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1 Introduction

The stability of two-dimensional (2D) finite amplitude steady waves to arbitrary
small 3D perturbations on the surface of infinite depth of water has been analysed
numerically by Maclean et al. [1]. This analysis discloses that there are two different
types of instabilities for finite amplitude gravity waves. The first is predominantly
2D and is associated with all the known results for particular cases as for example
Benjamin–Feir instability. The second is predominantly 3D and becomes dominant
when the steepness of the wave is very large. This work in the case of interfacial
waves is then extended by Yuen [2]. The 2D instability of interfacial gravity waves
in the particular case of long wave length perturbation and small wave steepness
has been studied analytically by Grimshaw and Pullin [3] from the cubic NLSE.
Later, Pullin and Grimshaw [4] have extended this analysis for interfacial gravity
waves including the effect of basic current shear in the superposition of either or
both the inviscid fluids and have reported both the analytical and numerical results.
Later on, Dhar and Das [5] analysed the stability of gravity interfacial waves of
infinite depth including the effect of shear current. There are many cases in which
we observed that currents are not uniform with the water depth. In view of the
above, many situations such as air–water interfaces and jet-like ebb flows can be
cited, which incorporates non-uniformity of the currents with depth. In the presence
of linear shear current for which velocity is uniform, it was theoretically observed
that the motion of the wave continues to be irrotational and also constant vorticity
can only effect the dispersion relation at first order of approximation. Choi [6]
applied a pseudospectral process to analyse the interaction of nonlinear surface
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gravity waves including linear shear currents and observed that the maximum wave
amplitude for positive shear current is much smaller than that in the absence of any
shear, while the effect reverse to this is found for a negative shear current. A fully
nonlinear boundary integral method to present the interaction between gravity waves
and shear currents including the arbitrary distribution of vorticity was suggested by
Nwogu [7]. He observed that the vorticity can significantly affect the development of
modulated wave trains. It is to be noted that for analysing the nonlinear evolution of
water waves, nonlinear Schrodinger equations are generally applied due to its proper
reflection of modulational instability. Ever since the experimental validation of the
analytical soliton like solution of NLSE, there has been much of an interest shown
by the researchers towards the Peregrine Breather [8] like solution of the NLSE.
Considering the case of infinite depth superposed fluids, the instances of air–water
interface as well as the Boussinesq approximation have been analysed in that paper.
According to Liao et al. [9], being a theoretical solution of third-order NLSE, the
PB can be viewed as a prototype of Rogue waves and as such the impact of basic
current shear for finite amplitude interfacial waves on PB is of considerable interest
of this paper. In this chapter, we first derived a third-order NLSE for a gravity wave
travelling at the interface of two superposed fluids having finite depths including
the effect of basic current shear. From this evolution equation, we then performed
a stability analysis in the cases of air–water interface as well as the Boussinesq
approximation. Later, the effect of vorticity on Peregrine Breather has also been
examined.

2 Governing Equations

We consider the interface between two inviscid and incompressible fluids in the
perturbed state by the equation y = ζ(x, t). The two fluids having densities ρ1
and ρ2 (ρ1 < ρ2), respectively, are bounded by the horizontal planes at y = h1
and y = −h2. In each fluid, the basic current has constant vorticity ω1 and ω2,
respectively. As three space dimensional perturbations to the primary wave are not
vorticity preserving, the stability analysis presented here is limited to two space
dimensional that can be considered as irrotational. Now, we employ the following
transformations for dimensionless variables:
√

k30/g(φ, φ′, ψ,ψ ′) → (φ, φ′, ψ,ψ ′), k0(x, y, ζ, h1, h2) → (x, y, ζ, h1, h2),

√
1/k0g(ω1, ω2) → (ω1, ω2),

√
k0gt → t, r = ρ1/ρ2. (1)

The governing equations can be expressed as

∇2φ′ = 0, ∇2ψ ′ = 0, in ζ < y < h1 (2)

∇2φ = 0, ∇2ψ = 0, in − h2 < y < ζ (3)
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φ′
y − ζt = (φ′

x − ω1ζ )ζx, for y = ζ (4)

φy − ζt = (φx − ω2ζ )ζx, for y = ζ (5)

φt − rφ′
t + (1 − r)ζ + ω2ψ − rω1ψ

′

= r

2
(∇φ′)2 − 1

2
(∇φ)2 + ω2yφx − rω1yφ′

y, for y = ζ (6)

φy = 0, ψ = 0, on y = −h2 and φ′
y = 0, ψ ′ = 0, on y = h1, (7)

where ψ ′ and ψ are the stream functions for the upper and lower fluids satisfying
the Cauchy–Riemann relations as follows:

φ′
x = ψ ′

y, φ′
y = −ψ ′

x, φx = ψy, φy = −ψx. (8)

A solution can be found in the following form:

P = P0 +
∞∑

n=1

[Pn exp{in(kx − σ t)} + c.c.], (9)

where P symbolises for φ′, φ, ψ ′, ψ , ζ , and “c.c.” means complex conjugate. Here
φ′

n, φn, ψ ′
n, ψn (n = 0, 1, 2) are functions of y, x1 = εx, t1 = εt , whereas the ζn are

functions of x1, t1, and ε is a slow ordering parameter. The linear dispersion relation
for a plane progressive wave is given by

f (σ, k) = σ1σ
2 + rσ2σ

2 − (ω2 − rω1)σσ1σ2 − k(1 − r)σ1σ2, (10)

where σi = tanh khi, (i = 1, 2). We assume that the primary wave has the wave
number k0. Therefore, we have k = 1, and the relation (10) for finding σ thus
reduces to

(σ1 + rσ2)σ
2 − (ω2 − rω1)σσ1σ2 − (1 − r)σ1σ2 = 0. (11)

From the dispersion relation, the group velocity cg of the primary wave can be found
as

cg = −δ0σ
2 + {(ω2 − rω1)σ + (1 − r)}δ1 + (1 − r)σ1σ2

2(σ1 + rσ2)σ − (ω2 − rω1)σ1σ2
, (12)

where δ0 = h1(1 − σ 2
1 ) + rh2(1 − σ 2

2 ) and δ1 = σ1h2(1 − σ 2
2 ) + σ2h1(1 − σ 2

1 ).
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3 Derivation of Evolution Equation

By inserting the expansions of (9) into (2) and (3), we obtain the following solutions:

φ′
n = sech (h1kn) cosh [(y − h1)kn]C′

n, ψ ′
n = sech (h1kn) sinh [(y − h1)kn]D′

n,

(13)

φn = sech (h2kn) cosh [(y + h2)kn]Cn, ψn = sech (h2kn) sinh [(y + h2)kn]Dn,

(14)

where C′
n, D

′
n Cn, Dn, (n = 1, 2) are functions of x1, t1 and kn = n − iε ∂

∂x1
. For

n = 0, we get the solutions of zeroth harmonic terms after taking Fourier transforms
of (2) and (3)

φ′
0 = sech (h1εk) cosh [(y − h1)εk]C′

0, ψ ′
0 = sech (h1εk) sinh [(y − h1)εk]D′

0,

(15)

φ0 = sech (h2εk) cosh [(y + h2)εk]C0, ψ0 = sech (h2εk) sinh [(y + h2)εk]D0,

(16)

in which φ′
0, φ0, ψ ′

0, ψ0 represent the Fourier transforms of the corresponding
quantities defined by

(φ′
0, φ0, ψ

′
0, ψ0) =

∫∫ ∞

−∞
(φ′

0, φ0, ψ
′
0, ψ0)e

−i(kx1−σ t1) dx1dt1, (17)

in which C′
0, D

′
0, C0, D0 are functions of k, σ .

To solve three sets of equations corresponding to n = 1, 2, 0, we consider the
perturbation expansion as follows:

Fm =
∞∑

n=1

εnFmn, (m = 0, 1), F2 =
∞∑

n=2

εnF2n, (18)

where Fm represents C′
m, D

′
m, Cm, Dm, ζm (m = 0, 1, 2).

Inserting (18) in the three sets of equations and equating different powers of
ε, we obtain a sequence of equations; from the first set (n = 1) of equations,
corresponding to (4) and (5), we obtain solutions ofC′

11,C
′
12,C11,C12, respectively.

Similarly, from second set (n = 2) and third set (n = 0), corresponding to (4),
(5) and (2), we obtain solutions of C′

22, C22, ζ22 and C′
01, C′

02, C01, C02, ζ01, ζ02,
respectively. It is to be noted that the coefficients of D′

n and Dn (n = 1, 2, 0) can be
expressed in terms of C′

n, Cn by using the Cauchy–Riemann relations (8). Finally,
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the equation resulting from (2) of the first set of equations can be expressed in the
form as follows:

f (W1,K1)ζ1 = −irσ2(W1 + ω1σ1)a1 − i(W1 − ω2σ2)σ1b1 − σ1σ2K1c1, (19)

where W1 = σ +iε ∂
∂t1

, K1 = 1−iε ∂
∂x1

and a1, b1, c1 are quantities due to nonlinear
terms. Now, inserting solutions of several perturbed quantities that appear right side
of (19), applying the transformations,

ξ = x1 − cgt1, τ = εt1 (20)

and setting ζ = ζ1 = ζ11 + εζ12, we obtain the following third-order nonlinear
evolution equation:

iζτ + αζξξ + μζ 2ζ ∗ = 0, (21)

in which the coefficients are available in the Appendix. It is to be noted that the
nonlinear term μ of (21) comes from the interaction of primary wave with the wave-
induced mean flow and the second harmonic, respectively.

4 Modulational Instability analysis

The solution of Eq. (21) is

ζ = (ζ0/2) exp (−iΔστ), (22)

where ζ0 is a real number, and the frequency shift Δσ due to nonlinearity is

Δσ = (μ/4)ζ 2
0 . (23)

We now introduce the perturbation on the above solution given by

ζ = (ζ0/2)(1 + ζ ′ + iθ ′) exp (−iΔστ), (24)

in which ζ ′ and θ ′ are small real perturbations of amplitude and phase, respectively.
Next, we assume that (ζ ′, θ ′) ∝ exp (−iΩτ). Inserting (24) in (21), linearising with
respect to ζ ′, θ ′ and taking the Fourier transformation of the resulting equations
given by

(ζ ′, θ ′) =
∫ ∞

−∞
(ζ ′, θ ′)e(−iλξ) dξ,
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we obtain the nonlinear dispersion as follows:

R1 =
√

R2(R2 − ζ 2
0 μ/2), (25)

in which

R1 = Ω − cgλ, R2 = αλ2. (26)

There is an instability when

λ2 < (μ/2α)ζ 2
0 . (27)

At marginal stability, the perturbed wave number λ is given as

λ = √
μ/2αζ0. (28)

If this condition (27) is satisfied, then the maximum growth rate is

Gr = μζ 2
0 /4. (29)

5 Effect of Vorticity on Peregrine Breather

The non-dimensional form of Eq. (21) is

i
∂ζ ′

∂τ ′ + ∂2ζ ′

∂ξ ′2 + 2|ζ ′|2ζ ′ = 0, (30)

which is obtained by employing the following transformations on the variables:

ξ ′ = 1

2
ζ̃

√
2μ

α
ξ, τ ′ = 1

2
μζ̃ 2τ, ζ ′ = ζ

ζ̃
, (31)

where ξ ′ denotes the normalised coordinate and the normalised time is denoted as
τ ′. The Peregrine Breather solution of Eq. (30) is

ζ ′(ξ ′, τ ′) =
[

4(1 + 4iτ ′)
1 + 4ξ ′2 + 16τ ′2 − 1

]
exp (2iτ ′). (32)
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This solution (32) is localised in both space and time. Applying the transformation
(31) in (32), we obtain the Peregrine solution in its dimensional form as

ζ(x1, t1) = ζ̃ exp (iμζ̃ 2t1)

[
4α(1 + 2iμζ̃ 2t1)

α + 2μζ̃ 2(x1 − cgt1)
2 + 4αμ2ζ̃ 4t21

− 1

]
(33)

6 Discussion and Conclusions

A third-order NLSE is established for gravity waves travelling at the interface of two
superposed fluids of finite depth under the circumstance of a shear current. Using
this equation, the instability analysis is then investigated for air–water interface
(r = 0.00129) as well as the Boussinesq approximation (r → 1). Furthermore,
the effect of vorticity on the peregrine breather has been taken into account. For an
air–water interface from Fig. 1, we observed that Gr increases as |ω1| decreases for
fixed depth h2 of the lower fluid, that is, the basic current shear in the air decreases
Gr for fixed values of h2. Also, for fixed |ω1|, Gr increases as h2 increases. Now,
from Fig. 2, we found that Gr increases as ω2 decreases, but the reverse effect
is observed for −ve vorticity. Also, for fixed +ve vorticity, Gr decreases as h2
increases, and the reverse effect is observed for fixed values of −ve vorticity.
Here, we found that sufficiently big value of the +ve basic current shear (ω2) in
the water removes the modulational instability for surface gravity waves of fixed
finite depth of water, but −ve basic current shear increases Gr . For the case of
Boussinesq approximation, we see from Fig. 3 that Gr increases with the increment
of ω1 for fixed values of h1. In Fig. 4, we have plotted curves for several values
of h1, h2, ω1, ω2 for both air–water interface and the Boussinesq approximation.
As h1, h2 → ∞, the four curves of Fig. 4 are similar as those of Dhar and
Das [5]. Here, we see that the basic current shear in the air (ω1) decreases Gr

for surface waves of infinite depths. Furthermore, for r → 1, which corresponds
to potential oceanic or atmospheric application, we found that Gr increases as
ω1 increases for deep water surface gravity waves. For r = 0.00129 as well
as r → 1, wave number λ at marginal stability has been depicted in Fig. 5 for
several values of h1, h2, ω1, ω2. For the case of air–water interface, from Fig. 6,
we see that the breather span increases as h2 decreases, while the breather span
increases as |ω1| increases. From Fig. 7, it is observed that h1 has similar influence
on breather span as that of the case in Fig. 6 for h2 and the breather span increases
for increasing +ve values of ω2, while the reverse effect is encountered for −ve
values of ω2. For the Boussinesq approximation, Fig. 8 depicts that the span of
the breather decreases as h1 increases whereas the breather span decreases as ω1
increases. In Fig. 9, we have plotted breather solution for several finite values of
h1, h2, ω1, ω2. From Figs. 10 and 11 for air–water interface, we find that for
fixed value of ω1, ω2, the breather width increases both in space and in time as
h2 decreases. In Figs. 12 and 13, we have plotted the breather solution for several
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Fig. 1 Gr vs. ζ0 plot for r = 0.00129, h1 → ∞, ω2 = 0 and h2 = 2 (left) and h2 = 5 (right)

Fig. 2 Gr vs. ζ0 plot for r = 0.00129, h1 → ∞, ω1 = 0 and h2 = 2 (left) and h2 = 5 (right)

Fig. 3 Gr vs. ζ0 plot for r = 0.00129, h2 → ∞, ω2 = 0 and h1 = 2 (left) and h1 = 5 (right)

finite values of h1, h2, ω1, ω2, and we observe that the breather span increases in
space when h1, h2, ω1, ω2 increases for air–water interface and that the breather
amplitude increases in time when h1, h2, ω1, ω2 decreases for the Boussinesq
approximation.
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Fig. 4 Gr vs. ζ0 plot for r = 0.00129 (left) and r → 1 (right)

Fig. 5 λ vs. ζ0 plot for r = 0.00129 (left) and r → 1 (right). The region above each line indicates
stable region and that of the below region indicates unstable region
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Fig. 6 |ζ(x1, t1)|/ζ̃ vs. ζ̃ (x1 − cgt1) plot for r = 0.00129, h1 → ∞, ω2 = 0 and h2 = 2 (left)
and h2 = 5 (right)

Fig. 7 |ζ(x1, t1)|/ζ̃ vs. ζ̃ (x1 − cgt1) plot for r = 0.00129, h1 → ∞, ω1 = 0 and h2 = 2 (left)
and h2 = 5 (right)

Fig. 8 |ζ(x1, t1)|/ζ̃ vs. ζ̃ (x1 − cgt1) plot for r → 1, h2 → ∞, ω2 = 0 and h1 = 1.4 (left) and
h1 = 1.5 (right)

Fig. 9 |ζ(x1, t1)|/ζ̃ vs. ζ̃ (x1 − cgt1) plot for r = 0.00129 (left) and r → 1 (right)
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Fig. 10 The Peregrine Breather for r = 0.00129, h1 → ∞, ω2 = 0 and h2 = 2, ω1 = 20 (left)
and h2 = 5, ω1 = 20 (right)

Fig. 11 The Peregrine Breather for r = 0.00129, h1 → ∞, ω1 = 0 and h2 = 3, ω2 = 0.65 (left)
and h2 = 5, ω2 = 0.65 (right)

Fig. 12 The Peregrine Breather for r = 0.00129, h1 = 2, h2 = 4, ω1 = 20, ω2 = 0.5 (right) and
r → 1, h1 = 2.3, h2 = 3.8, ω1 = 20, ω2 = 0.7 (left)

Appendix

The coefficients appearing in Eq. (21) are

α = 1

2

(
dcg

dk

)

k=1
= 1

fσ

[(σ1 + rσ2)c
2
g

+ {2σh1(1 − σ 2
1 ) + 2σrh2(1 − σ 2

2 ) − (ω2 − rω1)δ1}cg

− σ 2{σ1h21(1 − σ 2
1 ) + rσ2h

2
2(1 − σ 2

2 )}
− {(ω2 − rω1)σ + (1 − r)}(δ3 − δ4) − (1 − r)δ1],
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Fig. 13 The Peregrine Breather for r = 0.00129, h1 = 2.5, h2 = 6.5, ω1 = 25, ω2 = 0.75 (right)
and r → 1, h1 = 2.1, h2 = 3.3, ω1 = 15, ω2 = 0.69 (left)

μ = 1

2σ 3
1 σ 3

2 fσ

⎡
⎣2

{
σ 2σ 2

1 (1 − σ 2
2 ) − rσ 2σ 2

2 (1 − σ 2
1 ) + σ2σ

2
1 δ5(cg−h2ω2)

h2
− rσ1σ

2
2 δ6(cg+h1ω1)

h1

}2
c2g
h2

+ rc2g
h1

− δ7

+ {σ 2σ 2
1 (3 − σ 2

2 ) − rσ 2σ 2
2 (3 − σ 2

1 ) − ω2σ
2
1 σ2(δ5 + σ + σσ 2

2 ) − rω1(δ6 + σ + σσ 2
1 )}2

σ 2σ2 + rσ 2σ1

− 2σ 2
1 σ 2

2 (h1δ
2
5σ

2
1 + rh2δ

2
6σ

2
2 )

h1h2
− σ1σ2{4σ 2σ 3

1 (1 − 2σ 2
2 ) + 4rσ 2σ 3

2 (1 − 2σ 2
1 )

− ω2σ2σ
3
1 (4σ(1 − σ 2

2 ) − ω2σ2(1 + σ 2
2 ))

+ rω1σ1σ
3
2 (4σ(1 − σ 2

1 ) + ω1σ1(1 + σ 2
1 ))}],

δ1 = σ1h2(1 − σ 2
2 ) + σ2h1(1 − σ 2

1 ), δ2 = σ1 + h1(1 − σ 2
1 ),

δ3 = h1h2(1 − σ 2
1 )(1 − σ 2

1 ),

δ4 = σ1σ2{h21(1 − σ 2
1 ) + h22(1 − σ 2

2 )}, δ5 = 2σ − σ2ω2, δ6 = 2σ + σ1ω1,

δ7 = 1 − r + (ω2 − rω1)cg.
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