ith

input is described by the state and the positions of the k advice heads. The
Turing machine can use the same advice as the 2I

2ANFA(k) and in space O(s(n)2k)
perform a construction similar to the known 2NFA→1DFA crossing-sequence-
based transformation.

Next, prove DSPACE(f(n))/s(n) ⊆ L (2I
2ADFA(2))/s(n) log(s(n))2O(f(n)). To

see this, note that for a given position on the input tape, the configuration of
the Turing machine is described by the content of the working tape and the
position on the advice tape. The advice of the 2I

2ADFA(2) consists of s(n)2f(n)

blocks, each of length O(f(n) + log(s(n))), each block containing the content of
the working tape (including the head position and the state), a binary encoding
of the position on the advice tape, and the letter on the advice tape of the Turing
machine. The automaton maintains the input head on the same position as the
Turing machine, uses one advice head to keep track of the current configuration,
and the other head to scan for the appropriate transition. Since the machine is
deterministic, this can be done with one head. ��

7 Conclusion and Further Research

Since majority of the results about the non-uniform automata targeted the 1-
way tapes, we were interested to see what happens if the tapes are allowed to be
2-way. It was known that making the input tape 2-way increases the expressive
power. We showed that also making the advice tape 2-way yields a more powerful
model. A more detailed analysis could follow to show the relationship among
the advice sizes. E.g., we know that L (2I

1ADFA)/n2n = ALL � L (1I
1ADFA)/∗, but

what can be said about L (2I
1ADFA)/poly? Is it possible to extend Theorem 2 to

address languages from L (2I
1ANFA)/Ω(n)?

Further, we examined the connection between minicomplexity (resp. non-
uniform space complexity) and non-uniform automata (e. g., Corollary 1), essen-
tially showing that restricting the non-uniformity to the content of the advice
tape (instead of having an arbitrary transition function) is not a fundamental
change. This is especially true if the automaton is allowed several advice heads,
but even automata with one advice head are rich enough to pose questions with



166 F. Frei et al.

direct consequences to important complexity-theoretic open problems (e. g. The-
orem 5 and relation to LL vs NLL).

The main question for the 2-way automata seems to be the gap between
determinism and non-determinism. For advice (log n)o(1) there is no difference
between determinism and non-determinism, and in general the gap is at most
exponential. Showing a superpolynomial gap for 2I

2ADFA(2) would have huge con-
sequences, but a more modest result may be feasible, e. g., along the lines of

Conjecture 1. There is a language L ∈ L (2I
2ANFA)/O(log n) such that L �∈

L (2I
2ADFA)/o(n/ log n).
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Abstract. In this paper we combine two classical generalisations of
finite automata (weighted automata and automata on infinite words) into
a model of integer weighted automata on infinite words and study the
universality and the emptiness problems under zero weight acceptance.
We show that the universality problem is undecidable for three-state
automata by a direct reduction from the infinite Post correspondence
problem. We also consider other more general acceptance conditions
as well as their complements with respect to the universality and the
emptiness problems. Additionally, we build a universal integer weighted
automaton where the automaton is fixed and the word problem is unde-
cidable.

1 Introduction

Weighted automata have been extensively studied in recent years [1,6,12] and
have a wide range of applications, such as speech-recognition [17] and image
compression [4]. In weighted automata models a quantitative value (weight) is
added to each transition of a finite automaton allowing to enrich the computa-
tional model with extra semantics. For example, these weights could be associ-
ated with the consumption of resources, time needed for the execution or the
probability of the execution. Depending on the semantics (how these weights are
used), the acceptance conditions could be defined in various ways, significantly
changing the complexity of the weighted automata model.

The acceptance conditions could be defined using various aggregation func-
tions for deterministic or non-deterministic automata that combine weights
either on a single path or a set of equivalent paths. For example for weighted
automata over tropical semirings, i.e., (Z ∪ {∞},min,+,∞, 0), where a weight
of a word is calculated using the semiring product (i.e., +) and the acceptance
can be defined using the semiring sum (i.e., min) – a word is accepted if its value
using the semiring sum is at most ν. In [3], the acceptance of infinite words was
based on the property that, in the corresponding computation path, a label with
the maximal weight is appearing infinitely often in analogy to Büchi automaton.
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The automata on infinite words have been often motivated for modeling con-
current and communicating systems [20] and more recently infinite words have
been used to simulate various processes in computational games [10,16].

In this paper we combine these two fundamental extensions by considering
weighted automata on infinite words. The model we consider has weights from
the additive group of integers Z with the zero element 0 and the weights are
summed along the path. This model can be seen as a blind one-counter automa-
ton operating on infinite words. Under the zero acceptance condition an infinite
word w is accepted if there exists a path in the automaton reading w reaching a
final state with weight 0 on a finite prefix of w. First we consider two classical
decision problems for integer weighted automata on infinite words – the empti-
ness (checking whether some word is accepted) and the universality problems
(checking whether all words are accepted). In contrast to other acceptance con-
ditions with decidable emptiness and universality problems [3], we show that for
the zero acceptance, while the emptiness problem is decidable, the universality
problem is undecidable.

In this paper we improve the result of [10], where it was shown that the
universality problem is undecidable for automata with five states. We prove
that the problem remains undecidable for a very minimalistic automaton with
only three states. The undecidability result is based on the reductions from
the undecidability of the infinite Post correspondence problem (ω PCP) and the
state reduction is achieved by proving more restricted form of the ω PCP than
in [9]. The idea of proving the undecidability of the universality problem is to
construct an automaton that verifies whether a given word is not a solution of
a given instance of the infinite Post correspondence problem. This is done by
storing the difference of lengths of images in the counter until automaton reaches
a symbol that we try to show is different in the images under the morphisms. We
store this symbol and let the second morphism catch up after which we verify
that the symbols were indeed different. This proof is presented in Sect. 3.

In Sect. 4, we investigate variants of zero acceptance in the sense of expanding
the condition from the existence of a zero on a path to existence of a weight in
a given set. We also modify the acceptance to consider all paths rather than an
existence of an accepting path. We call this strong acceptance. This leads to new
variants of universality and emptiness problems with emptiness problem being
undecidable for strong acceptance for co-zero acceptance.

Finally, in Sect. 5 we consider a variant of the automaton where all transitions
are fixed and the weight given as an input determines whether a word is accepted
or not. This automaton can be seen as universal in the same sense as a universal
Turing machine. For this universal automaton it is undecidable whether a given
word with an initial integer weight is accepted.

2 Notation and Definitions

An infinite word w over a finite alphabet A is an infinite sequence of letters
w = a0a1a2a3 · · · where ai ∈ A is a letter for each i = 0, 1, 2, . . .. We denote the



Integer Weighted Automata on Infinite Words 169

set of all infinite words over A by Aω. The monoid of all finite words over A is
denoted by A∗. The empty word is denoted by ε. A word u ∈ A∗ is a prefix of
v ∈ A∗, denoted by u ≤ v, if v = uw for some w ∈ A∗. If u and w are both
nonempty, then the prefix u is called proper, denoted by u < v. A prefix of an
infinite word w ∈ Aω is a finite word p ∈ A∗ such that w = pw′ where w′ ∈ Aω.
This is also denoted by p ≤ w. The length of a finite word w is denoted by |w|.
The length of ε is 0. For a word w, we denote by w(i) the ith letter of w, i.e.,
w = w(1)w(2) · · · . The number of letters a in a word w is denoted by |w|a. The
set dAω denotes all infinite words starting with d, i.e., {dw | w ∈ Aω}.

Consider a finite (integer) weighted automaton A = (Q,A, σ, q0, F, Z) with
the set of states Q, the finite alphabet A, the set of transitions σ ⊆ Q×A×Q×Z,
the initial state q0, the set of final states F ⊆ Q, and the additive group of
integers Z. We write the transitions in the form t = 〈q, a, p, z〉 ∈ σ.

A configuration of A is any triple (q, u, z) ∈ Q×A∗ ×Z and it is said to yield
a configuration (p, ua, z1 + z2) if there is a transition 〈q, a, p, z2〉 ∈ σ.

Let π = t1t2t3 · · · be an infinite path of transitions of A where ti =
〈qji

, aki
, qji+1 , zi〉 for i > 0 and qj0 = q0. We call such path π a computation

path. Denote by R(π) the set of all reachable configurations following a path
π. That is, for π = 〈q0, ak0 , qj1 , z0〉〈qj1 , ak1 , qj2 , z1〉〈qj2 , ak2 , qj3 , z2〉 · · · the set
of reachable configurations is R(π) = {(q0, ε, 0), (qj1 , ak0 , z0), (qj2 , ak0ak1 , z0 +
z1), (qj3 , ak0ak1ak2 , z0 + z1 + z2), . . .}. Further, we denote path π by πw if
w = ak0ak1ak2 · · ·. Let c = (q, u, z) ∈ R(π) for some computation path π. The
weight of the configuration c is γ(c) = z. We say that the configuration c reaches
state q. If computation path π reading w is fixed, by the weight of prefix γ(p)
we denote the weight of configuration (q, p, z) ∈ R(π) where w = pu for some
u ∈ Aω.

We are ready to define an acceptance condition. An infinite word w ∈ Aω is
accepted by A if there exists an infinite path π such that at least one config-
uration c in R(π) reaches a final state and has weight γ(c) = 0. The language
accepted by A is L(A) = {w ∈ Aω | ∃πw ∈ σω ∃(q, u, 0) ∈ R(πw) : q ∈ F}. We
call this zero acceptance. We discuss other acceptance conditions in Sect. 4.

The universality problem for weighted automata over infinite words is a prob-
lem to decide whether the language accepted by a weighted automaton A is
the set of all infinite words. In other words, whether or not L(A) = Aω. The
problem of non-universality is the complement of the universality problem, that
is, whether or not L(A) 
= Aω or, for zero acceptance, whether there exists
w ∈ Aω such that for every computation path π reading w and every configura-
tion c ∈ R(π), γ(c) 
= 0 holds.

An instance of the Post correspondence problem (PCP, for short) consists
of two morphisms g, h : A∗ → B∗ where A and B are alphabets. A nonempty
word w ∈ A∗ is a solution of an instance (g, h) if it satisfies g(w) = h(w). It is
well known that it is undecidable whether or not an instance of the PCP has
a solution. The problem remains undecidable for A with |A| ≥ 5; see [15]. The
cardinality of the domain alphabet A is said to be the size of the instance.
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The infinite Post correspondence problem, ω PCP, is a natural extension of
the PCP. An infinite word w is a solution of an instance (g, h) of the ω PCP if for
every finite prefix p of w either h(p) < g(p) or g(p) < h(p) holds. In the ω PCP
it is asked whether or not a given instance has a solution or not. Note that in
our formulation prefixes have to be proper. It was proven in [9] that the problem
is undecidable for domain alphabets A with |A| ≥ 9 and in [5] it was improved
to |A| ≥ 8. A more general formulation of the ω PCP was used in both proofs,
namely the prefixes did not have to be proper. However, both constructions rule
out non-proper prefixes; see [5,9] for details.

3 Universality Problem for Zero Acceptance

In this section we improve the result of [10], where it was shown that the uni-
versality problem is undecidable for automata with five states. We prove that
the problem remains undecidable for automata with three states. The tighter
bound relies on deriving new properties about the ω PCP instance. In the proof
of undecidability of the universality problem for weighted automata, for each
instance (g, h) of the ω PCP, we need to construct a weighted automaton A
such that L(A) 
= Aω if and only if the instance (g, h) has an infinite solution.

Theorem 1. It is undecidable whether or not L(A) = Aω holds for 3-state
integer weighted automaton A over its alphabet A.

Let us first focus on constructing the instance of the ω PCP. In [10], a
weighted automaton was constructed from an arbitrary instance of the ω PCP.
We reiterate the construction of an instance of the ω PCP found in [9], high-
lighting the properties that simplify the construction of the automaton.

The ω PCP was shown to be undecidable for instances of size 9 in [9]. The
proof uses a reduction from the termination problem of the semi-Thue systems
proved to be undecidable for the 3-rule semi-Thue systems from [13]. We shall
now present the construction from [9].

Let T = ({a, b}, R) be an n-rule semi-Thue system with the undecidable
termination problem, and let the rules in T be ti = (ui, vi) for i = 1, 2, . . . , n.
Let u be the input word.

The domain alphabet of our instance of the ω PCP is A =
{a1, a2, b1, b2, d,#}∪R, where d is for the beginning and synchronisation and #
is a special separator of the words in a derivation. Note that the rules in R are
considered as letters in the alphabet. Define two special morphisms for x ∈ A+.
Morphisms lx and rx are called the desynchronising morphisms, and defined by
�x(a) = xa and rx(a) = ax for each letter a.

In [9] the following construction was given for a semi-Thue system T and an
input word u: Define the morphisms g, h : A∗ → {a, b, d,#}∗ by (recall that for
ti ∈ R, we denoted ti = (ui, vi))
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h(a1) = dad, g(a1) = add,
h(b1) = dbd, g(b1) = bdd,
h(a2) = dda, g(a2) = add,
h(b2) = ddb, g(b2) = bdd,
h(ti) = d−1�dd(vi), g(ti) = rdd(ui), for ti ∈ R,
h(d) = �dd(u)dd#d, g(d) = dd,
h(#) = dd#d, g(#) = #dd.

(1)

Note, that d−1�dd(·) means that the image starts with a single d. In the special
case, where vi = ε, we define h(ti) = d.

It was proved in [9] that the following property holds:

Property 1. Let (g, h) be an ω PCP defined in (1). Each infinite solution of (g, h)
is of the form

dw1#w2#w3# · · · , where wj = xjtij
yj (2)

for some tij
∈ R, xj ∈ {a1, b1}∗ and yj ∈ {a2, b2}∗ for all j.

Indeed, the image g(w) is always of the form rd2(v), and therefore, by the form of
h, between two separators # there must occur exactly one letter t ∈ R. Also, the
separator # must be followed by words in {a1, b1}∗ before the next occurrence of
a letter t ∈ R. By the form of h(t) the following words before the next separator
must be in {a2, b2}∗. The form (2) follows when we observe that there must be
infinitely many separators # in each infinite solution. Indeed, all solutions begin
with a d, and there is one occurrence of # in h(d) and no occurrences of # in
g(d). Later each occurrences of # is produced from # by both g and h. Therefore
there are infinitely many letters # in each infinite solution.

Property 2. Let (g, h) be as in (1). In a solution, the image under g cannot be
longer than the image under h.

Property 3. Let (g, h) be as in (1). In a word w beginning with the letter d, the
first position where h(w) and g(w) differ (called the error) is reached in h(w) at
least one letter (of w) earlier than it is reached in g(w).

The two properties are illustrated in Fig. 1. In the next theorem, we restate and
sharpen the result of [9] by improving the undecidability claim of the ω PCP.

Theorem 2. Let (g, h) be an instance of the ω PCP defined as in (1) that sat-
isfies Properties 1, 2, 3. It is undecidable whether a solution to (g, h) exists.

Next, we construct the weighted automaton based on the undecidable
instance of the ω PCP of Theorem 2. This will allow us to prove Theorem 1.

Fig. 1. An illustration of a solution candidate to the instance of the ω PCP satisfy-
ing Properties 2 and 3. Here, represent the first letter of h(w1w2w3w4 · · · ) that is
compared to a letter of g(w1w2w3w4 · · · ) which is represented by .
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Fig. 2. The weighted automaton A. In the figure a ∈ A and b ∈ A \ {d}.

Let (g, h) be a fixed instance of the ω PCP as defined in (1). Then g, h : A∗ →
B∗ where A = {a1, . . . , am} and B = {b1, . . . , bs−1}. We construct a weighted
automaton A = (Q,A, σ, q0, F, Z), where Q = {q0, q1, q2} and F = {q2}, corre-
sponding to the instance (g, h) such that an infinite word w ∈ Aω is accepted by
A iff for some finite prefix p of w, g(p) ≮ h(p). Moreover, by Property 3, such
p exists for all infinite words except for the solutions of the instance (g, h). We
call the verification that g(p) ≮ h(p), for a prefix p, the error checking.

Let us begin with the transitions of A. The automaton is depicted in Fig. 2.
Recall that the cardinality of the alphabet B is s − 1. First for each a ∈ A, let
〈q0, a, q0, s(|h(a)| − |g(a)|)〉, 〈q1, a, q1, s(−|g(a)|)〉, 〈q2, a, q2, 0〉 be in σ and for all
b ∈ A \ {d}, let 〈q0, b, q2, 0〉 ∈ σ. For the error checking we need the following
transitions for all letters a ∈ A: Let h(a) = bj1bj2 · · · bjn1

, where bjk
∈ B, for

each index 1 ≤ k ≤ n1. Then let, for each k = 1, . . . , n1,

〈q0, a, q1, s(k − |g(a)|) + jk〉 ∈ σ (3)

Let g(a) = bi1bi2 · · · bin2
, where bi�

∈ B, for each index 1 ≤ � ≤ n2. For each
� = 1, . . . , n2 and letter bc ∈ B such that bi�


= bc, let

〈q1, a, q2,−s� − c〉 ∈ σ. (4)

We call the transitions in (3) error guessing transitions and in (4) error verifying
transitions. The next lemma shows a key property about words accepted by A.
The proof relies on analysis of weights along computation paths.

Lemma 1. A word w ∈ Aω is accepted by A if and only if w is not a solution
of the instance (g, h) of the ω PCP as defined in (1).

We are ready to prove the main theorem. By Lemma 1, a word w ∈ Aω is
accepted by the above constructed integer weighted automaton A iff w is not a
solution of a given instance (g, h) of the ω PCP. By Theorem 2, it is undecidable
whether or not the instance (g, h) has a solution or not. This proves Theorem 1.

Note that the number of the letters in the alphabet A in Theorem 1 is small.
Indeed, |A| = 9 by the construction in (1). The number of transitions on the
other hand is huge. The number of error guessing and verifying transitions is
dependent on the lengths of the images. One of the rules consists of encoding of
all the rules of the 83-rule semi-Thue system with an undecidable termination
problem. Its image is several hundreds of thousands letters long.

Next, we consider the universality problem for automata, where all states are
final. That is, we consider an acceptance condition, where a word is accepted
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based solely on weight. Formally, L(A) =
{
w ∈ Aω | ∃πw ∈ σω ∃(q, u, 0) ∈

R(πw)
}
. Relaxing the state reachability condition on the previously defined

automaton leads to new accepting paths. For example, an infinite word starting
with a1 is accepted in the state q0 since |h(a1)|− |g(a1)| = 0. On the other hand
this word can also be accepted in q2 with transition 〈q0, a1, q2, 0〉. So we need to
show that no new words are accepted in states q0 and q1.

Corollary 1. It is undecidable whether or not L(A) = Aω holds for 3-state
integer weighted automaton A over its alphabet A.

It is also natural to consider the emptiness problem for weighted automata.
That is, whether for a given weighted automaton A, L(A) = ∅. In contrast to
the result of Theorem 1, the emptiness problem is decidable.

Theorem 3. It is decidable whether or not L(A) = ∅ holds for integer weighted
automaton A over its alphabet A.

Proof. Let A be a weighted automaton on infinite words. Consider it as a
weighted automaton on finite words, B, defined in [8]. Clearly L(A) = ∅ if
and only if L(B) = ∅. Indeed, an infinite word w is accepted by A if and only
if there is a finite prefix u of w with γ(u) = 0. This u is accepted by B. On
the other hand, if some finite word u is accepted by B then an infinite word
starting with u is accepted by A. In [7] it was shown that languages defined by
weighted automata on finite words are context-free languages. It is well-known
that emptiness is decidable for context-free languages. ��
Corollary 1 (follows from Theorem 1)

1. For weighted automata A and B the following problems are undecidable:
(i) Language equality: Whether L(A) = L(B).
(ii) Language inclusion: Whether L(B) ⊂ L(A).
(iii) Language union: Whether L(A) ∪ L(B) = Aω.
(iv) Language regularity: Whether L(A) is recognised by a Büchi automaton.

2. It is undecidable whether L(A) = L(A′) for two weighted automata A,A′ such
that there exists a bijective mapping from edges of A to edges of A′.

4 Different Acceptance Conditions

We will examine another non-deterministic acceptance that we call strong accep-
tance. It is informally defined as “a word is accepted iff every path in the machine
according to this word satisfies property ϕ”. We will use notation Z-WA(∃ϕ) for
integer weighted finite automata on infinite words with acceptance condition ϕ.
Analogously, Z-WA(∀ϕ) denotes the strong acceptance.

In [10], integer weighted automata on infinite words were introduced and
it was proven that the universality problem is undecidable for zero acceptance.
In this section, we investigate other acceptance properties and their effect on
the decidability of language theoretic problems. The two problems we study are



174 V. Halava et al.

Table 1. Different acceptances and acceptance conditions. Note that S ⊆ Z.

Acceptance (∃): w ∈ L(A) ⇐⇒ ∃πw ∈ σω ϕ(πw)

Strong acceptance (∀): w ∈ L(A) ⇐⇒ ∀πw ∈ σω ϕ(πw)

Zero acceptance (Z): ϕ(πw) = ∃(q, u, z) ∈ R(πw) (q ∈ F ∧ z = 0)

Co-zero acceptance (¬Z): ϕ(πw) = ∀(q, u, z) ∈ R(πw) (q 	∈ F ∨ z 	= 0)

Set acceptance (S): ϕ(πw) = ∃(q, u, z) ∈ R(πw) (q ∈ F ∧ z ∈ S)

Co-set acceptance (¬S): ϕ(πw) = ∀(q, u, z) ∈ R(πw) (q 	∈ F ∨ z 	∈ S)

the universality and the emptiness problems. In the universality problem we are
asked whether every word is accepted and in the emptiness problem whether at
least one infinite word is accepted. That is, we are interested in the universality
and the emptiness problems for Z-WA(∃ϕ) and Z-WA(∀ϕ) for various ϕ. We
present different acceptances and acceptance conditions in Table 1.

Let us discuss these acceptance properties next. In the already mentioned
zero acceptance, word w is accepted iff on a computation path reading w there
is an intermediate configuration where the state is final and the weight is zero.
We denote this property by Z. The complementary property, co-zero acceptance,
is defined in the obvious way. That is, word w is accepted iff on a computation
path reading w, all configurations are either not in a final state or do not have
weight zero. This property is denoted by ¬Z.

It is straightforward to see that since the universality problem is undecid-
able for Z-WA(∃Z) proven in [10] and Theorem 1, the emptiness problem is
undecidable for Z-WA(∀ ¬Z). Indeed, the universality and the emptiness prob-
lems are complementary and so are zero acceptance and strong co-zero accep-
tance. We next show the decidability of the other combinations. That is, that
the emptiness problem is decidable for Z-WA(∃Z), Z-WA(∃ ¬Z), Z-WA(∀Z),
Z-WA(∀ ¬Z) and that the universality problem is decidable for Z-WA(∃ ¬Z),
Z-WA(∀Z), Z-WA(∀ ¬Z).

Theorem 4. Let A be a Z-WA(∃ ¬Z) or Z-WA(∀Z). It is decidable whether
L(A) = ∅ holds.

Proof. Let us consider Z-WA(∃ ¬Z) as the proof for the other class is analogous.
Let A be a Z-WA(∃ ¬Z). Now the question can be restated as

∃w ∈ Aω ∃πw ∈ σω ∀(q, u, z) ∈ R(πw)(q 
∈ F ∨ z 
= 0).

As we are interested in an existence of such path, we can ignore the letters.
Indeed, if we find a path, there is a corresponding word that is accepted and
hence L(A) is not empty. That is, A can be considered as a Z-VASS for which
the reachability relation is effectively semi-linear [2]. Hence, the property can be
expressed a sentence in Presburger arithmetics, which is a decidable logic. ��
Corollary 2. Let A be a Z-WA(∀ ¬Z), Z-WA(∀Z)or Z-WA(∃ ¬Z). It is decid-
able whether L(A) = Aω holds, where A is over alphabet A.
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Fig. 3. An illustration of different acceptance conditions. In red are weights that are
to be reached in an accepting path.

Proof. The universality problem for Z-WA(∀ ¬Z) is dual to the emptiness prob-
lem for Z-WA(∃Z), which is decidable by Theorem 3. Analogously, the universal-
ity problems for Z-WA(∀Z) and Z-WA(∃ ¬Z) are dual to the emptiness problems
for Z-WA(∃ ¬Z) and Z-WA(∀Z), respectively, which are decidable. ��

In both zero acceptance and co-zero acceptance, integer 0 seems to play an
important role. This is not true. One can alter some of the transitions to have
acceptance for any fixed integer. For example, by introducing a new initial state
q′
0 and transitions 〈q′

0, a, q, z + 1〉 for every transition 〈q0, a, q, z〉 ∈ σ. Further-
more, one can multiply all the weights in the transitions by some constant N to
ensure that in the interval {0, . . . , N −1} only 0 is actually reachable. This leads
to an acceptance condition for intervals with the same decidability statuses. Note
that due to the construction, no weights 1k, . . . , (N − 1)k are reachable for any
integer k. This leads us to an observation that we can consider finite or infinite
sets and retain the decidability statuses. For example, multiplying all the weights
in the transitions by an even N , we can specify an acceptance condition where
“a word is accepted iff upon reaching a final state, weight is either in interval
{0, . . . , N

2 − 1} or interval {N
2 +1, N − 1}”. Let us call this acceptance condition

set acceptance. Figure 3 illustrates the differences between zero, co-zero, set and
co-set acceptances with respect to weights that are reached on accepting paths.

Let S ⊆ Z. In set acceptance, a word w is accepted iff on a computation
path reading w there is an intermediate configuration where the state is final
and the weight is in S. For the dual co-set acceptance, a word w is accepted iff
on a computation path reading w all intermediate configurations are either not
in a final state or the weight is not in S.

It is straightforward to see that the undecidability of the universality problem
follows from the undecidability of the universality problem for zero acceptance.
Likewise, the emptiness problem is decidable due to the decidability of the empti-
ness problem for zero acceptance. The other decidability results for variants of
set acceptance can be proven mutatis mutandis. This is summarised in Table 2
where the decidability statuses of the universality and the emptiness problems
for the different acceptance conditions.

Corollary 3. The universality problem is decidable for Z-WA(∃ ¬S),
Z-WA(∀S) and Z-WA(∀ ¬S) and undecidable for Z-WA(∃S). The emptiness
problem is decidable for Z-WA(∃S), Z-WA(∃ ¬S) and Z-WA(∀S) and undecid-
able for Z-WA(∀ ¬S).

It is worth highlighting that the construction of [10] constructs a weighted
automaton that non-deterministically checks for error in a ω PCP solution
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Table 2. Decidability status of the universality and emptiness problems under different
acceptances The result in blue implies other undecidability results.

Acceptance Universality Emptiness

Zero Undecid. Decid.

Co-zero Decid. Decid.

Set Undecid. Decid.

Co-set Decid. Decid.

Strong acc. Universality Emptiness

Zero Decid. Decid.

Co-zero Decid. Undecid.

Set Decid. Decid.

Co-set Decid. Undecid.

candidate. It is possible to construct an automaton with strong co-set acceptance
for which the emptiness problem is undecidable and the automaton verifies that
the input word is a solution to the ω PCP instance. The automaton relies on the
properties of both strong and co-set acceptance with two intervals to be avoided.

5 A Universal Weighted Automaton

In this section we consider a universal weighted automaton. The goal is to con-
struct a universal weighted automaton similar to a universal machine which has
fixed rules and can simulate any machine that is given as an input. It is well-
known that there exists a universal Turing machine [18] and a universal 2-counter
machine [14]. A less well-known fact is that there is also a universal semi-Thue
system [19]. In [11], the authors constructed a universal semi-Thue system where
the rewriting rules are fixed and the initial word is an encoding of the system to
be simulated.

From the details of the ω PCP construction presented in (1), it is evident
that only one of the pairs is not fixed and depends on the input to the given
semi-Thue system. Namely, d contains the initial word of the semi-Thue system.
Note, that d has to be the first letter of a solution.

We construct a weighted automaton with fixed state structure and transi-
tions. The automaton is constructed using the same idea as in Sect. 3. Namely,
that all words but a solution to the ω PCP are accepted. Unlike the previous
definition, where the initial weight was 0, in the universal weighted automaton,
there is an additional initial weight. This weight is used to store the informa-
tion on the input word of the semi-Thue system. Note that due to our approach
of storing only partial information about the images of the morphisms in the
weight, we do not actually need to know what the input is.

From the previous remark in our weighted automaton only transitions cor-
responding to the letter d are not fixed. We use the fact that d has to be the
first letter by fixing weight for d to be 0 and having the input, i.e., the ini-
tial weight, depend on d. There are two cases that can happen when reading
d with the weighted automaton. Either the error is in the image of d or not.
If there is no error in the image of d, then the difference of lengths of the
images is given as an input. If there is an error, then its position and letter
are given. That is, the input of our universal weighted automaton is an integer
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Fig. 4. The universal weighted automaton U . In the figure a ∈ A \ {d} and b ∈ A.

zs2 + js+ j where z ∈ N, j ∈ {0, . . . , s−1} and s = |B|+1. This integer is either
(|h(d)| − |g(d)|)s2 + 0s + 0 corresponding to the case when there are no errors
in the image of d or (k − |g(a)|)s2 + jks + jk corresponding to the case where k
is the position of the error in d and jk is the error. For these two cases, we have
two paths in the automaton. In the first path the automaton of Sect. 3 has all
the weights multiplied by s. In the second path the error verifying part of the
automaton is used with weights multiplied by s and error verifying transitions
have weights −�s2−cs−c instead of −�s−c as in the original automaton (Fig. 4).

The universal automaton is U = ({q, q0, q1, q2, q
′
1,⊥}, A, σ, q, {q2}, Z). The

states q0, q1, q2 correspond to the first path with transitions for each a ∈ A\{d}
and b ∈ A, 〈q0, a, q0, s

2(|h(a)| − |g(a)|)〉, 〈q1, a, q1, s
2(−|g(a)|)〉, 〈q2, b, q2, 0〉 are

in σ. For the error checking we need the following transitions for all letters
a ∈ A \ {d}: Let h(a) = bj1bj2 · · · bjn1

where bjk
∈ B, for each index 1 ≤ k ≤ n1.

Then let, for each k = 1, . . . , n1, 〈q0, a, q1, s
2(k − |g(a)|) + sjk〉 ∈ σ. Let g(a) =

bi1bi2 · · · bin2
where bi�

∈ B, for each index 1 ≤ � ≤ n2. For each � = 1, . . . , n2

and letter bc ∈ B such that bi�

= bc ∈ B, let 〈q1, a, q2,−s2� − sc〉 ∈ σ.

The state q′
1 corresponds to the second path with transitions, for each a ∈

A \ {d}, 〈q′
1, a, q′

1, s
2(−|g(a)|)〉 are in σ. For the error verification we need the

following transitions for all letters a ∈ A \ {d}. Let g(a) = bi1bi2 · · · bin2
where

bi�
∈ B, for each index 1 ≤ � ≤ n2. For each � = 1, . . . , n2 and letter bc ∈ B such

that bi�

= bc ∈ B, let 〈q′

1, a, q2,−s2� − sc − c〉 ∈ σ.
Finally, transitions 〈q, d, q0, 0〉, 〈q, d, q′

1, 0〉 to pick a path, transitions
〈q, a,⊥, 0〉, for each a ∈ A \ d, for words not starting with d, transitions
〈p, d,⊥, 0〉 where p ∈ {q0, q1, q

′
1}, for words that have letter d, transitions

〈⊥, b,⊥,±1〉, 〈⊥, b, q2, 0〉 for b ∈ A and finally 〈q2, d, q2, 0〉.
Let the set of inputs corresponding to the letter d be α(d), defined as

the union of {(|h(d)| − |g(d)|)s2} and {is2 + js + j | i = |g(d)|, |g(d)| +
1, . . . , |h(d)| and bj = h(d)(i) ∈ B}. Now a word dw ∈ Aω is accepted by U
if and only if for a computation path π of dw there exists a prefix p ≤ π that
reaches q2 with weight 0. That is, γ(p) + β = 0 where β ∈ α(d).

Next, we show that an input defines the path that needs to be chosen. Assume
first that the input is zs2 + jks + jk and the first transition is 〈q, d, q0, 0〉. Now
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the automaton is in state q0 with weight zs2 + jks + jk but none of the weights
on this path modify the coefficient of s0 (unless letter d is read) and thus the
weight is nonzero in state q2. Assume then that the input is zs2 + 0s + 0 and
the first transition is 〈q, d, q′

1, 0〉. The path reaching q2 (without visiting ⊥) has
xs2 − cs − c for some x ∈ Z and c ∈ {1, . . . , s − 1} which is nonzero. That is for
input zs2 + jks+ jk the upper path has to be chosen and for input zs2 the lower
path has to be chosen. It is clear that after that the computation follows the
corresponding computation of A. If the input is 0, then the only path ending in
q2 with weight 0 goes through ⊥, that is, it is not a solution to the ω PCP.

From the construction, it is evident that only a solution to the ω PCP instance
does not have a path that ends in q2 with weight 0. Note that in U all transitions
are fixed as, regardless of h(d) and g(d), the transitions are always 〈p, d, p′, 0〉 or
〈⊥, d,⊥,±1〉. Let w ∈ Aω and β ∈ Z. If w is accepted by U with input β, we
denote it by (w, β) ∈ L(U). From the previous consideration we get:

Theorem 5. Let w ∈ Aω and β ∈ Z. It is undecidable whether (w, β) ∈ L(U),
where U is a fixed weighted automaton on infinite words under zero acceptance.
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Abstract. We consider two-variable first-order logic FO2 and its quan-
tifier alternation hierarchies over both finite and infinite words. Our main
results are forbidden patterns for deterministic automata (finite words)
and for Carton-Michel automata (infinite words). In order to give con-
cise patterns, we allow the use of subwords on paths in finite graphs.
This concept is formalized as subword patterns. Deciding the presence
or absence of such a pattern in a given automaton is in NL. In particular,
this leads to NL algorithms for deciding the levels of the FO2 quantifier
alternation hierarchies. This applies to both full and half levels, each
over finite and infinite words. Moreover, we show that these problems
are NL-hard and, hence, NL-complete.

1 Introduction

Many interesting varieties of finite monoids can be defined by a finite set of
identities of ω-terms, i.e., terms with a formal idempotent power denoted by ω
(not to be confused with the ordinal ω in ω-words). By Eilenberg’s Variety The-
orem [7], every variety of finite monoids corresponds to a unique variety for
regular languages. In particular, identities of ω-terms can be used for describing
classes of regular languages. If L ⊆ A∗ is given by a homomorphism ϕ : A∗ → M
to a finite monoid together with an accepting set P ⊆ M such that L = ϕ−1(P ),
then one can check in nondeterministic logarithmic space NL whether L satisfies
a fixed identity of ω-terms; see e.g. [26, Theorem 2.19] or [8]. If L is given by a
(deterministic or nondeterministic) finite automaton, then this algorithm yields
a PSPACE-algorithm for deciding whether L satisfies the identity (by applying
the NL algorithm to the transition monoid of the automaton; in the case of
nondeterministic automata, this monoid can be represented by Boolean matri-
ces). Since universality of nondeterministic automata is PSPACE-complete [14],
there is no hope for more efficient algorithms if L is given by a nondeterministic
automaton.

The star-free languages can be defined by a very short identity of ω-terms [23].
In 1985, Stern showed that deciding whether a given deterministic automaton
accepts a star-free language is coNP-hard, leaving open whether it was in fact
PSPACE-complete [25]. This was later given an affirmative answer by Cho and
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Huynh [3]. For other important varieties, the situation is very different. In the
same paper, Stern gave polynomial time algorithms for deciding membership of
the J -trivial (also referred to as piecewise testable) languages and languages of
dot-depth one [25] when the languages are given by deterministic finite automata.
The exact complexity for these problems was again given by Cho and Huynh,
showing that they are NL-complete [3].

Forbidden patterns are a common approach for efficiently solving the mem-
bership problem. Stern’s polynomial time algorithms build on pattern charac-
terizations [24]. Characterizations of R and L-trivial languages using forbidden
patterns were given by Cohen et al. [4], and Schmitz et al. used the approach
for characterizing the first levels of the Straubing-Thérien hierarchy [10,22].

The pattern approach usually relies on the DFA of a language. Since deter-
ministic Büchi automata cannot express all ω-regular languages, this has inhib-
ited the adaptation of the pattern approach in the study of ω-regular languages.
In 2003, Carton and Michel introduced a type of automata [2], (originally called
complete unambigous Büchi automata, but nowadays known as Carton-Michel
automata) which they showed to be expressively complete for ω-regular lan-
guages. These automata associate every word to a unique path, making it an ideal
candidate for using patterns in the context of ω-regular languages. Preugschat
and Wilke [21] pioneered this approach by giving characterizations of fragments
of temporal logic relying partly on patterns. Their method involved separat-
ing the finite behaviour of the language from the infinite behaviour; the finite
behaviour was then characterized using patterns, while the infinite behaviour
was characterized using conditions on loop languages.

The variety of languages definable in FO2, i.e., first order logic with only two
variables, is well studied. Thérien and Wilke [27] showed that this variety was
the collection of languages whose syntactic monoid was in DA. In particular,
this established an equivalence between FO2 and Σ2 ∩ Π2 over finite words.

One can consider the quantifier alternation hierarchy inside FO2. Due to
the restriction on the number of variables, one needs to consider parse trees
rather than translating formulae into prenex normal form. Over finite words,
Weis and Immerman gave a combinatorial characterization of the join levels of
this hierarchy [28]; algebraic characterizations were given by Weil and the second
author [17] and independently by Krebs and Straubing [15]. The half-levels were
characterized by Fleischer, Kufleitner and Lauser [9].

For ω-regular languages, algebraic characterizations often utilize Arnold’s
congruence. However, not every interesting class of languages can be character-
ized directly using this congruence; see e.g. [18]. On the other hand, combin-
ing algebraic properties with topology has proven a fruitful alternative in some
cases where algebra alone is not enough; see e.g. [6,12,16]. In particular, this
approach was used in yet unpublished work by Boussidan and the second author
for the characterization of the join levels of the alternation hierarchies, and by
the authors for the characterization of the half-levels [11].

In this contribution, we devote Sect. 3 to the development of a formalism for
subword patterns: patterns where we can not only use identical words as labels of
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different paths, but also subwords. Patterns taking subwords into account were
used, e.g. in [22]. Our formalism is a variation of that of Kĺıma and Polák [13],
but considering automata instead of ordered semiautomata. For DFAs, this dif-
ference is superficial since the relevant semi-DFA can be obtained via minimiza-
tion. Minimizing a Carton-Michel automaton (based on the reverse deterministic
transition relation) does not necessarily produce a Carton-Michel automaton. For
patterns which do not take final states into account, such as those used in [21],
this is not a problem. However, this contribution contains patterns for which it
matters.

In Sect. 4, we use the mentioned formalism to give DFA patterns for the alge-
braic varieties used in the characterizations of the quantifier alternation hierar-
chies inside FO2. In Sect. 5, we extend this approach to Carton-Michel automata.
This is done by separating the finite and infinite behaviours of the languages.
The finite behaviour can be characterized by a pattern just as in the DFA-case.
For varieties J1 ⊆ V ⊆ DA the infinite behaviour of the recognized languages
is completely determined by the imaginary alphabets (see [6]). A single fixed
pattern is sufficient for all such varieties. Finally, we give patterns for open sets
in the Cantor and alphabetic topology.

2 Preliminaries

We assume familiarity with standard concepts from the theory of regular and ω-
regular languages and its connections to monoids and logic. For an introduction,
we refer the reader to [20] for regular and [18] for ω-regular languages.

For a word u ∈ A∗, we denote by uω = uuu · · · the infinite iteration of u. Let
A = (Q,A, ·, i, F ) be a (partial semi-)DFA. For j ∈ Q, u ∈ A∗, we write j · u for
the value of the transition function at (j, u).

We introduce Carton-Michel automata, a particular type of Büchi automata.
Let A = (Q,A, ◦, I, F ) be a Büchi automaton. A run of A is an infinite path in A.
Each such run is labeled by an infinite word by reading the letters corresponding
to each edge of the path. A run is final if it visits a final state infinitely often.
The run is accepting if it is final and starts at an initial state. A word is accepted
by A if it labels some accepting run, and the language accepted by A, denoted
L(A), is the collection of all such words.

If following the edges backwards determines a function ◦ : Q × A → Q, we
say that A is reverse deterministic. A Carton-Michel automaton is a reverse
deterministic Büchi automaton where every infinite word has a unique final
run. Here we use the definition from [21] which differs slightly from the original
definition by Carton and Michel [2]. The definitions coincide for automata which
are trim, i.e., where every state is part of some final run.

For a DFA A = (Q,A, ·, i, F ), we say that j ≤A k if j · u ∈ F implies
k · u ∈ F for all u ∈ A∗. We say that i ≡A j if i ≤A j and j ≤A i. We use the
same notation for reverse DFAs and Carton-Michel automata; we say j ≤A k if
u ◦ j ∈ I implies u ◦ k ∈ I, and j ≡A k if j ≤A k and k ≤A j.



Deciding FO2 Alternation for Automata over Finite and Infinite Words 183

The Cantor topology Ocantor is generated by the base {uAω}u∈A∗ , and the
alphabetic topology Oalph is generated by {uBω}u∈A∗,B⊆A. We denote by B(T )
the Boolean closure of a topology.

Unless specified otherwise, we use the following notation: suppose V is a
variety of (ordered) monoids; then V is the (positive) variety of languages whose
syntactic monoids are in V. The following varieties are of particular importance
throughout this contribution:

– DA = �((yx)ωy(yx)ω = (xy)ω�
– R = �(yx)ωy = (yx)ω�, L = �y(xy)ω = (xy)ω�
– J1 = �z2 = z, xy = yx�, J+ = �1 ≤ z�

Here, ω is a formal symbol, corresponding to the idempotent power of a given
monoid, and is thus unrelated to the ω denoting infinite iterations. The meaning
of the symbol will be clear from context.

One way to generate new varieties from known ones is by using the Malcev
product. Generally, Malcev products are defined using relational morphisms.
However, for certain varieties, a more direct approach using the relations ∼K

and ∼D is sufficient. This approach was refined in [11] to define a chain of
varieties of ordered monoids. Let s, t ∈ M , then:

– s ∼K t if for all idempotent elements e, we have es, et <J e or es = et,
– s ∼D t if for all idempotent elements f , we have sf, tf <J f or sf = tf ,
– s 
KD t if for all p, q ∈ M : p R ptq implies p R psq, ptq L q implies psq L q,

and p R pt ∧ tq L q implies psq ≤ ptq.

Given a variety V, we have M ∈ K M©V if M/∼K ∈ V, we have M ∈ D M©V
if M/∼D ∈ V and M ∈ VKD if M/
KD ∈ V. Here M/
KD denotes the
monoid consisting of the equivalence classes of the conjugacy induced by 
KD

and the order induced by the same relation. Let:

– R1 = L1 = R ∩ L, Rm+1 = K M© Lm, Lm+1 = D M© Rm

– Si1 = J+, Sim+1 = (Sim)KD

It is well known that R2 = R and L2 = L (see e.g. [19]).

Table 1. Decidability criteria for a language L with syntactic monoid M

Finite words Infinite words

Σ2
1 M ∈ Si1 M ∈ Si1

L ∈ Ocantor

FO2
1 M ∈ R ∩ L M ∈ R ∩ L

L ∈ B(Ocantor)

Σ2
2 M ∈ Si2 M ∈ Si2

L ∈ Oalph

FO2
m, m ≥ 2 M ∈ Rm+1 ∩ Lm+1

Σ2
m, m ≥ 3 M ∈ Sim
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Let A = {a1, . . . , an} be an alphabet. We consider the fragment FO2 of first
order logic over the signature (≤, a1, . . . , an) where we only allow the use (and
reuse) of two different variables. This fragment can be restricted further, by
considering the number of allowed alternations. Consider the syntax

ϕ0 ::=  | ⊥ | λ(x) = a | x = y | x < y | ¬ϕ0 | ϕ0 ∨ ϕ0 | ϕ0 ∧ ϕ0

ϕm ::= ϕm−1 | ¬ϕm−1 | ϕm ∨ ϕm | ϕm ∧ ϕm | ∃xϕm | ∃yϕm

where a ∈ A, and x and y are variables. The fragment Σ2
m consists of all formulae

ϕm, the fragment Π2
m of all negations of formulae in Σ2

m and the fragment FO2
m

of the Boolean combinations of formulae in Σ2
m.

Each of these logical fragments defines a language variety. These varieties
have decidability characterizations for both finite words [9,17] and infinite words
[1,11]. These criteria are presented in Table 1.

3 Subword-Patterns

In this section, we introduce subword-patterns. Our formalism is inspired by that
of Kĺıma and Polák [13], with two main differences; we work with DFAs instead
of ordered semi-DFAs, and we allow our patterns to take subwords into account.

In DA, there is semantic equivalence between being a subword of and a
factor of sufficiently long words. Thus, the patterns introduced in Sect. 4 can be
rewritten to equivalent patterns which do not rely on subwords. However, the
patterns obtained in this way are less readable than their equivalent subword
patterns, arguably giving less insight into the actual behaviour of the varieties
in consideration.

For the definition of subword patterns, we rely on homomorphism of semi-
DFAs. The following definition is standard, and gives a way to define homomor-
phisms between semi-DFAs which originally had different alphabets.

Definition 1. Let A = (Q,A, ·) be a semi-DFA, and let h : B∗ → A∗ be a
homomorphism. The h-renaming of A is the semi-DFA Ah =

(
Q,B, ·h

)
where

i ·h b = i · h(b).

We give the formal definition of a subword-pattern. Intuitively, we can think
of the edges of the pattern as paths in a given automaton and the relation 
 as
being the subword relation which we impose on the words labeling these paths.

Definition 2. Let X be a finite set with a partial order 
. A type 1 subword-
pattern P = (S, j �= k) or type 2 subword-pattern P = (S, j �≤ k) consists
of a finite partial semiautomaton S = (V,X, ·) and two states j, k ∈ V . If
P = (S, j �= k), we say that P is present in an automaton A if there exists
a homomorphism h : X∗ → A∗ where x 
 y implies that h(x) is a subword of
h(y) and a semiautomata homomorphism g : S → Ah such that g(j) �≡A g(k)
and for all � ∈ V , the state g(�) is reachable from the initial state of A. Anal-
ogously, we say that P = (S, j �≤ k) is present if there exist h and g such that
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g(j) �≤A g(k). Since the type of the pattern is clear from the notation, we usually
do not reference its type.

We say that a pattern is rooted if there is some state r ∈ V such that every
i satisfies i = r ·x for some x ∈ X∗. Finally, two patterns P1, P2 are equivalent
if for all A, the pattern P1 is present in A if and only if P2 is.

Let us consider the following example. Let X = {x,Ax} with Ax 
 x and let
PDA = (S, j �= k) where S is

j k

x

Ax

x

This pattern is present in an automaton A, if there are two cycles starting at
different states, but labeled by the same word, as well as a path between them
labeled by a word which is a subword of the aforementioned one. It can be shown
that this pattern is present in a DFA if and only if the syntactic monoid of the
accepted language is not in DA.

Since we later consider Carton-Michel automata, we also need to consider
patterns for reverse DFAs. This adaptation is trivial: we reverse the direction of
transversal in the underlying graph of P, turning it into a partial reverse semi-
DFA. Instead of requiring that g(�) is reachable from the initial state, we require
that g(�) is reachable from some cycle containing a final state. In particular, if
P is a subword-pattern, then P is the same pattern with all edges reversed. All
of the following results are valid also for patterns in reverse DFAs.

In general, the presence of patterns is a feature of the particular automata,
and not the language (cf. [13, Example 3.4]). We are interested in patterns which
are indeed a feature of the language rather than the particular automata, and
thus we make the following definition. It is essentially the same as the H-invariant
configurations of Kĺıma and Polák [13].

Definition 3. A (subword-)pattern is a language pattern if for all A,A′ such
that L(A) = L(A′), we have P present in A if and only if it is present in A′.

Definition 4. Let P be a collection of language patterns. Then 〈P〉 is the set
of languages L(A) such that A does not have any of the patterns P ∈ P. For a
finite set of patterns {P1, . . . ,Pn}, we use the notation 〈P1, . . . ,Pn〉 rather than
〈{P1, . . . ,Pn}〉.
Definition 5. Let S = (V,X, ◦) be a partial semiautomaton, and P = (S, j ≤ k)
a subword-pattern. Then P is simple if it is a tree after removing all self-loops.

Let L = {x ∈ X | � ◦ x = � for some � ∈ V } and let

K = {(x, y) ∈ X × L | � �= � ◦ x = � ◦ xy for some � ∈ V } .

That is, L is the collection of variables which occur as some loop in S, and K is
the collection of all pairs (x, y) occurring together with � �= �′ as follows:

�′� yx (1)

The pattern P is balanced if
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(i) for every y ∈ L, there exists x ∈ X such that (x, y) ∈ K,
(ii) for all (x, y) ∈ K, if (x, y′) ∈ K then y′ = y,
(iii) for all (x, y) ∈ K, if � ◦ x is defined, then � ◦ xy = � ◦ x and if � ◦ y = �,

then there exists �′ �= � such that �′ ◦ x = �. In other words, whenever x or
y occurs in S, then it occurrs together with the other variable as in (1),

(iv) for all y ∈ L, if y 
 z, then z ∈ L,
(v) for all (x, y) ∈ K, if x 
 z for x �= z then y 
 z.

If 
 is the identity, then conditions (iv) and (v) are trivial, and the definition
reduces to that in [13].

Proposition 1. A simple and balanced subword-pattern is a language pattern.

As an example, consider the pattern PDA. Then (Ax, x) ∈ K. However, x
occurrs as a loop at j while there is no edge labeled by Ax ending at j. Thus
PDA is not balanced. However, we get an equivalent balanced pattern P ′

DA:

i′r j′

y

Ay yy

y

We note that finding a pattern is in NL (cf. [3,10]).

Proposition 2. Let A be a DFA or a Carton-Michel automata. Checking the
presence of a pattern P in A is in NL in the size of A.

Proposition 3. Let P be a nontrivial property of regular (resp. ω-regular) lan-
guages containing the empty language and such that whenever L ∈ P , then
Lu−1 ∈ P (resp. u−1L ∈ P ). Given a DFA (resp. Carton-Michel automata) A,
deciding such a property is NL-hard in the size of A.

4 Hierarchies of Subword-Patterns

In this section, we show how to use patterns which characterize a variety V ⊆
DA to create new patterns characterizing K M© V, D M© V and VKD. Patterns
characterizing Rm, Lm and Sim becomes an immediate corollary. We also give
these patterns explicitly.

Given a pattern P, we construct patterns Pk, Pd and Pkd. These are obtained
by appending new states either at the root of P as in (2) below (for Pk), at the
two states which were compared in P as in (3) below (for Pd), or both (for Pkd).

rr′

e

e
(2)

j

j′

k

k′

f

f

f

f

(3)

When appending states as in (3), we compare j′ and k′ in the new pattern.
The variables e and f are new, and defined to satisfy x 
 e, f for all variables x
of the original pattern P. Formally, we have the following definition.
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Definition 6. Let P = (S, j �= k) be a rooted pattern where S = (V,X, ◦) with
the root r. Let Xk = X ∪ {e} where x ≺ e for all x ∈ X, and let Vk = V ∪ {r′}.
Let Sk = (Vk,Xk, ◦k) where r′ ◦k e = r, r ◦k e = r and �◦k x = �◦x for all � ∈ V ,
x ∈ X for which � ◦ x is defined. We define Pk = (Sk, j �= k).

Next, let Xd = X ∪ {f}, Vd = V ∪ {j′, k′} and let j ◦d f = j′, k ◦d f = k′,
j′ ◦d f = j′, k′ ◦d f = k′ and � ◦d x = � ◦ x for all � ∈ V , x ∈ X for which � ◦ x
is defined. Then Sd = (Vd,Xd, ◦d) and Pd = (Sd, j

′ �= k′).
Finally, let Xkd = X ∪ {e, f} where x ≺ e, x ≺ f for all x ∈ X, and let

Vkd = V ∪{r′, i′, j′}. We define r′ ◦kd e = r, r◦kd e = r, j ◦kd f = j′, k◦kd f = k′,
j′ ◦kd f = j′, k′ ◦kd f = k′ and � ◦kd x = � ◦ x for all � ∈ V , x ∈ X for which
� ◦ x is defined. Then Skd = (Vkd,Xkd, ◦kd) and Pkd = (Skd, j

′ �= k′).
We make analogous definitions for type 2 patterns P = (S, j �≤ k).

As an example, we consider the simple and balanced pattern P ′
DA. Let y and

Ay as in P ′
DA. The pattern (P ′

DA)kd is given by

jrr′

j′

k

k′

e y

Ay yye

y

f

f

f

f

It is straightforward to show that (PDA)kd is in fact equivalent to PDA.
If P is simple and balanced, then Pk, Pd and Pkd are all simple and balanced.

The constructions also preserve another property. We want to consider patterns
where the alphabet of one path is a subset of the other (for type 2 patterns), or
where they are the same (for type 1 patterns).

Definition 7. Let P = (S, j �≤ k) be a pattern such that whenever x is on the
path from r to j, then there exists y on the path from r to k such that x 
 y.
We say that P is one-alphabeted. If P = (S, j �= k), then it is one-alphabeted
if both the above holds and for every x on a path from r to k, there is y on the
path from r to j such that x 
 y.

The following theorem shows how, for some collections of patterns, these con-
structions can be used to obtain pattern characterizations for Malcev products
and varieties constructed using the 
KD-relation. For a collection P of patterns,
we let Pk = {Pk | P ∈ P}, and similarly for Pd and Pkd.

Theorem 1. Let P be a collection of simple, balanced and one-alphabeted pat-
terns with P ′

DA ∈ P. Suppose V = 〈P〉. If all patterns in P are type 1, then

(i) the language variety corresponding to K M© V is 〈Pk〉,
(ii) the language variety corresponding to D M© V is 〈Pd〉,

and for P containing any combination of type 1 and type 2 patterns, we have

(iii) the language variety corresponding to VKD is 〈Pkd〉.
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The explicit patterns for Rm, Lm and Sim all build on the same class of
directed graphs. However, the orderings of the variables are different.

Definition 8. For m ≥ 1, we define the following sets of variables:

– Xm =
{
x, e1, . . . , e�m/2�, f1, . . . , f�(m−1)/2�

}
with x 
 ei 
 fi 
 ei+1,

– Ym =
{
x, e1, . . . , e�(m−1)/2�, f1, . . . , f�m/2�

}
with x 
 fi 
 ei 
 fi+1,

– Zm = {x, e1, . . . , em−1, f1, . . . , fm−1} with x 
 y for all y ∈ Zm and zi 
 zi+1

for zi ∈ {ei, fi}, zi+1 ∈ {ei+1, fi+1}.

Let SX
m (resp. SY

m, SZ
m) have the following structure, where x, ei, fi′ ∈ Xm (resp.

in Ym, Zm) and � and �′ are chosen to match the maximal ei and fi′ respectively.

r j

k

e�

e� e2

e1

e1

x

f1

f1

f1

f1

f�′−1

f�′−1

f�′

f ′
�

f�′

f�′

Then

– PR
m =

(
SX

m , j �= k
)
for even m ≥ 2, PR

m =
(
SY

m, j �= k
)
for odd m ≥ 3,

– PL
m =

(
SY

m, j �= k
)
for even m ≥ 2, PL

m =
(
SX

m , j �= k
)
for odd m ≥ 3,

– PSi
m =

(
SZ

m, j �≤ k
)
for m ≥ 1.

Although Theorem 1 requires the presence of the pattern P ′
DA, it need not be

a part of the explicit characterization; the non-presence of either of the patterns
PR

m or PL
m implies the non-presence of P ′

DA.

Corollary 1. Let A be a DFA, and let M be the syntactic monoid of L(A).
Then the following holds:

(i) M ∈ Rm if and only if the pattern PR
m is not present in A,

(ii) M ∈ Lm if and only if the pattern PL
m is not present in A,

(iii) M ∈ Sim if and only if neither PSi
m nor PDA is present in A.

5 Patterns for Carton-Michel Automata

In this section, we introduce results on patterns for Carton-Michel automata.
The characterizations, inspired by Table 1, are for the levels Rm, Lm and Sim,
as well as the Cantor and alphabetic topologies.

Our main approach is to separate the finite and infinite behaviour of the
language. On the algebra side, we formalize this via the introduction of the fin-
syntactic and inf-syntactic monoids. The former identifies words which behaves
the same with respect to finite prefixes of the language, and the latter identifies
words which behaves the same with respect to infinitely iterated words.
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Definition 9. Let L ⊆ Aω be a language and let u, v ∈ A∗. We say that u ≤fin v
if for all x, y, z ∈ A∗,

xuyzω ∈ L ⇒ xvyzω ∈ L.

We define the fin-syntactic morphism to be the natural projection π : A∗ →
A∗/≤fin and the codomain is called the fin-syntactic monoid. We define the inf-
syntactic morphism and monoid analogously using ≤inf defined by u ≤inf v if
for all x, y ∈ A∗, we have

x(uy)ω ∈ L ⇒ x(vy)ω ∈ L.

It is clear that the syntactic semigroup is in some variety V if and only if both
the fin-syntactic monoid and inf-syntactic semigroup are in V. Furthermore, it
can be shown that if P is some pattern characterizing V over reverse-DFAs, then
the fin-syntactic monoid is in V if and only if A does not have the pattern P.

Thus, the main difficult step in the generalization from (reverse-)DFAs to
Carton-Michel automata is dealing with the infinite behaviour (i.e., the inf-
syntactic morphism). For varieties J1 ⊆ V ⊆ DA, this requires only a pattern
for the infinite behaviour of DA; the syntactic monoid is in V if and only if the
fin-syntactic monoid is in V and the inf-syntactic monoid is in DA.

We use a modified version of subword-patterns. The witness h is now required
to be a homomorphism of semigroups h : X+ → A+. Furthermore, edges can be
required to be final, meaning that at least one state on the path in the image
of the edge is a final state. This problem is still in NL. Since Si1 �⊆ J1, we also
need a special characterization for its inf-syntactic monoid.

Proposition 4. Let A be a Carton-Michel automaton, and let Minf be the
inf-syntactic monoid of L(A). Let Ssi and Sda be the following partial semi-
automata:

kjSsi :
x

y

x

kjSda :

z

Az

z

z

where Az 
 z and for each pattern the black bold edge as well as at least one of
the gray bold edges are final edges. We then have the following characterizations:

(i) Minf ∈ Si1 if and only if PSi
1-inf = (Ssi, j �≤ k) is not present in A,

(ii) suppose PDA is not in A, then Minf ∈ DA if and only if PDA-inf =
(Sda, j �= k) is not present in A.

Theorem 2. Let A be a Carton-Michel automaton, and let M be the syntactic
monoid of L(A). Then for m ≥ 2:

(i) M ∈ Si1 if and only if neither PSi

1 nor PSi
1-inf is present in A,

(ii) M ∈ Sim if and only if neither PSi

m , PDA nor PDA-inf is present in A,
(iii) M ∈ Rm ∩Lm if and only if neither PR

m, PL

m nor PDA-inf is present in A.
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We provide patterns for the Cantor and alphabetic topology. One can obtain
patterns for being closed in the respective topology by switching j and k, and for
being clopen (i.e., both open and closed) by replacing the inequality by an equal-
ity. The latter is of particular importance; for A in which PDA is not present,
being in B(Ocantor) is equivalent to being clopen in the alphabetic topology.

Proposition 5. Let A be a Carton-Michel automaton, and let Sc and Sa be the
partial semiautomata defined below:

Sc : kj

zz

Sa : k �j

Bzz

z Az

z

Where for Sa, we have Az, Bz 
 z. Then

(i) L(A) ∈ Ocantor if and only if Pcantor = (Sc, j �≤ k) is not present in A,
(ii) L(A) ∈ Oalph if and only if Palph = (Sa, j �≤ k) is not present in A,
(iii) L(A) is clopen in the alphabetic topology if and only if Palph-clopen =

(Sa, k �= j) is not present in A.

To conclude this contribution, we note some optimizations. It can be shown
that nonexistence of PSi

1 and Pcantor implies nonexistence of PSi
1-inf . Similarly,

the non-existence of Palph and PDA implies the non-existence of PDA-inf . Thus,
in checking the conditions for Σ2

1 , Σ2
2 and FO2

1 of Table 1, one need not consider
the patterns PSi

1-inf and PDA-inf .

Conclusion

For all full and half levels of the FO2 quantifier alternation hierarchy, we give
automata characterizations in terms of forbidden subword patterns. These results
rely on algebraic and topological characterizations of the FO2 levels (see Table 1).
For finite words, we consider DFAs (Corollary 1) and for infinite words, our
patterns apply to Carton-Michel automata (Theorem 2 and Proposition 5). For
every fixed level, these patterns yield an NL-algorithm to decide whether a given
automaton accepts a language at this level (Proposition 2); this problem is some-
times called the membership problem for the respective level. Together with a
more general NL-hardness result (Proposition 3), this shows that the member-
ship problem is NL-complete for every level of the FO2 quantifier alternation
hierarchy for both finite and infinite words.
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Abstract. The projected language of a general deterministic automa-
ton with n states is recognizable by a deterministic automaton with
2n´1 `2n´m ´1 states, where m denotes the number of states incident to
unobservable non-loop transitions, and this bound is best possible. Here,
we derive the tight bound 2n´rm2 s ´ 1 for permutation automata. For a
state-partition automaton with n states (also called automata with the
observer property) the projected language is recognizable with n states.
Up to now, these, and finite languages projected onto unary languages,
were the only classes of automata known to possess this property. We
show that this is also true for commutative automata and we find com-
mutative automata that are not state-partition automata.

Keywords: State complexity · Finite automata · Projection ·
Permutation automata · State-partition automata · Commutative
automata

1 Introduction

The state complexity of a regularity-preserving operation is the minimal num-
ber of states needed in a recognizing automaton for the result of this operation,
dependent on the size of the input automaton. The study of the state complex-
ity was initiated in [18] and systematically started in [33]. As the number of
states of a recognizing automaton could be interpreted as the memory required
to describe the recognized language and is directly related to the runtime of
algorithms employing regular languages, obtaining state complexity bounds is a
natural question with applications in verification, natural language processing
or software engineering [7,15,21,25,30].

Here, in terms of state complexity, we are concerned with determin-
istic automata only. There were also investigations using nondeterministic
automata [8]. However, deterministic automata have better algorithmic proper-
ties: (1) equality could be done in almost linear time [10], (2) the minimal automa-
ton is unique up to isomorphism [11] and (3) there is an O(n log n)-time minimiza-
tion algorithm [9]. Contrary, for nondeterministic automata, equality testing is
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PSPACE-complete [27], minimal automata are not unique and minimization is a
PSPACE-complete problem [8].

The state complexity of the projection operation was investigated in [13,31].
In [31], the tight upper bound 3 · 2n´2 ´ 1 was shown, and in [13] the refined,
and tight, bound 2n´1 ` 2n´m ´ 1 was shown, where m is related to the number
of unobservable transitions for the projection operator.

The projection operator has applications in engineering, verification, fault
diagnosis and supervisory control [5,16,17,32], as it corresponds to the observ-
able behavior, a simplified or a restricted view of a modeled system. However,
as, in general, the resulting automaton could be exponentially large, in practical
applications only those projections that avoid this blow-up are interesting. Moti-
vated by this, in [14] state-partition automata for a projection were introduced,
a class of automata for which the projection is recognizable with n states, if the
input automaton has n states.

Permutation automata were introduced in [29] and by McNaugthon [19] in
connection with the star-height problem. The languages recognized by permu-
tation automata are called (pure-)group languages [19,23,24]. However, one
could argue that, if not viewed as language recognizing devices, but as mere
state-transition systems, sometimes also just called semi-automata, permuta-
tion automata were around under the disguise of finite permutation groups, i.e.,
subgroups of the group of all permutation on a finite set, since the beginning
of the 19th century, starting with the work of Galois, Lagrange, Jordan and
others [3,22]. However, certainly, the viewpoint was different.

Languages recognized by permutation automata are not describable by first-
order formulae using only the order relation [20] and commutative regular lan-
guages correspond to threshold and modulo counting of letters [24]. The lan-
guages recognized by certain permutation automata, for example whose transfor-
mation monoids are solvable or supersoluble groups, were described in [4,6,28].
Investigation of the state complexity of common operations on permutation
automata was initiated on last years edition of this conference [12].

Here, we investigate the projection operator on permutation automata. We
give a better tight bound for permutation automata, also parameterized by the
number of unobservable transitions, that, however, also grows exponentially. We
give sufficient conditions, related to normal subgroups, to yield a state-partition
permutation automaton for a given projection. Then, we investigate projections
for commuting letters, this in particular encompasses commutative languages
and automata. We show that if we delete commuting letters by a projection
operator, then we also just need n states for an n-state input automaton for
the projected language. In particular this applies to commutative automata. We
find commutative automata that are not state-partition automata for a given
projection. This is in particular interesting, as in [13], it was noted that up to
then, only state-partition automata and automata describing finite language
with a unary projected language were known to have the property that we only
need n states for the projected languages.

Lastly, we derive that the projection operator preserves every variety of com-
mutative languages. This includes, for example, the commutative aperiodic, the
commutative group languages or the commutative piecewise-testable languages.
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2 General Notions

By Σ we denote a finite set of symbols, also called an alphabet. By Σ˚ we denote
the set of all words over Σ, i.e., finite sequences with the concatenation operation.
The empty word is denoted by ε. A language L is a subset L Ď Σ˚. Languages
using only a single symbol are called unary languages.

If X is a set, by P(X) “ {Y | Y Ď X} we denote the power set of X.
If x is a non-negative real number, by rxs we denote the smallest natural

number greater or equal to x and by txu the largest natural number smaller or
equal to x.

Let Γ Ď Σ. The homomorphism πΓ : Σ˚ Ñ Γ ˚ given by πΓ (x) “ x for x P Γ
and πΓ (x) “ ε for x P ΣzΓ is called a projection (for Γ ). If p, q P Q, x P Σ, then
a transition δ(p, x) “ q is said to be unobservable with respect to the projection
πΓ if x P ΣzΓ , i.e., πΓ (x) “ ε. Here, only non-loop unobservable transitions are
of interest, i.e., those such that p �“ q.

A (partial) deterministic finite automaton (DFA) is denoted by a quintuple
A “ (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ the input alphabet,
δ : Q ˆ Σ Ñ Q is a partial transition function, q0 the start state and F Ď Q the
set of final states. The DFA is said to be complete if δ is a total function. In the
usual way, the transition function δ can be extended to a function δ̂ : QˆΣ˚ Ñ Q
by setting, for q P Q, u P Σ˚ and a P Σ, δ̂(q, ε) “ q and δ̂(q, ua) “ δ(δ̂(q, u), a). In
the following, we drop the distinction between δ and δ̂ and denote both functions
simply by δ.

For S Ď Q and u P Σ˚, we set δ(S, u) “ {δ(s, u) | s P S and δ(s, u) is defined}.
The language recognized by A is L(A) “ {u P Σ˚ | δ(q0, u) P F}. A language

L Ď Σ˚ is called regular, if there exists an automaton A such that L “ L(A).
For u P Σ˚, we write δ(p, u) “ δ(q, u) if both are defined and the results are

equal or both are undefined.
We say that q is reachable from p (in A) if there exists a word u P Σ˚

such that δ(p, u) “ q. The DFA A is called initially connected, if every state is
reachable from the start state.

The DFA A “ (Q,Σ, δ, q0, F ) is called commutative, if, for each a, b P Σ and
q P Q, we have δ(q, ab) “ δ(q, ba).

Let A “ (Q,Σ, δ, q0, F ) be a complete DFA. For a word u P Σ˚, the transition
function (in A) associated to u is the function δu : Q Ñ Q given by δu(q) “
δ(q, u) for q P Q. The transformation monoid is TA “ {δu | u P Σ˚}. Note that
we defined the transformation monoid only for complete DFAs, as this is the
only context where we need this notion here.

To denote transitions in permutation DFAs, we use a cycle notation also used
in [2,12]. More formally, (q1, . . . , qk) denotes the cyclic permutation mapping qi

to qi`1 for i P {1, . . . , k ´ 1} and qk to q1. For example, a “ (1, 2)(3, 4, 5) means
the letter a swaps the states 1 and 2, cyclically permutes the states 3, 4 and 5 in
the indicated order and fixes all other states.

A variety (of formal languages) V [6,23,24] associates, to each alphabet Σ,
a class of recognizable languages V(Σ˚) over Σ such that (1) V(Σ˚) is a boolean
algebra, (2) if ϕ : Σ˚ Ñ Γ ˚ is a homomorphism, then L P V(Γ ˚) implies ϕ´1(L) P
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V(Σ˚) and (3) if L P V(Σ˚) and x P Σ, then {u P Σ˚ | xu P L} and {u P Σ˚ |
ux P L} are in V(Σ˚).

3 Orbit Sets, Projected Languages and Permutation
Automata

First, we introduce the orbit set of a set of states for a subalphabet. An orbit set
collects those states that are reachable from a given set of states by only using
words from a given subalphabet. This is also called unobservable reach in [5].

Definition 1. Let A “ (Q,Σ, δ, q0, F ) be a DFA. Suppose Σ′ Ď Σ and S Ď Q.
The Σ′-orbit of S is the set

OrbΣ′(S) “ {δ(q, u) | δ(q, u) is defined, q P S and u P Σ′˚}.

Also, for q P Q, we set OrbΣ′(q) “ OrbΣ′({q}).

Let A “ (Q,Σ, δ, q0, F ) be a DFA and Γ Ď Σ. Set Δ “ ΣzΓ . Next, we define
the projection automaton of A for Γ as RΓ

A “ (P(Q), Γ, μ,OrbΔ(q0), E) with,
for S Ď Q and x P Γ , the transition function

μ(S, x) “ OrbΔ(δ(S, x)) (1)

and E “ {T Ď Q | T X F �“ H}. In general, RΓ
A is not initially connected.

However, non-reachable states could be omitted. Actually, by the definition of
the start state and transition function, we can restrict the state set to subsets
of the form OrbΔ(S) for H �“ S Ď Q.

Theorem 2. Let A be a DFA and Γ Ď Σ. Then, πΓ (L(A)) “ L(RΓ
A).

We do not introduce ε-NFAs formally here, but only refer to the litera-
ture [11]. However, we note in passing that, usually, an automaton for a pro-
jected language of a regular language is constructed by replacing the letters to
be deleted by ε-transitions and then determinizing the resulting ε-NFA [11,13].
Our construction is a more direct formulation of these steps, where the orbit sets
are used in place of the ε-closure computations.

In [13,14], an automaton was called a state-partition automaton with respect
to a projection πΓ (or, for short, a state-partition automaton for Γ ), if the
states of the resulting automaton from the above procedure, after discarding
non-reachable subsets, form a partition of the original state set. Hence, in our
terminology, an automaton A is a state partition automaton if the reachable
states of RΓ

A form a partition of the states of A.
A permutation automaton (or permutation DFA) is a DFA A “

(Q,Σ, δ, q0, F ) such that every letter permutes the state set, i.e., the function
δx : Q Ñ Q given by δx(q) “ δ(q, x) is a permutation, or bijection, of Q for
every x P Σ. The languages recognized by permutation automata are called
group languages. Note that permutation DFAs are complete DFAs.
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The identity transformation (on Q) is the permutation id : Q Ñ Q given by
id(q) “ q for each q P Q.

Next, we take a closer look at the orbit sets for permutation automata. But
first, a general property of permutation automata.

Lemma 3. Let A “ (Q,Σ, δ, q0, F ) be a permutation automaton and Σ′ Ď Σ˚.
Then, for every u P Σ′˚ there exists u′ P Σ′˚ such that δ(q, uu′) “ q for each
q P Q, i.e., the word uu′ represents the identity transformation on Q.

With the previous lemma, we can show that the orbit sets for permutation
automata partition the state set. This property is crucial to derive our state
complexity bound for projection, as it vastly reduces the possible subsets that
are reachable in RΓ

A, namely only unions of orbit sets.

Lemma 4. Let A “ (Q,Σ, δ, q0, F ) be a permutation automaton. Suppose Σ′ Ď
Σ. Then, the sets OrbΣ′(q), q P Q, partition Q and for every S Ď Q, OrbΣ′(S) “⋃

qPS OrbΣ′(q).

4 Projection on Permutation Automata

Here, we state a tight upper bound for the number of states of the projection of
a language recognized by a permutation automaton.

Our bound is parameterized by the number of states of the input automaton
and by the number of non-loop unobservable transitions. More specifically, we
consider the number of states that are incident with non-loop unobservable tran-
sitions. Hence, we disregard unobservable multi-transitions and do not take the
direction into account, i.e., counting multiple transitions resulting from multiple
letters between the same states only once and do not take their direction into
account. This is the same usage of this parameter as in [14] for the general case.

Theorem 5. Let A “ (Q,Σ, δ, q0, F ) be a permutation DFA and Γ Ď Σ. Set
m “ |{ p, q P Q | p �“ q and q P δ(p,ΣzΓ )}|. Then, if m ą 0, the projected
language πΓ (L) is recognizable by a DFA with at most 2|Q|´rm2 s ´ 1 states and if
m “ 0, the projected language is recognizable by a DFA with at most |Q| states.
Proof. Set Δ “ ΣzΓ , S “ {p, q P Q | p �“ q and q P δ(p,Δ)} and T “ {p P Q |
@x P Δ : δ(p, x) “ p}. Then, as A is a permutation automaton, Q is the disjoint
union of S and T and

q P T ⇔ OrbΔ(q) “ {q} and q P S ⇔ | OrbΔ(q)| ě 2. (2)

Set B “ RΓ
A. If m “ 0, then Q “ T and every a P Δ induces a self-loop at every

state. In this case, it is clear that we can simply leave out all the transitions
labeled with letters from Δ and the resulting permutation automaton recognizes
πΓ (L(A)). More formally, in the definition of B, in this case, the starting state
is {q0} and as A is deterministic we have |δ(R, x)| ď |R| for every R Ď Q. So, as
the empty set is never reachable for permutation DFAs, only the singleton sets
{q} are reachable in B.

Now, suppose m “ |S| ą 0, which implies m ě 2.
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Claim: Let m ą 0. Then, in B at most 2|Q|´rm2 s ´ 1 states are reachable from the
start state.

Proof of the Claim: With the assumption m ą 0, there exists q P Q such that
| OrbΔ(q)| ą 1. By Equation (2) and Lemma 4, we have at most |T | `

Y |S|
2

]

many Δ-orbits, where the maximum number of Δ-orbits is reached if every Δ-
orbit of a state from S has size exactly two if |S| is even or every such orbit
has size two, except one that has size three, if |S| is odd. By Lemma 4, the
sets OrbΔ({q}), q P Q, partition the state set and, for every R Ď Q, we have⋃

qPR Orba(q) “ Orba(R). So, by Equation (1), every set reachable is a union
of Δ-orbits, i.e., every such set corresponds uniquely to a subset of Δ-orbits for
a single state. Finally, note that, as A is a permutation automaton, and hence
complete, we have δ(R, x) �“ H for every non-empty R Ď Q, which also gives
that in B the empty set is not reachable. So, in total, we find that at most

2
|T |`

Y
|S|
2

]
´ 1 “ 2|Q|´m`tm2 u ´ 1 “ 2|Q|´rm2 s ´ 1

subsets of states are reachable. [End, Proof of the Claim]
So, we have shown the upper bound. ��
Next, we show that the bound stated in the previous theorem is actually

tight for permutation automata.

Theorem 6. Let n,m ą 0 be such that 0 ă 2m ` 1 ă n, Σ “ {a, b, c, d, e, f, g}
and Γ “ {b, c, d, e, f, g}. Then, there exists a permutation automaton A “
(Q,Σ, δ, q0, F ) with 2m states incident to non-loop unobservable transitions
for πΓ , i.e.,

2m “ |{ p, q P Q | p �“ q and q P δ(p,ΣzΓ )}|,
such that every DFA for πΓ (L(A)) needs at least 2n´m ´ 1 states.

Proof (sketch). See Fig. 1 for a permutation automaton giving the lower bound.
The automaton has n states, and the letters act the following way:

a “ (1, 2)(3, 4) · · · (2m ´ 1, 2m),
b “ (2m ` 1, 2m ` 2), c “ (2m ` 1, 2m ` 2, . . . , n),
d “ (1, 3)(2, 4), e “ (1, 3, . . . , 2m ´ 1)(2, 4, . . . , 2m),
f “ (1, n), g “ (1, n)(2, n ´ 1).

With Δ “ {a}, the Δ-orbits are {1, 2}, {3, 4}, . . . , {2m ´ 1, 2m}, {2m `
1}, . . . , {n}. The letters b, c are chosen such that every permutation of the states
{2m ` 1, . . . , n} could be written as a word over them, and the letters d and e
such that every permutation on the Δ-orbits {1, 2}, . . . , {2m ´ 1, 2m} could be
written as a word over them. The letters f and g help to map between these
Δ-orbits in such a way that every non-empty union of Δ-orbits is reachable, and
all these Δ-orbits give distinguishable states. By mapping onto the two element
Δ-orbits and back, we can enlarge the sets that are reachable. ��
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Fig. 1. All transitions not shown, for example for the letter b at the state n, corre-
spond to self-loops, as permutation automata are complete. Then, the permutation
automaton shown reaches the upper bound stated in Theorem 5 for the projection
πΓ : {a, b, c, d, e, f, g}˚ Ñ Γ ˚ with Γ “ {b, c, d, e, f, g}.

Remark 1. Note that if A “ (Q,Σ, δ, q0, F ) is initially connected and has the
property that from every state q P Q a final state is reachable, then also RΓ

A has
this property. As permutation DFAs are complete by definition, this implies that
the tight bound stated in Theorem 5 remains the same if we would additionally
demand the resulting DFA for the projection to be complete.

We used an alphabet of size seven to match the bound. So, the question arises
if we can reach the bound using a smaller alphabet. I do not know the answer yet,
but by using a result from [13, Theorem 6] that every projection onto a unary
language needs less than exp((1 ` o(1))

√
n ln(n)) states, we can deduce that we

need at least a ternary alphabet to reach the bound stated in Theorem 5. For the
bound stated in Theorem 5 is lowest possible, apart from the trivial case m “ 0,
if m “ n. Then, the bound is 2tn/2u ´1. However, asymptotically, this grows way
faster than exp((1 ` o(1))

√
n ln(n)), in fact, the ratio of both expressions could

be arbitrarily large.

Proposition 7. Each permutation automaton A such that πΓ (L(A)) for a non-
empty and proper subalphabet Γ Ď Σ attains the bound stated in Theorem 5 with
m ą 0 must be over an alphabet with at least three letters and |Γ | ě 2.

5 State-Partition Automata and Normal Subgroups

First, we derive a sufficient condition for a permutation automaton to be a state-
partition automaton for a projection. Then, we introduce normal subgroups and
show that if the letters generate a normal subgroup, this condition is fulfilled.
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Proposition 8. Let A “ (Q,Σ, δ, q0, F ) be a permutation automaton and Γ Ď
Σ. Set Δ “ ΣzΓ . Then, A is a state-partition automaton for πΓ if the Δ-orbits
of the form OrbΔ(q) are permuted, i.e., for each x P Σ and q P Q, we have
δ(OrbΔ(q), x) “ OrbΔ(δ(q, x)).

With Lemma 4, if the orbits for some Δ Ď Σ are permuted, then, for each
q P Q and x P Σ, δ(OrbΔ(q), x) “ OrbΔ(q) or δ(OrbΔ(q), x) X OrbΔ(q) “ H.

Remark 2. The following example shows that A being a state-partition
automaton for Γ does not imply that the sets OrbΔ(q) are permuted.
Let A “ ({1, 2, 3, 4, 5, 6, 7, 8}, {a, b}, δ, 1, {1}) with the transitions a “
(1, 2, 3, 4)(5, 6)(7, 8) and b “ (1, 5)(2, 6)(3, 7)(4, 8). Then, for Γ “ {b} the
automaton is a state-partition automaton, as the reachable states in RΓ

A are
{1, 2, 3, 4} and {5, 6, 7, 8}, but the a-orbits are {1, 2, 3, 4}, {5, 6} and {7, 8}.

Recall that TA denotes the transformation semigroup of A. A subgroup of
TA, if A is a finite permutation automaton, is a subset containing the identity
transformation and closed under function composition. As we are only concerned
with finite automata, this also implies closure under inverse functions.

Next, we show that when the symbols deleted by a projection generate a
normal subgroup, then the automaton is a state-partition automaton for this
projection.

Normal subgroups are ubiquitous [3,26] in abstract group theory as well as
in permutation group theory. We give a definition for subgroups of TA, when A
is a permutation automaton, using our notation. We refer to more specialized
literature for other definitions and more motivation [3,26].

Definition 9. Let A “ (Q,Σ, δ, q0, F ) be a permutation automaton. Then, a
subgroup N of TA is called normal, if, for each δu, δv P TA (u, v P Σ˚),

(Dδw P N : δu “ δwv) ⇔ (Dδw′ P N : δu “ δvw′).

If a set of letters generates a normal subgroup, then the orbits of these
letters are permuted by the other letters. As they are invariant under the letters
themselves that generate these orbits, every word over Σ permutes these orbits.
This is the statement of the next lemma.

Lemma 10. Let A “ (Q,Σ, δ, q0, F ) be a permutation automaton and Σ′ Ď Σ
be such that N “ {δu : Q Ñ Q | u P Σ′˚} is a normal subgroup of TA. Then, for
each x P Σ and q P Q, we have δ(OrbΣ′(q), x) “ OrbΣ′(δ(q, x)).

So, combining Proposition 8 and Lemma 10.

Theorem 11. Let Γ Ď Σ, Δ “ ΣzΓ and A “ (Q,Σ, δ, q0, F ) be a permutation
automaton. Set N “ {δu : Q Ñ Q | u P Δ˚}, the subgroup in TA generated by Δ.
If N is normal in TA, then A is a state-partition automaton for πΓ . Hence, in
this case, πΓ (L(A)) is recognizable by an automaton with at most |Q| states.



200 S. Hoffmann

6 Commuting Letters

Let A “ (Q,Σ, δ, q0, F ) be a DFA. We say that two letters a, b P Σ commute
(in A), if δ(q, ab) “ δ(q, ba) for each q P Q. Hence, an automaton A is commu-
tative precisely if all letters commute pairwise.

Here, we investigate commuting letters with respect to the projection oper-
ation. Our first lemma states that if we can partition the alphabet of an n-state
DFA into two subalphabets of letters such that each letter in the first set com-
mutes with each letter in the second set, then for a projection onto one subal-
phabet, the projected language is recognizable by an n-state automaton. By this
result, the projected language of every n-state commutative automaton is recog-
nizable by an n-state automaton. We construct commutative automata that are
not state-partition automata. Hence, we have new examples of automata whose
projected languages are recognizable by automata with no more states than the
original automaton, but which are not state-partition automata. Lastly, by inves-
tigating the proofs, we can show, with not much more effort, that varieties of
commutative languages are closed under projections.

Lemma 12. Suppose A “ (Q,Σ, δ, q0, F ) is an arbitrary DFA. Let Γ Ď Σ be
such that, for each a P ΣzΓ , b P Γ and q P Q, we have δ(q, ab) “ δ(q, ba). Then,
πΓ (L) is recognizable by a DFA with at most |Q| states.
Proof. Intuitively, we take the input automaton and leave out all unobservable
transitions and make a state accepting if, in the input automaton, we can go
from this state to a final state by a word formed out of the deleted letters.

Let B “ (Q,Γ, δ|Γ , q0, E) be the DFA with δ|Γ (q, x) “ δ(q, x), the same
start state q0 and E “ {p P Q | Dq P F Du P (ΣzΓ )˚ : δ(p, u) “ q}. Then,
L(B) “ πΓ (L(A)).

If δ|Γ (q0, u) P E, then there exists v P (ΣzΓ )˚ such that δ(q0, uv) P F . So,
uv P L(A) and u “ πΓ (uv).

Conversely, suppose u “ πΓ (v) for some v P L(A). By assumption, as
we can successively push all letters in ΣzΓ to the end, we have δ(q0, v) “
δ(q0, πΓ (v)πΣzΓ (v)). So, δ(q0, πΓ (v)πΣzΓ (v)) P F , which yields δ|Γ (q0, πΓ (v)) P
E, hence u P L(B). ��

So, with Lemma 12, we get the next result.

Theorem 13. Let A “ (Q,Σ, δ, q0, F ) be a DFA such that L(A) is commu-
tative. If Γ Ď Σ, then πΓ (L(A)) is recognizable by a DFA with at most |Q|
states.

The definition of normality could be seen as a generalization of commutativ-
ity. Hence, with Theorem 11, we can deduce the next statement.

Proposition 14. Let A “ (Q,Σ, δ, q0, F ) be a commutative permutation
automaton and Γ Ď Σ. Then, A is a state-partition automaton for πΓ .

However, there exist commutative automata that are not state-partition
automata, as shown by Example 1.
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Example 1. Let A “ ({qε, qa, qb}, {a, b}, δ, qε, {qε, qb}) with

δ(qx, y) “

⎧
⎪⎪⎨

⎪⎪⎩

qa if x “ ε, y “ a;
qb if x “ ε, y “ b;
qb if x “ a, y “ b;
qx otherwise.

Then, L(A) “ {u P {a, b}˚ | |u|a “ 0 or |u|b ą 0}. However, we see that
Orb{b}(qε) “ {qε, qb}, Orb{b}(qb) “ {qb} and Orb{b}(qa) “ {qa, qb}. Hence,
A is not a state-partition automaton for the projection π{a} : {a, b}˚ Ñ {a}˚.
Also, it is not a state-partition automaton for the projection onto {b}˚.

The proofs of Lemma 12 and Theorem 13 also show that the projected lan-
guage of a commutative permutation automaton is recognizable by a permuta-
tion automaton, i.e., a group language. On the other hand, in the general case,
Example 2 below gives a permutation automaton whose projected language is
not a group language. Also, most properties defined in terms of automata are pre-
served by projection in the commutative case. For example the property of being
aperiodic [6,23,24]. We give a more general statement next, showing that many
classes from the literature [6,23,24] are closed under projection when restricted
to commutative languages.

Theorem 15. Let Σ be an alphabet and Γ Ď Σ. Suppose V is a variety of
commutative languages. If L P V(Σ˚), then πΓ (L) P V(Γ ˚). In particular, the
variety of commutative languages is closed under projection.

Hence, for example commutative locally-testable, piecewise-testable, star-free
or group languages are preserved under every projection operator, as these classes
form varieties [23].

Remark 3. In [13] it was stated that languages satisfying the observer property,
i.e., that are given by a state-partition automaton for a given projection operator,
and the finite languages projected onto unary finite languages were the only
known languages for which we can recognize the projected language with at most
the number of states as the original language. Note that Theorem 13 provides
genuinely new instances for which this holds true, see Example 1.

Example 2. Also, for projections, consider the group language given by the
permutation automaton A “ ({a, b}, {0, 1, 2}, δ, 0, {2}) with a “ (0, 1) and
b “ (0, 1, 2). Then, π{b}(L(A)) “ bb˚, which is not a group language. For exam-
ple, b is the projection of ab P L(A), or bbb the projection of abbab P L(A).

7 Conclusion

We have continued the investigation of the state complexity of operations on
permutation automata, initiated in [12], and the investigation of the projection
operation [13,31]. We improved the general bound to the tight bound 2n´rm2 s ´1
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in this case. Note that the general bound 2n´1 ` 2n´m ´ 1 for the projection is
only achieved for automata with precisely m ´ 1 non-loop unobservable transi-
tions [13]. However, if we have more such unobservable transitions, then it was
also shown in [13] that we have the better tight bound 2n´2`2n´3`2n´m´1. For
our lower bound stated in Theorem 6 in the case of permutation automata, we
have precisely the same number of non-loop unobservable transitions as states
incident with them. Lastly, note that the condition in Proposition 8 could be
easily checked. Likewise, checking if a subset of letters Δ generate a normal
subgroup could also be checked efficiently using results from [1].

Acknowledgement. I sincerely thank the anonymous reviewers for careful reading
and detailed feedback that helped me in finding better formulations or fixing typos.
Also, Sect. 5 was restructured after this feedback and the cycle notation was pointed
out to me by one reviewer.
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28. Thérien, D.: Languages of nilpotent and solvable groups (extended abstract). In:

Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 616–632. Springer, Heidelberg
(1979). https://doi.org/10.1007/3-540-09510-1 49

29. Thierrin, G.: Permutation automata. Math. Syst. Theory 2(1), 83–90 (1968)
30. Wang, J. (ed.): Handbook of Finite State Based Models and Applications. Chap-

man and Hall/CRC (2012)
31. Wong, K.: On the complexity of projections of discrete-event systems. In: Proceed-

ings of WODES 1998, Cagliari, Italy, pp. 201–206 (1998)
32. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. CCE,

Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77452-7
33. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)

https://doi.org/10.1007/978-1-4471-4276-8_8
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/3-540-09510-1_49
https://doi.org/10.1007/978-3-319-77452-7


Constrained Synchronization and Subset
Synchronization Problems for Weakly

Acyclic Automata

Stefan Hoffmann(B)

Informatikwissenschaften, FB IV, Universität Trier,
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Abstract. We investigate the constrained synchronization problem for
weakly acyclic, or partially ordered, input automata. We show that, for
input automata of this type, the problem is always in NP. Furthermore,
we give a full classification of the realizable complexities for constraint
automata with at most two states and over a ternary alphabet. We find
that most constrained problems that are PSPACE-complete in general
become NP-complete. However, there also exist constrained problems
that are PSPACE-complete in the general setting but become polynomial
time solvable when considered for weakly acyclic input automata. We
also investigate two problems related to subset synchronization, namely
if there exists a word mapping all states into a given target subset of
states, and if there exists a word mapping one subset into another. Both
problems are PSPACE-complete in general, but in our setting the former
is polynomial time solvable and the latter is NP-complete.

Keywords: Automata theory · Constrained synchronization ·
Computational complexity · Weakly acyclic automata · Subset
synchronization

1 Introduction

A deterministic semi-automaton is synchronizing if it admits a reset word, i.e., a
word which leads to a definite state, regardless of the starting state. This notion
has a wide range of applications, from software testing, circuit synthesis, commu-
nication engineering and the like, see [28,30]. The famous Černý conjecture [7]
states that a minimal length synchronizing word, for an n-state automaton, has
length at most (n ´ 1)2. We refer to the mentioned survey articles [28,30] for
details1.

Due to its importance, the notion of synchronization has undergone a range
of generalizations and variations for other automata models. In some generaliza-
tions, related to partial automata [22], only certain paths, or input words, are
allowed (namely those for which the input automaton is defined).
1 A new and updated survey article (in Russian) is currently in preparation by Mikhail

V. Volkov [29].
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In [15] the notion of constrained synchronization was introduced in connec-
tion with a reduction procedure for synchronizing automata. The paper [13]
introduced the computational problem of constrained synchronization. In this
problem, we search for a synchronizing word coming from a specific subset of
allowed input sequences. For further motivation and applications we refer to the
aforementioned paper [13]. In this paper, a complete analysis of the complexity
landscape when the constraint language is given by small partial automata with
up to two states and an at most ternary alphabet was done. It is natural to
extend this result to other language classes, or even to give a complete classi-
fication of all the complexity classes that could arise. For commutative regular
constraint languages, a full classification of the realizable complexities was given
in [16]. In [17], it was shown that for polycyclic constraint languages, the problem
is always in NP.

Let us mention that restricting the solution space by a regular language has
also been applied in other areas, for example to topological sorting [1], solv-
ing word equations [9,10], constraint programming [23], or shortest path prob-
lems [24]. The road coloring problem asks for a labeling of a given graph such
that a synchronizing automaton results. A closely related problem to our prob-
lem of constrained synchronization is to restrict the possible labeling(s), and this
problem was investigated in [32].

In [13] it was shown that we can realize PSPACE-complete, NP-complete
or polynomial time solvable constrained problems by appropriately choosing a
constraint language. Investigating the reductions from [13], we see that most
reductions yield automata with a sink state, which then must be the unique
synchronizing state. Hence, we can conclude that we can realize these complex-
ities with this type of input automaton.

Contrary, for example, unary automata are synchronizing only if they admit
no non-trivial cycle, i.e., only a single self-loop. In this case, we can easily decide
synchronizability for any constraint language in polynomial time. Hence, for
these simple types of automata, the complexity drops considerably. So, a natural
question is, if we restrict the class of input automata, what complexities are
realizable?

Here, we will investigate this question for the class of weakly acyclic input
automata. These are automata such that the transition relation induces a par-
tial order on the state sets. We will show that for this class, the constrained
synchronization problem is always in NP. Then, in the spirit of the work [13], we
will give a full classification of the complexity landscape for constraint automata
with up to three states and a ternary alphabet. Compared with the classifica-
tion result from [13], we find that most problems that are PSPACE-complete in
general will become NP-complete. However, a few, in general PSPACE-complete,
cases become polynomial time solvable for weakly acyclic input automata.

Related synchronization problems for weakly acyclic automata were previ-
ously investigated in [27]. For example, in [27], it was shown that the problem
to decide if a given subset of states could be mapped to a single state, a problem
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PSPACE-complete for general automata [2,25], is NP-complete for weakly acyclic
automata.

Furthermore, we investigate two problems related to subset synchronization,
namely the problem if we can map the whole state set into a given target set
by some word, and if we can map any given starting set into another target set.
Both problems are PSPACE-complete in general [2,3,17,21,25,28]. However, for
weakly acyclic automata the former becomes polynomial time solvable, as we
will show here, and the latter becomes NP-complete.

Similar subset synchronization problems, for general, strongly connected and
synchronizing automata, were investigated in [2].

Weakly acyclic automata are also known as partially ordered automata [6],
or acyclic automata [19]. As shown in [6], the languages recognized by weakly
acyclic automata are precisely the languages recognized by R-trivial monoids.

2 Preliminaries

By Σ we denote a finite set of symbols, also called an alphabet. By Σ˚ we denote
the set of all words over Σ, i.e., finite sequences with the concatenation operation.
The empty word is denoted by ε. A language L is a subset L Ď Σ˚.

A partial deterministic finite automaton (PDFA) is denoted by a quintuple
A “ (Σ,Q, δ, q0, F ), where Q is a finite set of states, Σ the input alphabet,
δ : Q ˆ Σ Ñ Q is a partial transition function, q0 the start state and F Ď Q the
set of final states. An automaton A “ (Σ,Q, δ, q0, F ) is called complete, if δ is a
total function, i.e., δ(q, x) is defined for any q P Q and x P Σ.

In the usual way, the transition function δ can be extended to a function
δ̂ : Q ˆ Σ˚ Ñ Q by setting, for q P Q, u P Σ˚ and x P Σ, δ̂(q, ε) “ q and
δ̂(q, ux) “ δ(δ̂(q, u), x). In the following, we will drop the distinction between δ

and δ̂ and will denote both functions simply by δ.
For S Ď Q and u P Σ˚, we set δ(S, u) “ {δ(s, u) | s P S and

δ(s, u) is defined} and δ´1(S, u) “ {q P Q | δ(q, u) is defined and δ(q, u) P S}.
For q P Q and u P Σ˚, we set δ´1(q, u) “ δ´1({q}, u).

The language recognized by A is L(A) “ {u P Σ˚ | δ(q0, u) P F}.
We say that q P Q is reachable from p P Q (in A) if there exists a word u P Σ˚

such that δ(p, u) “ q.
For A “ (Σ,Q, δ, q0, F ) and Γ Ď Σ, by A|Γ “ (Γ,Q, δ|Γ , q0, F ) we denote

the automaton A restricted to the subalphabet Γ , i.e., δ|Γ : Q ˆ Γ Ñ Q with
δ|Γ (q, x) “ δ(q, x) for q P Q and x P Γ .

We say a letter x P Σ induces a self-loop at a state q P Q, if δ(q, x) “ q.
A state s P Q is called a sink state, if every letter induces a self-loop at it,

i.e., δ(q, x) “ q for any x P Σ.
An automaton A “ (Σ,Q, δ, q0, F ) is called weakly acyclic, if it is complete

and for any q P Q and u P Σ˚z{ε}, if δ(q, u) “ q, then δ(q, x) “ q for any letter x
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appearing in u, i.e., the simple2 cycles are self-loops. Equivalently, the reachabil-
ity relation is a partial order. Here, we say a state q is larger than another state
p, if q is reachable from p in A. A state in a weakly acyclic automaton is called
maximal, if it is maximal with respect to this partial order. Note that here, we
require weakly acyclic automata to be complete. This is in concordance with [27].
However, partially ordered automata are sometimes allowed to be partial in the
literature [20]. Equivalently, an automaton is weakly acyclic if and only if there
exists an ordering q1, . . . , qn of its states such that if δ(qi, x) “ qj for some letter
x P Σ, then i ď j, i.e., we can topologically sort the states.

A semi-automaton A “ (Σ,Q, δ) is a finite complete automaton without a
specified start state and with no specified set of final states. Every notion defined
for complete automata that does not explicitly use the start state and the set
of final states is also defined in the same way for semi-automata. For example,
being weakly acyclic. When the context is clear, we call both finite automata
and semi-automata simply automata.

A complete automaton A is called synchronizing if there exists a word w P Σ˚
with |δ(Q,w)| “ 1. In this case, we call w a synchronizing word for A. We
call a state q P Q with δ(Q,w) “ {q} for some synchronizing word w P Σ˚ a
synchronizing state.

For a fixed PDFA B “ (Σ,P, μ, p0, F ), we define the constrained synchro-
nization problem:

Definition 1. L(B)-Constr-Sync
Input: Deterministic semi-automaton A “ (Σ,Q, δ).
Question: Is there a synchronizing word w for A with w P L(B)?

The automaton B will be called the constraint automaton. If an automaton A
is a yes-instance of L(B)-Constr-Sync we call A synchronizing with respect
to B. Occasionally, we do not specify B and rather talk about L-Constr-Sync.
The unrestricted synchronization problem, i.e., Σ˚-Constr-Sync in our nota-
tion, is in P [30]. We are going to investigate this problem for weakly acyclic
input automata only.

Definition 2. L(B)-WAA-Constr-Sync
Input: Weakly acyclic semi-automaton A “ (Σ,Q, δ).
Question: Is there a synchronizing word w for A with w P L(B)?

We assume the reader to have some basic knowledge in computational
complexity theory and formal language theory, as contained, e.g., in [18]. For
instance, we make use of regular expressions to describe languages. And we
make use of complexity classes like P, NP, or PSPACE. The following was shown
in [13].

Theorem 3 ([13]). Let B “ (Σ,P, μ, p0, F ) be a PDFA. If |P | ď 1 or |P | “ 2
and |Σ| ď 2, then L(B)-Constr-Sync P P. For |P | “ 2 with |Σ| “ 3, up to

2 A cycle is simple if it only involves distinct states [27].
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symmetry by renaming of the letters, L(B)-Constr-Sync is PSPACE-complete
precisely in the following cases for L(B):

a(b ` c)˚ (a ` b ` c)(a ` b)˚ (a ` b)(a ` c)˚ (a ` b)˚c
(a ` b)˚ca˚ (a ` b)˚c(a ` b)˚ (a ` b)˚cc˚ a˚b(a ` c)˚
a˚(b ` c)(a ` b)˚ a˚b(b ` c)˚ (a ` b)˚c(b ` c)˚ a˚(b ` c)(b ` c)˚

and polynomial time solvable in all other cases.

In weakly acyclic automata, maximal states, sink states and synchronizing
states are related as stated in the next lemmata.

Lemma 4. In a weakly acyclic automaton3 a state is maximal if and only if it
is a sink state.

Lemma 5. Let A “ (Σ,Q, δ) be a weakly acyclic automaton. If A is synchro-
nizing, then the synchronizing state must be a unique sink state in A that is
reachable from every other state and, conversely, such a state is a synchronizing
state.

With Lemma 5, we can test if a given weakly acyclic automaton is synchro-
nizing. First, check every state if it is a sink state. If we have found a unique sink
state, then do a breadth-first search from this sink state by traversing the tran-
sitions in the reverse direction. This gives a better algorithm than the general
algorithm, which runs in time O(|Σ||Q|2), see [30].

Corollary 6. For weakly acyclic automata we can decide in time O(|Σ||Q|`|Q|)
if it is synchronizing.

3 Constrained Synchronization of Weakly Acyclic
Automata

In general, for any constraint automaton, the constrained synchronization prob-
lem is always in PSPACE, see [13]. Here, we show that for weakly acyclic input
automata, the constrained synchronization problem is always in NP. First, we
establish a bound on the size of a shortest synchronizing word, which directly
yields containment in NP as we have a polynomially bounded certificate which
could be verified in polynomial time.

Proposition 7. Let A be a weakly acyclic automaton with n states and B “
(Σ,P, μ, p0, F ) be a fixed PDFA. Then, a shortest synchronizing word w P L(B)
for A has length at most |P |(n

2

)
.

3 Recall that here, weakly acyclic automata are always complete. For partial automata
such that the reachability relation is a partial order, this does not have to be true.
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Proof. Let q1, . . . , qn be a topological sorting of the states of A. We repre-
sent the situation after reading a word u P Σ˚, i.e., the set δ(Q,u), by a
tuple (i1, . . . , in) P {1, . . . , n}n, where ij is the index of δ(qj , u) in the topo-
logical sorting, i.e., δ(qj , u) “ qij . Then, u P Σ˚ is synchronizing if and only
if the corresponding tuple is (n, . . . , n). The starting tuple is (1, . . . , n). For
(i1, . . . , in), (j1, . . . , jn) P {1, . . . , n}n we write (i1, . . . , in) ă (j1, . . . , jn) if, for
all r P {1, . . . , n}, we have ir ď jr and there exists at least one s P {1, . . . , n}
such that is ă js.

Let w “ x1 · · · xm P L(B) with xi P Σ for i P {1, . . . , m}. Then, set Si “
δ(Q,x1 · · · xi) and S0 “ Q. Suppose Si`|P | “ Si for some i P {0, 1, . . . , n}. Then,
as A is weakly acyclic4, for the word u “ xi`1 · · · xi`|P | we have δ(q, u) “ q
for any q P Si and, as it has length |P |, it induces a loop in the constraint
automaton B. So, we can replace this factor of w by a shorter word v P Σ˚ of
length less than |P | that yields the same result, i.e., Si`|P | “ δ(Q,x1 · · · xiv) and
x1 · · · xivxi`|P |`1 · · · xn P L(B).

Now, suppose w “ x1 · · · xm P L(B) is a shortest synchronizing word for A.
By the previous paragraph, we can suppose Si`|P | �“ Si for any i P {1, . . . , n}.
As A is weakly acyclic, and we can only move forward in the topological sorting,
if δ(Q,u) �“ δ(Q,uv), then for the tuple (i1, . . . , in) corresponding to δ(Q,u)
and for the tuple (j1, . . . , jn) for δ(Q,uv) we have (i1, . . . , in) ă (j1, . . . , jn).
Note that we have equality if and only if δ(Q,u) “ δ(Q,uv). As we start with
(1, . . . , n) and want to reach (n, . . . , n), we have to increase at least n ´ 1 times
the first entry, n ´ 2 times the second and so on. Now, by the previous reasoning,
every |P | symbols we can suppose we increase some component. Combining these
observations yields that a shortest synchronizing word has length at most

|P | · ((n ´ 1) ` (n ´ 2) ` . . . ` 1) “ |P | ·
(

n

2

)
.

This finishes the proof. ��
With Proposition 7 we can conclude that for weakly acyclic input automata,

the constrained synchronization problem is always in NP.

Theorem 8. For weakly acyclic input automata and an arbitrary constraint
automaton, the constrained synchronization problem is in NP.

4 Subset Synchronization Problems

Here, we will investigate the following problems from [2,3,17,21,25,28,31] for
weakly acyclic input automata.
Definition 9. Sync-From-Subset
Input: A “ (Σ,Q, δ) and S Ď Q.
Question: Is there a word w with
|δ(S,w)| “ 1?

Definition 10. Sync-Into-Subset
Input: A “ (Σ,Q, δ) and S Ď Q.
Question: Is there a word w with
δ(Q,w) Ď S?

4 More generally, it is also easy to see that in weakly acyclic automata, no word can
induce a non-trivial permutation of a subset of states.
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Definition 11. SetTransporter
Input: A “ (Σ,Q, δ) and two subsets S, T Ď Q.
Question: Is there a word w P Σ˚ such that δ(S,w) Ď T?

These problems are PSPACE-complete in general [2,3,25,28] for at least
binary alphabets. In [27] it was shown that Sync-From-Subset is NP-complete
for weakly acyclic input automata. Interestingly, for weakly acyclic input
automata, the complexity of Sync-Into-Subset drops considerably. Namely,
we could solve the problem in polynomial time. Hence, the ability to have tran-
sitions that go backward seems to be essential to get hardness above polynomial
time solvability for this problem.

Theorem 12. The problem Sync-Into-Subset is polynomial time solvable for
weakly acyclic input automata. More generally5, given S, T Ď Q such that S
contains all maximal states reachable from S, the existence of a word w P Σ˚
such that δ(S,w) Ď T could be decided in polynomial time.

Not surprisingly, as Sync-From-Subset is NP-complete [27] for at least
binary alphabets, SetTransporter is NP-complete for at least binary alpha-
bets.

Theorem 13. SetTransporter is NP-complete for weakly acyclic input
automata when the alphabet is fixed but contains at least two distinct letters.

Proof. For containment in NP, suppose (A, S, T ) with A “ (Σ,Q, δ), S, T Ď Q,
is an instance of SetTransporter with A being weakly acyclic. Let a, b /P Σ be
two new symbols and sf /P Q a new state. We can suppose S, T are non-empty,
for otherwise, if S “ H we have a trivial solution and if S is non-empty and
T “ H we have no solution at all. Then, construct A′ “ (Σ ∪{a, b}, Q∪{sf}, δ′)
with, for q P Q and x P Σ ∪ {a, b},

δ′(q, x) “

⎧
⎪⎪⎨

⎪⎪⎩

δ(q, x) if x P Σ;
sf if x “ a and q /P S;
sf if x “ b and q P T ;
q otherwise.

and δ′(sf , x) “ sf for any x P Σ ∪ {a, b}. Note that δ′(Q ∪ {sf}, a) “ S ∪ {sf},
δ′(q, b) “ sf for q P Q if and only if q P T and that A′ is weakly acyclic as
we have only added self-loops or transitions going into the sink state sf . Then,
there exists w P Σ˚ such that δ(S,w) Ď T in A if and only if δ′(Q, awb) “ {sf}
in A′. So, we have reduced the original problem to the problem to decide if A′

has a synchronizing word for the constraint language aΣ˚b. By Theorem 8, the
last problem is in NP.

For NP-hardness, we can use the same reduction as used in [27, Theorem 4]
to show NP-hardness of Sync-From-Subset with the same set S but setting
T “ {f}, where f is the sink state used in the reduction from [27]. ��
5 This more general formulation was pointed out by an anonymous referee.
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In [17], it was shown that SetTransporter is NP-complete for general
unary automata. For unary weakly acyclic automata, the problem is in P.

Proposition 14. If |Σ| “ 1, then SetTransporter is in P for weakly acyclic
input automata.

5 Constraint Automata with Two States and at Most
Three Letters

Here, we give a complete classification of the complexity landscape of the con-
straint synchronization problem with weakly acyclic automata as input automata
and when the constraint is given by an at most two state PDFA over an at most
ternary alphabet.

For our NP-hardness result, we adapt a construction due to Eppstein and
Rystsov [11,26] which uses the NP-complete SAT problem [8].

SAT
Input: A set X of n boolean variables and a set C of m clauses;
Question: Does there exist an assignment of values to the variables in X
such that all clauses in C are satisfied?

First, we single out those constraint languages that give NP-hard problems.

Proposition 15. For the following constraint languages, the constrained syn-
chronization problem for weakly acyclic automata is NP-hard:

a(b ` c)˚ (a ` b ` c)(a ` b)˚ (a ` b)(a ` c)˚
(a ` b)˚c(a ` b)˚ a˚b(a ` c)˚ a˚(b ` c)(a ` b)˚
a˚b(b ` c)˚ (a ` b)˚c(b ` c)˚ a˚(b ` c)(b ` c)˚.

Proof (Sketch). We only sketch the case L(B) “ (a`b)˚c(b`c)˚, the other cases
could be handled similarly. We adapt a reduction by Eppstein and Rystsov [11,
26] to show NP-hardness for the decision variant of the problem of a shortest
synchronizing word. Given a SAT instance with variables X “ {x1, . . . , xn} and
clauses C “ {c1, . . . , cm}, we construct a weakly acyclic automaton A “ (Σ,Q, δ)
over the alphabet {a, b, c} with states qi,j for 1 ď i ď m and 0 ď j ď n ` 1, plus
a sink state qf . Then δ is defined, for i P {1, . . . ,m} and j P {1, . . . , n}, as

δ(qi,j , b) “
{

qi,j`1 if xj P ci ∨ {xj , xj} X ci “ H;
qf if xj P ci;

and, symmetrically,

δ(qi,j , c) “
{

qi,j`1 if xj P ci ∨ {xj , xj} X ci “ H;
qf if xj P ci.

Furthermore, for i P {1, . . . , m} and j P {0, . . . , n ` 1},

δ(qi,j , a) “
{

qi,j if j P {0, 1};
qf if j /P {0, 1}.
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Lastly, for i P {1, . . . ,m}, we set δ(qi,n`1, b) “ δ(qi,n`1, c) “ qi,n`1, δ(qi,0, b) “
δ(qi,0, a) “ qi,0, δ(qi,0, c) “ qi,1 and qf “ δ(qf , a) “ δ(qf , b) “ δ(qf , c). Note that
{q1,1, . . . , qm,1} Ď δ(Q,uc) for any u P {a, b}˚ and, for v P {b, c}˚, δ(qi,1, v) “ qf

if and only if some symbol in v at a position smaller or equal than n branches out
of the strand qi,1, · · · , qi,n, which means v could be identified with a satisfying
assignment for the clause ci. Conversely, if we have a satisfying assignment,
construct a word v “ v1 · · · vn P {b, c}˚ by setting vi “ b if the i-th variable
is set to one, and vi “ c otherwise. Then, δ(Q, acv) “ {qf}. So, we can show
that A has a synchronizing word in L(B) if and only if there exists a satisfying
assignment for all clauses in C. ��

In the next two propositions, we handle those cases from the list given in The-
orem 3 that do not appear in Proposition 15. It will turn out that for these cases,
the complexity drops from PSPACE-completeness to polynomial time solvable.

Proposition 16. We have ((a ` b)˚c)-WAA-Constr-Sync P P

Proof (Sketch). By Lemma 5, if A is synchronizable, it must possess a unique
synchronizing sink state sf . In that case, set T “ δ´1(sf , c). Then, we have a
synchronizing word in (a`b)˚c if and only if there exists a word w P (a`b)˚ such
that δ|{a,b}(Q,w) Ď T in A|{a,b} “ (Σ,Q, δ|{a,b}). The latter problem is in P by
Theorem 12. ��
Proposition 17. We have ((a ` b)˚ca˚)-WAA-Constr-Sync P P and ((a `
b)˚cc˚)-WAA-Constr-Sync P P.

Proof (sketch). By Lemma 5, the automaton A could only be synchronizing if
it has a unique sink state sf . In this case, set Si “ δ´1(sf , ai) and n “ |Q|. We
have Si “ Sn for any i ě n. Then, for each i P {0, . . . , n}, set Ti “ δ´1(Si, c) and
decide, which could be done in polynomial time by Theorem 12, if there exists
a word w P {a, b}˚ in A|{a,b} “ ({a, b}, Q, δ|{a,b}) such that δ|{a,b}(Q,w) Ď Ti,
which is equivalent to δ(Q,wcai) “ {sf}. ��

Combining the results of this section, we can give a precise classification of the
complexity landscape for the problem with weakly acyclic input automata and
when the constraint automaton6 has at most two states over a ternary alphabet.

Theorem 18. Let B “ (Σ,P, μ, p0, F ) be a PDFA. If |P | ď 1 or |P | “ 2 and
|Σ| ď 2, then L(B)-WAA-Constr-Sync P P. For |P | “ 2 with |Σ| “ 3, up to
symmetry by renaming of the letters, L(B)-WAA-Constr-Sync is NP-complete
precisely for the cases listed in Proposition 15 and in P otherwise.

6 Recall that the constraint automaton is a partial automaton, whereas the input
(semi-)automaton is always complete.
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6 Relation to Automata with TTSPL Automaton Graphs

In [4,5] the decision problem related to minimal synchronizing words was inves-
tigated for TTSPL automata. These are automata whose automaton graph, i.e.,
the multigraph resulting after forgetting about the labels, is a TTSPL graph,
i.e., a two-terminal series-parallel graph with a start and sink node and where
self-loops are allowed.

In the context of automata theory, such automata were originally studied
in connection with the size of resulting regular expressions, i.e., motivated by
questions on the descriptional complexity of formal languages [14].

Many problems for series-parallel graphs are computationally easy [12], which
partly motivated the aforementioned studies [4,5]. However, from a fixed param-
eter complexity perspective, for most parameters, synchronization problems
remain hard on the corresponding automata class [4,5].

We will not give all the definitions, but refer the interested reader to the
aforementioned papers. We only mention in passing that TTSPL automata form
a proper subclass of the weakly acyclic automata. Also, by employing a simi-
lar construction as used in [4, Proposition 4.1], i.e., introducing two additional
letters, an additional starting state and some auxiliary states to realize several
paths from the start state by a tree-like structure to the starting states of the
paths corresponding to the clauses in the reduction, we can alter the reduction
from Proposition 15 to yield a TTSPL graph. However, we can even do better
and note that for the reductions used in Proposition 15, we do not need addi-
tional letters, but can realize the branching from the additional starting state
with two existing letters and use a third letter to map the additional states to
the sink state. The resulting automaton is a TTSPL automaton, for example
the transitions going directly to the sink state arise out of parallel compositions.
Hence, we can even state the following.

Theorem 19. For the constrained synchronization problem restricted to input
automata whose automaton graph is a TTSPL graph, we have the same classifi-
cation result for small constraint PDFAs as stated in Theorem 18. In particular,
we can realize NP-complete constrained problems.

7 Conclusion

We have investigated the complexity of the constrained synchronization problem
for weakly acyclic input automata. We noticed that in this setting, the problem
is always in NP. In the general setting, it was possible to have PSPACE-complete
constrained problems, whereas this is no longer possibly in our setting. We have
investigated the complexities for small constrained automata in the same way
as done in the general case in [13]. We found out that certain problems that
are PSPACE-complete in general become NP-complete, whereas others that are
PSPACE-complete even become polynomial time solvable. A similar phenomenon
was observed for certain subset synchronization problems that are all PSPACE-
complete in general.
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It is natural to continue this investigation for other classes of automata, to
find out what properties are exactly needed to realize PSPACE-complete prob-
lems or for what other classes we only have NP-complete constrained problems,
or what are the minimum requirements on the input automata to realize NP-
complete problems.

Also, a complete classification of all possible realizable complexities, a prob-
lem orginally posed in [13], is still open. Hence, as a first step it would be
interesting to know if for our restricted problem only the complexities P and
NP-complete arise, or if we can realize a constrained problem equivalent to some
NP-intermediate candidate problem.

Acknowledgement. I thank the anonymous reviewers for noticing some issues in the
proofs of Theorem 13 and Proposition 15 that have been fixed. Also, I thank them for
pointing out typos and some unclear formulations.
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7. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
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Abstract. We present a formalization of Lyndon words and basic rel-
evant results in Isabelle/HOL. We give a short review of Isabelle/HOL
and focus on challenges that arise in this formalization. The presented
formalization is based on an ongoing larger project of formalization of
combinatorics on words.

Keywords: Isabelle/HOL · Lyndon word · Lyndon factorization ·
Combinatorics on words

1 Introduction

Lyndon words, named after Roger Lyndon [17], are defined as words which are
the least elements in their conjugacy class with respect to a lexicographic order
induced by a total order on the letters. For instance, consider the word aab. Its
conjugacy class contains all the cyclic rotations, that is aab, aba, and baa. If
a < b, then aab is a Lyndon word since it is the smallest of the 3 words. If b < a,
then baa is Lyndon. They were originally conceived to construct bases in free
Lie algebras [17] and found many applications later on; for instance, they may
serve to construct de Bruijn sequence [7] and to characterize maximum runs in
words [2]. They are also object of numerous generalizations [4,5,18].

In this article, we are concerned with a formalization of Lyndon words. Since
the first computer-assisted proof of the four-color theorem in 1970s, the field
of mathematics formalization, machine-verified proofs and automated reasoning
has grown considerably. Let us name some prominent available general proof sys-
tems such as Mizar, HOL-Light, Coq, Lean and Isabelle. We refer the reader to
the survey [15] for a more detailed overview of the state of mathematics formal-
ization, and to [3] for a starting point on the state of automated reasoning. The
advancement may be also tracked on the formalization state of 100 prominent
theorems in various provers [24].

Topics related to combinatorics on words are formalized in various systems
such as the Coq package Coq-Combi by Hivert [9], which formalizes specific
results of combinatorics on words results to prove other results such as the
Littlewood–Richardson rule, or related packages Coq-free-groups, formalizing
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elements of the free group theory, or general concepts of the free monoids and
free groups in the Lean Mathematical Library. From the viewpoint of formal lan-
guages, many tools and results are available; for instance, the Isabelle’s Archive
of Formal Proofs [1] contains a category “Automata and formal languages” with
a few dozen of reusable formalizations. However, to our knowledge, none build on
the elementary concepts of combinatorics on words and formalize Lyndon words.
The first author’s previous formalization attempt (in the automated theorem
prover Prover9) at such a general task is described in [11], while the presented
formalization is a part of the current project of formalization of basics of combi-
natorics on words and various results [10] in the proof assistant Isabelle/HOL.
This project intends to create a library of formalized results with three objec-
tives:

1. verified basic facts that can become a standard starting point for further
formalization;

2. verified classical results, such as the presented formalization of Lyndon words,
with polished, human-readable and possibly more straightforward proofs;

3. allowing to push boundaries of the current research in areas where a sheer
complexity of the topic may be the most important barrier for further
advances.

One of the main motivations for this project is that proofs, or some of their
parts, in combinatorics on words are somewhat regularly tedious and repetitive.
It is desirable to outsource these tasks to a computer.

The proof assistant of choice, Isabelle/HOL [14,21], is an open-source project
with a lively community and a vast collection of formalized results available in
the already mentioned Archive of Formal Proofs [1]. Isabelle’s main interface
language which allows to write structured proofs is Isar. One of Isar’s objective
is to provide human-readable proofs, see [19] or the code examples below.

In Sect. 2, we give a short overview of the formalization of basic elements
of combinatorics on words of our project [10]. We describe relevant parts of the
two basic auxiliary theories (a theory is the main structural unit in Isabelle).
In Sect. 3, we describe the formalization of Lyndon words and point out the
challenges: formalization of the underlying total order and selecting the “good”
definitions in order to obtain smooth polished proofs. We conclude by the formal-
ization of the minimal relation needed for a word to be Lyndon, as a counterpart
of the usual strong requirement of having an alphabet with a total order.

2 Combinatorics on Words in Isabelle/HOL

We start by the description of related concepts from the theory CoWBasic of
[10], the cornerstone of further formalization. We use, in this article and in
the formalization, the notation familiarly used in combinatorics on words. Con-
catenation is denoted by ·, and is often omitted in the article (contrary to the
machine-readable code, of course). The length of a word w is denoted |w|.
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Let us first mention that Isabelle/HOL’s logic framework is a typed one,
similar to a system of functional programming languages. Here, type theory
serves as an alternative to classical set theory [23]. Each term given in this logic
framework is linked to a type which defines its basic structure and restrictions.

A (finite) word is formalized as a list, which is a basic type provided with the
main distribution of Isabelle/HOL (in the theory Main). This choice allows to
build on many available tools, while it is fully general to formalize free monoids,
since the elements of a free monoid will eventually be represented as lists of
generators. The characteristic property of a free monoid, the presence of a length
function (compatible with concatenation) and equidivisibility

xy = uv, |x| ≤ |u| implies ∃t, xt = u ∧ tv = y,

is already present in the Main theory distributed along with Isabelle/HOL.
A variable of list type is denoted in Isabelle/HOL as ’a list, where ’a is a

type variable, that is, a variable of type ’a list represents a finite word over
the alphabet given by the type ’a. For instance, the term
term "[0,1,0]::nat list"

represents the word 010 over natural integers formalized by the type nat. The
keyword term checks validity and prints a valid Isabelle term.

The Main theory provides many lemmas and definitions related to lists
which are relevant to combinatorics on words. Let us exhibit basic elements of
Isabelle/HOL and its interface on some tools from Main related to Lyndon words.
The first is the definition of the mapping rotate which stems from rotate1:
primrec rotate1 :: "’a list ⇒ ’a list" where

"rotate1 ε = ε" |
"rotate1 (a # w) = w · [a]"

definition rotate :: "nat ⇒ ’a list ⇒ ’a list" where
"rotate n = rotate1 ^^ n"

The mapping rotate1 is defined as a primitively recursive mapping of type
’a list ⇒ ’a list, which is a mapping taking one argument of type ’a list
and returning again a value of type ’a list. The definition has two rules. The
first rule defines rotate1 on the empty word ε, while the second rule defines it
on a # w, which stands for prepending the letter a to the word w. Altogether,
rotate1 takes away the first letter of a word and appends it (as the word [a] of
length one) at its end, and leaves the empty word untouched. As these two rules
cover the two constructors of the type list (the empty word and #), the mapping
is correctly defined for all lists. In fact, all mappings in Isabelle/HOL are total.

The mapping rotate is defined as the n-fold composition of rotate1, pro-
ducing for instance rotate 2 [a,b,c] = [c,a,b].

Let us illustrate theorem-proving in Isabelle/HOL and its interface language
Isar on two elementary lemmas on rotate:
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lemma rotate_add: "rotate (m+n) = rotate m ◦ rotate n"
by (simp add:rotate_def funpow_add)

lemma rotate_rotate: "rotate m (rotate n w) = rotate (m+n) w"
by (simp add:rotate_add)

The first theorem, introduced by the keyword lemma, is named rotate_add,
and claims that rotating by n and then by m is the same as rotating by m + n.
The term rotate n represents the rotation of a word by n, i.e., is the mapping
of type ’a list ⇒ ’a list, and the claim rotate_add in fact states equality
of such mappings. The keyword by starts a terminal backward proof using the
method simp, which is one of the most direct proof methods using elementary
simplifications. Here, besides the standard armoury of simp’s simplification rules,
two facts, i.e., proven named claims, are needed: rotate def and funpow add.
While the first is in fact the definition of rotate stated above (named automat-
ically), the second is an elementary lemma on n-fold composition ^^:
lemma funpow_add: "f ^^ (m + n) = f ^^ m ◦ f ^^ n"

by (induct m) simp_all

The proof is done by induction on m, and all the induction steps are proven
again by the simplifier simp.

The next component is the existing theory HOL-Library. Sublist, which pro-
vides relevant tools such as the predicates prefix and strict prefix:
definition prefix :: "’a list ⇒ ’a list ⇒ bool"

where "prefix p w ←→ (∃ s. w = p · s)"

definition strict_prefix :: "’a list ⇒ ’a list ⇒ bool"
where "strict_prefix p w ←→ prefix p w ∧ p 	= w"

The CoWBasic theory adopts a shorthand notation for these definitions:
p ≤p w stands for prefix p w, p <p w stands for strict prefix p w, and
similarly, we introduce nonempty prefix predicate, denoted p ≤np w. Suffixes
have an analogous notation: ≤s, <s, ≤ns.

Let us now introduce some relevant elements from the CoWBasic theory that
shall be used later, starting with left and right quotient:
definition left_quotient:: "’a list ⇒ ’a list ⇒ ’a list"
("(_−1>)(_)" )

where "left_quotient u v = (THE z. u · z = v)"

definition right_quotient :: "’a list ⇒ ’a list ⇒ ’a list"
("(_)(<−1_) " )

where "right_quotient u v = rev ((rev v)−1>(rev u))"

The definition of left quotient stems from the usual definition: if u is a prefix
of v, then the word z with the property uz = v is the left quotient of u and
v. The definite description the is formalized by the syntax THE, introduced in
Isabelle/HOL’s basis of Higher-Order Logic. Compared to the usual definition,
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the assumption u is a prefix of v is not present. If it is not satisfied, i.e., u is
not a prefix of v, then nothing can be shown about left quotient u v. An
alternative shorthand notationu−1>v is introduced by the definition as well.
Special characters such as −1 (represented in the source file as \<inverse>)
can be input conveniently in the default integrated development environment
Isabelle/jEdit, present in Isabelle distribution, in a very similar way to the usual
typesetting in LATEX.1

The definition of right quotient is not using THE, but is based on the definition
of the left quotient using the reversal/mirror mapping rev, which reverses the
order of the elements in the list, i.e., reads the word backwards. This choice here
is made in order to fully exploit the symmetry induced by rev (for details on
this symmetry see [22]).

Primitivity is defined as follows:
definition primitive :: "’a list ⇒ bool"

where "primitive u = (∀ r k. r@k = u −→ k = 1)"

The term r@k stands for the k-th power of the word r. Finally, the predicates
for a word having a border and being bordered are defined as
definition border :: "’a list ⇒ ’a list ⇒ bool" ("_ ≤b _" )

where "border x w = (x ≤p w ∧ x ≤s w ∧ x 	= w ∧ x 	= ε)"

definition bordered :: "’a list ⇒ bool"
where "bordered w = (∃ b. b ≤b w)"

3 Lyndon Words Formalized

Let A be an alphabet. Recall that the lexicographic order of words from A+ is
induced by a total order of A as follows: for nonempty words u, v ∈ A+ we have
that u <lex v if u <p v or

u = pau′, v = pbv′ with a, b ∈ A, a < b, p, u′, v′ ∈ A∗.

A word w is a Lyndon word if it is a primitive word and it is the least in its
conjugacy class with respect to the lexicographic order <lex.

While the definition is quite simple, there are several variants how to for-
malize it since the underlying orders may be specified in various manners. We
describe our approach in the next subsection. Section 3.2 covers the formaliza-
tion of selected claims on Lyndon words, notably Lyndon factorization. Section
3.3 concludes this section with the description of a characterization of Lyndon
words based on a minimal partial order o that needs to be specified for a word
to be Lyndon with respect to o. The description focuses on unveiling specific
choices that were made in the formalization, notably those that lead to a version
which differs from the usual template.

1 More advice for beginners is available in the README of [10].
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3.1 Specifying the Order and Lyndon Word Definition

Before specifying the order, let us be explicit on how the formalization deals
with the specification of the alphabet. The alphabet is implicitly given by the
type variable ’a in ’a list. This implies that the alphabet is the whole type.
The main advantage is that there is no need for any additional assumptions
specifying the omnipresent alphabet in all the claims that concern some words.

A total order on a type may be defined in a number of ways using existing
tools in Isabelle/HOL. For instance, a possible approach is its definition using a
predicate or by specifying the relation as a set, and then use the existing list tools
to produce a lexicographic order in a similar manner. This approach leaves the
order as a parameter that needs to be repeated as an assumption, or can be fixed
using a locale, Isabelle’s mechanism to avoid repetition of global assumptions.
After trials of numerous variants, our choice is a more implicit approach using so-
called sorts, which is an Isabelle’s way to control polymorphism of types without
breaking the logical structure [20]. The existing class representing a total order
is called linorder in Isabelle/HOL, and by wrapping the code as
context linorder
begin
...
end

one declares that the type ’a is equipped with a total order, also called a linear
order. Within this context, the lexicographic order is introduced in the same
manner. We first define the relevant predicates:
definition Lyndon_less :: "’a list ⇒ ’a list ⇒ bool" ( "<lex")

where "Lyndon_less xs ys ≡ ord_class.lexordp xs ys"

definition Lyndon_le :: "’a list ⇒ ’a list ⇒ bool" ("≤lex" )
where "Lyndon_le xs ys ≡ ord_class.lexordp_eq xs ys"

These are based on the lexicographic order integrated with Isabelle’s class
ord, representing a partial order:
context ord
begin

inductive lexordp :: "’a list ⇒ ’a list ⇒ bool"
where

Nil: "lexordp ε (y # ys)"
| Cons: "x < y =⇒ lexordp (x # xs) (y # ys)"
| Cons_eq:

"[[ ¬ x < y; ¬ y < x; lexordp xs ys ]] =⇒ lexordp (x # xs) (y #
ys)"
end
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This inductive predicate has 3 constructor rules and is in fact slightly more
general that the required lexicographic order since it is induced by a partial
order.

The last step is to declare that the predicates Lyndon less and Lyndon le
satisfy the assumptions of the linorder class, and make all the facts of the
linorder class available for lists. This is done by the following command:
interpretation rlex: linorder "(≤lex)" "(<lex)"
using lexordp_linorder Lyndon_less_def Lyndon_le_def by
presburger

The command interpretation requires a proof of the claim that ≤lex and
<lex are indeed a linorder. The proof here starts by the keyword using, which
states additional facts that are needed for the proof: the definitions introduced
above and the fact lexordp_linorder, which states that the lexicographic order
induced on a total order is indeed total. The keyword by invokes a terminal proof
method. Once shown, interpretation makes all the claims of linorder available
for ≤lex and <lex under qualified names such as rlex.lexordp˙linorder.

At this point, the underlying lexicographic order is set up, and we may pro-
ceed with a definition of a Lyndon word:
definition Lyndon :: "’a list ⇒ bool" where
"Lyndon w = (w 	= ε ∧ (∀ n. 0 < n ∧ n < |w| −→ w <lex rotate n
w))"

Since <lex is used in the definition, primitivity of the word is not required
but shown as a property in the following lemma where we exhibit a structured
isar proof:
lemma Lyndon_prim: assumes "Lyndon w"

shows "primitive w"
proof-

have "0 < n =⇒ n < |w| =⇒ rotate n w 	= w" for n
using Lyndon_less_def LyndonD[OF 〈Lyndon w〉, of n]

rlex.less_irrefl[of w] by argo
thus ?thesis

using no_rotate_prim[OF LyndonD_nemp[OF 〈Lyndon w〉]] by
blast
qed

The command proof - starts the proof of the preceding claim. The keyword
have introduces an intermediate claim, followed by its proof, and thus uses
this claim to show the actual goal of the whole proof hidden under the variable
?thesis.

With a slightly more elaborate proofs using the auxiliary combinatorics on
words theories, we prove elementary properties of Lyndon words such as
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theorem Lyndon_unbordered: assumes "Lyndon w"
shows "¬ bordered w"

lemma conjug_Lyndon_ex: assumes "primitive w"
obtains n where "Lyndon (rotate n w)"

theorem Lyndon_suf_char: assumes "w 	= ε"
shows "Lyndon w ←→ (∀ s. s ≤ns w ∧ s 	= w −→ w <lex s)"

Let us now focus on more elaborate elements of the formalization that differ
from human proofs written in mathematical prose (the latter being usually called
“paper proofs” in this context).

3.2 Formal Proofs Concerning Lyndon Words

A proof in mathematical prose typically contains commonly accepted informal
arguments or omitted steps that must be settled by the formalization. Obviously,
these include “Obviously”, “One can show”, and “The proof is left to the reader”.
It includes also “without loss of generality” or “by symmetry” (see [8]). But it
also includes some primary school arithmetic manipulations, as these are usually
based on a multitude of trivial elementary facts which need to be specified and
made available to the proof assistant.

Let us illustrate this on the following lemma from Duval [6, Lemma 2.3].

Lemma 1. The product u · v of two Lyndon words u and v is a Lyndon word if
and only if u <lex v.

While one direction follows easily from the characterization by suffixes (displayed
above as Lyndon_suf_char), the other direction is left to the reader, i.e., no proof
is given. A short paper proof might go as follows:

Proof. If v = uv′, then since v is a Lyndon word, we have v <lex v′. It follows
that uv <lex uv′ = v. If u is not a prefix of v, then since u <lex v we have
uv <lex v. Let z be a strict suffix of uv. If uv = uv′z, then uv <lex v <lex z. If
z = z′v, then u <lex z′, thus uv <lex z′v, i.e., uv is smaller than any its strict
suffix, and therefore is a Lyndon word.

This direction is formalized in this form:
theorem Lyndon_concat: assumes "Lyndon u" and "Lyndon v"

and "u <lex v" shows "Lyndon (u·v)"
Its proof is some 40 lines long, containing a case analysis and steps which are

based on simple arithmetic, still hidden in the presented paper proof.
Let us now focus on the formulation of Lyndon’s result as given in [16, The-

orem 5.1.5]:

Theorem 1. Any nonempty word w may be written uniquely as a nonincreasing
product of Lyndon words:

w = �1�2 · · · �n with �i Lyndon and �i+1 ≤lex �i.
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This factorization is often referred to as Lyndon factorization. A 1-to-1 formal-
ization of this classical result turned out to be unsuitable since it is not con-
structive. In general, finding a suitable characteristic properties and equipping
the proof assistant with suitable lemmas is very helpful to obtain a good mixture
between what is obvious for a human reader and what is required for a machine
verification. Therefore, our chosen definition is a constructive one:
definition longest_Lyndon_suffix::"’a list ⇒ ’a list" ("LynSuf")

where "longest_Lyndon_suffix w = (drop (LEAST i. (Lyndon (drop
i w))) w)"

function Lyndon_fac::"’a list ⇒ ’a list list" ("LynFac")
where "Lyndon_fac w = (if w 	= ε then

((Lyndon_fac (w <−1(LynSuf w) )) · [LynSuf w]) else ε)"

The first definition is a constructive definition of the longest Lyndon suffix,
abbreviated as LynSuf. It relies upon drop which is used to drop first i letters
from the beginning of a word w (altogether as drop i w). In the definition, i
is the least such that drop i w is a Lyndon word. Note that the definition of
LynSuf w is correct for a nonempty word w (since a word of length one is Lyndon
by definition). For the empty word, nothing can be shown about LynSuf ε since
LEAST internally relies on the definite descriptor THE. This is reflected in the
definition of Lyndon_fac which is introduced by the keyword function and it
requires a proof that the definition is correct (which is not the case in the case
of definition which may be seen rather as a form of syntactic abbreviation).
Notably, the termination of this function needs to be shown. The recursive defini-
tion of LynFac finds the Lyndon factorization by repeatedly finding the longest
Lyndon suffix of the word to be decomposed. As it needs to be total, by the
design choice we have that LynFac ε = ε.

An advantage of function over definition is that Isabelle automatically
produces a number of facts related to the function. Let us reveal one of those
facts that will allow us to easily prove claims using a structural induction. It is
stored under the name Lyndon_fac.induct and reads

"(
∧
w. (w 	= ε =⇒ P (w<−1LynSuf w )) =⇒ P w) =⇒ P v"

In other words, if for all nonempty word w we have that P (w<−1LynSuf w )
implies P w, then P v holds for any word v and any predicate P. The induction
hypothesis here says that the fact that the claim P holds for the previous step in
the Lyndon factorization implies that it holds for the Lyndon factorization. This
fact may be used as an induction rule and eases and clarifies proofs of elementary
facts that need to be shown next, for instance:

lemma Lyndon_fac_set: "z ∈ set (Lyndon_fac w) =⇒ Lyndon z"
proof(induction w rule: Lyndon_fac.induct)

case (1 w)
then show "Lyndon z"
proof (cases "w = ε")
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assume "w 	= ε"
have "Lyndon_fac w = (Lyndon_fac (w <−1(LynSuf w) )) ·

[LynSuf w]" using Lyndon_fac_simp[OF 〈w 	= ε〉].
from set_ConsD[OF "1.prems"(1)[unfolded rotate1.simps(2)[of

"LynSuf w" "Lyndon_fac (w <−1(LynSuf w) )", folded this,
symmetric], unfolded set_rotate1]]

have "z = LynSuf w ∨ z ∈ set (Lyndon_fac (w <−1(LynSuf w)
))".

thus "Lyndon z"
using "1.IH"[OF 〈w 	= ε〉] longest_Lyndon_suf_Lyndon[OF 〈w 	=

ε〉] by blast
next

assume "w = ε"
thus "Lyndon z"

using "1.prems"
unfolding Lyndon_fac_emp[folded 〈w = ε〉] list.set(1)

empty_iff by blast
qed

qed

We do not comment further on the proof and leave the reader to assess its
understandability.

Besides the exhibited fact that LynFac w is composed of Lyndon words, we
show that it is indeed a factorization of the word w, and that if we take any start-
ing segment �1�2 · · · �q of LynFac w = [�1, �2, . . . , �n], we obtain [�1, �2, . . . , �q] =
LynFac �1�2 · · · �q. These preparatory facts are now completed with the defini-
tion of a nonincreasing sequence of Lyndon words:
definition Lyndon_mono :: "’a list list ⇒ bool" where

"Lyndon_mono ws ≡ (∀ u ∈ set ws. Lyndon u) ∧ (rlex.sorted
(rev ws))"

Which is used to formalize the claim of Theorem 1 as follows:
theorem Lyndon_mono_fac_iff: "Lyndon_mono ws ←→ ws = LynFac
(concat ws)"

theorem Lyndon_mono_unique: assumes "Lyndon_mono ws" and
"Lyndon_mono zs" and "concat ws = concat zs"

shows "ws = zs"

The mapping concat retrieves the word from its factorization, for instance,
concat [�1, �2] = �1 · �2.

3.3 Using the Minimal Relation

In contrast to a somewhat implicit specification of the total orders involved, we
add an explicit specification of the minimal relation required for a word w to be
a Lyndon word in the spirit of a more general construction in [4]. This relation,
as a subset of A × A, is constructed as an inductive set:
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inductive set rotate_rel :: "’a list ⇒ (’a × ’a) set" for w
where "0 < n =⇒ n < |w| =⇒ (mismatch_pair w (rotate n w))

∈ rotate_rel w",

where mismatch_pair u v returns the pair of letters of u and v where they first
differ, i.e., it returns (a, b) with a 	= b, pa a prefix of u and pb a prefix of v. If
no such pair is found, the inductive definition produces the empty set, i.e., for a
letter a, rotate_rel ak equals the empty set.

Its minimality is proven as follows (in the context of the class linorder):
lemma rotate_rel_iff: assumes "w 	= ε"

shows "Lyndon w ←→ rotate_rel w ⊆ {(x,y). x < y}"

It is a noteworthy fact that the implication starting from the minimal relation
requires to extend the minimal partial order to a total order. This is provided by
the entry [25] in the Archive of Formal Proofs [1], which formalizes the Szpilrajn
extension theorem stating that every partial order can be extended to a total
order. This is an example of an advanced set-theoretic claim that is usually
and rather implicitly taken for granted in paper proofs. One of the merits (or
annoyances) of a formalization is that such steps become explicit and have to be
dealt with.

4 Final Remark

The presented formalization of Lyndon words (and parts of the auxiliary corner-
stone theories) is the result of an iterative development process of formalization
of elements of combinatorics on words [10]. The current version is in fact a result
of several optimizations based on our usage experience. We thus consider it to
be a suitable as basis for a further formalization of more elaborate results, for
instance, universal Lyndon words [4]. A release version is available in the Archive
of Formal Proofs [12,13].
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4. Carpi, A., Fici, G., Holub, Š., Opršal, J., Sciortino, M.: Universal Lyndon words.
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Abstract. We continue our investigation on the descriptional complex-
ity of the cascade product of finite state devices started in [M. Holzer,
C. Rauch: The Range of State Complexities of Languages Resulting
from the Cascade Product—The Unary Case (Extended Abstract). Proc.
CIAA, 2021]. Here we study the general case, that is, cascade products
of reset, permutation-reset, permutation, and finite automata in general,
where the left operand automaton has an alphabet of size at least two. In
all cases, except for the cascade product of two permutation automata,
it is shown that the whole range of state complexities, namely the inter-
val [1, nm], where n is the state complexity of the left operand and m
that of the right one, is reachable. The cascade product of two permu-
tation automata produces a lot of non-reachable numbers—numbers of
this kind are called magic in the relevant literature—even for arbitrary
alphabet sizes. These results are in sharp contrast to the unary case.

1 Introduction

The Krohn-Rhodes Theorem [2] states that any finite automaton can be decom-
posed into (several) simple “automata prime factors.” Here simple means
permutation-reset automata, that is, devices where each letter induces either a
permutation or a constant function on the state set. The decomposition operation
is that of the cascade product, which shares similarity with the direct product
of automata. Although the descriptional complexity of the Krohn-Rhodes Theo-
rem is well understood [11,12], the one-time application of the cascade product
operation still lacks a descriptional complexity investigation until recently. In [6]
the descriptional complexity of the cascade product, where the left operand is a
unary automaton, is studied in detail. There a complete picture on the reachable
state complexities for the cascade product of reset (RFA), permutation (PFA),
permutation-reset (PRFA), and finite automata in general (DFA) is drawn. It
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turned out, that in the majority of the cases—in 7 out of 12 cases1—studied
in [6], state complexities were identified that cannot be reached by the applica-
tion of a single cascade operation on a minimal unary n- and a minimal m-state
finite automaton of a certain kind. This research falls into the line of operation
problems on finite state devices, see, e.g., [3,4,7,8,10], and their descriptional
complexity. Adapting the notion of [9] on the determinization of nondeterminis-
tic finite automata, state numbers that cannot be reached by a binary operation
on two state devices of a particular size are called “magic.” For instance, for
a minimal unary n-state PFA A and a minimal m-state PFA B the minimal
automaton accepting the language L(A ◦ B), where ◦ refers to the cascade prod-
uct, can only have α states with α in

{1} ∪ {nx | 1 ≤ x ≤ m } ∪ { tx | 1 ≤ x < m },

where t is a non-trivial divisor of n, that is, a divisor that is neither 1 nor n.
All other numbers in the interval [1, nm] are called magic. Interestingly, one can
show that nm − 1 is magic in all cases, where numbers exist that cannot be
reached by the cascade operation problem where at least one automaton is not
a RFA. It is worth mentioning, that the existence of these magic numbers does
not contradict the Krohn-Rhodes decomposition theorem.

Here we continue the research started in [6] by considering the descriptional
complexity of the cascade product of automata with input alphabets of size at
least two. Compared to the unary case the situation on the existence of magic
numbers completely changes for automata with larger input alphabet sizes. In
almost all cases—in 15 out of 16 cases2—no magic numbers exist and thus the
whole interval [1, nm] can be obtained. For the case of the cascade product of
two PFAs we identify numerous magic numbers. In fact, for large n with a lot of
non-trivial divisors, and small m a legion of magic numbers exist. For instance,
for n = 10 = 2 · 5 and m = 3 at least the numbers (in increasing order) 3, 7, 9,
11, 13, 17, 19, 21, 23, 27, and 29 are magic. Except for a precise characterization
of the reachable state sizes for the cascade product of two PFAs in general, we
solve the magic number problem for the cascade product completely.

2 Preliminaries

We recall some definitions on finite automata as contained in [5]. A deterministic
finite automaton (DFA) is a quintuple A = (Q,Σ, ·, q0, F ), where Q is the finite set
of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the
set of accepting states, and the transition function · maps Q ×Σ to Q. The language
accepted by the DFA A is defined as L(A) = {w ∈ Σ∗ | q0 · w ∈ F }, where the

1 There are three types of automata for the left operand of the cascade product,
namely unary reset, unary permutation(-reset), and unary finite automata in gen-
eral and four types of automata for the right operand, that are reset, permutation,
permutation-reset, and finite state device without restrictions.

2 For automata with input alphabet of size at least two we have four types of left
operands instead of three as in the unary case. This leads to 4 · 4 = 16 cases.
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transition function is recursively extended to a mapping Q ×Σ∗ → Q in the usual
way. Obviously, every letter a ∈ Σ induces a mapping from the state set Q to Q by
q �→ δ(q, a), for every q ∈ Q. A DFA is unary if the input alphabet Σ is a singleton
set, that is, Σ = {a}, for some input symbol a. Moreover, a DFA is said to be a
permutation-reset automaton (PRFA) if every input letter induces either a per-
mutation or a constant mapping on the state set. If every letter of the automaton
induces only permutations on the state set, then we simply speak of a permutation
automaton (PFA). Finally, a DFA is said to be a reset automaton (RFA) if every
letter induces either the identity or a constant mapping on the state set. The class
of reset, permutation, permutation-reset, and deterministic automata in general
are referred to as RFA, PFA, PRFA, and FA, respectively. It is obvious that
inclusions XFA ⊆ PRFA ⊆ FA, where X ∈ {P,R}, holds. Moreover, it is not
hard to see that the classes RFA and PFA are incomparable.

The cascade product [2] is originally introduced for semi-automata, which are
automata with no initial nor final states. For our needs we enrich the cascade
product with initial and final states and follow for the definition of the final states
the lines of [1]. The cascade product of two DFAs A = (QA, Σ, ·A , q0,A, FA) and
B = (QB , QA × Σ, ·B , q0,B , FB), denoted by A ◦ B, is defined as the automaton

A ◦ B = (QA × QB , Σ, · , (q0,A, q0,B), FA × FB),

where the transition function is given by

(q, p) · a = (q ·A a, p ·B (q, a)),

for q ∈ QA, p ∈ QB , and a ∈ Σ. We say that A is the first automaton and B
the second automaton in the cascade product A ◦ B. A schematic drawing of the
cascade product is given in Fig. 2. It is obvious that the cascade product of two
DFAs generalizes the direct product. In order to explain the notation we give an
example.

Example 1. Consider the PRFA A = ({q0, q1, q2}, {a, b}, ·A , q0, {q0, q2}), where

q0 ·A a = q1,

q0 ·A b = q2,

q1 ·A a = q0,

q1 ·A b = q2,

q2 ·A a = q2,

q2 ·A b = q2.

Then assume that m is an arbitrary integer greater than or equal three and let

B = ({p0, p1, . . . , pm−1}, {q0, q1, q2} × {a, b}, ·B , p0, {p1}),

be the PFA, where

pi ·B (qj , b) = pi+1 mod m, for 0 ≤ j ≤ 1 and 0 ≤ i ≤ m − 1,

pi ·B (q2, a) = pi+1 mod 3, for 0 ≤ i ≤ 2,

and all other not explicitly stated transitions are self-loops. The automata A
and B, for m = 3, are depicted in Fig. 1 on the top and lower right, respectively.
It is easy to see that both automata are minimal.
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Fig. 1. Schematic drawing of the cascade product of the DFAs A and B. The automaton
A is depicted on top and the automaton B on the right. The automaton AB is shown
in the middle, where only the transition of the state (q; p) is displayed. Note that
self-loops will be only drawn by dotted loops without letters.

By construction the cascade product of A and B is given by

A ◦ B = ({q0, q1, q2} × {p0, p1, . . . , pm−1}, {a, b}, · , (q0, p0), {q0, q2} × {p1}),

where the transitions of the initially reachable states

(q0, p0), (q1, p0), (q2, p0), (q2, p1), (q2, p2),

can be deduced from Fig. 1, too, on the lower left. Although the drawing is only
for automaton B with three states, the initially reachable part of A ◦ B remains
the same for larger B’s as defined. Observe, that A ◦ B is not a PRFA and it is
not minimal. By inspection the only equivalent states in A ◦ B are (q0, p0) and
(q1, p0). Hence, the minimal DFA accepting L(A ◦ B) has α = 4 states. 	


The following result is immediate by the lower bound results on the opera-
tional complexity of the intersection operation on finite automata [8].

Theorem 1. Let A be a n-state and B a m-state DFA. Then n · m states are
sufficient and necessary in the worst case for any DFA accepting L(A ◦ B). The
lower bound even holds for automata with binary input alphabet.

When considering the descriptional complexity of the cascade product, we
limit ourselves to the case where the involved automata are non-trivial, i.e., they
have more than one state. This is due to the fact that if the second automaton in
the operation under consideration is a singleton device, then the cascade product
accepts either the empty set or the same language as the involved other device.
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Fig. 2. The example automata A and B on the top and lower right, respectively. For
a better representability not all transitions of an automaton are shown. In particular,
this is the case for automaton AB, where only the transitions of the initially reachable
states are shown. The cascade product AB is depicted on the lower left. Additionally
the index j is a placeholder for numbers 0 and 1. Note that as before self-loops will be
only depicted by dotted loops without letters.

If the first automaton is a singleton device, then the cascade product accepts
either the empty language or the language L that is the image of the language
that the second automaton accepts under the homomorphism (q, a) �→ a, for
the letters a of the first automaton, where q is the state of the first automaton.
Therefore, only 1-, n-, or m-state automata, for n,m ≥ 1, appear as results
of a cascade product with a trivial automaton. Thus, in the following we only
consider non-trivial automata.

3 Results

We assume the reader to be familiar with the results on the cascade product of
unary automata, as contained in the forerunner paper [6]. In the following we
prove results for the general case, that is, if the input alphabet of the left operand
automaton in the cascade product is at least two. Since we are dealing with
permutation automata very often, we find the following result on the minimality
of PFAs quite useful. The following statement was already shown in [6].

Lemma 1. Let A be a PFA with a sole accepting state with all states reachable
from the initial state. Then A is minimal. Minimality is preserved even if the
initial state is changed to any other state.
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Our investigation is started with cascade products, where reset automata
are involved. Observe, that all our results on the cascade product of binary
automata remain valid for arbitrary alphabets of at least two letters, since adding
duplicitous letters does not change the complexity.

3.1 Cascade Products Where Reset Automata are Involved

The magic number problem in the binary input alphabet case of the cascade
product, where at least one reset automaton is involved, is already almost com-
pletely solved in [6]. It is easy to see that (minimal) reset automata form a very
limited class of automata, because every minimal reset automaton has at most
two states. For the cascade product of two RFAs A and B it was shown in [6]
that if A has an input alphabet of at least two letters, then the minimal DFA
accepting the language L(A ◦ B) has α states with 1 ≤ α ≤ 4, which is the
maximal range for this case. This is different from the unary case, where only
the values from the set {1, 2, 3} can be reached.

Next consider the cascade product of RFAs with PFAs, where we show that
no magic numbers exist. The upper bound on the size of the minimal automaton
equivalent to the cascade product of a non-trivial minimal reset automaton with
a minimal m-state permutation automaton is 2m. In the unary case this bound
cannot be reached, since only the interval [1,m + 1] is obtained [6].

Theorem 2. Let m ≥ 1. Then for every α with 1 ≤ α ≤ 2m, there exists a
non-trivial minimal RFA A and minimal m-state PFA B such that the minimal
DFA for the language L(A ◦ B) has α states.

Proof (Sketch). By the above mentioned result in the unary case it remains
to show that the integers within the interval [m + 2, 2m] are reachable. So let
α = m + �, for 2 ≤ � ≤ m.

Define the RFA A = ({q0, q1}, {a, b}, ·A , q0, {q1}), where the transition func-
tion is defined as

q0 ·A a = q1, q1 ·A a = q1

q0 ·A b = q0, q1 ·A b = q1.

It is easy to see that this automaton is minimal. Next let the PFA B be

B = ({p0, p1, . . . , pm−1}, {q0, q1} × {a, b}, ·B , p0, {p0}),

where

pi ·B (q0, a) = pi+1 mod m, for 0 ≤ i ≤ m − 1,

pi ·B (q0, b) = pi+1 mod �, for 0 ≤ i ≤ � − 1,

pi ·B (q0, b) = pi, for � ≤ i ≤ m − 1,
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and

pi ·B (q1, a) = pi+1 mod m, for 0 ≤ i ≤ m − 1,

pi ·B (q1, b) = pi, for0 ≤ i ≤ m − 1.

This completes the descriptions of the automaton B. By Lemma 1 the automa-
ton B is minimal.

Next we show that the set of initially reachable states of the cascade prod-
uct A ◦ B can be partitioned into the union Ea ∪ Eb, where

Ea = { (q0, p0) · ai | i ≥ 1 } and Eb = { (q0, p0) · bi | i ≥ 0 }.

Here · refers to the transition function of A ◦ B; see Fig. 3. A close inspection
reveals that Ea = {q1} × {p0, p1, . . . , pm−1} and Eb = {q0} × {p0, p1, . . . , p�−1}.
Finally, it remains to prove that the states in Ea ∪ Eb are pairwise inequivalent.
The tedious details are left to the interested reader. Then the stated claim fol-
lows, because the number of states in Ea ∪ Eb is � + m, which by construction
is equal to α. 	


Fig. 3. The initially reachable part of the automaton A ◦B.

In the remainder of this section we discuss the cases where the right operand
of the cascade product is an RFA. For the cascade product of a unary minimal
n-state PFA with an RFA it was shown in [6] that the maximal possible interval
[1, 2n] can be reached, and therefore no magic numbers exist. This result gener-
alizes to unary PRFAs and DFAs and moreover to the non-unary case. This is
summarized in the following theorem.

Theorem 3. Let n ≥ 1. Then for every α with 1 ≤ α ≤ 2n, there exists a n-
state PFA (PRFA, or DFA, respectively) A and a non-trivial RFA B such that
the minimal DFA for the language L(A ◦ B) has α states.

This settles all cases where RFAs are involved in the cascade product of two
automata. In summary, in all cases no magic numbers exist, whenever the input
alphabet of the first automaton contains at least two alphabet symbols.
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3.2 Cascade Products of Two Permutation Automata

In [6] it was shown for the cascade product of two permutation automata in the
unary case that all numbers which are relatively prime to the number of states of
the first device are magic numbers. We show that this also holds in the general
setting, i.e., for input alphabets of arbitrary size. Before we prove this, we recall
a structural result on the cascade product of two PFAs from [6].

Theorem 4. Let A and B be minimal n- and m-state PFAs, respectively. Then
there is an x with 1 ≤ x ≤ m such that for every state q in A the number of
initially reachable states in A ◦ B that have q as their first component is exactly x.
As a direct consequence the initially reachable part of A ◦ B has exactly nx states.
Moreover, the minimal deterministic finite automata that accepts L(A ◦ B) has α
states, where α is a divisor of the quantity of initially reachable states of A ◦ B.

Now we are ready to prove the above mentioned result on the existence of
magic numbers in the general case.

Lemma 2. Let n,m ≥ 2. For every α in [2, nm] that is coprime to n, there does
not exist a minimal n-state PFA A and a minimal m-state PFA B such that the
minimal DFA for the language L(A ◦ B) has α states.

Proof. We give a proof by contradiction. So we assume that α is an integer
in [2, nm], which is coprime to n, and A is a n-state and B is a m-state PFA,
such that the minimal DFA accepting L(A ◦ B) has exactly α states. Let QA be
the state set of A and QB the state set of B, respectively.

By Theorem 4 we know, that there are nx states, for some 1 ≤ x ≤ m,
that are initially reachable in A ◦ B, and that α must divide nx. Therefore, it is
possible to partition the set of initially reachable states of A ◦ B into α sets such
that each set contains exactly nx/α states which are equivalent. Let these sets
be T0, T1, . . . , Tα−1. Define

Si := { q ∈ QA | there exists p ∈ QB such that (q, p) ∈ Ti }.

Because A ◦ B is a PFA, for every pair of states there exists a word which maps
one of those states onto the other. Since every word acts directly on the first
component of a state we find that |({q} × QB) ∩ Ti| is equal for every state q
of A for which Si is not empty. Since it makes the further considerations a lot
easier we fix q as an arbitrary state of A. Again, by Theorem 4 we know, that for
every state q of A there are x states (with first component q) initially reachable
in A ◦ B. Thus, we obtain for a set Ti, which contains a state that has q as its
first component

|{( {q} × QB) ∩ Ti = ∅ | 0 ≤ i ≤ α − 1 }| · |({q} × QB) ∩ Ti| = x,

and |({q} × QB) ∩ Ti| · |QA ∩ Si| = |Ti| = n x
α . By inserting the first equation

into the second we obtain

|({q} × QB) ∩ Ti| · |QA ∩ Si|
= n · |{ ({q} × QB) ∩ Ti = ∅ | 0 ≤ i ≤ α − 1 }| · |({q} × QB) ∩ Ti|

α
.
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Dividing by |({q} × QB) ∩ Ti| gives us

|QA ∩ Si| = n · |{ ({q} × QB) ∩ Ti = ∅ | 0 ≤ i ≤ α − 1 }|
α

.

Since |QA ∩ Si| is an integer and the numbers n and α are coprime we obtain
that |{ ({q} × QB) ∩ Ti = ∅ | 0 ≤ i ≤ α − 1 }| is divisible by α. This in turn
implies that it is equal to α, since it is upward limited by α. Therefore, for every
set Ti, for 0 ≤ i ≤ α − 1, there exists a state which has q as its first component.
Because α is at least two, there must be an initially reachable accepting state
in A ◦ B. Thus, there exists an i with 0 ≤ i ≤ α − 1, such that Ti contains only
(equivalent) accepting states. In conclusion that means that q must be accepting.
Since state q was arbitrarily chosen this implies that every state of A must be
accepting, which is a contradiction to the fact that A is minimal. 	


3.3 Cascade Products with Permutation and Permutation-Reset
Automata and Beyond

Next we investigate the descriptional complexity of the cascade product of a
permutation and a permutation-reset device. For the first case, where the first
automaton of the cascade product is a PFA no magic numbers exist. This is in
contrast to the unary case [6].

Theorem 5. Let n,m ≥ 2. Then for every α with 1 ≤ α ≤ nm, there exists a
minimal binary n-state PFA A and a minimal m-state PRFA B such that the
minimal DFA accepting the language L(A ◦ B) has exactly α states.

Proof (Sketch). In [6] it was shown that in the unary case the numbers [1, 2n]
are reachable. Thus, we may assume that α > 2n. One can show that every
number α in the interval [n, nm] can be written in the form α = km+n−k+�, for
integers 0 ≤ k ≤ n− 1 and 0 ≤ � ≤ m− 1. In order to simplify the constructions
to come, we want to exclude the case � = m − 1. In case α has a representation
as above with � = m − 1, we may rewrite it to α = km + n − k + (m − 1) =
(k + 1)m + n − (k + 1), as long as k < n − 1. For k = n − 1, the value of α is
equal to nm, which can be reached by a result in [6] already in the unary case.
In summary, α belongs now to the interval [2n + 1, nm − 1] and can be written
as above with 0 ≤ k ≤ n − 1 and 0 ≤ � < m − 1.

Let A = ({q0, q1, . . . , qn−1}, {a, b}, ·A , q0, FA), with

qi ·A a = qi+1 mod n, for 0 ≤ i ≤ n − 1,

qi ·A b = qi, for 0 ≤ i ≤ n − k − 2,

qi ·A b = qi+1, for n − k − 1 ≤ i ≤ n − 3,

qn−2 ·A b = qn−k−1,

qn−1 ·A b = qn−1,

where all non-specified transitions are self-loops as usual, and FA = {qn−1}, if
n = 2 and k = 0, FA = {qn−2}, if n = 2 and k > 0, and FA = {qn−2, qn−1},
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otherwise. That A is minimal follows for n = 2 by Lemma 1. In case n > 2
the minimality of the device A is seen because the states qn−2 and qn−1 are
distinguishable by applying the word a and for every other state pair there
exists a bijection which maps at least one of them into {qn−2, qn−1}.

Next let the PRFA B be

B = ({p0, p1, . . . , pm−1}, {q0, q1, . . . , qn−1} × {a, b}, ·B , p0, {p0}),

where

pi ·B (qn−2, a) =

{
pi+1 mod m, for 0 ≤ i ≤ m − 1 and k = 0,

pi, for 0 ≤ i ≤ m − 1 and k > 0,

pi ·B (qn−2, b) =

{
pi, for 0 ≤ i ≤ m − 1 and k = 0,

pi+1 mod m, for 0 ≤ i ≤ m − 1 and k > 0,

pi ·B (qn−1, a) =

{
pi, for 0 ≤ i ≤ m − 1, n = 2 and k > 0,

p0, for 0 ≤ i ≤ m − 1, n > 2 or k = 0,

and

pi ·B (qn−1, b) = pi+1 mod �+1, for 0 ≤ i ≤ �,

and all non-specified transitions are self-loops. The given construction ensures
that all states in B are reachable (by the sole letter (qn−2, a), if k = 0, and
by the letter (qn−2, b), otherwise). Thus, Lemma 1 shows that the automaton is
minimal in all cases.

For the analysis of the cascade automaton A ◦ B we similarly proceed as in
the proof of Theorem 2. First one shows that the following three sets

Ea≤n−k−2 = { (q0, p0) · aj | 0 ≤ j ≤ n − k − 2 },

Ean−k−1b∗ =

{
{ (q0, p0) · an−k−1bi | i ≥ 0 } if k > 0,

∅ otherwise,

and

Ean−1b∗ = { (q0, p0) · an−1bi | i ≥ 0 },

where · refers to the transition function of A ◦ B, form the initially reachable
states of A ◦ B. To this end one distinguishes two cases depending on n with
appropriate subcases on k; the sets under consideration, e.g., for the case n >
2 and k > 0 are depicted in Fig. 4. In all the considered cases it turns out
that A ◦ B has α initially reachable states. Minimality of the automaton A ◦ B is
shown by proving that the states in Ea≤n−k−2 ∪Ean−k−1b∗ ∪Ean−1b∗ are pairwise
inequivalent. The cumbersome details are left to the reader. Then this proves
the stated claim. 	
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Fig. 4. The initially reachable states of A ◦B in the case n > 2 and k > 0. The states
of Ea≤n−k−2 , Ean−k−1b∗ , and Ean−1b∗ are coloured dark gray, gray, and light gray,
respectively.

Obviously this theorem implies that the minimal DFA accepting L(A ◦ B)
for a n-state device A and a m-state device B can have every number of states
in the integer interval [1, nm] in the following cases:

– A is a binary PFA and B is an arbitrary DFA,
– A is a binary PRFA and B is a PRFA,
– A is an arbitrary binary DFA and B is a PRFA, and
– A is an arbitrary binary DFA and B is an arbitrary DFA,

where both automata are always assumed to be minimal.
So it only remains to study the cascade product of an n-state PRFA A and

an m-state PFA B. Recall that in the unary case magic numbers exist in this
case [6].

Theorem 6. Let n,m ≥ 2. Then for every α with 1 ≤ α ≤ nm, there exists a
minimal binary n-state PRFA A and a minimal m-state PFA B such that the
minimal DFA accepting the language L(A ◦ B) has exactly α states.

Obviously, this statement generalizes to the remaining missing cases.
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4 Conclusions

We continued our research on the magic number problem for the cascade prod-
uct on finite automata of certain types. Compared to the unary case, which was
studied in [6], where in almost all cases magic numbers were identified, here the
situation is completely the other way around. In all cases, except one (Lemma 2),
we do not find magic numbers. In fact, only for the cascade product of two min-
imal PFAs, a precise answer to the reachable states sizes are missing. Moreover,
since the cascade product as introduced here uses final states, it also remains to
study the effect on the descriptional complexity of the choice of final states in
the product automaton.
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Abstract. Second-order finite automata, introduced recently by
Andrade de Melo and de Oliveira Oliveira, represent classes of languages.
Since their semantics is defined by a synchronized rational relation, they
can be studied using the theory of automatic structures. We exploit this
connection to uniformly reprove and strengthen known and new results
regarding closure and decidability properties concerning these automata.
We then proceed to characterize their expressive power in terms of auto-
matic classes of languages studied by Jain, Luo, and Stephan.

Keywords: Classes of languages · Automatic classes

1 Introduction

Andrade de Melo and de Oliveira Oliveira [1] propose a mechanism to represent
possibly infinite classes of regular languages by a single finite automaton A.
The idea is to start with an alphabet of simple automata that can make only
one step. A word W over this alphabet is understood as a concatenation of such
small automata, and therefore as an automaton AW . Consequently, the “second-
order finite automaton” A describes a class of languages: the class of languages
accepted by these finite automata AW for W accepted by A. We call such a
class “full-length regular”. The central result in [1] is an effective canonisation
procedure for second-order finite automata. Then, the authors derive effective
closure and decidability results for the collection of all full-length regular classes.

Recall that at the basis of the definition of second-order finite automata and
their language class lies the interpretation of a word W from L(A) as an automaton
AW . We consider the natural binary relation of all pairs (W,w) where the NFA AW

accepts the word w. Since this relation is synchronized rational (a basic observation
not made explicte in [1]), we can use automatic structures [4,7,9] as a tool to reason
about second-order finite automata – and this is the core of the current paper’s first
part. This approach gives a uniform and simple way

– to build several normalized second-order finite automata (e.g., saturated),
– to uniformly prove closure properties (e.g., intersection and difference) shown

in [1] and to improve them partly, and
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– to prove decidability of inclusion, equality, and disjointness uniformly (the
results are known from [1]).

We demonstrate that it also allows to prove new closure properties (e.g., the class
of differences of languages from two classes) and new decidabilities (e.g., whether
the intervals of languages in a full-length regular class, ordered by inclusion, are
of bounded size). In a nutshell, all these results hold since they amount to the
evaluation of some formula (from an appropriate and proper extension of first-
order logic) in some automatic structure.

The second part of this paper is devoted to the expressiveness of second-order
finite automata. The definition of full-length regular classes of languages via a
rational relation is very similar to that of automatic classes of languages from [8]
(that studies the learnability of such classes). Fernau (discussion at “Computer
Science in Russia 2020”) conjectured the two concepts to be closely related;
this paper’s second part details and confirms his conjecture. At this point, it
is only important that an automatic class is given by a regular language and a
synchronized rational relation. We show that a class of languages is full-length
regular iff it is automatic with a length-preserving synchronized rational relation.

This characterization allows us to reduce the isomorphism problem for auto-
matic equivalence structures to that of full-length regular classes ordered by
inclusion. As a consequence, this latter problem is undecidable.

A limitation of full-length regular classes is that all languages in such a
class are sets of words of equal length. In this paper, we extend the definition
from [1] to regular and to ω-regular classes (that can contain arbitrary finite
and regular languages, resp.). We actually prove the above mentioned closure
and decidability results for regular classes, but the proofs can be transfered to
full-length regular and partly to ω-regular classes of languages. We also present
characterisations of these classes in terms of automatic classes.

In summary, we investigate classes of languages presented by finite automata
and we demonstrate that the established theory of automatic structures can be
useful in this study.

2 Second-Order Finite Automata and Regular Classes
of Languages

For an alphabet Σ, let Σ∗, Σ+, and Σω denote the set of finite, finite nonempty,
and ω-words, resp. A language L ⊆ Σ∗ is single-length if all its words have
the same length. A relation R ⊆ Γ ∗ × Σ∗ is length-reducing (length-increasing,
length-preserving, resp.) if (u, v) ∈ R implies |u| ≥ |v| (|u| ≤ |v|, |u| = |v|, resp.).

Definition. Let A and B be sets, W ∈ A, L ⊆ A, and R ⊆ A × B a relation.
Then we set WR =

{
w ∈ B | (W,w) ∈ R

}
and LR =

{
WR | W ∈ L

}
.

Intuitively, we consider the relation R as a function R : A → P(B). Then WR

is the image of W under this mapping and LR is the class of images of elements
of the set L. We apply these constructions mainly for A = Γ+ and B = Σ+.



244 D. Kuske

Definition. Let Σ be some alphabet and S be some finite set. A (Σ,S)-block
is a tuple B = (I, T, F ) where I, F ⊆ S and T ⊆ S × Σ × S; B(Σ,S) denotes
the set of all (Σ,S)-blocks.

A block is an NFA over the alphabet Σ with set of states S. We will consider
sequences of such blocks as a single NFA and run a word by chosing a transition
from the ith block for its ith letter. We found it convenient to think of a block as
consisting of two copies of the set of locations S where the transition (s1, a, s2) ∈
T connects the location s1 from the first copy to the location s2 from the second
copy. The initial locations ι ∈ I are considered as elements of the first copy, the
final locations f ∈ F as belonging to the second copy.

Definition. An NFA over B(Σ,S) is called second-order or SO automaton over
Σ and S.

For an NFA M = (Q,Γ, I,Δ, F ) (with sets of initial states I, of transitions
Δ ⊆ Q × Γ × Q, and of final states F ) over Γ , we write L+(M) ⊆ Γ+ for the
set of nonempty words accepted by M .

We will define the second-order language of the SO automaton A which will
be a class of languages over Σ. To this aim, we need the following relation.

Definition. The relation AccΣ,S consists of all pairs (B1 B2 · · · Bm, c1 c2 · · · cn)
with m ≥ n ≥ 1, Bi = (Ii, Ti, Fi) ∈ B(Σ,S) for all i ∈ [m], and ci ∈ Σ for all
i ∈ [n] such that there exist locations s1, s2, . . . , sn+1 ∈ S with

(1) s1 ∈ I1, (2) (si, ci, si+1) ∈ Ti for all i ∈ [n], and (3) sn+1 ∈ Fn.

Intuitively, we understand the word W as an NFA over Σ. Its state space
consists of m+1 layers of the set of locations S. The transitions from Bi connect
the locations from layer i to those of layer i + 1. The initial states of the NFA
are the initial states of B1 in the first layer, the final states are those of Bi in
layer i + 1 (for any i ∈ [m]). Then (W,w) ∈ AccΣ,S iff the word w ∈ Σ+ is
accepted by the NFA described by the word W ∈ B(Σ,S)+.

Definition. Let A be an SO automaton over Σ and S. Then the second-order
language of A is the class L2(A) = L+(A)AccΣ,S =

{
WAccΣ,S

∣
∣ W ∈ L+(A)

}
.

By the definition, L+(A) is a language over B(Σ,S), but L2(A) is a class of
ε-free languages over Σ, i.e., a subset of P(Σ+).

Definition. A class of languages C ⊆ P(Σ+) is regular if there exists an SO
automaton A over Σ and some finite set of locations S such that C = L2(A).

Since AccΣ,S is length-reducing, the class L2(A) consists of finite languages,
only. Hence regular classes of languages are classes of finite languages.

In [1], the authors consider words W only where all words in WAccΣ,S are of
length |W |. We capture this by the following concept.
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Definition. A word over B(Σ,S) is full-length if at most its last block has a
non-empty set of accepting states. An SO automaton A is full-length iff all words
from L+(A) are full-length. A class C of languages is full-length regular if there
exists a full-length SO automaton A with C = L2(A).

To overcome the limitation to classes of finite languages, we will now consider
infinite words α ∈ B(Σ,S)ω and understand them as “infinite NFAs” M over Σ
that can accept some infinite language (of finite words).

Definition. The binary relation Accω
Σ,S consists of all pairs (B1 B2 · · · , w) with

Bi ∈ B(Σ,S) for all i ≥ 1 and w ∈ Σ+ such that (B1 B2 · · · B|w|, w) ∈ AccΣ,S .

Example 2.1. Let M = (S,Σ, I,Δ, F ) be some NFA over Σ. We consider it as
block B = (I,Δ, F ) ∈ B(Σ,S) and set α = Bω. Then αAccω

Σ,S = L+(M). Hence,
all regular languages K ⊆ Σ+ are of the form αAccω

Σ,S for some ω-word α.

Definition. A Büchi-automaton over B(Σ,S) is called an SO Büchi-automaton
over Σ and S. Let A be an SO Büchi-automaton over Σ and S. Then the second-
order language of A is the class Lω

2 (A) =
{
αAccω

Σ,S | α ∈ Lω(A)
} ⊆ P(Σ+). A

class C ⊆ P(Σ+) of languages is ω-regular if there exists an SO Büchi-automaton
A over Σ and some finite set of locations S such that C = Lω

2 (A).

Note that, for any block B ∈ B(Σ,S), the ω-language {Bω} is ω-regular.
Hence, in view of Example 2.1, any class {K} with K ⊆ Σ+ regular is ω-regular.

Example 2.2. For c ∈ Σ, consider the block Bc =
({s}, {(s, c, s)}, {s})

and let
L = {Bc | c ∈ Σ}ω. For any α ∈ Σω, the ω-regular class LAccω

Σ,S contains
the language of all prefixes of α, i.e., is uncountable and contains non-regular
languages.

3 Closure Properties and Special Representations
of Regular Classes of Languages

From the canonisation result in [1], the authors infer closure properties of the
collection of all full-length regular classes of languages. This section is devoted to
alternative proofs and strengthenings (e.g., by providing much smaller automata)
of these results. For notational simplicity, we only give our proofs for the col-
lection of all regular classes, the results as well as the proofs all carry over
to full-length regular classes and to ω-regular classes (if not stated otherwise).
Since the main tool in our proofs are automatic structures, we first sketch their
definition and their relation to SO automata.

3.1 Automatic Structures

Basically, automatic structures are relational structures whose universe and rela-
tions can be accepted by finite automata. This is rather straightforward for the
universe and unary relations: they have to form regular languages. Relations
of larger arity are required to be synchronized rational [6], i.e., accepted by a
synchronous multi-head automaton.
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Definition ([7,9]). A relational structure S =
(
U, (Ri)i∈[k]

)
with Ri ⊆ Uni for

i ∈ [k] is automatic if there is an alphabet Σ such that U ⊆ Σ∗ is regular and
Ri is synchronized rational for all i ∈ [k].

For the current paper, the following is the most interesting example.

Theorem 3.1. The relation AccΣ,S is effectively synchronized rational.
Consequently, given SO automata Ai over Σi and Si (for i ∈ [n]), the fol-

lowing structure S(
(Ai)i∈[n]

)
is effectively automatic:

– Its universe is
⋃

i∈[n]

(B(Σi, Si)+ ∪ Σ+
i

)
.

– Its relations are B(Σi, Si)+, Σ+
i , L+(Ai), and AccΣi,Si

for i ∈ [n].

The proofs in this section are all based on relations in this structure that are
defined by logical formulas. As an example, consider the formula

∀w :
(
(W1, w) ∈ AccΣ,S1 ↔ (

(W2, w) ∈ AccΣ,S2 ∧ (W3, w) /∈ AccΣ,S3

))

with three free variables W1, W2, and W3. In S(A1,A2,A3), it expresses that

W
AccΣ,S1
1 = W

AccΣ,S2
2 \ W

AccΣ,S3
3

holds. We will therefore allow to write such Boolean combinations in formulas.
Furthermore, our formulas allow not only the classical first-order quantifiers ∃

and ∀, but also the following:

– infinity quantifier ∃∞ [3]: For instance, ∀x¬∃∞y : E(x, y) holds in a directed
graph iff the graph has finite out-degree.

– boundedness quantifer

B

[11]: For instance, the number of paths of length
two between any two nodes of a possibly infinite directed graph is uniformly
bounded iff the directed graph satisfies

B

(x1, x2; y) :
(
E(x1, y) ∧ E(y, x2)

)
.

– Ramsey quantifier

R

[14]: Let k ∈ N and let xi be mutually disjoint k-tuples of
variables (for 1 ≤ i ≤ n). The formula

R

(x1, . . . , xn) : ϕ(x1, . . . , xn) holds in a
structure S if there exists an infinite k-ary relation R such that any n tuples
from R satisfy ϕ. For instance, with k = 2, the formula

R(
x1, x2

)
: E(x1) ∧

E(x2) ∧ (
x1 = x2 ∨ {x1,1, x1,2} ∩ {x2,1, x2,2} = ∅)

expresses of a graph that
it contains infinitely many mutually disjoint edges.

We denote the extension of first-order logic by these quantifiers by FO+.

Theorem 3.2 ([3,9,11,14]). Let S =
(
U, (Ri)i∈[n]

)
be an automatic structure

and ϕ(x1, . . . , xn) a formula from FO+. Then the relation ϕS =
{
u ∈ Un

∣
∣ S |=

ϕ(u)
}

of all witnesses for ϕ in S is effectively synchronized rational (uniformly
in the automatic structure S given by a tuple of finite automata).

The proof of this theorem proceeds by induction on the construction of the
formula ϕ. Standard constructions on NFAs allow to handle Boolean operations
and classical quantification. The infinity quantifier can be reduced to existential
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quantification (using the synchronized rational relation |u| ≤ |v|) [3]. For the
boundedness quantifier, one resorts to [15]; the Ramsey quantifier requires new
automata constructions [14].

Blumensath and Grädel [3,4] introduced the more general notion of an ω-
automatic structure that is based on Büchi-automata instead of NFAs. The
relation Accω

Σ,S is synchronized ω-rational such that Theorem 3.1 also holds: for
SO Büchi-automata Ai, the analogous structure is ω-automatic.

Theorem 3.2 holds for ω-automatic structures and for the extension of first-
order logic with the quantifiers ∃ℵ0 and ∃>ℵ0 [4,13], but not for the quantifier

R

[10]; the status of the quantifier

B

is not known. Consequently, whenever the
following proofs use at most the existential and the cardinality quantifiers, they
carry over to the case of ω-regular classes of languages.

3.2 Special Representations of Regular Classes

Let A be some SO automaton and let, intuitively, N denote the class of NFAs
represented by words W ∈ L+(A). We show that every regular class C of lan-
guages can be represented by some SO automaton such that N is a class of
deterministic finite automata. Alternatively, we can require N to consist of all
NFAs that accept some language from C and can be represented by some word
over B(Σ,S). In the other extreme, we can require that every language from C
is accepted by only one NFA from N .

A block B = (I, T, F ) ∈ B(Σ,S) is deterministic, i.e., belongs to detB(Σ,S),
if |I| = 1 and, for every s ∈ S and a ∈ Σ, there is precisely one location s′ ∈ S
with (s, a, s′) ∈ T . Then any word from detB(Σ,S)+ describes a DFA.

Theorem 3.3 (cf. [1, Theorem 4(4)]). From an SO automaton A over Σ
and S, one can construct an SO automaton A′ over Σ and P(S) such that
L2(A) = L2(A′) and L+(A′) ⊆ detB(

Σ,P(S)
)+.

Proof. We extend the universe of the automatic structure S(A) by the set
detB(

Σ,P(S)
)+ and consider this set as an additional unary relation.

Now consider the following formula ϕ(W ′) with free variable W ′:

W ′ ∈ detB(
Σ,P(S)

)+ ∧ ∃W ∈ L+(A) : WAccΣ,S = W ′AccΣ,P(S)

It expresses that W ′ describes a DFA that accepts some language from L2(A).
Since the structure S is effectively automatic, the set Lϕ of words W ′ satis-

fying this formula is effectively regular, i.e., we can construct an NFA A′ over
detB(

Σ,P(S)
)

with L+(A′) = Lϕ. Then L
AccΣ,P(S)
ϕ ⊆ L2(A) by the construc-

tion of the language Lϕ. For the converse inclusion, one shows that any word W

over B(Σ,S) has a word W ′ ∈ detB(
Σ,P(S)

)+ with WAccΣ,S = W ′AccΣ,P(S) .
The idea is to first apply the powerset construction to all blocks from W and
then concatenate the resulting deterministic blocks to obtain W ′. ��

Any word W ∈ B(Σ,S)+ (considered as NFA) has infinitely many equivalent
words over B(Σ,S), e.g., all those from W (S, T, ∅)∗ (where T is an arbitrary set
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of transitions). Consequently, any language in the regular class of languages
L2(A) can have more than one representing word in L+(A). But this number of
representing words can be controlled:

Theorem 3.4. From an SO automaton A over Σ and S, one can construct SO
automata Amin and Amax over Σ and S with L2(A) = L2(Amin) = L2(Amax)
such that the following hold:

(1) Any word W ∈ B(Σ,S)+ with WAccΣ,S ∈ L2(A) belongs to L+(Amax).
(2) For any language K ∈ L2(A), there exists a unique word W ∈ L+(Amin)

with K = WAccΣ,S .

Proof. Let � be a length-lexicographic order on the set B(Σ,S)+. The extension
of the structure S(A) from Theorem 3.1 with � is automatic. The following
formula ϕmax(W ) with free variable W expresses WAccΣ,S ∈ L2(A):

W ∈ B(Σ,S)+ ∧ ∃W ′ ∈ L+(A) : WAccΣ,S = W ′AccΣ,S

Similarly, the formula ϕmin(W )

ϕmax(W ) ∧ ∀W ′ ∈ B(Σ,S)+ :
(
WAccΣ,S = W ′AccΣ,S → W � W ′)

expresses WAccΣ,S ∈ L2(A) and that it is the length-lexicographically minimal
representative of this language. In both cases, we can continue as in the proof of
Theorem 3.3. ��
Remark. Since no synchronized rational well-order exists on the set B(Σ,S)ω

[5], the above construction of Amin does not transfer to SO Büchi-automata.

3.3 Decidable Properties of Regular Classes

Since emptiness of regular languages is decidable, it follows from Theorem 3.2
that the FO+-theory of every automatic structure is decidable (even if the auto-
matic structure is part of the input). This classical result immediately gives the
following from [1].

Theorem 3.5 ([1, Theorem 4(6,7)]). For SO automata A1 and A2, inclusion
and disjointness of L2(A1) and L2(A2) are decidable.

Let A be an SO automaton. Then, by Theorem 3.4, we can construct an
“unambiguous” SO automaton Amin with L2(A) = L2(Amin). Consequently, the
class L2(A) is finite iff Amin accepts a finite language. Since this is decidable,
we obtain that finiteness of L2(A) is decidable for any SO automaton A.

Apart from this, we can also decide further properties of the class L2(A):

Theorem 3.6. The following problems are decidable:
input: an SO automaton A over Σ and S
question 1: Do all words over Σ belong to some language from L2(A)?
question 2: Do all w ∈ Σ+ belong to only finitely many languages from L2(A)?
question 3: Do all w ∈ Σ+ belong to a bounded number of languages from L2(A)?
question 4: Are the languages from L2(A) of bounded size?
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Proof. By Theorem 3.4, we can assume A to be “unambiguous”. The formulas

1. ∀w ∈ Σ+ ∃W ∈ L+(A) : (W,w) ∈ AccΣ,S

2. ¬∃w ∈ Σ+ ∃∞W ∈ L+(A) : (W,w) ∈ AccΣ,S

3.

B

(w,W ) : (W,w) ∈ AccΣ,S ∧ W ∈ L+(A)
4.

B

(W,w) : (W,w) ∈ AccΣ,S ∧ W ∈ L+(A)

express the four properties such that the claims follow from Theorem 3.2. ��

3.4 Closure Properties of the Collection of Regular Classes

We now strengthen some results from [1] that concern Boolean combinations
of regular classes of languages. The corresponding constructions in [1] increase
the number of locations exponentially. Our proofs are analogous to the proof of
Theorem 3.3.

Theorem 3.7 (cf. [1, Theorem 4(1–3)]). From SO automata Ai over Σi and
Si (for i ∈ {1, 2}), one can construct SO automata A′

1 over Σ1 ∪ Σ2 and S1 ∪ S2

and A′
2, A′

3 over Σ1 and S1 such that L2(A′
1) = L2(A1) ∪ L2(A2), L2(A′

2) =
L2(A1) ∩ L2(A2), and L2(A′

3) = L2(A1)\L2(A2).

So far, we considered, e.g., the intersection of two regular classes C1 and C2 of
languages. Now, we will, e.g., consider the class of all intersections of languages
in C1 and C2.

Theorem 3.8. From SO automata Ai over Σi and Si (for i ∈ [2]), one can
construct SO automata A′

i such that

1. L2(A′
1) =

{
K1 ∪ K2

∣
∣ Ki ∈ L2(Ai)

}
and A′

1 is over Σ1 ∪ Σ2 and S1 � S2,
2. L2(A′

2) =
{
K1 ∩ K2

∣
∣ Ki ∈ L2(Ai)

}
and A′

2 is over Σ1 ∪ Σ2 and S1 × S2,
3. L2(A′

3) =
{
K1\K2

∣
∣ Ki ∈ L2(Ai)

}
and A′

3 is over Σ1 and S1 × P(S2).

Proof. One first proceeds analogously to the proof of Theorem 3.3. In the final
step, one adapts the corresponding constructions for union, intersection, and
difference of NFAs to blocks. ��

Note that, for any regular class of languages L2(A), the union
⋃

L∈L2(A) L is
regular since it is the image of the regular language L+(A) under the rational
relation AccΣ,S . Using automatic structures, we can show that also the limit
inferior and the limit superior is effectively regular since both these languages
can be defined (using the quantifier ∃∞) in the automatic structure S(Amin) from
Theorem 3.1 (where Amin is the “unambiguous” automaton from Theorem 3.4).

Theorem 3.9. From an SO automaton A over Σ and S, one can construct
NFAs accepting the languages

lim inf L2(A) =
⋃

C⊆L2(A)
finite

⋂

K∈L2(A)\C
K and lim sup L2(A) =

⋂

C⊆L2(A)
finite

⋃

K∈L2(A)\C
K .
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4 Expressiveness of Second-Order Finite Automata

In this section, we determine what classes of languages can be described by SO
automata, i.e., are regular. We obtain a close relation to so-called automatic
classes of languages as defined by Jain et al. in [8].

Definition. A class of languages C ⊆ P(Σ+) is automatic if there are a regular
language L ⊆ Γ+ over some alphabet Γ and a synchronized rational relation
R ⊆ Γ+ × Σ+ with C = LR.

Example (from [8]). For any alphabet Σ, the following classes C ⊆ P(Σ+) are
automatic:

– The class of finite languages with at most k elements (for any k ∈ N).
– The class of all finite and cofinite subsets of {a}+.
– The class of all intervals of (Σ+,≤) where ≤ is the lexicographic order.
– Let U be the universe of any automatic structure S and let ϕ(x, y) be any

formula from FO+. For w ∈ U , Sϕ(x,w) ⊆ U is a language. The class of all
these languages Sϕ(x,w) with w ∈ U is automatic.

4.1 Regular and Automatic Classes of Languages

From the very definition, we obtain that every regular class C of languages is
effectively automatic and contains only finite languages.

For the converse implication, one first shows that automatic classes of finite
languages can be represented by length-reducing rational relations:

Lemma 4.1. Let L ⊆ Γ+ be regular and R ⊆ Γ+ ×Σ+ be a synchronized ratio-
nal relation with WR finite for all W ∈ L. There effectively exist an alphabet Γ ′,
a regular language L′ ⊆ Γ ′+, and a synchronized rational and length-reducing
relation R′ ⊆ Γ ′+ × Σ+ such that L′R′

= C\{∅}.
If R is length-increasing and all languages in LR are single-length, then R′

can be chosen length-preserving.

Proof. The relation R′ consists of all pairs (W $n, w) with (W,w) ∈ R such that
|W | + n is the maximal length of words from WR ∪ {W}. ��

Then one proves that, indeed, any length-reducing synchronized rational rela-
tion R gives rise to a regular class of languages:

Proposition 4.2. Let L ⊆ Γ+ be regular and R ⊆ Γ+ × Σ+ be length-reducing
and synchronized rational. Then LR is, effectively, a regular class of languages.

Proof. One starts with a synchronous 2-head automaton M accepting R. For
any input letter A ∈ Γ , one restricts the behavior of M to its output behavior
when A is input. In addition, depending on the remaining input word V , one
defines a state to be accepting if, from that state, M can read V with empty
output. This defines a block BA,V ∈ B(Σ,S) as well as a sequence of blocks for
every input word W . One then obtains an automaton A that accepts the set of
block sequences for all valid input words. Then LR = L2(A). ��
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The following theorem summarises the work reported in this section.

Theorem 4.3. The following are effectively equivalent for any class C of ε-free
languages:

(a) C is a regular class of languages.
(b) C is an automatic class of finite languages.
(c) C = LR for some regular language L and some length-reducing synchronized

rational relation R.

4.2 Regular and Automatic Classes of Single-Length Languages

In this section, we want to characterise, similarly to Theorem 4.3, the full-length
regular classes of languages, i.e., the language classes considered in [1].

Theorem 4.4. The following are effectively equivalent for any class C of ε-free
languages:

(a) C is a full-length regular class of languages.
(b) C is a regular class of single-length languages.
(c) C is an automatic class of single-length languages.
(d) C = LR for some regular language L and some length-preserving synchro-

nized rational relation R.

The implication (a) ⇒ (b) is clear by the definition of full-length words,
the implication (b) ⇒ (c) is an immediate consequence of Theorem 4.3. The
implication (d) ⇒ (a) can be shown as Proposition 4.2. For the remaining impli-
cation (c) ⇒ (d), one first splits R into its length-increasing and its length-
reducing parts R≤ and R≥. Since LR is a class of single-length languages, it
equals LR≤ ∪ LR≥ . The final claim of Lemma 4.1 allows to replace R≤ by some
length-preserving relation. For the length-reducing part R≥, one then proves a
slightly weaker fact:

Lemma 4.5. Let L ⊆ Γ+ be regular and R ⊆ Γ+×Σ+ be synchronized rational
and length-reducing such that LR is a class of single-length languages. Then there
exist, effectively, k ∈ N, regular languages L1, . . . , Lk ⊆ Γ+, and synchronized
rational length-preserving relations R1, . . . , Rk ⊆ Γ+ × Σ+ with

⋃
1≤i≤k Li

Ri =
LR\{∅}.
Proof. Since L is regular, we can assume R ⊆ L × Σ+. Let M be some syn-
chronous 2-head automaton accepting R. For a set X of states, we define rela-
tions RX , SX ⊆ Γ ∗ ×Σ∗ as follows: RX is the set of pairs (W1, w1) of nonempty
words of equal length such that (W1, w1) allows to reach (from some initial state)
some state in X. Further, SX is the set of pairs (W2, w2) such that X equals the
set of states that allow to reach some accepting state via (W2, w2).
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The crucial point is that for (W1, w) ∈ RX and (W2, ε) ∈ SX , one has
∅ �= WRX

1 = (W1W2)R and W1W2 ∈ L. It can be infered that LR \ {∅} is the
union of the classes proj1(RX)RX for X such that SX ∩ (

Γ ∗ × {ε}) �= ∅. ��
It follows that any automatic class of single-length languages is the union of

finitely many classes LR with L regular and R length-preserving. Considering
copies of the languages L over mutually disjoint alphabets allows to infer the
missing implication (c) ⇒ (d) in Theorem 4.4

4.3 ω-regular and Automatic Classes of Languages

An ω-regular class of languages is always countable and consists of regular lan-
guages, only. By Example 2.2, both these properties may fail for automatic
classes. The main result of this section states that these are the two only (and
equivalent) reasons for an ω-regular class not to be automatic.

Theorem 4.6. The following are effectively equivalent for any class C of ε-free
languages:

(a) C is an ω-regular class of regular languages.
(b) C is a countable ω-regular class of languages.
(c) C is an automatic class of languages.

The implication (a) ⇒ (b) is trivial since there are only countably many
regular languages. The proof of the implication (c) ⇒ (a) is based on the idea of
Example 2.1. For the implication (b) ⇒ (c), one considers the ω-automatic struc-
ture

(B(Σ,S)ω ∪ Σ+, Lω(A),B(Σ,S)ω,Accω
Σ,S

)
. Identifying pairs of ω-words

over B(Σ,S) that represent the same language over Σ gives rise to a countable
quotient that is ω-automatic [2] and therefore automatically representable [3].
This automatic structure then allows to prove that the class is automatic.

5 Regular Classes of Languages, Ordered by Inclusion

In this final section, we consider regular classes L2(A) of languages under inclu-
sion, i.e., the structure

(L2(A),⊆)
. Note that the universe of

(L2(A),⊆)
is not

a language, but a class of languages. Hence this structure cannot be automatic.
The first result shows that

(L2(A),⊆)
is effectively isomorphic to some auto-

matic structure, i.e., is automatically representable.

Lemma 5.1. Let A be some SO automaton over Σ and S. Then
(L2(A),⊆)

is
effectively automatically representable.

Now we have, again, the theory of automatic structures at our disposal. In
particular, Theorem 3.2 allows to infer the following decidabilities.
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Theorem 5.2. The following problems are decidable:
input: an SO automaton A
question 1: Is

(L2(A),⊆)
a lattice?

question 2: Does
(L2(A),⊆)

contain some infinite antichain or some infinite
chain, resp.?

question 3: Are intervals in
(L2(A),⊆)

of bounded finite size?

By Lemma 5.1, regular classes of languages (ordered by inclusion) can be
understood as automatic partial order. By the theorems from Sect. 4, one can
conversely understand automatic partial orders as regular classes of languages.
This allows to infer results concerning the isomorphism problem from [12].

Theorem 5.3. There exist partial orders P1 and P2 such that the set of

1. SO automata A with P1
∼= (L2(A),⊆)

is Σ1
1 -hard and

2. full-length SO automata A with P2
∼= (L2(A),⊆)

is Π0
1 -hard.

In particular, the isomorphism problem for structures
(L2(A),⊆)

is (highly)
undecidable.
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Abstract. Top-down syntax analysis can be based on LL(k) grammars.
The canonical acceptors for LL(k) languages are deterministic stateless
pushdown automata with input lookahead of size k. We investigate the
computational capacity of reversible computations of such automata. A
pushdown automaton with lookahead k is said to be reversible if its
predecessor configurations can uniquely be computed by a pushdown
automaton with backward input lookahead (lookback) of size k. It is
shown that we cannot trade a lookahead for states or vice versa. The
impact of having states or a lookahead depends on the language. While
reversible pushdown automata with states accept all regular languages,
we are going to prove that there are regular languages that cannot be
accepted reversibly without states, even in case of an arbitrarily large
lookahead. This completes the comparison of reversible with ordinary
pushdown automata in our setting. Finally, it turns out that there are
problems which can be solved by reversible deterministic stateless push-
down automata with lookahead of size k + 1, but not by any reversible
deterministic stateless pushdown automaton with lookahead of size k.
So, an infinite and tight hierarchy of language families dependent on the
size of the lookahead is shown.

1 Introduction

The theory of top-down syntax analysis originates in [15] and [6], where LL(k)
grammars were introduced. Properties of the induced language families as well
as constructive properties of the grammars themselves are derived in [18]. In
this seminal work also canonical acceptors for LL(k) languages were consid-
ered. These canonical acceptors are essentially deterministic stateless pushdown
automata with input lookahead of size k. On the one hand, any LL(k) language
is accepted by such a device. On the other hand, there are languages that are
not LL(k) for any k ≥ 1, but that are accepted by some deterministic stateless
pushdown automata with input lookahead of size 2. An example is the deter-
ministic context-free language { anbn | n ≥ 1 } ∪ { ancn | n ≥ 1 } [18]. So, these
canonical acceptors capture a wider class of languages than LL(k) grammars
while keeping most of their neat properties [18,19]. Moreover, LL(k) grammars
are a popular means to describe the syntax of most programming languages and
corresponding parsers are often used in compilers.
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Another line of research investigates (logical) reversibility of automata mod-
els. The observation that loss of information results in heat dissipation [14]
strongly suggests to study computations without loss of information. First stud-
ies of reversibility computations have been done for the massively parallel model
of cellular automata since the sixties of the last century. Nowadays it is known
from [16] that every, possibly irreversible, one-dimensional cellular automaton
can always be simulated by a reversible one-dimensional cellular automaton in a
constructive way. In [2] reversible Turing machines have been considered. Again,
a fundamental result is that every Turing machine can be made reversible. These
two types of devices received a lot of attention in connection with reversibil-
ity. Valuable surveys with further references to literature are, for example, [5]
for cellular automata and [17], where one may find a summary of results on
reversible Turing machines, reversible cellular automata, and other reversible
models such as logic gates, logic circuits, or logic elements with memory (see
also [7,9,10,12] for further investigations). In particular, reversible pushdown
automata with states and without lookahead have been studied [11]. In con-
trast to Turing machines it turned out that the family of languages accepted
by reversible pushdown automata or reversible finite automata are proper sub-
sets of the general families. Also reversible finite automata as well as reversible
pushdown automata with states and lookahead have been considered [1,13].

Here we focus on the essence of both lines of research described. So, we are
interested in reversible deterministic stateless pushdown automata with look-
ahead. That is, we study reversible top-down syntax analysis. The first steps in
this direction are done with respect to the computational capacity of reversible
canonical acceptors for LL(k) languages. To this end, we compare the induced
families of languages with respect to the impact of states or a lookahead, with
respect to the impact of reversibility, and with respect to the impact of the
lookahead size on the computational capacity.

The rest of this paper is organized as follows. In the next section we define the
underlying model of reversible deterministic stateless pushdown automata and
provide an illustrative example of their way of processing languages. Section 3 is
devoted to exploring the computational capacity by comparing it to the capac-
ity of related models. In general, an ordinary deterministic pushdown automaton
can use states to compensate for a lookahead. So, a lookahead does not increase
the computational capacity of ordinary pushdown automata. In Subsect. 3.1 it
is shown that the situation is different in our setting. It is shown that there are
languages for which a lookahead is better than states. Conversely, it is proved
that there are languages for which states are better than a lookahead of arbitrary
size. In Subsect. 3.2, deterministic stateless pushdown automata with lookahead
are compared with their reversible variant. To this end, it is shown that there are
regular languages that cannot be accepted by any reversible deterministic state-
less pushdown automata with arbitrary lookahead. So, adding the requirement
to work reversibly strictly weakens the computational capacity of our automata.
Finally, in Sect. 4, the impact of the lookahead size on the computational capacity
of reversible deterministic stateless pushdown automata is studied. It is shown
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that there exists an infinite and tight hierarchy of language families dependent
on the size of the lookahead. The relations between the language families are
summarized in Fig. 2.

2 Preliminaries and Definitions

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \{λ}. The set of words of length at most k ≥ 0 is
denoted by Σ≤k. The reversal of a word w is denoted by wR and for the length
of w we write |w|. For k ≥ 0, we denote by prfk(w) the longest prefix of w which
has length at most k and analogously by sufk(w) the longest suffix of w which
has length at most k. Set inclusion is denoted by ⊆, and strict set inclusion by ⊂.

Now we turn to defining stateless pushdown automata with lookahead on
the input. These are deterministic pushdown automata with a sole state. Since
a single state is useless, such automata are called stateless. On the other hand, a
lookahead window of a fixed size k is attached to the pushdown automata that
allows to see the next k input symbols in advance. (For reversible computation
steps these are the next k input symbols to the left of the current input position.)
General deterministic pushdown automata that are not allowed to perform λ-
steps are weaker than DPDA that may move on λ input [3]. However, in [11]
it has been shown that every reversible pushdown automaton can be simulated
by a realtime reversible pushdown automaton, that is, without λ-steps. This
realtime reversible machine can effectively be constructed from the given one.
Therefore, in order to simplify matters, we do not allow λ-steps from the outset.

A deterministic stateless pushdown automaton with lookahead k
((k)-DSPDA) is a system M = 〈Σ,Γ, δ, k,⊥, I, G〉, where Σ is the finite set
of input symbols, Γ is the finite set of pushdown symbols, k ≥ 1 is the size of
the input window, that is the lookahead, ⊥ /∈ Γ is the so-called empty-pushdown
symbol, I ∈ Γ ∪ {λ} is the initial pushdown symbol, G ⊆ Γ ∪ {⊥} is the set of
accepting pushdown symbols, and δ : ΣΣ≤k−1 × (Γ ∪{⊥}) → Γ ∗ is the (possibly
partial) transition function.

A configuration of a (k)-DSPDA is a triple (u, v, γ), where u ∈ Σ∗ is the part
of the input to the left of the input head, v ∈ Σ∗ the part of the input to the
right of the input head, thus, prfk(v) appears in the input window, and γ ∈ Γ ∗

is the current content of the pushdown store, the leftmost symbol of γ being the
top symbol. On input w the initial configuration is defined to be (λ,w, I).

For a configuration (u, v, Zγ) with u ∈ Σ∗, v ∈ Σ+, Z ∈ Γ , and
γ ∈ Γ ∗, we call (u prf1(v), suf |v|−1(v), βγ) its successor configuration if
and only if δ(prfk(v), Z) = β. The successor configuration of (u, v, λ) is
(u prf1(v), suf |v|−1(v), β) if and only if δ(prfk(v),⊥) = β. Such a step from a
configuration to its successor configuration is denoted by �. The reflexive tran-
sitive closure of � is denoted by �∗.

So, whenever the pushdown store is empty, the successor configuration is
computed by the transition function with the special empty-pushdown symbol ⊥.

Note that there are no successor configurations if v = λ.
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The language accepted by a (k)-DSPDA M is

L(M) = {w ∈ Σ∗ | (λ,w, I) �∗ (w, λ, γ),
where γ ∈ (G \ {⊥})Γ ∗ or γ = λ if ⊥ ∈ G }.

In general, the family of all languages that are accepted by some type of
automaton X is denoted by L (X).

Now we turn to reversible (k)-DSPDAs. Reversibility is meant with respect
to the possibility of stepping the computation back and forth. To this end, a
configuration must have a unique predecessor for all computations that lead to
the current configuration along the symbols seen in the input window and are
consistent with the symbols at the top of the stack. For reverse computation steps
the head of the input tape is always moved to the left (see Fig. 1). A (k)-DSPDA
is said to be reversible (REV(k)-DSPDA) if and only if there exists a reverse
(k)-DSPDA with reverse transition function δ← : ΣΣ≤k−1 × (Γ ∪ {⊥}) → Γ ∗

inducing a relation �← from one configuration to the next, so that

(u′, v′, γ′) �←
(u, v, γ) if and only if

(i) (u, v, γ) � (u′, v′, γ′),
(ii) if |u′| ≥ k, then (prf |u′|−k(u′), sufk(u′)v′, γ̂′) �∗ (u, v, γ) � (u′, v′, γ′) for all

γ̂′ ∈ Γ ∗ such that (prf |u′|−k(u′), sufk(u′)v′, γ̂′) �∗ (u′, v′, γ′), and
(iii) if 1 ≤ |u′| < k, then (λ, u′v′, I) �∗ (u, v, γ) � (u′, v′, γ′).

Condition (i) means that (u, v, γ) is a predecessor configuration of (u′, v′, γ′) in
forward computations. Conditions (ii) and (iii) ensure that (u, v, γ) is unique
for all computations that lead to (u′, v′, γ′) along the symbols seen in the input
window and are consistent with the symbols at the top of the stack. Condition (ii)
applies if there are at least k symbols in the input window for the backward

Fig. 1. Successive configurations of a reversible stateless pushdown automaton with
lookahead of size two, where δ(cd, Z) = Z′Z (left to right) and δ←(bc, Z′) = λ (right
to left).
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step, while Condition (iii) applies in the case the the input window is close to
the beginning of the input. More precisely, Condition (ii) says that there may
be more than one configurations that lead to (u′, v′, γ′) in forward computations
along the last k input symbols. However, all these configurations must evolve
to the unique predecessor configuration (u, v, γ) after having processed k − 1
input symbols. In this case, (u, v, γ) is the unique direct predecessor of (u′, v′, γ′)
in forward computations. Since the REV(k)-DSPDA can see the last k input
symbols in a backward step, δ← can compute (u, v, γ) from (u′, v′, γ′). Similarly,
for Condition (iii).

Let M be a REV(k)-DSPDA. In any step, δ← can decrease the height of
the pushdown store by at most one. Therefore, δ may increase the height of the
pushdown store by at most one, too. Furthermore, when δ← pops a symbol this
operation simply reveals the next-to-top symbol. Therefore, when δ increases
the height of the pushdown store, it must do so by leaving the previous top-of-
stack symbol intact. Thus for a REV(k)-DSPDA there are only three possible
operations on the pushdown store: popping the top of the pushdown, replacing
the topmost symbol with another symbol, or pushing one new symbol on the
top of the pushdown store. Otherwise, the reverse transition function cannot be
defined.

To clarify our notion we continue with an example.

Example 1. The context-free Dyck language of words of well-balanced parenthe-
ses Dn is defined over the alphabet Σn = {a1, b1, a2, b2, . . . , an, bn} of n ≥ 1
pairs of parentheses. Here, ai is an opening and bi is the matching closing paren-
thesis. The language Dn is defined through the context-free grammar with sole
nonterminal X and productions

{(X → λ), (X → a1Xb1X), (X → a2Xb2X), . . . , (X → anXbnX)}.

It is accepted by the REV(1)-DSPDA M = 〈Σn, Γ, δ, 1,⊥, λ, {⊥}〉, where
Γ = {A1, A2, . . . , An} and the transition functions δ and δ← are as follows, for
1 ≤ i, j ≤ n:

Transition function δ

(1) δ(ai,⊥) = Ai

(2) δ(ai, Aj) = AiAj

(3) δ(bi, Ai) = λ

Reverse transition function δ←

(4) δ←(ai, Ai) = λ

(5) δ←(bi,⊥) = Ai

(6) δ←(bi, Aj) = AiAj

The idea of the forward computations is straightforward: Whenever an open-
ing parenthesis appears in the input, it is pushed onto the pushdown store
(Transitions 1 and 2). If a closing parenthesis is read that matches the opening
parenthesis on the top of the pushdown then the opening parenthesis is popped
(Transition 3). In any other cases the computation halts and, since the input is
not read entirely, rejects. If the input belongs to Dn, it can be processed entirely
by M such that the pushdown gets empty at the end of the computation. So, M
accepts Dn.



260 M. Kutrib and U. Meyer

For the construction of δ← that is applied to backward computations we
have to consider all combinations of input symbol and top-of-pushdown symbol.
Let the last input symbol read in the forward computation be ai and Ai be on
top of the pushdown. Since in the last forward step on ai the Ai must have
been pushed, it is popped by δ← (Transition 4). There is no other predecessor
configuration leading to ai and Ai. If, on the other hand, the top-of-pushdown
symbol is Aj , for i = j, then there is no predecessor configuration leading to ai

and Aj . Therefore, the reverse transition function δ← can safely be undefined.
Similarly, if the pushdown store is empty.

Now let the last input symbol read in the forward computation be bi. On
any non-blocking forward step on bi the topmost pushdown symbol Ai must
have been popped. So, in a reverse step it is pushed again (Transitions 5 and 6).
Altogether, we conclude that M is reversible. �

3 Computational Capacity

Here we first turn to explore the computational capacity of deterministic state-
less pushdown automaton with lookahead. The relations between the language
families are summarized in Fig. 2.

3.1 Lookahead Versus States

Reversible classical pushdown automata with states but without lookahead
(REV-DPDA) have been investigated in [11], where it is shown that their corre-
sponding language family lies properly in between the regular and the determi-
nistic context-free languages.

In general, a deterministic pushdown automaton can use states to compensate
for a lookahead. Basically, it simply reads the symbols that appear in a look-
ahead window successively and stores them as part of the current state. Then
it can simulate a transition and so on. So, a lookahead does not increase the
computational capacity of classical pushdown automata. Here we next consider
the situation for reversible pushdown automata and show that it is different.
First we obtain that there are languages for which a lookahead is better than
states. Clearly, a lookahead of size one is not a true lookahead.

The proof of the next lemma uses the language Lab = { anbn | n ≥ 0 } as
witness. It is not accepted by any REV-DPDA [11].

Lemma 2. There is a language accepted by some REV(2)-DSPDA that cannot
be accepted by any REV-DPDA.

Now we know that there are languages for which a lookahead is better than
states. Does this hold in general? The answer is no, which means that there are
languages for which states are better than a lookahead of arbitrary size.

Lemma 3. There is a language accepted by some REV-DPDA that cannot be
accepted by any REV(k)-DSPDA, for k ≥ 1.
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Proof. We use the language Lumi = { an#an | n ≥ 0 } as witness. It is accepted
by some REV-DPDA [11].

Assume in contrast to the assertion that, for k ≥ 1, Lumi is accepted by some
REV(k)-DSPDA M = 〈Σ,Γ, δ, k,⊥, I, G〉 and let n be large enough. During the
computation of M on input prefixes a+ such that only a’s appear in the input
window no content of the pushdown store may appear twice: If

(λ, an#an, I) �∗ (ap1 , an−p1#an, γ1) �+ (ap1+p2 , an−p1−p2#an, γ1)

is the beginning of an accepting computation, then so is

(λ, an−p2#an, I) �∗ (ap1 , an−p1−p2#an, γ1),

but an−p2#an does not belong to Lumi. This implies that each height of the push-
down store may appear only finitely often and, thus, that the height increases
arbitrarily. So, M runs into a loop while processing a’s, that is, for any fixed
number h, some h topmost pushdown symbols α appear again and again. To
render the loop more precisely, let (an−x, ax#an, αγ) be a configuration of the
loop. Then there is a successor configuration with the same topmost pushdown
symbols (an−x+y, ax−y#an, αβ). We may choose α so that during the computa-
tion starting in (an−x, ax#an, αγ) no symbol of γ is touched, that is, αβ = αγ′γ.
Therefore, the computation continues as

(an−x+y, ax−y#an, αγ′γ) �+ (an−x+2y, ax−2y#an, αγ′γ′γ).

Now we turn to the input suffixes. While M processes the input suffixes a+, no
content of the pushdown store may appear twice: If

(an#, an, γ2) �∗ (an#aq1 , an−q1 , γ3) �+ (an#aq1+q2 , an−q1−q2 , γ3)

results in an accepting computation, then so does

(an#, an−q2 , γ2) �∗ (an#aq1 , an−q1−q2 , γ3),

but an#an−q2 does not belong to Lumi. This implies that each height of the push-
down store appears only finitely often. Moreover, in any accepting computation
the pushdown store has to be decreased until some symbol of γ appears. Other-
wise, we could increase the number of a’s in the prefix by y to drive M through
an additional loop. The resulting computation would also be accepting but the
input does not belong to Lumi. Together we conclude that M runs into a loop
that decreases the height of the pushdown store while processing the a’s of the
suffix, and that there are only finitely many possible contents of the pushdown
store at the end of accepting computations.

Let us now consider an accepting computation on input an#an where, again, n
is large enough. There must be integers x1, y1, x2, y2 ≥ 1 and κ ∈ GΓ ∗ such that

(λ, an#an, I) �+ (an−x1 , ax1#an, αγ) �+ (an−x1+y1 , ax1−y1#an, αγ′γ) �+

(an#ax2 , an−x2 , αγ′γ) �+ (an#ax2+y2 , an−x2−y2 , γ′γ) �+ (an#an, λ, κ).
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However this implies that on input factor ay1 the α on the top of the push-
down store is replace by a longer word αγ′ and, at the same time, on input
factor ay2 the α on the top of the pushdown store is popped. Since α has been
chosen such that during its processing (with input symbols a) none of the sub-
jacent symbols is touched, we obtain a contradiction. ��

Lemma 2 and Lemma 3 show the following incomparability, which means that
the impact of lookaheads and states on the computational capacity of reversible
pushdown automata depends on the language in question.

Theorem 4. For any k ≥ 2, the language families L (REV(k)-DSPDA) and
L (REV-DPDA) are incomparable.

3.2 Reversibility Versus Irreversibility

This subsection is devoted to comparing deterministic stateless pushdown
automata with lookahead with their reversible variant. Does the additional prop-
erty to be reversible decrease the computational capacity? If yes, can we regain
the capacity by increasing the lookahead? We will get answers to these ques-
tion by comparing reversible deterministic stateless pushdown automata with
lookahead with classical deterministic finite automata, that is, for all k ≥ 1, the
families L (REV(k)-DSPDA) and REG.

In [11] it is shown that any regular language is accepted by some REV-DPDA.
Basically, the idea is to store the history of a DFA computation on the push-
down store. However, in order to obtain a reversible pushdown automaton this
construction requires states.

For all n ≥ 2, we define the language L′
n = { am·n | m ≥ 2 }, define a regular

substitution by s(a) = #∗a#∗, and consider the language Ln = s(L′
n). It consists

of all words from L′
n with an arbitrary number of # symbols around each and

between each two symbols a. Clearly, s(L) is regular.

Theorem 5. For all n ≥ 2 and k ≥ 1, the language Ln is not accepted by any
REV(k)-DSPDA.

Proof. Assume in contrast to the assertion that, for some n ≥ 2 and k ≥ 1,
language Ln is accepted by some REV(k)-DSPDA M = 〈{a, #}, Γ, δ, k,⊥, I, G〉.
We consider input words of the form (#ka)+#k.

First we assume further that the height of the pushdown store does not
exceed some constant h ≥ 0 for all computations on these words. Then a
reversible DFA M ′ accepting L′

n can be constructed as follows. Essentially, M ′

on input ai simulates the computation of M on input (#ka)i#k. To this end,
the state set Q of M ′ is set to Γ≤h such that M ′ simulates the pushdown
content in its states. The initial state of M ′ is defined to be I. Now the tran-
sition function δ′ : Q × {a} → Q of M ′ is defined as δ′(β, a) = γ if and only if
(λ, #ka#k, β) �+ (#ka, #k, γ). Finally, the set of accepting states of M ′ is defined
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to be the set of states γ+ of M ′ such that M accepts the suffix #k when γ+ is
initially put into the pushdown store. So, it is

{ γ+ | (λ, #k, γ+) �+ (#k, λ, γ) where γ ∈ (G \ {⊥})Γ ∗ or γ = λ if ⊥ ∈ G }.

By construction, if M accepts some input (#ka)i#k then M ′ accepts ai and
vice versa. Therefore, M ′ accepts the language L′

n. Moreover, M ′ is a reversible
DFA. Since its input alphabet is unary, this means that each state has at most one
predecessor state. This can be seen as follows: the current state of M ′ gives the
entire pushdown content of M . Moreover, if δ′(β, a) = γ then (λ, #ka#k, β) �+

(#ka, #k, γ). Since M is reversible, we derive

(#ka, #k, γ)(�←
)+(λ, #ka#k, β) and (#ka#ka, #k, γ)(�←

)+(#ka, #ka#k, β)

dependent on whether M goes back to the beginning of the input or not. This
implies δ

′←(γ, a) = β.
However, it is well known that language L′

n is not accepted by any reversible
DFA (with lookahead 1) [1,8]. This is a contradiction to our assumption that
the height of the pushdown store of M does not exceed some constant for all
computations on the words (#ka)+#k.

Since M is deterministic, we conclude that, for any constant h ≥ 0, there
are infinitely many m ≥ 2 such that the height of the pushdown store of M
exceeds h in the computations on the words (#ka)m·n#k.

During the computation up to the k last symbols on a word (#ka)m·n#k

with m large enough, the lookahead window contents #k, #k−1a, #k−2a#,. . . ,
a#k−1 appear cyclically. For each of these window contents we consider the asso-
ciated action on the pushdown store. To this end, let w be a possible window
content.

If δ(w,Z) = XZ is a push move, then δ(w,Z ′) = XZ ′, for all Z ′ ∈ Γ ∪ {⊥},
that is, the push move is independent of the topmost pushdown symbol. The
reason is that M is reversible and, thus, δ←(w′,X) = λ is the corresponding
backward step, for all appropriate backward window contents w′. So, if we con-
struct a configuration such that below the X there is some pushdown store
symbol Z ′ then after popping the X in a backward step a configuration with Z ′

at the top of the pushdown store is reached. This implies that the forward step
that reaches the constructed configuration again has to push X on top of Z ′.

If δ(w,Z) = λ is a pop move, then δ(w,Z ′) is undefined, for all Z ′ ∈ Γ ∪
{⊥}. This is obvious for Z ′ = ⊥. Since M is reversible, we can construct a
configuration such that below the Z there is some pushdown store symbol X ∈
Γ ∪ {⊥}. Then after popping the Z in a forward step a configuration with X at
the top of the pushdown store is reached. This implies that the backward step
that reaches the constructed configuration again has to push Z on top of any X.
So, no transition δ(w,Z ′) with Z ′ = Z, whether it is a pop, push, or top move,
can be reversed.

If δ(w,Z) = X is a top move, then δ(w,Z ′) with Z ′ = Z is undefined or a
top move, for all Z ′ ∈ Γ ∪ {⊥}. This is obvious for Z ′ = ⊥ as shown above for
pop and push moves.
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So, any of the window contents that appear cyclically is associated either
with a top, pop, or push operation. Additionally, we know that the height of the
pushdown is increasing. We derive that in a cycle there are more push than pop
operations. Moreover, for any prefix of a cycle there are no more pop than push
operations, since M cannot pop from the empty pushdown. Additionally, for
any window content of the cycle associated with a push operation, the symbol
pushed is always the same. We conclude that at latest after the second cycle the
content of pushdown store grows cyclically.

Therefore, there is some m large enough and the beginning of an accepting
computation

(λ, (#ka)m·n#k, I) �+ ((#ka)2, (#ka)m·n−2#k, γ) �+

((#ka)3, (#ka)m·n−3#k, αγ) �+ ((#ka)m·n, #kαα · · · αγ).

But then there is the beginning of an accepting computation

(λ, (#ka)3#k, I) �+ ((#ka)2, #ka#k, γ) �+ ((#ka)3, #k, αγ).

However, the length |(#ka)3#k| = 3(k+1)+k of the accepted word is shorter than
the shortest word of the form (#ka)+#k in Ln. This has the length 2n(k+1)+k ≥
4(k+1)+k. So, we obtain a contradiction to the assumption that M accepts Ln. ��

So, in contrast to the family of languages accepted by reversible pushdown
automata with states but without lookahead, the family of regular languages is
not included in the family L (REV(k)-DSPDA). To separate the computational
capacities of reversible from general (k)-DSPDAs it remains to be shown that
the latter accept all regular languages.

Theorem 6. Any regular language is accepted by some (1)-DSPDA.

It turned out that the family of regular languages is too wide to obtain a lower
bound for the computational capacity of REV(k)-DSPDAs. However, the family
of reversible regular languages is well suited, where a reversible regular language
is a language accepted by some reversible deterministic DFA [4,8]. Though the
technique to store the history of a DFA computation on the pushdown store [11]
does not work here, a simulation of a DFA can maintain the current state at
the top of the pushdown. Updating the state cannot be done by pushing the
successor state but by changing the symbol at the top of the pushdown.

Theorem 7. Any language accepted by some reversible DFA is accepted by some
REV(1)-DSPDA.

4 Impact of the Lookahead Size

In this section we consider the impact of the lookahead size on the computational
capacity of reversible deterministic stateless pushdown automata. In fact, it is
shown that there exists an infinite and tight hierarchy of language families depen-
dent on the size of the lookahead. To this end, we consider deterministic linear
context-free languages as witnesses. For any integer k ≥ 1, let the deterministic
linear context-free language Lk be defined as {λ} ∪ { anbmcn | n ≥ 1,m ≥ k }.
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Lemma 8. For any integer k ≥ 1, the language L2k can be accepted by some
REV(k + 1)-DSPDA.

Lemma 9. For any integer k ≥ 1, the language L2k cannot be accepted by any
REV(k)-DSPDA.

Lemma 8 and Lemma 9 reveal that the size of the lookahead matters.

Theorem 10. For any integer k ≥ 1, the family L (REV(k)-DSPDA) is prop-
erly included in the family L (REV(k + 1)-DSPDA).

Fig. 2. Relations between the language families, where an arrow denotes a proper
inclusion and a dashed arrow indicates an infinite hierarchy. All families which are
not linked by a path are mutually incomparable. The family of languages accepted by
realtime deterministic pushdown automata is denoted by DPDAλ.
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Abstract. In this paper we introduce a new notion of a symmetry group
of an infinite word. Given a subgroup Gn of the symmetric group Sn, it
acts on the set of finite words of length n by permutation. For each n, a
symmetry group of an infinite word w is a subgroup Gn of the symmetric
group Sn such that g(v) is a factor of w for each permutation g ∈ Gn

and each factor v of w. We study general properties of symmetry groups
of infinite words and characterize symmetry groups of several families of
infinite words. We show that symmetry groups of Sturmian words and
more generally Arnoux-Rauzy words are of order two for large enough
n; on the other hand, symmetry groups of certain Toeplitz words have
exponential growth.

Keywords: Infinite words · Symmetry groups · Arnoux-Rauzy
words · Toeplitz words

1 Introduction

In this paper we introduce and study a new notion of a symmetry group of an
infinite word. This group is related to certain algebraic and combinatorial prop-
erties of the language of factors of an infinite word, and is defined as follows. A
permutation of order n acts on a word of length n in a natural way by permuting
its letters. For every integer n, the symmetry group of order n of an infinite word
w is defined as the set of permutations of order n that map every factor of w
to a factor of w. It is easy to verify that this set indeed forms a subgroup of a
symmetric group of order n. So, we associate with an infinite word a sequence
(Gn)n≥1 of subgroups of Sn characterizing symmetries of the language of factors
of the infinite word. A related concept of group complexity of infinite words has
been studied in [4].

We investigate general properties of symmetry groups of infinite words. We
show that any subgroup of the symmetry group is a group of symmetries of some
infinite word. However, the conditions for a sequence (Gn)n≥1 to be a sequence
of symmetry groups of an infinite word seem to be quite restrictive. We provide
a series of conditions of this kind: for example, (Gn)n≥1 cannot contain certain
cycles and transpositions infinitely often, unless the word contains all words as
its factors and Gn = Sn for each n.
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The symmetry groups of certain infinite words and classes of infinite words
are studied. In particular, we characterize the symmetry groups of Sturmian
words [6, Chapter 2] and more generally Arnoux-Rauzy words [5]. Sturmian
words can be defined as infinite aperiodic words which have n + 1 distinct fac-
tors for each length n. They admit various characterizations in combinatorial,
algebraic and arithmetical form. Their most natural generalization to non-binary
alphabet, Arnoux-Rauzy words, share most of the structural properties of Stur-
mian words. We show that for Sturmian words and more generally Arnoux-Rauzy
words the symmetry groups are small: they are of order 2 for sufficiently large
n. The same situation holds for the Thue-Morse word [8].

Another family of words considered in the paper, Toeplitz words, can be
defined iteratively as follows. Take an infinite periodic word w on the alphabet
Σ ∪ {?}, where ? corresponds to a hole. Fill the holes iteratively by substituting
the word itself into the remaining holes. In the limit, all holes are filled and an
infinite word is defined. The most studied Toeplitz words are the paperfolding
word [2], giving rise to the famous fractal curve, and the period-doubling word [7].
We obtain recurrent formulas for the symmetry groups of these words, showing
that contrary to Arnoux-Rauzy and the Thue-Morse words, their symmetry
groups are large; more precisely, they have exponential growth order.

The paper is organized as follows. In Sect. 2, we fix some notation and intro-
duce the notion of a symmetry group. We prove that the symmetry group of
an infinite word is indeed a group, and show that any permutation group is
a symmetry group of some word. In Sect. 3, we provide a series of conditions
on the sequence (Gn)n≥1 implying that the language of the underlying word
contains all finite words. In Sects. 4, 5 and 6, we describe symmetry groups of
Arnoux-Rauzy words, the period-doubling word, the Thue-Morse word and the
paperfolding word. In Sect. 7, we study symmetry groups of a subclass of Toeplitz
words. We finish with some open problems.

2 Preliminaries

An alphabet Σ is a finite set of letters. A word on Σ is a finite or infinite sequence
of letters from Σ, i.e., u = u1u2 · · · , where ui ∈ Σ. We let Σ∗ denote the set of
finite words on Σ. The length of the finite word u = u1 · · · un is the number of
its letters: |u| = n. An empty word is denoted by ε, and we set |ε| = 0. We let
uR denote the reversed word u: uR = unun−1 · · · u1.

A finite word u = u1 · · · un is a factor of a finite or infinite word w if there
exists i ∈ N such that u = wi · · · wi+n−1. We let F (w) denote the set of factors
of w and Fn(w) the set of its factors of length n. A factor u of a finite or infinite
word w is said to be left special (resp., right special) in w if there exists at least
two distinct letters a, b such that au and bu (resp., ua, ub) are factors of w. An
infinite word is called recurrent if each of its factors occurs infinitely often. An
infinite word w is called universal over an alphabet Σ if F (w) = Σ∗.

Let Sn be a group of permutations on n elements. We use the following

notation: [m1,m2, . . . ,mn] =
(

1 2 . . . n
m1 m2 . . . mn

)
. This should be distinguished
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from the notation (m1m2 . . . mk), which means the cycle where the element mi

takes the place of mi+1 for each i. We say that a cycle is independent in a
permutation g ∈ Sn if it is one of the cycles in the decomposition of g into
disjoint cycles.

Let u = u1u2 . . . un be a word of length n, and g ∈ Sn be a permutation on
n elements. Then the permutation g acts on the word u in the following way:
g(u) = ug−1(1)ug−1(2) . . . ug−1(n).

Definition 1. The symmetry group Gn(w) of an infinite word w of order n is
defined as follows:

Gn(w) = {π ∈ Sn | π(x) ∈ Fn(w) for all x ∈ Fn(w)}.

In what follows when it is clear for which word this symmetric group is
considered, we omit the argument and write Gn for brevity.

Proposition 1. Let w be an infinite word, then Gn(w) is a subgroup of Sn.

Proof. For the proof it is enough to check the three properties of the group:

1. Let g, h ∈ Gn, then hg ∈ Gn. Indeed, let x be a factor of w. By definition
Gn, we have that g(x) is a factor of w. So h(g(x)) = hg(x) is a factor of w.

2. Let e ∈ Sn be the identity permutation. Then e ∈ Gn. For each finite word
x, we have e(x) = x. So if x is a factor of w, then e(x) is a factor of w.

3. For g ∈ Gn, we have g−1 ∈ Gn. Since the group Sn is finite, there is an integer
k that gk = 1. Then gk−1 = g−1 and from item 1 we know that gk−1(x) is a
factor of w. Thus g−1(x) is a factor of w.

Example 1. The symmetry group Gn of a universal word is Sn for each n. Indeed,
for each g ∈ Sn and each v ∈ Σn we have g(v) ∈ Fn(w), since all finite words
are factors. In particular, this holds for |Σ| = 1: g(an) = an is a factor of aN.

Proposition 2. For each n and each subgroup G ≤ Sn, there exists an infinite
word w with symmetry group Gn(w) = G.

Proof. We build w on an (n + 1)-letter alphabet {a1, a2, . . . , an+1} as follows.
Set vi = gi(a1a2 . . . an) for each gi ∈ G, u = an

n+1, and w1, w2, . . . , wj are all
possible words of length n that contain the letter an+1. Then w is defined by

w = u v1 u v2 u · · · u vi uw1 uw2 u · · · uwj uuu · · · .

Let x be a factor of w of length n and g ∈ Sn. Let g ∈ G. If x contains an+1,
then g(x) contains an+1, thus g(x) is a factor of w. If x = gi(a1a2 . . . an), gi ∈ G,
then ggi ∈ G and g(x) = ggi(a1a2 . . . an) is a factor of w. So if g ∈ G, then
g ∈ Gn. If g /∈ G, then g(a1a2 . . . an) is not a factor of w. So Gn = G.

Remark 1. In the previous proposition the size of the alphabet depends on n and
the subgroup G < Sn, since for some pairs (|Σ|, G) words on Σ with Gn(w) = G
do not exist.



270 S. Luchinin and S. Puzynina

For example, on a unary alphabet we always have Gn = Sn. For a binary
alphabet, the group G ≤ S3 generated by the cycle g = (123) cannot be a
symmetry group of a binary infinite word w. Indeed, using the fact that for each
x ∈ F3(w) we have g(x), g2(x) ∈ F3(w), we can show that for any h ∈ S3 we
have h(x) ∈ F3(w). For x = 000 or x = 111 the statement is clear. If x = 001,
then w contains the factors 010 and 100, which means that h(x) is also a factor.
Similarly if x = 110.

3 Sequences of Symmetry Groups

As we showed in the previous section, each subgroup of Sn is a symmetry group of
some infinite word. However, there are lots of restrictions on the structure of the
sequence (Gn(w))n≥1 of symmetry groups. For example, we have the following:

Proposition 3. If for each n a symmetry group Gn(w) of a word w contains
the cycle (12 . . . n), then w is universal. In particular, Gn(w) = Sn for each n.

Proof. First notice that each letter of the word occurs in it infinitely many times.
Indeed, suppose that a letter a occurs for the last time at some position i. Then
for n > i the cycle (12 . . . n) maps the prefix of length n of w to a factor with a
at position i + 1. Any occurrence of this factor in w gives an occurrence of a at
a position greater than i.

To prove the universality, we show that each factor of w is left special and that
it can be extended by any letter. Take any factor v and consider any occurrence
of v in a word; denote its position by i, and consider an occurrence j of any
letter a, such that j > i + |v|. Now applying the cycle (1 . . . j − i + 1) to the
factor wi · · · wj gives a word with the prefix av. Hence each factor of w is left
special and can be extended by any letter, thus w is universal.

More generally, the following holds:

Proposition 4. Let w be a recurrent infinite word. If for each m there exist
n ≥ m and i ≤ n − m such that Gn(w) has an element σ that contains an
independent cycle ((i + 1)(i + 2) . . . (i + m)), then w is universal.

Proof. We will prove that in fact for each m the group Gm(w) contains the cycle
(1 . . . m). Indeed, given m, consider any factor v ∈ F (w) of length m and any its
occurrence l > i, where i is as in the statement. Now since Gn contains a permu-
tation σ that contains an independent cycle ((i + 1)(i + 2) . . . (i + m)), we apply
this permutation to the factor wl−i+1 · · · wl−i+n. The word σ(wl−i+1 · · · wl−i+n)
is factor of w, and it contains v2 · · · vmv1 at position i. Hence Gm(w) contains
the cycle (1 . . . m), and by Proposition 3 the word w is universal.

Remark 2. For non-recurrent words there exist counterexamples, e.g., symmetry
groups of a5b∞ contain cycles ((i+1) . . . (i+m)) for i ≥ 5, although the word is
not universal. It contains a universal tail though, and actually this is the general
case: an infinite word with this property has a universal tail on Σ′ ⊆ Σ.
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Let n, m be integers with n ≥ m, and σ ∈ Sn a cycle of length m: σ =
(j1j2 . . . jm), i.e., jk are pairwise distinct. We say that σ is arithmetical if there
exists an integer l ≥ 2 such that all jk are congruent modulo l: j1 ≡ j2 ≡ . . . ≡ jm

(mod l). For example, (137) is arithmetical with l = 2, while (134) is not.

Proposition 5. Let w be a recurrent infinite word, and σ = (j1j2 . . . jm) a
cycle of length m which is not arithmetical. If there exist increasing sequences
of integers (nk)k≥1 and (ik)k≥1 such that there exists βnk

∈ Gnk
(w) with β(ik +

j1) = ik + j2, β(ik + j2) = ik + j3, . . . , β(ik + jm) = ik + j1, and β(l) = l for
each l = 1, . . . , ik + min

1≤l≤m
jl − 1, then the word w is universal.

Proof. As in Proposition 3, we will prove that each factor is right special and
can be extended in all possible ways. Without loss of generality assume that
j1 = min

1≤k≤m
jk = 1.

Consider a factor v of w. Choose k with ik > |v|, and consider a position i of
v in w with i + |v| ≥ ik. Now consider a factor u = wi+|v|−ik · · · wi+|v|−ik+nk−1.
If a letter a occurs at one of the positions i + |v| + jl − 1 for some l = 1, . . . , m,
then applying (m − l) times βnk

to u, we obtain va as a prefix of βm−l
nk

(u).
If a letter a does not occur at one of the positions i + |v| + jl − 1 for some

l = 1, . . . ,m, then consider some its occurrence at a position j ≥ i + |v| +
max

1≤l≤m
jl. The idea is that we are going to move this a to the left to the position

i+ |v|+ max
1≤l≤m

jl −1 using permutations βnk
at different positions and keeping v

untouched. Now we order jl in increasing order and we let d1, . . . , dm−1 denote
the distances between consecutive il in this order, so that the sets {j1, j2, . . . , jm}
and {j1, j1 + d1, j1 + d1 + d2, . . . , j1 + d1 + . . . + dm−1} coincide. Since the cycle
σ is not arithmetical, we have that dl’s are relatively prime: (d1, . . . , dm−1) = 1.

First notice that for each l we can move the letter a by dl to the right or to
the left, keeping v untouched. We let s and t denote indices such that dl = js−jt.
To move it to the right, we can apply βt−s

nk
to (wj−ik−jt−1 · · · wj−ik−jt−1+nk

).
Here we must take k big enough to have j − ik − jt < i to keep v untouched. If
j − ik − jt < 0, then we can either consider a later occurrence of wi · · · wj in the
word, or extend it to the left to biinfinite word keeping its set of factors (we can
do it since w is recurrent). Moving a by dl to the left is symmetric.

Since dl’s are relatively prime, there exist s1, . . . , sm−1 ∈ Z such that s1d1 +
. . .+sm−1dm−1 = −1. Now applying the procedure from the previous paragraph
first for l’s for which sl’s are positive, sl times for dl, then for l’s for which sl’s
are negative. This way we moved the letter a to the left by 1. We now repeat the
procedure until a is at the position i + |v| + max

1≤l≤m
jl − 1, reducing to the above

case when a occurs at of the positions i + |v| + jl − 1.

As an example, the above proposition gives the following corollary:

Corollary 1. If for infinitely many n the symmetry group Gn(w) contains a
transposition (i(i + 1)), then w is universal.



272 S. Luchinin and S. Puzynina

Proof. For the proof, we take in Proposition 4 σ to be a transposition (12), and
we apply the proposition either as stated, or in reversed form.

Remark 3. Most results of this section can be slightly generalized, for example,
for shifts, or reversed statements from right to left, or for subpermutations of a bit
more general form. Also, they can be adapted to arithmetic progressions kN+ i,
so that each arithmetic subword wiwi+k · · · is universal (probably with smaller
alphabets on some progressions). For example, Proposition 3 can be reformulated
as follows: Let w be a recurrent infinite word and k be an integer. If for each
n the symmetry group Gn(w) of the word w contains the cycle (1(1 + k)(1 +
2k) . . . ), then each of the arithmetical subwords wi+kwi+2kwi+3k · · · , 1 ≤ i ≤ k,
is universal over an alphabet Σi ⊆ Σ.

4 The Symmetry Groups of Arnoux-Rauzy Words

In this section, we show that starting from some length symmetry groups of
Arnoux-Rauzy words contain only two elements, identity and mirror image.

Definition 2. An infinite word w on an alphabet Σ is called an Arnoux-Rauzy
word if the following conditions hold:

• if a finite word u is a factor of w, then uR is a factor of w
• w has exactly one left special factor (or, equivalently, right special factor) of

each length. Moreover, each special factor extends in exactly |Σ| ways.

We denote the left special factor of length n by U l
n and the right one by Ur

n.
It follows from the definition that Ur

n = (U l
n)R.

Definition 3. [5] The palindromic right-closure w(+) of a finite word w is the
(unique) shortest palindrome having w as a prefix. That is, w(+) = wv−1wR,
where v is the longest palindromic suffix of w. The iterated palindromic closure
function, denoted by Pal, is defined recursively as follows. Set Pal(ε) = ε, and
for any word w and letter x define Pal(wx) = (Pal(w)x)(+).

Theorem 1. [5] A word w is an Arnoux-Rauzy word if and only if there exists
an infinite word v with each letter occurring in it infinitely many times such
that w has the same set of factors as the limit of iterated palindromic closures
of prefixes of the word v.

Let w be an Arnoux-Rauzy word with the language of the palindromic closure
of v. Let v begin with t identical letters; then we denote the number t by A(w).

Theorem 2. Let w be an Arnoux-Rauzy word and t = A(w). Then for n ≥ 4t+2
the symmetry group of w is

Gn = {[1, 2, . . . , n − 1, n], [n, n − 1, . . . , 2, 1]}.
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Proof. From the definition of Arnoux-Rauzy words it follows that {[1, 2, . . . , n−
1, n], [n, n − 1, . . . , 2, 1]} ⊂ Gn. It remains to prove that any other permutation
cannot belong to Gn. Let be σ ∈ Gn. We first show that σ(n) = 1 or σ(n) = n
for n ≥ 2t + 1. Suppose that σ(n) = k, for some 1 < k < n.

We let a denote the letter which is the special factor of length 1. Suppose
first that k < n − t. Then consider all possible factors Ur

n−1x, where x is any
letter. Then applying σ to all such factors, for some u ∈ Fk−1(w), v ∈ Fn−k(w)
and any x ∈ Σ, we get |Σ| factors of the form uxv, which differ from each other
only at position k. Since a is the only left and right special factor of length 1,
then the letter preceding x and the letter following x is a. So, we get factors of
the form u′axav′, where x is any letter. Suppose that v starts with ar and then
there is another letter b 	= a. Then we get the factors u′axarbv′′. Now if we take
x = a, we see that the factor ar+1 can continue to the right with the letters
a and b, and the factor arb can continue to the left with any letter (x can be
any letter). So we get at least two special factors, which is impossible. Thus we
showed that the word v can only consist of the letters a. But v is longer than t
(|v| = n−k > t), so this is impossible (w cannot contain more than t consecutive
letters a). If k ≥ n − t, then we apply the same line of reasoning for the word u.
This is possible, because n ≥ 2t + 1, so k > t and |u| ≥ t.

So, we have σ(n) = 1 or σ(n) = n. Similarly we show that σ(1) = 1 or
σ(1) = n.

Suppose that σ(n) = n, then σ(1) = 1. Then for similar reasons we get that
σ(2) = 2, σ(3) = 3, . . . , σ(n − 2t − 1) = n − 2t − 1. Indeed, let U = u1 · · · un be
a factor of w. Then V = u2u3 · · · un is a factor of w. This means that σ′(V ) is
factor of w, where σ′ is the restriction of σ to the word V . So, σ′ ∈ Gn−1. It
follows that σ′(n − 1) = n − 1 and σ′(1) = 1 or σ′(n − 1) = 1 and σ′(1) = n − 1,
because n−1 ≥ 2t+1. Since σ(n) = n, we have σ′(n−1) = n−1, so σ′(1) = 1 and
σ(2) = 2. In the same way step by step we get that σ(k) = k for all k ≤ n−2t−1.
Similarly, we can show that σ(k) = k for any k ≥ 2t + 1. Since n ≥ 4t + 2, we
get that σ(k) = k for any 1 ≤ k ≤ n. So σ = Id = [1, 2, . . . , n].

If σ(1) = n, σ(n) = 1, then we can prove that σ(k) = n − k in a similar way.
So, in this case we prove that σ = [n, n − 1, . . . , 2, 1]. The theorem is proved.

Since Sturmian words are binary Arnoux-Rauzy words, we have

Corollary 2. Let w be a Sturmian word and k be the length of the longest block
of the more frequent letter in w. Then

Gn = {[1, 2, . . . , n − 1, n], [n, n − 1, . . . , 2, 1]} for any n > 4k + 2.

5 Symmetry Group of the Period-Doubling Word

In this section we characterize symmetry groups of the period-doubling word
and show that the size of the group grows exponentially.

Definition 4. The period-doubling word w = 0100010101000100 · · · is a binary
word defined as follows: wi ≡ k (mod 2), where i = 2kl and l is odd.
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In other words, wi is equal to the maximal exponent of 2 dividing i, modulo 2.

Theorem 3. For n ≥ 4 the symmetry group Gn of the period-doubling word
satisfies the following recurrence relations:

Gn =

{
Gn/2 × Gn/2 × S2, if n is even,

G(n−1)/2 × G(n+1)/2, if n is odd,

and G1 = S1, G2 = S2, G3 = {[1, 2, 3], [3, 2, 1]}.

For the proof, we need the following lemma:

Lemma 1. Let g ∈ Sn. Suppose that there are two positions c and d of the same
parity such that g(c) is even and g(d) is odd. Then g 	∈ Gn.

Proof. Note that for any u ∈ F (w) either on even positions of u or on odd
positions of u we have only 0’s, since w2k+1 = 0 for any k. Next, each factor of
length at least 4 contains an occurrence of 1, because there is a number that is
not a multiple of 4 among two consecutive even numbers.

We set d − c = 2k; then there is an integer s such that ws = ws+2k = 1,
which is equivalent to the fact that the maximal exponent of 2 in s and s+2k is
odd. Indeed, if k is odd, then we can take s = 22m+1 for some m ∈ N. Then the
maximal exponent of 2 in s and s+2k is equal to 2m+1 and 1, respectively. If k
is even, then we can take s = 2m, where m is odd, since the maximal exponent
of 2 in s and s + 2k is equal to 1. Then we get that there is a factor u which has
ws = ws+d−c = 1 at positions c and d, because s can be chosen sufficiently large.
But then g(u) has even and odd positions that have 1, which is impossible. It
follows that g(u) is not a factor of w, so g /∈ Gn. The lemma is proved.

Proof of Theorem 3. It is easy to see that G1 = S1, G2 = S2, G3 =
{[1, 2, 3], [3, 2, 1]}. Consider n ≥ 4. Lemma 1 implies that if n is odd, then g
does not change the parity of positions. If n is even, then g either does not
change the parity of positions, or changes the parity of all positions (the latter
is impossible for an odd n since there are more odd positions).

Let n = 2l + 1 be odd, then g ∈ Sn permutes odd positions as a per-
mutation h ∈ Sl+1 and even positions as a permutation p ∈ Sl. Let u =
wm+1wm+2 . . . wm+n be a factor of length n.

If m is even, then u has 0 at odd positions, and hence g(u) also has 0
at odd positions. There is an occurrence of 1 in any factor of length n ≥
4, so g(u) occurs at an odd position: g(u) = wr+1wr+2 · · · wr+n, where r
is even. Then p(wm+2wm+4 · · · wm+n−1) = wr+2wr+4 · · · wr+n−1. The defini-
tion of the period-doubling word implies that wk = 1 − w2k. It follows that
p(wm+2

2
wm+4

2
· · · wm+n−1

2
) = w r+2

2
w r+4

2
· · · w r+n−1

2
for any even m. This means

that p ∈ Gl, because otherwise we can pick m such that p(wm+2
2

wm+4
2

. . . wm+n−1
2

)
is not a factor of w. These arguments also imply that if p ∈ Gl, then g(u) is a factor,
because there is a factor of p(wm+2

2
wm+4

2
· · · wm+n−1

2
) = w r+2

2
w r+4

2
· · · w r+n−1

2
and
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hence g(wm+1wm+2wm+3 · · · wm+n) = g(0wm+20wm+4 · · · ) = 0wr+20wr+4 · · · =
wr+1wr+2 · · · wr+n. Then p ∈ Gl. If m is odd, in a similar way we get that h ∈ Gl+1.
And the arguments above imply that if p ∈ Gl and h ∈ Gl+1, then g ∈ G2l+1.

As a result, we get for odd n = 2l + 1 that g acts on even positions as a
permutation from Gl and on odd positions as a permutation from Gl+1.

Now let n = 2l be even, and first consider the case when the permutation
g ∈ G2l does not change the parity of positions. Similarly to the case of odd n, we
get that g acts on even positions as a permutation p from Gl and on odd positions
as a permutation h from Gl. Now consider the case when g changes the parity
of all positions. For a factor u = wm+1wm+2 · · · wm+n, its image occurs at some
position r + 1: g(u) = wr+1wr+2 · · · wr+n. Then h(wm+1wm+3 · · · wm+n−1) =
wr+2wr+4 · · · wr+n and p(wm+2wm+4 . . . wm+n) = wr+1wr+3 · · · wr+n−1. If u has
0 at odd positions, then g(u) has 0 in even positions, which means that similarly
to the previous case we can get that p ∈ Gl and h ∈ Gl. The arguments above
also imply that if p ∈ Gl and h ∈ Gl+1, then g ∈ G2l+1.

Summing up, we proved that permutations from G2n+1 act as Gn at even
positions and as Gn+1 at odd ones independently, so that G2n+1 = Gn × Gn+1.
Permutations from G2n act as Gn at even and odd positions independently, plus
we can trade places even and odd positions. Therefore, the permutations from
G2n form the group Gn × Gn × S2. The theorem is proved.

Corollary 3. The size of the symmetry group of the period-doubling word sat-
isfies the following lower bound: |Gn| > 2

n
3 . In particular, |G2n | = 22

n−1.

Proof. First we prove by induction that |Gn| > 2
n
3 . For small n we check directly

that it holds. Then |G2n+1| = |Gn| · |Gn+1| > 2
n
3 +n+1

3 = 2
2n+1

3 and |G2n| =
2|Gn| · |Gn| > 22

n
3 +1 = 2

2n
3 +1.

Now we prove that |G2n | = 22
n−1. Obviously, |G2| = 2. Then |G2n+1 | =

2|G2n | · |G2n | = 2 · 22
n−1 · 22

n−1 = 22
n−1.

6 Symmetry Groups of the Thue-Morse Word
and the Paperfolding Word

In this section we describe the symmetry groups of the Thue-Morse and the
paperfolding words. The proofs are omitted due to space constraints.

Definition 5. The Thue-Morse word is the infinite word w = a1a2 · · · , where
an is the number of 1’s in the binary expansion of n.

Theorem 4. The symmetry group of the Thue-Morse word is expressed as fol-
lows:

Gn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sn, if n ≤ 3,

{[1, 2, 3, 4], [4, 3, 2, 1], [1, 3, 2, 4]}, if n = 4,

{[1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [2, 1, 3, 5, 4]}, if n = 5,

{[1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 2, 1], [6, 2, 4, 3, 5, 1]}, if n = 6,

{[1, 2, . . . , n − 1, n], [n, n − 1, . . . , 2, 1]}, if n > 6.
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Definition 6. The paperfolding word w = 110110011100100 · · · is defined as
follows: wi = 1 if i

2m ≡ 1 (mod 4), where m is the maximal exponent of 2
dividing i, and 0 otherwise.

We say that a permutation g is of type 1 if g keeps the parity of each position.
A permutation g is of type 2 if it changes the parity of each position.

Theorem 5. Let w be the paperfolding word. We let G1
k and G2

k denote all
permutations in Gk of types 1 and 2, respectively. Then the symmetry group of
w is Gn = G1

n for odd n and Gn = G1
n ∪ G2

n for even n, and the following
recurrent formula holds:

Gn =

{
G1

[n2 ] × G1
[n+1

2 ]
∪ G2

[n2 ] × G2
[n+1

2 ]
, if n is odd,

G[n2 ] × G[n2 ], if n is even.

Corollary 4. For n ≥ 3, we have |Gn| > 2
n
5 .

7 Symmetry Groups of Toeplitz Words

In this section we characterize symmetry groups of a subclass of Toeplitz words
and show that symmetry groups of Toeplitz words are quite diverse.

Definition 7. Let ? be a letter not in Σ. For a word u ∈ Σ(Σ ∪ {?})∗, let

T0(u) = ?ω, Ti+1(u) = Fu(Ti(u)),

where Fu(w), defined for any w ∈ (Σ ∪ {?})ω, is the word obtained from uω by
replacing the sequence of all occurrences of ? by w. Clearly,

T (u) = lim
i→∞

Ti(u) ∈ Σω

is well defined, and it is referred to as the Toeplitz word determined by the
pattern u.

Example 2. The paperfolding and the period-doubling words are Toeplitz words
determined by patterns 1?0? and 010?, respectively.

Let u be a pattern with one space (or symbol ?), |u| = k ≥ 4 and all letters of
u distinct. Let w be the Toeplitz word determined by u, and Gn be the symmetry
group of w. We divide the positions of w into k groups of positions congruent
modulo k. On one of these groups there are spaces in the word T1(u); we let
Tspace denote this group. The positions of any factor of w are also divided into
k corresponding groups. We first prove two lemmas concerning these groups.

Lemma 2. Any σ ∈ Gn translates positions from the same group to positions
from the same group (probably distinct from the initial group).
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Proof. Assume the converse. Let A be a group whose positions move to the
positions of different groups B and C. Then consider any factor vx of the word
w of length n in which the letter x stands at each position from the group A.
Then v′ = σ(v) is a factor of w. So the word v′ has the letter x at some positions
of the groups B and C. Then for any occurrence of v′ in w, one of the groups B
and C of v′ corresponds to Tspace in T1(u).

Since |u| ≥ 4, we can choose three words vx, vy, vz in which all positions of
A are filled with three distinct letters x, y, and z, respectively. Then for at least
two of the three factors σ(vx), σ(vy) and σ(vz), the group Tspace corresponds to
either B or C; say in σ(vx) and σ(vy) the group B corresponds to Tspace. Hence
only one letter can correspond to the group C in w. But in the words σ(vx) and
σ(vy) the positions at the group C have the letters x and y. A contradiction.

Lemma 3. Any σ ∈ Gn acts on the groups as a cyclic shift or as the identity
permutation.

Proof. Lemma 2 implies that groups are not split. Since all the letters in u are
distinct, the distance between any two groups does not change. This means that
the order of the groups remains the same. Also note that if n is not divisible by
k, then the groups are not of the same size. Then σ ∈ Gn acts on the groups as
the identity permutation.

Theorem 6. Let n = ak + b, where 0 ≤ b ≤ k − 1. Then

Gn =

{
Gb

a+1 × Gk−b
a , if b 	= 0,

Gk
a × Z/kZ, if b = 0.

Proof. Let v be a factor of length n. Then u has b groups with a+1 positions and
k−b groups with a positions; we let A1, . . . , Ak denote these groups. Suppose first
that n is not divisible by k. Then from the previous lemmas we get that σ ∈ Gn

translates the group Ai to itself for each i. Let π1, . . . , πk be restrictions of σ to
the groups A1, . . . , Ak, respectively. Then πi ∈ Ga or πi ∈ Ga+1, depending on
the size of Ai. Indeed, consider any factor v for which the group Ai corresponds
to Tspace. Let v′ be the word consisting of the letters of the word v located at
the positions from Ai. From the definition of Toeplitz words, it follows that the
scattered subword at positions Tspace in the word w is w. This means that v′ can
be any factor of w of corresponding length. Since σ(v) translates positions from
Ai to positions from Ai, which corresponds to Tspace, the word v′ is translated
to the word πi(v′), which is located at positions Tspace of the factor σ(v). Then
πi(v′) is a factor of w. So πi ∈ Ga or πi ∈ Ga+1.

Let us prove that if all permutations πi are from Ga or Ga+1, then σ ∈ Gn.
Consider any factor v of w. Let Ai be the group corresponding to Tspace and v′

be the word consisting of the letters of the word v located at positions from Ai.
Since πi ∈ Ga (or Ga+1), we have that πi(v′) is a factor of w. So we can find the
word πi(v′) at the positions Tspace of w. Then it follows that σ(v) is a factor of
w. So in this case we get that Gn = Gb

a+1 × Gk−b
a , because the factor of length

n has b groups with a + 1 positions and k − b groups with a positions.
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If b = 0, then a shift can be applied to the permutation σ, and there are k
possible shifts. So, in this case we have Gn = Gk

a ×Z/kZ. The theorem is proved.

Corollary 5. Consider the function f(n) = |Gn(w)|. Let n = ak + b, where
0 ≤ b ≤ k − 1. Then

f(ak + b) =

{
f(a)k−bf(a + 1)b if b 	= 0,

f(a)kk if b = 0.

Remark 4. The corollary shows that f(n) = |Gn| can fluctuate. For example, by
induction one can show that if n = ak + b, b 	= 0 and a does not contain 0 and
k − 1 in the k-ary expansion, then f(n) = 1. For n = ks we have f(n) = k

ks−1
k−1 .

If there is more than one space in u, the groups can behave differently. Con-
trary to the paperfolding word, for which the symmetry groups are large, the
following words have trivial groups:

Proposition 6. The symmetry groups of T (1??23) and T (12??34) are equal to
Id for each n.

8 Conclusions and Open Problems

In this paper, we introduced and studied a new notion of symmetry groups of
infinite words. We remark that all the words considered in the paper have similar
properties: linear complexity, rich combinatorial structure, all of them except for
Arnoux-Rauzy words are automatic, but their symmetry groups are completely
different. It would be interesting to understand in general what properties of a
word make its symmetry group large. An interesting direction of future research
is generalising results from Sect. 3, answering the following question: Which infi-
nite sequences (Gn)n≥1, Gn ≤ Sn are symmetry groups of infinite words?
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Bounded Languages Described
by GF(2)-grammars

Vladislav Makarov(B)
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Saint Petersburg 199034, Russia

Abstract. GF(2)-grammars are a recently introduced grammar family
that has some unusual algebraic properties and is closely connected to the
family of unambiguous grammars. By using the method of formal power
series, we establish strong conditions that are necessary for subsets of
a∗
1a

∗
2 · · · a∗

k to be described by some GF(2)-grammar. By further applying
the established results, we settle the long-standing open question of prov-
ing the inherent ambiguity of the language { anbmc� | n �= m or m �= � },
as well as give a new, purely algebraic, proof of the inherent ambiguity
of the language { anbmc� | n = m or m = � }.

Keywords: Formal grammars · Finite fields · Bounded languages ·
Unambiguous grammars · Inherent ambiguity

1 Introduction

GF(2)-grammars, recently introduced by Bakinova et al. [3], and further studied
by Makarov and Okhotin [10], are a variant of ordinary context-free grammars
(or just ordinary grammars, as I will call them later in the text) in which the
disjunction is replaced by exclusive OR, whereas the classical concatenation is
replaced by a new operation called GF(2)-concatenation: K � L is the set of all
strings with an odd number of partitions into a concatenation of a string in K
and a string in L.

There are several reasons for studying GF(2)-grammars. Firstly, they are a
class of grammars with better algebraic properties, compared to ordinary gram-
mars and similar grammar families, because the underlying boolean semiring
logic is replaced by the logic of the field with two elements. As we will see later
in the paper, that makes GF(2)-grammars lend themselves very well to algebraic
manipulations.

Secondly, GF(2)-grammars provide a new way of looking at unambiguous
grammars. For example, instead of proving that some language is inherently
ambiguous, one can prove that no GF(2)-grammar describes it. While the latter
condition is, strictly speaking, stronger, it may turn out to be easier to prove,
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because the family of languages defined by GF(2)-grammars has good algebraic
properties and is closed under symmetric difference.

Finally, GF(2)-grammars generalise the notion of parity nondeterminism to
grammars. Recall that the most common types of nondeterminism that are con-
sidered in complexity theory are classical nondeterminism, which corresponds to
the existence of an accepting computation, unambiguous nondeterminism, which
corresponds to the existence of a unique accepting computation and parity non-
determinism, which corresponds to the number of accepting computations being
odd.

In a similar way, classical and parity nondeterminism can be seen as two dif-
ferent generalisations of unambiguous nondeterminism: if the number of accept-
ing computations is in the set {0, 1}, then it is positive (classical case) if and
only if it is odd (parity case); the same is not true for larger numbers, of course.

The main result of this paper is Theorem 15, which establishes a strong
necessary conditions on subsets of a∗

1a
∗
2 · · · a∗

k that are described by GF(2)-
grammars. Theorem 14, a special case of Theorem 15, implies that there are
no GF(2)-grammars for the languages L1 := { anbmc� | n = m or m = � } and
L2 := { anbmc� | n �= m or m �= � }.

As a consequence, both languages are inherently ambiguous. For L1, all pre-
viously known arguments establishing its inherent ambiguity were combinatorial,
mainly based on Ogden’s lemma.

Proving inherent ambiguity of L2 was a long-standing open question due to
Autebert et al. [2, p. 375]. There is an interesting detail here: back in 1966, Gins-
burg and Ullian fully characterised bounded languages described by unambigu-
ous grammars in terms of semi-linear sets [9, Theorems 5.1 and 6.1]. However,
most natural ways to apply this characterisation suffer from the same limitation:
they mainly rely on words that are not in the language and much less on the
words that are. Hence, “dense” languages like L2 leave them with almost noth-
ing to work with. Moreover, L2 has an algebraic generating function, meaning
that analytic methods cannot tackle it either. In fact, Flajolet [6], in his seminal
work on analytic methods for proving grammar ambiguity, refers to inherent
ambiguity of L2 as to a still open question (see page 286).

2 Basics

We will use some algebraic notions very often in the text. The intended “the-
oretical minimum” is being familiar with concepts of rings, fields, polynomials,
rational functions, formal power series and linear algebra over fields.

Let us recall the definition and the basic properties of GF(2)-grammars first.
This section is completely based on already published work: the original paper
about GF(2)-operations by Bakinova et al. [3] and the paper about basic proper-
ties of GF(2)-grammars by Makarov and Okhotin [10]. Hence, proofs are omitted.

GF(2)-grammars are built upon GF(2)-operations [3]: symmetric difference
and a new operation called GF(2)-concatenation:

K � L = {w | number of partitions w = uv, with u ∈ K and v ∈ L, is odd }
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Syntactically, GF(2)-grammars do not differ from ordinary grammars. How-
ever, in the right-hand sides of the rules, the normal concatenation is replaced
with GF(2)-concatenation, whereas multiple rules for the same nonterminal cor-
respond to symmetric difference of given conditions, instead of their disjunction.

Definition 1 ([3]). A GF(2)-grammar is a quadruple G = (Σ,N,R, S), where:

– Σ is the alphabet of the language;
– N is the set of nonterminal symbols;
– every rule in R is of the form A → X1�· · ·�X�, with � � 0 and X1, . . . , X� ∈

Σ∪N , which represents all strings that have an odd number of partitions into
w1 · · · w�, with each wi representable as Xi;

– S ∈ N is the initial symbol.

The grammar must satisfy the following condition. Let ̂G = (Σ,N, ̂R,S) be the
corresponding ordinary grammar, with ̂R = {A → X1 · · · X� | A → X1 � · · · �
X� ∈ R }. It is assumed that, for every string w ∈ Σ∗, the number of parse trees
of w in ̂G is finite; if this is not the case, then G is considered ill-formed.

Then, for each A ∈ N , the language LG(A) is defined as the set of all strings
with an odd number of parse trees from A in ̂G.

Remark 2. There are several ways to get an ill-formed GF(2)-grammar. The
most common one is caused by ε-s in derivations causing the number of parse
trees for some words to be infinite. However, each well-formed GF(2)-grammar
has an equivalent GF(2)-grammar in Chomsky normal form [3, Theorem 5].
Chomsky normal form has the very convenient property that all strings have a
finite number of parse trees.

Remark 3. Every unambiguous grammar can be seen as a GF(2)-grammar that
defines the same language.

Theorem A ([3]). Let G = (Σ,N,R, S) be a GF(2)-grammar. Then the substi-
tution A = LG(A) for all A ∈ N is a solution of the following system of language
equations.

A =
⊕

A→X1�···�X�∈R

X1 � · · · � X� (A ∈ N)

Multiple rules for the same nonterminal symbol can be denoted by separating
the alternatives with the “sum modulo two” symbol (⊕), as in the following
example.

Example 4 ([3]). The following GF(2)-grammar defines the language { a�bmcn |
� = m or m = n, but not both }.

S → A ⊕ C A → (a � A) ⊕ B

B → (b � B � c) ⊕ ε C → (C � c) ⊕ D

D → (a � D � b) ⊕ ε

Indeed, each string a�bmcn with � = m or with m = n has one or two parse
trees, and there are two canceling out parse trees exactly when � = m = n.
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Example 5 ([3]). The following grammar describes the language { a2n | n � 0 }:

S → (S � S) ⊕ a.

By Theorem A, the language S satisfies equation S = (S�S)⊕a. The main idea
behind this grammar is that the GF(2)-square over a unary alphabet doubles
the length of each string: L � L = { a2� | a� ∈ L }. The grammar iterates this
doubling to produce all powers of two.

As the previous example illustrates, GF(2)-grammars can describe non-regular
unary languages, unlike ordinary grammars. We will need the classification of
unary languages describable by GF(2)-grammars in the following Sections.

Definition 6. A set of natural numbers S ⊆ N is called q-automatic [1] if there
exists a deterministic finite automaton over the alphabet Σq = {0, 1, . . . , q − 1}
recognizing base-q representations of these numbers.

Definition 7. Similarly, a language L over a unary alphabet is 2-automatic if
and only if the corresponding set { |w| | w ∈ L } is 2-automatic.

Let Fq[t1, t2, . . . , tk] denote the ring of polynomials in variables t1, t2, . . . , tk over
the q-element field GF(q), and let Fq[[t1, t2, . . . , tk]] denote the ring of formal
power series in the same variables over the same field.

Definition 8. A formal power series f ∈ Fq[[t]] is said to be algebraic if there
exists a non-zero polynomial P with coefficients from Fq[t], such that P (f) = 0.

Theorem B (Christol’s theorem for GF(2) [5]). Formal power series f =
∑∞

n=0 fntn ∈ F2[[t]] is algebraic if and only if the set {n ∈ N0 | fn = 1 } is
2-automatic.

Theorem C (GF(2) grammars pver unary alphabets [10]). For a unary
alphabet, the class of all 2-automatic languages coincides with the class of lan-
guages described by GF(2)-grammars.

3 Subsets of a∗b∗

Suppose that some GF(2)-grammar over the alphabet Σ = {a, b} generates a
language that is a subset of a∗b∗. What does the resulting language look like?

It is convenient to associate subsets of a∗b∗ with (commutative) formal power
series in two variables a and b over the field F2. This correspondence is similar
to the correspondence between languages over a unary alphabet with GF(2)-
operations (�,⊕) and formal power series in one variable with multiplication
and addition [10].

Formally speaking, for every set S ⊂ N
2
0, the language { anbm | (n,m) ∈ S } ⊂

a∗b∗ corresponds to the formal power series
∑

(n,m)∈S anbm in variables a and b.
Let asSeries : 2a∗b∗ → F2[[a, b]] denote this correspondence. Then asSeries(K ⊕
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L) = asSeries(K)+asSeries(L), so symmetric difference of languages corresponds
to addition of power series.

On the other hand, multiplication of formal power series does not always cor-
respond to the GF(2)-concatenation of languages. Indeed, GF(2)-concatenation
of subsets of a∗b∗ does not have to be a subset of a∗b∗. However, the correspon-
dence does hold in the following important special case.

Lemma 9. If K ⊂ a∗ and L ⊂ a∗b∗, then asSeries(K � L) = asSeries(K) ·
asSeries(L). The same claim holds when K ⊂ a∗b∗ and L ⊂ b∗.

Proof (a sketch). Follows from definitions.

Let A denote the set of all algebraic power series from F2[[a]]. By Christol’s
theorem [5], A corresponds to the set of all 2-automatic languages over {a}.
Similarly, let B denote the set of all algebraic power series from F2[[b]].

Let F2[a, b] denote the set of all polynomials in variables a and b by poly(a, b)
and the set F2(a, b) of all rational functions in variables a and b by rat(a, b).
It should be mentioned that poly(a, b) is a subset of F2[[a, b]], but rat(a, b) is
not. Indeed, 1

a ∈ rat(a, b), but 1
a /∈ F2[[a, b]]. The following statement is true:

rat(a, b) ⊂ F2((a, b)), where F2((a, b)) denotes the set of all Laurent series in
variables a and b. Here, rational functions and Laurent series are defined as
the fractions of polynomials and formal power series respectively (with equality,
addition and multiplication defined in the usual way).

Definition 10. Let Ra,b denote the set of all Laurent series that can be repre-
sented as

∑n
i=1 AiBi

p , where n is a nonnegative integer, Ai ∈ A and Bi ∈ B for
all i from 1 to n, and p ∈ poly(a, b), p �= 0.

It is not hard to see that Ra,b is a commutative ring. However, a stronger state-
ment is true:

Lemma 11. Ra,b is a field.

Proof (outline). Ra,b is the result of adjoining the elements of A ∪ B, which are
all algebraic over rat(a, b), to rat(a, b). It is known that the result of adjoining
an arbitrary set of algebraic elements to a field is still a field.

4 The Main Result for Subsets of a∗b∗

Let us establish our main result about subsets of a∗b∗.

Theorem 12. Assume that a language K ⊂ a∗b∗ is described by a GF(2)-
grammar. Then the corresponding power series asSeries(K) is in the set Ra,b.

Proof. Without loss of generality, the GF(2)-grammar G that describes K is in
Chomsky normal form [3, Theorem 5]. Moreover, we can assume that K does
not contain the empty string.
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The language a∗b∗ is accepted by the following DFA M : M has two states
qa and qb, both accepting, and its transition function is δ(qa, a) = qa, δ(qa, b) =
qb, δ(qb, b) = qb.

Let us formally intersect the GF(2)-grammar G with the regular language
a∗b∗, recognised by the automaton M (the construction of intersection of an
ordinary grammar with regular expression by Bar-Hillel et al. [4] can be easily
adapted to the case of GF(2)-grammars [10, Section 6]). The language described
by the GF(2)-grammar will not change, because it already was a subset of a∗b∗

before.
The grammar itself changes considerably, however. Every nonterminal C of

the original GF(2)-grammar splits into three nonterminals: Ca→a, Ca→b and
Cb→b. These nonterminals will satisfy the following conditions: L(Ca→a) =
L(C) ∩ a∗, L(Cb→b) = L(C) ∩ b∗ and L(Ca→b) = L(C) ∩ (a∗b+). Also, a new
starting nonterminal S′ appears.

Moreover, every “normal” rule C → DE splits into four rules: Ca→a →
Da→aEa→a, Ca→b → Da→aEa→b, Ca→b → Da→bEb→b and Cb→b → Db→bEb→b.

The following happens with “final” rules: C → b turns into two rules Ca→b →
b and Cb→b → b, and C → a turns into one rule Ca→a → a. Finally, two more
rules appear: S′ → Sa→a and S′ → Sa→b.

For each nonterminal C of G, the languages L(Ca→a) and L(Cb→b) are 2-
automatic languages over the unary alphabets {a} and {b} respectively. Indeed,
every parse tree of Ca→a contains only nonterminals of type a → a. Therefore,
only the symbol a can occur as a terminal in the parse tree. So, L(Ca→a) is
described by some GF(2)-grammar over the alphabet {a}, and is therefore 2-
automatic by Theorem C. Similarly, L(Cb→b) is 2-automatic.

By Theorem A, the languages L(Ca→b) for each nonterminal Ca→b of the
new grammar satisfy the following system of language equations (System (1)).

Here, for each nonterminal C, the summation is over all rules C → DE of the
original GF(2)-grammar. Also, end(Ca→b) denotes either {b} or ∅, depending
on whether or not there is a rule Ca→b → b in the new GF(2)-grammar.

L(Ca→b) = end(Ca→b)⊕
⊕

(C→DE)∈R

(L(Da→a)�L(Ea→b))⊕(L(Da→b)�L(Eb→b))

(1)
It is easy to see that all GF(2)-concatenations on the right-hand sides sat-

isfy the conditions of Lemma 9. For brevity, let Center(C), Left(C), Right(C)
and final(C) denote asSeries(L(Ca→b)), asSeries(L(Ca→a)), asSeries(L(Cb→b))
and asSeries(end(Ca→b)) respectively. Therefore, the algebraic equivalent of Sys-
tem (1) also holds:

Center(C) = final(C) +
∑

(C→DE)∈R

Left(D)Center(E) + Center(D)Right(E).

(2)
Let us look at this system as a system of F2[[a, b]]-linear equations over

variables Center(C) = asSeries(L(Ca→b)) for every nonterminal C of the original
GF(2)-grammar.
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We will consider final(C), Left(C) and Right(C) to be the coefficients of
the system. While we do not know their exact values, the following is known:
final(C) is 0 or b, Left(C) ∈ A as a formal power series that corresponds to a
2-automatic language over the alphabet {a} and, similarly, Right(C) ∈ B. That
means that all coefficients of the system lie in A∪B and, therefore, in Ra,b. The
latter is a field by Lemma 11.

Let n denote the number of nonterminals in the original GF(2)-grammar,
(so there are n nonterminals of type a → b in the new GF(2)-grammar), a
column vector of values Center(C) by x and a column vector of values final(C)
in the same order by f . Let us fix the numeration of nonterminals C of the old
GF(2)-grammar. After that, we can use them as “indices” of rows and columns
of matrices.

Let I be the identity matrix of dimension n × n, A be the n × n matrix with
the sum of Left(D) over all rules C → DE of the original grammar standing on
the intersection of C-th row and E-th column:

AC,E :=
∑

(C→DE)∈R

Left(D). (3)

Similarly, let B be the n × n matrix with

BC,D :=
∑

(C→DE)∈R

Right(E). (4)

Then the equation System (2) can be rewritten as x = f + (A + B)x in
matrix form. In other words, (A + B + I)x = f . Consider a homomorphism
h : F2[[a, b]] → F2 that maps power series to their constant terms (coefficients in
a0b0). Then h(det(A + B + I)) = det(h(A + B + I)) = det(h(A) + h(B) + h(I)),
where h is extended to the n×n matrices with components from F2[[a, b]] in the
natural way (replace each component of the matrix by its constant term).

Because the new GF(2)-grammar for K is also in Chomsky normal form,
all languages L(Ca→a) and L(Cb→b) do not contain the empty word. Therefore,
all series Left(C) = asSeries(L(Ca→a)) and Right(C) = asSeries(L(Cb→b)) have
zero constant terms. Hence, h(A) = h(B) = 0, where by 0 I mean the zero n×n
matrix. On the other hand, h(I) = I. Hence, h(det(A + B + I)) = det(h(A) +
h(B) + h(I)) = det(I) = 1. Therefore, det(A + B + I) �= 0, because h(0) = 0.

Hence, the System (2) has exactly one solution within the field F2((a, b)) —
the actual values of Center(C). Moreover, we know that all coefficients of the
system lie in the field Ra,b ⊂ F2((a, b)). Therefore, all components of the unique
solution also lie within the field Ra,b. Hence, asSeries(K) = asSeries(L(S′)) =
asSeries(L(Sa→a)) + asSeries(L(Sa→b)) also lies in Ra,b.

5 Subsets of a∗b∗c∗

The language { anbncn | n � 0 } is, probably, the most famous example of a
simple language that is not described by any ordinary grammar. Intuitively, it
is not described by a GF(2)-grammar as well.
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There is a natural one-to-one correspondence between subsets of a∗b∗c∗ and
formal power series in variables a, b and c over field F2. Indeed, for every set
S ⊂ N

3
0, we can identify the language { anbmck | (n,m, k) ∈ S } ⊂ a∗b∗c∗ with

the formal power series
∑

(n,m,k)∈S

anbmck. Let asSeries : 2a∗b∗c∗ → F2[[a, b, c]]

denote this correspondence. Then asSeries(L ⊕ K) = asSeries(L) + asSeries(K).
In other words, the symmetric difference of languages corresponds to the sum of
formal power series.

Similarly to Lemma 9, asSeries(K � L) = asSeries(K) · asSeries(L) in the
following important special cases: when K is a subset of a∗, when K is a subset
of a∗b∗ and L is a subset of b∗c∗, and, finally, when L is a subset of c∗. Indeed,
in each of these three cases, symbols “are in the correct order”: if u ∈ K and
v ∈ L, then uv ∈ a∗b∗c∗.

Of course, nothing like this is true in the general case: if K = {b} and
L = {abc}, then K � L = {babc} is not even a subset of a∗b∗c∗.

Denote the set of algebraic power series in variable c by C, the set of poly-
nomials in variables a and c by poly(a, c), et cetera.

Similarly to Definition 10, define Ra,c ⊂ F2((a, c)) and Rb,c ⊂ F2((b, c)).
Finally, denote by Ra,b,c the set of all Laurent series that can be represented as

n
∑

i=1

AiBiCi

pa,b · pa,c · pb,c
, where n is a nonnegative integer, Ai ∈ A, Bi ∈ B, Ci ∈ C for all

i from 1 to n, and pa,b, pa,c pb,c are non-zero elements of poly(a, b), poly(a, c),
poly(b, c).

Lemma 13. Ra,b,c is a subring of F2((a, b, c)). Moreover, Ra,b, Ra,c and Rb,c

are subsets of Ra,b,c.

Proof (a sketch). It is easy to see that Ra,b,c is closed under addition and mul-
tiplication. Setting C1 = C2 = · · · = Cn = pa,c = pb,c = 1 yields Ra,b ⊂ Ra,b,c.

6 The Main Result

Unlike Ra,b, Ra,b,c is not a field (in fact, Theorem 16 tells us that (1 + abc)−1 /∈
Ra,b,c), so a bit more involved argument will be necessary for the proof of the
following theorem:

Theorem 14. Suppose that K ⊂ a∗b∗c∗ is described by a GF(2)-grammar. Then
the corresponding formal power series asSeries(K) is in the set Ra,b,c.

Proof. The proof is mostly the same as the proof of Theorem 12. Let us focus
on the differences. As before, we can assume that K does not contain the empty
word.

In the same manner, we formally intersect our GF(2)-grammar in Chomsky’s
normal form with the language a∗b∗c∗. Now, all nonterminals C of the original
GF(2)-grammar split into six nonterminals: Ca→a, Ca→b, Ca→c, Cb→bCb→c and
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Cc→c. However, their meanings stay the same: for example, L(Ca→b) = L(C) ∩
(a∗b+) and L(Ca→c) = L(C) ∩ (a∗b∗c+).

However, only the “central” nonterminals Ca→c are important, similarly to
the nonterminals of the type a → b in the proof of Theorem 12. Why? Before, we
had some a priori knowledge about the languages L(Ca→a) and L(Cb→b) from
Christol’s theorem. But now, because of Theorem 12, we have a priori knowledge
about the languages L(Ca→b) and L(Cb→c) as well, because they are subsets of
a∗b∗ and b∗c∗ respectively. In a sense, we used Theorem C as a stepping stone
towards the proof of Theorem 12, and now we can use Theorem 12 as a stepping
stone towards the proof of Theorem 14.

Let end(C) denote the language

(

⊕

(C→DE)∈R

L(Da→b) � L(Eb→c)

)

⊕ TC ,

where TC is either {c} or ∅, depending on whether or not there is a “final” rule
Ca→c → c in the new GF(2)-grammar.

This means that we again can express the values asSeries(L(Ca→c)) as
a solution to a system of linear equations with relatively simple coeffi-
cients (denote asSeries(L(Ca→c)) by Center(C), asSeries(L(Ca→a)) by Left(C),
asSeries(L(Cc→c)) by Right(C) and asSeries(end(C)) by final(C)):

Center(C) = final(C)+
∑

(C→DE)∈R

Left(D)Center(E)+Center(D)Right(E) (5)

Here, the summation is over all rules C → DE of the original GF(2)-grammar.
Similarly to the proof of Theorem 12, this system can be rewritten as (A +
B + I)x = f , where x and f are column-vectors of Center(C) and final(C)
respectively, while the matrices A and B are defined as follows:

AC,E :=
∑

(C→DE)∈R

Left(D),

BC,E :=
∑

(C→DE)∈R

Right(E).

Again, this system has a unique solution, because we can prove that det(A +
B + I) �= 0 in the same way as before. Because det(A + B + I) �= 0, then, by
Cramer’s formula, each component of the solution, Center(S), in particular, can
be represented in the following form:

det(A + B + I,but one of the columns was replaced by f)
det(A + B + I)

.

The numerator of the above fraction is the determinant of some matrix, all
whose components are in the ring Ra,b,c by Lemma 13. The denominator, on
the other hand lies in the field Ra,c, because all components of A + B + I lie in
A ∪ C ⊂ Ra,c. Because Ra,c is a field, the inverse of the denominator also lies
in Ra,c. Hence, Center(S) is a product of an element of Ra,b,c and an element
of Ra,c. Hence, Center(S) ∈ Ra,b,c. Therefore, asSeries(K) = asSeries(L(S′)) =
asSeries(L(Sa→a)) + asSeries(L(Sa→b)) + Center(S) also lies in the set.
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Consider the case of larger alphabets. Let Ai be the set of all algebraic formal
power series in variable ai. Similarly to Ra,b,c, let Ra1,a2,...,ak

denote the set of all

Laurent series that can be represented as
∑n

i=1 Ai,1Ai,2 . . . Ai,k
∏

1�i<j�n

pi,j
, for some n � 0,

pi,j ∈ poly(ai, aj) and Ai,j ∈ Aj .

Theorem 15. If a language K ⊂ a∗
1a

∗
2 · · · a∗

k is described by a GF(2)-grammar,
then the corresponding power series asSeries(K) is in the set Ra1,a2,...,ak

.

Proof (a sketch). Induction over k. The induction step is analogous to the way
we used Theorem 12 in the proof of Theorem 14.

7 The Language { anbncn | n � 0 } and Its Relatives

In this subsection, we will use our recently obtained knowledge to prove that
there is no GF(2)-grammar for the language { anbncn | n � 0 }. It will
almost immediately follow that there are no GF(2)-grammars for the languages
{ anbmc� | n = m or m = � } and { anbmc� | n �= m or m �= � } either.

Consider the formal power series asSeries({ anbncn | n � 0 }) =
+∞
∑

n=0
anbncn.

For brevity, let f denote these series. Then f = (1 + abc)−1.
It sounds intuitive that (1+abc)−1 “depends” on a, b and c in a way that the

Ra,b,c cannot capture; series in Ra,b,c should “split” nicely into functions that
depend only on two variables out of three. Now, let us establish that f /∈ Ra,b,c

formally.

Theorem 16. The language { anbncn | n � 0 } is not described by a GF(2)-
grammar.

Proof. Indeed, suppose that the language is described by a GF(2) grammar.
Then, by Theorem 14,

f =

(

n
∑

i=1

AiBiCi

)

/(pqr), (6)

where Ai ∈ A, Bi ∈ B, Ci ∈ C for every i from 1 to n and, also, p ∈ poly(a, b), q ∈
poly(a, c) and r ∈ poly(b, c). Let us rewrite Equation (6) as pqrf =

n
∑

i=1

AiBiCi

with an additional condition that none of p, q and r is zero: otherwise the
denominator of the right-hand side of Equation (6) is zero.

For every formal power series of three variables a, b and c, we can define its
trace: such subset of N

3
0, that a triple (x, y, z) is in this subset if and only if the

coefficient of the series in axbycz is one. Traces of equal power series coincide.
What do the traces of left-hand and right-hand sides of the equation pqrf =

n
∑

i=1

AiBiCi look like? Intuitively, the trace of the left-hand side should be near the
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diagonal x = y = z in its entirety, because pqrf is a polynomial pqr, multiplied

by f =
+∞
∑

i=0

aibici. On the other hand, one can prove that the trace of the right-

hand side is a finite union of disjoint sets of type X × Y × Z.

The formalisation of the above argument leads to the following lemma (proof
omitted due to space limitations):

Lemma 17. If traces of
∑n

i=1 AiBiCi and pqrf coincide, then both are finite
sets.

Because pqrf =
∑n

i=1 AiBiCi, the trace of pqrf is finite by Lemma 17. In
other words, pqrf is a polynomial. Recall that f = (1 + abc)−1, so pqr

1+abc is a
polynomial. Because the product of three polynomials p, q and r is divisible by
an irreducible (and, therefore, prime) element 1 + abc of factorial ring F2[a, b, c],
one of them is also divisible by 1 + abc. But this is impossible, because each of
polynomials p, q and r is non-zero (here we used that condition, at last) and
does not depend on one of the variables.

Therefore, there is no GF(2)-grammar for the language { anbncn | n � 0 }.

Corollary 18. The language { anbmc� | n = m or m = � } is not described by a
GF(2)-grammar.

Proof. Suppose that { anbmc� | n = m or m = � } is described by a GF(2)-
grammar. Then { anbncn | n � 0 } also is, as symmetric difference of { anbmc� |
n = m or m = � } and { anbmc� | n = m or m = �, but not both }. The latter
language is described by a GF(2)-grammar, as Example 4 shows. Contradiction.

Corollary 19. The language { anbmc� | n �= m or m �= � } is not described by a
GF(2)-grammar.

Proof. Otherwise { anbncn | n � 0 } = (a∗b∗c∗) ⊕ { anbmc� | n �= m or m �= � }
would be described by a GF(2)-grammar as well.

We have just proven that the language { anbmc� | n = m or m = � } is
not described by a GF(2)-grammar. Hence, it is inherently ambiguous. Previous
proofs of its inherent ambiguity were purely combinatorial, mainly based on
Ogden’s lemma, while our approach is mostly algebraic.

More importantly, we proved that the language { anbmc� | n �= m or m �= � }
is not described by a GF(2)-grammar, therefore inherently ambiguous. Inherent
ambiguity of this language was a long-standing open question [2, p. 375].

8 Concluding Remarks

Firstly, note that it took us roughly the same effort to prove the inherent ambi-
guity of { anbmc� | n = m or m = � } and { anbmc� | n �= m or m �= � }, despite
the former being a textbook example of inherently ambiguous language and the
latter not being known to be inherently ambiguous before.
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Secondly, it would be possible to modify the argument in Subsect. 7 of this
paper to use only Ginsburg’s and Ullian’s result instead of Theorem 14. However,
I do not know how to discover such a proof without using algebraic intuition that
comes from the proof that uses GF(2)-grammars.

Thirdly, the proofs of Theorems 12 and 14 start similarly to the reasoning
Ginsburg and Spanier used to characterise bounded languages described by ordi-
nary grammars [7,8], but diverge after taking some steps. This is not surprising;
ordinary grammars have good monotonicity properties (a word needs only one
parse tree to be in the language), but bad algebraic properties (solving systems
of language equations is much harder than solving systems of linear equations).
In GF(2)-grammars, it is the other way around: there are no good monotonicity
properties, but algebraic properties are quite remarkable.

Finally, I want to thank Alexander Okhotin and anonymous reviewers from
MFCS 2020, STACS 2021, ICALP 2021 and DLT 2021 conferences for numerous
suggestions that made this paper look like it looks today.
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cations - Informatique Théorique et Applications 13(4), 363–378 (1979)

3. Bakinova, E., Basharin, A., Batmanov, I., Lyubort, K., Okhotin, A., Sazhneva, E.:
Formal languages over GF(2). Information and Computation, p. 104672 (2020)

4. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase-
structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommu-
nikationsforschung 14, 143–177 (1961)

5. Christol, G.: Ensembles presque periodiques k-reconnaissables. Theoret. Comput.
Sci. 9(1), 141–145 (1979). https://doi.org/10.1016/0304-3975(79)90011-2

6. Flajolet, P.: Analytic models and ambiguity of context-free languages. The-
oret. Comput. Sci. 49(2), 283–309 (1987). https://doi.org/10.1016/0304-
3975(87)90011-9

7. Ginsburg, S., Spanier, E.: Bounded ALGOL-like languages. Trans. Am. Math. Soc.
113, 333 (1964)

8. Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas, and languages. Pacific
Jo. Math. 16, 285–296 (1966)

9. Ginsburg, S., Ullian, J.: Ambiguity in context free languages. J. ACM 13, 62–89
(1966)

10. Makarov, V., Okhotin, A.: On the Expressive Power of GF(2)-Grammars. In: Cata-
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Abstract. We prove that for a given deterministic top-down transducer
with look-ahead it is decidable whether or not its translation is definable
(1) by a linear top-down tree transducer or (2) by a tree homomorphism.
We present algorithms that construct equivalent such transducers if they
exist.

1 Introduction

Tree transducers are fundamental devices that were invented in the 1970’s in
the context of compilers and mathematical linguistics. Since then they have
been applied in a huge variety of contexts. The perhaps most basic type of
tree transducer is the top-down tree transducer [13,14] (for short transducer).
Even though top-down tree transducers are very well studied, some fundamental
problems about them have remained open. For instance, given a (deterministic)
such transducer, is it decidable whether or not its translation can be realized by
a linear transducer? In this paper we show that indeed this problem is decidable,
and that in the affirmative case such a linear transducer can be constructed.

In general, it is advantageous to know whether a translation belongs to a
smaller class, i.e., can be realized by some restricted model with more proper-
ties and/or better resource utilization. The corresponding decision problems for
transducers, though, are rarely studied and mostly non-trivial. One recent break-
through is the decidability of one-way string transducers within (functional)
two-way string transducers [1]. Even more recently, it has been proven that
look-ahead removal for linear deterministic top-down tree transducers is decid-
able [10]. In our case, one extra advantage of linear transducers (over non-linear
ones) is that linear transducers effectively preserve the regular tree languages—
implying that forward type checking (where a type is a regular tree language)
can be decided in polynomial time. For non-linear transducers on the other hand,
type checking is DEXPTIME-complete [9,12].

The idea of our proof uses the canonical earliest normal form for top-down
tree transducers [5] (to be precise, our proof even works for transducers with
look-ahead for which a canonical earliest normal form is presented in [6]). A
given canonical earliest transducer M produces its output at least as early as
c© Springer Nature Switzerland AG 2021
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any equivalent linear transducer. From this we can deduce that if M is equivalent
to some linear transducer, then it has two special properties:

1. M is lowest common ancestor conform (lca-conform) and
2. M is zero output twinned.

Lca-conformity means that if the transducer copies (i.e., processes an input sub-
tree more than once), then the output subtree rooted at the lowest common
ancestor of all these processing states may not depend on any other input sub-
tree. Zero output twinned means that in a loop of two states that process the
same input path, no output whatsoever may be produced. These properties are
decidable in polynomial time and if they hold, an equivalent linear transducer
can be constructed.

In our second result we prove that for a transducer (with regular look-ahead)
it is decidable whether or not it is equivalent to a tree homomorphism, and
that in the affirmative case such a homomorphism can be constructed. In order
to obtain this result, we prove that whenever a transducer T is equivalent to a
homomorphism, then any subtree of a certain height of any partial output of T is
either ground, or effectively identical to the axiom of T . This property can again
be checked in polynomial time, and if it holds a corresponding homomorphism
can be effectively constructed.

For simplicity and better readability we consider total transducers (without
look-ahead) in our first result though we remark that the result can be extended
to partial transducers with look-ahead. All proofs for partial transducers with
look-ahead are technical variations of the proofs for the total case and can be
found in the extended version of this paper [11]. Note that our results also
work for given bottom-up tree transducers, because they can be simulated by
transducers with look-ahead [3].

2 Preliminaries

For k ∈ N, we denote by [k] the set {1, . . . , k}. Let Σ = {ek1
1 , . . . , ekn

n } be a ranked
alphabet, where e

kj

j means that the symbol ej has rank kj . By Σk we denote the
set of all symbols of Σ which have rank k. The set TΣ of trees over Σ consists
of all strings of the form a(t1, . . . , tk), where a ∈ Σk, k ≥ 0, and t1, . . . , tk ∈ TΣ .
We denote by [ai ← ti | i ∈ [n]] the substitution that replaces each leaf labeled
ai by the tree ti (where the ai are distinct symbols of rank zero and the ti are
trees). The set V (t) of nodes consists of λ (the root node) and strings i.u, where
i is a positive integer and u is a node. E.g. for the tree t = f(a, f(a, b)) we have
V (t) = {λ, 1, 2, 2.1, 2.2}. For v ∈ V (t), t[v] is the label of v, t/v is the subtree of
t rooted at v, and t[v ← t′] is obtained from t by replacing t/v by t′. The size of
a tree t, denoted by |t|, is its number of nodes, i.e., |t| = |V (t)|.

We fix the set X of variables as X = {x1, x2, x3 . . . } and let Xk =
{x1, . . . , xk}. Let A,B be sets. We let A(B) = {a(b) | a ∈ A, b ∈ B} and
TΣ [S] = TΣ′ where Σ′ is obtained from Σ by Σ′

0 = Σ0 ∪ S. The set of patterns
TΣ{Xk} is TΣ plus all trees in TΣ [Xk] that contain each x ∈ Xk exactly once,
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and in-order of the tree, e.g., f(a, x1, f(x2, x3)) is a pattern. We say that a tree
t ∈ TΣ [Xk], k ≥ 0, is a prefix of t′ if there are suitable trees t1, . . . , tk such
that t[t1, . . . , tk] = t′, where t[t1, . . . , tk] denotes the tree t[xi ← ti | xi ∈ Xk].
By definition, any tree t is a prefix of itself. For trees t1, t2, t1 � t2 denotes the
maximal pattern that is a prefix of t1 and t2. E.g. f(a, g(a))�f(b, b) = f(x1, x2)
and g(g(b)) � g(a) = g(x1).

2.1 Transducers

A deterministic total top-down tree transducer T (or transducer for short) is a
tuple T = (Q,Σ,Δ,R,A) where

– Q is a finite set of states,
– Σ and Δ are the ranked input and output alphabets, respectively, disjoint with

Q,
– R is the set of rules,

and A ∈ TΔ[Q(X1)] is the axiom. For every q ∈ Q and a ∈ Σk, k ≥ 0, the set R
contains exactly one rule of the form q(a(x1, . . . , xk)) → t, where t ∈ TΔ[Q(Xk)]
is also denoted by rhsT (q, a). The size |T | of T is

∑
q∈Q,σ∈Σ |rhsT (q, a)|+|A|. We

say that T is linear if in the axiom and in each right-hand side, every variable
occurs at most once. A transducer h with |Q| = 1 and axiom of the form q(x1)
is called a homomorphism. As h has only one state, we write h(a) instead of
rhs(q, a). For q ∈ Q, we denote by [[q]] the function from TΣ [X] to TΔ[Q(X)]
defined as follows:

– [[q]](s) = rhs(q, a)[q(xi) ← [[q]](si) | q ∈ Q, i ∈ [k]] for s = a(s1, . . . , sk),
a ∈ Σk, and s1, . . . , sk ∈ TΣ [X]

– [[q]](x) = q(x) for x ∈ X.

We define the function [[T ]] : TΣ [X] → TΔ[Q(X)] by [[T ]](s) = A[q(x1) ← [[q]](s) |
q ∈ Q], where s ∈ TΣ [X]. For simplicity we also write T (s) instead of [[T ]](s).
Two transducers T1 and T2 are equivalent if the functions [[T1]], [[T2]] restricted
to ground input trees are equal.

Example 1. Let Σ = {a1, e0} and Δ = {f2, e0}. Consider the transducers T =
(Q,Σ,Δ,R,A) where Q = {q}, A = f(q(x1), q(x1)) and R consists of the rules

q(a(x1)) → f(q(x1), q(x1)) and q(e) → e,

and T ′ = (Q′, Σ,Δ,R′, A′) where Q′ = {q′}, A′ = q′(x1) and R′ consists of

q′(a(x1)) → f(q′(x1), q′(x1)) and q′(e) → f(e, e).

Clearly, it can be verified that both transducers are equivalent, i.e., both trans-
ducers transform a monadic input tree of height n with nodes labeled by a and e
to a full binary tree of height n+1 with nodes labeled by f and e. Additionally,
we remark that T ′ is a homomorphism.
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We say that a transducer T is earliest if
⊔{[[q]](s) | s ∈ TΣ} = x1 holds for

all q ∈ Q. Informally this means that for each state q ∈ Q there are input trees
s1, s2 ∈ TΣ such that [[q]](s1) and [[q]](s2) have different root symbols. We call
T canonical earliest if T is earliest and for distinct states q1, q2 it holds that a
ground tree s exists such that [[q1]](s) �= [[q2]](s).

Consider the transducers in Example 1. Clearly, T ′ is not canonical earliest
as for all input trees s′ the root symbol of [[q′]](s′) is f . The transducer T on
the other hand is canonical earliest as the root symbol of [[q]](e) is e while for all
s �= e the root symbol of [[q]](s) is f . We remark that canonicity of T is obvious
as T has only one state.

Proposition 1 [5, Theorem 16]. For every transducer T an equivalent canonical
earliest transducer T ′ can be constructed in polynomial time.

Intuitively, any transducer T ′ that is equivalent to a canonical earliest trans-
ducer T cannot generate “more” output than T on the same input. Therefore
the following holds.

Lemma 1. Let T and T ′ be equivalent transducers. Let T be canonical earliest.
Let s ∈ TΣ [X]. Then V (T ′(s)) ⊆ V (T (s)) and if T ′(s)[v] = d ∈ Δ then T (s)[v] =
d for all v ∈ V (T ′(s)).

3 From Transducers to Linear Transducers

In the following let T be a transducer with the same tuple as defined in Sect. 2.1
that is canonical earliest. We show that it is decidable in polynomial time
whether or not there is a linear transducer T ′ equivalent to T and if so how
to construct such a linear transducer.

Before we introduce properties which any canonical earliest transducer that
is equivalent to some linear transducer must have, consider the following defini-
tions. We call a non-ground tree c ∈ TΣ{X1} a context. Let s be an arbitrary
tree. For better readability we simply write cs instead of c[x1 ← s]. Let v1 and
v2 be distinct nodes with labels q1(x1) and q2(x1), respectively, that occur in
T (c), where q1, q2 ∈ Q. Then we say that q1 and q2 occur pairwise in T .

Next we show a transducer for which no equivalent linear transducer exists.

Example 2. Let T0 be a canonical earliest transducer with axiom f(q1(x1),
q2(x1)) and the following rules.

q1(a(x1)) → g(q1(x1)) q2(a(x1)) → q2(x1)
q1(e) → e q2(e) → e
q1(e′) → e′ q2(e′) → e′

Clearly, T0(an(x1)) = f(gn(q1(x1)), q2(x1)) for all n ∈ N. Assume that a linear
transducer T ′ equivalent to T0 exists. Clearly T ′(an(x1)) cannot be of the form
f(t1, t2), where t1 and t2 are some trees as otherwise either t1 or t2 must be
ground due to the linearity of T ′. This contradicts Lemma 1 as T0 is canonical
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earliest. Hence, T ′(an(x1)) = q′
n(x1) holds for all n ∈ N where q′

n is some state.
Thus, for all k ∈ N a “partial” input tree s exists such that the height difference
of T0(s) and T ′(s) is greater than k. It is well known that the height difference
of the trees generated by equivalent transducer on the same partial input tree is
bounded [9]. Hence, T ′ cannot exist.

The reason why no linear transducer that is equivalent to the transducer T0

in Example 2 exists, is because q1 and q2 occur pairwise and [[q1]](a(x1)) and
[[q2]](a(x1)) are “loops of which at least one generates output”. This leads us to
our first property, which we call zero output twinned.

Let c be a context and q1 and q2 be pairwise occurring states. We write
(q1, q2)
c(q′

1, q
′
2) if a node with label q′

i(x1) occurs in [[qi]](c) for i = 1, 2 and
either q1 or q2 generate output on input c, i.e., either [[q1]](c) �= q′

1(x1) or [[q2]](c) �=
q′
2(x1) holds.

Definition 1. Let q1 and q2 be pairwise occurring states of T . We say that T is
zero output twinned if no context c �= x1 exists such that (q1, q2)
c(q1, q2) holds.

In other words, T is zero output twinned if there exists no context c such that
[[q1]](c) and [[q2]](c) are loops and at least one of those loops generates output.

Lemma 2. If T is equivalent to a linear transducer, then T is zero output
twinned. It can be decided in time polynomial in |T | whether or not T is zero
output twinned.

Consider the following transducer. Though this transducer is zero output
twinned no equivalent linear transducer exists.

Example 3. Let Σ = {a2, e0} and Δ = {f3, e00, e
0
1, e

0
2, e

0
3}. Consider the canonical

earliest transducer T0 = (Q,Σ,Δ,R,A). Let A = q0(x1) be the axiom of T0 and

q0(a(x1, x2)) → f(q1(x1), q2(x2), q3(x1)) q0(e) → e0
qi(a(x1, x2)) → f(ei, ei, ei) qi(e) → ei,

where i = 1, 2, 3, be the rules of T0. Clearly, it holds that T0(a(x1, x2)) =
f(q1(x1), q2(x2), q3(x1)). Note that as no loops occur in T0, T0 is zero output
twinned. Assume that a linear transducer T ′ equivalent to T0 exists. Anal-
ogously to Example 2, Lemma 1 and the linearity of T ′ yield that either
T ′(a(x1, x2)) = q′(x1) or T ′(a(x1, x2)) = q′(x2) where q′ is some state.

W.l.o.g. consider the former case. Let s1, s2 be distinct trees. Then [[q′]](s1) =
T ′(a(s1, s2)) = T0(a(s1, s2)) = f([[q1]](s1), [[q2]](s2), [[q3]](s1)), which means that
the tree generated by q2 cannot depend on its input s2. This contradicts the
earliest property of T0. Hence, T ′ cannot exist.

In the following we show that the situation described in Example 3 occurs if
the transducer does not have the following property which we call lowest common
ancestor conform.

First, we introduce some terminology. Let v, v′ be nodes. Recall that by
definition nodes are strings. Then v is an ancestor v′ if v is a prefix of v′.
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Furthermore, by the lowest common ancestor of nodes v1, . . . , vn we refer to the
longest common prefix of those nodes. Let s ∈ TΣ{Xk}. For 1 ≤ i ≤ k, we
denote by νT (s, xi) the lowest common ancestor of all leaves of T (s) that have
labels of the form q(xi) where q ∈ Q. If T and s are clear from context we just
write ν(xi).

Definition 2. The transducer T is called lowest common ancestor conform (lca-
conform for short) if for an arbitrary input tree s ∈ TΣ{Xk}, k ∈ N, the output
tree T (s) is lca-conform. An output tree T (s) is lca-conform if for all xi such
that νT (s, xi) is defined, no leaf with label of the form q(xj), j �= i, occurs in
T (s)/νT (s, xi).

For instance, T0 in Example 3 is not lca-conform because νT0(a(x1, x2), x1)
is the root of T0(a(x1, x2)) = f(q1(x1), q2(x2), q3(x1)) and this tree obviously
contains q2(x2). On the other hand, the transducer in Example 2 is lca-conform
because its input trees are monadic.

Lemma 3. If T is equivalent to a linear transducer, then T is lca-conform. It
can be decided in time polynomial in |T | whether or not T is lca-conform.

Proof. We prove that T is lca-conform if T is equivalent to a linear transducer T ′.
For the second part of our statement we refer to [11].

Let s ∈ TΣ{Xk}. Let v be a node such that T ′(s)[v] = q′(xi) where q′ is
some state and 1 ≤ i ≤ k. First, we show that the subtree T (s)/v contains no
leaves that have labels of the form q(xj) with i �= j. Note that due to Lemma 1,
T (s)/v is defined.

Assume to the contrary that T (s)/v contains some node labeled q(xj), i.e.,
T (s)[v̂] = q(xj) for some descendant v̂ of v. Consider the trees T ′(s[xi ← s′])
and T (s[xi ← s′]) where s′ is some ground tree. Clearly T (s[xi ← s′])[v̂] = q(xj)
and hence T (s[xi ← s′])/v is not ground. However T ′(s[xi ← s′])/v = [[q′]](s′)
is ground. This contradicts Lemma 1. Thus we deduce that for all v ∈ V (T ′(s))
if T ′(s)/v = q′(xi) then only leaves with labels in Δ or with labels of the form
q(xi), q ∈ Q, occur in T (s)/v (*).

We now show that if leaves with label of the form q(xi) occur in T (s) then
v is an ancestor node of all those leaves. Assume to the contrary that some leaf
ṽ with label of the form q(xi) occurs in T (s) that is not a descendant of v. Due
to Lemma 1 it is clear that either ṽ /∈ V (T ′(s)) or T ′(s)[ṽ] is not labeled by a
symbol in Δ. In both cases, some ancestor of ṽ must have label of the form q′(xj)
in T ′(s) otherwise T and T ′ cannot be equivalent. Note that by definition any
node is an ancestor of itself. As ṽ is not a descendant of v, T ′(s)[v] = q′(xi) and
T ′ is linear, we conclude that xi �= xj which contradicts (*). Thus, we conclude
that v is a common ancestor of all leaves with label of the form q(xi) in T (s).

As T (s)/v does not contain leaves that have label of the form q(xi) neither
does T (s)/ν(xi) as v is an ancestor of ν(xi). Hence, T (s) is lca-conform. ��
The next lemma is used to show that the following construction terminates.
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Lemma 4. Let T be lca-conform and zero output twinned. Let c be a context.
Then height(T (c)/ν(x1)) ≤ (|Q|2 + 1)η, where η = max{height(rhs(q, a)) | q ∈
Q, a ∈ Σ}.

3.1 Constructing a Linear Transducer

Subsequently, we give a construction which yields a linear transducer T ′ equiv-
alent to a given canonical earliest transducer T if T is zero output twinned and
lca-conform.

Assume in the following that the axiom A of T is not ground (the case that
A is ground is trivial). By Lemma 1 the output of T is “ahead” of the output
of any equivalent transducer on the same input tree. Therefore, the basic idea is
the same as in [6] and [10]: we store the “aheadness” of T compared to T ′ in the
states of T ′. The states of T ′ are of the form 〈t〉, where t is a tree in TΔ[Q] \ TΔ

that has a height bounded according to Lemma 4. Furthermore, we demand that
the root of t is the lowest common ancestor of all leaves of t labeled by symbols
in Q. For such a state 〈t〉 we write t[← x] instead of t[q ← q(x) | q ∈ Q] for
better readability.

We define T ′ inductively. We define its axiom as A′ = c〈t0〉(x1), where c is
a context and t0 ∈ TΔ[Q] such that ct0[← x1] = A. Note that t0[← x1] is the
subtree of A rooted at the lowest common ancestor of all nodes with labels of
the form q(x1). We now define the rules of T ′. Let 〈t〉 be a state of T ′ where
t = p[xi ← qi | qi ∈ Q, i ∈ [n]] and p ∈ TΔ[Xn]. Let a ∈ Σk with k ≥ 0. Then,
we define 〈t〉(a(x1, . . . xk)) → p′[xj ← 〈tj〉(xj) | j ∈ [k]] where p′ ∈ TΔ[Xk] such
that

p′[xj ← tj [← xj ] | j ∈ [k]] = p[xi ← rhs(qi, a) | i ∈ [n]]

and tj [← xj ] is the subtree of p[xi ← rhs(qi, a) | i ∈ [n]] rooted at the lowest
common ancestor of all nodes with labels of the form q(xj). In the following we
show that states of T ′ indeed store the “aheadness” of T compared to T ′.

Lemma 5. Assume that in our construction some state 〈t〉 has been defined at
some point. Then a context c exists such that T (c)/ν(x1) = t[← x1].

Lemmas 4 and 5 yield that the height of any tree t such that 〈t〉 is a state
of T ′ is bounded. Thus, our construction terminates. In [11] we further show
that our construction is well defined (even for partial transducers with regular
look-ahead) and that the transducer of our construction is indeed equivalent to
the given transducer.

The construction and Lemmas 2 and 3 yield the following theorems.

Theorem 1. Let T be a canonical earliest transducer. An equivalent linear
transducer T ′ exists if and only if T is zero output twinned and lca-conform.

Theorem 2. Let T be a transducer. It is decidable in polynomial time whether
or not an equivalent linear transducer T ′ exists, and if so T ′ can be effectively
constructed.
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Using the results of [10] we show in [11] that our problem is decidable even
for partial transducer with regular look-ahead.

Theorem 3. Let M be a transducer with regular look-ahead. It is decidable
whether an equivalent linear transducer T exists and if so, T can be effectively
constructed.

A transducer is partial if rhs, seen as a function is partial. We remark that
while it can be decided in polynomial time whether or not for a given total
transducer an equivalent linear transducer exists, the time complexity is double-
exponential if the transducer is partial. This is because the canonical earliest
normal can be constructed with that complexity [5]; the same holds in the pres-
ence of regular-look ahead.

Though for a given total transducer it is decidable in polynomial time
whether or not an equivalent linear transducer exists, the linear transducer of
our construction may be exponentially larger than the given transducer.

Example 4. Let Σ = {a1, e0} and Δ = {f2, e,0 }. Let T = (Q,Σ,Δ,R,A) where
Q = {q0, . . . , q9}, A = q0(x1) and

qi(a(x1)) → f(qi+1(x1), qi+1(x1)) qi(e) → e
q9(a(x1)) → f(e, e) q9(e) → e

where i = 0, . . . , 8 be the rules of R. The transducer T transforms a monadic
tree ane into a full binary tree of the same height if n < 10 and into a full
binary tree of height 10 if n ≥ 10. Clearly, T is canonical earliest. Furthermore,
T is zero output twined as there are no loops and lca-conform as its input trees
are monadic. We denote by tj , j = 0, . . . , 9, the full binary tree of height j
whose leaves are labeled by qj and whose remaining nodes are labeled by f .
The linear transducer our construction yields is T ′ = (Q′, Σ,Δ,R′, A′) where
Q′ = {〈tj〉 | j = 1, . . . , 9}, A′ = 〈t0〉(x1) = 〈q0〉(x1) and

〈ti〉(a(x1)) → 〈ti+1〉(x1) 〈ti〉(e) → ti[qi ← e]
〈t9〉(a(x1)) → t9[q9 ← f(e, e)] 〈t9〉(e) → t9[q9 ← e]

where i = 0, . . . , 8 are the rules of R′. Informally, T ′ must delay its output until
the leaf is read or until T ′ has verified that its input tree has height at least
10 due to its linearity. The argument is analogous to Example 2. Clearly, T ′ is
exponentially larger than T as rhs(〈t9〉, a) alone has size 210.

4 When is a Transducer Equivalent to a Homomorphism?

In this section we address the question whether or not a given (total) transducer
is equivalent to some homomorphism. In the following let T be a canonical
earliest total transducer with the same tuple as defined in Sect. 2.1. If we consider
the task of deciding whether or not a homomorphism h equivalent to T exists,
then it is tempting to believe that h is equivalent to T iff the canonical earliest
normal form of T has only one state. Interestingly, this is not the case.
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Example 5. Let Σ = {a1, e0} and T1 be defined with the axiom f(q1(x1), q2(x1))
and the rules

q1(a(x1))) → f(q1(x1), q2(x1)) q2(a(x1))) → f(q1(x1), q2(x1))
q1(e) → a q2(e) → b

Clearly T1 is canonical earliest and equivalent to the homomorphism h with

h(a(x1)) = f(h(x1), h(x1)) h(e) = f(a, b)

This is rather surprising when considering string transducers, i.e., trans-
ducers restricted to monadic trees. It is known that canonical earliest string
transducers are state-minimal, i.e., there is no equivalent string transducer with
fewer states [8, Section 2.1.2] [2, Section 5]. Hence, the decision problem for string
transducer corresponds to determining the equivalent canonical earliest string
transducer.

While the general case is more complicated than expected (see Example 5),
the decision problem is simple if the axiom of T is of the form q0(x1).

Lemma 6. Let T be a canonical earliest transducer with axiom q0(x1). Whether
or not an equivalent homomorphism h exists is decidable in linear time.

Proof. If T has only one state, then T is by definition a homomorphism. If, on
the other hand, T has more than one state, then there is no homomorphism
equivalent to T . Assume to the contrary that there is a homomorphism h equiv-
alent to T . Due to the equivalence of h and T , h(s) = T (s) = [[q0]](s) holds for
all s ∈ TΣ . As T is earliest, there are trees s1, s2 ∈ TΣ such that h(s1) = [[q0]](s1)
and h(s2) = [[q0]](s2) have different root symbols. Hence, h is earliest too. As h
has only a single state it is obvious that h is a canonical earliest transducer. The
existence of h contradicts the canonicity of T according to Theorem 15 of [5].
Clearly the number of states of T can be determined in linear time. ��

Subsequently, we therefore assume that the axiom of T is not of the form
q0(x1). Furthermore, we assume that the axiom is not ground as this case is
trivial. Let t1 ∈ TΣ [Q(X)] and t2 ∈ TΣ [Q(X)]. Denote by Xt1 and Xt2 the
elements of X that occur in t1 and t2, respectively. We write t1 � t2 if there is a
bijection f from Xt1 to Xt2 , such that t2 = t1[q(a) ← q(f(a)) | q ∈ Q, a ∈ Xt1 ].
We say that a tree t ∈ TΣ [Q(X)] is subtree conform to t′ ∈ TΣ [Q(X)] if either
(1) t is ground or, (2) t � t′, or (3) t = a[t1, . . . , tk], a ∈ Σk, and ti is subtree
conform to t′ for all i ∈ [k].

Example 6. Consider the trees t1 = f(q1(a1), q2(a2)), t2 = f(q1(b1), q2(b1)), and
t3 = f(q1(a3), q2(a3)). Clearly t1 �� t2 as there is no suitable bijection, but
t3 � t2 holds. The tree t = d(e, g(f(q1(a1), q2(a1))), f(q1(a2), q2(a2))) is subtree
conform to t2. While t �� t2, its subtree e is ground, its subtree g(f(q1(a1), q2(a1))
is subtree conform to t2 and for its last subtree, f(q1(x2), q2(x2)) � t2 holds.
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Let T be an arbitrary canonical earliest transducer with the axiom A. In
the following, we show that T is equivalent to a homomorphism h if and only if
T (a(x1, . . . , xk)) is subtree conform to A for all a ∈ Σ. Consider Example 5. The
transducer T1 is equivalent to the homomorphism h1 and T1(a(x1)) and T1(e)
are subtree conform to f(q1(x1), q2(x1)).

Lemma 7. Let T be a canonical earliest transducer and A be the axiom of T . If
T is equivalent to a homomorphism h, then T (a(x1, . . . , xk)) is subtree conform
to A for all a ∈ Σ.

Lemma 8. Let T be a transducer and A be its axiom. If T (a(x1, . . . , xk)) is
subtree conform to A for all a ∈ Σ, then T is equivalent to a homomorphism.

Proof. We construct the homomorphism h as follows. Let a ∈ Σk, k ≥ 0. If
T (a(x1, . . . , xk)) is ground, then we define h(a(x1, . . . , xk)) = T (a(x1, . . . , xk)).
Otherwise, our premise yields T (a(x1, . . . , xk)) = t[xj ← A(j) | j ∈ [k]] for a
suitable t ∈ TΔ[Xk] where A(j) = A[q(x1) ← q(xj) | q ∈ Q]. Then we define
h(a(x1, . . . , xk)) = t[xj ← h(xj) | j ∈ [k]]. We prove the equality of h and T in
[11]. ��

A homomorphism equivalent to a given transducer T exists, if and only if
T (a(x1, . . . , xk)) is subtree conform to A for all a ∈ Σ due to Lemmas 7 and 8.
In [11] we show that subtree conformity to A is decidable in polynomial time
and that an equivalent homomrphism can be constructed in polynomial time in
the affirmative case. Hence the following theorem holds.

Theorem 4. The question whether a canonical earliest transducer is equivalent
to a homomorphism is decidable in polynomial time. In the affirmative case, such
a homomorphism can be constructed in polynomial time.

Transducers with Regular Look-Ahead and Homomorphisms

We now consider partial transducers with regular look-ahead (or la-transducers
for short). Such devices consist of a partial transducer and a bottom-up tree
automaton, called the look-ahead automaton (or la-automaton for short). Infor-
mally, an la-transducer processes its input in two phases: First each input node
is annotated by the active states of the bottom-up automaton at its children,
i.e., an input node v labeled by a ∈ Σk is relabeled by 〈a, l1, . . . , lk〉 where li is
the state the look ahead automaton arrives in when processing the i-th subtree
of v. Using the information the relabeled nodes provide about their subtrees, the
transducer then processes the relabeled tree.

The basic idea for answering the question whether there is an equivalent
homomorphism for an arbitrary partial transducer M with regular look-ahead is
as follows. Let Σ be the input alphabet of M . If M is equivalent to a homomor-
phism, a subset Σ′ of Σ exists such that M is total if restricted to TΣ′ , i.e., M(s)
is defined for all s ∈ TΣ′ , and undefined for all trees in TΣ \ TΣ′ . Let M ′ be M
restricted to TΣ′ . Assume that a homomorphism h equivalent to M ′ exists, then
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there exists a transducer T equivalent to M ′. (This is because h is by definition
a transducer.) As M ′ is obviously total, we apply the decision procedure in [6]
to determine whether T exists and to construct the transducer T as described
in [6]—if affirmative. As T is total, we can determine the homomorphism h
equivalent to T (and hence M ′) as described before. Clearly, a homomorphism
equivalent to M can be obtained from h. For details on how to determine M ′

and proofs we refer to [11].
In [6] it is shown that for every total la-transducer one can construct an

equivalent canonical earliest la-transducer. Thus, in the following assume that
M ′ is canonical earliest. Note that in order to use the decision in [6] to construct a
transducer T equivalent to M ′ we require a difference bound for M ′. A difference
bound is a natural number dif such that dif is an upper bound on the height of
the difference trees of M ′. Difference trees are defined as follows. Consider some
context c over Σ and states l1, l2 of the la-automaton of M ′. Intuitively, when
processing cs, s ∈ TΣ , T cannot make use of any annotations and hence does not
know whether l1 or l2 would be reached by the la-automaton when processing
s. Therefore, when processing c, T can at most generate the largest common
prefix t of M ′(cl1) and M ′(cl2), where for i = 1, 2, M ′(cli) denotes output of
M ′ when processing c with the information that its la-automaton reaches li
when processing s. We formally prove this statement in [11]. Let v be a node
such that t[v] = x1, then M ′(cl1)/v and M ′(cl2)/v are called difference trees
of M ′. Intuitively, to simulate M ′, T has to store difference trees in its states,
which means that if M ′ and T are equivalent, then only finitely many difference
trees can exist. This in turn means that the height of all difference trees must
be bounded. In the following we show that the difference bound of M ′ can be
determined if M ′ is equivalent to a homomorphism h.

Lemma 9. Let l1, . . . , ln be states of the la-automaton and s1, . . . , sn be trees
of minimal height that reach these states. Let i ∈ [n] such that height(M ′(si)) ≥
height(M ′(sj)), j �= i, then, height(M ′(si)) is a difference bound of M ′.

Using Lemma 9 we can easily determine dif ∈ N such that dif is an upper
bound on the height of the difference trees of M ′ if a homomorphism equivalent
to M ′ exists. Using dif we can apply Algorithm 44 of [6] to determine whether
there is a transducer equivalent to M ′. If Algorithm 44 of [6] yields “no” then
obviously there cannot be a homomorphism equivalent to M ′. If on the other
hand Algorithm 44 yields a transducer T , then we have to test whether T and
M ′ are truly equivalent. Equivalence of T and M ′ is decidable [9, Theorem 2].
We must test this equivalence because our input for Algorithm 44 of [6] may
yield false positives. This occurs if there is no homomorphism equivalent to M ′

as in this case the difference bound obtained via Lemma 9 is potentially wrong
which may cause Algorithm 44 to generate a transducer T that is not equivalent
to M ′. If our test yields that M ′ and T are not equivalent, then we output “no”.

Otherwise we can determine whether there is a homomorphism h equivalent
to T as described in the previous subsection.
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Theorem 5. It is decidable whether there is a homomorphism equivalent to a
given la-transducer.

5 Conclusions

We have proved that for a deterministic top-down tree transducer M with look-
ahead, it is decidable whether or not its translation can be realized by a linear
transducer (without look-ahead). We have further shown that for such a trans-
ducer M it is decidable whether or not its translation is realizable by a one-state
transducer (called a tree homomorphism). In both cases, equivalent transducers
in the respective subclass can be constructed if affirmative.

One may wonder whether our results can be generalized to larger classes of
given transducers. It can easily be generalized to nondeterministic top-down tree
transducers: first decide if the transducer is functional [7] and if so, construct an
equivalent deterministic top-down tree transducer with look-ahead [4]. Note that
the result of Engelfriet [4] shows that for any composition of nondeterministic
top-down and bottom-up transducers that is functional, an equivalent determin-
istic top-down tree transducer with look-ahead can be constructed. This raises
the question, whether or not for a composition of nondeterministic transducers,
functionality is decidable. To the best of our knowledge, this is an open problem.

In future work, it would be nice to extend our result of deciding homomor-
phisms within deterministic top-down tree transducers, to the case that for a
given k one decides whether an equivalent top-down tree transducer with k
states exists (and if so construct such a transducer). This would offer a state-
minimization method.
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Abstract. This paper establishes an analogue of Greibach’s hardest lan-
guage theorem (“The hardest context-free language”, SIAM J. Comp.,
1973) for the subfamily of LL languages. The first result is that there
is a language L0 defined by an LL(1) grammar in the Greibach nor-
mal form, to which every language L defined by an LL(1) grammar in
the Greibach normal form can be reduced by a homomorphism, that is,
w ∈ L if and only if h(w) ∈ L0. Then it is shown that this statement
does not hold for LL(k) languages. The second hardest language theorem
is then established in the following form: there is a language L0 defined
by an LL(1) grammar in the Greibach normal form, such that, for every
language L defined by an LL(k) grammar, there exists a homomorphism
h, for which w ∈ L if and only if h(w$) ∈ L0, where $ is a new symbol.

1 Introduction

Much of the computational complexity theory is centered around complete prob-
lems in complexity classes, which are as hard to decide as any problem from
that class. The same notion is adapted for the complexity of parsing algorithms:
some families of formal grammars have a hardest language, that is, a language
defined by a grammar from some family, such that the problem of parsing every
language from the family can be reduced to parsing for that single “hardest”
grammar. The first and the most famous result of this kind is Greibach’s [4]
“hardest context-free language”: this language is defined by a fixed grammar G0

over an alphabet Σ0, and for every grammar G over some alphabet Σ, there is
a homomorphism hG : Σ∗ → Σ∗

0 , such that one can parse w in G by parsing
hG(w) in G0. Thus, the parsing complexity of context-free languages equals the
complexity of parsing a single language, L(G0).

On the other hand, for one of the two most important families of languages
with linear-time parsing, the LR( k) languages, Greibach [5] proved that there
is no hardest language in this family, in the sense given above.

The existence of hardest languages under homomorphic reductions has been
investigated for some further families of formal grammars. For the subclass of
linear grammars, Boasson and Nivat [2] proved that there is no hardest lan-
guage. For generalizations of ordinary (“context-free”) grammars with Boolean
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operations—conjunctive grammars [10,12] and Boolean grammars [11]—hardest
languages do exist [13]. On the other hand, no hardest languages are possible
for the intermediate family of linear conjunctive languages [9].

A few results of this kind are known for several families of automata. Čuĺık
and Maurer [3] proved that there is no hardest regular language. For one-counter
automata, non-existence of hardest languages was established by Autebert [1].
Recently, the authors constructed a hardest language for linear-time cellular
automata [9].

This paper investigates the existence of hardest languages for the other clas-
sical language family parsable in linear time besides the LR(k) languages: the
LL(k) languages, which are recognized by top-down parsers with a k-symbol
lookahead. This family is not closed under inverse homomorphisms, see Lehti-
nen and Okhotin [8]. This example is revisited in Sect. 2 and modified to show
the non-closure already for the lowest family in the hierarchy: the LL(1) gram-
mars in Greibach normal form (these are “simple grammars” of Korenjak and
Hopcroft [6]). This does not affect possible existence of hardest languages, but if
they do exist, then their inverse homomorphic images would include languages
beyond LL(k).

Indeed, in spite of this non-closure, there is a hardest language theorem: the
first result of this paper, presented in Sect. 3, is that LL(1) grammars in the
Greibach normal form have a hardest language with respect to reductions by
homomorphisms. It is natural to try extending this result to the entire LL(k)
hierarchy. An apparent obstacle is presented in Sect. 4: it is proved that already
for the family of LL(1) languages, there is no hardest language under the strict
definition of Greibach, that is, with respect to reductions by homomorphisms.
This obstacle leads to a small modification of the definition of hardest languages:
as shown in Sect. 5, if a single end-marker is appended to the input, then a
hardest LL(k) language does exist.

2 LL Grammars

This paper is concerned with the ordinary kind of formal grammars, called
“context-free” in the literature, and here referred to as simply grammars.

Definition 1. A grammar is a quadruple G = (Σ,N,R, S), where Σ is a finite
alphabet; N is a finite set of nonterminal symbols; R is a finite set of rules, each
of the form A → α, where A ∈ N and α ∈ (Σ ∪ N)∗; and S ∈ N is the initial
nonterminal.

The language generated by a grammar is defined in terms of parse trees, in
which every internal node has an associated rule A → X1 . . . X� ∈ R, so that the
node is labelled with A and has � ordered children labelled with X1, . . . , X�.

Definition 2. Let G = (Σ,N,R, S) be a grammar. The language defined by a
nonterminal symbol A, denoted by LG(A), is the set of such all strings w ∈ Σ∗,
that there exists a parse tree with A as a root and with the leaves forming the
string w. The language defined by the grammar is L(G) = LG(S).
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For every string w ∈ Σ∗, let Firstk(w) denote the first k symbols of w, or
the entire string w, if |w| < k.

Definition 3. Let G = (Σ,N,R, S) be a grammar. Consider a parse tree
according to G, and a subtree therein. It is said that a string v ∈ Σ∗ follows
this subtree, if the leaves of the tree to the right of this subtree form the string v.

A string v is said to follow a nonterminal A ∈ N , if there exists a tree with
an A-subtree followed by v. The set of all such strings is denoted by Follow(A).

Follow(A) = { v | v ∈ Σ∗, v follows A }

The LL(k) grammars are grammars, for which the membership of a given
input string w in the language is recognized by a left-to-right parser of the
following kind. The parser’s configurations are pairs of the form (u, η), where
u ∈ Σ∗ is an unread suffix of the input string, and the parser’s stack contains
the symbols η ∈ (Σ ∪ N)∗. The parser has to determine whether the remaining
suffix v of the input string uv is in LG(η), and accordingly attempts to parse v
according to η. In a configuration (u,Aη), the parser sees only A and the first k
symbols of u, and based on these data, it should deterministically select a rule
A → α and enter the configuration (u, αη). In a configuration (au, aη), the next
configuration is (u, η). In all other cases, an error is reported. The configuration
(ε, ε) is accepting.

A grammar is said to be LL(k), if the choice of a rule is always deterministic,
that is, there exists the following function that determines the parser’s actions.

Definition 4. A grammar G = (Σ,N,R, S) is said to be LL(k), if there exists a
partial function T : N ×Σ�k → R, satisfying the following condition: whenever a
parse tree has a subtree with root A ∈ N , and the rule applied to A is A → α, and
the tree is followed by a string v, the table entry T (A,Firstk(v)) must contain
A → α.

A language L is said to be an LL(k) language if it is defined by some LL(k)
grammar.

Definition 5. A grammar G = (Σ,N,R, S) is said to be in the Greibach normal
form if every rule is of the form A → aα, with a ∈ Σ and α ∈ (Σ ∪ N)∗.
Additionally, a rule S → ε is possible, as long as S does not occur on the right-
hand sides of any rules.

The LL(k) languages form a strict hierarchy with respect to k [7], and the
Greibach normal form requirement costs one level in the hierarchy.

Theorem 1 (Rosenkrantz and Stearns [14]). A language is defined by an
LL(k) grammar if and only if it is defined by an LL(k + 1) grammar in the
Greibach normal form.

In view of this theorem, it is natural to extend the hierarchy by one level
below: a language L defined by an LL(1) grammar in the Greibach normal form
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shall be called an LL(0) language. Such languages were first studied by Korenjak
and Hopcroft [6], who called them “simple deterministic languages”.

The family of LL(k) languages is not closed under inverse homomorphisms,
this was proved by Lehtinen and Okhotin [8, Ex. 4] by constructing an LL(1)
grammar G and a homomorphism h, for which h−1(L(G)) is not defined by any
LL(k) grammar. It is not difficult to modify this example to obtain an LL(0)
language with the same property (to be presented in the full version of this
paper).

3 The Hardest LL(0) Language

Theorem 2. There exists such an LL(0) language L0 over the alphabet Σ0 =
{a, b, c,#}, that for every LL(0) language L over any alphabet Σ, there is such a
homomorphism h : Σ → Σ∗

0 , that L = h−1(L0) if ε /∈ L, and L = h−1(L0 ∪ {ε})
if ε ∈ L.

It is convenient to begin with the construction of homomorphisms, and
describe the language L0 later.

Let L be defined by an LL(1) grammar G = (Σ,N,R,X1) in the Greibach
normal form. Assume that the nonterminals of G are numbered as X1, . . . , Xn,
and each rule is of the form Xi → sXj1 . . . Xj�

, with s ∈ Σ, � � 0 and
i, j1, . . . , j� ∈ {1, . . . , n}, For each Xi ∈ N and s ∈ Σ, there is at most one such
rule by the LL(1) condition, and it is convenient to assume that there is always
exactly one rule. If a rule is missing, one can use a technical rule Xi → sXn+1,
where Xn+1 is a special “failure” nonterminal, with the following rules.

Xn+1 → aXn+1 (a ∈ Σ)

In the proposed encoding, the image h(s) of a symbol s lists all rules begin-
ning with s, for X1,X2, . . . , Xn, in this exact order. The rules for the failure
nonterminal are not listed. The encoding uses the alphabet Σ0 = {a, b, c,#}, in
which the symbols have the following meaning.

– Symbols a are used to represent a reference to a nonterminal Xi as ai.
– The symbol c represents concatenation. A rule Xi → sXj1 . . . Xj�

has the
following encoding.

ρ(Xi → sXj1 . . . Xj�
) = aj�c . . . aj1c

In particular, a rule Xi → s is encoded as the empty string.
The encoding of Xi is given implicitly by the position of ρ(Xi → sXj1 . . . Xj�

)
within the image h(s).

– A single symbol b is written in front of the definition of each Xi. Then,
within each image h(s), one can always find the definition of Xi after the first
i instances of b.

– The separator symbol # concludes the image of every symbol.
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Altogether, the image h(s) of a symbol s ∈ Σ lists the encodings of all rules
T (Xi, s), for each nonterminal symbol from X1 to Xn.

h(s) =
( n∏

i=1

bρ(T (Xi, s))
)
#

Example 1. Let Σ = {s, t} and consider a grammar G = (Σ, {X,Y,Z}, R,X),
with the following rules.

X → sXY | t

Y → sY Z | t

Z → s

This grammar defines all strings of the form sntw1 . . . wn, where n � 0 and
w1, . . . , wn ∈ { smtsm | m � 0 }. A parse tree of the string ststs (that is, stw1,
with w1 = sts) is given in Fig. 1.

Let the nonterminals in G be numbered as X = X1, Y = X2 and Z = X3.
Each of them has a rule beginning with s, and the image of s lists the encodings
of these three rules.

h(s) = b a2cac︸ ︷︷ ︸
ρ(X→sXY )

b a3ca2c︸ ︷︷ ︸
ρ(Y →sY Z)

b ︸︷︷︸
ρ(Z→s)

#

The encoding of the rule for Z is the empty string. For the other symbol t, the
rules for X and for Y are listed as usual; as there is no rule for Z, it is replaced
by an encoding of a non-existent rule Z → tX4.

h(t) = b ︸︷︷︸
ρ(X→t)

b ︸︷︷︸
ρ(Y →t)

b a4c︸︷︷︸
no rule

#

The string ststs accordingly has the following image.

hG(ststs) = ba2cacba3ca2cb#bbba4c#ba2cacba3ca2cb#bbba4c#ba2cacba3ca2cb#

Using the encoding hG, the membership of a string w in L(G) can be tested
by analyzing hG(w). For the grammar and the string in Example 1, this is
illustrated in Fig. 1.

To establish the theorem, it should be proved that this analysis of hG(w) can
be carried out by an LL(1) grammar G0 in the Greibach normal form, which
defines a string hG(w) if and only if w ∈ L(G). For strings not of the form hG(w),
it is irrelevant whether G0 defines them or not.

The desired grammar G0 uses 5 nonterminal symbols: N0 = {S0, A, F,B,C}.
The nonterminal symbol A is used to define strings of the form ρ(r)x#h(w),
where ρ(r)x# is a suffix of an image h(s) of some symbol s ∈ Σ, which begins
with an encoded rule r of the grammar G, and w ∈ Σ∗ is a string defined by the
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Fig. 1. How a parse tree of the string w = ststs is reconstructed from its image h(w).

rule r in G. To achieve this, the rules for A in G0 attempt to parse the string
ρ(r)x#h(w) to find out whether w can be parsed according to the rule r in G.

This is done by invoking A on two substrings of ρ(r)x#h(w), as illustrated
in Fig. 2. Let the rule r be Xi → sXj1 . . . Xj�

, encoded as ρ(r) = aj�c . . . aj1c.
The nonterminal symbol A should check that w is representable as a concate-
nation w = uv, where u ∈ LG(Xj1) · . . . · LG(Xj�−1) and v ∈ LG(Xj�

). The
condition on u is checked by using the same nonterminal A on the substring
aj�−1c . . . aj1cx#h(u). In order to check the condition on v, one should locate
the rule for Xj�

in the image of the first symbol of v, and apply another instance
of A to check whether v is defined by that rule.

The rule for Xj�
is located in the image of v’s first symbol as follows. By the

definition of h, the rule for a nonterminal symbol Xj is always put in the j-th
position in the image, and is preceded by exactly j instances of b. Thus, it is
sufficient to match every a in the prefix aj� with a block of symbols ending with
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Fig. 2. How the symbol A decodes a parse of w by a rule r = Xi → sXj1 . . . Xj� from
an encoded string ρ(r)x#h(w), invoking two instances of A on its substrings.

b in the image of the first symbol of v, and the last of these blocks marks the
beginning of the rule for Xj�

.
In the grammar G0, a block ending with a b is defined by a nonterminal

symbol B using the following rules.

B → aB | cB | b

The rule for A matches the first a on the left to the last block B on the right, and
also sets up the simulation of a parse of v according to Xj�

by another instance
of A.

A → aFBA

Every subsequent a on the left is matched to a block B on the right by the
nonterminal symbol F .

F → aFB

Once the prefix aj� is exhausted, F invokes one more instance of A to parse u
as a concatenation LG(X1) · . . . · LG(j�−1).

F → cA

This implements the parsing illustrated in Fig. 2. Once all nonterminal symbols
on the right-hand side of the rule r are dealt in this way, it remains for the
nonterminal A to skip the rest of the image h(s) using the following rules.

A → bC | #
C → aC | bC | cC | #

It remains to define the rule for the initial symbol S0. All it has to do is to skip
the first b in the image of the first input symbol, and invoke the parsing of the
entire string by the rule for X1, written in the image right after the first b.

S0 → bA
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The correctness statement for this construction reads as follows.

Lemma 1. Let G = (Σ,N,R,X1) be an LL(1) grammar in the Greibach normal
form with no empty rule, let N = {X1, . . . , X|N |}, and let hG = h : Σ∗ → Σ∗

0

be the homomorphism defined above. Let G0 = (Σ0, N0, R0, S0) be the grammar
defined above. Then, a string ai�c . . . ai1cx#h(w), with x ∈ b{a, b, c}∗ ∪ {ε},
� > 0, i1, . . . , i� > 0, w ∈ Σ∗, is in LG0(A) if and only if i1, . . . , i� � |N | and w
is in LG(Xi1) · . . . · LG(Xi�

).

From this, it is not hard to infer that a string w ∈ Σ∗ is in L(G) if and only
if h(w) is in L(G0). This completes the proof of Theorem 2.

4 Non-existence Under Standard Definitions

So, the family of LL(0) languages contains a hardest language with respect to
reductions by homomorphisms. It turns out that a similar result for LL(1) lan-
guages does not hold.

Theorem 3. There does not exist any “hardest” LL(k) language L0 over any
alphabet Σ0, such that for every LL(1) language L ⊆ Σ+ there would be a homo-
morphism h : Σ∗ → Σ∗

0 , such that w ∈ L if and only if h(w) ∈ L0.

The proof is by contradiction: suppose there is such a hardest language,
defined by an LL(k) grammar G0. Then, a large alphabet Σ of size dependent
on G0 is constructed, and it is proved that the LL(1) language Σ ∪{ aa | a ∈ Σ }
is not an inverse homomorphic image of L(G0). This is so, because an LL(k)
parser reading h(a) would need to push a sufficiently large encoding of a to
the stack in order to match it against the second h(a); and if the string ends
abruptly, it notices that only k symbols in advance, which is too late to pop all
the symbols stored in the stack.

5 Hardest Language for LL(k) Grammars

Theorem 4. There exists such an LL(0) language L0 over the alphabet Σ0 =
{a, b, c, d, e,@,#, $,%}, that for every LL(k) language L over any alphabet Σ,
there is such a homomorphism h : (Σ ∪ {⊥}) → Σ∗

0 , that L⊥ = h−1(L0).

The construction starts similarly to the pure LL(0) case: let L be defined
by an LL(k) grammar G = (Σ,N,R,X1) in the Greibach normal form, with
N = {X1, . . . , Xn}, and with all rules of the form Xi → sXj1 . . . Xjk

. Let T : N ×
Σ�k → R be the LL(k) table for G, which is a total function. For convenience,
let Xn+1 be an extra “failure” nonterminal, and assume that T (Xi, p) always
starts with the first symbol of p (unless p = ε, in which case it has to start with
any terminal symbol as long as the rule Xi → ε is not present in G).

Whereas a parser for G can see the first k symbols of the input in the begin-
ning of its computation, for the “hardest” parser, initially the images of all
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symbols but the first one cannot yet be seen. The idea behind the construction
is to delay the simulation of any rules and use the time reading the first k − 1
symbol images to store these symbols in a queue. Once the queue is filled with
k−1 symbols and the image of the k-th symbol is processed, the “hardest” parser
can determine the rule that would be used at the beginning of the original string.

The question is, how to implement this buffer of non-constant size in a fixed
grammar G0? Let m =

∣∣Σ<k
∣∣ be the number of lookahead strings, and let

them be enumerated as Σ<k = {p0 = ε, . . . , pm−1}. Each lookahead string pj is
encoded in symbol images in unary notation as dj . The image h(s) of a symbol
s ∈ Σ encodes, in particular, the operation of the queue by listing all pairs (j, j′)
with pjs = tpj′ , where t is a single symbol that is pushed out of the queue. Then
the “hardest” grammar can manipulate a queue with no prior bounds on its
length and alphabet size.

There is another question: what would the “hardest” parser do when it
reaches the end of the input with a buffer full of symbols? This was the prob-
lem investigated in Sect. 4. For a parser to handle this, some extra symbols are
appended to the image of the string: this is the image h(⊥) of the end-marker.

The images of the symbols in the new construction use all the symbols from
the LL(0) case in the same way, and also adds a few more symbols necessary to
manipulate the queue.

– Symbols d are used as dj to represent a reference to a lookahead pj that would
be seen by the original parser k − 1 positions before (bar the symbol which
is being consumed by the parser; it is added at the next step, pushing the
oldest symbol out of the other end of the queue).

– For every possible contents of the queue, all rules applied with this lookahead
are grouped together, and a single symbol e is written in front of the block of
rules for each lookahead. Then, within each image h(s), one can always find
the block corresponding to pj after the first j instances of e.

– Following each rule, the new contents of the queue are encoded, and the
symbol @ separates each rule from the following lookahead. The block of
rules corresponding to a single lookahead string is encoded differently in the
case of an underfull queue, when the next symbol is appended and no rules
are applied, and of a full queue, when a rule is applied, and then the oldest
symbol is discarded and a new one is appended.

π(p) =

{
bac@dj , p = pj ∈ Σ<k

∏
1�j�n

(
bρ(T (Xi, p))@dj

)
, p = tpj ∈ Σk, t ∈ Σ

– The separator symbol $ is used in the image h(⊥) of the end-marker in order
to simulate the last k−1 steps of the original parser, and the final end-marker
% concludes the parsing process.

Altogether, the image h(s) of a symbol s ∈ Σ lists the rule blocks for all
possible lookahead strings.

h(s) = π(s)
( m−1∏

j=1

eπ(pjs)
)
#
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The final k − 1 symbols are handled by the image h(⊥) of the end-marker,
which is split into k − 1 “pseudo-images”, each structured similarly to an image
of a regular symbol, and consuming at most one symbol from the remaining
queue. Define the final rule block of a lookahead string p ∈ Σ<k as follows:

π′(p) =

{∏
1�i�n

(
bρ(T (Xi, p))@dj

)
, p = tpj , t ∈ Σ

bρ(T (S, ε))@, p = ε

The pseudo-image is defined analogously to the image of a regular symbol.

h(⊥1) = π′(ε)
( m−1∏

j=1

eπ′(pj)
)
$,

Pseudo-images are then concatenated into the desired image h(⊥) = h(⊥1)k−1%
of the end-marker.

Fig. 3. How the symbol A decodes a parse of First|pjwt|−(k−1)(pjwt) by a rule r =

Xi → sXj1 . . . Xj� from an encoded string ρ(r)@djx#h(w)y@, using D to locate the
block corresponding to the lookahead pj .

To process the newly added lookahead blocks, the grammar has to be mod-
ified. Specifically, a new nonterminal D is added, which matches the lookahead
encoding dj in each symbol with symbols e in the next symbol, thus locating the
correct block of rules, see Fig. 3.

The rules for A and for F , again, match symbols a on the left to blocks B on
the right, and A also sets up the simulation of a parse of Xj�

by another instance
of A.

A → aFBA

F → aFB

B → aB | cB | @B | dB | b

Once the prefix aj� is exhausted, F invokes one more instance of A to recursively
parse the concatenation LG(X1)·. . .·LG(j�−1). This is where the key modification
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takes place: F also invokes a new nonterminal D, which ensures that the parser
is always looking at rules in the blocks of correct lookahead strings.

F → cAD

This is done similarly to the matching of nonterminal indices. This time, each
symbol d in a unary encoding of a lookahead string in h(s) it matched to a block
in the image of the next symbol, represented by E.

D → dDE

E → aE | bE | cE | @E | dE | e

Once the matching of all consecutive d’s is complete, the innermost D skips the
rest of h(s).

D → bC | eC | # | $
C → aC | bC | cC | dC | eC | @C | # | $

In this construction, A leaves all symbols d right after the rule along with the
rest of h(s) to D to process, and this point is marked by a symbol @.

A → @

This concludes the modifications illustrated in Fig. 3. It remains to define the
rule for the initial symbol S0. It still has to skip the first b and invoke the parsing
of the entire string by the rule for X1, but now it also has to consume the part
of h(⊥) that is left behind because of A ending early.

S0 → bAU

U → bT | eT | $T

T → aT | bT | cT | dT | eT | @T | $T | %

The correctness of the construction is proved in a lemma analogous to
Lemma 1. The following lemma presents an abridged correctness statement refer-
ring to computations on the images of proper input symbols. Once the string
itself runs out, the parsing continues inside h(⊥1) due to the processing delay,
and there are two further cases stated similarly.

Lemma 2. Let G = (Σ,N,R,X1) be a grammar in the Greibach normal form,
with N = {X1, . . . , X|N |}, let hG = h : (Σ ∪{⊥1})∗ → Σ∗

0 be the homomorphism
defined above and G0 = (Σ0, N0, R0, S0) be the grammar defined above. Then a
string ai�c . . . ai1c@djx#h(w)y@, where x ∈ {b, e}{a, b, c, d, e,@}∗ ∪ {ε}, � > 0,
i1, . . . , i� > 0, |pj | = k − 1, w ∈ Σ∗, and y@ is a prefix of h(t), with t ∈ Σ, lies
in LG0(A) if and only if i1, . . . , i� � |N |, the string First|pjwt|−(k−1)(pjwt) is in
LG(Xi1)·. . .·LG(Xi�

) and y contains exactly j′ instances of e, followed by exactly
i′ instances of b, where pj′ = Lastk−1(pjw) and Xi′ is the last nonterminal in the
left-to-right derivation of First|pjwt|−(k−1)(pjwt) in the aforementioned form.
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6 Conclusions

It has been proved that the LL(0) languages have a hardest language in the strict
sense of Greibach, whereas a hardest language for the entire LL(k) hierarchy
exists under a slightly relaxed definition. This raises a question on the existence
of hardest languages under the relaxed definition for language families known
not to contain hardest languages in the sense of Greibach.

Both results in this paper apply to language families not closed under inverse
homomorphisms. The inverse homomorphisms closure of the hardest LL(0) lan-
guage already contains a language outside of the LL hierarchy. It would be
interesting to study this closure: are there any LR languages that it does not
contain?
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Abstract. For δ ∈ R
+, maximal δ-repetitions (δ-subrepetitions) are

fractional powers with exponent of at least 2+δ (and 1+δ, respectively)
which are non-extendable with respect to their minimum period.

In this paper, we prove that the number of distinct (unpositioned)
maximal δ-repetitions in a string S with z LZ77-factors is bounded from

above by z
⌊
3 + 6

δ

⌋ ·
⌊
log1+ δ

4
(|S|)

⌋
.

Also, the number of distinct (unpositioned) maximal q-th power-free
δ-subrepetitions in a string S with z LZ77-factors is bounded from above

by z
⌊
3 + 4

δ

⌋ ·
⌊
log1+ δ

2q
(|S|)

⌋
.

We further prove that for fixed δ and q, both upper bounds are asymp-
totically tight.

Keywords: Maximal repetitions · Maximal subrepetitions ·
Combinatorics on words · Compressed strings

1 Introduction

For a positive real number δ, a δ-repetition of a string S is a substring of the form
P q with q ≥ 2 + δ. Similarly, a δ-subrepetition of a string S is a substring of the
form P q with q ≥ 1+δ. These repetitions (subrepetitions) are maximal if there is
an occurrence of the repetitions (subrepetitions) in the underlying string which
cannot be extended in any direction without increasing the minimum period.

These repetitive patterns have a wide variety of applications from DNA anal-
ysis [8] over the analysis of Greek literature [17] to the analysis of musical scores
[4]. Maximal repetitions on the one hand provide succinct information about
more basic patterns like the powers in a string [5] and on the other hand give
rise to more elaborate patterns like two-dimensional maximal repetitions [1].

It may seem arbitrary to discriminate between repetitions and subrepetitions
based on whether the exponent is at least 2. However, while the repetitions yield
a compact representation of the squares in the underlying string, the subrepeti-
tions which are not repetitions may be squarefree and therefore provide no addi-
tional information about the squares. Furthermore, in repetitions each character
has at least one copy which is given by the minimum period. On the contrary,
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subrepetitions with exponent less than 2 have the form PP ′P such that the
minimum period does not necessarily provide copies of the characters in P ′.

When Kolpakov and Kucherov proved in 1999 [13] that the number of posi-
tioned maximal repetitions is linear with regard to the length of the underlying
string, the natural next question was: Does the upper bound for the positioned
maximal subrepetitions with exponent greater than or equal to some constant c
lead to another justification for the distinction between repetitions and subrep-
etitions?

Crochemore and Ilie state this question in [6] more precisely: For which δ is
the number of positioned δ-repetitions bounded by the length of the underlying
string? And for which δ is the number of positioned δ-subrepetitions still linear
with respect to the length of the underlying string?

Both questions have subsequently been answered for uncompressed strings
and it seems that the exponent 2 is not special with respect to the upper bounds.
Bannai et al. present in [2] an elegant proof that the number of positioned
repetitions is bounded by the length of the string. Holub improves this result in
[11] and show that the number of positioned repetitions in binary strings is at
most 183

193 times the length of the string.
With regard to the linearity of positioned subrepetitions, Kolpakov et al.

show in [14] that for all δ > 0, the number of positioned maximal δ-subrepetitions
is in O (

n
δ2

)
. This upper bound was improved independently by Crochemore et

al. in [7] and Gawrychowski et al. in [10] who prove that even O (
n
δ

)
is an upper

bound for the number of positioned maximal δ-subrepetitions.
We consider strings that have small compressed sizes with respect to the

(self-referential) LZ77 compression. However, given the relationship of LZ77 to
other strong compression schemes like grammar-compression (as proven simul-
taneously by Rytter in [18] and by Charikar et al. in [3]) and the run-length
encoded Burrows-Wheeler transform (as proven independently by Kempa and
Kociumaka in [12] and by Pape-Lange in [16]).

We should expect that there are few maximal (sub-)repetitions which are
distinct as factors of the string but instead these factors have many occurrences.
Therefore, in the compressed case, it is more natural to consider distinct unposi-
tioned maximal (sub-)repetitions than to consider all different positioned maxi-
mal (sub-)repetitions. Also, since it doesn’t significantly increases the size of the
upper bounds, we will consider extended maximal δ-(sub-)repetitions which do
not only include the δ-(sub-)repetition itself but also the first character in both
directions which breaks the periodicity.

This approach has already led to Pape-Lange’s non-trivial upper bounds for
distinct maximal repeats in [15] and a special subset of maximal pairs in [16].

However, we cannot expect a polynomial bound which is only dependent on
the number of LZ77-factors and the logarithm of the length of the string for all
maximal repetitions with exponent greater than or equal to 2. Figure 1 shows
the string (ab)na(ab)na. While this string can be factored in the 4 LZ77-factors
a·b·(ab)n−1a·(ab)na, the number of maximal repetitions is linear with respect to



318 J. Pape-Lange

a b . . . a b a b a a b a b a . . . b a

aba aba

ababa ababa

...

abababa . . . ba abababa . . . ba

Fig. 1. The string (ab)na(ab)na with its n distinct maximal repetitions with exponent
2.

the length of the string. Yet, if we only allow maximal repetitions with exponents
greater than or equal to 2 + δ, there is an upper bound.

Theorem 1. Let δ > 0 be a real number.
A string S with z LZ77-factors contains at most z

⌊
3 + 6

δ

⌋ ·
⌊
log1+ δ

4
(|S|)

⌋

distinct unpositioned extended maximal δ-repetitions.

Surprisingly, if we limit the maximal power in the maximal subrepetitions,
we obtain a similar upper bound for the maximal δ-subrepetitions.

Theorem 2. Let δ > 0 be a real number and q be a natural number.
A string S with z LZ77-factors contains at most z

⌊
3 + 4

δ

⌋ ⌊
log1+ δ

2q
(|S|)

⌋

distinct unpositioned extended q-th power-free maximal δ-subrepetitions.

Also, both of these theorems are asymptotically tight for fixed δ and q.

2 Preliminaries

A string of length |S| is a concatenation S = S[1]S[2] . . . S[|S|] of characters of
an alphabet Σ. We define S[0] = $ and S[|S| + 1] = $ with $ /∈ Σ. The substring
S[i..j] with 0 ≤ i ≤ j ≤ |S| + 1 is the concatenation S[i]S[i + 1] . . . S[j]. If i > j
holds, the substring S[i..j] is the empty string. If i = 1 holds, the substring
S[i..j] is a prefix of S.

In this paper, (sub-)strings can be different in two ways. We say that two
substrings S[i..j] and S[i′..j′] are different (as positioned substring) if the start-
ing positions i and i′ or the ending positions j and j′ differ. On the other hand,
we say that two (sub-)strings S[i..j] and S[i′..j′] are distinct (as factors or indi-
vidual strings) if they have a different length or for some index k their k-th
characters (S[i..j])[k] and (S[i′..j′])[k] are different.

For a string P and a rational number q with q|P | ∈ N≥0, the q-th power of
P , denoted by P q, is defined by the concatenation PP . . . PP [1..q|P | mod |P |]
of �q� copies of P and the prefix of P with length (q − �q�) |P |. If q is a natural
number and q ≥ 2 holds, the q-th power is an integer power.
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For q ∈ N, a string S is q-th power-free if it has no non-empty substring of
the form P q.

A string S has a period p > 0 if all characters in S with distance p are equal.
If S has a period p, the string S is p-periodic. The minimum period of S is the
minimum of all periods of S. Note that S can be written as P q such that P is a
prefix of S, the length |P | is the minimum period of S and q = |S|

|P | . With this
notation, the prefix P cannot be an integer power.

We use the well-known periodicity lemma by Fine and Wilf from [9] to show
that sufficiently long strings with two given periods also have their greatest
common divisor as period.

Theorem 3 (Periodicity Lemma). Let p1 and p2 be two positive natural
numbers and S a p1-periodic and p2-periodic string with a length of at least
p1 + p2 − gcd(p1, p2).

Then S is gcd(p1, p2)-periodic.

A substring S[i..j] of S is a δ-subrepetition, if it is at least 1+ δ times as long
as its minimum period. If it is at least 2+δ times as long as its minimum period,
it is a δ-repetition. A δ-(sub-)repetition P is maximal if it has an occurrence
S[i..j] = P such that both its left-extension S[i − 1..j] or its right-extension
S[i..j + 1] have a greater minimum period, i.e. the minimum period neither
extends to the left nor to the right. The extended maximal δ-(sub-)repetition of
a positioned maximal δ-(sub-)repetition S[i..j] is the substring S[i − 1..j + 1].

The (self-referential) LZ77-decomposition of a string S is the factorization
S = F1F2 . . . Fz into LZ77-factors Fi such that each factor is either

– a single character which does not occur in F1F2 . . . Fi−1 or
– the longest prefix of S[|F1F2 . . . Fi−1|+1..|S|] which has an occurrence starting

with one of the first |F1F2 . . . Fi−1| characters in S.

By definition of the LZ77-decomposition, no first occurrence of a substring
of length greater than 1 can be contained in a single LZ77-factor. Each extended
maximal (sub-)repetition contains at least three characters. Therefore, we get
the following corollary.

Corollary 1. Let S be a string and let F1F2 . . . FzFz+1 = S$ be the LZ77-
decomposition of S$. Then each extended maximal (sub-)repetition of S has an
occurrence in $S$ which contains the indices si − 1 and si for some starting
index si = 1 + |F1F2 . . . Fi−1| of an LZ77-factor Fi with i > 1.

Note that we have to add another LZ77-factor to account for the appended
$. For example, in the string S = a · b · bbbb · abbb, the substring bbb is a maxi-
mal 1-repetition because its occurrence S[8..10] is not extendable. However, the
substring bbb is fully contained in the fourth LZ77-factor.

On the other hand, we do not have to add another LZ77-factor for the
prepended $ and we can ignore the first LZ77-factor, because the first LZ77-
factor F1 always is a single character. Therefore, each maximal δ-(sub-)repetition
which is also a prefix contains both the first character of the second LZ77-factor
as well as the character before.
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Corollary 1 allows us to obtain an upper bound for the number of distinct,
unpositioned factors which are extended maximal δ-(sub-)repetitions from an
upper bound for the number of different occurrences of extended maximal δ-
(sub-)repetition which cross LZ77-factors.

3 Upper Bound for Maximal δ-Repetitions

In this section, we will prove the following upper bound for the number of distinct
extended maximal δ-repetitions in a string S with z LZ77-factors which was
stated in the introduction:

Theorem 1. Let δ > 0 be a real number.
A string S with z LZ77-factors contains at most z

⌊
3 + 6

δ

⌋ ·
⌊
log1+ δ

4
(|S|)

⌋

distinct unpositioned extended maximal δ-repetitions.

In order to prove this theorem, we will first locally count the different posi-
tioned extended maximal δ-repetitions around the boundaries of the LZ77-
factors and then use Corollary 1 to show that the total number of distinct
unpositioned extended maximal δ-repetitions is at most z times this local upper
bound.

Theorem 4. Let S be a string and 1 ≤ t ≤ |S| + 1 be the index of a character
of S$.

Then there are at most
⌊
3 + 6

δ

⌋ ·
⌊
log1+ δ

4
(|S|)

⌋
different positioned extended

maximal δ-repetitions S[sk..ek] which contain the indices t − 1 and t.

The main idea of the proof is to use the pigeonhole principle in order to show
that if more of these maximal δ-repetitions existed, there would be two of these
repetitions which are neighbors in the following sense which is similar to the
definition of neighboring runs introduced by Rytter in [19]:

There would be a real number L such that the minimum periods of the two
δ-repetitions are in the interval

[
L,

(
1 + δ

4

)
L

)
and such that the intersection of

these two δ-repetitions contains at least
(
2 + δ

2

)
L characters.

However, with the periodicity lemma we can show that maximal δ-repetitions
cannot be that close together.

Lemma 1. Let S be a string. Let S[s1..e1] and S[s2..e2] be different positioned
maximal δ-repetitions of S with minimum periods p1 and p2, respectively. Let
further L be a real number.

Then at least one of the two periods p1 and p2 is not contained in the interval[
L,

(
1 + δ

4

)
L

)
or the intersection contains less than

(
2 + δ

2

)
L characters.

Proof. Assume that neither of the two statements hold, i.e. the negations of
both statements hold. Therefore, both L ≤ p1, p2 <

(
1 + δ

4

)
L holds and the

intersection of S[s1..e1] and S[s2..e2] contains at least
(
2 + δ

2

)
L − 1 characters.

Since p1+p2−gcd(p1, p2) ≤ p1+p2−1 ≤ (
2 + δ

2

)
L−1 holds, the intersection

of the two maximal δ-repetitions is gcd(p1, p2)-periodic. Furthermore, because
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p1 and p2 are minimal, no substring of S[s1..e1] of length p1 and no substring
S[s2..e2] of length p2 can be an integer power. Hence p1 = gcd(p1, p2) = p2 holds.

However, since the intersection contains more than p1 characters and the
equation p1 = p2 holds, both S[s1..e1] and S[s2..e2] are the p1-periodic extensions
of this intersection and are therefore equal.

This however contradicts the prerequisite that the two maximal δ-repetitions
are different and thereby concludes the proof.

Proof (Proof of Theorem 4). By contradiction:
Assume that there are

⌊
3 + 6

δ

⌋·
⌊
log1+ δ

4
(|S|)

⌋
+1 different positioned extended

maximal δ-repetitions S[sk..ek] which contain the indices t − 1 and t.
Let pk be the minimum period of the maximal δ-repetition S[sk..ek] and let

qk ≥ 2 + δ be the corresponding exponent. By construction, the inequality

pk(2 + δ) ≤ pkqk ≤ sk + pkqk − 1 = ek ≤ |S|
holds. Hence, the inequality 1 ≤ pk ≤ |S|

2+δ holds as well.
Taking the logarithm on this inequality yields

0 = log1+ δ
4
(1) ≤ log1+ δ

4
(pk)

≤ log1+ δ
4

( |S|
2 + δ

)
= log1+ δ

4
(|S|) − log1+ δ

4
(2 + δ)

<
⌈
log1+ δ

4
(|S|)

⌉
− 1

We sort the δ-repetitions with regard to the values log1+ δ
4
(pk) into the inter-

vals
[n, n + 1) with n ∈

{
0, 1, 2, . . . ,

⌈
log1+ δ

4
(|S|)

⌉
− 2

}
.

Since �x�−1 ≤ �x� holds, this implies that we sort the
⌊
3 + 6

δ

⌋·
⌊
log1+ δ

4
(|S|)

⌋
+1

δ-repetitions into at most
⌊
log1+ δ

4
(|S|)

⌋
sets.

Using the pigeonhole principle therefore shows that there is a natural number
L′ ≥ 0 such that for

⎡

⎢
⎢
⎢

(⌊
3 +

6
δ

⌋
·
⌊
log1+ δ

4
(|S|)

⌋
+ 1

)
1

⌊
log1+ δ

4
(|S|)

⌋

⎤

⎥
⎥
⎥

=
⌊
3 +

6
δ

⌋
+

⎡

⎢
⎢
⎢

1
⌊
log1+ δ

4
(|S|)

⌋

⎤

⎥
⎥
⎥

=
⌊
3 +

6
δ

⌋
+ 1

of the maximal δ-repetitions the inequality L′ ≤ log1+ δ
4
(pk) < L′ + 1 holds.

Exponentiating this inequality yields that there is a real number L =
(
1 + δ

4

)L′
≥

1 such that L ≤ pk <
(
1 + δ

4

)
L holds for these

⌊
3 + 6

δ

⌋
+1 maximal δ-repetitions.
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Since for each of these maximal δ-repetitions both S[sk..sk + �(2 + δ)L� − 1]
and S[sk..t − 1] are prefixes of S[sk..ek], we define

s′
k :=

{
t − �(2 + δ)L� if sk < t − �(2 + δ)L�
sk if sk ≥ t − �(2 + δ)L�

and obtain the pk-periodic substrings S[s′
k..s′

k + �(2 + δ)L� − 1]. Furthermore,
all s′

k of the remaining
⌊
3 + 6

δ

⌋
+ 1 maximal δ-repetitions are in the interval

[t − �(2 + δ)L� ..t].
Dividing this interval into

⌊
3 + 6

δ

⌋
subintervals of length

�(2 + δ)L� + 1
⌊
3 + 6

δ

⌋ <
(2 + δ)L + 1

2 + 6
δ

≤ (3 + δ)L
(3 + δ) 2δ

=
δ

2
L,

we can use the pigeonhole principle again to show that there are at least
⌈(⌊

3 +
6
δ

⌋
+ 1

)
1

⌊
3 + 6

δ

⌋

⌉

=

⌈
1

⌊
3 + 6

δ

⌋

⌉

+ 1 = 2

maximal δ-repetitions S[si..ei] and S[sj ..ej ] such that |s′
i −s′

j | < δ
2L and s′

i ≥ s′
j

hold.
The intersection of these two maximal δ-repetitions contains the substring

S[s′
i..s

′
j + �(2 + δ)L� − 1] and therefore has a length of at least

s′
j + �(2 + δ)L� − 1 − s′

i + 1 ≥ �(2 + δ)L� − |s′
i − s′

j |

> �(2 + δ)L� − δ

2
L ≥

(
2 +

δ

2

)
L − 1

characters.
However, such two maximal δ-repetitions are a contradiction to Lemma 1.

Hence, there are at most
⌊
3 + 6

δ

⌋ ·
⌊
log1+ δ

4
(|S|)

⌋
different positioned extended

maximal δ-repetitions S[sk..ek] which contain the indices t − 1 and t.

Corollary 1 and Theorem 4 then prove Theorem 1.

4 Upper Bound for Maximal δ-Subrepetitions

In this section we will show that with the additional information of the highest
power in the string, we can also give a nontrivial upper bound for the number
of distinct extended maximal δ-subrepetitions in a string S with z LZ77-factors.
More formally, in this section, we will prove the following theorem which was
stated in the introduction:
Theorem 2. Let δ > 0 be a real number and q be a natural number.

A string S with z LZ77-factors contains at most z
⌊
3 + 4

δ

⌋ ·
⌊
log1+ δ

2q
(|S|)

⌋

distinct unpositioned extended q-th power-free maximal δ-subrepetitions.
As in the last section, we will first prove the local version of this theorem.
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Theorem 5. Let S be a string and 1 ≤ t ≤ |S| + 1 be the index of a character
of S$. Let further q be a natural number.

Then there are at most
⌊
3 + 4

δ

⌋ ·
⌊
log1+ δ

2q
(|S|)

⌋
different positioned extended

q-th power-free maximal δ-subrepetitions S[sk..ek] which contain the indices t−1
and t.

Similarly to the last section, we will again use the pigeonhole principle in
order to show that if more of these maximal δ-subrepetitions existed, two of
them would be neighbors. However, for δ ≤ 2, the intersections will necessarily
be shorter than two times the larger minimum period. Therefore, we will also
require that the minimum periods are more similar than the minimum periods
in the last section.

More formally, we will construct two maximal δ-subrepetitions whose min-
imum periods are in the interval

[
L,

(
1 + δ

2q

)
L

)
for some real number L and

whose intersection contains at least
(
1 + δ

2

)
L characters.

However, if we allow subrepetitions with an exponent of 2 or less, this does not
lead to a contradiction yet. Figure 1 shows a string with only 4 LZ77-factors and
linearly many maximal repetitions which are all nested squares. Furthermore,
the number of pairs of these maximal repetitions such that both the minimum
periods and the starting indices differ by only 2 is also linear.

Instead, we will show that the neighboring maximal δ-subrepetitions only
occur if we allow highly periodic substrings in these subrepetitions.

Lemma 2. Let S be a string and let S[s1..e1] and S[s2..e2] be different positioned
maximal δ-subrepetitions of S with minimum periods p1 and p2, respectively. Let
further L be a real number and q be a positive natural number such that both
periods p1 and p2 are contained in the interval

[
L,

(
1 + δ

2q

)
L

)
and such that

the intersection of the two maximal δ-subrepetitions contains at least
(
1 + δ

2

)
L

characters.
Then the intersection of S[s1..e1] and S[s2..e2] contains a q-th power.

Proof. Define smax := max(s1, s2) and emin = min(e1, e2). Then, the intersection
of S[s1..e1] and S[s2..e2] is given by S[smax..emin].

Since the intersection of S[s1..e1] and S[s2..e2] contains more than p1 charac-
ters and more than p2 characters, the maximal δ-subrepetitions can be defined
by this intersection as a substring and the period alone. Therefore, the periods
p1 and p2 are different.

Let n be a natural number in the interval
{

0, 1, 2, . . . ,
⌊

qδ−δ
2q L

⌋
− 1

}
. The

following inequality shows that the indices smax +n, smax +n+max(p1, p2) and
smax +n+max(p1, p2)−min(p1, p2) are contained in the intersection and hence,
using the two periodicities, correspond to equal characters.
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smax ≤ smax + n

< smax + n + max(p1, p2) − min(p1, p2)
< smax + n + max(p1, p2)

≤ smax +
⌊

qδ − δ

2q
L

⌋
− 1 +

⌊(
1 +

δ

2q

)
L

⌋

≤ smax +
(

qδ − δ

2q
+ 1 +

δ

2q

)
L − 1

≤ smax +
(

1 +
δ

2

)
L − 1

≤ emin

This implies that the first
⌊

qδ−δ
2q L

⌋
+ max(p1, p2) − min(p1, p2) characters of

the intersection S[smax..emin] are (max(p1, p2)−min(p1, p2))-periodic. Since both
p1 and p2 are natural numbers in the interval

[
L,

(
1 + δ

2q

)
L

)
, this difference

max(p1, p2) − min(p1, p2) is bounded from above by
⌊

δ
2q L

⌋
.

Therefore, the first
⌊

qδ−δ
2q L

⌋
+ max(p1, p2) − min(p1, p2) characters of the

intersection S[smax..emin] are a power with exponent of at least
⌊

qδ−δ
2q L

⌋
+ max(p1, p2) − min(p1, p2)

max(p1, p2) − min(p1, p2)
=

⌊
qδ−δ
2q L

⌋

max(p1, p2) − min(p1, p2)
+ 1

≥
⌊
(q−1)δ

2q L
⌋

⌊
δ
2q L

⌋ + 1

≥
�q − 1�

⌊
δ
2q L

⌋

⌊
δ
2q L

⌋ + 1

= (q − 1) + 1
= q.

Hence, the intersection of S[s1..e1] and S[s2..e2] contains a q-th power.

The proof of Theorem 5 follows the same idea as the proof of Theorem 4
with the only exception that the contradiction is derived from Lemma 2 instead of
Lemma 1. Also, in order to derive the contradiction, the maximal δ-subrepetitions
have to be much closer together.

5 Tightness

In this section, we prove that for fixed δ and q ≤ �δ + 3� the upper bounds of
Theorem 1 and Theorem 2 are, up to a constant factor, tight.
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Theorem 6. Let δ be a positive real number. For all positive integers z and c
with 2 log2(z) ≤ c ≤ z, there is a string S

– with log2(|S|) ∈ Θ(c),
– with Θ(z) LZ77-factors,
– with Θ(cz) maximal δ-repetitions and
– without �δ + 3�-th powers.

Note that this theorem proves the asymptotic tightness of both Theorem 1
and Theorem 2, since it fixes both δ and the maximal power so that both upper
bounds simplify to

#(extended maximal δ-(sub-)repetitions)
∈ O (#(LZ77-factors) · log(string length))

Proof (Proof of Theorem 6). Define the power q = �δ + 2� and the string

R =
((

. . .
(
(σq

1σ2)
q
σ3

)q
. . .

)q
σc

)q

.

The string R consists of c different characters and c exponentiations. Therefore,
it is easy to see that it decomposes into 2c LZ77-factors. Furthermore, the string
R does not contain (q + 1)-th powers and its length is bounded by qc ≤ |R| <
(q + 1)c. Lastly, the string R contains the c distinct maximal δ-repetitions σq

1,

(σq
1σ2)

q,
(
(σq

1σ2)
q
σ3

)q, . . . ,
((

. . .
(
(σq

1σ2)
q
σ3

)q
. . .

)q
σc

)q

. Note that all of these
maximal δ-repetitions are prefixes of R.

Define

S = $0R[1..|R|]$1R[2..|R|]$2R[3..|R|]$3 . . . R[z..|R|]$z.

Clearly, the string S does not contain any (q + 1) = �δ + 3�-th powers.
Now, consider R[s..|R|] for 1 < s ≤ z. For each c′ ≥ log2(z) > logq(z), the

maximal δ-repetition
((

. . .
(
(σq

1σ2)
q
σ3

)q
. . .

)q
σc′

)q

in R has a corresponding
maximal δ-repetition in R[s..|R|] which is obtained by removing the first s − 1
characters from R. This implies that R[s..|R|] has at least c − log(z) distinct
maximal δ-repetitions. Since 2 log(z) ≤ c holds, this proves that there are at least
c
2 maximal δ-repetitions. Furthermore, all these described maximal δ-repetitions
on all these substrings are distinct.

The separators $i make sure that none of the maximal repetitions leaks into
another copy of R. Therefore, the string S contains at least n c

2 ∈ Θ(cz) maximal
δ-repetitions. Since each separator needs one LZ77-factor, each copy of R, except
for the first one, also needs exactly one LZ77-factor. Therefore, the string S
decomposes into 2c + (z + 1) + (z − 1) ∈ Θ(z) LZ77-factors. The length |S| of
the string S is equal to z|R| − (z−1)z

2 + z + 1 and thereby bounded by

zqc − (z − 1)z
2

+ z + 1 ≤ z|R| − (z − 1)z
2

+ z + 1 ≤ z(q + 1)c − (z − 1)z
2

+ z + 1.

Since q only depends on the constant δ, this implies that log2(|S|) ∈ Θ(c).
This concludes the proof and thereby shows that Theorem 1 and Theorem 2

are asymptotically tight for fixed δ.
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6 Conclusion

This paper proved that the number of distinct maximal δ-repetitions in com-
pressed strings is bounded by a polynomial only dependent on the number of
LZ77-factors, the logarithm of the string length and δ. If we further restrict the
exponent of the highest power, we can extend this upper bound to maximal
δ-subrepetitions.

While Theorem 6 only shows the tightness for unbounded alphabets, we can
use the binary representation bin(i) of the number i with exactly �log z� bits in
order to represent the ci := 20 bin(i)2 and $i := 21 bin(i)2 on a ternary alphabet.
Furthermore, we can represent the ternary numbers 0, 1 and 2 with 00, 01 and
11, respectively. It can be shown that Theorem 6 still holds under this binary
representation.

Since log(1 + x) is approximately x for small values of x, for small δ and
large q these upper bounds are O

(
z log(|S|)

δ2

)
for the maximal δ-repetitions and

O
(

qz log(|S|)
δ2

)
for the maximal δ-subrepetitions.

In the uncompressed case, the upper bound for the number of maximal δ-
subrepetitions had divisor of δ2 as well [14], which could be improved to δ [7,10].
Therefore, it might be possible to improve this divisor in the compressed upper
bounds as well.

Furthermore, while this paper uses the LZ77-decomposition because of its
widespread use, we only use its property described in Corollary 1 for the upper
bounds. Therefore, both of these bounds translate, up to a constant factor, to
upper bounds using the slightly stronger notion of the string attractor.
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Abstract. We define a new quantitative measure for an arbitrary facto-
rial language: the entropy of a random walk in the prefix tree associated
with the language; we call it Markov entropy. We relate Markov entropy
to the growth rate of the language and the parameters of branching of
its prefix tree. We show how to compute Markov entropy for a regu-
lar language. Finally, we develop a framework for experimental study of
Markov entropy by modelling random walks and present the results of
experiments with power-free and Abelian-power-free languages.

Keywords: Power-free language · Abelian-power-free language ·
Markov entropy · Prefix tree · Random walk

1 Introduction

Formal languages closed under taking factors of their elements (factorial lan-
guages) are natural and popular objects in combinatorics. Factorial languages
include sets of factors of infinite words, sets of words avoiding patterns or rep-
etitions, sets of minimal terms in algebraic structures, sets of palindromic rich
words and many other examples. One of the main combinatorial parameters of
factorial languages is their asymptotic growth. Usually, “asymptotic growth”
means asymptotic behaviour of the function CL(n) giving the number of length-
n words in the language L. (In algebra, the function that counts words of length
at most n is more popular.)

In this paper we propose a different parameter of asymptotic growth, based
on representation of factorial languages as prefix trees, which are diagrams of
the prefix order on words. Given such an infinite directed tree, one can view
each word as a walk starting at the root. We consider random walks, in which
the next node is chosen uniformly at random among the children of the current
node, and define their entropy to measure the expected uncertainty of a single
step. As a random walk is a Markov chain, we call this parameter the Markov
entropy of a language. This parameter was earlier considered for a particular
subclass of regular languages in the context of antidictionary data compression
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[4]. However, it seems that more general cases were not analysed up to now.
Our interest in Markov entropy is twofold. First, it allows us to estimate growth
properties of a language from statistics of experiments, if exact methods do not
work. Second, it is related to a natural and efficient (at least theoretically) data
compression scheme, which encodes the choices made during a walk in the prefix
tree.

Our contribution is as follows. In Sect. 3 we define the order-n Markov entropy
μn(L) of a language L in terms of length-n random walks in its prefix tree T (L)
and the Markov entropy μ(L) = limn→∞ μn(L). Then we relate Markov entropy
to the exponential growth rate of L and to the parameter called branching fre-
quency of a walk in T (L). In Sect. 4.1 we show how to compute Markov entropy
for a regular language. Then in Sect. 4.2 we propose a model of random walk
for an arbitrary factorial language through depth-first search and show how to
recover branching frequency from observable parameters of a walk. Finally, in
Sect. 5 we present algorithms used in the experimental study of Markov entropy
for power-free and Abelian-power-free languages and the results of this study.
All proofs are omitted; see arXiv:2105.02750 for the full version.

2 Preliminaries

We study words and languages over finite alphabets; Σ∗ denotes the set of all
words over an alphabet Σ={0, . . . , σ−1}. Standard notions of prefix, suffix, fac-
tor are used. We use the array notation w = w[1..n] for a word of length n = |w|;
thus w[i..i+k−1] stands for the length-k factor of w starting at position i. In
particular, w[i..i] = w[i] is the ith letter of w and w[i..i−1] is the empty word,
denoted by λ. A word w is right extendable in a language L if L contains infinitely
many words with prefix w; re(L) denotes the set of all words which are right
extendable in L.

A word w has period p if w[1..|w|−p] = w[p+1..w]. For an integer k > 1, the
k-power of a word w is the concatenation of k copies of w. For an arbitrary real
β > 1, the β-power (resp., the β+-power) of w is the prefix of length �β|w|� (resp.,
�β|w| + 1�) of the infinite word w∞ = ww · · · w · · · . E.g., (010)2

+
= (010)7/3 =

0100100, (010)5/2 = (010)(5/2)+ = 01001001. A word is β-power-free if it has
no β-powers as factors; the k-ary β-power-free language PF(k, β) consists of all
β-power-free words over the k-letter alphabet. The same definitions apply to β+-
powers. The crucial result on the power-free languages is the threshold theorem,
conjectured by Dejean [7] and proved by efforts of many authors [3,6,16–18,
20]. The theorem establishes the boundary between finite and infinite power-
free languages: the minimal infinite k-ary power-free languages are PF(3, 7

4

+),
PF(4, 7

5

+), and PF(k, k
k−1

+) for k = 2 and k ≥ 5. These languages are called
threshold languages.

The Parikh vector ψ(w) of a word w is a length-σ vector such that ψ(w)[i]
is the number of occurrences of the letter i in w for each i ∈ Σ. Two words
with equal Parikh vectors are said to be Abelian equivalent. A concatenation
of k Abelian equivalent words is an Abelian kth power. Abelian k-power-free

http://arxiv.org/abs/2105.02750
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words are defined in analogy with k-power-free words; Abelian square-free (resp.,
cube-free, 4-power-free) languages over four (resp., three, two) letters are infinite
[8,12].

A language L ⊆ Σ∗ is factorial if it contains all factors of each its element.
Power-free and Abelian-power-free languages are obviously factorial. The rela-
tion “to be a prefix (resp., a suffix, a factor)” is a partial order on any language.
The diagram of the prefix order of a factorial language L is a directed tree T (L)
called the prefix tree. Prefix trees are the main objects of study in this paper. For
convenience, we assume that an edge of the form (w,wa) in T (L) is labeled by
the letter a; in this way, the path from the root to w is labeled by w. For regular
languages we use deterministic finite automata with partial transition function
(PDFA), viewing them as labelled digraphs. We assume that all states of a PDFA
are reachable from the initial state; since we study factorial languages, we also
assume that all states are final (so a PDFA accepts a word iff it can read it).
When a PDFA A is fixed, we write q.w for the state of A obtained by reading
w starting at the state q.

Combinatorial complexity (or growth function) of a language L ⊆ Σ∗ is a
function counting length-n words in L: CL(n) = |L ∩ Σn|. The growth rate
gr(L) = lim supn→∞(CL(n))1/n describes its asymptotic growth. The combi-
natorial complexity of factorial languages is submultiplicative: CL(m + n) ≤
CL(m)CL(n); by Fekete’s lemma [9], this implies gr(L) = limn→∞(CL(n))1/n =
infn∈N(CL(n))1/n. A survey of techniques and results on computing growth rates
for regular and power-free languages can be found in [27].

Infinite Trees. We consider infinite k-ary rooted trees: the number of children
of any node is at most k. Nodes with more than one child are called branching
points. The level |u| of a node u is the length of the path from the root to u. A
subtree Tu of a tree T consists of the node u and all its descendants. The tree
T is p-periodic (resp., p-subperiodic) if there exists a function f on the set of
nodes such that each subtree Tu is an isomorphic copy (resp., is a subgraph) of
the subtree Tf(u) and |f(u)| ≤ p. The prefix tree of any factorial language L is
0-subperiodic, since suffixes of elements of L are also in L. Furthermore, T (L)
is p-periodic for some p iff L is regular (p-periodicity means exactly that L has
finitely many quotients, which is equivalent to regularity).

There are two widely used parameters of growth for infinite trees; see,
e.g., [15]. “Horizontal” growth is measured by the growth rate gr(T ) =
limn→∞(Tn)1/n, where Tn is the number of nodes of level n, whenever this limit
exists. Hence, gr(T (L)) = gr(L). “Vertical” growth is measured by the branching
number br(T ), which is usually defined using the notion of network flow. How-
ever, Furstenberg’s theorem [10] says that br(T ) = gr(T ) for subperiodic trees,
so for prefix trees we have only one parameter. In Sect. 3, we propose one more
parameter of growth using the notion of entropy.

Entropy. Let ξ = (x1|p1 , . . . , xn|pn
) be a discrete finite-range random variable,

where pi, i = 1, . . . , n, is the probability of the outcome xi. The entropy of ξ is the
average amount of information in the outcome of a single experiment: H(ξ) =
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−
∑k

i=1 pi log pi (throughout the paper, log stands for the binary logarithm).
Lemma 1 below contains basic properties of entropy, established by Shannon
[23].

Lemma 1. (1) For a random variable ξ = (x1|p1 , . . . , xn|pn
), H(ξ) ≤ log n;

equality holds for the uniform distribution only.
(2) For a random vector (ξ, η), H(ξ, η) ≤ H(ξ) + H(η); equality holds iff ξ and
η are independent.

3 Entropy Characteristics of Prefix Trees

Let T = T (L) be a prefix tree. The entropy characteristics introduced below
measure the expected uncertainty of a single letter in a random word from L.
By order-n general entropy Hn(L) we mean the entropy of a random variable
uniformly distributed on the set |L ∩ Σn| (or on the set of level-n nodes of T ),
divided by n. By Lemma 1(1), Hn(L) = log CL(n)

n . The fact that L is factorial
guarantees the existence of the general entropy of L, which is by definition the
limit

H(L) = lim
n→∞ Hn(L) = lim

n→∞ log(CL(n))1/n = log gr(L).

A different notion of entropy stems from consideration of random walks in T . As
usual in graph theory, by random walk we mean a stochastic process (Markov
chain), the result of which is a finite or infinite walk in the given graph. The
process starts in the initial state (either fixed or randomly chosen from some
distribution) and runs step by step, guided by the following rule: visiting the
node u, choose an outgoing edge of u uniformly at random1 and follow it to
reach the next node. The walk stops if u has no outgoing edges. Note that all
walks in T are directed paths; we refer to the walks starting at the root as
standard. Let ηn be the random variable with the range |L ∩ Σn| such that the
probability of a word w ∈ L is the probability that a random standard walk in T ,
reaching the level n, visits w. The order-n Markov entropy of L is μn(L) = H(ηn)

n .
The following lemma is immediate from definitions and Lemma 1(1).

Lemma 2. For any factorial language L and any n, one has μn(L) ≤ Hn(L).

Similar to the case of the general entropy, the limit value exists:

Lemma 3. Let L be a factorial language. Then there exists a limit μ(L) =
limn→∞ μn(L) = infn∈N μn(L).

We call μ(L) the Markov entropy of L. We want to estimate μ(L) for different
languages; so our first goal is to relate H(ηn), and thus μn(L), to the parameters
of the tree T . Let ch(w) denote the number of children of the node w in T and
P (w) be the probability of visiting the word w by a random standard walk.

1 Non-uniform distributions are also used in many applications but we do not consider
them here.
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Lemma 4. P (w) =
( ∏|w|−1

i=0 ch(w[1..i])
)−1

.

In general, P (w) may underestimate the probability assigned to w by η|w|;
this is the case if some prefix of w has a child which generates a finite subtree
with no nodes of level |w|. To remedy this, we consider trimming of prefix trees.
By n-trimmed version of T , denoted by T[n], we mean the tree obtained from T
by deletion of all finite subtrees Tu which have no nodes of level n (and thus of
bigger levels). In other words, a node w ∈ L is deleted iff L contains no length-n
word with the prefix w.

Example 1. Let L = PF(2, 3), T = T (L). If n ≥ 9, then T[n] does not contain
u = 00100100 because u0, u1 end with cubes; if n ≥ 15, then T[n] does not
contain v = 0100101001010, because v1, v00, and v01 end with cubes.

The trimmed version of T , denoted by T[], is obtained from T by deletion of
all finite subtrees. The next lemma follows from definitions.

Lemma 5. (1) T[] =
⋂

n∈N
T[n]. (2) T[] is the prefix tree of re(L).

We write ch[n](w) (ch[](w)) for the number of children of w in T[n] (resp., T[])
and P[n](w) (P[](w)) for the probability of visiting w by a random standard walk
in T[n] (resp., T[]). As in Lemma 4, one has

P[n](w) =
( |w|−1∏

i=0

ch[n](w[1..i])
)−1

and P[](w) =
( |w|−1∏

i=0

ch[](w[1..i])
)−1

. (1)

Lemma 6. Let w ∈ L, |w| = n. Then ηn assigns to w the probability P[n](w).

Definitions and Lemma 6 imply H(ηn) = −
∑

w∈L∩Σn P[n](w) log P[n](w).
Given an arbitrary tree T , we assign to each internal node u its weight, equal

to the logarithm of the number of children of u. Branching frequency of standard
walk ending at a node w, denoted by bf(T , w), is the sum of weights of all nodes
in the walk, except for w, divided by the length of the walk (=level of w). The
use of branching frequency for prefix trees can be demonstrated as follows. For a
language L, a natural problem is to design a method for compact representation
of an arbitrary word w ∈ L. A possible solution is to encode the standard
walk in T = T (L), ending at w. We take |w|-trimmed version of T and encode
consecutively all choices of edges needed to reach w. For each predecessor u of w
we encode the correct choice among ch[|w|](u) outgoing edges. The existence of
asymptotically optimal entropy coders, like the arithmetic coder [21], allows us
to count log ch[|w|](u) bits for encoding this choice. Thus w will be encoded by
∑|w|−1

i=0 log
(
ch[|w|](w[1..i])

)
bits, which is exactly bf(T[|w|], w) bits per symbol.

Remark 1. The proposed method of coding generalizes the antidictionary com-
pression method [4] for arbitrary alphabets. Antidictionary compression works
as follows: given w ∈ L ⊆ {0, 1}∗, examine each prefix w[1..i]; if it is the only
child of w[1..i−1] in the prefix tree of L, delete w[i]. In this way, the remaining
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bits encode the choices made in branching points during the standard walk to w.
The compression ratio is the fraction of branching points among the predecessors
of w: any branching point contributes 1 to the length of the code, while other
nodes in the walk contribute nothing.

The following theorem relates branching frequencies to Markov entropy.

Theorem 1. For a factorial language L and a positive integer n, the order-
n Markov entropy of L equals the expected branching frequency of a length-n
random walk in the prefix tree T (L).

4 Computing Entropy

4.1 General and Markov Entropy for Regular Languages

Let L be a factorial regular language, A be a PDFA, recognizing L. The problem
of finding gr(L), and thus H(L), was solved by means of matrix theory as follows.
By the Perron–Frobenius theorem, the maximum absolute value of an eigenvalue
of a non-negative matrix M is itself an eigenvalue, called the principal eigenvalue.
A folklore theorem (see [27, Th. 2]) says that gr(L) equals the principal eigenvalue
of the adjacency matrix of A. This eigenvalue can be approximated2 with any
absolute error δ in O(|A|/δ) time [24, Th. 5]; see also [27, Sect. 3.2.1].

Now consider the computation of μ(L). By Lemma 3 and Theorem 1, μ(L) is
the limit of expected branching frequencies of length-n random standard walks in
the prefix tree T = T (L). Standard walks in T are in one-to-one correspondence
with accepting walks in A, so we can associate each node w ∈ T with the state
λ.w ∈ A and consider random walks in T as random walks in A. We write
deg→(u) for the out-degree of the node u in A.

We need the apparatus of finite-state Markov chains. Such a Markov chain
with m states is defined by a row-stochastic m × m matrix A (row-stochastic
means that all entries are nonnegative and all row sums equal 1). The value
A[i, j] is treated as the probability that the next state in the chain will be j
given that the current state is i. Any finite directed graph G with no nodes of
out-degree 0 represents a finite-state Markov chain. The stochastic matrix of
G is built as follows: take the adjacency matrix and divide each value by the
row sum of its row (see Fig. 1 below). Recall some results on finite-state Markov
chains (see, e.g., [11, Ch. 11]). Let A be the m × m matrix of the chain. The
process is characterized by the vectors p(n) = (p(n)

1 , . . . , p
(n)
m ), where p

(n)
i is the

probability of being in state i after n steps; the initial distribution p(0) is given
as a part of description of the chain. The stationary distribution of A is a vector
p = (p1, . . . , pm) such that pi ≥ 0 for all i,

∑m
i=1 pi = 1 and pA = p. Every row-

stochastic matrix has one or more stationary distributions; such a distribution is
unique for the matrices obtained from strongly connected digraphs. The sequence
{p(n)} approaches some stationary distribution p in the following sense:

2 Note that it is not possible in general to find the roots of polynomials exactly.
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(∗) there exists an integer h ≥ 1 such that p = limn→∞ p(n)+p(n+1)+···+p(n+h−1)

h

(That is, the limit of the process is a length-h cycle and p gives the average
probabilities of states in this cycle. In practical cases usually h = 1 and thus
p = limn→∞ p(n).)

Theorem 2. Let L be a factorial regular language, Â be a PDFA accepting
re(L). Suppose that Â has m states 1, . . . , m and p = (p1, . . . , pm) is the sta-
tionary distribution for a random walk in Â, starting at the initial state. Then
μ(L) =

∑m
i=1 pi log(deg→(i)).

Example 2. Let L ⊂ {0, 1}∗ be the regular language consisting of all words
having no factor 11. Its accepting PDFA, the corresponding matrices and entropy
computations are presented in Fig. 1. Note that re(L) = L.

Fig. 1. Accepting PDFA and entropy computations for the language L (Example 2).

Computational Aspects. Computing Â from A takes O(|A|) time, as it is suf-
ficient to split A into strongly connected components and traverse the acyclic
graph of components. The vector p can be computed by solving the size-m lin-
ear system p(Â − I) = 0, where Â is the adjacency matrix of Â and I is the
identity matrix. This solution requires Θ(m3) time and Θ(m2) space, which is
too much for large automata. More problems arise if the solution is not unique;
but the correct vector p still can be found by means of matrix theory (see [11,
Ch. 11]). In order to process large automata (say, with millions of states), one
can iteratively use the equality p(n+1) = p(n)Â to approximate p with the desired
precision. Each iteration can be performed in O(m) time, because Â has O(m)
nonzero entries. One can prove, similar to [26, Th. 3.1], that under certain natural
restrictions O(δ−1) iterations is sufficient to obtain p within the approximation
error δ.

4.2 Order-n Markov Entropy via Random Walks

Let L ⊆ Σ∗ be an arbitrary infinite factorial language such that the predicate
L(w), which is true if w ∈ L and false otherwise, is computable. There is little
hope to compute μ(L), but one can use an oracle computing L(w) to build
random walks in the prefix tree T = T (L) and obtain statistical estimates
of μn(L) for big n. We construct random walks by random depth-first search
(Algorithm 1), executing the call DFS(λ, n). The algorithm stops immediately
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when level n is reached. When visiting node u, the algorithm chooses a non-
visited child of u uniformly at random and visits it next. If all children of u are
already visited, then u is a “dead end” (has no descendants at level n), and the
search returns to the parent of u.

Algorithm 1. Random walk in T (L) by depth-first search
1: function DFS(u, n) � u=node, n=length of walk
2: if |u| = n then break � walk reached level n
3: (a1a2 . . . aσ) ← random permutation of Σ
4: for j = 1 to σ do
5: if L(uaj) then DFS(uaj , n) � visit uai next
6: return � u has no descendant at level n

Lemma 7. DFS(λ, n) builds a length-n random standard walk in T (L).

Consider the values of the counter j in the instances DFS(λ, n),DFS(w[1], n),
. . . ,DFS(w[1..n−1], n) at the moment when the search reaches level n. We define
profile of the constructed walk as the vector r = (r1, . . . , rσ) such that ri is
the number of instances of DFS in which j = i. Note that different runs of
Algorithm 1 may result in the same walk with different profiles (due to random
choices made, depth-first search visits some dead ends and skips some of the
others). Given a profile r, one can compute the expected branching frequency
bf(r) of a walk with this profile: bf(r) = 1

n

∑σ
i=1 ci log i, where the parameters

ci are computed in Theorem 3 below.

Theorem 3. Let r = (r1, . . . , rσ) be a profile of a length-n random standard
walk in a tree T . For each i = 1, . . . , σ, let ci be the expected number of nodes,
having exactly i children in the tree T[n], in a random standard walk with the
profile r. Then

(c1, . . . , cσ)P = r, where P [i, k] =

(
σ−i
k−1

)

(
σ

k−1

) −
(
σ−i

k

)

(
σ
k

) for i, k = 1, . . . , σ. (2)

Example 3. Let us solve (2) for σ = 2 (left) and σ = 3 (right):

(c1, c2)
[

1
2

1
2

1 0

]

= (r1, r2)

c1 = 2r2, c2 = r1 − r2

bf(r) = r1−r2
r1+r2

(c1, c2, c3)

⎡

⎣

1
3

1
3

1
3

2
3

1
3 0

1 0 0

⎤

⎦ = (r1, r2, r3)

c1 = 3r3, c2 = 3r2 − 3r3, c3 = r1 − 2r2 + r3

bf(r) = 3(r2−r3)+(r1−2r2+r3) log 3
r1+r2

5 Experimental Results

With the goal of comparing general entropy and Markov entropy for power-
free languages, we started with a side experiment. We took the ternary square-
free language SF = PF(3, 2), which is a well-studied test case. Its growth rate
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gr(SF) ≈ 1.30176 is known with high precision [27] from the study of its regular
approximations. A kth regular approximation SFk of SF is the language of all
words having no squares of period ≤ k as factors. The sequence {gr(SFk)} demon-
strates a fast convergence to gr(SF). So we wanted to (approximately) guess the
Markov entropy μ(SF) extrapolating the initial segment of the sequence μ(SFk).

The results are as follows: we computed the values μ(SFk) up to k = 45
with absolute error δ < 10−8 using the technique from Sect. 4.1. We obtained
μ(SF45) ≈ 0.36981239; the extrapolation of all obtained values gives 0.369810 <
μ(SF) < 0.369811. At the same time we have H(SF) = log(gr(SF)) ≈ 0.380465,
so the two values are clearly distinct but close enough.

5.1 Random Walks in Power-Free Languages

To perform experiments with length-n random walks for a language L, one needs
an algorithm to compute L(w) to be used with Algorithm 1. A standard app-
roach is to maintain a data structure over the current word/walk w, which
quickly answers the query “w ∈ L?” and supports addition/deletion of a letter
to/from the right. The theoretically best such algorithm for power-free words was
designed by Kosolobov [14]: it spends O(log n) time per addition/deletion and
uses memory of size O(n). However, the algorithm is complicated and the con-
stants under O are big. We developed a practical algorithm which is competitive
for the walks up to the length of several millions. For simplicity, we describe it for
square-free words but the construction is the same for any power-free language.

We use arrays repeati[1..n], i = 0, . . . , �log n�−1 to store previous occurrences
of factors. If |u| ≥ j for the current word u, then repeati[j] is the last position of
the previous occurrence of the factor u[j−2i+1..j] or −∞ if there is no previous
occurrence. To delete a letter from u we just delete the entries repeati[|u|]; let
us consider the procedure add(u, a) (Algorithm 2) which adds the letter a to u,
checks square-freeness of ua and computes repeati[|u| + 1]. The auxiliary array
last[1..σ] stores the rightmost position of each letter in the current word.

Algorithm 2. Online square detection: adding a letter
1: function add(u, a) � u=word, a=letter to add
2: repeat0[|u| + 1] ← last[a]; last[a] ← |u| + 1 � fill previous occurrence of a
3: free ← true � square-freeness flag
4: for i = 0 to 	log n
 − 1 do
5: x ← repeati[|u|+1]; p = |u| + 1 − x � p is the possible period of a square

6: if p ≤ 2i+1 and repeati[x+2i] = x + 2i − p then free ← false; break � Fig. 2

7: if i = 	log n
 − 1 then break � no more arrays to update

8: compute repeati+1[|u| + 1] � from repeati

9: if repeati+1[|u| + 1] = −∞ then break � all repeated suffixes processed

10: return free � the answer to “is ua square-free?”
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Fig. 2. Detecting a square by Algorithm 2.

Correctness. Recall that u is square-
free, so the occurrences of a factor of u
can neither overlap nor touch. Assume
that ua ends with a square vv, p = |v|,
2i < p ≤ 2i+1. Then p will be found in
line 5 as |u| + 1 − repeati[|u|+1] (red
arcs in Fig. 2 show the suffix of length
2i and its previous occurrence). The
condition in line 6 means exactly the equality of words marked by dash arcs in
Fig. 2; thus, vv is detected and add(u, a) returns false. For the other direction,
if add(u, a) = false, then the condition in line 6 held true and thus a square
was detected as in Fig. 2. The time complexity is O(

√
n) on expectation; the

experiments confirm this estimate.

Experiments. We studied the following languages: PF(2, 3) and PF(3, 2) as typ-
ical “test cases”, threshold languages over 3,. . . ,10, 20, 50, and 100 letters, and
PF(2, 7

3

+) as the smallest binary language of exponential growth. All languages
from this list have “essentially binary” prefix trees: a letter cannot coincide
with any of (σ−2) preceding letters, and so a node of level at least σ−2 has
at most two children. Hence we computed expected branching frequencies as in
Example 3. For each language, we computed profiles of 1000 walks of length 105

and 100 walks of length 106. The tables with the data are available at [29]. We
briefly analysed the data. The most interesting findings, summarized below, are
the same for each of the studied languages. Some figures are presented in Table 1.

1. The profiles of all walks in T = T (L) are close to each other. To be precise,
assume that bf(r) = μn(L) for all constructed profiles. Then the number r2

computed for a length-n random walk is the number of heads in c1 tosses
of a fair coin (among c1 nodes with two children, in r2 cases the dead end
was chosen first). Hence the computed values of r2 form a sample from the
binomial distribution B(c1,

1
2 ). And indeed, the set of computed r2’s looks

indistinguishable from such a sample; see [29, stat100000]. This property sug-
gests the mean value of bf(r) over all experiments as a good approximation
of μn(L).

2. The 99% confidence interval for the mean branching frequency bf(T[|w|], w) of
the 1000 constructed walks of length 105 is of length ∼ 4 · 10−4 and includes
the mean value of bf(r) for the walks of length 106. For the language SF, this
interval also includes the value μ(SF) conjectured from the study of μ(SFk).
This property suggests that μn(L) for such big n is close to the Markov
entropy μ(L).

3. As μ(L) ≤ H(L) = log(gr(L)), the value of μ(L) can be converted to the
lower bound for the growth rate of L. The values 2mean(bf(r)) from our experi-
ments differ from the best known upper bounds for the studied languages [27,
Tbl. A1–A3] by the margin of 0.004–0.018. Such a bound is quite good for all
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cases where specialized methods [13,25] do not work. The results for thresh-
old languages support the Shur–Gorbunova conjecture [28] that the growth
rates of these languages tend to the limit α ≈ 1.242 as the size of the alphabet
approaches infinity.

Table 1. Markov entropy for power-free languages: experiments

Language Mean bf(r) (105) Mean bf(r) (106) 2µ(L) gr(L)

PF(2, 7
3

+
) 0.27221 0.27220 ≈1.20766 ≈1.22064

PF(2, 3) 0.52562 0.52553 ≈1.43956 ≈1.45758

PF(3, 7
4

+
) 0.30249 0.30251 ≈1.23327 ≈1.24561

PF(3, 2) 0.36988 0.36987 ≈1.29223 ≈1.30176

PF(4, 7
5

+
) 0.09137 0.09151 ≈1.06535 <1.06951

PF(5, 5
4

+
) 0.20279 0.20265 ≈1.15092 <1.15790

PF(6, 6
5

+
) 0.28536 0.28526 ≈1.21871 <1.22470

PF(7, 7
6

+
) 0.29753 0.29749 ≈1.22903 <1.23690

PF(8, 8
7

+
) 0.28881 0.28867 ≈1.22163 <1.23484

PF(9, 9
8

+
) 0.30716 0.30732 ≈1.23727 <1.24668

PF(10, 10
9

+
) 0.29674 0.29669 ≈1.22836 <1.23931

PF(20, 20
19

+
) 0.30002 0.29982 ≈1.23099 <1.24205

PF(50, 50
49

+
) 0.30006 0.29970 ≈1.23089 <1.24210

PF(100, 100
99

+
) 0.30047 0.29974 ≈1.23093 <1.24210

5.2 Random Walks in Abelian Power-Free Languages

Similar to Sect. 5.1, we need an algorithm checking Abelian power-freeness.
Here we describe an algorithm detecting Abelian squares; its modification for
other integer powers is straightforward. If a word w[1..n] is fixed, we let ψi =
ψ(w[n−i+1..n]) − ψ(w[n−2i+1..n−i]). A simple way to find whether w ends
with Abelian square is to check ψi = 0 for all i. Since ψi+1 can be obtained from
ψi with a constant number of operations (add w[n−i] twice, subtract w[n−2i]
and w[n−2i−1]), this check requires Θ(n) time. However, Θ(n) time per iter-
ation appeared to be too much to perform experiments comparable with those
for power-free languages, so we developed a faster algorithm. It maintains two
length-n arrays for each letter a ∈ Σ: da[i] is the position of ith from the left let-
ter a in the current word w and ca[i] is the number of occurrences of a in w[1..i]
(i.e., a coordinate of ψ(w[1..i])). When a letter is added/deleted, these arrays
are updated in O(1) time (we regard σ as a constant). The function Asquare(u)
(Algorithm 3) checks whether the word w has an Abelian square as a suffix.

Correctness: see full version. Complexity: in experiments, Algorithm 3 checked
Θ(

√
n) suffixes of a length-n word, but we have no theoretical proof for this.
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Algorithm 3. Online Abelian square detection
1: function Asquare(u) � u=word
2: l ← |u| − 1; i ← 1 � two counters
3: free ← false � square-freeness flag; turns true when check finishes
4: while not free do
5: for a ∈ Σ do
6: ψ[a] ← ca[|u|] − ca[|u|−i] � a-coordinate of ψ(u[|u|−i+1..|u|])
7: if ψ[a] > ca[|u|−i] then free ← true; break � no squares possible

8: l ← min{l, da[ca[|u|−i] − ψ[a] + 1]}
9: if l = |u| − 2i + 1 then break � u[|u| − 2i + 1..|u|] is an Abelian square

10: i ← �(|u| − l + 1)/2
11: return free � the answer to “is ua Abelian square-free?”

Experiments. The structure and growth of Abelian-power-free languages are
little studied. We considered the 4-ary Abelian-square-free language ASF, the
ternary Abelian-cube-free language ACF, and the binary Abelian-4-power-free
language A4F; see Table 2. Our main interest was in estimating the actual growth
rate of these languages. The upper (resp. lower) bounds for the growth rates are
taken from [22] (resp., from [1,2,5]). For ASF and ACF we got profiles of 500
walks of length 105 and 100 walks of length 5·105; for A4F, 100 profiles of walks
of length 105 were computed. The results suggest that the automata-based upper
bounds for the growth rates of Abelian-power-free languages are quite imprecise,
in contrast with the case of power-free languages. In addition, the experiments
discovered the existence of very big finite subtrees on relatively low levels, which
slow down the depth-first search. In fact, to obtain long enough words from A4F

we modified the DFS function to allow “forced” backtracking if the length of the
constructed word does not increase for a long time. Even with such a gadget,
the time to build one walk of length 105 varied from 9 min to 4 h.

Table 2. Markov entropy for Abelian-power-free languages: experiments

Language Mean bf(r) (105) Meanbf(r) (5·105) 2µ(L) gr(L)

ASF 0.20475 0.20337 ≈1.15138 <1.44435; >1.00002

ACF 1.08439 1.08418 ≈2.12017 <2.37124; >1.02930

A4F 0.20736 – ≈1.15457 <1.37417; >1.04427

6 Conclusion and Future Work

In this paper we showed that efficient sampling of very long random words is
a useful tool in the study of factorial languages. Already the first experiments
allowed us to state a lot of problems for further research. To mention just a few:

– for which classes of languages, apart from regular ones, the Markov entropy
can be computed (or approximated with a given error)?
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– are there natural classes of languages satisfying μ(L) = H(L)? μ(L) � H(L)?
– how the branching frequencies of walks in a prefix tree are distributed? which

statistical tests can help to approximate this distribution?

Concerning the last questions, we note that though our experiments showed
“uniformity” of branching frequencies in each of the studied languages, the fre-
quencies of individual words can vary significantly. For example, the language
PF(2, 3) with the average frequency about 0.525 contains infinite words u and v
satisfying bf(u) = 0.72 and bf(v) < 0.45 [19].
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A Linear-Time Simulation
of Deterministic d-Limited Automata

Alexander A. Rubtsov(B)

National Research University Higher School of Economics, Moscow, Russia

Abstract. A d-limited automaton is a nondeterministic Turing machine
that uses only the cells with the input word (and end-markers) and
rewrites symbols only in the first d visits. This model was introduced
by T. Hibbard in 1967 and he showed that d-limited automata recognize
context-free languages for each d � 2. He also proved that languages
recognizable by deterministic d-limited automata form a hierarchy and
it was shown later by Pighizzini and Pisoni that it begins with determin-
istic context-free languages (DCFLs) (for d = 2).

As well-known, DCFLs are widely used in practice, especially in com-
pilers since they are linear-time recognizable and have the corresponding
CF-grammars subclass (LR(1)-grammars). In this paper we present a lin-
ear time recognition algorithm for deterministic d-limited automata (in
the RAM model) which opens an opportunity for their possible practical
applications.

1 Introduction

Context-free languages (CFLs) play an important role in computer science. The
most well-known practical application of CFLs is the application of their deter-
ministic subclass (DCFLs) to parsing algorithms in compilers, and the core of
this application is connection between LR(1)-grammars that describe syntaxes
of programming languages and deterministic pushdown automata (DPDAs) that
implement linear-time parsing of LR(1)-grammars. In 1965 D. Knuth showed [12]
that LR(1)-grammars generate exactly DCFLs, the class that is recognizable by
DPDAs. So, DCFLs is a practically important subclass of CFLs that is linear-
time recognizable and LR(1)-grammars are linear-time parsable, i.e. there is a
linear time algorithm that constructs a derivation tree of an input word.

The best known upper bound for CFLs parsing is nω where ω � 2.373 is the
exponent of fast-matrix multiplication, and n is the length of the input word,
was obtained by L. Valiant in 1975 [21]. It was shown in [13] and [1] why this
bound is hard to improve. Some recent CFL studies were focused on subclasses
that are hard to parse or at least to recognize [11], and on the subclasses that are
linear-time recognizable [2]. In this paper, we show that a well-known subclass
of CFLs is linear time recognizable. We move to the description of the subclass.
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1.1 d-Limited Automata and d-DCFLs

Namely, we focus on d-DCFLs, as they were called by T. Hibbard who introduced
this subclass of CFLs. To define this subclass, we define an auxiliary computa-
tional model. We provide here an informal definition, a formal definition could
be found in the next section.

A d-limited automaton (d-LA) is a nondeterministic Turing machine (TM)
that visits only the cells with the input word (and end-markers) and it rewrites
a symbol in the cell (except end-markers) only in the first d visits. We focus only
on the deterministic version of the model in the paper that is denoted by d-DLA.
T. Hibbard showed [10] that for each d � 2 d-LAs recognize (exactly) the class
of CFLs, 1-LAs recognize the class of regular languages [22] (Thm 12.1). Note
that for d = ∞, (deterministic) d-LAs turns to (deterministic) linear-bounded
automata that recognizes (deterministic) context-sensitive languages, so it is
quite a natural computational model for the Chomsky hierarchy.

Pighizzini and Pisoni showed in [17] that deterministic 2-DLAs recognize
DCFLs. T. Hibbard calls a subclass of CFLs, recognizable by deterministic d-
DLAs, d-deterministic languages (d-DCFLs). He showed in [10] that for a fixed d,
(d + 1)-DCFLs strictly contain d-DCFLs (there exists a (d + 1)-DCFL that is
not a d-DCFL), so all d-DCFLs form a hierarchy.

We also mention that while DCFLs is a widely-used subclass of CFLs, it has
the following practical flaws.

The languages L# = {#anbncm | n,m � 0} and L$ = {$ambncn | n,m � 0}
are DCFLs, so as the language L#∪L$, while the language (L#∪L$)R, consisting
of the reversed words from L# ∪ L$, is not a DCFL. If we allow deterministic
pushdown automata (DPDAs) to process the input either from left to right or
from right to left, the language (L#∪L$)R could be recognized by the DPDA MR

that acts as a DPDA ML recognizing (L# ∪L$) but MR processing of the input
from right to left. A deterministic 3-DLA can shift the head to the rightmost
cell and use the same approach of deterministic 2-DLA recognizing (L# ∪L$) to
recognize the language (L# ∪ L$)R.

Consider now the language L#,$ = {anbncm | n,m � 0} ∪ {ambncn | n,m �
0} which is a union of two DCFLs. It is a well-known fact (see [18]) that L#,$ is an
inherently ambiguous language. As is also well known, each DCFL is generated
by an unambiguous (particularly LR(1)) CF-grammar. Hibbard has also proved
in [10] that each d-DCFL is generated by an unambiguous CF-grammar, so the
union ∪∞

d=1 d-DCFLs does not contain all CFLs. This fact implies that d-DCFLs
share with DCFLs another practical flaw: they are not closed under the union
operation, so one needs to apply parallel computation to parse such languages
as L#,$ in linear time via d-DLAs.

1.2 Our Contribution

The membership problem for d-DLAs takes on the input the d-DLA M and the
input word w. The question of the problem, whether M accepts w. Denote
by m the length of M ’s description and by n the length of w. We provide
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O(mn) algorithm in RAM for the membership problem that leads to a linear-
time simulation algorithm if M is fixed. In fact, a more careful analysis leads to
the bound O(kn + m), where k is the number of M ’s states.

Hennie proved in [9] that each language recognizable in linear time by a
(deterministic) TM is regular (a more general result holds for nondeterministic
TMs [15,20]). So there is no linear-time TM that simulates a deterministic d-
DLA for d � 2. B. Guillon and L. Prigioniero proved that each 1-DLA can be
transformed into a linear-time TM [8] (and a similar result for 1-LAs). Their con-
struction relies on the classical Shepherdson construction of simulating of two-
way deterministic finite automata (2-DFAs) by one-way DFAs [19]. We also rely
on this construction, but it cannot be applied directly due to the Hennie’s result
(in this case one could simulate a non-regular language by a linear-time TM).

So we transform a classical TM to a TM that operates on a doubly-linked list
instead of a tape and transfer Shepherdson’s construction to this model. This
transformation allows us to obtain a linear-time simulation algorithm, but not
an O(mn) algorithm for the membership problem. To achieve this algorithm we
transform Birget’s algebraic constructions [3] into the language of graph theory,
and construct a linear-time algorithm which computes a variation of the mapping
composition.

Linear-time recognizable languages are used on practice for parsing, espe-
cially in compilers. We have already mentioned DCFLs, below we describe PEGs
which are very popular now, while their predecessors, top-down parsing lan-
guages, were abandoned due to limitations of computers in 1960s. Maybe there
will be no direct practical applications of our constructions, but the fact that
a language recognizable by a deterministic d-DLA is linear-time recognizable
can be used to prove linear-time recognizability of some specific languages and
transform the construction to other models, especially PEGs.

From a theoretical point of view our results allow us to prove that some
CFLs are easy (linear-time recognizable), while in general a CFL is recognizable
in O(nω) and due to the conditional results hard languages (recognizable at
least in superlinear time) “should” exist. We discuss the details in the following
subsection.

1.3 Related Results

We begin with a description of linear-time recognizable subclasses of context-
sensitive languages (CSLs) and CFLs. We start with a wide subclass of CSLs
recognizable in linear time: the class of languages recognizable by two-way deter-
ministic pushdown automata (2-DPDA). A linear time simulation algorithm of
2-DPDA was obtained by S. Cook in [5] and then simplified by R. Glück [7]. This
class obviously contains DCFLs as a subclass, and it also contains the language
of palindromes (over at least two-letters alphabet) that is a well-known example
of CF-language that is not a DCFL. It is still an open question whether 2-DPDA
recognize all CF-languages and the works of L. Lee [13] and Abboud et al. [1]
proves that this is very unlikely due to theoretical-complexity assumptions: any
CFG parser with time complexity O(gn3−ε), where g is the size of the grammar
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and n is the length of the input word, can be efficiently converted into an algo-
rithm to multiply m×m Boolean matrices in time O(m3−ε/3). From our results
naturally follows the question: can 2-DPDA simulate deterministic d-DLA for
d � 3?

Another result is a linear-time parsing algorithm for a non-trivial subclass
of CFLs: the regular closure of DCFLs, obtained by E. Bertsch and M.-J.
Nederhof [2]. Each language from this class can be described as follows. Let us
take a regular expression and replace each letter in it by a corresponding DCFL.
This class evidently contains the aforementioned language L#,$ (as a union of
DCFLs), so it is a strict extension of DCFLs. Note that the language L#,$ is
also recognizable by a 2-DPDA.

Another interesting linear-time recognizable subclass of CSLs is the one gen-
erated by parsing expression grammars (PEGs). Roughly speaking, PEGs are a
modification of CF-grammars that allow recursive calls (and returns from the
calls), we do not provide the formal definition here. PEGs are an upgraded ver-
sion of top-down parsing languages [4] developed by A. Birman and J. D. Ull-
man. They have been developed by B. Ford who has constructed a practical
linear time parser for this model [6]. The class of languages generated by PEGs
contains DCFLs, such CSLs as {anbncn | n � 0}, and, as shown in [14] by
B. Loff et al., the language of palindromes with the length of a power of 2. It
is an open question, whether PEGs recognize palindromes. The situation with
CFLs for PEGs is the same as for 2-DPDAs: there is no example of a CFL that
is not PEG-recognizable, while according to conditional results such a language
“should” exist. Another natural question that arises from our results: can PEGs
generate all d-DCFLs?

d-LAs were abandoned for decades but then the formal language’s community
returned to their study. G. Pighizzini, who actively worked on this topic, made
a survey of results on d-LAs and related models [16], focusing in part on state
complexity.

We agree with the remark from [16] that T. Hibbard claimed in [10] that
d-DLAs do not recognize palindromes for any d, while the formal proof is missing
and would be interesting.

2 Definitions

We define Hibbard’s model, introduced in [10], as it is defined today [16]. An
equivalent definition in a more formal style could be found in [17].

2.1 Deterministic d-Limited Automaton

Fix an integer d � 0. A deterministic d-limited automaton (d-DLA) is a (deter-
ministic) Turing machine with a single tape, which initially contains the input
word bordered by the left end-marker � and the right end-marker � with the
following property. Each letter of the alphabet has the corresponding number
from 0 to d called the rank, initially all the letters of the input word have the
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rank 0 and the end-markers have the rank d; when the head visits a cell with a
letter with rank r < d it rewrites it with a letter of the rank r + 1, and if the
letter has the rank d the head does not change the letter.

A d-DLA A is defined by a tuple

A = (Q, Σ, Γ, δ, q0, F ),

where Q is the finite set of states, Σ is the input alphabet (each letter has the
rank 0), Γ is the work-tape alphabet Σ ∪ {�,�} ⊆ Γ , we denote by Γr ⊆ Γ the
letters of the rank r, q0 is the initial state, F is the set of accepting states and
δ is the transition function

δ : Q × Γ → Q × Γ × {←,→}
so that

– for ar ∈ Γr, r < d any transition has the form δ(q, ar) = (q′, ar+1,m), where
ar+1 ∈ Γr+1\{�,�}

– for ad ∈ Γd any transition has the form δ(q, ad) = (q′, ad,m)
– for �,� any transition has the form δ(q,�) = (q′,�,←), δ(q,�) = (q′,�,→)

A d-DLA starts processing of the input word in the state q0 with the head on
the first input symbol. It consequently applies the transition function: being in
a state q with a letter a under the head it computes δ(q, a) = (q′, a′,m), replaces
the letter a by a′, changes the state q to q′ and moves the head to the right if
m =→ or to the left if m =←. The automaton accepts the input if it reaches
an accepting state qf ∈ F when the head arrives on the right end-marker �.
At this point it stops the computation. Note that since δ is totally defined, the
automaton rejects the input only by entering an infinite loop.

In fact we have modified the original definition a little by adding two extra
requirements. These modification does not change the class of recognizable lan-
guages. The first one is that the transition function is totally defined. The second
one is the “continuous” growth of the rank. The first one costs of adding only
one extra-state, and the second one is needed for the notation convenience; it
blows up the length of the automaton description from m up to O(dm), but this
blow up can be avoided by a technical complication of the algorithm.

2.2 Deleting DLBA

We also construct an auxiliary modified model as follows. In this model there
is no constrain on d-visits, the tape is replaced by a doubly linked list, so an
automaton can delete an arbitrary cell between the end-markers (but not the
end-markers). Formally we modify only the transition function as follows

δ : Q × Γ → (Q × (Γ ∪ {⊥}) × {←,→} ∪ {↑}) ,

where the symbol ⊥ means that the cell would be deleted right after the head
leaves the cell. After the deletion of the cell, the head moves from its left neigh-
bour to its right neighbour when it moves to the right from the left neighbour
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and vice versa. If the transition function returns ↑ the computation is over and
the input is rejected. We have no extra-requirements on the transition function.

We call the modified model the deleting DLBA since it is a modification
of deterministic linear-bounded automata. Deleting DLBAs obviously recognize
(exactly) deterministic CSLs. We use doubly linked lists in this model to achieve
the linear time during the simulation of d-DLAs.

3 Linear-Time Simulation Algorithm

In this section we provide a linear-time simulation algorithm for d-DLAs. The
main idea is as follows. If for all inputs each cell of a deleting DLBA is visited
at most C times (for some constant C) then it works in linear time. It also
works in linear time if the average number of visits per cell is at most C. Recall
that Hennie’s Theorem implies that both properties are impossible for a (non-
deleting) DLBA recognizing a non-regular language. So we construct a deleting
DLBA which satisfies the latter property from a d-DLA. When at some point
the d-DLA has on its tape a maximal subword1 with only letters of rank d, the
deleting DLBA has only one cell with auxiliary information for this subword
which it uses to simulate the behavior of the d-DLA on processing this subword.
Deleting DLBA can be simulated by RAM in a straight-forward way, so we will
provide the resulting linear-time algorithm for RAM in Subsect. 3.1.

Our simulation idea is similar to the Shepherdson’s well-known simulation
algorithm of a two-way DFA by a one-way DFA [19]. Note that in the case d = 0,
d-DLA is a two-way DFA. The deleting DLBA writes in the cells that should
contain letters of rank d the corresponding mappings of possible moves and if
two mappings are written in adjacent cells it deletes one of the cells and replaces
the mapping in the other cell by the (variation of) composition of the mappings.
When the head arrives at the cell with a mapping

f : (Q × {←,→} ∪ {↑}) → (Q × {←,→} ∪ {↑})

in the state q and the last move’s direction was m ∈ {←,→}, the deleting
DLBA computes f(q,m) = (q′,m′) and moves the head in the state q′ to the
direction m′. If f returns ↑ it means that the d-DLA entered an infinite loop, so
the deleting DLBA rejects the input in this case. We demand f(↑) = ↑.

To simplify the notation we use the following shortcuts:

←−
Q = Q×{←}, −→

Q = Q×{→}, ←→
Q =

←−
Q ∪−→

Q, A↑ = A∪{↑} for A ∈ {←−Q,
−→
Q,

←→
Q }.

We also use arrows to indicate the elements of these sets, i. e. ←−q ∈ ←−
Q , and call

elements of
←→
Q directed states. If δ(q,X) = (p, Y,m), where δ is the transition

function of a d-DLA or a deleting DLBA, we denote δ(q,X) = (←→p , Y ), where
the direction of p corresponds to the value of m.
1 The subword that cannot be continued neither to the right nor to the left such that

the resulting subword has only letters of rank d.
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We start with the technical details. We refer to d-DLA as A and to deleting
DLBA (that simulates A) as M . We enumerate all cells (of each automata) from
0 to n + 1, where n is the length of the input word w. The number of the cell
is fixed during the whole computation, so it will not be affected by deletion. We
denote the content of the i-th cell on the current M ’s step as WM [i]; we refer to
the content of the i-th cell right after the t-th step as W t

M [i]. So W 0
M [0] =� and

W 0
M [n + 1] =�. We refer to the content of A’s tape as WA. Since a cell could

be deleted we refer to the left (undeleted) neighbour of an i-th cell as i.prev and
to the right neighbour as i.next.

We say that an automaton (d-DLA or deleting DLBA) arrives at a segment
W [l, r] = W [l]W [l + 1] · · · W [r] in the directed state ←→q if it arrives in the state
q at the cell W [l] in the case ←→q = −→q and at the cell W [r] in the case ←→q = ←−q .
Respectively, an automaton departures from W [l, r] in the directed state ←→p if it
departures from W [l] in the case ←→p = ←−p and from W [r] in the case ←→p = −→p .

Now we describe M . We use indices A and M for the components of tuples
that describe automata to make the notation clear. The working alphabet ΓM

is the union of the alphabet ΓA and the set F of all mappings

f :
←→
Q ↑ → ←→

Q ↑, such that f(↑) = ↑ .

We continue the description of M after we state auxiliary properties of F . We
also need a few auxiliary definitions.

We say that f ∈ F describes the tape segment WA[l, r] that contains only
symbols of rank d if it describes the behavior of A on this segment, i.e., the follow-
ing condition holds. If A arrives at WA[l, r] in the directed state ←→q , f(←→q ) = ↑
iff A enters an infinite loop, otherwise A departures from WA[l, r] in the directed
state ←→p = f(←→q ).

If a mapping f describes a segment WA[L, r], and a mapping g describes
a segment WA[r + 1, R]. The directed composition f 
 g is the mapping h that
describes the segment WA[L,R].

Let f and g describe segments WA[L, r] and WA[r+1, R] and ←→q be a directed
state such that −→q means that the head arrives at WA[r + 1, R] (in the directed
state −→q from WA[L, r]) and ←−q means the arrival at WA[L, r]. We define the
mapping D : F × F × ←→

Q → ←→
Q ↑ that returns the directed state ←→p such that A

departures from the segment WA[L,R] in ←→p (after arriving in the directed state←→q ) or ↑ if the head never leaves WA[L,R]. We call D the departure function.
A function CF : Γd → F returns the mapping CF (X) that describes a cell

with the letter X of rank d. We call CF the cell description function.
In our algorithm we describe mappings from F via graphs as follows. A

mapping f ∈ F that describes a segment L is represented via 4-parted graph
with parts

−→
L in,

←−
L in,

−→
L out, and

←−
L out as follows. Each part is a copy of the set QA.

The graph has an edge ←→q → ←→p , ←→q ∈ ←→
L in, ←→p ∈ ←→

L out iff f(←→q ) = ←→p . So,
f(←→q ) = ↑ iff the vertex ←→q ∈ ←→

L in has degree 0.

Proposition 1. The directed composition 
 of mappings from F is well-defined
and is always a computable and an associative mapping. The directed composi-
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tion, the departure function D and the cell description function CF are com-
putable in O(|QA|).

As we mentioned in Subsect. 1.2 our algorithm of computing 
, D, CF is an
effective variant of the Birget’s construction, so we do not go deep into details
here, since one can find them in [3].

Proof. The CF function is evidently O(|QA|)-computable. Denote CF (ad) by
f . So f(←→q ) = ←→p iff δA(q, ad) = (←→p , ad).

We provide effective algorithms for computing D and 
 mappings via graphs.
Assume that f describes a segment L and g describes the segment R adjacent
to L (to the right). In terms of graphs, the directed composition 
 and the
departure function D are computable as follows. We glue the graphs for f and g

so that
−→
L out =

−→
R in and

←−
L in =

←−
R out (Fig. 1) and obtain the intermediate graph.

So f 
 g(←→q ) = ←→p iff there is a path from ←→q to ←→p in the intermediate graph
(by the graph’s construction). Note that the same holds for D(f, g,←→q ) = ←→p ,
the only difference between D and 
 is the initial vertex corresponding to ←→q .

Fig. 1. Graph for computing the composition

Since the sets of vertices corresponding to domains of f 
g(←→q ) and D′(←→q ) =
D(f, g,←→q ) do not intersect, we define the mapping h as follows:

h(v) =

{
f 
 g(←→q ),←→q ∼ v, if v ∈ ←−

L in ∪ −→
R in

D(f, g,←→q ),←→q ∼ v, if v ∈ −→
L in ∪ ←−

R in

We compute the graph of h in O(|QA|). Note that for D(f, g,←→q ) we need the
result for the only state ←→q , but for the sake of simplicity we consider the general
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case. The algorithm is provided on Fig. 2. Denote by V the set of all vertices.
Note that each vertex u ∈ V has out degree at most 1, so we denote by u.next

either the end of the edge u → u.next or u.next = ↑ if u has out-degree 0. We
store h in array (enumerate all vertices in the set

←→
L in ∪ ←→

R in) and so we store
the array of marks.

Fig. 2. Algorithm for computing h

The algorithm travels from the vertex v on the input of h until it either
reaches an output state, or it reaches a marked vertex. If the vertex of the
intermediate graph is marked by s it means that it was already used during
traveling from the vertex s. If s = v, it means that we met a loop, so h(v) = ↑,
otherwise h(v) = h(s). The marking guaranties that we never visit any edge
twice. Since out-degree of each vertex is at most 1 the number of edges |E| in the
graph is O(|V |). So the algorithm runs in time O(|V |+|E|) = O(|V |) = O(|QA|).
Recall that the vertex v is corresponding to the directed state ←→q and h(v) equals
to either f 
 g(←→q ) or D(f, g,←→q ) depending on the part containing v. �

3.1 Simulation Algorithm

We provide the pseudocode of the simulation algorithm in Fig. 3 and now we
also describe the algorithm. It provides a high-level description of M ’s transition
function δM and the simulation of M in RAM. When we describe M ’s behavior
and say “A moves”, “A acts”, etc., we refer to the result of the move δA(q, a)
where a ∈ Γ is either the mentioned symbol or the symbol under M ’s head
and q is the mentioned state or A’s state corresponding to M ’s state. A-moves
described in lines 3. . .4 of the pseudocode. M has two kinds of moves: A-moves
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Fig. 3. Simulation Algorithm

and technical moves. The A-moves correspond to moves of A, so M always has
a state q ∈ QA when it arrives at a cell after an A-move.

Since our algorithm depends on the first head’s arrival to the cell of rank
d − 1 (after which it becomes d), we have formal problems with the case d = 0.
To avoid them, assume that in the beginning all cells have rank −1 (only for
d = 0) and the d-DLA does not change the symbols of rank −1, but changes
their rank.

The automaton M acts as A if M processes a letter of rank less than d − 1
(A-moves). When M visits a cell on the d-th time and A should have written
a letter X of rank d in that cell (and X is not an end-marker), M writes to
the corresponding cell the mapping g = CF (X), recall that g(←→q ) = ←→p iff
δA(q,X) = (←→p ,X) for all q ∈ QA,X ∈ Γd. When M writes a mapping g in
the cell i for the first time, it scans the cells i.prev and i.next and performs the
following procedure that we call a deletion scan.

If only one of the cells i.prev and i.next contains a mapping (f or h respec-
tively), then M writes to the cell i the mapping f 
 g for i.prev and the mapping
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g 
 h for i.next and deletes the neighbouring cell. If both neighbours have the
rank d, M writes to the cell i the mapping f 
g
h and deletes both neighbouring
cells. After the deletion scan the cell i contains the result mapping g while the
neighbours of i contain letters, so g describes the segment WA[i.prev+1, i.next−1]
and M moves the head to the same cell (i.prev or i.next) as A after A leaves
the segment WA[i.prev + 1, i.next − 1]. This cell is computed via the departure
function D during the deletion scan.

We described the cases when M arrives at a cell of rank r < d from a cell of
any rank and to a cell of rank d from a cell of rank d. So, it is left to describe M ’s
action in the case when M arrives at a cell containing a mapping f in a directed
state ←→q from a cell with a letter of rank r < d (lines 21. . .24). M computes
f(←→q ) = ←→p and moves the head to the left neighbour or to the right neighbour
depending on the direction of ←→p and arrives at the neighbour in the state p.

Lemma 2. For each d-DLA A the described deleting DLBA M simulates A,
i.e., if on the t-th step A visits the cell i with the letter W t

A[i] of rank less than
d− 1 or an end-marker then W t

A[i] = W t′
M [i], where t′ is the corresponding step2

of M , and A and M have the same states3; M accepts the input iff A does.

Lemma 3. M performs O(|QA|n) steps on processing the input of length n.

We omit the proofs of Lemmata 2 and 3 due to space limitations. Informally,
the correctness (Lemma 2) easily follows from the definitions and Proposition 1.
Lemma 3 is based on amortized analysis, particularly the accounting method. We
describe the budget strategy to provide the proof-idea. Each cell i ∈ {1, . . . , n}
(on M ’s tape) has it’s own budget B[i] and we denote its value after the t-th
step as Bt[i]. Since totally we have given 2dn “dollars” this strategy leads to the
linear-bound on the number of operations each costs O(|QA|).

We account budgets according to the following rules (the budget Bt[k] is
defined for the cell k (either k = i or k = j) at the step t if it satisfies the
corresponding rule):

– B0[i] = 2d for all i
– Bt[i] = Bt−1[i] − 1 if the cell i is visited at the step t and contains a letter

(i.e., has been visited less than d times)
– Bt[j] = Bt−1[j] − 1 if at the step t the head arrives at the cell i from the

cell j and the i-th cell contains a mapping and the j-th cell contains a letter
– Bt[i] = Bt−1[i] if the previous rules are not applicable

Theorem 4 (Main result). For each d-DLA A the membership problem is
solvable in time O(nm), where n is the length of the input word w and m is the
length of A’s description. Algorithm 3 provides the simulation of A on w and
runs in time O(nm) provided that subroutines are performed via Algorithm 2.
2 We demand that each such step t has the corresponding step t′ and if t1 < t2 then
t′1 < t′2.

3 When M arrives at a cell (except during a deletion scan) it always has a state
q ∈ QA.
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of Regular Languages
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Abstract. A language L is said to be regular measurable if there exists
an infinite sequence of regular languages that “converges” to L. In [13],
the author showed that, while many complex context-free languages are
regular measurable, the set of all primitive words and certain determin-
istic context-free languages are regular immeasurable. This paper inves-
tigates general properties of measurability, including closure properties,
decidability and different characterisation. Further, for a suitable sub-
class C of regular languages, we show that the class of all C-measurable
regular languages has a good algebraic structure.

1 Introduction

How can we measure the volume of an object with a very complex shape? If
it can be wet, an easy way is to slowly and completely submerge the object
suspended by a thread in a rectangular tank filed with water, pull it out, and
calculate the amount of water that overflows from the reduced water level. The
amount of water that overflows is needed to “cover” the object, so it will be a
good estimation of the volume of the object. It is a standard way in measure
theory to cover an object X ⊆ R

d with a set Y ⊇ X with good properties, called
a “basic set”, and use the measure of Y as an estimation (from outer) of the
measure of X.

For example, in the case of Lebesgue measure (cf. [15]), we define the length
of an interval I = [a, b], [a, b), (a, b], (a, b) as |I| = b − a, and call the direct
product B = I1×· · ·×Id of d intervals as a box (with |B| = |I1|×· · ·×|Id|), and
regard a countable union of boxes as a basic set. The Lebesgue outer measure of
a set X ⊆ R is defined as

m∗(X) = inf

{ ∞∑
n=1

|Bn| |
∞⋃

n=1

Bn ⊇ X;Bn is a box for each n ≥ 1

}
,

i.e., the lower bound on the volume required to cover X by a basic set
⋃∞

n=1 Bn.
X is said to be Lebesgue measurable if it satisfies the following so-called
Carathéodory’s condition (where X is the complement of X):

∀S ⊆ R
d m∗(S) = m∗(S ∩ X) + m∗(S ∩ X).
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Actually, for subsets of the set of natural numbers N (� 0), we can apply this
measure theoretic approach. In [3], Buck defines the density of an arithmetic
progression (AP for short) A = {pn + q | n ∈ N} where p, q ∈ N

1 as d(A) = 1/p
(d(A) = 0 if p = 0), regards a finite union of arithmetic progressions as a basic
set, and defines the outer density of X ⊆ N as

d∗(X) = inf

{
k∑

n=1

d(An) |
k⋃

n=1

An ⊇ X; k ∈ N, An is an AP for each n ∈ [1, k]

}
.

As like the Lebesgue measurability, X ⊆ N is said to be measurable if it satisfies
the Carathéodory’s condition

∀S ⊆ N d∗(S) = d∗(S ∩ X) + d∗(S ∩ X),

and Buck called d∗(X) the measure density of X in this case.
Regular measurability (REG-measurability) proposed in [13] is an adoption

of the Buck’s measure density for formal languages: we define the density of a
language L ⊆ A∗, regards a regular language as a basic set, and define the mea-
surability of a language via outer and inner density (precise definition appears
in the next section). The main motivation of [13] is, not just to generalise Buck’s
measure density, but also to tackle a long-standing open problem so-called primi-
tive words conjecture. Some non-trivial partial results can be found in [13], which
we will briefly describe in the next section. Regular measurability is an emer-
gent notion and hence its theory is not well developed yet. In fact, it is fair to
say that very little is known about the class of all regular measurable languages
(regular measurable context-free languages, respectively). This paper investi-
gates fundamental properties of regular measurability (and C-measurability for
a general language class C) like as closure properties, decidability and different
characterisation. Moreover, as a “miniature” of regular measurability, for some
subclass C of regular languages, we investigate C-measurability. While the class
of all regular measurable languages (regular measurable context-free languages)
has a complex structure and it is somewhat hard to analyse, for some suitable
subclass C (called local variety) of regular languages, we will show that the class
of all C-measurable regular languages has a good algebraic structure and more
easier to analyse.

Our Contribution and the Organisation of the Paper In this paper,
all theorems/corollaries without citation are new (as much as we know), and
main results consist of three kinds: (I) Give some new examples of regu-
lar (im)measurable languages (Theorem 3 and 4, Corollary 1 in Sect. 2). (II)
Show some closure properties, an undecidability result (modulo a certain con-
jecture), and a different characterisation via the Carathéodory’s condition
of C-measurability for a general language class C (Theorem 5–8 in Sect. 3).
(III) Examine Carathéodory extensions of some local varieties of regular lan-
guages (Theorem 11–14 in Sect. 4). We also discuss future work and pose few
open problems in Sect. 5.
1 Here p can be 0 and we call a singleton {q} arithmetic progression in this case.
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2 Density and Measurability

This section provides the precise definitions of density and measurability. In
Sect. 2.3, we briefly describe results in [13], and also give some new examples of
regular measurable/immeasurable languages.

2.1 Density of Formal Languages

For a set X, we denote by #(X) the cardinality of X. We denote by N the set of
natural numbers including 0. For an alphabet A, we denote the set of all words
(all non-empty words, respectively) over A by A∗ (A+, respectively). For a word
w ∈ A∗ and a letter a ∈ A, |w|a denotes the number of occurrences of a in w.
A word v is said to be a subword of a word w if w = xvy for some x, y ∈ A∗.
For a language L ⊆ A∗, we denote by L = A∗ \ L the complement of L. We say
that L is co-finite if its complement is finite. A language L is said to be dense if
L ∩ A∗wA∗ 	= ∅ holds for any w ∈ A∗. L is not dense means L ∩ A∗wA∗ = ∅ for
some word w by definition, and such word is called a forbidden word of L.

Definition 1. Let L ⊆ A∗ be a language. The density δ∗
A(L) of L over A is

defined as

δ∗
A(L) = lim

n→∞
1
n

n−1∑
k=0

#
(
L ∩ Ak

)
#(Ak)

if its exists, otherwise we write δ∗
A(L) = ⊥ and say that L does not have a density.

L is called null if δ∗
A(L) = 0, and conversely L is called co-null if δ∗

A(L) = 1.

The following observation is basic. See Chapter 13 of [2] for more details.

Lemma 1. Let K,L ⊆ A∗ with δ∗
A(K) = α, δ∗

A(L) = β. Then we have:

(1) α ≤ β if K ⊆ L.
(2) δ∗

A(L \ K) = β − α if K ⊆ L. In particular, δ∗
A(K) = δ∗

A(A∗ \ K) = 1 − α.
(3) δ∗

A(K ∪ L) ≤ α + β if δ∗
A(K ∪ L) 	= ⊥.

(4) δ∗
A(K ∪ L) = α + β if K ∩ L = ∅.

(5) δ∗
A(wK) = δ∗

A(Kw) = α/#(A)|w| for each w ∈ A+.

Example 1. Here we enumerate a few examples of densities of languages.

(1) Consider (AA)∗ the set of all words with even length. Because #((AA)∗∩An)
#(An)

is 1 if n is even otherwise 0, clearly δ∗
A((AA)∗) = 1/2 holds.

(2) For each word w, the language A∗wA∗, i.e., the set of all words that contain
w as a subword, has density 1 (co-null). This fact is sometimes called infinite
monkey theorem. A language L having a forbidden word w is always null;
since A∗wA∗ ⊆ L holds by definition, we have δ∗

A(A∗wA∗) ≤ δ∗
A(L) which

implies δ∗
A(L) = 1 by infinite monkey theorem. Thus L is null.
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(3) The following language

L⊥ = {w ∈ A∗ | 3n ≤ |w| < 3n+1 for some even number n}

does not have a density (δ∗
A(L⊥) = ⊥). It can be shown by a simple analysis

that the value 1
n

∑n−1
i=0

#(L⊥∩Ai)
#(Ai) could be larger than 2/3 (when n = 3k for

odd k) and smaller than 1/3 (when n = 3k for even k) for infinitely many n
so that δ∗

A(L⊥) diverges. See the full version [14] for details.

Example 1 shows us that, for some language, its density is either zero or
one, for some, like (AA)∗, a density could be a rational number like 1/2, and
for some, like L⊥ a density may not even exist. However, the following theorem
tells us that all regular languages do have densities.

Theorem 1 (cf.Theorem III.6.1 of [10]). Every regular language has a den-
sity and it is rational.

Also, for the class of regular languages, two notions “not null” (a measure
theoretic largeness) and “dense” (a topological largeness) are equivalent.

Theorem 2 ([12]). A regular language L is not null if and only if L is dense.

2.2 C-measurability of Formal Languages

A language class C is a family of languages {CA}A: finite alphabet where CA ⊆ 2A
∗

for each A and CA ⊆ CB for each A ⊆ B. We simply write L ∈ C if L ∈ CA for
some alphabet A. We denote by REG and CFL the class of regular languages
and context-free languages, respectively.

We now introduce the notion of C-measurability which is a formal language
theoretic analogue of Buck’s measure density [3].

Definition 2 ([13]). Let C be a class of languages. For a language L ⊆ A∗, we
define its C-inner-density μCA

(L) and C-outer-density μCA
(L) over A as

μCA
(L) = sup{δ∗

A(K) | K ⊆ L,K ∈ CA, δ∗
A(K) 	= ⊥},

μCA
(L) = inf{δ∗

A(K) | L ⊆ K,K ∈ CA, δ∗
A(K) 	= ⊥}.

A language L is said to be C-measurable over A if μCA
(L) = μCA

(L) holds, and
we simply write μCA

(L) as μCA
(L) in this case. We say that an infinite sequence

(Ln)n of languages over A converges to L from inner (from outer, respectively)
if Ln ⊆ L (Ln ⊇ L, respectively) for each n and limn→∞ δ∗

A(Ln) = δ∗
A(L).

Remark 1. Both density and C-measurability depends on the alphabet. For
example, any language L ⊆ A∗ is of density zero over B � A. Also, any lan-
guage L ⊆ A∗ is REG-measurable over B � A: clearly ∅ ⊆ L ⊆ (B\{b})∗

holds for b ∈ (B\A) and hence μ
REGB

(L) = μREGB
(L) = 0 ((B\{b})∗ has a
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forbidden word b hence it is null over B by infinite monkey theorem), i.e.REG-
measurable over B. Hereafter, we mainly consider density and C-measurability
over the minimum alphabet for each language L, i.e., the minimum alphabet
A satisfying L ⊆ A∗. We sometimes omit the subscript of μ

REGA
(L), μREGA

(L)
like μ

REG
(L), μREG(L), and we simply say “L is of density one” or “L is C-

measurable”. In this case the considered alphabet is always the minimum one.

The following basic lemmata will be used in the next section.

Lemma 2 (cf. [13]). Let K,L ⊆ A∗ be two languages.

(1) μCA
(K) ≤ δ∗

A(K) ≤ μCA
(K) if δ∗

A(K) 	= ⊥. In particular, δ∗
A(K) = ⊥

implies K is C-immeasurable.
(2) μCA

(K) ≤ μCA
(L) if K ⊆ L.

(3) μCA
(K ∪ L) ≤ μCA

(K) + μCA
(L) if C is closed under union.

(4) μCA
(K) = δ∗

A(K) if K ∈ C and δ∗
A(K) 	= ⊥.

Lemma 3 (cf. [13]). Let C be a language class closed under complementation.
A language L ⊆ A∗ is C-measurable if and only if

μCA
(L) + μCA

(L) = 1. (1)

2.3 Examples of REG-measurable/immeasurable Languages

In this subsection we describe several examples of REG-(im)measurable lan-
guages. In [13], it is shown that many complex context-free languages are REG-
measurable, while the deterministic context-free language M2 = {w ∈ A∗ |
|w|a > 2 · |w|b} and the set Q of all primitive words (a word is said to be primi-
tive if it can not be represented as a power of any shorter words) over A = {a, b}
are REG-immeasurable. In [13] the author originally conjectured that there is no
context-free language like Q: if a context-free language L is co-null, then it can be
somehow “approximated” by regular languages from inner, i.e., μ

REG
(L) > 0. If

this conjecture was true, then the primitive words conjecture “Q is not context-
free” posed by Dömösi, Horváth and Ito [4] was true, too. However, the author
found a counterexample M2 and hence this näıve approach did not work (still,
this approach has some possibility, see the last section of [13] for details).

Now we give three new examples of REG-(im)measurable languages. The
following indexed language is not context-free, but REG-measurable.

Theorem 3. Lexp = {a2n | n ∈ N} is REG-measurable over A = {a}.
Proof. Clearly, δ∗

A(Lexp) = 0 holds hence it is enough to construct a sequence
of regular languages that converges to Lexp from outer. For each k ≥ 1, a
regular language Lk = (ak)∗ ∪ {an | 0 < n < k} satisfies δ∗

A(Lk) = 1/k
(limk→∞ δ∗

A(Lk) = 0, in particular). We show that a2n ∈ L2k holds for each
k ≥ 1 and n ∈ N (i.e., Lexp ⊆ L2k). The case 2n < 2k is clear by definition
thus consider the case 2n ≥ 2k. In this case, 2n = 2k · 2n−k holds hence a2n

is the 2n−k times repetition of a2k which means a2n ∈ (a2k)∗ ⊆ L2k . Thus the
sequence (L2k)k≥1 converges to Lexp from outer. ��
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The next theorem tells us that REG-measurable languages exist for each real
number between 0 and 1 (see the full version [14] for the full proof).

Theorem 4. Let A be an alphabet including at least two letters. For each real
number 0 ≤ α ≤ 1, there exists a REG-measurable language L over A with
density exactly α.

Proof (sketch). Consider the case A = {a, b} (a general case can be shown simi-
larly). Let (αn)n≥1 (where each αi ∈ {0, 1}) be the binary expansion of α ∈ [0, 1]:
α =

∑∞
n=1 αn2−n. Define K0 = ∅,M0 = A∗ and define Kn,Mn inductively as

follows:

Kn =

{
bn−1aA∗ ∪ Kn−1 αn = 1
Kn−1 αn = 0

Mn =

{
Mn−1 αn = 1
Mn−1 \ bn−1aA∗ αn = 0

Clearly, each Kn,Mn are regular. One can formally show that the sequence
(Kn,Mn)n converges to the language L =

⋃
n∈N

Kn =
⋂

n∈N
Mn whose density

is α. ��
Finally, by Lemma 2-(1) we have the following REG-immeasurable language.

Corollary 1. L⊥ defined in Example 1-(3) is REG-immeasurable.

3 Closure Properties and Carathéodory’s Condition

In this section we investigate general properties of C-measurability. First we
show that C-measurability is closed under Boolean operations and left-and-right
quotients, with some density condition. This fact plays important role in the next
section. Due to the space limitation, we omit the proof of Theorem 5, which is
rather easier than Theorem 6. See the full version [14] for the proof.

Theorem 5. Let C be a language class closed under Boolean operations. If L,K
are C-measurable, and if every language obtained by a finite Boolean combination
of languages in C∪{L,K} has a density, then the complement L, the union L∪K
and the intersection L ∩ K are also C-measurable.

Theorem 6. Let C be a language class closed under left quotients (right quo-
tients, respectively). If L is C-measurable, and if the left quotient a−1L (the right
quotient La−1, respectively) has a density, then it is also C-measurable.

Proof. For a C-measurable language L over A, we show that a−1L is also C-
measurable (La−1 can be shown by the same way). By definition, there is a
convergent sequence (Kn,Mn)n to L. We show that (a−1Kn, a−1Mn)n converges
to a−1L.

For simplicity, we consider the case A = {a, b} (a general case can be shown
similarly). For each a ∈ A we have L ∩ aA∗ = aa−1L and hence L can be
written as L = aa−1L ∪ bb−1L ∪ (L ∩ {ε}). By assumption aa−1L and bb−1L
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have density. Because aa−1L and bb−1L are mutually disjoint, by the additivity
of δ∗

A (Lemma 1-(4)) we have

δ∗
A(L) = δ∗

A(aa−1L) + δ∗
A(bb−1L). (2)

Kn ⊆ L holds for each n hence we have a−1Kn ⊆ a−1L and δ∗
A(a−1Kn) ≤

δ∗
A(a−1L). Because (Kn)n is a convergent sequence to L from inner, for any

ε/2 > 0 there exists δ such that δ∗
A(L) − δ∗

A(Kn) < ε/2 holds for every n > δ.
Thus from Equality (2) we can deduce that

δ∗
A(L) − δ∗

A(Kn) = δ∗
A(aa−1L) − δ∗

A(aa−1Kn) + δ∗
A(bb−1L) − δ∗

A(bb−1Kn) <
ε

2

holds for every n > δ. We know δ∗
A(cc−1L′) = δ∗

A(c−1L′)/2 for any c ∈ {a, b}
and L′ by Lemma 1-(5), the above inequality can be transformed as

1
2
(δ∗

A(a−1L) − δ∗
A(a−1Kn)) +

1
2
(δ∗

A(b−1L) − δ∗
A(b−1Kn)) <

ε

2
.

Hence we can conclude that δ∗
A(a−1L) − δ∗

A(a−1Kn) < ε for every n > δ, i.e.,
(a−1Kn)n is a convergent sequence to a−1L from inner. We can show that
(a−1Mn)n converges to L from outer by the same way. ��
Corollary 2. Let C ⊆ D be language classes where C is closed under Boolean
operations and left-and-right quotients and every language in D has a density.
Then C-measurability in D is preserved under Boolean operations and left-and-
right quotients.

An application of Theorem 6 is a proof of the undecidability of REG-
measurability for context-free languages, modulo the following conjecture.

Conjecture 1. If a context-free language L has a density, then its quotients a−1L
and La−1 also have densities.

Theorem 7. If Conjecture 1 is true, then it is undecidable whether a given
context-free grammar generates REG-measurable language or not.

Proof. The class CFL is closed under left-and-right quotients, hence by
Theorem 6 the class P = {L ∈ CFLA | L is REG-measurable}A is also closed
under left-and-right quotients. It is clear that REG ⊆ P holds, and, as we
explained in Sect. 2, there is REG-immeasurable context-free language M2, i.e.,
P � CFL. Because the universality problem for CFL is undecidable, the REG-
measurability is also undecidable for CFL by the well-known Greibach’s theo-
rem [7]. ��

We conclude this section by giving the following Carathéodory’s condition
characterisation of REG-measurability. The proof is almost same with one of
Lebesgue measurability (cf. [15]), albeit that requires some density condition
which is formal language theoretic.
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Theorem 8. Let C be a class of languages closed under Boolean operations and
let L ⊆ A∗ be a language. If every language obtained by a finite Boolean combi-
nation of languages in C ∪{L} has a density, then L is C-measurable if and only
if the following Carathéodory’s condition holds:

∀X ⊆ A∗ μC(X) = μC(X ∩ L) + μC(X ∩ L). (3)

Proof. If L satisfies the Carathéodory condition (3), then we obtain μC(A∗) =
1 = μC(L) + μC(L) when X = A∗, thus by Lemma 3, L is C-measurable because
C is closed under complementation by assumption.

Now we show the converse direction. Assume L is C-measurable. For any
language X ⊆ A∗ and for any ε > 0, by the definition of μC , there exists K ∈ C
such that X ⊆ K and δ∗

A(K) ≤ μC(X)+ε. Here L,K and K are all C-measurable,
and by assumption K ∩ L and K ∩ L have densities. Hence, by Theorem 5,
K ∩ L and K ∩ L are C-measurable. Because K = (K ∩ L) ∪ (K ∩ L) and
(K ∩ L) ∩ (K ∩ L) = ∅,

δ∗
A(K) = δ∗

A(K ∩ L) + δ∗
A(K ∩ L)

holds by the additivity of δ∗
A (Lemma 1-(4)). Hence we have

μC(X) ≥ δ∗
A(K) − ε = δ∗

A(K ∩ L) + δ∗
A(K ∩ L) − ε

≥ μC(X ∩ L) + μC(X ∩ L) − ε.

Because ε > 0 is taken arbitrarily, we can conclude that

μC(X) ≥ μC(X ∩ L) + μC(X ∩ L)

holds. The reverse direction ≤ of the above inequality is directly obtained by
the subadditivity of μC (Lemma 2-(3)). ��

4 Carathéodory Extensions of Local Varieties

In this section, as a “miniature” of REG-measurability, we investigate C-
measurability for some subclass C of REG. The considered subclasses of regular
languages here are so-called local varieties, which enjoy good closure properties
and have rich algebraic structure. First we introduce some background materials
from algebraic language theory.

4.1 Local Varieties and an Eilenberg-Type Theorem

Due to the space limitation, we assume that the author has a basic knowledge of
algebraic language theory (e.g., syntactic monoids and morphism, etc. cf. [8,9]).
For a language L over A, we denote its syntactic monoid by Synt(L) and its
syntactic morphism by ηL : A∗ → Synt(L). A monoid M is said to be aperiodic,
if there is k ≥ 1 such that xk = xk+1 for any x ∈ M . M is called zero if it contains
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zero element 0: 0 · x = x · 0 = 0 for all x ∈ M . Further, a zero semigroup S is
called nilpotent if there is k ≥ 1 such that xk = 0 for any x ∈ S. A non-empty
subset I ⊆ M is called ideal if M · I · M ⊆ I. An ideal I is said to be minimal if
no proper subset of I is an ideal. It is well-known that any finite monoid has a
unique minimal ideal (cf. [9]).

The main targets in the next subsection are classes of regular languages with
some good closure properties as follows.

Definition 3 (cf. [1]). A family C ⊆ REGA of regular languages over A is called
local variety if it is closed under Boolean operations and left-and-right quotients.
A family V of finite monoids generated by A is called local pseudovariety if it is
closed under quotients and subdirect products.

Theorem 9 (Eilenberg-type theorem for local varieties [6]). For each A,
there is a lattice isomorphism between the class of all local varieties and the class
of all local pseudovarieties.

This Eilenberg-type theorem roughly states that: if a class of languages is
somewhat “robust” (i.e., enjoys good closure properties), then it could be char-
acterised by an algebraic way (at least there should exist the corresponding local
pseudovariety), and vice versa. We now enumerate three examples of local vari-
eties and corresponding local pseudovarieties (see Fig. 1). A prominent example
of a local variety is star-free languages. A language L is said to be star-free if it
can be obtained by a finite combination of Boolean operations and concatena-
tions of finite languages. The family SFA of all star-free languages over A forms
a local variety, and this class can be characterised in purely algebraic way as
follows.

Theorem 10 (Schützenberger’s theorem [11]). The corresponding local
pseudovariety of SFA is the class of aperiodic finite monoids generated by A.
Namely, L ∈ SFA if and only if Synt(L) is aperiodic.

Next we introduce two additional examples of local varieties. One is the
family FINA of all finite and co-finite languages and another one is the family
ZOA of all regular languages with density either zero or one. FINA and ZOA

form a local variety, respectively. In his Volume B [5], Eilenberg showed that
the class of all finite nilpotent semigroups form a pseudovariety (of semigroups)
and its corresponding +-variety of languages is exactly the class of all finite and
co-finite languages. The corresponding local pseudovariety of ZOA is the family
of all finite zero monoids (cf. [12]).

4.2 Extension as a Closure Operator

In this subsection we mainly consider “extensions” of local varieties. All results
are summarised in Fig. 1. First we introduce necessary notation.
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Fig. 1. Relation between local varieties, extensions and local pseudovarieties.

Definition 4. For a family C ⊆ 2A
∗

of languages over A, we define its
(Carathéodory) extension as

ExtA(C) = {L ⊆ A∗ | L is C-measurable},

and define its regular extension as

RExtA(C) = ExtA(C) ∩ REGA.

Observe that this extension operator is a closure as follows (see the full
version [14] for the proof).

Theorem 11. ExtA is a closure operator, i.e., it satisfies the following three
properties for each C,D ⊆ 2A

∗
.

extensive: C ⊆ ExtA(C).
monotone: C ⊆ D implies ExtA(C) ⊆ ExtA(D).
idempotent: ExtA(ExtA(C)) = ExtA(C).

In the previous section, we showed that the C-measurability is closed under
Boolean operations and left-and-right quotients if C is closed under these opera-
tions and every language in C have a density (Corollary 2). Because every regular
language have a density (Theorem 1), we have the following corollary.

Corollary 3. For any local variety C ⊆ REGA over A, RExtA(C) ⊇ C is also a
local variety over A, i.e., RExtA is a closure operator over the class of all local
varieties.

Clearly, any FINA-measurable language is either finite or co-finite. A similar
argument can be applied for ZOA. Thus RExtA does not properly extend these
two local varieties.

Theorem 12. RExtA(FINA) = FINA and RExtA(ZOA) = ZOA for each A.
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Furthermore, for a unary alphabet A = {a}, it is well-known that SFA =
ZOA = FINA, hence we have the following as a corollary.

Corollary 4. RExtA(SFA) = SFA = ZOA = FINA for A = {a}.
The situation is different for the case #(A) ≥ 2. As we explained in Remark 1,

if #(A) ≥ 2, RExtA(SFA) can contain any regular language over B � A hence
RExtA(SFA) � SFA (RExtA(SFA) � (aa)∗ /∈ SFA, in particular). The next
theorem says, however, RExtA(SFA) can not contain some regular languages
over A like (AA)∗.

Theorem 13. If a star-free language L ∈ SFA satisfies δ∗
A(L) > 0, then L

contains words of even and odd length.

Proof. Consider the syntactic monoid Synt(L), the syntactic morphism ηL :
A∗ → Synt(L) and the syntactic image S = ηL(L) of L. Because L is regu-
lar, Synt(L) is finite. Hence it has a unique minimal ideal K ⊆ Synt(L). Let wx

be a word whose syntactic image ηL(wx) is x for each x ∈ Synt(L).
The assumption δ∗

A(L) > 0 implies S ∩ K 	= ∅, because δ∗
A(η−1(Synt(L) \

K)) = 0 holds; for each k ∈ K and x, y ∈ A∗, we have ηL(xwky) = ηL(x) · k ·
ηL(y) ∈ K and hence η−1(Synt(L)\K)∩A∗wkA

∗ = ∅ which implies η−1(Synt(L)\
K) is null by infinite monkey theorem. Thus L is not null implies its syntactic
image S contains at least one element of K, say, t ∈ S ∩ K.

Clearly, δ∗
A(η−1(K)) = 1 holds and hence η−1(K) contains some word wodd

of odd length. Let modd = ηL(wodd) be its syntactic image. By Schützenberger’s
theorem (Theorem 10), Synt(L) is aperiodic thus there is some i ≥ 1 such that
mi

odd = mi+1
odd. By the minimality of the ideal K, there exist x, y ∈ Synt(L) such

that x · mi
odd · y = t (if not, the ideal Synt(L) · mi

odd · Synt(L) generated by mi
odd

does not contain t hence it should be a proper subset of K). Then two words
wxwi

oddwy and wxwi+1
oddwy has the same syntactic image

ηL(wxwi
oddwy) = x · mi

odd · y = t = x · mi+1
odd · y = ηL(wxwi+1

oddwy),

thus both belong to L. Because the length of wodd is odd, the lengths of these
two words are different modulo 2. ��

The above theorem tells us that any star-free subset of (AA)∗ is null and any
star-free superset of (AA)∗ is co-null, thus we have the following corollary.

Corollary 5. (AA)∗ /∈ RExtA(SFA) for any A. In particular, μ
SFA

((AA)∗) = 0
and μSFA

((AA)∗) = 1. Further, SFA � RExtA(SFA) � REGA if #(A) ≥ 2.

We are not aware what the associated local pseudovariety of this new local
variety RExtA(SFA) yet, but, we can say that RExtA(SFA) always contains all
zero-one regular languages.

Theorem 14. RExtA(SFA) ⊇ ZOA for any A.

Proof. The case #(A) = 1 follows from Theorem 4. We show this for a general
alphabet A. Let L ∈ ZOA and we can assume δ∗

A(L) = 0 without loss of gen-
erality. By Theorem 2, L is null implies there is some forbidden word w of L:
L ∩ A∗wA∗ = ∅. Hence L ⊆ A∗wA∗ holds and μ

SFA
(L) = μSFA

(L) = 0. ��
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5 Future Work and Open Problems

We have investigated general properties of C-measurability, and examine how the
extension operator RExtA extends certain local varieties of regular languages. An
immediate future work is to give an algebraic characterisation of RExtA(SFA).
We are also interested whether we can characterise the associated extension oper-
ator of local pseudovarieties of finite monoids MExtA(V) = F (RExtA(F−1(V)))
in purely algebraic way, where F is the lattice isomorphism stated in Theorem 9.
One of the ideal goals is to understand the class of REG-measurable context-free
languages. However, it looks like a bit difficult since the theory of densities of
context-free languages is not well developed yet (e.g., Conjecture 1). Actually,
we are not aware whether there is a context-free language that do not have a
density (L⊥ in Example 1-(3) is not context-free). More open problems related
to REG-measurability and context-free languages were posed in [13].

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
JP19K14582.
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Abstract. Study on numerical properties of words based on scattered
subwords of words was initiated around the year 2000, introducing cer-
tain upper triangular matrices, called Parikh matrices. On the other
hand, linking the areas of combinatorics on words and graph theory, a
class of graphs, called Parikh word representable graphs (PWRG) of
words, was introduced based on certain scattered subwords of words.
Several properties of PWRG have been investigated, especially corre-
sponding to binary words. Here, we derive several structural properties
of PWRG of images of ternary words under certain morphisms.

1 Introduction

As an extension of the notion of Parikh mapping [13] of a word, Parikh matrix
mapping was introduced by Mateescu et al. [10] associating certain upper tri-
angular matrices called Parikh matrices, with words over an ordered alphabet,
thus initiating a study of some numerical properties of words based on scat-
tered subwords of words, which are also simply called subwords. Subsequently,
many problems on words and subwords have been investigated (see, for exam-
ple, [2,3,9,15,17,18] and references therein), establishing a number of interesting
results. On the other hand studies on relating graphs and words have taken place
(see, for example, [7,8]), thereby linking the two areas, namely graph theory and
combinatorics on words. The concept of a Parikh word representable graph was
introduced in [4] associating a graph with a word and several graph properties
of Parikh word representable graphs, were studied recently [4,11,16]. In fact
an important characterization that the Parikh word representable graphs are
exactly the bipartite permutation graphs, is established by Teh et al. in [16] and
a necessary and sufficient condition, besides other interesting and deep results, is
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obtained in [16] for a Parikh ternary word representable graph to have a Hamil-
tonian cycle. In this paper, we study several structural properties such as graph
isomorphism, Hamiltonian and Eulerian property of Parikh word representable
graphs of images of words under certain morphisms. We also extend to a ternary
alphabet certain known results such as connectivity and Eulerian property of
Parikh word representable graphs of words over a binary alphabet.

2 Preliminaries

We recall certain needed notions related to words [12,14] and graphs [5]. For
unexplained definitions and notations concerning words we refer to [9,14] and
for unexplained concepts related to graphs, we refer to [5].

Let Σ = {a1 < a2 < · · · < ak} , k ≥ 1 be an ordered alphabet with an order
relation < defined on it. We denote by Σ2 and Σ3, the binary ordered alphabet
{a < b} and the ternary ordered alphabet {a < b < c} respectively. A word
w′ = x1x2 . . . xn, xi ∈ Σ for 1 ≤ i ≤ n, is a scattered subword or simply, a
subword of a word w over Σ if and only if we can find words y0, y1, . . . , yn over
Σ, some of them possibly empty, such that w = y0x1y1x2y2 . . . yn−1xnyn. The
number of occurrences of a word u as a subword of w is denoted by |w|u. The
set of all words over an alphabet Σ, including the empty word λ, is denoted
by Σ∗. We denote by L(r), the language of a regular expression [14]. The mir-
ror image of a word w = a1a2 · · · an−1an over a given alphabet is the word
mi(w) = anan−1 · · · a2a1.

Definition 1. [4] For each word w = w1w2 . . . wn, wi ∈ Σ of length n over
Σ = {a1 < a2 < · · · < ak} , we define a simple graph G(w) with n labeled vertices
1, 2, . . . , n representing the positions of the letters wi, 1 ≤ i ≤ n in w such that
corresponding to each occurrence of the subword aiai+1 in w, for every i, 1 ≤
i ≤ n − 1, there is an edge in the graph G(w) between the vertices corresponding
to the positions of ai and ai+1. We say that the word w represents the graph
G(w). A graph is said to be Parikh word representable if there exists a word w
that represents it. We also say that vertex i is labeled with the symbol wi.

In Fig. 1, the Parikh word representable graph of the word aababc over Σ3 is
shown.

Two words w,w′ ∈ Σ∗ are said to be 1-equivalent [17] and we write w ≡1 w′

if there exist a series of words w = v0, v1, . . . , vn = w′ in Σ∗ such that for
0 ≤ i ≤ n − 1, vi = xakaly, vi+1 = xalaky, for some ak, al ∈ Σ with |k − l| ≥ 2
and some x, y ∈ Σ∗.

Definition 2. [17,18] Let v, w ∈ Σ∗. The core of w relative to v or simply v-
core of w, denoted by corev(w), is the unique subword w′ of w, satisfying the
following conditions:
(i) |w′|v = |w|v and (ii) w′ is a subword of every subword w′′ of w satisfying
|w′′|v = |w|v.
We say that w is a v-core word if and only if corev(w) = w.
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Fig. 1. The Parikh word representable graph G(aababc)

If the alphabet is Σ2 = {a < b}, the core of w, denoted core(w), is the unique
subword w0 of w with the smallest possible length such that w ∈ b∗w0a

∗. A word
w ∈ Σ∗

2 is said to be a core word if and only if core(w) = w.

3 Parikh Word Representable Graphs over a Ternary
Alphabet

In [4], it was shown that the Parikh word representable graph of a binary word
w is connected if and only if w is a core word. For ternary words this is not
the case. In fact, corecab(w) = w for w = cabb ∈ Σ3 but the Parikh word rep-
resentable graph of w is not connected. In [16, Lemma 5.1, Page 13], besides
several interesting general results, the authors have provided a sufficient condi-
tion for a Parikh word representable graph of a word over an ordered alphabet,
to be connected.

Here we give in terms of regular expressions [14], a characterization for Parikh
word representable graph of a word w over ternary alphabet, to be connected,
but with w involving all three letters of the alphabet.

Theorem 1. A Parikh word representable graph G of a word w over Σ3 = {a <
b < c}, having at least one a, at least one b and at least one c, is disconnected if
and only if the word w is in the language of the regular expression

r = {a, b, c}∗a{a, c}∗ + {a, c}∗c{a, b, c}∗ + {b, c}∗{a, c}∗{a, b}∗

Proof. It can be verified that if the word w belongs to the language L(r) of the
regular expression r, then the corresponding Parikh word representable graph is
disconnected.
On the other hand if the Parikh word representable graph G is disconnected,
then the corresponding word w representing G can be shown to be in L(r) as
follows: Consider any two vertices u and v in two different components of the
graph G, where the label of u appears before the label of v in the corresponding
word w. Note that we cannot have u and v respectively labelled a and b or
respectively labelled b and c as otherwise there would be an edge between u and
v. So we are left with the following cases to consider.
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Case 1: If both u and v are labelled a and there is at least one b in the
subword in w following the symbol corresponding to v, then there would be a
path from u to v. Since the graph G is assumed to be disconnected, the word
is in the language of the regular expression {a, b, c}∗a{a, b, c}∗a{a, c}∗.
If the word w has only one a, then it can be shown that the word must be in
the language of the regular expression {b, c}∗a{c}∗.
Combining these two sub cases, it follows that the word w will be in the
language of the regular expression {a, b, c}∗a{a, c}∗.
Case 2: Similarly if both u and v are labelled c and there is at least one b in
the subword preceding the symbol corresponding to u, then there would be a
path from u to v which is not possible. Hence the word is in the language of
the regular expression {a, c}∗c{a, b, c}∗c{a, b, c}∗.
If the word has only one c, then it can be shown that the word must be in
the language of the regular expression {a}∗c{a, b}∗.
Combining these two sub cases, it follows that the word will be in the language
of the regular expression {a, c}∗c{a, b, c}∗.
Case 3: If both u and v are labelled b and there is at least one a in the subword
preceding the symbol corresponding to u or one c in the subword following the
symbol corresponding to v, then v would be reachable from u. Also, if there is
a scattered subword abc between u and v, there would be a path from u to v.
In order to avoid this, the corresponding word w is of the form w = w1αw2,
for some w1 ∈ L({b, c}∗), w2 ∈ L({a, b}∗) and α ∈ L(b{b, c}∗{a, c}∗{a, b}∗b).
Case 4: If u is labelled a and v is labelled c, and there is a vertex labelled b
in the subword between the symbols corresponding to u and v or if there is
a scattered subword ab before u and a vertex labelled b after v or a symbol b
before u and a scattered subword bc after v then v would be reachable from
u. Therefore the corresponding word w is either as in Cases 1 or 2 or it is of
the form w = w1βw2, for some β ∈ L(a{a, c}∗c), w1 ∈ L({b, c}∗{a, c}∗), and
w2 ∈ L({a, c}∗{a, b}∗), since |w1|ab = 0 and |w2|bc = 0.
Case 5: If u is labelled c and v is labelled a, and there is a scattered subword
ab among the symbols before the vertex u corresponding to c and a vertex
labelled b after the vertex corresponding to v or a vertex labelled b before the
vertex u and a scattered subword bc after v, then there would be a path from
u to v. Therefore the corresponding word w is of the form w = w1γw2, for
some γ ∈ L(c{a, c}∗a), w1 ∈ L({b, c}∗), and w2 ∈ L({a, b}∗).
Case 6: If u is labelled b and v is labelled a, and there is a scattered subword
bc after the symbol corresponding v or a scattered subword abc between the
symbols corresponding to u and v and a symbol b after v we get a contradiction
to the fact that u and v are in distinct components of the graph. Therefore the
corresponding word w is of the form w = w1δw2, for some δ ∈ L(b{a, c}∗a),
w1 ∈ L({b, c}∗), and w2 ∈ L({a, b}∗).
Case 7: If u is labelled c and v is labelled b, and there is a scattered subword
ab before u or a symbol b before u and a scattered subword abc between
the symbols corresponding to u and v, then v would be reachable from u.
Therefore the corresponding word w is of the form w = w1ηw2, for some
η ∈ c{a, c}∗b, w1 ∈ L({b, c}∗) and w2 ∈ L({a, b}∗).
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Simplifying the word w in each of the cases 3 to 7, we obtain w to be in the
language L({b, c}∗{a, c}∗{a, b}∗).

Thus we find w is in the language of the regular expression

{a, b, c}∗a{a, c}∗ + {a, c}∗c{a, b, c}∗ + {b, c}∗{a, c}∗{a, b}∗

on combining the cases 1 to 7. ��
The notion of dual of a binary word was considered in [11]. Here we extend

this to ternary words.

Definition 3. A word d(w) = y1y2 . . . yn is said to be the dual of the ternary
word w = x1x2 . . . xn over Σ3 if

yi =

⎧
⎪⎨

⎪⎩

a, if xn−i+1 = c

b, if xn−i+1 = b

c, if xn−i+1 = a

Definition 4. A word w is said to be self dual if d(w) = w.

Example 1. accbac over Σ3 is the dual of acbaac and abbcabbc is a self dual
word.

Isomorphism of graphs is a well-investigated problem in graph theory. We now
recall the definition of isomorphism of graphs. Two graphs G and H are said to
be isomorphic and we write G ∼= H, if there is a bijection f : V (G) → V (H)
between the vertex sets of the two graphs such that any two vertices u and v are
adjacent in G if and only if f(u) and f(v) are adjacent in H.

Theorem 2. Two Parikh word representable graphs G(w1) and G(w2), respec-
tively corresponding to the words w1 and w2 over Σ3, are isomorphic if any of
the following conditions is satisfied:

(i) w1 ≡1 w2

(ii) w2 = d(w1)
(iii) w1 = aku and w2 = uck, for some positive integer k, where u ∈ Σ∗

3 .

Proof. (i) Suppose w1 ≡1 w2. Then we can find a sequence of words
v0, v1, . . . , vk such that v0 = w1, vk = w2 and vi = xacy, vi+1 = xcay.
Then G(vi) is obtained from G(xy) and by adding two vertices labelled a
and c and connecting the vertex labelled a to each vertex labelled b in G(y)
and the vertex labelled c to each vertex labelled b in G(x). Clearly G(vi+1) is
also constructed in the same way except that the labels of the two vertices
corresponding to a and c are interchanged. Hence G(vi) and G(vi+1) are
isomorphic which implies that G(w1) and G(w2) are isomorphic.

(ii) Suppose w2 = d(w1) i.e., the two words w1 and w2 are duals of each other.
Let w1 = x1x2 . . . xi . . . xj . . . xn. Then we have

w2 = d(w1) = d(xn) · · · d(xj) · · · d(xi) · · · d(x2)d(x1).
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Let G(w1) = (V,E),G(w2) = (V ′, E′) with V = {1, 2, . . . , n} and V ′ =
{1, 2, . . . , n}. The mapping Φ : i → n+1− i, (1 ≤ i ≤ n) gives a one-to-one
correspondence between the vertices of G(w1) and G(w2), preserving adja-
cency and thus the undirected graph of w1 is isomorphic to the undirected
graph of w2.

(iii) Suppose w1 = aku and w2 = uck where u ∈ Σ∗
3 . Consider the graph

corresponding to u. The graphs of both w1 and w2 are obtained from G(u)
by adding k new vertices and adding edges between each of these vertices
and each vertex labelled b in G(u). These new vertices are labelled a in
G(w1) and c in G(w2). Hence the undirected graphs G(w1) and G(w2) are
isomorphic.

��
It is well-known that a graph is Eulerian if and only if every vertex of the

graph has even degree. A necessary and sufficient condition for a connected
Parikh word representable graph of a word over a binary alphabet to be Eulerian
is provided in [11]. In the following result we extend this result for ternary
alphabet.

Theorem 3. A connected Parikh word representable graph over Σ3 = {a <
b < c} is Eulerian if and only if it represents a word w of the form w =
ap1bq1cr1ap2bq2cr2 . . . aplbqlcrl where

(a) qi is even for all i.
(b) pi and ri−1 have the same parity for 2 ≤ i ≤ l − 1, for l ≥ 3.

(c) p1 has the same parity as
l∑

i=1

ri and rl has the same parity as
l∑

i=1

pi.

Proof. Let G(w) be a graph representing w = ap1bq1cr1ap2bq2cr2 · · · aplbqlcrl over
Σ3 = {a < b < c} satisfying given conditions. Then it can be verified that every
vertex in G(w) has even degree. In fact, every vertex corresponding to each a

in ap1 has degree
l∑

i=1

qi which is even by condition (a) in the Theorem; every

vertex corresponding to each b in bq1 has degree p1 +
l∑

i=1

ri which is also even

by condition (c) in the Theorem; every vertex corresponding to each c in cr1

has even degree q1. The degrees of the other vertices can be found to be even
in a similar manner. In fact the degrees of the vertices corresponding to the
a′s, b′s and c′s in an “intermediate” apj bqjcrj , can be seen to be even using the
conditions (b) and (c) in the Theorem. Hence G(w) is Eulerian.

Conversely, Suppose G(w) is Eulerian. Then all the vertices of G(w) have
even degree. Considering the vertex corresponding to an a in the first ap1 in
w, the degree of this vertex is q1 + q2 + · · · + ql which is even. Similarly, by
considering the vertex corresponding to an a in ap2 in w, the degree of this
vertex is q2 + · · · + ql which is also even and therefore on taking the difference,
we find q1 is even. Proceeding in this manner, it can be proved that each qi is
even, establishing the condition (a).
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Next consider two vertices corresponding to one b in each of the bqi and bqi+1 .
Then the degrees of these vertices are p1 + p2 + · · · + pi + pi+1 + ri+1 + · · · + rl
and p1 + p2 + · · ·+ pi + ri + ri+1 + · · ·+ rl are even which yield ri − pi+1 is even,
proving condition (b).

By substituting i = 1 and i = l − 1 in the above case, we get condition (c). ��

4 Morphisms on Words and Graphs

In this section, we study structural properties of Parikh word representable
graphs of words under certain morphisms. We begin with the property of connec-
tivity of the Parikh word representable graphs of the morphic images of words.

It is known that Parikh word representable graph of a core word over the
binary alphabet Σ2 is connected. We look for conditions for the Parikh word
representable graph of the image of a word under a morphism to be connected.

The well-known Thue-Morse morphism [6] is a mapping μ : Σ∗
2 → Σ∗

2 defined
by

μ(a) = ab, μ(b) = ba.

Since a core word w ∈ Σ∗
2 starts with a and ends with b, μ(w) starts with b

and ends with a. Therefore μ(w) is not a core word as it will end with a which
means G(μ(w)) is disconnected, although G(w) is connected as w ∈ Σ∗

2 . In fact,
the following result which can be easily proved, gives a condition on a morphism
such that the Parikh word representable graph of the morphic image of a core
word over Σ2 is connected.

Theorem 4. Let φ : Σ∗
2 → Σ∗

2 be a morphism such that φ(a) = ax and φ(b) =
yb, for some x, y ∈ Σ∗

2 . Then for any core word w ∈ Σ∗
2 , G(φ(w)) is connected.

For a ternary alphabet Σ3, we characterize the words such that the connec-
tivity property of the Parikh word representable graphs is preserved under a
special morphism, called Istrail morphism [6].

The Istrail morphism is a mapping ι : Σ∗
3 → Σ∗

3 defined by

ι(a) = abc, ι(b) = ac, ι(c) = b.

Theorem 5. Let w ∈ Σ∗
3 containing at least one a, at least one b and at least

one c. Assume that G(w) is connected. Then G(ι(w)) is connected if and only if
w = coreabc(w).

Proof. Assume that G(ι(w)) is connected. From Theorem 1, it follows that ι(w)
can not begin with c and or end with a. We have the following cases.

Case 1: If ι(w) = avb for some v in Σ∗
3 , then it is clear that w begins either

with an a or a b and ends with a c. However if w ∈ L(b{a, b, c}∗c) we have,
i(w) ∈ L(ac{a, b, c}∗b) which is not possible since G(ι(w)) is connected. More-
over since G(w) is connected there is at least one b between a and c. Hence
w = core abc(w).
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Case 2: If ι(w) = avc for some v in Σ∗
3 , then w ∈ L(a{a, b, c}∗a+a{a, b, c}∗b+

b{a, b, c}∗a + b{a, b, c}∗b). Since G(w) is connected w /∈ L(a{a, b, c}∗a +
b{a, b, c}∗a+b{a, b, c}∗b). If w ∈ L(a{a, b, c}∗b) then ι(w) ∈ L(abc{a, b, c}∗ac)
and as a result G(ι(w)) is not connected, a contradiction. Therefore this case
is not possible.
Case 3: If ι(w) begins with b then ι(w) ∈ L(c{a, b, c}∗) and we have a con-
tradiction to the fact that G(w) is connected.

To prove the converse, let w be a word over Σ3 such that w = core abc(w). Then
G(w) is connected, by [16, Lemma 5.1]. If possible let G(ι(w)) be disconnected.
Then by Theorem 1 we have,

ι(w) ∈ L({a, b, c}∗a{a, c}∗ + {a, c}∗c{a, b, c}∗ + {b, c}∗{a, c}∗{a, b}∗)

Case 1: If ι(w) is in L({a, b, c}∗a{a, c}∗) then w = ub for some u ∈ Σ∗
3 and

hence w 
= core abc(w).
Case 2: If ι(w) is in L({a, c}∗c{a, b, c}∗) then w = bu for some u ∈ Σ∗

3 and
again w 
= core abc(w).
Case 3: If ι(w) is in L({b, c}∗{a, c}∗{a, b}∗), then w = cuc for some u ∈ Σ∗

3

and hence w 
=core abc(w).

Thus our assumption is wrong and G(ι(w)) is connected. Hence the result. ��
Isomorphism of Parikh word representable graphs is studied in [4,11]. Here we
discuss this problem in the context of morphisms. Before proceeding further, we
obtain a result on the number of edges of the Parikh word representable graphs
of the Istrail morphic images of two words.

Theorem 6. If w and w′ are two words over Σ3 having the same Parikh vector,
then G(ι(w)) and G(ι(w′)) have equal number of edges.

Proof. The number of edges in G(w) for a ternary word w ∈ Σ∗
3 is given by

|w|ab + |w|bc. It is known [1, Lemma 1] that

|ι(w)|ab = |w|a + |w|aa + |w|ac + |w|ba + |w|bc
and

|ι(w)|bc = |w|a + |w|aa + |w|ab + |w|ca + |w|cb
Hence

|E(G(ι(w)))| = 2|w|a + 2|w|aa + |w|ab + |w|ba + |w|bc + |w|cb + |w|ac + |w|ca
= |w|2a + |w|a + |w|a|w|b + |w|b|w|c + |w|a|w|c
= |w′|2a + |w′|a + |w′|a|w′|b + |w′|b|w′|c + |w′|a|w′|c = |E(G(ι(w′)))|

��
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Isomorphic graphs have the same number of edges but the converse is not true.
Likewise, the graphs G(ι(w)) = G(abcabcac) and G(ι(w′)) = G(abcacabc) have
an equal number of (eight) edges but they are not isomorphic, where w = a2b
and w′ = aba are over Σ3 and have the same Parikh vector (2, 1, 0). In fact
G(abcacac) is disconnected where as G(abcacabc) is connected. On the other
hand consider another word w′′ = ba2. Then G(ι(w′′)) = G(acabcabc) also has 8
edges and G(ι(w)) and G(ι(w′′)) are isomorphic.

Theorem 7. G(ι(w)) is isomorphic to G(ι(mi(w))) for any word w ∈ Σ∗
3 .

Proof. Let w = w1w2 . . . wn−1wn, wi ∈ Σ3, for 1 ≤ i ≤ n. It follows from
Theorem 2 that G(w) ∼= G(d(w)) where d(w) is the dual of w. Now

d(ι(wi)) =

⎧
⎪⎨

⎪⎩

d(ι(a)) = d(abc) = abc = ι(a) if wi = a

d(ι(b)) = d(ac) = ac = ι(b) if wi = b

d(ι(c)) = d(b) = b = ι(c) if wi = c

Hence d(ι(wi)) = ι(wi) for 1 ≤ i ≤ n. Therefore,

d(ι(w)) = d[(ι(w1)(ι(w2) . . . (ι(wn)]
= d(ι(wn))d(ι(wn−1)) . . . d(ι(w2))d(ι(w1))
= ι(wn)ι(wn−1) . . . ι(w2)ι(w1) = ι(mi(w))

Hence the corresponding graphs are isomorphic. ��
Theorem 8. Let φ : Σ∗

2 → Σ∗
2 be any morphism. Suppose w and w′ are two

binary core words such that G(w) ∼= G(w′). Then G(φ(w)) ∼= G(φ(w′)) if φ(b) =
d(x) whenever φ(a) = x for some x ∈ Σ∗

2 .

Proof. Let w and w′ be two distinct words such that G(w) ∼= G(w′) and
w = w1w2 . . . wn−1wn, wi ∈ Σ2, for 1 ≤ i ≤ n. Then w′ is the dual of w [11, The-
orem 3]. In fact w′ = d(w) = d(wn)d(wn−1) . . . d(w2)d(w1). Let φ : Σ∗

2 → Σ∗
2 be

a morphism defined by φ(a) = x and φ(b) = d(x), for some x ∈ Σ∗
2 . In order to

show G(φ(w)) ∼= G(φ(w′)), it is enough to show that φ(w′) = d(φ(w)). If wi = a,
for some 1 ≤ i ≤ n, φ(d(wi)) = φ(d(a)) = φ(b) = d(x) = d(φ(a)) = d(φ(wi))
i.e., φ(d(wi)) = d(φ(wi)). Likewise for wi = b, we also have φ(d(wi)) = d(φ(wi)).
Therefore

φ(w′) = φ(d(wn))φ(d(wn−1)) . . . φ(d(w2))φ(d(w1))
= d(φ(wn))d(φ(wn−1)) . . . d(φ(w2))d(φ(w1))
= d(φ(w1)φ(w2) . . . φ(wn−1)φ(wn)) = d(φ(w))

��
Theorem 9. Let φ : Σ∗

3 → Σ∗
3 be a morphism such that φ(c) = d(x) and

φ(b) = y whenever φ(a) = x for some x, y ∈ Σ∗
3 such that d(y) = y. Suppose w

and w′ are two ternary words such that w′ = d(w). Then G(φ(w)) ∼= G(φ(w′)).
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Proof. Let w and w′ be two words such that G(w) ∼= G(w′) and w =
w1w2 . . . wn−1wn, wi ∈ Σ3, for 1 ≤ i ≤ n. Then we have w′ = d(w) =
d(wn)d(wn−1) . . . d(w2)d(w1). Let φ : Σ∗

3 → Σ∗
3 be a morphism defined by φ(a) =

x, φ(c) = d(x), and φ(b) = y for some x, y ∈ Σ∗
3 such that d(y) = y. In order to

show that G(φ(w)) ∼= G(φ(w′)), it is enough to show that φ(w′) = d(φ(w)). Now

φ(d(wi)) =

⎧
⎪⎨

⎪⎩

φ(c) = d(x) = d(φ(a)) if wi = a

φ(b) = y = d(y) = d(φ(b)) if wi = b

φ(a) = d(x) = d(φ(c)) if wi = c

Hence φ(d(wi)) = d(φ(wi)) for 1 ≤ i ≤ n. Therefore

φ(w′) = φ(d(wn))φ(d(wn−1)) . . . φ(d(w2))φ(d(w1))
= d(φ(wn))d(φ(wn−1)) . . . d(φ(w2))d(φ(w1))
= d(φ(w1)φ(w2) . . . φ(wn−1)φ(wn)) = d(φ(w))

��
Theorem 10. Let φ : Σ∗

2 → Σ∗
2 be a morphism given by φ(a) = a2x and

φ(b) = yb2, for some x, y ∈ Σ∗
2 such that all the prefixes of each of x and y have

more number of a’s than b’s. Assume that the Parikh word representable graph
of a word w over Σ2 has a Hamiltonian cycle. Then G(φ(w)) has a Hamiltonian
cycle.

Proof. Let the Parikh word representable graph G(w) of the word w over Σ2

have a Hamiltonian cycle. It was shown in [4, Theorem 7], that a Parikh word
representable graph has a Hamiltonian cycle if and only if

(i) w = a2w′b2, for some w′ ∈ Σ∗
2 and

(ii) all the prefixes have more number of a’s than b’s.

Let φ be the morphism of the following form φ(a) = a2x and φ(b) = yb2, for
some x, y ∈ Σ∗

2 such that all the prefixes of each of x and y have more number
of a’s than b’s. It can be verified that the word φ(w) has the properties (i) and
(ii). Hence G(φ(w)) has a Hamiltonian cycle. ��
Theorem 11. Let φ : Σ∗

2 → Σ∗
2 be a morphism such that

φ(x) = a2p1b2q1a2p2b2q2 . . . a2plb2ql ,

for some pi, qi ∈ N, 1 ≤ i ≤ l, x ∈ {a, b} and p1 ≥ 1, when x = a and ql ≥ 1,
when x = b. Then G(φ(w)) is Eulerian for every core word w ∈ Σ∗

2 .

Proof. In [11, Theorem 7], it was shown that a Parikh word representable graph
is Eulerian if and only if

w = a2m1b2n1a2m2b2n2 . . . a2mlb2nl , for mi, ni ∈ N, 1 ≤ i ≤ l,m1, nl ≥ 1 (1)

Since a core word over Σ∗
2 starts with a and ends with b, it can be verified

that for any core word w ∈ Σ∗
2 , φ(w) is of the form (1). Therefore, G(φ(w)) is

Eulerian. ��
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Remark 1. There exists a morphism, say, ψ : Σ∗
2 → Σ∗

2 other than the morphism
specified in the Theorem 11 and a word w such that G(ψ(w)) is Eulerian. For
example, take the morphism ψ : Σ∗

2 → Σ∗
2 defined by ψ(a) = a2b3 and ψ(b) = b

and the word ab. Then ψ(ab) = a2b4 and therefore, G(ψ(ab)) is Eulerian.

Remark 2. The result in the Theorem 11 for the Parikh word representable graph
of a morphic word to be Eulerian, cannot be extended for Σ3 as can be seen
from the following example.
Let w = ab2c, φ(x) = ab2c, for x ∈ {a, b, c}. Then φ satisfies the above theorem
and G(ab2c) is Eulerian but G(ab2cab2cab2cab2c) is not Eulerian.

Theorem 12. Let φ : Σ3 → Σ∗
3 be a morphism such that φ(a)φ(c) ≡1 φ(c)φ(a).

Suppose w and w′ are two words such that w′ ≡1 w. Then G(φ(w)) ∼= G(φ(w′)).

Proof. Since w′ ≡1 w, by the definition of 1-equivalence, we can find a series
of words w = w0, w1, w2, . . . wm = w′ where wj+1 can be obtained from wj

by swapping two symbols c and a which appear consecutively. Suppose wj =
a1a2 . . . ca . . . an for some 1 ≤ j ≤ m− 1. Clearly wj+1 = a1a2 . . . ac . . . an. Then

φ(wj) = φ(a1a2 . . . ca . . . an)
= φ(a1)φ(a2) . . . φ(c)φ(a) . . . φ(an)
≡1 φ(a1)φ(a2) . . . φ(a)φ(c) . . . φ(an) = φ(a1a2 . . . ac . . . an) = φ(wj+1)

Hence φ(w) ≡1 φ(w1) ≡1 φ(w2) ≡1 · · · ≡1 φ(w′). As a result, it follows from
Theorem 2 that the corresponding graphs are isomorphic. ��

5 Conclusion

We have established certain results on the properties of ternary Parikh word
representable graphs and also studied the impact of word morphisms on Parikh
word representable graphs corresponding to binary and ternary words. It will be
of interest to examine other graph properties of this class of graphs.

Acknowledgement. The authors are grateful to the reviewers for their very useful
and detailed comments which helped to revise and improve the contents and presenta-
tion of the paper, correcting the errors.
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Královič, Rastislav 155
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Steinberg, Benjamin 27
Subramanian, K. G. 368

Thomas, Nobin 368

Vu, Martin 291

Wolf, Petra 117


	Preface
	Organization
	Abstracts of Invited Talks
	Computing Edit Distance
	Guarded Kleene Algebra with Tests
	Contents
	Invited Talks
	Morphic Sequences Versus Automatic Sequences
	1 Introduction
	2 Words, Morphisms, Sequences
	3 (Purely) Morphic Sequences. Automatic Sequences
	4 Comparing the Classes of Morphic and of Automatic Sequences
	5 Hidden Automatic Sequences
	6 How to Prove that a Sequence Is Not Automatic
	7 Towards a (Partially) Automated Approach?
	References

	Parsimonious Computational Completeness
	1 Introduction: A Historical Perspective
	2 Nonterminal Complexity
	3 Indian Connections
	4 Some Weird Grammars to Conclude
	References

	Pointlike Sets and Separation: A Personal Perspective
	1 Pointlike Sets: Definitions and Reformulations
	2 Aperiodic Pointlikes
	3 Group Pointlikes
	4 Join Results and Tameness
	5 Undecidability of Pointlikes
	6 Transference Results
	7 A New Result: Separation for Modular Quantifiers
	8 Two More of My Favorite Results About Pointlike Sets
	9 Some Open Problems
	References

	Regular Papers
	A Strong Non-overlapping Dyck Code
	1 Introduction
	2 Preliminary Notations
	3 The Construction
	4 Expansion of the Set
	5 Enumeration
	6 Conclusions and Further Developments
	References

	Active Learning of Sequential Transducers with Side Information About the Domain
	1 Introduction
	2 Preliminaries
	3 Learning Transducers with Side Information
	4 Merging Maps to Guess a Minimal Transducer
	5 Encoding into String Equations
	6 Conclusion
	References

	Compositions of Constant Weighted Extended Tree Transducers
	1 Introduction
	2 Preliminaries
	3 Weighted Extended Tree Transducers
	4 Composition
	5 Decidability of Constant Property
	References

	Extremal Binary PFAs in a Černý Family
	1 Introduction and Preliminaries
	2 Extending the Černý Sequence to a Family
	3 Reduction to a Pawn Race Problem
	4 Recursive and Asymptotic Results
	5 Explicit Solution of the Pawn Race Problem for Small c
	References

	Variations on the Post Correspondence Problem for Free Groups
	1 Introduction
	2 Free Group Preliminaries
	3 Non-injective Maps: PCP(inj, inj) and GPCP(inj, inj)
	4 The PCP Under Rational Constraints: PCPR
	5 The GPCP and Extreme-Letter Restrictions
	6 Main Results: Part 1
	7 Conjugacy Inequivalent Maps: PCPCI and PCPinj+CI
	7.1 Random Maps and Genericity
	7.2 The GPCP for Conjugacy Inequivalent Maps

	8 The Basis Problem and Stallings' Rank Problem
	9 Main Results: Part 2
	References

	Reducing Local Alphabet Size in Recognizable Picture Languages
	1 Introduction
	2 Preliminaries
	3 Strictly Locally Testable Picture Languages
	3.1 Comma-Free Picture Codes

	4 Main Result
	5 Conclusion
	A Appendix: Example1 Continued to Illustrate the Main Theorem
	References

	Properties of Graphs Specified by a Regular Language
	1 Introduction
	2 Notation and Preliminaries
	3 Graphs
	4 Graph Properties
	5 Conclusion and Open Problems
	References

	Balanced-By-Construction Regularand ω-Regular Languages
	1 Introduction
	2 Balanced Regular Languages
	3 Balanced-By-Construction Regular Languages
	4 Balanced-By-Construction ω-regular Languages
	4.1 Balanced !-Regular Expressions
	4.2 Balanced-By-Construction ω-Regular Languages

	References

	Weighted Prefix Normal Words: Mind the Gap
	1 Introduction
	2 Preliminaries
	3 Weighted Prefix Normal Words and Weighted Prefix Normal Form
	4 Gapfree Weight Measures
	5 Conclusions
	References

	Two-Way Non-uniform Finite Automata
	1 Non-uniformity in Finite Automata
	2 Model
	3 Previous Work
	4 The Power of Two-Way Advice
	5 Relation to Non-uniform Space Complexity
	6 Determinism Vs Non-determinism
	7 Conclusion and Further Research
	References

	Integer Weighted Automata on Infinite Words
	1 Introduction
	2 Notation and Definitions
	3 Universality Problem for Zero Acceptance
	4 Different Acceptance Conditions
	5 A Universal Weighted Automaton
	References

	Deciding FO2 Alternation for Automata over Finite and Infinite Words
	1 Introduction
	2 Preliminaries
	3 Subword-Patterns
	4 Hierarchies of Subword-Patterns
	5 Patterns for Carton-Michel Automata
	References

	State Complexity of Projection on Languages Recognized by Permutation Automata and Commuting Letters
	1 Introduction
	2 General Notions
	3 Orbit Sets, Projected Languages and Permutation Automata
	4 Projection on Permutation Automata
	5 State-Partition Automata and Normal Subgroups
	6 Commuting Letters
	7 Conclusion
	References

	Constrained Synchronization and Subset Synchronization Problems for Weakly Acyclic Automata
	1 Introduction
	2 Preliminaries
	3 Constrained Synchronization of Weakly Acyclic Automata
	4 Subset Synchronization Problems
	5 Constraint Automata with Two States and at Most Three Letters
	6 Relation to Automata with TTSPL Automaton Graphs
	7 Conclusion
	References

	Lyndon Words Formalized in Isabelle/HOL
	1 Introduction
	2 Combinatorics on Words in Isabelle/HOL
	3 Lyndon Words Formalized
	3.1 Specifying the Order and Lyndon Word Definition
	3.2 Formal Proofs Concerning Lyndon Words
	3.3 Using the Minimal Relation

	4 Final Remark
	References

	The Range of State Complexities of Languages Resulting from the Cascade Product—The General Case (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Cascade Products Where Reset Automata are Involved
	3.2 Cascade Products of Two Permutation Automata
	3.3 Cascade Products with Permutation and Permutation-Reset Automata and Beyond

	4 Conclusions
	References

	Second-Order Finite Automata: Expressive Power and Simple Proofs Using Automatic Structures
	1 Introduction
	2 Second-Order Finite Automata and Regular Classes of Languages
	3 Closure Properties and Special Representations of Regular Classes of Languages
	3.1 Automatic Structures
	3.2 Special Representations of Regular Classes
	3.3 Decidable Properties of Regular Classes
	3.4 Closure Properties of the Collection of Regular Classes

	4 Expressiveness of Second-Order Finite Automata
	4.1 Regular and Automatic Classes of Languages
	4.2 Regular and Automatic Classes of Single-Length Languages
	4.3 -regular and Automatic Classes of Languages

	5 Regular Classes of Languages, Ordered by Inclusion
	References

	Reversible Top-Down Syntax Analysis
	1 Introduction
	2 Preliminaries and Definitions
	3 Computational Capacity
	3.1 Lookahead Versus States
	3.2 Reversibility Versus Irreversibility

	4 Impact of the Lookahead Size
	References

	Symmetry Groups of Infinite Words
	1 Introduction
	2 Preliminaries
	3 Sequences of Symmetry Groups
	4 The Symmetry Groups of Arnoux-Rauzy Words
	5 Symmetry Group of the Period-Doubling Word
	6 Symmetry Groups of the Thue-Morse Word and the Paperfolding Word
	7 Symmetry Groups of Toeplitz Words
	8 Conclusions and Open Problems
	References

	Bounded Languages Described by GF(2)-grammars
	1 Introduction
	2 Basics
	3 Subsets of a* b*
	4 The Main Result for Subsets of a* b*
	5 Subsets of a* b* c*
	6 The Main Result
	7 The Language an bn cn and Its Relatives
	8 Concluding Remarks
	References

	Definability Results for Top-Down Tree Transducers
	1 Introduction
	2 Preliminaries
	2.1 Transducers

	3 From Transducers to Linear Transducers
	3.1 Constructing a Linear Transducer

	4 When is a Transducer Equivalent to a Homomorphism?
	5 Conclusions
	References

	The Hardest LL(k) Language
	1 Introduction
	2 LL Grammars
	3 The Hardest LL(0) Language
	4 Non-existence Under Standard Definitions
	5 Hardest Language for LL(k) Grammars
	6 Conclusions
	References

	Upper Bounds on Distinct Maximal (Sub-)Repetitions in Compressed Strings
	1 Introduction
	2 Preliminaries
	3 Upper Bound for Maximal -Repetitions
	4 Upper Bound for Maximal -Subrepetitions
	5 Tightness
	6 Conclusion
	References

	Branching Frequency and Markov Entropy of Repetition-Free Languages
	1 Introduction
	2 Preliminaries
	3 Entropy Characteristics of Prefix Trees
	4 Computing Entropy
	4.1 General and Markov Entropy for Regular Languages
	4.2 Order-n Markov Entropy via Random Walks

	5 Experimental Results
	5.1 Random Walks in Power-Free Languages
	5.2 Random Walks in Abelian Power-Free Languages

	6 Conclusion and Future Work
	References

	A Linear-Time Simulation of Deterministic d-Limited Automata
	1 Introduction
	1.1 d-Limited Automata and d-DCFLs
	1.2 Our Contribution
	1.3 Related Results

	2 Definitions
	2.1 Deterministic d-Limited Automaton
	2.2 Deleting DLBA

	3 Linear-Time Simulation Algorithm
	3.1 Simulation Algorithm

	References

	Carathéodory Extensions of Subclasses of Regular Languages
	1 Introduction
	2 Density and Measurability
	2.1 Density of Formal Languages
	2.2 C-measurability of Formal Languages
	2.3 Examples of REG-measurable/immeasurable Languages

	3 Closure Properties and Carathéodory's Condition
	4 Carathéodory Extensions of Local Varieties
	4.1 Local Varieties and an Eilenberg-Type Theorem
	4.2 Extension as a Closure Operator

	5 Future Work and Open Problems
	References

	Parikh Word Representable Graphs and Morphisms
	1 Introduction
	2 Preliminaries
	3 Parikh Word Representable Graphs over a Ternary Alphabet
	4 Morphisms on Words and Graphs
	5 Conclusion
	References

	Author Index



