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Abstract. Phonocardiogram (PCG) assumes a critical part in the early
determination of heart irregularities. Phono-cardiogram can be utilized
as an underlying diagnostics apparatus in far-off applications because of
its effortlessness and cost-adequacy. The proposed work targets utilising a
CNN architecture, with multiple preprocessing strategies like converting
to Spectrogram or normalizing the signals, which analyze various car-
diovascular anomalies from PCG signals gathered from different sources.
Our study shows the viability of utilising Spectrogram and Normaliza-
tion of signals in cardiac abnormalities identification. This work avoids
feature extraction and trivial pre-processing mechanisms, and we have
achieved promising results.
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1 Introduction

The Phonocardiogram (PCG) is the graphical portrayal of the sound deliv-
ered from the cardiac muscles’ cardiovascular activity inside the heart. During
the heart’s cardiovascular movement, murmur sounds are generated, which are
unidentified by an Electrocardiogram [1] but can be recognized by a Phonocar-
diogram and gives an assistive analysis in the early location of cardiovascular ill-
nesses [1]. The PCG signal comprises s1 and s2, the two significant heart sounds.
s1, the low pitch sound (lub) is generated because of atrioventricular valve clo-
sure and when the blood moves from the heart chamber to the ventricle. s2, the
high pitch sound (dub) is generated when blood flows through the vessels from
the heart to the lung, for a limited duration. A systolic period is defined from
the early s1 to s2, and a diastolic period is defined from the early s2 to s1. The
systolic and diastolic periods together constitute a single heart cycle. In addition
to the fundamental sound segments, there are multiple and unusual sounds like
a murmur, extrasystole delivered in case of any cardiovascular abnormality [11].
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Phonocardiogram is generally recorded in a clinical climate utilising an inno-
vatively advanced stethoscope. The Phonocardiogram is additionally recorded
inside a non-clinical arrangement. The recorded Phonocardiogram signal con-
sists of different noises, making the classification of the systolic and diastolic
beats generated by the heart’s mechanical activity challenging to be classified.

Spectrogram has been used in this work, an electronic or visual representa-
tion of the spectrum of frequencies for a signal, which varies with time generated
through a Fourier transform where frequency and time are visually represented.
Different colours are used to show the spectrum’s magnitude. Further, we have
trained the standard CNN architecture citeb4 using the Spectrogram. Our objec-
tive is to show the use of simple preprocessing techniques like spectrogram, and
normalization on the signals can give better classification results.

2 Related Works

In the literature, a study about the automatic classification of sounds generated
by the heart’s mechanical activity is described [1,2]. The localization algorithm
is used to localize the peaks from the input signal and constructing windows
from those peaks, which are further used to classify the extracted features. Fur-
ther study shows the analysis of the PCG signal’s time and frequency anal-
ysis, which overcomes the frequency and time domains’ anomalies. The time-
frequency methods include wavelets and Empirical Mode Decomposition. In
Sujadevi et al. [9] Variational Mode Decomposition (VMD) based denoising was
used to remove noise from the heart sounds and using the same technique to
denoise the signal and visually displaying the waveforms. In Sujit et al. [8] the
abnormality produced in the heart sounds were detected by a back-end classifier
that extracts the time and frequency from the PCG signal using the Ada-Boost
technique and SMOTE. In Schimdt et al. [5], a diagnosis system is proposed
which utilizes Support Vector Machines (SVM) to classify the diseases devel-
oped in heart valves. In Sujadevi et al. [7], different algorithms RNN, B-RNN,
LSTM, B-LSTM, CNN, and GRU were used for PCG classification. 80% accu-
racy was achieved for CNN.

In Sujadevi et al. [4], without any denoising and trivial pre-processing tech-
niques, a convolutional neural network (CNN) on the physionet datasets using a
raw signal achieved better results. Similarly, in [3], CNN was declared by them
as the better network to classify Phonocardiogram signals. Both the Physionet
datasets and the AISTATS 2012 datasets were collected from multiple sources.

3 Methodology

All the existing works utilize the input signal based on the time domain used
for the PCG Signal classification using deep learning architectures. The current
work is based on a spectrogram that converts the input signal from the time
domain to the frequency domain through a visual portrayal of the spectrum of
frequencies of a signal as it varies with time. A spectrogram is generated by
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Fourier transform using the time and frequency as x-axis and y-axis respectively
and different colours to show the magnitude of the spectrum. The spectrogram
images are fed as input to the CNN architecture, specified in [4], where training
and classification are done accordingly for the different datasets used. The CNN
architecture used for this work is shown in Fig. 7.

Before converting the datasets into spectrograms, the signals should be fixed
to a particular length (here 5 s) and then normalized. Normalization was done
because we found that datasets 1 and 3 are noisy signals compared to dataset
2. Which are shown in Fig. 1, Fig. 2, and Fig. 3

Fig. 1. Normal Signal sample was taken from dataset 1

Fig. 2. Normal signal sample was taken from dataset 2
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Fig. 3. Normal signal sample was taken from dataset 3

As observed from Fig. 1, Fig. 2, Fig. 3, there is very little noise in dataset 2.
So the normalization is done for datasets 1 and 3 using the min-max normaliza-
tion(for which the pseudo-code is shown below).

Algorithm 1. Psuedo Code for Normalization
Input: Signal;
Output: Normalized Signal;
def audio-norm(signal):
max data = max(signal)
min data = min(signal)
norm signal = (data- min data)/(max data - min data + 0.0001)
return norm signal-0.5

All the signals are trimmed to 5 s, but if a signal is less than 5 s, then zero
paddings are added, which is shown in Fig. 4.

From Fig. 4, it has been observed that there is zero-padding added to the
signal. When we compare the original signal’s corresponding amplitude values
with the normalized signal, the amplitude has been normalized, giving better
classification results. Amplitude for comparison is shown below:

Original amplitude values: [–0.00806781 –0.00920942 –0.00991806 ...
–0.03190301 –0.02225797]

Normalized amplitude values: [0.08240861 0.08149707 0.08093125 ...
0.08885056 0.08885056 0.08885056]

When compared to the previously achieved output in [3] and the metrics
which was achieved here for dataset-3, as seen in the results in Table 6, an
improvement in output is observed when the proposed method of fixing to a
particular length and normalization is used.
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Fig. 4. Dataset 3 normalized normal signal

3.1 Input Description

In our current work, the Phonocardiogram signal(PCG) is gathered from dif-
ferent sources, and a total of three datasets are used for this work. Dataset-
1, collected from clinical and non-clinical conditions, is accessible from phys-
ionet challenge 2016 and consisting of classes: normal and abnormal. Dataset-2
and Dataset-3 are accessible from AISTATS 2012 test. Dataset-2 was gathered
utilising the iStethoscope Pro iPhone application and consisted of four classes:
extrasystole, murmur, artifact, and normal. Dataset-3 was gathered using a dig-
ital stethoscope – DigiScope application and consisted of three classes: normal,
murmur, extrasystole.

3.2 Spectrogram

A spectrogram is generated through a Fourier transform which visually repre-
sents the spectrum of frequencies of a given signal as it varies with time. Fre-
quency and time are horizontal and verticals in a formed visual representation
and different colours show the spectrum’s magnitude [7].

For a given signal of x with a length of N, there are consecutive segments of
the signal of m, where m ≤≤ N, and the x ∈

Rm×(N−m+1)

where, in the formed matrix, rows and columns of x are indexed by time.
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ẋ = F ∗ x and x = (1/m) ∗ F ∗ ẋ, of size m and matrix F, which are DFT
columns of x, and F is the Fourier matrix with Fi, being its complex conjugate.

⎡
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Rows and columns of ẋ are indexed by the frequency and time, respectively,
and their location corresponds to the point in frequency and time. The spectro-
gram is a visualised matrix where the matrix image with the ith and jth entry in
the matrix, corresponds to the intensity or colour of the ith, and jth pixel in the
visually represented image general the bright colours denote the strong frequen-
cies in a spectrogram. Figure 5 and Fig. 6 portray the spectrographic images of
datasets 1 and 2.

Fig. 5. Spectrographic images of dataset-1 showing normal and abnormal classes

Fig. 6. Spectrographic images of dataset-2 showing normal, murmur, extrahls and arti-
fact classes

3.3 Deep Learning Architecture

In [4], a distinguished classification for the PCG model was implemented. In this
work, similar topologies and hyperparameters for crude PCG Signal classification
are gathered from different clinical and non-clinical conditions. The experiments
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are done using the benchmark architecture of CNN and using the three datasets
(Dataset 1,2, and 3). The architecture of CNN used can be seen in Fig. 7

Convolutional Neural Network (CNN): The CNN architecture used here com-
prises of four Convolution layers stacked along with 64 filters, each of filter size
3, and followed by an average pooling layer and a ReLu activation function. The
average pooling layer reduces the size of the feature without losing any infor-
mation and a flattening layer after the 4th convolution layer followed by five
dense layers with the softmax activation function. The architecture details are
mentioned in Table 1.

The loss function and optimizer used in this architecture are Logcosh and
ADAM optimizer. Whose formula can be seen as:

L (y, yp) =
n∑

i=1

log (cosh (yp
i − yi)) (2)

where yp
i is the predicted values, and yi are the original values.

As we have achieved less accuracy for dataset 3 using spectrogram, we imple-
mented 1D convolution layers instead of using spectrogram images and have used
the normalized signal for their classification.

The loss function and optimizer used for dataset 3 are Categorical Cross-
Entropy and ADAM optimizer. Whose formula can be seen as

CCE(p, t) = −
C∑

c=1

t0,c log (p0,c) (3)

C is no. of classes
t is the binary indicator for the correctly classified observation o.
p is o’s predicted probability in class c.

4 Experimental Results

4.1 Dataset Description

Phonocardiogram (PCG) Data Gathered from both Clinical and Non-
Clinical Environments (Dataset 1): This information source is a segment
from physionet challenge 2016, which is gathered from healthy and unhealthy
patients worldwide in clinical and non-clinical conditions. Detailed information
regarding datasets is clarified underneath in Table 2, which sums up the total
number of samples considered from each class.It is purposefully used as training
and testing input for the model from 665 abnormal and 2575 normal signals.
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Fig. 7. Architecture of CNN used for classification

Table 1. The Architectural details of the PCG Signal Classification Collected from
multiple sources with distinct Cardiac Abnormalities

Architecture details CNN

No. of neurons in the stacked layers 64

Zeropaddings (Border mode) Yes

Filter size 3

Pool length 2

Number of neurons in dense lavers 128

Output layer Dataset 1 2

Dataset 2 4

Dataset 3 3
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Table 2. The Summary of PCG Datasets used for the PCG Classification

Dataset Class name Class number Number of Signals

Train Test Total

1 Normal 0 2060 515 2575

Abnormal 1 532 133 665

Total 2592 828 3240

2 Artifact 3 32 8 40

Extrasystole 2 15 4 19

Murmur 1 27 7 34

Normal 0 25 6 31

Total 99 25 124

3 Extrasystole 2 36 10 46

Murmur 1 76 19 95

Normal 0 255 64 319

Total 367 93 460

PCG Information Gathered Utilising Ipro Phone Application and
Digiscope (Dataset 2 and 3): The information source is from an event,
AISTATS 2012, supported by PASCAL, and two distinct sorts of datasets are
accessible. Dataset 2 is gathered utilising the Ipro phone application utilising
iStethoscope. Dataset 3 is gathered from a clinical environment using a comput-
erized stethoscope. Table 2 portrays the outline of the dataset accessible in the
AISTATS 2012 challenge. A dataset split of training and testing signals based
on the strategy proposed by AISTATS 2012.

Table 3. Hyper-parameter set for the CNN

Hyper-parameters CNN

Batch–size 32

Learning rate 0.1

No. of hidden layers 8

Optimizer Adam

No. of epochs 50
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Table 4. The summary of the results obtained using the above Architecture and
Spectrogram images

Metrics/Datasets Precision Accuracy Recall f1-score

Dataset I 0.66 0.82 0.82 0.73

Dataset II 0.85 0.85 0.85 0.84

Dataset III 0.58 0.67 0.67 0.62

Table 5. The Summary of the results obtained for Dataset III using 1D Convolution
without Spectrogram

Metrics/Datasets Precision Accuracy Recall f1-score

Dataset III 0.81 0.83 0.83 0.80

4.2 Result Analysis

In Sujadevi et al. [6], for dataset 1, when trained with raw signals promising
results were obtained using CNN. They have concluded that the architecture,
as seen in Fig. 7, gave better results. For benchmarking the optimum value,
multiple experiments were done with various configurations. In this work, the
same hyper-parameters used in [6] are considered. The learning rate and batch
size are fixed at 0.1 and 32 for the deep learning architecture. All the parameters
used are shown in Table 3.

The model’s performance was evaluated using precision, recall, F1–score, and
accuracy. The results obtained when spectrogram is used shown in Table 4. And
the results of dataset 3 without using spectrogram are shown in Table 5.

The comparison of our results and previous results obtained in [3] are dis-
played in Table 6. Here, an improvement is observed in the classification perfor-
mance of dataset 2 using spectrogram when compared with the results of the
existing methodology used.

Utilising dataset 1, work done has been almost a replica of the previous
existing classification performance accuracy of 82%. For dataset 2, the proposed
work improved resulted in achieving better classification performance than the
previously existing one, from accuracy 82% to 85%. In the case of dataset 3,
we have achieved better results than the previously mentioned performance. We
have normalized the signal and used 1D convolutions in place of Fast Fourier
Transform.
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Table 6. Performance comparison of the PCG Classification using CNN for Existing
work and Proposed work

Data Metrics Existing Proposed

1 Precision 0.83 0.66

Accuracy 0.82 0.82

Recall 0.82 0.82

F1-score 0.83 0.73

2 Precision 0.85 0.85

Accuracy 0.80 0.85

Recall 0.79 0.85

F1-score 0.82 0.84

3 Precision 0.81 0.81

Accuracy 0.75 0.83

Recall 0.76 0.83

F1-score 0.79 0.80

5 Conclusion

In this work, it was found that data preprocessing is an essential task for training.
As seen in dataset 2, it has given a very good output. And class imbalance
problems can lead to overfitting of data of the majority class, as seen in dataset 1.
Therefore downsampling was used to overcome the imbalance. As it was noticed
that the challenge in which dataset 3 was given is for feature extraction, we used
fixed signal length and normalized the signals, and performed 1D convolutions
with them, which gave better classification results than that of FFT results. The
current work can be extended to make further advancements in cardiac diseases
classification.
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