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1 Introduction

The ongoing coronavirus disease 2019 (COVID-19) is the first global pandemic
caused by a coronavirus. As of 2:45 pm CEST, September 5th, 2020, a total of
26,468,031 cases of new coronary pneumonia have been diagnosed worldwide,
with a total of 871,166 deaths, of which 91 countries have confirmed cases over
10,000 [1]. At present, the epidemic has been controlled in China, but it is still
spreading around the world, so fighting the epidemic is still the top priority. As of
September 23th, 2020, Brazil has reported 4,624,885 confirmed cases [2], ranking
third globally and still rising. Before the successful development of new drugs
and vaccines, intense non-pharmaceutical interventions are particularly necessary
to stop the transmission of COVID-19.

The mathematical model can help understand the nature of outbreaks and plan
effective control strategies [3–6]. Many complicated mathematical models have
been used to study asymptomatic infections of other infectious diseases [7–9].
These models reveal that changing the proportion of asymptomatic individuals
affects mitigation strategies and thus changes the course of the epidemic. There
is evidence that asymptomatic and mildly symptomatic individuals are infectious
and can promote the rapid spread of the COVID-19 epidemic [10, 11]. For example,
the isolation of asymptomatic cases by large-scale testing has led to a rapid decline
in the number of new cases in Italian villages [12], indicating that asymptomatic
individuals are somewhat infectious. Therefore, asymptomatic individuals should
be considered when predicting epidemic trends and evaluating the effectiveness of
confinement strategies. If social isolation is combined with individuals, the test-
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track-isolation strategy will effectively control the epidemic. Particularly, Giordano
et al. considered whether the infected person had been diagnosed and the severity
of their symptoms and proposed a model with eight infection stages [13]. Because
diagnosed individuals are typically isolated, non-diagnosed individuals are more
infectious. They found that this distinction helps explain misperceptions about the
spread of the COVID-19. The SIDARTHE model distinguishes different groups
related to epidemics’ evolution and considers more comprehensively than the SEIR
model.

COVID-19 is caused by the infection of the coronavirus SARS-COV-2. Due to
the lack of reliable information on the duration of the virus’s acquired immunity,
the risk of a surge in infection cannot be assessed [14]. A recent study shows that
antibodies to the virus may only last for two months, which has caused speculation
that its immunity may not exist for a long time [15]. There are also other studies that
reinfection after recovery most often occurs 12 months after infection, indicating
that acquired immunity is only short-lived. Particularly, antibodies rapidly decay
in mild cases [16, 17]. Therefore, the loss of acquired immunity should be truly
considered as a more realistic model. Nevertheless, Giordano et al. [13] omitted the
impact of the acquired immunity loss. Motivated by the above discussion, we derive
a modified SIDARTH model by introducing the acquired immunity loss.

The organization of this chapter is as follows. In Sect. 2, we present the
modified SIDARTH model. Section 3 analyzes the global stability of the disease-
free equilibrium and the endemic equilibrium by Lyapunov–LaSalle techniques and
graph theory. In Sect. 4, we fit the data from Brazil to analyze the model and perform
sensitivity analysis on the parameters. In the end, some concluding remarks are
presented to close this chapter in Sect. 5.

2 Model and Preliminaries

2.1 Modified SIDARTH Model

Our model is extended from the work of Giordano et al. [13] but different in the
following aspects: we consider the impact of acquired immunity loss; for the sake of
convincing in dynamical analysis, we adopt the standard incidence rate and include
the recruitment rate Λ and the natural death χ into the model; considering that the
mortality rate of the disease is much smaller than the cure rate, we ignore the death
rate of diseases. Therefore, the total population of individuals N(t) is divided into
seven different epidemic components as shown in Fig. 1. The modified SIDARTH
model is as follows:
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Fig. 1 Flow chart of the improved SIDARTH model
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dS
dt

= Λ + ωH − (αI + βD + γA + δR) S
N

− χS
dI
dt

= (αI + βD + γA + δR) S
N

− (ε + ζ + λ + χ)I
dD
dt

= εI − (η + ρ + χ)D
dA
dt

= ζ I − (θ + μ + κ + χ)A
dR
dt

= ηD + θA − (ν + ξ + χ)R
dT
dt

= μA + νR − (σ + χ)T
dH
dt

= λI + ρD + κA + ξR + σT − (χ + ω)H,

(1)

where ω is the acquired immunity loss rate. Other parameters and their description
can be found in Ref. [13] or Table 1. The above seven components are explained as
follows:

• S: The class of susceptible (uninfected)
• I : The class of infected (asymptomatic infected, undetected)
• D: The class of diagnosed (asymptomatic infected, detected)
• A: The class of ailing (symptomatic infected, undetected)
• R: The class of recognized (symptomatic infected, detected)
• T : The class of threatened (infected with life-threatening symptoms, detected)
• H : The class of healed

Since N(t) = S(t) + I (t) + D(t) + A(t) + R(t) + T (t) + H(t), then

dN

dt
= Λ − χN �⇒ lim

t→∞ supN ≤ Λ

χ
.
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Table 1 Parameters of the model

Parameter Description Fitted value

α Transmission rate between S and I 0.3328

β, δ Transmission rate between S and D, between S and A 0.0046

γ Transmission rate between S and R 0.1798

ε Probability rate of asymptomatic detection 0.0849

ζ , η Probability rate of symptoms in I , D 0.0184

λ, ρ Recovery rate of I , D 0.2214

θ Probability rate of symptomatic detection 0.3954

μ The rate of life-threatening symptoms of A 0.0433

κ , ξ , σ Recovery rate of A, R, T 0.0102

ν The rate of life-threatening symptoms of R 0.0801

τ Mortality rate 0.0032

Hence, the feasible region of the model (1) remains in a bounded positive invariant
set Γ :

Γ =
{

(S, I,D,A,R, T ,H) ∈ R7+ : 0 < S + I + D + A + R + T + H ≤ Λ

χ

}

.

2.2 Basic Reproduction Number

The basic reproduction number R0 is the key threshold parameter, which can
determine whether the infectious disease will die out or spread through the
population with time increases. Here, we calculate it through the next-generation
matrix method. The infection components in this model are I , D, A, and R. The
new infection compartment F and the transition terms V are given by

F =

⎛

⎜
⎜
⎝

(αI + βD + γA + δR) S
N

0
0
0

⎞

⎟
⎟
⎠ ,V =

⎛

⎜
⎜
⎝

(ε + ζ + λ + χ)I

(η + ρ + χ)D − εI

(θ + μ + κ + χ)A − ζ I

(ν + ξ + χ)R − ηD − θA

⎞

⎟
⎟
⎠ .

The Jacobian matrices F and V for F and V at the disease-free equilibrium point
(Λ

χ
, 0, 0, 0, 0, 0, 0) are, respectively, given by

F =

⎛

⎜
⎜
⎝

αS0
N

βS0
N

γS0
N

δS0
N

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,
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V =

⎛

⎜
⎜
⎝

ε + ζ + λ + χ 0 0 0
−ε η + ρ + χ 0
−ζ 0 θ + μ + κ + χ 0
0 −η −θ ν + ξ + χ

⎞

⎟
⎟
⎠ .

The R0 is defined as the spectral radius of the next-generation matrix FV −1 [18]:

R0 = ρ(FV −1)

= 1

ε + ζ + λ + χ
(α + βε

η + ρ + χ
+ γ ζ

θ + μ + κ + χ

+ δεη(θ + μ + κ + χ) + δζθ(η + ρ + χ)

(η + ρ + χ)(θ + μ + κ + χ)(ν + ξ + χ)
).

Notice that theR0 consists of four parts, representing the four modes of transmission
of the coronavirus.

3 Stability Analysis

The equilibrium points will provide long-term dynamic information about the epi-
demic. The model (1) has two equilibrium points: one is the disease-free equilibrium
(DFE) P0 = (Λ

χ
, 0, 0, 0, 0, 0, 0), which exists for all parameter values, and the

second is the endemic equilibrium point (EE) P ∗ = (S∗, I ∗,D∗, A∗, R∗, T ∗,H ∗),
which is a positive solution of the following system:

Λ + ωH ∗ − (αI ∗ + βD∗ + γA∗ + δR∗) S∗
N

− χS∗ = 0
(αI ∗ + βD∗ + γA∗ + δR∗) S∗

N
− (ε + ζ + λ + χ)I ∗ = 0

εI ∗ − (η + ρ + χ)D∗ = 0
ζ I ∗ − (θ + μ + κ + χ)A∗ = 0
ηD∗ + θA∗ − (ν + ξ + χ)R∗ = 0
μA∗ + νR∗ − (σ + χ)T ∗ = 0
λI ∗ + ρD∗ + κA∗ + ξR∗ + σT ∗ − (χ + ω)H ∗ = 0.

(2)

We can get

D∗ = εI∗
η+ρ+χ

,A∗ = ζ I∗
θ+μ+κ+χ

, R∗ = ηD∗+θA∗
ν+ξ+χ

, T ∗ = μA∗+νR∗
σ+χ

,

H ∗ = 1
χ+�

(
λI ∗ + ρ εI∗

η+ρ+χ
+ κ

ζI∗
θ+μ+κ+χ

+ ξ
ηD∗+θA∗
ν+ξ+χ

+ σ
μA∗+νR∗

σ+χ

)
:= φI ∗,

S∗ = N
R0

, I ∗ = Λ
ε+ζ+λ+χ−ωφ

R0−χN/Λ
R0

.

(3)



30 Y. Ding and Y. Kang

For convenience, we may assume that birth and natural death are balanced (i.e.,
Λ = χN holds). Thus, we can conclude that when R0 > χN/Λ > 1, the model (1)
has the unique EE P ∗.

3.1 Global Stability Analysis of the Disease-Free Equilibrium

In this section, the global asymptotic stability of the disease-free equilibrium for
model (1) is discussed by a matrix-theoretic method.

Theorem 1 The disease-free equilibrium P0 = (Λ
χ

, 0, 0, 0, 0, 0, 0) of model (1) is
globally asymptotically stable if R0 ≤ 1 or unstable if R0 > 1.

Proof We employ the method described in Ref. [19] to construct a Lyapunov
function. Let x = (I,D,A,R)T and f (x, S) := (F − V )x − F(x, S) + V(x, S);
then for the disease, compartments can be written as

x′ = (F − V )x − f (x, S).

Let wT ≥ 0 be the left eigenvector of the matrix V −1F corresponding to the
eigenvalue ρ(V −1F) = ρ(FV −1) = R0. It is obvious that F ≥ 0, V −1 ≥ 0,
and V −1F is non-negative and irreducible. We construct a Lyapunov function

L = wT V −1x.

Along the trajectories of system (1), we have

dL

dt
= wT V −1x′ ≤ wT V −1((F − V )x) = wT (R0 − 1)x,

and when R0 ≤ 1, we see dL
dt

≤ 0, and if dL
dt

= 0 implies that x = 0, i.e., I =
D = A = R = T = H = 0, S = S0. Hence, if R0 ≤ 1, the invariant set on
which dL

dt
≤ 0 contains only point x0. By LaSalle’s invariance principle [20], P0 is

globally asymptotically stable.
If R0 > 1, dL

dt
> 0 provided x > 0. From the continuity of the vector field in the

neighborhood of P0, we conclude that dL
dt

> 0, which means that P0 is unstable. ��

3.2 Global Stability Analysis of the Endemic Equilibrium

To study the global stability of the endemic equilibrium, we use a graph-theoretic
method of Ref. [19]. Next, we give the basic knowledge of graph theory. For a more
detailed discussion, see Ref. [21].
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A directed graph (digraph) G = (V ,E) contains a set V = 1, 2, . . . , n of
vertices and a set E of arcs (i, j) leading from initial vertex i to terminal vertex
j . The in degree d−(i) is the number of arcs in G whose terminal vertex is i, and the
out degree d+(i) is the number of arcs whose initial vertex is i. Given a weighted
digraph G with n vertices, define the n × n weight matrix A = [aij ] with entry
aij > 0 equal to the weight of arc (j, i) if it exists and aij = 0 otherwise. We
denote such a weighted digraph by (G, A).

Theorem 2 If R0 > 1, the unique endemic equilibrium P ∗ = (S∗, I ∗,D∗, A∗, R∗,
T ∗,H ∗) of model (1) is globally asymptotically stable.

Proof Set

V1 = I − I ∗ − I ∗ log I

I ∗ , V2 = D − D∗ − D∗ log D

D∗ ,

V3 = A − A∗ − A∗ log A

A∗ , V4 = R − R∗ − R∗ log R

R∗ .

Differentiating along (1) and using formula (2) to get

dV1

dt
=

(

1 − I ∗

I

)

((αI + βD + γA + δR)
S

N
− (ε + ζ + λ + χ)I)

≤ − α

N
(I − I ∗)2 − βD

(I − I ∗)2

IN
− γA

(I − I ∗)2

IN
− δR

(I − I ∗)2

IN

+ βD∗ (Λ
χ

− I ∗)
N

(
D

D∗ − DI ∗

ID∗ − I

I ∗ + 1

)

+ γA∗ (Λ
χ

− I ∗)
N

(
A

A∗ − AI ∗

IA∗ − I

I ∗ + 1

)

+ δR∗ (Λ
χ

− I ∗)
N

(
R

R∗ − RI ∗

IR∗ − I

I ∗ + 1

)

.

Since 1 − x + ln x ≤ 0 for x > 0, we get

dV1

dt
≤ βD∗

(
D

D∗ − ln
D

D∗ − I

I ∗ + ln
I

I ∗

)

+ γA∗
(

A

A∗ − ln
A

A∗ − I

I ∗ + ln
I

I ∗

)

+ δR∗
(

R

R∗ − ln
R

R∗ − I

I ∗ + ln
I

I ∗

)

:= a12G12 + a13G13 + a14G14,
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where

a12 = βD∗,G12 = D

D∗ − ln
D

D∗ − I

I ∗ + ln
I

I ∗ ,

a13 = γA∗,G13 = A

A∗ − ln
A

A∗ − I

I ∗ + ln
I

I ∗ ,

a14 = δR∗,G14 = R

R∗ − ln
R

R∗ − I

I ∗ + ln
I

I ∗ .

dV2

dt
=

(

1 − D∗

D

)

(εI − (η + ρ + χ)D)

≤ εI ∗
(

I

I ∗ − D

D∗ − ln
I

I ∗ + ln
D

D∗

)

.

:= a21G21,

where

a21 = εI ∗,G21 = I

I ∗ − D

D∗ − ln
I

I ∗ + ln
D

D∗ .

dV3

dt
=

(

1 − A∗

A

)

(ζ I − (θ + μ + κ + χ)A)

≤ ζ I ∗
(

I

I ∗ − A

A∗ − ln
I

I ∗ + ln
A

A∗

)

.

:= a31G31,

where

a31 = ζ I ∗,G31 = I

I ∗ − A

A∗ − ln
I

I ∗ + ln
A

A∗ .

dV4

dt
=

(

1 − R∗

R

)

(ηD + θA − (ν + ξ + χ)R)

= ηD∗
(

D

D∗ − DR∗

D∗R
− R

R∗ + 1

)

+ θA∗
(

A

A∗ − AR∗

A∗R
− R

R∗ + 1

)

≤ ηD∗
(

D

D∗ − R

R∗ − ln
D

D∗ + ln
R

R∗

)

+ θA∗
(

A

A∗ − R

R∗ − ln
A

A∗ + ln
R

R∗

)

.

:= a42G42 + a43G43,
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Fig. 2 The weighted digraph
(G, A) constructed for the
model (1)

where

a42 = ηD∗,G42 = D

D∗ − R

R∗ − ln
D

D∗ + ln
R

R∗ ,

a43 = θA∗,G43 = A

A∗ − R

R∗ − ln
A

A∗ + ln
R

R∗ .

The associated weighted digraph (G, A) has four vertices and four cycles in
Fig. 2. Simple calculations yield:

G12 + G21 = 0,G13 + G31 = 0,G14 + G31 + G43 = 0,G14 + G21 + G42 = 0.

Thus, there exist ci(i = 1, 2, 3, 4) such that V = Σ4
i=1ciVi is a Lyapunov function

satisfying dV
dt

≤ 0. Since d−(2) = 1, d−(3) = 1 and d+(4) = 1, we can calculate

that c2 = c1(
βD∗
εI∗ + δR∗

εI∗(ηD∗+θA∗)ηD∗), c3 = c1(
γA∗
ζ I∗ + δR∗

ζ I∗(ηD∗+θA∗) θA∗) and

c4 = c1δR
∗

ηD∗+θA∗ . We choose c1 = 1, and then one can verify that

dV

dt
= c1

dV1

dt
+ c2

dV2

dt
+ c3

dV3

dt
+ c4

dV4

dt
≤ 0,

dV
dt

= 0 ⇐⇒ (S, I,D,A,R, T ,H) = P ∗ is the only invariant set in int(Γ ),
obviously. Hence, by LaSalle’s invariance principle [20], the EE P ∗ of system (2)
is globally asymptotically stable. ��

4 Numerical Analysis of COVID-19 in Brazil

4.1 Parameters Estimation and Numerical Verification of
Stability

The numerical analysis is based on the available data of the Ministry of Health
of Brazil from July 5th, 2020 (day 1) to August 10th, 2020 (day 37) (diagnosed
cumulative infected (D + T + R + E + ∫ t

0 [ρD(s) + ξR(s) + σT (s)]ds), and
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Fig. 3 (a) Brazil: reported vs. diagnosed cases of infection. The ordinate axis takes logarithmic
form. (b–c) Comparison of model predictions and the official data from August 11th to September
3th, 2020: diagnosed cumulative infected and diagnosed recovered

diagnosed current total infected (D + T + R), diagnosed recovered (
∫ t

0 [ρD(s) +
ξR(s) + σT (s)]ds)) [2]. The life expectancy in Brazil is approximately 76.6 [22].
Clearly, we can obtain that the natural death rate χ = 3.5767 × 10−5 per day. Λ

is approximately estimated as 2.117 × 108 × χ ≈ 7572. Next, we use the non-
linear least-squares fitting function (lsqcurvefit) to minimize the following formula
to evaluate other unknown parameters of the model (1) [23]:

Σn
i=1(F (x, xdatai) − ydatai)

2,

where xdata and ydata are the given data points. The deterministic model is
numerically solved by the Runge–Kutta method. Thus, the parameters of the model
can be estimated as shown in Table 1. The reported and predicted number of various
infections in Brazil is shown in Fig. 3a, which shows a good fitting effect.

In order to further verify the accuracy of the prediction, we collect the number of
diagnosed cumulative infections and the number of diagnosed recovered individuals
officially reported by Brazil fromAugust 11th to September 3th, 2020 and compared
them with the corresponding data predicted by the model in Fig. 3b and c. It can be
seen that the model generally captures the short-term trend of COVID-19, but the
long-term prediction requires appropriate adjustment of parameters according to
changes in government strategies and medical levels.

So far, the secondary infection due to loss of acquired immunity is a sporadic phe-
nomenon. Therefore, to obtain more accurate fitting parameters, we first assumed
the immunity loss rate ω = 0 in the above fitting process. If the loss of acquired
immunity is considered, assume that ω = 0.1. Now we verify the global stability
analysis result of the equilibrium points using Theorems 1 and 2 in Sect. 3. First, we
use the above ω value, other parameters are shown in Table 1, and we can calculate
R0 = 1.0577 > 1, so EE is globally asymptotically stable; second, we reduce α

from 0.3372 to 0.2 and get R0 = 0.6418 < 1, so DFE is globally asymptotically
stable. Figure 4 supports our analysis results.
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Fig. 4 The paths of I (t), D(t), A(t), and R(t) around the DFE (a) and the EE (b)

4.2 Sensitivity Analysis

Sensitivity analysis is used to determine the robustness of the parameter values
predicted by the model. The sensitivity index allows us to measure the relative
change of the basic reproduction number R0 when the parameter changes, so as to
formulate a prevention and control strategy based on the parameter. Here, according
to Ref. [24], the normalized sensitivity index of R0 relative to α is

Υ R0
α = ∂R0

∂α
× α

R0
= 0.9663,

and the sensitivity index of R0 to other parameters can also be calculated as follows:

Υ
R0
β = 0.0023, Υ R0

γ = 0.0288, Υ R0
δ = 0.0026, Υ R0

ε = −0.2428,

Υ
R0
ζ = −0.0430, Υ R0

η = 4.0691e − 04, Υ R0
θ = −0.0248, Υ R0

μ = −0.0030,

Υ R0
ρ = −0.0027, Υ R0

ξ = −4.7017e−04, Υ R0
κ = −0.0011, Υ R0

χ = −1.1258e−04.

Thus, it can be concluded that R0 is positively correlated with α, β, γ , δ, η, and
negatively correlated with ε, ζ , θ , μ, ρ, ξ , κ , χ .

We specifically analyze the sensitivity of transmission parameters (α, β, γ ,
δ) and detection parameters (ε, θ) related to strategy formulation as shown in
Fig. 5(a–f). Interestingly, increasing α and ε will significantly increase and decrease
the number of current total infected (I + D + A + R + T ), indicating that the
model is more sensitive to changes in α and ε. Similarly, adding other transmission
parameters will also increase the number of current total infected, and increasing
θ will reduce the number of current total infected, but the sensitivity is relatively
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Fig. 5 (a–f) Sensitivity analysis with respect to transmission parameters (α, β, γ , δ) and detection
parameters (ε, θ ). (g) Current total infected (I + D + A + R + T ) at different immunity loss rates
ω after day 120. Other parameters are taken from Table 1
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small. These simulation results are generally consistent with the corresponding
sensitivity index. The above analysis shows that policymakers can effectively reduce
the number of infections by enforcing social isolation and distancing measures, and
strengthening testing and contact tracing.

Next, we analyze the impact of acquired immunity loss. We add the acquired
immunity loss item to the epidemic mentioned above prediction after day 120 to
simulate the number of diagnosed current total infected. As shown in Fig. 5g, with
the addition of ω, a new wave of infections will appear, and the number of infections
is positively correlated with ω. Effective vaccination can reduce this hidden danger
and achieve long-term immunity.

5 Conclusions

We apply a SIDARTHE model to analyze the COVID-19 outbreak. After cal-
culating the basic reproduction number by the generation matrix method, we
cleverly established the global stability of the equilibrium points by combining
the Lyapunov–LaSalle techniques and graph theory. Particularly, by fitting the
available data of COVID-19 from Brazil, we estimated the model’s parameters
and compared the official data with the model’s prediction to illustrate the latter’s
effectiveness. Our main findings can be summarized as follows: (1) the DFE is
globally asymptotically stable if R0 ≤ 1 or unstable if R0 > 1, and the unique
EE is globally asymptotically stable if R0 > 1; (2) through sensitivity analysis,
reducing the infection coefficient (α, β, γ , δ) and increasing the detection coefficient
(ε, θ) play a crucial role in disease control; (3) the loss of acquired immunity
might result in another wave of infection. In short, the test-track-isolation strategy
and vaccination are effective methods for controlling the epidemic. We believe this
research should contribute to continuous monitoring and intervention measures to
control the global COVID-19 outbreak.
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