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1 Introduction

Studying the dynamics of complex multiphase, multicomponent, or hierarchical
media [1, 2], it is necessary, as a rule, to modify the classical equations of
continual mechanics in order to include additional degrees of freedom associated
with the presence of the internal structure [3–7]. Today, there is a large number
of diverse approaches enabling to take into account the influence of the structure
of media on their dynamical properties [1, 5, 8, 9]. In this paper, we employ an
approach based on the idea of interpenetrating continua [3, 10] leading to improved
models of the elastic continuum with inclusions. Previous studies of such models
have been mainly dedicated to the linear dynamics [3, 4, 6, 7], 1D problems of
wave propagation [10, 11], beam vibrations [3, 12], in particular, when physical
nonlinearity [10, 12] and spatio-temporal nonlocal effects [10, 13] were taken into
account. Expanding this approach to the 2D problems, we are going to consider the
dynamic response of a geometrically nonlinear plate containing elastic inclusions
to the action of an external periodic force and to modify along the way the
exploration methods applied for homogeneous plates [14–17]. In this way, our
studies encompass resonant, antiresonant and hysteretic phenomena, bifurcation
scenario, multi-mode and chaotic oscillations caused by the interaction of nonlinear
effects with the dynamics of oscillating inclusions.
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2 The Model for the Dynamics of Plate with Oscillating
Inclusions and Boundary Value Problem Statement

Based on the approach proposed in the works [3, 4, 12], we describe an elastic
medium with oscillatory inclusions by means of a coupled system of PDEs
responsible for the description of a bulk medium in the von Karman approximation
[14–16] and an ODE describing the dynamics of an oscillating inclusion with natural
frequency ω. The system under study takes the following form:

ρhutt + DΔΔu − h(Fyyuxx + Fxxuyy − 2Fxyuxy) = −mρhwtt (1)

+ρhΩ2γ sin Ωt,

ΔΔF = E((uxy)
2 − uxxuyy), (2)

wtt + ω2(w − u) + τω2(w − u)t = 0, (3)

where u is the plate deflection, F describes the stress field, w is the displacement
of a partial oscillator, ρ is the plate density, h is the plate thickness, γ and Ω are
the external force’s amplitude and frequency, respectively, m ρ is the mass of an
oscillating inclusion τ is the time of relaxation, Δ is the two-dimension Laplace

operator, D = E h3

12(1−ν2)
, ν is the Poisson’s ratio.

Assume that the plate is the simply supported [15, 17] on all edges of the
domain Λ = {0, a} × {0, b}. In this case, the following constrains for the mid-plane
displacements S,R hold

S = ∫ a/2
0

[
1
E

(Fyy − νFxx) − 1
2 (ux)

2
]
dx = Fxy = 0,

R = ∫ b/2
0

[
1
E

(Fyy − νFxx) − 1
2 (uy)

2
]
dy = Fxy = 0.

(4)

We are looking for the approximate solution to the boundary value problem (1)–
(4) in the following form:

u = U(t) sin
πx

a
sin

πy

b
, w = W(t) sin

πx

a
sin

πy

b
, F = U(t)2Φ(x, y).

(5)

Substituting (5) into Eq. (2), we get the equation

ΔΔΦ = Eπ4

2a2b2

(

cos
2πx

a
+ cos

2πy

b

)

. (6)

The solution to this equation takes the form

Φ = px

2

(

y − b

2

)2

+ py

2

(
x − a

2

)2 + φ01 cos
2πx

a
+ φ10 cos

2πy

b
,
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where

φ01 = a2E

32b2
, φ10 = b2E

32a2
.

From the boundary conditions (4) we can determine the remaining coefficient as
follows:

px = Eπ2(b2 + a2ν)

8a2b2(1 − ν2)
, py = Eπ2(a2 + b2ν)

8a2b2(1 − ν2)
. (7)

Inserting expressions (5) into Eqs. (1), (3) and excluding Φ, we finally get the
system of ODEs:

U ′′ + μ1U + μ4U
3 + μ2W

′′ = μ3Ω
2γ sin Ωt,

W ′′ + ω2(W − U) + ω2τ(W ′ − U ′) = 0,
(8)

where μ1 = Dπ4(a2+b2)2

ρha4b4 , μ2 = m, μ3 = 16
π2 , μ4 = Eπ4

16ρa4b4(1−ν2)
(4νa2b2 + (3 −

ν2)(a4 + b4)). Note that dependence of μ1 and μ4 on plate size allows one to avoid
strong constraints concerning parameter selection. Thus, in the system obtained the
parameter μ2 is regarded as a coupling parameter, μ4 characterizes the nonlinearity.
We also use the scaling Ω t → t , allowing to eliminate the dependence of the
external disturbance on the frequency Ω:

U ′′ + μ1
Ω2 U + μ2W

′′ + μ4
Ω2 U3 = μ3γ sin t,

W ′′ + ω2

Ω2 (W − U) + ω2 τ
Ω

(W ′ − U ′) = 0.
(9)

Note that the first equation of the system (9) coincides with the classical Duffing
equation as μ2 = 0. So we can expect that the whole system inherits some
features of this equation. Of interest is the question of what additional properties
demonstrates the system under consideration.

3 Model’s Multiharmonic Solutions and Their Stability

At first we consider solutions which can be approximated by the trigonometric
functions. To do this, the harmonic balance method is utilized. Since the system
(9) contains cubic term, the approximate solution possesses the third harmonic
in its Fourier expansion. In spite of its smallness, it should be incorporated into
the approximation, for this helps to reduce the deviation of phase portrait in the
(U,U ′) plane from elliptic shape and avoid the discrepancy between numerical and
analytical results. Thus, we are looking for a solution to (9) in the following form:
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U(t) = U1 + U3, W(t) = W1 + W3, (10)

where Uj = cj sin j t + dj cos j t , Wj = sj sin j t + qj cos j t , j = 1, 3 are the first
and third Fourier harmonics, the parameters cj , dj , sj , and qj are constants.

Substituting formula (10) into the system (9), multiplying the obtained relations
in turn by sin t , cos t , sin 3t or cos 3t and then integrating in the interval (0, 2 π),
we obtain the following formulas relating hitherto undefined coefficients:

3c3
1μ4 − 3c2

1c3μ4 + 3d2
1c3μ4 − 4(s1μ2 + γμ3)Ω

2

+c1(4μ1 + 3(d2
1 − 2d1d3 + 2(c2

3 + d2
3 ))μ4 − 4Ω2) = 0,

3d3
1μ4 − 3c2

1d3μ4 + 3d2
1d3μ4 − 4q1μ2Ω

2

+d1(4μ1 + 3(c2
1 + 2c1c3 + 2(c2

3 + d2
3 ))μ4 − 4Ω2) = 0,

4c3μ1 − c1(c
2
1 − 3d2

1 )μ4 + 3c3(2c2
1 + 2d2

1 + c2
3 + d2

3 )μ4 = 36(c3 + s3μ2)Ω
2,

4d3μ1 − d1(3c2
1 − d2

1 )μ4 + 3d3(2c2
1 + 2d2

1 + c2
3 + d2

3 )μ4 = 36(d3 + q3μ2)Ω
2.

(11)

The second equation of the system (9) yields the explicit relations for the
quantities s1, q1 and s3, q3:

s1 = ω2(d1Ω
3τ+c1(ω

2+Ω2(−1+ω2τ 2)))

(Ω2−ω2)2+Ω2ω4τ 2 , q1 = ω2(−c1Ω
3τ+d1(ω

2+Ω2(−1+ω2τ 2)))

(Ω2−ω2)2+Ω2ω4τ 2 ,

s3 = ω2(27d3Ω
3τ+c3(ω

2+9Ω2(−1+ω2τ 2)))

(9Ω2−ω2)2+9Ω2ω4τ 2 ,

q3 = ω2(−27c3Ω
3τ+d3(ω

2+9Ω2(−1+ω2τ 2)))

(9Ω2−ω2)2+9Ω2ω4τ 2 .

(12)

Thus, taking into account Eqs. (12), we can reduce the system (11) to the
cubic polynomial equations with respect to the parameters c1, d1, c3, and d3 only.
Fixing all the parameters but Ω and solving the system obtained, we evaluate the
amplitudes of the first and the third harmonics. To reveal the general features of
amplitude curves, let us specify the parameters as follows: μ1 = 0.4, μ2 = 0.15,
μ4 = 1.0, ω = 0.65, τ = 0.05, γ = 0.3. The plate natural frequencies derived from
the linearized problem are 0.526 and 0.781.

Fig. 1a, b exhibits the amplitude curve describing the maximal values of the first

harmonic, i.e., max{c1 sin t + d1 cos t} = max U1 =
√

c2
1 + d2

1 , when the parameter
Ω grows. The local minimum, appeared in the vicinity of Ω = ω, resonant peak,
and hysteretic behavior are presented in Fig. 1a. At Ω > ω (Fig. 1b), there are two
separated branches of amplitude curves.

Fig. 1c, d presents max{c3 sin 3t + d3 cos 3t} = max U3 =
√

c2
3 + d2

3 as a function
of the parameter Ω . Note that the local minimum (antiresonance) is located at ω/3,
and two local maxima appear at 0.176 and 0.262.
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Fig. 1 The amplitude curves of the first harmonic (a, b) and the third harmonic (c, d). The insets
exhibit detailed shape of the amplitude curves in the intervals with hysteresis

In studying the scenario of system’s evolution, it is important to investigate the
stability of solutions (10). To do this, consider the evolution of small deviations from
the functions U0(t), W0(t) satisfying the system (9)

U(t) = U0(t) + ũ(t),W(t) = W0(t) + w̃(t). (13)

Inserting (13) into (9) and dropping out the higher-order terms, we get the
following linear system:

ũ′′ + μ1
Ω2 ũ + μ2w̃

′′ + μ4
Ω2 3U2

0 ũ = 0, w̃′′ + ω2

Ω2 (w̃ − ũ) + ω2 τ
Ω

(w̃′ − ũ′) = 0.

(14)

Now we use the ansatz

ũ = eλtϕ, w̃ = eλtψ,

which being inserted into (14) produces the following system:

λ2ϕ + 2λϕ′ + ϕ′′ + μ1
Ω2 ϕ + μ2(λ

2ψ + 2λψ ′ + ψ ′′) + μ4
Ω2 3U2

0 ϕ = 0,

λ2ψ + 2λψ ′ + ψ ′′ + ω2

Ω2 (ψ − ϕ) + ω2 τ
Ω

(λψ + ψ ′ − λϕ − ϕ′) = 0.
(15)
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Suppose that the solution of the system (15) can be found in the form

ϕ = sin nt + α1 cos nt, ψ = α2 sin nt + α3 cos nt, (16)

where αi = const , i = 1, 2, 3; n ∈ N .
First we restrict ourself to the case n = 1. Inserting (16) into (15) and equating

the coefficients of cos t and sin t to zero, the algebraic system with respect to αi and
λ can be cast:

α1λ
2 + 2λ − α1 + μ2

(
α3λ

2 + 2α2λ − α3

)
+ α1μ1

Ω2

+ 3μ4

4Ω2

(
c2

1α1 + 2d1c3 + 2c1(d1 + α1c3 − d3)

+α1(3d2
1 + 2d1d3 + 2(c2

3 + d2
3 ))

)
= 0,

λ2 − 2α1λ − 1 + μ2

(
α2λ

2 − 2α3λ − α2

)
+ μ1

Ω2

+ 3μ4

4Ω2

(
3c2

1 + d2
1 + 2d1(α1c3 − d3) + 2(c2

3 + d2
3 )

−2c1(c3 + (d3 − d1)α1)) = 0,

α2λ
2 − 2α3λ − α2 +

( ω

Ω

)2
[α2 − 1] + ω2

Ω
τ [α1 − α3 + λ(α2 − 1)] = 0,

α3λ
2 + 2α2λ − α3 +

( ω

Ω

)2
[α3 − α1] + ω2

Ω
τ [α2 − 1 + λ(α3 − α1)] = 0.

(17)

Thus, each point of the amplitude curve depicted in Fig. 1 should be analyzed
concerning its stability. Using the λ solutions of system (17), the stability of two-
harmonic solution (10) is estimated. The resulting curve partitioning presented in
Fig. 2 contains several bifurcation points. To validate the analytical findings, the
results of numerical simulations (Fig. 2, solid red line) of parent system (9) at
increasing Ω are presented as well. It is evident that two-harmonic approximation
(10) fits the numerical periodic solutions, producing the smooth amplitude curve,
very good. The upper and lower branches forming the hysteretic transition corre-
spond to stable modes, whereas the middle one relates to the unstable movements.
This is quite common case for hysteretic zones, whereas at larger forcing frequency
Ω the two zones with unstable solutions are appeared.

When we fix Ω = 0.673 belonging to the unstable zone, the Fourier spectrum of
numerical solution shows the presence of forcing frequency Ω , additional frequency
Ω1 = 0.822Ω , and combination frequency 2Ω − Ω1 = 1.178Ω (Fig. 2, lower
inset). From this it follows that two-dimensional torus exists in the phase space. It is
interesting that the stable numerical solution has the same amplitude as the unstable
mode of (10).
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Fig. 2 Stability of two-harmonic solution (10). The marks “diamond” stand for stable modes,
the marks “bullet” correspond to unstable modes. Blue marks and solid red curve correspond to
the analytical and numerically derived amplitude curves, respectively. Insets represent the Fourier
spectra of the numerical solutions derived at Ω = 0.673 (lower inset) and Ω = 0.8 (upper inset).
The value f = 1 stands for the forcing frequency Ω

If we fix Ω = 0.8 from the stable zone, the solution’s Fourier spectrum contains
two maxima located at forcing frequency Ω and its tripled 3Ω that corresponds to
two-harmonic solution (10).

Thus, in the stability zones, the bi-harmonic solution (10) describes the oscilla-
tion modes quite well. But when it losses the stability, the quasiperiodic oscillations
with different number of partial and combination frequencies are realized. This
produces the irregular deviations from the amplitude curve derived on the basis of
solution (10).

4 The Structure of Solutions Approximated by the Four
Harmonics

The careful observation of resonant peak with hysteretic zone shows the unstable
solution existence at the top of curve. It is reasonable to assume that in case when the
two-harmonic solution becomes unstable, the stable regime, enriched by additional
harmonics, appears. To describe such a solution, we use the following expression

U(t) = z1 +
4∑

j=1

Uj(t), W(t) = z1 +
4∑

j=1

Wj(t), z1 = const. (18)
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Fig. 3 Comparison of two- (lower curve) and four-harmonic (upper curve) solutions at μ2 = 0.15

By analogy, inserting this expression into the system (9), the algebraic system with
respect to the coefficients is obtained. The resulting amplitude curve at the same
parameters as in Fig. 2 is drawn in Fig. 3. So, there is a bifurcational point where
solution (18) is cleaved from the two-harmonic regime, which in turn becomes
unstable as it is shown in Fig. 2.

5 Additional Numerical Studies of System (9)

As is shown in Fig. 2, the periodic solutions of the system (9) can be described
in detail by different finite harmonic approximations. When the forcing frequency,
nonlinearity (μ4) and connectivity (μ2) are large, it is instructive to supplement the
studies by numerical simulations.

The numerical simulations show that when Ω = O(1), in particular, if Ω = 1.6,
the coexistence of periodic and more complex attractors is encountered. Starting
from the complex regime and varying Ω , the amplitude curve for this regime is
plotted in Fig. 4a.

When we double the parameter μ2, i.e., take μ2 = 0.3, and derive the amplitude
curves in the same manner, Fig. 4b is obtained. It is observed the increasing of
irregularity which is most clear exposed in the vicinity of the resonant peak.
The essential separation of zones with different quasiperiodic regimes is seen as
well. Auxiliary information on the structure of solutions and their bifurcations
can be obtained from the analysis of Poincare sections. Since the model (9) is
the harmonically forced system, the Poincare section is defined as a set of points
U(tj ) : tj = 2πj , j = 1, . . . , N . Varying Ω and omitting transient processes, the
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Fig. 4 The amplitude curves at μ2 = 0.15 (a) and μ2 = 0.30, when the parameter Ω increases
from the leftmost point (blue points) and varies from the value Ω = 1.6 (red line)
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Fig. 5 The bifurcational diagrams at μ2 = 0.15 (a) and μ2 = 0.3, blue points correspond to
the increasing Ω from the leftmost point (b). The letters stand for the Poincare sections presented
below

bifurcation diagrams depicted in Fig. 5 are derived at μ2 = 0.15; 0.3. The way of
diagram construction is the same to that employed when obtaining Fig. 4.

To find out the fine structure and types of existing regimes, the Poincare
sections are analyzed in more detail. Specifying the values of forcing frequency
Ω = 1; 1.3; 1.55 and μ2 = 0.15, at which the complex regimes exist, the
Poincare sections (Fig.6a) are derived. Closed forms of the sections tell us about
the implementation of quasiperiodic regimes. Furthermore, the doubling torus
bifurcation is observed (curve C at Ω = 1.55).

Figure 6b exhibits the Poincare sections of the complex regimes at μ2 = 0.3.
It follows from the diagrams presented that there are three types of quasiperiodic
attractors in the given interval of values of the parameter Ω .
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Fig. 6 The Poincare sections at (a): Ω = 1 (A); 1.3 (B); 1.55 (C); (b) Ω = 0.8 (A); 0.95 (B,
hidden attractor); 1.0 (C); 1.55 (D). The location of Poincare sections is marked in Fig. 5

6 Conclusions

From the results presented above the following conclusions can be made:

• the approximate solution comprised of the first and third Fourier harmonics
illustrates well enough some features of the dynamics of von Karman plate with
inclusions for wide values of forcing frequency and measure of nonlinearity.
Moreover, its stability allows one to estimate correctly the bifurcational values
of forcing frequency;

• when two-harmonic solution is unstable, different scenarios of system’s evolution
are observed. It is shown, in particular, that the stable four-harmonic regime
forming the resonant maximum is developed. Unstability of two-harmonic
solution also gives rise to the quasiperiodic regime existence;

• incorporation of inclusions’ dynamics causes the appearance of additional natural
frequencies in the medium, the development of additional regimes and scenario,
increasing the hysteretic window.

It is worth noting also that the results outlined above can be useful for improving
the ultrasonic diagnostics methods [2, 8], new material (acoustic metamaterial)
production [16], as well as in the development of vibro-protection [9, 18] and other
civil engineering structures [7].
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