
Ken Barker
Kambiz Ghazinour (Eds.)

LN
CS

 1
28

40

35th Annual IFIP WG 11.3 Conference, DBSec 2021
Calgary, Canada, July 19–20, 2021
Proceedings

Data and Applications 
Security and Privacy XXXV



Lecture Notes in Computer Science 12840

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7409

http://www.palgrave.com/gp/series/seriesid


Ken Barker · Kambiz Ghazinour (Eds.)

Data and Applications
Security and Privacy XXXV
35th Annual IFIP WG 11.3 Conference, DBSec 2021
Calgary, Canada, July 19–20, 2021
Proceedings



Editors
Ken Barker
University of Calgary
Calgary, AB, Canada

Kambiz Ghazinour
State University of New York at Canton
Canton, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-81241-6 ISBN 978-3-030-81242-3 (eBook)
https://doi.org/10.1007/978-3-030-81242-3

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© IFIP International Federation for Information Processing 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6816-2968
https://doi.org/10.1007/978-3-030-81242-3


Preface

This volume contains the papers selected for presentation at the 35th Annual IFIP
WG-11.3 Conference on Data and Applications Security and Privacy (DBSec 2021)
that was supposed to take place during July 19–20, 2021, in Calgary, Canada. While the
conference was held on the dates as scheduled, due to the COVID-19 situation it was
held virtually, but we do look forward to gathering together in 2022 for the next DBSec!

In response to the call for papers for this edition, 45 submissions were received, and
all submissions were evaluated on the basis of their significance, novelty, and technical
quality. The Program Committee, comprising over 40 members, performed an excellent
job, with the help of additional reviewers, of reviewing submissions through a careful
anonymous process (three or more reviews per submission). The Program Committee’s
work was carried out electronically, yielding intensive discussions. Of the submitted
papers, 15 full papers and 8 short papers were selected for presentation at the conference.

The success of DBSec 2021 depended on the voluntary effort of many individuals,
and there is a long list of people who deserve special thanks. We would like to thank
all the members of the Program Committee and all the external reviewers, for all their
hard work in evaluating the papers and for their active participation in the discussion and
selection process. We are very grateful to all the people who readily assisted and ensured
a smooth organization process, in particular Sara Foresti (IFIP WG11.3 Chair) for her
guidance and support, Khosro Salmani as Publicity Chair, and Leanne Wu for helping
with other arrangements for the conference. EasyChair made the conference review and
proceedings process run very smoothly.

Last but certainly not least, thanks to all the authors who submitted papers and all
the conference attendees. We hope you find the proceedings of DBSec 2021 interesting,
stimulating, and inspiring for your future research.

July 2021 Ken Barker
Kambiz Ghazinour
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Differential Privacy



DPNeT: Differentially Private Network
Traffic Synthesis with Generative

Adversarial Networks

Liyue Fan(B) and Akarsh Pokkunuru

University of North Carolina at Charlotte, Charlotte, NC 28223, USA
{liyue.fan,apokkunu}@uncc.edu

Abstract. High quality network traffic data can be shared to enable
knowledge discovery and advance cyber defense research. However, due
to its sensitive nature, ensuring safe sharing of such data has always been
a challenging problem. Current approaches for sharing networking data
present several limitations to balance privacy (e.g., information leakage)
and utility (e.g., availability and usefulness). To overcome those limita-
tions, we develop DPNeT, a network traffic synthesis solution that gener-
ates high-quality network flows and satisfies (ε, δ)-differential privacy. We
adopt generative adversarial networks (GANs) to capture the character-
istics of real network flows and a similarity-preserving embedding model
for mixed-type attributes. Furthermore, we propose new techniques to
improve the outcome of differentially private learning and provide the
privacy analysis of the overall solution. Through a comprehensive evalua-
tion with large-scale network flow data, we demonstrate that our solution
is capable of producing realistic network flows.

Keywords: Differential privacy · Generative adversarial networks ·
Network flow generation

1 Introduction

Sharing fine-grained network traffic data has enabled numerous research studies
for knowledge discovery and cyber security applications, such as in anomaly
detection [16] and cyber attack classification [4,29]. However, network traffic data
is highly sensitive, e.g., with Internet protocol (IP) addresses and port numbers,
etc., which may be used by adversaries to infer private information, e.g., a specific
website visited by the user. In the worst case, home and commercial networks
may be attacked [5,27]. Therefore, it is imperative to protect the privacy of
individuals and organizations in the published network data. In order to enhance
the privacy for sharing network traffic data, many anonymization techniques
have been proposed, [3,20,30] to name a few. However, it has been shown that
inference attacks may still be launched against anonymized network traces [6,13].
Moreover, it is challenging to quantify the quality of the anonymized data.
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Barker and K. Ghazinour (Eds.): DBSec 2021, LNCS 12840, pp. 3–21, 2021.
https://doi.org/10.1007/978-3-030-81242-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81242-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-81242-3_1
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Fig. 1. DPNeT overview.

Recently, generative adversarial networks (GANs) [10] have been adopted
to generate realistic network traffic data, e.g., for sequence of packet sizes [25],
network flows [23], and traffic morphing [14]. However, it has been shown that
deep learning models are subject to various attacks, e.g., inferring membership in
the training set [26] and reconstructing training data [9]. Similarly, GAN models
do not provide guarantees on what the generated data may reveal about real,
sensitive training data. In fact, [12] successfully devised membership inference
attacks against target GANs in both white-box and black-box access settings.

To provide rigorous privacy in network traffic synthesis, we propose to adopt
differential privacy [7] when training GAN models with sensitive data. Our solu-
tion, dubbed DPNeT, builds on recent advances in training generative models
(i.e., Wasserstein GAN [11]), and is able to produce realistic synthetic data that
exhibits high similarity to the training data. As shown in Fig. 1, the trained
models as well as the synthetic traces can be widely shared for research and
educational purposes. The specific contributions of our work are as follows:
1. We are the first to develop a differentially private solution based on GANs
for synthesizing flow-level network data. The privacy of the training examples is
protected via differentially private optimization [1]. To ensure the quality of the
synthetic data, we adopt the state-of-the-art methodology for training generative
models, as well as an advanced embedding model to preserve similarities between
mixed-type feature values.
2. To address the challenges in private learning, such as noisy or non-
convergence, we propose two improvement techniques: decaying the clipping
bound over epochs and privately selecting the best models across all training
epochs. Our empirical analysis shows that decaying the clipping bound outper-
forms the standard option, i.e., no decay. Furthermore, we show that private
model selection significantly improves the quality of the synthetic network flows,
compared to the model obtained at the last epoch.
3. We provide privacy analysis results for both GAN training and model selec-
tion. In short, we implement Moments Accountant to account for the privacy
loss during GAN model training; we further analyze the sensitivity and the pri-
vacy guarantees for selecting up to K models. Overall, we show that the DPNeT
solution achieves (ε, δ)-differential privacy.
4. We conduct an extensive evaluation with large-scale network flows. We quantify
the similarity and realism of the synthetic network flows using distributional mea-
sures and domain knowledge tests, respectively. Our results examine the impact
of privacy and demonstrate the effectiveness of our proposed improvements.
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The rest of the paper is organized as follows: we discuss related work in
Sect. 2 and describe fundamental concepts such as differential privacy and GANs
in Sect. 3. In Sect. 4, we provide a full description of DPNeT as well as privacy
analysis results. In Sect. 5, we present and discuss empirical evaluation results.
Finally, in Sect. 6 we conclude the paper with brief discussions on future work.

2 Related Work

Network Trace Anonymization. Anonymization techniques for network traf-
fic data have been extensively studied in the last decades. For instance, IP
addresses can be obfuscated with prefix-preserving pseudonyms [30] or buck-
etization [21]. Other features, such as timestamps and ports, can be shifted
or suppressed [15,20]. However, it has been shown that classic anonymization
methods are prone to inference attacks [3,6,13]. A recent study [19] proposed
to create multiple views of the dataset based on the assumed adversarial knowl-
edge, which is not suitable for our setting, i.e., sharing data widely. [17] proposed
a differential privacy based solution for analyzing network traces; however, the
sharing of private flows has not been discussed.

Network Traffic Synthesis with GANs. With rapid advancements in deep
learning and generative models, a few research studies have proposed to incorpo-
rate generative adversarial networks (GANs) [10] for generating network traffic
data. For instance, Shahid et al. [25] proposes to generate synthetic packet sizes
for IoT applications. Unfortunately, the synthesis of other network traffic features
was not addressed. Two recent works aim to synthesize network traffic flows for
data sharing (Ring et al. [23]) and bypass internet censorship (Li et al. [14]). They
aremost relevant to this paper, especiallyRing et al. [23].However,GANmodels do
not provide privacy guarantees on what the generated data may reveal about real,
sensitive training data. For instance, [12] successfully devised membership infer-
ence attacks against target GANs in both white-box and black-box access settings.

Differential Privacy and Machine Learning. The vulnerabilities of deep
learning, e.g., membership inference [12,26], demonstrate great needs for strong
privacy protection for the underlying training data. To this end, differential pri-
vacy has been applied to learning deep models [1] to combat such inference
attacks. Recent studies adopt the framework in [1] to train GAN models [2,28]
and we have conducted a survey study on those approach in [8]. Based on our
survey results, most of the existing studies focus on generating image data, e.g.,
MNIST, where GAN models can learn input data distributions accurately; and
very few studies attempt to publish mixed-type data, with features as challeng-
ing as IP addresses. Furthermore, all studies report difficulties and utility loss
encountered with differentially private learning, e.g., the generator and discrimi-
nator may converge to a noisy equilibrium or do not converge. Our solution aims
to address the shortcomings of existing approaches, and the proposed improve-
ments can be applied to general differentially private learning tasks.
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3 Preliminaries

3.1 Differential Privacy

The privacy model adopted in our work is differential privacy [7]. By definition,
a randomized algorithm A is (ε, δ)-differentially private if for any two databases
D,D′ differ in at most a single record and any subset S ∈ Range(A):

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D
′
) ∈ S] + δ (1)

Here ε > 0 is known as the privacy budget, which bounds the difference between
output probabilities of two neighboring databases D,D

′
. In addition, δ ∈ [0, 1]

accounts for the probability of bad events that might lead to a privacy breach.
An advantage of DP is its resistance to post-processing [7], i.e., any computation
performed on the output of a DP mechanism would not incur additional privacy
cost. Other benefits of DP include the lightweight computation compared to
crypto-based mechanisms and ease of control over the information leakage with
the help of ε, δ parameters. Typically, smaller ε and δ values indicate stronger
privacy protection, and vice versa. There exists a trade-off between preserving
privacy and maintaining data utility.

In particular, we are interested in applying DP to deep learning, in order to
protect the privacy of training examples. As shown in [1], it can be achieved by
sanitizing the gradients during neural network optimization, which ultimately
limits the overall influence of any training example on the model. A privacy
accountant, i.e., Moments Accountant [1], has been proposed to account for
differential privacy across training epochs, which provides stronger estimates of
privacy loss compared to other composition theorems [7].

A key question to address in applying (ε, δ)-DP is the choice of privacy param-
eters. It is often seen that ε > 1 in private deep learning, e.g., ε = 8 as in [1] and
up to ε = 96 in some studies surveyed in [8]. In this study, we would like to pro-
vide privacy protection in deep learning applications without incurring significant
utility loss. As a result, we consider ε ≤ 20. As for δ, to provide individual privacy
in case of bad events, we set δ = 1

|D| as recommended in [7].

3.2 Generative Adversarial Networks

Generative adversarial networks (GANs) [10] have become the state-of-the-art
method to learn generative models, and has demonstrated superior performance
in producing synthetic data that have similar characteristics as real data. A sur-
vey analysis for differentially private GANs can be found here [8]. GANs consist
of two components, i.e., a generator G and a discriminator D. The problem is
formulated as a minimax two-player game with the following objective [10]:

min
G

max
D

Ex∼pdata
[log D(x)] + Ez∼pz

[log(1 − D(G(z)))]. (2)

The generator G learns to capture the original data distribution pdata by
mapping a latent distribution pz. Specifically, G takes as input a random noise
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z and generates synthetic data. On the other hand, the discriminator D learns
to discriminate between samples drawn from pdata, i.e., x, and those generated
by G, i.e., G(z). D takes a sample as input and returns a score representing
whether it is real or synthetic. By generating samples that appear to come from
the original data distribution, the goal of the generator is to fool the discrimi-
nator. The generator and discriminator are trained simultaneously through an
adversarial process: the more the generator improves the quality of synthetic
data, the harder it is for the discriminator to distinguish between original and
synthetic samples. Wasserstein GAN [11] minimizes the earth-mover distance
(i.e., Wasserstein-1 distance) between pz and pdata, and allows more stable and
faster training by penalizing the norm of gradient of the discriminator. For those
considerations, we will adopt Wasserstein GAN in DPNeT to generate synthetic
network flows.

4 DPNeT Solution

Overview. DPNeT for network flow synthesis entails three main steps:

1 Embedding the input network flow records to numerical vectors;
2 Training GAN models using the input vectors and generating synthetic vec-

tors;
3 Decoding the synthetic data to produce network flow records.

To generate private synthetic network flows, we utilize two separate deep learning
architectures: an advanced embedding model, and the generator and discrimina-
tor of GANs. Step 1 and 3 rely on the embedding network which transforms
network flow records to numerical vectors while preserving data semantics. Step
2 learns to mimic the input data distribution with GAN models, in a differen-
tially private setting.

4.1 DPNeT: Embedding

Network flows are mixed-type data, consisting of both numerical features and
categorical features (e.g., IP address, port number, packet size, and flag). To
learn from the input data, categorical feature values are often converted into
numerical values, e.g., via one-hot encoding. Ring et al. [22] have shown that the
standard encoding methods do not capture the relationships between mixed-type
features. They modified the Word2Vec model [18] to learn “word” embeddings
for network flow features. We adopt a similar architecture for the embedding
model in DPNeT.

Specifically, we consider 8 features of each flow, namely Source IP and Port,
Destination IP and Port, Protocol, Packets, Bytes, and Duration. As a result,
we are able to compute the similarities between Source IP and Source Port, or
between Packets and Duration. For each flow, 13 bi-grams are constructed as the
training data for the embedding model. Each bi-gram contains an input word,
i.e., one of the 8 features, and a context word (expected output), i.e., among
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a set of features identified by domain experts for each input feature [23]. The
embedding network is a simple neural network with a single hidden layer, which
contains 20 neurons in our solution. After the embedding network is trained,
it is utilized to produce numerical feature vectors for GANs training set (Step
1 in Overview), with the weights at the hidden layer as feature vectors of the
words (i.e., network flow attributes). Given a synthetic feature vector generated
by GANs, we retrieve the most similar word in the vocabulary based on cosine
similarity in the embedding space (Step 3 in Overview), and output the synthetic
network flow records.

In DPNeT, we train the embedding model using a public dataset that is
disjoint from the sensitive training set for the GAN models. Our consideration
is three-fold: (1) utilizing a public dataset enables accurate learning of feature
similarities. For instance, we can fine-tune the parameters iteratively without
incurring any privacy loss. (2) Thanks to the accuracy, the training set of the
embedding model needs not be very large. Additionally, it is easier to sanitize the
vocabulary on a smaller dataset, e.g., ensuring certain IP addresses or protocols
are not present. (3) The embedding network should learn to encode general
network flows independent of GAN training data, e.g., specific network traffic
patterns that only occur in the sensitive training data. This also produces an
embedding model that can be deployed for other applications.

By design, the vocabulary of the embedding model may not include all words
in the GAN training set. We propose to impute the sensitive training data,
i.e., replacing the feature values that do not appear in the embedding model’s
vocabulary with the mode of the feature. Our empirical evaluation confirms the
feasibility of using disjoint training sets for the embedding model and GAN
models.

4.2 DPNeT: GAN Training

The center of DPNeT is to learn GAN models with differential privacy. The
embeddings obtained in Step 1 are concatenated with the remaining features
in the network flows, e.g., class, and are provided to the GAN models as train-
ing data. To achieve differential privacy, we adopt the deep learning framework
proposed in [1] and present the pseudocode in Algorithm 1.

We train our GAN models on N examples for E epochs, on a randomly
selected mini-batch of size B with a sampling probability q = B/N . For each
training example in a batch, the discriminator computes the gradients gj(xk)
w.r.t the model parameters and the DP mechanism sanitizes the gradients with
clipping and perturbation. The clipping of gradient norm is upper bounded by
a hyper-parameter γ. Additionally, the variance of the additive Gaussian noise
is controlled through σ. The choice of σ and γ values is essential to achieve a
balance between data quality and privacy protection. Finally, the discriminator
parameters are updated after the completion of each batch. The generator learns
to produce network flows through iterative updates using a traditional gradient
based optimization approach. The discriminator is trained for ED epochs per
generator epoch, which helps alleviate mode collapse issues.
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At the end of each epoch, we save the intermediate generator model Gi, which
will be utilized for model selection purposes. Optionally, the clipping bound γ
may decay according to a few proposed decay functions; we refer readers to
Sect. 4.3. The privacy loss will be estimated by the Moments Accountant. After
E epochs, the algorithm outputs the final generator model G and total privacy
spent ε1.

Algorithm 1. DPNeT Training Procedure
Input: training examples x1 · · · xN , batch size B, noise σ, δ = 1

N
, learning rate α,

number of epochs E, number of discriminator epochs ED, clipping bound γ
for i = 1 · · · E do

if i > 1 then
For each generator parameter θ compute:

gi ← Adam
(
� 1

θ

∑θ
i=1 −D(G(Zi))

)

Update generator: θG(i+1) ← θG(i) + α gi

end if
for j = 1 · · · ED do

Sample L with sampling probability q = B
N

for each xk ∈ L do
Compute gradients: gj(xk) ← �θW (θj , xk)
Clipping: gj(xk) ← gj(xk)/max(1, ‖gj(xk)‖ /γ)

end for
Perturbation: gj ← 1

|L|
(∑

k=1 gj(xk) + N (0, (σ γ)2I)
)

θD(j+1) ← θD(j) + α gj

end for
Save the generator as Gi

Optionally, decay the clipping bound γ (see Sec. 4.3)
Estimate privacy ε1 using Moments Accountant

end for
Output: Generator G and total privacy spent ε1

Implementation. In DPNeT, we adopt the MLP architecture for both the
generator (5 hidden layers) and discriminator (4 hidden layers) as suggested
in [23]. Every hidden layer has 1024 units. The choice of hidden layer activation
is ReLU and leaky ReLU with a negative slope of 0.2 for the generator and
discriminator, respectively. We use a linear activation for the output layers in
both networks.

Privacy Analysis. As the generator update is solely based on the discriminator
(i.e., post-processing of DP outputs), it is sufficient to apply clipping and pertur-
bation to training the discriminator [8]. Using Moments Accountant [1], we can
bound the moments of a mechanism’s privacy loss and prove the (ε, δ)-differential
privacy guarantee. In practice, we implement the Moments Accountant to esti-
mate Algorithm 1’s privacy loss ε1 with the following: δ, the batch size, the
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total number of examples, the noise multiplier, and the number of training steps
performed. Hence, Algorithm 1 achieves ( ε1, δ)-differential privacy. The inter-
mediate models, i.e., Gi where i < E, incur less privacy loss due to small numbers
of training steps required. We plot in Fig. 2a an empirical analysis of the privacy
estimates over the training epochs.

4.3 Improvements in DPNeT

While Algorithm 1 incorporates the state-of-the-art techniques (i.e., GANs) for
generating synthetic data, the application of differential privacy may introduce
new challenges, due to clipping the gradient norm and adding perturbation noise.
As a result, the quality of the generated data may be affected by privacy. Below,
we describe the proposed improvements in the DPNeT solution, with the goal
of overcoming the limitations of differentially private deep learning.

Clipping Bound Decay. The clipping bound γ is an important factor in
Algorithm 1. Although not influential on the privacy accountant, the act of
clipping changes the gradient estimation. Specifically, when γ is too small, the
average gradient may point to a different direction than the true gradient; on
the other hand, increasing γ would require higher noise to be added, as the noise
distribution is based on σγ. Our idea is to decay the value of γ over the course of
training, such that the model is able to learn quickly initially (i.e., with higher
γ values) and accurately in the final stages (i.e., with lower γ values).

To that end, we propose three types of decay functions to control the speed
of decay and investigate the impact on private learning. Our approach is based
on commonly used decay functions, namely linear, exponential, and logarithmic:

Linear decay : γ(i) = C − i

(
C − C

′

E − 1

)
(3)

Exponential decay : γ(i) = C d(i−1) (4)

Logarithmic decay : γ(i) =
C

1 + log (i)
(5)

No decay : γ(i) = C (6)

In the above functions, i indicates the current epoch where i ∈ [1, E]; d is the
exponential decay rate; C is the initial value for the clipping bound and C ′ is
the final value. The design ensures that all decay functions start with γ(1) = C,
including the option of no decay. We choose the other parameters such that at
the final epoch, the three decay functions arrive at similar γ values, i.e., around
C ′. In our empirical evaluation, we show for each decay option how γ values
change throughout the training process (see Fig. 4).
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Private Model Selection. We also develop an effective strategy to privately
select the best generative models among all models obtained throughout the
training process. The rationale is that as DP introduces noise in training, the
discriminator and the generator may converge toward a noisy equilibrium or do
not converge. As a result, the generator obtained at the last epoch may not
be optimal in quality. Therefore, in our approach, we consider models saved
throughout the training epochs with the goal of choosing the best among them.
Furthermore, we need to ensure differential privacy in the model selection process
as the private training data is utilized to evaluate the goodness of each model.
Our approach is inspired by [2], where a classification accuracy score was utilized
to select the best model. However the goal of DPNeT is to produce network flows
that can be broadly used, including but not limited to classification applications.
Thus, a generic quality measure for the generated data would be much more
beneficial. We achieve this with the L1-distance between histograms of real data
and synthetic data. We choose histograms in our algorithm for the low sensitivity.

Algorithm 2. Private Model Selection
Input: ground truth flows Xreal, synthetic flows Xgen, number of features n, number

of epochs E, number of models to select K, privacy budget εm for each selection
�dist = {}
for i = 1 · · · E do

Xi
gen ← N synthetic flows by model obtained at epoch i

Compute the following score based on L1 distance between histograms:
�i = 1

n

∑n
j=1 ||HIST(Xreal[j]) − HIST(Xi

gen[j])||1
�dist.insert(�i)

end for
for t = 1 · · · K do

Add noise every score: �noisy = �dist + Laplace(0, 1
εm

)
Sort �noisy and pick the epoch it with the smallest noisy score
�dist.remove(�it)

end for
Output: K epochs {it|t = 1 · · · K} with the best models

As shown in Algorithm 2, we aim to choose K best models among all models
obtained over E epochs, where the trained generator model can be saved at the
end of each epoch. For each epoch i, we compute L1-based score to measure the
similarity between the training data distribution and the synthetic data distri-
bution, averaged across all features. Note that HIST in Algorithm 2 generates
histograms for a given dataset (e.g., Xreal or Xi

gen) and a certain feature (i.e.,
indexed by j). All scores are perturbed with noise drawn from a Laplace dis-
tribution with 0 mean and 1

εm
scale. The model that corresponds to the lowest

noisy score is picked in each iteration until all K models have been selected.
The selected models (which may not include the final epoch model) will be used
to generate synthetic data. We further propose a mixture strategy to combine
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synthetic flows from K models, which is demonstrated to be superior in our
evaluation.

Privacy Analysis. Recall that intermediate generator models, i.e., Gi where
i ≤ E, are saved as part of Algorithm 1. Using Gi to generate synthetic data
Xi

gen for Algorithm 2 does not incur additional privacy loss, thanks to the post-
processing property of DP. The privacy result for Algorithm 2 is as follows:

1 the global sensitivity of �i is 1, for any i,
2 each iteration of model selection is εm-differentially private,
3 Algorithm 2 is Kεm-differentially private.

Suppose two neighboring datasets Xreal and X ′
real, where Xreal =

X ′
real

⋃{x∗} and x∗ is one flow record. The global sensitivity of �i can be ana-
lyzed with the Minkowski’s inequality and the fact that by removing x∗ the
histograms of Xreal[j] for any attribute j can change by at most 1:

||�i − �′
i||1 ≤ 1

n

n∑
j=1

||HIST(Xreal[j]) − HIST(X′
real[j])||1 ≤ 1. (7)

Given Δ�i = 1 (∀i), we can prove that each model selection with Laplace per-
turbation is εm-differentially private1. It follows that selecting K models with
Algorithm 2 satisfies Kεm-differential privacy. Finally, we state the overall pri-
vacy guarantee of DPNeT.

Theorem 1. DPNeT satisfies (ε, δ)-differential privacy, where ε = ε1 + Kεm

and δ = 1/N .

Proof. Algorithm 1 satisfies (ε1, δ)-DP where ε1 can be estimated by Moments
Accountant and δ = 1/N . Algorithm 2 satisfies (Kεm, 0)-DP. By composition,
the overall DPNeT solution satisfies (ε1 + Kεm, δ)-DP.

5 Evaluation Results

In this section, we present our methodology for empirical evaluation and discuss
results obtained.
Dataset. We utilize a large-scale network flow dataset CIDDS-001 [24] in our
evaluation. CIDDS-001 was captured within an emulated small business envi-
ronment, which contains four weeks of flow-based network traffic. This dataset
is publicly available2, with around 32 million labelled network flows consisting
of both anomalous and normal behaviors. For each flow, we adopt 11 relevant
features, namely: Date first seen, Duration, Protocol, Source IP, Source Port,
Destination IP, Destination Port, Packets, Bytes, Flags, Class, and preprocess

1 Proof omitted for brevity; it is similar to the proof of Report Noisy Max [7].
2 http://www.hs-coburg.de/cidds.

http://www.hs-coburg.de/cidds
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them as suggested [23]. We then randomly subsample 2% of the entire dataset,
which is then partitioned into two disjoint portions consisting of N = 287435
examples each. One partition is treated as public and utilized for training the
embedding model, while the other partition remains private and used for train-
ing GAN models. Note that, since the two partitions are disjoint, some feature
values in the GAN training data may not be present in the embedding model,
e.g., unseen values. In those cases, we impute those feature values with the mode
of their respective columns.
Metrics. For all our experiments, we utilize the following metrics to evaluate the
quality of the synthetic data, in similarity and realism. To evaluate similarity, we
measure the distance (e.g., Euclidean) between the probability distributions of
the training data and the generated data for each attribute. To evaluate realism,
we adopt 7 domain knowledge tests to check the consistency between attributes
within each flow. For instance, one of them (Test 3) checks: “if the flow describes
normal user behavior and the source port or destination port is 80 (HTTP) or
443 (HTTPS), the transport protocol must be TCP”. The rationale as well as
the detailed design of those domain knowledge tests can be found in [23]. For
each test, we report the percentages of flows in the data that pass the test.
Hyper-parameters. The embedding model is trained for 500 epochs to accu-
rately encode feature values. To achieve a trade-off between privacy and quality,
the differentially private GAN models are trained for 50 epochs and we report the
average results obtained in 3 separate runs. Other hyper-parameters for training
the differentially private GAN models are: the training data size N = 287435,
privacy parameter δ = 1

N , batch size B = 2048, initial clip norm γ = 0.03,
and learning rate α = 0.0005. For every generator iteration, discriminator is
trained for ED = 5 iterations. The privacy budget for training differentially pri-
vate GANs is accounted by the Moment Accountant technique [1] as we vary the
noise multiplier σ. For private model selection, we allocate ε2 = 0.25 for selecting
top-5 models, i.e., spending 0.05 privacy budget for each round. We compare our
results with the non-private baseline.

5.1 Impact of Privacy

We study the effect of privacy on the quality of generated data. As we vary the
noise multiplier σ in Algorithm 1, we apply the Moment Accountant to track the
privacy budget ε1 spent over the training epochs. We report the intermediate
results in Fig. 2a and ε1 after 50 epochs in Table 1. Note that small ε values indi-
cate stronger privacy protection. When setting σ = 3, we achieve ε1 = 3.06 for
training the GAN model for 50 epochs; reducing the noise parameter degrades
the privacy protection, e.g., ε1 = 20.79 when σ = 0.8. We also examine the
impact of privacy on training quality. Figure 2b plots the loss in Wasserstein
distance at the end of each epoch. Table 1 reports the final loss after 50 epochs,
i.e., Wdist. We observe that in comparison to the non-private model, different
privacy inflicts instability in the training process; stronger privacy leads to a
higher level of instability, e.g., when σ = 0.8. Due to the added noise, a differen-
tially private model may converge to a noisy equilibrium. As privacy is relaxed,
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the performance of differentially private models gradually approaches that of the
non-private model.

(a) Privacy budget spent on training
GAN models.

(b) Wasserstein distance obtained
during training.

Fig. 2. Impact of noise (σ) on GAN model training (best viewed in color). (Color figure
online)

Table 1. Impact of privacy and Domain Knowledge Test Accuracy (in %) on real
and synthetic data: ε1 - privacy budget spent on training GAN models; ε - total pri-
vacy budget including training GAN models and model selection; Wdist - Wasserstein
distance obtained at the last training epoch.

Privacy ε1/ε Wdist Domain Knowledge Test - Accuracy in %

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Avg.

Real data ∞/∞ 0 100 100 100 100 100 100 100 100

Non-private ∞/∞ 0.048 99.56 99.94 99.95 99.65 99.82 99.59 99.98 99.64

σ = 0.8 20.79/21.04 0.061 96.79 99.19 99.63 94.53 99.91 77.33 91.85 94.18

σ = 1 13.1/13.35 0.064 96.92 98.79 99.47 94.17 99.97 65.37 90.42 92.16

σ = 2 4.88/5.13 0.084 91.85 98.06 99.47 90.12 100.0 65.92 84.72 90.02

σ = 3 3.06/3.31 0.124 94.7 98.37 99.51 91.15 100.0 3.37 89.51 82.37

We conduct the domain knowledge tests on real/synthetic data and Table 1
reports the accuracy results, i.e., the percentage of flows that pass each test.
We observe that both private and non-private GAN models are able to produce
realistic network flows, e.g., highly accurate for Test 3 and Test 5. Test 6 appears
to be the most challenging to capture by the private models. The content of Test
6 is: “if the flow represents a netbios message (destination port is 137 or 138), the
source IP addresses must be internal (192.168.XXX.XXX) and the destination
IP address must be an internal broadcast (192.168.XXX.255).” As it examines
a specific type of flows and involves multiple features, even introducing a small
amount of noise (σ = 0.8) inflicts a drop in performance. We also report the
average accuracy among all 7 tests. It can be seen that the accuracy degrades
gradually from real data, to synthetic data generated by the non-private model,
to synthetic data generated by differentially private models.
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Table 2. Impact of privacy and data quality: Euclidean distance between synthetic
data distribution and training data distribution is reported.

Feature Non-private σ = 0.8 σ = 1 σ = 2 σ = 3

Day 0.009 0.032 0.043 0.047 0.082

Time 0.008 0.007 0.006 0.006 0.008

Duration 0.74 0.73 0.725 0.715 0.713

Protocol 0.004 0.003 0.002 0.007 0.012

Src IP 0.067 0.131 0.113 0.099 0.104

Src Pt 0.01 0.019 0.016 0.037 0.039

Dst IP 0.063 0.118 0.118 0.098 0.09

Dst Pt 0.01 0.017 0.016 0.024 0.036

Packets 0.016 0.044 0.055 0.068 0.074

Bytes 0.018 0.047 0.055 0.072 0.083

Flags 0.006 0.074 0.098 0.103 0.139

Class 0.003 0.004 0.006 0.005 0.011

Avg. 0.079 0.103 0.104 0.107 0.116

We report in Table 2 the similarity between real and synthetic data via the
Euclidean distance computed for the probability distributions of each feature.
The average similarity among all features is reported in the last row of the table.
As can be seen, synthetic data generated by the non-private model is most similar
to the real data; stronger privacy (i.e., higher σ values) would inflict a higher
distance from the real distributions.

Qualitative Evaluation. To better understand the quality of the synthetic
data, we plot the distributions of real and synthetic network flows in Fig. 3.
Figure 3a shows the percentage of flows per hour in each dataset. We can observe
that the non-private model can accurately capture variations in the real data
distribution, and the private models are able to capture high-level trends while
missing local variations. Similarly we observe in Fig. 3b that the distribution of
Packet feature is well preserved by the non-private model. As the noise increases,
higher distortions in the probability distribution can be observed.

5.2 Impact of Clipping Bound Decay

Here we study the effect of decaying the gradient norm bound on the quality of
the generated data. We set σ = 1 in the following experiments and train GAN
models with different decay functions proposed in Sect. 4.3. The resulting clip-
ping bounds are depicted in Fig. 4. It can be seen that the clipping bounds reduce
much more quickly when exponential decay and logarithmic decay are adopted,
although all three decay functions reach similar values at the 50th epoch. In
contrast, the no decay option adopts a constant clipping bound throughout all
training epochs.
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(a) Distribution of flows over time.

(b) Distribution of “Packet” feature.

Fig. 3. Distributions of real and synthetic flows (best viewed in color). (Color figure
online)

Fig. 4. Clipping bound decay: we set C = 0.03, C′ = 0.001, and d = 0.94 such that
all clipping bounds initialize at C and decay accordingly over 50 epochs, with the
exception of Constant.

Table 3 and Table 4 report the distributional similarity and the accuracy of
domain knowledge tests, respectively, using synthetically generated data. As
expected, having a constant clipping bound (i.e., no decay), would force more
noise to be added and thus reduce the quality of the learned model, i.e., higher
Euclidean distance and lower domain knowledge test accuracy. It can be seen
that linear decay is competitive in distributional similarity, and performs the
best in domain knowledge tests. We believe that it is beneficial to gradually
reduce the clipping bound over training epochs to achieve a trade-off between
learning and privacy. Thus, we propose to adopt linear decay in the DPNeT
solution.
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Table 3. Impact of decay functions and data quality: Euclidean distance between
synthetic data distribution and training data distribution is reported.

Feature No decay Exponential Logarithmic Linear

Duration 0.742 0.717 0.731 0.725

Protocol 0.003 0.004 0.01 0.002

Src IP 0.116 0.103 0.118 0.113

Src Pt 0.016 0.019 0.022 0.016

Dst IP 0.121 0.120 0.127 0.118

Dst Pt 0.02 0.016 0.016 0.016

Packets 0.056 0.052 0.056 0.055

Bytes 0.06 0.057 0.056 0.055

Flags 0.113 0.095 0.097 0.098

Class 0.007 0.007 0.005 0.006

Avg. 0.125 0.119 0.124 0.120

Table 4. Impact of decay functions and domain knowledge test accuracy (in %).

Domain test No decay Exponential Logarithmic Linear

Test 1 96.73 96.39 97.09 96.92

Test 2 98.72 99.07 98.97 98.79

Test 3 99.53 99.59 99.36 99.47

Test 4 92.55 93.01 94.17 94.17

Test 5 99.98 99.71 99.95 99.97

Test 6 45.05 50.03 53.56 65.37

Test 7 89.4 91.29 91.36 90.42

Avg. 88.85 89.87 90.64 92.16

5.3 Private Model Selection

Here we examine the effect of model selection using Algorithm 2. For each run of
differentially private GAN training, we choose the best K = 5 epoch models and
allocate εm = 0.05 privacy budget for each selected model. We name the selected
models Nosiy Best, Noisy 2nd, etc. N = 287435 synthetic flows are generated
from each model; in addition, we create a mixture of size N by randomly sub-
sampling from each model. The model obtained at the 50th epoch is also included
as a baseline, since it may not be selected by the algorithm.

Table 5 and Table 6 report the distributional similarity and the accuracy of
domain knowledge tests, respectively. Since the algorithm utilizes an L1-based
score, we report the L1 distance between the probability distributions of real
data and synthetic data in Table 5. We observe that our private model selection
approach is highly beneficial: the average L1 distance monotonically increases
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from Noisy Best to Noisy 5th. The last epoch shows a much higher average
L1 distance to the real data distributions, confirming that the final model may
not be optimal. We also observe that the private model selection is affected
by perturbation, i.e., Noisy 5th shows the best quality in Flags and Class. A
very important observation is that the mixture strategy is superior to all other
models, exhibiting the highest similarity to real data in many features.

Table 5. Impact of model selection on data quality: L1 distance between synthetic
data distribution and training data distribution is reported.

Feature Noisy best Noisy 2nd Noisy 3rd Noisy 4th Noisy 5th Last epoch Mixture

Duration 1.484 1.532 1.511 1.519 1.513 1.608 1.408

Protocol 0.008 0.008 0.016 0.012 0.016 0.015 0.003

Src IP 0.867 0.847 0.854 0.849 0.882 1.031 0.708

Src Pt 0.830 0.857 0.920 0.923 0.895 1.014 0.723

Dst IP 0.872 0.853 0.905 0.874 0.895 1.068 0.708

Dst Pt 0.849 0.862 0.912 0.880 0.924 1.008 0.717

Packets 0.212 0.276 0.251 0.257 0.232 0.277 0.202

Bytes 0.713 0.759 0.731 0.768 0.786 0.922 0.636

Flags 0.267 0.251 0.219 0.225 0.215 0.219 0.219

Class 0.025 0.011 0.009 0.025 0.007 0.024 0.009

Avg. 0.613 0.626 0.633 0.633 0.637 0.718 0.533

Table 6. Domain knowledge test accuracy (in %) for models selected with
Algorithm 2.

Domain test Noisy best Noisy 2nd Noisy 3rd Noisy 4th Noisy 5th Last epoch Mixture

Test 1 97.68 94.20 98.34 96.57 97.46 97.46 96.92

Test 2 98.86 98.87 99.23 98.25 98.76 98.28 98.79

Test 3 99.37 99.41 99.77 99.28 99.52 99.39 99.47

Test 4 95.08 94.10 93.31 91.86 96.06 94.02 94.17

Test 5 100.00 100.00 100.00 100.00 99.55 100.00 99.97

Test 6 45.26 66.79 61.78 60.52 18.32 35.03 65.37

Test 7 90.02 90.56 90.67 90.66 90.18 90.55 90.42

Avg. 89.47 91.99 91.87 91.02 85.69 87.82 92.16

Similarly in Table 6, Noisy 5th and Last Epoch show lower average test accu-
racy, compared to other models. The mixture shows the highest average test
accuracy among all models. Both tables demonstrate the advantage of our model
selection approach and creating a diverse set of synthetic data using mixture.
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6 Conclusion and Future Work

In this paper, we have described DPNeT, a differentially private solution for gen-
erating high quality synthetic network flow data. Privacy of the sensitive train-
ing data is protected by training GAN models with differential privacy. We have
also proposed novel approaches for clipping bound decay and private model selec-
tion. We have demonstrated their effectiveness in improving the quality of syn-
thetic data through comprehensive empirical evaluations. Our approaches may
be applied to other differentially private deep learning tasks, e.g. classification.

We identify several directions for future work. Firstly, we observe that fine
tuning of hyper parameters, such as learning rate and number of discrimina-
tor epochs, is essential to circumvent issues such as mode collapse and non-
convergence. In the future, effective parameter tuning methods can be explored
for differentially private solutions. Secondly, it is desirable to investigate the use-
fulness of the synthetic network flow data in domain specific applications, e.g.,
anomaly detection. Future work can study the performance of anomaly detec-
tion models trained with synthetic data. Thirdly, as our solution builds on an
embedding model trained with public data, it is important to study the efficacy
of the solution when public data may come from a different distribution.
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3. Brekne, T., Årnes, A., Øslebø, A.: Anonymization of IP traffic monitoring data:
attacks on two prefix-preserving anonymization schemes and some proposed reme-
dies. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp. 179–196.
Springer, Heidelberg (2006). https://doi.org/10.1007/11767831 12

4. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: improving
prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todor-
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Abstract. Attacks that aim to identify the training data of neural net-
works represent a severe threat to the privacy of individuals in the train-
ing dataset. A possible protection is offered by anonymization of the
training data or training function with differential privacy. However, data
scientists can choose between local and central differential privacy, and
need to select meaningful privacy parameters ε. A comparison of local
and central differential privacy based on the privacy parameters further-
more potentially leads data scientists to incorrect conclusions, since the
privacy parameters are reflecting different types of mechanisms.

Instead, we empirically compare the relative privacy-accuracy trade-
off of one central and two local differential privacy mechanisms under
a white-box membership inference attack. While membership inference
only reflects a lower bound on inference risk and differential privacy for-
mulates an upper bound, our experiments with several datasets show
that the privacy-accuracy trade-off is similar for both types of mecha-
nisms despite the large difference in their upper bound. This suggests
that the upper bound is far from the practical susceptibility to mem-
bership inference. Thus, small ε in central differential privacy and large
ε in local differential privacy result in similar membership inference risks,
and local differential privacy can be a meaningful alternative to central
differential privacy for differentially private deep learning besides the
comparatively higher privacy parameters.
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1 Introduction

Neural networks have successfully been applied to a wide range of learning tasks,
each requiring its own specific set of training data, architecture and hyperpa-
rameters to achieve meaningful classification accuracy and foster generalization.
In some learning tasks data scientists have to deal with personally identifiable
or sensitive information, which results in two challenges. First, legal restric-
tions might not permit collecting, processing or publishing certain data, such as
National Health Service data [5]. Second, membership inference (MI) [20,31,38]
and model inversion attacks [15,16] are capable of identifying and reconstruct-
ing training data based on information leakage from a trained, published neural
network model. A mitigation to both challenges is offered by anonymized deep
neural network training with differential privacy (DP). However, a data scientist
can choose between two categories of DP mechanisms: local DP (LDP) [40] and
central DP (CDP) [9]. LDP perturbs the training data before any processing
takes place, whereas CDP perturbs the gradient update steps during training.
The degree of perturbation, which affects the accuracy of the trained neural
network on test data, is calibrated for both DP categories by adjusting their
respective privacy parameter ε. Choosing ε too large will unlikely mitigate pri-
vacy attacks such as MI, and setting ε too small will significantly reduce model
accuracy. Balancing the privacy-accuracy trade-off is a challenging problem espe-
cially for data scientists who are not experts in DP. Furthermore, data scientists
might rule out LDP when designing differentially private neural networks due
to concerns raised by the comparatively higher privacy parameter ε in LDP. In
this work, we compare the empirical privacy protection under the white-box MI
attack of Nasr et al. [31] for LDP and CDP mechanisms for learning problems
from diverse domains: consumer preferences, face recognition and health data.
The MI attack indicates a lower bound on the inference risk whereas DP formu-
lates an upper bound [24,43,44], but in practice even high privacy parameters
such as experienced in LDP may already offer protection. This work makes the
following contributions:

– Comparing LDP and CDP by the average precision of their MI precision-
recall curve as privacy measure, and showing that under this measure LDP
and CDP have similar privacy-accuracy trade-offs despite vastly different ε.

– Showing that CDP mechanisms are not achieving a consistently better
privacy-accuracy trade-off on various datasets and reference models. The
trade-off rather depends on the specific dataset.

– Analyzing the relative privacy-accuracy trade-off and showing that it is not
constant over ε, but that for each data set there are ranges where the relative
trade-off is greater for protection against MI than accuracy.

Section 2 revisits differential privacy and Sect. 3 formulates our approach for
comparing LDP and CDP under membership inference. We describe evaluation
datasets in Sect. 4. Findings are presented in Sect. 5 and discussed in Sect. 6.
Related work and conclusions are provided in Sect. 7 and Sect. 8.
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2 Differential Privacy

DP [8] anonymizes a dataset D = {d1, . . . , dn} by perturbation and can be either
enforced centrally to a function f(D), or locally to each entry d ∈ D.

2.1 Central DP

In central DP the aggregation function f(·) is evaluated and perturbed by a
trusted server. Due to perturbation, it is no longer possible for an adversary to
confidently determine whether f(·) was evaluated on D, or some neighboring
dataset D′ differing in one element. Assuming that every participant is repre-
sented by one element, privacy is provided to participants in D as their impact on
f(·) is limited. Mechanisms M fulfilling Definition 1 are used for perturbation of
f(·) [9]. We refer to the application of a mechanism M to a function f(·) as cen-
tral differential privacy. CDP holds for all possible differences ‖f(D) − f(D′)‖2
by adapting to the global sensitivity of f(·) per Definition 2.

Definition 1 ((ε, δ)-central differential privacy). A mechanism M gives
(ε, δ)-central differential privacy if D,D′ ⊆ DOM differing in at most one ele-
ment, and all outputs S ⊆ R

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ

Definition 2 (Global �2 Sensitivity). Let D and D′ be neighboring. The
global �2 sensitivity of a function f , denoted by Δf , is defined as

Δf = maxD,D′‖f(D) − f(D′)‖2.

Definition 3 (Gaussian Mechanism [10]). Let ε ∈ (0, 1) be arbitrary. For
c2 > 2ln( 1.25

δ ), the Gaussian mechanism with parameter σ ≥ cΔf
ε gives (ε, δ)-

CDP, adding noise scaled to N (0, σ2).

For CDP in deep learning we use differentially private versions1 of two stan-
dard gradient optimizers: SGD and Adam [27]. We refer to these CDP opti-
mizers as DP-SGD and DP-Adam. A CDP optimizer represents a differen-
tially private training mechanism Mnn that updates the weight coefficients θt

of a neural network per training step t ∈ T with θt ← θt−1 − α(g̃), where
g̃ = Mnn(∂loss/∂θt−1) denotes a Gaussian perturbed gradient and α is some
scaling function on g̃ to compute an update, i.e., learning rate or running moment
estimations. Differentially private noise is added by the Gaussian mechanism
of Definition 3 [1]. After T update steps, Mnn outputs a differentially private
weight matrix θ which is used by the prediction function h(·) of a neural network.

1 We used Tensorflow Privacy: https://github.com/tensorflow/privacy.

https://github.com/tensorflow/privacy


Comparing LDP and CDP Using MI 25

A CDP gradient optimizer bounds the sensitivity of the computed gradients by
clipping norm C based on which the gradients get clipped before perturbation.
Since weight updates are performed iteratively during training a composition of
Mnn is required until the training step T is reached and the final private weights
θ are obtained. For CDP we measure privacy decay under composition by track-
ing σ of the Gaussian mechanism. After training we transform and compose σ
under Renyi DP [29], and transform the aggregate again to CDP. We choose this
accumulation method over other composition schemes [1,25] due to the tighter
bound for heterogeneous mechanism invocations.

2.2 Local DP

We refer to the perturbation of entries d ∈ D as local differential privacy [40].
LDP is the standard choice when the server which evaluates a function f(D) is
untrusted. We adapt the definitions of Kasiviswanathan et al. [26] to achieve LDP
by using local randomizers LR. In the experiments within this work we use a
local randomizer to perturb each record d ∈ D independently. Since a record may
contain multiple correlated features (e.g., items in a preference vector) a local
randomizer must be applied sequentially which results in a linearly increasing
privacy loss. A series of local randomizer executions per record composes a local
algorithm according to Definition 5. ε-local algorithms are ε-local differentially
private [26], where ε is a summation of all composed local randomizer guarantees.
We perturb low domain data with randomized response [41], a (composed) local
randomizer. By Eq. (1) randomized response yields ε = ln(3) LDP for a one-
time collection of values from binary domains (e.g., {yes, no}) with two fair
coins [12]. That is, retention of the original value with probability ρ = 0.5 and
uniform sampling with probability (1 − ρ) · 0.5.

ε = ln
(

ρ + (1 − ρ) · 0.5
(1 − ρ) · 0.5

)
= ln

(
Pr[yes|yes]
Pr[yes|no]

)
. (1)

Definition 4 (Local differential privacy). A local randomizer (mechanism)
LR : DOM → S is ε-local differentially private, if ε ≥ 0 and for all possible
inputs v, v′ ∈ DOM and all possible outcomes s ∈ S of LR

Pr[LR(v) = s] ≤ eε · Pr[LR(v′) = s]

Definition 5 (Local Algorithm). An algorithm is ε-local if it accesses the
database D via LR with the following restriction: for all i ∈ {1, . . . , |D|}, if
LR1(i), . . . ,LRk(i) are the algorithms invocations of LR on index i, where each
LRj is an εj-local randomizer, then ε1 + . . . + εk ≤ ε.

Definition 6 (Laplace Mechanism [10]). Given a numerical query function
f : DOM → R

k, the Laplace mechanism with λ = Δf

ε is an ε-differentially
private mechanism, adding noise scaled to Lap(λ, μ = 0).
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In our evaluation we also look at image data for which we rely on the local
randomizer by Fan [14] for LDP image pixelization. The randomizer applies
the Laplace mechanism of Definition 6 with scale λ = 255·m

b2·ε to each pixel, thus
fulfilling Definition 4. Parameter m represents the neighborhood in which LDP is
provided. Full neighborhood for an image dataset would require that any picture
can become any other picture. In general, providing DP or LDP within a large
neighborhood will require high ε values to retain meaningful image structure.
High privacy will result in random black and white images. Within this work
we consider the use of LDP and CDP for deep learning along a generic data
science process (e.g., CRISP-DM [42]). In such a processes the dataset D of a
data owner DO is (i) transformed, and (ii) used to learn a model function h(·)
(e.g., classification), which (iii) afterwards is deployed for evaluation by third
parties. In the following h(·) will represent a neural network. DP is applicable at
every stage in the data science process. In the form of LDP by perturbing each
record d ∈ D, while learning h(·) centrally with a CDP gradient optimizer, or to
the evaluation of h(·) by federated learning with voting. We leave learning with
more than two parties, such as used in PATE [33] with CDP or amplification
by shuffling for LDP [11] as future work. However, independent of the stage of
application, the privacy-accuracy trade-off is of particular interest. We follow
the evaluation of regularization techniques that apply noise to the training data
to foster generalization [17,18,28] and measure utility by the test accuracy of
h(·).

3 White-Box MI Attack

Membership inference (MI) attacks aim at identifying the presence or absence
of individual records in the training data of data owner DO. MI attacks are
of particular importance for members of the training dataset when the nature
of the training dataset is revealing sensitive information. For example, a med-
ical training dataset containing patients with different types of cancer, or a
training dataset that is used to predict the week of pregnancy based on the
shopping cart [21]. A related attack building upon MI is attribute inference [44]
where individual records are partially known and specific attribute values shall
be inferred. In this work we solely consider MI since protection against MI offers
protection against attribute inference. In specific, we consider white-box MI by
Nasr et al. [31] which is stronger than previously suggested black-box MI attacks
(e.g., Shokri et al. [38]). The MI attack assumes an honest-but-curious adver-
sary A with access to a trained prediction function h(·), knowledge about the
hyperparameters and DP mechanisms that were used for training. We refer to
the trained prediction function as target model and the training data of DO as
Dtrain

target. Given this accessible information A wants to learn a binary classifier,
the attack model, that allows to classify data into members and non-members
w.r.t. the target model training dataset with high accuracy. The accuracy of an
MI attack model is evaluated on a balanced dataset including all members (tar-
get model training data) and an equal number of non-members (target model
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test data), which simulates the worst case where A tests membership for all
training records. White-box MI exploits that an ML classifier such as a neural
network (NN) tends to classify a record d = (x, y) from its training dataset
Dtrain

target with different confidence p(x) given h(x) for features x and true label
y than a record d 	∈ Dtrain

target. White-box MI makes two assumptions about A.
First, A is able to observe internal features of the ML model in addition to exter-
nal features (i.e., model outputs). The internal features comprise observed losses
L(h(x;W )), gradients δL

δW and the learned weights W of h(·). Second, A is aware
of a portion of Dtrain

target and Dtest
target. These portions were set to 50% by Nasr et

al. [31] and will be the same within this work to allow comparison. Second, A
extracts internal and external features of a balanced set of confirmed members
and non-members. An illustration of the white-box MI attack is given in Fig. 1.
Again, A is assumed to know a portion of Dtrain

target and Dtest
target and generates

attack features by passing these records through the trained target model. A
trains a binary classification attack model per target variable y ∈ Y to map p(x)
to the indicator “in” or “out”. The set (L(h(x;W )), δL

δW , p(x), y, in/out) serves
as attack model training data, i.e., Dtrain

attack. Thus, the MI attack model exploits
the imbalance between predictions on d ∈ Dtrain

target and d 	∈ Dtrain
target. Attack model

accuracy is computed on features extracted from the target model likewise.

Fig. 1. White-box MI with attack features (y∗, p(x), L(h(x; W ), y), δL
δW

). LDP pertur-
bation on Dtrain

target (dotted) and CDP on target model training (dashed). Target model
training is colored: training (violet) and validation (green). (Color figure online)

3.1 Evaluating CDP and LDP Under MI

DP has been shown to formulate a theoretical upper bound on the accuracy of
MI adversaries [44], and thus the use of DP should impact the classification accu-
racy of A. To illustrate the effect of the privacy parameter ε on the MI attack we
focus on two questions related to the identifiability of training data within this
work: “How many records predicted as in are truly contained in the training
dataset?” (precision), and “How many truly contained records are predicted as
in?” (recall). For analysis we use precision-recall curves which depict the preci-
sion and recall for various classification thresholds, and thus reflect the possible
MI attack accuracies of A. We compare the precision-recall curves by their aver-
age precision (AP) to assess the overall effect of DP on MI. The AP approximates
the integral under the precision-recall curve as a a weighted mean of the preci-
sion P per threshold t and the increase in recall R from the previous threshold,
i.e.: AP =

∑
t(Rt − Rt−1) · Pt. We prefer this non-interpolated technique over
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interpolated calculations of the area under curve, since the precision-recall curve
is not guaranteed to decline monotonically and thus the linear trapezoidal inter-
polation might yield an overoptimistic representation [7,13]. Good MI attack
models will realize an AP of close to 1 while poor MI attack models will be close
to the baseline of uniform random guessing, hence AP = 0.5. The data owner
DO has two options to apply DP against MI within the data science process
introduced in Sect. 2. Either in the form of LDP by applying a local randomizer
to the training data and using the resulting LR(Dtrain

target) for training, or CDP
with a differentially private optimizer on Dtrain

target. A discussion and comparison
of LDP and CDP purely based on the privacy parameter ε likely falls short
and potentially leads data scientists to incorrect conclusions, since the privacy
parameters are reflecting different types of mechanisms. Furthermore, data sci-
entists give up flexibility w.r.t. applicable learning algorithms, if ruling out the
use of LDP due to comparatively greater ε and instead solely investigating CDP
(e.g., DP-SGD). We suggest to compare LDP and CDP by their concrete effect
on the AP and the resulting privacy-accuracy trade-off. While we consider a spe-
cific MI attack our methodology is applicable to other MI attacks as well. Models
that use CDP are represented by dashed lines in Fig. 1. In the LDP setup, the
target model is trained with perturbed records from a local randomizer, i.e.,
LR(Dtrain

target). However, in order to increase his attack accuracy A needs to learn
attack models with high accuracy on the original data from which the perturbed
records stem, i.e., Dtrain

target. Perturbation with LDP is represented by dotted lines
in Fig. 1.

3.2 Relative Privacy-Accuracy Trade-Off

We calculate the relative privacy-accuracy trade-off for LDP and CDP as the
relative difference between A’s change in AP to DO’s change in test accuracy.
Let APorig, APε be the MI APs and ACCorig, ACCε be the test accuracies for
the original and DP target model. Furthermore, let ACCbase be the baseline
test accuracy of uniform random guessing 1/C, where C denotes the number of
classes in the dataset, and APbase be the baseline AP at 0.5. We fix ACCbase,
APbase, since A or DO would perform worse than uniform random guessing at
lower values. Rearranging and bounding the cases where AP and ACC increases
over ε yields:

ϕ =
(APorig − APε)/(APorig − APbase)

(ACCorig − ACCε)/(ACCorig − ACCbase)

ϕ =
max(0, APorig − APε) · (ACCorig − ACCbase)
max(0, ACCorig − ACCε) · (APorig − APbase)

ϕ = min
(

2,
max(0, (APorig − APε) · (ACCorig − ACCbase))
max(0, (ACCorig − ACCε) · (APorig − APbase))

)

To avoid ϕ from approaching infinitely large values when the accuracy
remains stable while AP decreases significantly, and the undefined case of
ACCorig ≤ ACCε, we bound ϕ at 2. In consequence, when the relative gain in
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privacy (lower AP) exceeds the relative loss in accuracy, it applies that 1 < ϕ ≤ 2,
and 0 ≤ ϕ < 1 when the loss in test accuracy exceeds the gain in privacy. Hence,
ϕ quantifies the relative loss in accuracy and the relative gains in privacy for a
given privacy parameter ε and captures the relative privacy-accuracy trade-off
as a ratio which we seek to maximize.

4 Datasets and Learning Tasks

We consider four datasets for experiments. The datasets have been used in
related work on MI and face recognition. The reference datasets are mostly
unbalanced w.r.t. the amount of training data per training label, a character-
istic that we found to benefit MI attacks. Each dataset is also summarized in
Table 1 and the distributions for the two unbalanced datasets Texas Hospital
Stays and Purchases Shopping Carts are provided in the appendix.

Texas Hospital Stays. The Texas Hospital Stays dataset [38] is an unbalanced
dataset and consists of high dimensional binary vectors representing patient
health features. Each record within the dataset is labeled with a procedure.
The learning task is to train a fully connected neural network for classification
of patient features to a procedure and we do not try to re-identify a known
individual, and fully comply with the data use agreement for the original public
use data file. We train and evaluate models for a set of most common procedures
C ∈ {100, 150, 200, 300}. Depending on the number of procedures the dataset
comprises 67, 330–89, 815 records and 6, 170–6, 382 features. To allow comparison
with related work [31,38], we train and test the target model on n = 10, 000
records respectively.

Purchases Shopping Carts. This dataset is also unbalanced and consists of binary
vectors with 600 features that represent customer shopping carts [38]. However,
a significant difference to the Texas Hospital Stays dataset is that the number
of features is almost 90% lower. Each vector is labeled with a customer group.
The learning task is to classify shopping carts to customer groups by using a
fully connected neural network. The dataset is provided in four variations with
varying numbers of labels C ∈ {10, 20, 50, 100} and comprises 38, 551–197, 324
records. We sample n = 8, 000 records each for training and testing the target
model. Again, this methodology ensures comparability with related work [31,38].

Labeled Faces in the Wild. The Labeled Faces in the Wild (LFW) dataset
contains labeled images each depicting a specific person with a resolution of
250 × 250 pixels (i.e., features) [22]. The dataset has a long distribution tail
w.r.t. to the number of images per label. We thus focus on learning the top-
most classes C ∈ {20, 50, 100} with 1906, 2773 and 3651 overall records respec-
tively. We start our comparison of LDP and CDP from a pre-trained VGG-Very-
Deep-16 CNN faces model [34] by keeping the convolutional core, exchanging
the dense layer at the end of the model and training for LFW grayscale faces.
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For LDP, we apply differentially private image pixelization within neighborhood
m =

√
250 × 250 and avoid coarsening by setting b = 1. We transform all images

to grayscale before LDP and CDP training.

Skewed Purchases. We specifically crafted this balanced dataset2 to mimic a
transfer learning task, i.e., the application of a trained model to novel data
which is similar to the training data w.r.t. format but following a different dis-
tribution. This situation arises for Purchases Shopping Carts, if for example not
enough high-quality shopping cart data for a specific retailer are available yet.
Thus, only few high-quality data (e.g., manually crafted examples) can be used
for testing and large amounts of low quality data from potentially different distri-
butions for training (e.g., from other retailers). In effect the distribution between
train and test data varies for this dataset. Similar to Purchases Shopping Carts
the dataset consists of 200, 000 records with 600 features and is analyzed for
C ∈ {10, 20, 50, 100} labels. However, each vector x in the training dataset X is
generated by using two independent random coins to sample a value from {0, 1}
per position i = 1, . . . , 600. The first coin steers the probability Pr[xi = 1] for a
fraction of 600 positions per record x. We refer to these positions as indicator
bits (ind) which indicate products frequently purchased together. The second
coin steers the probability Pr[xi = 1] for a fraction of 600 − (600|C| ) positions per
record. We refer to these positions as noise bits (noise) that introduce scatter in
addition to ind. We let Prind[xi = 1] = 0.8 ∧ Prnoise[xi = 1] = 0.2, ∀x ∈ Xtrain

and Prind[xi = 1] = 0.8 ∧ Prnoise[xi = 1] = 0.5,∧x ∈ Xtest, 1 ≤ i ≤ 600. The
difference in information entropy between test and train data is ≈0.3.

5 Experiments

We perform an experiment which compares the privacy-accuracy trade-off for
LDP and CDP by MI AP instead of privacy parameter ε per dataset. The results
of each experiment are visualized by three sets of figures. First, we compare the
relative privacy-accuracy trade-off ϕ resulting from test accuracy and MI AP
over ε. We present this information for CDP per dataset in Figs. 2, 3, 4 and 5a,
b, c and for LDP in Figs. 2, 3, 4 and 5d, e, f. The obtained information serves as
basis to identify privacy parameters at which the MI AP is converging towards
the baseline. Second, we state the precision-recall curves from which MI AP was
calculated to illustrate the slope with which precision and recall are diverging
from the baseline for LDP and CDP in Figs. 2, 3, 4 and 5g,h. Third, we compare
the absolute privacy-accuracy trade-offs per dataset for both LDP and CDP in a
scatterplot. We present this information in Figs. 2, 3, 4 and 5i. For each dataset
the model training stops once the test data loss is stagnating (i.e., early stopping)
or a maximum number of epochs is reached. This design avoids excessive over-
fitting and increases real-world relevance. For all executions of the experiment
2 We provide this dataset along with all evaluation code on GitHub: https://

github.com/SAP-samples/security-research-membership-inference-and-differential-
privacy.

https://github.com/SAP-samples/security-research-membership-inference-and-differential-privacy
https://github.com/SAP-samples/security-research-membership-inference-and-differential-privacy
https://github.com/SAP-samples/security-research-membership-inference-and-differential-privacy
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CDP noise is sampled from a Gaussian distribution (cf. Definition 3) with scale
σ = noise multiplier z × clipping norm C. We evaluate increasing noise regimes
per dataset by evaluating noise multipliers z ∈ {0.5, 2, 4, 6, 16} and calculate the
resulting ε at a fixed δ = 1

n . However, since batch size, dataset size and number
of epochs are also influencing the Renyi differential privacy accounting a fixed z
will inevitably result in different composed ε for different datasets. For LDP we
use the same hyperparameters as in the original training and evaluate two local
randomizers, namely randomized response and LDP image pixelization with the
Laplace mechanism. For each randomizer we state the individual εi per invoca-
tion (i.e., per anonymized value). We apply randomized response to all datasets
except LFW with a range of privacy parameter values εi ∈ {0.1, 0.5, 1, 2, 3} that
reflect retention probabilities ρ from 5%–90% (cf. Eq. (1)). For LFW each pixel
is perturbed with Laplace noise, and also investigate a wide range of resulting
noise regimes by varying εi.

Fig. 2. Texas Hospital Stays accuracy and privacy (error bars lie within points)
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For sake of completeness we provide the resulting overall privacy parameters
ε, z, hyperparameters and train accuracies for all datasets for LDP and CDP
in Table 1 and 2 in the appendix. The experiment is repeated five times per
dataset to stabilize measurements and we report mean values with error bars
unless otherwise stated. Precision-recall curves depict all experiment data.

Texas Hospital Stays. For Texas Hospital Stays we observe that LDP and CDP
are achieving very similar privacy-accuracy trade-offs under MI. The main dif-
ference in LDP and CDP is observable in a smoother decrease of target model
accuracy for CDP in contrast to LDP, which are depicted in Figs. 2a and d.
The smoother decay also manifests in a slower drop of MI AP for CDP in com-
parison to LDP as stated in Figs. 2b and e. Texas Hospital Stays represents an
unbalanced high dimensional dataset and both factors foster MI. However, the
increase in dataset imbalance by increasing C is negligible w.r.t. MI AP. The
relative privacy-accuracy trade-off for LDP and CDP is also close and for exam-
ple the baseline MI AP of 0.5 is reached at ϕ ≈ 1.5, as depicted in Figs. 2c and
f. In the example case of C = 300 DO might prefer to use CDP, since the space
of achievable MI APs in LDP is narrow while CDP also yields APs in between
original and baseline as illustrated in the precision-recall curves in Figs. 2g and h,
and the scatterplot in Fig. 2i. This observation is similar, though weaker, for all
other C.

Purchases Shopping Carts. CDP and LDP are achieving similar target model
test accuracies on the Purchases dataset as depicted in Figs. 3a and d. However,
LDP is allowing a slightly smoother decrease in test accuracy over ε. Figure 3b
illustrates that the CDP MI AP is somewhat resistant to noise and remains above
0.5 until a small ε ≈ 1. The LDP MI APs are significantly higher and decrease
slower to the baseline as depicted by Fig. 3e. A comparison of the relative privacy-
accuracy trade-offs ϕ in Figs. 3c and f underlines that CDP and LDP achieve
similar trade-offs and LDP allows for smoother drops in the MI AP in contrast to
CDP. Thus, LDP is the preferred choice for this dataset, if DO desires to lower
the MI AP to a level between original and baseline. This is illustrated for example
for C = 50 in the precision-recall curves in Figs. 3g, h and the scatterplots in
Fig. 3i. It is noticeable that while the overall ε for LDP and CDP differs by a
magnitude of up to 10 times the relative and absolute privacy-accuracy trade-offs
are close to each other. The observations also hold for other C.

LFW. For LFW the target model reference architecture converges for both CDP
and LDP towards the same test accuracy, which is reflecting the majority class.
However, the target model test accuracy decay over ε is much smoother for CDP
when comparing Figs. 4a and d. Furthermore, the structural changes caused by
LDP image pixelization seem to lead to quicker losses in test accuracy. W.r.t. the
relative privacy-accuracy trade-off ϕ in Figs. 4c and f CDP outperforms LDP.
At MI AP = 0.5 CDP achieves ϕ ≈ 1.5 for all C while LDP yields ϕ ≈ 1.1
for all C. The ϕ = 0 observed at εi = 10000 for C = 100 is due to an actual
increase in AP that is comparatively larger than the decrease in test accuracy.
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Fig. 3. Purchases accuracy and privacy (error bars lie within points)

The exemplary precision-recall curves for C = 50 in Figs. 4g and h furthermore
illustrate that CDP can already have a large effect on MI AP at high ε. In
addition, we observe from Fig. 4i that CDP realizes a strictly better absolute
privacy-accuracy trade-off under MI for C = 50.

Skewed Purchases. The effects of dimensionality and imbalance of a dataset
on MI have been addressed by related work [31,38]. However, the effect of a
domain gap between training and test data which is found in transfer learning
when insufficient high-quality data for training is initially available and reference
data that potentially follows a different distribution has not been addressed.
For this task we consider the Skewed Purchases dataset. Figures 5a and d show
that the LDP test accuracy is in fact only decreasing at very small εi whereas
CDP again gradually decreases over ε. This leads to a consistently higher test
accuracy in comparison to CDP. W.r.t. the relative privacy-accuracy trade-off
LDP outperforms CDP as depicted by ϕ in Figs. 5c and f. However, we observe
several outliers. Most notably for CDP, the MI AP decreases for C = 100 and
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Fig. 4. LFW accuracy and privacy (error bars lie within points)

large ε values, but increases for small ε as shown in Fig. 5b. This is a consequence
of the target model resorting to random guessing for test records. Similarly, for
LDP the MI AP for C ∈ {10, 100} first decreases before recovering again as
depicted in Fig. 5e. We reason about the cause of these outliers by analyzing
the target model decisive confidence values. LDP generalizes the training data
towards the test data, however, at εi = 1.0 LDP leads to nearly indistinguishable
test and train distributions. Thus, the decisive softmax confidence of the target
model increases in comparison to smaller and larger εi. For C = 10 the absolute
privacy-accuracy trade-off is also favorable for LDP as depicted in Fig. 5i.
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Fig. 5. Skewed Purchases accuracy and privacy (error bars lie within points)

6 Discussion

Privacy Parameter ε Alone is Unsuited to Compare and Select and Compare DP
Mechanisms. We consistently observed that while the theoretic upper bound
on inference risk reflected by ε in LDP is higher by a factor of hundreds or
even thousands in comparison to CDP, the practical protection against a white-
box MI attack is actually not considerably weaker at similar model accuracy.
For Texas Hospital Stays LDP mitigates white-box MI at an overall ε = 6382
whereas CDP lies between ε = 0.9 for C = 100 and ε = 0.3 for C = 300. This
observation at the baseline AP also holds for Purchases Shopping Carts where
LDP ε = 60 and CDP is between ε = 0.4 for C = 10 and ε = 0.3 for C = 100,
and LFW (LDP ε = 62.5 × 102, CDP ε = 2.1 to ε = 1.5). Thus, we note that
assessing privacy solely based on ε falls short. Given the results of the previous
sections we rather encourage data scientists to also quantify privacy under an
empirical attack such as white-box MI in addition to ε.
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LDP and CDP Result in Similar Privacy-Accuracy Curves. A wide range of pri-
vacy regimes in CDP and LDP can be compared with our methodology under
MI. We observed for most datasets that similar privacy-accuracy combinations
are obtained for well generalizing models (i.e., use of early stopping against
excessive overfitting) that were trained with LDP or CDP. We also ran the
experiments with black-box MI (i.e., only model outputs) and observed that the
additional assumptions made by white-box MI (e.g., access to internal gradient
and loss information) only yield a small increase in AP (3–5%). The privacy-
accuracy scatterplots depict that LDP and CDP formulate very similar privacy-
accuracy trade-offs for Purchases Shopping Carts, LFW and Texas Hospital
Stays. At two occasions on the smaller classification tasks Purchases Shopping
Carts C = {10, 20} and Skewed Purchases C = {10, 20} LDP realizes a strictly
better privacy-accuracy trade-off w.r.t. the practical inference risk. These obser-
vations lead us to conclude that LDP is an alternative to CDP for differentially
private deep learning on binary and image data, since the privacy-accuracy trade-
off is often similar at the same model accuracy despite the significantly larger
ε. Thus, data scientists should consider to use LDP especially when required to
use optimizers without CDP implementations or when training ensembles (i.e.,
multiple models over one dataset), since the privacy loss will accumulate over
all ensemble target models when assuming that training data is reused between
ensemble models. Here, we see one architectural benefit of LDP: flexibility. LDP
training data can be used for all ensemble models without increasing the privacy
loss in contrast to CDP.

The Relative Privacy-Accuracy Trade-Off is Favorable Within a Small Interval.
We observed that the privacy-accuracy trade-off as visualized in the scatterplots
throughout this work allows to identify whether CDP or LDP achieve better
test accuracy at similar APs. However, the scatterplots do not reflect whether
target model test accuracy is decreasing slower, similar or stronger than MI
AP decreases over the privacy parameter ε. For this purpose we introduced ϕ.
We found that ϕ allows to identify ε intervals in which the AP loss is stronger
than the test accuracy loss for all datasets. On the high dimensional datasets
Texas Hospital Stays and LFW CDP consistently achieves higher ϕ than LDP.
In contrast, ϕ values are similar for LDP and CDP on Purchases, and superior
for LDP on Skewed Purchases.

7 Related Work

Our work is related to DP in neural networks, attacks against the confidentiality
of training data and performance benchmarking of neural networks.

CDP is a common approach to realize differentially private neural networks
by adding noise to the gradients during model training. Fundamental approaches
for perturbation with the differentially private gradient descent (DP-SGD) dur-
ing model training were provided by Song et al. [39], Bassily et al. [4] and Shokri
et al. [37]. Abadi et al. [1] formulated the DP-SGD that was used in this work.
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Mironov [29] introduces Renyi DP for measuring the DP-SGD privacy loss over
composition. Iyengar et al. [23] suggest a hyperparameter free algorithm for dif-
ferentially private convex optimization for standard optimizers.

Fredrikson et al. [15,16] formulate model inversion attacks that use tar-
get model softmax confidence values to reconstruct training data per class. In
contrast, MI attacks address the threat of identifying individual records in a
dataset [3,36]. Yeom et al. [44] have demonstrated that the upper bound on
MI risk for CDP can be converted into an expected bound for MI Advantage.
We state MI precision and recall, arguing that in is the sensitive information.
Jaymaran and Evans [24] showed that the theoretic MI upper bound and the
achievable MI lower bound are far apart in CDP. We observe, that LDP can be
an alternative to CDP as the upper and lower bounds are even farther apart from
each other. Shokri et al. [32] formulate an optimal mitigation against their MI
attack [38] by using adversarial regularization. By applying the MI attack gain as
a regularization term to the objective function of the target model, a non-leaking
behavior is enforced w.r.t. MI. While their approach protects against their MI
adversary, DP mitigates any adversary with arbitrary background information.
Carlini et al. [6] suggest exposure as a metric to measure the extent to which
neural networks memorize sensitive information. Similar to our work, they apply
DP for mitigation. We focus on attacks against machine learning models target-
ing identification of members of the training dataset. Abowd and Schmutte [2]
describe an economic social choice framework to choose privacy parameter ε. We
compare LDP and CDP mechanisms aside from ε. Rahman et al. [35] applied a
black-box MI attack against DP-SGD models on CIFAR-10 and MNIST. They
evaluate the severity of MI attack by the F1-score which results in numerically
higher scores, but assumes out labels to be sensitive.

MLPERF [30] and DPBench [19] are frameworks for machine learning perfor-
mance measurements and evaluation of DP. We focus on comparing the privacy-
utility trade-off and apply the core principles of both benchmarks.

8 Conclusion

We compared LDP and CDP mechanisms for differentially private deep learning
under a white-box MI attack. The comparison comprises the average precision
of the MI precision-recall curve and the target model test accuracy to support
data scientists in choosing among available DP mechanisms and selecting privacy
parameter ε. Our experiments on diverse learning tasks show that neither LDP
nor CDP yields a consistently better privacy-accuracy trade-off. While MI only
yields a lower bound on MI whereas ε in DP yields an upper bound, we observed
that the lower bounds for LDP and CDP are close at similar model accuracy
despite large difference in their upper bound. This suggests that the upper bound
is far from the practical susceptibility to MI attacks and that data scientists
should also consider to apply LDP despite the large privacy parameter values.
Especially, since LDP does not require privacy accounting when training multiple
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models and offers flexibility w.r.t. optimizers. We consider the relative privacy-
accuracy trade-off for LDP and CDP as the ratio of losses in accuracy and
privacy over ε, and show that it is only favorable within a small interval.

Acknowledgements. This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No. 825333
(MOSAICROWN).

Appendix

Neural network models and composed ε for LDP are provided in Table 1. We
state hyperparameters, composed ε for CDP, and training accuracies in Table 2.
Texas Hospitals Stays and Purchases Shopping Carts provided by Shokri et
al. are unbalanced in terms of records per class, as shown in Figs. 6 and 7.

Table 1. Overview of datasets considered in evaluation.

Dataset Model LDP

Texas Hospital

Stays [38]

Fully connected NN with three layers

(512 × 128 × C) [38]

19, 125 – 638

(6382 × εi)

Purchases Shopping

Carts [38]

Fully connected NN with two layers

(128 × C) [38] (i.e., logistic regression)

1800 – 60

(600 × εi)

Labeled Faces in the

Wild [22]

VGG-Very-Deep-16 CNN [34] 62.5 × 106 –

6, 250

(250 × 250 × εi)

Skewed Purchases Fully connected NN with two layers

(128 × C) [38] (i.e., logistic regression)

1, 800 – 60

(600 × epsi)

Fig. 6. Quantity of records per label for Purchases Shopping Carts
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Table 2. Target Model training accuracy (from orig. to smallest ε), CDP ε values
(from z = 0.5 to z = 16) and hyperparameters

C Texas Hospital Stays Purchases Shopping Carts LFW Skewed Purchases

100 150 200 300 10 20 50 100 20 50 100 10 20 50 100

LDP 0.86 0.92 0.83 0.81 0.99 1.0 1.0 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 0.97 0.97 0.95 0.94 1.0 1.0 1.0 1.0 1.0 1.0 0.99

1.0 1.0 1.0 1.0 0.88 0.85 0.86 0.90 1.0 0.96 1.0 1.0 1.0 1.0 0.97

1.0 1.0 0.98 0.92 0.64 0.58 0.69 0.79 0.22 0.18 0.13 1.0 0.99 0.97 0.89

0.99 0.95 0.86 0.72 0.58 0.47 0.62 0.75 0.24 0.17 0.13 0.93 0.98 0.9 0.80

0.82 0.71 0.59 0.53 0.44 0.38 0.49 0.51 0.25 0.17 0.13 0.52 0.55 0.71 0.45

CDP 0.86 0.92 0.83 0.81 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.74 0.75 0.69 0.62 0.95 0.91 0.82 0.63 0.99 0.87 0.79 1.0 1.0 0.97 0.58

0.57 0.54 0.48 0.42 0.91 0.84 0.71 0.51 0.76 0.5 0.35 1.0 0.96 0.6 0.1

0.35 0.31 0.26 0.22 0.80 0.69 0.46 0.27 0.44 0.28 0.25 0.92 0.8 0.25 0.02

0.22 0.19 0.16 0.13 0.69 0.51 0.28 0.14 0.36 0.23 0.18 0.89 0.64 0.12 0.02

0.05 0.04 0.03 0.02 0.28 0.14 0.05 0.02 0.32 0.19 0.13 0.66 0.24 0.03 0.01

ε 222.6 259.8 251.5 259.8 88.1 88.1 88.1 88.1 84.3 70.4 62.4 28.9 29.8 42.2 73.5

6.3 6.6 7.3 7.4 4.6 4.1 4.1 4.1 4.8 3.9 3.4 1.6 1.7 3.5 2.1

2.3 2.0 2.2 2.1 2.0 1.8 1.8 1.8 2.1 1.7 1.5 0.7 1.6 1.3 1.3

0.9 1.1 1.0 1.1 1.3 1.2 1.2 1.2 1.3 0.8 1.0 0.9 0.9 0.7 0.6

0.3 0.2 0.3 0.3 0.4 0.4 0.4 0.3 0.5 0.4 0.3 0.4 0.4 0.3 0.3

Learning rate Orig. 0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

CDP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.0008 0.0008 0.001 0.001 0.001 0.001

LDP 0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Batch size Orig. 128 128 128 128 128 128 128 128 32 32 32 100 100 100 100

CDP 128 128 128 128 128 128 128 128 16 16 16 100 100 100 100

LDP 128 128 128 128 128 128 128 128 32 32 32 100 100 100 100

Epochs Orig. 200 200 200 200 200 200 200 200 30 30 30 200 200 200 200

CDP 1000 1000 1000 1000 200 200 200 200 110 110 110 200 200 200 200

LDP 200 200 200 200 200 200 200 200 30 30 30 200 200 200 200

Clipping Norm CDP 4 4 4 4 4 4 4 4 3 3 3 4 4 4 4

Fig. 7. The Quantity of records per Label for the Texas Hospital Stays Dataset
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Abstract. Local differential privacy (LDP) has been received increas-
ing attention as a formal privacy definition without a trusted server. In
a typical LDP protocol, the clients perturb their data locally with a ran-
domized mechanism before sending it to the server for analysis. Many
studies in the literature of LDP implicitly assume that the clients hon-
estly follow the protocol; however, two recent studies show that LDP is
generally vulnerable under malicious clients. Cao et al. (USENIX Secu-
rity ’21) and Cheu et al. (IEEE S&P ’21) demonstrated that the mali-
cious clients could effectively skew the analysis (such as frequency esti-
mation) by sending fake data to the server, which is called data poisoning
attack or manipulation attack against LDP. In this paper, we propose
secure and efficient verifiable LDP protocols to prevent manipulation
attacks. Specifically, we leverage Cryptographic Randomized Response
Technique (CRRT) as a building block to convert existing LDP mech-
anisms into a verifiable version. In this way, the server can verify the
completeness of executing an agreed randomization mechanism on the
client side without sacrificing local privacy. Our proposed method can
completely protect the LDP protocol from output manipulation attacks,
and significantly mitigates unexpected damage from malicious clients
with acceptable computational overhead.

Keywords: Local differential privacy · Manipulation attack · Data
poisoning · Verifiable computation · Oblivious transfer

1 Introduction

Today’s data science has been very successful in collecting and utilizing large
amounts of data. Useful data often includes personal information, and there
are serious privacy concerns. In particular, recent data breaches [14,15] and
strict rules [12,13] by the government significantly promote the concerns. Local
differential privacy (LDP) [5,6] is a promising privacy-enhanced technique for
collecting sensitive information. Each client perturbs sensitive data locally by a
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randomized mechanism satisfying differential privacy. A server can run analysis
such as frequency estimation based on the perturbed data without accessing the
raw data. We can see the effectiveness and feasibility of LDP in recent production
releases of the platformers such as Google [7], Apple [8], and Microsoft [9], which
all utilize LDP for privacy-preserved data curation.

While many studies have been focusing on improving LDP’s utility [10,11,16–
19] in the literature, recent studies [1,2] report a vulnerability of LDP protocol
and alert the lack of security. Specifically, [1,2] show that the malicious clients
can manipulate the analysis, such as frequency estimation, by sending false data
to the server. Malicious clients can skew the estimations effectively by considering
that estimations are calculated by normalizing with randomization probability
defined in the LDP protocol and can even control the estimations. Their studies
significantly highlight the necessity of a secure LDP protocol to defend against
malicious clients. The problematic point of protecting such an attack is that,
in a general LDP protocol, others cannot verify the integrity of results without
the original data. The randomization would provide data providers plausible
deniability for their outputs.

To the best of our knowledge, no effective way in the literature can com-
pletely prevent manipulation attacks. Although Cao et al. [1] showed some of
the countermeasures against malicious clients, their empirical results showed
that preventing against output manipulation attack is still an open problem.
Among their proposed methods, the one normalizing the estimated probability
distribution was shown to be to some extent effective for input-manipulation
(i.e., the attackers can falsely manipulate the raw input data but honestly exe-
cute the local randomized mechanism). However, the proposed countermeasures
in [1] are not very effective for output-manipulation attack (i.e., the attackers can
arbitrarily change the output of the local randomized mechanism). In addition,
their detection-based countermeasures are based on the assumption of specific
attack methods and may not be effective against arbitrary output-manipulation
attacks. The authors concluded the need for more robust defenses against these
attacks. Concurrently, Cheu et al. [2] also emphasize the same conclusion for
manipulation attacks they call. There is another promising direction against an
attacker who exploits the random mechanism of Differential privacy. Narayan
et al. [3] propose an interesting scheme to prove integrity for executing correct
randomization mechanisms for Differential privacy. However, their setting is dif-
ferent from ours since they focus on central DP with the data curator, who has
the sensitive data, and the analyst, who creates the proof (in our setting, the
client needs to prove their local execution).

To solve these problems, we design a novel verifiable LDP protocol based
on Multi-Party Computation (MPC) techniques in this work. Our contributions
are summarized below. First, we categorize the attacks of malicious clients into
two classes, output-manipulation and input-manipulation (formally defined in
Sect. 3). For input-manipulation attacks, efficient countermeasures have been
provided in [1], but existing studies cannot prevent output-manipulation wholly
and effectively. We analyze the effectiveness of output-manipulation compared
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to input-manipulation, highlight the importance of output-manipulation pro-
tection, and formalize the definition of output-manipulation secure LDP proto-
col. Second, we propose secure and efficient verifiable LDP protocols to prevent
manipulation attack. Our protocols enable the server to verify the complete-
ness of executing an agreed randomization mechanism on the client side with-
out sacrificing local privacy. Specifically, we leverage Cryptographic Randomized
Response Technique (CRRT) [4] as a building block to convert existing state-of-
the-art LDP mechanisms including kRR [10], OUE [11], and OLH into output-
manipulation secure LDP protocols with negligible utility loss. Our proposed
secure protocols do not assume any specific attack, and work effectively against
general output-manipulation, and thus is more potent than previously proposed
countermeasures. Third, we conduct intensive experiments to test the perfor-
mance of the proposed protocols. We demonstrate that the proposed methods
can completely protect the LDP protocol from output manipulation attacks with
acceptable computational overhead.

2 Background: Attacks on LDP Protocols

2.1 Local Differential Privacy

Differential privacy (DP) [6] is a rigorous mathematical privacy definition, which
quantitatively evaluates the degree of privacy protection when we publish out-
puts about sensitive data in a database. DP is a central model where a trusted
server collects sensitive data and releases differentially private statistical infor-
mation to an untrusted third party. On the other hand, Local DP (LDP) is a
local model, considering an untrusted server that collects clients’ sensitive data.
Clients perturb their data on their local environment and send only randomized
data to the server to protect privacy.

In this work, we suppose server S collects data and aggregates them, and
N clients ci (0 ≤ i ≤ N − 1) send their sensitive data in a local differentially
private manner. Each client has an item v which is categorical data, and the
items have d domains and v ∈ [0, d − 1](:= [d]). Additionally, vi denotes ci’s
item. The clients randomize their data by randomization mechanism A, and ci

send A(vi) = yi(∈ D) to the server, where D is the output space of A. The
server estimates some statistics by F(y0, ..., yN−1). In particular of this work,
Fk corresponds to frequency estimation for item k (i.e., how many clients have
chosen item k). The formal LDP definition is as follows:

Definition 1 (ε-local differential privacy (ε-LDP)). A randomization
mechanism A satisfies ε-LDP, if and only if for any pair of input values v, v′ ∈ [d]
and for all randomized output y ∈ D, it holds that

Pr[A(v) ∈ y] ≤ eε Pr[A(v′) ∈ y].

Under a specific randomized algorithm A, we want to estimate the frequency
of any items. Wang et al. [11] introduce “pure” LDP protocols with nice sym-
metric property and a generic aggregation procedure to calculate the unbiased
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frequency estimations from given randomization probabilities. Let Support be a
function that maps each possible output y to a set of input that y supports.
Support is defined for each LDP protocol, and it specifies how the estimation
can be computed under the LDP protocol. A formal definition of pure LDP is
as follows:

Definition 2 (Pure LDP [11]). A protocol given by A and Support is pure if
and only if there exist two probability values p > q such that for all v1,

Pr[A(v1) ∈ {o|v1 ∈ Support(o)}] = p,

∀v2 �=v1 Pr[A(v2) ∈ {o|v1 ∈ Support(o)}] = q. (1)

where p, q are probabilities, and q must be the same for all pairs of v1 and v2.

While maximizing p and minimizing q make the LDP protocol more accurate,
under ε-LDP it must be p

q ≤ eε. The important thing is that, in pure LDP
protocol, we can simply estimate the frequency of item k as follows:

Fk =
∑

i 1Support(yi)(k) − Nq

p − q
(2)

We can interpret that this formula normalizes observed frequencies using prob-
abilities p and q to adjust for randomization.

For frequency estimation under LDP, we introduce three state-of-the-art ran-
domization mechanisms, kRR [10], OUE [11] and OLH [11]. These mechanisms
includes three steps: (1) Encode is encoding function: E : v(∈ [d]) → v′(∈ [g]) ,
(2) Perturbation is randomized function: A : v′(∈ [g]) → y(∈ D) , (3) Aggregation
calculates estimations from all collected values: F : (y0, ..., yN−1) → R. Formal
proofs that each protocol satisfies ε-LDP can be found in [11].

k-ary Randomized Response (kRR) is an extension of Randomized Response
[32] to meet ε-LDP. In particular, kRR provides accurate results in small item
domains. This mechanism does not require any special encoding, and provides a
identity mapping E(v) = v ([g] = [d]). Perturbation is as follows;

Pr[A(v) = y] =

⎧
⎪⎪⎨

⎪⎪⎩

p =
eε

eε + d − 1
, if y = v

q =
1 − p

d − 1
=

1
eε + d − 1

, if y �= v

(3)

For aggregation, we can consider Support function as Support(v) = (v) and make
this follow pure LDP protocol (Definition 2). Therefore, aggregation follows
Eq. (2).

Optimized Unary Encoding (OUE) encodes item v into d-length bit vector
and encode function is defined as E(v) = [0, ..., 0, 1, 0, ..., 0] where only single
bit corresponding to v-th position is 1. Final output space is also d dimensional
bit vector {0, 1}d (e.g. y = [1, 0, 1, 1, 0]). Let i-th bit of output vector as yi,
perturbation is as follows;
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Pr[yi = 1] =

⎧
⎪⎨

⎪⎩

p =
1
2

, if i = v

q =
1

eε + 1
, if i �= v

(4)

These p and q minimize the variance of the estimated frequency in similar bit
vector encoding (e.g. RAPPOR [7]). In aggregation step, we consider Support
function as Support(y) = {v|yv = 1}, and also calculate using Eq. (2).

Optimized Local Hashing (OLH) employs hash function for dimensional
reduction to reduce communication costs. It picks up H from a universal hash
function family H, and H maps v ∈ [d] to v′ ∈ [g] where 2 ≤ g < d. Therefore,
encode function is E(v) = H(v). Perturbation is the same as kRR, except that
the input/output space is [g]. Then, p and q is defined as follows;

Pr[A(x) = y] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p =
eε

eε + g − 1
, if y = H(v)

q =
1
g

· p +

(

1 − 1
g

)

· 1
eε + g − 1

=
1
g

, if y �= H(v)
(5)

In aggregation step, we consider Support function as Support(y) = {v|v ∈
[d] and y = H(v)} and follow Eq. (2) using p and q.

2.2 Attacks on LDP Protocols

In this subsection, we introduce two important studies suggesting caution to the
necessity of secure LDP protocols.

Targeted Attack. Cao et al. [1] focus on targeted attacks to LDP protocols,
where the attacker tries to promote the estimated frequencies of a specific item
set. Considering the attacker against the LDP protocols, M malicious clients,
who can arbitrarily control local environments and send crafted data to the
server, are injected by the attacker. (They call data poisoning attacks.) Attacker
wants to promote r target items T = {t1, ..., tr} in the frequency estimation. Cao
et al. propose three attacks: Random perturbed-value attack (RPA), Random
item attack (RIA), Maximal gain attack (MGA). The first two attacks are as
baselines and MGA is an optimized attack. In RIA, malicious clients perform
uniform random samplings of a value from the target item set. And then, fol-
lowing the LDP protocol, encoding and perturbation are performed and sent
to the server. MGA is more complicated than others. It aims to maximize the
attacker’s overall gain G: sum of the expected frequency gains for the target
items, G =

∑
t∈T E[Δft] where Δft represents the increase of estimated fre-

quency of item t (∀t ∈ T ) from without attack to with attack. In MGA, the
output item selection is performed according to the optimal solution maximiz-
ing the attacker’s gain and sent to the server without perturbation.
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Table 1. MGA can achieve the highest gains against all three protocols. β = M
N+M

and fT =
∑

t∈T ft in the table. (The summary results of [11].)

kRR OUE OLH

RPA (output-manipulation) β( r
d

− fT ) β(r − fT ) −βfT

RIA (input-manipulation) β(1 − fT ) β(1 − fT ) β(1 − fT )

MGA (output-manipulation) β(1 − fT ) +
β(d−r)
eε−1

β(2r − fT ) + 2βr
eε−1

β(2r − fT ) + 2βr
eε−1

Table 2. Overall, output-manipulations are much more vulnerable than input-
manipulation. The differences of both manipulations gain are calculated by output-
manipulation gain − input-manipulation gain (resp. output-manipulation gain/input-
manipulation gain) in Targeted (resp. Untargeted) Attack.

Targeted Attack [1] kRR OUE OLH

+

(
β(d − r)

eε − 1

)
+

(
β(2r − 1) +

2βr

eε − 1

)
+

(
β(2r − 1) +

2βr

eε − 1

)

Untargeted Attack [2] ×Ω

(√
d

ε

)

Cao et al. describe the details of these three attacks against kRR, OUE, OLH
in the frequency estimation and give theoretical analysis. The summary of the
results is shown in Table 1. The table shows the overall gains of the three attacks
against kRR, OUE, and OLH. MGA can achieve the highest gains for all proto-
cols, clearly because MGA maximizes the gains. A notable point is a difference,
summarized in Table 2, showing the difference in gains between MGA and RIA
They respectively correspond to output-manipulation and input-manipulation
(described later) in our work. Note that the difference is remarkable, especially
under the higher privacy budget.

Untargeted Attack. Albert et al. [2] analyze manipulation attacks in LDP.
Compared to Cao et al.’s work, their study mainly focuses on untargeted attacks.
The attackers aim to skew the original distribution and degrade the overall
estimation accuracy of the server.

They suggest for the LDP protocols that the architecture is inherently vulner-
able to malicious clients’ manipulations. They suppose a general manipulation
attack: the attacker injects M users in N clients in the LDP protocol. These
injected users can send arbitrary data sampled from carefully skewed distribu-
tions to the server without supposed perturbation. We consider this attacker
model corresponds to MGA in [1] and output-manipulation (described later) in
this paper. We should focus on one of their contributions: they show the general
manipulation attack can skew the estimated distribution by Ω(M

√
d

εN ) in the fre-
quency estimation, which causes more significant error than input-manipulation
by about a

√
d

ε factor (Table 2). The difference is, for example, defined as l1-norm
of the original and skewed distribution.

Summary. We summarize these notable results in Table 2, showing how effective
output-manipulation can attack compared to input-manipulation. The above two
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Fig. 1. From top to bottom, normal protocol, input-manipulation attack and output-
manipulation attack against an LDP protocol.

previous studies’ common conclusion is highlighting the great necessity of enforc-
ing the correctness of users’ randomization to defend the output-manipulation
attacks.

3 Problem Statements

Firstly, we give some notations to LDP protocols, partially following the above-
mentioned in Sect. 2. We denote a single LDP protocol as πi, where a client ci

sends sensitive data v to server S in ε-LDP manner. Encode and perturbation
are denoted together as φ. φ is a probabilistic function (i.e., randomization mech-
anism) that takes v ∈ [d] as input and output y ∈ D, such that output space
D = [d] if kRR, D = {0, 1}d if OUE, D = [g] if OLH. And we denote overall
protocol including all clients as Π = {πi|i ∈ [N ]}.

3.1 Overview of Our Goal

An attacker against Π injects compromised users into the protocol to send many
fake data to a central server. Note that such an attack results in manipulation
against a single protocol π by each compromised user. Therefore, we consider
security for π, and by protecting security for π, we can naturally protect security
for Π. As for the attacker’s capability, the attacker can access the implementation
of φ because this is executed on clients’ local, and he knows all parameters and
functions including φ, ε, d, D and Support(y), and employs this information
to craft effective malicious outputs. However, in fact, there is little variation in
the attacker’s behavior because the server can easily deny the protocol if output
y /∈ D. Under such conditions, as shown in Fig. 1, we can observe that an attacker
can carry out the following two classes of attacks:
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Input-manipulation supposes that the attacker can only select input data
v ∈ [d] and cannot interfere with other parameters and functions in π (middle
in Fig. 1). In other words, the attacker must send y = φ(v). But in a realistic
setting, we should consider it a too strong assumption, as it allows an attacker
to have complete control over the local system environment. For example, in
targeted attack, RIA corresponds to this class of attacks.

Output-manipulation supposes the attacker can send arbitrary outputs to
the server (bottom in Fig. 1). This corresponds to the attacker can ignore all
parameters and functions ε, φ by manipulating outputs directly. This attack
is an entirely reasonable attack against a general LDP protocol because the
server cannot distinguish between true data or fake data. In targeted attack,
it corresponds to MGA or the attacks proposed in [2] for untargeted attack.
Generally, this class effectively attacks, as shown in Table 2.

An important observation from Sect. 2.2 is that input-manipulation is much
less effective than output-manipulation. Therefore, the natural direction is to
defend against output-manipulation and limit the attack to the range of input-
manipulation to achieve secure LDP protocols. On the other hand, it is hard
to prevent input-manipulation completely. These have been studied in the fields
of game theory [26,27] or truth discovery [28], and we leave such a solution as
future work.

Overall, our goal is to mitigate attacks against the LDP protocols by com-
pletely defending output-manipulation and limiting to input-manipulation. For
this purpose, we consider enforcing the correct mechanism φ for protocol π. The
key idea is to make the protocol verifiable against malicious clients from a server.
In the rest of the paper, we refer to this property as output-manipulation secure.
(It is also expressed simply as secure, and we call it as secure LDP protocol.)

Definition 3 (output-manipulation secure). An LDP protocol π is output-
manipulation secure if any malicious client cannot perform output-manipulation
and can only perform input-manipulation against π.

3.2 Security Definitions

In this subsection, we clarify what we should achieve for a secure LDP protocol.
Similar to [4], security definitions of secure LDP protocol are consistent with a tra-
ditional secure two-party computation (2PC) protocol described in [25]. It consid-
ers an ideal world where we can employ Trusted Third Party (TTP) to execute
arbitrary confidential computations indeed. And we aim to replace the TTP with
a real-world implementation of cryptographic protocol π = (c, S) between client
c and server S. The protocol’s flow when using a TTP is very simple. The client c
sends input v to the TTP, and the TTP provides y = φ(v) to S. After all, c and
S never receive any other information; S does not know v, and c does not know y.
(S can estimate v from y and φ, but c’s privacy should be guaranteed by LDP.)

While it is seemingly apparent that this ideal world’s protocols will satisfy
our requirements, let us review possible attacks closely. Goldreich [25] summa-
rizes that there are just three types of attacks in malicious model 2PC against
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ideal world protocols; (1) denial of participation in the protocol; (2) fake input,
not the true one; (3) aborting the protocol prematurely. We cannot hope to
avoid these, but (1) and (3) cannot influence the estimation of original data
distributions in LDP protocols. (2) is exactly input-manipulation described in
the previous subsection. Thus, it is sufficient that the ideal world in 2PC is
output-manipulation secure (see Definition 3) in the LDP protocols.

Considering the substituted cryptographic protocol π = (c, S), let client
c as prover P and server S as verifier V and π = (P,V). More specifically,
we should guarantee secure LDP under the worst case that both P and V
behave maliciously. The case where P is malicious is obvious, considering output-
manipulation. Still, in the V’s case, it is because, given the original scenario of
LDP, we need to guarantee the privacy of P. And, we assume P is a polynomial
computational adversary and V is unbounded.

Following [4], the ideal world protocol can be substituted with protocol π if
(a) for any prover algorithm P∗, V who receives φ(v) = y accepts only when
P∗’s secret input is surely v, or otherwise halts with negligible error; (b) for any
prover algorithm P∗, y is indistinguishable from other categories; (c) for any
verifier algorithm V∗, v is indistinguishable from other categories. Additionally,
we need to verify that the randomization function φ used in the protocol does
indeed satisfy ε-LDP.

Let viewP (resp. viewV) as the set of messages generated by the protocol
that P (resp. V) can observe And let k as a security parameter that increases
logarithmically with cryptographic strength. Then, our security definitions are
reduced as following three properties:

– Verifiability: This property corresponds to the above-mentioned (a). We
consider the protocol is verifiable if it satisfies as follows;

Pr[V does not halts |y ← φ(∗)] = 1 and, (6)

1 − Pr[V halts |y ← P∗] < negl(k) (7)

where negl(k) is negligible function in k, y ← φ(∗) means y is obtained by
correct execution of φ and y ← P∗ means y is obtained by P∗ other than
correct φ(v).

– Indistinguishability: This property corresponds to (b) and (c). (b) satisfies
if viewP∗ has indistinguishable distributions for any input category v ∈ [d].
Formally, we define this property as follows; for any adversary P∗,

|Pr[P∗(viewP∗ , v) = y] − Pr[P∗(v) = y]| < negl(k) (8)

where negl(k) is negligible function in k. This means that a malicious client
can use any information obtained from the protocol but only get negligible
information about the final output of the server side. Similarly, (c) satisfies
if, for any unbounded adversary V∗,

|Pr[V∗(viewV∗ , y) = v] − Pr[v|y]| < negl(k) (9)

– Local Differential Privacy: The randomization mechanism φ in the given
protocol must satisfy ε-LDP as shown in Definition 1. The verification of the
correct execution is performed in Eq. (6).
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4 Proposed Method

We design secure LDP protocols for kRR, OUE, and OLH, respectively, so
that we defend output-manipulations completely. In our method, a major build-
ing block is Cryptographic Randomized Response Technique (CRRT) [4] which
employs Pedersen’s commitment scheme [21] for secure verifiability using addi-
tive homomorphic property, and Naor-Pinkas 1-out-of-n Oblivious Transfer (OT)
technique [22] for tricks for a verifiable randomization mechanism. Overall, the
proof of validity is based on disjunctive proof [23]. It is a lightweight interac-
tive proof protocol based on a secret sharing scheme and, can perform witness-
indistinguishable [31] proofs of knowledge (similar to zero-knowledge proofs).
Combined with the security of the encryption scheme proposed in [4], it is pos-
sible to securely prove that the output value y is obtained by sampling from a
probability distribution that satisfies the ε-LDP i.e. y = φ(v). For simplicity, we
explain several phases separately in the following protocol description (Protocol
1, 2), but they can be done simultaneously in the actual implementation.

Before explanation of the protocols in detail, we introduce the following cryp-
tographic setting. Assume that p and q are sufficiently large primes such that q
divides p − 1, Zp has a unique subgroup G of order q. q is the shared security
parameter between P and V. Security parameter k is k = log2 qmax such that
qmax is the maximum value of possible q. We select g and h as a public key.
They are two generators of G and, their mutual logarithms logg h and loghg are
hard to compute. We use this public key in the following protocols.

4.1 Secure kRR

Protocol 1 shows the details of the secure version of kRR, an extension of CRRT
[4] to satisfy LDP for multidimensional data. As a whole, in the setup phase,
both P and V prepare the same parameters l, n, z from accuracy parameter width
and privacy budget ε by Algorithm 1. l, n, z identify an categorical probability
distributions that satisfies LDP and we use it in 1-out-of-n OT for verifiable
random sampling. In mechanism phase, P creates a vector μ representing the
categorical distribution containing n data where each data μi corresponds to
one of the categories [d]. width (i.e., n) is the size of the vector and decides a
trade-off between accuracy to approximate LDP and overheads caused by the
protocol. For proof P2, we use zμi instead of μi. All zμi is encrypted to yi by an
encryption scheme that combines Pedersen’s commitment and OT. Only the μσ,
where σ is pre-chosen by V, can be decrypted correctly. Such a trick allows us
to surely perform random sampling from vector μ representing the categorical
distribution. In the proof phase, two proofs are verified in the protocol. The
first one is a disjunctive proof for each encrypted data yi belonging to one of
the categories [d] (P1) . The second one also uses a disjunctive proof that the
summation of the vector used as categorical distribution in the OT belongs to one
of the possible values (P2). There are just d possible values for the summation
of μ (4.(a)).
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Algorithm 1. DecideSharedParameters

Input: ε, width
1: i ← � eε

(d−1)+eε � // as an integer
2: while i > 0 do
3: if (width − i) divides (d − 1) then
4: g ← gcd(i, width, width−i

d−1
)

5: l, n ← i
g
, width

g

6: break
7: end if
8: i ← i − 1
9: end while

10: z ← max([l, n−l
d−1

]) + 1
Output: l, n, z

Here, we confirm Protocol 1 is secure. From the protocol, prover and ver-
ifier get viewP = {ga, gb, gab−σ−1, xi, x} and viewV = {wi, yi, com

(j)
i , c

(j)
i , h

(j)
i ,

comj , ci, hi} for all i ∈ [n], j ∈ [d] respectively.
Firstly, we consider indistinguishability. Our encryption scheme (e.g., μi is

encrypted to yi) is the same as the one presented in [4], which has been shown
that a protocol using the scheme is sufficiently indistinguishable for P∗ and V∗.
That is, it is as hard for P∗ to know about the σ, and also hard for V∗ to guess
the distribution of μ and input v. Considering the attacker views, for P∗, calcu-
lating σ from viewP is as hard as the Decisional Diffie Hellman (DDH) problem.
And x and xi are completely random integers. For V∗, (wi, yi) of viewV is indis-
tinguishable by the security of the cryptographic scheme, and (com(j)

i , c
(j)
i ) is

also indistinguishable because of the secret sharing scheme [23]. Verifiability is
satisfied by proofs, P1 and P2. If both P1 and P2 are verified, V itself selects
one value from the verified vector by OT. Then, for any operation by P∗, V can
confirm the correctness of the protocol. Hence, verifiability entirely depends on
the protocol that proves the P1 and P2. We use disjunctive proofs and Eq. (6)
and Eq. (7) are respectively satisfied by the completeness and soundness of the
disjunctive proofs shown in [23]. Lastly, Algorithm 1 definitely generates l, n
such that l

n ≤ eε

(d−1)+eε and n−l
d−1 ≥ 1

(d−1)+eε . Hence, because random sampling
from μ is equivalent to kRR with p = l

n , q = n−l
d−1 , at least ε-LDP is satisfied.

4.2 Secure OUE

We show the secure version of OUE protocol in Protocol 2. Unlike kRR, OUE
sends a d-length bit vector where each i-th bit corresponds to that client likely
has the item i ∈ [d]. In OUE, mechanism φ performs random bit flips with given
constant probability independently for each bit. The Bernoulli distributions,
which determine the probabilities of each flip, are approximated by a distribution
of n-length bit vectors. As in the case of kRR, verifiable random sampling is
achieved by a trick using Pedersen’s commitment and OT. However, there are d
distribution vectors since it needs for each category.
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Protocol 1. secure kRR

Client c as prover P who holds an secret input v ∈ [d] and server S as verifier V. ε is
privacy budget and width is a parameter representing the degree of approximation.

1. Setup phase.
(a) P and V run DecideSharedParameters(ε, width) and prepare l, n, z as

shown in Algorithm 1. This is an algorithm for approximating integers l, n, z
for given ε with as little degradation in accuracy as possible while still satis-
fying privacy protection.

(b) V selects σ ∈ [n]. And P prepares a n-length random number vector μ =
(μ1, ..., μn) where for all 1 ≤ i ≤ n, μi ∈ [d], the vector satisfies #{μi|μi ∈
μ and μi = v} = l and for all {v′|v′ ∈ [d] \ {v}}, #{μi|μi = v′} = n−l

d−1
where

#{·} returns count on a set.
2. Mechanism phase.

(a) V picks random a, b ← Zq and sends ga, gb and gab−σ+1 to P.
(b) For all i ∈ {1, ..., n}, P performs the following subroutine; (1) Generate

(ri, si) at random; (2) Compute wi ← gri(ga)si = gri+asi and hi ←
(gb)ri(gab−σ+1gi−1)si = g(ri+asi)b+(i−σ)si ; (3) Encrypt μi to yi as yi ← gzμi

hi .
Then, send (wi, yi) to V.

(c) V computes wb
σ where σ is what V choose at setup phase, and computes gμσ ←

yσ

hwb
σ

. And then, find μσ from the result and g. Thus, V receives μσ as a

randomized output from P.
3. Proof phase for P1.

(a) For all j ∈ [d] \ {μi}, for all i ∈ {1, ..., n}, P generates challenge c
(j)
i and

response s
(j)
i from Zq and prepares commitments com

(j)
i ← hs

(j)
i /(yi/gzj

)c
(j)
i .

For {μi} and for all i ∈ {1, ..., n}, P generates wi ← Zq and let com
(μi)
i = hwi .

Then, send com
(j)
i to V, for all i, j.

(b) V picks xi ← Zq for all i ∈ {1, ..., n} and sends it to P.

(c) For all i ∈ {1, ..., n}, P computes c
(μi)
i = xi − ∑

j∈[d]\μi
c
(j)
i and s

(μi)
i =

vic
(μi)
i + wi. Then, send c

(j)
i and s

(j)
i for all i, j to V.

(d) Finally, V checks if hs
(j)
i = b(yi/gzj

)c
(j)
i for all j ∈ [d] and xi =

∑
j∈[d] c

(j)
i , for

all i ∈ 1, ..., n. Otherwise halts.
4. Proof phase for P2.

(a) For all j ∈ [d] \ {v}, P generates challenge cj and response sj from Zq

and prepares commitments comj ← hsj /(
∏

i∈{1,..,n}yi/g
Zj )

cj where Zj =

n−l
d−1

(∑
k∈[d]\{j} zk

)
+ lzj . And P generates w ← Zq and let comv = hw.

Then, send comj to V, for all j ∈ [d].
(b) V picks x ← Zq and sends it to P.

(c) P computes cv = x−∑
j∈[d]\{v} cj and sv =

(∑
i∈1,...,n vi

)
cv +w. Then, send

cj and sj for all j to V.
(d) Finally, V checks if hsj = b(

∏
i∈{1,..,n} yi/gZj )cj for all j ∈ [d] and x =

∑
j∈[d] cj . Otherwise halts.
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Protocol 2. secure OUE

P, v ∈ [d], V, width, ε as with Protocol 1.

1. Setup phase.
(a) P and V set l, n as � 1

1+eε · width� and width itself respectively.
(b) V selects d random numbers σ = {σ1, ..., σd} where 1 ≤ σj ≤ n. P prepares

d n-length random bit vectors μ = (μ1, ..., μn ) such that μj = (μ
(j)
1 , ..., μ

(j)
n )

where all μ
(j)
i ∈ {0, 1}, and the vector satisfies

∑
i μ

(j)
i = n − l if j = v and

∑
i μ

(j)
i = l if j 	= v.

2. Mechanism phase.
(a) V picks random aj , bj ← Zq and sends gaj , gbj and gajbj−σj+1 to P for all

j ∈ [d].
(b) For all j ∈ [d] and i ∈ {1, ..., n}, P performs the following subroutine;

(1) Generate (r
(j)
i , s

(j)
i ) at random; (2) Compute w

(j)
i ← gr

(j)
i (gaj )s

(j)
i =

gr
(j)
i +as

(j)
i and h

(j)
i ← (gbj )r

(j)
i (gajbj−σj+1gi−1)s

(j)
i = g(r

(j)
i +as

(j)
i )bj+(i−σj)s

(j)
i ;

(3) Encrypt μ
(j)
i to y

(j)
i as y

(j)
i ← gμ

(j)
i hh

(j)
i . Then, P sends all (w

(j)
i , y

(j)
i ) to

V.

(c) For all j ∈ [d], V computes g
μ
(j)
σj ← y

(j)
σj /h

(w
(j)
σj

)
bj

. And then, find μσj . Thus,
V receives [μσ1 , ..., μσd ] as a randomized output from P.

3. Proof phase for P1.
(a) For all j ∈ [d], for all i ∈ {1, ..., n}, P generates challenge c

(j)

1−μ
(j)
i ,i

and response s
(j)

1−μ
(j)
i ,i

from Zq and prepares commitments com
(j)

1−μ
(j)
i ,i

←

h
s
(j)

1−μ
(j)
i

,i/(y
(j)
i /gμ

(j)
i )c

(j)
i . Generate w

(j)
i ← Zq and compute com

(j)

(μ
(j)
i ),i

←

hw
(j)
i . Then, send com

(j)

{0,1},i to V, for all i, j.

(b) V picks x
(j)
i ← Zq for all j ∈ [d] and i ∈ 1, ..., n and sends it to P.

(c) For all j ∈ [d] and i ∈ {1, ..., n}, P computes c
(j)

μ
(j)
i ,i

= x
(j)
i − c

(j)

1−μ
(j)
i ,i

and

s
(j)

μ
(j)
i ,i

= v
(j)
i c

(j)

μ
(j)
i ,i

+ w
(j)
i . Then, send c

(j)

{0,1},i and s
(j)

{0,1},i for all i, j to V.

(d) Finally, V checks if h
s
(j)
{0,1},i = b(y

(j)
i /g{0,1})c

(j)
{0,1},i and x

(j)
i = c

(j)
0,i + c

(j)
1,i , for

all i ∈ {1, ..., n} and for all j ∈ [d]. Otherwise halts.
4. Proof phase for P2. (Simplified because it is similar to P1.)

(a) P generates and sends all com
(j)

{p,q} to V.

(b) V picks xj ← Zq for all j ∈ [d] and sends it to P.

(c) P sends c
(j)

{p,q} and s
(j)

{p,q} for all j to V
(d) V checks if hs

(j)
p = b(

∏
i∈1,..,n y

(j)
i /gn/2)c

(j)
p and hs

(j)
q = b(

∏
i∈1,..,n y

(j)
i /gl)c

(j)
q

and xj = c
(j)
p + c

(j)
q for all j ∈ [d]. Otherwise halts.

5. Proof phase for P3.
(a) P computes hsum ← ∑

i,j h
(j)
i and sends hsum to V.

(b) V checks if hhsumgn/2+l(d−1) =
∏

i,j y
(j)
i . Otherwise halts.
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In addition, each vector’s distribution is one of two types: j-th vector such that
secret input v = j or otherwise ( i.e., p or q in Eq. (4)). Thus, we perform
independent OT and decide 0 or 1 for d categories and finally, get randomized
output [μσ1 , ..., μσd

].
Then, similar to secure kRR, we must show that all Bernoulli distributions

represented by d vectors are correct. Specifically, the proofs are that all elements
of bit vectors μ are surely a bit (0 or 1) (P1) and distribution of the vectors
are surely equivalent to either of p or q of Eq. (4) (P2). The number of p and q
are 1 and d − 1 respectively (P3). If all these three proofs are verified, we can
confirm the OUE protocol is simulated correctly. Like kRR’s proofs, P1 and P2
are proved by d disjunctive proofs. P3 is based on hardness of discrete logarithm
problem. P cannot find hsum in polynomial time without all correct h

(j)
i that

is used when encrypting y
(j)
i . While P has to release hsum, this is information

theoretically indistinguishable from V for each h
(j)
i unless n = d = 1. Security

statements for the secure OUE protocol are similar to secure kRR. For LDP, as
we can see 1.(a) in Protocol 2, we set q = l/n such that l

n ≥ 1
1+eε .

4.3 Secure OLH

To make OLH output-manipulation secure, basically, we can use Protocol 1
except that it requires sharing of a hash function and using reduced output
category space. As a first step, V generates and sends a seed s to P to initialize
hash function Hs : v → v′ where v ∈ [d] and v′ ∈ [g]. V and P use the same
Hs as a hash function. We can apply Protocol 1 to achieve secure OLH by using
category set [g] instead of [d] and sensitive input value v is handled as v′ = Hs(v).
The rest of the steps are almost the same as kRR.

Even if P∗, who does not use the hash function correctly, participates the
protocol, V can easily detect it if it sends the output of a different output space,
i.e. y /∈ [g]. If attacker does not use a different output space, the attack can only
be equivalent to input-manipulation because V verifies the correctness of the
categorical distribution used in random sampling after applying hash function.

5 Evaluation

In this section, we evaluate and analyze the performance of our proposed proto-
cols. The code in Python is available on github1.

Experimental Setup. We use an HP Z2 SFF G4 Workstation, with 4-core
3.80 GHz Intel Xeon E-2174G CPU (8 threads, with 8 MB cache), 64 GB RAM.
The host OS is Ubuntu 18.04 LTS. The client and server exchange byte data seri-
alized by pickle (from Python standard library) over TCP. We use ε = 1.0 and in
OLH, set g = d/2 as the hashed space instead of g = 
eε + 1� for demonstration.

Parameter Generator. First, we analyze the approximated probability
distribution generated by our proposed method. In secure kRR protocol, we
1 https://github.com/FumiyukiKato/verifiable-ldp.

https://github.com/FumiyukiKato/verifiable-ldp
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Fig. 2. In secure kRR, with a sufficiently large width, categorical distribution by Algo-
rithm 1 can accurately approximate the LDP distributions (left and middle). In secure
OUE, it is almost exact discrete approximation with relatively small width (right).

approximate the probability distribution where we generate data to satisfy LDP
by Algorithm 1. Figure 2 shows how accurate the algorithm generates discrete dis-
tribution for ε = (0, 5] and for width = {100, 1000}. The red curve represents
probability p for the normal mechanism, and the blue one represents the approxi-
mated one. When the width is small, there is a noticeable loss of accuracy due to
approximation. However, with a sufficiently large width, the approximated p has a
sufficiently small loss. As the width increases, the performance degrades, indicat-
ing that there is a trade-off between the accuracy of the probability approximation
and the performance. This is true not only for kRR but also for OUE and OLH. For
secure OUE, in the right-side of Fig. 2, we compare probability q because p is con-
stant in OUE. It is almost exact discrete approximation with small width. This
is due to the difference in the structure of the vectors that form the probability
distribution, with OUE having a simpler structure.

Performance. We evaluate performances of our proposed method. Figure 3
shows total bandwidths, caused in communications of the total protocol, of each
three methods for different category sizes. Generally, when increasing category
size, total bandwidth also increases. While it increases linearly in OUE, there are
fluctuations in kRR and OLH. This is because the probability value that Algo-
rithm 1 approximates may have a smaller denominator (i.e., n) by reduction,
which can make the distribution vector smaller. Overall, larger width gener-
ates almost linear increases in bandwidth. And for the same width, secure OUE
causes larger communication overhead than others. However, as mentioned in
the previous paragraph, secure OUE can approximate the probability distribu-
tion with high accuracy using smaller width. Hence, in particular, when the
number of categories is large, secure OUE is considered to be more efficient by
using smaller width. Figure 3 shows that, comparing kRR with width = 1000
and OUE with width = 100, many categories require several times more band-
width. On the other hand, when the discretized probability distribution can be
approximated with a small denominator by reduction, kRR and OLH show a
very small bandwidth. When comparing kRR and OLH, OLH is smaller overall.
This is due to the fact that the output space is reduced by hashing.

Figure 4 shows total execution time from the time the client sends the first
request until the entire protocol is completed. Most of the characteristics are
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Fig. 3. With the same width, the communication costs of kRR and OLH are small.
However, OUE can approximate LDP accurately with small widths (Fig. 2).

Fig. 4. The characteristics of runtime is similar to bandwidth. OLH takes a little longer
because of the hashing.

similar to those of bandwidth. As the size of the proofs that need to be computed
increases, the execution time is also expected to increase. The only difference is
OLH, which takes extra time to execute the hash function. However, as the
number of categories becomes larger, the influence becomes smaller.

Therefore, the overhead can be minimized by providing a privacy budget
for optimal efficiency for kRR and OLH, and by using different methods for
different width. The overhead is expected to increase as the number of categories
increases, but since the limit on the number of categories is determined to some
extent by the use of LDP, we do not think this is a major problem.

At the end, impressively, our method is algorithm-only, making it more feasi-
ble than alternatives that assume secure hardware [30] or TEE [29]. Nevertheless,
overall, we believe the overhead is acceptable. We believe this is due to the fact
that we use relatively lightweight OT techniques as a building block.

6 Conclusion

In this paper, we showed how we prevent malicious clients from attacking to LDP
protocol. An important observation was the effectiveness of output-manipulation
and the importance of protection against it. Our approach was verifiable random-
ization mechanism satisfying LDP. Data collector can verify the completeness
of executing an agreed randomization mechanism for every possibly malicious
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data provider. Our proposed method was based on only lightweight cryptogra-
phy Hence, we believe it has high feasibility and can be implemented in various
and practical data collection scenarios.
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Volume-Hiding Encrypted Multi-maps

(A Slot in Need is a Slot Indeed)
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Abstract. Severe consequences in volume leakage (subject to the con-
ditions required by specific attacks) stimulate a new research direction
(Eurocrypt 2019) of volume-hiding structured encryption (STE), partic-
ularly encrypted multi-maps (EMM), in which all queries should share
the same (as the largest) response size unless the scheme is lossy. Mean-
while, note that the responses are originated from the actual ciphertexts
outsourced to the server. Conventional wisdom suggests that the cipher-
texts (to be accessed by the server while answering a query) should also
contain many dummy results to make a query look uniform with others.
Supporting updates is also natural; however, attaching dummy results
to a query also complicates the operation and leakage of updates, which
excludes many advanced data structures, e.g., cuckoo hashing (CCS
2019). This paper proposes a space-efficient EMM without storing any
dummy ciphertext, which is volume hiding against passive adversaries
(SP 2021) and compatible with dynamic extensions. Its crux structure is
a hash ring, which is famous for load balancing but rarely appears in any
STE. Efficiency-wise, our scheme beats the state-of-the-art (Eurocrypt
2019, CCS 2019), maintaining the necessary communication overhead
and downsizing the server storage to be linear in the number of values in
the EMM, while ruling out any data loss due to truncations or differential
privacy.

Keywords: Volume hiding · Encrypted multi-maps · Consistent
hashing · Structured encryption · Dynamic symmetric searchable
encryption

1 Introduction

Structured encryption (STE), introduced by Chase and Kamara [6], enables a
client to outsource an encrypted data structure to an untrusted cloud server for
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later private queries. Encrypted multi-map (EMM) is an important instance of
STE. A multi-map (MM) usually contains a set of keys, each associated with a
tuple of values. Treating each key as a keyword and the values as (identifiers
of the) documents containing the keyword, EMM realizes searchable symmetric
encryption (SSE) for keyword searches. It serves as the core of SSE for more
complex queries (e.g., range [7,8,30], graph [24,25], skyline [31], and SQL [13])
and improved security for dynamism (e.g., forward and backward privacy [3,4,
25]). Many EMMs are well-known to be lightweight and efficient for millions of
records.

An STE is deemed secure with respect to a given leakage profile if its opera-
tions reveal nothing beyond well-defined functions capturing the leakage of the
private input data. Leakages allow STE to be efficient, but whether they are
“benign” enough is still under study. Though most leakage-abuse attacks can be
challenging to realize in practice, e.g., require knowing a large portion of data
and some queried keys [5,12] or typical distributions of client queries [10,18,22],
they stimulate the research of minimizing the leakage of STE in the first place.

This work focuses on the design of volume-hiding EMMs, a notion recently
proposed by Kamara and Moataz [14] and further formalized by Patel et al. [27].
The volume refers to the number of associated values of any key. A very recent
work [21] demonstrates that a passive attacker solely observing EMM accesses
can still exploit the volume leakage of range queries to reconstruct the private
plaintext. A volume-hiding EMM can hide the response length of a query, which
effectively mitigates the damage caused by volume-abusing attacks [2,10,18,21,
22]. In this work, we propose volume-hiding EMMs against such adversaries,
which compare favorably with state-of-the-art [14,27] in efficiency.

1.1 Related Work – Many Dummies in Storage and Communication

For a multi-map MM, let � be the maximum volume, m be the number of distinct
keys, and n be the total number of values over all keys. Usually, m · � � n. For
volume hiding, the response volume is maintained to be at least Θ(�).

The näıve padding approach pads up to (�−1) dummy values to any key with
a volume less than �, which increases the server-side storage to m · �. Another
solution is oblivious RAMs (ORAM) [9]. Among the oblivious accesses to each
associated value, up to � extra fake accesses are made. While ORAM has been
made practically efficient, it inherently incurs large communication overheads.
Both approaches are undesirable in practice, motivating cleverer constructions.

The first construction VLH [14] reduces the storage overhead of the näıve
approach roughly by half under specific parameters, yet still far from the ideal
goal of Θ(n). For each key, it determines its volume via a pseudorandom function
(PRF). It pads dummies when the PRF-derived volume is larger than the real
one and truncates values when it is smaller. It is thus lossy, which is often
undesirable. Although the number of truncated keys is relatively small under
the Zipf’s distribution, no data loss guarantee is given for a general MM.

The second construction AVLH [14] achieves Θ(n) storage. For each key, it
chooses a set of � related bins uniformly at random. Each value is placed into a
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distinct bin related to its associating key. All bins are padded with dummies to
the maximum bin size after all the n values have been arranged. According to the
balls-into-bins analysis, the bin size would be Ω(log n), resulting in Θ(� · log n)
communication and computation overheads for any query. AVLH further opti-
mizes the server storage from Θ(n) to Θ(n − √

m · polylog(m))) for concentrated
MM with many values associated with a large number of keys. It ensures that
these values only appear once among all bins. However, this variant requires the
hardness of the densest subgraph problem [20], which is not thoroughly studied
in literature and hard to determine related parameters for concrete security.

Patel et al. [27] criticized (A)VLH [14] for lossiness, large storage and query
overheads, or reliance on a less-studied assumption. Observed that minimizing
storage overhead is a typical hashing problem: placing n items to Θ(n) locations
that can be looked up by probing a small number of locations, they proposed two
schemes exploiting “cuckoo hashing with a stash” [20], which store each value
in one of two hash slots or a client stash, and abort if the stash overflows.

The first scheme dprfMM outsources a hash table of length (2 + α)n, which
contains those key-value pairs survived from cuckoo hashing evictions and some
dummies. A query token consists of 2� hash slots possibly related to the queried
key. The server returns 2� ciphertexts retrieved from these slots, each containing
a desirable value, a value of other keys, or a dummy. The client combines the
value tuple of the queried key from both the local stash and the server response.
The token size could be reduced by delegatable PRF [19] with extra computation.

The second construction dpMM [27] outsources a cuckoo hash table storing
the volume of each key, in addition to the one used in dprfMM. It leads to the
(2+α)(n+m) storage overhead. To query, it first takes the client one roundtrip to
fetch the volume of the queried key. With the noise from the Laplacian distribu-
tion, the client issues a token consisting of hash slots, whose size is the volume
of the queried key plus the (possibly negative) noise and an extra adjustable
parameter. The following query steps remain the same as dprfMM. With a small
amount of perturbation over the response length, the query communication of
dpMM is close to the optimal case, which outperforms any other schemes, but
only under the relaxed (differential) privacy guarantee with potential data loss.

Our construction, achieving the known best communication overhead (i.e., �)
under the consideration of volume hiding against passive adversaries [21], avoids
any locally stored MM (cf., the stash from cuckoo hashing in dprfMM and
dpMM [27]) or any loss of values (cf., due to differential privacy in dpMM [27] or
PRF-based transform in VLH [14]), while further improving the server storage by
wiping out dummies (cf., dummy padding required in the state of the art [14,27]).

1.2 Volume-Hiding EMM with “Volume-Affecting” Updates

To make an EMM scheme dynamic, existing dynamic structures [1,3,16,23–25]
may not be applicable to volume-hiding EMMs given the more rigorous leakage
control. As discussed, the security and efficiency of volume-hiding EMMs are
impacted by the maximum volume of the input MM, which may be changed
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by even a single update. To hide the key with the (real) maximum volume, the
client must expensively introduce a dummy for each distinct key.

Indeed, the only two dynamic volume-hiding EMMs [14], VLHd and AVLHd,
only support a limited form of updates (cf., [25]). They are extended from VLH
and AVLH, respectively. AVLHd only supports edition, which modifies the value
of a key-value tuple, but not the key. VLHd further supports “addition” and
“deletion.” Addition can only add a key that never exists in the MM. In other
words, adding one more value to an existing key, which affects �, is not possible.
Similarly, VLHd can only delete all values associated with a key. All these updates
are relatively straightforward, mostly without affecting the maximum volume.
Furthermore, both constructions require the client to get back the tuple to be
edited by querying before (re-)uploading the updated tuple. Finally, they lack
forward privacy and backward privacy [3,4], which have become the de facto
standard of dynamic STE due to the adaptive injection attack [33].

One may attempt to upgrade dpMM and dprfMM [27] with dynamic updates.
It will involve insertions to the underlying cuckoo hashing table, and the chain of
evictions it may incur becomes more complicated in the EMM setting. Firstly, the
server cannot determine whether the slot to be inserted is empty unless the client
decides to help by an extra round of communication. Also, the eviction chain will
affect multiple slots. To avoid extra leakage, such as the occupancy information,
one needs to make sure insertions for all updates result in the same eviction
time, which significantly burdens the computation complexity. This showcases
that designing a volume-hiding EMM that is compatible with updates in the first
place appears to be a better approach, which also steers our EMM design.

1.3 Our Contributions and a Technical Overview

We observe that most volume-hiding EMMs hide the volume of a key using the
values of other keys and dummies. Dummies carrying no meaningful information
are the culprits of the significantly larger storage overhead. Our idea is to wipe
out these dummies and realize volume hiding solely with meaningful value tuples.
Beyond the storage of tuples themselves, we can further free the server from
storing a global data structure filled with many dummies here and there (cf., the
entire hash table outsourced by dprfMM/dpMM [27] of size (2+α)n or (2+α)(n+
m) for a positive constant α). Our volume-hiding EMM thus beats the best-
known server storage (from (2 + α)n to 2n) with an even lower communication
overhead (from 2� to �). The query overhead remains asymptotically the same
as AVLH for a general (i.e., not necessarily concentrated) MM [14]. Notably, our
scheme neither stores any local (partial) MMs nor suffers from any data loss due
to truncations or differential privacy. Table 1 summarizes the comparison1.
1 Even powerful cloud/server-side security enclaves would not hide the communication

volume. A highlight of our scheme is its simplicity (fits in a single page) and its usage
of lightweight tools (e.g., PRF). No significant constant is hidden in the asymptotic
evaluations. There are no (non-colluding) servers. These emphases might be random;
however, we found the need to respond to a very negative review (not from DBSec)
of an imagined paper, if not related subfields (volume-hiding SSE/ORAM/etc.).
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Table 1. Comparison of volume-hiding encrypted multi-maps

Scheme Communication

(response size)

Computation

(for query)

Server storage

(encrypted multi-maps)

No No

Näıve padding � � m · � � �

VLH [14] Θ(�) Θ(�) Θ(m · �) � �

AVLH [14]

(General MM)

Θ(� · log n) Θ(� · log n) Θ(n) � �

AVLH [14]

(Concentrated)

Θ(� · n
polylog(m) ) Θ(� · n

polylog(m) ) Θ(n − √
m · polylog(m)) � �

dprfMM [27] 2� 2� (2 + α)n � �

dpMM [27] 2�(key) +

ω(log λ′)
2�(key) +

ω(log λ′)
(2 + α)(n + m) � �

Our S4 � Θ(� · log n) 2n � �

(Legends) m: the number of distinct keys, n: the total number of values across all keys

�: the maximum volume across all keys, �(key): the volume of key

λ′: a security parameter for differential privacy, α: a positive constant

“No stash” means no need for the client to locally store any partial multi-map.

“No loss” means no loss of data, e.g., due to differential privacy or truncations.

As the trade-off for the above benefits, we consider passive adversaries who
can observe EMM accesses of the data owner but cannot force arbitrary accesses
of their wishes, capturing realistic scenarios of cloud storage applications. Never-
theless, solely storing meaningful tuples for supporting volume-hiding queries is
still non-trivial. To avoid leakages of the underlying MM incurred by merely out-
sourcing the EMM, the responses for each query should be randomly distributed
across the storage space. However, when the responses of a query can only be
padded with those of another query, it appears that the client needs a sophis-
ticated mapping, say, by solving a combinatorics and optimization problem, to
carefully “plan ahead” what are the responses to be “borrowed” as dummies,
which is essentially a rephrasing of the EMM problem we aim to solve.

As a simple storage-saving structure, our EMM is named S4. It is based on
a variant of hash ring [17], a technique that we first bring to the context of STE
(SSE included) to our knowledge. The ring stores the encrypted contents of the
original MM (notably without dummies). The query for a key specifies ring slots
associated with it. Intuitively, any query should contain the same amount of ring
slots, or metaphorically speaking, shelters for the key-value pairs. We still need
to ensure that, when a shelter is not in real need, i.e., when a key associates
with less than � values, the shelter pointed to by the key is storing the real value
of another key in need. Our strategy of using the hash ring makes this possible.

We also explore how to update volume-hiding EMMs efficiently. We borrow
an approach from the database community [7] of setting up a new instance for
updates and periodically merging them, which matches the feature of some real-
world systems (e.g., commercial database Vertica [26]) that handles updates
efficiently in batch. We further consider forward and backward privacy, resulting
in the first dynamic volume-hiding EMM with such privacy guarantees. A con-
current work of Gui et al. [11] proposed a scheme that is forward and backward
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private while mitigating the volume leakage. Nevertheless, its bucketization tech-
nique exposes an approximate volume of each query even to a passive adversary.

2 Preliminary

2.1 Notation, Basic Structure and Primitive

Notation. Let λ be the security parameter and all algorithms take λ implic-
itly as input. negl(λ) is a negligible function in λ. PPT stands for probabilistic
polynomial-time. For a set X, x ←$ X samples an element x uniformly from X.
For an algorithm A, x ← A means x is an output of A. || denotes string con-
catenation. [n] denotes the set {1, . . . , n}. [a . . b] denotes {a, a + 1, . . . , b}.

Basic Data Structures. We recall operations of arrays, dictionaries, and multi-
maps used in this work. An array A of the capacity n is a sequence of n values
indexed by integer identifiers from 0 to n − 1. For an index i and a value v, we
set the i-th value via A[i] ← v, and get the i-th value via v ← A[i].

A dictionary DX is a collection of key-value pairs. For key in the key space K
and a value v, v ← DX[key] (resp. DX[key] ← v) represents getting (resp. putting)
v from (resp. into) DX[key]. A multi-map MM is a collection of key-tuple pairs
{(key, �v)}. One could get/put tuples associated with a specific key in MM with
similar notions as DX. Specifically, we denote the number of values in the tuple
�v by [|�v|]. For i ∈ [|�v|], one could get/put the i-th value of �v with handle �v[i].

Basic Cryptographic Tools. Pseudorandom functions (PRF) are polynomial-
time computable functions that cannot be distinguished from a truly random
function by any PPT adversary. The symmetric-key encryption scheme (SKE)
used in this work is random-ciphertext-secure against chosen-plaintext attacks
(RCPA), which requires ciphertexts to be computationally indistinguishable from
random even if the PPT adversary adaptively accesses the encryption oracle. It
can be obtained from the standard PRF-based SKE or AES in counter mode.

2.2 Structured Encryption for Multi-maps

A structured encryption scheme STE encrypts a data structure such that the
client could privately query its content. It can be either response-revealing
(revealing the query response in plaintext) or response-hiding (keeping it pri-
vate). An STE is non-interactive if the response can be fetched in a single
roundtrip.

We focus on non-interactive and response-hiding STE for MMs, i.e., EMMs.

Definition 1 (Non-Interactive Structured Encryption for MMs). An
STE scheme for MM Σ = (Setup,Query,Reply,Result) is defined as follows.



Simple Storage-Saving Structure for Volume-Hiding Encrypted Multi-maps 69

– (K, st,EMM) ← Setup(1λ,MM) is a probabilistic algorithm executed by the
client that takes as input the security parameter λ and the input multi-map
MM. It outputs a private key K, a state st, and the encrypted multi-map
EMM. The client stores (K, st) while sending EMM to the server.

– tk ← Query(K, st, key) is a (possibly) probabilistic algorithm executed by the
client that takes as input the private key K, the state st, and the key from the
key universe K of MM. It outputs a query token tk to be sent to the server.

– res ← Reply(tk,EMM) is a (possibly) probabilistic algorithm executed by the
server that takes as input the query token tk and the encrypted multi-map
EMM. It outputs the response res to the client.

– �v ← Result(K, key, res) is a deterministic algorithm executed by the client that
takes as input the private key K and the queried key which produced tk, and
the response res due to tk. It outputs a value tuple �v associated with key.

Security is captured under the real/ideal simulation paradigm with leakage
functions L = (LS,LQ). It guarantees that the encrypted multi-maps structure
EMM from Setup reveals nothing beyond the setup leakage LS, and the query pro-
cedure over EMM reveals nothing beyond the query leakage LQ. More precisely,
Reply is the only algorithm during the query procedure (Query,Reply,Result)
that is executed by the server and possibly leaks information to it.

Definition 2 (Adaptive Security of Structured Encryption for MMs).
Let Σ = (Setup,Query,Reply,Result) be a non-interactive response-hiding struc-
tured encryption scheme for multi-maps. We say that Σ is (LS,LQ)-adaptively-
secure, if for all PPT adversary A, there exists a PPT simulator S such that

|Pr[RealA(1λ) = 1] − Pr[IdealA,S,L(1λ) = 1]| ≤ negl(λ)

where Real and Ideal are probabilistic experiments defined below.
RealΣ,A(1λ): A generates an input multi-map MM and receives EMM from

the challenger, where (K, st,EMM) ← Setup(1λ,MM). Then A adaptively makes
a polynomial number of queries. For each queried key, the challenger executes
(Query,Reply) with A, and A receives tk ← Query(K, st, key).

IdealΣ,A,S(1λ) A generates an input multi-map MM and receives EMM from
the simulator S, where EMM is generated using only LS. Then A adaptively
makes a polynomial number of queries. For each queried key, the simulator S
executes (Query,Reply) with A by generating tk using only LQ.

In both experiments, A returns a bit b ∈ {0, 1} eventually. Looking ahead,
our construction can be proven secure under the adaptive definition, but an
active adversary, in principle, can manipulate the leakages to be defined below.
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2.3 Typical Leakage Functions

We recall typical leakage functions summarized for encrypted multi-maps [15].

– Query equality pattern qeq, usually referred to as the search pattern of SSE,
reports whether two queries are issued for the same key or not. Formally, for
a sequence of t non-cryptographic keys qeq(key1, . . . , keyt) = M , where M is
a t × t matrix such that M [i][j] = 1 if keyi = keyj for i, j ∈ [t].

– Response length pattern rlen reports the number of values associated with an
input key. Formally, for a multi-map MM = {(keyi, �vi)}keyi∈K with key space
K, rlen(MM, keyi) = �(keyi) = |�vi|. This is the leakage we aim to avoid.

– Maximum response length pattern mrlen reports the maximum number of
values associated with any key. Formally, for a multi-map MM with key space
K, mrlen(MM) = � = maxkey∈K �(key), where �(key) is the number of values
associated with key.

– Data size pattern dsize reports the total number of values over all keys. Form-
ally, for a multi-map MM with key space K, dsize(MM) = n =

∑
key∈K �(key).

We further introduce the access intersection pattern aintx as follows.

– Access intersection pattern aintx reports the intersection of EMM slots
accessed by two queries. Formally, for a sequence of t keys, aintx(EMM,
key1, . . . , keyt) = M ′, where M ′ is a t × t matrix such that M ′[i][j] con-
tains the common slots of EMM accessed when querying keyi and keyj for
i, j ∈ [t].

2.4 Volume Hiding Against Passive Adversaries

Volume hiding requires that the number of values associated with any single
key remains private. Patel et al. [27] defined it as a property of the leakage
functions in a game where the active adversary receives the setup and query
leakage of a chosen multi-map. We instead consider passive adversaries who
can observe all EMM accesses but cannot actively perform adversarially chosen
accesses. Furthermore, they have no knowledge of the plaintext multi-map used
to generate EMM. An EMM that is volume-hiding against passive adversaries
means they cannot determine the actual volume of any key in the multi-map.

An active adversary has a high level of “control” of the data owner who
keeps explicitly authorizing many queries, which an actively malicious cloud can
exploit toward exposing the entire multi-map. Our model is weaker; however, it
remains meaningful in a realistic setting that the cloud server cannot actively
sabotage the data owner or would not risk being caught. This also matches the
required strength of the adversary in the very recent volume-abusing attacks [21].

2.5 Hash Ring or Consistent Hashing

Hash ring [17] is best known as a solution to the load-balancing problem (e.g.,
Chord [29] for peer-to-peer protocols). To assign a set of objects to some servers,
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the hash function, taking either (the identifier of) an object or a server as input,
outputs s bits as a slot-identifier in an identifier ring modulo 2s (i.e., 0 to 2s−1).
For large s, the probability of the collision of identifiers is negligible. Each object
will be assigned to the server that is placed into the first slot clockwise from it.

3 Space-Efficient Volume-Hiding Multi-map Encryption

3.1 Overview

A classical hash-ring application (Fig. 1a) assigns a set of objects to some servers
by placing both objects and servers to some ring slots. The object is then assigned
to the next server that appears on the ring in clockwise order, also dubbed as a
successor of the object slot. Successor discovery thus refers to finding the next
occupied slot. In our scenario (Fig. 1b), we pick a slot (red node) for each value
index of a key via hashing. For each interval bounded by red nodes, a slot for
storing the key-value tuple (blue node) is randomly picked.

For any key with a volume less than the maximum volume �, we hash each
non-existent (fake) value index (up to �) to a slot (red ring) that lies in a distinct
interval bounded by the slots of two key-value tuples (blue nodes). It means no
other fake value index (red ring) or real value index of the same key (red node)
is allowed in the interval (but value indexes for any other key are fine). We
may need to re-sample these slots to place them accordingly, yet our analysis
shows it is unlikely to happen. To finish the EMM setup, the client outsources
the ciphertext of each key-value tuple and its ring slot location (blue node).
Notably, the server does not need to store the hash ring (cf., the entire hash
table is outsourced by dprfMM/dpMM [27]) or any dummies! Our construction
thus requires less storage than any existing solutions.

To query for a key, the client issues a token of � ring slots related to it.
The server then carries out successor discovery for each slot from the token and
returns the ciphertext stored in the successor. Due to the slot arrangement in
the setup, the ciphertexts surely contain all the real values associated with the
queried key, and there will be one and only one ciphertext (either associated
with the queried key or another key) for each of the � slots of any key, thus
maintaining the same response volume (i.e., �) for any key.

Our communication overhead is �, which is as good as all prior schemes
(except dpMM [27] with possible data loss). Successor discovery takes Θ(log n)
with the binary search. It can be accelerated to Θ(log log n) with advanced struc-
tures [32] at the cost of extra Θ(n) storage, providing a trade-off.

Figure 1b depicts a sample EMM of {(keyA, �vA), (keyB , �vB)} with |�vA| = 3,
|�vB | = 1, and the maximum volume � = |�vA| = 3. Each key and its value index,
i.e., (keyA, 1), (keyA, 2), (keyA, 3), and (keyB , 1) is mapped to a ring slot (red
node). As the volume of keyB is less than �, two extra slots (red ring) are derived
by hashing (keyB , 2) and (keyB , 3) in a way that the slots of keyB are ensured
to have distinct successors (ct2 = Enc(keyA||�vA[1]) and ct3 = Enc(keyA||�vA[3])
in our example). To query for keyB , the token consists of � = 3 slots related to
keyB in a randomly permuted order. The server fetches the successor of each
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Fig. 1. Consistent hashing and its application in load balancing and our EMM (Color
figure online)

slot and returns the corresponding ciphertext, i.e., {Enc(keyB ||�vB [1]), ct2, ct3}
(an unordered set). After client decryption, �vB[1] will be identified as the result.

3.2 Description

Figure 2 describes the details of our construction. Let F : {0, 1}λ × {0, 1}∗ →
{0, 1}s be a pseudorandom function, and SKE = (Enc,Dec) be an RCPA-secure
encryption scheme. FindSuccessor is a simple function for successor discovery in
the hash ring. It takes as input an integer and a sorted array, and outputs the
smallest value in the array that is larger than the input integer. If the integer is
larger than any value in the array, it outputs the minimum of the array.

Setup. Cryptographic Keys. The client randomly picks a PRF seed KPRF and
an SKE key KSKE as the secret (cryptographic) key K.

Data Structure. Let n be the number of values over all (non-cryptographic)
keys of the MM. The client initializes arrays U[0 . . n−1],V[0 . . n−1], HR[0 . . 2s−1]
for the hash ring, and dictionaries DXC ,DXS , which are all initially empty.

Client State DXC . For each keyi with i ∈ [m], the client samples a λ-bit
randomness ri. DXC [keyi] stores the volume |�vi| and the randomness ri of keyi.

Hash Ring HR. For each value �vi[j] associated with keyi, the client determines
a hash ring slot by FKPRF

(ri||j), puts it in some unoccupied slot of U, and puts
the key-value tuple (keyi, �vi[j]) in HR[FKPRF

(ri||j)].
Red Nodes U as Boundaries for Ciphertexts. Eventually, n-out-of-2s slots of

HR are occupied. These locations stored in U are then sorted in ascending order.
Blue Nodes V for Ciphertexts. For each i ∈ [n], the client randomly samples

an integer t from [U[i − 1] + 1 . .U[i mod n]], with the abused notation for i = n
where [U[n−1]+1 . .U[0]] = [U[n−1]+1 . . 2s−1]∪[0 . .U[0]]. The client sets V[i−1]
as t, and stores in DXS [t] an encryption of the key-value tuple at HR[U[i − 1]].
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– (K, st,EMM) ← Setup(1λ,MM = {keyi, �vi}i∈[m])
1. Sample PRF seed KPRF ←$ {0, 1}λ and encryption key KSKE ←$ {0, 1}λ.
2. Initialize array HR of size 2s and arrays U,V of size n.
3. Initialize two dictionaries DXC ,DXS .
4. For each i ∈ [m]:

(a) Sample ri ←$ {0, 1}λ.
(b) For each j ∈ [|�vi|],

i. Insert FKPRF(ri||j) into U.
ii. Set HR[FKPRF(ri||j)] ← (keyi, �vi[j]).

(c) Set DXC [keyi] ← (|�vi|, ri).
5. Sort elements in U in ascending order.
6. For each i ∈ [n]:

(a) Sample t from [U[i − 1] + 1 . .U[i mod n]].
(b) Set V[i − 1] ← t.
(c) Set DXS [V[i − 1]] ← Enc(KSKE,HR[U[i − 1]]).

7. Sort elements in V in ascending order.
8. For each i ∈ [m]:

(a) Sample r′i ←$ {0, 1}λ, and set (t1, . . . , t�) =

{FKPRF(ri||1), . . . , FKPRF(ri||(|�vi|)), FKPRF(r
′
i||(1 + |�vi|)), . . . , FKPRF(r

′
i||�)}.

(b) If there exist distinct indices j, k ∈ [�] such that FindSuccessor(tj ,V) =
FindSuccessor(tk,V), redo Step 8a, which includes the sampling of r′i.

(c) Set DXC [keyi] ← DXC [keyi]||r′i.
9. Delete HR,U.

10. Return K ← (KPRF, KEnc), st ← DXC , and EMM ← (DXS ,V).
– tk ← Query(K, st, key)

1. Parse K as (KPRF, KEnc) and st as DXC .
2. Parse DXC [key] as (|�v|, r)||r′.
3. Set tk ← {FKPRF(r||j)}j∈[|�v|] ∪ {FKPRF(r

′||(j + |�v|))}j∈[�−|�v|].
4. Permute elements in tk.
5. Return tk.

– res ← Reply(tk,EMM)
1. Parse EMM as (DXS ,V).
2. Initialize an empty set res.
3. For each t ∈ tk, set res ← res ∪ DXS [FindSuccessor(t,V)].
4. Return res.

– �v ← Result(K, key, res)
1. Parse K as (KPRF, KEnc) and res as {cti}i∈[�].
2. Initialize an empty array �v.
3. For i ∈ [�]:

(a) Set (key′, value′) ← Dec(KEnc, cti).
(b) If key′ = key, insert value′ into �v.

4. Return �v.

Fig. 2. Efficient volume-hiding encryption for multi-maps
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Red Rings for Generating Token tk. Corresponding to each keyi for i ∈ [m],
the client samples another λ-bit randomness r′i, and outputs a tuple (t1, . . . , t�):

{FKPRF
(ri||1), . . . , FKPRF

(ri||(|�vi|)), FKPRF
(r′i||(1 + |�vi|)), . . . , FKPRF

(r′i||�)}
where the first |�vi| elements are keyi-related slots in HR, and the rest are “fake.”

Note that r′i needs to be chosen in the way that any distinct j, k ∈ [�] satisfy
FindSuccessor(tj ,V) 	= FindSuccessor(tk,V). Otherwise, we re-sample a new r′i to
fulfill the condition2. We show that the client does not need to re-sample with
the probability tending to 1 in Sect. 3.3. The client concatenates r′i to DXC [keyi].

The client deletes (HR,U), sets DXC as st, and outsources (DXS ,V) as EMM.

Query. To query key, the client retrieves (|�v|, r)||r′ from DXC [key], and com-
putes:

tk = {{FKPRF
(r||j)}j∈[|�v|], {FKPRF

(r′||(j + |�v|)}j∈[�−|�v|]}.

The client permutes elements in tk before sending it to the server.
For each element t ∈ tk, the server figures out its successor of the hash ring

by t′ = FindSuccessor(t,V) and retrieves the ciphertext stored in DXS [t′]. The
collection of these ciphertexts is returned as the query response res.

The client decrypts the ciphertexts in res with KSKE, and collects all
decrypted values associated with key as the query result �v.

3.3 Analysis

Security. For Setup, the server receives the EMM, which contains the cipher-
texts of all key-value tuples and randomly sampled hash-ring slots. Thus, the
setup leakage LS only contains the data size dsize.

For Query, the server will know �, the maximum volume of the input multi-
map by the size of any query token. It could determine the repetition of the
same query and the common slots accessed by different queries. Thus, the query
leakage LQ contains the query-equality pattern qeq, the access intersection pat-
tern aintx, and the maximum response length mrlen = �. Formally, Theorem 1
(proven in Appendix A) asserts the adaptive security of our construction with
the leakage function (LS,LQ) = (dsize, (qeq, aintx,mrlen)).

Theorem 1. If SKE = (Enc,Dec) is an RCPA-secure encryption scheme and
F is a pseudorandom function, our construction is an (LS,LQ)-adaptive-secure
encryption scheme for multi-maps, where (LS,LQ) = (dsize, (qeq, aintx,mrlen)).

Nevertheless, an active adversary with the knowledge of EMM could adap-
tively issue queries and try to match the corresponding access intersection aintx
with any prior background information about the actual volume. This seems to
be inherent when we “reuse” real slots for realizing volume-hiding EMM effi-
ciently. Passive adversaries cannot exploit such kinds of strategies. Intuitively,
the response length rlen for any key remains hidden since the slots for different
keys are pseudorandom as our scheme decides them via pseudorandom functions.
2 A similar re-sampling is required in AVLH [14], while dprfMM and dpMM [27] abort

when the stash of cuckoo hashing overflows due to collisions and evictions.
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No Re-sampling Probability. Our construction requires each of the last � −
|�vi| elements of (t1, . . . , t�) for keyi, i.e., FKPRF

(r′i||(1+ |�vi|)), . . . , FKPRF
(r′i||�), has

a unique successor. For ease of analysis, we model F as a random function.
Obviously, the elements within the same interval will share the same successor,
and the probability that an element is assigned to an interval by the random
function depends on the interval length. Suppose that we divide the hash ring
of length 2s into n intervals with n values among {0, 1}s in V. Let ci be the
length of the interval where ti is placed for i ∈ [�]. Consider the case that the
first k−1 elements of (t|�vi|+1, . . . , t�) belong to distinct intervals. The probability
that the k-th element will be assigned to an interval different from any previous
elements is (1− c1+···+c|�vi|+k−1

2s ). Then, the probability that the remaining �−|�vi|
elements are all placed in distinct intervals, i.e., they have distinct outputs of
FindSuccessor and no re-sampling is needed for keyi, is:

p =
�−|�vi|∏

k=1

(1 − c1 + · · · + c|�vi|+k−1

2s
) ≥ (1 − (� − |�vi|) × cavg

2s
)�−|�vi|

where cavg is the average length of (c1, . . . , c�−1). We take the expected interval
length of the hash ring for cavg, i.e., 2s

n . The probability becomes (1− �−|�vi|
n )�−|�vi|,

which is approximate to e− (�−|�vi|)2
n . It tends to 1 assuming3 � = o(n).

Efficiency. Our construction avoids padding of dummies or storing the entire
hash ring. Consider an input multi-map MM with maximum volume �, m dis-
tinct keys, and n key-value tuples. The server stores a dictionary DXS of size
n for all key-value tuples of MM and an auxiliary array V of size n to quickly
determine the successor of any slot, outperforming the state-of-the-art dprfMM
and dpMM [27]. The client stores the state of size m rather than a stash for any
parts of the input MM. It could be outsourced as m is independent of �.

To query for any key, the client only needs to generate � PRF values as slots in
the token. The server determines exactly � successors correspondingly for these
� slots. With binary search, the server can figure out a successor from V with
FindSuccessor in Θ(log n) time. The overall query complexity is thus Θ(� · log n),
which is asymptotically the same as AVLH for general MMs. � ciphertexts are
returned to the client as a response. The communication overhead only falls
behind the differentially private scheme [27] with possible data loss.

The prior arts we improved upon are practically efficient [27]. Moreover,
unlike a particular existing scheme [14], the efficiency of our scheme is not
affected by the data distribution. As stressed in Footnote 3, we only made
one reasonable assumption of � = o(n), which appears to be necessary for any
practically-efficient volume-hiding EMM. (If the volume is in the order of magni-
tude of the database size, any volume-hiding scheme ought to be inefficient.) Our
underlying cryptographic operations are mostly PRF as typically used in many
3 This is our only assumption on the input multi-map. AVLH [14] made more con-

straints on the multi-map for security or efficiency concerns, including this one.
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practically-efficient STEs. It means that our asymptotic improvements over the
prior arts can be directly translated to improvements in concrete efficiency, fol-
lowing the doctrine in computer science that asymptotic analysis of complexity
remains meaningful, regardless of the ever-changing computational power of the
time.

Different Trade-Offs on Server. For EMM = (DXS ,V) outsourced to the
server, the dictionary keys in DXS are essentially the elements stored in the
auxiliary array V. Our construction can choose to further outsource V or directly
process over DXS , which improves the storage overhead to n at the cost of either
communication overhead or computation overhead for the server.

With more advanced data structures, it is possible to reduce the computation
overheads of the binary search for successors, which accelerates the query, while
the server storage remains asymptotically the same, i.e., Θ(n). For example, we
could arrange V in a y-fast trie data structure [32], which efficiently supports
successor queries for integers using extra storage. Concretely, this trade-off offers
a computation overhead of Θ(log log n) for successor discovery with Θ(n) server-
side overhead, while the performance of other criteria remains the same.

4 Volume-Hiding Dynamic EMM via Batching Updates

A dynamic EMM enables the client to insert or remove one or multiple value(s)
associated with a key. Dynamic updates can be challenging to realize when we
simultaneously consider security and efficiency (e.g., minimizing leakage while
maintaining a parallelly-traversable encrypted structure [23–25]). Similarly, we
face a dilemma in designing a volume-hiding EMM. The root cause is that even
a single update for a key-value pair may change the maximum volume of the
multi-map. On one hand, the client should do dummy updates for distinct keys
to hide whether the real one is associated with the maximum volume. On the
other, it might leak more as those dummy updates for distinct keys it triggers
probably cause extra leakage. For dynamic update, it sounds better to start from
a static EMM that is free from dummies (or troubles), which guided our design.

Another way round is to let the client query the tuple regarding the key to be
updated in advance, and re-upload the modified tuple, which is confined to the
queried key but not any other keys. VLHd and AVLHd [14] follow this approach.
However, they are still subject to the maximum-volume limit (unless those extra
ones are truncated by the pseudorandom transform in VLHd). They also fail to
consider either forward or backward privacy emphasized in recent dynamic STE.

When saving space is one of our design goals, it is natural that the resulting
EMM is “highly” optimized with respect to the maximum volume, which makes
“volume-affecting” updates tricky. We thus consider dynamic EMM for batch
updates [7]. Namely, we set up a new EMM instance for batches and periodically
merge instances for efficiency. Setting up new instances for later merging may
sound conceptually straightforward; however, it is not an approach practically
applicable to all volume-hiding EMMs. As in Table 1, our static construction
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has decent communication overhead and server storage, which will be scaled up
by the number of batches in such an approach (e.g., for storing many EMM
instances), making ours more applicable than others. This also aligns with the
update feature of some commercial databases (e.g., bulk-loading in Vertica [26]).

4.1 Definition

Syntax. We consider the batch of updates in a similar way as the multi-maps.
The μ-th batch of updates MMμ is defined as {μ, keyi, �vi}keyi∈K, where �vi now
is a tuple of operation-value pairs regarding keyi. For each j ∈ �μ(key), �v[j] =
(�o[j], �u[j]), where �o[j] ∈ {add, del} refers to insertion or deletion of value �u[j] for
key, and �μ(key) is the number of updates associated with key in MMμ. We treat
the initial input multi-map for Setup as MM0 with an insertion to be done.

We introduce the following update algorithm for non-interactive response-
hiding structured encryption scheme for multi-maps Σ:

– (Kμ, st′,EMMμ) ← Update(MMμ, st) is a probabilistic algorithm executed by
the client that takes as input a batch of updates MMμ and a state st. It
outputs a private key Kμ, an updated state st′, and the encrypted multi-map
EMMμ. The client stores (Kμ, st′) while sending EMMμ to the server.

We extend the leakage function to L = (LS,LQ,LU), where LU is the update
leakage. STE security guarantees that Update reveals no information beyond LU.

The definition of adaptive security follows Definition 2, except that the sim-
ulator answers the update request on MMμ from A with EMMμ generated using
LU. Volume hiding is still considered with respect to passive adversaries.

Dynamic STE schemes [1,3,4,25] attach great importance to forward pri-
vacy, which requires updates to reveal nothing on the updated key, and back-
ward privacy, which ensures the deleted value remains inaccessible to the server.
While a recent work [28] pointed out that forward-private STE still suffers from
subtle attacks, forward privacy could mitigate the severe adaptive file injection
attacks [33], thus becoming the de facto standard of dynamic STE nowadays.
We formalize forward and backward privacy for batch updates in Appendix B.

4.2 Description

For the μ-th update batch MMμ = {μ, keyi, �vi = (�oi, �ui)}keyi∈K, the client gen-
erates (Kμ, st′,EMMμ) similar to Setup in Fig. 2. The new state is concatenated
to the old one according to keys. The only difference is that, for each key ∈ K
and each j ∈ �μ(key), (key, �o[j], �u[j]) is encrypted instead of a key-value pair.

Suppose the client has issued b batches of updates, and the server stores
b+1 encrypted multi-maps, including the initial one in Setup. Upon a query, the
client issues b+1 tokens with Query, and the server answers with Reply proposed
in our static construction, respectively. The client removes those values marked
with del and returns the remaining values associated with the queried key.
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4.3 Analysis

Efficiency. For an update batch MMμ, let nμ be the total number of updates
over all keys, mμ be the number of distinct keys, and �μ be the maximum number
of updates for any key. To update with MMμ, the server stores EMMμ of size
2nμ. It takes the client Θ(mμ · �μ) to generate this EMMμ.

For a query over our EMM with b batches of updates, the communication
overhead is

∑b
μ=0 �μ, while the computation complexity is Θ(

∑b
μ=0 �μ · log nμ).

Note that our dynamic extension inherits the nice properties of the underlying
static EMM, with neither client stash for overflowed multi-maps nor data loss.

For amortized efficiency, we could exploit the periodic-merge approach of
Vertica [26] as also adopted by a prior STE [7]. The client decides a consolidation
step s and the EMM for each update batch is organized as leaves of an s-ary
tree, created bottom-up. When s nodes are occupied in the same level, the client
downloads these s EMMs, consolidates existing values associated with the same
keys, and re-generates an encrypted multi-map, which will be assigned as the
parent of these s nodes. We refer to [7,26] for a more detailed description.

Despite the periodic cost for consolidation, this optimization can save the
server-side storage by reclaiming the space for deleted values, and reduce the
query overhead when the consolidation does not increase the maximum volume.
The actual consolidation strategy can be different for different scenarios.

Security. We first introduce two new leakage functions for batch updates.

– Update-batch pattern updb indicates the batches with any updates on key hap-
pened. Formally, updb(MM, key) = {μ | �μ(key) > 0} with MM = ∪MMμ.

– Update size pattern usize reports the total number of updates over all keys
in an update batch. Formally, for a batch of updates MMμ with (non-
cryptographic) key space K, usize(MMμ) =

∑
key∈K �μ(key).

Theorem 2. If SKE = (Enc,Dec) is an RCPA-secure encryption scheme and F
is a PRF, our dynamic construction is an (LS,LQ,LU)-adaptive-secure dynamic
encryption scheme for multi-maps with forward privacy, level-II backward pri-
vacy, and volume hiding against passive adversaries where (LS,LQ,LU) = (dsize,
(qeq, aintx,mrlen, updb), usize).

The proof is omitted due to the page limit and since it can be done in a stan-
dard way. Roughly, given usize, Update() can be simulated similar to simulating
Setup() as in Theorem 1. The update leakage contains usize of the update batch,
not revealing the volume associated with any key against passive adversaries.

The construction is forward-private as the token generated for previous
encrypted multi-maps could not be applied to any subsequent updates and no
key information is revealed during updates. It also satisfies our level-II backward
privacy for batch updates (Appendix B) as the construction is response-hiding
and nothing except the batches is revealed when updates over the queried key.
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5 Conclusion

Structured encryption is volume hiding when each query has the same volume as
the largest one. It was originally proposed as a stringent requirement and might
be perceived as a theoretical notion with no practical realization.

Motivated by passive attacks abusing volume leakage in plaintext reconstruc-
tion [21], this work considers a practically relevant setting in which the cloud
is honest-but-curious and does not launch active attacks, which could alert the
data owner. Achieving the volume-hiding property remains non-trivial given our
primary efficiency goal is to save the actual volume of encrypted data. The nov-
elty of our scheme is that the slots needed in hiding the volume across the queries
are all real slots storing some meaningful ciphertexts, in contrast to the known
paradigm of volume-hiding structured encryption. Thanks to its nice perfor-
mance and compatibility with batch updates, we extend it to the first dynamic
volume-hiding encrypted multi-maps with forward and backward privacy.

Conceptually, this work brings new ideas to the (volume-hiding) structured
encryption realm and hopefully inspires more research. We leave as an open prob-
lem to provide volume-hiding against stronger adversaries and handle sporadic
volume-affecting updates while maintaining a similar efficiency level.

A Security Proof for Theorem 1

Proof. We construct the simulator S as follows.
To simulate EMM with LS = dsize, the simulator S initializes two arrays

V,U of size n = dsize(MM), and a dictionary DXS . S fills each slot of U with
a uniformly random value sampling from {0, 1}s, and then sorts U. For i ∈ [n],
S randomly selects a uniformly random integer t as V[i − 1] from the interval
[U[i − 1] + 1 . .U[i mod n]] and sets DXS [V[i − 1]] as a uniformly random value
sampling from {0, 1}λ. S sorts and keeps V. (DXS ,V) is returned as EMM.

To simulate tk for the i-th query of keyi with LQ = (qeq, aintx,mrlen), the sim-
ulator S checks whether keyi has been queried before using qeq(key1, . . . , keyi).
If so, S returns the same tk as that of the previous queries of keyi. Otherwise, S
checks aintx(EMM, key1, . . . , keyi) and get the common slots of keyi with previous
queries. S picks � = mrlen(MM) intervals in V, with parts of them determined
by the common slots from aintx and the rest picked randomly without repeat-
ing, and samples a uniformly random value from each selected interval. These �
values are returned as tk.

We show that for all PPT adversary A, the outputs of the real-world game
and ideal-world game are indistinguishable. We derive a standard game sequence
from the real-world game RealΣ,A(1λ) to the ideal-world game IdealΣ,A,S(1λ).

– Game0 is the same as RealA(1λ).
– Game1 replaces the pseudorandom function F in Game0 with a random

function (and recalled when needed).
– Game2 replaces the RCPA-secure encryption scheme in Game1 with a ran-

dom function.
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– Game3 replaces the outputs of random functions in Game2 with values
chosen uniformly at random.

– Game4, for any query, randomly picks � = mrlen(MM) intervals in V and
samples a uniformly random value from each selected interval. Game4 is the
same as IdealΣ,A,S(1λ).

Game0 and Game1 are indistinguishable; otherwise, it violates the security
of the pseudorandom function. Game1 and Game2 are indistinguishable; oth-
erwise, it violates the RCPA security of the encryption scheme. By the definition
of random functions, winning Game2 or Game3 shares an equal probability.
The probabilities of winning Game3 and Game4 are also equal since DXS ,V, tk
follow the same distributions in both games. By combining these (in)equalities,
we have |Pr[RealA(1λ) = 1] − Pr[IdealA,S,L(1λ) = 1]| ≤ negl(λ) .

B Forward and Backward Privacy for Batch Updates

Forward privacy for batch updates requires that any batch of updates reveals
nothing about the keys to be updated. Thus, the adversary cannot figure out the
relation between newly updated multi-maps and any previous query. We extend
the definition from that designed for a single key-value update [3].

Definition 3 (Forward Privacy). We say that an L-adaptively-secure struc-
tured encryption scheme for multi-maps Σ over key space K is forward private,
if the update leakage function LU can be written as LU(MMμ) = L′({�vi}keyi∈K),
where MMμ = {μ, keyi, �vi}keyi∈K, and L′ is stateless.

Backward privacy hides deleted values during subsequent queries. Like the
previous definition [4], we formalize it for batch updates by introducing leakage
functions constructed from the union of historical update batches MM = ∪MMμ:

– Value-batch pattern valb reports the values currently associated with key and
in which batches they are inserted. Formally, valb(MM, key) = {(μ, u) |(μ, key,
(add, u)) ∈ MM ∧ ∀μ′, (μ′, key, (del, u)) /∈ MM}.

– Delete-batch pattern delb lists the batch-pairs of deletions and corresponding
insertions on key. Formally, delb(MM, key) = {(μ, μ′) | ∃u s.t. (μ, key, (del, u))
∈ MM ∧ (μ′, key, (add, u)) ∈ MM}.

Definition 4 (Backward Privacy). We say that an L-adaptively-secure
structured encryption scheme for multi-maps Σ over key space K is

– insertion-pattern revealing backward-private (Level-I) if

LU(MMμ) = L′({�oi}keyi∈K),
LS(MM, key) = L′′(valb(MM, key), �(key)),

– update-pattern revealing backward-private (Level-II) if

LU(MMu) = L′({keyi, �oi}keyi∈K),
LS(MM, key) = L′′(valb(MM, key), updb(MM, key)),
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– weakly backward-private (Level-III) if

LU(MMu) = L′({keyi, �oi}keyi∈K),
LS(MM, key) = L′′(valb(MM, key), delb(MM, key)),

where MM = ∪MMμ with MMμ = {μ, keyi, �vi = (�oi, �ui)}keyi∈K. �(key) is the
volume of key in MM. L′ and L′′ are stateless.
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Abstract. Symmetric Searchable Encryption (SSE) allows users to out-
source encrypted data to a possibly untrusted remote location while
simultaneously being able to perform keyword search directly through
the stored ciphertexts. An ideal SSE scheme should reveal no information
about the content of the encrypted information nor about the searched
keywords and their mapping to the stored files. However, most of the
existing SSE schemes fail to fulfil this property since in every search
query, some information potentially valuable to a malicious adversary is
leaked. The leakage becomes even bigger if the underlying SSE scheme is
dynamic. In this paper, we minimize the leaked information by propos-
ing a forward and backward private SSE scheme in a multi-client setting.
Our construction achieves optimal search and update costs. In contrast
to many recent works, each search query only requires one round of inter-
action between a user and the cloud service provider. In order to guaran-
tee the security and privacy of the scheme and support the multi-client
model (i.e. synchronization between users), we exploit the functionality
offered by AMD’s Secure Encrypted Virtualization (SEV).

Keywords: Backward privacy · Cloud security · Forward privacy ·
Multi-client · Symmetric Searchable Encryption

1 Introduction

Symmetric Searchable Encryption (SSE) is a promising encryption technique
that squarely fits the cloud paradigm and can pave the way for the development
of cloud services that will respect users’ privacy even in the case of a compromised
Cloud Service Provider (CSP) [6]. Additionally, SSE schemes can be seen as a
first, fundamental step for protecting users’ data from both external and internal
attacks (e.g. a malicious administrator). This is because since in an SSE scheme,
users generate all the secret information (encryption key) locally and encrypt all
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of their data on the client-side (i.e. the encryption key is never revealed to the
CSP). The service offered by the CSP is only used for storing and retrieving the
generated ciphertexts. In contrast to traditional encryption schemes, SSE offers a
remarkable functionality – it allows users to search for specific keywords directly
through the stored ciphertexts. This is done by asking the CSP to execute search
queries in a privacy-preserving way. In other words, the CSP can find all the
ciphertexts containing a specific keyword but without knowing the underlying
keyword or anything about the content of the corresponding files.

An ideal SSE scheme should reveal no information about the content of the
encrypted information nor about the searched keywords and their mapping to
the stored files. However, most SSE schemes fail to fulfill this property since
in every search or update query, some information potentially valuable to a
malicious adversary is leaked. In the early years of SSE, researchers utilized
techniques such as oblivious RAM (ORAM). However, according to [20], adopt-
ing such a technique is even less efficient than downloading and decrypting the
entire database locally. As a result, researchers have come to a silent agreement
that “nothing should be revealed beyond some well defined and “reasonable” leak-
age” [3].

Leaked information in SSE schemes has become a problem of paramount
importance since it is the main factor in defining the overall level of security. In
works such as [11] and [16] it is pointed out that even a small leakage can lead
to several privacy attacks. These works were further extended in [24] where the
authors assumed that an active adversary can perform file-injection attacks and
record the output. This “new” ability allowed the adversary to recover informa-
tion about past queries only after ten file insertions. This result led researchers
to design forward private SSE schemes [8,13]. Forward privacy is a notion intro-
duced in [22] and guarantees that that newly added files cannot be related to past
search queries. While forward privacy is a very important property, unfortunately
it has been shown to also be vulnerable to certain file-injection attacks [24].

While forward privacy secures the content of a past query, its binary property,
backward privacy, ensures the privacy of future queries. Backward privacy was
formalized in [9] where three different flavors were defined. A backward private
SSE scheme ensures that queries do not reveal their association with deleted
documents. To the best of our knowledge, there are only a handful of backward
private schemes per flavor where none of them supports the multi-client model.

Our Contribution: We extend the work proposed in [13] by constructing a for-
ward and backward private Dynamic SSE scheme that supports a multi-client
model. We deal with the problem of synchronization between multiple clients by
utilizing the functionality offered by AMD’s SEV [2]. In particular, our construc-
tion: (1) Provides Forward Privacy . (2) Provides Backward Privacy .
(3) Is asymptotically optimal . (4) Is Parallelizable .
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2 Related Work

Our work is based on [13] where the authors presented a Symmetric Search-
able Encryption scheme with Forward Privacy, a notion first introduced in [22].
Their construction however is only forward private and limited to a single client
model. In this work, we make use of the functionality offered by AMD’s SEV
VMs to both extend the original scheme to be backward private and to sup-
port the multi-client setting. Another single-client forward private SSE scheme
is presented in [8], where the authors designed Sophos. While Sophos achieves
asymptotically optimal search and update costs, O(�) and O(m) respectively, a
file addition requires O(m) asymmetric cryptographic operations on the user’s
side. An improvement in the search time of Sophos is presented in [17]. Authors
of [8] extended their work in [9] by designing a number of SSE schemes that are
both forward and backward private. Out of those schemes, Dianadel and Janus
are the most efficient but at the same time they satisfy the weakest notion
of backward privacy. In particular, Janus achieves its security by using public
puncturable encryption. Fides is among the first efficient backward private SSE
schemes with stronger security guarantees. However, it only satisfies the single-
client model. Moreover, the search operation requires two rounds of interaction
while our scheme only requires one. An improvement of Janus is presented in [23]
where authors design Janus++. While Janus++ is more efficient than Janus as
it is based on symmetric puncturable encryption, Janus++ can only achieve the
same security level as Janus. An SGX-based forward/backward private scheme
called Bunker-B is presented in [3]. Our construction is similar to that in the
sense that we use a trusted execution environment (TEE) to reduce the number
of required rounds to one. However, as in the case of Sophos and Fides, Bunker-
B only supports the single-client model. Moreover, we believe that SGX in not
a suitable TEE for a cloud-based service due to its limitations.

Table 1. N : number of (w, id) pairs, n: total number of files, m: total number of
keywords, p: number of processors, k: number of keys, aw: number of updates match-
ing w, dw: number of deleted entries matching w, �: result size (� = aw − dw),
(tPE.Enc, tPE.Dec): encryption and decryption times for a public pancturable encryp-
tion scheme, (tSPE.Enc, tSPE.Dec): encryption and decryption times for a symmetric
pancturable encryption scheme MC: Multi-Client, FP: Forward Privacy, BP: Backward
Privacy. ˜O notation hides polylogarithmic factors.

Scheme MC FP BP Search time Update time Client storage

Comparison

Bunker-B ✗ ✓ Type-II O(�) O(1) O(mlogn)

Fides ✗ ✓ Type-II O(�) O(1) O(mlogn)

Dianadel ✗ ✓ Type-III O(�) O(logN) O(mlogn)

Janus ✗ ✓ Type-III O(�d)tP E.Dec O(�)(tP E.Enc ∨ tP E.Dec) O(mlogn)

Janus++ ✗ ✓ Type-III O(�d)tSP E.Dec O(�)(tSP E.Enc ∨ tSP E.Dec) O(mlogn)

Moneta ✗ ✓ Type-I ˜O(aw log N + log3 N) ˜O(log2 N) O(1)

Orion ✗ ✓ Type-I O(� log N2) O(logN2) O(1)

Ours ✓ ✓ Type-II O(�/p) O(m/p) None
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In [10] authors presented HardIDX, a scheme that also supports range queries
with the use of SGX [12] based on B+ trees. HardIDX minimizes the leakage by
hiding the search pattern but at the same time, their construction is static. As a
result, it does not support file insertions after the generation of the initial index.
Therefore, even though the scheme achieves logarithmic search cost, a direct
comparison to our scheme is not possible. ORAM-based approaches: The first
forward private SSE scheme was proposed in [22], where the authors presented an
ORAM-based construction. More recently, in [9], authors proposed Moneta, an
SSE scheme that achieves the strongest level of backward privacy, but at the cost
of efficiency. Moneta is based on the TWORAM construction presented in [14].
However, as argued in [15], the use of TWORAM renders Moneta impractical for
realistic scenarios and the scheme can serve mostly as a theoretical result for the
feasibility of stronger backward private schemes schemes. Finally, in [15], another
ORAM-bsed scheme, Orion, is proposed. While Orion outperforms Moneta, the
number of interactions between the user and the CSP depends on the size of
the encrypted database. It needs to be noted that in this work, we do not deal
with the revocation of the users as for example in [4,5]. In Table 1 we see a
comparison of the aforementioned schemes to our construction.

3 Background

Notation. Let X be a set. We use x ← X if x is sampled uniformly from X and
x

$←− X , if x is chosen uniformly at random. If X and Y are two sets, we denote
by [X ,Y] all the functions from X to Y and by [X ,Y] all the injective functions
from X to Y. R(·) is a truly random function and R−1(·) its inverse. A function
negl(·) is called negligible, iff ∀c ∈ N,∃n0 ∈ N : ∀n ≥ n0, negl(n) < n−c. If s(n)
is a string of length n, we denote by s(l) its prefix of length l and by s(l), its suffix
of length l, where l < n. A file collection is represented as f = (f1, . . . , fz) while
the corresponding collection of ciphertexts is c = (cf1 , . . . , cfz

). The universe
of keywords is W = (w1, . . . , wk) and the distinct keywords in a file fi are
wi = (wi1 , . . . , wi�

).

Definition 1 (DSSE Scheme). A Dynamic Symmetric Searchable Encryption
(DSSE) scheme consists of the following PPT algorithms:

– (InCSP, c)(InTA)(K) ← Setup(λ, f): The data owners runs this algorithm to
generate the key K as well as the CSP index InCSP and a collection of cipher-
texts c that will be sent to the CSP. Additionally, the index InTA that is stored
on a remote location is generated.

– (In′
CSP, Rwij

)(In′
TA) ← Search(K, wij

, InTA)(InCSP, c). This algorithm is exe-
cuted by a user in order to search for all files fi containing a specific key-
word wij

. The indexes are updated and the CSP also returns to the user the
ciphertexts of the files that contain wij

.
– (In′

CSP, c′)(In′
TA) ← Update(K, fi, InTA)(InCSP, c, op), where op ∈ {add,delete}:

A user is running this algorithm to update the collection of ciphertexts c.
Based on the value of op, a new file is either added to the collection or an
existing one is deleted.
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Definition 2 (L-Adaptive Security of DSSE). Let DSSE = (Setup, Search,
Update) be a dynamic symmetric searchable encryption scheme and L = (Lstp,
Lsearch,Lupdate) be the leakage function of the DSSE scheme. We consider the
following experiments between an adversary ADV and a challenger C:
RealADV (λ)

ADV outputs a set of files f . C generates a key K, and runs Setup. ADV then makes
a polynomial number of adaptive queries q = {w, f1, f2} such that f1 /∈ f and f2 ∈ f .
For each q, she receives back either a search token for w, τs(w), an add token, τα,
and a ciphertext for f1 or a delete token τd for {w, f2}. ADV outputs a bit b.

IdealADV,S(λ)

ADV outputs a set of files f . S gets Lsetup(f) to simulate Setup. ADV then
makes a polynomial number of adaptive queries q = {w, f1, f2} such that
f1 /∈ f and f2 ∈ f . For each q, S is given either LSearch(w) or Lupdate(fi),
i ∈ {1, 2}. S then simulates the tokens and, in the case of addition, a
ciphertext. Finally, ADV outputs a bit b.

We say that the DSSE scheme is secure if ∀ PPT adversary ADV, ∃ S such
that:

|Pr[(RealADV) = 1] − Pr[(IdealADV,S) = 1]|≤ negl(λ) (1)

A DSSE scheme is said to be forward private if for all file insertions that
take place after the successful execution of the Setup algorithm, the leakage is
limited to the size of the file, and the number of unique keywords contained in it.
On the other hand, a DSSE scheme is said to be backward private if whenever a
keyword/document pair (w, id(f)) is added into the database and then deleted,
subsequent search queries for w do not reveal id(f). More formally:

Definition 3 (Forward Privacy). An L-adaptively SSE scheme is forward
private iff the leakage function LUpdate can be written as:

Lupdate(op, id(f)) = L′(op,#w ∈ f) (2)

where L′ is a stateless function.

Definition 4 (Backward Privacy). There are three different flavors of back-
ward privacy (listed in decreasing strength):

– Type-I: Backward Privacy with insertion pattern leaks the documents cur-
rently matching w and when they were inserted i.e. their timestamps
TimeDB(w).

– Type-II: Backward Privacy with update pattern leaks the documents currently
matching w, TimeDB(w) and a list of timestamps Updates(w) denoting when
the updates on w happened.

– Type-III: Weak Backward Privacy leaks the documents currently matching
they keyword w, TimeDB(w) and DelHist(w), where DelHist(w) reveals
the timestamps of the delete updates on w together with the corresponding
entries that they remove.
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Our scheme satisfies Type-II backward privacy.

Definition 5. An L-adaptively SSE scheme is update pattern revealing backward
private iff the search and update leakage functions can be written as:

Lsearch(w) = L′(TimeDB(w),Updates(w))
Lupdate(op, w, id) = L′′(op, wi)

(3)

Where the functions L′ and L′′ are stateless.

Finally, the leakage function Lstp associated with the setup operation is for-
malised as follows:

Lstp = (N,n, cid(fi)),∀fi ∈ f (4)

Where N is the total size of all the (keyword/filename) pairs, and n is the total
number of files in the collection f .

3.1 Secure Encrypted Virtualisation

The main advantages of SEV in comparison to its main competitor -Intel SGX-
are (1) memory size, (2) efficiency and (3) No SDK or code refactoring are
required. In particular, SGX allocates only 128 MB of memory for software and
applications and thus, making it a good candidate for microtranscations and
login services. However, SEV’s memory is up to the available RAM and hence,
making it a perfect fit for securing complex applications. Moreover, in situations
where many calls are required, like in the case of a multi-client cloud service, SEV
is known to be much faster and efficient than SGX. The above are summarized
in Table 2. More information can be found in [19].

Table 2. SEV-SGX comparison

TEE Memory Size SDK Code Refactoring

SEV Up to Available Ram Not Required Not Required

SGX Up to 128MB Required Major Refactoring

4 Architecture

In this section, we introduce the system model by describing the entities partic-
ipating in our construction.

Users. We denote with U = {u1, . . . , un} the set of all users that have been
already registered in a cloud service that allows them to store, retrieve, update,
delete and share encrypted files while at the same time being able to search over
encrypted data by using our DSSE scheme. The users in our system model are
mainly classified into two categories: data owners and simple registered users
that they have not yet upload any data to the CSP. A data owner first needs to
locally parse all the data that wishes to upload to the CSP. During this process,
she generates three different indexes:
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1. No.Files[w] which contains a hash of each keyword w along with the number
of files that w can be found at

2. No.Search[w], which contains the number of times a keyword w has been
searched by a user.

3. Dict a dictionary that maintains a mapping between keywords and encrypted
filenames.

Both No.Files[w] and No.Search[w] are of size O(m), where m is the total number
of keywords while the size of Dict is O(N) = O(nm), where n is the total number
of files. To achieve the multi-client model, the data owner outsources No.Files[w]
and No.Search[w] to a trusted authority (TA). These indexes will allow registered
users to create consistent search tokens. Dict is finally sent to the CSP.

Cloud Service Provider (CSP). We consider a cloud computing environment
similar to the one described in [21]. The CSP must support SEV-enabled since
core entities will be running in the trusted execution environment offered by
SEV. The CSP storage will consist of the ciphertexts as well as of the dictionary
Dict. Each entry of Dict is encrypted under a different symmetric key Kw. Thus,
given Kw and the number of files containing a keyword w, the CSP can locate
the files containing w.

Trusted Authority (TA). TA is an index storage that stores the No.Files and
No.Search indexes that have been generated by the data owner. All registered
users can contact the TA to access the No.Files[w] and No.Search[w] values for a
keyword w. These values are needed to create the search tokens that will allow
users to search directly on the encrypted database. Similarly to the CSP, the TA
is also SEV-enabled.

Deletion Authority (DelAuth). DelAuth is responsible for the deletion of
files. Every time a user performs a search operation, the CSP forwards the result
R to DelAuth. DelAuth decrypts the result, removes the Dict entries to be
deleted and then re-encrypts the remaining filenames and sends them back to
the CSP. Like the CSP and TA, DelAuth is also SEV enabled.

TA and DelAuth can be individual entities. For simplicity, we will assume
that they are part of the same host.

5 Nowhere to Leak

Formal Construction: Our construction constitutes of three different algo-
rithms, namely Setup,Search and Update. Let G : {0, 1}λ × {0, 1}∗ →
{0, 1}∗ be an invertible pseudorandom function (IPRF) [7]. Moreover, let
SKE = (Gen,Enc,Dec) be an IND-CPA secure symmetric key cryptosystem and
h = {0, 1}∗ → {0, 1}λ be a cryptographic hash function. Due to space constrains,
we present the Setup,Search and Update Algorithms, in Figs. 1 and 2 respectively.
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Fig. 1. Setup algorithm

Theorem 1. Let SKE = (Gen,Enc,Dec) be a CPA-secure symmetric key encryp-
tion scheme. Moreover, let G be an IPRF and h a cryptographic hash function.
Then our construction is L-adaptively secure according to Definition 2.

Proof Sketch. To prove the security of our construction against the threat
model defined in Sect. 3, we construct a simulator S that simulates a perfect
view of the real world for a PPT adversary ADV. To do, we make use of a
hybrid argument. More precisely, we will design five hybrids H0,H1,H2,H3 and
H4 such that H0 is the real experiment and H4 the ideal one. Each hybrid Hi, will
be constructed by replacing a real functionality with a simulated one given the
corresponding leakage function Li. Our goal is to prove that no PPT adversary
ADV will be able to distinguish between two consecutive hybrids Hi,Hi+1. The
hybrids are illustrated in Table 3. The complete formal proof can be found in the
full version of the paper along with a more detailed presentation of our scheme.

Table 3. Hybrid description

Hybrids Description

H0 This is the real experiment

H1 Simulate Setup given Lstp

H2 Simulate Search given Lsearch

H3 Simulate Update given Lupdate

H4 This is the ideal experiment
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Fig. 2. Search and update algorithms
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6 Experimental Results

We implemented our scheme in Python 2.7 using the PyCrypto library [1]. To
test the overall performance, we used files of different sizes and structures. More
precisely, we used a collection of five datasets provided in [18]. Table 4 shows
the datasets used in our experiments as well as the total number of unique key-
words extracted from each set. Our experiments focused on two main aspects:
(1) Indexing and (2) Searching for a specific keyword. Deletion cannot be real-
istically measured since to completely delete all entries corresponding to a file,
we first need to search for all the keywords contained in the file. Additionally,
our dictionaries were implemented as tables in a MySQL database. In contrast
to other similar works, we did not rely on the use of data structures such as
arrays, maps, sets, lists, trees, graphs, etc. While the use of a database system
decreases the overall performance of the scheme it is considered as more durable
and close to a production level. Conducting our experiments by solely relying on
data structures would give us better results. However, this performance would
not give us any valuable insights about how the scheme would perform outside
of a lab. Additionally, storing the database in RAM raises several concerns. For
example a power loss or system failure could lead to data loss (because RAM is
volatile memory). To this end, we ran our experiments in the following two differ-
ent machines: (1), AMD RyzenTM 7 PRO 1700 Processor at 3.0 GHz (8 cores),
32 GB of RAM running Windows 10 64-bit with AMD SEV Support and (2)
Microsoft Surface Book laptop with a 4.2 GHz Intel Core i7 processor (4 cores)
and 16 GB RAM running Windows 10 64-bit

The reason for measuring the performance on such machines and not only in
a powerful desktop – like other similar works – is that in a practical scenario, the
most demanding processes of any SSE scheme (e.g. the creation of the dictionary)
would take place on a user’s machine.

Indexing and Encryption: In our experiments, we measured the total setup
time for each one of the datasets shown in Table 4a. Each process was run ten
times on the commodity laptop and the average time for the completion of the
entire process was measured. As can be seen from Table 4b, the setup time
can be considered as practical and can even run in typical users’ devices. We
compare the setup times for the commodity laptop and the powerful desktop.
Based on the fact that this phase is the most demanding one in an SSE scheme
the time needed to index and encrypt such a large number of files is considered
as acceptable not only based on the size of the selected dataset but also based
on the results of other schemes that do not even offer forward privacy as well as
on the fact that we ran our experiments on commodity machines and not on a
powerful server. This is an encouraging result and we hope that will motivate
researchers to design and implement even better and more efficient SSE schemes
but most importantly we hope that will inspire key industrial players in the field
of cloud computing to create and launch modern cloud-services based on the
promising concept of Symmetric Searchable Encryption.
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Table 4. Dataset sizes and setup times

No of TXT Files Dataset Size Unique Keywords (w, id) pairs

425 184MB 1,370,023 5,387,216

815 357MB 1,999,520 10,036,252

1,694 670MB 2,688,552 19,258,625

1,883 1GB 7,453,612 28,781,567

2,808 1.7GB 12,124,904 39,747,904

(a) Size of Datasets and Unique Keywords

���������Dataset
Testbed

Laptop Desktop

184MB 22.48m 8.49m

357MB 40.00m 13.51m

670 86.43m 29.51m

1GB 141.60m 48.99m

1.7GB 203.28m 68.44m

(b) Setup time (in minutes)

Search: In this part of the experiments we measured the time needed to com-
plete a search over encrypted data. In our implementation, the search time is
calculated as the sum of the time needed to generate a search token and the time
required to find the corresponding matches at the database. It is worth mention-
ing that the main part of this process will be running on the CSP (i.e. a machine
with a large pool of resources and computational power). To this end, the time
to generate the search token was measured on the laptop while the actual search
time was measured using the desktop machine described earlier. On average,
the time needed to generate the search token on the Surface Book laptop was
9μs. Regarding the actual search time, searching for a specific keyword over a
set of 12,124,904 distinct keywords and 39,747,904 addresses required 1.328 s on
average while searching for a specific keyword over a set of 1,999,520 distinct
keywords and 10,036,252 addresses took 0.131 s.
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Abstract. The availability of a multitude of data sources has naturally
increased the need for subjects to collaborate for distributed computa-
tions, aimed at combining different data collections for their elabora-
tion and analysis. Due to the quick pace at which collected data grow,
often the authorities collecting and owning such datasets resort to exter-
nal third parties (e.g., cloud providers) for their storage and manage-
ment. Data under the control of different authorities are autonomously
encrypted (using a different encryption scheme and key) for their external
storage. This makes distributed computations combining these sources
hard. In this paper, we propose an approach enabling collaborative com-
putations over data encrypted in storage, selectively involving also sub-
jects that might not be authorized for accessing the data in plaintext
when it is considered economically convenient.

1 Introduction

Our society and economy more and more rely on the knowledge that can be
generated by analysis and computations combining data that are produced and
owned/controlled by different parties. The cloud, thanks to a variety of storage
and computational providers with different costs and performance guarantees,
represents an accelerator for such needs. Data owners can in fact outsource their
data to storage providers, making them (selectively) available for computations
with reduced management burden at their own side. At the same time, users
requiring analysis can (partially) delegate expensive computations to compu-
tational providers, with clear performance and economic benefits [9]. However,
there is no such thing as a free lunch, and the scenario can be complicated by
the fact that some of the data can be sensitive, proprietary, or more in general
subject to access restrictions, all factors that can affect the possibility of relying
on external cloud providers for data management and processing.
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To solve this issue and ensure data protection while permitting the consid-
eration of a large spectrum of providers for computations, a recent approach
proposed a simple, yet flexible, authorization model that enriches the tradi-
tional yes/no visibility that a subject can have over data with a third visibility
level, granting a subject visibility over encrypted versions of the data [9]. In this
way, subjects that are economically convenient, but possibly not fully trusted
for accessing data content, may still be involved in computations over encrypted
data. To enforce the authorization policy, visibility over data is dynamically
adjusted by inserting, before passing a dataset to a subject not trusted for plain-
text access, on-the-fly encryption operations. Similarly, the encryption layer can
be dynamically removed through on-the-fly decryption when requested for oper-
ations that cannot be executed over encrypted data.

The authorization model in [9] operates under the assumption that the datasets
involved in the distributed computation are stored in plaintext. This assumption
is however viable only when data are either stored at their owners, or outsourced
at providers that are trusted to access data in plaintext, hindering the consider-
ation of providers that, while being economically convenient, cannot be consid-
ered fully trusted. Intuitively, the spectrum of potential providers that could be
adopted for storing datasets could be enlarged if data are encrypted, by their own-
ers, before outsourcing. The joint adoption of the authorization model in [9] and
of encrypted storage would benefit both users requiring computations, and own-
ers wishing to make their data selectively available to others. Users might in fact
leverage economically convenient providers for the computation, and owners can
outsource their datasets to economically convenient providers with the guarantee
that their data will be improperly accessed neither in storage, nor in computation.
The consideration of encrypted storage in collaborative computations brings how-
ever complications, since encryption in storage is not specifically inserted accord-
ing to the computations to be performed and may not support them, which could
hence require additional decryption and re-encryption operations.

In this paper, we build on the authorization model in [9] and propose a solu-
tion for collaborative computations over distributed data that can be stored, in
encrypted form, at external and possibly not fully trusted providers. The main con-
tributions of this paper can be summarized as follows. First, we re-define the infor-
mation flows enacted by a computation, necessary for authorization enforcement,
based on the possibility of some data being stored in encrypted form (Sect. 2). Sec-
ond, we identify the need, and propose a solution for, re-encryption operations, to
be introduced when the encryption adopted in storage (which is pre-determined by
the data owner) does not support operation execution (Sect. 3). Third, we provide
an approach for computing an economically convenient assignment of computa-
tion operations to subjects in complete obedience of authorizations (Sect. 4). We
discuss related works in Sect. 5 and conclude the paper in Sect. 6.

2 Relation Profiles and Authorizations

We consider a scenario characterized by three kinds of subjects: 1) data authori-
ties, each owning one or more relational tables possibly stored at external storage
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Fig. 1. An example of a query plan (a) and of authorizations on relations Flight and
Company (b)

providers; 2) users, submitting queries over relations under the control of differ-
ent authorities; and 3) computational providers, which can be involved for query
evaluation. Queries can be of the general form “select from where group
by having” and can include joins among relations under control of different
data authorities. Execution of queries is performed according to a query plan
established by the query optimizer, where projections are pushed down to avoid
retrieving data that are not necessary for query evaluation. Graphically, we rep-
resent query plans as trees whose leaf nodes correspond to base relations, after
the projection of the subset of attributes of interest for the query. For simplicity,
but without loss of generality, we assume that attributes in the relations have
different names.

Example 1. Consider two data authorities, a flight company and a commercial
company with one relation each: relation Flight(N, D,P, C) reports the social
security Number and Date of birth of passengers, and the Price and Class of their
tickets; relation Company(S, I, J) reports the Social security number, Income,
and Job of the company employees. These relations are stored in encrypted form
at providers F and C, respectively. The system is characterized by computational
providers X, Y, and Z. In our running example, we consider the following query
submitted by user U: “select C, sum(P), sum(I) from Flight join Company
on N = S where J = ‘manager’ group by C having sum(P)>10%sum(I)”,
retrieving the classes for which the overall price of tickets is above the 10%
of the income of the managers who bought such tickets. Figure 1(a) illustrates a
plan for the query.

Relation Profile. Besides the attributes included in its schema, a relation
resulting from a computation can convey information on other attributes.
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The information content explicitly and implicitly conveyed by a (base or derived,
that is, resulting from the evaluation of a sub-query) relation is captured by a
profile associated with the relation. We extend the definition of relation profile
in [9] to model the possible encrypted representation of attributes in storage.

Definition 1 (Relation Profile). Let R be a relation. The profile of R is a
6-tuple of the form [Rvp, Rve, RvE , Rip, Rie, R�] where: Rvp, Rve, and RvE are the
visible attributes appearing in R’s schema in plaintext (Rvp), encrypted on-the-
fly (Rve), and encrypted in-storage (RvE); Rip and Rie are the implicit attributes
conveyed by R, in plaintext (Rip) and encrypted (Rie); R� is a disjoint-set
data structure representing the closure of the equivalence relationship implied
by attributes connected in R’s computation.

In the definition, Rvp corresponds to the set of plaintext attributes visible in
the schema of R. We then distinguish between the visible attributes encrypted
on-the-fly (Rve) and the visible attributes encrypted in storage (RvE), due to
their different nature. In-storage encryption is enforced once, independently from
the query to be answered, and uses a scheme and a key (decided by the owning
data authority) that do not change over time and are not shared among different
data authorities. On-the-fly encryption is enforced at query evaluation time and
both the encryption scheme and the encryption key are decided by the user for-
mulating the query and need to be shared among different parties when different
attributes need to be compared (e.g., for a join evaluation). Implicit components
(Rip, Rie) keep track of the attributes that have been involved in query evalua-
tion for producing relation R. Even if they do not appear in R’s schema, query
evaluation has left a trace of their values in the query results (e.g., attributes
involved in selection or group by operations). Note that we do not distinguish
between in-storage and on-the-fly encryption in the implicit component of the
profile. Indeed, the information leaked by the evaluation of an operation over an
encrypted attribute is not influenced by the time at which encryption has been
enforced or the subject enforcing it. The equivalence relationship (R�) keeps
track of the sets of attributes that have been compared for query evaluation
(e.g., for the evaluation of an equi-join). Hence, even if one of the attributes in
the equivalence set has been projected out from the relation schema, its values
are still conveyed by the presence of other (equivalent) attributes.

The profile of a base relation R has all components empty except Rvp and
RvE that contain the attributes appearing in plaintext and in encrypted form,
respectively, in the relation schema. The profile of a derived relation resulting
from the evaluation of an operation depends on both the operation and the profile
of the operand(s). Figure 2 illustrates the profiles resulting from the evaluation of
relational algebra operators, and of encryption and decryption operations, which
are peculiar of our model. Graphically, we represent the profile of a relation as a
tag attached to the relation’s node (or the node of the operator producing it in
case of a derived relation), with three components: v (visible attributes in Rvp

and, on a gray background, Rve and RvE), i (implicit attributes in Rip and, on
a gray background, Rie), and � (sets of equivalent attributes in R� that have



100 S. De Capitani di Vimercati et al.

Fig. 2. Profiles resulting from relational, encryption, and decryption operations

been compared for R’s computation). We represent encryption and decryption
operations as gray and white boxes, respectively, containing the attributes to be
encrypted/decrypted, attached to the operand relation or the resulting relation,
respectively. Figure 3 illustrates the profiles of the relations resulting from the
evaluation of the operations in the query plan in Fig. 1(a), assuming attributes
NS and PI are decrypted for enabling computations over them.

Authorizations. Authorizations aim at regulating data flows intended for com-
putations. Authorizations can specify, for each subject, whether she has plaintext
visibility, encrypted visibility, or no visibility for performing computations over
the attributes in the relations, and are defined as follows.

Definition 2 (Authorization). Let R be a relation and S be a set of subjects.
An authorization is a rule of the form [P ,E]→S, where P ⊆ R and E ⊆ R are
subsets of attributes in R such that P ∩ E = ∅, and S ∈ S ∪{any}.

Authorization [P ,E]→S states that subject S can access in plaintext
attributes in P , in encrypted form attributes in E, and has no visibility over the
attributes in R\(P ∪E). Subject ‘any’ can be used to specify a default authoriza-
tion applying to all subjects for which no authorization is defined. Authorizations
regulating access for computation over (encrypted) attributes in relation R are
defined by the data authority who owns the relation, independently from the
provider storing it. Note that the authorizations of storage providers depend on
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Fig. 3. Query plan with profiles

whether they are to be considered also for computations, independently from
the fact that they store a specific relation and its (encrypted or plaintext) form.
The user formulating the query is expected to have plaintext visibility over a
subset of the attributes in the relational schemas, and we assume that she is
authorized for the attributes involved in the query.

Example 2. Figure 1(b) illustrates an example of a set of authorizations regulat-
ing access to relations Flight and Company of our running example. User U

has plaintext visibility over a subset of the attributes of the two relations, storage
providers F and C have encrypted visibility over the attributes in the relation
they store, computational providers X, Y, and Z have plaintext or encrypted
visibility over a subset of the attributes in the two relations.

Authorization Verification. To be authorized for a relation, a subject needs
the plaintext visibility over plaintext attributes (Rvp and Rip) and plaintext or
encrypted visibility over encrypted attributes (Rve, RvE , and Rie). Note that
there is no need to distinguish between in-storage and on-the-fly encryption for
authorization verification, as the information conveyed by encrypted attributes is
independent from the time at which it has been applied. The subject also needs
to have the same visibility (plaintext or encrypted) over attributes appearing
together in an equivalence set. This is required to prevent subjects having plain-
text visibility on one attribute in the equivalence set and encrypted visibility on
another to be able to exploit knowledge of plaintext values of the former to infer
plaintext values of the latter.

In the following, for simplicity, we will denote with PS (ES , respectively)
the set of attributes that a subject S can access in plaintext (encrypted,
respectively) according to her authorizations. The following definition identifies
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subjects authorized to access a relation, extending the definition in [9] to take
the two kinds of encryption into consideration.

Definition 3 (Authorized Relation). Let R be a relation with profile
[Rvp,Rve,RvE,Rip,Rie,R�]. A subject S ∈ S is authorized for R iff:

1. Rvp ∪ Rip ⊆ PS (authorized for plaintext);
2. Rve ∪ RvE ∪ Rie ⊆ PS ∪ ES (authorized for encrypted);
3. ∀A ∈ R�, A ⊆ PS or A⊆ ES (uniform visibility).

Example 3. Consider a relation R with profile [P, C, S, , , {IP}] and the autho-
rizations in Fig. 1(a). Provider Z is not authorized for the relation since it cannot
access P in plaintext (Condition 1); C and F are not authorized since they can-
not access P and S, respectively, in any form (Condition 2); X is not authorized
since it does not have uniform visibility on P and I (Condition 3). Provider Y

and user U are instead authorized for the relation.

For simplicity, in the following we will use notation Ri to denote the relation
resulting from the evaluation of node ni in the query tree plan. When clear
from the context, we will use ni to denote interchangeably the node and the
corresponding relation.

3 Extended Minimum Cost Query Plan

Given a query plan T(N) corresponding to a query q formulated by a user U, our
goal is to determine, for each node, a subject for its evaluation, possibly extending
the query plan with encryption, decryption, and re-encryption operations to guar-
antee the satisfaction of authorizations and enable the evaluation of operations.

3.1 Candidates

Given a query plan T(N), we first need to identify, for each node, the subjects autho-
rized for evaluating it (i.e., its candidates). Given a node n in a query tree plan,
a subject S is authorized for its execution if she is authorized for its operand(s)
and for its result. Indeed, S needs to access the operands of the node for its eval-
uation, and the profile of the result captures all the information directly and indi-
rectly conveyed by the evaluation of the operation. Starting from relations where
(a subset of) the attributes are encrypted in storage, it could be necessary to inject
decryption and re-encryption (i.e., decryption followed by encryption with a differ-
ent scheme and/or key) to guarantee that operations can be evaluated when they
require plaintext visibility over the involved attributes, or they are not supported
by the encryption scheme adopted in storage, respectively. For instance, we can-
not expect different data authorities to use the same encryption scheme and key
for attributes that will be compared in an equi-join. Hence, even if equality condi-
tions can easily be supported over encrypted data (e.g., using deterministic encryp-
tion), the evaluation of equi-joins requires re-encryption of the join attributes.
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Besides decryption and re-encryption for enabling query evaluation, also encryp-
tion operations could be injected for enforcing authorizations: encryption could
enable a subject to perform an operation that she would otherwise not be autho-
rized to evaluate, due to the plaintext representation of some attributes in the
operand relation that she can access only in encrypted form.

Example 4. With reference to our running example, Y can evaluate the join
operation if attributes N and S are re-encrypted using a deterministic encryption
scheme with the same encryption key. Similarly, attributes P, I, and J must be
encrypted for Z to be authorized for evaluating the group by operation.

We observe that, if all the attributes in the schema of the operand relation(s)
appear in encrypted form, the set of subjects who are authorized for evaluating
the operation is possibly larger. In fact, encrypted attributes are also accessi-
ble by subjects with plaintext visibility. To determine candidates, we therefore
assume that all the attributes in the operand relation(s), but those that have to
be in plaintext for operation execution, are encrypted. We note that the encryp-
tion of the attributes in the operands is always possible, since any attribute can
be encrypted by the subject computing the operand (who can see it in plaintext).
Similarly, any attribute of the operand(s) can be decrypted by the subject who
is in charge for the evaluation of the operation, since otherwise it would not be
authorized to evaluate it. Formally, we define candidates for the evaluation of a
node as follows.

Definition 4 (Candidate). Let T(N) be a query plan, n ∈ N be a non-leaf node,
and nl,nr ∈ N be its left and right child (if any), n.Ap be the set of attributes
that need to be in plaintext for the evaluation of n, and S be a set of subjects.
A subject S ∈ S is a candidate for the execution of a node n iff S is authorized
for:

1) nl and nr, assuming the encryption of all the visible attributes (Definition 3);
2) attributes in n.Ap in plaintext;
3) n, assuming the encryption of all the visible attributes in its operand(s) (Def-

inition 3).

The set of candidates for node n is denoted Λ(n).

Example 5. Figure 4(a) reports, for each node in the query plan of Example 1,
the candidates who can evaluate the operation in the node. In the example,
we assume that: i) the selection over J and the computation of the sums over
I and P can be evaluated over their encrypted in storage representation; ii)
the evaluation of the join and of the group by require the re-encryption of the
involved attributes; and iii) the comparison of sum(P) and sum(I) can only be
done over plaintext values.

The set of candidates along a query plan enjoys a nice monotonicity property.
In fact, relation profiles never lose attributes, but can only gain new ones (see
Fig. 3). Hence, a subject authorized for n is also authorized for its descendants
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Fig. 4. Extended query plan with candidates (a) and with assignees (b)

in the query plan (the set of candidates monotonically decreases going up in
the tree). This is true for all operations that do not require plaintext visibility
over attributes, or which leave a trace in the implicit component of the result-
ing relation profile. A query plan T(N) is extended with encryption, decryption,
and re-encryption, generating an extended query plan, denoted T′(N′). Figure 4(a)
illustrates an example of an extended version of the query plan in Fig. 1(a), where
attributes NC and S are re-encrypted (graphically represented with the gray and
white rectangles below the join node), and attributes IP are decrypted. Encryp-
tion, decryption, and re-encryption are used to adjust visibility and guarantee
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correct authorization enforcement. Their injection depends on the subjects to
which operations are assigned. The injection of encryption and decryption oper-
ations does not affect the monotonicity property: the set of candidates of an
encryption node corresponds to the one of the node to which encryption applies
(i.e., of its child), and the set of candidates of a decryption node corresponds to
the one of the node operating on the result of the decryption (i.e., of its parent).
For example, candidates for the decryption of IP in Fig. 4(a) are those for the
selection to which decryption is connected (and hence are not explicitly reported
in the figure). The consideration of re-encryption operations, necessary when the
in-storage encryption scheme does not support operation execution, on the other
hand, deserves a special treatment. Since the subject in charge of re-encryption
must be authorized for the profile of the operand relation, the set of candidates
for a re-encryption operation is a subset of the candidates of its operand node
nc. However, the candidates of the parent np of the re-encryption operation
might not be a subset of the re-encryption candidates. In fact, nothing can be
said on the set containment relationship between re-encryption candidates and
those of its parent np, since a candidate for re-encryption could not be autho-
rized for np and vice-versa: while a subject must be authorized for plaintext
visibility on the attributes to be re-encrypted to be candidate for re-encryption,
np might not require (and its candidate might not have) plaintext visibility on
these attributes. Indeed, the profile of the result of re-encryption is the same
as the one of its operand (i.e., it does not move attributes from the encrypted
to the plaintext components nor vive-versa). Note that the set of candidates for
np is a subset of the candidates for nc, since a candidate for np needs to have
at least visibility on the relation produced by nc. Figure 4(a) reports, for the
two re-encryption operations, the set of candidates that could re-encrypt the
involved attributes.

Given a query plan and the candidates for each of its nodes, it is then neces-
sary to select, for each node, a subject (chosen among its candidates) in charge
of the evaluation of the corresponding operation (i.e., the assignee of node n).
Given a query plan, there can exist different possible assignments that respect
authorizations and permit query execution. In the next section, we discuss how
to determine an authorized assignment.

3.2 Authorized Assignment and Minimum Cost Query Plan

Given a query plan T(N) and the set Λ(n) of candidates for each node n ∈ N,
it is possible to determine an assignment of nodes to subjects taken from the
corresponding set of candidates by inserting encryption and decryption opera-
tions. Such an assignment exists if, for each attribute a that needs to be re-
encrypted, there exists a subject who can access a in plaintext, and the other
attributes in the schema of the same base relation in encrypted or plaintext form.
Encryptions are inserted to enforce authorizations, and decryptions are inserted
to adjust attributes visibility for operation evaluation, and are attached to the
node requiring each of them. These operations can be performed by the same
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subject assigned to the nodes to which encryption/decryption are attached. Re-
encryption, on the contrary, could be assigned to a different subject, and can
be inserted at any point in the query plan, before the node that represents the
operation for which re-encryption is needed. We also note that, differently from
encryption and decryption operations, the need for re-encryption of an attribute
a does not depend on the choice of assignments, but only on: i) the in-storage
encryption (scheme and key) of a; and ii) the operations to be evaluated over
a for query execution. Hence, independently from the selected assignment, if
no subject has plaintext visibility over a and encrypted visibility over all the
other attributes in the base relation to which a belongs, there cannot exist any
authorized assignment for the query plan. On the contrary, if such a subject
exists, there is at least an authorized assignment for the query plan. Indeed, the
re-encryption operation can be evaluated as early as when the relation leaves
the storage provider.

Example 6. Consider attribute C of our running example, which needs to be re-
encrypted for the evaluation of group by clause. For an authorized assignment,
we need a subject who can access attributes N and P in encrypted form and C
in plaintext. Since U, X, and Z can access N and P encrypted and C plaintext,
in the worst case scenario, re-encryption of C can be injected as a parent of the
leaf node representing base relation Flight and can be assigned to one among
U, X, and Z.

The existence of an authorized assignment can be formalized by the following
theorem.

Theorem 1 (Existence of an authorized assignment). Let T(N) be a
query plan, ∀ n ∈ N, n.Ae be the set of attributes that need to be re-encrypted
for the evaluation of n, S be a set of subjects and, ∀ n ∈ N, Λ(n) be the set
of candidates for n. If ∀ n ∈ N, Λ(n) 
= ∅ and, ∀a ∈ n.Ae there exists at least a
subject S ∈ S s.t. a ∈ PS and R ⊆ PS ∪ ES , with R the base relation to which a
belongs, then there exists at least an extended query plan T′(N′) of T(N) and an
assignment λ : N′ → S of subjects to nodes in T′(N′), with λ(n) ∈ Λ(n), that does
not violate any authorization.

We can then conclude that, if there exists an authorized assignment for the
query plan, any combination of subjects chosen from the candidate sets of the
nodes in the query plan can be made authorized by injecting encryption, decryp-
tion, and re-encryption operations. For instance, Fig. 4(b) illustrates an extended
query plan that makes the assignment on the left of each node authorized accord-
ing to the authorizations in Fig. 1(a).

Among the possible assignments, we expect the user formulating the query
to be interested in selecting the one that optimizes performance, economic costs,
or both of them. In the considered cloud scenario, we expect the economic cost
to be the driving factor in the choice of the candidates. The economic cost for
the evaluation of a query includes two main factors: i) computational cost for
the evaluation of the operations in the query plan; and ii) data transfer cost
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for the relations exchanged between subjects for query evaluation. The cost
of query evaluation is obtained by summing these two cost components, taking
into consideration also the encryption, decryption, and re-encryption operations.
Formally, the problem of computing an assignment that minimizes the cost of
query evaluation is formulated as follows.

Problem 1 (Minimum cost query plan). Let T(N) be a query plan and S be a
set of subjects. Determine an extended query plan T′(N′) of T and an assignment
λ : N′ → S such that:

1. ∀n ∈ N′, λ(n) ∈ Λ(n), that is, the subject in charge of the evaluation of a
node is one of its candidates;

2. ∀n ∈ N′, λ(n) is authorized for the profiles of n and of its children;
3. �T′′, λ′ such that T′′ is an extended query plan of T and λ′ an assignment for

T′′ such that ∀n ∈ N′, λ′(n) ∈ Λ(n) and cost(T′′, λ′) < cost(T′, λ)

The problem of computing a minimum cost query plan is hard. We therefore
propose a heuristic approach for its solution.

4 Computing Assignment

The proposed heuristics operates in three phases (see Fig. 5). The first phase
identifies the set of candidates associated with the nodes of the query plan given
as input. The second phase chooses, for each operation in the query plan, the
subject (among the corresponding candidates) in charge of its execution, and
inserts the needed re-encryption operations. The third phase inserts the encryp-
tion and decryption operations. The procedures corresponding to these phases
are presented in Figs. 5, 6, and 7 and illustrated in the following. In the discus-
sion and in the procedures, given a node n, we denote with np its parent, and
with nl and nr its left child and right child, respectively.

Identify Candidates. Recursive procedure Identify Candidates (Fig. 5) per-
forms a post-order visit of the query plan to identify, for each node, the can-
didates for its evaluation. For each node n, the procedure computes its profile,
assuming that all the attributes in the operands are encrypted unless demanded
for the evaluation of n (lines 8–12). The procedure then determines the candi-
dates for n, checking among the candidates of n’s operands or, for operations
operating on plaintext attributes that do not leave a trace in the implicit compo-
nent, also among the other subjects (lines 15–21). Note that the set of candidates
for leaf nodes is set to the complete set of subjects (line 6), even if leaf nodes
are assigned to the storing provider, to simplify the computation of the candi-
date sets in the query plan. For simplicity, but without loss of generality, we
assume all the attributes in base relations to be encrypted in storage. Procedure
Identify Candidates also sets variables n.TotAp (n.TotAe, resp.) to the set of
attributes that must be plaintext (encrypted on the fly, resp.) for the evaluation
of the subtree rooted at n (lines 7, 13–14).
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Fig. 5. Pseudocode of our heuristic algorithm and of procedure Identify Candidates

Choose Assignment. Recursive procedure Compute Assignment (Fig. 6)
performs a pre-order visit of the query plan. Intuitively, for each visited node,
the procedure chooses between assigning the evaluation of the node to the same
subject as its parent np (without paying any transfer cost), or move it to a
different subject, if economically convenient. Economic convenience is evaluated
comparing the cost of evaluating the whole subtree rooted at n at each subject
S being candidate of the node. To estimate the cost of delegating the evaluation
of the subtree rooted at n to S, we consider the following cost components.

– Data transfer cost (lines 15–16) applies only when n is assigned to a subject
S different from its parent and is computed as the product between the esti-
mated size of the relation generated by n and the transfer cost of the subject
in charge of evaluating n (in line with cloud market price lists, we consider
only outbound traffic).

– Computational cost (line 18) is the sum of the costs of evaluating all the
nodes in the subtree rooted at n by subject S. Such a cost is pre-computed by
recursive procedure Compute Cost, which visits the query plan in pre-order
summing the cost of the evaluation of the subtrees rooted at the children of n
with the cost of evaluating n, which is obtained by multiplying the estimated
computation complexity of evaluating n in n.TotAe and n.TotAp by the com-
putation price of S. The costs precomputed by procedure Compute Cost
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Fig. 6. Pseudocode of procedures Compute Assignment and Compute Cost

are stored in a matrix, comp cost[n,S], with a row for each node and a column
for each subject.

– Decryption cost (lines 19–20) is the cost of decrypting the attributes that need
to be plaintext (or encrypted on-the-fly) for the evaluation of n or one of its
descendants (i.e., any node in the subtree rooted at n that S is in charge of
evaluating). The decryption cost is estimated by multiplying the decryption
cost of each attribute a by the computation price of S.

– Re-encryption cost (lines 21–25) includes the cost of re-encryption operations
performed by S as well as of re-encryption operations necessary to S for
the evaluation of n but that need to be delegated to a different subject.
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To keep track of the attributes that require re-encryption, we use variable
to enc dec, which keeps track of the attributes that require re-encryption for
the evaluation of the ancestors of n. If S can access a subset of the attributes in
to enc dec in plaintext, the algorithm assumes that S will take care of their re-
encryption (lines 24–25). If S needs to operate on an attribute encrypted on-
the-fly on which she does not have plaintext visibility, the algorithm estimates
the cost of injecting a re-encryption operation into the query plan, performed
by a third party authorized for it. Such a cost is estimated as the sum of the
costs for encrypting and decrypting the attribute of interest (assuming the
average computation price of the subjects in the system), and the transfer
cost for sending the relation to the subject in charge of re-encryption and
then back to S (lines 21–23).

Among the candidates for the node, procedure Compute Assignment
selects the subject Smin with minimum estimated cost (line 29). Depending
on the chosen assignee λ(n), the procedure injects re-encryption operations and
updates variable to enc dec: λ(n) is assigned the re-encryption of attributes in
to enc dec that she is authorized to access in plaintext (lines 30–33), and these
attributes are removed from to enc dec. Attributes in n.Ae that λ(n) cannot
access in plaintext are instead inserted into to enc dec, to push re-encryption
down in the query plan (line 34). Attributes in n.Ae that λ(n) can access in
plaintext are re-encrypted by λ(n). To this purpose, the algorithm injects a re-
encryption operation, assigned to λ(n), as a child of n (lines 35–37). Note that
λ(n) can decide to decrypt the attributes that need to be re-encrypted before
evaluating n, and encrypt them (on the fly) after the evaluation of n. Since
re-encryption operations are assigned to a subject upon injection in the tree,
procedure Compute Assignment does not need to operate over them.

Leaf nodes deserve a special treatment, since they do not represent operations
and can only be assigned to the provider storing the corresponding base relation
(lines 3–4). We note however that, when the visit reaches a leaf node, it is
necessary to verify whether to enc dec is empty. If to enc dec is not empty, it
is necessary to insert a re-encryption operation for the attributes in to enc dec,
which is assigned to the less expensive subject who can access attributes in
to enc dec in plaintext (lines 5–13). The need to involve a subject only for re-
encryption operations happens only if no subject assigned to other operations
in the query plan can access the attribute(s) of interest in plaintext.

Extend Query Plan. Recursive procedure Extend Plan (Fig. 7) performs a
post-order visit of the query plan to inject encryption and decryption opera-
tions as needed. For the root node, the procedure injects a decryption of the
encrypted attributes in the root (lines 3–5). For each non-root node n, the pro-
cedure injects a decryption operation (as child of n and assigned to λ(n)) for
those attributes that must be in plaintext for the evaluation of n but that are
encrypted in its operands. The procedure also injects an encryption operation
(as parent of n and assigned to λ(n)) for the attributes appearing in plaintext
in the profile of n and that the assignee of np can access only in encrypted form
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Fig. 7. Pseudocode of procedure Extend Plan

(lines 6–11). The procedure finally updates the profiles of the nodes impacted
by the encryption/decryption operation (line 12).

Example 7. Considering the query plan and authorizations in Fig. 1, the algo-
rithm first visits the tree in post-order and identifies the candidates for each
node (Fig. 4(a)). The algorithm then visits the tree in pre-order and selects,
for each node, the candidate that is more promising from an economic point of
view (Fig. 4(b)). For instance, assuming that Y is less expensive, the root node
is assigned to Y. Similarly, we assume that evaluating the group by clause
at Y is more convenient than moving it to X or Z. However, since Y cannot
access attribute C ∈ n.Ae in plaintext, C is inserted into to enc dec and its re-
encryption pushed down in the tree. Assuming that the less expensive alternative
for join evaluation is Z, since Z can re-encrypt C, a re-encryption operation for
C is inserted in the tree as child of the join node. Also, since both S and N need
to be re-encrypted for the evaluation of the join operation and Z is authorized
do so, Z decrypts and re-encrypts also S and N. We note that Z can evaluate
the join over plaintext values, being authorized for such visibility, and encrypt
their values before sending the join result to Y. Finally, we assume that the
selection over J can be evaluated over the attribute encrypted in storage and is
then evaluated by the provider storing relation Company (i.e., C). The third
step of the algorithm injects encryption and decryption operations as needed: in
the example, the decryption of P and I by Y for the evaluation of the root node.

The algorithm illustrated in this section represents a heuristic approach for
solving Problem 1 and operates in O(|N|·|S·|A|) time, with A the set of attributes
involved in the query.

5 Related Work

Traditional solutions aimed at distributed query evaluation and data analytics
do not take into consideration access restrictions (e.g., [2,4,15,17,20]). Solu-
tions aimed at enforcing access restrictions in the relational database scenario
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(e.g., view based access control [8,13,21], access patterns [3,6], data masking [16])
instead do not consider encryption as a solution for protecting confidentiality.

The use of encryption for protecting data confidentiality, while supporting
query evaluation, has been widely studied (e.g., [1,14,19,24]). Alternative solu-
tions studied the adoption of secure multiparty computation (e.g., [5,7]) and of
trusted hardware components (e.g., [23]) to support query evaluation. All these
solutions are complementary to our work, which can rely on these techniques to
partially delegate query evaluation over encrypted data to subjects who are not
authorized for plaintext visibility over (a subset of) the attributes.

Recent works have addressed the problem of protecting data confidentiality
in distributed computation. The proposed solutions aim at controlling (explicit
and implicit) information flows among subjects as a consequence of distributed
computations (e.g., [10,18,22,25]). The work closest to ours is represented by
the solution in [9], on which our proposal builds. Indeed, the approach proposed
in [9] for distributed query evaluation under access restrictions first proposed the
idea of distinguishing between plaintext and encrypted visibility over the data,
to the aim of enabling the delegation of computations over encrypted data to
non-fully trusted subjects. This authorization model has been integrated into a
real world query optimizer in [11]. The work in [9] is based on the assumption
that base relations are stored on the premises of the authorities owning them.
Hence, base relations are available in plaintext and can be selectively encrypted
on the fly, based on the needs for query evaluation. Our proposal extends such
an approach to consider the more general scenario where base relations might
be stored at an external provider, possibly in encrypted form.

In [12] the authors address a complementary problem allowing users to specify
confidentiality requirements in query evaluation to protect the objective of their
queries to some providers.

6 Conclusions

We proposed an approach for leveraging storage and computational providers to
enable distributed query execution, combining data possibly stored in encrypted
form at external storage providers. Our solution allows data authorities to del-
egate the storage of their data to external providers, while still enabling collab-
orative query evaluation, selectively involving computational providers to limit
the costs of query evaluation. The proposed heuristics aims at limiting the eco-
nomic cost of query evaluation by choosing, for each node, the candidate that is
(locally) more economically convenient.
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Abstract. A Private Set Operation (PSO) protocol involves at least
two parties with their private input sets. The goal of the protocol is to
learn the output of a set operation, e.g., set intersection, on the parties’
input sets, without revealing any information about the items that are
not in the output set. Commonly, the outcome of the set operation is
revealed to parties and no one else. However, in many application areas
of PSO, the result of the set operation should be learned by an external
participant who does not have an input set. We call this participant the
decider. In this paper, we present new variants of multi-party PSO, for
the external decider setting. All parties except the decider have a private
set. Parties other than the decider neither learn this result, nor anything
else from this protocol. Moreover, we studied generic solutions to the
problem of PSO in the presence of an external decider.

Keywords: Private Set Operation · Applied cryptography · Secure
multi-party computation · Homomorphic encryption · Privacy
enhancing technologies · Data security

1 Introduction

Private Set Operations (PSO) [1] such as Private Set Intersection (PSI) [2],
Private Set Union (PSU) [3], and Private Membership Test (PMT) [4], are special
cases of Secure Multi-party Computation that have been in the interest of many
researchers. In particular, the problem of PSI has been studied a lot and many
PSI protocols have been proposed [5].

Electronic voting [6], botnet detection between different ISPs [7], and genomic
applications [8] are a few real-life examples of set operations where the sets are
about sensitive data. Also, there is a growing need for privacy-preserving data
analysis, e.g., in the context of 5G networks. Therefore, a comprehensive study of
the factors that affect the feasibility and efficiency of a PSO protocol is needed,
and a general but still feasible solution to any multi-party PSO problem is worth
seeking for.

Multi-party PSO is a protocol with several parties, each holding a private
set, who want to perform a function on their input sets. Usually, at the end
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of the protocol all parties learn the outcome of this function, and nothing else.
However, in many realistic PSO scenarios, instead of parties themselves learning
the outcome, there is a special party who does not have an input set but who
needs to learn the result of the PSO. We call this special party an external
decider, or for short, a decider. In our setting, the decider is a trusted third
party who typically does not have an incentive to get any information about the
input sets, except the output of the set operation. In Sect. 2 we present several
examples of real life scenarios where the result of PSO is obtained only by the
decider, and no one else.

The contributions of this work are as follows:

– We classify the problem of PSO with different criteria.
– We present a comprehensive study of PSO problem with an external decider.

To the best of our knowledge, this variant of PSO has been studied only in
special cases, such as secure electronic voting, but not in the general case.

– We specifically study the case where the set elements are chosen from a uni-
verse of limited size. We present a general solution to any PSO problem with
external decider and with limited universe.

– We present another general solution to any PSO problem with external
decider, where the universe is not limited. This protocol solves the empti-
ness and cardinality of the output set.

– We assume that all parties are semi-honest, but we also present a modification
that provides protection in the presence of one malicious party.

– Finally, we implement our protocols and compare the efficiency of our proto-
cols against the existing work for PSO problems.

Next we briefly explain the necessary concepts that are required to under-
stand the rest of the paper.

Homomorphic encryption (HE) schemes allow computations to be car-
ried out using encrypted values, without the need to decrypt them first. In our
paper, we are interested in additively homomorphic encryption such as Paillier
cryptosystem [9]. If two ciphertexts, c1 = enc(m1) and c2 = enc(m2), are gener-
ated using an additively homomorphic encryption scheme, then the product (or
result of some other operation) of these two ciphertexts is decrypted to the sum
of the two plaintexts: dec(c1 · c2) = m1 + m2.

Keyed hash function, such as HMAC [10], is a cryptographic hash function
with a secret key that is utilized to create fingerprints of messages. The key
is only known to the designated parties. A keyed hash function is a collision-
resistant one-way function [11].

2 Motivational Examples of PSO with the Decider

In this section, we present several examples of scenarios where most parties
provide only input data while the result of the set operation goes to an external
decider. In each scenario preserving the privacy is important.
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– Example-1: Several proposals are on the table for a board meeting of an
organization. Every board member would choose which proposals are accept-
able for them. However, they are not willing to reveal their choices to others.
Therefore, a PSO protocol is used and the secretary (the decider) computes
what proposals are acceptable for everyone.

– Example-2: A traffic office has installed surveillance cameras in a city and
each of them is collecting plate numbers of the passing cars. The office wants
to collect all kinds of statistics from the traffic. For example, how many dif-
ferent cars were observed during a day, or how many of those cars that were
seen at either point A or point B in the morning were also seen at one of these
points in the afternoon. Of course, technically the cameras could simply send
all observed data to the central office but this would be a privacy violation.
Instead, the central office is an external decider and all cameras deliver input
for various PSOs.

– Example-3: A decentralized social networking platform such as HELIOS1 is
inherently more privacy-friendly than centralized solutions. However, people
would still like to make searches in larger setting than within their own direct
contacts. For example, number of people have formed a group G (for some
purpose). In order to extend the group, one of the members of the group would
like to identify, in privacy-preserving manner, whether her/his friend is also
a friend of at least three other existing group members and could be asked to
join. By utilizing PSI between that group member and other group members,
the platform (the decider) can learn which user is potentially interested to
join the group G.

– Example-4: Privacy preserving digital parental control in 5G networks [12] is
another use case where PSO could be needed. A parent has a set of unwanted
attributes that websites can have and wants to prevent the child to access
websites that contain any of these attributes. A child wants to access a web-
site. Each child under digital parental control has an application installed on
their device that is called the kid-client. The network analyses the website
that the child wants to access and stores the attributes of that website in
a private set. The kid-client should decide whether to grant or deny access
to this child. This is a PSI between the network’s and parent’s respective
private sets. It is enough for the kid-client (the decider) to learn whether the
end result is empty or not.

– Example-5: The government of a country wants to find out whether the
health-care system functions properly. For instance, the government wants to
learn the percentage of the people at higher risk from certain disease who
are covered by insurance. In this case, the government wants to know the
number of people in a set A, which is the union of people ensured by different
companies, that are also in a set B, which is the union of all people identified
with higher risk by different hospitals. This is an example of cardinality for
PSI+PSU, which will be learned by the government (the decider).

1 HELIOS project homepage (2021). Retrieved from https://helios-h2020.eu/.

https://helios-h2020.eu/
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– Example-6: Conversion rate of an advertisement is measured by finding the
size of the intersection between people who see the ad and who completed a
relevant transaction. The advertisement is shown in different platforms and
the transaction is completed with the owner of the product. The names of
the individuals who visited different platforms, and also the names of the
buyers are considered to be private. Therefore, the marketing company (the
decider) has to use a PSO protocol to learn the conversion rate of its ad. In
this example, the decider learns the cardinality of the intersection.

3 Classification of PSO Problems

The scenarios of Sect. 2 lead to different types of PSO problems. In general,
PSO problems can be classified using different criteria. In the following, we
discuss some of these criteria. Later we study some of the many possible PSO
problems further and develop solutions. Note that the list of criteria is certainly
not complete and there could be more factors that guide the future research
directions.

– Criterion 1: “What information is wanted from the set”. At least the
following three questions could be asked about the end result set: “What is
the cardinality of the end result set?” “What are the elements of this set?”
“Is it empty?”

– Criterion 2: “Who gets the outcome”. PSO problems vary also in the
way the final result is learned. For instance, in some scenarios it is required
that all parties learn the outcome, whereas in some cases only one party learns
the result. In this paper, we focus on the case where the result of the protocol
goes to an external decider.

– Criterion 3: “Adversary model”. Semi-honest and malicious adversarial
models are two common settings in privacy-preserving protocols.

– Criterion 4: “Size of the universe”. In each PSO problem, elements of
the input sets belong to an a priori defined set of potential elements. Hereafter
we call this set the universe. Whether the total number of elements in the
universe is limited or not is a criterion that could be taken into account when
defining a PSO problem.

– Criterion 5: “Number of parties that have input”. Number of partic-
ipants can vary a lot, depending on the use case for which the PSO problem
is solved.

– Criterion 6: “What is the set operation”. We need to determine what is
the set operation to be computed, defined by combining intersections, unions
and complements of sets.

– Criterion 7: “Size of input sets”. Whether the sets are the same (or
almost the same) in size, whether the sets are large or small, or whether some
sets are actually singletons.

– Criterion 8: “Is it possible to use a trusted party”. Many security and
privacy solutions become simpler if it is possible to get help from an outsider
who can be trusted by all stakeholders.
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– Criterion 9: “On-line or off-line sets”. There are use cases where at least
some part of the input data is known well before the output data is needed.
Then it may be possible to do some off-line computations before the PSO
protocol is run in on-line fashion.

4 Problem Statement

We study many variants of multi-party PSO problems. For the criterion “Who
gets the outcome” we restrict ourselves to the case where the decider gets the
result. For the Criterion 8, we only cover the case without the trusted third party.
For the Criterion 3, we first assume that the parties are semi-honest. Later we
show how to modify the protocols to fit in the malicious adversarial model.

We assume there are n ≥ 2 parties plus a decider in the protocol. Each party
Pi has a private set Si, where 1 ≤ i ≤ n. The decider does not have an input set
and all the other parties trust the decider to calculate the result according to
the protocol. It depends on the use case who the decider is. In the use cases, the
decider does not typically have any incentive to learn more information than the
final outcome. Moreover, the decider may want to prove that they cannot learn
anything else than what is necessary. This can be for the reason of safety, data
minimization, to avoid the necessity to destroy the unwanted data, to prevent
conflict of interests, to avoid the need of legal documents, or to convince the
public opinion that their privacy is preserved by the decider. For instance, in
examples 2 and 5 the deciders want to show the citizens that their private lives
are not monitored. In example 1, the decider wants to avoid the possibility
of blackmailing, signing Non-disclosure Agreement (NDA) and the process of
deleting the data. Deciders of examples 3, 4 and 6 want to show their users
that their privacy is preserved, and avoid potential blackmailing and conflicts of
interests inside their organizations.

Each example of Sect. 2 can be described as one of the following problems:

– Problem-1: All parties have their private sets as input. After executing
the protocol, the decider wants to learn the answer to one of the following
questions: 1) What are the elements in the union of all n sets. 2) What is the
cardinality of the union. 3) Whether the union is an empty set.

– Problem-2: All parties have a set. After executing the protocol, the decider
learns the answer to one of the following questions: 1) What are the elements
in the intersection of n sets of all other parties. 2) What is the cardinality of
the intersection. 3) Whether the intersection is empty.

– Problem-3: The parties all have their private sets. After executing the pro-
tocol, the decider learns the result of any given set operation. The general
PSO can be written in Conjunctive Normal Form (CNF):

ST = (A1,1 ∪ ... ∪ A1,α1) ∩ ... ∩ (Aβ,1 ∪ ... ∪ Aβ,αβ
) (1)
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where Ai,j ∈ {S1, ..., Sn, S̄1, ..., S̄n}, the set S̄i is the complement of the set Si,
and 1 ≤ α ≤ n and β ∈ N. After the protocol has been executed the decider
learns answer to one of the following questions: 1) What are the elements of
ST . 2) What is the cardinality of ST . 3) Is ST empty.

Note that Problem-3 covers both Problem-1 and Problem-2 but we consider
those separately for two reasons: 1) so many use cases are only about Problem-1
or Problem-2, and 2) our solutions for Problem-1 and Problem-2 are used when
building one of the solutions for Problem-3.

5 Related Work

In this section, we first present the state of the art in PSO protocols, then we
present some of the related previous works on secure multi-party computation.

As we mentioned before, private set operations are applicable to variety of
use cases, such as privacy-preserving genomic similarity [13] and private profile
matching in social media [14]. Therefore, different variants of PSO problems have
been studied extensively, see [5]. Kolesnikov et al. in [15] proposed a new function
that is called Oblivious Programmable Pseudorandom Function, and used it to
design a practical multi-party PSI protocol that is secure in a malicious setting.
In 2019, Ghosh and Nilges proposed a novel approach to PSI [16], by utilizing
Oblivious Linear Function Evaluation (OLE) to evaluate the intersection.

At the time of writing, the protocol of Kolesnikov et al., in [2] is the fastest
two-party PSI protocol. In [2], the authors proposed a variant of Oblivious Pseu-
dorandom Function, and utilized it to achieve a light-weight PSI protocol.

Chun et al., generalized the problem of PSO by studying any PSO problem
in disjunctive normal form (DNF) [17]. Wang et al., further studied the general
PSO problem in DNF for a limited universe [18]. In this paper, we study the
general problem of PSO in the setting with an external decider. To the best of
our knowledge, this is the first time that this problem is studied comprehensively.

Feige et al. proposed a general solution to compute any function in the secure
multi-party computation setting where there is a party without input set who
computes the final result and gives it to the other parties [19]. As an example
case, they presented an efficient algorithm to compute the logical AND of n bits,
each bit belonging to different party. They assumed that all parties follow the
protocol honestly. For the limited universe case, computing the logical AND is
essentially equivalent to computing set intersection. Although their protocol for
computing the logical AND is efficient, they did not show how this can evolve
such that it can solve any set operations in DNF form.

There are several variants of secure multi-party set operations that use a
“special party” in their setting. We briefly explain these variants and why these
are different from our setting.

The work of Feige et al. in [19], lead to introduction of a variant of secure
multi-party computation called Private Simultaneous Messages (PSM) [20]. A
PSM protocol is between n parties each with a private input, and a “referee”
who does not have input data. Parties have access to a common secret. Each
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party computes a single message by utilizing the common secret and the party’s
private input, and sends this message to the referee. After receiving all the
messages from all the n parties, the referee is able to compute the output of
the function. The referee should not learn anything else than this outcome. The
construction of PSM protocols focus on information theoretical security, rather
than on computational efficiency [21]. In [22] the authors present protocols to
compute any function with PSM schemes using a key that can be used only once,
thus each protocol needs to be initialized with a different secret key every time it
is run. Our solutions differ from these unconditionally secure solutions in that we
allow usage of the same keys for several different PSO instances, with different
input sets and even with different operations. Moreover, the communication
complexity of the protocols in [22] is increasing exponentially when the number
of parties growing, whereas in our PSO protocols the communication complexity
is independent of the number of participants.

Functional encryption (FE) is a variant of public key encryption that allows
the holder of the secret key to learn a function of the plaintext [23]. The notion of
FE can also be applied in the case of many parties with inputs [24]. In principle, if
the decider is the party who holds the secret key, the setting of multi-input FE can
fit into the PSO scenario with the decider. While there are accelerators for special
cases of FE, no efficient solutions are known that would cover all cases [25].

In the server aided PSO setting the privacy preserving set operation protocol
uses an untrusted server that carries out some part of the computations (similar
to secure cloud computing). In other words, the server only helps the parties by
performing some part of the computations and does not get the final result [26,27].

The setting of secret-sharing based secure multi-party computation protocols
[28] is typically designed in such a way that all parties execute their share of the
computations and send their results to a party who will compute the result (the
resulting party/the dealer), and later announces the final result. This setting is
more complex than ours because resulting party also has a private set that they
need to hide from other parties. Moreover, the resulting party has to prove to other
parties that they performed the computations correctly, without revealing any
extra information on the private sets to the parties. Therefore, the typical secret
sharing based protocols perform much less efficiently than our solutions with a
decider.

6 Protocols

In this section, we present our privacy preserving set operation protocols. These
protocols are our proposed solutions to the problems of Sect. 4.

In each protocol there are n+1 participants involved with the set operations:
n parties have input sets and the result of the protocol goes to the decider D,
who does not have an input set. Other n parties do not get the final outcome of
the protocol. We present our protocols with the assumption that the participants
are semi-honest. Later in Sect. 9 we present a solution for malicious model as
well.
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Protocol 0: The off-line phase.
1 The decider sends the ordering of U = {a1, ..., au} to all the other parties.
2 The decider creates public and private keys that fulfil requirements for an

additively homomorphic encryption scheme.
3 The decider picks one of the parties randomly and informs this party that they

are responsible for sending the final result to the decider. For simplicity, let us
assume that the decider chooses party Pn.

4 The decider sends the public key of the encryption scheme to all parties.
5 Each party Pi creates two sets of encrypted values by utilizing the decider’s

public key. One set contains u instances of enc(0), and the other set contains u
instances of enc(r) where r is a random number chosen specifically for that
instance.

6 Parties create a shared repository.
7 Parties together create a vector V = (V1, ..., Vu) with u components, where each

component is an instance of enc(r), where r is a random number.

6.1 Protocol-0

In this section and Sects. 6.2, 6.3 and 6.4 we assume that the universe is limited,
i.e., it is possible to present it as an ordered set U = {a1, ..., au}. For simplic-
ity, we assume that the decider creates this ordered set. Parties create a shared
repository which contains a vector with u components. Each component repre-
sents an item in U , and the order of the components is as defined in U . Each
component is a bit string of a certain length. All parties can read and write to the
repository but two parties cannot write at the same time, to avoid conflicts. The
decider or anybody else than parties Pi does not have access to this repository.
The details about the required technologies to create this kind of repository are
outside the scope of this paper. The shared repository is the centralized part of
our PSO protocol. Protocol 0 is the off-line phase used in all protocols of this
section.

6.2 Protocol-1

Let us assume that party Pi has a private input set Si, for i = 1, ..., n. The
decider wants to learn one of the following cases about the union of these n sets:
1) What are the elements in

⋃n
i=1 Si. 2) What is the cardinality of

⋃n
i=1 Si. Our

solution for these questions is by Protocol 1.
If the application area of the protocol is such that the decider only needs to

know whether the union of all input sets is empty, the protocol can be simplified
a lot. Instead of vector V we have just one value V that is initially set to enc(1).
Then, each Pi multiplies V by enc(0) if Si is empty and replaces V by enc(0) if
Si is not empty. When all the parties have altered V , party Pn sends it to D.
The decider decrypts and if D gets zero it means that the union is non-empty.

After executing the on-line phase, only the decider learns the outcome, and
other parties do not learn anything else about this protocol than that it was run.
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Protocol 1:
0 Protocol-0 is run.
1 Each party Pi, where 1 ≤ i ≤ n, modifies vector V as follows. If uj ∈ Si then Pi

replaces Vj by enc(0), which is one of the encryptions of zero that Pi generated
in Protocol-0. If uj /∈ Si then Pi multiplies Vj by enc(0).

2 When all parties have finished their modifications on vector V then one of the
following cases will take place.

3 Case 1: Party Pn sends V to the decider. The decider decrypts components of
this vector, and aj ∈ ⋃n

i=1 Si if and only if dec(Vj) = 0.
Case 2: Party Pn permutes the components of V before sending them to D.
The decider decrypts V . The number of zeros in the decrypted vector is equal
to the cardinality of

⋃n
i=1 Si.

6.3 Protocol-2

Let us again assume that the party Pi has the set Si. The decider wants to learn
one of the following cases about the intersection of these n sets: 1) What are the
elements in

⋂n
i=1 Si. 2) What is the cardinality of

⋂n
i=1 Si. 3) Whether

⋂n
i=1 Si

is an empty set. Our solution to these questions is Protocol 2.
After executing this protocol, only the decider learns the result. Other parties

do not learn anything about each others’ sets or about the result of the protocol.

6.4 Protocol-3: A Generic Solution to Perform Any PSO with an
External Decider

It can be shown that every set that is obtained from a collection of sets by
operations of intersection, union and complement can equivalently be computed
by a conjunctive normal form. Thus, the general PSO problem can be written
as presented in Eq. 1.

The general PSO problem can be formalized as follows: Party Pi has a private
input set Si, for i = 1, ..., n. The decider D wants to learn one or more of the
following cases about the set ST of Eq. 1: 1) What elements are there in the set
ST . 2) What is the cardinality of ST . 3) Whether ST is an empty set. Other
parties should not learn anything about this protocol except that it is executed.
Our solution for these questions is by Protocol 3.

6.5 Protocol-4: Keyed Hash Functions with Dummies

In this section we drop the assumption that the universe is limited, and present
protocols for finding answers to the following questions about the set ST that
can also be written in Disjunctive Normal Form as ST = (A1,1 ∩ ... ∩ A1,α1) ∪
... ∪ (Aβ,1 ∩ ... ∩ Aβ,αβ

): 1) What is the cardinality of ST ? 2) Is this set empty?
In other words, our protocols cover all private set operations but the decider
cannot get the elements in the result set. In these protocols we use keyed hash
function, and assume that the parties are semi-honest.
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Protocol 2:
0 Protocol-0 is run, with one difference: in step 7, all components of vector V are

initially set to instances of enc(0).
1 Each party Pi where 1 ≤ i ≤ n modifies every component j of the vector V as

follows.

Vj =

{
Vj · enc(0) if aj ∈ Si

Vj · enc(r) otherwise.
(2)

After all parties have modified the vector V , one of the following cases will be
executed.

2 Case 1: Party Pn sends V to the decider. After decrypting, for entries that do
not decrypt to zero, D learns they are not in the intersection. Similarly, if
decryption yields zero, D learns that the corresponding element is in every
input set. Therefore, the decider learns

⋂n
i=1 Si.

Case 2: Party Pn shuffles V and sends it to D. The decider decrypts and the
number of zero values in the decrypted vector is the cardinality of

⋂n
i=1 Si.

Case 3: To hide the true cardinality of the intersection, the parties need to
create ”clones” of elements in the universe. For each element that is in the
intersection, there would be many zeros after decryption. The parties would also
add many encryptions of non-zero numbers to hide further the number of
elements in the intersection.

In the off-line phase of this protocol, the parties P1 to Pn decide on a shared
key k to be used for computing a keyed hash function. The decider should not
learn this key. We may even assume that the key k is generated by a trusted
hardware and anyway we assume that only the authorized parties (e.g. cameras
in Example-2) have access to this key. Because the parties P1, ..., Pn are semi-
honest, they do not collude with the decider and reveal the key to D. In other
words, the decider cannot access the key k.

The basic idea is simple. All parties replace elements in their input sets with
images of the elements under keyed hash function. However, the parties cannot
simply send the images to the decider because then the decider would get lots
of information about the input sets.

Let us first consider the question 1. The true cardinalities of all input sets
are hidden from the decider and from other parties by adding a big number of
“dummies” among the true images of elements in input sets. These dummies are
just random bit strings that look like results of the keyed hash function.

We present the protocol in the case of a simple example, for better illustra-
tion. It is straight-forward to convert the presentation to the general case but
we skip it, for sake of compactness. Let us assume that there are three parties
A, B and C in the protocol and the decider wants to know the cardinality of
set (A ∩ B ∩ C̄) ∪ (B ∩ C). The Venn diagram for the three input sets is shown
in Fig. 1. Eight disjoint sets are formed by first choosing either the input set or
its complement for each party and taking an intersection of the chosen three
sets. Because the total universe could be very large, one of these eight sets (the
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Protocol 3:
0 The off-line phase of this generic protocol is as explained in Protocol-0 with

only one difference: in the step 7, the parties create β vectors W k, where
1 ≤ k ≤ β. Each vector W k is created similarly to the vector V in step 7 of
Protocol-0. On-line phase of Protocol-1 is used as a building block of the on-line
phase of the generic solution.

1 In order to compute each W k, parties should compute each set
(Ak,1 ∪ ... ∪ Ak,αk) by utilizing Protocol-1. Note that party Pi either inputs Si

or S̄i or does not attend the computation for this term.
2 After all the vectors W k have been computed, party Pn creates a new vector Z

where every entry j of the vector is computed as Zj =
∏β

k=1 W k
j ·

3 Now, one of the following cases will be executed.
4 Case 1: Party Pn sends vector Z to D. The decider decrypts Z. For every entry

Zj which decrypts to zero, the decider learns that the corresponding element aj

is in the set ST . On the other hand, if decryption yields a non-zero, then the
corresponding element is not on the set ST .
Case 2: Party Pn shuffles vector Z and sends it to D. The decider then
decrypts the vector Z. The cardinality of ST is equal to the number of zero
values in the decrypted vector.
Case 3: Similarly to Case 3 of Protocol-2, the party Pn creates a new vector Z′

from the vector Z, by appending the components of Z and their duplicates to
vector Z′. Then, Pn shuffles vector Z′, and sends it to the decider. The decider
decrypts the vector. If at least one of the values in Z′ decrypts to zero, then ST

is non-empty. Otherwise, the set of Equ. 1 is empty.

intersection of complements) is assumed to be non-relevant for the end result of
the PSO. For each of the other 7 disjoint sets, the parties A, B and C agree on
the number of dummy values. Please note that we can only increase the total
number of elements in each set, and if the number of dummies is small compared
to the total number, the dummies do not change the whole picture. If the number
of dummies is about the same as the total number, then the total number can
still be found out. Thus, the number of dummies should dominate the actual
size. In other words, the number of dummies should be at least one order of
magnitude greater than the typical size of an input set. The agreed numbers of
dummy values are shown in Fig. 1.

The parties also need to agree on the actual 97 dummy values that every
party adds to the set of values they would later send to the decider. Similarly, A
and C have to agree values for the 12 dummies that both of them include among
keyed hash images of their input sets. Parties A and B agree on 23 joint dummy
values, while B and C agree on 53 joint dummies. Finally, A would freely choose
34 random dummy values while B (resp., C) chooses 88 (resp., 145) dummies.
The decider receives all the hash-values and dummy values. From the received
values, the decider identifies those that appear in every set, those that have been
received from A and B but not from C, and those that have been received from
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B and C but not from A. Finally the decider is asked to subtract 173 ( = 23 +
97 + 53) from the gross number of collisions explained above.

Note that every PSO problem can be presented in CNF or alternatively in
DNF. Our example PSO above was in disjunctive normal form. This is mainly
just for making our solution easier to explain.

Fig. 1. An example of a PSO for three sets with keyed hash function.

Now, let us now assume that the decider only needs to learn whether the
resulting set from the PSO is empty or not. In the off-line phase, each possible
collection of parties would agree on several keys that would be used to compute
images of elements in sets of parties in the collection. This would be done in
addition to the images computed by the common key k. Effectively, for each
element that can be found in several input sets there would be many collisions
in the data received by the decider. Dummies would be added in addition to this
“cloning” of elements. Apart from images by the common key k, parties should
skip computing images of a few elements with the other keys. This is to further
confuse the true number of collisions from the number of observed collisions.

7 Performance Evaluation

In this section we evaluate the communication and computation complexities of
our protocols. We have only implemented the most critical part of our protocols
which is the cryptographic part, and we present the results of our experiments.
Moreover, we do some comparison between the performance of our protocols
with the prior works.

Please note that any set operation can be considered a boolean function,
therefore, the number of possible set operations between n different sets is equal
to the number of truth tables with n different variables, which is 22

n

. In other
words, when the number of input sets increases, the number of possible set
operations increases more than exponentially. This means in order to evaluate
the performance of Protocol 3 and protocol with keyed hash function, we cannot
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run the experiment with all the possible set operations (because there are many
of those operations). Therefore, we choose one operation that we find interesting,
and is compatible in size and the number of operations with the experiments in
[18]: In Eq. 1, we assume that α = β = n. We have compared the complexity
of our Protocol 3 against the protocol 3 by Wang et al. in [18], because they
already compared their protocol against the state of the art and showed that
their protocol 3 is more feasible in practice than other solutions. Moreover, the
underlying idea of our protocol is close to that of the protocols in [18]. It is
important to note that our setting with an external decider differs from the
settings in [18] and other prior art. The difference in setting gives an opportunity
to get more efficient solutions.

Wang et al.’s protocol is based on threshold ElGamal while our protocols use
Paillier encryption scheme or any additively homomorphic encryption. We have
listed the number of operations in Table 1. The entry for number of encryptions
includes the number of re-encryptions. Both in ElGamal and in Paillier this is
done by multiplying the encrypted value by a random encryption of zero. The
speed of multiplication is very fast compared to encryption in both cryptosys-
tems. Thus we have not listed the number of multiplications in the table. The
number of operations in a single union or intersection can be calculated from
the values of the table by substituting β = 1.

Table 1. Number of operations of our protocol 3 and the protocol 3 of [18]

Operations Protocol of Wang et al. in [18] Our Protocol-3

Encryptions O(nu + αβu) O(αβu)

Decryptions O(nu) O(u)

We also compare the number of communication rounds in our protocol
against the protocol of Wang et al. In [18], the n parties first need to decide
together on the key for threshold ElGamal. Then each party needs to individ-
ually take part in calculating the union of all sets. Then each party needs to
individually take part in calculating the result and finally all parties together
decrypt the result.

In our protocol the decider picks the key, then all other parties individually, in
any order and maybe even partially simultaneously, modify the values in vectors
W k. Party Pn does the multiplications and sends Z to D that will decrypt it.
Thus the number of communication rounds is much smaller in our solution.

The time measurements are obtained by running crypto operations in our
protocols on an x86-64 Intel Core i5 processor clocked at 2.7 GHz with a 4 MB
L3 cache. In Protocols 1, 2, and 3, any additively homomorphic non-deterministic
encryption can be used. For our experiments, we use Paillier cryptosystem. The
modulus that Wang et al. used in ElGamal was set to 512 bits, therefore, to
be able to do a comparison we set the modulus N for Paillier cryptosystem to
non-secure 512 bits as well. In practice, 512 bits is considered to be too short
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for a public key, because it can be factored. To be in secure side, N should be
2048 bits long. We made experiment when N is 2048 bits long and reported the
results in Table 2.

We now compare the execution time of our Protocol 3 and the protocol 3 by
Wang et al. in [18]. We first tested the cases where u ∈ {10, 20, 40, 60, 80, 100}
and there are 3 parties with input sets in the protocol. The result of our imple-
mentation showed that our protocol is 5 times faster than the protocol of Wang
et al. For example, when u = 100, our protocol 3 needs 0.71 s to compute the
outcome set, while protocol 3 of Wang et al. needs 3.7 s. We next compared
the execution time of our Protocol 3 and the protocol 3 of Wang et al. in the
cases that n ∈ {3, 5, 10, 15, 20} and u = 20. In our experiments our Protocol
3 performs significantly faster than the protocol of Wang et al., and the speed
difference increases with the number of participants. For example, when n = 20,
our protocol needs 0.15 s, the protocol of Wang et al. needs 24 s to perform PSO.
Therefore, when there are 20 parties with input sets, our protocol performs more
that 150 times faster than Wang et al.’s protocol. Please note that we utilized
the same computational power as Wang et al. used.

Table 2. Execution time of the on-line phase our Protocol-3 in seconds, when modulo
N in Paillier is of length 2048 bits and u ∈ {22, 25, 27, 210} and n ∈ {3, 5, 10, 15, 20}.
In Eq. 1, we assume that α = β = n. The numbers in the table are required time for
each party to modify Z with a single thread. When u = 22, 25, 27, 210 the decider needs
0.02, 0.17, 0.68, 5.51 seconds respectively, to decrypt this vector with 32 threads.

n = 3 n = 5 n = 10 n = 15 n = 20

u = 22 0.001 0.002 0.003 0.005 0.007

u = 25 0.008 0.013 0.025 0.039 0.05

u = 27 0.031 0.05 0.1 0.15 0.2

u = 210 0.237 0.391 0.786 1.178 1.56

The evaluation of the keyed hash function is many orders of magnitude faster
compare to public key encryptions. For instance, for a set size of one million, the
computation of keyed hash values only takes one second.

As we mentioned before, our setting with a decider differs from the typical
secret-sharing schemes and the server-aided PSO protocols. In fact in our variant
of multi-party computation, the existance of the decider makes the protocol more
efficient. For instance, the server-aided PSI protocol in [27] has the computation
complexity of O(u) and O(nu) for each party and the server respectively, whereas
in our PSI protocol (Protocol-2) the computation complexities are O(u) for each
party and also for the decider.

8 Security and Privacy Analysis

In this section, we present the security and privacy analysis of our generic pro-
tocols in the semi-honest setting.
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In our protocols we assume that the parties communicate through a secure
channel. Moreover, we also assume that the repository that the parties P1, ..., Pn

use is accessible by them only. Moreover, this repository has a secure version
control system to log the activities of its users [29].

In protocols with homomorphic encryption, if we assume that all parties are
semi-honest, all vectors W k are calculated correctly and the correct vector Z is
sent to D. Also the result D gets after decrypting Z is the correct answer.

All values in the vectors in the repository are (very likely to be) different and
no party Pi can decrypt them without the help of D and thus parties Pi do not
learn anything from them.

The decider does not know the values in the repository and thus does not
get any information from the parties in addition to the encrypted vector sent to
it in the end of each protocol. Therefore, D does not learn anything else than
the decrypted values of the vector that Pn send to D.

Thus in the semi-honest setting no party Pi learns anything and the decider
only learns the end result of the protocol.

In the protocols with keyed hash function, D only receives the hash values
of the items and dummy values. Because of the one-way property of the hash
functions, D cannot derive the items from their hash values. D does not know
the key and thus cannot even check if a certain element is in the resulting set
or in the input set of some party. Also, hash values are indistinguishable from
random dummy values, hence D cannot tell these two apart. Moreover, the
dummy values hide the cardinality of the elements that are not in the output
set. Addition of “cloned” hash images (for the emptiness protocol) hide the true
cardinality of the output set and just reveals whether the cardinality is zero or
positive.

9 Modified Protocol with One Malicious Party

We consider now the adversarial model in which we assume that there are no
collusions between the parties. Please note that the material of this section is a
hint of future work.

If we do not assume that the parties Pi are semi-honest, there are several
ways how they can try to cheat: (i) They can use different inputs Si (or S̄i)
in different parts of the protocol (in different unions); (ii) They can use an
incorrect complement for their set Si; (iii) They can calculate the elements in
W k incorrectly: for instance, instead of multiplying the previous value by enc(0)
they replace the element by enc(r); (iv) Party Pn can send an incorrect vector
Z to the decider.

Our protocol can be made secure against these actions in the following way:

1) Each party Pi for each element in V , chooses one encryption of 0 and one
encryption of 1, puts these two encrypted values in random order and sends
them to all other parties, including D. The decider can confirm that, indeed,
the pair is of the form {enc(0), enc(1)}. The party Pi then, for each pair,
chooses a random number a, publishes the number to other parties except
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D, and raises both encrypted values to power a. The result is a different pair
enc(0) and enc(a) with different a, for each element in the vector V . The
party Pi uses only these values later in the protocol. All other parties can
later make sure that these are calculated correctly.

2) We repeat our protocol n times and change the order of parties Pi such that
everyone must be once in the role of P1. When a party is in the role of P1,
they must use the values enc(0) and enc(1) they created in step 1) to initialize
the vector V . When they are initializing V , they must use the same values for
the same element every time a different union is calculated and their input
should be the same (S1 or S̄1). Also, they should use different values for the
same element when the inputs are different (one is S1 and the other is S̄1).
Now, the parties cannot cheat by using different inputs for Si (or S̄i), or
miscalculating the set complement.

3) In every repetition every party calculates the vector Z and sends it to the
Decider. If every party has acted honestly in every repetition, then (i) every-
body should send the same Z in every repetition; (ii) the decryption of Z
would give the same result for each repetition. On the other hand, if some
party has used different Si in some repetition than what they used when they
were playing the role of P1, then there is a fair chance that the results from
these two repetitions do not match.

4) The previous steps are likely to reveal whether an individual party has been
cheating while others have stayed honest. However, it is harder to identify the
cheater. The following can be done in order to locate where the cheating has
happened. After n runs of the protocol every party independently multiplies
together all elements in every vector W k in every run that they know must
be encryptions of zero if computations have been done correctly. Then they
further multiply the result with a random encryption of zero before sending
it to the Decider. The Decider decrypts everything and verifies that nothing
else than zeros come out.

10 Conclusion

Private set operations such as private set intersection and private set union
can be used in many privacy sensitive use cases, and therefore they have been
studied extensively. In this work, we studied a special variant of PSO where
the outcome of the multi-party PSO is learned by an external decider while the
parties who have provided an input set to the PSO do not learn the outcome.
By providing realistic examples, we showed the importance of the setting with
a decider. Furthermore, we showed how our setting is different from what has
been presented so far in academia.

We presented two generic solutions (Protocol 3 and protocol with keyed hash)
to any PSO problems that the decider seeks the cardinality of the output set
or wants to investigate whether this set is empty. Moreover, Protocol 3 is a
generic protocol for the decider to learn also elements in the output set, under
the assumption that the universe, from where parties choose elements to their
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sets, is limited in size. In addition to the cardinality and emptiness, the decider
can receive the elements in the output set.

We presented the security and privacy analysis of our protocols in the semi-
honest setting, and presented a modified protocol for the malicious setting.
Lastly, we implemented our protocol. The result of our experiments showed that
our solutions for our special setting, i.e., having an external decider, are more
efficient than applying state of the art solutions proposed for other settings to
our setting. The experiments also show that our solutions are feasible for many
real-life use cases.

We present different criteria that can be used to determine which PSO pro-
tocol fits a certain setting. The criteria of Sect. 3 can give a future direction to
the research in the field of PSO protocols. We only covered the case with one
malicious party. The case with more malicious parties is left for future work.
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Abstract. We consider the problem of protecting image classifiers
simultaneously from inspection attacks (i.e., attacks that have read
access to all details in the program’s code) and black-box attacks (i.e.,
attacks where have input/output access to the program’s code). Our
starting point is cryptographic program obfuscation, which guarantees
some provable security against inspection attacks, in the sense that any
such attack is not significantly more successful than a related black-box
attack. We actually consider the recent model of encrypted-input cryp-
tographic program obfuscation, which uses a key shared between the
obfuscation deployer and the input encryptor to generate the obfuscated
program. In this model we design an image classifier program and an
encrypted-input obfuscator for it, showing that the classifier program is
secure against both inspection and black-box attacks, under the exis-
tence of symmetric encryption schemes. We evaluate the accuracy of our
classifier and show that it is significantly better than the random clas-
sifier and not much worse than more powerful classifiers (e.g., k-nearest
neighbor) for which however no efficient obfuscator is known.

Keywords: Inspection attacks · Black-box attacks · Program
obfuscation · Image classifiers

1 Introduction

According to web sources, the Internet of Things (IoT) market is expected to
grow by $ 421.28 billions during 2021–2025, progressing at a compound annual
growth rate of 33%. In many typical IoT applications, servers perform analyt-
ics over data received by multiple distributed sensors (see, e.g., [21]). Just like
most web or cloud computing services, IoT analytics servers can be subject to
a number of attacks. In this paper, we focus on attacks to the server programs,
here categorized as inspection attacks (informally defined as attacks that try to
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access internal data or computation used by the server program), and black-
box attacks (informally defined as attacks only use input-output access to the
attacked server program, and no access to any internal data or computation).

Our starting point to propose solutions mitigating these attacks is the recent
area of cryptographic program obfuscation, which promises a set of solutions with
some provable security guarantee in the presence of inspection attacks, but does
not address the problem of protecting programs against black-box attacks. Pro-
gram obfuscation is the problem of modifying a computer program so to hide any
sensitive details without changing its input/output behavior. While this problem
has been known for several years in computer science, only in the last 20 years
or so, researchers have considered the problem of provable program obfuscation,
where sensitive code details are proved to remain hidden under a widely accepted
intractability assumption, such as those often used in cryptography. The most
studied security guarantee offered by provable program obfuscation, also called
“virtual-black-box” obfuscation [4], says that for any efficient inspection attack to
the program (i.e., an attack that has access to all details in the program’s code)
there exists an efficient black-box attack to the program (i.e., an attack that only
has input-output access to the program) that is about as equally successful. Early
results in the area implied the likely impossibility of constructing a single program
capable of obfuscating any input arbitrary polynomial-time program into a vir-
tual black box [4]. Most recent results show the possibility of constructing, under
close to standard intractability assumptions, practically efficient obfuscators for
very restricted families of functions, such as point functions and a few extensions
of them (see, e.g., [5,6,11,13,17,22]), as well as theoretically feasible obfuscators
for large families of functions (e.g., compute-and-compare functions [23]).

On one hand, such provable program obfuscation solutions make inspection
attacks to the program’s sensitive information essentially useless, in that any
inspection attack would not be significantly better than a related black-box attack.
On the other hand, the security guarantee does not say anything new about black-
box attacks. Recent results (see, e.g., [12,19,20]) show successful black-box attacks
to popular programs (e.g., machine learning programs), even undermining the suc-
cess of the related business model (e.g., MLaaS). Motivated by these results, recent
work [10] has considered the problem of augmenting the cryptographic program
obfuscation model so to achieve, in at least some class of application scenarios,
program confidentiality in the presence of both inspection and black-box attacks.
A resulting model, called encrypted-input program obfuscation, has been proposed
as a mixed encryption/obfuscation model with the following security guarantee:
for any efficient inspection attack to the program (i.e., an attack that has access
to all details in the program’s code) there exists an efficient algorithm (note: not
one that is given black-box attack to the program) that is about as equally success-
ful. Thus, a provable encrypted-input obfuscation solution makes both inspection
attacks and black-box attacks to the program’s sensitive data essentially useless.
Moreover, in this model the parties generating the inputs (e.g., the IoT devices)
are assumed to encrypt them by using a key shared with the entity obfuscating the
program, which can then work by computing over the obfuscated program and the
encrypted (and authenticated) input.
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In this paper we continue this effort and specifically focus on posing the
problem for machine learning classifiers (instead of arbitrary programs) and
on finding a concrete classifier that can be secured against both black-box and
inspection attacks in this model. We start by observing that any encrypted-input
obfuscator for an arbitrary program can be used to design an encrypted-input
obfuscator for a machine learning classifier, but then note that the resulting
scheme would be very inefficient (e.g., depending linearly in the dataset) and
may likely require conversions to other representations (e.g., circuits). Thus, we
consider the problem for a specific task: image matching classification, where
given a secret image, and an input image, the classifier returns 1 if they belong
to the same class, or 0 otherwise. Since no efficient obfuscators are known for
complex machine learning classifiers, we opt for designing our own image match-
ing classifiers, using tools like principal component transformations and textbook
statistics, for which we know how to produce an encrypted-input obfuscator for
the related evaluation program. We study the true positive rate and true nega-
tive rate for this classifier and obtain that they are significantly better than the
random classifier and not much worse than much more powerful classifiers (e.g.,
k-nearest neighbor) for which we do not know of any efficient obfuscator.

Table 1. For each computing model (programs or classifiers), 2 security models are
considered: cryptographic obfuscation (briefly, obfuscation) and encrypted-input cryp-
tographic obfuscation (briefly, ei-obfuscation). For each computing model and associ-
ated security model, the table lists if provable security is guaranteed in the presence
of inspection security, and of black-box attack security, which paper first defines the
security model, and which appendix in this paper contains the main definition.

Computing Security Inspection Black-box Defined in

model model attack security attack security

Programs Obfuscation Yes No [3], Appendix B.1

Programs ei-Obfuscation Yes Yes [10], Appendix B.3

Classifiers Obfuscation Yes No [9], Appendix B.2

Classifiers ei-Obfuscation Yes Yes Appendix C

2 Definitions and Models

We present definitions of the computing models of interest (i.e., secret-based
programs and matching classifiers) in Sect. 2.1; and an informal discussion of
attack classes and resources, previous related obfuscation models, and the model
for encrypted-input obfuscation of matching classifiers in Sect. 2.2. Formal def-
initions of the various obfuscation models from the literature are recalled in
Appendices A, B.1, B.2 and B.3, and finally the (new) formal definition for
encrypted-input obfuscation of matching classifiers is presented in Appendix C.
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2.1 Computing Models: Programs and Classifiers

We consider two computation models: (secret-based) programs and (matching)
classifiers. Informally, secret-based programs are programs with both a public
and a secret input, and matching classifiers are a pair of programs: a training
program and a matching program, with a specific syntax, including inputs of
specific data and label types. We now proceed more formally.

(Secret-Based) Programs. We consider families of (secret-based) functions as
families F = {fpv,sv} of maps fpv,sv : {0, 1}n → {0, 1} parameterized by some
public values pv ∈ {0, 1}mp and secret values sv ∈ {0, 1}ms , for some length
parameter n, and parameter value lengths mp,ms polynomial in n. We will think
of public values pv as being available to all parties, including the adversary,
and of secret values sv as encoding the information that has to remain secret
from the adversary. In later sections of the paper, we will specifically consider
obfuscation of the following classes of (secret-based) programs:

1. the family of range-membership programs, where the program computes if an
input value belongs to a range, where we keep the two range limits secret but
the length of their binary representation public. Formally, we define the family
of programs RMpv,sv, where pv = (1n), sv = (a, b), with [a, b] ⊆ {0, 1}n, and
that on input x ∈ {0, 1}n, return 1 if x ∈ [a, b] and 0 otherwise.

2. the family of conjunctions of range-membership programs, where the program
computes if each input value in a sequence belongs to a (potentially different)
range, where we want to keep all the range limits secret but can keep the
length of their binary representation public. Formally, we define the family
of programs CRMpv,sv, where pv = (1n, 1t), sv = (a1, b1, . . . , at, bt), with
[ai, bi] ⊆ {0, 1}n, and that on input x1, . . . , xt ∈ {0, 1}n, return 1 if xi ∈ [ai, bi]
for all i = 1, . . . , t, and 0 otherwise.

Matching Classifiers. By D we denote a probability distribution, and by dS
we denote a data space; that is, the set dS = {d1, . . . , dN} of all possible data
samples, that can be drawn according to distribution D. For instance, a sample
di could be an image of an object (e.g., a car) and D could returns images of
cars of possibly different brands.

By cS we denote a class space; that is, the set cS = {c1, . . . , cq} of all possible
data classes. For instance, ci could be the i-th car brand name within a known
and pre-specified list.

The class function is a function cF : dS → cS mapping a data sample in dS
to its class in cS. In the given example, function cF would map the data sample
d ∈ dS containing the image of a car to a value ci ∈ cS denoting this car’s brand
name, as from the known list.

We define a matching classifier (briefly, classifier) for class function cf as a
pair of algorithms MC = (CTrain, CMatch) such that:

– on input a dataset ds = (d1, . . . , dn) ∈ dSn of n data samples, labels cl =
(c1, . . . , cn) such that ci = cF (di) for i = 1, . . . , n, and a data sample d0 ∈ dS,
algorithm CTrain returns matching auxiliary input maux;
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– on input data sample d and matching auxiliary input maux, algorithm
CMatch returns a bit b. Here, the value b = 1 denotes that this classifier pre-
dicts that class c = cF (d) of data sample d is equal to the class c0 = cF (d0)
of data sample d0; and, naturally, the value b = 0 denotes that the classifier
predicts that c �= c0.

Towards defining classifier MC’s output accuracy metrics of interest, relatively
to a dataset ds with samples independently drawn from distribution D and
with labels cl, a data sample d0, and a random execution of CTrain(ds, cl, d0)
returning matching auxiliary input maux, we say that a data sample d can be a

– true positive, if cF (d) = c0 and CMatch(d,maux) = 1 (predicting c = c0);
– true negative, if cF (d) �= c0 and CMatch(d,maux) = 0 (predicting c �= c0);
– false positive, if cF (d) �= c0 and CMatch(d,maux) = 1 (predicting c = c0);
– false negative, if cF (d) = c0 and CMatch(d,maux) = 0 (predicting c �= c0).

Let tp (resp., tn, fp, fn) denote an estimate of the number of true positives
(resp., true negatives, false positives, false negatives) for matching classifier MC.
Based on these definitions, relatively to a dataset ds, a class c, and a random
execution of CTrain(ds, cl, d0) returning matching auxiliary input maux, we can
then define the following classification metrics for MC:

– true negative rate (aka specificity): tn/(tn + fp);
– true positive rate (aka recall): tp/(tp + fn).

Similarly as for the program computing model, even in the classifier comput-
ing model we will think of some inputs as being available to all parties, called
public parameter values pv(MC), and of values that have to remain secret from
the adversary, called secret parameter values sv(MC). Specifically, pv(MC) con-
tains a description of CTrain and CMatch, a syntactic description of dataset
ds, including the number n of data samples, and a syntactic description of data
space dS, including the total number N of possible data samples. Moreover,
pv(MC) contains dataset ds, labels cl, data sample d0 and its class c0 = cF (d0).

In later sections of the paper, we will specifically consider obfuscation of the
family of image matching classifiers, denoted as iMC = (iCTrain, iCMatch).
This is defined exactly as a family of matching classifiers, with the (only seman-
tic) difference that data samples are images.

2.2 Modeling Obfuscation of Matching Classifiers

Our goal is to produce a formal model for the encrypted-input obfuscation of
image matching classifiers. Since much literature focuses on obfuscation of pro-
grams, we first discuss related formal models on program obfuscation from the
literature, and then where we extend these models.

Threat Model: Attack Classes and Attacker Resources. We consider
attacks trying to infer whether a binary-valued property (possibly involving
secret data or program description) is satisfied or not.
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Fig. 1. Usage paradigm for a cryptographic program obfuscator.

An inspection attack to a program is defined as a polynomial-time attack,
that given access to some or all of the program’s code, tries to find out whether
a property of the program is satisfied or not. An inspection attack to a matching
classifier is defined as an inspection attack to the classifier’s matching program,
where the attacker is additionally given access to some or all of the output maux
of the classifier’s training program.

A black-box attack to a program is defined as a polynomial-time attack, that
given input-output access to the program (but not given access to any part of the
program’s code), tries to find out whether a property of the program is satisfied
or not. A black-box attack to a matching classifier is defined as a black-box attack
to the classifier’s matching program, whose input maux is set as the output of
the classifier’s training program.
Previous Related Obfuscation Models. Cryptographic program obfusca-
tion, as originally studied in [4,14], is about security of an arbitrary program in
the presence of inspection attacks. Here, a virtual black-box obfuscation prop-
erty is formalized, briefly speaking, as follows: for any efficient inspection attack,
there is an efficient black-box attack that is about equally successful. Note that
this property does not target black-box attacks. A pictorial description of the
usage paradigm for a cryptographic program obfuscator can be found in Fig. 1.

Intrusion-resilient matching classifiers, as recently defined in [9], extend the
above cryptographic program obfuscation model to a type of matching classi-
fiers. The extension is necessary due to a different program syntax (specifically,
matching classifiers are a pair of programs, instead of a single program), and
a different set of public data and information to be kept secret (specifically, in
matching classifiers the description of algorithms CTrain and CMatch may be
public while the dataset ds, the class labels cl, and a data class c are desired to
remain secret). The usage paradigm of a cryptographic obfuscator for a matching
classifier is obtained by using, in Fig. 1, a program equal to CMatch(d,maux),
where maux= CTrain(ds, cl, d0).

Encrypted-input program obfuscation, as recently defined in [10], targets a
combined key-based encryption/obfuscation of an arbitrary program, satisfying
the following property: for any efficient inspection attack, there is an efficient
attack with neither inspection nor black-box access to the program that is equally
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Fig. 2. Usage paradigm for an encrypted-input cryptographic program obfuscator.

successful. The model in [10] can be seen as obtained by applying two modifi-
cations to the original model in [4,14]: (1) the obfuscation of the program is
performed using a random key that is unknown to the attacker; and (2) the
inputs to the program are always generated in encrypted form, using this key.
Here, (1) suggests that security against inspection attacks may follow from some
form of encryption of the program, and (2) suggests that security against black-
box attacks may follow since an attacker, not knowing the key, may not be
able to generate valid inputs for a black-box attack. The usage paradigm for an
encrypted-input cryptographic program obfuscator is depicted in Fig. 2.

In this paper, we generalize the encrypted-input program obfuscation model
of [10] to matching classifiers. The generalization is necessary due to a differ-
ent program syntax (specifically, matching classifiers are a pair of programs,
instead of a single program), and a different set of public data and information
to be kept secret (specifically, in matching classifiers the description of algo-
rithms CTrain and CMatch may be public while the dataset ds, the class labels
cl, the secret data sample d0 and its class c0 are desired to remain secret). Our
definition of matching classifiers also slightly generalizes [9], as follows: in our
paper the algorithm CMatch of a matching classifier takes as a secret input a
data sample d0, and possibly but not necessarily its data class c0, while in the
previous definition the secret input was just a secret class c. The usage paradigm
of an encrypted-input obfuscator for a matching classifier is obtained by using, in
Fig. 2, a program equal to CMatch(d,maux), where maux= CTrain(ds, cl, d0). It
is interesting to compare the original virtual-black-box obfuscation requirement,
as rewritten in Appendix B.1 for programs and in Appendix B.2 for classifiers,
with the simulated-view obfuscation requirements in Definition 2 for programs
and in Definition 3 for classifiers. In the virtual-black-box obfuscation require-
ments, it is required that the adversary’s view can be simulated by an efficient
algorithm that is given access to a black-box computing the original program or
the original matching algorithm of the classifier, while in the latter the efficient
algorithm is not given access to any such black box. We derive:

– For an obfuscator satisfying the virtual-black-box obfuscation property, an
inspection attack is not significantly more successful than a related black-box
attack, but this does not rule out the existence of a black-box attack that
learns the (program’s or) the classifier’s secret parameter values sv.
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– For an encrypted-input obfuscator satisfying the simulated-view obfuscation
property, if the obfuscation key remains secret, the obfuscated version of
the (program or) matching classifier is of no help to inspection or black-box
attacks to learn the (program’s or) classifier’s secret parameters values sv.

3 A General Result on Encrypted-Input Obfuscation

We consider a question naturally arising from our definitions of encrypted-input
obfuscation of programs and matching classifiers: is it possible to construct an
encrypted-input obfuscator for an arbitrary family of matching classifiers (as
formally defined in Definition 3) starting from an encrypted-input obfuscator
for any family of programs (as formally defined in Definition 2, recalled in
Appendix B.3). We give a positive answer to this question and show the fol-
lowing

Theorem 1. For any family of matching classifiers MC, there exists a family of
secret-based programs P such that the following holds. If there is an encrypted-
input obfuscator for P then there exists an encrypted-input obfuscator for MC.

To prove Theorem 1, we show a family of secret-based programs for any
family of matching classifiers. Specifically, let MC = (CTrain, CMatch) be a
family of matching classifiers, as formally defined in Sect. 2.1. We define the
family of secret-based programs Ppv,sv, where
– pv = (1n, 1N , desc(CTrain), desc(CMatch), pv(MC)),
– sv = (ds, cl, d0, sv(MC)),

and such that, on input x, it returns b = CMatch(x, CTrain(ds, cl, d0)). The
computation correctness, low runtime overhead and simulated-view obfuscation
properties of the encrypted-input obfuscator for MC directly follow from the
analogue properties of the encrypted-input obfuscator for Ppv,sv.

Remark. In [10] it was observed that Yao’s garbling circuit technique [24] can
be directly used to construct an encrypted-input obfuscator for any polynomial-
time program, hiding all circuit gates of the input circuit equivalent to the pro-
gram. When combined with Theorem 1, this implies a similar general result
for any matching classifier. We caution the reader that a direct use of Theo-
rem 1 would result in an obfuscated matching classifier of size polynomial in the
dataset size (which is undesirable as in many practical applications datasets are
very large). However, we believe that this result is still encouraging towards find-
ing, in some model, general methods to efficiently and provably secure classifiers
against both inspection and black-box attacks.

4 Image Matching

In this section we present our result on image matching classifiers. First, in
Sect. 4.1, we recall background definitions of interest, including principal com-
ponent transformations. Next, in Sect. 4.2, we formally describe our new image
matching classifier, and finally in Sect. 4.3 we report our experimental analysis
of its accuracy properties over 3 different datasets.
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4.1 Background Definitions and Tools

An attribute A is a function that maps a data sample di ∈ dS to a numer-
ical attribute value v in some value space vS. Let A1, . . . , Am denote m dis-
tinct attributes. To a data sample di ∈ dS, we can then associate a value tuple
vi = (vi,1, . . . , vi,m), where vi,j represents Aj(di); that is, the value returned by
attribute Aj on input data sample di. For instance, if di is an image, the value
vi,j could represent the numeric value associated with the j-th pixel (or block
of pixels) in di. We can then define a data n × m-matrix V as a matrix where
each of the n rows is associated to a data sample di, each of the m columns is
associated to an attribute Aj , and each entry vi,j contains value Aj(di).

For a sequence of values vj = (v1,j , . . . , vn,j) from value set vS, we use the
textbook definitions of mean, denoted as μ(vj), and standard deviation, denoted
as σ(vj), for all j = 1, . . . ,m.

An important tool used in our classifier construction is a Principal Compo-
nents transformation (briefly, pcT). Informally speaking, pcT is defined as an
orthogonal linear transformation converting a data matrix to a new coordinate
system where the greatest variance by some scalar data projection lies on the 1st
coordinate (also called the 1st principal component), the 2nd greatest variance
on the 2nd coordinate, and so on [15]. Thus, truncating this transformation to
its first coordinates is sufficient to capture a large part of the data variability
of interest in many practical uses. More formally, given a data (n × m)-matrix
V , we define the truncated Principal Components transformation (briefly, tpcT)
of V as the function tpcT that on input V , returns Y = V W , where W is an
(m × �)-matrix, dependent on V , with elements in vS, and the product V W
is a matrix product, returning (n × �)-matrix Y , where we usually think of �
as much shorter than m. Thus, tpcT also serves as a dimensionality reduction
method. While one classical way to compute W from V consists of setting W
as the matrix whose columns are the first � eigenvectors of matrix V TV , many
more efficient variants and generalizations have been studied (see, e.g., [15]).

4.2 Our New Image Matching Classifier

In this subsection we formally describe a new image matching classifier. First,
we provide formal definitions for some useful families of classifiers: range mem-
bership, and conjunction of range memberships. Then we use these classifiers
and the background tools from Sect. 4.1 to present our image classifier IC.

Our Image Matching Classifier IC. Our image matching classifier, denoted
as IC = (imCTrain, imCMatch), reduces the problem of image matching (i.e.,
matching a new test image against a secret image) to the problem of evaluat-
ing a conjunction of range memberships (i.e., testing if each of the values in an
input test sequence belongs to a prespecified, secret, value range). Informally
speaking, this is performed using the following steps: (1) a truncated principal
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components transformation tpcT maps the dataset images to short vectors cap-
turing a large part of the images’ variability; (2) the tpcT output is processed
by using basic statistics like mean and standard deviation to capture summary
ranges for attribute values relative to each attribute, for each attribute and each
image class; and finally (3) such ranges and the input secret image are used to
define a conjunction of ranges of attribute values, one range for each attribute,
against which any new test image can be later matched.

A formal description follows. (For simplicity, in this description we assume
that the class c0 of the secret data sample d0 is known to algorithm imCTrain.
Later, we show the extension to the more general cases when c0 is not known.)

Input to Algorithm imCTrain:

– an n-image dataset ds = (d1, . . . , dn)
– class labels cl = (c1, . . . , cn) such that ci = cF (di), for i = 1, . . . , n
– a secret data sample d0 and its class c0 = cF (d0)
– a parameter 1m denoting the number of image attributes

Instructions for Algorithm imCTrain:

1. let V be the data n × m-matrix associated with the n-image dataset ds
2. set W = tpcT(V )
3. set Y = V W (i.e., Y is the product of matrices V and W )
4. let Aj denote the attribute that maps the data sample di in V ’s i-th row to

the j-th data block in Y ’s i-th row, for i = 1, . . . , n, and j = 1, . . . , m
5. for all i = 1, . . . , n such that cF (di) = c0,

set yi = (yi,1, . . . , yi,m),
where yi,j = Aj(di), for all j = 1, . . . ,m

6. let α be a configurable constant (e.g., α = 1.5)
7. for all j = 1, . . . ,m

compute ctj = μ({yi,j |cF (di) = c0})
compute stdj = σ({yi,j |cF (di) = c0})
set aj = ctj − α · stdj , and bj = ctj + α · stdj

8. return: maux = (W, (a1, b1), . . . , (am, bm))

Input to Algorithm imCMatch:

– a tuple maux returned by imCTrain
– an image data sample d

Instructions for Algorithm imCMatch:

1. write maux as (W, (a1, b1), . . . , (am, bm))
2. compute e = dW (i.e., e is the product of vector d and matrix W )
3. let A′

j denote the attribute mapping data sample d to the j-th data block in
e, for j = 1, . . . , m

4. set e = (e1, . . . , em), where ej = A′
j(e), for j = 1, . . . ,m
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5. if e1 ∈ [a1, b1] AND · · · AND em ∈ [am, bm] then return 1 else return 0.

We assumed, for description simplicity, that the above algorithm imCTrain1

takes as input the class c0 of the secret data sample d0, and the algorithm only
needed to compute ranges from the data samples di such that cF (di) = c0.
In the case class c0 is not known, the algorithm can find c0 as follows. First,
it computes ranges from all the data samples di such that cF (di) = c, for all
c ∈ cS. Then, the algorithm matches data sample d0 against the conjunction
of range membership statements obtained from all data samples in class c, for
all c ∈ cS. Finally, it sets c0 as the class which maximizes the number of range
memberships within the same conjunction.

4.3 Accuracy Properties of Our Image Classifier

To evaluate the accuracy properties of our image matching classifier, we per-
formed experiments with data values from the following 3 datasets (including
one often used dataset with well structured image samples, as well as two less
structured datasets, one of which including real-life images with 3D objects):

– The MNIST dataset [16], containing images of handwritten digits; specifically,
a training set of 60,000 images and a test set of 10,000 images. The digits
have been size-centered and normalized into a fixed-size image. Each image
is a 28 × 28 pixel array, where the value of each pixel is a positive integer in
the range [0; 255]. We used 50,000 images for training ad 10,000 images for
testing.

– The ‘ETL Character Database’ [1], a collection of images of about 1.2 million
hand-written and machine-printed numerals, symbols, Latin alphabets and
Japanese characters and compiled in 9 datasets (ETL-1 to ETL-9). We have
used images from this dataset containing the 26 lower-case letters and the 26
upper-case letters from the English alphabet.

– The ‘Statlog (Vehicle Silhouettes) Data Set’ [18], where the purpose is to
classify a given silhouette as one of four types of vehicle (a double decker bus,
Chevrolet van, Saab 9000 and an Opel Manta 400), using a set of features
extracted from the silhouette. This particular combination of vehicles was
chosen with the expectation that the bus, van and either one of the cars
would be readily distinguishable, but it would be more difficult to distinguish
between the cars. The vehicles may be viewed from one of many different
angles. The original purpose was to find a method of distinguishing 3D objects
within a 2D image by application of an ensemble of shape feature extractors
to the 2D silhouettes of the objects.

We stress that the design possibilities for our image classifiers were heavily
constrained within the small class of functions that have an efficient crypto-
graphic obfuscator in the literature. Thus, our classifiers were limited in that
they had to be selected from the family of point functions (see, e.g., [8] and [2]
for efficient implementations) or wildcard matching classifier (see, e.g., [7] for an
efficient implementation).
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With respect to the 3 above datasets (briefly denoted as the ‘digits’, ‘letters’
and ‘vehicles’ datasets), in Table 2 we show the true positive rate and true neg-
ative rate of our 2 image matching classifiers, as well as 2 baseline classifiers: a
random classifier (i.e., a classifier that, on input an image, returns a random class
value as output); and k-nearest neighbor (for this latter classifier, however, we
do not know of an efficient cryptographic program obfuscator in the literature).

Table 2. Classification metrics for our image matching classifier and 2 baseline classi-
fiers. The true positive rate and true negative rate are defined in Sect. 2.1. The average
rate is simply defined as the average of these two rates.

Datasets Classifiers True True Average rate

positive rate negative rate

Digits Random 10% 90% 50%

Digits Conjunction of Range Memberships 84% 85% 84.5%

Digits k-Nearest Neighbor 89% 90% 89.5%

Letters Random 98% 2% 50%

Letters Conjunction of Range Memberships 44% 79% 62%

Vehicles Random 75% 25% 50%

Vehicles Conjunction of Range Membership 34% 83% 59%

Main takeaways from this analysis include the following:

1. Even on the ‘vehicle’ dataset, containing very unstructured and close to real
life images, our image classifier IC performs better than the random classifier;
moreover, this improvement becomes even larger as we use more structured
datasets, like the ‘letters’ and the ‘digits’ datasets;

2. On the quite well-structured ‘digits’ dataset, the average accuracy of our
image classifier IC, based on conjunction of range memberships, is no more
than 5% less accurate than the much more powerful nearest neighbor classifier
(for which however we do not know how to construct an efficient cryptographic
program obfuscator); in other words, we showed a classifier for which we can
gain the obfuscation property at a very small accuracy loss.

5 Encrypted-Input Obfuscation of Image Matching

In this section we present our encrypted-input obfuscator for the image matching
classifier IC from Sect. 4.2. Formally, we obtain the following

Theorem 2. Let IMipv,isv be the family of image matching classifiers. If there
exists a symmetric encryption scheme, then there exists an encrypted-input pro-
gram obfuscator for IMipv,isv.
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In [10] it was proved that the existence of a symmetric encryption scheme
suffices to construct an encrypted-input program obfuscator for the family of
conjunctions of range-membership programs. Thus, to prove Theorem 2, it suf-
fices to prove the following

Lemma 1. Let IMipv,isv be the family of image matching classifiers. and let
CRMcpv,csv be the family of conjunctions of range-membership programs. If
there exists an encrypted-input program obfuscator for CRMcpv,csv, then there
exists an encrypted-input program obfuscator for IMipv,isv.

The rest of this section is devoted to the proof of Lemma 1. We start with
an informal description of the ideas behind our obfuscator, and then present

Obfuscator Description: Denoting as IC = (imCTrain, imCMatch) the image
matching classifier to be obfuscated, we have to show an obfuscator icO consist-
ing of 4 algorithms: the key generator kGen, the obfuscation generator oGen,
the input encryptor iEnc and the obfuscation evaluator oEval.

The main idea underlying the construction of these 4 algorithms is that
icO runs the classifier IC’s training algorithm and obfuscates its output using
the obfuscator iCO. More specifically, algorithm oGen runs the training algo-
rithm of classifier IC, and obtains the principal component transform matrix W
and m ranges (a1, b1), . . . , (am, bm). Then, the matrix W is passed to the input
encryptor iEnc and the ranges are passed to the obfuscation evaluator oEval,
so that the execution of the classifier IC’s matching algorithm can be suitably
distributed, encrypted and obfuscated by both iEnc and oEval, as follows. Algo-
rithm iEnc processes its input by first multiplying it with matrix W and then
encrypting it using the input encryptor for obfuscator crmO. Algorithm oEval
processes its input ranges by obfuscating them using the obfuscation generator
for obfuscator crmO.

Note that if obfuscator crmO correctly computes a conjunction of range
memberships then the execution of classifier IC’s matching algorithm is well dis-
tributed across iEnc and oEval. Moreover, an inspection attacker to algorithm
oEval can be turned into an inspection attacker to algorithm oEvalcrm, which
is not successful since we assume the existence of an encrypted-input obfuscator
for CRMcpv,csv. Finally, a black-box attacker to algorithm oEval can be turned
into a black-box attacker to algorithm oEvalcrm, but we know from [10] that
this attacker is not successful since it cannot produce valid encrypted inputs for
oEvalcrm, not having the key used for these encryptions (assuming the existence
of symmetric encryption schemes). Now we proceed more formally.
Input to kGen: a security parameter 1n

Instructions for kGen:

1. run algorithm kGenrm to obtain a random key k
2. Return: key k.
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Input to oGen: secret parameter values sv(IC) = (ds, cl, d0, c0), public parameter
values pv(IC) = (desc(imCTrain), desc(imCMatch)), and key k

Instructions for oGen:

1. Let (W, (a1, b1), . . . , (am, bm)) be the output returned by imCTrain on input
the n-image dataset ds, the class labels cl = (c1, . . . , cn), the secret image
data sample d0 and its secret class c0

2. let t = m, pv = (1n, 1t) and sv = (a1, b1, . . . , at, bt), and run algorithm
oGencrm on input k, pv, sv, thus obtaining goutcrm, the obfuscated version of
sv, and iauxcrm, the auxiliary input for iEnccrm

3. Return: obfuscated program gout = goutcrm and auxiliary string iaux =
(W, iauxcrm).

Input to iEnc: key k, public parameter values pv(IC), auxiliary string iaux,
input string d

Instructions for iEnc:

1. Write auxiliary string iaux as (W, iauxcrm)
2. compute e = dW (i.e., e = vector d times matrix W )
3. let A′

j denote the attribute mapping data sample d to the j-th data block in
e, for j = 1, . . . , m

4. set e = (e1, . . . , em), where ej = A′
j(e), for j = 1, . . . ,m

5. run algorithm iEnccrm on input k, pv, iauxcrm, (e1, . . . , et), thus obtaining as
output iout, an encrypted version of (e1, . . . , et)

6. Return: encrypted input iout.

Input to oEval: public parameter values pv(IC), an obfuscated program gout
and an encrypted input string iout

Instructions for oEval:

1. run algorithm oEvalcrm on input public parameter values pv(IC), obfus-
cated program gout and encrypted input iout, thus obtaining eout, which
is intended to be equal to the output of CRMpv,sv on input (e1, . . . , et).

2. Return: eout.

Obfuscator Properties. To complete the proof of Lemma 1, it remains to prove
that obfuscator icO = (kGen, oGen, iEnc, oEval) satisfies the properties listed
in Definition 3: computation correctness, low runtime overhead, and simulation-
based obfuscation.

The computation correctness property of obfuscator icO directly follows
from the analogue property of obfuscator crmO = (kGencrm, oGencrm, iEnccrm,
oEvalcrm), and by observing that obfuscator icO uses obfuscator crmO to com-
pute the same functionality as the IC classifier. Specifically, the output of algo-
rithm oEval is defined to be equal to the output eout of algorithm oEvalcrm

on input pv(IC), gout and iout. By the computation correctness property of
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obfuscator crmO, the output eout is equal to the output of CRMpv,sv on input
(e1, . . . , et). Finally, observe that since e = dW , and W is the principal com-
ponent transformation of the dataset matrix V , the output of CRMpv,sv on
input (e1, . . . , et) is equal to the output of the classifier algorithm imCMatch,
by inspection of algorithms imCTrain and imCMatch.

The low runtime overhead property of obfuscator icO follows by algorithm
inspection, after observing that the runtime complexity of oEval is essentially the
same as that of algorithm oEvalcrm, which, in turn, only requires O(m log |D|),
where by |D| we denote the size of the public domain that is a superset of all
secret input ranges [ai, bi], for i = 1, . . . ,m.

The simulated-view obfuscation property directly of obfuscator icO directly
follows from the simulated-view obfuscation property of obfuscator crmO since
oEval just runs oEvalcrm and returns its output.

6 Conclusions

We extend a recent model to consider encrypted-input cryptographic program
obfuscation of matching classifiers, and observe that in this model solutions
(based on Yao’s garbled circuits) are possible for a very general class of match-
ing classifiers. It remains of interest to produce much more efficient constructions
for such a general set of classifiers. We then consider the problem of construct-
ing encrypted-input obfuscators for image matching classifiers and show a new
classifier for image matching which both has non-trivial accuracy properties and
can be obfuscated and protected against both inspection and black-box attacks.
It remains of interest to study what other classifiers can be efficiently obfuscated
in this model.
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A Basic Notations and Definitions

The expression {0, 1}n denotes the set of n-bit strings, where n is a positive
integer. If S is a set, the expression x ← S denotes the probabilistic process of
uniformly and independently choosing x from S. If A is an algorithm, the expres-
sion y ← A(x1, x2, . . .) denotes the probabilistic process of running algorithm A
on input x1, x2, . . . and any random coins, and obtaining y as output.

A function ε over the set of natural numbers N is negligible in n if for every
polynomial p, there exists an n0 such that ε(n) < 1/p(n), for all integers n ≥ n0.
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Two distribution ensembles {D0
σ : σ ∈ N} and {D1

σ : σ ∈ N} are computa-
tionally indistinguishable if for any efficient algorithm A, the quantity

|Prob
[
x ← D0

σ : A(x) = 1
] − Prob

[
x ← D1

σ : A(x) = 1
]|

is negligible in σ (i.e., no efficient algorithm can distinguish if a random sample
came from one distribution or the other).

B Cryptographic Program Obfuscation: Previous Models

B.1 Cryptographic Program Obfuscation: Original Model

Cryptographic program obfuscation schemes are usually defined as a pair of
algorithms: an obfuscation generator and an obfuscation evaluator. On input
the original program, the obfuscation generator returns an obfuscated version
of it, called the obfuscated program. On input the obfuscated program and a
program input, the obfuscation evaluator, returns an output, which is intended
to be the same as the original program’s output for this program input. Program
obfuscation schemes are required to satisfy the following requirements: preserv-
ing the same computation, adding low runtime overhead and offering the same
security as a (virtual) black box. The latter says, informally, that any efficient
adversary’s output bit on input the obfuscated program can be efficiently simu-
lated given access to a black box computing the program. Now we proceed more
formally.

Definition 1. We define a program obfuscation scheme for family of functions
F as a pair (oGen, oEval) of algorithms satisfying the following syntax

1. on input parameter values pv, sv of function fpv,sv ∈ F , the obfuscation gen-
erator algorithm oGen returns an output, denoted as gout, which is intended
to be an obfuscated version of fpv,sv.

2. on input parameter values pv and the obfuscation gout, the obfuscation eval-
uator algorithm oEval returns an output, which we denote as eout, which is
intended to be the original program’s output, when run on input x;

and the following requirements:

1. Computation Correctness: Except with very small probability, it holds that
eout = fpv,sv(x).

2. Low Runtime Overhead: oGen’s runtime is only polynomially slower than the
circuit computing fpv,sv.

3. Virtual-Black-Box Obfuscation: Any efficient adversary’s output bit on input
the obfuscated program can be efficiently simulated given access to a black
box computing the program. A bit more formally: for any efficient adversary
Adv given pv, gout as input, there exists an efficient simulator algorithm Sim
given pv as input and given oracle access to a black box computing fpv,sv,
such that the probability that Adv returns 1 and the probability that Sim
returns 1 only differ by a negligible amount.
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B.2 Cryptographic Obfuscation of Classifiers

We review the definition of cryptographic obfuscation of classifiers, from [9].
In line with the Kerckhoff’s principle of modern cryptography, this defini-

tion assumes that the description of algorithms CTrain and CMatch is known
to an adversary, while the dataset ds and the matching auxiliary input maux
returned by CTrain are not. An intrusion attack to a classifier is defined as
an attack capable of obtaining the matching auxiliary input maux returned by
CTrain on input ds and a class number c. Accordingly, classifiers are defined
so that an intrusion attack does not leak any true/false property about maux,
other than what possibly leaked by the capability of performing remote calls
to algorithm CMatch(·,maux). In other words, the classifier CMatch(·,maux)
would look to an adversary very much like a virtual black box, in the sense of
Definition 1. Specifically, this intrusion-resiliency notion for classifiers says that
an adversary’s 1-bit output obtained when given as input the output maux of
algorithm CTrain can be simulated, up to a small error, by the output of an
efficient algorithm Sim that does not know maux but can query the algorithm
CMatch as an oracle. More formally, the classifier (CTrain, CMatch) satisfies
intrusion resiliency with respect to dataset distribution D if for all probabilis-
tic polynomial-time algorithms A, there exists a probabilistic polynomial-time
algorithm Sim with black-box access to Cmatch(·,maux) such that the quantity

|Prob
[
AdvExpIR(1k, c) = 1

] − Prob
[
SimExpIR(1k) = 1

]|

is negligible in the security parameter k, where the probability experiments
AdvExpA,SimExpSim are detailed below.

AdvExpIR(1k)
1. c ← cS
2. ds ← D(1k),
3. maux ← CTrain(ds, c)
4. b ← A(maux)
5. return: b

SimExpIR(1k)
1. c ← cS
2. ds ← D(1k),
3. maux ← CTrain(ds, c)
4. b ← SimCMatch(·,maux)

5. return: b

B.3 Encrypted-Input Obfuscation: The Model

This model, introduced in [10], extends the original 2-algorithm model of pro-
gram obfuscation (including an obfuscation generator an an obfuscation eval-
uator, as reviewed in Appendix B.1) to a 4-algorithm model that additionally
includes a key generator and an input encryptor. The key generator returns a
random key to be used by the obfuscation generator to generate its obfuscation
of the program and by the input encryptor to generate an encrypted input on
which the obfuscation evaluator can be run. The changes to the computation
correctness requirement are only of syntactic nature. The runtime requirements
extend to the input generation algorithm as well. The obfuscation property is
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strengthened in that the adversary’s output on input the obfuscated program
can be efficiently simulated by an algorithm given only public information and,
in particular, without need for black-box access to the original program.

Definition 2. Let F be a family of functions. We define an encrypted-input
program obfuscator for F as a 4-tuple (kGen, oGen, iEnc, oEval) of algorithms
satisfying the following syntax:

1. on input a security parameter, the key generator algorithm kGen returns a
random key k

2. on input k, and parameter values pv, sv of function fpv,sv ∈ F , the obfus-
cation generator algorithm oGen returns an output, denoted as gout, which
is intended to be an obfuscated version of fpv,sv, and an output, denoted as
iaux, intended to be an auxiliary input for the input encryptor algorithm.

3. on input k, parameter values pv of function fpv,sv ∈ F , auxiliary input iaux,
and input x, the input encryptor algorithm iEnc returns an output, denoted
as iout, intended to be an encrypted version of input x to function fpv,sv;

4. on input parameter values pv, the obfuscation gout and the encrypted input
iout, the obfuscation evaluator algorithm oEval returns an output, which we
denote as eout, which is intended to be the original program’s output, when
run on input x;

and the following requirements:

1. Computation Correctness: Except with very small probability, it holds that
eout = fpv,sv(x).

2. Low Runtime Overhead: the sum of iEnc and oGen’s runtime is only poly-
nomially slower than the circuit computing fpv,sv.

3. Simulated-view Obfuscation: The obfuscated program returned by algorithm
oGen can be efficiently simulated given only the program’s public parameters.
Formally, there exists a polynomial-time algorithm Sim such that for any
function fpv,sv from the class of function F , and any distribution hD returning
secret parameter values sv with high min-entropy, the distributions Dview and
Dsim are computationally indistinguishable, where

Dview = {sv ← hD; k ← kGen(1σ); gout ← oGen(k, pv, sv) : gout},

Dsim = {gout ← Sim(1σ, pv) : gout}.

C Encrypted-Input Classifier Obfuscation: Formal Model

Let F be a function and let MC = (CTrain,CMatch) a matching classifier for F ,
as defined in Sect. 2.1. The public parameter values of MC, denoted as pv(MC),
are available to all parties, including an attacker. The secret parameter values of
MC, denoted as sv(MC), are only available to the obfuscation generator. In our
model, we will consider the description of CTrain and CMatch as being known to
the attacker, while the dataset, the secret data sample and its class as unknown
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to the attacker. Thus, we have that pv = (desc(CTrain), desc(CMatch), n,N) and
sv = (ds, cl, d0, c0), where c0 = cF (d0). An encrypted-input obfuscator for MC is
defined as a 4-tuple of algorithms: a key generator, an obfuscation generator, an
input encryptor, and an obfuscation evaluator; which need to satisfy 3 properties:
computation correctness, low runtime overhead and simulated-view obfuscation.

Definition 3. Let F be a function and let MC = (CTrain, CMatch) be a match-
ing classifier for F . We define an encrypted-input program obfuscator for match-
ing classifier MC as a 4-tuple icO = (kGen, oGen, iEnc, oEval) of algorithms
satisfying the following syntax

1. on input a security parameter, the key generator algorithm kGen returns a
random key k

2. on input key k, public parameter values pv(MC) and secret parameter values
sv(MC) for classifier MC, the obfuscation generator algorithm oGen returns
an output, denoted as gout, which is intended to be an obfuscated version of
MC, and an output, denoted as iaux, which is intended to be an encryption
auxiliary input for the input encryptor algorithm iEnc.

3. on input key k, public parameter values pv(MC) for MC, encryption auxiliary
input iaux, and data input d, the input encryptor algorithm iEnc returns an
output, denoted as iout, which is intended to be an encrypted version of input
d to algorithm CMatch;

4. on input public parameter values pv(MC), the obfuscation gout and the
encrypted input iout, the obfuscation evaluator algorithm oEval returns an
output, which we denote as eout. The latter is intended to be equal to
CMatch’s output, when run on input d,maux, where maux has been returned
by algorithm CTrain on input ds, cl, d0;

and the following requirements:

1. Computation Correctness: Except with very small probability, it holds that
eout = CMatch(d,maux), where maux = CTrain(ds, cl, d0).

2. Low Runtime Overhead: the sum of iEnc and oGen’s runtime is not signif-
icantly slower than the program computing CMatch with public parameter
values pv(MC) and secret parameter values sv(MC).

3. Simulated-view Obfuscation: The obfuscated program returned by algorithm
oGen can be efficiently simulated given only the program’s public parame-
ters pv(MC). Formally, there exists a polynomial-time algorithm Sim such
that for any matching classifier MC for function F , and any distribution hD
returning secret parameter values sv(MC) with high min-entropy, the distri-
butions Dview and Dsim are computationally indistinguishable, where

– Dview = {sv(MC) ← hD; k ← kGen(1n);
gout ← oGen(k, pv(MC), sv(MC)) : gout},

– Dsim = {gout ← Sim(1n, pv(MC)) : gout}.
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Abstract. The indexes of ranked searchable encryption contain
encrypted keywords and their encrypted relevance scores. The encryp-
tion scheme of relevance scores must preserve the plaintext order after
encryption so as to enable the cloud server to determine ranks of the
documents directly from the encrypted keywords’ scores for a given trap-
door. Existing schemes such as Order Preserving Encryption (OPE) and
One-to-Many OPE preserve the plaintext order. However, they leak the
distribution information, i.e., the frequency of ciphertext values, due to
the insufficient randomness employed in these schemes. The cloud server
uses frequency analysis attack to infer plaintext keywords of the indexes
based on the frequency leakage. In this paper, an Enhanced One-to-
Many OPE scheme is proposed to minimize the frequency leakage. The
proposed scheme reduces not only the frequency leakage of individual
keywords but also the co-occurring keywords of the phrases like “com-
puter network”, and “communication network”.

Keywords: OPE · Frequency leakage · Index keywords’ confidentiality

1 Introduction

In spite of numeric benefits with cloud computing services, privacy, and confi-
dentiality are significant concerns for the data owners who store sensitive docu-
ments at the cloud servers. The stored documents are accessible to the snooping
administrators, who could misuse the sensitive information for their own benefits.
Therefore, storing documents in plaintext form at cloud servers poses a threat to
the confidentiality of data owners’ sensitive information. Although the encryp-
tion guarantees confidentiality, it makes the retrieval process more complicated.
A cryptographic paradigm called Searchable Encryption (SE) facilitates search-
ing over encrypted documents by uploading encrypted indexes, i.e., searchable
indexes corresponding to the uploaded encrypted documents.

The information in searchable indexes includes unique keywords of the
dataset and their corresponding keywords’ relevance scores, e.g., Term Frequency
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(TF), and Term Frequency-Inverse Document Frequency (TF-IDF), which con-
vey keywords’ distribution information of the documents and the dataset, respec-
tively. This information should not be directly exposed to the cloud servers.
Hence, these relevance scores must be encrypted alongside the index keywords.
The relevance scores should be encrypted so that the cloud server could still
perform rank-ordering of the documents directly from the keywords’ encrypted
relevance scores. The encryption scheme must maintain the plaintext order of
relevance scores after their encryption to meet this requirement. Various encryp-
tion schemes exist such as Order Preservation Encryption (OPE) [2], and One-
to-Many OPE [17]. However, they leak frequency information due to the insuffi-
cient randomness in mapping plaintext scores to encrypted values. The frequency
information is leaked especially when two or more keywords contain the same
plaintext score in the same document.

Various attacks such as correlation attack [1] and frequency analysis attack [3,
11] exploit frequency information from the encrypted scores to infer index key-
words of the dataset. Hence, it is required to minimize or prevent the frequency
information leakage in order to use it for encrypting sensitive information. There
are many schemes like Paillier encryption for preventing frequency information
leakage, but they do not preserve plaintext order due to which the cloud server
cannot perform rank-ordering of the documents. As a result, only OPE schemes
should be used but they should not leak frequency information. An Enhanced
One-to-Many OPE scheme is proposed in this paper, which reduces the fre-
quency leakage of individual keywords and also the co-occurring keywords of the
dataset. The summary of our contributions are provided below.

– An Enhanced One-to-Many OPE scheme is proposed to return a ciphertext
value for a given plaintext relevance score.

– A thorough analysis of the proposed approach and its demonstration that it
is safer in frequency leakage than the conventional OPE and One-to-Many
OPE schemes.

The rest of the paper is presented as follows: The preliminary details are pre-
sented in Sect. 2. Section 3 presents the related work, followed by the proposed
approach in Sect. 4, results and discussion in Sect. 5, and the conclusion in Sect. 6.

2 Preliminaries

(a) Term Frequency (TF): The TF value of a keyword captures its relevance in
the corresponding document. Another measure, TF-IDF, could also be used, but
TF is more suitable for demonstrating the frequency leakage. The normalized
TF value a of keyword kw of a document di can be measured using the below
equation.

TF (kw, di) =
1

|di| (1 + log(tfi)) (1)

where, |di| denotes the length of the document, i.e., the total number of unique
keywords of the document di and tfi denotes the number of a keyword kw occurs
in document di.
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(b) Frequency Analysis Attack: This attack aims to deduce the plaintext index
keyword from the encrypted TF values of the encrypted index [7,11]. It is based
on the premise that the distribution details of plaintext TF values and the cor-
responding encrypted TF values will be the same for some specific keywords.
The cloud server infers frequently occurring keywords of the dataset from the
encrypted index by relating the frequency of the same encrypted TF values to the
frequency of plaintext TF values of frequently occurring keywords of the publicly
available datasets. Sometimes, index keywords also are guessed by observing the
frequency information of some encrypted TF values. This attack is more likely
to succeed with the help of background knowledge of the dataset, which could
be about what data the data owners stored at the cloud server, and what prob-
able keywords that are most likely to occur. For example, assume that the data
owners store Request for Comments [13] dataset in encrypted form at the cloud
server. This dataset is all about how information can be transmitted from one
host to another over the internet using different “computer network” protocols. It
can be assumed that some of the specific keywords like “computer”, “network”
and “communication” may appear in most of the documents of this dataset.
The cloud server then infers one or all of these specific keywords by generating
frequency histograms (i.e., showing distribution information) for all encrypted
TF values of each encrypted index keyword. The cloud server then examines
the histograms and distinguishes those of a much higher frequency (i.e., same
encrypted TF values) than the others. The corresponding encrypted keywords
of those histograms are noted. The encrypted keywords of histograms may be
related to one or all of those specific keywords of the dataset. The cloud server
thus infers plaintext index keywords by observing the frequency information of
encrypted TF values.

(c) Coordinate Matching: It is a similarity metric that uses the inclusion of query
keywords in the document to assess the document’s relevance score [18]. The
score of a document for a trapdoor can be determined by adding the encrypted
TF values of each trapdoor’s keywords in that document.

3 Related Work

Order Preserving Encryption (OPE) [2] and Order Revealing Encryption
(ORE) [4,8] support ranked search as they preserve plaintext order after encryp-
tion. The problem with ORE schemes is the output of these schemes is not
numerical, due to which an additional public function is required that will let
the cloud server know the order of the given ciphertexts. Swaminathan et al. [16]
proposed an OPE scheme based approach, but it leaks frequency information,
i.e., returns the same ciphertext value for the same plaintext value. Wang et
al. [17] proposed using the One-to-Many OPE scheme, an extension of the OPE
scheme, but leaks frequency information when two or more keywords contain
the same TF values in the same document’s index.
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Kerschbaum proposed a frequency hiding OPE scheme [6] to conceal the
frequency information. However, this approach still leaks frequency information
in the form of the tree’s linear depth, where each new ciphertext value is stored
in a new node for the same plaintext value. This depth precisely reflects the
frequency of plaintext scores. Several works like Grubbs et al. [5] and Maffei et
al. [9] demonstrated the inference of plaintext information from the encrypted
values of frequency-hiding OPE scheme.

Orencik et al. [12] proposed a multi-keyword ranked SE scheme using TF-
IDF and Forward indexing techniques. They used the Paillier Encryption (PE)
scheme to encrypt TF-IDF values. A fully homomorphic Encryption (FHE) and
a partially homomorphic encryption (PHE) [14] also can be used in ranked search
approaches and for encrypting TF-IDF values. The PE, FHE and PHE prevent
the frequency leakage, but they do not preserve the plaintext order after the
encryption. Roche et al. [15] proposed a partial order preserving encryption
(POPE) approach for encrypting keywords’ relevance scores. However, all the
ciphertext values in this approach do not preserve the plaintext order, and it
is maintained only for some relevance scores. Hence, this approach is also not
completely suitable for ranked search approaches.

4 Proposed Approach

4.1 Objectives

It is aimed to meet the following two objectives:

1. Relevance Score Encryption Scheme: A novel approach is designed based on
the existing OPE schemes to minimize frequency leakage.

2. Efficiency: The proposed approach should encrypt the keyword’s relevance
scores efficiently as the existing approaches.

4.2 Proposed Methodology

It consists of the Initialization Phase and the Retrieval Phase.

Initialization Phase: It includes the following activities to be done by data
owner, who owns the dataset:

1. Build the Encrypted Index: The steps required to generate the encrypted
index ˜I for all the documents of dataset D is explained as follows:
(a) Building Dictionary, W : Construct the dictionary W by extracting all

the unique keywords kw from the input file dataset D.
(b) Building Plaintext Index I: For each keyword kw in W , determine its

TF value (1) for each document Di if it is present in Di and store it as
I[kw] = [Di][TF ]. Otherwise, set its TF value to 0, i.e., I[kw] = [Di][0].

(c) Generate Encrypted Index, ˜I: The generated index I is encrypted as fol-
lows:
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– Each keyword in I is hashed by using a one-way secure hash algorithm
SHA-2 with a 256-bit key.

– The TF value of each keyword kw of every document Di is encrypted
using the proposed Enhanced One-to-Many OPE scheme, which is
explained in Sect. 4.3.

– The document Ids are not necessary to encrypt as they do not convey
any information. The encrypted index generated would then be: ˜I =
[˜TF ][Di].

2. Encrypting Documents: After generating the encrypted index, the data owner
also encrypts his/her documents D using AES algorithm with 128 bit key size.

Retrieval Phase: It includes the following activities to be done by a data user,
who will be allowed by the data owner to retrieve documents of his/her interest.

1. Query Masking: The masked query ˜MQkw
is generated by hashing each key-

word of his/her query Qkw using a secure SHA-256 hash function. Then, the
data user sends the masked query and the parameter k to the cloud server to
retrieve only the relevant top-k documents.

2. Searching:
(a) The cloud server then utilizes the encrypted index ˜I and adopt the coor-

dinate matching similarity measure [18] to assign the scores to each doc-
ument Did. Then it sorts the scores of the documents in descending order
and sends the top-k of them to the user.

(b) The data user then uses the corresponding secret key shared by the data
owner to decrypt the retrieved documents.

4.3 Enhanced One-to-Many OPE

Algorithm 1: Enhanced One-to-Many OPE
Input: K (Key), D (domain), R (range), pscore, id(doc), kw
Output: Cipher text c

1 while |D|! = 1 do
2 {D,R} = Binary Search(K,D,R, pscore)

3 coin ← TapeGen(K,(D,R,1||pscore, id(doc), kw)

4 c
coin⇐== R

5 return c

The proposed Enhanced One-to-Many OPE scheme returns a possible unique
ciphertext value c for each keyword kw’s TF value, i.e., a plaintext relevance
score pscore by mapping it to one of the output range of values. The map-
ping procedure is explained in Algorithm1. It takes Key (K), input domain
(D), output range (R), pscore, document identity id(doc), and keyword (kw)
and returns a possible unique ciphertext value c. During mapping, the range R
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is divided into some non-overlapping interval buckets each with different size.
Each bucket contains some range of values. For the given pscore, the random-
sized bucket is determined using a Binary Search(.) procedure, which is
explained in Algorithm2. Binary Search(.) is a recursive procedure, which
returns a new domain and a new range of values for a given pscore based on
an HYGEINV(.) function. HYGEINV(.) is a hypergeometric sampling process
that returns an integer value based on the initial domain, range, and middle
value. This integer helps Binary Search(.) in choosing a new domain, and a new
range of values for the given pscore. In each iteration of binary search, the size
of domain D and range R will be reduced by an integer value. Binary Search(.)
stops when the size of the domain becomes 1 where it contains only the given
pscore. The pscore then will be mapped to one of the values in a new range R
using a TapeGen(.) function, which is a random coin generator, which generates
the seed value. This seed value helps in choosing one of the values in the new
range as the ciphertext value c for the given pscore.

Algorithm 2: Binary Search
Input: K, D, R, pscore
Output: D,R

1 M ← length(D); N ← length(R)
2 d ← min(D) − 1; r ← min(R) − 1

3 y ← r+ceil(N
2

)

4 coin
R←− TapeGen(K,(D,R,0||y))

5 x
R←− d + HYGEINV(coin,M ,N ,y − r)

6 if pscore ≤ x then
7 D ← {d + 1, ...., x}
8 R ← {r + 1, ...., y}
9 else

10 D ← {x + 1, ...., d + M}
11 R ← {y + 1, ...., r + N}
12 return D,R

5 Results and Discussion

The proposed approach has been implemented using Python 3.6 version and
tested on Intel i7-4770 CPU system. The experiments are conducted on a
Requests for Comments (RFC) [13] dataset. The effectiveness of the proposed
approach is compared in terms frequency leakage with the OPE and One-to-
Many OPE schemes for different keywords and phrases of the dataset.
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5.1 Frequency Analysis Attack

The proposed Enhanced One-to-Many OPE scheme is an extension of One-to-
Many OPE [17], which in turn is an extension of OPE [2]. In our experiments,
the input domain is the actual plaintext relevance scores, and the output range is
set between 0 and 245−1. In OPE, the plaintext score pscore, i.e., the TF value
of the keyword is mapped to a ciphertext, which is a value within the new range,
R (also can be treated as a bucket), which is determined by using the binary
search algorithm 2. The selection of ciphertext value within the bucket values
for the given pscore is based on the seed value generated by the TapeGen(.). In
OPE, this seed value is entirely dependent on the plaintext score pscore due to
which the same pscore is mapped to the same ciphertext value. For the given
dataset, if the plaintext score is repeated n number of times, then there will be
a ciphertext c that will also be repeated n number of times. Thus, frequency
information is leaked from OPE encrypted values.

From the RFC dataset, it is found that the keywords “computer”, “network”,
and “communication” are the frequently occurring keywords. The plaintext dis-
tribution information of these three keywords is respectively shown in figures
Fig. 1(a), 1(b) and 1(c). The values on the x-axis represent the actual plaintext
TF values and values on y-axis represent the frequency, i.e., the number of points
having the same TF value. As the OPE maps the same plaintext score to the
same ciphertext, the distribution of ciphertext values of these keywords would
be the same. To infer the plaintext keyword, the cloud server plots the graphs for
each encrypted keyword’s relevance scores in index. Then, it will note down the
encrypted or masked keyword of the index for which the frequency (the repeti-
tion of the same encrypted score) is higher than the frequency of scores of other
encrypted keywords. This encrypted keyword is more likely to be the frequently
occurring keyword, e.g., “computer”. Thus, frequency leakage from OPE scores
allows the cloud server to deduce plaintext keyword.

In One-to-Many OPE scheme [17], for the given plaintext score pscore, it uses
both the pscore, and document identity id(doc) for generating a different seed
for the same pscore. Due to this seed, it maps the same plaintext to different
ciphertext value within the values of the bucket. There is a scope for frequency
leakage with this scheme when two or more keywords have the same score in
the same document. This is possible especially when some keywords equally co-
occur in the same document, e.g., the keywords of the phrases like {“computer”,
“network”} or {“communication”, “network”}. The cloud server first plots the
histogram for each phrase and then identifies the histogram of the phrase in
which the frequency of relevance score is higher than the frequency of other
possible phrases. The cloud server notes the histogram of this phrase, and the
encrypted keywords of this histogram are more likely to be the most co-occurring
keywords of the phrases. Thus, the cloud server could infer the phrases’ plaintext
keywords from the One-to-Many OPE encrypted scores.

The proposed Enhanced One-to-Many OPE scheme, explained in Sect. 4.3,
minimizes the frequency leakage of the phrases caused by the One-to-Many-
OPE scheme. This approach also uses the same algorithm 2 (Binary search)
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Fig. 1. Plaintext keyword relevance score distribution for keywords: (a) computer (b)
network (c) communication

to select the bucket, but the TapeGen(.) here uses pscore, document identity,
id(doc) and keyword kw for generating a different seed value for the same plain-
text score pscore. Due to this seed, the same pscore of co-occurring keywords
will be mapped to different values within the values of the bucket. Thus, it
minimizes the frequency leakage of co-occurring keywords of the phrases. This
minimization is due to the improvement of the randomness in generating the seed
value. Due to this seed, this approach reduces not only the frequency leakage of
phrases but also the individual keyword’s. To demonstrate the reduction of fre-
quency leakage for an individual keyword, we compare the frequency leakage of
One-to-Many OPE encrypted scores, and the proposed Enhanced One-to-Many
OPE encrypted scores for the keyword “computer”. The distribution information
(frequency) of One-to-Many encrypted scores and the proposed Enhanced One-
to-many encrypted scores for the keyword “computer” is shown in Fig. 2(a) and
2(b) respectively. The values on x-axis represent the normalized encrypted scores
using the min-max normalization approach [10]. The values of the y-axis repre-
sent information about the frequency, i.e., the number of points having the same
encrypted TF value. Figure 2(b) demonstrates that the frequency leakage for
some encrypted scores of the keyword “computer” using the proposed Enhanced
One-to-Many OPE scheme is lower than the frequency leakage of One-to-Many
OPE scores, shown in Fig. 2(a). As it is already mentioned, the proposed scheme
also minimizes the frequency leakage of phrases due to the usage of plaintext
score pscore, document identity id(doc) and keyword kw for generating a dif-
ferent seed value. Due to this seed, different value within the bucket will be
chosen as the ciphertext value for the same plaintext relevance score pscore. In
RFC dataset, “computer network” and “communication network” are the most
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Fig. 2. Encrypted score distribution for “computer”: (a) One-to-Many OPE (b)
Enhanced One-to-Many OPE

occurring phrases. The proposed Enhanced One-to-Many OPE scheme’s fre-
quency leakage is compared with the One-to-Many-OPE scheme to demonstrate
the reduction of frequency leakage for the phrases. The distribution informa-
tion of One-to-Many-OPE encrypted scores and the proposed Enhanced One-
to-Many-OPE encrypted scores for the phrase “computer network” is shown
in figures Fig. 3 and 4, respectively. It can be observed from Fig. 4 that the
frequency leakage of the proposed approach is much lesser than the frequency
leakage of the One-to-Many OPE scheme, shown in Fig. 3. Similarly, Fig. 5 and
6 respectively show the distribution information for the phrase “communication
network”. Figure 6 shows that the frequency leakage of the proposed approach is
much lesser than the frequency leakage of the One-to-Many OPE scheme, shown
in Fig. 5. Thus, the proposed approach makes it difficult for the cloud server to
infer plaintext keywords of the phrases from the Enhanced One-to-Many OPE
scores.

Fig. 3. One-to-Many OPE scores distribution for “computer network”
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Fig. 4. Enhanced-One-to-Many OPE scores distribution for “computer network”

Fig. 5. One-to-Many OPE scores distribution for “communication network”

5.2 Efficiency

The time complexity of mapping a plaintext score pscore to a ciphertext c is
O(log n), i.e., log n times the Binary Search(.) process will be called during the
mapping. The time cost comparison of mapping a plaintext score, pscore to a
ciphertext value, c using the proposed Enhanced One-to-Many OPE and One-to-
Many OPE schemes is shown in Fig. 7. The x-axis values represent domain size
and the values on y-axis represent the amount of time taken to map pscore to c.
Y-axis represents the average time of 100 trails for a single mapping operation

Fig. 6. Enhanced One-to-Many OPE scores distribution for “communication network”
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Fig. 7. The time cost comparison of single mapping operation using Enhanced One-
to-Many OPE and One-to-Many OPE over a range |R| = 245.

over different domain sizes and a range |R| = 245. From the Fig. 7, it can be
observed that efficiency of both the schemes is almost same since both of them
call the Binary Search procedure recursively same number of times.

6 Conclusion

In this paper, an Enhanced One-to-Many OPE scheme is proposed that maps
the same plaintext relevance score to a different ciphertext value even when
multiple keywords have the same plaintext score within the same document.
The proposed scheme may prevent complete frequency leakage if it is used for
encrypting information that is moderately distributed. Our future work would
be to extend the proposed scheme to minimize the frequency leakage further with
the help of constrained random numbers as the seed value in mapping process.
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Abstract. Agile software development methodology involves develop-
ing code incrementally and iteratively from a set of evolving user stories.
Since software developers use user stories to write code, these user stories
are better representations of the actual code than that of the high-level
product documentation. In this paper, we develop an automated app-
roach using machine learning to generate access control information from
a set of user stories that describe the behavior of the software product in
question. This is an initial step to automatically produce access control
specifications and perform automated security review of a system with
minimal human involvement. Our approach takes a set of user stories
as input to a transformers-based deep learning model, which classifies if
each user story contains access control information. It then identifies the
actors, data objects, and operations the user story contains in a named
entity recognition task. Finally, it determines the type of access between
the identified actors, data objects, and operations through a classification
prediction. This information can then be used to construct access con-
trol documentation and information useful to stakeholders for assistance
during access control engineering, development, and review.

Keywords: Access control · Software engineering · Agile
development · User stories · Machine learning · Deep learning

1 Introduction

Agile development has gained great popularity in recent years among software
development teams. It is able to rapidly produce and update software, and easily
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react to changes in requirements. However, it has been observed [2,4,14,20] that
agile development practices often facilitate the introduction and propagation of
access control and other security vulnerabilities. Some such practices include the
constant changes in code and requirements which drastically limits the ability
to perform security assurance review; frequent code refactoring, changes in func-
tional requirements, and modifications to system design which have a tendency
to break security constraints of previously implemented functionality; and the
necessity of continuously delivering development iterations on time as well as a
push for developing software as quickly as possible often take precedence over
time-consuming security assurance activities.

One of the most notable reasons for the proliferation of access control and
other security vulnerabilities is that agile development discourages producing
comprehensive documentation about the software to be developed [9]. That is,
it is normal that no security or access control policy is defined for the software
before development begins. A primary reason for this is that agile development
allows for changing requirements during development, unlike traditional devel-
opment models. Since documentation is primarily derived from software require-
ments, a change in requirements leads to a review and update of all documenta-
tion to reflect those changes. Since requirements can change frequently through-
out the agile development process, the act of constantly updating development
documentation becomes time consuming and burdensome. Agile development
elects to forego this work in the interest of time, and instead relies on the exper-
tise of developers to make on-the-fly decisions during development. By pushing
this responsibility on the developers and maintaining little to no documentation
on decisions made throughout the development process, many opportunities for
security vulnerabilities to arise are created.

There have been attempts [3,5,15,17] to address how agile development may
be modified to mitigate security issues and bugs by suggesting more documenta-
tion be produced by stakeholders. This documentation often focuses on creating
and maintaining additional information for user stories, relieving developers from
making on-the-fly security decisions. However, the creation and maintenance of
the additional user story documentation still requires more time and labor than
most development teams are willing to spend.

To help stakeholders mitigate the propagation of access control security vul-
nerabilities under the agile development model, we propose an automated app-
roach to produce additional documentation so stakeholders have a more holistic
view and common understanding of the access control of the software to be
developed. Further, it will identify user stories with high ambiguity and allow
stakeholders to refine user stories throughout the software development process.
In this initial work, we will automatically identify and extract access control
information from user stories and then visualize the access control information
to stakeholders. This will also give product owners an overview of the access
control so they may confirm or indicate changes to it. Ultimately, this approach
will relieve developers from making most on-the-fly decisions, help reduce bugs
and security vulnerabilities that may be overlooked, save time and money, and
better protect the product owner and end users’ information.
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This initial work will focus specifically on the extraction and presentation
of access control information from user stories. This only relates access control
information to actors, or users, of the software. Further, due to the ambiguity
and limited context of user stories and natural language, in order to determine
the exact access control of the system some human involvement is necessary.
Ongoing work will incorporate active learning and human interactivity to best
refine the access control model.

The contributions we present in the paper are as follows:

– A dataset of over 1600 user stories, labeled for three separate learning tasks
related to the extraction of access control information.

– A transformer-based learning model that categorizes user stories into “con-
tains access control information”, “does not contain access control informa-
tion”, and “too ambiguous to determine if access control is present”.

– A transformer-based learning model that performs a named entity recognition
task that predicts if a word in a user story is an “actor” (or end user), a “data
object”, or an “operation” of the system to be built.

– A transformer-based learning model that predicts the type of access an actor
has for a data object present in a user story.

The rest of the paper is organized as: Sect. 2 presents background information
on user stories and related work; Sect. 3 describes our data and model on extract-
ing access control information from user stories; Sect. 4 presents the results of
our work; and Sect. 5 discusses the conclusion and future work.

2 Background

2.1 User Stories

The agile software development model was conceived in 2001 through a set of
tenets and principles [9]. It broke from traditional software models in many
ways, but primarily it allowed for changing software requirements throughout
the software development process, discouraged spending time on comprehensive
documentation, and focused on producing software at regular intervals and as
fast as possible. Agile development quickly became popular as it was able to
support the ever-faster changing environment of industry.

The only documentation that agile development requires are user stories. User
stories define the requirements of the software to be built, and are often written
by product owners (rather than software developers) usually making them more
ambiguous and abstract than traditional software requirements. They help define
software requirements by describing how actors, or end users, will interact with the
system. They relate an actor of the system to system data objects and operations.
A simple example of a user story would be, “As a system administrator, I want to
create user accounts, so that new employees can use the system.” The actor of this
user story is the “system administrator” and is being related to the “user account”
data object. From an access control perspective, this relation would be “create”.
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Fig. 1. Different formats, or templates, for defining user stories.

While not necessary, user stories are often written in some specified format,
as shown in Fig. 1. It is expected that the set of user stories changes during
development based on the changing needs of the product owner causing different
functionality to be integrated into the system with user stories added, deleted,
or modified accordingly. Such changes to user stories cause a change to the
requirements and access control of the system.

2.2 Related Work

Extracting Information from User Stories. In all previous literature over
user stories we reviewed [11,12,19], heuristics and rule-based approaches were
used to parse and extract information from user stories as they are written in a
similar format. In many datasets that these related works used, it was reported
that most of the user stories conformed to defined templates. However, those
datasets were not made available as they were proprietary data from industry
partners, and in the only public dataset we found almost half the user stories
did not conform to defined templates. Heuristics or rule-based approaches would
fail for such user stories. We further observed that such approaches were limited
in how much information they could extract from user stories. In all cases, such
approaches was not able to identify specific data objects or operations.

In the work by Sobieski and Zielinski [19], the authors create a new constrained
natural language user story format called “mixfit” that is designed to mark, or
qualify, the important words or phrases of a user story (e.g., the actor, opera-
tion, data object, etc.). With the important items marked, they can be more eas-
ily extracted and utilized when analyzing user stories. However, this requires that
stakeholders learn and strictly adhere to the mixfit format, which requires time
and training that certain stakeholders (e.g., product owners) cannot invest in.

In the works by Lucassen et al. [12], the authors propose a quality user story
framework, which lists criteria on what makes a good user story and what stake-
holders should strive for when writing user stories. They also propose a heuristic
approach for extracting conceptual models from user stories. However, the model
was only tested on user stories that strictly followed user story templates, which is
not common in realworld datasets. Further, only general requirements information
was identified, and was not fine-grained enough to identify unique data objects.

Extracting Access Control Information from Natural Language. These
works [1,10,13,18,22] are most closely related to our current research, and
focuses on the extraction of access control (or other security information) from
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a natural language security policy. This work assumes that a natural language
policy describing the system’s security requirements exists, is complete, and is
mostly unambiguous. The general state-of-the-art approach is to perform pre-
processing on the natural language text and then use machine learning tech-
niques to extract or analyze security requirements detailed by the policy. How-
ever, in the context of agile development, we are not able to make the assumption
that such a security policy exists, as the only documentation required by the agile
development model is user stories. Further, user stories are often not complete
(changing often throughout the development cycle) and are usually purposefully
ambiguous as very few design choices are defined before implementation begins.
Since agile development has become one of the most popular development mod-
els we believe that in many real-world software development scenarios it is not
reasonable to assume a security policy exists and instead that only user stories
are available as that is what developers more often actually work with.

Because of the ambiguity of user stories, most of the access control informa-
tion in them is not explicitly stated, having to infer or predict how the actors,
data objects, and operations in user stories imply different kinds of access. Fur-
ther, all user stories are written from the system actors perspective. While actors
are related to access control roles or subjects, they do not necessarily maintain a
one-to-one translation from the end user of the system to the different types of
user roles or subjects within the system. This is different from a natural language
policy which is assumed to contain most, if not all, role and subject information.

Further, most of the current work pre-processes the policy text into other
formats (such as dependency graphs) and learns patterns or rules based on these
alternative formats. However, our approach uses and learns the text directly
without the need to convert it. As far as we know, we are also the first to apply
transformers to the access control information extraction process.

In the work by Slankas et al. [18], the authors extract access control rules from
access control statements. This is achieved through parsing a natural language
sentence into a dependency graph and then using machine learning techniques
to learn patterns in the graph to identify access control rules. However, this
approach has a primary basis in learning grammatical patterns associated with
a dependency graph. This causes the approach to identify all instances of the
learned patterns as access control rules, but there are many cases where a learned
pattern occurs that is not related to access control. The paper attempts to
statistically separate which identified patterns are more or less likely to be access
control rules using a threshold value. Our approach does not learn such patterns
and instead directly predicts on the sentences themselves.

In the work by Alohaly et al. [1], the authors propose to extract subject
and object attributes for attribute-base access control from natural language
policy. This is achieved by parsing a sentence into a dependency tree based on
its grammatical structure and then using convolutional neural networks between
grammar relations to predict if a word is an attribute. However, due to a lack of
available data, they create a synthetic corpus by artificially injecting attribute
information into role-based access control policies; meaning both the corpus
injection and machine learning is based on the grammar of sentences.
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Fig. 2. A simple and complex example of a user story from the dataset.

3 Approach

We have chosen to use a deep learning approach to be more robust and general-
izable in our ability to handle many different formats of user stories. The model
identifies general access control information between users (or actors) and the
data objects or operations of the system. It is most easily applied to Role-Based
or Attribute-Based Access Control. While the access control information can be
used in constructing other access control models, it would be difficult to do so
without additional context since user stories are written from the actor perspec-
tive. The following sections describe the data, labeling process, and model for
our approach, which we have made available to the public1.

3.1 Data

While searching for a dataset of user stories, we found that most papers in the
literature use proprietary datasets and were not allowed to publish their dataset
along with their work. This unfortunately has revealed a great need for robust
datasets of user stories for research involving agile development. We were able
to find one dataset published by Dalpiaz et al. [6,7].

The dataset consists of 21 web apps, each with 50–130 user stories for a total
of over 1600 user stories. The apps are from various domains, including financial
management, medical care, administrative management, and more. The most
common types of app were data management platforms, accounting for 12 of the
apps in the dataset.

As shown in Fig. 2 user stories can range from the very simple, in the first sen-
tence, to the more complex, in the second sentence. Since many of the user sto-
ries were complex statements with more than one actor, data object, or opera-
tion, it was difficult to determine a single model that could take a user story as
input and produce all necessary access control information as output. For exam-
ple, the output to the last example would be “(authenticated user, summits, view);
(authenticated user, register for the event, access); (authenticated user, event,
view); (authenticated user, location, view)”, where “authenticated user” is an
actor, “view” and “access” are the kind of access to the data object or operation,
“register for the event” is an operation, and “summits”, “event”, and “location”
are data objects. The best single model solution we identified was to utilize a neural
1 https://github.com/jheaps/AccessControlPolicyGeneration.

https://github.com/jheaps/AccessControlPolicyGeneration
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Fig. 3. User stories containing access control, not containing access control, and
ambiguous

translation approach. However, a neural translation model would likely have great
difficulty for a number of reasons, such as: listing multiple access control tuples
where the order of the tuples is not important and there is constant recurrence of
words; analyzing many user stories which do not contain any access control infor-
mation all of which would be translated to the same word or symbol; and the exis-
tence of multiple different user stories that produce the exact same tuples. We
therefore constructed a model containing three sub-components to perform the
prediction: access control classification - deciding if a user story contains access con-
trol information; named entity recognition - identifying the actors and data objects
contained in the user story; and access type classification - determining the relation
between the actors and the data objects. We used transformers for the model pre-
diction, from the Transformers library [21]2 with PyTorch3, and also implemented
the components using CNN and SVM as baseline comparisons.

Labeling. Each of the three component models to our deep learning approach
required a separate labeling of the dataset.

The first component determines if the user story contains access control infor-
mation with labels: “contains access control” or “does not contain access control”.
In many cases this was obvious. For example, the first user story in Fig. 3 contains
access control informationwhere “campadministrator” is the actor and “campers”
is a data object that camp administrator should be able to delete. In contrast, the
second user story of Fig. 3 does not contain any access control information. How-
ever, there were many user stories where it was difficult to determine if they con-
tained access control information or not. For example, in the third user story in
Fig. 3, it is unclear if this is only describing a change to the user interface of the
software, in which case it would not contain access control information, or if it is
describing a requirement for what data objects an Archivist can view. Further, it is
not clear if the data objects are protected or simply available to everyone. During
the normal development of a system, a developer would often have to make such
a determination themselves. Since we do not know the final decision made about
this particular user story, we have decided to include a third label, “unknown”, in
our labeling. The primary reason for this is to indicate to stakeholders that this
is ambiguous or a decision about the access control policy needs to be made here.
The earlier the ambiguity about the access control policy can be identified, the

2 https://huggingface.co/transformers/.
3 https://pytorch.org/.

https://huggingface.co/transformers/
https://pytorch.org/
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Fig. 4. Named entity recognition example

more decisions about the access control policy can be removed from developers and
placed on product owners who should be better able to make such decisions or pro-
vide additional context. An “unknown” is treated the same as a “contains access
control” from the model’s perspective, and is primarily used for presentation and
visualization purposes that are described more thoroughly in Sect. 3.3. Further, it
will be a great asset during further research when incorporating human aid and
interactivity, as described in Sect. 5.

The second component identifies the actors, data objects, and operations in
the user story. We have chosen to use a named entity recognition approach to tag
words (or sequence of words) that represent actors or data objects in the user
story, if they occur. In the example in Fig. 4 the words “camp administrator” are
tagged as an actor and “events” as a data object. For labeling, each user story is
broken into individual word tokens and labeled with one of seven different labels:
“B-Actor” to denote the beginning token of an actor name, “I-Actor” to denote
the continuation of actor name, “B-DataObject” to denote the beginning token
of a data object name, “I-DataObject” to denote the continuation of a data
object name, “B-Operation” to denote the beginning token of an operation, “I-
Operation” to denote the continuation of an operation, and “Other” to denote
other or a token we do not want to tag.

The third component, determineswhat type of access exists between the tagged
entities in the user story. For the relationship between actors and data objects,
the relationship may be: “view”, “edit”, “create”, “delete”, or “none”. This is a
multi-label classification and the user story may imply none or more of the labels
between entities. For a simple user story, such as the first user story in Fig. 2, where
there is only one actor (“camp administrator”) and one data object (“camper”) or
operation (“remove camper”), it is obvious what actor the access type the label
is referring to for the data object and operation. However, there are many user
stories in the dataset that contain multiple actors and data objects. In this case, it
is difficult to determine which of the actors or data objects would be indicated by a
label, or in what order they would be referenced if multiple labels were added to it.
To circumvent this problem, we copy the user story for each possible actor and data
object present and label then separately with the appropriate label for each couple.
Simple user stories with only one actor and data object pair are labeled in the same
way. How the presence of the same user story with different labels are input to
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Fig. 5. User story access control extraction and prediction model

Fig. 6. Access control classification
model

Fig. 7. Named entity recognition model

the model is discussed further in Sect. 3.2. For the operations, we found almost no
actor-operation pair where the actor was not allowed access. This seems to be due
to the formatting of the user stories in our dataset. User stories are almost always
stated in a positive form (i.e., stating that an actor can do something) and are very
rarely found in a negative form (i.e., stating that an actor cannot do something).
Because of this, there was no way to learn or predict if a actor had “access” or
“no access” to an operation as almost all user stories were formatted in a way that
implied the actor had “access”.

3.2 Model

We utilized the Transformers library to implement our models. The input, out-
put, and flow of the component models are shown in Fig. 5, with rectangles
representing input/output and ovals representing operations or learning tasks.

The first component, shown in Fig. 6, is the Access Control Classification
task which takes the initial set of all user stories and predicts whether each
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Fig. 8. Access type classification model

individual user story contains access control information or not. We performed
a sequence classification task using the BERT Large [8] transformer model. All
hyperparameters were set to default except the dropout rate which was set to 0.4.
The model was trained for 15 epochs with a batch size of 30. Those user stories
that were predicted as “does not contain access control” were removed from the
set of user stories. As discussed earlier, the “unknown” label is treated the exact
same as the “contains access control” label during modeling and prediction, and
is only utilized during the visualization of the access control information.

The second component, shown in Fig. 7, is the Named Entity Recognition
task and is used to tag the words in each user story that contains access con-
trol information. The Named Entity Recognition task identifies the actors, data
objects, and operations in each user story. Each user story is tokenized into
individual words and then a classification task is performed on each word to
determine how it should be tagged. We use the BERT Large transformer model
with all hyperparameters set to default, except the dropout rate which was set
to 0.5. The model was trained for 15 epochs with a batch size of 30.

The final component, shown in Fig. 8, is the Access Type Classification and is
used to identify the type of access (“view”, “edit”, “create”, “delete”, or “none”)
a given actor has for a given data object within each user story. We performed a
multi-label sequence classification task using the BERT Large transformer model
with all hyperparameters set to default, with the exception of the dropout rate
which was set to 0.5. The model was trained for 15 epochs with a batch size
of 30. This gives the final information to produce a list of tuples, “(actor, data
object, access type)”, that define the access control of the system. As mentioned
in Sect. 3.1, if a user story has multiple actor and data object couples, the same
user story is repeated and uniquely labeled for each unique couple. This poses
a problem in that the same input implies multiple different outputs, but given
the same input a model will always predict the same output (after training is
completed). While the most important tokens in each user story is the unique
actor and data object couple, we do not want to lose the context of the rest
of the tokens in the user story that are vital to determining the type of access
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between the actor and data object. That is, we wish to emphasize the actor
and data object tokens and de-emphasize (but not ignore) the other tokens in
the user story. To achieve this we utilize the attention, or padding, mask of
the transformer model. We see this as a logical and natural extension to the
functionality and purpose of the attention mask. Normally utilized to negate the
values of padding tokens so they do not affect the computations and results of a
transformer’s prediction, the attention mask can use values between [0, 1]. The
different values in the mask will reduce the values of certain tokens toward the
model’s prediction while placing greater value on others. As can be seen in Fig. 8,
the partial user story has the actor “system admin”. If we assume the user story
has multiple data objects (user accounts, permission files, etc.), then we will
need to predict the type of access between each system admin and data object
couple. The normal attention mask for an input would be a 1 for each token and
0 for any padding, if present. So if no padding existed it would be a vector of
all ones the same size as the number of tokens in the user story. To emphasize
the related actor and data object, the corresponding indices of “system admin”
and a data object will be left as a 1 in the attention mask, but the rest of the
tokens will have their value changed to less than 1 but greater than 0. In Fig. 8
this is shown in the attention mask where “system admin” is represented by
ones and the rest of the tokens (that are shown) are 0.6. In this way, the same
input can be used to predict multiple different outputs as those tokens deemed
more important to the current prediction will be given greater value. As a final
note, the value chosen for this example to represent de-emphasized tokens was
0.6. This is not necessarily the optimal value to achieve the best results with the
model and likely multiple different values will need to be trained to determine
the optimum performance.

3.3 Access Control Presentation

The final step in our approach is to present the access control information to
stakeholders. We first perform some logical reduction of the set of access control
tuples. In some cases, the same access control information is predicted from
different user stories and so duplicates are removed. Also different user stories
may imply different access control relationships between the same actor and data
object and are combined into a single tuple.

We believe that one common and useful presentation of the access control
information in software documentation is in graphical form. We have written a
script to transfer the set of tuples to graphviz4 format where actors, data objects,
and operations are vectors and the types of access between them are edges.

Any access control tuples that were predicted as “unknown” by the first
model component are colored in red, and those predicted as “contains access
control” are colored in black. This is to stress the ambiguity of the access con-
trol information in the related user stories. This should prompt discussion and
refinement of those user stories with stakeholders early on in production so that

4 https://graphviz.org/.

https://graphviz.org/
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Table 1. Precision, Recall, and F1 Score for the Access Control Classification and
Named Entity Recognition tasks across three testing apps.

App name Metric ACC score NER score

Frictionless Precision 92.3% ± 1.8 88.2% ± 2.9

Recall 89.7% ± 2.1 86.4% ± 4.4

F1 Score 91.0% ± 2.0 87.3% ± 4.7

Alfred Precision 79.1% ± 3.4 80.8% ± 4.7

Recall 86.6% ± 2.7 80.1% ± 6.1

F1 Score 82.7% ± 3.0 83.8% ± 5.3

CamperPlus Precision 80.2% ± 2.5 84.4% ± 5.3

Recall 88.3% ± 3.2 76.0% ± 4.1

F1 Score 84.1% ± 2.8 80.0% ± 4.6

decisions about access control can be made in advance. This will save stakehold-
ers time and money and relieve developers from the responsibility of making
on-the-fly decisions about access control policy.

The presentation of access control information is not limited to graphical form:
question and answer systems, rule lists, and (with limited human involvement)
generating an access control natural language policy and policy specification can
be achieved. This is further discussed as ongoing and future work in Sect. 5.

4 Evaluation

For our evaluation, we performed training, validation, and testing using, roughly,
a 80%, 10%, 10% split, respectively. The testing set was created by removing all
the user stories of one app from the rest of the dataset so that we can check the per-
formance of the model on a set of user stories from an app that the model has never
seen before. For validation, 10% of the remaining user stories were taken after being
shuffled. The training set consisted of all other apps’ user stories not in the test-
ing or validation sets. We performed three separate training, validation, and test-
ing runs for each component. Each run used a different app for the testing phase:
Frictionless for data management platform and data archiving, Alfred for medi-
cal and elderly care, and CamperPlus for administrative management. In general,
we observed that Frictionless performed better than the other apps during testing.
This is likely due to the fact that the data management platform category repre-
sents over half of the apps in the training set. In contrast, there are very few apps
in the training set that belong to the same category as Alfred and CamperPlus.

4.1 Access Control Classification

As seen in Table 1, Frictionless outperformed Alfred and CamperPlus by a mar-
gin of 7 and 9 percentage points, respectively. We analyzed those user stories that
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Table 2. Precision, Recall, and F1 Score for the access type classification task across
three testing apps.

App name Metric F1 Score

Frictionless View 86.4% ± 4.2

Edit 84.6% ± 5.5

Create 81.1% ± 4.6

Delete 81.7% ± 3.7

None 82.2% ± 4.2

Alfred View 80.6% ± 3.8

Edit 79.8% ± 4.3

Create 75.6% ± 5.7

Delete 75.3% ± 6.0

None 80.5% ± 5.3

CamperPlus View 83.2% ± 5.1

Edit 79.3% ± 3.6

Create 76.5% ± 4.9

Delete 75.6% ± 3.9

None 79.9% ± 4.6

were predicted incorrectly and found some commonalities. In general, it seemed
that non-functional user stories (i.e., user stories that describe attributes of the
system, but not a functional usage of the system, for example “As an Older Per-
son, I want to use only well-visible buttons”) were more difficult for the model
to categorize. This is likely due to much fewer non-functional user stories being
present in the dataset. Other user stories that were predicted poorly contained
acronyms or uncommon names of file types or 3rd party software. Again, since
the model has not seen such words before, it was likely difficult to predict over.

4.2 Named Entity Recognition

As seen in Table 1, Frictionless again outperformed Alfred and CamperPlus of
about 3 and 7 percentage points, respectively. The named entity recognition task
suffered from the same main setback as the access control classification task, with
most unique or uncommon words leading to a decrease in performance and were
the most common missed words. Interestingly, there seemed to be some words
common to multiple apps, but with different labels. For example, “team” was
an actor name in some apps but a data object in others. It seems it was difficult
for the model to reconcile this.

4.3 Access Type Classification

As seen in Table 2, Frictionless also outperformed Alfred and CamperPlus in
the access type classification. The problem of a lack of data can definitely be



184 J. Heaps et al.

Table 3. Transformers, CNN, and SVM models and their average F1 scores for the
three model components

Model Component F1 Score

Transformers Access Control Classification 91.9% ± 2.0

Named Entity Recognition 87.3% ± 3.4

Access Type Classification 83.2% ± 4.4

CNN Access Control Classification 84.3% ± 4.1

Named Entity Recognition 86.7% ± 3.6

Access Type Classification 79.1% ± 5.4

SVM Access Control Classification 84.4% ± 1.3

Named Entity Recognition 69.8% ± 3.9

Access Type Classification 73.2% ± 4.3

seen here, as “create” and “delete” had much fewer occurrences than “view” and
“edit”, and did much poorer amongst all three apps.

We tested how well the average F1 score of all access categories performed
at different attention mask values of de-emphasis (as described in Sect. 3.2). We
tested mask values of 0.25, 0.5, 0.6, 0.75, and 0.9. For Fictionless, the best mask
value was 0.6, Alfred performed best at 0.75, while CamperPlus did best at 0.6
as well.

4.4 SVM and CNN Comparison

In Table 3, the average F1 score for all components for each the Transform-
ers, CNN, and SVM models are shown. Transformers performed the best in all
categories, with CNN as a close second. Interestingly, CNN performed almost
just as well as Transformers in the named entity recognition task, where SVM
performed the worst in that category. We see that the Transformers model per-
formed better than CNN and SVM as baseline measures, but not as significantly
as we would have hoped.

We believe the primary approach to increasing the Transformer model’s (or
any model’s) accuracy is a much larger and more robust dataset. It is clear
that with 1600 example user stories the models were able to learn in all three
components but the learning was quite limited, both in the size of the dataset
as well as the variety of types of apps.

4.5 Graph Visualization

Finally, we have performed an end-to-end run of one of the testing apps, Camper-
Plus, through the full model and have visualized a sample of the graph in Fig. 9.
We have chosen only a sample as the full graph was too large to insert into the
paper, and these showed the more interesting results. In the graph, the different
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Fig. 9. Graph visualization sample of CamperPlus app

types of shapes denote the type of entity it is: diamonds are actors, rectangles are
data objects, and ovals are operations. Only data objects have a type of access
associated with them, as the operations were all permitted access, as described in
Sect. 3.1. The red lines are those user stories that were predicted as “unknown”,
and would prompt stakeholders to take a closer look at those user stories related
to them. In future work, human interactivity would allow a stakeholder to con-
firm or invalidate the “unknown” predictions, as described in Sect. 5. In some
cases the model worked well. We can see that the “parent”, “camp administra-
tor”, “staff”, and “kids” actors were all predicted correctly, and many of the data
objects and operations were correctly predicted as such. However, “admitted”
was not an actor (or a data object or operation). We believe it was predicted as
an actor because it may be close enough to “administrator” which was labeled
as an actor. The “suspend camper problems” should just be “suspend camper”
and be an operation, not a data object. The “information” data object was likely
supposed to be “medical information” as that was a data object missing from
the full graph. While we tried to remove most plural words after the final output
of the model, we can see that some were missed, such as “enroll my child” and
“enroll my children”.

We can see that the graph is not perfect, which was expected given the F1
scores from testing. However, there is a significant portion of the access control
graph that is correct, and with the help of human aid shows great potential for
assisting stakeholders during the agile development software process.

5 Conclusion

This paper describes an automated approach to extracting access control infor-
mation from user stories through the labeling of a dataset of 1600 user stories
and a learning model based on transformers with three components: access con-
trol classification, named entity recognition, and access type classification. The
resulting list of tuples was visualized to help stakeholders better refine user
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stories, maintain an overview of the system’s access control information, and
ultimately help reduce the propagation of security vulnerabilities in code.

Automated Analysis of Access Control Tuples. In future work we plan
to perform automated analysis of the extracted access control information. This
analysis would include: contradiction detection of access control rules across a
set of user stories, inferring additional access control information from groups
of user stories that may not be identified by examining user stories individually,
and detecting duplicate user stories. Evidence for the existence and need for
each of these scenarios was present in our dataset, however they occurred in too
small a number for experiments to be conducted with less than 10 occurrences
of each across the entire dataset. This further demonstrates the need for larger,
more robust user story datasets.

Integration of Human Interactivity. We recognize that there is little addi-
tional information about access control that can be extracted or determined
directly from user stories in a fully automated approach. That is, it is difficult,
or impossible, to determine a software’s exact access control from user stories
without human involvement. We plan to extend our approach to make it interac-
tive with stakeholders so that they can help refine the access control information
by providing additional context, such as specific roles and attributes of the sys-
tem. Humans will be able to validate (or invalidate) ambiguous relations that
were marked as “unknown” or were incorrectly predicted. This will also allow for
active learning [16] with the models to better refine prediction results. While this
interactivity will require some continual review from humans, the vast majority
of the maintenance of access control information and documentation will still be
performed automatically by our approach. This should keep human involvement
at a minimum, increasing development time as little as possible.

Tracking the Agile Development Cycle. A primary aspect of agile develop-
ment is changing requirements through the modification of the set user stories,
which occurs throughout the agile development cycle. We plan to show how our
approach can handle changing user stories throughout the development process.

Additional Security Policy Generation. Finally, while this work describes
an automated approach to the construction of access control documentation,
other security and system documentation could be inferred or extracted from
user stories. For example, privacy requirements, interaction and use of external
technologies and third party applications, and generally ensuring security best
practices based on security decisions and implementations can all be handled
in a mostly automated approach to ensure that stakeholders have necessary
documentation when developing the system.
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19. Sobieski, Ś., Zieliński, B.: User stories and parameterized role based access control.
In: Bellatreche, L., Manolopoulos, Y. (eds.) MEDI 2015. LNCS, vol. 9344, pp. 311–
319. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23781-7 25
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Abstract. Confidential multi-stakeholder machine learning (ML) allows
multiple parties to perform collaborative data analytics while not reveal-
ing their intellectual property, such as ML source code, model, or datasets.
State-of-the-art solutions based on homomorphic encryption incur a large
performance overhead. Hardware-based solutions, such as trusted execu-
tion environments (TEEs), significantly improve the performance in infer-
ence computations but still suffer from low performance in training com-
putations, e.g., deep neural networks model training, because of limited
availability of protected memory and lack of GPU support.

To address this problem,we designed and implementedPerun, a frame-
work for confidential multi-stakeholder machine learning that allows users
to make a trade-off between security and performance. Perun executes
ML training on hardware accelerators (e.g., GPU) while providing security
guarantees using trusted computing technologies, such as trusted platform
module and integrity measurement architecture. Less compute-intensive
workloads, such as inference, execute only inside TEE, thus at a lower
trusted computing base. The evaluation shows that during the ML train-
ing on CIFAR-10 and real-world medical datasets,Perun achieved a 161×
to 1560× speedup compared to a pure TEE-based approach.

Keywords: Multi-stakeholder computation · Machine learning ·
Confidential computing · Trusted computing · Trust management

1 Introduction

Machine learning (ML) techniques are widely adopted to build functional artifi-
cial intelligence (AI) systems. For example, face recognition systems allow paying
at supermarkets without typing passwords; natural language processing systems
allow translating information boards in foreign countries using smartphones;
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Fig. 1. Stakeholders share source code, data, and computing power to build an ML
application. They need a framework to establish mutual trust and share data securely.

medical expert systems help to detect diseases at an early stage; image recogni-
tion systems help autonomous cars to identify road trajectory and traffic hazards.
To build such systems, multiple parties or stakeholders with domain knowledge
from various science and technology fields must cooperate since machine learn-
ing is fundamentally a multi-stakeholder computation, as shown in Fig. 1. They
would benefit from sharing their intellectual property (IP) – private training
data, source code, and models – to jointly perform machine learning computa-
tions only if they can ensure their IP remains confidential.

Training Data Owner. ML systems rely on training data to build inference
models. However, the data is frequently sensitive and cannot be easily shared
between disjoint entities, like in the case of the healthcare data used for training
diagnostic models contain privacy-sensitive patient information. The strict data
regulations, such as general data protection regulation (GDPR) [1], impose an
obligation on secure data processing. Specifically, the training data must be
under the training data owner’s control and must be protected while at rest,
during transmission, and training computation.

Training Code Owner. The training code owner implements a training algo-
rithm that trains an inference model over the training data. The training code
(e.g., Python code) typically contains an optimized training model architecture
and tuned parameters that build the business value and the inference model
quality. Thus, the training code is considered as confidential as the training
data. The training requires high computing power, and, as such, it is econom-
ically justifiable to delegate its execution to the cloud. However, in the cloud,
users with administrative access can easily read the training service source code
implemented in popular programming languages, such as Python.

Model Owner. The inference model is the heart of any inference service. It is
created by training the model with a large amount of training data. This process
requires extensive computing power and is time-consuming and expensive. Thus,
the model owner, a training code owner, or a third party that buys the model,
must protect the model’s confidentiality. The trained models may reveal the
privacy of the training data [3]. Several works [3,13] demonstrated that extracted
images from a face recognition system look suspiciously similar to images from
the underlying training data.
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Inference Code Owner. The inference code is an AI service allowing clients
to use the inference model on a business basis. The inference code is frequently
developed using Python or JavaScript and hosted in the cloud. Thus, the con-
fidentiality of the code and the integrity of the computation must be protected
against an adversary controlling computing systems executing the AI service.

Inference Data Owner. The inference data owner is a client of an AI service.
He wants to protect his input data. Imagine a person sending an X-ray scan of
her brain to a diagnostic service to check for a brain tumor. The inference data,
e.g., a brain’s scan, is privacy-sensitive and must not be accessible by the AI
service provider.

To build an AI service, stakeholders must trust that others follow the rules
protecting each other’s IP. However, it is difficult to establish trust among them.
First, some stakeholders might collude to gain advantages over others [41]. Sec-
ond, even a trustworthy stakeholder might lack expertise in protecting their
IP from a skilled attacker gaining access to its computing resources [12,43].
We tackle the following problem: How to allow stakeholders to jointly perform
machine learning to unlock all AI benefits without revealing their IP?

Recent works [33,37] demonstrated that cryptographic techniques, such as
secure multi-party computation [56] and fully homomorphic encryption [15],
incur a large performance overhead, which currently prevents their adoption for
computing-intensive ML. Alternative approaches [34,42] adopted trusted execu-
tion environments (TEEs) [36] to build ML systems showing that TEEs offer
orders of magnitude faster ML computation, at the cost of weaker security guar-
antees compared to pure cryptographic solutions. Specifically, the pure crypto-
graphic solutions compute on encrypted data, while in TEE-based approaches,
a trusted ML software processes the plaintext data in a CPU-established execu-
tion environment (called enclave), which is isolated from the untrusted operating
system and administrator. Although promising for the ML inference, TEEs still
incur considerable performance overhead for memory-intensive computations,
like deep training, because of the limited memory accessible to the enclave and
lack of support for hardware accelerators, like graphical processing units (GPUs).
Thus, since TEEs alone are not enough for the ML training processes, we raise
the question: What trade-off between security and performance has to be made
to allow the ML training to access hardware accelerators?

We propose Perun, a framework allowing stakeholders to share their code
and data only with certain ML applications running inside an enclave and on a
trusted OS. Perun relies on encryption to protect the IP and on a trusted key
management service to generate and distribute the corresponding cryptographic
keys. TEE provides confidentiality and integrity guarantees to ML applications
and to the key management service. Trusted computing technologies [14] provide
integrity guarantees to the OS, allowing ML computations to access hardware
accelerators. Our evaluation shows that Perun achieves 0.96× of native per-
formance execution on the GPU and a speedup of up to 1560× in training a
real-world medical dataset compared to a pure TEE-based approach [34].
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Altogether, we make the following contributions:

– We designed a secure multi-stakeholder ML framework that: (i) allows stake-
holders to cooperate while protecting their IP (Sect. 3.1, Sect. 3.2), (ii) allows
stakeholders to select trade-off between the security and performance, allow-
ing for hardware accelerators usage (Sect. 3.3, Sect. 3.4).

– We implemented the Perun prototype (Sect. 4) and evaluated it using real-
world datasets (Sect. 5).

2 Threat Model

Stakeholders are financially motivated businesses that cooperate to perform ML
computation. Each stakeholder delivers an input (e.g., input training data, code,
and ML models) as its IP for ML computations. The IP must remain confidential
during ML computations. The stakeholders have limited trust. They do not share
their IP directly, but they encrypt them so that only other stakeholders’ appli-
cations, which source code they can inspect under a non-disclosure agreement
or execute in a sandbox, can access the encryption key to decrypt it.

An adversary wants to steal a stakeholder’s IP when it resides on a computer
executing ML computation. Such a computer might be provisioned in the cloud
or a stakeholder’s data center, e.g., a hybrid cloud model. In both cases, an adver-
sary has no physical access to the computer. For this, we rely on state-of-the-art
practices controlling and restricting access to the data center to trusted entities.

However, an adversary might exploit an OS misconfiguration or use social
engineering to connect to the OS remotely. We assume she can execute priv-
ileged software to read an ML process’s memory after getting administrative
access to the OS executing ML computation. One of the mitigation techniques
used in Perun, integrity measurement architecture (IMA) [45], effectively lim-
its software that can execute on the computer under the assumption that this
software, which is considered trusted, behaves legitimately also after it has been
loaded to the memory, i.e., an adversary cannot tamper with the process’ code
after it has been loaded to the memory. This might be achieved using existing
techniques, like enforcing control flow integrity [27], fuzzing [57], formally prov-
ing the software implementation [58], using memory-safe languages [35], using
memory corruption mitigation techniques, like position-independent executables,
stack-smashing protection, relocation read-only techniques, or others.

The CPU with its hardware features, hardware accelerators, and secure ele-
ments (e.g., TPM) are trusted. We exclude micro-architectural and side-channel
attacks, like Foreshadow [51] or Spectre [30]. We rely on the soundness of the
cryptographic primitives used within software and hardware components.

3 Design

Our objective is to provide an architecture that: (i) supports multi-stakeholder
ML computation, (ii) requires zero code changes to the existing ML code, (iii)
allows for a trade-off between security and performance, (iv) uses hardware accel-
erators for computationally-intensive tasks.
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Fig. 2. Perun framework supports multi-stakeholder ML computation. Stakeholders
trust the security policy manager. Inside security policies, they define which stake-
holder’s application can access a cryptographic key allowing decryption of confidential
code or data. TEE protects code, data, and cryptographic keys.

3.1 High-Level Overview

Figure 2 shows the Perun framework architecture that supports multi-
stakeholder computation and the use of dedicated hardware accelerators. The
framework consists of five components: (i) stakeholders, the parties who want
to perform ML jointly while keeping their IP protected; (ii) security policy
manager, a key management and configuration service that allows stakeholders
to share IPs for ML computations without revealing them; (iii) ML computa-
tion including training and inference; (iv) GPU, hardware accelerators enabling
high-performance ML computation; and (v) TEE and TPM, secure elements
enabling confidentiality and integrity of ML computations on untrusted com-
puting resources.

To allow multiple stakeholders to perform ML and keep their IP confidential,
we propose that the IP remains under the stakeholder’s control. To realize that
idea, we design the security policy manager that plays the role of the root of
trust. Stakeholders establish trust in this component using the remote attestation
mechanism, like [25], offered by a TEE. The TEE, e.g., Intel software guard
extensions (SGX) [11], guarantees the confidentiality and integrity of processed
code and data. After stakeholders ensure the security policy manager executes in
the TEE, they submit security policies defining access control to their encryption
keys. Each stakeholder’s IP is encrypted with a different key, and the security
policy manager uses security policies to decide who can access which keys. From
a technical perspective, the security policy manager generates the keys inside the
TEE and sends them only to authenticated ML computations executing inside
the TEE. Thus, these keys cannot be seen by any human.

Depending on individual stakeholders’ security requirements,Perun offers dif-
ferent throughput/latency performances for ML computations. For stakeholders
willing strong integrity and confidentiality guarantees, Perun executes ML com-
putations only inside TEEs enclaves, i.e., input and output data, code, and mod-
els never leave the enclave. For stakeholders accepting a larger trusted comput-
ing base in exchange for better performance, Perun enables trusted computing
technologies [14] to protect ML computations while executing them on hardware
accelerators, e.g., GPU. Specifically, it uses IMA, which is an integrity enforcement
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mechanism that prevents adversaries from running arbitrary software on the OS,
i.e., software that allows reading data residing in the main memory or being trans-
ferred to or processed by the GPU. The security policy manager verifies that such
a mechanism is enabled by querying a secure element compatible with the trusted
platform module (TPM) [19] attached to the remote computer.

3.2 Keys Sharing

Stakeholders use security policies to share encryption keys protecting their IP.
For example, the training data owner specifies in his security policy that he
allows the ML computation of the training code owner to access his encryption
key to decrypt the training data. The security policy manager plays a key role
in the key sharing process. It generates an encryption key inside the TEE and
securely distributes it to ML computations accordingly to the security policy.
The training code owner cannot see the shared secret in the example above
because it is transferred only to his application executing inside the TEE.

To provision ML computations with encryption keys, the security policy
manager authenticates them using a remote attestation protocol offered by a
TEE engine, e.g., the SGX remote attestation protocol [25]. During the remote
attestation, the TEE engine provides the security policy manager with a crypto-
graphic measurement of the code executing on the remote platform. The cryp-
tographic measurement – the output of the cryptographic hash function over
the code loaded by the TEE engine to the memory – uniquely identifies the
ML computation, allowing the security policy manager to authorize access to
the encryption key based on the ML computation identity and stakeholder’s
security policies.

3.3 Security Policy and Trade-Offs

Perun relies on security policies as a means to define dependencies among stake-
holders’ computation and shared data.

Listing 1.1 shows an example of a policy. The policy has a unique name (line 1),
typically combining a stakeholder’s name and its IP name. The name is used
among stakeholders to reference volumes containing code, input, or output data.
A volume is a collection of files encrypted with an encryption key managed by
the security policy manager. Only the authorized ML computations have access
to the key required to decrypt the volume and access the IP. To prevent an adver-
sary from changing the policy, the stakeholder embeds his public key inside the
policy (line 21). The security policy manager accepts only policies containing a
valid signature issued with a corresponding stakeholder’s private key.

The ML computation definition consists of a command required to execute
the computation inside a container (line 2) and a cryptographic hash over the
source code content implementing the ML computation (line 8). The security
policy manager uses the hash to authenticate the ML computation before pro-
viding it with the encryption key.
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Listing 1.1. Security policy example

1 name: training_owner/training_code
2 command: python /app/training.py
3 volumes:
4 - path: /training_data
5 import: training_data_owner/training_data_service
6 - path: /inference_model
7 export: inference_owner/inference_service
8 integrity_hash: {"0a11...bb3f"}
9 operating_system:

10 certificate_chain: |-
11 -----BEGIN CERTIFICATE-----
12 # certificate chain allowing
13 # verification of the secure
14 # element manufacturer
15 -----END CERTIFICATE-----
16 integrity:
17 measure0: e0f1...4be6
18 measure1: ae44...3a6e
19 measure2: 3d45...796d
20 stakeholder: |-
21 -----BEGIN PUBLIC KEY-----
22 # the policy owner's public key
23 -----END PUBLIC KEY-----

The policy allows selecting trade-offs between security and performance. For
example, a training code owner who wants to use the GPU to speed up the
ML training computation might define conditions under which he trusts the
OS. In such a case, a stakeholder defines a certificate chain permitting to verify
the authenticity of a secure element attached to the computer (line 10) and
expected integrity measurements of the OS (lines 16–19). The security policy
manager only provisions the ML computations with the encryption key if the
OS integrity (kernel sources and configuration) are trusted by the stakeholder.
Specifically, the OS integrity measurements reflect what kernel code is running
and whether it has enabled the required security mechanisms. Only then, the
ML computations can access the confidential data and send it to the outside of
the TEE, e.g., GPU.

We discuss now and evaluate later (Sect. 5.2) two security levels that are par-
ticularly important for the ML computation. The first one, the high-assurance
security level, fits well the inference because it offers strong security guarantees
provided by the TEE, allowing the inference model to execute in an untrusted
data center controlled by an untrusted operator. It comes at performance lim-
itation, which is acceptable for inference because, typically, inference operates
on much smaller data than ML training and does not need access to hardware
accelerators. The high-assurance security level offers confidentiality and integrity
of code and data at rest and in runtime. The trusted computing base (TCB) is
low; It includes only the inference model executing inside the TEE, the hardware
providing the TEE functionality, and the key distribution process. The second
security level, the high integrity level, fits well the ML training because it enables
access to hardware accelerators required for intensive computation. It comes at
the cost of a larger TCB compared to the high-assurance security level because
the code providing access to the hardware accelerators, i.e., an operating sys-
tem, must be trusted. Perun relies on the TPM to establish trust with load-time
kernel integrity and on IMA to extend this trust to the OS runtime integrity.
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3.4 Hardware ML Accelerators Support

Typically, ML computations (e.g., deep neural networks training) are extremely
intensive because they must process a large amount of input data. To decrease
the computation time, popular ML frameworks, such as TensorFlow [2], support
hardware accelerators, such as GPUs or Google tensor processing units (TPUs).
Unfortunately, existing hardware accelerators do not support confidential com-
puting, thus not offering enough security guarantees for the multi-stakeholder
ML computation. For example, an adversary who exploits an OS misconfigu-
ration [55] can launch arbitrary software to read data transferred to the GPU
from any process executing in the OS. Even if ML computations execute inside
the TEE enclaves, an adversary controlling the OS can read the data when it
leaves the TEE, i.e., it is transferred to the GPU or is processed by the GPU.
Because of this, we design Perun to support additional security mechanisms
protecting access to the data (also code and ML models) while being processed
out of the TEE. This also allows stakeholders to trade-off between security level
and performance they want to achieve when performing ML computations.

Fig. 3. The high-level overview of Perun supporting secure computation using hard-
ware accelerator, e.g., the GPU. Perun performs both the SGX and TPM attestation
before provisioning the ML code with cryptographic keys. The successful TPM attes-
tation informs that the legitimate OS with enabled integrity-enforcement mechanisms
controls access to the GPU.

Figure 3 shows how Perun enables hardware accelerator support. ML com-
putations transfer to the security policy manager a report describing the OS’s
integrity state. The report is generated and cryptographically signed by a secure
element, e.g., a TPM chip, physically attached to the computer. The security pol-
icy manager authorizes the ML computation to use the encryption key only if the
report states that the OS is configured with the required security mechanisms.
Precisely, the integrity enforcement mechanism, such as integrity measurement
architecture (IMA) [45], controls that the OS executes only software digitally
signed by a stakeholder. Even if an adversary gains root access to the system,
she cannot launch arbitrary software that allows her to sniff on the commu-
nication between the ML computation and the GPU, read the data from the
main memory, or reconfigure the system to disable security mechanisms or load
a malicious driver. This also allows Perun to mitigate software-based micro-
architectural and side-channel attacks [9,16,51,54], which are vulnerabilities of
TEEs.
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To enable hardware accelerator support, a stakeholder specifies expected OS
integrity measurements inside the security policy (Listing 1.1, lines 9–19) and
certificates allowing verification of the secure element identity. The OS integrity
measurements are cryptographic hashes over the OS’s kernel loaded to the mem-
ory during the boot process. A secure element collects such measurements dur-
ing the boot process and certifies them using a private key linked to a certifi-
cate issued by its manufacturer. The certificate and integrity measurements are
enough for the security policy manager to verify that the IMA enforces the OS
integrity.

Although the hardware accelerator support comes at the cost of weaker secu-
rity guarantees (additional hardware and software must be trusted when com-
pared to a pure TEE-based approach), it greatly improves the ML training
computation’s performance (see Sect. 5.2).

3.5 Zero Code Changes

Perun framework requires zero code changes to run existing ML computations,
thus providing a practical solution for legacy ML systems. To achieve it, Perun
adapts platforms supporting running legacy applications inside the TEE, such as
SCONE [5] or GrapheneSGX [49]. These platforms allow executing unmodified
code inside the TEE by recompiling the code using dedicated cross-compilers or
running them with a modified interpreter executing in the TEE.

3.6 Policy Deployment and Updates

A stakeholder establishes a transport layer security (TLS) connection to the
security policy manager to deploy a policy. During the TLS handshake, the
stakeholder verifies the identity of the security policy manager. The security
policy manager owns a private key and corresponding certificate signed by an
entity trusted by a stakeholder. For example, such a certificate can be issued
by a TEE provider who certifies that given software running inside a TEE and
identified by a cryptographic hash is the security policy manager. Some TEE
engines, such as SGX, offer such functionality preventing even a service admin-
istrator from seeing the private key [29]. For other TEEs, a certificate might be
issued by a cloud provider operating the security policy manager as part of cloud
offerings.

Perun requires that the security policy manager authorizes changes to the
deployed policy. Otherwise, an adversary might modify the stakeholder’s policy
allowing malicious code to access the encryption key. In the Perun design, the
stakeholder includes his public key inside the digitally signed security policy.
Since then, the security policy manager accepts changes to the policy only if
a new policy has a signature issued with the stakeholders’ private key corre-
sponding to the public key present in the existing policy. By having a public key
embedded in the security policy, other stakeholders can verify that the policy is
owned by the stakeholder they cooperate with. The details of the policy security
manager regarding key management, high availability, tolerance, and protection
against rollback attacks are provided in [18].
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4 Implementation

We implemented the Perun prototype based on TensorFlow version 2.2.0 and
the SCONE platform [5] because SCONE provides an ecosystem to run unmod-
ified applications inside a TEE. We also rely on the existing key management
system provided by the SCONE [50] and its predecessor [18] to distribute the
configuration to applications. We rely on Intel SGX [11] as a TEE engine because
it is widely used in practice.

Our prototype uses a TPM chip [19] to collect and report integrity mea-
surements of the Linux kernel loaded to the memory during a trusted boot [46]
provided by tboot [10] with Intel trusted execution technology (TXT) [17]. The
Linux kernel is configured to enforce the integrity of software, dynamic libraries,
and configuration files using Linux IMA [45], a Linux kernel’s security subsys-
tem. Using the TPM chip, verifies that the kernel is correctly configured and
interrupts its execution when requirements are not met.

We use an nvidia GPU as an accelerator for ML computation. The ML ser-
vices are implemented in Python using TensorFlow framework, which supports
delegating ML computation to the GPU.

4.1 Running ML Computations Inside Intel SGX

To run unmodified ML computations inside the SGX enclaves, we use the
SCONE cross-compiler and SCONE-enabled Python interpreters provided by
SCONE as Docker images. They allow us to build binaries that execute inside the
SGX enclave or run Python code inside SGX without any source code changes.

The SCONE wraps an application in a dynamically linked loader program
(SCONE loader) and links it with a modified C-library (SCONE runtime) based
on the musl libc [39]. On the ML computation startup, the SCONE loader
requests SGX to create an isolated execution environment (enclave), moves the
ML computation code inside the enclave, and starts. The SCONE runtime, which
executes inside the enclave along with the ML computations, provides a sani-
tized interface to the OS for transparent encryption and decryption of data
entering and leaving the enclave. Also, the SCONE runtime provides the ML
computations with its configuration using configuration and attestation service
(CAS) [50].

4.2 Sharing the Encryption Key

We implement the security policy manager in the Perun architecture using
the CAS, to generate, distribute, and share encryption keys between security
policies. We decided to use the CAS because it integrates well with SCONE-
enabled applications and implements the SGX attestation protocol [25]. Other
key management systems supporting the SGX attestation protocol might be
used [8,32] but require additional work to integrate them into SCONE.
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We create a separate CAS policy for each stakeholder. The policy contains
an identity of the stakeholder’s IP (data, code, and models) and its access con-
trol and configuration. It is uploaded to CAS via mutual TLS authentication
using a stakeholder-specific private key corresponding to the public key defined
inside the policy. This fulfills the Perun requirement of protecting unautho-
rized stakeholders from modifying policies. The IP identity is defined using a
unique per application cryptographic hash calculated by the SGX engine over
the application’s pages and their access rights. The SCONE provides this value
during the application build process. The CAS allows for the specification of
the encryption key as a program argument, environmental variable, or indirectly
as a key related to an encrypted volume. Importantly, the CAS allows defining
which policies have access to the key. Thus, with the proper policy configuration,
stakeholders share keys among enclaves as required in the Perun architecture.

Our prototype uses the CAS encrypted volume functionality, for which the
SCONE runtime fetches from the CAS the ML computation configuration con-
taining the encryption key. Specifically, following the SGX attestation protocol,
the SCONE runtime sends to CAS the SGX attestation report in which the
SGX hardware certifies the ML computation identity. The CAS then verifies
that the report was issued by genuine SGX hardware and the ML computation
is legitimate. Only afterward, it sends to the SCONE runtime the encryption
key. The SCONE runtime transparently encrypts and decrypts data written and
read by the ML computation from and to the volume. The ML computations,
e.g., training and inference authorized by stakeholders via policies, can access
the same encryption key, thus gaining access to a shared volume.

4.3 Enabling GPU Support with Integrity Enforcement

Our prototype implementation supports delegating ML computations to the
GPU under the condition that the integrity-enforced OS handles the communi-
cation between the enclave and the GPU. The integrity enforcement mechanism
prevents intercepting confidential data that leaves the enclave because it limits
the OS functionality to a subset of programs essential to load the ML computa-
tion and the GPU driver. Thus, a malicious program cannot run alongside the
ML computations on the same computing resources. We use trusted boot and
TPM to verify it, i.e., that the remote computer runs a legitimate Linux kernel
with enabled integrity enforcement that limits software running on the computer
to the required OS services, the GPU driver, and ML computations.

Trusted Boot. Trusted computing technologies define a set of technologies that
measure, report, and enforce kernel integrity. Specifically, during the computer
boot, we rely on a trusted bootloader [10], which uses a hardware CPU exten-
sion [17] to measure and securely load the Linux kernel to an isolated execution
environment [46]. The trusted bootloader measures the kernel integrity (a cryp-
tographic hash over the kernel sources) and sends the TPM chip measurements.
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The TPM stores integrity measurements in a dedicated tamper-resistant
memory called platform configuration registers (PCRs). A PCR value cannot be
set to an arbitrary value. It can only be extended with a new value using a cryp-
tographic hash function: PCR extend = hash(PCR old value || data to extend).
This prevents tampering with the measurements after they are extended to a
PCR. The TPM implements a TPM attestation protocol [20] in which it uses
a private key known only to the TPM to sign a report containing PCRs. Our
prototype uses the TPM attestation protocol to read the TPM report certify-
ing that an ML computation executes on an integrity-enforced OS, i.e., a Linux
kernel with enabled IMA.

Fig. 4. The kernel integrity-enforcement system authenticates a file by checking its
digital signature before loading it to the memory.

Integrity Enforcement. IMA is a kernel mechanism that authenticates files
before allowing them to be loaded to the memory. Figure 4 shows how the IMA
works. A process executing in userspace requests the kernel to execute a new
application, load a dynamic library, or read a configuration file. IMA calculates
the cryptographic hash over the file’s content, reads the file’s signature from the
file’s extended attribute, and verifies the signature using a public key stored in
the kernel’s ima keyring. If the signature is correct, IMA extends the hash to a
dedicated PCR and allows the kernel to continue loading the file.

Trusted Boot Service. Because SCONE is proprietary software, we could not
modify the SCONE runtime to provide the CAS with the TPM report. Instead,
we implemented this functionality in a trusted boot service that uses the TPM
to verify that the ML computations execute in the integrity-enforced OS.

The CAS performs the SGX attestation of the trusted boot service and pro-
visions it with the TPM certificate as well as a list of the kernel integrity mea-
surements. The trusted boot service reads the integrity measurements stored in
PCRs using the TPM attestation protocol. The TPM genuineness is ensured
by verifying the TPM certificate using a certificate chain provided by the CAS.
The Linux kernel integrity is verified by comparing the integrity measurements
certified by the TPM with the measurements read from the CAS.

We implemented the trusted boot service as an additional stage in the ML
data processing. It enables other ML computations to access the confidential data
only if the OS state conforms to the stakeholder’s security policy. It copies the
confidential data from an encrypted volume of one ML computation to a volume
accessible to another ML computation after verifying the kernel integrity using
the TPM. Our implementation is complementary with Linux unified key setup
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(LUKS) [7]. LUKS allows the kernel to decrypt the file system only if the kernel
integrity has not changed. This prevents accessing the trusted boot service’s
volume after modifying the kernel configuration, i.e., disabling the integrity-
enforcement mechanism.

5 Evaluation

Testbed. Experiments were executed on a ASUS Z170-A mainboard equipped
with an Intel Core i7-6700K CPU supporting SGXv1, Nvidia GeForce RTX 2080
Super, 64 GiB of RAM, Samsung SSD 860 EVO 2 TB hard drive, Infineon SLB
9665 TPM 2.0, a 10 Gb Ethernet network interface card connected to a 20 Gb/s
switched network. Hyper-threading is enabled. The enclave page cache (EPC) is
configured to reserve 128 MB of RAM. CPUs are on the microcode patch level
0xe2. We run Ubuntu 20.04 with Linux kernel 5.4.0-65-generic. Linux IMA is
enabled. The hashes of all OS files are digitally signed using a 1024-bit RSA
asymmetric key. The signatures are stored inside files’ extended attributes, and
the certificate signed by the kernel’s build signing key is loaded to the kernel’s
keyring during initrd execution.

Datasets. We use two datasets: (i) the classical CIFAR-10 image dataset [31],
and (ii) the real-world medical dataset [47].

5.1 Attestation Latency

We run an experiment to measure the overhead of verifying the OS integrity
using the TPM. Precisely, we measure how much time it takes an application
implementing the trusted boot service to receive configuration from the security
policy manager, read the TPM, and verify the OS integrity measurements.

The security policy manager executes on a different machine located in the
same data center. It performs the SGX attestation before delivering a configura-
tion containing two encryption keys – a typical setup for ML computations – and
measurements required to verify the OS integrity. The security policy manager
and the trusted boot service execute inside SCONE-protected Docker containers.

Table 1 shows that launching the application inside a SCONE-protected con-
tainer takes 1573 ms. Running the same application that additionally receives the
configuration from the security policy manager incurs 118 ms overhead. Addi-
tional 719 ms are required to read the TPM quote, verify the TPM integrity
and authenticity, and compare the read integrity measurements with expected
values provided by the security policy manager. As we show next, 2.5 s overhead
required to perform SGX and TPM attestation is negligible considering the ML
training execution time.

5.2 Security and Performance Trade-Off

To demonstrate the advantage of Perun in allowing users to select the trade-
off between security and performance, we compare the performance of dif-
ferent security levels provided by Perun and the pure SGX based system
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called SecureTF [34]. We run the model training using the following setups:
(i) only CPU (Native); (ii) GPU (Native GPU ); (iii) Perun, IMA enabled
(Perun+IMA); (iv) Perun, IMA and SGX enabled (Perun+IMA+SGX ); (v)
Perun with GPU, IMA enabled (Perun+IMA+GPU ).

Table 1. End-to-end latency of verifying software authenticity and integrity using SGX
and TPM attestation. Mean latencies are calculated as 10% trimmed mean from ten
independent runs. sd stands for standard deviation.

The Native and Native GPU levels represent scenarios where no security
guarantees are provided. Perun+IMA and Perun+IMA+GPU represent the
high integrity level (Sect. 3.3) in which ML training can execute directly on the
CPU or GPU (high performance) while require to extend trust to the operating
system (large TCB). Finally, Perun+IMA+SGX represents the high-assurance
security level where all computations are performed inside the TEE (limited
performance) but requires a minimal amount of trust in the remote execution
environment (low TCB). In all setups, the trusted boot service executes inside
the enclave.

CIFAR-10 Dataset. We perform training using the CIFAR-10 dataset, a con-
volutional neural network containing four conv layers followed by two fully con-
nected layers. We use BatchNorm after each conv layer. We apply the ADAM
optimization algorithm [28] with the learning rate set to 0.001.

Fig. 5. The CIFAR-10 training latency comparison among different security levels
offered by Perun. Mean latencies are calculated from five independent runs.
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Figure 5 shows the training latency, and Fig. 6 shows the Perun speedup
depending on setups and batch sizes. At the high-assurance security level
(Perun+IMA+SGX ), Perun achieves almost the same performance as the
pure SGX-based system, secureTF. This is because the training data is processed
only inside the enclave, and SGX performs compute-intensive paging caused by
the limited EPC size (128 MB) that cannot accommodate the training compu-
tation data (8 GB). Perun+IMA+GPU and Perun+IMA achieve 1321× and
40× speedup when relying just on the high integrity level compared to secureTF
(batch size of 512). With these setups, the Perun performance is similar to
native systems (∼0.96× of native latency) because the integrity protection mech-
anism performs integrity checks only when it loads files to the memory for the
first time, leading to almost native execution afterward.

Real-World Medical Dataset. Next, we evaluate Perun using a large-scale
real-world medical dataset [47]. The dataset contains a wide range of medical
images, including images of cancer and tumor treatment regimens for various
parts of the human body, e.g., brain, colon, prostate, liver, and lung. It was
created via CT or MRI scans by universities and research centers from all around
the world. We perform training over the brain tumor images dataset (6.1 GB)
using the 2-D U-Net [44] TensorFlow architecture from Intel AI [4]. It makes
use of the ADAM optimizer that includes 7 760 385 parameters with 32 feature
maps. We set the learning rate to 0.001 and the batch size to 32.

Fig. 6. The CIFAR-10 training speedup of evaluated systems in comparison to Perun
with the highest security level (Perun + IMA + SGX).

Table 2 shows that at the high-assurance security level (the data is pro-
cessed entirely inside the enclave), Perun+IMA+SGX achieves the same per-
formance as the referenced SGX-based system. However, when relying just on the
high integrity level to protect the data, Perun+IMA+GPU and Perun+IMA
achieve a speedup of 1559× and 47× compared to secureTF, respectively. We
maintain the accuracy of 0.9875 in all experiments (dice coef: 0.5503, soft dice
coef: 0.5503).
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6 Related Work

Secure Multi-party Computation. Although cryptographic schemes, such
as secure multi-party computation (MPC) and fully homomorphic encryption,
are promising to secure multi-stakeholder ML computation, they have lim-
ited application in practice [42,52]. They introduce high-performance overhead
[26,33,37,38,42], which is a limiting factor for computing-intensive ML, and
require to heavily modify existing ML code. Furthermore, they do not support
all ML algorithms, such as, deep neural networks. Some of them also require
additional assumptions, like MPC protocol requiring a subset of honest stake-
holders. Unlike Perun, most of them lack support for training computation.

Table 2. The training latency comparison among different security levels of Perun,
secureTF, and native. The results were obtained from a single run.

Secure ML Using TEEs. Many works leverage TEE to support secure ML [21,
23,42]. Chiron [23] uses SGX for privacy-preserving ML services, but it is only a
single-threaded system. Also, it needs to add an interpreter and model compiler
into the enclave. This incurs high runtime overhead due to the limited EPC size.
The work from Ohrimenko et al. [42] also relies on SGX for secure ML computa-
tions. However, it does not allow using hardware accelerators and supports only a
limited number of operators—not enough for complex ML computations. In con-
trast to these systems, Perun supports legacy ML applications without changing
their source code. SecureTF [34] is the most relevant work for Perun because it
also uses SCONE. It supports inference and training computation, as well as dis-
tributed settings. However, it is not clear how secureTF can be extended to sup-
port secure multi-stakeholders ML computation. Also, secureTF does not support
hardware accelerators, making it less practical for training computation. Other
works [6,40,48] use SGX and untrusted GPUs for secure ML computations. They
split ML computations into trusted parts running in the enclave and untrusted
parts running in the GPU. However, they require changing the existing code and
do not support multi-stakeholder settings.

Trusted GPUs. Although trusted computation on GPUs is not commercially
available, there is ongoing research. HIX [24] enables memory-mapped I/O access
from applications running in SGX by extending an SGX-like design with dupli-
cate versions of the enclave memory protection hardware. Graviton [53] pro-
poses hardware extensions to provide TEE inside the GPU directly. Graviton
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requires modifying the GPU hardware to disable direct access to the critical
GPU interfaces, e.g., page table and communication channels from the GPU
driver. Telekine [22] restricts access to GPU page tables without trusting the
kernel driver, and it secures communication with the GPU using cryptographic
schemes. The main limitation of these solutions is that they require hardware
modification of the GPU design, so they cannot protect existing ML computa-
tions, and they also do not support multi-stakeholder ML computations.

7 Conclusion

Perun allows multiple stakeholders to perform ML without revealing their intel-
lectual property. It provides strong confidentiality and integrity guarantees at the
performance of existing TEE-based systems. With the help of trusted comput-
ing, Perun permits utilizing hardware accelerators, reaching native hardware-
accelerated systems’ performance at the cost of a larger trusted computing base.
When training an ML model using real-world datasets, Perun achieves 0.96×
of native performance execution on the GPU and a speedup of up to 1560×
compared to the state-of-the-art SGX-based system.
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Abstract. Recently, as more and more disasters caused by malware
have been reported worldwide, people started to pay more attention to
malware detection to prevent malicious attacks in advance. According to
the diversity of the software platforms that people use, the malware also
varies pretty much, for example: Xcode Ghost on iOS apps, FakePlayer
on Android apps, and WannaCrypt on PC. Moreover, most of the time
people ignore the potential security threats around us while surfing the
internet, processing files or even reading email. The Portable Document
Format (PDF) file, one of the most commonly used file types in the world,
can be used to store texts, images, multimedia contents, and even scripts.
However, with the increasing popularity and demands of PDF files, only a
small fraction of people know how easy it could be to conceal malware in
normal PDF files. In this paper, we propose a novel technique combining
Malware Visualization and Image Classification to detect PDF files and
identify which ones might be malicious. By extracting data from PDF
files and traversing each object within, we can obtain the holistic tree-
like structure of PDF files. Furthermore, according to the signature of
the objects in the files, we assign different colors obtained from SimHash
to generate RGB images. Lastly, our proposed model trained by the
VGG19 with CNN architecture achieved up to 0.973 accuracy and 0.975
F1-score to distinguish malicious PDF files, which is viable for personal,
or enterprise-wide use and easy to implement.

Keywords: Malware detection · PDF malware · Malware
visualization · Machine learning

1 Introduction

The goal of malware detection is to identify whether a file is malicious or belongs
to a certain malware family. Though various malware detection techniques have
been proposed, they can be divided into two categories: static analysis and
dynamic analysis. Since static analysis focuses on the content or the signatures of
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a certain malware, it has the advantage of being more time-efficient while at the
cost of inaccuracy. Dynamic analysis observes and records a malware’s behavior,
which makes it more accurate but usually is time-consuming. Researchers have
applied static and dynamic analysis techniques to examine common file formats
in several platforms, such as executable files on ×64 machines or .apk files on
Android phones. In this paper, we only focus on Portable Document Format
(PDF), which is supported by most platforms.

PDF, released in 1987 by Adobe, is currently one of the most used file formats
worldwide. The main reason is that PDF files can be recognized and human-
readable in most settings. Moreover, they can contain texts as well as various
types of information, such as images, audios, scripts, or other files. Some PDF
files even have forms or buttons inside, making them more interactive and richful.
Due to their interactiveness and richness, some PDF files have been exploited by
hackers to conduct malicious behaviors such as executing embedded javascript
while opening the document, moving the mouse cursor to download and launch
the malware to steal sensitive information of users, or encrypt certain types of
files in the machine [1,2]. Evidence shows that emails with malicious PDF attach-
ments have caused severe damages to businesses and governments [3]. Therefore,
the techniques of how to detect malicious PDF files in advance before opening
them have been proposed and gained more and more attention nowadays.

Our proposed method is a novel technique that employs the image classifica-
tion for PDF malware detection. A PDF file usually consists of multiple objects,
which can be analogous to nodes in a huge tree structure that each node has a
parent node and multiple children nodes. Taking advantage of this characteristic
of PDF, we trace the tree-like structure to extract all objects in PDF files by
a specific order. After applying the malware visualization technique, we build a
dataset containing images of PDF files. With those images obtained from PDF
files at hand, we can then train our malware detection model to distinguish the
malicious PDF files from the benign ones.

The rest of the paper is organized as follows. In Sect. 2 we will briefly describe
the structure and the characteristics of PDF files. Section 3 will be discussing the
related works of malware detection on PDF files. More detail of our experiment
and proposed technique will be discussed in Sect. 4. We will present our result
in Sect. 5. And finally, our conclusions will be narrated in Sect. 6.

2 Background

PDF files are normally divided into four sections: Header, Body, ‘xref’ Table,
and Trailer as shown in Fig. 1.
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Fig. 1. The main structure of PDF.

The header specifies the PDF version of the file and some hidden characters
to inform software to recognize the file as the format of PDF. The body, as the
biggest part of a PDF file, contains all the main contents of the file, including
all the objects. Each object may contain multiple tags, and indirect objects to
more detailedly describe the corresponding object. For several files with a special
purpose, objects may also attach streams with information of text, images, or
even scripts. The main purpose of the ‘xref’ table is to store the relative address
of objects in each section in order to optimize the efficiency of object finding.
Lastly, the trailer, which is the starting point to read a PDF file, instructs the
object number of the root object, the size of the PDF file, and some additional
information, including the most important part about the address of ‘xref’ table.

Because of the flexibility PDF provides, attackers utilize a variety of methods
to sneak any kind of malicious scripts or make the target files obfuscate to evade
malware detection tools. Such as dividing a file into multiple sections to create
multiple ‘xref’ tables, deleting size or root object’s information in trailer, or
utilize one or more encoding methods to encrypt scripts inside an object. These
alterations will not damage the readability of a PDF file, but make it vulnerable
for attackers to steal sensitive information.

To reduce the detection error caused by an attacker’s obfuscation, our method
focuses on visualizing PDF files to seek the relative pattern of malicious files
despite them having been obfuscated.

3 Related Work

More and more researchers utilize machine learning in the field of malware detec-
tion. However, only a few specialists take advantage of image and object detec-
tion, which results in better efficiency and accuracy.

O’Shaughnessy et al. [4] utilized byte plot technique to fill the bytes of exe-
cutable files into RGB images with three kinds of Space-Filling Curve patterns,
including Z-order, Gray-code, and Hilbert curves. They extracted image fea-
tures with Local Binary Patterns (LBP), Gabor filters, and Histogram of Gradi-
ents (HOG) and trained them with K-Nearest Neighbor (KNN), Random Forest
(RF), and Decision Trees (DT) models. After all, the results of the proposed
method were compared with GIST Byte Plot Method [5].
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Fu et al. [6] focused on analyzing files of PE format. After section division,
which divided a file into code section, data section, and other natural sections,
they calculated the entropy value, byte value, and relative section size of the
sections independently. Besides image malware visualization, they also recorded
the ASCII strings that appeared in the file. With the image features and the
string features, they trained their method with multiple classifiers in order to
achieve high accuracy and performance.

Bhodia et al. [7] transferred binary files into grayscale images directly. After
feature extraction they trained the dataset with a simple KNN classifier. Darus
et al. [8] also transformed files into grayscale images, but they focused on .apk
files for Android applications.

Although Kapoor et al. [9] did not do malware visualization, they extracted
the control flow of malwares while dividing codes into multiple basic blocks.
By traversing the basic code blocks, extracting features and opcode sequence,
they achieve high accuracy with multiple machine learning classifiers. Han et al.
[10] also focused on analyzing the control flow of malwares. But after parsing,
extracting features, and hashing with specific hash functions, they filled in colors
for each pixel accordingly and created a unique RGB image for every malware
sample. After the process, they successfully differentiated different malware fam-
ilies in a vast malware dataset.

While researchers mentioned above focused on a wide variety of file formats,
such as PE files, normal executable files, mobile applications, etc., few of them
noticed the dangers of PDF files [11–13].

Filiol et al. [14] and Maiorca et al. [15] did detailed investigation of multiple
malicious PDF files detection techniques proposed in recent years. According
to the investigation, we can acknowledge that even fewer researchers combine
malware visualization with PDF malware detection.

The most inspiring research was done by Corum et al. [16]. Through byte plot
and Markov plot they directly transferred raw PDF files into grayscale images
and utilized SIFT and ORB to extract keypoints of the images as the main fea-
tures of the files. Besides keypoint features, they also extract texture features of
images, including LBP, local entropy, and Gabor filter. By comparing multiple
combinations of keypoint features and texture features, their method results in
an accurate model for object detection. While directly extracting features from
grayscale images without examining the structure or even contents in PDF files,
their method lacks a reasonable explanation.

Through the proposed methods mentioned above, we can easily notice that
there are multiple malware visualization techniques done to all kinds of file for-
mats, but fewer of them focused on PDF files. With all the inspiration from
those researches, this paper contributed a novel malware visualization technique
combined with machine learning which is tailored for PDF files.



PDF Malware Detection Using Visualization and Machine Learning 213

4 Methodology

4.1 Overview

Fig. 2. An overview of the proposed method.

In our observation, an increasing amount of PDFs containing various mutations
of malicious scripts has been exploited by hackers nowadays to lure the victims
to open or browse the file, which usually comes as an attachment of email. Those
malicious PDFs contain similar patterns of scripts, structure of tags and contents
in objects, and tree-like composition order.

Our proposed method consisting of several processing steps is shown in Fig. 2.
First, we traverse the whole PDF file by its structure defined in the PDF spec-
ification. Next, we extract three main features, including children, tags, and
contents. In step three, we apply the SimHash algorithm in order to compare
the similarity between image results. After hashing, we assign different colors
according to the hash value of every object and generate an RGB image for each
PDF file. Finally, we train our malware detection model with the images obtained
from the previous step. Details will be described in the following sections.

4.2 PDF Objects Traversal

According to the PDF structure mentioned in section II, a standard PDF struc-
ture can be divided into four parts: header, body, ‘xref’ table and trailer [17].
The correct way to parse a PDF file should start from the trailer to the header.

From the trailer, we can obtain the detailed information of the file, including
which object is the root, how many objects are there in the file, and the relation-
ships among the objects as shown in Fig. 3. Therefore, attackers will not let such
information be easily discovered, they will try to obfuscate or even remove the
information which in fact will not affect the readability of the file. Apart from
the trailer, we can also get important information by reading the two numbers in
the first line of the ‘xref’ table as shown in Fig. 4, which indicate the first object
and the size of the section, respectively. Due to the flexibility characteristic of a
PDF file, there might be multiple ‘xref’ tables and trailers, which in turn results
in multiple root objects for different sections.
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Fig. 3. An example of trailer. Fig. 4. Information of the root object
and total objects in the section can be
observed from the first line of ‘xref’
Table.

After identifying the root object, we start the process of object traversal.
During the traversal, we extract the three main features from every object as
shown in Fig. 5.

Fig. 5. The three main features we extract from each object.

According to the PDF structure, under an object there might be multiple
data types that start with “/” to describe it. We treat them as the tags of an
object. Next, some tags can be followed by other objects called indirect objects
that contain more information about the tag. Those indirect objects are treated
as the object’s children as shown in Fig. 6.

Finally, many malicious PDF files can contain scripts which will be trig-
gered when opening the files, moving the mouse cursor on the document, or
clicking any (in)visible button in the files. In order to take the plain instead of
encrypted contents as features, streams with suspicious properties such as “JS”,
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Fig. 6. Sample of tags (red rectangle) and children (yellow rectangle) relatively. (Color
figure online)

“JavaScript”, “MacroForm” and “XFA” are decompressed and saved as objects’
contents.

By doing depth first search (DFS) on all children objects, we can simulate
the tree-like structure of the PDF file. Afterwards, tags and contents of every
object in a PDF file will be extracted by the order of the tree-like structure of
the PDF file. The complete procedure is shown in Algorithm 1.

Algorithm 1. PDF objects traversal
1: Obtain root objects through trailer and ‘xref’ table
2: for all root objects do
3: if has contents with malicious tags then
4: do flatedecode to decompress contents

5: Put children in traversing queue
6: Do DFS to traverse all the objects

4.3 Malware Visualization

After the preprocessing described above, a dataset containing features such as
tags and contents of every object in a single PDF file is created. To find out the
similarity of features among PDF files, tags and contents are combined into one
string, which is computed by SimHash and stored as strings in binary format.

SimHash is a local sensitive function and is adopted by Google to distinguish
duplicate web pages. The main characteristic of SimHash is that though the
original texts are similar, the output after hashing will not be completely different
like other hash functions.

Through SimHash, we can obtain a number which can be translated into
binary representation. To prove that SimHash suits our experiment, we can
know that the hamming distance is related to the similarity between two texts
by observing the binary values. Afterwards, the binary values will be divided
into three sections with equivalent length in order to retrieve the relative values
of RGB pixels to form a color image as shown in Fig. 7.

To create an image formed by multiple RGB pixel blocks, two parameters
are employed: color, which is given by the output value of SimHash; size, the
height of an image block. To obtain the size, besides tags’ length, we also have to
retrieve the correct length of contents. To avoid some extremely lengthy scripts
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Fig. 7. Detailed example of feature extraction.

with unused padding words that attackers intend to evade malware detection, we
reduce the contents’ length by a specific ratio which we obtained by averaging
all contents’ length in our PDF dataset. Then the tags’ and contents’ length of
a single object are accumulated and are made to be related to the height of a
color block.

By iterating the steps shown in Algorithm 2, an RGB image can be formed
with multiple color blocks with specific order representing different objects and
the relative order in a PDF file. Lastly, for better classification, images are scaled
to “200 × 150” as shown in Fig. 8.

Algorithm 2. Malware Visualization
1: for every traversed object do
2: Do SimHash with Tags and Contents
3: Acquire output from SimHash and transform into binary
4: Divide binary string into 3 equal parts to get relative RGB color
5: Reduce content length with specific ratio
6: Accumulate Tags Length and Content Length to get the height of color block

7: Draw images with all the RGB color and Height
8: Scale images into 200 × 150

5 Experimental Result

To prove whether our result matches the assumption that currently most mali-
cious PDFs are generated by certain manner. We utilize Structural Similarity
Index Measure (SSIM), which is good at comparing the similarity by recognizing
the whole structure of images.

First, we randomly chose a malicious image and a benign image. Then, we
compare the chosen images with both malicious and benign datasets indepen-
dently. Finally, the average SSIM value between each dataset is acquired as
shown in Fig. 9. From the result, the similarity between malicious PDFs can
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Fig. 8. Sample of the resulting image.

be acknowledged, while benign images seem to have more diversity related to
malicious images. We can tell that malicious PDFs are much more similar than
benign images, which implies our assumption and method are reasonable. The
failure of the malware detection may be caused by the certain amount of simi-
larities among the malicious and benign images.

Fig. 9. SSIM comparison between malicious and benign images.

Our datasets consisting of 9000 malicious and benign PDF files each are from
Contagio, which is a collection of malware samples and benign samples for com-
parison. After the malware visualization process described above, two image
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datasets transferred from malicious and benign PDF files are created. To express
our method concretely, we compare images from malicious PDF files which
belong to the same CVE as shown in Fig. 10. Due to the limitation of the
datasets, most of the malwares are not tagged with CVE numbers while the
rest that tagged with CVE are outdated. However, we can still recognize that
there exist obvious differences in patterns among malicious images.

Fig. 10. Patterns between malicious PDF files from the same CVE can be easily
observed.

To further examine the proposed method, both the image datasets, which
contain more than 9000 files of benign and malicious PDF files each, are further
divided into training and validation sets with the ratio of 60% and 40% respec-
tively. In order to prove the feasibility of our proposed method, the images will be
trained with a built-in model of Tensorflow library, which is the VGG19 model.

The VGG19 model [18], which was proposed by Visual Geometry Group from
Oxford University, is specialized in image classification. With multiple smaller
convolution layers instead of larger ones, VGG19 results in higher non-linearity
and fewer parameters required, making it more accurate and more efficient.

With the characteristics that VGG19 offered, we utilize it to prove our
method further. The performance of our method is measured by using two pri-
mary metrics: accuracy and F1-score.

The accuracy can be easily observed through the confusion matrix shown as
Fig. 11. To sum up, our proposed method results in high accuracy of 0.973 and
relative F1-score of 0.975.
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Fig. 11. Confusion matrix of the experimental result.

6 Conclusion

With portability, flexibility, and stability, Portable Document Format (PDF)
becomes one of the most used file formats worldwide. People utilize PDF files to
store documents, submit resumes or even transport sensitive information. The
advantages and popularity also turn PDF files into huge targets for malicious
attackers. Our proposed method is based on the idea of maximizing the utiliza-
tion of PDF format’s characteristics. First of all, after objects traversing and
features extraction, we applied SimHash to retrieve relative RGB color values.
When finishing the preprocessing to every PDF file, image datasets of benign
and malicious PDF files are created. At last, the datasets are trained by the
VGG19 model to achieve 0.973 accuracy and 0.975 F1-score. Our results show
that the proposed method received relatively excellent performance. It indicates
that there are some patterns for sure to recognize benign or malicious PDF files
by turning them into images with reasonable methods.

For further research, besides optimizing our proposed method, distinguishing
different malware families between a huge dataset of malwares will also be our
main focus.
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Abstract. Network attack is still a major security concern for orga-
nizations worldwide. Recently, researchers have started to apply neural
networks to detect network attacks by leveraging network traffic data.
However, public network data sets have major drawbacks such as limited
data sample variations and unbalanced data with respect to malicious
and benign samples. In this paper, we present a new end-to-end app-
roach to automatically generate high-quality network data using proto-
col fuzzing, and train the deep learning models using the fuzzed data to
detect the network attacks that exploit the logic flaws within the net-
work protocols. Our findings show that fuzzing generates data samples
that cover real-world data and deep learning models trained with fuzzed
data can successfully detect real network attacks.

Keywords: Network attack · Protocol fuzzing · Deep learning

1 Introduction

Cyberattacks happen constantly with growing complexity and volume. As one
of the most prevalent ways to compromise enterprise networks, network attack
remains a prominent security concern. It can lead to serious consequences such
as large-scale data breaches, system infection, and integrity degradation, partic-
ularly when network attacks are employed in attack strategies such as advanced
persistent threats (APT) [11,20]. Among the different types of network attacks,
the logic-flaw-exploiting network attacks, which exploit the logic flaws within the
protocol specifications or implementations, are very commonly seen. Detecting
logic-flaw-exploiting network attacks is very important considering their common
presence in APT campaigns. However, it is still a very challenging problem.

Network attack detection methods can mainly be classified into two cate-
gories: host-independent methods and host-dependent methods. The former solely
relies on the network traffic, while the latter [8] depends on additional data

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
K. Barker and K. Ghazinour (Eds.): DBSec 2021, LNCS 12840, pp. 221–234, 2021.
https://doi.org/10.1007/978-3-030-81242-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81242-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-81242-3_13


222 Q. Zou et al.

collected on the victim hosts. The host-dependent methods have some evident
drawbacks: they have fairly high deployment costs and operation costs; they are
error-prone due to necessary manual configuration by human administrators.
Therefore, host-independent detection methods are highly desired as they can
decrease deployment and operation costs while reducing the attack surface of
detection system. Unfortunately, we found that the existing host-independent
methods, including the classical intrusion detection approaches, often fall short
in detecting some well-known and commonly used network attacks.

Recently there is a trend for using machine learning (ML) and deep learn-
ing (DL) techniques to detect network attacks. Nevertheless, the DL approaches
could also achieve mixed results [6], if they do not address the following two
challenges. The first challenge is useful data sets. Neural networks require high-
quality data and correct labels, which are hard to obtain in real world. Real-world
network traffic is often flooded with benign packets, which makes labeling very
difficult. Although public data sets [1,5,12,15,16] for network attacks are avail-
able, they are barely useful in detecting logic-flaw-exploiting network attacks
due to unbalancing and different focuses. The second challenge is to identify
appropriate neural networks and train the models. There are a variety of neural
network architectures, including multi-layer perceptron (MLP), convolutional
neural network (CNN), recurrent neural network (RNN), etc., which have differ-
ent characteristics and capabilities. Questions such as which architecture works
best for network attack detection, and how to tune the hyper-parameters within
models for optimization, are not yet answered.

In this paper, we propose an end-to-end approach to detect the logic-flaw-
exploiting network attacks. The end-to-end approach means it starts with acquir-
ing data and ends with detecting attacks using the trained neural networks. To
address the data generation challenge, we propose a new protocol fuzzing-based
approach to generate the network traffic data. With protocol fuzzing, a large
variety of malicious network packets for a chosen network attack can be gen-
erated at a fast speed. Since the network packets are all generated from the
chosen network attacks, they can be labeled as malicious packets automatically
without much human efforts. Protocol fuzzing can also generate data with more
variations than real world data, or even data that are not yet observed in real
world. Moreover, these merits remain when protocol fuzzing is leveraged to gen-
erate the needed benign network packets. It should be noted that our method
is different from data synthesis. Data synthesis is to enhance existing data [9],
while our method is to generate new data.

To address the neural network model training challenge, we propose the fol-
lowing procedures: 1) For network attacks (PtH) where we can identify fields of
interest, we directly examine the data, and then propose the suitable data rep-
resentation and neural network architecture. 2) For other network attacks that
the field of interests are not obvious, such as DNS cache poisoning and ARP
poisoning attacks, we apply different neural network architectures to find out
the ones with best performance. We propose to use accuracy, F1 score, detection
rate, and false positive rate as the metrics to evaluate the neural networks. All
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models are trained on the data set with fuzzing involved. We then select the
models that work best and evaluate them further on both the fuzzing data set
and real attack data set with no fuzzing involved.

The main contributions of this work include: 1) Proposing a DL based end-to-
end approach to detect the logic-flaw-exploiting network attacks; 2) Proposing
protocol fuzzing to automatically generate high-quality network traffic data for
applying DL techniques; 3) Proposing and evaluating neural network models for
logic-flaw-exploiting network attack detection; 4) Demonstrating the effective-
ness of our approach with three classical logic-flaw-exploiting network attacks,
including PtH attack, DNS cache poisoning attack, and ARP poisoning attack.

The remaining of the paper is structured as follows. Section 2 discusses related
works. Section 3 presents our experiments setup. Section 4 presents evaluations.
Section 5 presents some discussions. Section 6 presents conclusions.

2 Related Work

The research community has been tackling the network attack detection problem
from different perspectives with both classical and novel approaches.

Traditional Network Attack Detection Approaches. Traditionally, people
usually detect network attacks with approaches such as signature-based, rule-
based, and anomaly detection-based methods. In the past, signature-based intru-
sion detection system (IDS) usually manually crafted signatures [17], which heav-
ily depends on manual efforts. The current techniques focus more on automatic
generation of signatures [10]. However, signatures need to be constantly updated
to align with new attacks and signature-based detection can be easily evaded
by slightly changing the attack payload. Similar problems also exist for rule-
based methods [4], which constantly need updates to the rules. As for anomaly
detection-based methods, although they require much less manual efforts for
updating, they tend to raise too many false positives [2].

Traditional ML and DL for Network Attack Detection. Network attacks
are essential for APTs. Some common network attack types include probing,
DoS, Remote-to-local, etc. Both traditional ML and DL methods have been
adopted for network attack detection. Some focus on one type of network attack
and perform binary classifications. For example, MADE [14] employs ML to
detect malware C&C network traffic, Ongun et al. [13] employs ML to detect bot-
net traffic, and DeepDefense [18] employs DL to detect distributed DoS (DDoS)
attacks. Others [6,19] try multi-class classifications, which include one benign
class and multiple malicious classes for different kinds of network attacks. The
above-mentioned research works all use public data sets.

Network Data Sets for Training and Testing Detection Models. To
apply DL for network attack detection, data sets are required. Commonly
used public data sets include KDD99 [15], NSL-KDD [5], UNSW-NB15 [12],
CICIDS2017 [16], and CSE-CIC-IDS2018 [1]. The public data sets are all gener-
ated in test-bed environments, with simulated benign and malicious activities.
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However, we found that a main “missing piece” in these public data sets is that
they do not focus on logical-protocol-flaw-exploiting network attacks such as
PtH. (These data sets focus on worms, Botnets, backdoors, and DoS/DDoS.)
Moreover, we observe that the data generation methodology used in these data
sets, if being employed, would very likely result in data sets that fail to meet the
unique training data requirements (e.g., the diversity in training data) of deep
learning.

Protocol Fuzzing. Fuzzing is originally a black-box software testing technique,
which reveals implementation bugs by feeding mutated data. A key function of
fuzzers is to generate randomized data which still follows the original seman-
tics. There are tools for building flexible and security-oriented network proto-
col fuzzers, such as SNOOZE [3]. Network protocol fuzzing frameworks such as
AutoFuzz [7] were also presented. They either act as clients, constructing packets
from the beginning, or act as proxies, modifying packets on the fly. We use pro-
tocol fuzzing for a different purpose to directly generate high-quality data sets
for training neural networks. Instead of using the tools/frameworks mentioned
earlier, we prepare our own fuzzing scripts for this specific purpose.

3 Data Generation and Detection Model Training

Since the available public data sets are barely useful for detecting the logic-flaw-
exploiting network attacks, we generate comprehensive benign and malicious
data sets from scratch. We have performed data generation for all three demon-
stration attacks including PtH, DNS cache poisoning, and ARP poisoning. ARP
poisoning attack only requires one malicious packet for a successful attack, so we
call it the single-packet attack. PtH and DNS cache poisoning attacks, however,
need multiple malicious packets for one successful attack, so we call them multi-
packet attacks. Due to page limits, we only discuss data generation details about
multiple-packet attacks in this section because they are more complicated than
single-packet attacks. All attacks are carried out thousands of times so that a
fair amount of malicious data can be collected. Benign data generation also lasts
long enough to gather the commensurate amount of data compared to malicious
data. The network packet capturing is performed at the victim’s side.

3.1 Protocol Fuzzing and the Implementation

In client-server enterprise computing, the server-side protocol implementations
are often complex and error-prone. Hence, there is a need to thoroughly test the
server-side implementation. Protocol fuzzing tools [3,7] are usually functioning
at the client side to trigger unexpected errors on the server programs. A main
difference between protocol fuzzing and software fuzzing is that the protocol
specification, especially its state transition diagram, will be used to guide the
fuzzing process. In this way, stateful fuzzing tests could be performed.

This paper leverages protocol fuzzing to change the contents of network pack-
ets, specifically, the values of some fields in the packets. If a field is to be fuzzed,
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it will be assigned with pre-determined values, rather than the values chosen by
the network client program. The fuzzed fields are chosen based on the following
steps: 1) All fields in the packet of the attack-specific protocol are considered.
2) One field on the list will be picked and fuzzed by assigning pre-determined
values, rather than values that are normally provided by the network programs.
3) The success rate of the attack after fuzzing the field will be monitored. If the
attack success rate is above 50%, it confirms that this field can be fuzzed. 4)
After one field is fuzzed, the above steps will be repeated for the next field on
the list, while keeping the already fuzzed field(s) still fuzzed.

An additional benefit of protocol fuzzing is that it can generate and cover
malicious data samples which may otherwise be overlooked. In deep learning,
the changed values for the fuzzing fields may make the malicious data samples
misclassified as benign. With protocol fuzzing, if the malicious data are generated
in attacks, they’ll be labeled as malicious automatically. Thus, these malicious
data samples won’t be omitted in the malicious data set.

3.2 PtH

PtH Attack. PtH is a well-known technique for lateral movement. In remote
login, plain text passwords are usually converted to hashes for authentication.
Some authentication mechanisms only check whether hashes or the calculation
results of them matches or not. PtH relies on these vulnerable mechanisms to
impersonate normal users with dumped hashes. We assume that: (a) normal
users use benign client programs that are usually authenticated through more
reliable mechanisms other than just using hashes, and that (b) attackers cannot
get the plain text passwords and have to rely on hashes to impersonate a normal
user. We can capture the network packets at the server side and find out which
kind of authentication mechanism is used by a user: the more reliable mechanism,
or the vulnerable mechanism using only hashes. The login sessions using those
vulnerable authentication mechanisms can then be identified as PtH attack.

Windows remote login processes, if not properly configured, can use such
vulnerable authentication mechanisms. Windows remote login can be divided
into three stages, protocol and mechanism negotiation (initial communication),
authentication, and task-specific communication (afterwards communication).
Each stage contains multiple network packets, and hashes are used in the authen-
tication stage for impersonation. The authentication stage can be viewed as a
sequence made up of client’s authentication request, server’s challenge, client’s
challenge response and server’s authentication response. The client first sends a
session setup request to the server; then the server responds to the client with a
challenge; on receiving the challenge, the client uses the challenge and hashes to
do calculations and sends back the result in challenge response packet; finally,
the server verifies the result and sends back authentication response indicating
whether authentication succeeds or not.

Data Generation. We set up a Windows 2012 Server R2 as the victim server
machine, a Windows 7 as the user client machine, and another Kali Linux as the



226 Q. Zou et al.

attacker machine. The data sets are automatically generated by protocol fuzzing,
and the protocol of interest here is Server Message Block (SMB), or a newer
version of it, denoted as SMB2. SMB/SMB2 provides functions including file
sharing, network browsing, printing, and inter-process communication over a net-
work. In our data generation, more than 15 fields are fuzzed in each SMB/SMB2
packets, including SMB flags, SMB capabilities, and fields in SMB header,
etc. We leverage the PtH script in Metasploit Framework to launch the attack.
The process is to start the Metasploit Framework, set exploit parameters, start
the exploitation, and then wait 25 s while monitoring the attack status. If the
waiting time is too short, the attack may be stopped before completion. While
the console is waiting at the foreground, the exploitation is ongoing at the back-
ground. Network packets in all the three stages, initial communication, authenti-
cation, and afterwards communication, are fuzzed. After the exploitation, based
on whether the attack succeeds or not, we may continue to establish C&C, like
what a real attacker will do. (The C&C network traffic are mainly TCP packets,
which are not used for attack detection. Details are discussed later.) Finally, we
quit all possibly established sessions and the Metasploit Framework, and then
either freshly start another fuzzing iteration to generate more data or stop. The
sign of a successful PtH attack is an established reverse shell, which can be
observed at the attacker’s side.

The same fuzzing method has also been applied in the generation of benign
data. We first prepare a list of normal commands, including files reading, writing,
network interactions, etc. For each benign fuzzing iteration, we randomly choose
a command from the list, and then use valid username, plain-text password, and
tool to log in to the server and execute the command.

Due to fuzzing, not all PtH attempts or benign access attempts can be guar-
anteed to succeed. For failed PtH attempts, we remove them from malicious
data because they do not generate real malicious impact, and they cannot be
categorized as benign either because they are generated with attacker tools for
malicious purpose. For failed benign accesses, we keep them in benign data,
because normal users can also have failed logins due to mistakes like typos.

In one PtH attack, there are packets for initial communications, authenti-
cation and afterwards communications. One data sample consists of multiple
packets, and those packets may come from one, two, or all of the three stages
above. Besides, one complete PtH attack or benign activity most certainly con-
tains more packets than one data sample can represent. When labeling, if the
session is malicious, then all data samples generated from this session is labeled
malicious, and the same is also true for the benign cases.

Detections. To detect PtH attack with neural networks, we have two key
insights that help determine the representation of data samples: 1) Network
communication for authentication is actually a sequence of network packets in
certain order. An earlier packet can affect the packet afterwards. For example,
the first several packets between a server and a client may be used to commu-
nicate and determine which protocol to use (e.g. SMB or SMB2), and packets
afterwards will use the decided protocol. The attack is to get authenticated by
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the server, which requires a sequence of packets to accomplish. Therefore, each
data sample should be a sequence of packets, rather than an individual packet.
2) PtH relies on authentication mechanisms that legitimate users usually don’t
use. The network packets for the benign and malicious authentication are differ-
ent. Since both authentication methods use SMB/SMB2 packets, the differences
between them thus exist in the fields of the SMB/SMB2 layer. Therefore, data
in SMB/SMB2 layer is used for PtH detection. In addition, the differences of field
values between benign and malicious authentication will be helpful to distin-
guish them. For this attack, we choose Long-short term memory (LSTM) as the
architecture for the neural network.

Fields of interest in PtH reside in the SMB/SMB2 layer. They are cmd (2),
flags (4), and NT status (4). Numbers indicate the field lengths in bytes. For
example, the cmd field in IP layer has 2 bytes.

3.3 DNS Cache Poisoning

DNS Cache Poisoning. A major functionality of DNS is to provide the map-
ping between the domain names and IP addresses. When a client program refers
to a domain name, the domain name needs to be translated to an IP address.
The DNS servers are responsible to perform such translation.

DNS cache poisoning attack can target local DNS servers. When the local
DNS server receives a query which it does not have the corresponding records
(first stage), it will inquire the global DNS server (second stage). On receiving the
response (third stage), the local DNS server saves this record in its cache to avoid
inquiring the global DNS again when receiving the same query. It then forwards
the response to the user machine (fourth stage). However, the DNS server cannot
verify the response at the third stage, and this is where the attacker can fool the
local DNS server. Pretending as the global DNS server, the attacker can send
a spoofed DNS response to the local DNS server with falsified DNS records. If
the fake response arrives earlier than the real one, the local DNS server will save
the falsified record to its cache and forward it to the user machine. When new
queries about the same domain name comes in, the local DNS server will not
query the global DNS server again because the corresponding record has been
cached. Consequently, it will answer the user machine with the falsified record,
until the record expires or the cache is flushed.

Data Generation. For this attack, ten fields, such as time to live values in
different layers, are fuzzed. The test bed contains three machines: a local DNS
server whose DNS cache is flushed periodically, a user machine which sends
out DNS queries to the local DNS server periodically, and an attacker machine
which sniffs for DNS requests sent by the local DNS server and answers them
with spoofed responses as in the attack scenario, or does nothing otherwise.

In the malicious scenario, we make the user machine ask for the IP address
of one specific domain name from the local DNS server using command dig. The
domain name is one that does not have a corresponding record on the local DNS
server, thus enabling the DNS cache poisoning attack towards it. The attacker



228 Q. Zou et al.

machine sniffs for DNS queries with that specific domain name sent out from the
local DNS server, and responds them with fuzzed DNS responses with falsified
IP addresses. Then the DNS cache gets poisoned and the user machine gets
the falsified DNS record. We keep the user machine sending out DNS queries
periodically, so that the above process repeats many times and a large amount
of data can be generated. However, as discussed earlier, if the local DNS server
has the record for the domain name in its cache, it will not send out DNS queries
for it. This is why we flush the DNS cache of the local DNS server, so that it
remains vulnerable in different iterations. If the attack is successful, the falsified
IP addresses can be seen on the results of dig.

In the benign scenario, we prepare a list containing 4098 domain names. In
each iteration, the user machine randomly chooses one domain name from the
list, and sends a request to the local DNS server. To resemble the malicious
scenario, the cache of local DNS server is also flushed periodically so that the
local DNS server always needs to communicate with the global DNS server.

The domain name used in the malicious scenario and the domain names
used in the benign scenario do not overlap. Both the domain names and the
IP addresses (falsified or genuine) are excluded during training, which can be
treated as signatures. Because DNS cache poisoning is a multi-packet attack, the
labeling to data samples is also based on sessions, similar to PtH attack.

Detections. Network packets from DNS cache poisoning attack form sessions
which consist of queries and answers. Therefore, each data sample should include
data from multiple network packets. In addition, it is not clear which fields may
be of importance, so we need to investigate the packet content, rather than
simply generalizing the packets with packet types as we did in PtH detection.
The data samples are processed to be image-like. That is, each row represent
one packet, and each element in the row represent one byte in that packet. We
use a convolutional neural network (CNN) to do the classifications, which has
been proven to work well in image classification problems. The labeling is done
towards each data sample, which is the entire matrix, rather than an individual
packet. Matrices generated from malicious data are labeled as malicious, and
matrices from benign data are labeled as benign. Similar to PtH detection, we
have trained a series of neural networks with different settings for comparisons.

Fields of interest in DNS cache poisoning attack reside in the IP, UDP and
DNS layers. In the IP layer, fields of interest are Version (4/8), IHL (4/8), DSF
(1), TLen (2), ID (2), Flags (3/8), FragOff (13/8), TTL (1), port (1), and chksum
(2). In the UDP layer, fields of interest are src port (2), dst port (2), hd len (2),
and chksum (2). In the DNS layer, fields of interest are TID (2), flags (2), q
(2), AnRR (2), AuRR (2), and AdRR (2). Numbers indicate the field lengths in
bytes. For example, the FragOff field in IP layer has 13/8 bytes, meaning that
this field consists of 13 bits (one byte equals to eight bits).
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4 Evaluations

This section provides the evaluation results of the three demonstration attacks
on the selected best-performing and best-detecting models. For comparison with
DL models, we have also trained traditional ML models, including k-nearest
neighbor (kNN) models, support vector machine (SVM) models with various
kernels, decision tree (DT) models, and random forest (RF) models. They are
trained, selected, and evaluated on the same data sets. For PtH and ARP poison-
ing, the traditional ML models’ data samples and features are the same as those
for DL models. However, for DNS cache poisoning, the same data sample and
feature cannot be used because the input space is too large for traditional ML
models to handle. Therefore, we employed principal component analysis (PCA)
for dimension reduction, and only select the top-rated one-fifth PCA features.
On average, they can explain about 97.09% of the original data.

4.1 Model Selection

For model selection, we consider not only the perspective of neural network per-
formance, but also the perspective of security. We use accuracy Acc and F1 score
(F1 ), two commonly used metrics, to measure the classification, and use detec-
tion rate (DR) and false positive rate (FPR) for attack detection effectiveness.
DR shows the detector’s ability of detecting attacks. FPR shows how likely the
detector raises false alarms. We call the best-performing model as the one that
gets the highest average of Acc and F1, denoted as P = Acc+F1

2 , and the best-
detecting model as the one that gets the highest average of DR and 1 − FPR,
denoted as D = DR+1−FPR

2 . If FPR cannot be calculated (no benign data sam-
ple), we let D = DR. We simply take the average because all the chosen metrics
are equally important for evaluations.

The generated fuzzing data set is randomly split into two parts: 80% as the
training set, and 20% as the test set. The training set is then further randomly
split into four parts of about the same size, upon which 4-fold cross-validation
is employed to avoid over-fitting. All the reported results are the average results
among four folds. The best-performing and best-detecting models are selected
based on the average P and D results on the validation set across all four folds.

4.2 Data Sets

Table 1 shows the data set statistics. The data set contains fuzzed set (split
into training set and test set) and non-fuzzed set (real attack set). A data set
with sufficient and balanced data samples is essential for training the models
effectively. Lack of training data can result in poor results, while biased data
sets may result in biased models. If the fuzzing data set is already balanced, we
directly use all the data samples without balancing. Otherwise, we perform data
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Table 1. Data set statistics.

Attacks Set Size Benign to malicious ratio

ARP poisoning Training 9584 1.005:1

Test 2400 0.982:1

Real attack 17471 0:1

PtH∗ (best-performing) Training 3932 1.364:1

Test 983 1.329:1

Real attack 214 0:1

PtH∗ (best-detecting) Training 2556 0.974:1

Test 640 0.839:1

Real attack 192 0:1

DNS cache poisoning∗ Training 30928 1.003:1

Test 7732 0.988:1

Real attack 263 0:1
∗For multi-packet attacks, we only list the data set statistics corresponding
to the best-performing or best-detecting models.

set balancing first. Specifically, if the benign data sets have significantly more
data samples than the malicious data sets, we down-sample the benign data sets
to match the size of malicious data sets, and vice versa.

4.3 Best-Performing Models

Table 2 presents the evaluation results on the best-performing models for each
network attack. All models get acceptable to good results on training set and test
set. For multi-packet attacks, DL models are substantially better than
traditional ML models, especially on real attack set. In PtH detection,
the LSTM model achieves near 99% accuracy on the real attack set, while ML
models cannot reach 1/4 accuracy. In DNS cache poisoning detection, the CNN
model’s accuracy on the real attack set is 100%, while ML model can reach about
47% accuracy at most. Selected DL models’ F1 scores are also far better than
those of traditional ML models. For ARP poisoning detection, DL models do not
have many advantages over traditional ML models, and all models’ performances
downgrade on real attack set comparing to those of training set and test set. The
reason is that the real attack set for ARP poisoning is generated on a different
LAN, with different valid MAC and IP addresses.
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Table 2. Evaluation results on best-performing models.

Attacks DL or ML Model type1 Training set Test set Real attack set

ARP DL MLP 99.91% 0.9991 99.75% 0.9975 72.84% 0.8429

CNN 99.94% 0.9994 99.79% 0.9979 73.02% 0.8441

RNN 99.91% 0.9991 99.75% 0.9975 72.83% 0.8428

LSTM 99.91% 0.9991 99.75% 0.9975 72.83% 0.8428

ML kNN 99.90% 0.9990 99.93% 0.9993 81.99% 0.9010

SVM-Linear 99.87% 0.9987 99.90% 0.9990 72.83% 0.8428

SVM-Poly 99.96% 0.9996 99.93% 0.9993 72.83% 0.8428

SVM-Radial 99.97% 0.9997 99.93% 0.9993 72.83% 0.8428

DT 99.84% 0.9984 99.90% 0.9990 82.35% 0.9032

RF 99.97% 0.9997 99.93% 0.9993 72.83% 0.8428

PtH DL LSTM-P 98.45% 0.9865 98.07% 0.9831 98.96% 0.9948

ML kNN 96.77% 0.9682 96.53% 0.9658 23.44% 0.3797

SVM-Linear 96.89% 0.9694 96.72% 0.9674 13.02% 0.2304

SVM-Poly 97.75% 0.9779 94.69% 0.9479 23.44% 0.3797

SVM-Radial 98.07% 0.9810 93.72% 0.9378 18.23% 0.3084

DT 94.70% 0.9467 95.44% 0.9533 18.23% 0.3084

RF 100.00% 1.0000 97.99% 0.9798 14.06% 0.2466

DNS DL CNN 99.87% 0.9987 99.73% 0.9973 100.00% 1.0000

ML kNN 98.67% 0.9867 98.35% 0.9834 0.00% 0.0000

SVM-Linear 96.01% 0.9608 95.17% 0.9527 0.00% 0.0000

SVM-Poly 99.63% 0.9963 98.70% 0.9870 0.00% 0.0000

SVM-Radial 100.00% 1.0000 98.66% 0.9867 0.00% 0.0000

DT 87.01% 0.8771 86.88% 0.8754 47.01% 0.6395

RF 100.00% 1.0000 97.50% 0.9752 34.19% 0.5096

1For multi-packet attacks, only proposed DL models are presented.

4.4 Best-Detecting Models

Fig. 1. Evaluation results on the best-detecting models.



232 Q. Zou et al.

Figure 1 presents the evaluation results of best-detecting models. FPRs on real
attack sets are not presented because there is no negative data sample, so FPR
cannot be calculated. Similar to the best-performing case, all models get accept-
able to good results on training and test set. For single-packet attack detection,
DL models do not have many advantages over ML models. For multi-packet
attacks, DL models are better than ML models, especially on real
attack set. Because there is no negative data sample in the real attack set,
DR = Acc. As for FPR, although it cannot be calculated in the real attack set,
results show that DL models achieve generally lower FPRs comparing to ML
models on the training and test sets.

5 Discussions and Limitations

Lack of Efficiency: Training a neural network requires a large amount of data
samples. However, the number of data samples can be affected in many ways. On
one hand, protocol fuzzing in nature cannot guarantee that all malicious/benign
activities are successful. On the other hand, the time consumed by each benign/-
malicious activity cannot be overlooked. Take PtH as an example, we spent about
4 days running 5,000 attack iterations, of which 611 failed. The total amount
of network packets captured is 497,956, of which 103,718 are related packets.
However, the final number of data samples is only in the thousands.

Neural Networks for Various Network Attacks: Though we have verified
our idea on three chosen network attacks, we trained separate neural networks
for different attacks. We can not train a generic neural network to detect various
network attacks. It is difficult to train such a neural network because different
network attacks have different characteristics, which may need different data
representations and neural network architectures.

Impact of Probability Threshold: The raw outputs for output layers of the
detection neural networks are the probabilities for the data sample to be benign
or malicious, which add up to 1. If the probability for malicious class is beyond
a threshold (e.g., 0.5), then the data sample is classified as malicious. When
the probability threshold increases, the model is more likely to classify a data
sample as benign, and thus decrease detection rates and false positive rates. The
probability threshold can be tuned depending on whether the defender prefers
higher detection rates or lower false positive rates.

6 Conclusion

This paper presents an end-to-end approach to detect the logic-flaw-exploiting
network attacks using DL. The end-to-end approach begins with data genera-
tion and collection, and ends with attack detection with neural networks. We
address two major challenges in applying DL for logic-flaw-exploiting network
attack detection: the generation of useful data sets and the training of appro-
priate neural network models. We show the effectiveness of our approach with
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three specific demonstration attacks, including PtH, DNS cache poisoning, and
ARP poisoning. We have generated high quality network traffic data using pro-
tocol fuzzing, trained neural networks with generated data, and evaluated the
trained models from the perspective of both neural network performance and
attack detection. We have also discussed the limitations of our experiments and
approach.

Disclaimer

This paper is not subject to copyright in the United States. Commercial products
are identified in order to adequately specify certain procedures. In no case does
such identification imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor does it imply that the identified products
are necessarily the best available for the purpose.
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Abstract. The problem of protecting datasets from the disclosure of
confidential information, while published data remains useful for analy-
sis, has recently gained momentum. To solve this problem, anonymization
techniques such as k-anonymity, �-diversity, and t-closeness have been
used to generate anonymized datasets for training classifiers. While these
techniques provide an effective means to generate anonymized datasets,
an understanding of how their application affects the performance of
classifiers is currently missing. This knowledge enables the data owner
and analyst to select the most appropriate classification algorithm and
training parameters in order to guarantee high privacy requirements
while minimizing the loss of accuracy. In this study, we perform exten-
sive experiments to verify how the classifiers performance changes when
trained on an anonymized dataset compared to the original one, and
evaluate the impact of classification algorithms, datasets properties, and
anonymization parameters on classifiers’ performance.

Keywords: Privacy-preserving · k-anonymity · �-diversity ·
t-closeness · Classifiers comparison

1 Introduction

Classification is the task of identifying to which category (class) a new observa-
tion belongs based on a training set of observations whose category membership
is known beforehand. Nowadays, data classification algorithms (classifiers) are
widely used in many real-world applications, including but not limited to, face
and speech recognition, text analysis, fraud and anomaly detection, recommen-
dation system, weather forecasting, and medical image analysis [1,27].

Classifiers are typically trained over a corpus of training data that is directly
accessible by the data analyzer. However, in many real-world scenarios the train-
ing data is generated and governed by different entities who are unwilling to share
their data with the analyzer. This is because the data might contain privacy-
sensitive information, and its disclosure might raises privacy concerns [23].
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Fig. 1. Reference architecture.

To solve this issue, a large body of research has investigated how to train a prac-
tically useful classifier, while preserving individuals’ privacy. Existing solutions
can be categorized into two main groups. One category comprises cryptographic-
based approaches in which the classifier model is securely computed. The main
drawback of these approaches is that they are not scalable, and they are designed
only for a specific classification algorithm [10]. The other category of solutions
comprises data anonymization techniques, in which the values in the data are
replaced with a more general representation before the dataset is published. This
study focuses on the second category, i.e., the application of data anonymiza-
tion techniques in data classification, where one entity (data provider) owns the
data and the other entity (data analyzer) is interested in training a classifier
on this data. The data analyzer does not know which classifier outperforms the
other classifiers on the shared (anonymized) data. This knowledge would enable
the analyzer to decide which classifier to be trained based on the anonymization
technique employed, the dataset properties, and the desired performance metric.
The problem addressed in this work can be defined as follows.

Problem Statement: A data provider wants to release a dataset T to a data
analyzer for modeling a classifier on this data. Each record �xi in T is an (n + 1)-
dimensional vector �xi = (v1, v2, . . . , vn, Ci), where the first n elements are the
attribute-values and the last element is the class label of that record. The data
provider wants to protect the dataset against linking an individual to sensitive
information using an anonymization approach. Consider, for instance, a health
center wants to share the patients’ records with a medical research center for iden-
tifying the causes and symptoms of a new disease. However, the shared information
might potentially raise the patients’ privacy concerns. Thus, the health center only
is ready to share the data if no individual record can be linked to the corresponding
patient, i.e., dataset can only be revealed in anonymized version.

The data analyzer who has access to the anonymized version of data is inter-
ested in training a classifier. In our example, the medical research center wants
to model a classifier over the symptoms of a disease to predict whether a new
patient suffers from this disease or not. However, the data analyzer has no knowl-
edge which classifier should be selected on the published anonymized data. An
overview of this communication model with the following two entities is pre-
sented in Fig. 1:
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– Data provider who shares the anonymized table of data respecting his/her
privacy requirements, e.g., the published table satisfies 3-anonymity.

– Data analyzer who uses the anonymized table of data as training dataset to
train a classifier.

We assume that the data analyzer has time limitation and thus is not able to
evaluate the performance of different classifiers on the published anonymized
data.

Our Contribution: To solve the aforementioned problem, we investigate the
classifiers performance on anonymized datasets via answering the following
research questions:

RQ1: How the performance of different classification algorithms changes when
trained on anonymized datasets?

RQ2: Which classifiers are more affected by the employment of anonymization
techniques?

RQ3: Which dataset properties affect the performance of classifiers trained on
anonymized datasets?

RQ4: How the classifiers performance is affected by changing the anonymization
parameters?

To answer these questions, we compute the performance of eight well-known clas-
sification algorithms, namely Decision Tree, Näıve Bayes, k Nearest Neighbors,
Support Vector Machine, Random Forest, Logistic Regression, AdaBoost, and
Bagging, over 10 benchmark datasets (original and anonymized versions). The
performance of classifiers is measured using accuracy, precision, recall, and F1-
score metrics. The selected anonymization approaches are k-anonymity [21,25],
�-diversity [15], and t-closeness [12]. The contribution of this work can be sum-
marized as follows:

– We provide insight on the difference between classifiers performance trained
over original and anonymized datasets (RQ1). We show that some classifiers
significantly outperform the others in this regard.

– We compare the classifiers performance on anonymized datasets and highlight
which classifiers outperform the others in terms of the associated performance
metric and anonymization approach (RQ2). We show that this outperfor-
mance is statistically significant and provide insight on the origin of this
difference.

– We investigate the impact of dataset properties, i.e., dataset size, the number
of attributes, and the number of class labels on classifiers performance (RQ3).
We show which dataset property and to what extent has impact on classifiers
performance on anonymized dataset.

– We evaluate the effect of anonymization parameters on classifiers performance
through the enforcement of different values of k, �, and t (RQ4). We show that
the variation of anonymization parameter has negligible impact on the trend
of classifiers performance.
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– Based on our experimental results, we draw recommendations to guide data
providers and analyzers in the selection of the classification algorithm to be
used (cheap lunch).

Outline: The remainder of this paper is organized as follows. The next section
presents the background. Section 3 explains our methodology and the setup of
the experiments. Section 4 presents the experimental results, whereas Sect. 5 dis-
cusses our findings. Section 6 discusses related work. Finally, Sect. 7 concludes
the paper and provides directions for future work.

2 Preliminaries

This section introduces the anonymization techniques and classification algo-
rithms considered in this work.

2.1 Anonymization Techniques

For our study we consider three well-known anonymization techniques: k-
anonymity [21,25], �-diversity [15], and t-closeness [12]. We assume a dataset
comprising a set of records, where each record corresponds to one individual.
Each record is described by a number of attributes, which can be divided into
three categories: 1) identifiers that univocally identify the individuals, e.g., social
security number, 2) quasi-identifier attributes whose values taken together can
be used to potentially identify an individual, e.g., zip-code, birth-date, and gen-
der, 3) sensitive attributes that an adversary is not allowed to discover the val-
ues of that attribute for any individual, e.g., a patient’s disease or an employer’s
salary.

k-anonymity: A release of data is said to satisfy k-anonymity if each record
in the release cannot be distinguished from at least k − 1 other records in the
release with respect to quasi-identifiers [25]. k-anonymity is susceptible to some
attacks, e.g. homogeneity and background knowledge attacks.

�-diversity: The �-diversity model addresses some of the weaknesses of k-
anonymity. In particular, k-anonymity does not protect the values of sensitive
attributes, specifically when the values in a group are identical. To address this
drawback, the �-diversity model introduces constraints on intra-group diversity
for sensitive attributes [15]. The �-diversity does not consider the semantic close-
ness of the distinct values in a sensitive attribute. This problem is addressed by
t-closeness.

t-closeness: An equivalence group is said to satisfy t-closeness if the distance
between the distribution of a sensitive attribute in this group and the distri-
bution of the attribute in the whole table is not greater than a given thresh-
old t. A dataset is said to satisfy t-closeness if all equivalence classes satisfy
t-closeness [12].
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2.2 Classification Algorithms

We investigate the performance of eight well-known classification algorithms,
namely Decision Tree (DT), Näıve Bayes (NB), k-Nearest Neighbors (kNN),
Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR),
AdaBoost (AB), and Bagging (BG). Next, we briefly introduce these classifiers
(for more detail refer to [1]).

Decision Trees (DT) are classification algorithms with a tree-based structure
drawn upside down with its root at the top. Each internal node represents a
test/condition based on which the tree splits into branches/edges. The end of
the branch that does not split anymore (respecting some stopping criteria) is
the decision/leaf. The paths from root to leaf represent classification rules. One
advantage of DTs is the comprehensibility of the classification structures. This
enables the analyzer to verify which attributes determined the final classification.
The drawback is that DTs might be non-robust for datasets with a large number
of attributes.

Näıve Bayes (NB) algorithms are statistical classifiers based on the Bayes
Theorem for calculating probabilities and conditional probabilities. It makes use
of all attributes contained in the data, and analyses them individually as though
they are equally important and independent (näıve assumption) from each other.
Näıve Bayes model is easy to build and particularly useful for very large data
sets.

k-Nearest Neighbors (kNN) algorithm is a non-parametric instance-based
model that classifies a new instance based on the class of the majority of its k
nearest neighbors w.r.t. a given training dataset. To obtain the nearest neighbors
for each data point, kNN uses a measure to compute the distance between pairs of
data points (e.g., Euclidean distance). The advantage of kNN lies in its simplicity,
while computation time is usually high since all training data has to be revisited
for classifying a new instance.

Support Vector Machine (SVM) is a linear modelling with instance-based
learning. The algorithm selects a small number of critical boundary instances
from each category (class labels) and builds a linear discriminate function that
separates them as widely as possible. In the case that no linear separation is
possible, the technique of kernel is used to automatically project the training
instances into a higherdimensional space and to learn a separator in that space.
The SVMs have the advantage of generalization, and also standout for their
robustness to high dimensional data. The drawback of the SVMs is the difficulty
of model interpretation and the sensibility to parameter tuning.

Random Forest (RF) is an ensemble learning method for classification which
operates by constructing a multitude of decision trees at training time and out-
putting the class that is the mode of the classes of the individual trees. RF
corrects for decision trees’ habit of overfitting to their training set. The RF has
also been recognised to be among the most accurate classifiers.
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Logistic Regression (LR) is a statistical model that is largely employed in
statistical data analysis to classify binary dependent variables. In regression anal-
ysis, logistic regression (or logit regression) is used to estimate the parameters of
a logistic model returning the probability of occurrence of a class. To this end,
the LR classifier builds a logit variable that contains the natural log of the odds
of the class occurring or not. Then, a maximum likelihood estimation algorithm
is applied to estimate the probabilities.

AdaBoost (AB) is a technique that builds an ensemble of classifiers (generally
Decision Trees) sequentially, one classifier at a time, until the predefined number
of classifiers is reached. Each subsequent classifier is trained on a set of samples
with weights to emphasize the instances misclassified by the previous classifiers.
The ensemble decision is made by weighted voting. The weights are determined
by the individual accuracy. AB has been found to be very useful but too sensitive
to noise in the data.

Bagging (Bootstrap Aggregating) (BG) is an ensemble learning model
designed to improve the stability and accuracy of classification algorithms. It
considers several homogeneous weak learners, where each weak learner has been
trained independently from the others. Then, the bagging model combines them
with an averaging process.

3 Experimental Methodology

The experimental analysis aims to compare the classifiers performance when
they are trained over anonymized datasets. This comparison evaluates how the
employment of anonymization techniques affect classifiers performance (RQ1),
and investigate how the choice of classification algorithm (RQ2), dataset prop-
erties (RQ3), and anonymization parameters (RQ4) influence the classifiers
performance. Next, we present the experimental setup, the datasets used for the
experiments and the evaluation approach.

Experimental Setup: We use the implementation of classification algorithms
provided by Scikit-learn library1 with their default parameters. Turning a dataset
into an anonymized (k-anonymous, �-diverse, and t-close) dataset is a complex
problem in which finding the optimal partition is an NP-hard problem. In this
study, we employ the Mondrian algorithm, which uses a greedy search algorithm
to recursively partition the domain space into regions [11].2

Datasets: The classifiers were trained over ten datasets selected from the UCI
Repository.3 Table 1 summarizes the statistics of the selected datasets.

Adult: The dataset contains 48842 instances described by 14 attributes (both
numerical and categorical) such as age, occupation, education, and working class.
1 https://scikit-learn.org.
2 The code used for our experiments is available at https://github.com/minaalishahi/

classifiersperformance.
3 https://archive.ics.uci.edu/ml/datasets/.

https://scikit-learn.org
https://github.com/minaalishahi/classifiersperformance
https://github.com/minaalishahi/classifiersperformance
https://archive.ics.uci.edu/ml/datasets/
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Table 1. Datasets information
Dataset # Attributes # Labels # Instances

Adult 8 2 48000
Credit 15 239 690
Absent 21 17 740
Derma 33 6 366
Wine 12 2 4898
Network 22 4 1075
Bank 64 2 10,503
Optical 64 10 5600
Diabet 20 2 1151
Heart 13 2 299

The class attribute represents their income, which has two possible values:
‘>50K’ and ‘<50K’.

Credit: The dataset contains 690 instances of clients’ information at a bank
described by 15 attributes (both numerical and categorical) such as age and
background behavior, which are used to predict the score of a requester with 239
possibilities (based on this score it is decided whether the credit card application
should be accepted, revised, or denied).

Absenteeism at Work (Absent): The dataset contains 740 instances described
by 21 attributes (both categorical and numerical), e.g., age, education, average
workload per day, and social smoker. The class label denotes the hours that a
new employee might be absent in a month in the future. While the absent hours
can vary from one hour to 160 h in a month, the current dataset only shows 17
distinct values for absent hours (from 20 to 36 h).

Dermatology (Derma): This dataset contains 366 instances described by 33
numerical attributes such as age, family history, knee and elbow involvement,
which are used to predict the type of Eryhemato-Squamous disease as a real
problem in dermatology (skin disorders). The majority of attributes take their
values from the set {0, 1, 2, 3}.

Wine Quality (Wine): The dataset contains 4898 instances of wine samples
described by 12 numerical attributes such as pH value, citric acid, total sulfur
dioxide, which are used to predict the wine quality (good or bad).

Optical Burst Switching (OBS) Network (Network): The dataset contains 1075
instances of Burst Header Packet (BHP) flood attacks in Optical Burst Switching
networks (OBS), described by 22 numerical attributes such as Average Delay
Time per Second, Percentage of Lost Packet rate, to classify the strategy against
an attack according to network nodes behavior into four classes as NB-No Block,
Block, No Block, NB-Wait (NB = Not Behaving correctly).

Polish Companies Bankruptcy (Bank): The dataset contains 10503 instances
of emerging markets around the world described by 64 numerical attributes
such as current assets/short-term liabilities, profit on sales/total sales, to predict
whether a Polish company will face bankruptcy or not.

Optical Digits (Optic): The dataset contains 5620 handwritten digits written by
43 persons. Each record is a matrix of 8 × 8 where each element is an integer in
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the range {0, . . . , 16} and the class label is one of the integer number in the set
{0, . . . , 9}.

Diabetic Retinopathy Debrecen (Diabet): The dataset contains 1151 instances
of Messidor image set described by 20 attributes such as the diameter of the
optic disc and quality assessment. All features represent a detected lesion, or a
descriptive feature of an anatomical part or an image-level descriptor. The class
label represents whether an image shows signs of diabetic retinopathy or not.

Heart Failure Clinical Record (Heart): The dataset collected the medical records
of 299 patients who had heart failure during a pre-determined number of days
(say follow-up period). The dataset is described by 13 attributes such as age, to
predict whether a patient dies (Boolean) during the follow-up period.

Note that for all datasets, it is assumed that the explicit identifier attributes
have been removed from the data, the attribute representing the class label is
considered as the sensitive attribute, and the remaining attributes are consid-
ered quasi-identifier attributes. In all datasets, categorical attributes either were
removed or the categorical values were replaced with numerical values (when
the conversion is a valid assumption). This is because in the application of
anonymization approaches over categorical attributes, in general, the presence of
an expert in the field is required to provide the taxonomy trees for generalization.

Evaluation Approach: We assess the classifiers performance in terms of Accu-
racy, Precision, Recall, and F1-score, which are defined based on True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) val-
ues. True Positives (TP) are the correctly predicted positive values, i.e., the
value of actual class is positive and the value of predicted class is also positive.
True Negatives (TN) are the correctly predicted negative values, i.e., the value
of actual class is negative and value of predicted class is also negative. False
Positives (FP) are the non-correctly predicted positive values, i.e., the value of
actual class is negative and the predicted class is positive. False Negatives (FN)
are the non-correctly predicted negative values, i.e., the value of actual class is
positive but the predicted class is negative. To compute these values for datasets
with multiple class labels, we first compute the TP, TN, FP, and FN values for
each individual class label against the remaining class labels. Then, the average
of these values over all class labels is returned as final TP, TN, FP, and FN.
Accuracy is the ratio of correctly predicted observations over the total number
of observations. Precision is the ratio of correctly predicted positive observations
to the total number of predicted positive observations. Recall is the ratio of cor-
rectly predicted positive observations to all observations in actual class positive.
F1-Score is the weighted average of Precision and Recall. Therefore, this score
takes both false positives and false negatives into account. Formally:
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Accuracy =
TP + TN

TP + FP+ FN + TN
Precision =

TP

TP + FP

Recall =
TP

TP + FN
F1-Score = 2 · Recall · Precision

Recall + Precision

To answer research questions RQ1, RQ2, and RQ3, we compute classifier
performance in terms of accuracy, precision, recall, and F1-scores on the original,
3-anonymity, 2-diversity, and 0.2-closeness datasets. To answer RQ4, we compute
classifier accuracy when anonymization parameters, i.e., k, �, and t, vary.

Criteria for RQ1: To investigate to what extent the use of anonymization tech-
niques affect a classifier performance, we compare the performance of classi-
fiers trained on anonymized datasets with the one of classifiers trained on the
corresponding original datasets by computing the performance ratio. For each
considered performance metric, the performance ratio is computed by dividing
the performance of a classifier trained over an anonymized dataset by the per-
formance of the classifier trained over the corresponding original datasets. As
we are interested on the average performance of classification algorithms, we
aggregate performance metrics over the 10 datasets.

To verify whether the differences between classification algorithms are sta-
tistically significant, we use a non-parametric statistical test, named Wilcoxon
test [26]. The Wilcoxon test can be adapted to our problem as follows.

Definition 1 (Wilcoxon test). Given two classification algorithms, let di be
the signed difference between the performance scores of the classifiers obtained
by applying each algorithm on a given dataset for a given privacy level. The
differences di (1 ≤ i ≤ N where N is the number of anonymized datasets to
which the classification algorithms are applied) are ranked based on the absolute
values (average rank is assigned for equal performances). Let R+ denote the sum
of the ranks for datasets and privacy level on which di > 0, and let R− be the
sum of the ranks for datasets and privacy level on which di < 0 (dividing the
sum of the ranks for which di = 0 evenly), i.e.,

R+ =
∑

di>0

rank(di) +
1
2

∑

di=0

rank(di) , R− =
∑

di<0

rank(di) +
1
2

∑

di=0

rank(di)

Let T = min(R+, R−), then

z =
T − 1

4N(N + 1)
√

1
4N(N + 1)(2N + 1)

is approximately distributed normally. Under this condition, the difference
between the accuracy distribution of the two classification algorithms is statisti-
cally significant ( i.e., the null hypothesis is rejected) if the p-value is less than
or equal to a given significance level σ. In our experiments, we require a 95%
confidence interval, which corresponds to σ = 0.05 ( i.e., the null-hypothesis can
be rejected if z is smaller than −1.96).
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Criteria for RQ2: To investigate the impact of the adoption of anonymization
techniques on classifiers performance, we first compute the average of classi-
fiers’ performance for each performance metric over the 10 datasets. Then, we
employ a non-parametric statistical test, named the Friedman test [5], on these
results. This test was designed to compare classification algorithms over mul-
tiple datasets, and the outcome determines whether the algorithms are equal
in terms of performance or not. If the classification algorithms exhibit different
performance, p-values (in Holm methodology) are used to order them based on
their performance. The Friedman test can be adapted to our problem as follows.

Definition 2 (Friedman Test). Given n classification algorithms and m
datasets, let rij denote the rank of j-th algorithm on the i-th dataset. The Fried-
man test compares the average ranks of algorithms, i.e., Rj = 1

m

∑
i rij. Under

the null-hypothesis stating that all algorithms are equivalent (their average ranks
Rj are close), the Friedman statistic

χ2
F =

12m

n(n + 1)
( ∑

j

R2
j − n(n + 1)2

4
)

is distributed according to the well-known χ2
F distribution with n − 1 degrees of

freedom, for n and m big enough (n ≥ 5, m ≥ 10). To decide if the classifiers’
performance is significantly different, the Friedman test is used as:

FF =
(m − 1)χ2

F

m(n − 1) − χ2
F

where the probability distribution can be approximated by a F-distribution with
n − 1 and (n − 1)(m − 1) degrees of freedom. The table of critical values can be
found in statistical books [9]. The difference between the performance distribution
of all classification algorithms is statistically significant ( i.e., the null hypothesis
is rejected) if the p-value is less than or equal to a given significance level σ.
In our experiments, we require a 95% confidence interval, which corresponds to
σ = 0.05.

If the null-hypothesis is rejected, we need to determine where the differences
truly came from. To answer this question, generally, a post-hoc statistical test
named the Nemenyi test is used. However, in some cases, the Nemeneyi test is
not able to detect why the Friedman test has rejected the null-hypothesis. In this
regard, the tests like Bonferroni or Holm are more powerful in detecting where
the difference comes from using a control variable [5,8]. In this study, we use
the average performance of classifiers as the required control variable. This test
assigns a score to classifiers by comparing the respective p-values of a classifier
compared to the others such that the classifier with higher score has the better
performance for that specific assessment.
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Table 2. Classifier performance ratio.

Anonymity Metric Classifier

DT NB kNNSVM RF LR AB BG

3-anonymity

Accuracy0.93 0.90 1.00 1.03 0.850.911.100.84

Precision 0.88 0.89 1.04 1.09 0.900.901.200.86

Recall 0.87 0.80 1.00 1.03 0.850.911.100.84

F1 score 0.87 0.81 1.03 1.11 0.870.901.220.85

2-diversity

Accuracy0.83 0.86 0.93 0.93 0.750.861.050.75

Precision 0.77 0.86 0.95 0.96 0.770.851.080.75

Recall 0.78 0.77 0.93 0.93 0.750.861.050.75

F1 score 0.77 0.79 0.95 0.99 0.760.851.150.75

0.2-closeness

Accuracy0.71 0.61 0.70 0.71 0.620.680.770.62

Precision 0.55 0.54 0.66 0.68 0.540.610.710.54

Recall 0.65 0.57 0.70 0.71 0.620.680.770.62

F1 score 0.59 0.57 0.69 0.72 0.580.630.760.58 Fig. 2. Heatmap of Wilcoxon test.

Criteria for RQ3: Research question RQ3 aims to understand the effect of
dataset properties on the performance of classifiers when trained on anonymized
datasets. To this end, we investigate how the classifier accuracy, precision, recall,
and F1-scores vary over anonymized datasets with different sizes, the num-
ber of attributes, and the number of class labels. To assess this variation, for
each dataset and each performance metric we compute the average performance
over all classification algorithms. To determine whether the impact of a spe-
cific dataset property is significant, we compare the distribution of classifiers’
performance based on aggregated results for that specific property.

Criteria for RQ4: To investigate the effect of anonymization parameters, i.e.,
k, �, and t in k-anonymity, �-diversity, and t-closeness on classifiers performance,
we compute classifier accuracy, precision, recall, and F1-scores on anonymized
datasets for k ∈ {3, 4, 5, 6}, � ∈ {2, 3, 4, 5}, and t ∈ {0.2, 0.3, 0.4, 0.5}.

It is worth noting that the selection of value � from the set {2, 3, 4, 5} requires
that the dataset under analysis contains at least 5 distinct class labels. Out of
the 10 selected datasets, the datasets satisfying this requirement (i.e., with more
than five class labels) are Credit, Absent, Derma, and Optical datasets. Due to
the lack of space, we only present the results for the three datasets with the
greatest number of class labels.

4 Experimental Results

This section presents the results of our experiments.

RQ1: How the performance of different classification algorithms
changes when trained on anonymized datasets? The performance ratio
for the considered classification algorithms (aggregated over the 10 datasets) is
reported in Table 2. We can observe that the AB classifier shows the highest ratio
for all performance metrics and anonymization techniques. The performance is
even higher when AB is trained on 3-anonymous and 2-diverse datasets com-
pared to when it is trained on the original dataset (the ratio is greater than
1). This performance improvement can also be observed for the kNN and SVM
classifiers. The worst classifiers in terms of performance ratio are NB and BG.
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Table 3. Average performance for the considered classifiers. The highest value in each
row (representing the best performance) is highlighted in bold.

Anonymization Metric Classifier

DT NB kNN SVM RF LR AB BG

Original

Accuracy 82.61 65.73 72.06 71.87 85.73 80.03 65.40 85.47

Precision 82.60 81.45 68.39 71.72 83.74 77.25 58.89 84.14

Recall 84.03 73.65 72.06 71.87 85.73 80.03 65.40 85.47

F1 score 82.95 71.76 68.38 67.00 84.25 77.21 59.67 84.41

3-anonymity

Accuracy 73.03 59.23 71.10 73.30 73.28 72.10 67.61 72.04

Precision 71.48 70.94 68.03 71.94 72.65 68.76 64.08 71.56

Recall 73.03 59.23 71.10 73.30 73.28 72.10 67.61 72.04

F1 score 71.38 58.80 68.01 71.79 72.39 68.77 62.96 71.27

2-diversity

Accuracy 64.27 56.71 65.28 66.04 64.75 68.11 64.36 63.80

Precision 62.34 68.63 62.04 64.34 63.81 65.15 58.70 62.76

Recall 64.27 56.71 65.28 66.04 64.75 68.11 64.36 63.80

F1 score 62.47 56.30 62.18 64.21 63.82 64.85 60.12 62.81

0.2-closeness

Accuracy 50.97 37.99 49.74 51.44 50.41 52.93 51.76 50.41

Precision 41.96 46.12 43.94 41.44 41.95 44.85 42.97 42.71

Recall 50.97 37.99 49.74 51.44 50.41 52.93 51.76 50.41

F1 score 45.72 36.20 45.89 45.60 45.57 46.14 46.24 45.74

Table 4. The best scored classifiers using the Holm methodology.

Accuracy Precision Recall F1-score

Original BG BG BG LR

3-anonymity LR RF LR LR

2-diversity LR NB LR LR

0.2-closeness LR NB LR LR

We used the Wilcoxon test to verify the statistical significance of these dif-
ferences. Figure 2 depicts the heatmap of mutual comparison of classifier perfor-
mance ratios in terms of p-values over accuracy results. The lower p-value (lighter
color) shows more confidence in rejecting the null-hypothesis (i.e., more different
performance). It can be observed that the null-hypothesis of the Wilcoxon test
is rejected in the mutual comparison of AB with DT, NB, RF, BG, and LR with
high confidence (small p-value), i.e., the AB classifier shows a different behavior
compared to the other algorithms (except from SVM and kNN).

RQ2: Which classifiers are more affected by the employment of
anonymization techniques? The average performance of classifiers is reported
in Table 3. From the table, we can observe that 1) there is not a single classifier
that outperforms all other classifiers for all performance metrics; 2) while for
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specific metrics and anonymization techniques, some classifier outperforms the
others (highlighted values), in some cases the results are very close (e.g., the
accuracy of the SVM and RF on 3-anonymous datasets).

To get a better insight on these observations, we performed the Friedman test
on average results. The null-hypothesis of this test was rejected in our exper-
iments meaning that all classifiers are not equal in terms of performance and
there is a significant difference. To determine where this difference comes from,
in Tables 5, 6, 7, and 8 (in Appendix) we report respectively the Holm scores
(simply score from now on) of classifiers with respect to accuracy, precision,
recall, and F1-score. The higher scores represent higher performance for the
associated classification algorithm and metric. Table 4 summarizes the best clas-
sifiers for each performance metric and anonymization technique according to
the Holm scores. We can observe that the LR classifier outperforms the other
classifiers in terms of accuracy, recall, and F1-score over anonymized datasets.
However, in terms of precision, the RF and NB classifiers are the best scored
ones over 3-anonymous and 2-diverse (and 0.2-close) datasets.

RQ3: Which dataset properties affect the performance of classifiers on
anonymized datasets? To evaluate the impact of datasets on classifiers per-
formance, we computed the accuracy, precision, recall, and F1-scores for each
individual dataset averaged over all classifiers performance when trained on orig-
inal and anonymized datasets. Figures 3a, 3b, 3c, and 3d show respectively the
average accuracy, precision, recall, and F1-scores on all classifiers results. From
these results, we can infer that the number of attributes has no direct impact
on classifiers performance. The Bank and Optic datasets with an equal number
of attributes show completely different impact on the classifiers’ performance.
The size of datasets also shows no direct impact on classifiers performance. It
can be observed that the Credit and Absent, which have a comparable number
of records, show different impact on classifiers performance. This can be seen for
Network and Diabet datasets as well.

The number of class labels, differently from the previous properties, shows
a considerable impact on classifiers performance on anonymized datasets. The
datasets with two class labels, i.e., Adult, Wine, Bank, Diabet, and Heart
datasets, show better and more stable performance in both original and
anonymized versions. On the other hand, the Credit and Absent datasets, which
have multi class labels (239 and 17, respectively) result in poor performance in
all scenarios.

To gain better insight on the impact of the number of class labels on clas-
sifiers performance, we compare the performance of binary classifiers (i.e., clas-
sifiers trained on datasets which have two class values, namely Adult, Wine,
Bank, Diabet, and Heart), and multi-class classifiers (i.e., classifiers trained on
datasets which have multiple class values, namely Credit, Absent, Derma, Net-
work, and Optimal). Figure 4 shows the performance distribution of binary (blue)
and multi-class (orange) classifiers when trained on the original data as well as
when 3-anonymity, 2-diversity and 0.2-closeness are applied. Each box repre-
sents the distribution over five datasets (the blue ones over 2-labeled and the
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Fig. 3. Average performance of the selected classifiers for each dataset.

orange ones over more-labeled datasets) and over classifiers’ accuracy (i.e., each
box shows the average value computed over 5 accuracy values). We can observe
that on the original datasets, the blue and orange boxes have close median values
(i.e., small difference). The difference in the distribution between the boxes (and
median values) increases when anonymization is applied.
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Fig. 4. Performance of the selected classifiers for datasets with two class labels
vs. multi-class labels. (Color figure online)

RQ4: How the classifiers’s performance is affected by changing the
anonymization parameters? To evaluate whether a classifier’ performance is
affected by the values of k, �, and t, we computed the performance metrics for
all considered classifiers for different values of k, �, and t on Credit, Absent, and
Optic datasets. The results are reported in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15 and 16 (in Appendix). We observed that except from the kNN, NB, and RF
classifiers showing a negligible difference for some values of k, �, and t, the other
classifiers preserve the performance trend when the values of k, �, and t vary.

5 Discussion

In this work, we selected eight well-known classification algorithms and trained
them over 10 datasets manipulated using three anonymization techniques, i.e., k-
anonymity, �-diversity and t-closeness. We assessed how the employment of these
anonymization techniques affect classifiers accuracy, precision, recall and F1-
score, and investigated whether these effects depends on the chosen classification
algorithm, dataset properties and anonymization parameters. We now discuss
some interesting findings and report the threats to validity.

Findings: The performance of the considered classifiers when trained on
anonymized datasets in comparison to when trained on the original datasets show
that the AB classifier returns the most similar performance results between the
original and anonymized datasets. The AB (outperformance) difference is signif-
icant compared to DT, NB, RF, LR, and BG, but it is not significant compared
to the kNN and SVM classifiers. This result suggests the employment of AB,
kNN, and SVM on anonymized data when these classifiers perform accurately
when trained on the original data.

Our results also show that there is not a single classifier that significantly
outperforms the other classifiers for all performance metrics. Nonetheless, we
observe that LR is the best classifier in terms of accuracy, recall, and F1-score
on anonymized datasets, whereas NB and RF are superior in terms of precision.

Among dataset properties, the number of class labels considerably affects
the classifiers performance on anonymized dataset. The other properties, i.e.,
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dataset size and number of attributes, have negligible (or no) impact on clas-
sifiers’ performance. This outcome is independent from the performance metric
considered.

The variation of anonymization parameters, apart from some exceptions with
a negligible difference, does not affect the trend of classifiers’ performance. This
outcome allows us to generalize (to some extent) our findings on 3-anonymity, 2-
diversity, and 0.2-closeness to other k-anonymous, �-diverse, and t-close datasets.

Threats to Validity: Several variations have been proposed in the literature
for some classification algorithms. For instance, the polynomial and RBF kernel-
based SVM are two types of SVM classifiers, and the Bernoulli and Gaussian
are two types of Näıve Bayes classifiers. Moreover, each classification algorithm
has one or more configuration parameters, e.g., the value of k in kNN classifier
or the number of trees in the AB classifier. The selection of other types of a
classification algorithm or tuning its configuration parameters might affect the
performance. Beside the selection of classification algorithms, the selection of
alternative datasets (e.g., datasets with million records), the selection of other
anonymization algorithm (e.g., Incognito instead of Mondrian) and anonymiza-
tion parameters (e.g., k, � > 10) might provide different results.

To mitigate the effect of aforementioned validity threats on our findings, we
have selected the classification algorithms and their configuration parameters as
suggested by the Scikit-learn library. These parameters have been tuned to their
highest performance (for the majority of cases) to provide a fair comparison
among classifiers. The datasets have been selected to meet the diverse require-
ments in terms of the dataset size, the number of attributes, and the number of
class labels. The selected anonymization algorithm (i.e., Mondrian algorithm)
has shown higher performance compared to other algorithms [2].

While the control variables of this study were carefully chosen, we expect that
the selection of the alternative classification algorithm types (and parameter tun-
ing), dataset, and anonymization technique, will not considerably affect (some
of) our findings. For instance, we expect that the anonymization process makes
the datasets linearly separable resulting in (generally) higher performance for the
LR classifier compared to other classifiers. Also, the anonymization approaches
tend to perform poorly when several records with multi-class labels are grouped
together. These claims and the other aforementioned findings of this study need
more work to investigate the results on a wider range of datasets, different types
of classifiers, other adjustments of the classification algorithms parameters (with
the use of cross-validation or greedy search for parameter adjustment), and dif-
ferent anonymization algorithms and approaches.

6 Related Work

Data anonymization has become a widely investigated research direction in an
effort to protect individuals’ privacy when data is supposed to be released pub-
licly. k-anonymity, which was proposed as the initial definition of anonymity
[21,25], has been extended to new additional constraints such as �-diversity [15]
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and t-closeness [12]. The proposed approaches have been optimized in terms
of a generic measurement with no emphasis on the utility of anonymized data
for classification. For instance, in [13], a novel anonymization technique, named
slicing is proposed, which handles high-dimensional data and improves the data
structure compared to preliminary generalization technique. Nergiz et al. [20]
suggest a hybrid generalization technique which by data relocation provides a
trade-off between utility and privacy. The design and application of anonymiza-
tion techniques when data utility is critical for data classification has been inves-
tigated in several studies. Ye et al. [28] propose a new anonymization approach
based on rough set theory, which measures data quality for accurate classifiers
construction and guides the anonymization process through combining rough
set theory and attribute value taxonomies. In [22] and [18], a trade-off between
privacy and data utility is achieved by appropriate feature suppression to pub-
lish the anonymized dataset to be used for classification. The focus of these
approaches is to create anonymized datasets in which the features effectively
discriminate the class labels. However, the performance of a specific classifier
over the anonymized datasets has not been sufficiently investigated. In [6],
anonymization (k-anonymity) is embedded within the decision tree induction
process, which provides better accuracy compared to the scenario in which data
is first anonymized and then used for inducing the tree. A similar methodology
has been proposed in [4] for embedding anonymization within the association
rule mining algorithm. Mostly, the data perturbation for building a specific clas-
sification algorithm is performed with the use of differential privacy approach [7].
In this set of approaches, the perturbation process is task-specific dependent on
the classification algorithm, e.g., for constructing Näıve Bayes classifier.

Another research steam focuses on the effect of dataset features on data
anonymization. In [19], for instance, novel methods are proposed to identify
which features of documents need to change and how they must be changed
to accomplish document anonymization. Brikke and Shmatikov [3] investigate
whether generalization and suppression of quasi-identifier features offer any ben-
efit over trivial sanitization which simply separates quasi-identifier features from
sensitive ones. In [17] and [16], a series of experiments is conducted to study the
effect of anonymization on classifiers accuracy by applying four different classi-
fiers to the Adult dataset (before and after being perturbed).

While some work in the literature compares the impact of privacy in the
context of classifier training, e.g., over encrypted data [24] and under differen-
tial privacy [14], to the best of our knowledge, no prior work has provided a
comparison of the performance achieved by different classifiers when trained on
different datasets before and after being anonymized.

7 Conclusion

This paper investigate the performance achieved by classifiers when they are
trained over anonymized datasets. Accordingly, ten benchmark datasets have
been anonymized using k-anonymity, �-diversity, and t-closeness approaches.
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Then, eight well-known classifiers have been trained on these datasets, and their
performance in terms of accuracy, precision, recall, and F1-score has been com-
pared. Our experimental results show that depending on performance metric
and dataset properties, one classifier might outperform the others.

In future work, we plan to provide a thorough comparison among a wider
range of classifiers on a broader range of benchmark datasets with mixed types of
attributes (e.g., categorical). Moreover, we plan to evaluate the impact of classi-
fiers’ parameter configuration on classifiers performance trained on anonymized
datasets.
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Appendix

Tables 5, 6, 7, and 8 report respectively the Holm scores of classifiers with respect
to accuracy, precision, recall, and F1-score. The higher scores show better perfor-
mance results for the associated classification algorithm and associated metric.

Table 5. Classifier accuracy scores.

Anonymity Classifier

DT NB kNN SVM RF LR AB BG

Original 4.15 2.83 3.51 2.92 5.66 4.02 3.97 5.80

3-anonymity 4.06 3.33 3.79 3.97 4.34 5.34 4.47 3.56

2-diversity 3.10 4.70 4.79 4.15 3.38 5.20 4.11 3.42

0.2-closeness 3.61 3.33 3.79 4.93 3.38 5.25 4.93 3.65

Table 6. Classifier precision scores.

Anonymity Classifier

DT NB kNN SVM RF LR AB BG

Original 4.66 3.93 3.29 2.15 5.75 3.74 3.15 6.21

3-anonymity 3.83 5.11 2.88 3.65 5.16 4.11 3.65 4.47

2-diversity 2.92 5.66 4.43 3.61 4.02 4.75 4.02 3.47

0.2-closeness 3.79 5.75 3.97 3.01 3.01 5.39 3.93 4.02

Table 7. Classifier recall scores.

Anonymity Classifier

DT NB kNN SVM RF LR AB BG

Original 4.38 3.63 3.38 3.29 5.07 3.70 4.02 5.39

3-anonymity 4.52 3.33 3.79 3.97 4.34 5.34 4.47 3.56

2-diversity 3.10 4.70 4.79 4.15 3.38 5.20 4.11 3.42

0.2-closeness 3.61 3.33 3.79 4.93 3.38 5.25 4.93 3.65

Table 8. Classifier F1-score scores.

Anonymity Classifier

DT NB kNN SVM RF LR AB BG

Original 3.83 4.38 4.43 3.38 4.29 5.11 3.70 3.74

3-anonymity 4.02 3.88 3.97 3.56 4.70 4.84 4.02 3.88

2-diversity 2.83 4.47 4.83 3.65 4.11 4.84 4.20 3.93

0.2-closeness 4.02 4.47 4.56 3.51 3.83 4.66 4.52 3.29

Figures 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 show the classifiers perfor-
mance trained on anonymized Credit, Absent, and Optic datasets for different
values of k, �, and t.
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Fig. 5. Accuracy on Credit. Fig. 6. Precision on Credit.

Fig. 7. Recall on Credit. Fig. 8. F1-score on Credit.

Fig. 9. Accuracy on Absent. Fig. 10. Precision on Absent.
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Fig. 11. Recall on Absent. Fig. 12. F1-score on Absent.

Fig. 13. Accuracy on Optic. Fig. 14. Precision on Optic.

Fig. 15. Recall on Optic. Fig. 16. F1-score on Optic.
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Abstract. Digital applications typically describe their privacy policy
in lengthy and vague documents (called PrPs), but these are rarely read
by users, who remain unaware of privacy risks associated with the use of
these digital applications. Thus, users need to become more aware of dig-
ital applications’ policies and, thus, more confident about their choices.
To raise privacy awareness, we implemented the CAP-A portal, a crowd-
sourcing platform which aggregates knowledge as extracted from PrP
documents and motivates users in performing privacy-related tasks. The
Rewarding Framework is one of the most critical components of the plat-
form. It enhances user motivation and engagement by combining features
from existing successful rewarding theories. In this work, we describe this
Rewarding Framework, and show how it supports users to increase their
privacy knowledge level by engaging them to perform privacy-related
tasks, such as annotating PrP documents in a crowdsourcing environ-
ment. The proposed Rewarding Framework was validated by pilots ran
in the frame of the European project CAP-A and by a user evalua-
tion focused on its impact in terms of engagement and raising privacy
awareness. The results show that the Rewarding Framework improves
engagement and motivation, and increases users’ privacy awareness.
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1 Introduction

Personal data is the hottest commodity in today’s networked society [13,25].
On a daily basis, digital applications drive personal data use. These applications
describe how they collect, control and process personal data in lengthy, vague
and frequently changing privacy policy documents (PrP) [4]1. Thus, it is hard
for users to read, understand and follow the updates of the PrP documents.

Privacy awareness reflects the extent to which a user is informed about
privacy practices and policies, and about how disclosed information is used [39].
In other words, it reflects how clearly users understand the manner at which
their data are handled and processed by used applications. Privacy awareness
(i) helps users understand the privacy implications of using digital applications
[20], e.g., when accepting permissions in device sensors (Camera, GPS); (ii)
makes users more thoughtful in relevant situations [6], e.g., when downloading
an application or giving their consent to a service provider; and (iii) contributes
in counteracting the privacy paradox [33], i.e., the observation that although
users are concerned about their privacy in real life, they act differently in their
digital life [22]; indeed, we argue that the privacy paradox is due to limited
awareness, so improved privacy awareness mitigates the problem.

Achieving privacy-awareness is difficult [36], but better results are achieved
if users join forces through a crowdsourcing approach [14,17]. For example, in
[7,32,38], crowdsourcing has been employed to allow users to annotate PrPs
to clarify privacy practices, and thus improve their privacy knowledge. Also,
crowdsourcing could allow users to evaluate the privacy friendliness of apps,
e.g., by identifying GDPR concepts2 in PrP texts, so they are better informed
about the use of their personal data by applications [19,30].

One of the most fundamental challenges in crowdsourcing platforms is recruit-
ing and engaging users [27]. Without engagement and motivation, user partic-
ipation is significantly lower and the platform’s objective is not achieved [18].
Combining intrinsic (fun, autonomy, reputation) and extrinsic (money, learning,
forcedness, implicitness, task autonomy) rewards in crowdsourcing motivates
users [24,40] and increases user participation and engagement.

This paper presents a Rewarding Framework (RF) for crowdsourcing activi-
ties, used in tandem with a crowdsourcing application to improve privacy aware-
ness based on the crowd’s collective knowledge. Such novel combination of crowd-
sourcing and rewarding to raise privacy awareness has not been considered so far.
To design this framework, we identify basic characteristics, such as rewarding
features, components and gamification principles, which motivate users, increase
participation and achieve a sustainable solution that addresses the data privacy
problem. The proposed RF model is based on REWARD [10], a general-purpose
ontology designed to represent a reward strategy. The RF is adopted by the

1 https://www.varonis.com/blog/gdpr-privacy-policy/.
2 https://eur-lex.europa.eu/eli/reg/2016/679/oj.

https://www.varonis.com/blog/gdpr-privacy-policy/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
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CAP-A portal3, implemented and evaluated in the frame of the CAP-A Euro-
pean project4, and supported by the established CAPrice Community5.

2 Background and Related Work

In this section, we present related work on crowdsourcing with focus on privacy
and existing gamification and rewarding features relevant to our approach.

2.1 Crowdsourcing and Privacy

By focusing on the problem of increasing data privacy awareness using crowd-
sourcing methods, we identify two main approaches enhanced by crowdsourcing:
(i) evaluation of applications with respect to privacy based on user’s opinion
[1,2], and (ii) annotation of Privacy Policy (PrP) documents through partici-
patory processes [7,32,38]. The former is highly relevant to ours as it focuses
on mobile apps and use crowdsourcing tasks to monitor privacy goals. However,
users’ engagement is based exclusively on paid crowdsourcing activities (e.g.,
Mechanical Turk Human Intelligence Tasks6) and no other rewarding scheme,
whereas ours is based on a combination of intrinsic and extrinsic rewards. In
the latter, the design of crowdsourcing tasks is not straightforward due to pri-
vacy policies’ vagueness. Users require more assistance and feedback to make
successful contributions in privacy awareness. This needs to be considered when
designing the crowdsourcing tasks included in the proposed Rewarding Frame-
work (RF).

However, none of the aforementioned approaches applies a rewarding mecha-
nism to maximize the crowd participation and improve the results. After all, the
lack of participation and engagement is one of the most fundamental problems
appearing in crowdsourcing [27]. Thus, ways to incentivize the crowd need to be
identified, such as gamification schemes and rewarding methodologies. In this
paper, we try to cover these needs by proposing a Rewarding Framework.

2.2 Gamification and Rewarding

Gamification refers to the application of game mechanics to a task that is not a
game to increase user engagement, happiness or loyalty and constitutes a moti-
vational driver to the success of a crowdsourcing technique [21]. McGonigal et al.
[27] suggests a generic gamification scheme based on four principles: goal, rules,
voluntary participation and feedback. This scheme is suitable in crowdsourcing;
hence we follow and extend it in our framework.

Several gamification features were proposed [28], such as rewards, points and
tiers. Except from gamification principles and features, a gamification approach
3 https://www.cap-a.eu/portal.
4 https://www.cap-a.eu.
5 https://www.caprice-community.net.
6 https://www.mturk.com/.

https://www.cap-a.eu/portal
https://www.cap-a.eu
https://www.caprice-community.net
https://www.mturk.com/
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needs to be adjusted to the underlying crowdsourcing task’s complexity [29].
Finnerty et al. [16] evaluated task complexity in crowdsourcing, and showed that
a clearer and simpler design, with less demand on workers’ attention, provides
more accurate results. For this reason, we considered the principle of flexible
task management in the design of our proposed crowdsourcing privacy tasks.

In addition to gamification, rewarding the users strengthens the members’
commitment and increases users’ motivation to participate in, and contribute
to, any crowdsourcing activity [3]. The positive impact of rewards to encourage
participation in open source communities or citizen science initiatives has been
well-documented in the related literature [23,31].

Scekic et al. [35] identified different incentive mechanisms in different business
environments used for social computing and crowdsourcing. The most relevant to
our approach is the Quota Systems and Discretionary Bonuses mechanism [35].
In this mechanism, a number of performance metrics is set; when workers reach
a threshold they earn a bonus. This is closer to the proposed RF, because users
are rewarded according to their contributions and successful accomplishment of
privacy-related crowdsourcing tasks.

3 The Rewarding Framework (RF)

First of all, in this section we present the relationship between CAP-A portal
and RF. Then we describe the methodology that we used to design the RF. We
analyze the critical rewarding features and rewarding components adopted by
the RF, along with the gamification principles that we followed.

About the CAP-A Portal. The Rewarding Framework (RF) was imple-
mented as a fundamental component of the CAP-A portal, a crowdsourcing
platform aiming to raise privacy awareness in mobile applications [11,12]. In
CAP-A portal we applied the proposed rewarding features and components of
the RF to reward users’ contribution in crowdsourcing privacy tasks. The CAP-A
portal is available at: https://www.cap-a.eu/portal.

Methodology. Our framework (Fig. 1) is based on existing works that fit
well with the crowdsourcing paradigm. The RF design included the identifi-
cation of the most appropriate rewarding features from existing approaches
[26,28,41] that fit well with the crowdsourcing paradigm. The final result is a
mix of platform and user-centric methodology [40]: a platform for aggregating
privacy-related information from several users, announcing results, promoting
new crowdsourcing activities etc., and dedicated tasks for users, according to
their expertise and preferences.

Before starting designing any Rewarding Framework, the audience needs to
be defined. In our case, both users of digital products/services and developers or
companies that offer these services are considered. However, the proposed RF is
addressed to users only, so we focus on user-related tasks and features.

https://www.cap-a.eu/portal
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Fig. 1. The reward framework’s design process

We described the rewarding features in a conceptual model and evalu-
ated it through several competency questions [10]. We implemented the RF’s
conceptual model as an ontology, the REWARD ontology7, because an ontol-
ogy gives us flexibility in the design, e.g., agile adaptation of rewarding features
and components. We considered critical rewarding components (e.g., Com-
munication, Point System) according to state of the art rewarding approaches.
Finally, we adapted gamification principles in our approach to contribute to
the further engagement of users in executing privacy tasks. We analyze below the
aforementioned elements that we adopted in RF: rewarding features, rewarding
components and gamification principles.

Table 1. Privacy tasks that lead to rewarding

Task description Task level

Complete user profile 1

Share installed applications through the CAP-A app 1

Declare favorite applications 1

Download and login to the CAP-A app 1

Claim and acquire ownership of an app 1

Add a privacy expectation/justification 2

Add a URL evidence 2

Vote on the credibility of a given URL 2

Edit/Create annotations on PrP documents 3

Identify GDPR aspects 4

Rewarding Features. Our RF considers the following rewarding features: (i)
rewards. We support both intrinsic and extrinsic rewards [21]. Intrinsic rewards
7 http://www.w3id.org/reward-ontology.

http://www.w3id.org/reward-ontology
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are based on motivation that arises from within the individual, because it is
naturally satisfying. Intrinsic rewards can be gained in RF through community
interaction and participation in crowdsourcing tasks include learning, improving
skills in data privacy, achieving social recognition, self efficacy, entertainment
through playful tasks and knowledge exchange.

Extrinsic rewards are based on motivation from actual material prizes, such
as money, gifts, discounts etc. This type of motivation arises from outside the
individual, as opposed to intrinsic motivation, which originates from inside of the
individual. We support two types of extrinsic rewards, badges and leaderboards
in RF. Badges, are special characterisations that a user gains when specific con-
ditions (rules) are satisfied for this user (for details see the Appendix). The
badges offer recognition in the community and allow participating in high-level
crowdsourcing tasks, suggesting new ones, and having a more active role in the
CAP-A portal. Leaderboards like in other similar approaches, are used to further
motivate users [28]. They are a dedicated space in the CAP-A Portal that shows
users with the highest points and applications with the highest ratings.

(ii) points. Our rewarding strategy was inspired by the “Pay Per Per-
formance” and “Quota Systems and Discretionary Bonuses” [35] mechanisms.
Thus, each user is rewarded with points for each completed task. The collection
of points leads to the redemption of specified rewards which merit a pre-specified
number of points. This policy motivates users to increase their privacy knowledge
through the execution of privacy-tasks (Table 1), while the whole community
benefits from the resulting aggregated knowledge.

(iii) tiers. As in many successful reputation point systems [41], earned
points are used to rank users ranked into one of the following tiers: Baby,
Novice, Grown-Up, Enthusiast, Warrior, Expert, Guru, Royal8 (see details on
the Appendix, Table 5). Tiers help in keeping crowd workers in the loop and
motivating them to always try to accomplish new tasks [41].

Rewarding Components and Implementation. Our aim is to support sim-
ple and flexible tasks for users. This Task Management policy allows users
to select the crowdsourcing tasks that best match their needs and, thus, it has
positive effects for both users and the community [16]. Thus in RF, tasks are
available to users based on their credentials and tier, as well as the tasks’ diffi-
culty. To determine which tasks are available to which user, we identified four
task levels to facilitate task management, each of them representing a different
level of difficulty and sophistication:

– Task Level 1: tasks that do not demand much effort or expertise;
– Task Level 2: tasks related to other users;
– Task Level 3: time-consuming and sophisticated tasks that possibly contain

a lot of transactions and iterations, or that were initiated by other users;
– Task Level 4: high-quality tasks that need to be verified by a system admin.

8 https://cap-a.eu/portal#info.

https://cap-a.eu/portal#info
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Higher-level tasks are initially locked and available only to users of higher-
level tiers. This policy ensures high-quality feedback, avoiding the probable ad-
hoc behaviour of first-time users. Each task follows the rules applied in each
respective level, which denote the amount of points for each task level according
to the point system, and the task’s availability according to the user tier (see
Appendix, Table 4).

Our RF includes a Point System to determine the details of the process of
acquiring and redeeming points with rewards of the user’s choice [41], following
the practice of most rewarding systems where user tasks are associated with
points [41]. The policy of the Point System ensures justice among users which
comes from the equity theory: equity theory states that “people compare the
ratios of their perceived outcomes to their inputs with the corresponding ratios
of others”[34]. Due to lack of space we omit details regarding the Point System.

The Communication of the users’ accomplishments and associated bene-
fits contributes further to their engagement to the platform [28]. In our case,
the Communication of results is performed through a specific notification mech-
anism, which informs users about their progress in the CAP-A portal (e.g., com-
pleted tasks, acquired points or other details with regards to the applied Point
System). This mechanism also suggests steps for participating in more privacy
tasks (and levelling-up), and announces the available rewards.

Gamification Principles. Our RF and its features (e.g., points, badges, leader-
boards, tiers, etc.) are heavily influenced by existing common gamification the-
ories. Gamification plays a critical role in any rewarding strategy, as it results
to a more fruitful process.

We apply the generic approach of McGonigal et al. [27] which denotes that
a gamification scheme should be based on: common goal, rules of the game,
feedback and voluntary participation. In our case the common goal is raising
privacy awareness. We extend this approach by setting as well personal goals
for users following the expectancy theory [37]. This design option creates a wide
gamification space for users and a clear relationship between tasks and rewards
to contribute further to user’s motivation.

Specifically, in the RF, gamification is supported by providing the following
goals, which can be picked up by CAP-A users:

1. Level-up through community experience
2. Be included in the top20 list
3. Acquire knowledge on one’s favourite applications
4. Express privacy concerns
5. Participate in the evaluation of applications
6. Improve the market towards building more transparent and privacy friendly

applications

In our case the rules of the game are related to the accomplishment of tasks
that cover several aspects of privacy focusing on PrP documents and are applied
throughout the system.
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Feedback is also a fundamental characteristic, because it makes goal achieve-
ment more realistic by showing gradual improvement and motivates users to
participate further [21]. Thus, the CAP-A portal gives feedback in several mile-
stones for the accomplishment of tasks, in tiers level ups, earning of badges,
rewards availability and redemption.

Finally, voluntary participation requires that everyone who is participating
knowingly and willingly accepts the goals, the rules, and the feedback [27]. For
this reason, we pursue a transparent policy to users, so that they can clearly
denote their goals, and understand the gamification rules and the offering feed-
back of the CAP-A portal (e.g., through supporting users’ history, denoting next
steps for rewarding).

4 Validation

The Rewarding Framework (RF) was validated through six pilots focused on spe-
cific app categories and ran in the frame of the CAP-A project (see Table 2). Each
Pilot followed a pre-designed workflow scenario, including requests to perform
crowdsourcing actions that lead to rewarding. In total, 108 users participated in
the pilots and 141 users registered to the CAP-A portal.

Table 2. CAP-A Pilots overview

Pilot name Duration Participants Apps category

Saferinternet4Kids 1/10–31/10 35 Games, Social Media & Communication

Bora 16/10–9/11 36 Business

REN 23/11–30/11 11 Conferencing

Devstaff 10/12 (Live) 8 Social media, Productivity

Praxi 16/12–23/12 5 Conferencing

Homodigitalis 15/10–15/12 13 All above categories

The CAP-A portal allows two main types of interaction with the user, both
of which are included in the RF and give points to users upon successful com-
pletion: expressing privacy expectations, and adding annotations on PrP doc-
uments. Both activities were included in the pilot scenarios, and resulted in
meaningful contributions in terms of populating our privacy repository with
user expectations and annotations; analysing these contributions is out of the
scope of the current paper, but the interested reader is referred to the CAP-A
portal statistics (https://cap-a.eu/portal/#stats) for details.

Our validation showed that the CAP-A portal and the RF worked properly
without facing any problems; moreover, useful feedback for further improvement
was received, which was organised in three main categories, analysed below.

https://cap-a.eu/portal/#stats
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Overriding the Default Behavior of RF. During the pilots, the RF’s default
behaviour should be overridden in some cases for promotion and motivation
purposes (e.g., to increase the points per task for a specific task and for a limited
time period). Thus, the rewarding system should be flexible, parameterisable and
adaptable. The implementation of our RF as an ontology helped us to easily
address this demand; we added a Boost Parameter to the RF to support manual
point adjustment. For example, the task of completing the user profile, important
for the CAP-A portal’s dashboard, was promoted for some of the last pilots.

Users Info - History of Activities. Users should be able to see their history
of activities, e.g., for rewarding tasks. This functionality could help users monitor
their past activities, and be further engaged in performing similar activities. This
feature is related to the offered “Feedback” which is provided by the system to the
users with regards to their accomplishments, and is a critical feature of reward
systems [21,28]. To support this, we implemented in the CAP-A portal a User’s
History page, to clearly display past activities as a personal record dashboard.

UX Improvement Suggestions with Regards to RF. During the pilots, it
was clear that more information about the steps that a user should follow to level-
up tier was needed. We concluded that an interface encouraging a more stream-
lined process would help users enjoy flexible navigation through the available
tasks. This idea was implemented by redesigning the homepage of the CAP-A
(to present alternative privacy tasks associated with the RF in a specific order).

5 Empirical Evaluation

After improving the CAP-A portal and the Reward Framework (RF) based on
the feedback we received in the validation, we further performed an empirical
evaluation with 11 participants who followed a specific workflow scenario [9]. The
goal was to make a first assessment of how the system improvements can affect
user engagement and privacy awareness. Our evaluation is an exploratory study,
aimed at identifying critical success aspects of the RF and potential barriers or
features that need to be further explored.

We considered both objective and subjective metrics. We evaluated engage-
ment features, e.g., number of accomplished tasks compared to requested ones
(objective metric), or users’ opinion on the used features, e.g., points and
tiers (subjective metric). We also evaluated privacy awareness with the Privacy
Awareness Index [15], which measures the increase of privacy knowledge (objec-
tive) and the users’ opinion on the acquired privacy knowledge (subjective).

We present below the research questions (RQ) and hypotheses (H) used to
assess our targeted evaluation goals, as well as the evaluation setup, the method-
ology we followed to assess the impact of the RF, and the results of our study.
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5.1 Research Questions and Hypotheses

We evaluated the impact of the RF along two dimensions: engagement of users,
and raising of privacy awareness. Each dimension constitutes a different part in
our evaluation. We also made a UX evaluation to ensure that the user interface
is not affecting negatively our results regarding user engagement and privacy
awareness.

Part 1. Engagement and Motivation. We assess engagement and motivation
indicators of the RF based on the following research questions and hypotheses:

– RQ1.1: Are the users engaged while participating in crowdsourcing activities
(as enabled by the CAP-A portal) due to the RF?
H1.1: Users’ engagement and participation is increased because of the RF.

– RQ1.2: Does rewarding encourage the participation level of users in partici-
pating in privacy related tasks requiring interaction?
H1.2: Users are motivated to participate in actions requiring their feedback
due to the RF.

– RQ1.3: Does rewarding affect positively the performance of users in executing
privacy-related tasks?
H1.3: Users gaining rewards are strongly motivated to perform more crowd-
sourcing privacy tasks.

– RQ1.4: Does rewarding affect users’ return in the portal?
H1.4: Rewarding makes users willing to return to the portal to perform addi-
tional crowdsourcing activities.

To validate the above hypotheses, we asked a set of questions [8] to capture
users’ opinion (subjective metrics). We also used objective metrics extracted
from the users’ interaction with the portal. For example, to validate the most
generic hypothesis H1.1, we examined the response rate of participation in spe-
cific crowdsourcing tasks of the workflow [9], and the total number of accepted
invitations to register to the CAP-A portal. We also considered metrics indicat-
ing the users’ actual engagement with the portal, e.g., the actual users’ inter-
action with the invited apps and their total points, which gives a sense of the
amount of work performed, in addition to the work required by the workflow
scenario.

Finally, additional metrics were used to measure the level of engagement in
the defined scenarios: number of declared expectations, number of favorite apps,
number of annotations in PrP documents, and number of total examined apps.

Part 2. Privacy Awareness. Common privacy awareness questions were asked
before and after the use of the CAP-A portal to assess whether privacy awareness
increased. Similarly to Part 1, we formulated a set of research questions and
hypotheses to evaluate privacy awareness [8]:

– RQ2.1: Does participation in the CAP-A portal improve privacy awareness?
H2.1: Users who used the CAP-A portal improved their privacy awareness.
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– RQ2.2: Does the RF have a positive impact in raising privacy awareness?
H2.2: Users with less experience in rewarding tasks (low amount of points)
are less privacy-aware.

– RQ2.3: Does the tier level up affect the increased privacy awareness of users?
H2.3: Users that level-up tier increase their knowledge on privacy.

– RQ2.4: Does the RF encourage users to make privacy aware actions through
the portal?
H2.4: The RF motivates users to offer their privacy expectations, to improve
the community’s privacy awareness.

5.2 Evaluation Setup

For the evaluation setup, following the approach of [15], we define the following
elements: participant details, the goals of the evaluation, the applied methodol-
ogy, and the final expected results.

Participant Details. For our evaluation process, we invited 15 participants
from two different countries. The participants belonged to three different age
groups and had different background and level of knowledge with respect to
technology, mobile apps and privacy. By calculating the users’ Privacy Con-
cerns Index (PCI), following the approach of [5] we classified them into three
categories to check the impact of the RF to different categories of users (see
Users Classification subsection). All users who participated download and install
mobile applications that handle their personal data, so it is interesting for them
to learn more about their data utilization by service providers and developers.

Evaluation Goals. The goal of the evaluation is twofold: (i) assess the impact
of the proposed RF in the engagement and motivation of users to participate
in privacy related tasks; and, (ii) improve users’ privacy awareness due to their
participation in a crowdsourcing approach that applies this RF.

Evaluation Methodology. For our evaluation, we combined a Survey Part
with an Experimental Part following [5].

The Survey Part aims to collect the participants’ demographic characteris-
tics, estimate their privacy concerns, and classify their concerns into different
categories according to their common interests and acquired knowledge with
regards to privacy. It consists of a Pre-Questionaire where we use the popu-
lar Likert scaling9, as it is equidistant and well elaborated. After applying the
Pre-Questionaire to the target audiences, Pre-Activities are used to explain the
evaluation process of the experimental part, whereas Post-Activities are used
to correlate the results from the experimental part (objective) with answers to
subjective related questions for both engagement and awareness.

9 https://conjointly.com/kb/likert-scaling/.

https://conjointly.com/kb/likert-scaling/
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The Pre-Activities include a Pre-Questionaire to capture Demographic and
Background information for users and calculate the Privacy Concerns Index
(PCI) to classify them to different categories following the approach of [5].

The Post-Activities include a Post-Questionnaire to evaluate the success of
the engagement and motivation strategy (Part 1), and privacy awareness meth-
ods used (Part 2), according to the evaluation’s goals. To ensure that the applied
User Interface does not get in the way of the goal of improving privacy aware-
ness, we validated some common usability metrics10 through a UX Questionaire,
namely, user’s subjective satisfaction, success rate, and required time.

The Experimental Part aims to assess the impact on users’ behavior while
interacting with the RF. It consists of a specific workflow scenario [9], in which
we evaluate a set of parameters regarding user engagement and improvement of
privacy awareness through interaction with the CAP-A portal and the applied
RF. This part is also correlated with the respective Post-Questionnaire which is
collected after this interaction to draw conclusions about user engagement and
motivation and their level of privacy awareness.

Expected Results. Our expected results include:

1. a users classification according to their background and privacy expertise
based on the Pre-Questionnaire;

2. insights about user engagement and motivation and comparisons on quanti-
tative metrics that resulted from the user interaction with the RF;

3. insights regarding the RF impact on users’ privacy awareness level ;
4. Correlation of results of the Pre- and Post-Questionnaire.

5.3 Results

We present the users classification, results and conclusions for our evaluation.

Users Classification. 11 participants fulfilled the evaluation. Following the
approach of [5], the categories and the respective classifications for users were:

– Fundamentalists, users really sensitive to privacy with high privacy con-
cerns); 5 of our users were classified as fundamentalists.

– Pragmatists, users that care for privacy; 3 of our users were classified as
pragmatists.

– Unconcerned, users that do not really have special concerns with regards
to privacy; 3 of our users were classified as unconcerned.

Part 1. Engagement and Motivation. In total, 73% of users actively par-
ticipated in the evaluation. We considered as active any user who was invited,
registered to the CAP-A portal and completed at least one rewarding task of the
defined scenario. Interestingly, most users have not participated in any privacy-
awareness activity in the past according to the replies in the Pre-Questionaire,
10 https://www.nngroup.com/articles/usability-metrics/.

https://www.nngroup.com/articles/usability-metrics/
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and still accepted to participate in such a privacy activity; as a result, engaging
them to the related crowdsourcing task becomes more challenging.

In the majority of the cases, and for all types of users, the participation rate
exceeded the minimum number of 10 tasks specified in the scenario [9], revealing
high engagement to the CAP-A portal. Each user accomplished on average 41
tasks, 13.5 tasks per user if we consider unique actions per app (Table 3).

Table 3. Completed tasks per user

User Expectations
(min 3)

Favorites
(min 5)

Annotations
(min 1)

Examined
Apps (min 5)

User 1 (F) 30 5 0 5

User 2 (P) 18 8 3 8

User 3 (P) 3 5 1 5

User 4 (F) 53 8 3 8

User 5 (F) 30 5 0 5

User 6 (U) 24 9 4 10

User 7 (F) 28 5 0 7

User 8 (F) 49 5 2 5

User 9 (P) 41 5 1 5

User 10 (U) 26 8 2 8

User 11 (U) 42 20 1 22

(F): Fundamentalist; (P): Pragmatist; (U) unconcerned

Comparing these results, i.e. response rate of participation in completed
tasks, with results of the subjective questions in Part 1 of the Post-Questionnaire
(to validate research questions RQ1.1, RQ1.2 and RQ1.3), we can clearly draw
positive results regarding user engagement. Specifically, most users agreed that
the RF positively affects their activities in the CAP-A portal (Fig. 2(b)).

In addition, it seems that the RF motivates users in participating in privacy
tasks requiring their interaction: 54% of the users agreed with this, 37% appeared
neutral and only 9% disagreed (Fig. 2(c)). This argument is reinforced by the
fact that the task that most users completed is the expression of expectations
(Table 3). Thus, users preferred to express expectations than adding favorites
which is a naive task. Thus, the interaction of users through participation in
privacy tasks ultimately helps to improve their privacy knowledge. The applied
rewarding features (e.g., points and tiers) motivates 72% of the users, namely
user engagement is achieved through interaction with the RF (Fig. 2(d)).

More than half of the users had positive or neutral impression for the RF
(72%). Specifically, 45% of users think that the RF is supportive and 18% believe
it is essential, 9% are neutral, 18% think it is unnecessary and only 9% think
that is disturbing. The results are displayed graphically in Fig. 2(a).
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(a) How did users
experience the
RF?

(b) Does reward-
ing affect users ac-
tivity in the CAP-
A portal?

(c) The RF trig-
gers users in tasks
that require their
feedback

(d) How much RF
features motivate
users to participate
in more activities?

Fig. 2. Evaluating users’ engagement and motivation

We further examined the users who appeared negative (1 user) or neutral
(2 users). We noticed that these users performed 40, 40 and 52 tasks respec-
tively, which is much more than the minimum total requested number of tasks
(10 tasks). However, we also found that 2 of them did not participate in the
annotation task. For this reason we included a dedicated question regarding the
ease of annotation task in the UX evaluation below.

According to their replies in the Post-Questionnaire, 64% of users spent more
than 10 min in the CAP-A portal, which is much more than the estimated 5 min
necessary to complete the scenario. This shows engagement, and clearly demon-
strates that the RF increases users’ return to the portal (RQ 1.4).

Part 2. Privacy Awareness. In the second part of our evaluation, we com-
pared the Privacy Awareness Index (PAI) for the same users before and after
the execution of the workflow scenario. This experiment mainly assessed the
research questions RQ2.1, RQ2.2 and RQ2.3. Our results show a very high
increase on the level of privacy awareness for all users and all categories (the
highest increase, 500%, appeared in User 9(P), see Fig. 3). For Unconcerned and
Pragmatist users the increase was 288% and 286% on average, while for Funda-
mentalists we noticed a 151% increase. We also noticed a significant improvement
in the level of privacy awareness for users who have children (246%). Thus, it

Fig. 3. Privacy Awareness Index (PAI), max:8, users who have kids marked with a
star
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(a) Users likely to
participate in fu-
ture privacy tasks

(b) Users express
their privacy con-
tributions

(c) Users are
aware of personal
data handling

Fig. 4. Evaluating privacy awareness

is very encouraging that this category of users who were classified as the most
unconcerned, exhibited considerable increase in their privacy awareness index.

Furthermore, the RF proved that it motivates users to contribute in privacy
awareness actions through the CAP-A portal (RQ 2.4). This conclusion is drawn
since most users (73%) agree that it is very possible to participate in a new
privacy task in the future due to the RF (Fig. 4(a)).

Most users (55%) agree that due to the RF, they make their own privacy
contributions such as expressing privacy expectations on device permissions (see
Fig. 4(b)). The interaction of users with the RF helps them to become aware
and knowledgeable about how personal data are handled by mobile applications
and service providers; 82% of participants agreed with this claim (Fig. 4(c)).

(a) RF well described and
clearly noticeable

(b) Easiness to perform a
task in CAP-A portal

(c) UX and ease of annota-
tion task

Fig. 5. UX evaluation

UX Evaluation. Users did not experience any difficulty in understanding and
identifying the main RF features. 91% agreed that the RF features (such as tasks,
points and tiers) are well described, whereas 9% appeared neutral (Fig. 5(a)).
The results of our User Experience (UX) evaluation showed that the CAP-A por-
tal interface offers an easy and straightforward way to perform the main privacy
tasks related to the RF. 64% or users found easy or extremely easy to perform
a task in the portal (Fig. 5(b)). Adding annotations was the most difficult task:
9% of the users found it very difficult, 9% difficult, 55% neutral and 27% easy
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(Fig. 5(c)). Nevertheless, 5 out of 11 users completed more than the minimum
requested annotations (Table 3). This shows that, although the interface of the
Annotator tool was not an obstacle, it still has room for improvement to offer a
more attractive way of annotating PrP documents.

6 Conclusion and Discussion

In this paper, we propose a Rewarding Framework (RF), which was applied in
the CAP-A crowdsourcing platform as a tool for raising privacy awareness. The
validation and evaluation of the RF led to some interesting empirical findings,
showed promising results regarding user engagement, and contributed in improv-
ing users’ privacy awareness. To the best of our knowledge, rewarding has not
been evaluated so far to raise privacy awareness.

Our study showed that it is very important for a rewarding framework to
be agile (in terms of overriding its default behavior), supporting fair rewards
according to the complexity of each task, and providing a transparent mechanism
of offering feedback to users (showing their progress in personal goals, or how
their contributions make an impact towards the common goal of the community).

It is also important for rewarding frameworks to provide an easy way to
achieve initial goals, so that new users are not repelled. Equally important is to
utilize appropriate terminology to refer to the RF features, such as the experience
points earned or the achievements accomplished, so that the users feel that they
are becoming domain experts, in some sense, as they become more involved.

In addition, dealing with annotating PrP documents and extracting privacy-
related information from them, proved to be a hard task for some users. Thus,
we should further examine how to provide an enhanced User Experience with
regards to this task, by appropriately adjusting the RF to further promote the
annotation task, e.g., by giving more points for completing it, or by creating an
appropriate badge for users that are returning to the annotation task.

Our future plans include a new round of user evaluation, focusing on specific
rewarding components (e.g., point system), different user types (e.g., developers)
and employing a larger number of users. Our intention is to further improve our
approach based on the feedback, in order to optimise our RF and use it to help
sustain a community of privacy-aware citizens in the context of CAP-A.
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Appendix: RF Implementation Details

We present below details regarding the rules that we applied for task levels, tiers
and for the introduced badges in the RF implementation.
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Table 4. Task levels

Task level Earned points Tier availability

1 W1 ∗ C Points (W1 = 1) Baby to Royal

2 W2 ∗ C Points (W2 = 1) Novice to Royal

3 W3 ∗ C Points (W3 = 2) Grown-Up to Royal

4 W4 ∗ C Points (W4 = 4) Expert to Royal

TaskLevelAdjustmentParameter = Wi for i > 0 and
i ≤ Task Levels Number, C = Min Task LevelThreshold in
points

Table 5. Available tiers

Tier Required points

Baby Zero points

Novice V1 ∗ D Points (V1 = 5)

Grown-up V2 ∗ D Points (V2 = 15)

Enthusiast V3 ∗ D Points (V3 = 20) points

Warrior V4 ∗ D Points (V4 = 50) points

Expert V5 ∗ D Points (V5 = 100)points

Guru V6 ∗ D Points (V6 = 500) points

Royal V7 ∗ D Points (V7 = 1000) points

TierLevelAdjustmentParam = Vj for j > 0 and
j ≤ Tiers Number
D = FirstTierThreshold in points

Badges

– Social/Buddy: users who invited more than five friends to join the system
or to accomplish a specific task within a month;

– Super Star: users who completed at least ten tasks in a month;
– On Fire: users who completed more than three tasks in the last week;
– Ambassador: users with high expertise on various tasks or on privacy issues;

ambassadors are invited/suggested by the crowd or by other ambassadors.
– Inactive: users who joined the system but did not start/complete any task;
– Sleepy: users who completed at least one task but did not start a new one

for the last three months.
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Abstract. The emerging Cloud-Enabled Internet of Things (CEIoT)
is becoming increasingly popular since it enables end users to remotely
interact with the connected devices, which collect real-world data and
share with diverse cloud services. The shared data will often be sensitive
as well as private. According to the General Data Protection Regula-
tion (GDPR), the privacy issue should be addressed by the cloud ser-
vices and subsequent data custodians. In this paper, we propose DUCE,
an enforcement model for distributed usage control for data sharing in
CEIoT. DUCE leverages both blockchain and Trusted Execution Envi-
ronment (TEE) technologies to achieve reliable and continuous life-cycle
enforcement for cross-domain data sharing scenarios. The core compo-
nents of DUCE are distributed Policy Decision Points (PDPs) and Policy
Enforcement Points (PEPs) to enable reliable execution of usage control
policies without a centralized trusted authority. Policy administration
is also distributed and controlled by the data owner, who can modify
the rules anywhere anytime. The policy rules expressed in eXtensible
Access Control Markup Language (XACML) are parsed into smart con-
tracts to be executed on the blockchain service. A detailed explanation of
the enforcement process is given for an example “delete-after-use” rule.
A prototype system is implemented with an open-source permissioned
blockchain system and evaluated on an experimental deployment. The
results show reasonable performance and scalability overhead in com-
parison to OAuth 2.0. We believe additional cross-domain data usage
control issues can also be addressed by DUCE.
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1 Introduction

The Internet of Things (IoT) extends the boundary of the familiar Internet by
incorporating smart physical objects (things) embedded with sensors, actua-
tors, software and communications hardware, for the purpose of connecting and
exchanging data with other devices and systems. The continuing convergence
of cloud computing and IoT has brought about the concept of Cloud-Enabled
Internet of Things (CEIoT) [4–6,8] which is a new computing paradigm bring-
ing together the complementary advantages of cloud computing and IoT. In this
paradigm, a cloud computing service is used to provide convenient access to
online applications and services, and a IoT service is used to enable sensing and
control of the physical world, through which increasingly comprehensive data
interactions facilitate “smarter” applications for end users.

Applications of CEIoT span a diverse set of consumer, industrial and profes-
sional scenarios. Data about healthcare collected and stored in a secure manner
can be shared, to provide remote sensing detection services for elderly health-
care [22], to provide patients some facilities through telehealth [2], to promote
medical research [9], etc. Contaminated water detected can be shared to prevent
users and crops from outbreak of diseases [10,21]. As for transportation, smart
parking service data can be shared and driving habits monitored to provide
vehicle owners services such as warranty and insurance discounts for safe driving
[12,13]. The proliferation of data sharing in CEIoT is an emerging trend with
great potential and may even become the future of the Internet [11,28].

CEIoT presents significant privacy concerns especially in consumer-oriented
applications [1,16,26]. Most shared data collected by user devices is sensitive
and private. Despite the fact that access control mechanisms can be used to
prevent the data from leakage during an access, the data shared to an external
application is not subject to this restriction. Furthermore, the behaviors of the
external application cannot be monitored or controlled once the data is shared,
whereby the usage of the data may violate articles such as “Rights to erasure”
in General Data Protection Regulation (GDPR). Thus appropriate privacy pre-
serving mechanisms need to be developed to mitigate this risk and realize the
true potential of such data sharing. In this paper, we propose a distributed
usage control enforcement model, namely DUCE, to address the aforementioned
privacy concerns in CEIoT.

The key contributions of this work are as follows. (i) A DUCE design overview
is given with the system components including the distributed PDPs and PEPs.
DUCE leverages permissioned blockchain technology to build a trusted relation-
ship between data-sharing parties, whereby the rules and enforcement records
are tamper-proof and visible to users. A Trusted Execution Environment (TEE)
is used to ensure that the enforcement process of the rules and the usage of user
data are trustworthy and controllable by users. (ii) The policy administration
model of DUCE is also provided with a policy example of “delete-after-use” in
XACML and the policy translation algorithm into Solidity language for smart
contracts. (iii) A prototype system is implemented and deployed along with an
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OAuth 2.0 benchmark system. The end-to-end delay and throughput are evalu-
ated and analyzed to demonstrate the viability of DUCE.

Organization. Section 2 reviews essential technical concepts. Section 3 provides
a typical user scenario, the problem statement and the design goals. DUCE is
developed in Sect. 4. Section 5 discusses the experiment results. Related work is
summarized in Sect. 6. Section 7 concludes the paper.

2 Background

Usage Control (UCON). Traditional access control models [27] deal with
authorization as sole basis for access decisions and typically focus only on server-
side controls. The UCON model, namely UCONABC [24], enables mutability of
subject and object attributes, as well as continuity of control on usage of digital
resource, and focuses on both server-side and client-side controls. The basic
access control decision in any access control model can be represented as a triple
(s, o, r, c), in which s denotes the subject S exercising a right r for object O
under conditions c. UCON comprises eight core components, as shown in Fig. 1
to resolve this question. There are three functional predicates that have to be
evaluated for usage decisions. The authorizations denote specific rights that a
subject may exercise, the obligations denote actions the subject must perform
and the conditions denote criteria influenced only by system-wide conditions.

Cloud-Enabled Internet of Things (CEIoT) is a basic IoT three layers
architecture [5,6]. Perception layer includes devices that can perceive and col-
lect data. Middle layer, in which components have functions to transfer data,
communication and provide data services. Application layer provides diverse
applications to meet the needs of the society and users. IoT devices are typi-
cally resource-constrained while close to real data, while cloud computing can
provide elastic scalable storage, computing, and analysis. Therefore, the current
emerging and widely used architecture called CEIoT integrates the IoT and the
cloud, wherein cloud service providers (CSPs) expand services and applications
via Internet on the existing foundation based on the above basic IoT.

Distributed Ledger Technology (Blockchain) is a technology [18,19] link-
ing records expressed as blocks on a chain through cryptography, initially
deployed to address the double-spending and currency generation problems of
the Bitcoin cryptocurrency [20]. Each block contains a cryptographic hash of
the previous block, a timestamp, and transaction data usually expressed as a
Merkel Tree. For use as a distributed ledger, nodes in a blockchain system are
usually managed by a peer-to-peer network, and encouraged to follow proto-
cols for communicating and validating new blocks by incentives. As a decen-
tralized infrastructure and distributed computing paradigm with the character-
istics of tamperproof, traceability, and joint maintenance by multiple parties,
blockchain has considerable promise for the construction of future IoT systems.
As an autonomous application program running in the isolated virtual machine
on a blockchain system, the smart contract provides a novel mechanism that can
autonomously manage and implement interaction-rules between related parties.
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Fig. 1. UCON policy model [24] Fig. 2. A private data-sharing scenario

3 Problem Statement and Design Goals

Problem Statement. In this paper, we address data sharing in CEIoT [23]. We
assume a typical data usage scenario, as shown in Fig. 2. Suppose Alice acquires
a wristband to collect the family’s health data, such as heartbeat, exercise and
sleep. Alice desires that the device platform of this wristband, can share her data
with an application platform, such as a professional health institute, with her
authorization. So Alice can obtain a health report after the data is processed by
the institute. Presumably, some sensitive and private data is included in her data
collection. As per article 17 of GDPR, user data has the right to be forgotten,
i.e. “Rights to erasure”. Thereby, Alice expects that the institute can delete the
data immediately after use, as well as not doing anything against her will during
the usage, e.g., copying without her authorization or sharing to others directly
in the current system. We note that any solution to such requirements must
impose some perimeter restriction whereby all processing of the data takes place
within this perimeter. In particular, so-called analog hole operations such as
taking photos of display screens or manually copying data are beyond the scope
of purely technical solutions.

To satisfy Alice’s expectations, the wristband uploads data sporadically to its
platform, viz. Devices Platform. Subsequently, a health report request is initiated
by Alice via the application button on her smart phone, and the action triggers
a professional institute, viz. Applications Platform to send a data request to the
devices platform, in steps a) and b). After receiving a data request, the devices
platform indicates to Alice that authorization is required through a visualized
and unambiguous view in step c). Then, the interface is redirected back to the
application with permissions, as indicated in step d). Successful authorization
by Alice allows the data to be communicated to applications platform by devices
platform in step e). Finally, the data is used to compute a health report which
is delivered to Alice by the applications platform in step f).

Design Goals. In the above scenario, Alice wants a professional analysis report,
which is a task that a devices platform or a general data storage party cannot
fulfill. Thus the data needs to be shared with a third party such as a health
institution. Moreover, Alice wants continued control of data usage wherein a
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Fig. 3. System overview of DUCE, a trusted and distributed enforcement model.

“delete-after-use” rule is defined. However, in a distributed architecture, once
data is shared, users lose control of the data. Due to mutual untrustworthy
relationship between participants, users cannot be sure whether the applications
platform follows the rules, and the applications platform cannot prove to users
that they did not break the rules and breach privacy.

Therefore, to prevent privacy compromises, a trusted relationship should be
established between mutually untrustworthy participants to keep data usage
completely visible and in absolute control of users. This motivation drives our
goals as follows, and inspires us to design a privacy-preserving distributed usage
control enforcement model for data sharing in CEIoT. We recognize the follow-
ing derivative goals. Privacy Preserving requires that the shared user data
and the keys in authorization used to decrypt this data should be protected.
Integrity Protection requires that the policy defined by users and enforcement
records should not be tampered with. Traceability requires that violations must
be able to be traced through enforcement records, and are visible to users.

4 The DUCE Model for Cloud-Enabled IoT

In this section, we present an overview of DUCE and its various components,
and develop its enforcement process and an administration model. A system
overview of DUCE is given in Fig. 3. A blockchain service is leveraged to con-
struct a trusted and distributed architecture, in which data-sharing participants
including data stores, data consumers and data owners are orchestrated and
the data usage control rules can be enforced with administration and visibility
by data owners via distributed PDPs and PEPs. Moreover, the policy defined
by data owners is not only an authorized foundation to share data for a data
store, but also a rule constraint for use of data by a data consumer. DUCE con-
nects Data Stores (DSs), Data Consumers (DCs) and Data Owners (DOs) via a
Blockchain Service. The system components of DUCE are discussed below.

Policy Enforcement Point (PEP) is a distributed component coupled with
protected resources (i.e. the user data stored in a data store), which can inter-
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cept usage requests initiated by accessing subjects to trigger a decision through
assessing the access request via available attributes, and finally enforce the result
returned by an allow or deny decision. In DUCE, the PEP is a distributed engine
used to enforce usage requests and perform specific decisions for user data. Addi-
tionally, the PEPs incorporate a Context Handler (CH) which plays the role
of coordinator in an entire usage policy decision-making process and manages
workflow by interacting with all other components.

Distributed Policy Decision Point (dPDP) is an adjudicator who makes
decisions including allow or deny. It returns the decision to PEPs after the param-
eters including policy, usage requests, and current available attributes are eval-
uated. It is an essential aspect of DUCE.

Policy Administration Point (PAP) is a component responsible for man-
agement, storage and retrieval service during the evaluation process of usage
requests. Meanwhile, PAP can also help decision-makers to define and modify
policy, or perform other more complex and related policy management actions.

Attribute Manager (AM) is a component in charge of managing usage,
retrieval and update of subject, object and environmental attributes. In DUCE,
subject attributes mainly refer to general, authorization, obligation and condi-
tion attributes. The object attributes mainly refer to attributes, such as times to
use and unique identifiers. The environmental attributes mainly refer to attribute
values that are only effected by administrative operations in systems. AMs are
not confined to an authorization service, but can be extended to local services,
cloud services, or other services in different management domains.

Policy Information Point (PIP) is an interactive interface between diver-
sified AMs, which provides attribute retrieval and update services, whereas
attribute sets required for evaluation are collected by different AMs and pro-
tocols.

Data Owner (DO) provides PAP and ownership service to IoT devices and
user data. DO is responsible for administrating usage policy and can control the
entire enforcement by interacting with context handlers in PEPs.

Data Store (DS) provides a hosting service for user data. As a PEP, the
data store translates the policy defined by a data owner into a form that
can be evaluated by dPDPs, and then determines whether to call the PIP
to perform data-sharing based on the distributed evaluation results. Whether
or not the data is shared, the data store needs to send a notification to the
user through CH. Formally, DS=<CH,PEP,dPDP,PIP,AMs,Data>, where the
Data denotes an object. More precisely, we denote CH in DS as CHDS, thus
CHDS=<Hpol,Hoat,Hobj , Hnot>, where Hpol receives policy defined in XACML
from DO, and translates policy into a form that can be evaluated in a dPDP.
Hoat updates object attributes. Hobj handles user data, and Hnot sends notifi-
cations to data owners.

Data Consumer (DC) is a data consumer who enforces data applications
services according to policies defined by DO. If a usage request is allowed,
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DC receives user data and keys through CH. After a data-sharing process
is completed, a notification is sent to the data owner through CH. For-
mally, DC=<CH,PEP,d-PDP,PIP,AMs,TA,Application>, where the Applica-
tion denotes a subject, viz. data requester, and also performs computing func-
tions by using the data from the TA that excluding sensitive information, then
returns a result showing on the smart phone of DO. More precisely, we denote
CH in DC as CHDC, thus CHDC=<Hpol,Hsat,Hsub,Hnot>, where Hpol receives
policy and enforce a distributed evaluation directly through the dPDP. Hsat

updates subject attributes. Hsub sends data requests, and Hnot sends notifica-
tions to data owners.

Trusted Agent (TA) is an agent of a TEE belonging to DC, which interacts
with an external untrusted environment. In a data-sharing process, the user
data received through sharing actions is stored by PIP, and the key is directly
delivered to TA for storage in the TEE. It is worth noting that the entire process
of providing specific application services and distributed policy evaluation is
completed in TEE, and interactions required with the external environment also
is completed by TA. If a violation occurs in distributed evaluation processes, CH
or TA is triggered to send alerts and notifications to the DO.

Blockchain Service is a service provided by blockchain technology to build a
trust relationship among DO, DS, and DC, in charge of providing distributed
services including policy decision, policy enforcement, and policy administration.

Next, we illustrate the enforcement process of DUCE as follows.

Initialization Phase refers to an initial preparation of DUCE, including ser-
vice, communication, and data preparation. First of all, the distributed policy-
decision services, i.e., nodes of a permissioned blockchain, and the enforcement
environments need to be prepared by DS and DC. Then, the communication
ability namely CH with data owners need to be prepared in DS and DC, such as
P2P network or an internal protocol of DS or DC. Next, a TEE needs to be pro-
vided in DC, in which TA can interact with DS and DO. Finally, the user data
uploaded by devices should be prepared and retrievable in DS. In this paper, to
protect user privacy, we default that the device data is encrypted for storage in
DS and can only be decrypted with an authorization of data owners.

Enforcement Phase is divided into the following four segments.
Authorization. After the initialization is completed, the application service

that DO wants triggers DC to initiate a data request to DS in step 1. After
the request is received, CH retrieves relevant information of authorization on
blockchain by executing smart contracts in step 2. There is no authorization
information related to this DC since it is in initial status. We assume that autho-
rization in DUCE is instant, i.e. permission will be automatically revoked if the
relevant operation is not performed within a limited time, so DC should request
authorization every time before an access. Then, DS initiates an authorization
request through CH to ask DO for authorizations. After receiving the request
through a smart phone, the user authorizes with a defined policy, namely rule
in 3. The policy is received and translated into a smart contract, and issued on
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blockchain by CH in 4. Simultaneously, CH knows the authorization through
synchronization in 5.

Operation. The policy-related information on blockchain, <subject,object,
right> is used to make a decision to access DC to data by dPDPs. The data is
shared to DC by DS through the CH in 6. After receiving the data, DC performs
related operations by TA in TEE in 9. The relevant records of operations in 7
are uploaded to blockchain for storage and evaluation subsequently in 8 by CH.

Evaluation. The records stored in an Operation are analyzed by executing
smart contracts, either make a decision to update the subject, object, and envi-
ronmental attributes by dPDPs via CH in 8 or enforce a revocation.

Notification. This segment is enforced by CH in PEP and TA. Once the
operation the user follows is completed, or related evaluation is triggered, the
TA or the CH should notify the user regardless of the conditions met in 5.
Definitely, TA should send a notification to users when all the above segments
are completed in 10. Thus to be completely visible and controllable to the user.

Administrating the Enforcement Model. In particular, we translate the
policy so that we can evaluate the policy by executing smart contracts. We use
XACML [3], the most popular expression policy language, to help data owners
to define policy, as shown in Policy 1, “UCONPolicy” is used to identify the
policy, which is briefly described as the “Permit” permission is granted to the
subject who obeys the two conditions “delete after use” and “use and delete in
TEE” by the data owner (Issuer), the subject is allowed to use the user data in
“user-wristband-data” category and the date is after “2021-02-08”.

Moreover, smart contract is a core component that supports trusted and
distributed policy decision-making services of blockchain technology, it ensures
functionality and security of policy through automated execution and evaluation.
We translate the policy into smart contracts, that are issued on Blockchain
Service through CH by DS and waits execution triggers for data usage decision-
making, as shown in Algorithm 2.

5 Performance Evaluation

Implementation. We prototype the DUCE authentication and authorization
service built upon SpringFramework. In particular, we utilize smart contracts
enabled in FISCO BCOS1 to realize blockchain based authorization in DUCE.
1 http://www.fisco-bcos.org.

http://www.fisco-bcos.org


286 N. Shi et al.

Fig. 4. Comparison of delay and throughput between DUCE and OAuth 2.0.

We store the accessToken on the blockchain through the CRUD feature of FISCO
BCOS, and use Solidity to realize the accessToken authentication service. We
replace the authentication service logic of OAuth 2.0 as the DUCE service, which
ensures that the authentication process in DUCE is tamper-proof. A user can
use an acccessToken stored in the blockchain to get authorized.

Experiment Setup. Our prototype is deployed on the Alibaba Cloud Elastic
Compute Service. Also, we use the default OAuth module as a baseline, to imple-
ment our OAuth authorization service. We use MySQL database to store the user
identifier information, and the Redis cache mechanism to cache accessToken to
reduce the delay of the OAuth authorization. We also deploy the FISCO BCOS
blockchain service of DUCE on the same cloud server.

Results. Based on the above implementation and setup, we run the project and
define three metrics to evaluate performance.

Delay, the time required for communication messages transmitting from one
network end to another, including transmission, propagation, processing, and
queuing delay. Since the processing and queuing delay are mainly determined
by the communication message size, in DUCE, we focus on the transmission
and propagation delay, namely end-to-end transfer delay.
Throughput, the maximum request number that the system can handle
per unit time, We focus on authorization and authentication throughput in
DUCE.
To demonstrate the effectiveness of DUCE, we first use Postman to test the
transfer delay, as shown in Fig. 4 (a). Then, we use JMeter to test the through-
put of DUCE, as shown in Fig. 4 (b).

Discussion. According to the above experimental results, we find that the
realization of authentication and authorization by using blockchain services
increases the delay and decreases the throughput. In the experiment, the addi-
tional blockchain services requires more time (i.e., 350 ms in the OAuth 2.0
system and 370 ms in the DUCE) to process end-to-end communication than
the OAuth 2.0 system. The choice of OAuth 2.0 may be limited to the experi-
mental configuration, and the throughput performance is around 2400 tps/s. In
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DUCE, the selection of different blockchain may result in different throughput,
and the throughput reaches about 2000 tps/s in FISCO BCOS. Therefore, as the
circumstance that there is a same ratio of the peak throughput (y-axis) to num-
ber of concurrent requests (x-axis) in DUCE and OAuth 2.0, i.e., both are 80%,
the decrease of about 17% (less than 20%) is within the acceptable range. In
other words, we demonstrate that compared to the existing widely used solution
namely OAuth, DUCE does not introduce excessive overhead, while preventing
user privacy from being compromised.

6 Related Work

Privacy preserving of static data refers to a protection of static storage data,
methods include the access control mechanism, the encrypted storage and the
anonymization of sensitive information. Both academic researchers and indus-
try cloud service providers, such as Microsoft, Amazon, Google, have deployed
CEIoT platforms and novel access control models. Google [11] developed GCP-
IoTAC, a fine-grained access control model based on attribute extensions, and
demonstrated two main use cases which are more privacy-conscious of IoT.
Fernández et al. [9] designed a data collection and data sharing model based on
the DataBank architecture and implemented it on an open-source platform Pri-
vasee. Liu et al. [16] proposed BC-SABE, a blockchain-assisted mechanism with
effective revocation and decryption functions based on attribute-based encryp-
tion. Xu et al. [30] designed the Key Compromise Resilient Signature (KCRS)
system. To protect IoT device data, an authentication framework based on a
decentralized ledger namely DIoTA [29] is proposed. Patil et al. [25] used the
concept of anonymous tokenization to make up for the shortcomings of current
communication technology that cannot protect the anonymity of users.

Privacy preserving of dynamic data refers to prevention of privacy leak-
age due to improper data usage during data-sharing transmission and comput-
ing, the main prevention methods include Federated Learning, Homomorphic
Encryption, and Trusted Execution Environment. In order to balance utility and
privacy, Ramesh et al. [26] proposed a framework namely proxy re-ciphering as
a service that using Fully Homomorphic Encryption and Chameleon Hash to
customize the solution to ensure long-term computing with privacy-preserving
of device data. Federated Learning can be used to train a global machine-
learning model using data distributed across multiple sites without data move-
ment. Choudhury et al. [7] proposed a grammatical method, different from dif-
ferential privacy, that can support privacy-preserving at the defense level while
maximizing the effectiveness of the model. Zhang et al. [31] proposed a system
solution called BatchCrypt for the cross-silo federated learning system, which
can ensure update of the local gradient is concealed when is aggregated. Zhang
et al. [32] designed Cerberus by combining blockchain technology provided dis-
tributed data storage and TEE for state maintenance, data storage and off-chain
computing in a computing scenario outsourced to edge nodes.
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Moreover, Lazouski et al. [15] designed U-XACML to express UCON, imple-
menting a prototype system for evaluation. Marra et al. [14] proposed a
realization of usage control in a smart home use case. Ma et al. [17] proposed
BlockBDM, a decentralized trust management scheme for IoT big data.

7 Conclusion

Utilizing blockchain or DLT to build a trust relationship between participants in
a data-sharing scenario to prevent user privacy leakage is one of the most popular
methods. Whereas the IoT device data contains sensitive or private information,
combining two new computing models, cloud computing and IoT, can provide
users with efficient services with privacy-preserving. To address the problem that
applications service or data consumer violates articles such as “Right to erasure”
in GDPR and leads to user privacy disclosure, we propose DUCE, a trusted and
distributed enforcement architecture. In DUCE, blockchain is used to enforce
distributed usage control policy to make decisions by distributed PDPs and
PEPs, the policy is defined in XACML and translated into smart contracts for
automatic execution and evaluation. Utilizing a TEE to limit obligations and
conditions, we demonstrate the enforcement process of DUCE, and conducted
functional and performance evaluations by comparing our prototype with OAuth
2.0 system. However, DUCE integrates and relies on TEE, thus the protection of
user data depends on the security strength of cryptography and TEE. In future
work, we devote to research more secure and trusted enforcement models, and
figure out methods for encrypted data protection.
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Abstract. Security Operations Centers (SOCs) provide a holistic view
of a company’s security operations. While aiming to harness this poten-
tial, companies are lacking sufficiently skilled cybersecurity analysts. One
approach to meet this demand is to create a cyber range to equip poten-
tial analysts with the skills required. The digital twin paradigm offers
great benefit by providing a realistic virtual environment to create a
cyber range. However, to the best of our knowledge, tapping this poten-
tial to train SOC analysts has not been attempted yet. To address this
research gap, a concept of a digital twin-based cyber range for SOC
analysts is proposed and implemented. As part of the virtual training
environment, several attacks against an industrial system are simulated.
Being provided with a SIEM system that displays the real-time log data,
the trainees solve increasingly complex tasks in which they have to detect
the attacks performed against the system. Thereby, they learn how to
interact with a SIEM system and create rules that correlate events aiming
to detect security incidents. To evaluate the implemented cyber range, a
comprehensive user study demonstrates a significant increase of knowl-
edge within SIEM-related topics among the participants. Additionally,
it indicates that the cyber range was subjectively perceived as a positive
learning experience by the participants.

Keywords: Cyber range · Security operations center · Digital twin

1 Introduction

As cyber-attacks become increasingly sophisticated and use more and more
points of attack, it is essential to establish a holistic view of organizations’ secu-
rity. As a recently published report [2] indicates, organizations are becoming bet-
ter at detecting and mitigating direct attacks. However, more advanced attacks
are on the rise, targeting the victim indirectly through weak spots in the busi-
ness ecosystem or the supply chain. Over the recent years, Security Operations
Centers (SOCs) have emerged to address this problem by providing a holistic
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view of organizations’ cybersecurity. However, this has increased the demand
for security personnel, making it difficult to find enough well-trained analysts
for SOCs. This is worsened by the so-called “alert burnout”, since an analyst’s
daily work can be quite tedious and tiring. According to a SANS survey [23], the
key to low attrition rates is to invest more in analysts’ training. Therefore, it is
crucial to create a means to train analysts as quickly and effectively as possible,
considering that the requirements can vary from company to company. To create
a suitable training environment, cyber ranges can be used to train analysts by
simulating realistic scenarios without disrupting business operations. To be as
close as possible to the specifics of the company, the integration of a digital twin
is a promising option. Thereby, the relevant section of the company infrastruc-
ture for which the experts are to be trained can be mirrored, creating a training
environment that barely differs from the company’s real environment.

The contribution of this paper is twofold. First, we examine which compo-
nents of a digital twin can be used for cyber ranges. Based on this, a cyber range
for SOC analysts is designed and prototypically implemented. To show that the
proposed concept offers advantages for the training of security analysts, it is
evaluated through an extensive empirical user study.

The remainder of this paper is structured as follows. Section 2 provides the
foundation of the conducted research. In Sect. 3, the digital twin’s potential for
cyber ranges is outlined along with the current research gap. Based on that,
Sect. 4 proposes a concept for a digital twin-based cyber range, including a sce-
nario and learning concept and concludes with a description of the prototypical
implementation of the concept. Section 5 covers the evaluation of the concept in
the form of a comprehensive user study by presenting the methodology and the
results of the evaluation. Finally, the work is concluded in Sect. 6.

2 Background and Related Work

2.1 Cyber Range

As conventional training methods that only focus on transferring theoretical
knowledge do not meet the demand for practical knowledge and skills within
the cybersecurity domain, cyber ranges have gained attention over the past
years [32]. Generally, cyber ranges are virtual environments, which are used
for cybersecurity training [28]. As the name indicates, the expression is derived
from shooting range, as both provide an environment in which people can be
trained without harming or interfering with the environment for which they are
educated. Application areas range from public settings such as military defense
and intelligence, academic and educational, to commercial purposes driven by
the industry [29].

The idea of using cyber ranges to train specialists in attack detection and
in cybersecurity in general is not entirely new. For example, the Austrian Insti-
tute of Technology recently introduced a cyber range of industrial control sys-
tems [20], not only targeting education, but also serving as a platform for con-
ducting research and development by testing new approaches and methods. This
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is only one example in this context. For a deeper insight into related approaches,
we would like to refer to two extensive literature reviews which provide a good
overview of preliminary work [29,32]. Although some works in this area exist, to
the best of our knowledge, no approach combines the digital twin’s potential with
the concept of cyber ranges for educating SOC analysts to date. Additionally,
the effect of the approaches on the obtained knowledge has not gained sufficient
attention in previous works.

According to Yamin et al. [32], a cyber range can be described by following a
taxonomy with six domains. However, the description of a cyber range does not
necessarily have to consider all domains, but instead, can focus on selected ones.
As this paper applies the taxonomy for describing the developed cyber range,
the six domains are elaborated briefly in the following:

Scenario: A scenario defines the storyline and context of a training exercise
performed in a cyber range. It supports the purpose of the training, such
as education, experimenting, or testing. Thereby, it is allocated to a domain
(e.g., networking, critical infrastructure, or IoT). Additionally, a scenario can
either be static or dynamic. A dynamic scenario means that changes are made
during the exercise, for example, by simulating infrastructure components.

Environment: The environment presents the topology in which the scenario
is executed. This includes the underlying technology used to build a system
model (simulation, emulation, hardware, or hybrid).

Teaming: Teaming describes which teams are part of the scenario. The most
important teams are a red team with the goal to exploit vulnerabilities of the
system, and a blue team with the task to defend the system against attacks.
Teams can also be autonomous if specific technologies automate them.

Learning: The learning domain covers explanatory elements of a scenario such
as texts, images, or video clips used for initial knowledge transfer.

Monitoring: Participants’ actions can be monitored in real-time during an exer-
cise by using appropriate tools.

Management: This domain covers how management tasks, such as role and
resource allocation, are performed. It also comprises interfaces for controlling
the scenario or the environment during the exercise.

Furthermore, it is worth mentioning in this context that the term can be nar-
rowed down further. Kavallieratos et al. [17] define a cyber-physical range as a
testbed that enables the testing of the security posture of cyber-physical systems.
The cyber range presented in this paper can be assigned to this class.

2.2 Security Operations Center (SOC)

The term Security Operations Center has been around in research for more than
a decade. However, attention has significantly increased in the last three to five
years as SOCs have emerged as a central pivotal point for security operations
in practice [30]. The SOC represents an organizational aspect of an enterprise’s
security strategy. It combines processes, technologies, and people [21,27] to man-
age and enhance an organization’s overall security posture. This goal can usually
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not be accomplished by a single entity or system, but rather by a complex struc-
ture. It creates situational awareness, mitigates the exposed risks, and helps
to fulfill regulatory requirements [19]. Additionally, a SOC provides governance
and compliance as a framework in which people operate and to which processes
and technologies are tailored. A central role within a SOC is taken by security
analysts. Using appropriate tools, they can attempt to detect security incidents,
then analyze them and react appropriately. Therefore, the success of a SOC
depends to a large extent on the skills and training of the analysts. Within a
SOC, a SIEM system is usually used as the central tool [31]. A SIEM aims to
collect security-relevant data (usually log data) in a central location and analyze
it in a correlated manner to detect security incidents. For this purpose, SIEM
systems use detection rules that are usually created by analysts, in most cases in
JSON or XML format. These fulfill the purpose of triggering an alert if defined
conditions within the log data apply.

2.3 Digital Twin

The digital twin refers to a concept that differs in meaning depending on its
application area [22]. In general, a digital twin can be defined as a virtual rep-
resentation of any real-world asset (e.g., system or process). The digital twin
accompanies its real-world asset’s lifecycle, which may range from phases like
idea/planning over operation to decommissioning [6]. The digital twin gathers
data about its real-world twin during these phases and enriches the data with
semantics [3]. This way, the twin is able to represent its counterpart in-depth
and provides a solid basis for simulations and further analytical measures.

Especially in cybersecurity, the digital twin holds several benefits [26]. It
can support lifecycle security [11], including the security-by-design paradigm by
offering simulations and system testing, in which the security level of the asset
can be assessed. Moreover, digital forensics may profit from the vast data and
documentary capabilities of a digital twin [7].

3 Investigating the Potential of the Digital Twin for
Building Cyber Ranges

In order to extract what digital twins offer for cyber ranges, we must first regard
the foundation of digital twin deployment in cybersecurity. According to [11],
the digital twin is required to provide sufficient fidelity for security measures
that rely on its data. A digital twin offering this characteristic can then be suc-
cessfully implemented for cybersecurity. This definition presents the prerequisite
for combining digital twins and cyber ranges. Currently, one work conceptually
proposes to utilize a digital twin as a cyber range [4]. However, an implementa-
tion has not been realized to date. In their approach, the digital twin is merely
applied as cyber range with the purpose of security training, while other pur-
poses are not considered. However, the digital twin originally serves completely
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different purposes, such as monitoring and controlling its counterparts’ opera-
tion [6]. Thus, in this paper, we propose to use the digital twin as a valuable
input to create a cyber range rather than turning it into one. In this matter,
we investigate which digital twin characteristics can provide valuable input for
cyber ranges in the following. The core parts included in a digital twin represent
(a) data, enhanced with semantic technologies, (b) analysis, simulation and other
intelligent services as well as (c) access control and interfaces [6].

Data of the digital twin’s real-world counterpart is produced along its lifecy-
cle, stored in the digital twin and given context by adding semantics [3]. This
data supports high-fidelity modeling of the counterpart to virtually represent the
real-world system. Added semantics offer better comprehension and modeling of
the connection and the context of the system’s components. This can prove to
be an essential input for creating cyber ranges as well. To maximize the training
potential of cyber ranges, the virtually represented system and related security
incidents should resemble reality as close as possible. This way, security analysts
can be trained in a highly realistic environment. However, not all data held in a
digital twin may be relevant for building cyber ranges. The virtual system, used
to build a cyber range might represent only a part of a complex real-world sys-
tem, e.g., by focusing on the network level. In this case, the physics-related data
of the system might not be of interest. Moreover, the resulting data of digital
twin analyses (like predictive maintenance) typically are not relevant. In gen-
eral, only a subset of digital twin data is required for creating the cyber range –
depending on the complexity level, granularity, and the part of the system being
represented.

Analysis, simulation, and other intelligent services represent operation
modes of a digital twin. According to [7], three modes can be used for secu-
rity purposes as well: analysis, simulation, and replication. Table 1 summarizes
these modes and their potential benefits for building cyber ranges. Each oper-
ation mode relies on digital twin data and has already been tackled in terms
of security in some works (see Table 1). Analysis usually takes historical/state
data of the physical counterpart into account to apply analytical measures such
as anomaly detection, pattern recognition, etc. For cyber ranges, this data has
to be virtually reproduced (moderate effort). However, there is no virtual system

Table 1. Digital twin security operation modes and their potential for cyber ranges.

Operation mode Required data Related work Benefit Effort

Analysis Historical/state data [24] Low Moderate

Simulation Specification data
(for emulation)

[8,10] High Moderate

Replication Specification data
(for emulation),
historical/state data
(stimuli)

[9,13] Moderate High
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that can be explored by security analysts (low benefit). Simulation, in contrast,
requires only specification data to build the emulation. On top of the emulation,
different (security) scenarios can be applied to a virtual system to create a sim-
ulation, where the security analyst in training can not only see produced data
of the virtual system but also interact with the system (high benefit). More-
over, the simulations can be taken from digital twins and directly used in or
tailored to the cyber range (moderate effort). Replication, on the other hand,
requires high effort to be used for cyber ranges as it relies on integrating not only
specification data to build the emulation, but also on current state data of the
physical counterpart to defer the stimuli changing the systems state. However, it
only provides moderate benefit as the system is always in synchronization with
its real-world counterpart and alternative scenarios (e.g., security incidents and
countermeasures) cannot be tested.

Other important parts of digital twins are access control and interfaces (e.g.,
implemented in [25]). Although control mechanisms in digital twins for accessing
their data and analytic capabilities represent no relevant input for cyber ranges,
interfaces might be used to transmit data from the digital twin.

To conclude, some parts of the digital twin offer benefits for building cyber
ranges. Especially the operation mode simulation can be used to create a virtual
environment close to reality. Such a system simulation model can be directly
transferred from the digital twin into the cyber range and – if necessary – cus-
tomized to meet the cyber range’s needs. The interfaces part of the digital twin
might help to transfer the model, while additional data might help to create
simulation scenarios or to get an overview of the system that is virtually repre-
sented. Overall, the simulation capability of the digital twin presents a valuable
input for cyber ranges and will be concentrated on in the following.

4 A Cyber Range for SOC Analysts

To create the cyber range, it is first necessary to define the learning objectives,
the target group, and the requirements. In the case of our cyber range, the analyst
in training - hereafter referred to as the trainee - should be introduced to the
tasks of a SOC analyst and learn how to work with a SIEM system. In the
process, he or she should acquire the following skills and know-how:

S1: Knowledge of how selected incidents or attacks on the industrial system
work.

S2: Manual detection of anomalies or incidents by analyzing log data with a
SIEM system.

S3: Create both syntactically correct and semantically appropriate rules to
detect the incidents.

The target group are individuals who want to achieve skills in security analytics
within a SOC – for example, because they want to work as analysts in a SOC in
the future. They are assumed to have basic cybersecurity skills but have never
worked with a SIEM system or in a SOC. Even though incident response often
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lies within an analyst’s responsibilities, this will not be considered in this cyber
range as, in our opinion, it is too complex to start with and would create too
steep a learning curve. However, this could be addressed in future work.

One requirement for the cyber range is to run it entirely virtual in order for
the trainees to take part in the cyber range remotely without physical presence.
This allows the trainees to take part without too much effort. Additionally, it
facilitates the evaluation with an international user study. Furthermore, since
the user study is to take place in times when – due to COVID-19 restrictions –
face-to-face contact should be kept to a minimum, conducting it in a classroom
setting is not an option.

In the following, first the general concept of the cyber range is presented.
Based on this, the scenario is described with the help of which the user should
acquire the skills outlined above. Subsequently, the prototypical implementation
of the cyber range is elaborated upon, with a brief description of the technologies
used.

4.1 Cyber Range Concept

Our cyber range consists of five main building blocks (compare Fig. 1): A virtual
environment, a SOC, a management and monitoring unit, a learning manage-
ment system, and the digital twin, which lies outside of the cyber range. Thus,
it represents a security analytics service [12] combined with cyber range specific
components. In the following, these building blocks are explained in more detail.

Fig. 1. Basic concept of the digital twin-based cyber range for SOC analysts.

As investigated in Sect. 3, the digital twin provides a system simulation
model used to create the virtual environment. The simulation model is supported
by specification data, enabling a realistic simulation of the physical counterpart
with which the trainee can dynamically interact, like with the real system within
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the organization. The data for the simulation is provided through respective
interfaces and protected by access control capabilities.

The virtual environment implements and reflects the scenario of the cyber
range through the simulation. For this purpose, an industrial system is simulated
on the one hand and simulated attacks harming the industrial system are carried
out on the other. Thereby, the planned training scenario is reproduced, guiding
the trainee through several training units similar to a playbook, elaborated in
more detail in Sect. 4.2. In the process, the simulated industrial system produces
log data documenting its operation and providing traces pointing to the attack
scenarios.

Within the SOC building block, a SIEM system is provided, which provides
the actual point of interaction with the trainee. The SIEM represents the system
for which an analyst is trained, and ideally is also a system in practical use in
the trainee’s organization. This ensures that the trainee learns to work with a
system that is as close to the real SIEM as possible or even identical to it. The
log data of the industrial system is fed into the SIEM. In the first step, the
trainee interacts with the SIEM to analyze and manually detect the simulated
attacks based on the available data. In the next step, the trainee can use this to
create correlation rules in the SIEM, which detect attacks automatically.

The learning management system (LMS) provides additional learning
material for the trainee and introduces the scenario. This information can be
presented in various forms, such as videos or simple textual descriptions. In our
case, an introduction to the functioning of SIEM systems and the structure of
SIEM rules is provided. In addition, hints on the attacks are given to make it
easier to get started using the SIEM. These materials are prepared by the trainer
and are included in the LMS so that they can be accessed during the procedure.
A more detailed description of the prepared media is given in Sect. 4.2.

With the help of the management and monitoring building block, the
trainer can oversee the trainees’ progress during training. Additionally, it con-
figures the simulation of the industrial system and automatically triggers attack
simulations depending on the progress of the training.

4.2 Scenario and Learning Concept

The scenario represented by the cyber range is an Industrial Control System
(ICS)-based setting of a filling plant. Thereto, the simulation from the digital
twin is used, which enables a realistic representation of the industrial filling plant.
Figure 2 illustrates the setting in a simplified way for better understanding. The
filling plant consists of a tank containing liquid that is to be filled into bottles.
The tank is equipped with a sensor measuring the liquid level at regular intervals.
To control how much liquid is bottled, the system includes a motoric valve that
can be opened and closed. The flow-level sensor is being used to check how much
liquid flows through the pipe towards the bottle at any given time. The level of
the bottle itself is monitored with another sensor. Each sensor and the actuator is
controlled by one of the three Programmable Logic Controllers (PLCs) connected
through a switch via Ethernet, which store the sensor data and communicate
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via Ethernet/IP. The interface between the employees and the industrial plant
is realized with the help of a Human-Machine Interface (HMI). This allows an
employee to read the measured and logged sensor values and intervene in the
plant’s operation. Within the scenario, it is assumed that an attacker has gained
direct access to the network of the industrial plant. This allows him or her to
carry out various attacks, which can then be detected in the SIEM.

Fig. 2. ICS Scenario of the cyber range.

As shown in Fig. 3 the trainee is guided through the scenario by several learn-
ing materials provided by the LMS. Each step within the scenario is accompanied
by a task that the trainee must complete.

The scenario is designed to slowly introduce to rule creation by requiring the
trainee to solve increasingly elaborate tasks. It starts with a general introduc-
tion, where only simple questions about the events captured by the SIEM have
to be answered. Once the first step is complete, increasingly complex attacks are
simulated one after another, which the trainee must first detect manually (S2).
Then he or she is required to create rules (S3) that automatically detect these
attacks. The rules to be created also increase in complexity. In order not to over-
tax the trainee, large parts of the rule are initially given, and the trainee only
has to add certain parts. Then, starting with the scenario step “log file manipu-
lation”, the trainee has to create the whole rules themselves. The complexity of
the rules to be learned can be divided into three difficulty levels: Starting with
very simple rules for which only one condition must be met, to multi-stage rules
that build on each other and for which several conditions must be met, to rules
that also query an IP address range.

The LMS provides various media to support the trainee’s learning between
each scenario step. These are either explanatory texts or videos that convey
knowledge for the subsequent step in the scenario. In each case, the simulated
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attack is briefly presented from the attacker’s point of view (S1) to provide
guidance on what the trainee must look for in the SIEM. It also explains how
to use the SIEM and how rules are structured. Gamification elements are used
to motivate the trainee during the training session. The trainee receives points
for each task he or she solves and can use them to move up levels. If a task is
answered incorrectly, the trainee can correct the answer, but points are lost to
prevent solutions from simply being guessed. If the trainee is stuck, hints can be
bought with earned points, which guide towards the solution.

Fig. 3. Learning concept for the cyber range.

4.3 Prototypical Implementation

The overall architecture of the cyber range is shown in Fig. 4. To simulate the
industrial system, the digital twin’s simulation component is transferred to the
cyber range to create a realistic virtual environment. The simulation is realized
with MiniCPS1, an academic framework for simulating cyber-physical systems
which builds upon Mininet2. To monitor the network traffic, a firewall captures
the TCP-traffic within the network and detects certain abnormalities such as
ambiguous responses to ARP-requests. The firewall functionalities are imple-
mented with scapy3. The PLCs and the HMI produce system logs on the main
functions of the filling process and the firewall monitoring, which are stored as
log files in a common logs directory.
1 https://github.com/scy-phy/minicps.
2 http://mininet.org/.
3 https://scapy.net/.

https://github.com/scy-phy/minicps
http://mininet.org/ 
https://scapy.net/
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Fig. 4. Architecture of the prototypical implementation.

As described in Sect. 4.2, the attacker performs various attacks against the
network components. To implement the attacks, the network tools Ettercap4 (for
the ARP-Spoofing/Man-In-The-Middle-Attack) and hping35 (for the Denial-Of-
Service-Attack) are used. The Log-File-Manipulation-Attack is performed by
simply deleting the log file in which the system logs of PLC1 are stored. For the
filling plant simulation to produce consistent system logs over the cyber range’s
lifetime, the attacks are automated and repeated periodically. The open-source
tool Dsiem6 is the implemented SIEM system of the cyber range. It builds upon
Elasticsearch, Logstash, Filebeat, and Kibana. With Logstash and Filebeat, the
aforementioned log data is parsed and normalized as so-called SIEM events,
which are then forwarded to Dsiem. Dsiem correlates SIEM events with prede-
fined rules to generate SIEM alarms. Finally, these SIEM events and alarms are
transferred to Elasticsearch and visualized in Kibana. The virtual environment
and the SIEM system are realized as a microservice-infrastructure separated
from the LMS and with each component being deployed in a docker container.
This modular architecture facilitates reusing the infrastructure for future work
and enables its extension as well as the replacement of one or more of the com-
ponents.

The LMS is realized with the JavaScript framework Vue.js7. A screenshot
of the user interface of the cyber range is presented in the Appendix (Fig. 6).
One section of the LMS displays a Kibana-based SIEM dashboard for Dsiem. It
visualizes the SIEM events produced by the digital twin-based simulation and the

4 https://www.ettercap-project.org/.
5 http://www.hping.org/.
6 https://www.dsiem.org/.
7 https://vuejs.org/.

https://www.ettercap-project.org/
http://www.hping.org/
https://www.dsiem.org/
https://vuejs.org/
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SIEM alarms triggered by the Dsiem rules and enables the trainees to interact
with the SIEM system in real-time. The other section of the LMS consists of
the provided learning material and the tasks the trainees need to complete. The
trainee’s current score, and the scores of the other trainees taking part in the
training at the same time, are displayed on a scoreboard. This functionality is
implemented by storing each trainee’s current score in a Realtime Firestore8.
Additionally, a timestamp is saved whenever a trainee completes a task. This
enables the trainer to monitor the trainees’ progress while the cyber range is
being conducted.

The SIEM and the LMS are connected via a REST-API implemented with
Flask9. Every time a trainee creates a detection rule by completing one of the
tasks, an API request is set off to activate the respective rule in Dsiem. Dsiem
then starts triggering alarms based on the new rule which are visualized on the
SIEM dashboard inside the LMS. The LMS, therefore, enables the trainees to
interact directly with the SIEM system and see the impact of detection rules
without having to gain a deeper understanding of the project structure of the
SIEM system beforehand. Furthermore, the Flask API provides functions for
the trainer to interact with the microservice architecture of the digital twin-
based simulation and the SIEM system. These functions can be used to start
and stop the infrastructure and reset single components in case any technical
issues occur while the cyber range training is being conducted. The source code
of the project, together with further documentation, is available on GitHub10.

5 User Study Evaluation

5.1 Method

To measure the effectiveness of the cyber range, it is necessary to evaluate
whether it leads to an improvement of the participants’ knowledge or skill level.
Since a cyber range in our case is similar to a serious game according to the defi-
nition of Girard et al. [15], methods from this context can be applied to measure
the effectiveness. Besides qualitative methods [16], it is possible to quantitatively
evaluate this by measuring the participants’ skills and knowledge before and after
the training [15]. In the present case, to the best of our knowledge, a comparable
system targeting the training of analysts within a SOC does not exist. Therefore
it is not possible to evaluate the increase of performance of participants of the
cyber range training against participants of a control group in order to compare
it to a similar training concept. Instead, it is more suitable to use a one group
pre-test/post-test design proposed by Hauge et al. [16] to show whether or not
an increase in knowledge has been achieved. Therefore, two assessment question-
naires are constructed consisting of 13 multiple-choice questions (Q1–Q13) for
evaluating the learning outcomes of the cyber range. These aim at testing the

8 https://firebase.google.com/docs/firestore.
9 https://flask.palletsprojects.com/en/1.1.x/.

10 https://github.com/DigitalTwinSocCyberrange.

https://firebase.google.com/docs/firestore
https://flask.palletsprojects.com/en/1.1.x/
https://github.com/DigitalTwinSocCyberrange
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knowledge of the participants, whereby four answer options are given for each
question. These questionnaires are disseminated before and after the training to
measure the improvement of the participant’s knowledge.

As the cyber range concept should not only lead to an increase of knowl-
edge but also provide a positive learning experience, the training aims to attract
the participant’s attention and provide a high level of engagement. Metrics for
measuring the engagement levels of the participants are provided by Keller’s
ARCS model of motivational design [18] which has been used in the past to
evaluate security and privacy educational approaches before [14]. It focuses on
the intrinsic attributes enhancing motivation, and includes metrics that relate
to Attention, Relevance, Confidence, and Satisfaction. The ARCS model can be
extended by an extra metric for perceived learning, which measures the subjec-
tive impression of whether learning has occurred [1,5]. This part of the evaluation
was implemented by constructing a feedback questionnaire based on the ARCS
model, extended by the perceived learning condition. Thereto, the participants
can indicate the degree of agreement to 16 statements, with a Likert scale ranging
from 1 to 5 (“completely disagree” to “fully agree”) after the training.

Participants. Participants were recruited in cybersecurity-related courses at
both the University of Regensburg (Germany) and Ionian University (Greece).
This ensures that all participants have at least a basic knowledge of cybersecu-
rity, reflecting the target group of the cyber range. In total n = 44 test persons
participated in the study: 22 German students and 22 Greek students, whereby
12 were female and 32 male. 24 students were undergraduate and 20 were post-
graduate students.

Procedure. The study was conducted entirely online over several video confer-
encing sessions. For each session, 10 virtual machines with one cyber range each
were available, limiting the simultaneous number of participants to 10. The user
study was divided into three phases. After a short welcome and introduction
to the cyber range at the start of the session, the participants were asked to
complete the first questionnaire to record their previous knowledge. In the sec-
ond phase, they were asked to open the cyber range and complete the training
contained within. Participation was not time-limited, but most of the partici-
pants completed all tasks after a maximum of 2 h. After having completed the
second phase, the test persons were asked to fill in the two remaining question-
naires in the third phase, which tested their knowledge afterwards and assessed
their motivation during the training. During the execution of the cyber range,
we ensured that the trainer intervened as little as possible in the test persons’
performance of the tasks in order to avoid influencing them and their results.

5.2 Results

To show that the participants of the study achieved a learning effect, the results
from the assessment of the pre-, and post-knowledge are analyzed in the follow-
ing. The study’s questions can be divided into three classes: General knowledge
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about cybersecurity attacks, general knowledge about SIEM, and specific knowl-
edge about the structure and functionality of SIEM detection rules. Figure 5
shows the results of the pre-, and post-test. Thereto, the mean percentage of
correctly answered questions in both test runs is visualized. The dashed lines
indicate the mean in the respective knowledge classes.

Fig. 5. Comparison of test persons’ knowledge (measured by percentage of correct
answers for questions Q1 to Q13) before and after participation in the cyber range.
Grouped by knowledge classes, with the dashed lines visualizing the mean of each class.

A paired t-test was conducted to examine the increase in knowledge overall
and across the individual knowledge classes11. It shows that the mean of cor-
rectly answered questions significantly increased by 26.92% (t = −12.472, SD =
0.143191, p < 0.001). In the first class, “general attack knowledge” the mean
increase is smaller (10.23%) and less significant (t = −3.448, SD = 0.196763, p =
0.0013). This is, however, expected because the test persons possess a certain
level of pre-knowledge in cybersecurity and therefore about simple attacks. Thus,
the increase from an already high level is smaller. Within the class “general SIEM
knowledge”, an increase of 28.18% is observed (t = −7.398, SD = 0.252681, p <
0.001). Based on the pre-test, it could be determined that some pre-knowledge
was already present within this class. However, a significant increase could still
be achieved. Within the “SIEM detection rule knowledge” class, a significant
increase of 42.05% is indicated (t = −8.417, SD = 0.331368, p < 0.001).

Since an increase in knowledge does not necessarily show that the cyber
range was a positive experience for the participants, it is necessary to evaluate
the results from the feedback survey. The aggregated results can be found in
11 The SPSS output of the t-test can be found in Fig. 7 in the appendix.
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Table 2. The results indicate that the cyber range was, in general, received quite
well by the test persons. Both the mean and the median are at least 4 for all
conditions on a scale of 1 to 5 (where a higher value indicates the participants’
agreement).

Table 2. Results of the feedback questionnaire.

Condition Mean Median Standard deviation

Attention 4.395 5 0.753

Relevance 4.352 4 0.724

Confidence 4.090 4 0.778

Satisfaction 4.284 4 0.738

Perceived learning 4.460 5 0.602

To ensure a high standard of reproducibility and reusability, the anonymized
data of all the results and the used questionnaires are available as a public data
set12.

5.3 Discussion

Overall, the results of the user study reveal that an increase in knowledge could
be achieved among the participants. Although the increase in general knowledge
about attacks (S1) was quite small, a significant increase in knowledge about
attack detection using a SIEM system (S2 and S3) is shown – leading to the
conclusion that the previously defined goals are achieved. Taking into consider-
ation the results of the evaluation, in the following, we discuss some details we
found to be particularly noteworthy.

Within the cyber range, the participants were able to score points by solving
the tasks provided as described in Sect. 4.2. The score of a participant thereby
indicates to what extent he or she was able to solve the tasks without requiring
many attempts to provide the correct solution. While this score was not explic-
itly used for evaluating the effectiveness of the cyber range, we find it worth
examining - especially for participants with particularly high or low increase in
knowledge. Five participants showed a notably large increase in knowledge in
the assessment questionnaire from 50% or less to more than 90% after partici-
pating in the cyber range. The score results of these participants vary from 43
to 100 out of 101 possible points. This shows that though initially failing some
tasks of the cyber range, a participant can still gain a large increase of knowl-
edge. In contrast, three participants did not present any improvement in the pre-,
and post-assessment. These participants achieved comparably low scores ranging

12 https://github.com/DigitalTwinSocCyberrange/userStudy.

https://github.com/DigitalTwinSocCyberrange/userStudy
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from 28 to 33 points. This indicates difficulties in engaging with the overall app-
roach. However, it is noteworthy that these participants still provided positive
feedback on the cyber range.

Considering the results of the feedback survey, a noticeable aspect is a some-
what lower result for Confidence compared to the other values. This is also
confirmed by some participants’ oral feedback, who told us that they were some-
what overstrained at the beginning. In our estimation, this was mainly due to an
information overload, as they were confronted with both the SIEM and the LMS.
In the future, the cyber range could be adapted so that trainees are not shown
all information from the start, but only selected content that is then gradually
expanded. The value for perceived learning also sticks out, indicating whether
the participants themselves assess whether they learned something during the
procedure. With a value of 4.460, it is slightly higher than the others. This
confirms the result from comparing the pre-, and post-test, as the participants
themselves also have the impression of having gained knowledge.

6 Conclusions

This work demonstrates how cyber ranges can be utilized for training security
analysts in a SOC. It shows that cyber ranges are suitable for the acquisition
of general knowledge about SIEM as well as for specific training on how to
create SIEM rules. The provided cyber range concept builds upon the simula-
tion component of a digital twin of an industrial filling plant. This ensures that
the analysts are trained based on a realistic scenario. To show the increase in
knowledge and the perceived learning experience, the concept is implemented
and evaluated in an international study among both Greek and German partic-
ipants. To the best of our knowledge, this is the first cyber range to utilize the
potential of a digital twin, specifically targeting the training of SOC analysts.

Like any other research effort, this paper contains limitations. Since, to our
knowledge, no approach with the same objective exists, it was not possible to
compare the knowledge gains. However, we were able to show that a cyber range
is, in general, suitable for imparting knowledge. Nonetheless, we did not concen-
trate on an evaluation comparing our cyber range to other concepts.

In summary, this work provides a new approach to train SOC analysts. By
proposing security training, it addresses the current problem of the increasing
demand for security analysts personnel, which will continue to grow. Further-
more, the attack detection training of SOC analysts is only one of many possible
applications of the presented cyber range. Among many other possibilities, it
could also be used for penetration testing of industrial plants or incident response
exercises in future research.
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Appendix

Fig. 6. Screenshot of the cyber range interface: SIEM dashboard and LMS

Fig. 7. SPSS output of the t-test
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Abstract. Estimating the potential for data misuse is essential for all
data-sharing decisions. This work presents tkl-Score which extends the
state of the art M -Score and L-Severity measures. The new proposed
measure is sensitive to the increased misuse potential when records
are more identifiable in a source table with l-Distinguishing Factor and
also when sensitive attributes are less granular in a source table with
l-Distinguishing Factor and t-Distinguishing Factor; in contrast, the ear-
lier M -Score and L-Severity only account for record identifiability in
a source table with k-Distinguishing Factor. tkl-Score is shown to bet-
ter characterize the risk of releasing records compared to M -Score and
L-Severity due to accounting for sensitive attribute granularity.

Keywords: Data misuse · Data sharing · Data privacy

1 Introduction

As data-collection software becomes more ubiquitous, due to mobile apps, social
platforms, and the internet of things (IoT), the privacy and sensitivity of col-
lected data is becoming an increasing concern to data stakeholders. This ever-
increasing amount of devices and apps leads to a plethora of data being collected.
Organizations who wish to share their data need to be more aware of the con-
sequences that can affect the different stakeholders of the data being shared.
Unnecessary disclosures of sensitive information can lead to severe consequences
for the subjects of the data and legal repercussions to the organizations them-
selves. For example, the personal information of over 50 million Facebook users
were unintentionally exposed to Cambridge Analytica and used for political gain
leading to backlash against Facebook [1].

The objective of our work is to develop a misusability score that when given a
dataset to be shared, the score accurately estimates the risk of potential misuse
of this data and helps inform the decision making of the owner organization.
The rest of this paper is organized as follows. In Sect. 2, we review the current
state of misuseability metrics and highlight their drawbacks that we wish to
address. Based on these drawbacks, we introduce tkl-Score and its derivative
tkl-Scoremax in Sect. 3 which augments current misuseability metrics. In Sect. 4,
we perform a comparative analysis between tkl-Score and previous misuseability
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scores highlighting why previous scores should be augmented. Finally in Sect. 5,
we summarize our work and introduce future avenues of exploration.

2 Related Work on Misuseability Scores

We base our work on M -Score and L-Severity which are two key metrics for esti-
mating the potential of data misuse. Both are calculated using weights derived
from a “source table” to help estimate the risk of potential misuseability in a
subset of a source table called a “published table”. The scores also rely on two
types of attributes. Quasi-identifiers which are attributes that, when combined
with other information, may partially reveal an individual’s identity. For exam-
ple, when two datasets have “city of residence” and “gender” columns, their join
based on these quasi-identifier attributes may reveal identifying information such
as an individual’s name present only in one of the datasets. As well, there are
sensitive attributes which convey information that should not be exposed pub-
licly (e.g. one’s health condition), because the release of this information has the
potential to harm an individual such as damaging their reputation.

2.1 M-Score

M -Score [2] is the first metric designed specifically for identifying the potential
negative impacts of a dataset release. It is a score for tabular data that quantifies
the ability of a user to maliciously exploit exposed data and takes into account
the anonymity of individuals in a dataset as well as the sensitivity of the data
attribute values. The process of calculating the M -Score for a published table
consists of two steps: (1) eliciting weights for sensitive attribute values, and (2)
calculating the M -Score for the published table.

(1) Eliciting Weights of Sensitive Attribute Values. There are several
methods for eliciting sensitive value weights from domain experts, but the
authors of M -Score argue that the Analytic Hierarchy Process [5] elicits the
best results for discretized data.
(2) M -Score of the Published Table. Given the weights of the sensitive
attribute values, a source table, and a published table (i.e. a data subset of the
source table), M -Score can be calculated. To begin, each record of a published
table is given a record score as follows:

RSMr
=

min(1,
∑

ASi
∈r weight(ASi

))

DF kr

(1)

A record score RSMr
of the rth record of a published table is the sum of each

ith sensitive attribute value weight of the record minimized to 1 divided by the
k-Distinguishing Factor DF kr

of the rth record.
The k-Distinguishing Factor is a measure dependent on comparing the pub-

lished table to the source table. It quantifies how easily an individual can be iden-
tified, based on the distinctiveness (or uniqueness) of records in a “lookup table”.
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The “lookup table” is collection of records related to a population that can iden-
tify an individual. Since such a collection is not easily acquired, the “lookup
table” is approximated to be the source table. It is based on the k-anonymity
measure [6] that groups rows with similar quasi-identifier values into “equiva-
lence classes”, where an equivalence class is a set of records that have the same
values for quasi-identifiers attributes [3].

The k-Distinguishing Factor of a record in a published table is the size of
the equivalence class in the source table that contains the record in the pub-
lished table. If there are no quasi-identifiers to form an equivalence class, then
the k-Distinguishing Factor of a record is the size of the published table. The
k-Distinguishing Factor is meant to account for how distinguishable an exposed
record is when it is published from the source table, and helps to differentiate
the records by their identifiability—when the k-Distinguishing Factor is smaller,
the record is more identifiable and the record score therefore becomes larger.

With all record scores of a published table calculated, the M -Score of a
published table can be computed based on the maximal record score and the
number of records, n, in the published table.

M -Score = n
1
x × max

0≤r≤n

(
min(1,

∑
ASi

∈ weight(ASi
))

DF kr

)

(2)

where x ≥ 1 is a parameter for the importance of the amount of records,
ASi

is the ith sensitive attribute value of a record r, and DF kr
is the

k-Distinguishing Factor of a record r.
Using the definition above, the M -Score of the published table can be com-

puted by multiplying the highest individual record score among the n records
weighted with a power 1

x . The x of n
1
x is a parameter for specifying the impor-

tance of the quantity of records in a published table. If x = 1 then the amount of
records is given more importance compared to the sensitivity of data. If x → ∞,
then n

1
∞ ≈ 1 which means that we would like to know the highest individual

record score of M -Score. The parameter x can be assigned any value where x ≥ 1
with a trade-off between the importance of the highest individual record score
to the importance of the amount of records.

Drawbacks. M -Score is approximative in nature as it takes the maximum
record score of a published table for its score calculation. For example, consider
a source table where 99 records of 100 records have a record score of 0.0001 with
the remaining record having a record score of 1. A published table with nine
records with score 0.0001 and one record with score 1 will result in the same
M -Score, i.e., 10, as a published table with nine records of 1 and one of 0.0001.

The approximation in M -Score leads to issues when attempting to identify
the “percentage of severity” a published table takes from the source table score.
If we consider the example from the previous paragraph, where the published
table has a score of 10, and the source table has a score of 100, we can say that the
published table makes up 10% of the severity of the source table: 10/100 = 0.1.
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However, this is not the case when we compare the sum of the actual values of
the record scores in each of the tables: 1.0009/1.0099 = 0.991.

It can also be difficult to decide on the parameter x to model the trade-off
between the importance of the number of records or the maximum record score
in a published table. If we would like to approximate the severity based on the
amount of records, then x can be set as 1. If we assume that releasing any single
maximum record of a published table is the maximum severity, then x can be set
as x → ∞. However, to decide on a value between 1 and x → ∞, that represents
the trade-off between these two factors, an ad hoc decision would need to be
made.

The last drawback to note is that the k-Distinguishing Factor in M -Score
only accounts for identity disclosure attacks. The authors of M -Score suggest
that measures such as l-diversity can be used to account for attribute disclosure
attacks, but provide no method to do so.

2.2 L-Severity

Building on the work of M -Score, Vavilis et al. [7] designed L-Severity, a misuse-
ability score aiming to address the approximative nature of the M -Score calcu-
lation. The process of calculating L-Severity can be divided into three steps: (1)
developing a data model of the sensitive attributes in a source table, (2) eliciting
weights for sensitive attribute values from the data model, and (3) calculating
the overall L-Severity for the published table.

(1) Developing the Data Model. The data model in L-Severity is designed
to represent the hierarchy of concepts surrounding the sensitive attributes in a
source table. Each sensitive attribute of a source table is represented as a node
and can fall under more general nodes assigned by a domain expert. As well,
the concept of “inference relationships” which link sensitive attributes is also
introduced to highlight how sensitive attributes may be related.
(2) Eliciting Sensitive Attribute Value Weights using the Data Model.
Using the data model, domain experts assign “sensitivity values” to highlight the
importance of nodes in the data model as well as “inference values” to quantify
the importance between any relationships of attributes in the data model. Once
all values have been assigned, they can be used to calculate the sensitive attribute
value weights needed for L-Severity.
(3) L-Severity of the Published Table. To determine the L-Severity of a
published table, the record scores are summed together. A record score can be
calculated as follows:

RSLr
=

∑
ASi

∈r weight(ASi
)

DF kr

(3)

A record score RSLr
of the rth record of a published table is the sum

of each ith sensitive attribute value weight of the record divided by the
k-Distinguishing Factor DF kr

of the rth record. Then, given a published table
T, the L-Severity of the table is:
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L-Severity =
∑

r∈T

(∑
Asi

∈r weight(Asi)

DFkr

)

(4)

where r is each record of the published table, ASi
is the ith sensitive attribute

value of a record r, and DFkr
is the k-Distinguishing Factor of a record r.

Drawbacks. Although L-Severity addresses the approximative nature of
M -Score by summing record scores, L-Severity cannot account for the case that
assumes releasing the maximum record score of a published table is the max-
imum severity. Since L-Severity does not have a x parameter like M -Score, it
cannot control the trade-off between the importance of the number of records
and the maximum severity to calculate its score. Instead, it only accounts for
the case that calculates severity based on the number of published records.

L-Severity also suffers the same drawback as M -Score, failing to consider
anonymity measures like l-diversity and t-closeness to account for attribute dis-
closure. Only identity disclosure is accounted for with k-Distinguishing Factor.
The authors of L-Severity suggest that attribute disclosure measures can be
integrated into misuseability scoring, but provide no method to do so.

3 Calculating tkl-Score

Expanding on these earlier measures, we propose tkl-Score which incor-
porates the privacy preserving data publishing metrics: l-diversity as
l-Distinguishing Factor, and t-closeness as t-Distinguishing Factor to account
for attribute disclosure attacks in addition to identity disclosure attacks with
k-Distinguishing Factor. It is important to also account for attribute disclosure
as it may be difficult to be certain of an individual’s identity, but attributes
relating to an individual can still be disclosed when similar information about
identities are grouped together.

To demonstrate how l-Distinguishing Factor and t-Distinguishing Factor are
used in tkl-Score, we introduce the record score of tkl-Score which is defined as:

RS tklr =
DF tr +

∑
ASi

∈r weight(ASi
)

DF lr

(5)

where r is a record, DF lr is the l-Distinguishing Factor of a record, DF tr is
the t-Distinguishing Factor of a record, and weight(ASi

) is the weight of the ith
sensitive attribute value of a record.

It should be noted that l-Distinguishing Factor and t-Distinguishing Factor,
like k-Distinguishing Factor, aims to quantify the identity and attribute unique-
ness of records in a “lookup table” that contains all records related to a popu-
lation. However, since it is difficult to obtain all records related to a population,
the “lookup table” is approximated to be the source table of a published table.
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3.1 l-Distinguishing Factor

l-diversity [4] is the measure used to determine how distinguishable an individual
is based on attribute frequency in an equivalence class (a group of records with
common quasi-identifier attribute values). In this paper, we use the l-diversity
definition where every equivalence class in a table contains at least l distinct
values for a sensitive attribute in order to be l -diverse. An interesting property
of l-diversity is that l will always be ≤ k of k-anonymity.

Proof. Let k be the k-anonymity of a dataset which is the smallest equivalence
class with size k rows. Assume that the l-diversity of the smallest equivalence
class has k < l. Based on the assumption, let l = k + 1. Then based on the
definition of l-diversity, there must be k + 1 unique attribute values. However,
this is a contradiction as the size of the equivalence class must be k + 1 to have
k+1 unique attribute values. Now assume that the dataset has multiple sensitive
attributes and therefore multi-attribute l-diversity [4] is used to create different
grouping combinations. The largest equivalence class of the combinations will
still be at most be the size of the original equivalence class that is matched
with only quasi-identifiers. I.e. as more attributes need to be matched to form
a grouping of records, the size of the groupings either remains the same as the
attribute values are all the same, or the size of the grouping becomes smaller
when the attribute values are different. Therefore, l ≤ k.

Recall that k-Distinguishing Factor is used to determine how distinguishable
a record is in a source table and is a divisor in the score equations of M -Score and
L-Severity. A large k-Distinguishing Factor implies a lower risk of identifiability,
as more records are required to uniquely identify an individual. Hence, we wish
to capture the maximal severity by minimizing k-Distinguishing Factor.

Since l ≤ k, the k-anonymity metric for identity disclosure attacks
of k-Distinguishing Factor will always be accounted for when using
l-Distinguishing Factor. Therefore in tkl-Score, l-Distinguishing Factor replaces
the k-Distinguishing Factor factor used in M -Score and L-Severity.

The definition of l-Distinguishing Factor uses the following definition of
multi-attribute l-diversity: Let T be a table with nonsensitive attributes
Q1, ..., Qm1 and sensitive attributes S1, ..., Sm2 . If for all iterations i = 1...m2,
the table T is l -diverse when Si is treated as the sole sensitive attribute and
{Q1, ..., Qm1 , S1, ..., Si−1, Si+1, ..., Sm2} is treated as the “quasi-identifiers” to
form “equivalence classes” [4].

The l-Distinguishing Factor of a record in a published table is the mini-
mal multi-attribute l-diversity [4] “equivalence class” in the source table that
contains the record in the published table. If there are no quasi-identifiers to
form an equivalence class in the source table, then the minimal multi-attribute
l-diversity of the published table (forming equivalence classes based on the sen-
sitive attributes only) is the l-Distinguishing Factor of a record.
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3.2 t-Distinguishing Factor

t-closeness [3] provides a measurement for the similarity between the attribute
value distribution of an equivalence class and the attribute value distribution
of an entire table. The similarity of distributions for sensitive attribute values
helps to determine the true diversity of sensitive attributes globally. In com-
parison, l-diversity only considers the diversity of sensitive attributes within an
equivalence class, which means sensitive attributes may still be prone to attribute
disclosure if all the unique attributes are in a single equivalence class. As a result,
t-closeness and l-diversity are two different anonymity measures that should be
used together as a way to measure the anonymity of sensitive attributes in a
table.

The objective of integrating t-closeness into tkl-Score is to increase the rela-
tive severity of an exposure as the value of the t-closeness of the released records
increases. This is because the higher the t-closeness, the higher the likelihood of
an attribute disclosure attack as the distributions are less similar and sensitive
attributes are easier to discern. Therefore, t is added to the record score.

We assume to have a record score function S
DF modeled after Eq. 3 where

1 ≥ S ≥ 0 that represents the sum of sensitive attribute value weights of a
record, and DF ≥ 1 that represents the l-Distinguishing Factor. The addition of
t to the numerator of the function to calculate a record score produces a linear
translation of the score by t

DF on the y-axis when visualized on a plot. In the
best case the record score is minimally reduced when t ≈ 0 (less risk because
the attribute distributions are similar throughout the table) and in the worst
case when t = 1 the score increases by t

DF (more risk since equivalence class
attribute distributions are not similar to the global attribute distribution). As a
result, the record store will either be maintained or increased by a proportional
t factor to indicate the severity of a record release more finely.

The t-Distinguishing Factor of a record in a published table is the maximal
t-closeness of the equivalence class in the source table that contains this record. If
there are no quasi-identifiers to form an equivalence class in the source table, then
the t-Distinguishing Factor of a record is 0 as there are no equivalence classes
to compare the distribution of sensitive attribute values. This is consistent with
the limitation of k-anonymity which would also be 0 when there are no quasi-
identifiers to form an equivalence class and indicates that there are no attributes
that can be referenced to identify a person.

3.3 tkl-Score

To calculate the tkl-Score of a published table, every record in the table is scored
and summed together using sensitive attribute value weights. To obtain sensitive
attribute value weights for tkl-Score, the same methods used to derive weights
in M -Score and L-Severity can be used. Equation (6) defined below uses the
record score defined in Eq. (5).
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Given a published table T, the tkl-Score is calculated as:

tkl-Score =
∑

r∈T

(
DF tr +

∑
ASi

∈r weight(ASi
)

DF lr

)

(6)

where for each record r, the total sum of each ith sensitive attribute value weight
ASi

is summed with the t-Distinguishing Factor DF tr of r and divided with the
l-Distinguishing Factor DF lr of r.

We also introduce tkl-Scoremax which is a score that is modeled after M -Score
(x → ∞) to signify that releasing any one maximum record score is of maximum
severity. The difference of tkl-Scoremax and M -Score (x → ∞) is that it also
accounts for attribute disclosure because it incorporates l-Distinguishing Factor
and t-Distinguishing Factor, instead of only k-Distinguishing Factor.

Given a table with n records, the table’s tkl-Scoremax is then:

tkl-Scoremax = max
0≤r≤n

(
DF tr +

∑
ASi

∈r weight(ASi
)

DF lr

)

(7)

where for each record r, the total sum of each ith sensitive attribute value weight
ASi

is summed with the t-Distinguishing Factor DF tr of r and divided with the
l-Distinguishing Factor DF lr of r.

4 Comparative Analysis

To compare tkl-Score against its predecessors M -Score and L-Severity, three
alternative normalization assumptions can be considered: (1) the maximum
severity is when a complete source table is released, (2) the maximum sever-
ity is when any one record with the maximum record score in the source table
is released, and (3) the maximum severity is when a score reaches the theoreti-
cal maximum score determined by bounding the sum of sensitive attribute value
weights and distinguishing factors. With assumption (1) the severity is related to
the number of released records and therefore tkl-Score, L-Severity, and M -Score
(x = 1) are compared. With assumption (2) the severity is related to the maxi-
mum record of a source table, and therefore tkl-Scoremax and M -Score (x → ∞)
are compared. For assumption (3) any misuseability score can be used, but it
is best used with tkl-Scoremax and M -Score (x → ∞) to compare their severity
estimates.

Harel et al. [2] suggest that M -Score can be normalized under assumption (1)
by taking the M -Score of the published table and dividing by the M -Score of the
source table. This form of normalization assumes that releasing a complete source
table is the maximum severity—when a subset of a source table is published, it
will take a percentage of the source table score.

In this section, we illustrate how t-Distinguishing Factor and
l-Distinguishing Factor in tkl-Score affects the row scores of two different tables
using assumption (1) for normalizing the misuseability scores to the [0, 1] range
for comparison. Figure 1 illustrates how the misuseability scores can score rows
differently based on attributes in a table.
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4.1 A Case for t-Distinguishing Factor

The t-Distinguishing Factor is used to determine a record’s distinctiveness based
on the similarity of the distribution of sensitive attributes in the equivalence
class of the source table containing this record and the distribution of sensi-
tive attributes in the whole table. Recall that the higher the t value, the higher
the severity a record would be as the distribution of the values of the sensi-
tive attributes and the whole table are more distinct and therefore easier to
differentiate.

To illustrate how t-Distinguishing Factor helps to distinguish records, the
record scores for the source Table 1a are calculated in Table 1d. From the nor-
malized scores in Table 1b, we can see that: (i) tkl-Score is reduced from row 5
to row 1, while M -Score (x = 1) and L-Severity maintains consistency for rows
0, 1, and 5; and (ii) the tkl-Score is reduced from row 2 to row 4, while M -Score
(x = 1) and L-Severity are increased. These observations can be visualized in
Fig. 1a.

Note that the M -Score (regardless of x parameter) and L-Severity calculated
for each record seen in Table 1d are the same because there is only a single
record for the misuseability score calculation. However, if we were to calculate
the misuseability scores for a larger subset of published records, M -Score (x = 1),
M -Score (x → ∞) and L-Severity will produce different results.

The difference between (i) and (ii) stems from the equivalence class of rows 4
and 5 in Table 1a. The distribution of the Initial Diagnosis values in this equiva-
lence has a lower t value compared to the other equivalence classes of the table as
“HIV” and “Migraine” occur elsewhere in the table. In contrast, the equivalence
class with rows 0 and 1, and the equivalence class with rows 2 and 3 have a unique
value that does not appear in any other equivalence class leading to a higher
t value. Therefore, rows 4 and 5 have a lower t-Distinguishing Factor than the
other records, and as a result, rows 4 and 5 are considered less severe by tkl-Score
than the other records in the table that have the same l-Distinguishing Factor
and sum of sensitive attribute value weights as seen in Table 1d.
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Fig. 1. Per row scores normalized against the source table score for tkl-Score, M -Score
(x = 1), and L-Severity of the records in Table 1a and Table 2a. It is sorted ascending
by L-Severity.
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Intuitively, observing the attribute values of Table 1a, we can see that either
a female lawyer from Edmonton or a male lawyer from Edmonton has “HIV”.
Likewise, either a female lawyer from Edmonton or a female lawyer from Calgary
has a “Migraine”. Since “HIV” and “Migraine” must be distinguished from two
distinct equivalence classes, it is less likely that these sensitive attributes will be
inferred as opposed to “Flu” and “Hypertension” which occur only in a single
equivalence class.

4.2 A Case for l-Distinguishing Factor

The l-Distinguishing Factor is used to determine a record’s distinctiveness based
on the size of the equivalence class that contains this record in the source
table and also the values of sensitive attributes in the equivalence class that
contains this record in the source table. Recall that l-Distinguishing Factor is
part of the denominator of a record score (Eq. 5), and therefore the smaller
the l-Distinguishing Factor the more the potential implications of releasing a
record. So if there are more unique sensitive attribute values in an equivalence

Table 1. A case for using t-Distinguishing Factor.

id Job City Gender Initial Diagnosis

0 Lawyer Calgary Female Flu

1 Lawyer Calgary Female Migraine

2 Lawyer Edmonton Male HIV

3 Lawyer Edmonton Male Hypertension

4 Lawyer Edmonton Female HIV

5 Lawyer Edmonton Female Migraine

(a) The sensitive attribute of this source table is

Initial Diagnosis; the quasi-identifiers are Job, City,

and Gender.

Row tkl-ScoreM -Score (x = 1) L-Severity

0 0.1642 0.0417 0.0769

1 0.1642 0.0417 0.0769

5 0.1149 0.0417 0.0769

3 0.1804 0.0833 0.1538

2 0.2128 0.1667 0.3077

4 0.1635 0.1667 0.3077

(b) Misuseability scores for each row of

Table 1a normalized against the source table

score rounded to four decimal places.

Disease Medication Age Initial Diagnosis

W (Flu) = 0.0864 W (Antibiotics) = 0.10432 W (30+) = 0.08 W (Migraine) = 0.05472

W (H1N1) = 0.3456 W (Paracetamol) = 0.10432W (< 30) = 0.08W (Flu) = 0.05472

W (Hypertension) = 0.3456W (ARV ) = 0.10432 W (Hypertension) = 0.10944

W (HIV ) = 0.432 W (Tamiflu) = 0.10432 W (HIV ) = 0.21888

W (Statin) = 0.10432

(c) Sensitive Attribute Value Weights

Row tkl-ScoreM -Score L-Severity DF t DFk DF l Weights

0 0.27736 0.02736 0.02736 0.50000 2 2 0.05472

1 0.27736 0.02736 0.02736 0.50000 2 2 0.05472

5 0.19403 0.02736 0.02736 0.33333 2 2 0.05472

3 0.30472 0.05472 0.05472 0.50000 2 2 0.10944

2 0.35944 0.10944 0.10944 0.50000 2 2 0.21888

4 0.27611 0.10944 0.10944 0.33333 2 2 0.21888

(d) For each row of Table 1a: the raw misuseability scores,

distinguishing factors, and sum of sensitive attribute value

weights (Table 1c) rounded to five decimal places.
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class, the harder it will be to link specific sensitive attributes to the identities of
an equivalence class.

To illustrate how l-Distinguishing Factor can distinguish records, the record
scores for the source Table 2a are calculated in Table 2c. From the normalized
scores in Table 2b, we can see that M -Score and L-Severity maintain consistent
scores for rows 0, 2, 4, and 5 while tkl-Score has greater scores in rows 4-and-5
compared to rows 0-and-2. This observation can be visualized in Fig. 1b.

We can account for the discrepancies between rows 4-and-5 and rows 0-
and-2 in tkl-Score by observing the corresponding l-Distinguishing Factor and
t-Distinguishing Factor values. In Table 2c, we see that the t-Distinguishing
Factor values of rows 4-and-5 are twice as much as the t-Distinguishing Factor
values of rows 0-and-2. This increases tkl-Score additively, but does not explain
why the tkl-Score of rows 4-and-5 are more than double rows 0-and-2. To explain
this multiplicative effect, we examine the l-Distinguishing Factor values of the
rows.

Table 2. A case for using l-Distinguishing Factor

id Job City Gender Initial Diagnosis

0 Lawyer Calgary Female HIV

1 Lawyer Calgary Female Flu

2 Lawyer Edmonton Male HIV

3 Lawyer Edmonton Male Flu

4 Lawyer Edmonton Female HIV

5 Lawyer Edmonton Female HIV

(a) The sensitive attribute of this source table is

Initial Diagnosis; the quasi-identifiers are Job, City,

and Gender.

Row tkl-Score M -Score (x = 1) L-Severity

1 0.0647 0.0417 0.0556

3 0.0647 0.0417 0.0556

0 0.1126 0.1667 0.2222

2 0.1126 0.1667 0.2222

4 0.3227 0.1667 0.2222

5 0.3227 0.1667 0.2222

(b) Misuseability scores for each row of

Table 2a normalized against the source table

rounded to four decimal places.

Row tkl-Score M -Score L-Severity DF t DFk DF l Weights

1 0.11069 0.02736 0.02736 0.16667 2 2 0.05472

3 0.11069 0.02736 0.02736 0.16667 2 2 0.05472

0 0.19277 0.10944 0.10944 0.16667 2 2 0.21888

2 0.19277 0.10944 0.10944 0.16667 2 2 0.21888

4 0.55221 0.10944 0.10944 0.33333 2 1 0.21888

5 0.55221 0.10944 0.10944 0.33333 2 1 0.21888

(c) For each row of Table 2a: the raw misuseability scores,

distinguishing factors, and sum of sensitive attribute value weights

(Table 1c) rounded to five decimal places.

From the equivalence class containing rows 4-and-5 as seen in Table 2a, it can
be observed that “HIV” is the only unique sensitive attribute in this equivalence
class. In every other equivalence class, there are two unique values. This means
that if we knew a female lawyer was from Edmonton, we can deduce that they
have HIV if the table were to be released, as opposed to having to distinguish
between two different sensitive attribute values with the other equivalence class
groupings. Because the equivalence class containing rows 4-and-5 has only “HIV”
as the sensitive attribute value, the l-Distinguishing Factor for rows 4-and-5 is
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1. As a result, the record scores of rows 4-and-5 are not reduced by a factor of
2 like rows 0-and-2.

4.3 Limitations

The basis of misuseability scores are the sensitive attribute value weights defined
by domain experts. Therefore the “misuseability” of data is entirely dependent
on how attributes are classified. This drawback is no different than M -Score
or L-Severity, but our work shows how misuseability using pre-existing classi-
fications can be more finely determined when integrating additional anonymity
measures.

As well, misuseability scores normalized against one source table should not
be compared to a score normalized against a different source table. The reason
is that source tables can have different sensitivities of attributes, vary in size,
and have different attribute values meaning that the records may have different
distinguishing factors. However, misuseability scores are beneficial when deciding
the misuseability of a subset of records in a source table that have been/will be
shared (i.e. which release of a subset may be more risky than another release).

5 Conclusion

In this paper, we extend previous misuseabiltiy scoring by incorporat-
ing new distinguishing factors to account for sensitive attribute distinctive-
ness. We demonstrate how l-Distinguishing Factor and t-Distinguishing Factor
in tkl-Score can account for data misuse scenarios not detected by pre-
vious misuseability scores. Two cases are presented to demonstrate how
t-Distinguishing Factor and l-Distinguishing Factor can distinguish records bet-
ter than k-Distinguishing Factor and make record scores more granular. Because
of these new distinguishing factors, tkl-Score and tkl-Scoremax are better at char-
acterizing the severity of records compared to L-Severity and M -Score.

Misuseability scoring enables comparisons between different datasets con-
cerning the severity of a release by quantifying the sensitivity of data. Our
tkl-Score is presented as an improvement to existing misuseability scoring by
accounting for attribute disclosure attacks in addition to identity disclosure
attacks.

Future work includes investigating systematic methodologies for determining
sensitive attribute weights to address the limitation of misuseability scores being
dependent on the classification of attributes. As well, applications of tkl-Score
and tkl-Scoremax should also be investigated for how they might be used to
quantify the sensitivity of records leaked in a data breach and indicate the extent
of a breach. Furthermore, tkl-Score and tkl-Scoremax could be integrated with
data-loss prevention systems to monitor for any anomalies in user behaviour
when accessing database data by calculating a score each time data is accessed
by a user and identifying any extreme scores. tkl-Score and tkl-Scoremax could
also be used as part of a risk-assessment process to determine, based on a score,
which sensitive records could cause issues when released.
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Abstract. The introduction of the Payment Service Directive (PSD2) has accel-
erated financial services and open banking growth. Deploying appropriate iden-
tity management solutions is crucial. This implies the adoption of secure proto-
cols for authentication and authorization, such as OpenID Connect and OAuth
2.0. The PSD2 also requires the application of the General Data Protection Regu-
lation (GDPR) when transactions involve personal data. In turn, the GDPR man-
dates a Data Protection Impact Assessment (DPIA) for assessing risks posed to
data subjects’ rights and freedom. This is a time-consuming and challenging task
requiring heterogeneous skills that include the knowledge of best practices for
deploying protocols, security mechanisms adopted by available identity manage-
ment providers, and the capability to perform careful what-if analysis of the pos-
sible alternatives. To assist users in this task, we propose a methodology based on
the formalization of the what-if analysis as an optimization problem that avail-
able tools can solve. The formalization is derived from the OAuth 2.0 and OpenID
connects standards, security best practices to mitigate threats, and thorough the
evaluation of 19 identity management providers to check their supported features
concerning the identified set of features for OAuth/OIDC solutions. We apply the
methodology to assist controllers and identify the most appropriate security setup
to drive the process of making financial services compliant with the PSD2.

Keywords: Digital identity · PSD2 · OAuth 2.0 · OIDC · GDPR · DPIA

1 Introduction

The growing importance of financial services and the regulatory push by the PSD2 to
share user’s financial data held by banks with third-party services have made the mar-
ket more competitive. Although that brings a range of economic opportunities, it comes
together with risks such as loss or theft of personal data, data protection violations, etc.
One of the key points to make these services trustworthy—as required by PSD2—is to
deploy an appropriate identity management solution. OAuth 2.0 (OAuth) and OpenID
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Connect (OIDC) are two widely used solutions among other identity management solu-
tions. PSD2 states that where personal data is processed—as in the authorization and
authentication process—relevant security requirements laid down in the General Data
Protection Regulation (GDPR) should be met.

OAuth/OIDC solutions provide a secure and frictionless process [8,19,20]. How-
ever, wrong implementation choices of these solutions may result in data breaches that
impact the rights and freedoms of data subjects in a large scale. A recent example is
the internet bank account takeover of +1M users without user interaction due to an
implementation flaw within their OAuth solution [7]. GDPR requires conducting Data
Protection Impact Assessment (DPIA) to identify and evaluate risks to data subjects’
rights and freedoms where the processing involves a large amount of personal data and
affects a large number of data subjects (recital 75). That is true for OAuth/OIDC solu-
tions.

Conducting a DPIA-compliant risk assessment for OAuth/OIDC solutions requires
to: (1) assess the risk for both IdMP’s deployment and its integration within web appli-
cations (hereafter clients); (2) face a maze of documents and guidelines to perform
a comprehensive and flawless risk assessment which is a challenging task for non-
security experts; (3) be aware of which Best Current Practices (BCPs) to follow that
meets the requirements of their clients, e.g., for PSD2 open banking, they need to con-
sider Financial-grade API (FAPI) [16] instead of OAuth/OIDC Core documents [4,17];
and (4) be aware of DPIA requirements to conduct a risk analysis. Meeting such require-
ments is a daunting task whose burden, according to the GDPR, is on the shoulder of
the (data) controller. We propose a methodology to conduct a DPIA-compliant risk
assessment for OAuth/OIDC solutions to assist controllers. It is designed to address
the requirements of OAuth/OIDC-based financial services and any OAuth/OIDC-based
client processing either a special category of personal data or common personal data.
Our main contributions are:

– demystifying the maze of OAuth/OIDC documents to create a reference model that
characterizes: (i) secure IdMPs deployment and their integration, and (ii) privacy-
preserving components to meet DPIA requirements;

– formalizing a what-if DPIA-compliance risk analysis as an optimization problem,
using the introduced reference model;

– proposing a methodology to solve the optimization problem and assist controllers in
modeling and evaluating risks.

Paper Structure. The remainder of this paper is organized as follows. Section 2 intro-
duces the background concepts used in the paper. Section 3 articulates the problem
our methodology solves and our OAuth/OIDC security and privacy reference model.
Section 4 presents our proposed methodology. Section 5 concludes the paper and pro-
vide some insights for future work.

2 Background

This section discusses the related concepts that make the paper self-contained.
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Access Delegation: OAuth Standard. The OAuth authorization framework enables a
third-party client to obtain access to a resource server, either on behalf of the resource
owner or on its behalf [4]. The client redirects the resource owner through the browser
into the IdMP authorization server, where the resource owner performs the authentica-
tion. After the successful authentication of the resource owner, the authorization server
issues an access token which clients use to access the resource owners’ resources in the
resource server.

Single Sign-On Login: OIDC Standard. OIDC is an authentication layer developed on
top of the OAuth standard, that adds two main features: id token and userInfo end-
point. An id token enables the client to verify that the received token is issued for
its previous token request. It is a structured JSON token [6] that contains information
about: token issuer, subject, and the audience (the intended client); all signed by the
OIDC provider (IdP). An userInfo endpoint is to obtain identity-related attributes con-
cerning the users (e.g., the email and address).

Privacy Goals. Security goals (confidentiality, integrity, availability, i.e. the CIA) need
to be complemented with further privacy goals [3] to evaluate the impact on all aspects
of privacy and data protection. They are: data unlinkability, data minimization, purpose
specification, transparency, and intervenability. Recent research efforts have come up
with these goals [1,3,13,14] to provide an interdisciplinary standard model to assess
the consequences of a complex IT systems concerning privacy and data protection [3].
As the CIA are well-known, we discuss only the last three. Data unlinkability refers to
hiding the link between two or more actions, identities, and pieces of information [22].
Data minimization requires avoiding unnecessary data to achieve the determined pur-
pose, that is, purpose determination. The mentioned privacy goals are requested by
article 6.4.e and 32.1.a. Transparency requires data processing to be understandable
and reconstructable by concerned individual [1] (article 5.1.a and 12.2). Intervenability
requires that intervention (for the individual whose data are processed) is possible con-
cerning all ongoing or planned privacy-relevant data processing [1] (article 12.2). To
comply with the GDPR, controllers need to address data processing principles (article
5). Beside, accountability, data accuracy and storage limitation, the rest overlap with
the privacy goals.

Data Protection Impact Assessment. GDPR requires controllers to carry out a Data
Protection Impact Assessment (DPIA). Among others, when the processing involves
a large amount of personal data and affects many data subjects. The controller is the
natural or legal person, public authority, agency, or other body that determines the pur-
poses and means of processing personal data (article 4). DPIA is a risk-based approach
to data protection. Article 35.7 articulates the steps to conduct it; which overlap with
risk management steps (e.g., ISO 3100026).

3 Problem Definition and Reference Model

Analyzing risks to the rights and freedoms of data subjects is an important step of a
DPIA. Conducting risk analysis for OAuth/OIDC solutions—that are the backbone of
clients—is critical but complex. That is due to: many choices of IdMPs with various
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configuration options, various implementation patterns, many security implications and
guidelines documents, and lack of guideline to meet privacy goals (see Sect. 2.3) using
OAuth/OIDC components. Therefore, we propose a tool-based methodology to perform
a DPIA-compliant risk analysis that requires: to consider the security and privacy level
required by the client in question, e.g., for open banking, they need to consider FAPI
instead of OAuth/OIDC Core documents; and to meet the privacy goals. As such, we
identify the following problem:

Prisk security and privacy risk assessment and what-if analysis, taking into account the
risk propagation.

Below, we introduce a reference model of OAuth/OIDC solutions (Sect. 3.1). We
briefly describe how the usage of recommended components by the OAuth WG and
OIDF can help to achieve the proper level of security and privacy (Sect. 3.2). Finally,
we formalize the identified problem (Sect. 3.3).

3.1 OAuth/OIDC Reference Model

To build the reference model, we studied OAuth/OIDC security documents (e.g., [4,17])
to extract the components that protect OAuth/OIDC deployment, and satisfy privacy
and security goals (introduced in Sect. 2.3). We call these components atomic features
(af ), listed in Table 1. Each af represents either: (i) OAuth/OIDC parameter name (e.g.,
nonce), (ii)OAuth/OIDC parameter value (e.g., code), (iii)OAuth/OIDC functionality
aspects (e.g., full redirect uri), or (iv) client specific implementation-related tasks
(e.g., Id token validation). A detailed definition for each af in the reported cate-
gories is provided in our companion website1. af s are to be set/implemented either: (i)
in Authorization/Token requests; (ii) in the IdMP developer console, set by controllers;
(iii) parameters set in the Header; or (iv) checks implemented by the controller.

Table 1 represents that by column Deployment Place. For example, controller needs
to set subject identifier type2, that could be either pairwise or public, in the IdMP
developer console. Note that, due to the page limit and simplifying the table, we only
consider the Authorization Code flow, and interested readers can refer to our companion
website (see footnote 1) for the completed reference model.

The OAuthWorking Group (WG) and the OpenID Foundation (OIDF) recommends
different af s—with different levels of contributes (protection level)—to achieve a com-
mon goal for varied use-case scenarios. We group together such af s, and call them
composed feature (cf ). A client can implement one af from a cf , per request. For
example, request, request uri and query are grouped together under cf Request.
They are introduced to meet goal access token confidentiality, by protecting autho-
rization request against the threat obtain code (see Table 1). While af request and
request uri pass OAuth/OIDC requests in a signed and optionally encrypted single,
self-contained parameter manner, the af query passes it directly in the URL. Thus, the

1 https://sites.google.com/fbk.eu/oidc-dpia.
2 A locally unique and never reassigned identifier within the Issuer for the user, which is intended
to be consumed by the Client.

https://sites.google.com/fbk.eu/oidc-dpia
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Table 1. OAuth/OIDC reference model

Deployment place Atomic features Threat (T) Goal (G) Consecutive T Consecutive G PL LL
Security Feature

Authorization request

code

Obtain AT PD Conf - -

3

3
token 1
client_credentials 3
password 1
hybrid 3
nonce Obtain AT , Session misuse PD Conf - - 5 5
state Session misuse PD Conf - - 5 5
request 

Obtain code AT Conf Obtain AT PD Conf
5

5request_uri 5
query 1
form_post

Obtain code AT Conf Obtain AT PD Conf
5

5fragment 1
query 1
Code challenge Obtain AT , Session misuse PD Conf - - 5 5
plain 

Obtain AT , Session misuse PD Conf - -
1 5

s256 5

Token request

mtls 

Obtain AT PD Conf
- -

3

3
client_secret_jwt 3
private_key_jwt 3
client_secret_basic 2
cleint_secret_post 2
code_verifier Obtain AT , Session misuse PD Conf - - 5 5

Authorization request
/ Token request

full redirect_uriidmp

Obtain code AT Conf Obtain AT PD Conf
3

3
pattern redirect_uriidmp 1

Header binding IdMP metadatacl Obtain AT PD Conf - - 2 2
referrercl Obtain code AT Conf Obtain  AT PD Conf 3 3

Console distinct redirect_uricl Obtain code AT Conf Obtain  AT PD Conf 5 5

Client check

open redirect validationcl Obtain code AT Conf Obtain  AT PD Conf 5 5
state validationcl Obtain code PD Conf - - 5 5
storing IdMP metadatacl Obtain code AT Conf Obtain  AT PD Conf 5 5
issuer validationcl Obtain code AT Conf Obtain  AT PD Conf 5 5
id token validation cl Impersonation PD Conf - - 5 5

Privacy Features

Authorization request

claims Comp data mini Data mini - - 5 5
scope Comp data mini Data mini - - 5 5
purpose Comp. Pur spec, Trans Pur Spec, Trans - - 5

5verified_claims Comp. PD accuracy PD accuracy - - 5
vot Impersonation,

Comp PD accuracy
PD accu, PD Conf - - 5 5acr 5

login
Comp transparency Transparency - -

3
3select_account 3

consent 3

Console pairwise cl
Linkability Unlinkability - - 5 5public cl 1

LEGEND. idmp: idmp only feature, cl: client only feature, comp: compromise, PD: personal data, AT: access token, trans: transparency
data mini: data minimization, conf: confidentiality, pur spec: purpose specification, PL: protection level, LL: likelihood level

first two provide a higher protection level as they provide request integrity and confi-
dentiality. We have used this reasoning to assign protection level to the af s. Thus, the
protection level for the discussed af s are 5, 5, and 1, respectively. This is an important
consideration, as it allows controllers to make an informed decision on the IdMP s/he
chooses (not all IdMPs support all the af s), or/and the af s they decide to implement.
When an af is not implemented, the protection level against its related threat(s) will
decrease and adds to the likelihood level of the threat(s) to pose. Such that, the likeli-
hood level of af s are equal to their protection level. While in case of cf s, the likelihood
level will be the maximum value among its af s Protection/likelihood levels range from
1 to 5. Controllers can modify the likelihood and protection level if needed. Please find
the details about the evaluation of the protection level of all af s in our website (see
footnote 1).
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Table 2. Composed features.

Each af /cf is introduced to protect OAuth/OIDC deployment against a threat to
satisfy privacy/security goals. A threat could expose the system to another threat, which
itself compromises another goal. We call them consecutive threats and consecutive goal.
They are as likely to raise as their main threat. For example, as represented in Table 1,
not implementing af request leads to threat obtain code, which itself let the attacker
to obtain access token. They relate to goal access token confidentiality, and personal
data confidentiality, respectively.

3.2 Best Current Practice Specification

To assist clients and IdMPs in achieving appropriate security and privacy levels based
on their operating domain, the OAuth WG and the OIDF have published a set of BCPs
in [4,9,10,16,17]. Depending on the domain the BCPs mandate to use some optional
af s; and for cf to use an af over the others. For example, [16] requires using optional
af state.

The OAuth WG and the OIDF do not provide any specific privacy considerations
to meet privacy goals (See Sect. 2.3). However, to comply with the DPIA requirements,
controllers need to address them. We have systematically studied the following docu-
ments [5,12,21] to provide easy-to-implement privacy recommendations for controllers
based on the reported af s in Table 1. For the sake of brevity, we omit the full expla-
nation and only give a couple of examples. As reported in Table 2 cf Response type
comprises of af s code, token, client, credentials, password, and hybrid.
However, the BCPs enforces the usage of af code among the other af s because it does
not return the access token in the front channel and it can be protected by af s code
challenge and code verifier. Concerning privacy, controllers can achieve privacy
goal purpose specification by using af purpose to state the purpose of asking each
individual claim.

3.3 Problem Prisk Definition

In this section, we formalise the problem, namely Prisk, considering the reference model
reported in Table 1.

Let AF be the set of af s associated with an OAuth/OIDC deployment shown in
the second column of Table 1. We split the set AF in three disjoint subsets: AF =
AF common∪AF idmp ∪AF cl. The set AF common includes the af s that the client cannot
implement unless the IdMP supports them, like nonce.
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An IdMP can support more than one af from a cf , while the client can implement
only one for a given request. The set AF idmp includes af s that IdMPs need to enforce
(marked with the “idmp” superscript in Table 1) and clients need only to adopt, like
pattern redirect uri. The set AF cl includes the af s that clients need to implement
and checks that they need to perform (marked with the “cl” superscript in Table 1), like
issuer validation.

Let supportidmp be a Boolean mapping from the set AF common ∪AF idmp for idmp
ranging over a given set of IdMPs. An af in supportidmp maps to a true value iff idmp
supports the af . Let implementcl be a Boolean mapping from the set AF common∪AF cl
for a given client cl. An atomic feature af maps to a true value iff cl implements af .

Notice, for af ∈ AF common, we say that implementcl is constrained by supportidmp,
that is, implementcl is strictly dependent on supportidmp. Other words, af ∈ AF common
can map to true only if it maps to true in supportidmp. Indeed, controllers can decide
whether to implement some atomic features among the one supported by idmp.

Let CF ∗ ⊂ P(AF ) (where P stands for the power set) be a set of sets of af s, includ-
ing the cf s (see Table 2) as well as a set {af} for each atomic feature af ∈AF that does
not belong to any composed feature in Table 2. Thus, CF ∗ = {. . . ,{nonce},{state},
{request,request uri,query}, . . .}. Note that all the sets S ∈ CF ∗ are pairwise dis-
joint and

⋃
S∈CF ∗ S= AF , that is CF ∗ is a partition of AF . Let T be the set of threats

and consecutive threats, listed in columns 3 and 5 of Table 1. Let G be the set of goals
and consecutive goals, listed in columns 4 and 6 of Table 1. We thus define the following
mappings and relations:

– Let p be a mapping fromAF to the set {1, . . . ,5} of protection levels. The definition
of this mapping can be obtained by considering the features in column 2 and the
corresponding protection level in column 7 of Table 1.

– Let the likelihood mapping � be a mapping from CF ∗ to the set {1, . . . ,5} of likeli-
hood levels. The definition of this mapping can be obtained by considering the (sets
of) atomic features in column 2 and the corresponding likelihood level in column 8
of Table 1.

– Let i be a mapping from the set T of threats to the set {1, . . . ,5} of impact levels. The
definition of this mapping is decided by the controller and depends on the particular
scenario in which the OAuth/OIDC solution is deployed.

– Let CF2T ⊆ CF ∗ ×T be a relation between each composed feature cf ∈ CF ∗ and
its related threat. The pairs in this relation can be defined by reading the elements
reported in columns 2 and 3 of Table 1.

– Let T2G⊆ T ×G be a relation between each threat and the goal compromised by the
threat itself. The pairs in this relation can be defined by reading the elements reported
both in columns 3 and 4, and 5 and 6 of Table 1. Indeed, the relation between a threat
and the goal is independent of the fact that the threat is consecutive to another threat
or not.

– Let T2CT ⊆ T ×T be a relation between a threat and its consecutive threat. The
pairs in this relation can be defined by reading the elements reported in columns
3 and 5 of Table 1. We also use the notation CT (t) to indicate the set of threats
consecutive to the threat t, and CT (T ) � ⋃

t∈T (CT (t)).
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The problem Prisk consists in finding the idmp and mapping implementcl such that

minidmp,implementclR (p, �, i,supportidmp, implementcl,CF2T,T2G,T2CT) (1)

subject to idmp ∈ IdMPs and cl ∈ ClAdm, where IdMPs is a set of IdMPs that sup-
port certain features and ClAdm is the set of admissible mappings for a given client.
The definition of the set IdMPs and the ClAdm derive from external considerations
performed by the controller of the client. For instance, the choice of an IdMP can be
affected by the costs of IdMPs’ services or supported features. Similarly, the controller
can consider that some features—among the ones constrained (as defined above) by the
selected idmp—will take longer to implement or charge more in terms of costs. Thus,
the controller can further constrain the admissible implementcl mappings accordingly.

R is thus an operator that returns the risk level given the selected idmp, the configu-
ration of the client cl, the protection and likelihood mappings and the impact level while
considering how the risk propagates among the various components by using relations
CF2T , T2G, and T2CT .

As a final remark, note that the problem Prisk is solved by considering p, l, i, CF2T ,
T2G, and T2CT (obtained from Table 1), while supportidmp and implementcl range over
all possible values in the sets IdMPs and ClAdm. Therefore, the problem is decid-
able because it can be expressed as a combinatorial optimization problem with finitely
many possibilities depending on the number of considered IdMPs, features supported
by clients inClAdm and on the cardinality of the considered atomic features in AF : all
the possibilities can be enumerated, the corresponding risk evaluated and the minimum
value selected. Indeed, solving problem Prisk can be mechanized by using any available
tools that are capable of solving optimization problems by specifying how the function
to be minimized (the risk in our case) depends on the arguments of the operator R .

4 OAuth/OIDC Solution DPIA-Compliant Risk Analysis

This section discusses our methodology to address the reported problem.

Running Example. Graphy is a client that gets the users’ financial data from their bank
accounts and makes a graphical representation of their financial status. Users need to
make a profile with the Graphy and connect their bank accounts to it. Graphy utilizes
OAuth/OIDC solutions to provide a smooth single sign-on login and access delegation
experience for its users. This scenario is inspired by the example provided in [15].

Addressing Prisk. The problem assesses the risks to rights and freedoms of data subjects,
for which controllers need to meet security and privacy goals (introduced in Sect. 2.3).
This section details our three-step approach to address the problem, namely: (I) assess-
ing client, (II) evaluating risks of employed IdMPs, and (III) modeling and treating
risks.
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I. Assessing Client. This sub-step identifies the roles; namely data subject, controller,
and data processor; and data type category. Controller decides on data processing details
and is responsible to demonstrate compliance with GDPR; data processor processes per-
sonal data on behalf of the controller. In this context, the client developer is the controller
and, IdMPs are the data processor. We provide three ways for controllers to identify the
employed IdMPs: finding the employed IdMP from list of popular IdMPs, indicating
discovery endpoint URL, replying to a questionnaire. To identify data subjects and data
type, we use the approach introduced in [2], that is, through specifying the economic
sector. We call Sensitive sector the sectors that process special category of personal data
and/or involve vulnerable data subject; and non-sensitive sector otherwise.

DPIA considers the impact of data processing high, when a large scale of data is
involved, which impacts large scale of the data subject. For the sake of simplicity, we
consider the impact level as a constant value 5 corresponding to a very high impact.
Application of the step on the scenario. In this scenario, Graphy is the controller. The
service it provides belongs to Sensitive sector as it processes financial data. As such, the
impact is 5. Data subjects are natural persons. The controller employs IBM for single
sign-on login and allows users of Barclays bank to link their bank accounts through
access delegation; they are data processors.

II. Evaluating Risks of Employed IdMP(s). This sub-step assesses employed IdMPs and
the implementation details w.r.t. their integration within the client, to identify any
threat(s) they may pose to the right and freedoms of data subjects. For that, we introduce
the following two components: IdMP Processor and Client Processor, detailed below.
IdMP Processor. The processor assesses which are the features af ∈ AF common ∪
AF idmp supported by the employed IdMP(s). Thus, more formally, the IdMP processor
aims to specify the supportidmp Boolean mapping for the employed idmp.

Our methodology provides a database of known IdMPs. If the controller selects one
of them, the known truth values are automatically retrieved. Otherwise, we identify two
solutions to collect the missing information about the af s of an idmp. One option for the
controller is to provide the IdMP’s discovery endpoint URL (if available). Then, our tool
sends an HTTP Get request to the endpoint and automatically extracts the information
from the JSON response (e.g., subject type supported). (Please refer to the com-
panion website (see footnote 1) for the list of the af s included in the JSON response).
Finally, we ask the controller to reply to a dynamically generated Yes/No questionnaire
to collect only the information that is still missing. To generate the questionnaire, we use
the reference model (see Sect. 3.1), by filtering out the known information. For exam-
ple, it asks “Does the IdMP support full redirect uri?”, “Does the IdMP support
nonce?”. Please find the details of the questionnaire in our website (see footnote 1).

The database of known IdMPs gets updated whenever a new IdMP is introduced
either via the discovery endpoint or the questionnaire. To know the status of popular
IdMPs and to start filling in the database, we have selected 19 popular IdMPs, accord-
ing to their Alexa ranks and whether they have a free developer console to assess their
features. The IdMPs are taken from the OIDF website [11]: for Sensitive sector they are
taken from the list of Certified FAPI OIDC, and for Non-sensitive sectors from certified
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OIDC Core. For each of them we studied the available documentation and/or the devel-
oper console to assess their features. Table 3 provides an excerpt of the IdMPs we have
studied; the full table is available in our website (see footnote 1). Interesting enough,
we discovered that the selected IdMPs do not provide the same level of security and pri-
vacy. For instance, Yahoo does not support the following af s: Plain, S256, claims,
purpose, acr, verified claims and vot, while the IBM solution supports Plain,
S256 and acr.
Client Processor. The Client Processor aims to assess which features af ∈AF common ∪
AF cl have been implemented by the client cl in the OAuth/OIDC solutions. Other
words, it specifies the implementcl boolean mapping.

To support the controller in this process, our methodology provides a Yes/No ques-
tionnaire. By leveraging the supportidmp (obtained from the IdMP Processor) our app-
roach automatically takes into account the choices that are constrained (as defined in
Sect. 3.3) by the employed idmp and selects the relevant questions for the client. For
example, it asks “Have you implemented id token validation?”, “Have you
set referrer parameter?”.

Application of the Step on the Scenario. Given that IBM is in our database of known
IdMPs then most of truth values of the features related to IBM are already available.
For the missing information concerning IBM and the whole information concerning
Barclays—that is not among the IdMP we analyzed—the controller has to reply to
the questionnaire. The details about the collected information are on the website (see
footnote 1).

III. Modeling and Treating Risks. The information collected from the previous two
steps in Sect. 4.I and Sect. 4.II (namely the impact i, supportidmp, and implementcl) as
well as the information reported in Table 1 are used to model and evaluate the risk. Any
risk modeling tool that can perform a what-if analysis can be employed. The what-if
analysis allows controllers to observe how the risk level changes by considering dif-
ferent implementation choices. A good option is the RiskML tool [18], which provides
a modeling language and a quantitative reasoning algorithm to analyze models, taking
into account the risk propagation.

Figure 1 illustrates an excerpt of the risk model, by considering, for simplicity, only
two af s: referrer and mtls. We are assuming that, according to implementcl, a con-
troller did not implement referrer (dashed line in Fig. 1) and implemented mtls. As
shown in Table 1, not implementing referrer leads to the threatObtain Code (with the
likelihood level 3), that consecutively allows an attacker to also Obtain Access Token.
As such, it impacts the goals confidentiality of the access token and confidentiality of
the personal data, respectively. At the same time, mtls is implemented, and thus con-
tributes to protect the access token (the protection level is 3), and, as a consequence,
the confidentiality of the personal data.
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Table 3. An excerpt list of known IdMPs and their supported features.

Atomic Feature
code
implicit
client credential
password
hybrid
mtls
client_secret_basic 
client_secret_post
client_secret_jwt
private_key_jwt 
plain opt opt

S256 opt opt

request
request_uri
query
claim
scope
purpose
verfied_claims
acr
vot
public NA
pairwise NA
Sensitive Sector No No No No
LEGEND: opt: Supported, but not enforced, NA: Not applicable

Fig. 1. An excerpt representation of risk model.

This simple excerpt shows that the effects of the implementation choices (expressed
in terms of af s) propagate on threats and goals, and that the positive (protection) and
negative (likelihood) effects contribute to the final risk level associated to each goal.
Then, the specific operations to quantify the effects and calculate the risk levels are
dependent on the employed risk assessment tool. Of course, when considering the
whole set of af s the analysis is much more complex. By enabling controllers to per-
form a what-if analysis, our methodology allows them to take informed decisions on
their IdMP and implementation choices.
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5 Conclusion

Conducting a DPIA-compliant risk analysis for OAuth/OIDC solutions is complex. To
assist controller with this task, we define a DPIA-compliant risk analysis as a security
and privacy risk analysis (Prisk) problem, and proposed a methodology to solve it. The
methodology is supported by a reference model that captures the OAuth/OIDC features
that are required to solve the problem, respecting the security and privacy level of solu-
tion in question. Our analysis of the solution outputs a risk model that captures the
system as-is, and provide the possibility to perform what-if analysis. Performing what-
if analysis enables controllers to make an informed decision on their choice of IdMP
and implementation to eliminate identified risks or minimize their impact. The model
can be input into any risk model that can perform what-if analysis. As future work, we
plan to extend the methodology to assess risks posed by (other components of) clients
and introduce security controls and privacy-enhanced technology to address them.
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and Michaël Rusinowitch2

1 Sapienza Università di Roma, 00185 Roma, Italy
eidizadehakhcheloo.1772528@studenti.uniroma1.it

2 Lorraine University, CNRS, Inria, 54506 Vandœuvre-lès-Nancy, France
{bizhan.alipourpijani,abdessamad.imine,rusi}@loria.fr

Abstract. We present a Divide-and-Learn machine learning method-
ology to investigate a new class of attribute inference attacks against
Online Social Networks (OSN) users. Our methodology analyzes com-
menters’ preferences related to some user publications (e.g., posts or pic-
tures) to infer sensitive attributes of that user. For classification perfor-
mance, we tune Random Indexing (RI) to compute several embeddings
for textual units (e.g., word, emoji), each one depending on a specific
attribute value. RI guarantees the comparability of the generated vec-
tors for the different values. To validate the approach, we consider three
Facebook attributes: gender, age category and relationship status, which
are highly relevant for targeted advertising or privacy threatening appli-
cations. By using an XGBoost classifier, we show that we can infer Face-
book users’ attributes from commenters’ reactions to their publications
with AUC from 94% to 98%, depending on the traits.

Keywords: Social networks · Privacy · Attribute inference attack ·
Random indexing

1 Introduction

Although OSN users are getting more cautious about their privacy, they remain
vulnerable to attribute inference attacks where the principle is to illegitimately
gain private attributes (such as age, gender or political orientation) from publicly
available information. In general, attribute inference attacks are either based on
data directly generated by the target user (such as pseudos) or data obtained by
exploring the user vicinity network. The need to protect the sensitivity of some
attributes compels users to conceal information that may disclose them. For
instance, the authors of [6] investigate Facebook users’ privacy awareness and
show that age has the lowest exposure rate. Less than 3% of the users (about
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495k users) reveal their age, which shows the sensitivity of this attribute. They
also show that half of their members hide their gender and 37.3% conceal their
friend list. Therefore collecting user-generated data is a difficult task in a real
scenario. We note that most attribute inference attacks get inoperative in the
case where no data are provided by target users in their profiles. For instance
many attribute inference systems are based on network homophily [25] and do
not apply without the availability of friend lists.

Even with more user awareness, the privacy risks can come from other
sources. Indeed, we will show that an attribute can be inferred from non-user
generated data such as the reactions of other social media users on the target
user’s shared contents. Users in OSN share contents, so-called publications, to
give people a better sense of who they are and what they care about. For exam-
ple, Twitter users share a tweet to express their opinion. As for Facebook, users
publish pictures, posts or status updates to display their beliefs, favorite brands,
grab attention and nourish relationships. While many users hide their sensitive
attributes (e.g., gender, age or political view), these publications are still avail-
able to the public. However, many users do not realize that even though they are
cautious about their writing style, other users’ reactions to their publications can
reveal their sensitive information. As a typical reaction, people spontaneously
comment on publications. This option allows them to engage and impress their
personal opinion, which might create a sense of connectedness between the pub-
lication author and commenters (especially when the commenters are friends).
We consider these comments as part of the publication metadata. We also con-
sider alt text as metadata which is freely available textual information describing
the picture contents (faces, objects, and other themes) and which is generated
by some OSN platforms (like Facebook) for blind people who use screen readers.

In this paper, we describe how to infer attributes from publications metadata.
We suspect that OSN users’ publications metadata convey sensitive information,
even though the users did not contribute to generating them directly. We will
show that a target user’s attribute can indeed be leaked from other users’ reac-
tions (e.g., comments) to the target user’s publications, even without analyzing
the publication content. Note that this new type of attack is difficult to defeat
as the user has no control over other users’ reactions. Demonstrating the risks
of attribute inference attacks raised by publication metadata gives us concrete
grounds for alerting about their sensitivity.

A Central Problem and Our Solution. An important problem when learning
attributes from metadata is that the same term often appears with different con-
texts in different attribute values. Such a term will be called an overlapped term
and the value-specific contexts will be called non-overlapped contexts. Example
1 shows female and male-owned pictures with generated alt-text to describe the
picture content and comments posted by commenters. The tag 1person and the
word baby are overlapped terms, while you, miss, and cray are non-overlapped
contexts. The commenters employ different neighboring words for the term baby
when commenting on female and male-owned pictures, which demonstrates the
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commenters’ usage preferences. As a result, there is a variation in style and usage
of the same term in the context of different attribute values.

Example 1. Metadata of two pictures.

Metadata of an image published by a female user
Generated alt-text: 1person
Comment: miss you baby

Metadata of an image published by a male user
Generated alt-text: 1person
Comment: cray cray baby

To discover these variations, we apply a semantic space model, known as
Distributional Semantic Model (DSM). Classical word embeddings (such as
word2vec [20]) uncover the semantic relations among terms by scanning through
the whole corpus and detecting co-occurrences in a fixed context window. They
build a global view of terms co-occurrence in the entire dataset. In Example
1, baby is used as a romantic term of endearment in the female-owned picture,
whereas in the male-owned picture it is about making fun of and teasing the
picture owner. Hence generating a vector for each word using the entire dataset
can mix and combine many possible word contexts.

We need to adapt the distributional semantic model so that an overlapped term
with non-overlapped context will get different corresponding vector representa-
tions. These various representations should be comparable since attribute predic-
tion often relies on computing similarities between vector representations of terms
and users. However, due to different random initialization processes on the sub-
datasets (corresponding to distinct attribute values), the generated vectors are not
comparable by the standard similarity measures, such as cosine similarity [13]. To
avoid this problem, we apply Random Indexing (RI) [26], which is an incremental
and scalable method for constructing a vector space model. RI requires few com-
putational resources for similarity computations and allows comparison of word
spaces created over different attribute values [2]. Accordingly, from the same term,
we can generate vectors in different attribute values and compare them.

As a case study, we conduct an intensive analysis of three Facebook
attributes: age, gender, and relationship status, as they are recognized as key
privacy concerns in the Internet era. Some Facebook users choose to hide gender
to camouflage themselves against stalking, sexual harassment, or reducing dis-
crimination [28]. Our attack receives promising results as we preserve the vector
representation of each word for each attribute value. The result confirms that
splitting the dataset can boost the attacker’s performance.

Paper Organization. In Sect. 2 we review the related works. Section 3 presents our
Divide-and-Learn methodology to incorporate attribute values in word vector
generation. We outline our attribute inference attack steps in Sect. 4. We present
a case study in Sect. 5 to evaluate our attacks. Finally, we conclude in Sect. 6
by discussing the capability of our attribute inference attacks on other OSN
platforms and giving possible future work.
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2 Related Works

User profiling based on their available data on social media has obtained remark-
able attention in the past decade. It is a key ingredient of recommendation sys-
tems. Researchers have investigated popular social media platforms and have
leveraged all possible available data such as content sharing [3], friendship [9],
behavior [17] to perform their attribute inference attacks. [29] considers users’
purchase data for predicting multiple demographic attributes simultaneously.
The authors of [1] show how an attacker can leverage seemingly harmless inter-
ests to reveal sensitive information about users. In particular, they infer user
private attributes based on music interest similarities. [30] shows that a movie
rating recommender system can infer the user’s gender without additional meta-
data. [10] combines network structure and node attribute information to per-
form link prediction and attribute inference attacks. These are motivated by
the observed interaction and homophily between network structure and node
attributes. An active attack on privacy-preserving publication of social graphs
is presented in [19]. Demographic variable attacks on Twitter users based on
whom they follow are presented in [4]. Research efforts have been also focused
on user writing style (i.e., users’ messages, posts, and status updates) [21] and
word usage [27] to infer undisclosed attributes. They apply language analysis
to the text generated by users and implement machine learning approaches to
achieve the attack.

To sum up, the mentioned works mainly require exploration of user vicinity
networks (e.g., friend lists) and digital records (e.g., profile attributes, joined
groups and liked pages), which might be unavailable in a real scenario or com-
putationally costly to collect. This personal data as well as writing styles can be
modified by the target user to escape inference attacks. In contrast, we infer tar-
get user attributes from commenters and Facebook generated data (both called
here publication metadata). This metadata is easily available. Since our approach
does not need to explore the target user’s vicinity network, groups and pages,
inference attacks are efficient and can even be launched online.

Our work is related to [5,23] where gender and age are inferred from Facebook
picture metadata. However, here we do not limit ourselves to specific attributes
and our attacks apply to many social media by leveraging commenters’ prefer-
ences related to pictures, posts, and status updates. Our approach is inspired by
recent techniques for analyzing word semantic changes over time [8].

3 Divide-and-Learn Methodology

In this section, we first explain how the training dataset is divided into sub-
datasets according to the different values of the attribute to be inferred. Next,
we introduce the distributional semantic space and our proposed value-based
random indexing approach. The notations used in this paper are summarized in
Table 1.
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Table 1. Notations.

Notations Descriptions

D collected training dataset

U set of users

u ∈ U user in U

W vocabulary of the training dataset

w ∈ W word in W

w distributional vector of w

c context

C(w) set of contexts of w in D

P (u) set of publications of u ∈ U

l an attribute

lm mth value of l

U l
m, Um set of users s.t. attribute l has mth value (Um when l is implicit)

Wm set of words in comments of publications from users in Um

Cm(w) set of contexts of w in Dm

u vector for u

3.1 Dividing Training Datasets

Here, we introduce our splitting conditions and their computation. In the fol-
lowing we use term as a shorthand for word/emoji/tag.

Criteria for Splitting. We can argue that splitting is not beneficial if the
commenters use (i) a majority of different terms while commenting on users’
publications in different attribute values, or (ii) more frequently the same terms
co-occurring more often with similar contexts than dissimilar ones (see Sub-
sect. 5.3). Examples 2 and 3 illustrate cases where splitting the dataset would
not be beneficial.

Example 2. Metadata of two pictures.
Metadata of an image published by female user

Generated alt-text: 2people
Comment: Wooooooow, its NICE

Metadata of an image published by male user
Generated alt-text: outdoor, sunglasses
Comment: look at the long beard
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Example 3. Metadata of two pictures.

Metadata of an image published by female user
Generated alt-text: selfie, closeup
Comment: great picture

Metadata of an image published by male user
Generated alt-text: selfie, closeup
Comment: great picture

However, in the complementary cases, our experiments have shown the neat
benefit of splitting for accuracy (see Subsect. 5.3). For instance, if males and
females are commented with the same terms and the contexts of those terms are
mostly specific to an attribute value (see Example 1), we can take advantage of
this variation and split the dataset to generate vectors that are biased towards
that attribute value. We, therefore, propose two conditions to be jointly satisfied
in order to split the training dataset. To express these conditions, we define the
importance of a set L that contains terms or contexts w as

Q(L) =
∑

w∈L

freq(w)

where freq(w) is the number of occurrences of w in the dataset.

Condition 1 is satisfied when the set of overlapped terms is more important
than the set of non-overlapped terms.

Condition 2 is satisfied when the set of non-overlapped contexts is more impor-
tant than the set of overlapped contexts.

In Example 1, the first condition is satisfied by the overlapped terms (1per-
son and baby), and the second condition is met as the overlapped terms have
different contexts (miss you and cray cray). None of the conditions are satisfied
in Example 2 and only the first condition is satisfied in Example 3. Therefore, a
unique term representation is sufficient in the two latter cases without missing
the variations in the contextual meaning of the terms.

Dataset Dividing Algorithm. We label the original training dataset D in
such a way that the ith sub-datasets Di contains users labeled with the ith
attribute value and words appearing in their publications comments. Algorithm
1 has for inputs D and Dis, and it returns a boolean that is true if D has to be
split into sub-datasets Di. We introduce the following notations:

1. l1, l2, ..., lk represents the attribute values. If l is gender attribute, then l1 =
“male” and l2 = “female”.

2. Di is the ith sub-dataset containing the set of users with attribute value li
(with i ∈ {1, .., k}). For gender attribute, we obtain D1 and D2 as sub-datasets
annotated by male and female.

3. Wi is the set of words in comments of pictures published by users in Ui.
4. UTop, and BTop are integer parameters.
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5. Unigram(Di, UTop) computes Unii, the set of UTop most frequent terms in
Di.

6. Bigram(Unii, BTop) computes Bigi, the set of BTop most frequent terms
in Di co-occurring with terms in Unii.

7. Tcount(t) = |{i ∈ {1, . . . k} | t ∈ Unii}|, (resp. Ccount(c) = |{i ∈ {1, . . . k} |
c ∈ Bigi}|) is the number of sets Unii (resp. Bigi) where a term t (resp. a
context c) appears.

Suitable values of UTop and BTop will be determined from experiments (see
Subsect. 5.2).

Algorithm 1: Dataset dividing algorithm
input : D,D1, . . . , Dk

output: true iff the dataset D has to be split in D1, . . . , Dk

Step1:
for i = 1, . . . k do

Unii ← Unigram(Di, UTop)
Bigi ← Bigram(Unii, BTop)

Step 2:
OT ← ⋂k

i=1 Unii ; OC ← ⋂k
i=1 Bigi

T ← ⋃k
i=1 Unii ; C ← ⋃k

i=1 Bigi
NT ← {t ∈ T | Tcount(t) = 1}; NC ← {c ∈ C | Ccount(c) = 1}
if Q(OT) > Q(NT) and Q(OC) < Q(NC) then true;
else false;

3.2 Random Indexing

Random Indexing (RI) is a fast dimensionality reduction method that transforms
high-dimensional data into a lower-dimensional one by using a random matrix.
It generates distributional representations that approximate similarities in sets
of co-occurrence weights. RI assigns a randomly generated vector to each unique
term in the text, the so-called index vector. These index vectors are sparse,
n-dimensional, and ternary. They consist of a small number of randomly dis-
tributed non-zero elements, {−1,+1}. Each unique term is also represented by
an n-dimensional initially empty vector, called distribution vector. RI incremen-
tally updates the n-dimensional distribution vector of each word by summing
the n-dimensional index vector(s) of all co-occurring words within a small win-
dow of text. As a result, terms appearing in a similar context tend to have a
similar distributional vector. Let c = [c−n, . . . c−1, w, c1, . . . cn] be the context of
w with window from −n to n (n chosen between 1 and 5) and let c be the vector
obtained by accumulating word’s index vector co-occurring with w in context c.
We update the distributional vector w by using RI as follows:

w =
∑

c∈C(w)

∑

−n�j�n
j �=0

cj (1)
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The problem with this approach is that the entire dataset potentially con-
tributes to each term vector representation. Therefore, the vectors are affected
by the different attribute values and lose their discriminating power for attribute
inference attacks. To remedy this problem, we propose to generate several value-
based vectors for each term [12].

Values-Based Random Indexing. Despite its simplicity, RI struggles to cap-
ture the relation between commenters’ words/emojis usage preferences and the
owners’ publication profile. However, it can be adjusted for our task. Given a set
of users U and an attribute l with k values l1, l2, . . . , lk, we introduce the subsets
U1, U2, .., Uk of U , where Um is the set of users whose attribute value is the mth
value of l. Similarly, if W is the vocabulary of all comments for publications of
users in U , we consider k sub-vocabularies W1,W2, ...Wk, such that each Wm

records the commenters’ preferences for a user in Um.
In this way, we distinguish the different contexts of a term appearing within

profiles with different attribute values. It is a key aspect of our inference attacks
since the vector of a term occurring in Wm will be computed from its co-
occurrences with other terms from Wm. Formally, instead of computing with
standard RI, a single vector w from the entire W , we compute k vectors
w1, w2, ...wk, where wm is derived from Wm, as follows:

wm =
∑

c∈Cm(w)

∑

−n�j�n
j �=0

cj (2)

From Eq. 2, we generate distinct vectors for the same term for different values.
Previous word embedding approaches generate a single vector for each term
appearing in Example 1 by combining different context terms. These approaches
miss word semantical variations corresponding to different attribute values. In
our approach, we can rely on Eq. 2 to compute several vector representations for
the same term, each one corresponding to an attribute value.

Generating Index Vectors. RI relies on two important hypotheses. First, in
high dimensional space, there exists a much larger number of almost orthogo-
nal than orthogonal directions, according to Hecht-Nielsen [11]. Second, if we
project points of a vector space into a randomly selected high dimensional-
ity subspace, the distances between these points are approximately preserved
(Johnson-Lindenstrauss-Schechtman lemma [16]). The choice of random matrix
is an essential aspect of RI to satisfy these two hypotheses. In this work, we
train a machine learning algorithm to find the best parameters of RI, namely
the dimension and non-zero elements (see Subsect. 5.2). By following the steps
mentioned above, our approach provides suitable vectors to perform attribute
inference with higher accuracy than with alternative embeddings.
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4 Attribute Inference Attacks

We consider an attacker who intends to infer OSN users’ attributes from a set
of publications P where each publication contains metadata. Thus, the OSN is
exposed to potential privacy violations by an attacker (external or OSN user)
collecting, storing and analyzing publications metadata from user profiles.

Once we learn the vector representations of terms for each attribute value
(see Eq. 2), we compute a vector representation of um by aggregating all the
terms that appear in his/her publications as follows:

um =
∑

w∈P (um)

wm (3)

We introduce a set S of vectors computed by Eq. 3. For the target user t, we
generate a set of user vectors T = {t1, t2, ....tk}, where vector tm is obtained as
follows:

tm =
∑

w∈P (t)

wm (4)

We compute cosine similarity [20,22] between T and S to check which user
in S has the most similar vector to the vector of a user in T as follows:

(tµ, uµ) = arg max
t∈T
u∈S

(cosine(t,u))

The arg max function outputs a tuple (tµ, uµ) and we infer that the target
attribute value is lµ. Cosine similarity is a common similarity measure for vectors
when their magnitude is not relevant (e.g., they represent linguistic items in
distributional semantics [14]).

As a concrete example, we consider a gender inference attack against a user
named Target. Given two gender values l1 = “male” and l2 = “female”, we gen-
erate two vectors w1 and w2 for Target where w1 and w2 correspond to vector
of w in D1 and D2, respectively. Vectors Target F and Target M (red points in
Fig. 1) represent female and male hypotheses vectors, respectively. Using cosine
similarity, we compute in Fig. 1 the closest users of S to Target F (blue dots)
and the closest users of S to Target M (blue dots). As Raymond is closer to
Target M than Berkeley to Target F, we label therefore Target by male.
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Fig. 1. Nearest users to female and male hypothesis vectors.

To sum up, the attacker can extract ground truth data and select the
attribute to attack. Then, he checks if splitting the dataset is necessary by using
Algorithm 1. Next, value-based random indexing from Subsect. 3.2 is applied to
generate word vectors that are meaningful for each attribute value. Finally, the
attribute inference is achieved by following the above steps.

5 Case Study: Facebook

In this section, we apply our methodology to implement attribute inference
attacks on Facebook. We first describe the experimental setup containing our
dataset, evaluation metrics and parameter settings related to the classifier and
Algorithm 1. Next, we assess and compare our approach with word2vec, a state-
of-the-art method for representing language semantics [20].

5.1 Dataset

As a case study, we concentrate on Facebook. More precisely, we consider pho-
tos published by their owners. Compared to other publications (such as post
and status update), pictures on Facebook receive an extra comment from Face-
book, namely alt-text. The generated alt-text has two advantages. First, it alle-
viates the image processing tasks. Second, it provides additional information for
the attacker. We show the success of our attack on three Facebook sensitive
attributes: age, gender and relationship status. The data collection was con-
ducted from October 2019 to April 2020 by utilizing a python crawler for aca-
demic research purposes. For the ground truth, we focus on the profiles where
these attributes are public, and we collect the required information from the
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html files of the corresponding images. For every picture, we extract data such
as comments, alt-texts, publication time and attribute’s value of the owner. We
have collected 9280 users’ profiles: 7611 users published their gender, 4604 users
shared their relationship status, and 3813 users announced their age. We ran-
domly selected Facebook users to avoid usage bias by region or country. Overall
we have collected 399,076 pictures and their 686,859 messages. We have lever-
aged the available picture metadata (either alt-text, comments or both) in our
attack process. In order to get a representative and useful dataset, we perform
the following pre-processing steps:

– Purifying the conjunction, redundant tag, and text from the generated alt-
text.

– Cleaning the extracted comments by removing stop words and re-formulating
flooded characters, misspelled words, and abbreviations.

Generating a vector representation from all user’s pictures might be inaccu-
rate when, for example, they are published at different time periods. Therefore,
in addition to the above pre-processing steps, we use pictures’ publication time
range to prevent these impacts. For instance, if Alice shared 20 images in her
profile from January to June, we create two users (Alice jan-mar and Alice apr-
jun) by assigning pictures published from January to March to Alice jan-mar
and pictures of April to June to Alice apr-jun. Moreover, Facebook users can
share photos on each other profiles. Considering those pictures owned by some-
one else might hinder the inference attacks as the publisher owner and the user
might have different attribute values. In this study, we only examine images
published by the user and filter out photos owned by others.

5.2 Experimental Setup

Our attack relies on XGBoost classifier. We utilize different metrics to evaluate
our approach. First, we use AUC (area under the ROC curve) as it is not sen-
sitive to the label distribution [15]. Second, we use macro and micro averages
to evaluate our inference attacks. A macro-average computes the metric inde-
pendently for each class and then takes the average (hence treating all classes
equally), whereas micro-average aggregates the contributions of all classes to
compute the average metric.

Parameter Settings. We tune three different sets of parameters related to:
classifier, RI and Algorithm 1.

For the classifier, we tune (i) the learning rate to adjust weights on each step
and make the model robust, (ii) max depth and (ii) min child weight to control
over-fitting. The objective specifies the learning task (e.g., binary classification)
and the corresponding learning objective, n estimators represents the number of
trees to fit, and subsample indicates the fraction of observations to be randomly
sampled for each tree. We set their default values and evaluate how different
values affect our performance. Except for the objective depending on the number
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of classes, we create an array of different values for each parameter and use a
python notebook tool called GridSearchCV to automatically find the best value
of that array. For example, we assigned to learning rate the array [0.01, 0.03,
0.05, 0.07], and use GridSearchCV to find the value giving the best result.

As for RI, [7] proposes a grid of sample values. We set dimension= 500 and
select two non-zero elements of the index vector to {-1, +1}, which maximize
the result of our inference attacks.

Our dividing algorithm (see Algorithm 1) comprises parameters UTop and
BTop to select the most frequent overlapped and non-overlapped Unigram and
Bigram, respectively. The best parameter values are UTop = 90 and BTop = 110.
They have been learned from our dataset by a grid search with UTop,BTop ∈
{10, 20, . . . ., 200}.

5.3 Inference Results

For the age inference attack, we consider the following classes: 20 to 25, 25
to 30, 30 to 35, 35 to 40, 40 to 45, and 45 to 50. We chose these age groups
to have a compromise between the accuracy of age prediction and the balanc-
ing of datasets. The age categories in our dataset reflect, in general, the most
active ones on Facebook. We do not consider ages under 20 or over 50 as it
is time consuming to collect enough data and keep all age categories balanced.
As for relationship status, we collect datasets for single, married and engaged
users. Consequently, we consider three classes. Finally, we reduce gender infer-
ence attacks to a binary classification problem with female and male classes1.
As for age and relationship status, we set the XGBoost classifier objective to
multi : softprob that gives the probability of each class, while for gender we set
it to logistic. We have used train-test splitting, as it performs faster, and split
the entire dataset into the train, validation and test datasets. We have leveraged
these datasets for training, parameter pruning and testing our XGBoost classi-
fier, respectively. We have trained word2vec on the same dataset and compared
its performance with our approach. Figure 2 shows the AUC result of word2vec
and our approach over three different attributes.

Table 2. Comparison with word2vec when splitting conditions are not satisfied.

C1 C2

AUC Precision Recall Fscore AUC Precision Recall Fscore

word2vec/class Female 82 74.3 69.9 72.2 79 67.4 67.9 67.7

RI-split/class Female 61 53.8 49.1 51.3 60 53.4 49.5 51.4

word2vec/class Male 82 74.9 78.8 76.8 79 75.2 74.5 74.8

RI-split/class Male 61 62.6 67.1 64.6 60 61.6 65.3 63.4

1 We do not ponder other genders and relationship status by lack of training samples.
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Fig. 2. Inference attacks performance measured by AUC for word2vec (left column)
and our approach (right column): (line 1) age, (line 2) relationship status (line 3) gender
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Figure 2 (a) shows the result of the age inference attack by using word2vec
where the age classes are inferred with AUC from 70% to 90%. In contrast, Fig. 2
(b) represents the result of the same attribute inference attack by using our app-
roach, which gets a tremendous boost with a substantial gain in performance.
For example, our approach infers the class 35–40 with 99% AUC, where it was
77%. In addition to AUC, the micro and macro average increased to 98% and
95%, respectively. Figure 2 (c and d) display word2vec and our approach perfor-
mance to relationship status inference attack. Our approach can accurately infer
the relationship status attribute of the target user in comparison to word2vec.
The class Engaged obtains 96% AUC in our approach, where word2vec infers
this class inadequately (slightly better than random). Lastly, Fig. 2 (e and f)
depict the gender inference attack. Similarly, our approach outstands word2vec
model. The attacker can infer the user’s gender by using our approach with 98%
AUC, where it drops to 70% in word2vec.

As mentioned in Subsect. 3.1, we split the dataset only if two conditions are
satisfied. To justify this, Table 2 represents some results of RI with splitting when
the conditions are not satisfied. From a crawled dataset labeled by gender, we
have synthetized two datasets C1 and C2. In C1, the first condition is satisfied
and the second one is not satisfied. In C2, the first condition does not hold (and
we ignore the status of second condition). We note that in both cases it is better
to use word2vec than RI with splitting. Moreover, word2vec generates only one
vector for each word which is space economical compared to RI with splitting. To
sum up, this result confirms that by relying on Algorithm 1, splitting is applied
in our approach only when it is beneficial. When Conditions 1 and 2 (see Subsect.
3.1) are satisfied, RI with splitting captures the commenters’ words/emojis usage
preferences adequately and this boosts the accuracy result. Otherwise, word2vec
is more performant.

6 Conclusion

In this paper, we have presented a new perspective on attribute inference attacks
based on reactions to target user publications. We have shown that if a term
appears in diverse contexts, it can be represented by different vectors. To capture
these diverse contexts, we have divided the dataset based on attribute values.
We have also defined some conditions to prevent useless splittings. We have
relied on the Random Indexing method to compute the term vectors in each
attribute value, as the generated vectors need to be comparable. Based on the
intensive analysis of 399,076 pictures and their 686,859 comments on Facebook,
we have demonstrated that picture metadata conveys sensitive information and
some private attributes such as gender, age category and relationship status
are leaked by the variations in commenter’s words/emojis usage preferences and
picture owner sharing style. Our attacks are suitable for online execution as
they do not require exploring user behavioral data and vicinity networks. They
generalize easily to other social media platforms such as Twitter.
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Even though some Facebook users limit themselves to sharing pictures with
friends only, it is often not hard for an attacker to be added to a large list of
friends and have access to the picture metadata.

As future work, we plan to extend our tool by explainable machine learning
techniques [18,24] to offer users several means to reduce attribute inference risks
(e.g., deleting or reducing the influence of leaking terms in comments). We also
intend to enlarge the user age boundary and consider users over 50. Furthermore,
using recent state-of-the-art tools such as BERT or ELMo for word embeddings
would a promising direction to improve our work.

Ethical Statement. Our experiments have been performed on publicly available
OSN data collected from Facebook. Although this data is public, it may lead to
infer private information and we are therefore committed to keeping it in secure
storage and only for the time necessary to carry out this work.
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Abstract. A Hierarchical Key Assignment Scheme (HKAS) is a method
to assign some private information and secret keys to a set of classes in
a partially ordered hierarchy, so that the private information of a higher
class together with some public information can be used to derive the keys
of all classes lower down in the hierarchy. Historically, HKAS has been
introduced to enforce multi-level access control, where it can be safely
assumed that the public information is made available in some authen-
ticated form. Subsequently, HKAS has found application in several other
contexts where, instead, it would be convenient to certify the trustworthi-
ness of public information. Such application contexts include key manage-
ment for IoT and for emerging distributed data acquisition systems such as
wireless sensor networks. In this paper, motivated by the need of accom-
modating this additional security requirement, we first introduce a new
cryptographic primitive: Verifiable Hierarchical Key Assignment Scheme
(VHKAS). A VHKAS is a key assignment scheme with a verification pro-
cedure that allows honest users to verify whether public information has
been maliciously modified to induce an honest user to obtain an incorrect
key. Then, we design and analyse VHKASs which are provably secure. Our
solutions support key update for compromised secret keys by making a lim-
ited number of changes to public and private information.

Keywords: Hierarchical key assignment · Access control · Applied
cryptography

1 Introduction

Users of a computer system could be organized into a hierarchy consisting of a
number of separate classes. These classes, called security classes, are positioned
and ordered within the hierarchy according to the fact that some users have
more access rights than others. For instance, in a hospital, doctors can access
their patients’ medical records, while researchers can only consult anonymous
clinical information for studies.

A hierarchical key assignment (HKAS) scheme is a method to assign a secret
key and some private information to each class in the hierarchy so that keys for
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descendant classes can be obtained via a key derivation procedure. This assign-
ment is carried out by a central authority, the Trusted Authority (TA). Following
the seminal work by Akl and Taylor [2], many researchers have proposed different
HKASs that either have better performances or allow dynamic updates to the
hierarchy (e.g., [3,5,10,12,14,16,19]). Crampton et al. in [15] provided a detailed
classification for HKASs, according to several parameters, including memory
requirements for public and private information and the complexity of handling
dynamic updates. In particular, they identified families of schemes where the
public information is used to store secret keys in order to reduce the amount
of private information users need to manage1. The use of HKASs belonging to
such families is desirable to prevent or limit the change of private information
and its redistribution when handling encryption key updates. Indeed, for these
schemes, the key update procedure which is necessary to replace compromised
keys, often requires changing only the public information without the need of
interacting with the involved users. In the remainder of the paper, we refer to
HKAS schemes belonging to such families.

Historically, HKASs have been introduced to enforce multi-level access con-
trol in scenarios where it can be safely assumed that the public information is
made available to everyone via a publicly accessible repository for which only
the TA has write permissions. However, key assignment schemes have recently
been employed in different application context where the public information may
be exposed to changes by malicious users. These application contexts include
key management for IoT and distributed data acquisition systems such as wire-
less sensor networks [4,10,24] as well as sensitive data outsourcing to the cloud
[9,11,17,18,23]. For instance, consider sensitive data outsourcing in cloud; the
data owner encrypts the data before outsourcing them at the server and dis-
tributes the private information (i.e., secret keys used to encrypt the data and
derivation material) to the users by means of an HKAS according to the access
policy. Only the data owner and users who know the appropriate encryption
and derivation keys will be able to decrypt the data. However, metadata which
includes the public information will also be stored at the server and thus may
be modified voluntarily or involuntarily by those who have access to it, includ-
ing the cloud service provider which is not necessarily trusted. Unfortunately, a
change in the public information will prevent an honest user to derive a correct
decryption key. Similarly, in wireless sensor networks, the cluster head nodes are
responsible for forwarding any public information that has been changed as a
result of key updates. If a cluster head node is corrupted, this information may
be maliciously modified before reaching its destination.

The scenarios outlined above introduce the need for an honest user to verify
the trustworthiness of the public information. In order to accommodate this
additional security requirement, we introduce a new cryptographic primitive:
Verifiable Hierarchical Key Assignment Scheme (VHKAS). A VHKAS is a key
assignment scheme with a verification procedure that allows honest users to
verify whether public information has been maliciously modified. In order to

1 Such families include IKEKAS, DKEKAS, and TKEKAS [15].
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capture a notion of security against an adversary who has the ability to replace or
modify the public information, we introduce the notion of strong key-consistency.
This notion models the fact that even the TA is unable to maliciously modify
the public information once distributed the private information.

More in detail, our contributions are as follows:

– We first give formal definitions for VHKAS; and the notion of security strong
key-consistency;

– subsequently, we present a construction of VHKAS that uses as building block
a Message Locked Encryption (MLE) scheme. We show that the construction
is provably-secure with respect to strong key-consistency and key indistin-
guishability, which corresponds to the requirement that an adversary is not
able to learn any information about a key that it should not have access to;

– afterwards, we show how to handle key replacement for compromised secret
keys by making a limited number of changes to public and private information;

– finally, we instantiate our MLE-based construction with the deterministic
MLE scheme proposed by Abadi et al. [1].

The paper is organized as follows: in Sect. 2 we review the definitions of
HKAS, and MLE as well as their notions of security. In Sect. 3 we define VHKAS
and introduce the security notion of strong key-consistency. In Sect. 4 we show
our MLE-based construction, prove it to be provably-secure with respect to key-
consistency and key indistinguishability and instantiate it with the deterministic
MLE scheme proposed by Abadi et al. [1]. In Sect. 5 we show how to handle
key replacements. In Sect. 6 we evaluate the performance of our construction
by comparing it with that of popular HKAS from the literature, while Sect. 7
concludes the paper.

2 Preliminaries

Notation. We use the standard notation to describe probabilistic algorithm and
experiments. If A(·, ·, . . .) is any probabilistic algorithm then a ← A(x, y, . . .)
denotes the experiment of running A on inputs x, y, . . . and letting a be the
outcome, the probability being over the coins of A. Similarly, if X is a set then
x ← X denotes the experiment of selecting an element uniformly from X and
assigning x this value. If w is neither an algorithm nor a set then x ← w is
a simple assignment statement. For two bit-strings x and y we denote by x||y
their concatenation. A function ε : N → R is negligible if for every constant c > 0
there exists an integer nc such that ε(n) < n−c for all n ≥ nc.

2.1 Hierarchical Key Assignment Schemes

Consider a set of users divided into a number of disjoint classes, called security
classes. A binary relation � that partially orders the set of classes V is defined in
accordance with authority, position, or power of each class in V . The poset (V,�)
is called a partially ordered hierarchy. For any two classes u and v, the notation
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u � v is used to indicate that the users in v can access u’s data. The partially
ordered hierarchy (V,�) can be represented by the directed graph G = (V,E),
where each class corresponds to a vertex and there is a path from class v to class
u if and only if u � v. A hierarchical key assignment scheme is a method to
assign a secret key and some private information to each class in the hierarchy.
The private information will be used by each class to compute the keys assigned
to all classes lower down in the hierarchy. This assignment is carried out by the
TA. Formally:

Definition 1 [20]. Let Γ be a family of graphs corresponding to partially ordered
hierarchies. A HKAS for Γ is a pair (Gen,Der) of algorithms satisfying the
following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time.
It takes as input the security parameter 1τ and a graph G = (V,E) in Γ , and
produces as outputs
– a private information su, for any class u ∈ V ;
– a key ku, for any class u ∈ V ;
– a public information pub.

We denote by (s, k, pub) the output of the algorithm Gen, where s and k
denote the sequences of private information and of keys, respectively.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes
as input the security parameter 1τ , a graph G = (V,E) in Γ , two classes u, v
in V , the private information su assigned to class u and the public information
pub, and produces as output the key kv assigned to class v if v � u, or a special
rejection symbol ⊥ otherwise.
We require that for each class u ∈ V , each class v � u, each private informa-
tion su, each key kv, each public information pub which can be computed by
Gen on inputs 1τ and G, it holds that Der(1τ , G, u, v, su, pub) = kv.

Security Notions. Atallah et al. [5] first introduced two different security
goals for HKASs: security with respect to key indistinguishability and security
against key recovery. In this paper, we only consider the stronger notion of key
indistinguishability [5,6].

STATu is a static adversary who wants to attack a class u ∈ V and who is
able to corrupt all users not entitled to compute the key of class u. Algorithm
Corruptu which, on input the private information s generated by the algorithm
Gen, extracts the secret values sv associated to each class that the adversary is
able to corrupt. In the indistinguishability game, the adversary must distinguish
the key of class u from a random value.

Definition 2 [IND-ST]. Let Γ be a family of graphs corresponding to partially
ordered hierarchies, let G = (V,E) be a graph in Γ , let (Gen,Der) be a HKAS
for Γ and let STATu be a static adversary who attacks a class u. Consider the
following two experiments:
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Experiment ExpIND−1
STATu

(1τ , G) Experiment ExpIND−0
STATu

(1τ , G)
(s, k, pub) ← Gen(1τ , G) (s, k, pub) ← Gen(1τ , G)
corr ← Corruptu(s) corr ← Corruptu(s)

d ← STATu(1τ , G, pub, corr, ku) ρ ← {0, 1}length(ku)

return d d ← STATu(1τ , G, pub, corr, ρ)
return d

The advantage of STATu is defined as AdvIND
STATu(1τ , G) = |Pr[ExpIND−1

STATu
(1τ , G) =

1] − Pr[ExpIND−0
STATu

(1τ , G) = 1]|. The scheme is secure in the sense of IND-ST if, for
each graph G = (V,E) in Γ and each u ∈ V , the function AdvIND

STATu
(1τ , G) is

negligible, for each adversary STATu with time complexity polynomial in τ2.

2.2 Message-Locked Encryption

An Message-Locked Encryption (MLE) is a symmetric encryption scheme in
which the key is itself derived from the message. Provably-secure MLE schemes
have been first proposed by Bellare et al. in [8].

Definition 3 [1]. A MLE scheme is a tuple (PPGen,KD, Enc,Dec, V alid)3

of algorithms satisfying the following conditions:

1. The parameter generation algorithm PPGen on input 1τ returns a public
parameter pp.

2. The key derivation function KD takes as input the message m in the message
space M and pp and produces as output message-derived key km.

3. The encryption algorithm Enc takes as input pp, the key km, and the message
m in M, and produces as output the ciphertext c.

4. The decryption algorithm Dec takes as input pp, the key km and the ciphertext
c and produces as output the message m or ⊥.

5. The validity-test V alid takes as input public parameters pp and a ciphertext
c and outputs 1 if the ciphertext c is a valid ciphertext, and 0 otherwise.

Security Notions. The definitions below make use of some parameters that are
functions of the security parameter. Specifically, k = k(τ) denoting min-entropy
requirements over message sources, and T = T (τ) representing the number of
blocks in the message.

Entropy. The min-entropy of a random variable X is defined as H∞(X) =−log
(maxx Pr[X = x]). In other words, H∞(X)= k, if maxxPr[X = x] = 2−k. A
k-source is a random variable X with H∞(X) ≥ k. A (k1, . . . , kT )-source is a
random variable X = (X1, . . . , XT ) where each Xi is a ki -source. A (T, k)-
source is a random variable X = (X1, . . . , XT ) where, for each i = 1, . . . , T , it
holds that Xi is a k-source. Next, we recall the definitions of real-or-random
encryption oracle, polynomial-size X-source adversary, and, for schemes that
rely on random oracles, q-query X-source adversary.
2 In [6] it has been proven that security against adaptive adversaries is (polynomially)

equivalent to security against static adversaries.
3 MLE definition also includes an equality algorithm. We omit it since it is not neces-

sary for our goals.
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Definition 4 [1]. Real or Random encryption oracle. The real-or-random
encryption oracle, RoR, takes as input triplets of the form (mode, pp,M), where
mode ∈ {real, rand}, pp denotes public parameters, and M is a polynomial
size circuit representing a joint distribution over T messages. If mode = real
then the oracle samples (m1, . . . ,mT ) ← M, and if mode = rand then the oracle
samples uniform and independent messages (m1, . . . ,mT ) ← M. Next, for each
i = 1, . . . , T , it samples ki ← KD(pp,mi), computes ci ← Enc(pp, ki,mi) and
outputs the ciphertext vector (c1, . . . , cT ).

Definition 5 [1]. Poly-sampling complexity adversary. Let A be a proba-
bilistic polynomial-time algorithm that is given as input a pair (1τ , pp) and oracle
access to (1τ , pp) for some mode ∈ {real, rand}. Then, A is a polynomial-size
(T, k)-source adversary if for each of A’s RoR-queries M it holds that M is an
(T, k)-source that is samplable by a circuit of (an arbitrary) polynomial size in
the security parameter.

Definition 6 [1]. PRV-CDA2 security4. An MLE scheme Π = (PPGen,
KD, Enc,Dec,EQ, V alid) is (T, k)-source PRV-CDA2 secure, if for any proba-
bilistic polynomial-time polynomial-size (T, k)-source adversary A, there exists a
negligible function ε(τ) such that the advantage of A is defined as

AdvPRV−CDA2
A (1τ ) = |Pr[Expreal

A (1τ ) = 1] − Pr[Exprand
A (1τ ) = 1]| ≤ ε(τ)

where for each mode ∈ {real, rand} the experiment Expmode
A (τ) is defined in the

following game:

Experiment ExpPRV−CDA2
A

pp ← PPGen(1τ )

return ARoR(mode,pp,·)(1τ , pp)

3 Verifiable Hierarchical Key Assignment Schemes

In this section, we introduce a novel cryptographic primitive that we call Verifi-
able Hierarchical Key Assignment Scheme (VHKAS). A VHKAS is a hierarchical
key assignment scheme equipped with a verification procedure that allows honest
users to check whether the public information has been maliciously changed.

A VHKAS for a family Γ of graphs, corresponding to partially ordered hier-
archies, is defined as follows:

Definition 7. A VHKAS is a triple (Gen, Der, V er) of algorithms satisfying
the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time
defined as in Definition 1.

2. The key derivation algorithm Der is deterministic polynomial-time defined
as in Definition 1.

4 Notice that PRV-CDA2 notion enables adversaries to query the oracle with message
distributions that depend on the public parameters pp.



Verifiable Hierarchical Key Assignment Schemes 363

3. The verification algorithm V er is deterministic polynomial-time. It takes as
input the security parameter 1τ , a graph G = (V,E) in Γ , a class u in V , the
private information su, a public information pub and it outputs 1 if for each
class v ∈ V such that v � u, Der(1τ , G, u, v, su, pub) return a valid key for
the class v, 0 otherwise.

Security Notions. In order to capture a notion of security against an adver-
sary who has the ability to replace or modify the public information so as to
mislead an honest user into deriving an incorrect key, we introduce the notion
of Strong Key-Consistency (Strong-KC). Specifically, an adversary SSTAT is able
to generate the secret information s, the set of keys k, and two different public
values pub and pub′ in such a way that, given a class u, the key of some class
v � u derived by a user in class u according to pub differs from that derived
according to pub′ while the verification procedure succeeds in both cases. This
notion models the fact that even the TA is not able to maliciously modify public
information once private information has been distributed.

Now, we formally define the notion of Strong-KC:

Definition 8 [Strong-KC]. Let Γ be a family of graphs corresponding to par-
tially ordered hierarchies, let G = (V,E) be a graph in Γ , let (Gen,Der, V er) be
a VHKAS for Γ and let SSTAT be an adversary. Consider the following experi-
ment:

Experiment ExpStrong−KC
SSTAT (1τ , G)

(s, k, pub, pub′, u) ← SSTAT(1τ , G)
if (V er(1τ , G, u, su, pub) = 0 ∨ V er(1τ , G, u, su, pub′) = 0) return 0
for each v � u

if (Der(1τ , G, u, v, su, pub) �= Der(1τ , G, u, v, su, pub′))
return 1

return 0

The advantage of SSTAT is defined as AdvStrong−KC
SSTAT (1τ ) = |Pr[ExpStrong−KC

SSTAT

(1τ ) = 1]|. The scheme is Strong-KCsecure if, the function AdvStrong−KC
SSTAT (1τ ) is

negligible, for each adversary SSTAT whose time complexity is polynomial in τ .

Remark 1. To help understand the extra feature provided by a VHKAS over an
HKAS, in the following we consider the Encryption-Based Construction (EBC)
proposed in [20] and show an example of how an attacker who manages to modify
the public values is able to induce honest users to derive an incorrect key. In the
EBC every class u is assigned a private information su, a secret key ku, and a
public information π(u, u), which is the encryption of the key ku with the private
information su; furthermore, for each edge (u, v), there is a public value p(u, v),
which allows class u to compute the private information sv held by class v.
Indeed, p(u, v) consists of encrypting the private information sv with the private
information su. This allows any user of a class u to compute the key kv held by
any class v lower down in the hierarchy.

The public value π(u, u) can be considered as being associated with an addi-
tional edge connecting the class u to a dummy class u′. The Fig. 1 illustrates
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Fig. 1. A chain of length 3 along with the public information generated by the EBC.

a chain of length t = 3 together with the public information associated by the
EBC with the edges of the chain, as well as that associated with the additional
edges, which are represented by dashed lines.

A malicious user belonging to the class u2 who manages to modify the public
value π(u2, u2) is able to induce honest users of u2 and u1 to derive a secret key
k of his choice instead of the real key ku2 associated with the class u2. Indeed,
such a malicious user, as part of the class u2, holds the private information su2

and can use it to compute the value Encsu2
(k) which can then be substituted

for the public value π(u2, u2) associated with the edge (u2, u
′
2).

Note that even if the TA digitally signs the public values, the EBC construc-
tion does not achieve the notion of Strong-KC. Indeed, the adversary could reuse
old public values and induce honest users to derive old keys. Furthermore, digi-
tally signing public values does not prevent scenarios where the TA is involved
in maliciously modifying public information.

A VHKAS will be able to withstand such attacks because public and private
information will be crafted in such a way that any malicious changes to public
values will be identified through the verification procedure.

4 An MLE-Based Construction

In this section, we present a VHKAS which uses as a building block an MLE
scheme. The scheme assumes that the partially ordered hierarchy has been par-
titioned into chains (i.e. totally ordered sets) [13,22]. This gives a method of
constructing a HKAS, represented by a directed acyclic graph G = (V,E), from
a HKAS for a simple chain by partitioning the poset into chains. This approach
has the nice property that the amount of private storage needed per class, is
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Fig. 2. The MLE-based Construction.
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bounded by the width of the poset5. Thus, in the following we will only consider
a family Γ of graphs corresponding to chains. Figure 2 shows the MLE-based
construction for a chain of t classes u1, . . . , ut. In order to simplify the presenta-
tion, we consider a dummy class ut+1. This will enable us to consider all public
information as values associated to the edges of a chain.

Fig. 3. Public information generated by the MLE-based construction for a chain of
length t = 3.

The public information, associated to the edges of the chain, is used to
store the secret keys in an encrypted form. Indeed, for each i = 1, . . . , t,
kui

← F(πui
, rui

) can be obtained by retrieving πui
and rui

, respectively from
p(ui−1,ui) and p(ui,ui+1). Figure 3 illustrates the public information computed by
the scheme for a chain of length t = 3. The verification procedure allows to
check whether a honest user is able to derive valid keys. Specifically, in the
MLE-based construction a honest user in some class ui will derive valid keys
kuj

= Der(1τ , G, ui, uj , sui
, pub), if for each j = i, . . . , t, the public information

p(uj ,uj+1) stores a value x such that πuj
= KD(pp, x). Intuitively, any changes

to public values will be detected since KD is collision resistant. For example,
if a malicious user belonging to class u1 (see Fig. 3) changes p(u1, u2) in such a
way that honest users in u1 derive a value π′

u2
�= πu2 , the verification procedure

fails since KD(pp, π′
u2

||ru1) is different from πu1 .

5 The width is the cardinality of the largest antichain in V . A ⊆ V is an antichain in
V if for all u, v ∈ A, where u �= v, we have v � u and u � v.
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4.1 Analysis of the Scheme

In this section we show that the security of the MLE-based construction depends
upon the security properties of the underlying MLE scheme.

We first show that the MLE-based construction is secure in the sense of
IND-ST.

Theorem 1. Let Π = (PPGen,KD,Enc,Dec, V alid) be a (T, μ)-source
PRV-CDA2 secure MLE scheme where μ = ω(log τ) and let F : {0, 1}τ ×{0, 1}τ →
{0, 1}τ be a PRF. The MLE-based VHKAS of Fig. 2 is secure in the sense of
IND-ST.

Proof. Let STATu be a static adversary attacking class u. Let V = {u1, . . . , ut}
and (ui, ui+1) ∈ E, for i = 1, . . . , t − 1, and, w.l.o.g., let u = uj for some
1 ≤ j < t. In order to prove the theorem, we need to show that the adversary’s
views in experiments ExpIND−1

STATu
and ExpIND−0

STATu
are indistinguishable. Notice that

the only difference between ExpIND−1
STATu

and ExpIND−0
STATu

is the last input of STATu,
which corresponds to the key ku in the former experiment and to a random value
in the latter. Thus, while in ExpIND−1

STATu
the public information is related to the

last input of STATu, in ExpIND−0
STATu

it is completely independent on such a value.
We construct a sequence of 4 experiments Exp1

u, . . . ,Exp4
u, all defined over

the same probability space, where the first and the last experiments of the
sequence correspond to ExpIND−1

STATu
and ExpIND−0

STATu
, respectively. In each experi-

ment we modify the way the view of STATu is computed, while maintaining the
view’s distributions indistinguishable among any two consecutive experiments.
For any q ∈ {2, 3}, experiment Expq

u is defined as follows:

Experiment Expq
u(1τ , G)

(s, k, pubq) ← Genq(1τ , G)
corr ← Corruptu(s)
return STATu(1τ , G, pubq, corr, αu)

The algorithm Genq used in Expq
u(1τ , G) differs from Gen for the way part

of the public information pubq is computed. Indeed, for any i = 1, . . . , j, the
public values associated to the edge (ui, ui+1) is computed as the encryption
Enc(pp, πi, γui+1 ||rui

) where γui+1 and rui
are random values in {0, 1}τ and

πi ← KD(pp, γui+1 ||rui
). Moreover, Exp2

u(1τ , G) differs from Exp3
u(1τ , G) for

the way αuj
is constructed. Specifically, αuj

← F(γuj
, ruj

) in Exp2
u while αuj

←
{0, 1}τ in Exp3

u.
Now we show that, the adversary’s view in Exp1

u is indistinguishable from
the adversary’s view in Exp2

u. Assume by contradiction that there exists a
polynomial-time adversary A which is able to distinguish between the adversary
STATu’s views in experiments Exp1

u and Exp2
u with non-negligible advantage.

We show how to construct a polynomial-time distinguisher D which uses A to
break the security of the (T, μ)-source PRV-CDA2 MLE scheme.

In particular, the distinguisher D constructs the public values associated to
the edges (ui, ui+1), for i = 1, . . . , j, calling the RoR oracle where M implements
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Fig. 4. Polynomial size circuit M representing a joint distribution over T messages.

the circuit of Fig. 4 with π = πuj+1 and T = j. Notice that M is (T, μ)-source.
Indeed, since rui

is chosen at random by M, it is easy to see that the min-entropy
of mi is at least τ , for each i = 1, . . . , T . Distinguisher D is defined in Fig. 5.

Notice that if mode = real, then STATu’s view is that of Exp1
u(1τ , G) while

when mode = rand, STATu’s view is that of Exp2
u(1τ , G). Therefore, if the algo-

rithm A is able to distinguish between such views with non negligible advantage,
it follows that D is able to break the PRV-CDA2 security of the MLE scheme.

Fig. 5. Distinguishers D and D′.

Now we show that, the adversary’s view in Exp2
u is indistinguishable from

the adversary’s view in Exp3
u. Assume by contradiction that there exists a

polynomial-time algorithm B which is able to distinguish between the adversary
STATu’s views in experiments Exp2

u and Exp3
u with non-negligible advantage.
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We show how to construct a polynomial-time distinguisher D′ which uses B to
distinguish whether its oracle f(·) corresponds to the pseudorandom function
F(k, ·) or to a random function F(·).

Notice that if αuj
corresponds to the evaluation of the pseudorandom func-

tion F(k, ·) on ruj
then STATu’s view is that of Exp2

u(1τ , G) while when it is the
output of a random value, STATu’s view is that of Exp3

u(1τ , G). Therefore, if the
algorithm B is able to distinguish between such views with non negligible advan-
tage, it follows that the distinguisher D′ is able to break the pseudorandomness
of F . Figure 5 defines distinguisher D′.

Fig. 6. Distinguisher D′′.

We finally show that, the adversary’s view in Exp4
u is indistinguishable from

the adversary’s view in Exp3
u.

Assume by contradiction that there exists a polynomial-time algorithm C
which is able to distinguish between the adversary STATu’s views in experiments
Exp4

u and Exp3
u with non-negligible advantage.

Notice that such views differ only for the public values associated to the
edges (ui, ui+1) for i = 1, . . . , j. We show how to construct a polynomial-time
distinguisher D′′ which uses C to break the PRV-CDA2 security of the MLE
scheme. In particular, the algorithm D′′, on input 1τ , constructs the public
values associated to the edges (ui, ui+1), for i = 1, . . . , j, calling the RoR oracle
where M implements the circuit of Fig. 4 with π = πuj+1 and T = j.

Formally, distinguisher D′′ is defined in Fig. 6. Notice that if mode = real,
then STATu’s view is that of Exp4

u while when mode = rand, STATu’s view is that
of Exp3

u.
Thus, if C distinguishes such views with non negligible advantage, it follows

that algorithm D′′ breaks the PRV-CDA2 security of the MLE scheme. 
�
We now show that the MLE-based construction is secure in the sense of

Strong-KC.
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Theorem 2. Let Π = (PPGen,KD,Enc,Dec, V alid) be an MLE scheme
whose key derivation function KD is collision-resistant. The MLE-based VHKAS
of Fig. 2 is secure in the sense of Strong-KC.

Sketch of the Proof. Let V = {u1, . . . , ut} and (ui, ui+1) ∈ E, for i = 1, . . . , t−
1. We show by contradiction that if there exists a static adversary SSTAT whose
advantage AdvStrong−KC

SSTAT is non-negligible, then there exists a PPT adversary A
such that Pr[(x0, x1) ← A(1τ ,KD(pp, ·)) : x0 �= x1∧KD(pp, x0) = KD(pp, x1)]
is non-negligible.

The adversary SSTAT first produces two public values pub and pub′ along with
the private information. Then, it chooses a class u ∈ V such that V er(1τ , G, u,
su, pub) = V er(1τ , G, u, su, pub′) = 1 while there exists a class v ≺ u where
Der(1τ , G, u, v, su, pub) = kv, Der(1τ , G, u, v, su, pub′) = k′

v and kv �= k′
v.

W.l.o.g., let u = ui and v = uj , for some 1 ≤ i < j ≤ t where j is the smallest
index such that kuj

= F(πuj
, ruj

) is different from k′
uj

= F(π′
uj

, r′
uj

).
We distinguish the following two cases:

1. πuj
= π′

uj
and ruj

�= r′
uj

;
2. πuj

�= π′
uj

.

In the following, for each class us we will denote by suz
= (pp, rus

, πus
, kus

)
and su′

z
= (pp, r′

us
, π′

us
, k′

us
), the private information computed by using the

derivation procedure with respect to pub and pub′. Consider the first case. In
order for the verification procedure to succeed on both pub and pub′ it must be
πuj

= KD(pp, πuj+1 ||ruj
) = KD(pp, π′

uj+1
||r′

uj
) where πuj+1 may or may not

be equal to π′
uj+1

. Thus, the adversary A wins his game by exhibiting x0 =
πuj+1 ||ruj

and x1 = π′
uj+1

||r′
uj

.
Now, consider the second case. In order for the verification procedure to

succeed on both pub and pub′ it must be

πui
= KD(pp, πui+1 ||rui

)
= KD(pp,KD(pp, πui+2 ||rui+1)||rui

)
= KD(pp,KD(. . . (KD(pp, πuj

||ruj−1)||ruj−2) . . .)||rui
)

and

πui
= KD(pp, π′

ui+1
||r′

ui
)

= KD(pp,KD(pp, π′
ui+2

||r′
ui+1

)||r′
ui

)

= KD(pp,KD(. . . (KD(pp, π′
uj

||r′
uj−1

)||r′
uj−2

) . . .)||r′
ui

).

Since πuj
is different from π′

uj
and πui

= KD(pp, πui+1 ||rui
) = KD(pp,

π′
ui+1

||r′
ui

) it holds that KD is not collision resistant, thus if SSTAT wins
his game with non-negligible probability also A succeeds with overwhelming
probability. 
�
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4.2 A Concrete Instance

In Fig. 7 we instantiate the scheme of Fig. 8 with the deterministic MLE scheme
Π

(q)
det proposed in [1].

Fig. 7. An instance of the MLE-based Construction.

Π
(q)
det uses as a building block a symmetric-key encryption scheme SE =

(K, E ,D) and two hash functions H1 : {0, 1}∗ → {0, 1}τ and H2 : {0, 1}∗ →
{0, 1}ρ with randomness length ρ. If SE is an IND-CPA secure scheme and H1

and H2 are modeled as random oracles, then, for any T = poly(τ) and any
k = ω(logτ), Π

(q)
det is q-query (T, k)-source PRV-CDA2-secure.
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The scheme Π
(q)
det = (PPGen,KD,Enc,Dec,EQ, V alid) is defined as follows:

– Parameter-generation algorithm: On input 1λ, the algorithm PPGen
chooses two hash functions H1 : {0, 1}∗ → K and H2 : {0, 1}∗ → {0, 1}ρ. It
outputs the public parameters pp = (H1,H2, q).

– Key-derivation function: The algorithm KD takes as input public parame-
ters pp, the message m and outputs the message-derived key km = H1(m||1)⊕
H1(m||2) ⊕ . . . ⊕ H1(m||q + 1) ∈ K.

– Encryption algorithm: The algorithm Enc takes as input public param-
eters pp, a message m, and a message-derived key km. It computes wm =
H2(m||1) ⊕ H2(m||2) ⊕ . . . ⊕ H2(m||q + 1) and outputs Ekm

(m||wm) ∈ C.

– Validity test: The algorithm V alid outputs 1 on any input c ∈ C.

– Decryption algorithm: Dec takes as input public parameters pp, a cipher-
text c, and a message-derived key km and outputs m ← Dkm

(c).

– Equality algorithm: Algorithm EQ on input public parameters pp and
ciphertexts c1 and c2 outputs 1 if and only if c1 = c2.

From the PRV-CDA2 security of Π
(q)
det the instance of Fig. 7 is secure in the

random oracle model.

5 Handling Key Replacement

Cryptographic keys need to be periodically changed. Thus, a key assignment
scheme should feature an efficient procedure for the TA to handle key replace-
ments.

A VHKAS which handles key replacement is a tuple (Gen,Der, V er,
KReplace), where (Gen,Der, V er) is defined in Definition 7 and algorithm
KReplace satisfies the following conditions:

– The key replacement algorithm KReplace is probabilistic polynomial-time.
It takes as input 1τ and a graph G = (V,E) in Γ , a class u, the secret
information s, the public information pub and produces as output (s, k, pub).

A key replacement procedure may require both public information and private
values to be changed. Ideally, such a procedure will only change public infor-
mation so that private values are not redistributed. In general, it is desirable to
design the key replacement algorithm to modify as few private values as possible.
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Fig. 8. MLE-based construction with key replacement.

Figure 8 shows how the TA can handle the replacement of a key ku for a class
u in the MLE-based construction of Fig. 2. In such a procedure only the classes
higher than u in the chain are affected by the change.

In Fig. 9 we describe the key replacement procedure when the MLE-based
construction is instantiated with the deterministic MLE scheme Π

(q)
det proposed

in [1].

Fig. 9. The key replacement procedure for the instance of Fig. 7.

6 Comparisons with Hierarchical Key Assignment
Schemes

We evaluate the performance of our construction by comparing it with that of
popular IND-ST HKAS from the literature having the feature that the public
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information is used to store encryption keys. The comparison shows that the
performance of our construction is similar to that of such schemes despite the
fact that it also achieves the notion of Strong-KC.

Figure 10 shows the comparison. The summary takes into account several
parameters, such as the size of the public and private information, the number
and the type of operations required by a class u ∈ V to compute the key of a
class v lower down in the hierarchy. Moreover, it specifies the notions of security
achieved. In Fig. 10, τ and τ1 correspond respectively to the size of the secret
key in symmetric encryption based constructions and in schemes obtained from
factoring6. The value c is a constant depending on the underlying encryption
scheme. For instance c is equal to 2 for the so called XOR construction in [7].
Notice that, to describe the parameters of the MLE-based construction we refer
to the concrete instance described in Sect. 4.2 where the MLE considered uses
as a building block a symmetric encryption scheme. Finally, w represents the
width of the poset which corresponds to the number of chains in the partition.

Fig. 10. Comparisons with Hierarchical Key Assignment Schemes.

In [18], De Capitani di Vimercati et al. proposed a data-outsourcing archi-
tecture which employs the HKAS in [5] for representing an authorization policy
trough an equivalent encryption policy. The positive results provided by the
experimental analysis performed in [18], are encouraging in order to evaluate
the feasibility of our approach. Indeed, as shown above the performance of our
MLE-based construction in terms of space required to store public information
and key derivation operations are similar to that exhibited by the HKAS in [5].
Only, the users need to manage a bigger number of secrets. Also, the verification
procedure should not add significant overhead, indeed, it consists of comput-
ing the value of a collision resistant function (step 3(c) of the Ver Algorithm of
Fig. 2) at each step of derivation beside the decryption operation (step 3(b) of
Der Algorithm of Fig. 2).

6 1024-bit, 2048-bit, 3072-bit RSA keys are equivalent in strength to respectively, 80-
bit, 112-bit, 128-bit symmetric keys.
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7 Conclusions

In this paper we have introduced Verifiable HKAS and have designed it using
an MLE scheme as a building block. The security properties of our construc-
tion depends on those of the underlying MLE scheme. The concrete instance
described in Sect. 4.2 achieves the notions IND-ST and Strong-KC in the random
oracle model. Our proposal also manages with the replacement of compromised
encryption keys by making a limited number of changes to public and private
information. We leave as an interesting open problem that of building VHKAS
secure in the standard model. Our solution produces a scheme which belongs
to the family of IKEKAS, it would also be interesting to consider other HKAS
families identified in [15] to construct VHKAS and study their performance.
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Abstract. In this paper,we propose an attribute-based access controlmodel called
ABAC–TG for online social networks (OSNs). This model comprehensively con-
siders user and object attributes and two main social attributes: trust and gossip,
which are calculated based on the Ego-node (the user sharing the information)
point of view. Each user is evaluated trust and gossip wise by several criteria, such
as total number of friends, number of interactions between two users, and more. A
new algorithm for calculating user gossiping value by graph clustering is defined,
and this gossiping value can also be used for trust calculation. The ABACmodel is
formally presented, including rules and attribute definitions, and is demonstrated
by several use case scenarios. The gossip and trust assessments provide more
accurate and viable information-sharing decisions that serve the purpose of more
precise and flexible authorizations.

This work is novel in two respects. First, we are using trust and gossip as
dynamic attribute calculations. And second, we present a new algorithm for cal-
culating the user’s gossip value from the ego user point of view and use it either as
part of the trust attribute calculation or as a separate attribute in the ABACmodel.

Keywords: Attribute based access control (ABAC) · Gossip · Trust · Online
social networks

1 Introduction

As online social networks (OSNs) increase in size and more people use them as their
primary Internet website, the volume of information shared in OSNs keeps on growing.

The public accessibility of such networks with the ability to share opinions, thoughts,
information, and experience offers great promise to people and communities. In addition
to individuals using such networks to connect to their friends and families, governments
and enterprises have started exploiting these platforms for delivering their services to
citizens and customers [4]. Because of the sensitive and private information that is
commonly stored in these networks, controlling access to this information is becoming
very important and that depends largely on the level of trust that members have with each
other. Several access control models for OSN based on trust have recently appeared [4,
5, 11, 14], but none of them uses the attribute of gossiping as a significant factor in the
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access control model. Zhang et al. [1] present an attribute-based access control (ABAC)
model for OSN, but does not use either Trust nor Gossiping attributes. Since gossip is
one of the oldest and most common means of information sharing among people, we
consider it also very important for influencing access control.

This paper aims to demonstrate a new ABACmodel called ABAC–TG, for an online
social network, which combines privacy, trust, and a gossip model.

The general idea is to use the ABAC model with additional complex attributes such
as user trust and gossip, calculated by clustering. The gossip attribute may be used as
part of the trust calculation or as a separate attribute in an ABAC rule. The user selects
attributes and defines rules for defining the access for a specific object. This model is
extensible by adding additional dynamic attributes. The examples demonstrating the
model use actions provided by a Facebook like network but are not limited to it.

This new model has three significant advantages: First, the model calculation is
dynamic - the trust is calculated based on user selection and network parameters, and
the gossip is dependent on specific network interactions.

The second is flexibility and scalability – we can add or remove attributes and decide
on threshold values for trust and gossip calculations. The third is simplicity – the userwill
choose simple attributes and define the access to his objects in terms of these attributes.
Thus, our model provides a solution to one of the most significant social network prob-
lems, the control and prevention of the spread of sensitive private information in the
network.

The rest of this paper is structured as follows: Sect. 2 provides background informa-
tion and an overview of related work. Sections 3 and 4 describe the new ABAC model,
where Sect. 3 describes the model, trust, and gossip attributes calculations, and Sect. 4
discusses the rules and attributes used in detail and presents several use-cases of using
the model. The last section presents the relevant conclusions and discusses future work.

2 Background and Related Work

As mentioned earlier, this paper’s main goal is to propose a new ABAC model called
ABAC–TG, which combines privacy, trust, and gossip attributes. In this section, the
relevant background is provided.

An ABAC model relies upon evaluating attributes of the subject, attributes of the
object, environment conditions, and the formal relationship or access control rule or
policy defining the allowable operations for subject-object attribute combinations. All
ABAC solutions contain these basic core capabilities to evaluate attributes and enforce
rules or relationships between those attributes [1]. Examples of such rules for a social
network are presented in this paper in Sect. 4.3.

The access control model in Facebook is based on roles. It does a reasonable job
of access control while handling millions of operations/seconds from its billion users.
The mechanism of Facebook is a function of communication history among users (for
instance, the existence of friendship is necessary for certain policies), however even
though it’s a quite simple model, users often do not use it properly. An analysis of
Facebook access control model and its privacy problems has recently appeared in [2, 8,
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11]. However, Facebook access control does not use trust or gossip and lacks reliance
on users’ specific attributes and objects for Access control.

Recently, a trust-based model for a social network called RTBAC was presented in
[5]. The RTBAC model is a combination of User-Trust attributes, based on real OSN
characteristics, within an RBAC model that usually grants permissions solely to roles.

The trust value is defined on a scale of 0 to 1 since the decision of sharing information
with a certain user is defined as a probability variable, 0 being no sharing willingness
at all, 1 being definite sharing willingness. The trust model is based on several criteria
such as quality of Friendship, connection strength, and users’ similarity. We will use this
model in our new ABAC-TG model to calculate the trust value described in Sect. 3.3.
Another relevant work [14] describes the way trust can be used to identify adversaries
and limit information flow to them.

The fast spreadof information is a commonandessential feature of social networks.A
simple model of diffusion shows how bounded rational individuals can, just by tracking
gossip about people, identify those who are most central in a network according to
“diffusion centrality.” [7, 9]. Gossip can essentially be defined as information passed
from one individual (originator) to another (gossiper) about an absent third individual
[13].

In [6], an algorithm is given for provably finding the clusters, provided there is a
sufficiently large gap between internal density and external sparsity. This clustering is
used to build knots of trust between users in [12]. Knots of trust are groups of community
members having overall “strong” trust relations between them. In order to provide a
member with reputation information relative to her viewpoint, the system must identify
the knot to which that member belongs and interpret its reputation data correctly. Such
clustering can be used to identify and measure the amount of “gossipness” of users and
groups of users since users tend to gossip with other users they trust on. We’ll use this
clustering to define a “gossipness” measure in our proposed ABAC model.

The most relevant article to this work is by Zhang et al. [10]. They present an ABAC
model for social networks with many examples for rules involving various attributes.
Ourmodel is similar but more general than [10] since it explicitly includes two important
new attributes: Trust and Gossiping attributes. Our model is dynamic and extensible and
can be used for any online social network.

3 A New ABAC Model with Trust and Gossip for Online Social
Network

This section presents the main theme of this paper. The aim is to define a new ABAC
model for online social networks (for instance, Facebook, Twitter, etc.) and to incorporate
user trust calculation and gossip calculation in the ABAC model.

3.1 Establishment of ABAC-TG Model for Online Social Network

Today, Facebook, the world’s most popular social network, uses the RBAC model to
manage user roles on a specific object or action [2]. Our new ABAC-TG model will
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replace the RBAC model. The key difference with ABAC is the concept of policies that
express a complex Boolean rule set that can evaluate many different attributes [1].

In the ABAC-TG model, the user will choose attributes from a predefined list and
define rules. For instance, the user doesn’t want the specific objectA to be visible to users
who are mostly gossiping; or the user doesn’t want the particular objectA to be visible
to teenagers or to users who have low trust value.

Relevant attributes may be: a number of friends, age, education, job title, work,
family status, friends type (e.g., in comparing to ego user’s age, education, work, city,
etc.), action types (e.g., comment to friends with the same age, work, city), and attributes
of the objects themselves. More attributes will be described in Chapter 4.

Figure 1 demonstrates the access decision-making of the ABAC-TGmodel. For each
object, the model checks if the object has roles restrictions, if yes, the model checks if
the user has fitting attributes and grants access accordingly.

Fig. 1. Access decision in the ABAC-TG model

The new ABAC model includes user trust and user gossiping. Therefore we define
two new attributes: GossipingAtt and TrustAtt.

GossipingAtt – this attribute describes the gossiping level of the user. The value
will be calculated using a network-directed graph containing the interactions (messages,
likes, comments, shares, etc.) between the user to other users, applying the clustering
algorithm, and deciding if the user is gossiping. The gossiping value is on a scale of 0 to
1, where 0 means a total gossiping user, and 1 means not gossiping at all. The gossiping
algorithm is described in Sect. 3.4.

TrustAtt – this attribute describes the social trust level of the user. The value is
calculated by the model presented in [5]. The trust calculation is described in Sect. 3.3.
Note that in [5] the main goal is to compute the user’s trust, which is the base for access
control, while in our model, trust is just one attribute among several attributes of the
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ABAC model. Besides, we can adjust the trust calculation by using the GossipingAtt
attribute. In case that the user chooses TrustAtt and GossipAtt in the rules, we do not
use them twice in the trust model calculation.

Therefore, our model is dynamic due to the dependency on the user selection in
calculating trust and ABAC attributes that may change in time. This capability defines
a new perspective on the trust model from [5] with the new GossipingAtt and user
selection, which affects the trust calculation.

3.2 Dynamic ABAC-TG Model

The decision algorithm of ABAC-TG is the same as the original ABAC model, by
evaluating different attribute conditions and getting a Boolean value as a result for
“allow access” or “deny access” (see Fig. 1).

If the user chooses the TrustAtt and an attribute1 that is already part of the trust
formula, we have two options: first is to adjust the trust formula and remove attribute1
in order not to use it twice. The second is not to change the trust formula and let the
user influence the weight of the attributes. In this paper, we choose the first option by
removing it from the trust formula and use it in the ABAC rules.

For example, if the user defines a rule of – “I want that only my trusted friends (0.8)
and my non-gossiping friends (0.8) will be able to see my image1”. In this case, we’ll
adjust the trust formula and remove the gossiping parameter and use it only once in the
rule. As a result, the user affects the trust value as a dynamic trust value and changes the
gossiping value’s weight as a more effective attribute (due to the 50% of the rule and
not just a small part in the trust value). This use case is demonstrated in Sect. 4.3 on use
case 3.

3.3 Trust Calculation

In our ABAC-TG model, we’re using the trust attribute (denotes as TrustAtt) as yet
another attribute. In order to calculate the TrustAtt value, we’ll use the formula described
in [5], with an extension to include the new friendship characteristic of gossiping value.
The original formula from [5] to compute the user trust value (denotes as UTV) is shown
in Fig. 2.

The different factors and their corresponding weights are explained in detail in [5]:
taken into consideration user credibility factors (knowledge factors such as the total
number of friends) denotes as u, and connection-based factors (friendship characteristics
such as mutual friends) denotes as c. In order to add the gossiping value into the formula
we just add another factor and its corresponding weight, such that the total sum of
weights (denotes as w) is still 1.

The gossiping value will affect the trust value in the samemanner of every friendship
characteristic. The gossiping value calculation is described in Sect. 3.4, and the value is
the probability from a scale of 0 to 1, 0 mainly being gossiping, 1 being not gossiping
at all.

The trust value is also expressed on a scale of 0 to 1, 0 being no sharing willingness
at all, 1 being definite sharing willingness.
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Fig. 2. The formula from [5] to calculate the trustAtt value. User Trust Value (UTV) is calculated
as the weighted average of user credibility and connection strength. The weight is set according
to the relative number of attributes in each category.

For example, in Table 1, we have two users: UserA and UserB, which are friends of
Alice.Alice gave themdifferent scores regardingwhat she thinks, based on her friendship
experience. In this case, UserA and UserB have different gossiping values that affect the
calculated trust value.

Table 1. An example of trust value including gossiping attribute

Username Knowledge
value (u)

GossipingAtt Friendship
value (c)

TrustAtt
(UTV)

Result

UserA 0.51 0.23 0.35 0.43 The trust value is
lower with a
gossiping user

UserB 0.77 0.98 0.92 0.845 The trust value is
higher with
non-gossiping
user

3.4 Gossiping Calculation

This section defines the algorithm for calculating the gossiping value for users in a social
network. The gossiping attribute’s goal is to identify a set of friends who would leak the
shared information to an adversary. The gossiping value is the probability from a scale
of 0 to 1, 0 being mostly gossiping, 1 being not gossiping at all.

The GossipAtt is calculated by taking into consideration connection-based factors:
the number of human interactions between two users. The gossiping calculation is in
the context of an Ego user perspective (the user sharing the information) to his friends
and not general to the whole network. For example, from Alice’s perspective, Bob’s
gossiping value is 0.8, but from David’s perspective, it’s 0.2, which leads to that Alice
will share more information with Bob than David will share with Bob.
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We assume, for this paper, that gossip serves to strengthen the relationship between
gossipers andweakens the relationship between the victim and each gossiper [13]. There-
fore, the friends with which the Ego user has fewer interactions will have the potential to
gossip about him. Thus, in our algorithm, we focus on gossiping friends and exclude the
“Ego’s best friends” from the graph. We define “best friends” as users who have more
than R interactions with each other. For example, a relationship of 100 interactions and
above is with a high probability of being a best friend.

In our model, we consider only two levels of ego user’s friends and friends of friends,
for three reasons: the first reason is to have a comprehensive perspective on user’s
interactions and an extensive network graph. The second reason is to enable the ego
user to share his post object with a wide enough forum (but not to a huge subnetwork)
and limit it to non-gossiping users. The third reason is to restrict the network size to a
reasonable amount of nodes to achieve better running time.

To compute the gossiping value, we use graph clustering based on the logic described
in [6, 12]. A knot [12] is a subset of community members identified as having overall
strong interaction relations. Two members i and j should belong to the same knot if i has
high direct interaction in j denoted I_M (i, j). Knots are groups of members with strong
interactions, sharing the same gossiping value from the Ego user perspective. Ego is an
individual focal node, which is the specific user from which we consider the gossiping
flow. It is, therefore, plausible that the gossiping of the same user may differ significantly
between different Ego users.

A community is modeled as a directed graph G = (V, E) that describes a social
network, where V is the set of network’s users, and E is the set of directed and weighted
edges representing the users’ interactions. The weight on a directed edge from vertex i
to vertex j is the level of direct interactions i has in j at time t and is denoted by I_Mt(i,
j). Since we deal with the state of the graph at time period t, we omit the time indicator
for simplicity. An edge (ui,uj) ∈ E exists only if ui has interactions with uj.

We refer to the task of identifying knots as graph clustering. In a social networking
graph, these clusters could represent users with similar interactions. More specifically,
we aim tofind a partition of the community graph based on the direct interactions between
pairs of members. For this purpose, we replace the interaction relations between any two
members I_M(i, j) and I_M(j,i) with a weaker relation named Mutual Interactions in
Member (MIM) which is the minimum of the above two values, that is, the two directed
edges (i, j) and (j,i), are replaced by a single, undirected edge whose weight is MIM(i,
j) = MIM(j,i) = min{IM(i, j),I M(j,i)}.

This way, we can use the edge relation as the input for the clustering algorithm,which
must decide if its two end-vertices should reside in the same cluster or not. Intuitively,
the new relation is more stringent because it considers the minimum level of mutual
interactions between any two members as the representing value of gossiping between
them.

Gossip Algorithms:
Algorithm 1.Calculates the gossiping value for Ego user’s friends. The algorithm returns
a map of clusters and their gossip value.
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Algorithm 1. CalcGossipGraph(G, ue) 
Input: G = (V, E) an undirected graph that describes the social network of Ego’s user,
which vertices represent users and edges represent the interactions relations between 
the users at their end-point vertices

ue the ego user.
Output: M: a map of clusters and their gossip value.
 1: R = 100
 2: for each ego’s direct friends ui do
 3:  if the MIM (ue, ui) >= R then
 4: Remove ui from graph G.
 5: Add ui to cluster “best friends” and set in the map M with gossipValue equal 

to 1.
 6: end if
 7: end for
 8: Remove ue from graph G 
 9: Create clusters based on the graph G.
10: for each cluster C do

 11: set gossipValue = min {Sum of MIM in C / (number of vertices in C * r), 1}.
 12: end for
 13: Return M as map of clusters and gossipValues. 

In Algorithm 1, we defined Ego’s best friends as friends which MIM bigger than
100 interactions, denotes as R, (a parameter which obviously can be changed), as gossip
serves to strengthen the relationship between gossipers and weakens the relationship
between the victim and each gossiper [13].

Lines 1–8 remove the ego user and his best friends from the graph. Line 9 creates
the clusters based on the algorithm described in [12]. Finally, line 11 sets the gossiping
value of each user to the average MIM in the cluster, normalized by the factor R. An
example for this calculation is shown below.

Algorithm 2. Returns the gossiping value for a specific user from the Ego user
perspective. This algorithm is calls algorithm 1 to calculate the gossiping clusters.

Algorithm 2. GetUserGossipValue(G, ue, ui) 
Input: G = (V,E) an undirected graph that describes the social network of Ego’s user, 
which vertices represent users and edges represent the interactions relations between
the users at their end-point vertices

ue the ego user.  
ui – the user to evaluate the gossip value. 

Output: V: U ui ‘s gossiping value
1: M = CalcGossipGraph (G, ue). 
2: Find ui in M. 
3: V = ui ‘s clustering gossiping value.
4: Return V.
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Table 2 and Fig. 3 that appears below present an example of Algorithm 1, with ten
users: friends and friends of friends of Alice. Based on their interactions, we calculate
the gossiping value of each user from Alice’s perspective. The edges represent the
interactions with the value of MIM.

Users 1,2,3 have more than R interactions with ue and defined as “Ego’s user best
friends” with a gossiping value of 1 (see cluster “best friends” in figure).

Users 4,5 has less than R MIM value, and they are sharing the same cluster1, with
gossiping value of C1 = min {60/(3 * 100), 1} = 0.2.

Users 7,8,10 sharing the same cluster2 with gossiping value of C2 = min {245/(6 *
100), 1} = 0.4.

Users 9,6 sharing the same cluster3 with gossiping value of C3 = min {250/(4 *
100), 1} = 0.62.

Fig. 3. An example of CalcGossipingGraph is described in table2. Nodes 1,2,3 are in cluster “best
friends”, nodes 4,5 are in cluster1, nodes 7,8,10 are in cluster2, and nodes 9 and 6 are in cluster3.

Note that the gossiping value calculation may run once for each ego user and stored
in cache memory. The recalculation of it, which reflects the model dynamics, may be a
parameter that depends on the number of new interactions in the ego user subnetwork,
which the network administrator can set.

4 Formalization and Applications of the ABAC-TG Model

This section describes ABAC-TG model’s formalization by defining user’s attributes,
object’s attributes, and rules. We also represent five main use cases for using this model
in an online social network.

4.1 Definition and Formal Descriptions of ABAC-TG Model Components

We define a rule definition for our ABAC-TGmodel. Our syntax is based on article [10],
but it’s simpler and focuses on trust value, gossiping value, and the dynamic model,
which the user defines.
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Table 2. An example of gossiping calculation for Alice’s friends

Username Is friend of ego user? Is best friends of ego
user?

Part of cluster
#number

GossipingAtt

User1 Yes Yes --- 1

User2 Yes Yes --- 1

User3 Yes Yes --- 1

User4 Yes No 1 0.2

User5 Yes No 1 0.2

User6 No No 3 0.62

User7 No No 2 0.40

User8 No No 2 0.40

User9 No No 3 0.62

User10 No No 2 0.40

Definitions:

Definition 1. (User set, U): User represents the entity that performs social network’s
user accesses. In the social network, the set U contains all users. The users can upload
and access media resources and perform various operations on other users and resources
available in the system.

Definition 2. (Object set, OB): a post entity. The entity includes many items such as
images, texts, videos, comments, etc.

Definition 3. (Actions set, AC): a post action. The actions include different activities
such as display, share, post, like, comment, etc.

Definition 4. (User attribute set, AU): The set AU includes user basic information
attributes, user social relationships attributes, and user community attributes. The user
basic information attributes include name, age, identity, hobbies, and user-level attributes
(as described below in Sect. 4.2).

Definition 5. (Object attribute set, OU): The set OU includes object basic information
attributes. The object’s basic information attributes include attributes such as publish
date time, location, object type, related objects (e.g., comment on an object has a related
object of the original object – post). Image object has corresponding objects of the users
who appear in the image, check-in object has a location type attribute such as restaurant,
work office, etc.).

Definition 6. (Attribute expression set,AE): The setAE includesAUandOUexpressions,
separated by the and (∧) and or (∨) operations. The not sign is allowed by adding ‘!’
before an expression.
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Definition 7. (Basic Rule set, BR): a rule definition in ABAC-TG model as <U, OB,
AC, AE>. If the rule condition is true, the user can access the object. If the rule is false,
the user cannot access the object.

Definition 8. An ABAC-TG instance is a tuple of <U, OB, AC, AE>, which is a com-
bination of user, object, actions, and attributes. Figure 4 describes the ABAC-TG model
and the connections between the various components.

Fig. 4. ABAC-TG model components

4.2 Attributes Definitions

In this section, we define the main attributes that will be used in our ABAC-TG model.
These attributes are examples, and we can add any attribute that is relevant to online
social networks.

Attributes Definitions:

Definition 1. (TrustAtt): this attribute describes the user’s social trust level, calculated
as described in Sect. 3.3.

Definition 2. (GossipingAtt): this attribute describes the user’s gossiping level, calculated
as described in Sect. 3.4.

Definition 3. (AgeLevel): this attribute describes the user’s age level (e.g. level1 is age
10–20, level 2 is age 20–40, level3 is age 40–60, level 4 is 60+).

Definition 4. (Education): this attribute describes the education of the user, for example:
“Bachelor of Science in Computer Science,” “Bachelor of Laws in Law”, etc.

Definition 5. (Job title): this attribute describes the job title of the user, for example:
“development manager”, “software developer”, “product owner”, etc.
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Definition 6. (Work): this attribute describes the workplace of the user, for example:
“Microsoft”, “Google”, “Amazon”, etc.

Definition 7. (Family status): this attribute describes the family status of the user, for
example, single, married, divorced, etc.

Definition 8. (Friends type): this attribute describes the “friends’ type”, for example: in
comparison to a user’s age, education, work, city etc.

Definition 9. (Action types): this attribute describes the “Action types” of the user, for
example, comments to friends with the same age, work, city, etc.

Definition 10. (Gender): this attribute describes the gender of the user: female or male

4.3 Use Cases and Examples

This section demonstrates the expressiveness and usability of the ABAC-TG model. We
design several real-life scenarios and give their corresponding rules in our logic. We can
define additional scenarios as needed as this model is dynamic and extensible.

Use Case 1. The user defines a rule which includes trustAtt and few attributes that are
not part of the trust formula.

Scenario 1. Alice, a student 26 years old, post her locations and events, but she is
suspicious. Therefore, she wants to share with users that she trusts them and at the same
age and same university. The rule for this scenario is as follows:

S1:<R= {Alice}, {obj1}, {display}, {(trustAtt> 0.7)∧ (ageLevel=myAgeLevel)
∧ (education = myEducation)}>.

Table 3 shows an example of two users with different social trust values, which leads
to different access results in scenario1.

Table 3. An example of using scenario 1

Username TrustAtt (including
gossiping value)

GossipingAtt AgeLevelAtt Education Result

UserA 0.6 0.5 27 Harvard U Deny access

UserB 0.8 0.8 28 Harvard U Allow access

Use Case 2. The user defines a rule which includes gossipingAtt, and more attributes.
Scenario 2. Bob, a political man in the United States that doesn’t care who will see his
posts in his country. He wants to get the most likes and comments; therefore, he shares
his post with gossiping users. The rule for this scenario is as follows:

S2: <R = {Bob}, {obj2}, {display, comment, like}, {(gossipingAtt < 0.7) ∧
(friendTypeCountry = mycountry)}>
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Table 4 shows an example of two users with different gossiping values, which leads
to different access results in scenario2.

Table 4. An example of using scenario 2

Username gossipingAtt friendTypeCountry Result

UserA 0.5 USA Allow access

UserB 0.8 USA Deny access

Use Case 3. The user defines a rule which includes trustAtt, gossipingAtt, and more
attributes.

Scenario 3. Carlos, a COO of “FX” high-tech company, doesn’t want to share his
locations (check-in posts and event posts) with untrusted nor gossiping users but to share
with employees who work with him. The rule for this scenario is as follows:

S3: <R = {Carlos}, {obj3}, {display}, {(gossipingLevel > 0.7) ∧ (trustLevel >
0.7) ˆ (friendTypeWork = mywork)}>

Table 5 shows an example of two users with different gossiping values and social
trust value, which leads to different access results in scenario3.

Table 5. An example of using scenario 3

Username TrustAtt (without gossiping value) gossipingAtt friendTypeWork Result

UserA 0.7 0.5 FX Deny access

UserB 0.9 0.8 FX Allow access

Use Case 4. The user defines a rule which includes trustAtt and few attributes that are
part of the trust formula.

Scenario 4.David, a seller in the Facebook marketplace, would like to share his new
items for selling with trusted users and popular users that will share his items. The rule
for this scenario is as follows:

S4: <R = {David}, {obj4}, {display, like, comment, share}, {(TrustAtt > 0.7) ∧
(numOfFriends > 300)}>

Table 6 shows an example of two users with different social trust values and a number
of friend’s values, which leads to different access results in scenario4.
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Table 6. An example of using scenario 4

Username TrustAtt (including gossiping value, without
numOfFriends value)

numOfFriends Result

UserA 0.55 85 Deny access

UserB 0.75 350 Allow access

Use Case 5. The user defines a rule which includes simple attributes.
Scenario 5. Erin, a teenager 22 old, looks for a girlfriend and wants all the girls in

his city to see and like his post. The rule for this scenario is as follows:
S5: <R = {Erin}, {obj5}, {display, like}, {(friendTypeCity = myCity) ∧ (Fam-

ilyStatus = Single) ∧ (ageLevel = myAgeLevel)}>
Table 7 shows an example of two users with different city attribute values, which

leads to different access results in scenario5.

Table 7. An example of using scenario 5

Username City Family status AgeLevelAtt Result

UserA Palo Alto Single 28 Deny access

UserB San Francisco Single 22 Allow access

5 Conclusions and Future Work

5.1 Conclusion

In this paper, we have presented a new Access-Control model for an online social net-
work. Our ABAC-TG model’s novelty is its combination of user-attributes that includes
trust and gossiping values based on real online social network characteristics.

The algorithm for computing the trust attribute is based on [5] but enables the addition
and removal of attributes in its formulation based on what appears in the ABAC rules.
We described a new algorithm for calculating the gossiping value uses graph clustering,
and this value may be either included in the trust calculation or treated separately in
the ABAC rule. This makes the model very flexible and adaptive. The attributes of this
model were carefully picked, but there could be flexibility in these choices and their
values that are debatable. This model can help to make important permission decisions
and prevent unwanted information leakage from users, making online social network
privacy better in many ways.

Our ABAC-TG model is dynamic and extensible and can be used for any social
network that would like to enable users to choose who will see their data. We decided to
demonstrate the new model by five different use cases on Facebook, as it’s the world’s
most popular social network.
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5.2 Future Work

In future work, we intend to continue exploring in several directions. First, we plan to
conduct an extensive evaluation experiment. We like to evaluate the new ABAC model
with Trust and Gossiping on a Facebook DB, as it’s the world’s most popular social
network. We plan to build a database that includes users, objects, and user actions and
attributes. These items will be extracted from a real Facebook network of at least 100
users. We plan to do three experiments, in one we let the users define their own rules
using our model and get their feedback on its usability. In the second, we’ll set ourselves
rules and threshold values and compare our model results with the user’s perceptions
and expectations. Third, we like to evaluate the new gossiping algorithms on the same
Facebook DB.

Second, we like to define an anonymity mechanism for Facebook objects for pro-
tecting shared objects by using summarization, filtering, blurring, and other techniques.
Recently, initial work on this was published in [15]. We plan to extend it in several
ways and integrate it with the ABAC-TG model. For example – define a filtering model
– for sharing entities. The filter model will anonymize the data. For example, hide the
username, hide the age and display range of ages, hide the gender, location, etc.

This mechanism will be part of the ABAC attribute definition by the user. For
instance, this action is relevant for the “sharing” action on Facebook. Today the user
adds a post, and his friends can share it, and the original user doesn’t know who will see
his post. Therefore, we would like to protect the objects, so that the other users will not
be able to see the full object, but only part of it (the anonymization result).
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Abstract. This paper studies whether exact conversion to an AReBAC
(Attribute-aware Relationship-Based Access Control) system is possi-
ble from an Enumerated Authorization System (EAS), given supporting
attribute and relationship data. The Attribute-aware ReBAC Ruleset
Existence Problem (ARREP) is defined formally and solved algorithmi-
cally, along with complexity analysis. Approaches to resolve infeasibility
using exact solutions are discussed.

Keywords: Access control policy mining · Attribute-aware
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1 Introduction

Relationship-Based Access Control (ReBAC) [7] emerged from the access control
requirements of Online Social Networks. ReBAC expresses authorization policy
in terms of various relationship parameters such as type and depth, whereas
Attribute-Based Access Control (ABAC) [8] has been motivated by its gener-
alized structure and versatility in access control policy specification through
attributes of users, resources and environment. Although ReBAC expresses
authorization through direct and indirect relationships, there are cases where
using relationships only is insufficient. Consider a social network policy where
only adults (18 or higher age) can send a friend request to anyone who lives in the
same location as themselves. Here, both age and location of each user in the net-
work must be known. Formally, these two required characteristics/attribute can
be incorporated with users to make policy generation more expressive and flexi-
ble. Integrating attributes with ReBAC components certainly add more expres-
siveness [6], formally named as Attribute-aware ReBAC (AReBAC).

Generally, access control policy mining facilitates automation of migrating
from one access control system to another with certain set of assumptions such
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as allowing direct use of entity ID in rule generation, strict or approximate equiv-
alency between the source and generated policy, and availability of appropriate
supporting data. Deployment of manual effort to convert from one access control
system to another could be tedious, labor-intensive and error-prone.

This paper analyzes the feasibility of AReBAC policy mining from a given
Enumerated Authorization System (EAS) under certain assumption, for exam-
ple, no user ID will be allowed in the generated AReBAC rule. Note that, rule
generation is always possible with use of entity IDs. The major contributions
made in this paper are as follows.

– The first formal notion of Attribute-aware ReBAC RuleSet Existence Prob-
lem (ARREP) is developed. A novel algorithm for AReBAC policy mining
feasibility detection is presented along with complexity analysis.

– Infeasibility problem in ARREP is formulated. Furthermore, exact solutions
are proposed.

– Rule structure generality and unrepresented path label problem are noted.

2 Related Works

Although both ABAC and ReBAC have their own advantages to express autho-
rization policies (see [1] for a rigorous comparison of their expressive power),
integrating ABAC with ReBAC can provide finer-grained controls and improve
the expressiveness of standalone ABAC or ReBAC. For example, [6] presents an
attribute-aware ReBAC access control model.

Although the policy specification language in this paper is very different
from [2,9], these two works are relevant related work. In [2], an approach to
mine ABAC and ReBAC policies has been proposed where access control lists
and incomplete information about entities are given. A few significant points
about [2] are i) the proposed algorithm prefers the context of ReBAC mining
because ReBAC is more general than ABAC, ii) entity ids are allowed to be
used (which makes the generated policy less general), and iii) there is a policy
quality metric available. Compared to [2], entity ids are strictly prohibited in
the attribute-aware context of this paper. On the other hand, [9] presents an
attribute-supporting ReBAC model for Neo4j (a popular graph database) that
provides finer-grained access control by operating over resources.

While this paper introduces feasibility in the field of AReBAC policy mining
for the first time, there are a few similar prior feasibility studies as follows.

– The work in [4] introduces ABAC RuleSet Existence Problem for the first
time. Besides, the notion of infeasibility correction has been discussed.

– The work in [5] adapts and extends ABAC RuleSet Existence Problem for
RBAC input. Additionally, it proposes infeasibility solution, with and without
presence of supporting attribute data.

– In [3], feasibility of ReBAC policy mining has been investigated for the first
time, assuming user to user relations are given by a static relationship graph.
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3 Attribute-Aware ReBAC RuleSet Existence Problem

This section defines the ARREP along with a feasibility detection algorithm,
complexity analysis and related issues.

3.1 Preliminaries

A user/subject is an entity who performs operation on a resource/object. The set
of users is represented by U. A user requests to perform an operation on another
user. An operation is an action performed by a user on another user. The set
of operations in the system is represented by OP. Without loss of generality it
is assumed that OP is a singleton given by {op}, since each operation has its
specific policy or rules. An access request is a tuple 〈u, v〉 where user u is asking
permission to perform operation op on user v where u, v ∈ U, op ∈ OP, u �=
v. An access request is either granted or denied, based on the access control
policy. In any access control system, a logical construct is required to decide
the outcome of an access request. The logical construct is formally defined as,
checkAccess : U×U → {True, False}, where the result True grants access while
False denies it.

We define a simple authorization system, EAS as follows:

Definition 1. Enumerated Authorization System (EAS)
An EAS is a tuple 〈U, AUTH, checkAccessEAS〉 where, U is the finite sets of
users and AUTH ⊆ U × U , is a specified authorization relation where

checkAccessEAS(u, v) ≡ (u, v) ∈ AUTH

For example, given U = {Alice,Bob} and OP = {readData}, Bob can read
Alice’s data iff (Bob, Alice) belongs to AUTH.

In order to define an Attribute-aware ReBAC system, the key component is
Attribute-aware Relationship Graph (ARG), which is defined as follows.

Definition 2. Attribute-aware Relationship Graph (ARG)
The Attribute-aware Relationship Graph

ARG = (V, V A, V A − RangeSet, UATTV alue,EA,EA − RangeSet, E)
is a directed labeled graph where,

a. V is the set of vertices in ARG, representing the set of users in the system.
b. VA is the finite set of atomic user attribute function names

{va1, va2, ..., vam}.
c. For each vai ∈ V A, Range(vai) specifies a finite set of atomic values for user

attribute vai. VA-RangeSet = {(vai, value)|vai ∈ V A∧value ∈ Range(vai)}.
d. UATTValue denotes the user attribute value assignments. UATTValue =

{UATTV aluevai
|vai ∈ V A} where UATTV aluevai

: V → Range(vai). For
convenience, we understand vai(a) to denote UATTV aluevai

(a), that is the
attribute value assignment of an actual user a for attribute vai.
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Fig. 1. Example ARG

e. EA is the finite set of edge attribute function names, {ea1, ea2, ..., ean}.
f. For each eai ∈ EA, Range(eai) specifies a finite set of atomic values for edge

attribute eai. EA-RangeSet = {(eai, value)|eai ∈ EA ∧ value ∈ Range(eai)}.
g. E ⊆ V × V × Range(ea1) × Range(ea2) × ... × Range(ean) is a finite set

of directed edges where, an edge (u, v, σ1, σ2, ..., σn) ∈ E, u �= v, represents
the relations σ1, σ2, ..., σn from user u ∈ V to v ∈ V in ARG where σ1 ∈
Range(ea1), σ2 ∈ Range(ea2), ..., σn ∈ Range(ean).
Note: For a directed edge e from vertex a to vertex b in ARG, eai(e) specifies
the associated edge attribute value assignment for eai ∈ EA.

Figure 1 presents an ARG where the set of users V = {Alice, Bob, Cathy,
Ron}, the set of user attribute function names, VA = {Gender, Profession},
the set of edge attribute function names, EA = {Relation− type}, and the set of
edges E = {(Alice, Ron, F), (Alice, Bob, F), (Ron, Cathy, F), (Cathy, Bob, F)}.
The user and edge attribute value assignments are shown in Fig. 1. The notion
of a path in an ARG is defined as follows:

Definition 3. Path in ARG
Given ARG as in Definition 2 and a vertex pair (u, v) ∈ V × V where
u �= v, a path from u to v is a sequence of edges where the terminating
(i.e., second) vertex of each edge is same as the starting (i.e., first) vertex
of the next edge given by 〈(u, vi, σw1, σw2, ..., σwn), (vi, vj , σx1, σx2, ..., σxn), ...,
(vk, vl, σy1, σy2, ..., σyn), (vl,
v, σz1, σz2, ..., σzn)〉, where
a. u, vi, vj , ..., vk, vl, v ∈ V
b. σw1, σx1, ..., σy1, σz1 ∈ Range(ea1), σw2, σx2, ..., σy2, σz2 ∈ Range(ea2), ...,

σwn, σxn, ..., σyn, σzn ∈ Range(ean).
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A path p from u to v is said to be simple iff u, vi, vj , ..., vk, vl, v ∈ V are dis-
tinct. The length of p, denoted by |p|, is the number of edges in the path. The
attribute aware path label of the path p from u to v, denoted by pathLabelatt(p), is
(va1(u), va2(u), ..., vam(u)).(σw1, σw2, ..., σwn).(va1(vi), va2(vi), ..., vam(vi)).(σx1,
σx2, ..., σxn).(va1(vj), va2(vj), ..., vam(vj)).....(va1(vk), va2(vk), ..., vam(vk)).(σy1,
σy2, ..., σyn).(va1(vl), va2(vl), ..., vam(vl)).(σz1, σz2, ..., σzn).(va1(v), va2(v), ...,
vam(v)).

Clearly, pathLabelatt(p) is a string, consisting of concatenated tuples of vertex
and edge attribute value assignments, traversed in the same order as the vertices
and edges appear in path p. Note that, the vertex and edge attribute values follow
specific orders, given by 〈va1, va2, ..., vam〉 and 〈ea1, ea2, ..., ean〉, respectively.
For sth edge in path p where 1 ≤ s ≤ |p|, starting vertex, edge, and terminating
vertex attribute value assignments are represented by (2 × s − 1)th, (2 × s)th,
and (2 × s + 1)th tuples in pathLabelatt(p), respectively.

Given ARG in Fig. 1, the only path p from Cathy to Bob is 〈(Cathy,Bob, F )〉
with pathLabelatt(p) = (Female, Student).(F ).(Male,Officer). Henceforth, we
understand path to mean simple path.

Definition 4. Attribute aware ReBAC Policy
An Attribute aware ReBAC policy, POLAAR is a tuple, given by 〈OP, VA, EA,
RuleSet〉 where,

a. OP, VA, and EA are as defined in Definition 2.
b. RuleSet is a set of rules where, for each operation op ∈ OP , RuleSet contains

a rule Ruleop. Each Ruleop is specified using the grammar below.
Ruleop :: = Ruleop ∨ Ruleop | pathRuleExpr | Attexp
pathRuleExpr :: = pathRuleExpr ∧ pathRuleExpr | (pathLabelExpr)
pathLabelExpr :: = pathLabelExpr.pathLabelExpr | edgeExp
Attexp :: = Attexp ∧ Attexp| uexp = value | vexp = value
edgeExp :: = edgeExp ∧ edgeExp| edgeuexp = value | edgevexp = value |
edgeattexp = value
where, value is a atomic constant.
uexp ∈ {va(u)|va ∈ V A}, u is a formal parameter.
vexp ∈ {va(v)|va ∈ V A}, v is a formal parameter.
edgeuexp ∈ {va(e.u)|va ∈ V A}, e.u is a formal parameter.
edgevexp ∈ {va(e.v)|va ∈ V A}, e.v is a formal parameter.
edgeattexp ∈ {ea(e)|ea ∈ EA}, e is a formal parameter.

Here “.” is the concatenation operator. The length of a pathLabelExpr is given
by the number of concatenation operators plus 1. A pathLabelExpr can be split
at the point of each .operator into edgeExp, and numbered sequentially, starting
from 1 to the length of the pathLabelExpr.

Based on the stated POLAAR, the following defines an access control system:
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Definition 5. Attribute aware ReBAC System
An Attribute aware ReBAC system is a tuple, 〈ARG,POLAAR, check
AccessAAR〉 where ARG and POLAAR are as in Definition 2 and 4, respec-
tively. For an access request (a, b), checkAccessAAR(a:V, b:V) ≡ Ruleop(a:V,
b:V) where Ruleop is evaluated as follows:
Step 1:

a. for each Attexp in Ruleop, substitute the values va(a) for va(u) and va(b) for
va(v), where va ∈ V A.

b. For a pathLabelExpr in Ruleop, substitute True iff i) there exists a simple path
p from a to b in ARG such that |p| = length of pathLabelExpr, and ii) each
sth edgeExpr of the pathLabelExpr where 1 ≤ s ≤ length of pathLabelExpr,
evaluates to True. To evaluate sth edgeExpr, substitute va(e.u), ea(e), and
va(e.v) by the corresponding va ∈ V A, ea ∈ EA, and va ∈ V A attribute
value assignments from (2 × s − 1)th, (2 × s)th, and (2 × s + 1)th tuples in
pathLabelatt(p), respectively.

Step 2:
Evaluate the resulting boolean expression.

User a is permitted to do operation op on object b if and only if Ruleop(a, b)
evaluates to True.

For example, given ARG in Fig. 1, and Ruleop = (Gender(e.u)=Female ∧ Pro-
fession(e.u)=Student ∧ Relation-type(e) = F ∧ Gender(e.v)=Male ∧ Profes-
sion(e.v)=Student), Ruleop(Alice,Ron) evaluates to True.

Although both ReBAC and ABAC are powerful, flexible and comparable [1]
in expressing authorization policies, relying solely on one is often insufficient.
An example case will be used in order to compare ABAC policy presented in
[4] and ReBAC policy in [3] with the proposed AReBAC policy in Definition 4.
Consider the ARG in Fig. 1 and Table 1. Each row of Table 1 represents a case
and an associated authorization state example.

1. Row 1 indicates that both AReBAC and ReBAC policies can express the
authorization state (Alice, Bob) whereas only ABAC rules cannot. ABAC rule
fails because Alice and Cathy have the same attribute value combination. The
generated ReBAC and AReBAC rules are “F.F.F” and “(Relation-type(e) =
F.Relation-type(e) = F.Relation-type(e) = F)”, respectively.

2. Row 2 indicates that both ABAC and AReBAC policies can express the
authorization state (Ron, Bob) whereas only ReBAC rules cannot. ReBAC
rule fails because there is only one path labeled “F.F” from Ron to Bob
which is satisfied by unauthorized pair, such as, (Alice, Cathy). The gen-
erated ABAC and AReBAC rule is the same, “Gender(u)=Male ∧ Profes-
sion(u)=Student ∧ Gender(v)=Male ∧ Profession(v)=Officer”.

3. The 3rd row, authorization state (Alice, Ron), cannot be expressed by both
ABAC and ReBAC. ABAC rule fails because Alice and Cathy have the same
attribute value combination. ReBAC rule fails because the only path label
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Table 1. Example data

ReBAC ABAC AReBAC AUTH

Yes No Yes {(Alice, Bob)}
No Yes Yes {(Ron, Bob)}
No No Yes {(Alice, Ron)}
No No No {(Bob, Alice)}

“F” is satisfied by other unauthorized pairs, such as (Alice, Bob). The ARe-
BAC rule is “(Gender(e.u) = Female ∧ Profession(e.u) = Student ∧ Relation-
type(e) = F ∧ Gender(e.v)=Male ∧ Profession(e.v)=Student)”.

4. The 4th row, Auth = {(Bob, Alice)} is not expressible by only ABAC (Since
(Bob, Cathy) will be allowed), only ReBAC (since no path exists from Bob
to Alice), and AReBAC ((Bob, Cathy) will be allowed and no path exists).

According to the used policy specification language, AReBAC is more expres-
sive than ABAC [4] and ReBAC [3]. Additionally, it can be clearly observed that,
if entity ids are allowed, AReBAC policy will never fail (such as [2]). However,
imposing this condition conflicts with core principles of ABAC and ReBAC.
Therefore, the AReBAC policy specification in this paper checks whether the
target access control system could be generated avoiding explicit use of unique
entity id. Based on this motivation, ARREP problem is defined as follows:

Definition 6. Attribute aware ReBAC RuleSet Existence Problem
(ARREP) Given an EAS and an ARG as in Definition 1 and 2, respectively,
where V=U, does there exist a RuleSet as in Definition 4 so that the resulting
Attribute aware ReBAC system satisfies:

(∀u, v ∈ U)[checkAccessAAR(u, v) ⇔ checkAccessEAS(u, v)]

Such a RuleSet, if it exists, is said to be a suitable RuleSet, otherwise the problem
is said to be infeasible.

The following subsection develops a ARREP solution algorithm.

3.2 ARREP Solution Algorithm

Algorithm 1 resolves the ARREP problem. Given an ARREP instance, it returns
either feasible status and Ruleop, or infeasible status, incomplete Ruleop and
failed authorizations. Given any graph, the task finding all possible simple paths
from a source vertex to a target vertex is well known, hence, details of function
FindAllSimplePath() in Algorithm 1 are not provided (it can be adapted from
[3]). The overall complexity of computing all possible paths from a vertex to
another in ARG is O(|E|!) as it considers only simple paths.

Theorem 1. The overall complexity of ARREP feasibility detection Algorithm
1 is O(|V |4 × (|E|!)).
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Algorithm 1. ARREP Solution Algorithm
Input: An EAS and an ARG where V=U.
Output: Feasible/infeasible status and Ruleop. If infeasible, failedAuthPairs.
1: Ruleop := NULL
2: failedAuthPairs := ∅
3: tempAUTH := AUTH
4: for each (a, b) ∈ tempAUTH do
5: if ABAC-Expr(EAS, VA, UATTValue, a, b) == SUCCESS then

6: if Ruleop is NULL then Ruleop :=
∧

va∈V A

va(u) = va(a)∧
∧

va∈V A

va(v) = va(b)

else Ruleop := Ruleop ∨
∧

va∈V A

va(u) = va(a) ∧
∧

va∈V A

va(v) = va(b)

7: tempAUTH\ := {(a, b)}
8: while ∃(a, b) ∈ tempAUTH do
9: SP (a, b) := FindAllSimplePath(a,b, ARG)

10: if SP (a, b) = ∅ then
11: failedAuthPairs := failedAuthPairs∪{(a, b)} //Not Feasible for (a,b) tuple

12: tempAUTH\ := {(a, b)} and Continue
13: PATHLABELatt(a.b) := {pathLabelatt(p)|p ∈ SP (a, b)}
14: for each pl ∈ PATHLABELatt(a.b) do
15: SATab(pl) = {(c, d) ∈ V ×V | there exists a simple path s from c to d in ARG,

c�=d, (c,d) �∈AUTH, pl=pathLabelatt(s)}
16: Qab :=

⋂

pl∈PATHLABELatt(a.b)

SATab(pl)

17: if Qab �= ∅ then
18: failedAuthPairs := failedAuthPairs∪{(a, b)} //Not Feasible for (a,b) tuple

19: tempAUTH\ := {(a, b)} and Continue

20: if Ruleop is NULL then Ruleop :=
∧

pl∈PATHLABELatt(a.b)

(generateRule(pl))

else Ruleop := Ruleop ∨
∧

pl∈PATHLABELatt(a.b)

(generateRule(pl))

21: tempAUTH\ := {(a, b)}
22: if failedAuthPairs is ∅ then
23: return “feasible” and Ruleop
24: else
25: return “infeasible” and failedAuthPairs and Ruleop
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Algorithm 2. ABAC-Expr
Input: EAS, VA, UATTValue, vertex a, vertex b.
Output: SUCCESS or FAILURE
1: R1 = {u1|∀va ∈ V A.va(a) = va(u1)}
2: if ∃u1, u2 ∈ R1.(u1, u3) ∈ Auth ∧ (u2, u3) ∈ Auth where u3 ∈ V then
3: return FAILURE
4: R2 = {u4|(∀va ∈ V A.va(b) = va(u4)}
5: if ∃u4, u5 ∈ R2.(u4, u6) ∈ Auth ∧ (u5, u6) ∈ Auth where u6 ∈ V then
6: return FAILURE
7: return SUCCESS

Algorithm 3. generateRule
Input: String pathlabel
Output: String rule
1: rule := NULL
2: SubStr := splitStr(pathlabel,“.”) // The splitStr function splits pathlabel using .

into an ordered list of substrings, and return the saved substrings into an array.
3: numEdges := (number of elements in SubStr-1)÷ 2
4: //rm function returns the given string after removal of leading “(” and trailing “)”

5: for i = 1 to numEdges do
6: tempu := splitStr(rm(SubStr[2*i-1]), “,”)
7: tempv := splitStr(rm(SubStr[2*i+1]), “,”)
8: tempe := splitStr(rm(SubStr[2*i]), “,”)

9: if rule is NULL then rule :=
∧

1≤j≤m

vaj(e.u) = tempu[j]∧vaj(e.v) = tempv[j]∧
∧

1≤k≤n

eak(e) = tempe[k] else rule := rule .
∧

1≤j≤m

vaj(e.u) = tempu[j] ∧

vaj(e.v) = tempv[j] ∧
∧

1≤k≤n

eak(e) = tempe[k] //. means the concatenation

10: return rule

Proof. In Algorithm 2, overall complexity of Lines 1, 4, 2–3 and 5–6 are O(|U |),
O(|U |), O(|AUTH|), and O(|AUTH|), respectively. Therefore, overall complex-
ity of Algorithm 2 is O(|AUTH|). The overall complexity of Algorithm 3 is
O(|V |) since the maximum number of edges allowed in a simple path of ARG
is |V |-1. Combining all these, the computational complexity of Algorithm 1 as
follows: Lines 4–7 of Algorithm 1 give O(|AUTH|2) complexity. According to
the complexity of FindAllSimplePath() noted before, Lines 9 and 13, both give
O(|E|!) complexity. The overall complexity of Lines 14–15 is O(|V |2×(|E|!)), and
the set intersection in Line 16 takes O(|E|!). Lines 17–21 can be ignored com-
pared to others, therefore, the loop from Lines 8–21 takes overall O(|V |4×(|E|!))
complexity as the loop may iterate |AUTH| ≤ |V |2 times. Hence, the worst case
complexity of Algorithm 1 is O(|V |4 × (|E|!)).
The correctness proof of Algorithm 1 is similar to the feasibility detection algo-
rithm in [3], and is therefore omitted. Although overall complexity of feasibility
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detection algorithm in [3] and Algorithm 1 are same, however, the latter may
have more or less computation time. If Algorithm 2 succeeds ∀(a, b) ∈ AUTH,
only O(|AUTH|2) will be the real computational complexity, which is linear
compared to the computed worst case complexity. The computational complex-
ity significantly reduces even if Algorithm 2 succeeds for some (a, b) ∈ AUTH
since avoiding all possible path generation from a source vertex to target vertex
in ARG (FindAllSimplePath() in Line 9) to any extent helps. Otherwise, tak-
ing both user and edge attribute value combination into consideration certainly
adds overhead to the computation time of Algorithm 1, compared to feasibility
detection algorithm in [3].

Let us consider the ARG in Fig. 1 where Range(Relation-type) is changed
from {Friendship} to {Friendship, Parent}. Since the “Parent” relation is not
present anywhere as edge attribute in the ARG, the effect of introducing a
new user with “Parent” relation in ARG remains undetermined. This might
happen to any ARG with a particular rule structure as change in relationships
or adding a new user may effect the validity of the current rule set. We call this
“unrepresented path labels” problem in ARG. The rule structure in this paper
compares direct values, the Ruleop generated by Algorithm 1 does consider all
user and edge attributes, and ARG is static by nature. Thereby, unrepresented
path labels does not impact the Ruleop.

In order to show a comparison with our AReBAC policy language in user to
user relationship context, the model presented in [6] is compared as follows:

– By construction, the policy language in this paper does not support inverse
relationship and count attribute as in [6].

– The policy language in Definition 4 is unable to count the number of existing
paths between access initiator and target users. Another example is, the policy
language in Definition 4 is unable to compare attribute value assignments of
any two particular users along the path from initiator to target in ARG.

– The policy language in [6] supports the common regular expression feature,
wildcard (* means to 0 to any number), optional (? means 0 or 1) notation,
and negative path expression, while this paper completely ignores them.

Clearly the AReBAC rule structure presented in this paper is not the most gen-
eral one. More expressiveness can be added such as in [6] and current feasibility
problem statement could be correspondingly reformulated.

4 ARREP Infeasibility Solution

Given an infeasible ARREP instance as in Definition 6, an infeasibility solu-
tion basically generates a RuleSet which completes the AReBAC system. For-
mally, given an infeasible ARREP instance as in Definition 6, an infeasi-
bility solution is said to be exact iff: (∀u, v ∈ U)[checkAccessAAR(u, v) ⇔
checkAccessEAS(u, v)].

In this section, an exact solution to infeasibility in ARREP will be discussed
with computational complexity as well as shortcomings. It is accomplished by
adding edges to the given ARG as follows:



Attribute-Aware ReBAC Policy Mining 403

Definition 7. Add Relationship Edge
Given an ARREP infeasible instance, Algorithm 1 returns a set of failed autho-
rization pairs, failedAuthPairs. Subsequently, the following steps are used:

1. It is assumed that, ∀ea ∈ EA.op �∈ Range(ea).
2. ∀ea ∈ EA,Range(ea)∪ := op, where op ∈ OP .
3. For each (a, b) ∈ failedAuthPairs, E := E ∪ {(a,b,op,op,...,op)}.

Note*: for each newly added edge, say e, ∀ea ∈ EA.ea(e) = op.
4. Ruleop := Ruleop ∨ (

∧

ea∈EA

ea(e) = op), Ruleop is returned by Algorithm 1.

For example, given the previous infeasible example where Auth = {(Bob,Alice)}
and ARG as in Fig. 1, an additional relationship edge from Bob to Alice, labeled
by the operation op∈ OP where op is added to Range(Relation-type), solves the
problem. The following theorem proves the correctness of the stated infeasibility
correction approach in Definition 7.

Theorem 2. Definition 7 provides an exact solution to infeasibility in ARREP.

Proof. As stated, for all (a, b) ∈ failedAuthPairs, adding an edge from vertex a
to b in ARG creates a path of length 1. By the checkAccess evaluation presented
in Definition 5, all (a, b) ∈ failedAuthPairs satisfy (

∧

ea∈EA

ea(e) = op), and

therefore, adding a term is sufficient for a operation op ∈ OP . Since it is assumed
that, ∀ea ∈ EA.op �∈ Range(ea), therefore, no other U × U \ failedAuthPairs

satisfies (
∧

ea∈EA

ea(e) = op). Hence, the claim is correct.

As stated in Definition 7, the solution adds |AUTH| edges to the ARG at most.
Hence, the worst case complexity is linear to |AUTH|. However, this solution
approach has limitations. For example, less number of additional edges could be
used to resolve the infeasibility [3]. Furthermore, there might be cases where it
is undesirable to alter the given ARG and Range of attributes at all. We leave
considering such cases as future work.

5 Conclusion

This paper provides an insightful discussion regarding attribute-aware ReBAC
policy mining. It introduces the ARREP problem and formalizes infeasibil-
ity issues in ARREP. A few simple rule optimization technique may reduce
the generated rule size. For instance, rule minimization is limited to find-
ing minimal number of path labels in conjunctive terms only. As per Algo-
rithm 1, for a tuple (a, b) in AUTH, the conjunctive term is formed by
AND’ing all possible path labels from a to b iff i) Algorithm 2 fails, and
ii) the conjunctive term evaluates false for all unauthorized tuples. Instead
of using all possible path labels in the conjunctive term of such (a, b), the



404 S. Chakraborty and R. Sandhu

smallest possible subset (except empty set) of those is used to form the con-
junctive term, ensuring that the minimal size conjunctive evaluates false for
all unauthorized tuples. For instance, given ARG in Fig. 1 and AUTH =
{(Alice,Bob)}, i) Algorithm 2 returns FAILURE for (Alice, Bob), ii) there exist
two paths, say p1 and p2, from Alice to Bob in ARG where pathLabelatt(p1)
and pathLabelatt(p2) are (Female, Student).(F).(Male, Officer) and (Female,
Student).(F).(Male, Student).(F).(Female, Student).(F).(Male, Officer). With-
out any rule minimization, Ruleop generated by Algorithm 1 is given by the con-
junction of generateRule(pathLabelatt(p1)) and generateRule(pathLabelatt(p2)):
(Gender(e.u) = Female ∧ Profession(e.u) = Student ∧ Relation-type(e) = F ∧
Gender(e.v) = Male ∧ Profession(e.v) = Officer) ∧ (Gender(e.u) = Female ∧
Profession(e.u) = Student ∧ Relation-type(e) = F ∧ Gender(e.v) = Male ∧
Profession(e.v) = Student . Gender(e.u) = Male ∧ Profession(e.u) = Student
∧ Relation-type(e) = F ∧ Gender(e.v) = Female ∧ Profession(e.v) = Student .
Gender(e.u) = Female ∧ Profession(e.u) = Student ∧ Relation-type(e) = F ∧
Gender(e.v) = Male ∧ Profession(e.v) = Officer). The possible subset of path
labels in this case is: either one or both. It is evident that, i) only pathLabelatt(p1)
is not possible because it is satisfied by unauthorized pair (Cathy, Bob) ii)
only pathLabelatt(p2) is possible since it is not satisfied by unauthorized pairs.
Thereby, Ruleop reduces to (Gender(e.u) = Female ∧ Profession(e.u) = Stu-
dent ∧ Relation-type(e) = F ∧ Gender(e.v) = Male ∧ Profession(e.v) = Student
. Gender(e.u) = Male ∧ Profession(e.u) = Student ∧ Relation-type(e) = F ∧
Gender(e.v) = Female ∧ Profession(e.v) = Student. Gender(e.u) = Female ∧
Profession(e.u) = Student ∧ Relation-type(e) = F ∧ Gender(e.v) = Male ∧ Pro-
fession(e.v) = Officer).
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