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1 Introduction

Decades of advancements in image/video acquisition, coding, and communication
have made it possible to capture high-quality pictures and videos using devices
within everyone’s reach. As a result, a sheer amount of visual data is continuously
produced and uploaded to social platforms, e.g., 350 million photos are posted every
day on Facebook,1 and 500 hours of new videos are uploaded on YouTube every
minute (as of January 2021).2 Visual media catalyze and attract people’s attention
and time, with relevant effects from a social perspective. In particular, they represent
an immense ecosystem for marketing, in which the “likes” are the primary source
of value (John et al. 2017). In this context, it becomes more and more important to
predict in an automatized fashion what a human observer would like to watch, using
a computer algorithm. The impact and economic value of such prediction are evident
in applications like advertising and communication, personal photo triage, image-
based content retrieval, etc. Besides, predicting and understanding what makes up
image preference is critical in image enhancement and image recommendation, and,
overall, it would contribute to a better understanding of human perception.

1https://www.socialreport.com/insights/article/360000094166-The-Latest-Facebook-Statistics-
2018.
2https://blog.youtube/press/.
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The mechanisms underpinning image preference are complex and variegated.
In computer science and multimedia, these mechanisms have been studied from
different angles including, among others, interestingness, surprise/amazement and
beauty. These concepts are often mixed and confused with each other, even if
they are clearly associated to different preference processes. Interestingness Gygli
et al. (2013) is the ability to attract our attention due to the familiarity of what
we know and like. It is produced by either universal factors (popularity of the
subject of the image, relevance at a certain historical moment, etc.) or personal
factors (link to individuals’ life experiences, work, family, tastes, etc.). On the
other hand, the surprise/amazement mechanism is related to how much the picture
content departs from our expectations. Interestingness and amazement are important
dimensions to define image memorability (Isola et al. 2011), which is the ability to
remember the content of the image. Finally, the beauty of a picture is the quality
or aggregate of qualities that give pleasure to the senses, or pleasurably exalt the
mind or spirit (definition from the Merriam-Webster dictionary), and is the matter
of study of aesthetics. While in the rest of this chapter we will focus on this last
mechanism, we stress that all the mentioned processes interact with each other,
e.g., image beauty can help predict memorability (Constantin et al. 2019), etc. As a
result, it is difficult, if not impossible, to disentangle aesthetic judgments from the
other concurrent dimensions. This may introduce significant biases in collecting
subjectively annotated datasets targeting one of these specific mechanisms, and
represents a considerable challenge in the study of image aesthetics.

In this chapter, we deal with computational aesthetics as defined by F. Hoenig,
i.e., “the research of computational methods that can make applicable aesthetic
decisions in a similar fashion as humans can” (Hoenig 2005). This definition puts
the emphasis on both computability, i.e., the fact that computational aesthetics
should provide measurable output (e.g., a classification as beautiful or not, or
a rating on a scale of beauty), and applicability, i.e., it should be functional in
practical applications. The link between computational and empirical aesthetics lies
in the way the human judgments are elicited and collected (which we will discuss
further in this chapter when talking about aesthetic datasets). According to Hoenig,
computational aesthetics should be restricted to the form, and not the content, to
make aesthetic computation as objective as possible. However, it is not clear to
which extent this separation between content and form can be made in practice, and
certainly this difference is not considered in most of the existing aesthetic datasets
(which are the essential fuel for modern computational aesthetic techniques).

1.1 What Makes a Picture Beautiful?

Before analyzing computational methods for aesthetic prediction, a natural question
that arises is then: what makes a picture beautiful? This question has indeed been
a matter of philosophical debates for over twenty centuries, and has been closely
linked for a long time to the concept of art (at least, for the case of classical Western
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arts3) (Maître 2018). In ancient Greece and Rome, and in different forms through
the Middle Ages and until the Renaissance, aesthetics is dominated by objectivism.
Beauty is seen as an intrinsic property of an object, which is independent from
who looks at it. Classical art implements these universal canons of beauty, which
have been coded into well-established rules of proportions, composition, etc. These
canons continue to largely inspire art and photography nowadays (e.g., through
compositional rules such as the rule of thirds, etc.). This objectivist interpretation
provides the foundation to most computational aesthetics methods. On the other
hand, subjectivist approaches consider beauty as the result of an individual, personal
visual experience, summarized by the well-known phrase “beauty is in the eye of the
beholder”.4 Subjectivism becomes predominant in the sixteenth century, continuing
in romantic and modern art. Among the numerous interpretations of aesthetics,
Kant’s vision is probably one of the most relevant for computational aesthetics,
as it tries to reconcile the subjectivist and objectivist points of view (Zuckert 2007).
The universality of beauty is given by “common sense”: an object is beautiful not
only because it is beautiful for the observer, but also because it is deemed to be
beautiful for everybody else. Modern data-driven approaches to aesthetics, which
we will discuss later in this chapter, rely somehow on this Kantian interpretation of
objectivism, in that they assume aesthetic judgments provided by a pool of human
observers approximate the true aesthetic value of a picture.

Modern views on aesthetics tend to agree that objects considered to be “beau-
tiful” have some intrinsic properties recognized by all observers. However, the
final decision about whether the object is beautiful or not is purely individual.
Neuroscience and experimental psychology seem to support this interactionist
interpretation: while objective visual cues convey beauty, the resulting aesthetic
appraisal is subjective and depends on how the visual cues are processed by higher-
level cognitive areas in the brain (Reber et al. 2004). Factors that can affect this
processing include cultural background, education, age, mood of the observers, etc.
The interactionist viewpoint sets the motivation for a personalized image aesthetics
prediction (Park et al. 2017; Ren et al. 2017), where the goal is to adapt a generic
aesthetics model for an individual user’s preference. We will briefly overview some
personalized aesthetic models at the end of this chapter.

Despite the relatively young existence of photography compared to other visual
arts, the assessment criteria of pictures have evolved significantly since the first
photographic plates in the 1830s. In the early days, photography focused on
accurately recording objects, people and scenes (Rosenblum 2008). In the late
1800s, when photography was recognized as an art, photos were assessed using the
same criteria as classical paintings. In the twentieth century, several photographic

3Notice that this relation has become looser in modern and contemporary art, where producing
beautiful depictions is often not the primary purpose of the artwork.
4This sentence is attributed to the nineteenth-century Irish novelist Margaret Hungerford. However,
the expression has a much older origin, e.g., see Shakespeare’s Love’s Labour Lost (1588): “Beauty
is bought by judgment of the eye“.
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movements started to develop. The realism of photos, which was the most relevant
criterion till the beginning of 1900s, was questioned by surrealist photographic
movements that developed along with artistic avant-gardes of that time. Starting
from the 1960s, photography was highly influenced by the development of mass
media, advertisement, and pop art, and more recently by digital post-processing,
which is nowadays accepted as a part of photographic content creation. As for
other forms of art, therefore, the aesthetic assessment of photography is a complex,
multi-factorial task, where the influence of the cultural, demographic, and historical
contexts plays a crucial role. Thus, it is of paramount importance to specify the
scope and objectives of computational aesthetics, which we will discuss in the next
section.

This chapter presents an overview of computational aesthetics, including the
principal dimensions of analysis, the available sources of annotated data, the
algorithmic approaches to predict aesthetic judgments and their performance, as
well as the open challenges in the field. We target readers with general knowledge
in image processing and machine learning, intending to provide an entry point to
this domain through a summary of state of the art, valuable references, and general
hints for practitioners and researchers willing to work in this field.

The chapter is organized as follows. We present the main dimensions in
computational aesthetics in Sect. 2: this will help us to restrict our attention to
general aesthetics, which is the mainstream approach followed nowadays. In Sect. 3,
we present some aesthetic datasets proposed in the literature, and we discuss the
main aspects to consider when creating or choosing an aesthetic dataset. Section 4
is the core of the chapter and provides a (non-exhaustive) overview of the most
popular approaches to predict aesthetics proposed so far, using either hand-crafted or
learning-based representations. In Sect. 5, we discuss what we believe are the most
urgent challenges in the field of computational aesthetics: dealing with subjectivity,
and explaining aesthetic predictions.

2 Dimensions in Computational Aesthetics

There are several dimensions that contribute to creating a taxonomy of image
aesthetic quality assessment methodologies, as illustrated in Fig. 1 and discussed
below.

2.1 Input Type

Depending on the assumptions made on the type and variety of input images,
aesthetic assessment methodologies can be categorized into general or task-specific
methods. The former category aims at predicting the aesthetic value of a picture
without making specific assumptions on the content of the image, which can span a
broad spectrum of objects and scenes (natural, man-made, portraits, animals, etc.).
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Aesthetic quality
prediction

Ranking
Classification
(good/bad)

Rating (continuous
scores)

Average Distribution/
subjectivity

Output

Hand-crafted features
(e.g., color harmony, rule of 

thirds, etc.)
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(e.g., SIFT)

Deep features

Features

Image retrieval

Photo albums /
Triage

Recommendation

Image enhancement
(e.g., automatic cropping, 
photo filtering, etc.)

Application

General

Input
Task specific

Scope
Universal 

Personalized

Attributes/
explanation

Fig. 1 The different dimensions that compose the aesthetic quality assessment problem

While an a priori knowledge of the semantic content of the picture can greatly aid
aesthetic prediction, assuming a closed-set classification setting for image aesthetics
would be limiting in some practical applications. Many computational methods
proposed in the literature thus do not make this assumption. However, they might
internally rely on some form of content classification to improve performance (Luo
et al. 2011; Sun et al. 2017). The purpose of a picture can also affect significantly
its aesthetic value. For instance, Tifentale and Manovich divide images into several
classes (e.g., competitive photography, vernacular, amateur, etc.) and suggest that
different evaluation criteria are appropriate for each of them (Tifentale & Manovich
2018). However, most of the existing large-scale aesthetic datasets do not make this
distinction. As an example, the AVA dataset (Murray et al. 2012), which is one of
the largest reference datasets used in aesthetics, is collected based on photographic
challenges but includes as well a large number of amateur-level photographs.

On the other hand, task-specific methods analyze aesthetics for specific kinds
of pictures, e.g., aesthetics of faces (Bianco et al. 2018b; Xu et al. 2018),
buildings (He et al. 2019), food (Sheng et al. 2018a) or of synthetic images such
as video games (Ling et al. 2020). In some particular cases, computational aesthetic
approaches can be designed to target non photographic content and artworks, such
as paintings (Amirshahi et al. 2013; Hayn-Leichsenring et al. 2017). The general
aesthetic problem is more challenging than specific aesthetic tasks, due to the wide
variety of content on which minimal or no assumptions can be made beforehand.
In the rest of the chapter, we will address the general aesthetic prediction problem,
pointing when needed to works addressing specific aesthetic tasks.



138 G. Valenzise et al.

2.2 Scope of the Aesthetic Problem

The predictions of a computational aesthetic algorithm can either target a universal,
“average” observer (or a population of observers), or rather a specific user. In this
chapter we mainly discuss the first viewpoint, which is also the most explored in
the literature. It is evident that the validity of a universal aesthetic approach is
conditioned on the consensus that human observers would achieve in judging the
aesthetic value of a picture. Recent methods take into consideration the intrinsic
variability in aesthetic assessment across different observers, e.g., they predict a
distribution of aesthetic scores or some subjectivity measure (Kang et al. 2019). We
discuss the important role of subjectivity in Sect. 5.1.

In contrast with this setting, personalized image aesthetics aims to predict the
personal preference of a given observer, based on a set of previously annotated
pictures or contextual information that enable one to restrict the space of possible
aesthetic scores for that person. In this respect, personalized image aesthetics relies
substantially on the subjectivist and interactionist foundations of aesthetics. We will
briefly discuss personalized aesthetics in Sect. 5.1.3.

2.3 Aesthetic Features

An essential component of any image aesthetic prediction pipeline consists of
extracting meaningful features from a picture. The first aesthetic features to be
considered were hand-crafted, and mainly inspired by guidelines commonly used
in photography, such as the rule of thirds, the use of negative space, the color
harmony, etc. (see, e.g., Datta et al. (2006), Ke et al. (2006), Luo and Tang
(2008), Aydın et al. (2014)), or by mathematical principles, as the classical work of
Birkhoff (1933). An advantage of using hand-crafted features is the interpretability
of aesthetic predictions. However, the purely objectivist interpretation assumed
by these approaches does not take into account the subjective nature of aesthetic
judgments, and thus often fails to provide accurate results for a broad range of
contents and situations as encountered in real-world applications. We discuss in
greater detail hand-crafted methods in Sect. 4.2.

More recently, the availability of large-scale datasets with human annota-
tions (Murray et al. 2012; Kong et al. 2016) has promoted the adoption of
data-driven methods, which rely on features extracted from images without a direct
association to specific aesthetic attributes or rules. We can broadly consider two
classes of features in this category: on one hand, generic features that could be used
for other tasks not related to aesthetics (e.g., SIFT (Marchesotti et al. 2011)), and
deep features learned directly from data. Differently from hand-crafted features,
methods based on data-driven features do not look for the presence of specific
attributes in the picture, but rather try to infer a relation between image pixels
and aesthetic judgments given by humans, which provide the ground-truth for the
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evaluation. In this respect, they are less dependent on the initial hypotheses made
on the definition of beauty; however, they incur the risk of overfitting the specific
conditions in which the features have been learned (e.g., context and methodology
of the subjective evaluation, type of content, or hidden patterns in the data). This
constitutes a significant challenge toward understanding the factors explaining the
predicted aesthetic scores. We present and analyze some relevant deep-learning-
based aesthetics approaches in Sect. 4.4.

2.4 Output Prediction

Computational aesthetic methods can predict classes (typically binary such as
“good/bad” quality, or “amateur/professional”, etc.), ratings or rankings among
images. In addition, an algorithm can also predict specific attributes or additional
information that can help explain the subjective score (e.g., Aydın et al. (2014)). The
first two output types require a single image as input, while the ranking by definition
applies to a set of at least two or more images, with the goal to sort them in order
of beauty (Kong et al. 2016; Park et al. 2017). The choice between classification
and rating is mainly driven by the dataset used, i.e., whether subjective scores
have been collected using a binary or any rating scale (discrete or continuous). In
some cases, scores originally obtained on a rating scale are converted into binary
classes to employ systems trained for classification, e.g., images with average scores
less/higher than 5 on a 10 level scale are tagged as bad/good quality. In general,
rating scales can provide a better reliability and discrimination of aesthetic scores
compared to binary evaluations (Siahaan et al. 2016).

Since ground-truth aesthetic scores are typically obtained by a pool of voters,
they represent samples from a distribution of votes. Traditionally, data-driven
methods have been concentrating on predicting point estimates such as the average
aesthetic score (Deng et al. 2017; Kao et al. 2015). However, recent work tends to
estimate directly distributions of scores (Jin et al. 2016a; Talebi & Milanfar 2018;
Jin et al. 2018) or measures of subjectivity (Kang et al. 2019), to explicitly model the
variability of aesthetic judgments. We discuss in more detail subjectivity prediction
in Sect. 5.1.

2.5 Applications

A dimension of analysis of aesthetic quality prediction includes the target appli-
cations. These can be varied and range from recommendation to retrieval and
enhancement. Some examples of applications that use automatic aesthetic prediction
include automatic image cropping (Guo et al. 2018), color (Deng et al. 2018) and
composition enhancement (Zhang et al. 2013), photo filter recommendation (Sun
et al. 2017), photo triage and album creation (Chang et al. 2016; Kuzovkin et al.
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2017), etc. In the rest of the chapter we do not focus on any specific application
scenario, but rather on the prediction methodologies.

3 Visual Aesthetics Datasets

Image datasets with aesthetic quality annotations are fundamental to developing
computational methods to predict aesthetic appreciation. With the development
of computational aesthetics in the mid 2000s, a number of aesthetic datasets
were proposed, with different features and label types, to facilitate the training
of classifiers based on hand-crafted features. In the 2010s, the creation of large-
scale aesthetic datasets such as AVA has enabled researchers to apply deep-learning
approaches to this problem, substantially pushing forward the accuracy of aesthetic
prediction. In this section we present a review of some popular aesthetic datasets
(see Table 1). Our goal is to offer a critical view of some of the main design
criteria and trends in constructing aesthetic datasets. To this end, we organize the
presentation by discussing some relevant characteristics that are likely to affect the
choice of the most appropriate dataset in a given application scenario and the design
of new ones.

3.1 Number of Images and Number of Votes per Image

One of the main features of a dataset is its size, i.e., the total number of images.
Conventional quality assessment datasets collected in lab environments have a
limited size of a few tens or hundreds of stimuli due to the costs and time
requirements to perform the subjective test campaigns. Datasets obtained through
crowdsourcing, instead, can reach a few thousands of stimuli. Finally, crawling
annotations from existing websites allows one to obtain hundreds of thousands
or millions of annotated images automatically, at the cost of higher noise and
possible data bias. For example, the AVA dataset was obtained by crawling over
250k images from DPChallenge (see Sect. 3.2), with an average of 210 votes per
image, enabling the use of deep-learning-based methods and becoming a reference
dataset in computational aesthetics. We report some statistics of the AVA dataset in
Fig. 2.

Often, the total number of votes that can be collected is limited due to time or
budget constraints. This is also the case, e.g., of crowdsourcing or lab experiments.
In these scenarios, there is a trade-off between the dataset size and the number of
votes per image. A larger number of images enables better coverage of the vast
spectrum of content variety encountered in practical situations. On the other hand,
having more votes per image generally yields a better estimation of the picture’s
aesthetic value, as it reduces the confidence intervals of the estimated scores or
score distributions. In technical quality assessment, it is generally recommended
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Fig. 2 Some statistics of the AVA dataset (Murray et al. 2012), perhaps the most popular dataset
used in computational aesthetics. (a) Normalized distribution of the average scores of each image.
The distribution can be modeled by as a Gaussian, with an average of 5.38, which is slightly lower
than the mid-point of the rating scale (i.e., 5.5). Many computational aesthetics methods obtain
binary labels from these scores, by labeling as high-quality those images with scores larger than
5 + δ, and as low-quality those images with scores lower than 5 − δ. The images with average
scores in the interval 5 ± δ are often discarded as they are considered aesthetically ambiguous.
Notice that this interval is not symmetric around the mean score of the dataset. (b) Normalized
distribution of the standard deviations of the image scores. It has a longer tail (images with high
std) compared to a Gaussian. (c) Skewness-Kurtosis maps (Park & Zhang 2015) can be used to
visualize the consensus in the scores, and can be matched against theoretical bounds (here, the
bound for a truncated Gaussian distribution; the Klassen lower bound for unimodal distributions;
and a power law). See Sect. 5.1 for further details on the interpretation of these maps

that stimuli are voted by at least 15 observers (ITU-R 2012), with the underlying
assumption that the distribution of votes is unimodal and approximately normal.
This is not often the case for aesthetic quality assessment, where score distributions
could be multimodal or strongly skewed, and thus a higher number of samples might
be necessary. Furthermore, in lab experiments, all the stimuli are generally voted by
the same set of raters (allowing one to apply some inter-rater agreement reliability
analysis (Siahaan et al. 2016)), which is rarely the case for large-size datasets.

The trade-off between dataset size and score precision on video quality prediction
using a deep neural network has been investigated in Götz-Hahn et al. (2019).
Interestingly, the authors find that, when the total budget of votes is sufficiently
high (larger than 1000 votes), the quality prediction performance appears relatively
stable. For example, for a total budget of 100k votes, training prediction models
based on deep neural networks using 1000 images with 100 votes per image, or
100,000 images with only one vote per image, produces quality score predictions
with similar accuracy. Conversely, for smaller budgets (of 1000 images or less),
intermediate budget allocations (e.g., five votes for 200 different images) provide
higher performance. Notice that the quality evaluation task in Götz-Hahn et al.
(2019) targeted technical video quality as intended in a video streaming setting
rather than aesthetics. An extension of these observations to aesthetic quality is still
missing.
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3.2 Image Source

Depending on their source website or device, the images in a dataset might have
very different technical and aesthetic qualities. Similarly, their annotations could
vary significantly across data sources, e.g., they can be given by people with little
background or knowledge in photography, groups of knowledgeable practitioners,
or even professional photographers. A typical source of annotated images is photo
amateurs and professional websites, such as Flickr, Photo.net, DPChallenge, etc.,
and social media platforms such as Instagram.

Flickr is probably the largest public source of photos online, with several
hundreds of billions pictures hosted by the website. The uploaded pictures come
with a number of metadata, including photographic attributes such as exposure time,
aperture, camera model, and in some cases geolocalization. In addition, for each
image it is possible to get the number of views and the “faves”, i.e., the number of
times an image has been liked by users. This information is used in some works as
a proxy to aesthetic scores (Schwarz et al. 2018).

Photo.net is one of the oldest photo repositories used to produce aesthetic
datasets. It hosts almost 5 million high-quality pictures taken by photographers with
different experience from hobbyists to professionals. Datta et al. (2006), Datta and
Wang (2010) collected one of the first aesthetic datasets based on Photo.net, which
has been thereafter referred to with the same name as the website. Images from
Photo.net have two kinds of annotations: aesthetics and originality, both rated on a
discrete scale with 7 levels. Later versions of the website fused the two attributes in
a single value, based on the observation that the two quantities are highly correlated.

DPChallenge is another website for photography amateurs and enthusiasts,
which collects over 650k images organized in more than 3000 weekly thematic
contests (challenges). The challenges are a fundamental component of the website
to motivate users to submit their pictures, which span a broad range of qualities.
Each photo can be voted on a discrete scale with 10 levels. The distribution of
the average image scores is well modeled as a normal distribution with an average
slightly higher than 5, while the standard deviation of the scores is slightly positively
skewed with a longer tail. The number of votes per image can be significant (in the
order of several hundreds). However, the aesthetic scores can be highly influenced
by the thematic context of the challenge. The same holds for the subjectivity of the
collected scores (Kang et al. 2019). The popular AVA dataset (Murray et al. 2012)
has been created from DPChallenge, and is itself often used as a source to build
other aesthetic datasets (Kairanbay et al. 2019; Kang et al. 2020). DPChallenge has
inspired more recently other websites such as Gurushots.com and 500px, which also
employ similar concepts as the challenges, and collect user comments with the goal
to offer personalized advice and improvement tips to photographers.

Finally, some datasets do not rely on online resources to collected voted images
(e.g., to avoid copyright issues), and rather employ personal pictures or photo
albums (Chang et al. 2016).
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3.3 Voting Methodology and Aesthetic Labels

Existing datasets have been collected with different methodologies and experimen-
tal procedures, which makes it difficult in general to compare aesthetic scores across
databases. Siahaan et al. (2016) have studied the impact of the voting scale on
the reliability and repeatability of subjective aesthetic scores. They find that a 5-
level absolute category rating (ACR) scale provides mean opinion scores (MOS)
with better reliability (which can be measured, e.g., by inter-observer agreement)
and repeatability across different datasets. Other rating scales, and in particular
categorical binary scales (e.g., “high/low quality”) tend to produce noisier aesthetic
labels and thus are not recommended. Unfortunately, a large part of the datasets
available in the literature seems not to respect these recommendations.

The choice of the questions and adjectives in the voting scale is critical in
aesthetics. Differently from conventional technical quality assessment (ITU-R
2012), only few datasets employ some form of training of the raters to ensure that the
task is clear and to provide examples of the stimuli used in the test (Kang et al. 2020;
Schifanella et al. 2015; Liu & Wang 2017). Pairwise comparisons approaches can
partially solve this issue, as they require choosing the preferred stimulus between
two alternatives (two-alternative forced choice, or three-alternative forced choise
in case a tie option is given). Pairwise comparisons involve a smaller cognitive
load, and eliminate the need for training. However, the number of pairs to compare
grows quadratically with the number of stimuli, which requires in practice the use of
some form of approximate design (Li et al. 2013) or active sampling (e.g., Ye et al.
(2014)). The collected preferences can be transformed into relative quality scores
by applying some heuristics (e.g., vote counts) or psychometric scaling (Chang
et al. 2016), such as the Thurstone or the Bradley-Terry-Luce (BTL) models. Fusing
rating scales and pairwise preferences, e.g., to merge or align subjective datasets, is
an active research topic (Zerman et al. 2018; Perez-Ortiz et al. 2019), which is still
unexplored for aesthetics.

The labels made available in aesthetic datasets may include the simple raw data,
or some form of processed data. In the CUHK dataset (Ke et al. 2006), for instance,
the average rating scores are filtered to remove images with uncertain quality (those
lying in the middle of the rating distribution), and only the top/bottom 10% of the
pictures are retained and classified as high/low quality. A similar strategy is typically
followed to create binary labels for classification on the AVA dataset (Murray et al.
2012), by discarding images with an average score between 5 − δ and 5 + δ (with
δ = 0 corresponding to using the whole dataset, see Fig. 2a). Typical values of δ

range between 0 and 2.5.
In some cases, the raw scores are collected in an indirect way, by retrieving

different but presumably related information, and require further processing to be
converted into aesthetic labels. For example, the authors of Suchecki and Trzciski
(2017) collect 1.7 million photos from Flickr, and assign them an aesthetic score
which is a function of the average number of daily views of the picture. The AROD
dataset (Schwarz et al. 2018) also crawls images from Flickr but considers the
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number of “faves” in the equation. While this data is largely available and cheap
to collect, “faves” or “likes” are only loosely connected to aesthetics, and might
be rather related to other preference mechanisms (interestingness, amazement), as
discussed in Sect. 1.

3.4 Collection Method

There are essentially three approaches to collect aesthetic annotations. In labo-
ratory experiments, the pictures are voted by a pool of observers in a particular
test room, typically illuminated and equipped according to quality assessment
recommendations such as the ITU-R BT.500 (ITU-R 2012) to provide controlled
and reproducible testing conditions. Lab experiments generally include a subject
screening for visual acuity/color perception, and a training phase, which depends
on the methodology, to present the rating scale, the nature of the quality attribute
to evaluate, and the use of the voting interface. Subjective quality campaigns
performed in the labs are generally the best option to obtain precise and reliable
subjective scores. However, they entail a significant cost in terms of data collection
time—the use of a special test environment makes it impossible to massively
parallelize the test.

Crowdsourcing resolves the limitations of lab experiments, in that they enable
massive parallel voting, at the cost of reliability and repeatability. These are
inevitably degraded due to the lack of effective controls of the engagement of
raters, as well as the huge variety in the display devices, internet connection
quality and viewing conditions. To partially alleviate this problem, it is highly
advisable to include quality checks (such as “gold standards” test questions) in
such a way to enable later the detection and filtering of potential unreliable votes
or raters. Examples of quality checks for aesthetic crowsourcing are available,
e.g., in Schifanella et al. (2015), Siahaan et al. (2016), Chang et al. (2016).
Crowdsourcing has become one of the most popular approaches to collecting
subjective scores (see, e.g., Ribeiro et al. (2011)), and has been employed in many
aesthetic datasets.

Finally, a common approach that has been used to build aesthetic datasets
consists of crawling aesthetic annotations (ratings, comments, preferences) directly
from existing online sources, as described in Sect. 3.2.

3.5 Additional Labels and Attributes

In addition to aesthetic scores, datasets can offer additional labels to enable multi-
task applications (Kao et al. 2017b), or provide contextual information for aesthetic
prediction. Typical additional labels include the semantic class of the picture, gener-
ally categorized based on the content, e.g., nature, portraits, buildings, etc. In some
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cases, the aesthetic data is complemented by textual annotations and comments
crawled from the web or collected during the experiments. The text information has
been used to provide aesthetic explanations, leveraging natural language processing
architectures (Wang et al. 2019). Perceptual attributes directly contribute to aesthetic
judgments, and some datasets focus on measuring them, although not in an aesthetic
context. It is the case, for example, for colorfulness (Zerman et al. 2019) or dynamic
range (Hulusic et al. 2016). Other datasets provide additional attributes such as the
emotional response, which are not directly related to aesthetics, but can participate
in image preference formation (Yu et al. 2019). Finally, aesthetic scores can be
augmented with unique identifiers of voters, to facilitate personalized aesthetics
applications.

4 Approaches to Computational Aesthetics

In the following, we review the main approaches to computational aesthetics
proposed in the literature. Two general families of methods can be distinguished:
those based on hand-crafted or generic features, and those that try to deduce
the aesthetic quality of a picture directly from data, in an end-to-end fashion.
Before presenting in more details these two paradigms, we briefly describe some
preliminary work aimed at defining a mathematical model of aesthetics. All the
methods introduced here build on an objectivist interpretation of aesthetics. Readers
interested in computational aesthetics can also refer to the experimental survey of
Deng et al. (2017).

4.1 Mathematical Approaches

Although it does not explicitly provide an algorithm to compute aesthetics on
a computer (in fact, computers had not yet been invented at that time), the
mathematical theory proposed by the mathematician and statistician George D.
Birkhoff in 1933 (Birkhoff 1933) is generally considered as the predecessor of
all quantitative models of aesthetics. Formalizing the artistic principle of “unit in
variety”, Birkhoff suggested the measurement of aesthetics as a ratio:

M = Order

Complexity
. (1)

The aesthetic measure can then be interpreted as the reward that the observer gets
in terms of perceiving a pleasing harmony (order) when putting in an effort to focus
and integrate a scene (complexity).

Despite his efforts to prove the validity of his conjecture in different fields of arts,
Birkhoff was not able to bring convincing empirical evidence to his theory, also due
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to the lack of modern mathematical and signal processing tools to analyze pictures.
Nevertheless, Birkhoff’s ideas have been rediscovered and utilized in later work,
with the aid of more modern mathematical tools, e.g., the Kolmogorov complexity
is employed in Machado and Cardoso (1998) and Rigau et al. (2008) to compute the
complexity of the image (a JPEG or fractal compression of the picture are used to
approximate the Kolmogorov complexity, which is not computable), together with
more sophisticated image processing tools such as image segmentation. Recently,
a mathematical formulation of aesthetics based on thermodynamics that partially
extends the principles of Birkhoff has been proposed in Lakhal et al. (2020).

4.2 Hand-Crafted Features

Modern approaches to computational aesthetics have abandoned the search for a
holistic mathematical formulation of beauty in favor of a more pragmatical data-
driven vision of the problem. The hypothesis is that aesthetics resides in a set
of attributes and features of an image, and the relation between these features
and aesthetic judgment can be deduced by observing a large number of pictures
annotated by humans. The general pipeline of this data-driven approach consists
therefore of three steps: (1) choose or collect a photographic dataset with aesthetic
annotations; (2) extract a set of relevant image features from each photo in the
dataset; (3) train a classifier (typically, a support vector machine—SVM) or a
regressor to predict aesthetic scores based on the extracted features of unseen
images (Kuzovkin 2019). By relevant features, we intend features that can be
related to specific aesthetic attributes (color, composition, etc., see Fig. 3 for some
examples). These features provide valuable information to the classifier or regressor,
which learns how to combine them to produce a synthetic overall aesthetic score.
Since we already discussed the collection of aesthetics datasets in Sect. 3, we will
focus on the feature extraction and the prediction scheme in the following section.

4.2.1 Initial Works

Two seminal works in modern computational aesthetics were proposed by Datta
et al. (2006) and Ke et al. (2006) in 2006. In addition to collecting the first
aesthetics datasets, they introduce a set of aesthetic features and a general prediction
framework based on classification (e.g., using a support vector machine—SVM) to
determine if a picture has a high or low aesthetic level. Many later works follow a
similar approach and use similar features.

Datta et al. (2006) collected the Photo.net dataset, containing approximately
3800 pictures (see Table 1). They consider 56 features, including:

• low-level and color features such as the average pixel intensity to characterize the
use of light (exposure); a colorfulness measure computed as a distance between



150 G. Valenzise et al.

Fig. 3 Some photographic rules and concepts that serve as models to design aesthetic features. (a)
The rule of thirds is a well-known composition rule suggesting that salient objects in the picture
should be positioned along or at the intersections (“powerpoints”) of the horizontal/vertical lines
dividing the height and length of the image into 3 equal parts. (b) Negative space is the area
surrounding the main subject in the photo (positive space), which should be left unoccupied to
facilitate the focus of the observer on the region of interest. A disregard for negative space may
produce cluttered and unclear pictures. (c) The depth of field is the distance between the closest
and farthest objects in a photo that appear sharp. Using a low depth of field (an effect sometimes
referred to as bokeh) is a powerful way to concentrate the attention on the subject of the picture (by
emphasizing the negative space through blur), and is considered aesthetically appealing. (d) Similar
to harmony in music, colors in photography can produce more or less harmonic combinations. The
rules of color harmony are numerous (see, e.g., Moon and Spencer (1944)). They are based on the
principle of avoiding colors that are too close on the color wheel (shown in the right part of the
image), which would create ambiguity (similar to dissonance in music). Instead, an aesthetically
pleasing combination should include complementary colors or combinations of colors lying on
simple geometric shapes on the color wheel (e.g., in this example, the three main colors can be
imagined to be at the vertices of a triangle). Figure best viewed in color

the distribution of color (in the LUV color space) of the image and a reference
distribution with uniform color probabilities; the average saturation and hue;

• composition-related features, which are inspired by photographic rules. These
include a measure of the rule of thirds, computed as the average intensities in the
center portion of the image, in the HSV color space; an indicator of the depth
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of field based on a wavelet decomposition of the image; aspect ratio; a region
composition indicator based on color segmentation;

• familiarity, intended as the average distance of an image to other images in the
dataset in terms of color, texture and shape;

• texture features based on a wavelet decomposition in the HSV space to quantify
the graininess or smoothness of the textures;

• shape convexity features, which compute the portion of the image containing
convex objects, and are related to the assumption made by authors that convex
and regular shapes produce a positive aesthetic response.

An SVM classifier trained with a selected subset of these features obtains an
accuracy ranging between 62 and 70%, depending on the margin left between
the ground-truth binary classes. This system has been later extended in Datta and
Wang (2010) and has been put online with the name ACQUINE (aesthetic quality
inference engine), which computes an aesthetic rating for a given input image.

The work of Ke et al. (2006) has a similar approach. The goal is to classify
whether an image is a professional or amateur picture. To this end, the authors
crawled 60,000 photos from DPChallenge, choosing the ones voted by at least one
hundred viewers. The two aesthetic classes are obtained by taking the highest and
lowest 10% average rates. The features proposed in this work try to capture mainly
high-level photographic concepts by using image processing and computer vision
tools, and include:

• two simplicity measures. One is computed from edge maps in the picture: in
professional pictures the edges are concentrated round the middle of the image,
reducing the quantity of distracting structure in the background (similar to the
concept of negative space in photography, see Fig. 3); the other is the hue count,
another way to gauge the cluttering of a photo;

• color palette, computed as the histogram of a version of the image with quantized
color levels. The number of professional/amateur photos that are the nearest
neighbors to the current image in this histogram space determine the class of
the picture;

• low-level features, including a measure of blur, and intensity features such as
contrast and exposure.

These features are then used into a naive Bayes classifier to discriminate between
professional and amateur photos. The reported classification accuracy peaks at 72%
when professional/amateur photos correspond to the 10% highest/lowest average
scores. Later work show that for less favorable class splits, the accuracy is lower
and generally ranging between 60 and 70%.

4.2.2 Considering the Salient Object of the Picture

The two methods discussed above obtained encouraging performances, although the
accuracy is still relatively limited. Later work has further improved classification
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accuracy by extending the feature set and/or the classification strategy. A class
of methods takes in consideration explicitly the role of the subject of the picture.
For example, Luo and Tang (2008) employ a similar approach as Ke et al. (2006),
but they compute different criteria depending on whether an image region belongs
to the subject or to the background. The distinction subject/background is done
based on a simple blur-based heuristic. Mai et al. (2011, 2012) analyze the salient
regions of an image using a saliency map predictor, to determine whether the
composition of the photo respects the rule of thirds and the principle of simplicity
(e.g., by using the negative space or a low depth of field, see Fig. 3). Zhang et al.
(2014) adopt a more sophisticated approach inspired by human perception, where
aesthetics is evaluated along visual scan paths (represented as graphlets), to mimic
human visual attention mechanisms. The idea to embed visual attention mechanisms
in computational aesthetics has been further explored with deep-learning-based
methods (see Sect. 4.4).

4.2.3 Including Semantic Information

Another strategy to augment aesthetic features consists in taking into account
the semantics of the picture, and in particular high-level features related to the
image content. For instance, Dhar et al. (2011) employ a complex set of features,
including both low-level ones (as in the works described above) and high-level
features describing composition (depth of field, salient object, etc.), content (faces,
presence of animals, indoor-outdoor, etc.) and sky illumination. The high-level
descriptors are obtained by several classification subsystems (SVM classifiers), a
scheme that scales poorly with the number of possible objects to recognize. As
we will see next, this limitation is partially solved by using deep learning models,
which can easily represent and predict a vast ensemble of object classes. Image
content significantly affects which visual features are relevant to predict aesthetics
(e.g., the way to perceive beauty of a landscape is forcibly different from the
aesthetics of portraits) (Simond et al. 2015). In this respect, Luo et al. (2011) mix
the subject detection strategy with image categorization and propose a different
subject/background segmentation and extract visual features differently depending
on the class of the picture.

4.2.4 Multi-Dimensional Approaches

Some methods based on hand-crafted features do not simply aim at predicting a
global aesthetic class or score, but rather treat aesthetics as a multi-dimensional
problem, where the overall evaluation is obtained as the composition of several
aesthetic attributes. This viewpoint has the advantage to provide a better inter-
pretability of why an image is aesthetically pleasing or not. Lo et al. (2012) propose
a visual interface with a sort of “radar” plot (see Fig. 4) where the magnitude of five
attributes (saturation, color, composition, contrast and richness) is displayed. The
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(a) original (b) edited
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Fig. 4 The multi-dimensional representation of aesthetics proposed in Aydın et al. (2014). For
each image, five photographic attributes are evaluated. The overall aesthetic score is given by a
combination of the attribute scores. Decomposing the aesthetic scores into multiple components
enables one to explain why a photo is aesthetically pleasing, and can be used to guide an
enhancement process. In this example, an original image (a) with low dynamic range (tone) and
drab colors is edited to increase colorfulness and contrast, while also putting more emphasis on
the subject (b). The attributes scores for the two images can be intuitively displayed in a radar plot
(c). The area enclosed by the polygon in the plot gives an indication of the overall aesthetic score.
Figure best viewed in color

surface of the polygon connecting the different attribute scores give an indication
of the overall aesthetic quality. A similar approach is proposed in Aydın et al.
(2014), where the attributes are linked to photographic concepts and are calibrated
by an original experimental procedure. On the opposite of these multi-dimensional
approaches are methods that consider aesthetics from the perspective of a single
attribute, e.g., by considering only color harmony (Lu et al. 2015a, 2016).

4.2.5 Leveraging Users’ Comments

In addition to visual features, some datasets report also text comments from users
(see Sect. 3). This data can provide valuable information to predict aesthetics.
For example, the authors of San Pedro et al. (2012) employed hidden Markov
models to analyze text comments crawled from DPChallenge. They compared the
features associated to text with image-based features (combined using a support
vector regression to predict aesthetic scores), and found that, interestingly, the text-
based features perform substantially better than image-based ones on a regression
task. The fusion of text and image features provide only a marginal advantage. It
must be noted, though, that the feature extraction mechanism for text comments
is likely to generalize poorly to comments using expressions not contained in the
dataset. We will see next that the idea of employing text comments has been further
exploited in the context of deep-learning-based methods, where comments are also
generated by the prediction algorithm to endow the aesthetic judgments with partial
explainability.

To conclude this overview on hand-crafted approaches, it is worth mentioning
works targeting task-specific input (and not general aesthetics as for the methods
described above), such as images of people. In those cases, features describe specific
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aspects related to faces, such as the pose, the expressions and lighting (Li et al. 2010;
Redi et al. 2015).

4.3 Generic Features

So far we have discussed methods that try to encode explicitly the best practices of
photography. The advantage of these methods is that, in many cases, it is possible to
identify the factors that lead to a certain aesthetic score. However, the performance
of hand-crafted features rest limited due to several reasons, e.g., the features are
not exhaustive (they cannot cover all the possible photographic principles), and they
are based on simple heuristics, i.e., they try to encode complex rules by simple,
low-level processing. As a result, these methods have a low ability to generalize to
similar cases, resulting in a generally large variance of the prediction performance.

Marchesotti et al. (2011) proposed a very different approach. Instead of using
specific aesthetic features, they argue that the aesthetic information is implicitly
embedded into generic image features, which encode the distribution of local image
statistics. The motivation behind this approach is that, at the time this work was
proposed, generic image features such as the Bag of Visual Words (BOVW, Csurka
et al. (2004)) and Fisher Vectors (FV, Jaakkola et al. (1999)) displayed excellent
capabilities to deal with complex semantic tasks, which suggests that they could
also lead to good performance for aesthetics. The hypothesis is that generic local
features can reveal information about the local sharpness or color distribution that,
when aggregated from patch level to image level, is sufficiently rich to summarize
the global characteristics of images (mix of sharp and blur edges, color harmony,
etc.). In this respect, hand-crafted features capture specific instances of these global
characteristics. To test this hypothesis, the authors extract SIFT (Scale-invariant
feature transform) features from the image. The SIFT features describe the local
gradient orientations at keypoints detected by a scale-space blob detector (Lowe
1999). In addition to SIFT, some color descriptors are also considered. The features
are aggregated at the image level, using either a discrete histogram (BOVW), or
a more sophisticated modeling of the second-order statistics (FV) using a high-
dimensional Gaussian mixture model, which yields continuous features. The two
features are inputted to an SVM classifier to predict the aesthetic class (high/low
quality). The results obtained by the authors on the Photo.net and the CUHPK
datasets (see Sect. 3) show significant gains (from 5 to 10%) in terms of accuracy
compared to hand-crafted approaches such as Datta et al. (2006) and Ke et al.
(2006).

The results of Marchesotti et al. (2011) are particularly relevant in the field of
computational aesthetics, since they demonstrated for the first time that generic,
aesthetic-agnostic features could outperform a carefully hand-crafted feature design
based on well-established photographic rules. Later, the same authors extended their
work to add some form of explainability, by including text comments from AVA
and mining them to discover relevant aesthetic attributes (Marchesotti 2013). These
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works prelude a trend that has become the main approach in computer vision and
multimedia nowadays, i.e., learning generic features directly from data using deep
neural networks.

4.4 Deep Learning Approaches

The method based on generic features presented above is still employing a hand-
crafted design of low-level features (SIFT or color descriptors). In other words,
the design of the features is independent of the data, and the task of making
an efficient use of them to predict aesthetic scores is left to the classifier. The
advent of deep neural networks changed significantly the paradigm of feature
extraction, making it data driven: a high-dimensional (often, in the order of 106

parameters) neural network model is learned in an end-to-end fashion, by optimizing
a differentiable loss function using directly the images and the corresponding labels
as input, without the need to pre-compute any handcrafted features. A class of
deep neural networks of particular interest for image processing is convolutional
neural networks (CNN). The interested reader can refer to Goodfellow et al. (2016)
for an introduction to deep learning. We review in the following some of the
main approaches and challenges to employ deep convolutional neural networks for
computational aesthetics.

4.4.1 Preserving Global and Local Information

As mentioned above, deep neural networks typically contain millions of param-
eters to learn (called also weights), e.g., the VGG-16 architecture (Simonyan &
Zisserman 2014) used in many aesthetic works has 134 millions of parameters. This
makes their use very demanding both in terms of computational time and memory
consumption (Bianco et al. 2018a). In practice, to keep the problem tractable with
the available graphical processing units (GPUs), especially at the beginning of the
deep learning era input images were resized to a lower resolution (e.g., 224 × 224
pixels) in order to be used on pre-trained models, which were then fine-tuned for
a specific application. Nevertheless, resizing images to small, square thumbnails in
the case of aesthetic evaluation can seriously alter both the composition of the image
and the presence of small but relevant details, compromising aesthetic assessment.
Initial works applying CNN architectures to computational aesthetics addressed this
issue.

The first deep-learning-based system for aesthetic classification was proposed by
Lu et al. (2014) under the name of RAPID (Rating pictorial aesthetics using deep
learning). To deal with the resizing and aspect ratio problems, RAPID employs a
two-column network (see Fig. 5a): two identical networks (in this case, AlexNet
is used (Krizhevsky et al. 2012)) with independent weights are fed with different
inputs, and their features are then merged into one or more shared layers (typically
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Fig. 5 Some deep neural network architectures used in computational aesthetics. (a) Multi-
column CNNs are a way to handle different inputs (images, attributes, patches, etc.). These are
processed by parallel networks, which could have or not the same architecture and shared weights.
The output of the columns is then merged in an aggregation layer to obtain an aesthetic class or
rating. (b) Multi-task networks are designed instead to perform different tasks which are correlated.
The input image is processed by a single network, and the tasks are differentiated at the last
layers. The difficulty with these networks is to find a good balance between tasks in the training.
(c) Siamese networks are composed by two identical networks (with shared weights), which are
trained simultaneously by minimizing a ranking loss

fully connected). The two networks are trained jointly. The first column in RAPID
takes as input the whole picture, warped (resized and padded) to 224 × 224
spatial resolution. In the second column, the input is a patch (again of 224 × 224
pixels) randomly extracted from the image at the original resolution. The evaluation
of the two columns is repeated 50 times to average the results across different
random patches. In this way, the network learns to evaluate global and local
information, both necessary to predict the aesthetic class of an image. RAPID
achieves 73% classification accuracy on the AVA dataset, which is higher than any
other previously proposed hand-crafted features on this dataset. The performance
is slightly improved (74%) when adding an extra column to the network with style
information (available for some images in AVA).

This approach is later extended in Lu et al. (2015c), which proposes a deep
multi-patch aggregative network (DMA-Net) with five columns. In this case, the
input to each column is an original-resolution patch extracted ramdomly from the
image, and the five branches are sharing weights to speed-up training. The features
from the columns are merged using either an order-independent pooling operator
(e.g., average or max pooling), or using a fully connected network with a sorting
layer. The reported classification accuracy with the best configuration is 75.4%. A
different strategy is considered by Mai et al. (2016) in the multi-net adaptive spatial
pooling CNN (MNA-CNN). They add an adaptive spatial pooling layer upon the
regular convolution and pooling layers to handle a limitation of the conventional
CNN design, where the presence of fully-connected layers assumes a fixed-size
feature vector. The idea is to perform max pooling over local image regions, but
fixing the output size instead of the receptive field’s size. This strategy is repeated
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for different adaptive spatial pooling sizes to obtain a multi-scale representation.
MNA-CNN achieves a classification accuracy of 77.1% on AVA.

The multi-column principle introduced by DMA-Net has proved to be very
effective in preserving local and global information, and has been employed by
many deep-learning-based approaches later on. Ma et al. (2017) improved the
selection of patches in their adaptive a layout-aware multi-patch (A-Lamp) CNN.
Differently from DMA-Net, A-Lamp selects patches adaptively based on the content
of the image, using a pre-trained saliency model. An attribute-graph representation
of salient patches is then assembled using the areas of the patches, as well as their
reciprocal orientation and distance. This information is processed by layout-aware
sub-network to capture the topology and layout of the picture. The selected patches
follow then a multi-patch sub-network with an aggregation layer at the end, similar
to DMA-Net. Finally, the two subnets are merged through a learned aggregation
layer. The A-Lamp approach reaches a classification accuracy of 82.5% on AVA,
showing that a saliency-driven choice of patches can bring substantial advantages
over a random or fixed patch selection strategy. Sheng et al. (2018b) propose a multi-
patch (MP) network with an attention mechanism (Stollenga et al. 2014): instead of
using a pre-trained saliency model as in A-Lamp, the selection of salient patches
in MP is learned directly from aesthetic labels, by assigning different weights to
different image patches. Among the different weight assignment schemes consid-
ered, an adaptive one (MPada) obtains 83.03% classification accuracy on AVA. The
state-of-the-art aesthetic classification methods in 2020 employ a combination of
multi-patch networks, attention mechanisms and global features (Liu et al. 2020;
Xu et al. 2020), achieving a classification accuracy of 83.59% on the standard AVA
test set.

4.4.2 Content-Adaptive CNNs

As discussed in Sect. 4.2.3, considering the semantic content of a picture can
help in assessing aesthetics. Compared to hand-crafted approaches, deep-learning-
based methods can capture semantic information much better, and indeed many
CNN architectures for aesthetic prediction employ the availability of additional
content labels whenever possible (e.g., AVA provides additional information related
to content and style, see Sect. 3).

The common way used in the literature to employ semantic information is to
add a scene classifier in the deep model. A typical categorization used in aesthetics
is based on 7 classes: human, plant, architecture, landscape, static, animal and
night. These categories were initially proposed by Tang et al. (2013) and have
been later used in many deep aesthetic models. The MNA-CNN network (Mai et al.
2016) discussed above includes a scene-categorization CNN fine-tuned on these 7
categories. Wang et al. (2016) build a multi-scene deep learning model (MSDLM)
by cascading four convolutional layers of AlexNet (Krizhevsky et al. 2012), which is
supposed to recognize the kind of scene, with a scene convolutional layer composed
of 7 parallel convolutional blocks corresponding to 7 possible scene categories. The
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scene group layers are pre-trained on images of a specific category to improve the
classification performance. This work achieves an accuracy of 76.95% on AVA.

Another way to leverage semantic information of the scene consists of multi-task
learning, in which a main task (aesthetics) is learned together with other additional
tasks—in this case, a predictor of the image category (see Fig. 5b). Since both tasks
are optimized concurrently in the network, the relative importance of the two task
losses is a critical factor for a successful multi-task learning. Kao et al. (2017b)
propose two possible solutions to determine the task weights. In their basic multi-
task CNN architecture (MT-CNN), the relative importance of the aesthetic and
semantic tasks is fixed to be 2/M , where M is the number of categories (M = 29
semantic tags from AVA is used here). This network achieves an accuracy of 78.56%
on AVA. The relative weights of the tasks can also be discovered directly from
data, based on a Bayesian interpretation of multi-task learning. In particular, the
relationship between tasks is embedded in the loss function under the form of
a covariance matrix between the task-specific network parameters (corresponding
to layers where parameters are not shared between tasks). The training procedure
then consists of alternating steps of gradient descent and covariance matrix update.
This network is called multi-task relationship learning CNN (MTRL-CNN). The
classification accuracy with learned task weights rises to 79.08%. Despite the
elegant mathematical formulation behind MTRL-CNN, the simultaneous calibration
of the tasks remains challenging in practice, and later work has shown that training
the network in two stages (by fine-tuning a semantic predictor) can lead to better
aesthetics classification (Murray & Gordo 2017).

4.4.3 Aesthetic Regression

Providing a two-class aesthetic prediction may be insufficient in many applications
where a finer-granularity assessment is desirable (e.g., for image enhancement).
In those cases, it is more appropriate to estimate an aesthetic rating through a
regression network. In particular, existing methods have focused on predicting the
average score for an image, as given by human raters, e.g., a value between 1 and
10 for the AVA dataset. It is relatively straightforward to modify the architectures
presented above to predict a continuous aesthetic score rather than a binary value.
For instance, in Kao et al. (2015) the last layer of the network, which is a two-way
softmax in aesthetic classification, is replaced by a single neuron to produce a scalar
value. The loss used is the mean squared error. The performance criteria in the case
of regression is no longer the accuracy, but rather measures such as mean squared
error (MSE), root-mean-square error (RMSE), mean residual sum of squared
errors (MRSSE), Pearson or Spearman rank-order correlation coefficients (PCC
or SROCC, respectively). Nevertheless, it is typical to also provide classification
results by thresholding the predicted scores, e.g., to the cut value of 5 ± δ in
AVA (see Sect. 3.3), to benchmark the proposed methods with the state of the
art. Current deep-learning-based methods for predicting the aesthetic mean score
reach a correlation with ground-truth slightly in excess of 0.7, which is significantly
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lower than the performance of no-reference technical quality assessment metrics,
where the correlations are generally well higher than 0.8. This fact confirms the
challenging nature of aesthetic quality assessment, but also raises some questions
regarding the subjectivity of ground-truth scores (see Sect. 5.1).

To partially take into account the intrinsic subjectivity of aesthetics, a particular
class of aesthetic regression networks aims at predicting the distribution of scores,
rather than their mean. These systems include the popular neural image assessment
(NIMA, Talebi and Milanfar (2018)), the aesthetic prediction model (APM, Murray
and Gordo (2017)) and others (Jin et al. 2016a, 2018). We will discuss these
techniques in more detail in Sect. 5.1.

4.4.4 Fusing Hand-Crafted and Deep Features

As discussed at the beginning of this section, an advantage of hand-crafted features
over deep-learning-based methods is the intrepretability of aesthetic predictions.
Some computational aesthetics approaches try to integrate the benefits of pure
deep models and hand-crafted attributes by proposing mixed solutions fusing expert
knowledge with data-driven features.

For example, Kucer et al. (2018) consider a mix of 331 hand-crafted features,
obtained by some of the methods discussed in Sect. 4.2, and of deep features
extracted by deep CNN such as VGG or ResNet. Using a tree-based learner,
the authors show that, even if individually these feature sets are dominated in
performance by current neural networks solutions, the (early or late) fusion of
the features can provide competitive performance. In addition, the use of the tree-
based learning approach allows one to deduce the importance of each feature in the
aesthetic decision, and to significantly reduce the size of the feature set to less than
15% of the original size. The accuracy of this method on AVA is 81.95%, which
is competitive with respect to more recent methods based on deep learning only.
Notice that the explainability, i.e., which attributes are more relevant to the aesthetic
decision, is achieved only in an average sense here, but not per picture.

A very different approach is that of Wang et al. (2017), who propose a deep
network based on the Chatterjee’s visual neuroscience model (Deep Chatterjee’s
machine, DCM) (Chatterjee 2003). The Chatterjee’s model provides some insights
on how humans perceive aesthetic quality: the human brain works as a multi-level
system, in which the visual sensory input first processes a number of relevant
features through a set of parallel pathways. Afterwards, the output of these pathways
are associated and synthesized at a higher level into an aesthetic decision. Inspired
by this framework, DCM computes several aesthetic attributes in parallel, using
either hand-crafted features (in this case, simply the hue, saturation and value color
representation), or CNNs which are trained in a supervised manner to predict one of
the 14 AVA style labels (complementary colors, duotones, vanishing point, etc.). In
a second step, a high-level synthesis network is used to fuse the attributes, and the
overall network is trained to learn the distribution of votes (using the Kullback-
Leibler divergence as metric). The authors also provide an interesting study on



160 G. Valenzise et al.

the sensitivity of aesthetic prediction on the transformation of the input image
(e.g., reflection, rotation, noise, etc.), which provides useful hints to perform data
augmentation for aesthetics. The reported classification accuracy on AVA is 78.08%.

4.4.5 Learning an Aesthetic Ranking

The works that we have reviewed so far cast aesthetic prediction as either a
classification or regression problem. In practice, often an aesthetic decision involves
the comparison of two or more pictures, e.g., to decide which photo to keep in a
personal album. It is clear that aesthetic classification is not sufficient in this case,
and even a continuous rating might be imprecise when assessing the preference
between two images. As an alternative, some works propose learning a ranking
relationship directly from data, using a ranking loss.

Kong et al. (2016), who also proposed the AADB dataset (see Sect. 3), employ
a Siamese network (Chopra et al. 2005) that takes as input a pair of images
and directly predicts their relative ranking and aesthetic scores (see Fig. 5c). The
network is constituted by two identical branches with shared weights, and is trained
by minimizing the following contrastive loss term:

Lcontrast =
∑

i,j

max
(
0, α − η(yi ≥ yj )(ŷi − ŷj )

)
, (2)

where yi and ŷi are the ground-truth and predicted average rating for image i,
η(yi ≥ yj ) = 1 if yi ≥ yj and η(yi ≥ yj ) = −1 otherwise, and α is a
margin parameter. The contrastive loss penalizes predictions that invert the original
aesthetic ranking of images more than predictions that preserve this ranking. In this
second case, predictions that provide the correct ranking and estimate scores spaced
out by at least the margin α are less penalized to focus the learning process on the
difficult pairs with similar ratings. In addition to the contrastive loss, a regression
term (e.g., MSE) is also added to anchor the predicted scores to the original rating
scale. This basic Siamese architecture is integrated into an attribute and content-
adaptive network, and experiments show an overall SROCC of approximately 0.56,
and a classification accuracy of 77.33% on AVA. Performance on AADB is higher
(correlation in excess of 0.67). Interestingly, the authors also provide a cross-
dataset train/test evaluation, showing that a network trained on AADB has very poor
performance (SROCC ≈ 0.15) on AVA, and vice-versa. This opens up a number of
questions regarding the generalization capabilities of deep-learning-based aesthetic
predictors.

A different ranking loss is employed in Schwarz et al. (2018), which uses a triplet
network architecture to learn an aesthetic distance in the feature space (Hoffer &
Ailon 2015). Compared to the Siamese architecture, the triplet network has three
columns with shared weights, which receive three inputs: an anchor image a, an
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aesthetically similar image p and an aesthetically dissimilar image n. The network
is trained by minimizing a triplet loss:

Ltriplet =
∑

a,p,n

max
(

0, α + ‖�a − �p‖2
2 − ‖�a − �n‖2

2

)
, (3)

where �a , �p and �n are embeddings (i.e., deep CNN features in this case)
for a, p and n, respectively, and α is a margin parameter. Intuitively, the triplet
loss pushes images that have similar aesthetic level to be close in the feature
space, and images which have very different aesthetic values to have very different
embeddings, thus enforcing a ranking among images. The reported results of the
fine-tuned network on AVA do not show significant improvement over the Siamese
architecture described above (accuracy of 75.83%), although the two networks are
not comparable as Schwarz et al. (2018) does not include attribute and semantic
information.

To conclude this section, we report in Fig. 6 the classification accuracy on the
AVA dataset of some of the deep-learning-based methods discussed above. We can
clearly see a performance improvement (over 10% gain) in accuracy in the past six
years. Also, we observe that performance have been saturating in the last years to
slightly less than 84% when δ = 0 is used to label the aesthetic classes in AVA.
It seems difficult nowadays to go far beyond this value using the AVA dataset.
This limit raises questions regarding the nature of aesthetic data used as ground-
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truth: as discussed in Sect. 3, the aesthetic scores crawled from DPChallenge can be
significantly influenced by the semantic context (challenge, content, etc.), which
makes the ground-truth scores irremediably noisy and affected by other factors
than aesthetics, such as interestingness. How to collect large aesthetic datasets
with clean labels is still an open question, and only little work has been devoted
to it in the multimedia community, compared to the more traditional technical
quality assessment problem, for which guidelines and recommendations have been
available for several decades (e.g., ITU-R (2012)).

5 Challenges in Computational Aesthetics: Subjectivity and
Explainability

The overview of computational aesthetic methods presented in the previous section
demonstrates that substantial progress has been made in this field in the last 15
years. However, it also points out some limitations and weaknesses of the current
state of the art in computational aesthetics. In addition to the still limited accuracy of
aesthetic prediction approaches, we have already mentioned some open challenges
in the field of computational aesthetics, including the reliability of the ground-truth
scores, the capability to explain the aesthetic judgments, and the subjective nature
of aesthetic decisions. In this section we discuss these challenges, and in particular
the dimensions of subjectivity and explainability in computational aesthetics.

5.1 Dealing with Subjectivity

In Sect. 1 we have introduced the classical subjectivist/objectivist debate in aes-
thetics. As we have mentioned there, the vast majority of existing computational
aesthetics methods embrace an objectivist hypothesis on the aesthetic quality of
photos. Specifically, they assume beauty is a property of the picture, produced by a
combination of its attributes, which is essentially belonging to the object rather than
the observer, thus being universal. This hypothesis legitimates the identification of
an aesthetic score as a pooling operation over a set of opinions (e.g., average, or
majority vote, etc.), which is taken as the ground truth of aesthetic prediction.

In practice, while opinions of multiple observers might follow a common trend,
individual opinions are inherently subjective. The causes of this subjectivity are
varied. They can be imputed to the inner state of the viewer and his/her contingent
feelings, mood, sensations, etc. In photography, subjectivity can occur due to
different evaluation criteria followed by photographers (Barrett 2020), which are
also influenced by the historical epoch, cultural context and demographics of the
observer (Kairanbay et al. 2019; Redi et al. 2016). The level of expertise of the
viewers can also impact the perception of aesthetics (Lebreton et al. 2016), e.g.,
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Fig. 7 Subjectivity in image aesthetics. The two photos (taken from the AVA dataset) have exactly
the same average aesthetic score. However, their normalized score distribution (displayed on the
right panels) reveals a very different degree of consensus of human raters. (a) A photo with low
subjectivity. (b) A photo with high subjectivity

functional magnetic resonance imaging (fMRI) scans have revealed significant
differences in the neural activities between architects and non-architects when
evaluating photos of buildings (Kirk et al. 2009). A study carried out using mag-
netoencephalography has discovered significant differences in brain activity when
assessing the beauty of photos and paintings in male and female participants (Cela-
Conde et al. 2009).

Due to subjectivity, the opinions of individual viewers may be in disagreement
with each other. We define the aesthetic subjectivity of a picture as the degree
of consensus about its aesthetic value when this is judged by a panel of human
observers (Kang et al. 2019). Figure 7 illustrates this definition with two example
images from the AVA dataset. Compared to the traditional technical quality
assessment, where inter-viewer agreement is generally high, in aesthetics the human
judgments tend to be more dispersed. In the following, we discuss some attempts to
include the subjectivity dimension in computational aesthetics.

5.1.1 Predicting Score Distributions

A popular way to consider aesthetic subjectivity is to predict the distribution
of the image aesthetic scores. This is represented as a vector of probabilities
over a set of ordinal values instead of a single one-dimensional estimate (e.g.,
average score or the aesthetic class). Predicting score distributions requires adapting
computational aesthetics techniques to process categorical probability distributions
as labels. In particular, while conventional loss functions may be used (e.g., the
Huber loss is used to reduce the impact of outliers by Murray and Gordo in the APM
network (Murray & Gordo 2017)), algorithms to predict score distributions employ
different loss terms for training. More specifically, employing a simple vector
distance such as the L2 norm between histogram vectors is in general sub-optimal,
as it does not consider the ordinal nature of the aesthetic ratings. For example, given
a reference score distribution on a 5-level discrete scale p1 = (1, 0, 0, 0, 0), the two
following score distributions p2 = (0, 1, 0, 0, 0) and p3 = (0, 0, 0, 0, 1) have the
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same Euclidean distance from p1. However, it is intuitive that p2 is closer to p1 than
p3, since the aesthetic scores where the probability mass is concentrated are closer.

Among distances between probability distributions, one that has been widely
used in aesthetics is the Earth mover’s distance (EMD). For two discrete distribu-
tions p and q, the EMD is computed as the L2 norm of the difference between their
corresponding cumulative distribution functions (cdf) P and Q, that is:

EMD(p, q) =
[

K∑

i=1

P(i) − Q(i)

] 1
2

, (4)

where K is the number of score levels (e.g., K = 10 for AVA). By employing
the cumulative distributions, the EMD is sensitive to the order of the probability
masses. The use of EMD to predict aesthetic score distributions was first proposed
by Wu, Hu and Gao in 2011 (Wu et al. 2011). They introduce a modified support
vector regression algorithm called support vector distribution regression (SVDR),
trained with a squared EMD. In addition, they also proposed a weighting mechanism
to penalize more errors on images which have a reliable ground-truth score
distribution, called reliability-sensitive learning (RSL). The reliability is measured
as the number of votes received by the image: the higher the number of votes, the
closer the sample histogram is to the true population distribution. The EMD has
been later used by other aesthetic prediction methods, including the popular NIMA
system (Talebi & Milanfar 2018). Similar ideas to Wu et al. (2011), in particular the
reliability term, have been employed by others afterwards, e.g., it has been integrated
in a label distribution learning framework in Cui et al. (2017) (however, a hinge loss
is used there).

Other distances between probability distributions can be considered. For
instance, Jin et al. (2016a) predict aesthetic histograms via a modified VGG-16
network trained with the χ2 (Chi-square) distance, defined as:

χ2(p, q) = 1

2

K∑

i=1

(pi − qi)
2

pi + qi

. (5)

This distance gives less importance to the difference between large bins, and was
successfully used for texture and object classification, local descriptor matching,
etc. (Pele & Werman 2010).

Another family of methods to predict aesthetic distributions employs distances
(or, more precisely, pseudo-distances) borrowed from information theory. We
already mentioned the Deep Chatterjee’s Machine (DCM, Wang et al. (2017)) in
Sect. 4.4.4. It approximates the underlying aesthetic distributions as Gaussians, and
measures their distance with the Kullback-Leibler (KL) divergence, which in this
case has a simple closed-form expression:

KL(p, q) = log
σq

σp

+ σ 2
p + (μp − μq)2

2μ2
q

− 1

2
, (6)
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where μp,μq, σp, σq are the means and standard deviations of p and q, respec-
tively. The Gaussian approximation of p and q does not just allow simplification
the computation of the KL divergence, but also solves the issue of defining the
KL for values with zero probability mass. However, the hypothesis of normality
of the distributions seems somewhat too strong, at least for the AVA dataset:
although in Murray et al. (2012) it is found that most images in the dataset have an
approximately Gaussian distribution of scores, later studies (Park & Zhang 2015)
have shown that the distributions are better approximated as power laws. Indeed,
this is even more evident for the images with extreme scores, which have skewed
distributions. Another drawback of Eq. (6) is that the KL divergence is asymmetric
(KL(p, q) �= KL(q, p)). To overcome this limitation, the KL divergence is often
symmetrized as KLsym = 1

2 (KL(p, q) + KL(q, p)).
To consider the ordinal nature of the ratings and solve the asymmetry of the KL

divergence, Jin et al. (2018) employ a cumulative Jensen-Shannon divergence (CJS)
loss. The Jensen-Shannon divergence is a symmetrized KL divergence of the two
distributions p and q with respect to their average m = 1

2 (p + q). In CJS, the
Jensen-Shannon divergence is computed on the cumulative distributions P and Q:

CJS(p, q) = 1

2

[
K∑

i=1

P log
P(i)

M(i)
+

K∑

i=1

Q log
Q(i)

M(i)

]
, (7)

where M is the cdf of m. In addition to the plain CJS loss, the authors also include
a reliability weight inspired by Wu et al. (2011), with the difference that they use
the kurtosis of the ratings distribution instead of the number of voters. The use of
kurtosis as a measure of subjectivity was proposed also in Park and Zhang (2015)
before (see next section).

Although predicting score distributions can provide complete information about
aesthetic consensus, the predicted distributions are in practice difficult to interpret.
Since evaluating the prediction of histograms requires choosing a distance metric
between distributions, comparing the results of different methods may not be
conclusive. In fact, to validate the proposed approach, these works often resort to
extracting simpler aesthetic measures such as the average or aesthetic class from the
estimated distributions, in order to compare to the state of the art. In addition, the
ratings in large aesthetic datasets such as AVA tend to concentrate around the middle
quality (see Fig. 2a). As a result, most of the training samples have a distribution
that is approximately Gaussian and centered around the middle score. This over-
representation of images with mediocre quality leads to a sort of “center bias”
in the prediction: the estimated distributions tend to resemble the average score
distribution of the dataset, entailing poor prediction performance for images with
very high or low quality. This phenomenon occurs as well for mean score regression,
and a traditional solution in aesthetics consists of excluding images with average
ratings close to the middle of the rating scale from training (Datta et al. 2006; Ke
et al. 2006; Lu et al. 2014). Another option to mitigate the score imbalance consists
of using resampling or a weighting scheme to balance the loss during training. For
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example, in Jin et al. (2016a) the weights are computed as the inverse of the (binned)
distribution of the average aesthetic score over the AVA dataset. In this way, less
frequent scores are assigner larger weights and are penalized more during training,
thus effectively driving the network to focus on rare samples.

5.1.2 Measures of Subjectivity

While predicting the distribution of aesthetic ratings gives an idea of the consensus
of human observers on the quality of a picture, in many cases it is desirable to extract
a single, scalar measure of subjectivity, e.g., to be used as a quality metric or a
penalty term in an optimization or learning process. A few works have addressed this
problem, by computing some significant statistic based on the rating distributions
(e.g., the variance or higher-order moments), and evaluating its prediction through
machine learning approaches.

Kim et al. (2020) study the objectivity and subjectivity in aesthetic quality
assessment. The “objectivity” is identified with the task of predicting the mean
aesthetic score or an aesthetic class, which corresponds to the classical setup in
computational aesthetics and to the perspective we have taken in the previous part
of this chapter. The term subjectivity, instead, is quantified as the standard deviation
(std) of the scores. Based on these definitions, the authors propose a prediction
scheme for the two terms. They first crawl a new database from DPChallenge
containing more than 300k pictures posted over a time interval of 12 years. This long
time horizon allows the authors to make some interesting observations regarding the
evolution of objectivity and subjectivity: e.g., due to the increase of the photographic
device quality, the average aesthetic scores in DPChallenge have increased with
time, while the average subjectivity has decreased. Afterwards, the authors extract
295 features from each image, which are combined through an SVM to predict
either the mean or the std of the scores. Through a feature selection process, it is
also possible to understand which are the most significant features in each of the two
tasks. Notice that both objectivity and subjectivity here are quantized to two classes,
i.e., the prediction is a binary classification problem. The separation into two classes
discards images with medium std values (similar to what is typically done on mean
scores with the parameter δ). Under these assumptions, the classification accuracy
for the mean score prediction is 71.6%. For std, it lowers down to around 67%,
with larger inter-category variations (e.g., for landscape images the std prediction
accuracy exceeds 77%, while for architecture it is around 61%). While overall std
prediction seems more difficult, the results are encouraging, showing that predicting
subjectivity is feasible. The authors also investigate the sources of subjectivity
through an analysis of text comments associated to the images (downloaded from
DPChallenge). The “unusualness” and the coexistence of both aesthetic merits and
defects explains the high levels of subjectivity.

The conclusion that subjectivity can be predicted with reasonable accuracy is
somehow contradicted by the work of Kang et al. (2019), although the results cannot
be directly compared as the evaluation schemes are different (regression in this
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case). The correlation coefficient between the predicted std and the ground-truth
is only ≈ 0.3, compared to correlations in excess of 0.7 obtained by state-of-the-
art methods to predict the mean aesthetic score. We hypothesize that the higher
performance in Kim et al. (2020) is significantly influenced by the removal of
samples with medium std values, which are the most significant portion of the data
(see Fig. 2b). The authors of Kang et al. (2019) also propose other subjectivity
measures in addition to std, including two novel measures based on information
theory. These measures compute the distance of the ratings distribution of an image
to an ideal distribution having maximum entropy (and thus, minimum consensus).
Even if these new measures can be predicted slightly better than std on the AVA
dataset (which may imply they are more robust to noise), the overall prediction
performance remains poor, most probably due to the complex, contextual factors
leading to little aesthetic consensus.

Park and Zhang (2015) present an original and very interesting analysis of
the consensus in aesthetics (in particular, for the AVA dataset). Instead of using
the variance of the scores, which is seriously distorted by highly skewed and
bounded data, they consider the fourth moment of the distribution, i.e., kurtosis,
as an indicator of subjectivity. Kurtosis measures how long are the tails of a
distribution. The kurtosis of a distribution is linked to its skewness by the relation:
kurtosis ≥ (skewness)2 + 1. Therefore, to characterize subjectivity, Park and Zhang
study the distributions of images in the skewness-kurtosis plane—a representation
they call SK maps (see Fig. 2c), which has been used in physics and finance to
study the deviations from Gaussianity. The SK maps provide insightful information
about the subjectivity of images in AVA. First, it is observed that there is a strong
non-Gaussianity in the scores of the AVA images. In particular, images with average
scores around 5 tend to have a wide range of kurtosis, which implies they follow very
different (and non Gaussian) distributions. In addition, images with low aesthetic
scores (i.e., with positive skewness) tend to have higher kurtosis, i.e., there is
more aesthetic consensus in judging aesthetically unpleasing pictures than high-
quality ones. Finally, the SK maps differ significantly based on the content category,
which is coherent with the content-dependent subjectivity observed in other works
afterwards.

Based on the SK map representation, Park and Zhang also present a mathematical
dynamic model to explain subjectivity in aesthetic perception. The approach is based
on the classical drift-diffusion model, previously used by psychologists to explain
behavioral data in emotion analysis tasks. The drift-diffusion model assumes that,
in the absence of any external stimulus, the human mind performs an internal
random walk. When a decision between two or more options is to be made,
the brain accumulates evidence favoring each of the alternatives over time. The
combination of these “clues” (attractors) with the noise component (random walk)
can be depicted as a particle drifting and diffusing between two boundaries, until it
reaches one of them. Similarly, when the aesthetic judgment converges to one state
(e.g., good or bad aesthetic quality), the aesthetic decision is taken. This simple
drift-diffusion model allows the explanation of most of the behaviors observed in
the SK maps, and provides a foundation for results obtained by later studies (Kim



168 G. Valenzise et al.

et al. 2020). In particular, when multiple, balanced attractors are present (i.e., both
positive and negative aesthetic attributes), the judgment tends to converge towards
a mediocre aesthetic score. Moreover, the convergence time is longer, i.e., humans
employ a longer time to evaluate images with larger subjectivity. This conclusion
is supported by a user study in which the authors recorded the voting time. Even
more interestingly, the drift-diffusion model suggests that it is the mixture of
positive and negative attractors in a training sample that misguide most machine
learning methods, making the subjectivity prediction performance poor. Instead,
since subjectivity is the result of a dynamic system, a proper learning scheme should
embed this dynamic aspect, e.g., using an active learning approach. Unfortunately,
this original perspective, which might open new directions in the understanding
of aesthetic subjectivity, has not been further investigated in follow-up work on
computational aesthetics.

5.1.3 Personalized Aesthetics

A different approach to subjectivity in computational aesthetics departs substantially
from the methods that we have analyzed so far in this chapter. Instead of focusing
on the universal scope of aesthetics (see Fig. 1), we briefly describe in the following
some methods that aim at predicted personalized aesthetics for a particular person.
As we mentioned in Sect. 1, personalized computational aesthetics assumes an
interactionist interpretation of aesthetics, where the individual perception is the
result of the interaction between some objective, intrinsic features of a photo, with
a subjective processing/interpretation.

Personalized aesthetics algorithms aim to adapt a generic aesthetic predictor
to the individual tastes of a person, based on the availability of a small set of
annotations from that user. To this end, they employ tools often used in image
recommendation and user profiling, such as active learning, collaborative filtering or
residual learning. Park et al. (2017) propose a joint regression and ranking algorithm
to score and rank a set of user-specific images T. The system first extracts a subset
S of training images from a general aesthetics dataset (e.g., AVA). The images to
extract are selected as the nearest neighbors to the images in T. In a second phase,
the user ranks a small subset of images in T. Finally, combining these two sources
of information, the system learns to predict all the scores and ranks in the remaining
images of T. The authors use a max-margin learning algorithm, in particular, an
SVR (inputted with a feature vector of 4096 elements, extracted from the second
last layer of AlexNet (Krizhevsky et al. 2012)) for learning the universal aesthetic
part, and a ranking SVM (R-SVM) to learn a ranking model given the partial orders
on the training data. The two losses are combined to jointly learn a ranking support
vector regression (R-SVR). The results, validated by a user study, are promising and
show that the proposed approach can produce cleaner ranking predictions compared
to a general aesthetic model alone.

Ren et al. (2017) make similar hypotheses, in particular, that only a small number
of annotated examples from a user is available. To be able to still learn significant
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personalized aesthetic scores in this setting, they adopt a residual-based model
adaptation scheme to learn a scalar offset to the generic aesthetic score predicted
by a universal aesthetic predictor. The authors start by collecting two datasets:
one is FLICKR-AES, containing 40k Flickr images rated by 210 unique AMT
annotators; the other is REAL-CUR (Real Album Curation Dataset) which contains
14 real users’ photo albums with aesthetic scores provided by the album owners.
Afterwards, they estimate aesthetic attributes (with a network fine-tuned on the
AADB dataset attributes) and the image category (content class) for each image in
FLICKR-AES. An analysis on these results and the ground-truth user preferences
reveals strong correlations between personal preferences and attributes/content of
an image. This observation is key for the proposed approach: in fact, predicting a
score offset using an end-to-end optimization would be unfeasible, given the very
small percentage of images annotated with individual preference. Instead, the pre-
dicted attributes and classes, represented as 10-dimensional categorical distributions
(obtained by the last softmax layer in the attribute and content prediction networks)
are used as input features for an SVR to predict an offset for a given image. This
system is also extended to an active learning scenario, where the model is updated
while the users evaluates new images; in this case, the choice of the images to score
can be optimized according to heuristic criteria.

In some circumstances, collecting extra labels for specific users to perform
personalization is impractical or time consuming. A simpler alternative consists
in sensing user-specific aesthetic preferences from the user’s personal favoring
behavior on social media platforms. Cui et al. (2020) leverage this idea and collect
personalized preferences from a set of 50k professional photos downloaded from
Flickr. Photos are considered “professional” if they have been posted by one of the
top 200 photographers in the ranking of the website. Analyses on this image set
show that users tend to prefer images which have some common aesthetic features.
However, learning personal preference on this dataset is difficult as, on average,
users favor only a very small portion of the total number of images. Therefore,
similar to the works discussed above, the authors learn first a universal aesthetic
model to extract meaningful aesthetic features. Afterwards, they use a collaborative
filtering approach to minimize a twofold objective: on one side, a pairwise loss term
to guarantee that the user-specific ranking on favored vs. non-favored is respected
(under the hypothesis that a favored picture is aesthetically better for the user);
on the other hand, a regularization term to smooth out the predicted scores in
such a way that they are not too distant from the average ratings. As the authors
also point out, the major pitfall of this approach is in the assumption that “faves”
approximate somehow the aesthetic value of a picture. Nevertheless, as we have
discussed throughout this chapter, this assumption is often made in computational
aesthetics to collect data at low cost, even though it can lead to noisy prediction and
hardly interpretable results.
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5.2 Explaining Aesthetic Scores

While the mainstream aesthetic research has focused on improving the prediction
of aesthetic scores or classes, relatively little has been done to understand why an
image is aesthetically pleasing or not. This question is particularly challenging for
deep-learning-based methods, due to the very high dimensionality of the employed
models that make them significantly hard to interpret. Nonetheless, some works
have tried to analyze the predictions of neural networks in aesthetics, or to justify the
aesthetic scores by producing explaining text comments. Moreover, some datasets
have been collected with the specific purpose of providing extra ground-truth labels
to facilitate aesthetic explainability.

5.2.1 Visualization Techniques

An approach to explain aesthetic scores obtained by a convolutional neural network
consists in analyzing the filters and the features learned by the network. This
category of methods has been quite popular in computer vision in the early stages
of development of deep CNN to visualize what the network was learning (Zeiler &
Fergus 2014). For instance, analyzing the filters at different layers of a classification
network shows that initial layers perform low-level filtering (e.g., gradients, Gabor
filters, etc.), while deeper layers are optimized to capture higher-level structures and
parts of objects. This kind of visualization has been also applied to networks that
predict aesthetics (Kao et al. 2016; Jin et al. 2016b). However, the conclusions from
this inspection are in general very limited, as the learned patterns reflect the same
kind of behavior observed in non-aesthetic networks, making them difficult to be
interpreted.

Another technique to analyze the features learned by a CNN is to study class
activation maps (CAM) (Zhou et al. 2016). In the simplest setting, CAMs can be
obtained for classification networks satisfying a particular structure, i.e., having a
global averaging pooling layer followed by a single fully connected layer before
the output layer. In this case, for a given input image and a certain class, the
score of the class is mapped back to the previous convolutional layer to generate
a corresponding class activation map. CAMs can be visualized as low-resolution
images, which highlight the class-specific discriminative regions. Later work (e.g.,
Grad-CAM (Selvaraju et al. 2017)) extends this visualization technique to a much
wider variety of networks, by propagating back the gradient of a target class to
a convolutional layer of the net. Class activation maps have been employed also
in the case of computational aesthetics. Kairanbay et al. (2017) build on the CAM
visualization to provide a justification of high vs. low aesthetic quality. They observe
that aesthetically pleasing images tend to have activation maps with energy well
concentrated around salient objects of the picture. Conversely, photos belonging to
the low-quality class have activations that are spread around the picture and on non-
interesting regions. The authors speculate that this behavior reflects basic rules of
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photography, such as the importance of focusing on the subject and the concept of
negative space (see Fig. 3). However, such observations are verified qualitatively
only on a few images, and it seems difficult to generalize this conclusion to more
complex scenes or photos where the subject is not clearly identified. Zhang et al.
(2018) extends this analysis by visualizing activations at different levels of a multi-
task network that predicts simultaneously an aesthetic class and one of the 66
AVA semantic tags. Thus, in addition to activation maps for aesthetic attributes,
they also study CAMs for attributes. Jointly predicting the activation maps for the
two tasks has the potential to not only localize aesthetically salient areas in the
picture, but also to explain why they are important (by intersecting the two maps).
However, the conclusions remain still vague and difficult to justify when considering
a wide variety of content. An interesting application of computing activation maps
for aesthetics consists of automatically cropping a picture by keeping the most
aesthetically relevant regions (Kao et al. 2017a; Zhang et al. 2018).

Murray and Gordo (2017), whose APM model we have introduced earlier,
employ a different visualization technique compared to CAM. They leverage the
concept of adversarial examples (Goodfellow et al. 2014), i.e., input samples that
are imperceptibly modified to completely alter the prediction of a network, while
looking essentially the same to a human observer. Based on this concept, they
change the score distributions of test images to be slightly better or worse than
the original sample. Then, they modify the image by gradient descent in such a
way to obtain a new image that matches the altered distribution. Visualizing which
pixels have been modified in the original test image in order to improve or reduce
aesthetic scores provides an indication of the regions of the picture that are used by
the model to make predictions. Compared to CAM representations, this technique
allows one to obtain higher-resolution visualizations. The authors notice that most
changes are localized in salient regions of the pictures, confirming observations
from previous work. However, an inspection of the error images leaves still many
open questions about the interpretability of these maps. In addition, the adversarial
examples demonstrate that even imperceptible modifications in the original pixels
can yield significant changes in the image scores. This fact indicates that aesthetic
networks are also prone to adversarial attacks as other computer vision applications
such as object classification, and raises some fundamental questions about how
much neural-network-based computational aesthetic predictors are reliable.

5.2.2 Generating Text Explanations

As we have discussed above, aesthetic explanation approaches based on network
activation maps or other visualization techniques alone have not been able so far
to provide convincing evidence of why a given picture is beautiful or not. A more
explicit approach to generate plausible explanations consists of producing a text
comment about the qualities and defects of a photo.

We have already discussed in Sect. 4 a few seminal works linking aesthetic qual-
ity not only to pixel-based characteristics, but also on associated textual comments
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from users (San Pedro et al. 2012; Marchesotti 2013). The considerable progress
that deep learning techniques have brought to natural language processing (NLP)
has enabled the use of advanced image captioning techniques in computational
aesthetics. One of the first works in this direction is the one of Chang et al. (2017).
They propose a multi-aspect aesthetic captioning system, where more than one
aspect of an image can be commented, e.g., composition, color arrangement or
subject contrast. This approach has a very reasonable foundation: in fact, it mimics
some earlier studies in computational aesthetics that tried to decompose the global
quality as a combination of some basic attributes (Aydın et al. 2014). The authors
propose two architectures, both based on CNN-LSTM (long short term memory
units) to produce a set of captions for a given image. It has to be noted as well that the
authors also offer a new dataset with aesthetic captions crawled from a professional
photographers website (https://gurushots.com/), called the photo critique captioning
dataset (PCCD), see Table 1.

Wang et al. (2019) combine aesthetic classification and captioning into a multi-
task network called neural aesthetic image reviewer (NAIR). This work leverages
a dataset of 40k images extracted from AVA (AVA-reviews, see Table 1), that the
authors collect based on images with text comments in AVA. To select images, they
remove aesthetically ambiguous pictures (δ = 0.5). The proposed network includes
a part for image aesthetic classification based on a single-column CNN, and a part
for vision-to-language generation that generates natural-language comments using
a sequence of LSTM units.

Recently, Ghosal et al. (2019) have proposed a new dataset with 230k images and
1.5M captions for aesthetic image captioning called AVA-Captions. The dataset is
obtained by cleaning the raw comments in AVA to retain the most discriminative n-
grams, which are then used to train a CNN-LSTM network in a weakly-supervised
way. The labels for training are obtained by processing the filtered captions, in such
a way to extract terms corresponding to different attributes. However, instead of
using fixed attributes as in Chang et al. (2017), here the attributes are discovered
from data using latent Dirichlet allocation (LDA), a generative probabilistic model
used in text modeling and retrieval. LDA clusters semantically similar terms, which
correspond to classes of images (e.g., faces, landscapes, etc.). The discovered
attributes go beyond the typical aesthetic attributes (color, contrast, composition,
etc.) and include some semantic labels (e.g., “sky”, “sport”,“action shot”), but also
opinions and judgments on the content (e.g., “cute expression”, “great action”). The
generated captions display more diversity than those obtained on the noisy (original)
captions from AVA, which tend to be monotonous and repetitive. The captioning is
evaluated through a subjective experiment, showing a relatively good agreement
with human opinions about the quality of a caption, which is mainly intended here
as the informativeness and naturalness of the generated comment. Unfortunately,
the produced text explanations depend significantly on the quality of the original
captions, and judging their aesthetic relevance remains still an open problem.

https://gurushots.com/
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5.2.3 Datasets with Aesthetic Attributes

The techniques to explain aesthetics based on data visualization or captioning
described above can provide hints on the relevant regions or aspects of a photo.
However, several drawbacks are related to these methods, particularly the difficulty
of assessing their performance and their significant dependence on the input training
data (especially for generated comments). These observations bring us back to a
fundamental challenge in computational aesthetics, which we have mentioned many
times throughout this chapter: collecting large-scale datasets with reliable, clean,
and rich labels. At the time of this writing, there is still no aesthetic dataset able to
provide, at the same time, a large number of annotated images and reliable, high-
quality aesthetic scores. We have already discussed the features and limitations of
some popular aesthetic datasets in Sect. 3. To study aesthetic explainability, aes-
thetic datasets should be complemented with additional information, e.g., aesthetic
attributes to explain why an image is aesthetically pleasing or not.

Few datasets in the literature have explicitly elicited aesthetic attributes infor-
mation from human raters. A notable example is AADB (Kong et al. 2016),
where images are annotated with 11 aesthetic attributes. These attributes were
defined based on expert knowledge: professional photographers were consulted
to define a set of attributes that span the main dimensions of photography (color,
light, composition, focus) and that can provide a natural vocabulary for practical
applications from photo editing to retrieval. The set of selected attributes include:
“interesting content”, “object emphasis”, “good lighting”, “color harmony”, “vivid
color”, “shallow depth of field”, “motion blur”, “rule of thirds”, “balancing ele-
ment”, “repetition”, and “symmetry”. These attributes are assigned binary labels
by each user. While the AADB attributes have an aesthetic valence, it is not clear
whether they are sufficient to capture the wide range of factors that concur to form
an aesthetic judgment. In addition, images in AADB are rated by only 5 users, which
makes it difficult in practice to compute significant mean attribute values.

Recently, Kang et al. (2020) have proposed an Explainable Visual Aesthetics
(EVA) dataset, which aims at partially solving the issues of AADB and other similar
datasets. An example of the voting interface is illustrated in Fig. 8. In EVA, attributes
are simplified to four general categories: “light and color”, “composition and
depth”, “quality” (intended as technical quality), and “semantics”. The attributes
span different levels of factors affecting image aesthetics, from perceptual (light
and color, technical quality), to photographic technique (composition, depth) and
interpretation of the scene (semantics). Compared to AADB, the attributes are
less detailed, and thus the information about why an image is beautiful is more
generic. However, they are more inclusive and general, which might be beneficial to
describe factors which are outside the vocabulary pre-defined by the experimenters.
In addition, EVA attributes have two measurements: one to gauge the attribute
magnitude (on a Likert scale) for a given image; the other to assess the attribute
relevance (on a binary scale) in producing the overall aesthetic score. In addition to
image aesthetic scores and attributes, EVA collects also the “difficulty” encountered
by the user to rate an image, which is somehow related to the personal aesthetic
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Fig. 8 Voting interface in the EVA dataset. In addition to aesthetic scores (discrete 11-levels
scale), additional aesthetic attributes are collected (using 4-levels Likert scales), as well as their
relevance (on a binary scale) to forming the overall aesthetic quality

uncertainty and might have interesting links to the study of subjectivity discussed
earlier in this section. Furthermore, differently from previous datasets, the data
collection in EVA includes a detailed training phase, in which raters are instructed
about the meaning of attributes (with visual examples) and on how to use the
rating scales, following common guidelines widely adopted in technical quality
assessment (ITU-R 2012). EVA includes 4070 images, which is less than half of
the images of AADB; however, each image has at least 30 votes. Despite the limited
number of images, and the possible noise in the labels due to the crowdsourcing
acquisition, the EVA dataset represents in our opinion a good starting point for
further work on collecting better ground-truth labels for computational aesthetics.

6 Concluding Remarks

Computational aesthetics is a challenging and rapidly evolving field, at the inter-
section of multimedia quality, human perception and machine learning. In this
chapter, we have given a general overview of this domain, from the philosophical
debates around the interpretations of aesthetics, to the modern techniques to predict
human aesthetic judgments. After the initial attempts to formulate aesthetics as
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a mathematical object by Birkhoff in the 1930s, computational aesthetics has
undergone an incredible development, in particular with the rise of data-driven
methods in the past 15 years. We have discussed the fundamental role that datasets
play in understanding aesthetic evaluation, and the different dimensions that should
be taken into account when approaching computational aesthetics (focusing in
particular on general aesthetics).

Computational methods to predict aesthetic classes based on deep neural net-
works can nowadays achieve a binary prediction accuracy higher than 83% on the
benchmark AVA dataset (Murray et al. 2012). The classification performance on
this dataset has now reached a plateau, in which it seems difficult to substantially
improve predictions by just changing the architectures of the networks used. We
have argued that this limit is somehow related to the noise in the aesthetic scores
collected by crawling amateur or professional photography websites, as well as the
intrinsic uncertainty of aesthetic evaluation, which is subjective in nature. We have
thus pointed to some fundamental challenges in modern computational aesthetics:
dealing with the subjectivity of the aesthetic scores; explaining aesthetic decisions;
and building clean and reliabile large-scale datasets.

We conclude the chapter by mentioning that, in addition to the topics covered
here, there are several other aspects related to aesthetics that could be further
considered. In particular, in addition to numerous applications of image aesthetics
to enhancement, recommendation, etc., mentioned throughout the chapter, we
need to mention video aesthetics (Yeh et al. 2013; Bhattacharya et al. 2013) and
related applications (e.g., thumbnailing (Song et al. 2016)), and finally recent
studies linking brain-computer interfaces to the generation of aesthetically pleasing
pictures (Spape et al. 2021), which appear to be a promising avenue to understand
and predict aesthetic judgment mechanisms.
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