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Preface

This volume is part of three volumes collecting the Proceedings of the Second
International Nonlinear Dynamics Conference (NODYCON 2021) held as a virtual
(online) conference, February 16-19, 2021. NODYCON was launched in 2019 to
foster the tradition of the conference series originally established by Prof. Ali H.
Nayfeh in 1986 at Virginia Tech, Blacksburg, VA, USA, as the Nonlinear Vibrations,
Stability and Dynamics of Structures Conference. With the passing in 2017 of Prof.
Nayfeh, NODYCON 2019 was organized as a collective tribute to Prof. Nayfeh.
NODYCON 2019 received an extraordinary response from the community with
408 abstracts (out of 450 submissions) presented by nearly 400 participants from
68 countries.

After the successful launch of NODYCON, NODYCON 2021, originally
planned to be held in Rome, February 16-19, 2021, was hosted as a virtual (online)
conference given the uncertainties related to the COVID-19 world crisis. The online
conference was creatively designed to help corroborate and cement the sense of
cohesiveness and liveliness of the NODYCON community. The NODYCON 2021
online conference featured 16 keynotes and mini-keynotes of broad interest, a
panel, two workshops, and 442 oral presentations covering recent advances in the
rich spectrum of topics covered by Nonlinear Dynamics, including new frontiers
and challenges. The Special Session and Panel Entitled “Complex dynamics of
COVID-19: modeling, prediction and control” offered important outlooks into the
nonlinear dynamic evolution and prediction of the global disease spreading across
different scales by using a variety of analysis tools and modeling approaches.

For NODYCON 2021, the Organizing Committee received 478 abstracts and,
after rigorous review cycles, 442 one-page abstracts were accepted and published in
the Conference Book of Abstracts.

The diverse topics covered by the papers were clustered along four major themes
to hold the following technical sessions:

Concepts and methods in nonlinear dynamics

Nonlinear dynamics of mechanical and structural systems
Nonlinear dynamics and control

Recent trends in nonlinear dynamics
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vi Preface

The authors of a selection of approximately 60 papers were invited to publish
in the Special Issue of Nonlinear Dynamics entitled “NODYCON 2021 Second
International Nonlinear Dynamics Conference.” At the same time, about 200 full
papers were submitted to Advances in Nonlinear Dynamics — Proceedings of the
Second International Nonlinear Dynamics Conference (NODYCON 2021) within
the newly established NODYCON Conference Proceedings Series. One hundred
and eighty-one papers were accepted. These papers have been collected into three
volumes, which are listed below together with a sub-topical organization.

Volume 1: Nonlinear Dynamics of Structures, Systems,
and Devices

Fluid-structure interaction

Mechanical systems and structures
Computational nonlinear dynamics
Analytical techniques

Bifurcation and dynamic instability
Rotating systems

Modal interactions and energy transfer
Nonsmooth systems

TQmmOOw»

Volume 2: Nonlinear Dynamics and Control

Nonlinear vibration control

Control of nonlinear systems and synchronization
Experimental dynamics

System identification and SHM

Multibody dynamics

monw>

Volume 3: New Trends in Nonlinear Dynamics

Complex dynamics of COVID-19: modeling, prediction, and control
Nonlinear phenomena in bio- and eco-systems

Energy harvesting

MEMS/NEMS

Multifunctional structures, materials, and metamaterials

Nonlinear waves

Chaotic systems, stochasticity, and uncertainty

QmmPawp



Preface vii

I wish to acknowledge the work and dedication of the co-editors of the NODY-
CON 2021 Proceedings: Prof. Bala Balachandran (University of Maryland, College
Park, USA), Prof. Michael J. Leamy (Georgia Institute of Technology, USA), Prof.
Jun Ma (Lanzhou University of Technology, China), Prof. Jose Antonio Tenreiro
Machado (Instituto Superior de Engenharia do Porto, Portugal), and Prof. Gabor
Stepan (Budapest University of Technology and Economics, Hungary).

The success of the fully online conference NODYCON 2021 is due to the efforts,
talent, energy, and enthusiasm of all researchers in the field of nonlinear dynamics
who wrote, submitted, and presented their papers in a very lively way. Special
praise is also deserved for the reviewers who invested significant time in reading,
examining, and assessing multiple papers, thus ensuring a high standard of quality
for this conference proceedings.

NODYCON 2021 Chair

Walter Lacarbonara, Rome, Italy
May 2021



Preface for Volume 3: New Trends in
Nonlinear Dynamics

Volume 3 of the NODYCON 2021 Proceedings is composed of 53 chapters, which
are spread across the following groupings: (i) complex dynamics of COVID-
19: modelling, prediction, and control (5 papers); (ii) nonlinear phenomena in
bio- and eco-systems dynamics (10 papers); (iii) energy harvesting (10 papers);
(iv) MEMS/NEMS (7 papers); and (v) multifunctional structures, materials, and
metamaterials (6 papers), (vi) nonlinear waves (4 papers); and (vii) chaotic systems,
stochasticity, and uncertainty (11 papers). Due to the cross-cutting nature of the
topics, the editors acknowledge that a paper placed in one grouping could have
easily been placed in another grouping as well. As one reads through these 53
contributions, one will note the use of a wide range of experimental, analytical, and
numerical techniques for studying the nonlinear dynamics of a wealth of systems
across different length and time scales.

In the area of complex dynamics of COVID-19 from the point of view of
modelling, prediction, and control, the reader will find studies concerning the
formulation of fractional-order generalized SEIR models to study and predict the
spread of COVID-19 (L. Guo et al.; Y. Zhao et al.) and the extension of classical
epidemiological models to include a number of social and biological conditions (Y.
Ding and Y. Kang; Y. Aboelkassem and H. Taha; O. Khyar and K. Allali).

In the area of nonlinear phenomena in bio- and eco-system dynamics, the reader
will find the analysis of tumour growth (D. Sourailidis et al.), the application
of mathematical models in neuroscience (I. Sysoev et al.; H. Shaheen et al.; S.
Ahmed et al.; S. Thottil and R. Ignatius), the dynamics of vibro-impact capsules
in gastrointestinal systems (Y. Zheng et al.; J. Tian et al.; N.-T. La et al.), and the
evolution of species under different conditions (S. Mishra and R. Upadhyay; M.
Kumar and S. Abbas).

In the area of energy harvesting, the reader will find studies concerning the use of
piezoelectric and metamaterials (A. Tusset et al.; K. Zhao et al.; P Malaji et al.), the
design of electro-mechanical systems (J. Li et al.; N. Yu et al.; M. Khasawneh and
M. Dagaq; W. Wang et al.), and the performance of structures and systems including
several elements (M. Vali and A. Faruque; B. Santhosh et al.; X. Wang et al.).

ix



X Preface for Volume 3: New Trends in Nonlinear Dynamics

In the area of MEMS/NEMS, the reader will find a diversity of efforts concerning
the description of the dynamic behavior (A. Opreni and A. Frangi; L. Ruzziconi et
al.), and the effect of operational conditions or external signals (I. Papkova et al.; A.
Alneamy et al.; M. Akbarzadeh et al.; U. Eroglu; A. Buscarino et al.).

In the area of multifunctional structures, materials, and metamaterials, the reader
will find a range of perspectives concerning the modelling of asymmetric hysteresis
(J.-S. Pei et al.), systems with several types of plates (A. Gawlik et al.; S. Mizrak
and E. Cigeroglu; O. Ganilova et al.), and the dynamic behavior of metamaterials
(K. Chondrogiannis et al.; A. Rezaei et al.).

In the area of nonlinear waves, the reader will find studies on systems described
by the Boussinesq, Korteweg-de Vries, and Schrodinger equations (P Rozmej and
A. Karczewska; H. Blas et al.; S. Manna and A. Dhar; S. Carillo and C. Schiebold).

In the area of chaotic systems, stochasticity, and uncertainty, the reader will find
a variety of studies following a number of distinct approaches and perspectives,
namely dynamical states induced by special relativistic effects in a harmonic
oscillator with sinusoidal forcing (D. Gomes and G. Ambika), high-frequency
chaotic behaviour in a non-ideal amplifier (M. Bucolo et al.), multiple hysteresis
jump resonance in forced oscillators (M. Bucolo et al.), chaos in neuronal network
activity (E. Pankratova), chaos in close cylindrical nanoshells (I. Papkova et al.),
scaling analysis based on the wavelet discrete transform (L. Reyes-Lépez et al.),
chaotic image encryption (C. Zhao and H. Ren), stochastic modelling of a crash
box (B. Bhattacharyya et al.), dynamics of a cylindrical shell with Rivlin-Saunders
material (W. Zhang et al.), dynamics of a nonlinear circuit including a memristor
(M. Messias and A. Reinol), and the behaviour of a Mathieu oscillator with fuzzy
uncertainty (X.-M. Liu et al.).

In conclusion, this volume presents studies reflecting recent advances in a variety
of fields and using a plethora of distinct tools and approaches. We hope that readers
will benefit from the rich work portrayed here on new trends in nonlinear dynamics
and that this work will spur and inspire new ideas and future contributions.

Co-editors of the NODYCON 2021 Proceedings

Bala Balachandran, College Park, MD, USA
Walter Lacarbonara, Rome, Italy

Michael J. Leamy, Atlanta, GA, USA

Jun Ma, Lanzhou, China

J. A. Tenreiro Machado, Porto, Portugal
Gabor Stepan, Budapest, Hungary

May 2021
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Part I
Complex Dynamics of COVID-19:
Modeling, Prediction and Control



Prediction and Control of the Impact of m)

the Onset Influenza Season on the Spread @
of COVID-19

Lihong Guo, Yanting Zhao, and YangQuan Chen

1 Introduction

Since December 2019, the coronavirus (COVID-19) epidemic is gradually changing
people’s lives. As of October 29, 2020, over 44 million cases have been reported,
including over 11 million deaths in over 190 countries and regions [1]. At present,
therapeutic drugs and vaccines are being developed [2]. In many countries and
regions, the infection rate and mortality rate are still high, which shows that the
spread of this infectious disease has not slowed down but is getting worse. At the
same time, the flu season in the United States is also coming. According to data
released by the CDC'’s influenza web page [3], during the 2019-2020 flu season, it
is estimated that 38 million flu illnesses, 0.4 million flu hospitalizations, and 22,000
flu deaths. Therefore, it is indispensable to study the impact of the flu season’s arrival
on the development of the COVID-19 epidemic, such as the hospital bed capacity.
Since the trend of influenza possesses the seasonal property, we use the seasonal
autoregressive integrated moving average (SARIMA) model [4-6] to simulate
and predict the spread of 2020-2021 influenza season. Although the COVID-19
shares many same symptoms as the influenza, there are still many differences: the
COVID-19 is a sudden infectious disease, vaccine and effective treatment were
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being developed, longer incubation period (averaging 5.1 days [7], which varies
from person to person) than the normal influenza, meaning that a person who is
infected with COVID-19 does not immediately have symptoms but can transmit to
others. Investigations [8, 9] show that the transmission of COVID-19 has memory
characteristics. Furthermore, as is shown in the study of small-world networks and
scale-free networks [10, 11], human beings are heterogeneous in the process of
interaction. As a generalized form of integer-order calculus, fractional calculus has
become an indispensable tool in the field of modeling and control [12]. In particular,
fractional calculus has been proved to be more effective in the modeling process
with memory and heterogeneity [12]. Moreover, in many applications [13—15], it
has been proved that the dynamic model based on fractional differential equation
has better performance than the integer-order model.

Therefore, we use a fractional generalized compartment model to study the
transmission of the COVID-19. Moreover, combined with the prediction of the
spread of the influenza, we examined the impact of state-level transmission on the
treatment of the COVID-19, especially the impact on the utilization rate of hospital
beds. Particularly, because we have an effective vaccine to prevent the spread of
flu to a certain degree, we have also studied the impact of flu vaccine injection in
different proportions on the utilization rate of the hospital beds.

The outline of this chapter is as follows. In Sect.2, we introduced a new
fractional-order generalized SEIQRD model. The model’s parameters were esti-
mated through real-time data of California, United States, and we gave percentile
estimates of the number of active cases and deaths as of December 17, 2020. In
Sect. 3, based on the seasonal property of flu transmission, we used the SARIMA
model to analyze and forecast the flu trend. Furthermore, combined with the
prediction of the number of COVID-19 cases and the number of influenza cases,
we studied the prediction of the number of hospital beds utilization with different
influenza vaccination rates. Last but not least, some conclusions and prospects are
given.

2 Fractional-Order Generalized SEIQRD Model

In this section, in order to describe the transmission trend of COVID-19, we
generalize the integer-order model inaugurated in Peng et al. [16] to a fractional-
order generalized SEIQRD epidemic model. This model mainly includes six
compartments: susceptible individuals S(¢), exposed individuals E(¢), infectious
individuals 7(t), quarantined individuals Q(t), recovered individuals R(¢), and
death individuals D(¢). The total effective population size is expressed by N, which
is the sum of the sizes of these five classes: N = S(¢) + E(t) + I (¢) + Q(¢t) + R(2).
We assumed that all members of the community are equally susceptible to this
disease at the beginning, and there is a certain probability of infection after
recovery, that is, there is a certain period of immunity. Moreover, for the exposed
individuals, a certain proportion of the exposed population turns into infected cases
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Fig. 1 The diagram of the

model

Susceptible

B1| B2 V2

Exposed

61

Infectious

|5

Quarantined

RN

Recovered Deaths

after a period of incubation. A certain proportion of the exposed population is
called asymptomatic infection. This part of the population can recover on their
own through their own immunity and once again become susceptible. They were
expressed by symptom rate y; and no symptom rate y», respectively.

The transmission diagram is shown in Fig. 1 and the fractional-order generalized
SEIQRD model is as follows:

oD?S(t) = —

’31]\5” SOI(t) — %S@)Em +nE@) +gR),

0DEE() = %smm) + %smﬂr) — 1+ WE®).

oD I(t) = yiE(t) = 81(1), (1)
oDF Q) = 81(t) — (A () + k(1) Q(1),

oDfR(t) = 1) Q(t) — gR(1),

oD D(t) = k(1) Q(1).

Equation (1) has a non-negative initial condition (S(0), E£(0), I(0), Q(0),
R(0), D(0)) = (So, Eo,10,Q0,R0,Dp), and oDy denotes the Caputo fractional
derivative [12], which can capture the memory and heterogeneity properties of the
transmission of the different compartments. The parameters are shown in Table 1.
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Table 1 The biological meanings of parameters for system (1)

Parameter Description Fitted results

o The order of fractional derivatives 0.7666

Bi Infection rate of the infected individuals 0.3268

B2 Infection rate of the exposed individuals 0.4566

VI Symptom rate of exposed cases 0.2820

V2 No symptom rate of exposed cases 0.5221

8 The rate at which infectious cases enter in quarantined cases 0.3422

A2) Recovery rate of quarantined individuals 0.8322¢ 007211
k(1) Fatality rate caused by the disease 0.0019¢~0-0082¢
g Probability of infection after recovery 0.2489

Due to the end of stay-at-home order, the United States’ epidemic transmission
has entered a second wave. It is necessary to study the spreading trends at the
state level. In particular, taking California as an example, we analyze data from
Jun 1 to Oct 28. These data were provided by the Johns Hopkins University Center
for Systems Science and Engineering [1], which include the number of confirmed
cases and the number of deaths. From Mar 27, 2020 to now, it is reported that
the United States is the country with the largest number of infections globally
(https://coronavirus.jhu.edu/map.html). We assume that in the context of short-
term disease outbreaks and policies with travel restrictions (https://www.kff.org/
coronavirus-policy-watch/stay-at-home-orders-to-fight-covid19/), inflow rates and
natural mortality rates are not taken into account in the actual model fitting process.

As the disease spreads for a long time, we can draw from the data that the
recovery rate and mortality rate are not static, but a function that changes over
time, as shown in first two pictures of Fig.3 (star points are actual recorded rate).
Therefore, we assume that the recovery rate and mortality rate are A(f) = Aje*?!
and k() = k1€*?!, respectively (as shown by the solid line in the figure), where A1,
A2, k1, and ko are the constants. When the disease is spreading, for convenience,
we assume that the infection rates of healthy individuals to infected individuals and
exposed individuals are constants. By using the least squares method and Simulink
design optimization toolbox (SLDO) [17], the parameters in the model (1) are
determined (as shown in Table 1). The SLDO is a Simulink Blockset similar to
Matlab Toolbox used for the fitting for COVID-19 models for the first time [18]. In
the model fitting, SLDO needs zero coding effort is efficient for simulations based
on Matlab 2020a.

Due to the influence of different policies, population mobility rates, and individ-
ual psychological factors in the future, the infection rates (81 and f;) are selected as
the random variable with normal distributions (N (81, 0.01ﬂ12) and N (B3, 0.01,322))
when predicting the future spread trend and scale of the disease. To estimate the
validity of the results, we performed le4 simulations and obtained the quantiles of
active cases and deaths cases, which are shown in Fig. 2.


https://coronavirus.jhu.edu/map.html
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Fig. 2 The fitting results and prediction of CA

The distribution of active cases on the predicted final day (17 Dec, 2020), 5th,
25th, 50th, 75th, 95th quantiles are 4.7258e + 05, 4.9015¢ + 05, 5.0826¢ + 05,
5.3436e + 05, 5.9779¢ + 05. The distribution of deaths cases on the predicted final
day (17 Dec, 2020), 5th, 25th, 50th, 75th, 95th quantiles are 2.0139¢+-04, 2.0225¢+
04,2.0307¢4-04, 2.0417¢+-04, 2.0660e+04. From this, we can see that the predicted
value of active cases and deaths is relatively concentrated, but when the infection
rates in the population fluctuate, the transmission scale also has a certain probability
to fluctuate greatly.

3 Influenza-Like Illness Time Series Analysis and Prediction

Influenza viruses are widespread globally, affecting people of all age groups and
causing severe public health problems. Therefore, it is necessary to establish a rea-
sonable model to study its propagation trend. Time series analysis and modeling are
widely used to study the time changes in diseases to predict future trends. Generally,
the ARIMA (p, d, q) model is an extension of the autoregressive (AR) model, the
moving average (MA) model, and the ARMA model. If there are obvious seasonal
factors in the data, we will use the seasonal ARIMA (SARIMA) model. The model
has been used to fit and predict the prevalence of many infectious diseases, such
as cryptosporidiosis, worm diseases, and bacterial foodborne diseases. The data
preparation and model operation of the SARIMA model are relatively simple and
easy to implement, and the prediction results are accurate. Therefore, it is usually
used to predict short-term fluctuations in infectious diseases.
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3.1 SARIMA Model

Definition 1 The seasonal autoregressive integrated moving average model
(SARIMA (p,d, q) x (P, D, Q),) of Box and Jenkins [19] is given by

®p(B)$(B)(1 — BY' (1 — B)Px; = a + Og(B*)0(B)e;, 2

where B is the backward operator, x; denotes the time series, & is a white noise
process, and s is the seasonal period, for example, when s = 12, it is for monthly
series. The values of d are restricted to zero when the series modeled is stationary.
¢ (B) is the nonseasonal AR operator of order p, and 8(B) is the nonseasonal MA
operator of order g. @p (B*) and ®¢ (B®) are the seasonal AR and MA operators,
respectively.

In order to match the above-mentioned research area, we selected the flu data
from the CDC’s website [3] for all flu seasons in the United States from 2002 to the
present. In particular, according to the Health and Human Services (HHS) division,
California belongs to the 9th division. Therefore, we use the weighted prevalence
of influenza-like diseases in region 9 for analysis. In the first four data collection
seasons (1997-2001), the summer months lacked surveillance data. Therefore, in
order to accurately predict the results, we discard the first four data sets. The time
series and its ACF and PACF are shown in Fig. 3. It can be clearly seen that this time
series has a period, and its period is 52 weeks.

Parcentage of visits for iLL, HHS region 9

wisits for ILI

%ol

Sample Autocorrelation Function __Sample Partial Autocorrelation Function

Sampie Autocorrelation

Sample Partial Autocomesstion

- :
L 7
y
L]

"o 0w 20 W 40 50 60 ™ o W 0 ] 0w w0 I 40 5N 6 ™M W
Lag Lag

Fig. 3 The time series of ILI visit, ACF and PACF, HHS region 9
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3.2 Results

We analyze the reported data of 941 weeks from Sep 22, 2002 to Oct 19, 2020,
combine the use of Econometric Modeler toolbox [20], and select the model that
meets the minimum AIC and BIC criterion, SARIMA(2,0,2)x(1,0,0)52, where
AIC = 1667.3166 and BIC = 1696.0437. In order to ensure that the determined
order is appropriate, a residual test is required. Standardized residuals are to check
whether the residuals are close to the normal distribution, and the ideal residuals
should be close to the normal distribution. The Q-Q plot is to test whether the
residuals are close to the normal distribution. The results showed that this model
fitted the seasonal fluctuation well, as shown in Figs. 4 and 5. The parameters’ values

can be found in Table 2.
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Table 2 Estimation results

Parameters Values Standard error t statistic P-values
Constant 0.0037713 0.016619 0.22693 0.82048
AR{1} 1.1943 0.14947 7.9901 1.3483e-15
AR{2} —0.31972 0.1305 —2.4499 0.014288
MA{1} —0.22425 0.15243 —1.4712 0.14123
MA{2} 0.092713 0.026744 3.4667 0.00052684

Table 3 The hospitalization of CA

ILI vaccination rate 35% 45% 55%

11,557 10,940 10322
ILI_hosp_CA (95% CI: 1239, (95% CI: 1173, (95% CI: 1107,

21,875) 20,706) 19,538)
COVID-19_hosp_CA 101,652

(95% CI: 945,16, 119,558)

113,209 112,592 111,974
Total_hosp_CA (95% CI: 95,755, (95% CI: 95,689, (95% CI: 95,623,

141,433) 140,264) 139,096)

3.3 Prediction

From the prediction results of the SARIMA model, we can know that the visit rate
of influenza will increase from 1.13641% to 2.6707% (95% CI: 0.2863, 5.0550) in
the seven weeks after Oct 19, 2020. According to a Feb. 21 CDC Morbidity and
Mortality Weekly Report [21], the current influenza vaccine has been 45% effective
overall against 2019-2020 seasonal influenza A and B viruses. In paper [22], the
population-based incidence estimate for influenza-associated critical illness was
12.0 per 100,000 person-years (95% CI: 6.6, 21.6), or 1.3% (95%CI:0.7%, 2.3%) of
all critical illness hospitalizations. For the COVID-19 patients, most people (about
80%) [23] recover from the disease without needing special treatment, and for the
majority—especially for children and young adults—illness due to COVID-19 is
generally minor.

Therefore, combined with the above research results, we studied the impact of
different influenza vaccines coverage on medical resources, especially the impact on
the number of hospital beds. Assuming that the test level is sufficient and that there
is no misdiagnosis (i.e., no influenza cases be diagnosed as COVID-19), the number
of hospital beds occupied by influenza and COVID-19 can be estimated. It can be
seen from Table 3 that compared with only 35% of the population who had given
the vaccine, when 55% of the population vaccinated, the use of hospital beds could
be reduced by about 1200. These resources could have been provided to COVID-19
patients who need more beds. Therefore, expanding the scope of flu vaccination can
alleviate and reduce the impact of the COVID-19.
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4 Conclusions and Future Works

In this chapter, we not only use the fractional-order generalized SEIR model to
study and predict the spread of COVID-19 but also use the SARIMA model to
study and predict the spread of influenza viruses. Since we have vaccines against
influenza viruses, we have also studied the impact of different proportions of vaccine
injection rates on the COVID-19 epidemic, especially the number of hospital beds
for detailed analysis and discussion. Our conclusion is that when there are no
effective treatments and vaccines to treat COVID-19, increasing the population of
influenza vaccine has a positive effect on the relief of the COVID-19, especially
helping to reduce the pressure on medical resources.

In the future work, on the one hand, if the COVID-19 vaccine is put into
production, we will study the optimal vaccination strategy. On the other hand, there
are many kinds of analysis methods for time series, and influenza data is not only
seasonal but also has long-term correlation. Therefore, we will develop new analysis
methods to study and predict the trend of influenza transmission.
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A Fractional-Order Age-Structured m)
Generalized SEIR Model: The Role of e
“COVID-19 Symptom Data Challenge”

Dataset

Yanting Zhao, Lihong Guo, Yong Wang, and YangQuan Chen

1 Introduction

The transmission of pneumonia associated with COVID-19 is still a worldwide
epidemic. By January 1st, 2021, according to the World Health Organization, there
are 84,780,171 confirmed cases and 1,853,525 confirmed deaths spreading to 235
countries, areas, or territories. With the development of globalization, traffic and
environmental conditions foster the spread of the disease that breeds high economic
and social costs, even in the absence of fatal forms. During the epidemic prevention
war, besides medical and biological research [1], theoretical researches based on
statistical, mathematical modeling, and optimal control also play essential roles.
Since the outbreak of COVID-19, establishing suitable mathematical models can
help understand and forecast the epidemic dynamics, integrate valid symptom
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data, consider vaccine fairness priority, and determine effective mitigation and
interventions to control the pandemic with an age-structured model.

Due to the long latent period of COVID-19, contacts have different spread
and infection probabilities with regional and environmental differences ignored by
integer-order models. Moreover, integer-order models consider the epidemic as a
memoryless Markovian process, which is a non-Markovian process that reflects the
prehistoric memory [2]. Based on symptom data, we find that the infection rate of
COVID-19 satisfies the power-law decay, reflecting the decay of long memory [3].
Therefore, there are always errors in integer-order model fitting, and they affect
the prediction accuracy [4]. Thus, the corresponding fractional-order models, which
have the long-memory property to reflect the inhomogeneity, are established to
consider epidemic trends and quarantine policies.

This chapter proposes a fractional-order age-structured SEIR (Fo-ASEIR) model
to fit the dynamic of the COVID-19 pandemic. Based on the Facebook Symptom
Data Challenge and Google mobility data, we focus on the mobility and psycholog-
ical effect factors of COVID-19 to forecast the number of infected cases and deaths.
In summary, the contributions of this chapter are as follows:

(i) Proposed the Fo-ASEIR model, which can describe the epidemic trends and
forecast the short-term infection cases by age groups accurately based on the
long-memory property of fractional calculus.

(i) Analyzed control or mitigation strategies affected by mobility and psychologi-
cal effect data. Piecewise functions of the infection rate and the incidence rate
in our model affect the likelihood of epidemic or suppression.

(iii) Simulink Design Optimization (SLDO) was applied to fit epidemic trends for
the first time. The disturbance of infection rate was analyzed to illustrate the
mitigation and intervention managements.

(iv) Predictions of our fractional-order model, including forecasts of deaths in the
United States and California, were submitted to the COVID-19 Forecast Hub
in coordination with CDC (https://viz.covid19forecasthub.org/).

The structure of this chapter is as follows. Section 2 provides preliminary facts
on fractional calculus and epidemic compartmental models. The role of symptom
data challenge and incidence rate is analyzed in Sect. 3. Section 4 demonstrates the
superior performance of the fractional-order model based on the fitting and short-
term forecasts of models. Meanwhile, simulations examine the effects of mobility
and psychological effect factors on model fitting. Section 5 gives conclusions.

2 Preliminaries

2.1 Fractional Calculus

Although various fractional-order derivatives are defined, we only consider
Riemann-Liouville definitions in this chapter.
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Definition 1 The fractional integral of f(¢) of order « is defined as follows [5]:

1M f@

toy(txf(t) = F(O[) o (t _ T)l_a

dr, (D

where n — 1 < « < n, n € Nt with the Gamma function I (z) = f0+°° xZ e dyx,
provided the integral on the right of (1) is finite.

Definition 2 Riemann—DLiouville derivative is defined as follows [5]:
R 1 dn 1 !
Pft)= ————— t—1)"Y dr, 2
REF (1) F(n_a)dt,,/m< Tl f (7 de @)

wheren — 1 <o < n,n € Nt.

To simplify the notations, ¢.#" is replaced by .#* and } Z is replaced by 2* when
the lower endpoint 79 = 0.

2.2 Fractional-Order SEIR Models

For the outbreak of the COVID-19 pandemic, the biological meanings of state
variables and the transmission diagram between each compartment are shown in
Table 1 and Fig. 1, respectively.

In general, the infection rate of an infectious disease is assumed to be constant.
Singer [6] investigated the transmission patterns of COVID-19, indicating that the
number of E(t) follows the power law n(f) = BtY, where n(t) is the number of
exposed at time ¢, and B and y are constant. This pattern is consistent with the
memory effects in the pandemic, which means that the dynamics of the system is
dependent on both the current state and history of the system [7]. Consequently, the
bilinear incidence rate 8, SE is changed to fractional incidence rate 8S.#*E to
characterize the phenomena of human interactions. Based on the integer-order SEIR
model [8], we propose the fractional-order generalized SEIR model (Model_1)
shown as follows:

Table 1 Meanings of state Categories | Descriptions at time ¢

variables P
S(t) Number of susceptible individuals
E(t) Number of exposed individuals
1(1) Number of infectious individuals
() Number of quarantined individuals
R(t) Number of recovered individuals

D(1) Number of death individuals
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Fig. 1 Fo-GSEIR model il
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with initial conditions (S(0), E£(0), 1(0), Q(0), R(0), D(0))=(so, €0, io, g0, 70, do),
which are non-negative. N refers to the total population of the region at the initial
time. Coefficients {af; ae; B1; B2; yfl; Y25 5 Lk g} refer to the fractional
orders oy and «, that reflect inhomogeneity, the rate of transmission for the
susceptible to infected B, the rate of transmission for the susceptible to exposed S2,
the average latent time yf], no symptom rate of exposed cases y», the quarantine
period that depends on the level of detection 8!, the recovery rate A, the mortality
rate «, and the rate of recovered individuals who lose immunity and are moved back
to susceptible cases g.

3 Symptom Data Challenge

As governments, researchers and universities began to mount an unprecedented
worldwide response to COVID-19 in early 2020, the world lacked a standardized,
global way to measure COVID-19 illness and track the pandemic that would help
guide decision-making. The integration of symptom data can aid in the development
and monitoring of community risk levels to guide individual and policy decision-
making.
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3.1 Analyses of Symptom Data

In response, there are promising signals that the symptom surveys can provide a
complementary view to key, time-sensitive public health questions about COVID-
19 incidence [9]. US state-level rates of COVID-like symptoms correlate with daily
cases of psychological effect factor, and state-level analyses tend to show that the
infection rate is roughly coincident in time with mobility data. The corresponding
datasets (e.g., COVID searches on Google and related doctor visits) are collected by
Facebook, which are shown in Fig. 2.

Remark 1

(i) Using Google Health Trends, the fraction of COVID-related Google searches
out of all Google searches in each area are obtained. We use searches for terms
related to anosmia (loss of taste or smell) since this emerged as an unusual
symptom that is indicative of COVID-19.

(i1) Using data of COVID-related outpatient doctor visits, derived from ICD codes
found in insurance claims, the percentages of daily doctor’s visits in each area
that are due to COVID-like illness are estimated.

(iii) Mobility data shows how visits to places, such as grocery stores and parks, are
changing in each geographic region. Location accuracy and the understanding
of categorized places vary from region to region.

According to data, we try to infer the influence of the mobility and psychological
effect factors in the model to describe the performance of infectious diseases
more accurately. For example, the infection rates 81 and B», which are affected
by mobility in Fig.2c of models, are fitted with piecewise function accordingly.
Moreover, Fig. 2a and b reflects changes in the psychological effect factor for the
COVID-19 pandemic, which is also an important factor affecting the trends. In the
next subsection, we introduce the concept of incidence rate to illustrate the effects
on the modified model.
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Fig. 2 COVID-19 symptom datasets in California. (a) Searches on Google. (b) Related doctor
visits. (¢) Google mobility
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3.2 Incidence Rate and Psychological Effect

Incidence rates play important roles in epidemic models [10]. The SEIR models
with saturated and nonmonotone incidence rates, in which the infection function first
increases to a maximum when a new infectious disease emerges, then decreases due
to psychological effect, and eventually tends to a saturation level due to crowding
effect.

Case 1 Saturated incidence rate. Capasso and Serio [11] proposed a saturated
incidence rate as follows:

BIS
14+ al

g(H)S§ = , “)

where 1 means the infection force of the disease and ﬁ represents the inhibition
effect from the behavioral change of S when their number increase or from the
crowing effect of 1. Notice that g(/) eventually tends to a saturation level g when

[ is getting larger.

Case 2 Nonmonotone incidence rates with psychological effect. To model the
effects of psychological factor and interventions when a serious disease outbreaks,
Xiao and Ruan [12] proposed a nonmonotone incidence rate as follows:

BIS

NS =2
sDS =11

&)

where the incidence function g (/) is nonmonotone when 7 > 0. It implies that when
a new infectious disease breaks out, the probability of exposure and infection rate
increases due to the lack of understanding of the disease. As the increasing number
of I and the diseases worsens, psychological factor leads people to take measures to
control the pandemic. For instance, during the outbreak of Severe Acute Respiratory
Syndrome (SARS), aggressive mitigation and interventions were effective. So as the
number of infectious cases increases, the infectivity decreases.

Two types of nonlinear incidence functions g(/) with different values of
parameter o are shown in Fig. 3. We can clearly see the influence of psychological
factors from Fig. 3b, which is similar to the data of COVID-19-related searches on
Google shown in Fig. 2a.
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(a) (b)

Fig. 3 Incidence functions. (a) Saturated incidence function. (b) Nonmonotone incidence function

3.3 The Age-Structured Model with Psychological Effects

When we take psychological effect factors into consideration, Model_2 with the
nonmonotone incidence rate (4) is shown as

TS0 = 5 50 — BLEO (1) + 1B @) + gRO),
TIE@W) = 5 s S + BLTEO (1) — o + ) E ),
T = nE@D) - 810, ©

7)) =81(t) — (A +x) Q (1),
Z*IR(t) = 1Q (1) — gR(),
Z'D(t) =kQ (1),

where parameter « refers to the inhibition rate and psychological effect factors.

Afterward, we analyzed infectious cases and deaths of age groups from Califor-
nia Department of Public Health (https://www.cdph.ca.gov/programs/CID-/DCDC/
pages/covid- 19/race-ethnicity.aspx). The mobility data varied greatly among differ-
ent age groups, and the number of deaths and infections also accounted for different
proportions [13]. The parametric analysis of different age-structured models is
shown in Fig. 4 and Table 2.

The fractional-order age-structured SEIR Model_3 is obtained in (7) where the
parameter a € {C,Y, A, E} (children, young adults, adults, elderly) represents
different age groups:


https://www.cdph.ca.gov/programs/CID-/DCDC/pages/covid-19/race-ethnicity.aspx
https://www.cdph.ca.gov/programs/CID-/DCDC/pages/covid-19/race-ethnicity.aspx
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Fig. 4 Age group data of California

Table 2 Parameters of age

roups Y1 r2 2 £
group C:<18 | 07y1 03y | 0.99. 0.01x
Y:18-34 | 0.8y |02y 094 | 0.1A
A:35-64 09y 0.1y | 0.6n | 0.4A
E6d+ ;1 |0 044 | 0.6
Foay — __ BU®W  cagy _ BICEW qa a a
P §91) = — P 54 (0) — BLE R §90) + B4 + gR(),
FRagy — Bl a BT EN®) cagpy a
G E1) = 5 1) + LR S01) — (4 72) E(),
D1 =y EY(t) = 81°(1), (7)

D* Q1) =81°(t) — (A +K) Q° (1),
P*IRU(t) = LQ“ (1) — gR (1),
P DYt) =k Q% (1) .

The relationships of parameters of (7), which are affected by epidemic trends of
infected cases of age groups and mobility data, are shown in Table 2.

4 Simulations and Discussions

The data of confirmed cases and deaths of COVID-19 are provided by the Johns
Hopkins University (https://github.com/CSSEGISandData/COVID-19) for simula-
tions. Considering that mobility data is not recommended to compare changes
between countries or regions with different characteristics, so we choose data in
California. For the model fitting and the analysis with zero coding effort, Simulink
Design Optimization, a Simulink Blockset is used with real data.


https://github.com/CSSEGISandData/COVID-19

NodyCon2021 21

4.1 Fitting and Forecast

To illustrate the influence of psychological effects on models, we make a compari-
son of the short-term forecast of COVID-19 between Model_1 and Model_2, fitting
data in California from 3/5/2020 to 9/19/2020, and forecast the next 2 weeks. Fitting
results of California and relative errors are shown in Fig. 5 and Table 3.

Through the analysis of mobility and infection data of age groups in California,
the relationship between the parameters of latency, mortality, and the recovery rate
in Model_3 is obtained, as shown in Table 2. The epidemic trends of infection and
death by age groups in Model_3 are shown in Fig. 6, which can allocate resources
on hospitalization, coronavirus testing, and vaccination and reopen social policies
more rationally.

4.2 Mobility and Psychological Effect Factors

The fitting intervals of infection rates §; and B, are divided into complete one, two,
and three segments for different policy managements in California (e.g., April 12th;
April 12th, July Ist), so do the fitting intervals of piecewise function « (e.g., June
14th; May l1st, July 5th). The results are shown in Fig. 7.

Fig. 5 Fitting of California . 10° Infected cases of COVID-19 in California 3/5/2020-10/03/2020

Report Confirmed

14 | »  Report Death
©  Forest Confirmed

©  Forcast Death

121 Fitting Confirmed
Fitting Death
101
3 8 ”
8
6l
ak
2t |
04/01/20 07/01/20 10101720
date
Table 3 Forecast errors of C of C % of D %
and D Errors Model_1 | Model_2 | Model_1 | Model_2
Average 6.32 5.38 8.08 7.81
Maximum | 8.64 7.61 9.98 9.70

Minimum | 4.12 3.28 6.30 6.04
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(a) (b)

Fig. 6 COVID-19 pandemic of age groups in California 3/5/2020-12/30/2020. (a) Confirmed
cases. (b) Death

Prychology data of Cakodomen 2RIZ0-10NZ0
Motsliny cata of Cakofiornas 21 W2000-8162070 " L

Pyychology of Calfornia .

[

(a) (b)

Fig. 7 Parameters fitting using symptom data 02/01/2020-10/01/2020. (a) Infection rate. (b)
Psychological effect factor

We also obtain epidemic trends of uncertain models after fitting the model. After
October 3rd, 2020, we set infection rates 81 and f, as normal distributions of fitting
values. The epidemic trends are shown in Fig. 8 till December 30th, 2020.

4.3 Analysis

Policymakers may be concerned about formulating policies related to isolation and
reopening before the flu season [14]. Therefore, we will consider workplace-related
and entertainment-related relaxation using Google and Facebook symptom data.
Results of simulations are summarized as follows:

(i) Itis comparing 2-week forecast errors of infected cases and deaths in Table 3,
and Model_2 with psychological effect factor shows better performance than
Model_1 on model fitting and forecast. It means that the infection rate 8; from
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(4) (b)

Fig. 8 Random disturbance of infection rate of California: 3/5/2020-12/30/2020. (a) Confirmed
cases. (b) Deaths

(i)

(iii)

(iv)

S to I is not a constant. When considering g(/) affected by «, the trend of
infection can be depicted and predicted more accurately.

Model_3 estimates coefficients for age modules. It is observed in Fig. 6a that
the latent period of adults is the shortest, so the infected cases of adults are the
largest. Policymakers should provide appropriate testing methods and locations
and conduct a peak shift for working hours of adults to reduce infection. In
Fig. 6b, death trends are consistent with «. In the case of the elderly with
the largest number of deaths, hospitalization and vaccination are allocated
according to priority so as to minimize death.

We analyzed symptom data and fit 81, 8>, and « by piecewise functions for
forecast performance in Fig. 7. (a) shows that when Californians implemented
stay-at-home orders from April 12th, g1, B2 |, then growth rate of I, D |.
When reopened society on July 1st, 81, B2 1. Thus, the government should
continue to take subsequent quarantine and delay the reopening of social.
Figure 7b shows that with the increase of the infected cases, people are
constrained by psychological factors to strengthen self-isolation and increase
hospital visits. Correspondingly, & 4, more symptom data should be updated,
and more hospital appointments should be provided.

Figure 8 shows that the larger the infection rates are, the larger the number of
infected cases and deaths in California, then the more strict policies should be
taken, so do other states. Interventions and the increase of people’s cognition
and fear of COVID-19 cannot only reduce the infection rate but also play a
good role in controlling the pandemic.

5 Conclusions

In summary, the integration of symptom data based on the fractional-order age-
structured SEIR model enables the creation of models that identify epidemic trends
in state COVID-19 outbreaks with greater sensitivity, specificity, and timeliness



24

Y. Zhao et al.

compared to current indicators. Our model, considering the mobility and psycho-
logical effect factors, will lead to more accurate fitting and prediction performance.
Moreover, our purpose is to apply models to further investigate vaccine fairness
priority problems and Multi-Model Outbreak Decision Support.
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Dynamical Analysis of a COVID-19 )
Epidemic Model with Social Confinement %
and Acquired Immunity Loss

Yamin Ding and Yanmei Kang

1 Introduction

The ongoing coronavirus disease 2019 (COVID-19) is the first global pandemic
caused by a coronavirus. As of 2:45 pm CEST, September 5th, 2020, a total of
26,468,031 cases of new coronary pneumonia have been diagnosed worldwide,
with a total of 871,166 deaths, of which 91 countries have confirmed cases over
10,000 [1]. At present, the epidemic has been controlled in China, but it is still
spreading around the world, so fighting the epidemic is still the top priority. As of
September 23th, 2020, Brazil has reported 4,624,885 confirmed cases [2], ranking
third globally and still rising. Before the successful development of new drugs
and vaccines, intense non-pharmaceutical interventions are particularly necessary
to stop the transmission of COVID-19.

The mathematical model can help understand the nature of outbreaks and plan
effective control strategies [3—6]. Many complicated mathematical models have
been used to study asymptomatic infections of other infectious diseases [7-9].
These models reveal that changing the proportion of asymptomatic individuals
affects mitigation strategies and thus changes the course of the epidemic. There
is evidence that asymptomatic and mildly symptomatic individuals are infectious
and can promote the rapid spread of the COVID-19 epidemic [10, 11]. For example,
the isolation of asymptomatic cases by large-scale testing has led to a rapid decline
in the number of new cases in Italian villages [12], indicating that asymptomatic
individuals are somewhat infectious. Therefore, asymptomatic individuals should
be considered when predicting epidemic trends and evaluating the effectiveness of
confinement strategies. If social isolation is combined with individuals, the test-
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track-isolation strategy will effectively control the epidemic. Particularly, Giordano
et al. considered whether the infected person had been diagnosed and the severity
of their symptoms and proposed a model with eight infection stages [13]. Because
diagnosed individuals are typically isolated, non-diagnosed individuals are more
infectious. They found that this distinction helps explain misperceptions about the
spread of the COVID-19. The SIDARTHE model distinguishes different groups
related to epidemics’ evolution and considers more comprehensively than the SEIR
model.

COVID-19 is caused by the infection of the coronavirus SARS-COV-2. Due to
the lack of reliable information on the duration of the virus’s acquired immunity,
the risk of a surge in infection cannot be assessed [14]. A recent study shows that
antibodies to the virus may only last for two months, which has caused speculation
that its immunity may not exist for a long time [15]. There are also other studies that
reinfection after recovery most often occurs 12 months after infection, indicating
that acquired immunity is only short-lived. Particularly, antibodies rapidly decay
in mild cases [16, 17]. Therefore, the loss of acquired immunity should be truly
considered as a more realistic model. Nevertheless, Giordano et al. [13] omitted the
impact of the acquired immunity loss. Motivated by the above discussion, we derive
a modified SIDARTH model by introducing the acquired immunity loss.

The organization of this chapter is as follows. In Sect.2, we present the
modified SIDARTH model. Section 3 analyzes the global stability of the disease-
free equilibrium and the endemic equilibrium by Lyapunov-LaSalle techniques and
graph theory. In Sect. 4, we fit the data from Brazil to analyze the model and perform
sensitivity analysis on the parameters. In the end, some concluding remarks are
presented to close this chapter in Sect. 5.

2 Model and Preliminaries

2.1 Modified SIDARTH Model

Our model is extended from the work of Giordano et al. [13] but different in the
following aspects: we consider the impact of acquired immunity loss; for the sake of
convincing in dynamical analysis, we adopt the standard incidence rate and include
the recruitment rate A and the natural death x into the model; considering that the
mortality rate of the disease is much smaller than the cure rate, we ignore the death
rate of diseases. Therefore, the total population of individuals N (¢) is divided into
seven different epidemic components as shown in Fig. 1. The modified SIDARTH
model is as follows:



Dynamical Analysis of a COVID-19 Epidemic Model 27

Fig. 1 Flow chart of the improved SIDARTH model

I

S =A+owH— (el +BD+yA+SR)S — xS

= (@I +BD+yA+8R)S —(e+¢+r+ )]
=el—-+p+x)D

=il —-0O+pn+r+x)A (1)
=nD+0A—-(V+E+ R

=uA+vR—(oc+x)T

- =M+pD+xkA+ER+0T — (x +wH,

R N

Q|

where o is the acquired immunity loss rate. Other parameters and their description
can be found in Ref. [13] or Table 1. The above seven components are explained as
follows:

e §: The class of susceptible (uninfected)

e [I: The class of infected (asymptomatic infected, undetected)

e D: The class of diagnosed (asymptomatic infected, detected)

e A: The class of ailing (symptomatic infected, undetected)

* R: The class of recognized (symptomatic infected, detected)

e T': The class of threatened (infected with life-threatening symptoms, detected)
* H: The class of healed

Since N(t) = S@)+ 1)+ D(t)+ A@) + R(@) + T(t) + H(t), then

dN A
— =A—xN = lim supN < —.
dt 1—00 X
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Table 1 Parameters of the model

Parameter Description Fitted value
o Transmission rate between S and / 0.3328
B,§ Transmission rate between S and D, between S and A 0.0046
y Transmission rate between S and R 0.1798
e Probability rate of asymptomatic detection 0.0849
¢, n Probability rate of symptoms in 1, D 0.0184
A, p Recovery rate of 1, D 0.2214
6 Probability rate of symptomatic detection 0.3954
n The rate of life-threatening symptoms of A 0.0433
K,E,0 Recovery rate of A, R, T 0.0102
v The rate of life-threatening symptoms of R 0.0801
T Mortality rate 0.0032

Hence, the feasible region of the model (1) remains in a bounded positive invariant
set I':

A
F:{GJJIARJJDeR1m<S+I+D+A+R+T+H§—}.
X

2.2 Basic Reproduction Number

The basic reproduction number Ry is the key threshold parameter, which can
determine whether the infectious disease will die out or spread through the
population with time increases. Here, we calculate it through the next-generation
matrix method. The infection components in this model are I, D, A, and R. The
new infection compartment JF and the transition terms ) are given by

(@ +BD +yA+SR) % (e+¢+r+01

o 0 V= m+p+x)D—€l
0 @+u+r+x)A-¢lI
0 w+&+ x)R—nD —6A

The Jacobian matrices ' and V for F and V at the disease-free equilibrium point
(%, 0,0,0,0,0, 0) are, respectively, given by

R
£
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@

0 ¥So &S

N
0
0
0
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e+C+r+x 0 0 0
V= —€ n+p+x 0

- 0 O+u+ux+x 0

0 =1 —0 v+E+x

The Ry is defined as the spectral radius of the next-generation matrix FV ! [18]:

Ro=p(FV™h
€
= (@ + P + ve
e+i+Ar+x n+p+x O+pute+x
Jen(@ +p+rx+x)+3860m+p+ x)
m+e+x)@+tu+te+x)v+E+x)

).

Notice that the R consists of four parts, representing the four modes of transmission
of the coronavirus.

3 Stability Analysis

The equilibrium points will provide long-term dynamic information about the epi-
demic. The model (1) has two equilibrium points: one is the disease-free equilibrium
(DFE) Py = (%, 0,0,0,0,0,0), which exists for all parameter values, and the
second is the endemic equilibrium point (EE) P* = (§*, I'*, D*, A*, R*, T*, H*),
which is a positive solution of the following system:

A+ oH* — (@I* + BD* + y A* + 5R*) 5 — xS* =0

(@I* + BD* + yA* + 8RS — (e + ¢+ A+ ) [* =0
el*—(m+p+x)D"=0

(I — (O 4+ K+ X)A* =0 2)
nD* +0A* — (+ &+ x)R* =0

UA* +VR* — (0 + x)T*=0

M*+ pD* +kA*+ER " +0T* — (x + w)H* = 0.

We can get
D* — el* % _ I x _ nD*40A* T* — uA*+vR*
T ontptx) T T Ottty T T vHEx 0T T odx
| * el* It nD*+0A* MA*+VR*Y %
H =57 (“ tPmorx o T8 o T o ) =0l
S* — N I* = A Ry—xN/A
) T et At x—wp Ry

3)
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For convenience, we may assume that birth and natural death are balanced (i.e.,
A = x N holds). Thus, we can conclude that when Ry > x N/A > 1, the model (1)
has the unique EE P*.

3.1 Global Stability Analysis of the Disease-Free Equilibrium

In this section, the global asymptotic stability of the disease-free equilibrium for
model (1) is discussed by a matrix-theoretic method.

Theorem 1 The disease-free equilibrium Py = (%, 0,0,0,0,0,0) of model (1) is
globally asymptotically stable if Ry < 1 or unstable if Ry > 1.

Proof We employ the method described in Ref. [19] to construct a Lyapunov
function. Let x = (I, D, A, R)T and f(x, S) := (F — V)x — F(x,S) + V(x, S);
then for the disease, compartments can be written as

X' =(F -V)x — f(x,9).
Let wT > 0 be the left eigenvector of the matrix V' F corresponding to the
eigenvalue ,o(V_lF) = ,o(FV_l) = Ry. It is obvious that F > 0, V~1 > 0,
and V! F is non-negative and irreducible. We construct a Lyapunov function

L=wlvlx

Along the trajectories of system (1), we have

dL
- = wl VI <wt Vv H(F = V)x) = wl (Ry — Dx,
and when Ry < 1, we see ”fi—lt‘ < 0, and if % = 0 implies that x = 0, i.e., [ =

D=A=R=T=H =0,5 = 8. Hence, if Ry < 1, the invariant set on
which % < 0 contains only point xo. By LaSalle’s invariance principle [20], Py is
globally asymptotically stable.

IfRy> 1, % > ( provided x > 0. From the continuity of the vector field in the

neighborhood of Py, we conclude that ’é—f > 0, which means that Py is unstable. O

3.2  Global Stability Analysis of the Endemic Equilibrium

To study the global stability of the endemic equilibrium, we use a graph-theoretic
method of Ref. [19]. Next, we give the basic knowledge of graph theory. For a more
detailed discussion, see Ref. [21].
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A directed graph (digraph) G = (V,E) contains aset V = 1,2,...,n of
vertices and a set E of arcs (i, j) leading from initial vertex i to terminal vertex
Jj- The in degree d ~ (i) is the number of arcs in G whose terminal vertex is i, and the
out degree d (i) is the number of arcs whose initial vertex is i. Given a weighted
digraph G with n vertices, define the n x n weight matrix A = [a;;] with entry
ajj > 0 equal to the weight of arc (j,7) if it exists and a;; = 0 otherwise. We
denote such a weighted digraph by (G, A).

Theorem 2 If Ry > 1, the unique endemic equilibrium P* = (S*, I*, D*, A*, R*,
T*, H*) of model (1) is globally asymptotically stable.

Proof Set
1 D
Vl:I—I*—I*logl—*,ngD—D*—D*logE,

Vi=A— A% — A*1 A Vi=R— R* — R*1
3=A— - Og;, 4 =K — - og —.

Differentiating along (1) and using formula (2) to get

v, I* S
:(1——)((oz1+/3D+yA+8R)ﬁ—(£+§+k+x)1)

dr 1
I —1%)? 1 —1%)? I —1%)?
N IN IN IN
+ﬂD*(f—1*) D _Dprr 1,
N D* ID* I*
N A*(f—l*) A AT
PETTN T & T oA T T
+8R*(§—I*) R _RI* 1,
N R* IR* I* ’

Since | —x +Inx < 0forx > 0, we get
vy D D 1 I A
o =P (ﬁ—mﬁ—ﬁ““l—*)”“ <E_1“E_F““F>

s (R R 1T
+ R F_HF_F_{_HI_*

=a12G12 +a13G13 + a14G1a4,
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where
BD*, G b In b d + In
a — [ — —_—
12 = 2= 7% DF I I
N A A 1 1
013=VA,G13=E—HE—I—*+1 7
N R R 1 1
a14:8R,G14:F—lnF—F+lnI—*.
dv, D*
o (el —(m+p+x)D)
1
N D 1 D
<el'|——-——-In—+1In—
I* D* I* D*
= a1 Gy,
where
I D I D
a21_81 G21_F_§_] ——|—]n§
Wy (AN =@t utit 0
i 2 ¢ n+Kk+x
1 A I A
= a31G3y,
where
I A I A
_gl G31—F—F—ln—+ln—
dVy

R*
7:(1_7)(r;D+9A—(v+S+x)R)

A R A R
+0A*< ———1n—+1n—>.

= aGa + ag3Gys,
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Fig. 2 The weighted digraph
(G, A) constructed for the o —— G

del (1 / \ \ /
model () {2 (3)
\ : /
where
. D R D R
a42=nD,G42=§—ﬁ—ln§+lnF,
. R A R
a3 =0A", Gyz=————In— +In—

A*  R* A* R*

The associated weighted digraph (G, A) has four vertices and four cycles in
Fig. 2. Simple calculations yield:

Gi2+G21=0,G13+G31 =0,G14+G31 + G433 =0,G14 + G21 + G42 = 0.

Thus, there exist ¢c; (i = 1,2, 3,4) such that V = Z‘;‘: 1¢iVi is a Lyapunov function

satisfying ‘fi—‘; < 0.Sinced=(2) = 1,d~(3) = 1 and d+(4) = 1, we can calculate
_ BD* SR* _ A* SR*

that ¢, = C](ET + WﬁD*)’ c3 = 01(27 + WQA*) and
c10R*

C4 = S prrgAT We choose ¢1 = 1, and then one can verify that

dv dvy + dV2+ dV3+ A -0
— =Ccl— t+c—+ 33—+ cp——— s
dt 1dt 2dt 3dt 4dz -

‘il—‘t/ =0« (S5,I,D,A,R,T,H) = P* is the only invariant set in int(I"),

obviously. Hence, by LaSalle’s invariance principle [20], the EE P* of system (2)
is globally asymptotically stable. O

4 Numerical Analysis of COVID-19 in Brazil

4.1 Parameters Estimation and Numerical Verification of
Stability

The numerical analysis is based on the available data of the Ministry of Health
of Brazil from July 5th, 2020 (day 1) to August 10th, 2020 (day 37) (diagnosed
cumulative infected (D + T + R + E + fot[pD(s) + ER(s) + oT(s)]ds), and
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(a) x10° () x10° (©
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Fig. 3 (a) Brazil: reported vs. diagnosed cases of infection. The ordinate axis takes logarithmic
form. (b—c) Comparison of model predictions and the official data from August 11th to September
3th, 2020: diagnosed cumulative infected and diagnosed recovered

diagnosed current total infected (D + T + R), diagnosed recovered ( fot [pD(s) +
ER(s) + o T(s)]ds)) [2]. The life expectancy in Brazil is approximately 76.6 [22].
Clearly, we can obtain that the natural death rate x = 3.5767 x 107> per day. A
is approximately estimated as 2.117 x 108 x x = 7572. Next, we use the non-
linear least-squares fitting function (Isqcurvefit) to minimize the following formula
to evaluate other unknown parameters of the model (1) [23]:

2 (F(x,xdata;) — ydata,-)z,

where xdata and ydata are the given data points. The deterministic model is
numerically solved by the Runge—Kutta method. Thus, the parameters of the model
can be estimated as shown in Table 1. The reported and predicted number of various
infections in Brazil is shown in Fig. 3a, which shows a good fitting effect.

In order to further verify the accuracy of the prediction, we collect the number of
diagnosed cumulative infections and the number of diagnosed recovered individuals
officially reported by Brazil from August 11th to September 3th, 2020 and compared
them with the corresponding data predicted by the model in Fig. 3b and c. It can be
seen that the model generally captures the short-term trend of COVID-19, but the
long-term prediction requires appropriate adjustment of parameters according to
changes in government strategies and medical levels.

So far, the secondary infection due to loss of acquired immunity is a sporadic phe-
nomenon. Therefore, to obtain more accurate fitting parameters, we first assumed
the immunity loss rate @ = 0 in the above fitting process. If the loss of acquired
immunity is considered, assume that w = 0.1. Now we verify the global stability
analysis result of the equilibrium points using Theorems 1 and 2 in Sect. 3. First, we
use the above w value, other parameters are shown in Table 1, and we can calculate
Ry = 1.0577 > 1, so EE is globally asymptotically stable; second, we reduce «
from 0.3372 to 0.2 and get Ry = 0.6418 < 1, so DFE is globally asymptotically
stable. Figure 4 supports our analysis results.



Dynamical Analysis of a COVID-19 Epidemic Model 35
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Fig. 4 The paths of /(¢), D(t), A(t), and R(t) around the DFE (a) and the EE (b)

4.2  Sensitivity Analysis

Sensitivity analysis is used to determine the robustness of the parameter values
predicted by the model. The sensitivity index allows us to measure the relative
change of the basic reproduction number Ry when the parameter changes, so as to
formulate a prevention and control strategy based on the parameter. Here, according
to Ref. [24], the normalized sensitivity index of Ry relative to « is

OR
TR = 220 0 % 0.9663,
o Ro

and the sensitivity index of Ry to other parameters can also be calculated as follows:

75 =0.0023, ;% = 0.0288, 7, = 0.0026, v.F0 = —0.2428,

T = —0.0430, 1} = 4.0691e — 04, 7,/ = —0.0248, 1% = —0.0030,

TR = —0.0027, 7% = —4.7017¢—04, 70 = —0.0011, T} = —1.1258¢—04.

Thus, it can be concluded that Ry is positively correlated with «, 8, y, §, n, and
negatively correlated with €, ¢, 6, u, p, &, &, x.

We specifically analyze the sensitivity of transmission parameters («, 8, ¥,
8) and detection parameters (e, 6) related to strategy formulation as shown in
Fig. 5(a—f). Interestingly, increasing « and € will significantly increase and decrease
the number of current total infected (I + D + A + R + T), indicating that the
model is more sensitive to changes in « and €. Similarly, adding other transmission
parameters will also increase the number of current total infected, and increasing
6 will reduce the number of current total infected, but the sensitivity is relatively
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Fig. 5 (a—f) Sensitivity analysis with respect to transmission parameters (o, 8, y , §) and detection
parameters (€, 0). (g) Current total infected (I + D + A + R + T') at different immunity loss rates
w after day 120. Other parameters are taken from Table 1
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small. These simulation results are generally consistent with the corresponding
sensitivity index. The above analysis shows that policymakers can effectively reduce
the number of infections by enforcing social isolation and distancing measures, and
strengthening testing and contact tracing.

Next, we analyze the impact of acquired immunity loss. We add the acquired
immunity loss item to the epidemic mentioned above prediction after day 120 to
simulate the number of diagnosed current total infected. As shown in Fig. 5g, with
the addition of w, a new wave of infections will appear, and the number of infections
is positively correlated with w. Effective vaccination can reduce this hidden danger
and achieve long-term immunity.

5 Conclusions

We apply a SIDARTHE model to analyze the COVID-19 outbreak. After cal-
culating the basic reproduction number by the generation matrix method, we
cleverly established the global stability of the equilibrium points by combining
the Lyapunov-LaSalle techniques and graph theory. Particularly, by fitting the
available data of COVID-19 from Brazil, we estimated the model’s parameters
and compared the official data with the model’s prediction to illustrate the latter’s
effectiveness. Our main findings can be summarized as follows: (1) the DFE is
globally asymptotically stable if Ry < 1 or unstable if Ry > 1, and the unique
EE is globally asymptotically stable if Ry > 1; (2) through sensitivity analysis,
reducing the infection coefficient («, B, y, §) and increasing the detection coefficient
(e, 0) play a crucial role in disease control; (3) the loss of acquired immunity
might result in another wave of infection. In short, the test-track-isolation strategy
and vaccination are effective methods for controlling the epidemic. We believe this
research should contribute to continuous monitoring and intervention measures to
control the global COVID-19 outbreak.
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A Cooperative Epidemiological Model )
of Infectious Disease Dynamics: e
A COVID-19 Case Study

Yasser Aboelkassem and Haithem E. Taha

1 Introduction

The coronavirus disease 2019 (COVID-19) is part of the ongoing worldwide
pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). This disease creates a major worldwide life threat. According to the World Health
Organization (WHO) and several other data resources, as of October 27 2020, there
have been more than 44M confirmed cases and more than 1.2M deaths worldwide
[1, 2]. These numbers are subject to dramatic change according to the pandemic
sitution including the virus variants and its spread capability. The outbreak is
currently under research investigations by many experts around the world, trying
to forecast the virus outbreak impact on our short- and long-term health system and
proposing models for pandemic analysis, control, and prevention [3].

Although the current mechanistic understanding of COVID-19 infection dynam-
ics is still very limited. Yet, simplified probabilistic models, uncertainty quantifi-
cation tools, and computational data analysis can be used to forecast an accurate
measure of disease spread and its impact on our short- and long-term health system
and proposing ideas for pandemic analysis, control, and prevention [4—7]. Moreover,
these techniques can possibly be used to predict the number of mortalities across
countries during the time course of the epidemic.

Epidemiological mathematical analysis and modeling are essential tools in the
study of infectious diseases dynamics [8—10]. In fact, modeling can be used to
describe the virus spread in a given population and has been critical in our response
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to the COVID-19 pandemic [11-13]. Many of these models have proven to be suc-
cessful in predicting the outcome growth patterns of an epidemic and to help inform
public health interventions. Data analytics and optimization algorithms are normally
used to find parameters for various infectious disease models. These parameters
are then used to calculate the effects of different health care actions, including but
not limited to the vaccination societal programs. In other words, infectious disease
models can contribute to the analysis of epidemiological environment, suggest what
crucial data should be collected, and generate forecasts statistical data.

In this chapter, a novel cooperative modeling analysis of the COVID-19 pan-
demic is given. There are two objectives: (1) to propose a phenomenological
cooperative model that can accurately capture the collected outbreak data and
(2) to use that as a basis to integrate a virus-pool relationship into the classical
SIRD (susceptible, infected, recovered, and death) model. This new cooperative
characteristics is expected to better capture the coupling between the susceptible
and infected states, hence enhancing the predictive capability of many mechanistic
models of infectious disease dynamics.

2 Methods

A cooperative epidemiological mathematical model that can capture many char-
acteristics of the infectious disease dynamics is derived. A phenomenological
model that matches the total number of cases and deaths due to COVID-19 is
proposed initially. The model is adopted from the well-known Hill-type sigmoidal
function [14]. This particular step assumes that the virus-pool infection dynamics
can be seen as a cooperative transport-mediated process. We then integrated our
phenomenological virus-pool relationship into the classical SIRD. The details of
the modeling approach are given in the following subsections.

2.1 Phenomenological Cooperative Model

Since many of the infectious dynamical processes can be modeled as transporter-
mediated process, a phenomenological expression that is based on the Hill function
(frequently used to study the kinetics of biochemistry reactions [14]) is proposed
here to model the spread dynamics of COVID-19 pandemic. This modeling
approach assumes that, at a given day during the outbreak, there will be a certain
percentage of infection spread (concentration) that can eventually trigger new cases,
which results in new deaths (reaction rates).

The development of this model is mainly based on using data inference approach
and numerical optimization technique to find model parameters in the proposed
phenomenological expression. The data inference step included the total cumulative
numbers of confirmed cases and deaths reported from individual countries over
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days. The modeling space is divided into three major steps: (1) propose a novel
phenomenological Hill-type mathematical equation; (2) uncertainty propagation
in the inferred data; and (3) model parameter optimization. Based on the above-
mentioned assumptions and analogy with the Hill-like equation, the proposed
phenomenological cooperative model can be written as

1
Y y=C,D and x=cd, ey

Vs 1+ (ka)nx )

which can be rewritten as

ny = log <M> / log (%) , ()
y

where y represents the total number of confirmed cumulative cases “C” or reported
deaths “D.” The parameter y,, refers to the steady-state (saturation) number in
which there will be no more additional cases or deaths reported over time. The
parameter ¢ refers to the number of days. The parameter K (measured in days) is
the time at which the cases attain half of its projected maximum reported value. The
exponent n refers to the steepness “cooperativity” of this sigmoidal relationship.
This cooperativity parameter is commonly known in the biochemical literature as
the Hill coefficient. The subscript x is used to alternate between cases and deaths
modeling scenarios. It should be noted that Eq. (1) contains three parameters: yjs,
K, and n that must be optimized for prediction purpose.

2.2 A Cooperative Virus-Pool-Coupled SIRD Model

The classical SIRD infectious disease model is modified to account for the
cooperativity between the susceptible (S) and infected (I) states. In particular, we
extend the work by Dai and Locasale [15] to include a virus-pool cooperative
function F(V (¢), V50, n) to better quantifying the dynamics of both S and I states,
hence having an accurate estimate of the total number of cases (C) and deaths (D).
The modified SIRD model equations are given as

das
E =—a1F(V(), V50,n)S —apSI 3)
dl
E =a1F(V(), Vs50,n)S + 2SI — (B+ y)I 4)
dR
=Bl )

I =
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dD
— =y, 6
dt v ©

where o1, o, B, andy represent rate constants. The virus concentration is repre-
sented here using the state variable V (¢) with a maximal half activation parameter
Vso. The function F (V) indicates a virus pool that is assumed herein to take a
cooperative form using the standard Hill-like equation as

n

F(V(t)) = TV

)

Finally, the equation that governs the coupling between the virus-pool cooperativity
and the chance of a susceptible individual being infected can be given as

dv

E=811—82V, (8)
where §; and &, represent rate constants at which the virus state V increases and
decreases, respectively. The above system of differential equations represents a
modified version of the SIRD model with virus-pool and cooperative infection
dynamics. It should be noted that the model parameters (rates) must be determined
to uniquely integrate the above system of equations. More specifically, we use data
inference and the particle swarm optimization (PSO) techniques to find the correct
model parameters.

3 Data Inference and Model Parameter Optimization

3.1 Data Inference Using Monte Carlo Simulation

The uncertainty in the input data (cases and deaths) is considered when building
this model using non-intrusive approach. Each data point was assumed to be
sampled from a normal distribution as described by the following probability density
function:

S L(ny Ro>>0, (9
f()’dazaW,U)—meXP ER , MER,0°>0, )

where the parameter w is the mean or expectation of the distribution and o is the
standard deviation with variance of o 2. In other words, all the collected data points
for both cases and deaths will be inferred from a normal distribution to account for
uncertainty in the collected data sources and the reported numbers. This is can be
noted mathematically as
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Ydata ~ N, 0% Yaara = C, D. (10)

In the present analysis, the Monte Carlo (MC) simulations were used to sample
the input data points from the normal distribution with a sample size Ny = 50
points. The mean (u) value was chosen to be the average data points obtained from
different sources. The standard deviation (0 = 0.2u) was used. The particle swarm
optimization (PSO) technique is then used to find the model parameters for each
sampled data set.

3.2 Model Parameters Optimization Using PSO

The parameters involved in the above mathematical model are calculated using the
particle swarm optimization (PSO) technique [16]. The reported data [1, 2] that
represent a simultaneous tracking of the number of cases and deaths are used in
the optimization process. In particular, a cost function represented by the root mean
square error (RMS) between the calculated and reported data of confirmed cases and
deaths is formed. The RMS value is typically used as a quantitative measure when
minimizing the error vector. The RMS is then minimized as

N
. . 1
Min(RMS) = Min | | = §0|ymodez — Ydatal® | - (11)
n=

The particle swarm optimization (PSO) technique is then used to find the optimal
values of the proposed cooperative SIRD model parameters. The PSO method is an
iterative algorithm that can be used to optimize a problem when the search space is
too large. The PSO algorithm starts by distributing initial particles, which normally
are known as solution candidates. These solution candidates are also assigned
initial velocities. An objective function for each particle location is then formed
to determine the lowest function value and the “best” position. New velocities are
then computed using the current velocity, the individual particles’ best locations, and
the best locations of their neighboring candidates. Iterative updates for the particle
locations and their velocities are then used by replacing the new locations by the old
positions. The velocity is also modified to keep particles within the specified bounds.
The process repeated iteratively until the algorithm reaches a stopping criterion.

Herein we implement the abovementioned PSO approach to find the optimal
parameter set for the above-modified SIRD model. Specifically, we let X =
{1, a2, B, ¥, 61, 62, V50, n, e, ng, Koy Kg, Css, Dgg} be a vector with unknown
parameters that we aim to optimize. An initial swarm of N-particles (solution
candidates) are randomly distributed. The position and velocity of each particle
(i =1,2,...N) are determined by the X; and V;, respectively. The equation that
governs the updated velocity of each particle is given by
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V; (t +dt) = WV; (t)+ Cirand (Pbest; — X;) + Corand (gbest — X;), (12)

where C1 and C; are constants. The function “rand” is a random number generator
such that rand € (0, 1). The parameter W € (Wyin, Wiax) is a constant that
varies with each iteration and satisfies W = W,;,, + jAW, with AW = (Wy,0x —
Winin)/Imax and j = 1,2, ... Jpyrax, Where Jy,qx is the maximum iteration number.
The vector Pbest; represents the personal best reported from each particle. The
scalar value gbest represents the global best value among all personal best values.
Once the velocity is updated, the new particle positions can be obtained by

X; (t+ Ar) =X; (1) + AtV (t + Ar), (13)

where Ar = 1 is not physical time, but rather represents a marching
index/parameter. The results obtained using the optimization parameters are then
compared with the reported data sets and discussed in the following section.

4 Results and Discussion

The modeling results that show the total cumulative number of cases and deaths due
to COVID-19 are given in this part. The PSO method is used to find the unknown
parameters in the proposed cooperative SIRD model, Egs. (1-8). We used N, =
40 for each parameter in the model. About 100 iterations was used to achieve a
residual convergence of 107, A list of the final optimized model parameters is
given in Table 1. The upper and lower ranges of each model parameter used in the
PSO method are given in Table 2. Although the model equations are kept general,
we however focused our results on the COVID-19 pandemic in Italy as the main
case of study. The data used in the optimization process were constrained to the first
pandemic wave only. We assumed a sample population N = 1% * N, of the entire
Italian population ( 60M) can only be infected. All the states were initialized such
that the Ip = 10, Vo =10, Ry =0, Do = 10, and S9 = N — Iy. The model performance
and results are summarized as follows.

Table 1 Model parameters
that are used to predict the

Parameter | Value | Parameter | Value

total number of confirmed n 52 Vso 1000

cases and deaths in Italy ne 74 oy 0.0064
ng 7.9 o 0.0058
ke 98 B 0.26
ka 102 y 0.04
Css 246K | §; 0.29

Dy 35K | & 0.78
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Table 2 The range of each

A Parameter | Lower value | Upper value
model parameter used in the

PSO method o] 0.001 0.01
o 0.001 0.01
B 0.01 0.5
y 0.01 0.1
81 0.1 1.0
& 0.1 1.0
A B
C Cooperative SIRD
oo R PR
; 300K
:AE w’mmmmmmﬁ'"”".
200K o
100K D _-..
o ..'. 000000
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Fig. 1 The proposed cooperative SIRD model state variable distribution and PSO convergence
toward the collected cases and deaths data reported from Italy during the COVID-19 first wave.
(a) The state variables after a single PSO iteration using 40 particles. (b) The state variables after
100 iterations and using 40 particles. The convergence criteria were chosen such that the residual
=1079. The results show a RMS = 77.85 in each simulated case

In Fig. 1a, the cooperative SIRD model state variable distributions as a function
of time are given after a single iteration using the PSO algorithm. As expected,
the distribution of cases (C =1 + R + D) and deaths (D) numbers are far from the
collected data. This suggests that more iterations are required to meet the required
convergence criteria. However, the state variable distribution as a function of the
pandemic time seems to be heading in the right direction and very similar to the
classical SIRD model behavior with an additional state to account for the virus-pool
cooperativity (V). In Fig. 1b, we show the same state variable distributions after
100 iterations. The results show that both the case and the death states converged
and matched well with the reported data. The results also show the interplay and
coupling between the susceptible (S), infected (I), and the virus-pool (V) states.
This cooperative coupling eventually helped to find an accurate estimate to the
cumulative numbers of cases and deaths due to COVID-19 reported from Italy
during the first-wave dynamics.

In Fig. 2a, the number of deaths per day distribution as a function of outbreak
time is given. The results are given for both the classical and cooperative SIRR
models. Although both models suggest that a Gaussian (bell-like) distribution can
be used to represent the death rate per day, the cooperative model performed better
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Fig. 2 A comparison between the classical SIRD and proposed cooperative SIRD models. (a)
The number of deaths per day as a function time. (b) The (S-I) phase plane portrait for both the
classic and cooperative SIRD epidemic models. The results are calculated using the PSO model
parameters. The results show a RMS = 77.85 in each simulated case
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Fig. 3 Model prediction of the COVID-19 pandemic in Italy. (a) The number of infected cases
(C) and deaths (D) over days is calculated using the optimized model parameters. (b) Prediction
of the total number of deaths in Italy represented by polar plots. The virus illustration is created by
the Centers for Disease Control and Prevention (CDC)

than the classical SIRD model in capturing the peak value of the death rate when
compared with the collected data. Both models performed well during the decaying
phase of the death rate distribution. In order to show the quantitative differences
between the classical and cooperative SIRD models, we plot the susceptible-infected
(S-I) phase plane portrait for both the classic and cooperative SIRD epidemic models
in Fig. 2b. The results have shown that the classical SIRD model underestimates the
maximum number of infected (I,,4x) outcomes and predicated a lower level of the
final susceptible individuals.

In Fig.3a, we show the results that describe the dynamic spread of COVID-
19 transmission in Italy. A comparison between the proposed cooperative SIRD
mathematical model with essential dynamics and the classical SIRD model is given.
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More specifically, the total number of infected cases (C) and deaths (D) as a function
of the pandemic spread time is calculated using the PSO model parameters. The
results are validated using the reported data, which show that the cooperative model
has performed better than the SIRD model and agreed well with the data during
most of the spread time span during the COVID-19 first-wave dynamics only. The
model suggested that a total number of cases Cy; =~< 300K are expected during
the first-wave dynamics only. Similarly, the number of deaths as a function of time
is also calculated and is shown on the same plot, i.e., on the other y-axis of Fig. 3a.
The time distribution of the number of deaths clearly exhibits a sigmoidal behavior.
The steady-state value of the death curve suggests that a total number of deaths
Dy ~< 40K are expected, unless there will be a severe second wave of the virus
spread.

The cumulative total number of deaths is represented by a polar plot as shown
in Fig. 3b. The filled circles indicate the data collected. The solid spiral line refers
to the model prediction parameterized by the number of days. The radius of the
dotted circle refers to the total number of deaths. For example, the model predicts
a total death of about Dg; <~ 40K to occur by the end of the first virus wave
dynamics. This is clearly shown from the spiral trajectory that attains an almost
steady-state value after about three months measured from the onset of the outbreak
in Italy. It should be realized that the deaths number predicted by this model could
dramatically increase due to the shortage in the necessary medical equipment (ICUs
and Ventilators, etc.) or implementing the necessary health guidelines required to
control the virus spread. Moreover, the number of cases and deaths is expected to
increase as a result of a second wave of the virus outbreak. Regression analysis is
sometimes used to create statistical models that serve as phenomenological models.

5 Model Limitation

Although the proposed cooperative virus-pool SIRD model has performed well
when the results are compared with the available data, the proposed model has failed
to capture any markers related to the onset of the COVID-19 second-wave dynamics
in Italy. We believe that in order for this model to capture a multi-wave virus spread
dynamics, the original SIRD must be modified to include complex nonlinearity.

6 Conclusions

A novel cooperative epidemiological mathematical model with essential dynamics
is proposed to estimate the total number of cases and deaths in Italy due to
COVID-19 pandemic. The model extends the classical SIRD model to include a
cooperative coupling between the susceptible and infection state variables. The
cooperativity is introduced in the model by using a sigmoidal Hill-like function.



48 Y. Aboelkassem and H. E. Taha

The proposed cooperative model provides a better mechanistic understanding of
the virus transmission characteristics. The model shows a good agreement with the
reported cases and deaths numbers with an error value represented by the RMS =
77.85. Thus, the model results can in turn be used to propose rational health to
control the spread of the virus. It should be noted that the results presented herein
assumed that social distancing guideline will continue to be respected throughout
the epidemic interval. Finally, although we only presented results addressing the
pandemic in Italy, we however have kept our analysis general to treat data sets from
other countries in the world.
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Dynamic Analysis of a Three-Strain )
COVID-19 SEIR Epidemic Model G
with General Incidence Rates

Omar Khyar and Karam Allali

1 Introduction

The late COVID-19 generated by the infection SARS-Cov-2 is classified as a strain
of the severe acute respiratory syndrome-related coronavirus SARS-CoV-1 [1]. The
classical susceptible-infected—recovered (SIR) epidemic model was first given by
Kermack and McKendrick [2]. The global stability of one-strain SEIR model has
been studied in [3-5] by considering bilinear or nonlinear incidence function. The
global dynamics of two-strain SEIR model has been established in [6] by taking
into account that the first incidence is bilinear, while the second incidence is non-
monotonic. Later, the global stability of two-strain SEIR model with two incidence
non-monotonic functions has been studied in [7]. Recently, a multi-strain SEIR
model with two general incidence rates is studied [8]. Different researchers have
revealed that the multi-strain aspect of COVID-19 is characterized by different
mutation patterns [9, 10]. Therefore, it is important to study the multi-strain
SEIR epidemiological models, which better describe the evolution of COVID-19
pandemic within populations, and they include the effect of long incubation period
along with different infected strains. The importance of studying such multi-strain
models is to check the different situations allowing the strains coexistence. In this
chapter, we develop the study for a three-strain COVID-19 SEIR epidemic model
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with general incidence rates. To this end, we will consider the following three-strain
generalized epidemic model:

ds
i A— fi(S, 11 — f2(S, ) — f3(S, )13 =85,
dE;
T S, L —(n +8Er,
dE;
o = [, b)Y — (2 +0)Ea,
dE;
— = f3(5,B)5 - (3 +d)E3,
dt
(1)
ah _ ¢ (1 + 81
7, = nEr—(u 1,
b By — (ua+ 8)
o = k- 2,
b _ ¢ (3 + 8)1
dr Y3Li Mm3 3,
dR
o w1l + poly + usls —0R

with (S) stands for the susceptible individuals; (E1), (E2), and (E3) are the
numbers of each latent individuals class, respectively; (1), (I2), and (I3) are the
numbers of each infectious individual class, respectively; and (R) is the number of
removed individuals. The parameter A is the recruitment rate; § is the death rate of
the population; y1, y2, and y3 are, respectively, the latency rates of each strain;
W1, w2, and u3 are, respectively, the three-strain transfer rates from infected to
removed. The general incidence functions f1(S, I1), f>(S, I2), and f3(S, I3) stand
for the infection transmission rates for strain 1, strain 2, and strain 3, respectively.
The incidence functions f1(S, I1), f2(S, I»), and f3(S, I3) are assumed to be
continuously differentiable and satisfy the same properties as in [11]:

f100,11) =0, f2(0,1) =0, f3(0,13) =0, forall ; =0, i =1,2,3, (H)

af1 afr af3 )
%(S, 1) >0, %(S, L) >0, %(5, L)>0VS>0 V>0, i=1,23,
; ; ; (H>)
Mismy<o L ny<0. s my<ovs=0 v =0 i=123
0l I 013

(H3)

The properties (H;), (Hz), and (H3), for all the functions fi, f>, and f3, are
easily verified by many classical incidence rates like the bilinear incidence function

S S
A or p [13], Beddington—
+ a1 S 1+ sl

BS [12], the saturated incidence function
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Fig. 1 The flowchart of the three-strain COVID-19 SEIR epidemic model

S
DeAngelis incidence function ﬂ— [14], Crowley—Martin incidence
1+o1S+anl
S
function p [15], the specific nonlinear incidence function

1 +a1S 4+l +ajonSI

[16], and non-monotonic incidence function [17].
14+o01S+axl +a351 1 +al?
Our main contribution centers around the global stability of a three-strain

COVID-19 SEIR epidemic model without any restriction of the incidence rates. The
flowchart of the three-strain COVID-19 SEIR epidemiological model is illustrated
in Fig. 1.

2 The Problem Well-Posedness and Equilibria

2.1 The Problem Well-Posedness

First, we will assume that all our model parameters are positive. The main result of
this subsection is given as follows:

Proposition 1 The solutions of the problem (1) exist and remain non-negative and
bounded, for every non-negative initial condition.

A
Furthermore, we have N (t) < 5 + N(0).
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Proof From [18], we can confirm that there exists a unique local solution to our
problem (1). For the positivity result, we will prove that every solution starting from
the following non-negative set:

H={(S,E, EsE3, 1, 1,3, R) eR¥: 5 >0, E; >0, E; >0,
E3>0,1; >0,

Ib >0, I3 >0, and R > 0} remains there.
First, let
T = sup {to > 0|Vt €[0,50] : S(r) >0, E1(t) >0, Ex(t) >0, E3(t) >0,
I1(t) 20, I(¢) =, I3(t) >0, and R(¢) > 0}.

Let us demonstrate that 7 = +o0. Suppose the contrary case, i.e., 7 is finite; by
continuity fact of solution, we have

S(T)=00rE;(T)=0o0r E2(T)=0o0r E35(T) =0o0r [1(T)=0o0r L(T) =0
or I3(7T)=0o0r R(T) =0.

If S(T) = 0 before the other problem variables become zero. Then,

ds(T) — lim S(T)—S8@) lim —S()

dt t—T— T —t _t—>T’T—l‘

<0. 2

From the first equation of (1), we obtain

ST = A= fi(S(T), L(T)) I(T) = f(S(T),
L(T) L(T) — f3(S(T), I3(T)) I3(T) = 85(T); 3)

therefore,

S(T) = A — f1(0, [(T)) [i(T) — 200, L(T)) L(T) — f5(0, K(T)) (T).
4)

But, from (H;), we have S (T) = A > 0, which represents a contradiction. Similar
proofs for E1(t), Ex(t), E3(t), I1(t), (1), I3(t), and R(?).
We conclude then that 7 cannot be a finite number, which implies that the solu-
tions of our problem remain non-negative for every non-negative initial condition.
Concerning the boundedness result, let

N@) = 8(t) + Ei(t) + Ex(t) + E3(t) + 11 (1) + L (#) + I3(1) + R(). ®)
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From system (1), we obtain

dN (1)
=A—8N();
o ()
consequently,
A
Nm=3+Kf%
SO
A
N(0) = 5 +K;
therefore,
A A
N(@®) =<+ W) — D)e™™;
) )
then

A
N@) < 5 + N(0)e™%;
since 0 < ¢~ < 1, we have

Nms§+N@.

53

(6)

)

®)

€))

(10)

(1)

Consequently, N (¢) is bounded, and so are the variables S(¢), E1(¢), E»(t), E3(t),
I (1), Io(¢), I3(t), and R(t). Hence, the local solution can be prolonged to every

positive time, which means that the unique solution exists globally.

2.2 The Steady States

O

We calculated the basic reproduction number Ry easily by using the method of the

next-generation matrix. We find

Ro = max{R}, R}, R},

_ (4.0

’%
—_— , and R; =
arb 0 axby 0

f3(4.0)y3

(12)

13)
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where
ar=y1+68, aa=y+08, az=y3+8, by =pu1+6, b =pur+48, b3 = u3+4.

We call Ré the strain i reproduction number, i = 1, 2, 3.

Remark 1 We omit the eighth equation of the model (1) because the first seven
equations are independent of R and the total population verifies (7).

Theorem 1 The model (1) has the disease-free equilibrium

&o ( ,0,0,0,0,0,0, O) and seven endemic equilibria defined as follows:

1
* 8T (A= 85D, 0.0 (A -551),0,0),
ar aib

with S§ € |0, 5| ETH >0, II*S > O‘de;v. = E;n = 12*91 = 13*YI =0.
L L
* £ (55,0, —(A=653).0, 0 (A —4853),0),
a
1 AT
with S5 € O,E E;‘sz >O,12*S >0ana7Ei‘s2 —E;‘Sz —Il*s2 —13*S2=O.
1 L
* €3(53.0.0, (4~ 559.0.0, - (A—8S3))
a3
T oar
with S5 € O,E E;‘S3 >0, 13*5 > OandEi‘s3 = Ei"s3 = 11*s3 —I;‘S3 =0.
.- L
" (S) (A= 8sD. La—ssy, 0. - (A—(SS4) (A—(SS4) 0),
1 AT
witth‘k O’E E’l"s4>0,ll’"s4>0,E§"S >012*S4>0
and E; = 13’“54 =0.
1 1
.« &5 (SE, —(A—85),0, —(A—58S%), (A ~85%).0. - (A — 58%)),
ai as azb
ith S* A * * *
with S5 € 0, Els5 > 0, 11’55 > 0, E3,55 > 0, 13’55 >0
and E;‘sS = 12’"3i =0.

1 1
" S (55,0, (A =850 (A= 859, 0. - (A—as()) —(A—(SS6))

with S{ € ]O, —1, E2s6 >0, 12s6 > 0, E3S6 >0, 13‘Y6 >0
and EY . = I{; =0.
b
© & (S Elg Bl Bl iy B By, ) where Bf = I
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b by

* R £
E>2k,S7 - %[237 ’ E3,S7 - 3 I3,S7’
P f1(4,0>[* fz(é,O)I* f3(§,0>1*
517 s - R(l) l,s7 — R(% 2,57 R(3) 3,87
A A A
4.0 40 40
with A > G0 LGO BED e e
Rl 1,57 R2 2,57 R3 3,857 0 0
0 0 0
Rg > 1.

Proof For the proof steps, we can refer to our article recently published in Nonlinear
Dynamics journal [8].

3 Global Stability of Equilibria

3.1 Global Stability of Disease-Free Equilibrium

Theorem 2 The disease-free equilibrium &y is globally asymptotically stable
(GAS) when Rg < 1.

Proof 1t is easy to prove this result by considering the following Lyapunov function
in R% [8]:

5 f1(S5,0)

Lo(S,Er, Er, E3, 11,1, [3) =S — S5 — —_—
¢ Js A0

dX

ai az as
+EI1+E+E3+—L+—Lh+—0L (14)
Y1 V2 V3

3.2 Global Stability of the Endemic Equilibria

Theorem 3 The global stability of the endemic equilibria is given as follows:

— The steady state &, is GAS if 1 < R}, R(2) <1, and RS <1.
— The steady state &, is GAS if Ré <1< R(%, and RS <1

— The steady state &, is GASif R} <1, R} <1,and 1 < R}.
— The steady state &, is GAS if 1 < Ré, 1 < R(z), and RS <1.
— The steady state E; is GAS if 1 < R}, R% <l,and1 < RS.
— The steady state Es is GAS if Ré <1< R(%, and 1 < Rg.

— The steady state &, is GAS if 1 < Ré, 1 < R(z), and 1 < RS.
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Proof With the aim of studying the global stability for each equilibrium &, (V j €
{1,2,...,7}),it will enough to follow the same steps as in [8]. Indeed, the Lyapunov
functional will take the following form:

Sﬁ S]’le

fl(X’ i,5j

i=3
E; E;
+ZE,-’ij (E* _ —1n<E?k ) —1)
i=1 L,S;j 1,8
i=3
+ 0 (e () 1)
i-1 Vi "\ i Iiss;

The functions f;,i € {1, 2, 3}, are assumed to verify the following conditions

[8]:

1
(l—F)(F—I*’ ) <0,VS85>0,1;>0,i=1,273,

i,sj

with

fl(S’ zsl) fk(S;;7II:Sl
Lrsr 17, RS

~
Il
0 :] I\

Suchthat I # 0, IF #0.k € {1,2.3}.1 € {1,2,.. 7} i # Lk #i, andk # 1.

4 Numerical Simulations

In order to illustrate the SEIR dynamics and its comparison with the COVID-19
clinical data [19], we will restrict logically to draw the evolution of the three infected
compartments with considering all incidences are bilinear. Indeed, Fig. 2 (top-left)
shows the evolution of the infection for the following parameters: A = 1, @ =
0.005, B =0.003, n = 0.007, y; =03,y =0.1, y3 = 0.5, u1 = 0.6, up = 0.4,
u3 = 0.195, § = 0.03 and the initial conditions: SO = 45, E(l) = 185, ES = 340,

= 85, Ilo = 2; Ig = 1; Ié) = 2: RY = 0. Within those parameters, all the
strain reproduction numbers are less than unity. More precisely, Ré = 0.2405, RS =
0.1789, and RS = 0.9783. This situation represents the die-out of the disease. Figure
2 (top-right) depicts the progression of the infection for the following parameters:
A=1a=0002 8=0.0037n=0.057y =01y =012, y3 = 0.19, u; =
0.2, o = 0.5, u3 = 0.1, 8 = 0.03 and the initial conditions: S° = 55, EY = 225,
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Fig. 2 The evolution of the infection for different values of the strain basic reproduction number
Ri.i=1,273
09 ) ]

EY =235 E=092,1) =2, I3 = 1; IY = 400; R® = 0. Within those parameters,
the two-strain reproduction numbers R(l) and RS are less than unity, while the third
RS are more than one. More precisely, R(l) = 0.2230, R% = 0.1509, and R? =
11.0723. Here, only one strain will persist. Figure 2 (bottom-left) illustrates the
evolution of the infection for the following parameters: A = 1, « = 0.002, 8 = 0.1,
n=0.05y=0.1,»=0.12,y3 =0.19, u; = 0.2, u = 0.3, u3 = 0.1, = 0.03
and the initial conditions: S = 55, EY = 225, E) = 235, EJ = 92, I = 2;
1) = 401; 19 = 402; R = 0.

Within those parameters, the two-strain reproduction numbers R(% and RS are
superior strictly to the unity, and the third Ré is less than one. More precisely, R(l) =
0.2230, R(z) = 8.0808, and RS = 11.0723. Here, only two infection strains will
persist. Finally, Fig.2 (bottom-right) shows the evolution of the infection for the
following parameters: A = 4, « = 0.025, 8 = 0.013, n = 0.012, y; = 0.4,
y2 = 0.1, 3 =04, u1 = 043, up = 0.9, u3 = 0.1, § = 0.03 and the initial
conditions: S° = 55, EY = 235, EY = 250, EY = 82, I = 2; I} = 501; 1Y = 700;
R" = 0. Within those parameters, all the strain reproduction numbers are superior
strictly to the unity. More precisely, R} = 6.7408, R} = 1.4337, and R} = 11.4490.
Here, all the acting strains will persist. Moreover, we observe in all our numerical
results a good fit between the numerical simulations and the COVID-19 clinical
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data, our numerical results reveal two scenarios of evolution for this pandemic, the
first happens when Ry is less than one, and at this moment, the disease will die out.
The other scenario occurs when one of the basic reproduction numbers of a strain
is greater than the unity; in this case, the disease caused by the corresponding strain
will persist. In this case, it will be worthy to undertake some eventual strategies such
as quarantine, wearing of masks, and vaccination.

5 Conclusions

The main challenge for scientific researchers is to avoid a situation where several
mutants of COVID-19 coexist in the same population. In this present work, attention
is focused on this mutation phenomenon by studying the global dynamics of the
COVID-19 SEIR three-strain pandemic model with general incidence rates. The
proposed model included eight compartments that are the susceptible, three classes
of the exposed, three classes of the infected, and the removed individuals. First,
we have proved the existence, positivity, and boundedness of all solutions that
ensure the SEIR model well-posedness. We have given the disease-free equilibrium
and the endemic equilibria with respect to each problem strain. By using some
suitable Lyapunov functions, the global stability of each equilibrium is established
depending on the basic reproduction number Rg and on each strain reproduction
number Rf), i = 1,2,3. Numerical simulations are performed in order to confirm
our different theoretical findings. We have observed that the model with generalized
incidence rates can represent a large number of classical problems; furthermore,
more clear view can be obtained to check the equilibria stability. In addition,
numerical comparison between COVID-19 clinical data and our model infected
cases has been conducted. Good fit between our numerical results and the clinical
data is observed, which indicates that the multi-strain mathematical model is more
appropriate to study the mutant infections.
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Nonlinear Phenomena and Chaos m)
in a Tumor Growth Model ik

Dionysios Sourailidis, Christos Volos, Lazaros Moysis, and Ioannis Stouboulos

1 Introduction

In the last decade many research teams work on using dynamical system analysis
for studying specific phenomena related to specific stages (avascular, vascular, and
metastatic) of cancer. This happens due to the fact that the growth of malignant
tumors can be described by a system of ordinary differential equations including
two basic factors, the populations of effector and tumor cells.

The emergence of chaotic behavior in biological systems has long been reported
in the literature [1-6]. Chaotic systems are dynamical systems in discrete or
continuous time, whose prominent feature is the high sensitivity to initial conditions
and parameter changes. This means that solutions starting from almost identical
initial conditions will quickly diverge into different trajectories, a feature that was
quoted by Edward Lorenz as the butterfly effect [7].

Understandably, the emergence of such chaotic behavior in biological systems
can be somewhat expected, since biological systems are by nature complex systems
having multiple interacting agents that are affected by a plethora of internal or
external factors. This is also the case for dynamical models describing tumor growth
[8—14]. In the early work of [9], the author argued that tumor growth is chaotic, with
a fractal nature. In [14], a model for tumor growth was studied and its Lyapunov
exponents were computed. In [12], the topological complexity of a tumor growth
model was studied. The work [11] discussed chaos in chromosomal theory. In [13],
the effect of time delays in the growth process of the hunting cells was studied.
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In 2016, an interesting model, which is built upon a chemical network, in order
to suggest a mechanism for avascular, vascular, and metastasis cancer growth, is
introduced by Llanos-Perez et al. [8]. Since then, many researchers have used
this model. In more detail, 1 year later, the aforementioned model is enriched by
using thermodynamic formalism for the metabolic rate of human cancer cells [10].
Montero et al. [15] worked on a biological approach of this problem. Guerra et
al. [16] generalized the previously mentioned work by including the epithelial—
mesenchymal transition. This is a biological process that allows a polarized
epithelial cell that normally interacts with the basement membrane through its basal
surface to undergo multiple biochemical changes, which empower it to assume a
mesenchymal cell phenotype involving reinforced migratory capacity, invasiveness,
and heightened resistance to apoptosis. Other works applied control theoretic
concepts to the control of cancer growth [17-20]. Finally, some works have also
considered the case of fractional-order modeling of cancer dynamics [21-24].

In this chapter, we extend the dynamical analysis for the system proposed in [8],
by focusing on the bifurcation analysis of the system with respect to the population
of normal cells. Interesting phenomena will be unmasked, like period-doubling
route to chaos, crisis, coexisting attractors, and antimonotonicity. Such phenomena
highlight the complex dynamics of tumor growth and can further bring light to the
effect of varying the model parameters through treatment in the system. This is in
essence the aim of the mathematical modeling for complex biological systems, to
obtain a grasp on the interconnections between system parameters, the sensitivity
of the system to parameter changes, and to understand how each parameter can be
modified to bring the system under a desired performance [25-27].

The remainder of this chapter is organized as such: In Sect. 2, the dynamical
model is presented. An extensive bifurcation analysis is performed and the results
are discussed in Sect. 3, while Sect. 4 concludes the work with a discussion on future
topics of interest.

2 The Dynamical Model for Tumor Growth
The dynamical model of tumor growth proposed in [8] is the following:

x=x(2N —x)— Hxz
y =y —0.14y) +0.5x> — Iy — 0.5Hyz 4 0.001z> )
;= —17+0.07y> + 0.5Hyz — 0.002z.

This is a three-stage system, where the variables x, y, z correspond to the concen-
tration of tumor cells in the avascular, vascular, and metastasis phases, respectively.
The system’s parameters H, N, I, and T represent the populations of the host cells,
normal cells, immune cells, and natural killer cells (lymphocytes).
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In [8], the parameters had the values N = 5, H = 3 and considered different
values for the population of immune cells / that can be considered as the control
parameter. A similar approach was later considered in [28], where a bifurcation
analysis was performed in terms of control parameter I, for different values of
parameters N, H.

In this chapter, the behavior of the model is studied with respect to parameter N.
Hence, the aim is to unmask the chaotic phenomena related to the tumor growth
system, as the number of normal cells changes. Also, different choices of host
and immune cells will be considered, in order to observe how they relate to the
bifurcation parameter N.

3 Dynamical Analysis of the Model

To study the dynamical behavior of the system with respect to parameter N, we
compute its bifurcation diagram, along with the diagram of Lyapunov exponents,
for different values of host cells H, while keeping the population of immune cells
steady at / = 1. The bifurcation diagram depicts the values of the tumor cells at
the metastasis phase z, as the trajectory of the system cuts the plane x = 1 with
dx/dt < O.

For lower values of the parameter H, we observe that the system retains a
periodic behavior for all values of the bifurcation parameter N. This can be seen
for example in Fig. 1a where for H = 2 the system is periodic with period 1. As the
parameter H though increases, the phenomenon of antimonotonicity appears, as can
be seen in Fig. 1b for H = 3.5, in Fig. Ic for H = 4.2, and in Fig. 1d for H = 4.3.
In these cases, the system starts from period-1, and then the period begins to double
for values around N = 3.5 going up to period-2 (H = 3.5), period-4 (H = 4.2),
and period-8 (H = 4.3) at around N = 4, after which the period is halved back to 1.
This is signified by the characteristic formation of a bubble shape in the bifurcation
diagram.

Interestingly, for larger values of H, for example H = 4.5, the phenomenon
of antimonotonicity extends to chaotic behavior, as can be seen in Fig. le. Here,
the system starts from period-1 and traverses to chaotic behavior through a period-
doubling route, only to go back again to period-1 following a reverse period-halving
route. In Fig. 2, various portraits of the system are depicted for H = 4.5, as the value
of the parameter N increases and the system goes from period 1 to chaos and then
back to period 1. Also, Fig. 3 depicts the 3D attractor of the system for the case of
chaotic behavior, for H = 4.5, I = 1, and N = 4 for initial conditions (1, 0.1, 0.1).

As the value of H increases even more, the chaotic behavior of the system
becomes much more complex. Taking a look at the bifurcation diagrams shown
in Fig. 1f-h, a plethora of chaotic bubbles are observed. Also, the system repeatedly
abruptly exits or enters chaos, as can be seen from the crisp changes in the shape
of the bifurcation diagram. This phenomenon is known as crisis. Also, it can be
observed that the chaotic behavior appears for a much wider range of the parameters
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Fig. 1 Bifurcation diagram for system (1), with respect to N, for I/ = 1, and (a) H = 2, (b)
H=35()H=42,(dH=43,(e) H=45 H=8,(g) H=9,(h) H =12
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Fig. 2 Phase portraits of the system for / = 1, H = 4.5 and (from left to right, first line to
third) N = 33, N = 341, N =3.6,N =4 N = 44, N = 451, N = 5, showcasing the
antimonotonicity phenomenon

N than before. The diagram of the Lyapunov exponents for H = 12 shown in Fig. 4
also verifies the chaotic phenomena observed.

Finally, the emergence of coexisting attractors of the system is studied, by
computing its continuation diagram. This diagram is similar to the bifurcation
diagram, with the only difference that each time the bifurcation parameter is iterated,
the initial condition of the system is taken as equal to the final state of the system
from the previous simulation. Hence, in each iteration, the initial condition of the
system changes, as opposed to the bifurcation diagram where it is kept steady.
This is done in order to unmask any possible changes in the dynamical behavior
of the system with respect to initial conditions. Indeed, as can be seen from the
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Fig. 3 Phase portrait of system (1), for H = 4.5, I = 1, and N = 4 and initial conditions
(x(0), ¥(0), z(0)) = (1,0.1,0.1)
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Fig. 4 Diagram of Lyapunov exponents for system (1), with respectto N, for I = 1, H = 12

overlapping of the bifurcation and the continuation diagrams shown in Fig.5, the
system showcases coexisting attractors roughly from N = 3.76 to N = 3.87. This
indicates that the initial conditions can greatly affect the behavior of the system for
this range of parameter values. The phase portraits of the coexisting attractors for
N =3.778, H = 8, I = 1 and initial conditions (x(0), y(0), z(0)) = (1, 0, 0) (left)
and (x(0), y(0), z(0)) = (0, 0.101, 0.493) (right) are shown in Fig. 6.
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Fig. 5 Overlapping of the continuation and bifurcation diagrams of system (1) with respect to N,
forl=1,H=28
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Fig. 6 Coexisting attractors of system (1) with initial conditions (x(0), y(0), z(0))0 = (1,0, 0)
(left) and (x(0), y(0), z(0)) = (0, 0.101, 0.493) (right)

Overall, by comparing all of the aforementioned bifurcation diagrams, we
observe that as the number of the host cells H grows, the behavior of the system
exhibits more unpredictable and complex behavior, since periodic and chaotic
behaviors alternate with each other abruptly, as the value of the normal cells N
increases. This observation further underlines our knowledge on the complexity of
the tumor dynamics and the need of robust control strategies to keep its dynamics
stable around a desired level.
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4 Conclusions

In this chapter, an extensive bifurcation analysis was performed for a three-stage
tumor growth model, with respect to parameter N, which denotes the population
of normal cells. A plethora of behaviors have been emerged for the system, from
periodic to chaotic, and phenomena like antimonotonicity, crisis, and coexisting
attractors.

Overall, it is clear that even this simplified cancer model can showcase a very
complex behavior, which further underlines the complexity of the disease and the
difficulties in understanding the full spectrum of cancer dynamics in the body.
Future aspects of this work will consider the design of control strategies, and also
modifications of the system, where a control parameter, like the number of immune
cells, can be periodically perturbed to study the effects of periodic treatment and
drug regulation. Also, fractional-order versions of this model can be considered.
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Modeling Limbic Seizure Initiation with m)
an Ensemble of Delay Coupled et
Neuroscillator

Ilya V. Sysoev, Maksim V. Kornilov, Natalia A. Makarova, Marina V. Sysoeva,
and Lyudmila V. Vinogradova

1 Introduction

The limbic (temporal lobe) epilepsy is a widespread neurological disease, character-
ized by spontaneous seizures. Temporal lobe epilepsy is the most common form of
focal epilepsy in humans [1]. Limbic seizures start as focal events able to subsequent
propagation (generalization) to other brain regions [2, 3]. Seizure-associated large
amplitude oscillations in different areas are highly synchronized and well studied
both in humans [4] and in animal models [5]. The initial pathological activity source
(epileptic focus) is frequently localized in the hippocampus, [6] but mechanisms
that govern transitions from normal to pathological hypersynchronous activity of
hippocampal networks and underlie seizure generalization are largely unknown.
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Here, we hypothesize that the epileptic focus is not a spatially local phenomenon,
but a partly isolated circuit consisting of relatively small number of neurons, which
is distributed over large part of hippocampus (hippocampal principal neurons are
known to have many long-range intra- and extra-hippocampal projections). This
circuit can “sleep” for a long time and cannot be detected since it does not produce
profound clinical symptoms, and moreover, even in animal models of epilepsy, local
field potentials, reflecting the activity of large neuronal population [7], cannot detect
the activity of the relatively small number of cells in the circuit, having small impact
on the local field potentials. The single unit intra- or extracellular electrodes are
unlikely to be located in the right place for the same reason, and the circuit stays
unrevealed. But at some point, elements of the focal circuit begin to recruit the larger
hippocampal networks and start to translate their dynamics to the other regions,
forcing the synchronized oscillations. The most likely reason of pathological circuit
involvement is memory processes, in which hippocampus plays the dominant role,
and therefore new links between hippocampal neurons are frequently created.

Here, we propose a mesoscale model of limbic seizure initiation and gener-
alization all over the same hippocampal half, not considering the generalization
to other brain structures (entorhinal cortex, frontal cortex), and limiting with the
same brain hemisphere. The models of the proposed type—network mesoscale
epilepsy models—are not very popular since it is hard to find the balance between
incorporation of individual cell properties like different GABA, glutamate, and CB1
receptors from one hand, and correct representation of cell numbers and networks in
different brain regions. Still, some recent models were successfully constructed [8].
Recently, we proposed two models of such a type for spike-wave discharges which
are the main electrographic manifestation of absence seizures [9, 10].

2 Model Design

The following simplifications are used to prove the model.

1. We assume that each model neuron (node) represents a group of neurons with
similar properties and coupling, as it is usually assumed in the mesoscale models
[8,9].

2. There are many possible neuron models [11, 12], but we hypothesize that there
is no significant difference if we are interested in the network effects and what
they can provide for epilepsy. Therefore, we use the simplest known model for
individual neurons—FitzHugh—-Nagumo model [13, 14].

3. We consider only principal excitatory cells of the hippocampus that are able to
orchestrate synchronicity of large neuronal populations via long-range projec-
tions here, ignoring interneurons and glial cells, as it was in [9].

4. We consider all nodes and all couplings to be completely equal (no parameter
distribution).
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5. We consider the neurons of the hippocampal hemisphere responsible for seizure
generation to be split into two main populations: pathological (focal, smaller)
and normal (surrounding, larger) one. These populations are mostly separated
one from another except the moment when the pathological population starts to
be involved into memory processes and the links from it to the normal population
becomes active.

6. We ignore all couplings from over parts of the brain to both considered
populations.

We understand that these simplifications are significant, however, they are necessary
for the initial step of model development and can be overcome in future.
We used the following equations for the model:

dx;
d—;=xi(a—xi)(xi—1)—yi+§i+2ki,jh(xj(l—f)),
J#
dy:
%=bxi—)’%‘, (D
1 4+ tanh
hw = R,

with the same parameters a = 0.8, b = 0.008, y = 0.0033 for all nodes. All
present coupling coefficients k; ; = 0.6 and absent coupling terms are represented
by k; ; = 0, with the coupling delay T = 13. Time delay (the term “latency” is also
used ) between presynaptic and postsynaptic action potential is usually considered
in models [15, 16]. It can be small (1 ms delay—very fast transmission, see [17]) or
large (long latency, like 26 ms in [18]). The most usual values are 2—5 ms. Since the
FitzHugh—Nagumo neuron models are dimensionless, there was no possibility to set
the absolute value. Instead, we considered the ratio between the main frequency of
limbic seizures that is 16—40 Hz [6] (i.e. oscillation period 40-25 ms) and the delay,
which should be approximately 10 times smaller. The equations were solved using
Euler method with the step At = 0.5. In order to switch from the dimensionless
time to real time scale, we propose to use the ratio 1/3400, i.e. Ar = 1/1700s, as
previously in [10]. The Euler method was used due to delay presence in couplings,
therefore, the advanced Runge—Kutta or Adams methods are not directly applicable.
We tested the approach for convergence.

2.1 Focal Circuit

The focal circuit consists of a small number of neurons, which are organized into
the ring with possible additional elements like in Fig. 1. Here, we partly follow the
idea of [19]. The used parameters correspond to no oscillations in a single node
without coupling, but after the time delayed coupling is provided following the
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Fig. 1 A scheme of the proposed focal circuit organization with two subcircuits: the major
generating the main frequency and the minor, for changing it. The neurons No. 0-9 form the major
circuit, they form a one-way ring; the neurons No. 3, 10-14, 4 are included into the minor circuit
and they also form a one-way ring

@ ()

uuuuu

ts fHz

Fig. 2 Time series and spectrum of the individual neuron No. O of the focal circuit. The spectrum
was estimated by averaging periodograms calculated from 20 time series obtained for different
initial conditions. The main oscillation frequency was calculated as the first and usually the largest
peak in the spectrum. All neurons of the major loop generate the similar activity with a small time
delay, therefore only time series and spectrum of the neuron No. 0 were plotted

scheme Fig. 1 the individual node starts to exhibit periodic nonlinear oscillation—
see Fig.2. These oscillations are the function of the circuit organization. Their
appearance and frequency are determined by the delay time t and by the number of
nodes D in the circuit, as it is shown in Fig. 3. These elements produce the principal
ring. The main frequency in real data can evaluate during the seizure [6] both in
humans [5] and rats [20, 21]. Such an evolution can be modeled by variation of
number of circuit elements or by incorporating different 7; ; for different i and j.
Inclusion of additional subcircuits to the principal epileptic ring usually leads to
appearance of additional spectral components.

3 Normal Circuit, Generalization

To model the normal dynamics, the larger circuit is proposed following the approach
we have already used for modeling spike-wave discharges [10]. Figure 4 represents
the typical complete network consisting of the normal circuit (gray nodes) and the
epileptic circuit split into the principal ring (red nodes) and additional subcircuit



Modeling Limbic Seizures 77

20 40 60 80 100

f, Hz

Fig. 3 Dependencies of the main oscillation frequency in the focal circuit on the number of
elements in the principal ring of the epileptic circuit D and on the coupling delay time 7, 7 is
measured in At units

(blue nodes) used to initiate oscillation and, if additional links activated, to modulate
the main frequency and enrich the spectrum.

The normal circuit demonstrates irregular activity being not connected to the
epileptic one. When connected, the normal circuit becomes synchronized by the
epileptic one (we used the same value k; ; = 0.6 for the all types of present
couplings), see time series and spectrum of summary activity of the entire network
in Fig.5. Since in most real experiments the local field potentials (summary
activity) are measured. Therefore, the local filed potential synchronization is mostly
considered rather than spike synchronization following [22]. Amplitude difference
between Figs. 2 and 5 is due to the summary signal is plotted on Fig. 5. We consider
this synchronous dynamics as a model of synchronization in the hippocampus of
the same hemisphere, in which the focus is located. This step is intermediate in
the process of the seizure generalization followed by propagation to entorhinal
and frontal (primary motor) cortex, and then to the other hemisphere. However,
modeling of the further seizure progression (and termination?) is out of aims of this
study.
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Fig. 4 Scheme of complete network for modeling limbic seizures. Red and blue nodes represent
the focal matrix (principal ring and additional subcircuit), gray nodes represent the normal circuit.
Red arrows are from epileptic nodes, including connections to the normal ones
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Fig. 5 Time series and spectra of network summary activity of all nodes from both circuits:
epileptic and normal
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4 Conclusions and Discussion

Here we propose a simple dynamical model for limbic seizure focus and primary
step of generalization. The main idea is that a small neural circuit in the hippocam-
pus in the form of a ring is responsible for main frequency and that this frequency is
a function of the ring length (the larger ring is, the small frequency occurs) and
the mean synaptic transition delay time in the ring. Since it is known that the
main frequency of the limbic seizures is changing over time during the seizure
progression, we propose a mechanism for this, by incorporating the additional
subcircuits into the ring, which can be dynamically connected or disconnected.
The normal dynamics of the main hippocampal networks is modeled by the larger
ensemble of same nodes, but connected randomly.

The seizure generalization from the focal circuit to the entire hippocampus (the
same hemisphere) can be achieved by activating the additional couplings from the
focal circuit to the epileptic one [23]. These couplings may appear in the model
due to some memory processes in the hippocampus, by episodically including some
elements of the focal network into the memory processes.

The resulting model is a system of time delayed equations with delay located
in connections (all connections are of the same weight) between nodes, which
are represented by identical FitzHugh—Nagumo equations (selected as simplest
oscillatory neural model). Introduction of time delay was multiply shown to allow
to enrich the model dynamics significantly, see the recent review [24]. It is mostly
reported that introduction of time delay provides more possibilities for chaotic
behavior. But here, we are interested in activation of regular oscillations rather than
in chaos. The nodes by themselves are in the excitable mode, i.e. without network
they do not demonstrate any oscillatory activity. There is no noise in the system.
The similar situation was shown in [25].

The chemical synapses were considered. The sigmoid coupling function is often
used to describe interactions between model neurons, especially for pyramid cells
which are the main type of cells in the hippocampus, see [26] and [27], for instance.
In particular, the sigmoid coupling with delay as in the current work was use in
[16]. We think that the same effects can be achieved with other coupling functions.
We tried the simple diffusion coupling as well with similar results for the main
frequency occurring in the loop due to the delay. But we did not study this question
in detail.

The proposed model was made just as a proof of concept. From the physiological
point of view at least inhibitory interneurons have to be incorporated. Then, the
variation of node parameters (individual cells, couplings, and synaptic delays) has
to be studied whether the model stays stable or not. The mechanisms of dynamically
stitching connections, responsible for generalization and frequency changes, have to
be modeled in detail.

Acknowledgement This work was supported by Russian Science Foundation, grant No. 19-72-
10030.
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Mathematical Modeling of )
Calcium-Mediated Exosomal Dynamics ik
in Neural Cells

Hina Shaheen, Sundeep Singh, and Roderick Melnik

1 Introduction

The intracellular calcium (Ca®*) concentration plays a critical role in synaptic
transmission and neuronal excitability, along with other neural dysfunction asso-
ciated with chronic brain disorders. Moreover, intracellular Ca®?t concentration
influences multiple cellular functions, including enzyme and release activities
and the signaling of numerous plasma membranes [1]. Chronic exposure to high
concentrations of the Ca?* can cause neurotoxicity, which is a neurological
syndrome consisting of movement abnormalities that share many Parkinsonian
features. Intracellular Ca®* is an important neuronal signal transduction mediator,
taking part in assorted biochemical reactions that evoke changes in synaptic
adequacy, metabolic rate, and gene transcription. Although the measurement of
intracellular Ca" in living neurons through fluorescent Ca?* markers has not
reliably demonstrated a link between cytosolic Ca* and the occurrence of neuronal
death, excessive cytosolic calcium has been implicated as a cause of acute neuronal
injury [2].

Neurodegenerative disorders represent a heterogeneous group of diseases charac-
terized by progressive structural and functional aggregation of misfolded proteins. It
has been recently shown that these aggregated proteins may be exchanged from one
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cell to another through extracellular nanovesicles called exosomes [3]. Exosomes
are mostly found in all kinds of biological fluids and are basically 40—100 nm sized
extracellular vesicles comprising natural lipid bilayers [4]. It has been revealed
that the content of the exosomes inferred from the central nervous system is
altered during disease progression, making them an appealing target for biomarker
development of multiple neurodegenerative disorders, viz., Alzheimer’s, Parkinson,
Huntington, and Creutzfeldt-Jacob [5]. Exosome release from neurons, astrocytes,
and neural cell lines triggered by depolarization-induced increased intracellular
Ca’" leads to the interesting possibility that activity-dependent regulation of
exosome release could provide a mechanism to control neural dysfunction and
temporal features of exosome in the brain [6]. Owing to their biological tolerability,
exosomes provide exciting opportunities for delivering chemical components to
a target cell, thereby assisting in developing novel diagnostic and therapeutic
approaches [7, 8].

A recent study found that when differentiated neurons and astrocytes are depo-
larized, specific types of Ca?T channels in differentiated neurons and astrocytes
are activated, resulting in increased intracellular Ca’t concentration levels, which
interfere with the mobilization of multivesicular bodies and exosomal release
[9]. The experimental evidence demonstrates that (a) in neurons, glutamatergic
movement is improved by depolarization and an increment within the intracellular
Ca?* which assists with upgraded exosomal secretion and (b) intracellular Ca?*
levels regulate vesicular secretion and release in astrocytes [9, 12]. To provide a
platform toward Ca**-mediated exosomal dynamics, we propose a more realistic
mathematical model for capturing the Ca’*-mediated exosomal release in the
neural stem cells. Here, we will focus on the novel aspects of regulated ther-
apeutic exosomal release by introducing mathematical models as a framework
for optimizing neural models that combine depolarization, intracellular Ca>*
concentrations, and vesicular exocytosis. The electrical activity of a depolarized
neuron via membrane potential for action potential initiation and propagation is
investigated using the modified Hodgkin—Huxley neuronal model. The intracellular
Ca?* dynamics have been modeled by coupling the neuronal electrical activity
and Ca’*-mediated exocytosis, taking into account the high-voltage (L-type) and
low-voltage (T-type) activated Ca>* channels, plasma membrane, bulk cytosol, and
endoplasmic reticulum. Furthermore, the effects of temperature on the modulated
Ca’*-mediated exosomal release in the neurons have also been studied that could
assist in developing more accurate methods for regulating neural activity [10].

2 Mathematical Model of Ca?*t-Mediated Exosomal
Dynamics

The present study aims at modeling the Ca”"-mediated exosomal dynamics in brain
differentiated into neurons considering two different approaches: (1) a simplified
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neuronal model consisting of intracellular Ca®t dynamics with a special focus
on microdomain Ca®t concentrations and (2) a more realistic neuronal model
accounting for temperature effects on the intracellular Ca>* dynamics with gated
conductances.

A better understanding of the Ca®* ions dynamics in the central nervous system
could serve as a testing bed for decoding synaptic exocytosis mechanism, e.g.,
synaptic vesicle docking, diffusion, and neurotransmitter release. In this section, we
develop a comprehensive model of Ca®t dynamics and exocytosis in neurons down-
stream of electrical activity. Exosomal release mediated by Ca®" is limited to active
zones, which contain voltage-gated Ca’*t channels that govern Cat from the
extracellular domain, mediate, and regulate exocytosis and lead to exosomal release
in the brain. The proposed model is used to analyze the coupling between electrical
activity and Ca”*-mediated exosomal release. We first analyze the intracellular
Ca®t dynamics along with the microdomain Ca®* concentrations surrounding
high-voltage active L-type ([Ca]z) and low-voltage T-type Ca®* channels (when
they open and close), connected beneath the plasma membrane ([Caly,), within
the endoplasmic reticulum ([Ca]Egg) and in the bulk cytosol ([Ca].). The model is
developed combining Watts—Sherman and Montefusco—Pedersen models for Ca’*-
mediated exosomal release and regulated exocytosis as [9]

d[C opene iCay,
% - —f(alc— — Bua(Caly — [Ca]m)), )
t ud
d[Caln .
el _ Vi< ~ ticay + NiVaaBuam?g heay (ICal, — [Caly) — ()
VckPMCA [Ca]m - VcBM([Ca]m - [Ca]c)>’
d[Cal.
A = F(Ba((Caly ~ [Calo) + prear((Caler — [Calo) ~ ksgrealCalo)
3)
d[C V.
di€aler _ JVe \  (Caler — [Cale) — kserealCalo), 4

dt VeER

where icq, = (§ca, (Vm — Vca))/ Ny is the Ca** current entering the L-type Ca>*
channel, icy, = gC”Tm%aThcuT (vm — Vca) is the Ca®* current entering through
T-type Ca** channel, 8Ca; 18 the membrane conductance of the L-type Ca*t+
channel, gc4;, is the membrane conductance of T-type Ca?* channel, m%aLhcaL
and m% aThCaT represent the opening probability for the L-type and T-type Ca’*
channels, respectively, and Ny is the number of L-type Ca®* channels [9]. « is
the constant that converts current to flux, f is the ratio of free-to-total C a*t, By,
is the flux from sub-membrane compartment to bulk cytosol, B4 is the constant
flux from microdomains to sub-membrane, kpyc4 is the rate of C a** adenosine
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triphosphatase (ATPase) through the plasma membrane, pj..i is the rate of the leak
current from the ER to the cytosol, and ksgrca is the rate of Sarco/endoplasmic
Ca’t ATPase pump-dependent sequestration of Ca’t into the ER, and Vi, Viu, Ve,
and Vg are the volumes of single microdomain, sub-membrane compartment, bulk
cytosol, and ER, respectively [9]. The gating variables are defined as

dmy My 00(Um) —mx  dhy Ry 00(Up) — hx

= o ot s e 5)
dt me(vm) dt Thx(vm)
where x € (Cayr, Car, Na, K) and
_ %mK /Na . _ %,
MK/Na,co = Cl’”[(/Na—HS”’K/Na ’ hNa,oo - ahNa+'BhNa ’
_ 1 . _ 1
thNa - C“h]\]a"l'ﬁh]v ’ TmK/N“ - a’”[(/Na+ﬂmK/Na ?
(0.1(vy, +40)) _ (dexp(=(vn+65)) 6
Amna = T=exp(— (v, +40)/10)) * Brna 18 J ©®)
o _ (0.01(v,,, +55)) /3 _ 0.125exp(— (v, +65))
MK = T—exp(—(vu+55)/10)° Pmx = 30 ’
(0.07exp(— (v +65))) . _ 1
Uy, = 25— Phya = T+exp(—(vm+35)/10) *

The time constants and the gating variables in the steady state for x € (7, L) are
defined as

1 1

MCay,00 = o (7<Um7vmc,”>>; hca,,00 = o (—(Um—‘/hcax))’
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The relative exosomal release rate in neurons depending on L-type Ca?*
microdomain concentrations and plasma membrane Cat concentrations can be
represented, respectively, as follows [9]:

Rea, = mg g, hea, Fu(ICalLiopenea. KL np) + (1 —mgy hea)Fu  (8)

([Ca]Llclaseds Kp,np),
RCam = Fa([Calm, Kn.np), (©)]

where Fy(x, K,n) = ¢x”+K" is the Hill function, [Calr|ciosea = [Caln, and ¢
is a fusion constant given in s~! [9]. Experimental evidences have revealed that
Ca”*-mediated exocytosis by neurons is regulated by intracellular Ca** where
Ca®* threshold of exocytosis depends on the pattern of electrical activity [9]. The
electrical activity triggered by the neuron depolarization includes the activation of
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voltage-gated Ca’* channels upon cell depolarization, due to increased intracellular
Ca?* concentration levels, which interfere with the mobilization of multivesicular
bodies, resulting in exosome release and exocytosis. As mentioned, we adopt the
modified Hodgkin—-Huxley neuron model for describing the neural signals of a
depolarized neuron via membrane potential (v,,) that depends on voltage-gated
potassium (K ) channel, voltage-gated sodium (Na™) channel, leak current, and
induced control signal/current (i;,4) as [9]

dv, -1
— = —| gk (Wm — Vk) + gNa(m — VNa) + &L Wm — VL) — iina |» (10)
dt Cn

where C,, is the membrane capacitance, Vi, V4, Vca, and Vi are Nernst potentials
for K+, Ca®*, and Na™ ions and other ions clubbed as a leak channel, respectively,
and gk, Vg, and gy, are the corresponding membrane conductances. Voltage-gated
conductances (gg = g"Km‘}( and gng = g&amﬁvah Na) change with time during the
action potential initiation and dissemination. Moreover, m‘}( and mi,ah Na Tepresent
the opening probability for K and Na™ channels. The gating variables mg, myq,
and Ay, are defined in Eq. (7). Furthermore, we will construct a more realistic
neuronal model where the main characteristics account for temperature effects
on Ca’T-mediated exosomal release in the neurons. Potassium currents exceed
sodium currents at higher temperatures, resulting in action potential failure. Thermal
inhibition may, however, be explained by other temperature-dependent alterations
[10]. Therefore, understanding the effects of temperature on Ca?*-mediated exo-
somal release may be extremely useful in developing more accurate methods of
regulating neural activity in the brain. We will use the modified Hodgkin—Huxley
model to capture the response of CaT-mediated exosomal release in the neurons by
varying the peak sodium and potassium conductances with temperature. It has been
shown that the resting potential varies with the temperature [10]. In the simplified
neuronal model, the peak sodium and potassium conductances gy, and gx were
assumed to be constant and independent of temperature, but these values vary
with temperature for a more realistic neuronal model, i.e., gx = gK,,m(T)m‘}<

T 2
and gng = gNamax(T)My hna, where gxmax(T) = 1.60e™ (L2 and
gNamax(T) = 0.42e’(T3_13'é'283)2 [9]. Thus, while modeling the temperature effects,

only the membrane potential, given in Eq. (10), will be modified, and the values
of peak conductances will be computed from the temperature-dependent gating
variables defined as

dmg /N
% = ¢m](/N,[(T)(am](/Na(1 - mK/Na) - ﬂmK/NamK/Na),

dh "
e = By (1) @y, (1= hva) = By, iva).
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where
M 2015 r-20
G (T) = 02.8%0" 2,710
¢mNa(T)_3 o 2915101032010153 1020, (12)

15—-10 20—15

¢hNa(T)_3 T 28 0 24710 23 e ,

are adopted from [10] for the considered temperature of 25 °C.

3 Results and Discussion

In this chapter, a numerical study has been performed for quantifying the effects of a
control signal, membrane potential, gated conductances, and temperature on Ca>*
mediated exosomal dynamics in the neurons. Notably, Ca®>*-mediated exocytosis
has been quantified on the membrane potential with particular attention given to
microdomain Ca?* concentrations that surrounds the high-voltage L-type and low-
voltage T-type Cat channels that links to the description of Ca?* within the
bulk cytosol and the endoplasmic reticulum under the plasma membrane using
the simplified neuronal model. Whereas the effects of temperature on the Ca>*-
mediated exosomal dynamics have been investigated utilizing the more realistic
neuronal model. The numerical results presented in this section have been obtained
using the parameter values collected from [9] and [10], as presented in Table 1.
A finite element method implemented via [11] has been used to solve the set of
coupled ordinary differential equations of the simplified and more realistic neuronal
model.

Motivated by Veleti¢ et al. [9], an external stimulus has been applied to excite the
neurons by applying the current pulses ranging from amplitudes of 5-20 pA/cm?
for a duration of 500 ms, as depicted in Fig. 1a. The effects of the induced pulse of
20 pLA/cm2 on the membrane potential with temperature (7 = 25°C) and without
the temperature effects have been presented in Fig. 1b. As evident from this figure,
the rate of generated sequences of the action potentials is proportional to both the
magnitude and the duration of the external stimuli. Not only this, but also the
spiking sequences are also significantly reduced when the temperature effects are
incorporated within the numerical model. Importantly, the voltage-gated calcium
channels in the membrane are regulated by these spiking sequences [9].

The effects of the temperature on the microdomain calcium concentrations have
been presented in Fig.2. As seen from the analysis of this figure, the intracellular
Ca?™ concentrations in the closed and open channels of L-type, plasma membrane,
bulk cytosol, and endoplasmic reticulum are significantly overestimated if the effect
of temperature is neglected. Moreover, the exosomal release rate in neurons directly
linked with the Ca®*t concentrations in different compartments has been presented
in Fig.3. Again, there prevail significant deviations among the two considered
cases. The exosomal release rate is relatively higher when temperature effects are
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Table 1 Parameter set for calcium-mediated exosomal dynamics

Parameter | Value Parameter | Value Parameter | Value
Vi —70 (mV) 7 —54.4(mV) Vica, —52(mV)
Vo, —50 (mV) Vape,, | —50(mV) Viie,, 0 (mV)
VmCaT —49 (mV) VhCaL —-33 (mV) VmCaL —-30 (mV)
Vine, | —23(mV) Shea, —5(mV) Sheay —5(mV)
Ty, 0 (ms) Vid 2.62x 1079 1L) |« 5 x 1015 (wmolpm/As)
ar
Vin 5% 10714 (@) | V. 57 x 1078 L) | preak 3x107* (ms™ 1)
f 0.01 TmOVCaL 0.05 (ms) kserca | 0.100 (ms’l)
By, 0.128 (ms™!) | gz 0.3 (mS/em®) | kpyca | 0.300 (ms™!)
8Car 0.4 (nS) gca; 0.7 (nS) Cn 1 (uF/cm?)
Tnvg,, 1 (ms) K 2 (LM) nr 4
N 4 Smc”T 4 (mV) thOVc”T 5 (ms)
Smea, 10 (mV) T 10°C e 12 (mV)
ar
vy, 15 (ms) Sthca, 15 (mV) Stuc, 20 (mV)
e, 20 (mV) Thye,, 20 (ms) VZER 31
gk 36 (mS/cm®) | Vg 50 (mV) K; 50 (M)
ThOVCaL 51 (ms) ThVCaL 60 (ms) Vea 65 (mV)
8Na 120 (mS/cm?) | N 200 Bua 264 (ms~1)
20 | T T T o 40 — Without temperature effects
| [ = With temperature effects
i : < 20}
e ;, ............. ! §
S ! | w 0
3 | i 5
w 10F @ - ———- I g 20
=3 i 2
= I £ 40
£ 5 £
8 = 60
0 T | L 1 80 L i 1 i e i P | i
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (ms) Time (ms)
(a) (b)

Fig. 1 (Color online) (a) Induced control signals/currents and (b) the effect of temperature on the
responses/spiking sequence in the depolarized neurons for i;,y = 20 WA /cm?

incorporated within the model. This can be attributed to the fact that an increase in
temperature values will lead to corresponding increase in the net hyperpolarizing
current. Although due to the increased speed of sodium/potassium ions gated
conductances, the sodium inward current became shorter and the potassium outward
current became stronger and wider. As the membrane was depolarized by the action
potential, the net current became steadily outward (hyperpolarizing) with increasing
temperature. Thus, the exosomal release rate of the targeted neuron is significantly
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Fig. 2 (Color online) Microdomain calcium concentrations: (a) [Calr, (b) [Cal,, (¢) [Calc,
and (d) [Ca]gr with and without temperature effects corresponding to control signal of i;,q =
20 LA /cm?

2
S 40 2 a0}
3 g
| g
‘o 30 € 30
=] £
o 5 ] L
2 3
@ 20 8 20
° K [ L
b m|
g 10} E 10}
3 2
g &
w o ! 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (ms) Time (ms)
(a) (b)

Fig. 3 (Color online) The rate of released exosomes in neurons: (a) without temperature and
(b) with temperature corresponding to control signals of i;,g = 20 WA /cm?
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Fig. 4 (Color online) Microdomain calcium concentrations for (a—c) [Ca]r, (d) [Ca]l,,, (e) [Ca].,
and (f) [Ca]gg corresponding to control signal shown in Fig la ranging from i;,; = 5-20 pA/ cm?
incorporating temperature effects

affected by the changes in temperature. Furthermore, the effect of the control signal
presented in Fig. 1a on the microdomain calcium concentrations has been depicted
in Fig.4. As evident, the increase in the amplitude of the control signal stimuli
from 5 to 20 |LA/cm? results in a corresponding increase in the concentration of
[Calgr, [Calml, [Cal. concentrations, while the effect on the [Ca];, concentration
is quite negligible.

4 Conclusions

In this chapter, we proposed a new numerical model for accurately quantifying the
Ca’T-mediated exosomal release influenced by the externally applied stimulus to
the neurons accounting for temperature effects, a feature that lends potentially more
realistic predictions. Our predictions suggest that cell depolarization in neurons is
directly related to the exosomal release which is further proportional to the applied
stimulation. The novelty of the present research is in the development of Ca**-
mediated exosomal dynamics model of neurons accounting for the temperature
effects. Furthermore, it has been observed that calcium concentrations in the
respective compartments and thus the overall Ca>*-mediated exosomal dynamics
are significantly affected by the changes in temperature. The developed neuronal
model and the results presented in this study provide an important initial step for
our better understanding of the exosomal dynamics. The authors believe that the
developed model would provide a pathway for the generation of new models for
optimizing and designing exosomes based drug delivery systems for the treatment
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of brain pathologies. Future studies will be focused on the inclusion of other calcium
compartments, as well as on the development of a new stochastic model based on
the ideas highlighted here.
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Forward Sensitivity Analysis of the )
FitzHugh—-Nagumo System: Parameter e
Estimation

Shady E. Ahmed, Omer San, and Sivaramakrishnan Lakshmivarahan

1 Introduction

Dynamical systems are ubiquitous around us and in every scientific discipline.
Examples from physical sciences include atmospheric and oceanic flows, heat
and mass transfer, the behavior of moving objects (e.g., cars, ships, airplanes,
rockets, pendulums, etc.), chemical reactions, and signal transmission. In social
sciences, the population increase and distribution, human interactions, and cultural
developments over centuries have been following interesting dynamical patterns.
Researchers and practitioners in life sciences have also found that the application
of dynamical systems theories to the bodies, organs, and cells yields significant
advancement in our understanding and treatment of the body. In neurosciences,
the understanding of brain performance and response to external stimulus has been
critical for epilepsy prevention and treatment. Several dynamical models have been
historically proposed and investigated to study and analyze the neuronal activity
(e.g., see [1]). The FitzHugh—Nagumo (FHN) equations [2—4] represent one of the
very popular and simple models in the study of neurophysiology. In addition to its
utility for the modeling of biological behavior, it is considered a prototypical model
in the study of nonlinear dynamics due to its interesting characteristics such as the
bifurcation properties [5].
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The two-equation FHN model, describing neuronal spike discharges, can be
defined as

S (1)
@ CT3vTvTh

d

rd—lfzv—i—a—bw, 2)

where v defines the membrane potential, w stands for a recovery variable, and 7 is
the time scale. I represents the external input current, while a and b are controlling
parameters. The FHN model might appear in various forms, which can be related
to Egs. (1)—(2) by a set of changes of variables and coordinate transformations.
It describes the dynamics of excitable systems, which can be observed in various
natural systems such as neuronal dynamics, electrocardiology, chemical reactions,
and climate dynamics. However, the parameters in the FHN model are difficult
to be computed directly in a real-world experimentation, and the estimation of
these parameters has gained the interest of a lot of researchers in physiological
sciences. We shall see in the following discussions that the specification of the model
parameters is crucial for the prediction of the system’s behavior. For instance, the
system can either converge to a stable fixed point or exhibit a limit cycle. Thus,
the knowledge of such parameters can be very useful for diagnostic and prediction
purposes, and the objective of the current study is to estimate the model’s parameters
from a few (possibly noisy) measurements of the system’s state.

The parameter estimation framework for FHN model can be generally formulated
via standard techniques such as simulated annealing, genetic algorithms, differential
evolution, and Kalman filtering extensions. Besides, the known model’s structure
and characteristics can be utilized to customize an algorithm to estimate the
parameters of the respective model. For example, the time-scale separation in the
FHN model has been exploited to infer the model’s parameters [6]. Che et al. [7]
solved the parameter estimation problem by deriving a second-order differential
equation for the membrane potential, being the observed quantity. A least-squares-
based regression was then applied and equipped by a wavelet denoising technique
to reduce the effect of noise contamination. Geng et al. [8] applied an expectation
maximization-based algorithm to identify generic FHN model parameters and
estimate the variance of the interfering Gaussian noise. Jensen et al. [9] applied
a Markov chain Monte Carlo method to infer the parameters in a stochastic FHN
model, constructed by adding a noise term governed by a Brownian motion.
Melnykova [10] proposed a contrast estimator technique to infer the model’s
parameters in the asymptotic setting.

In this chapter, we utilize a variational data assimilation technique, namely
the forward sensitivity method (FSM) [11, 12], to identify the correct parameter
values. The inherent sensitivity analysis reveals the relative dependence of the cost
functional, defined by the discrepancy between the identified model’s predictions
and the actual observations, onto the respective parameters. We also investigate the
effect of observation placement instants on the shape of the cost functional and the
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corresponding sensitivities. We finally highlight measurement collection guidelines
that potentially improve the parameter inference iterations.

2 Parameter Estimation Framework

The FHN model can be described as

X = f(x, a), 3)

where x = [v(t), w(?)]” denotes the system’s state, &« = [a, b]” is the model’s
parameters, and f represents the continuous-time dynamics of the FHN model (i.e.,

1
fxa) =[v— 31)3 — w41, (v+a— bw)/t]T). Assuming that the model f is

continuously differentiable in its arguments (i.e., X and &), its Jacobians with respect
to the state x and the parameter & can be defined as below:

1—v% —1 0 0
Df"z[ /e —b/r}’ Df“[l/r —w/r}’ @

where D fx and Df, define the model’s sensitivity with respect to the state x and the
parameters o, respectively.

2.1 Forward Sensitivities

Using a suitable temporal integration scheme, the FHN can be rewritten in a
discrete-time form as follows:

xX(k+ 1) = M(x(k), a), (5)

where x(k) = [v(t), w(t)] € R? defines the system’s state at time f;, and M :
R? x R? — R? represents the one-step state transition map. Thus, the following
discrete-time Jacobians can be computed:

oM;(x, o) oM, (x, oc)] ©)
x=x(k)

DM (k) = [—} , DM, (k) = [
ax;j x=x(k) da

Furthermore, we define the sensitivity of the model forecast at any time #; with
respect to the model’s parameters as follows:

V(k) = [a;’—(k)} e R?*2, (7

aj
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Equation (5) can be used to evaluate the forward sensitivity matrices at different
times in a recursive way as

V(k + 1) = DMx(k)V(k) + DMy (k), ®)

with V(0) = 0 since the initial condition x(0) is independent of the model’s
parameters o.

2.2 Forecast Error

In order to approximate the forecast error, we assume that we have a set of
measurements so that we can assess the model predictions. In particular, the
measurement vector z(k) € R™ at time #; is defined as

z(k) = h(x(k)) + &(k), €))

where h : R> — R™ is the observational operator that relates the model space
to the observation space, and X stands for the true system’s state while & denotes
the measurement noise. For simplicity, we suppose that we directly measure the
system’s state (i.e., h(x(k)) = x(k)). We also assume that € is a white Gaussian
noise with zero mean and a covariance matrix R (i.e., § (k) = N (0, R(k))).

We define the difference between the model forecast and measurements as
e(k) = z(k) — h(x(k)), which is called the innovation or forecast error (computed
in the observation space). With the assumption that the dynamical model is perfect
(i.e., correctly encapsulates all the relevant processes) and the initial condition x(0)
is known, then the deterministic part of the forecast error can be attributed to the
inaccuracy of the values of model’s parameters, defined as & = a — «, where
a denotes the true values of the parameters. Thus, we can define a cost functional
J:R?2 > Ras

N N

1 1
T =) Slle® gy =) 560 R ®ek), (10)

k=1 k=1

where N is the number of measurement instants. The minimization of the cost
function J can be solved as a strong constrained problem with the standard
Lagrangian multiplier method, resulting in the adjoint framework. Alternatively,
we utilize the forward sensitivity matrices to evaluate an optimal estimate for the
parameters o. Let §x(k) = X(k) — x(k) be the difference between the model’s
forecast and the true state, with 6x(0) = O since the initial conditions are
perfectly known. With first-order Taylor expansions of e(k) and §x(k), the following
expressions can be defined:

e(k) = Dh(k)sx(k),  ox(k) = V(k)Se, (11)
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where Dh is the Jacobian of the observational operator h. Therefore, the forecast
error can be related to the correction to the model’s parameters as e(k) =
Dh(k)V(k)éa. Since we assume that h(x(k)) = x(k), we deduce that Dh reduces
to the identity matrix. The previous forecast error formulation can be written for all
N time instants at which observations become available, and the following linear
equation is obtained:

Héx = ep, (12)

where the matrix H € RV"*2 and the vector e € RV™ are defined as follows:

Dh(1)V(1) e(l)
Dh(2)V(2) e(2)

- . L er=] (13)
Dh(N)V(N) e(V)

The inverse problem can be solved in a weighted least-squares sense to find an
optimal correction vector Ser, with R™! as a weighting matrix, where R is an Nm x
Nm block diagonal matrix with R(k) being its k-th diagonal block. We assume that
R is a diagonal matrix defined as R = GZINm, where Iy, is the Nm x Nm identity
matrix. Then, the solution to Eq. (12) can be written as

—1
So = (HTR—1H> H'R ey (14)

2.3 Placement of Observations Using Forward Sensitivity

In order to select the time instants at which measurement data are collected, we
relate the cost functional given in Eq. (10) to the forward sensitivity matrix V (k).
This is based on the method proposed by Lakshmivarahan et al. [13] to control the
shape of the cost functional and keep its gradient away from zero. By substituting
e(k) = Dh(k)V (k)da into Eq. (10), we get the following:

N N
J(a) = Z %80[T (E(k)TR—‘ (k)E(k))«Sa - Z %SaTG(k)cSa, (15)
k=1 k=1

where E(k) = Dh(k)V(k) and G(k) = E(k)TR™'(k)E(k). We note that G(k) is
called the observability Gramian. The gradient of the cost functional with respect to
the parameter vector & can be written as below:
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N
Vol (@) =Y —G(k)sa, (16)
k=1

which relates the gradient of the cost functional and the parameterization
error/correction. From Eq.(16), a necessary condition for the minimization of
the cost functional is that G(k) is positive definite. For the case considered

1 1
here, Dh(k) = I and R~ '(k) = —21. Thus, G(k) = —ZV(k)TV(k), where
o o

Vi Vi
Vik) = |: 11 V12

Va1 Vo
functional does not hit zero is to select the measurement instants in such a way that
the diagonal entries (i.e., Vlzl + V221 and Vlz2 + V222) are as large as possible.

i|. Therefore, one way to guarantee that the gradient of the cost

3 Results and Discussions

We analyze the capability of the forward sensitivity approach to identify the
FHN model’s parameters. In particular, we study an arbitrary case where the true
parameters’ values are a = 0.15 and b = 0.35. Initial conditions of (v(0), w(0)) =
(0.0, 1.0) are considered, and the fourth-order Runge—Kutta scheme is applied for
time integration with a time step of Ar = 0.1, time scale t = 10, and a maximum
time of #,, = 100. We assume that the measurements are collected every 200 time
steps, corrupted by an additive Gaussian noise with a zero mean and a standard
deviation of ¢ = 0.1.

3.1 Fixed Input

As a first investigation, we study the case with zero input (i.e., I = 0). This
corresponds to a fixed point of (v*, w*) = (—0.229, —0.225) with a model Jacobian
¢ |:0.948 —1

0.1 —0.035
implying unsteady equilibrium points. However, a Lyapunov function analysis
reveals that the solution of this system is bounded and exhibits an attractive limit
cycle [14-18]. In Fig. 1, we plot the time evolution of the membrane potential, v,
and the recovery variable, w, for the true system compared to the case with the
inferred parameters’ values. Starting from a prior guess of ¢ = 0.2 and b = 0.2
to initiate the FSM iterations, a parameterization of a = 0.159 and b = 0.364 is
identified, very close to the true values. Thus, we can see that the adopted FSM
approach is adequately capable of assimilating these noisy data to estimate the
model’s parameters for this case.

i|. The eigenvalues of this matrix are 1 = 0.832 and A, = 0.080,
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Fig. 2 Results for a = 0.15, b = 0.35, and / = 5, with measurements every 200 time steps and

o = 0.1. Estimated parameters are a = —0.930 and » = —0.021, starting from an initial guess of
0.2,0.2)
A second testing situation is to apply a constant input of / = 5, with the

same parameters’ values as before. We find that this case corresponds to a stable
fixed point. In other words, the solution trajectory converges to the equilibrium
point (which is (v*, w*) = (1.652, 5.149)) and resides there. We apply the same
procedure to estimate the model’s parameters starting with an initial guess of
a = 0.2 and b = 0.2. The plots in Fig. 2 show that the iterative algorithm fails
to correctly approximate the parameters’ values and produces a periodic solution,
instead. To understand this, we compute the fixed point and the eigenvalues of
the corresponding model’s Jacobian. We find that with / = 0 (the previous case),
both the true values (a, b) = (0.15, 0.35) and the initial guess (a, b) = (0.2,0.2)
induce a periodic limit cycle. On the other hand, for / = 5, the true parameter
values correspond to a stable fixed point, while the initial guess still yields a cyclic
behavior. Therefore, the estimation process should cross the bifurcation points
in order to predict the correct parameterization, which is a common problem in
parameter estimation frameworks.

In order to mitigate this issue, prior information about the regime of the solution
trajectory can be utilized to make an intelligent guess. For instance, an initial guess
of (a, b) = (0.5, 0.5) with I = 5 yields a stable fixed point and hence can be chosen
as an alternative starting point. Results are presented in Fig. 3, where we can see that
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Fig. 4 Forward sensitivities for a = 0.15, b = 0.35, and I = 5. Selected observation instants are
denoted with orange circles

both the true and predicted trajectories converge to the equilibrium state. However,
the estimated parameters’ values (@ = 0.0344 and b = 0.334) are slightly far from
the true ones.

In order to explore the effect of the measurements on the forward sensitivities,
we plot the variation of Vli fori, j € {1, 2} with time in Fig. 4. We observe that the
initial period has the least influence on the forward sensitivities, while the measure-
ments around and after + = 50 have the largest effects. Therefore, we redistribute
our measurement instants based on the approach described in Sect. 2.3. In particular,
we collect data at + € {30, 35,50, 60,70} and apply the FSM framework to
estimate the model’s parameter. Starting from an initial guess of (a, b) = (0.5, 0.5),
a parameterization of (a,b) = (0.128,0.355) is estimated, showing significant
improvement with respect to the case with equispaced measurement signals. Results
are shown in Fig. 5 for the true and predicted trajectories. We can also notice that
the optimized measurements are concentrated toward the equilibrium state.

3.2 Varying Input

Finally, we vary the input excitation as I = 5¢/1,, (i.e., linearly increasing from 0
to 5). This corresponds to a moving fixed point, beginning with a cyclic trajectory
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Fig. 5 Results for a = 0.15, b = 0.35, and I = 5, with measurement instants selected based on

the forward sensitivity criteria. Estimated parameters are ¢ = 0.128 and b = 0.355, starting from
an initial guess of (0.5, 0.5)
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Fig. 6 Results for a = 0.15, b = 0.35, and varying I, with measurements every 200 time steps

and o = 0.1. Estimated parameters are a = 0.023 and b = 0.330, starting from an initial guess of
0.2,0.2)

and followed by a convergence to the stable equilibria. Parameter estimation results
for equidistant measurement instants are depicted in Fig. 6 beginning from an
initial guess of (a, b) = (0.2, 0.2). We find that the predicted trajectory sufficiently
matches the true one, but the estimated parameters are not very accurate.

We then investigate the effects of observation times on the forward sensitivities of
the model predictions. We find a spike in the sensitivity of v predictions with respect
to the v measurements around ¢ = 12.5. We also see a relatively large dependence
on the w measurements about t = 37.5. On the other hand, the w predictions show
an increasing sensitivity on either v or w measurements at final times. Therefore, we
reallocate our observation times to capture these trends as demonstrated in Fig. 7.
Results based on this enhanced parameter estimation methodology are described in

Fig. 8, where the approximated parameters’ values (@ = 0.128 and b = 0.356) are
closer to the true values.
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Fig. 8 Results for a = 0.15, b = 0.35, and varying /, with measurement instants selected based
on the forward sensitivity criteria. Estimated parameters are a = 0.128 and b = 0.356 starting
from an initial guess of (0.2, 0.2)

4 Concluding Remarks

We put forth a forward sensitivity analysis for the FitzHugh—Nagumo (FHN) system
to infer the model’s parameterization from sparse observations. The approach
relies on the investigation of the forward sensitivity matrices that encapsulates the
temporal dependence of model’s predictions onto its parameters. The presented
methodology shows substantial success in assimilating noisy observational data to
identify the unknown parameters. We find that the convergence of the predicted
parameters to the true values relatively depends on the first guess used to initialize
the algorithm. In particular, the initial guess has to yield equilibrium points
with similar stability characteristics to the true one. We study three test cases,
including zero input, constant nonzero current, and time-dependent excitation. We
also formulate measurement collection guidelines based on the relation between
the cost functional and the forward sensitivity components. We demonstrate that
this approach provides more accurate estimates of unknown parameters than those
resulting with arbitrary measurement placements.

Acknowledgments This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research under Award
Number DE-SC0019290. O.S. gratefully acknowledges their support.
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ata Availability

The data that supports the findings of this study are available within the article.
The codes to reproduce the presented results are publicly accessible at our GitHub
repository: https://github.com/Shady- Ahmed/FSM-FHN
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Electromagnetic Induction on Neurons m)
Through Field Coupling and Memristor e

Sunsu Kurian Thottil @ and Rose P. Ignatius

1 Introduction

Neuron is the basic unit in neuronal system, and its electrical activities show distinct
nonlinear properties. Various biological neuron models and their modified versions
have confirmed their effectiveness for recognizing and understanding the electrical
activities in neurons. External forcing can induce mode transition in electrical
activities in neurons from quiescent state to spiking, bursting, and even chaotic
states. Recent researches showed that field coupling between neurons can also
give a new sight to understand the collective behaviors in neuronal networks. This
problem is examined in this paper. Studies on biological Hodgkin—Huxley neuron
model is helpful to understand the occurrence mechanism of neuronal systems
induced by electromagnetic radiation [1]. Researches based on collective responses
in electrical activities of neurons under field coupling have been reported [2], where
the contribution of field coupling from each neuron is described by introducing
appropriate weight dependent on the distance between two neurons. Such studies
have shown that the synchronization degree is much dependent on the coupling
intensity. Also, the synchronization or pattern selection of network connected with
gap junction can be modulated by field coupling [2—4].
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2 Model and Scheme

An improved H-R neuron model is selected to represent local kinetics of neuron
model. This model incorporates the magnetic flux as fourth variable. Based on an
improved neuron model, the effect of field coupling on electromagnetic induction
is analyzed, and the modulation of magnetic flux on membrane potential is realized
by using cubic flux-controlled memristor coupling.

The dynamic equations for improved Hindmarsh—Rose neuron with field cou-
pling are given by the following:

. 3 3
X1; = X2 — axy; +bxy; — x3; + Lexs — kp (¢;) x1;
X2i = C X1 — X2
X3i =1 (s (x1; — X0)) — X3;

N
o=hkxi+g[Y o —o (1)
i#j

Field coupling is used to exchange signals between neurons. Z%H 0 —
@;represents the field and magnetic contribution of other neurons to the ith neuron.
The coupling intensity is represented by g. The membrane potential, slow current
associated with recovery variable, and adaption current are represented by xi, x7,
and x3, respectively. The memductance p(¢;) is cubic flux-controlled memristor
term and can be expressed as p(¢;)=co + 3,B<pl.z. It can act as coupling synapse
between neurons. The parameter values are selectedasa =1,b=3,c=1,d =5,
r =0.006, s = 4, and xo= — 1.6, Here, kx;; denotes the changes in magnetic flux
due to membrane potential. Hence, the interaction between membrane potential and
magnetic flux is represented by the variables k and k. Relation between memristor
magnetic flux, membrane potential, and current is as follows:

;_da(p) _dq(p)dy _
dt de dt

p (@ V =kp(p)x 2

3 Modes of Electrical Activity of Isolated Improved H-R
Neuron Under Field Coupling

Sampled time series analysis is done using MATLAB platform for the isolated
neuron [5] by changing control parameters. As the intensity of external current Jex
increases, the dynamics of single H-R neuron model under field coupling shows
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Fig. 1 Time series plot of membrane potentials for coupling strength g = 0.5. (a) Oscillation
suppression of neuron under /ex=0.5. (b) Spiking activity Iex¢=1.5. (¢) Tonic spiking for lex;=3.5

distinct behaviors. For the external current l.x;=0.5 mA, the neuron shows the
suppression of activity. But as current changes to 1.5 mA, its activity gets changed
to sudden spiking behavior. For higher values of external current, it shows a tonic or
continuous spiking activity. Figure 1 shows the different dynamics of the system.

Further, the study is done for coupled neurons. Here, the two improved H-
R neurons are selected, and the dynamics is analyzed under field coupling.
The corresponding mode transitions of electrical activities under electromagnetic
induction due to field coupling are analyzed [2]. Figure 2 shows distinct dynamics
such as suppression of activity, spiking and death of neuron, antiphase state, and
synchronization under the variation of external forcing currents.

Further, the study is extended with high value of coupling strength (g = 1). The
system dynamics changes to quiescent state and then to oscillation death as the
value of external current increases. The result is quite different compared to that
of low coupling intensity. For low coupling strength, the oscillation death occurs
in low values of external stimulating current. But as coupling strength increases,
suppression of oscillation takes place at high stimulating current. Hence, we can
reign the dynamic behaviors under field coupling by selecting appropriate control
parameters.
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Fig. 2 The time series analysis of coupled neuron for coupling strength g = 0.6. (a) Two neurons
are in oscillation death state for Iox;=0.5. (b) For the current I.x;=1.5, one of the neuron spikes,
while the other one experiences oscillation death. (¢) Antiphase synchronization/desynchronization
observed for lox=2.5. (d) Some synchronization occurs at lex;=3.5

4 Collective Responses in Electrical Activities of Improved
H-R Neurons Under Field Coupling

The effect of field coupling on the collective behaviors of neurons in neuronal
network is analyzed. Here, adjacent neurons are connected by field coupling.

Transition to synchronized state with increase in coupling strength is observed
for 300 H-R neurons (Figs. 3 and 4).

5 Analysis of Improved H-R Neuron Under Field Coupling
with Control Inputs

The control law is used to find out the unknown parameters of the neuronal model
[5]. This represents a disease condition in the biological neurons and can be used
to create a connection network in between the abnormal and normal network. The
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method of deriving control laws for synchronization can be used in many complex
networks. It is used as a potential method for adjusting neuronal rhythm to cure
mental disorders. In the following section, the synchronization condition for the
model is developed with the control inputs added to the neuronal network. Control
inputs for system can be analyzed by Lyapunov function method. The dynamics of
the system with control input can be written as follows:

. 2 3 .
X1i = X2i — axy; +bxy; — x3; + lexe — kp (x4;) x1; +u (i, x1;) .
. 2 .
Xoj = ¢ —dxi; — x2i +u (i, x2;)
xX3; =r (s (x1; —x0)) — x3; + u (i, x3;)

N
X4i = kix1; + g ZM/ — x4 | +u (i, x4i) 3
Y

The synchronization errors are defined as follows:
e (i, x1i) = Xini — X1i, € (i, X2i) = Xoni — X2i, € (I, X3;) = X3n; — X3;, € (I, X4;) = Xani — X4i
The error dynamics are given by the following:
¢, xii) = e (i, x21) — alxini — ¥11)> + b(xani — x21)* = (¥ani — x31) — kpe (i, x1;) — u (i, x1;)
é (i, x2i) = —d(¥iai — x11)* — € (i, x21) — u (i, x27)

é(i,x3;) =rs (Xip —x1;) —e (i, x3;) —u (i, x3;)

e (i, x4i) = ki (X10i — x13) — g € (i, x4i) — u (i, x47) “4)
Considering the Lyapunov function using the difference variable we get,

N-1
1
V="l x1i)” + eli, x2)” + (i, x3)” + e(i, x4i)° )

2 i=1

V o= e(,x) e, x1;) — alxini — x11)%e (i, x11) + b(xani — x2i)3e (i, x17) —
(x3ni — x31) € (i, x1:) —kpe(i, x1)* —u (i, x17) e (i, x1;) —d (x10i — x17)%€ (i, x2;) —
e(i, x2)* — u(i,xz) e(i,xy) + rs (xi —x1i)e(i,x3) — e(i,x3)* —
u (i, x3;)e (i, x3;) + ki (X1 — x1:) e (i, xa7) — g e(i, x41)*> — wu (i, x47) e (i, xa7)
Here,
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I n—1 (©6)

The controllers are chosen to ensure that the time derivative of Lyapunov function
is negative definite. Then, the errors converge to zero as t — oo, and this leads to
asymptotically stable synchronization manifold.

So controllers are chosen as follows:

u (i, x17) = e (i, x21) a(xX1ni — x17)* + b(xoni — x2;)° — (X30i — x31) — kpe (i, x1;)
(i, x21) = —d(X10i — x11)° + e (i, x21)

u(i,x3) =rs (Xipi —x1;) — e (i, x3;)

u (i, xq;) = ki1 (X100 — x1;) — g e (i, x4;) @)
Then,

n—1
V= —gZe(i,x4i)2 (8)

i=1

Hence, the H-R neuron network with field coupling has the negative Lyapunov
function derivative. This is observed with in the presence of the controller for the
system.

6 Stability of Synchronization for Improved H-R Neuron
Under Field Coupling

The stability of synchronization of the selected model can be analyzed using the
master stability approach [5]. The synchronization is stable if the corresponding
master stability function is negative for each of the transverse eigenvalues.

For complete stable synchronization, the difference between neural oscillator
coordinates vanishes in the limit of t— 00, and there exists a synchronous solution.
Hence, the stability of equations for perturbations transverse to synchronization
corresponding to given equation can be calculated.

The minimal condition for the stability of synchronized state [5] is the negative-
ness of the transverse Lyapunov exponents (TLEs) associated with Eq. (3).

Variation of two largest TLEs (AL 1 and A_L 2) with increase in coupling strength
are shown in Fig. 5. As the coupling strength is increased, the largest TLE (AL 1)
increases initially; then, it reaches a peak and finally decreases. The largest TLE
crosses zero and becomes negative indicating a transition from incoherent state to
complete synchrony.
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Fig. 5 The TLEs of coupled H-R neural network. (a) Coupling strength is plotted along x-axis and
TLE along y-axis. The largest (blue color) TLE (AL 1) becomes positive under coupling strength
l.1<g<27

7 Conclusions

In the complex physical and biological condition like noise and electromagnetic
radiation, complete synchronization between neurons becomes more difficult, while
the phase synchronization or rhythm becomes available. It is also observed that
magnetic coupling is an effective way to realize synchronization. The effect
of field coupling on the electromagnetic induction and corresponding modes of
electrical activities with cubic flux-controlled memristor are examined by finding
the influence of the magnetic flux on membrane potential.

For isolated and coupled neurons, multiple modes in electrical activities are
analyzed by increasing the intensity of field coupling. As the external forcing
current increases, the system shows diversity in behavior. Various dynamics such
as oscillation death, tonic spiking, desynchronization, and synchronizations are
resulted in. Further, it is observed that under the high coupling strength, the
oscillation suppression of coupled systems can be achieved by high value of external
current. It is observed that for a network of 300 H-R neurons, the neuron oscillator
shows incoherent as well as synchronization behavior. Control inputs for the system
are analyzed, and the stability of the system is confirmed by the negative value of
transverse Lyapunov exponent plot.

The field coupling contributes magnetic flux and induction current; as a result, the
mode in electrical activities is controlled. The excitability of neuron mainly depends
on the external forcing current, and also, the larger external stimuli are much helpful
to excite neurons. This is well understood through the numerical studies. So present
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studies give instructive clues to understand the signal encoding and exchange when
the synapse coupling is absent.
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of a Vibro-impact Capsule System oo
in Both the Forward and Backward

Directions
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1 Introduction

The wireless capsule endoscopy detection technology was proposed about 20 years
ago [1]. Due to its significant advantages on being painless, noninvasive, and free of
anesthesia and having no cross infection, the wireless capsule endoscopy thoroughly
changed the traditional endoscopy detection by using wired endoscopy. At present,
the capsule endoscope for clinical application either moves passively depending
on gastrointestinal motility or is controlled by an external magnetic field [2, 3];
thus, the capsule does not own the independent capacity of movement. Under such
circumstances, the research about the self-propulsion capsule has gradually become
a hotspot. Liu et al. proposed a model about the vibro-impact capsule system [4-6]
and conducted a series of experimental studies to demonstrate the numerical results
obtained according to their dynamic model [7-9]. Based on their work, the further
consideration is how to effectively control the movement direction and speed of the
self-propulsion capsule, which will be discussed in this paper.
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2 Mathematical Modelling

In this section, a mathematical model about the vibro-impact self-propulsion capsule
system is introduced. The physical model is simplified from the actual capsule,
based on which the dynamic model is developed.

2.1 Physical Model

The physical model of a vibro-impact self-propulsion capsule is shown in Fig. 1,
where M, and M,, are the masses of the capsule and the magnet, respectively. k| and
c represent the stiffness of the helical spring connecting the magnet and the capsule
and the damping coefficient of the energy dissipation led by the relative speed
between the capsule and the magnet, respectively. The springs with stiffness k» and
k3 represent the primary and the secondary constraints, and their gaps between the
magnet and the constraints are G, and G3, respectively. A pre-compressed distance
of the physical spring is defined as G;. X, and X, are the displacements of the
capsule and the magnet, and their velocities are V. and V,,, respectively. In addition,
Fy, F,, and F; are the external frictional force, the inner excitation force, and the
impact force between the capsule and the magnet, respectively. All the structure
parameters for the capsule system are listed in Table 1.

2.2 Dynamic Model

Based on the physical model shown in Fig. 1, the corresponding mathematical
model can be developed as [10].

(1

Fig. 1 Physical model of a vibro-impact self-propulsion capsule [10]
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Table 1 Structure
parameters of the capsule

system M. g
My g
G mm
Gy mm
G3 mm
kl kN/m
k2 kN/m
k3 kN/m
c Ns/m
where
—sign (Vo) - u (M + Mc) g, Ve #0
Fp=9q sign(Fj) -uMp+M)g, Ve=0,|F|=pnMn+M)g
Fi Ve=0,1 Fi [ u(My +Mc)g

Fo—F—c(Vy, —Ve) — F3, Xm — Xe = —G3

F = Fo—Fi—c(Viy —Ve), -G3< X —X: <Gy
Fo—F —c(Viy —Ve) — 2, Xn—Xe = Ga
1 1 1
R te[nf,n7+D7]
Fe(t) = Il pl ,1 1
, TG(”7+ 7,nf+7)

Fi =k (Xm — Xc+Gy)
=k (X, — X.— G»)
F3 :k3(Xm_Xc+G3)

Parameters | Unit
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Values
1.8
1.67

0

1.6

0
0.062
27.9
53.5
0.0156

2

3)

“)

®)

where n is the period number and Py, f, and D are the amplitude, frequency, and
duty cycle ratio of the excitation signal, respectively. Moreover, in order to compare
the variable speed of the vibro-impact capsule, its average velocity is calculated as

follows:

Vavg = % <Xc (n%> - Xc(0)>

(6)
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3 Optimization Design

The precise control of both the speed and the direction for the capsule movement
in uncertain small-bowel circumstance is a challenging task. For such a purpose, to
better describe the dynamic responses of the capsule, seven variable speed steps
are proposed, including fast backward and forward movements, medium-speed
backward and forward movements, slow backward and forward movements, and
hover movement under gastrointestinal motility. In addition, for a given capsule
system, the excitation signal is convenient to be adjusted; hence, the optimization
parameters consist of the frequency (f), amplitude (Py), and duty cycle ratio (D)
of the excitation square signal. Moreover, the uncertainty of the friction coefficient
(w) due to the varied structure and lubrication of the practical small bowel is also
considered as an environment variable. The purpose of optimization is to find the
best combination of parameters within the respective ranges of the given parameters
to make the capsule move with the speed closest to the proposed speed step. To
conduct the speed optimization, the dynamic model built in MATLAB is introduced
into Isight, since Isight integrates a group of optimization algorithms which can be
redesigned and combined to complete an optimization task with high efficiency and
high accuracy.

3.1 Optimization Algorithms and Flow Path

As aforementioned, there are three optimization parameters, one environment
variable, and one optimization objective; hence, this is a multiparameter and single-
objective optimization. Furthermore, in order to secure the reliability of the obtained
optimization solutions in uncertain practical small-bowel environmental, parameter
perturbations should be considered accompanying with the optimization. Therefore,
a combination of the optimization algorithms is considered. Specifically, Multi-
Island Genetic Algorithm (MIGA) is chosen to conduct the optimization, while
Monte Carlo algorithm is applied in measuring the degrees of reliability of the
optimal solutions provided by MIGA. Moreover, both the MIGA and the Monte
Carlo method are driven by the Six Sigma algorithm which secures that all the
confirmed optimal solutions satisfy a predefined minimal degree of reliability, which
is set as 99% in this present work, and finally, the steady optimization designs
can thus be extracted from massive parameter combinations. The flow path of this
combined optimization is illustrated in Fig. 2.

The detailed optimization model for this combined optimization algorithms can
be introduced as follows:

X, +AX <X <Xy — AX @)

Zp <Z<Zy ®)
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Fig. 2 Flow chart of the g
combined optimization SIX Sigma
algorithms
parameter range parameter perturbation

optimal design
MIGA Monte Carlo

degree of reliability

Minimal

requirement

YES

Lower limit < G = uy (X, Z) + noy (X, Z) < Upper limit ©))

Minimize F (uy (X, Z), oy (X, Z)) = |:(;,Ly (X.Z) — M)? — oy (X, 2)2]
(10)

where X represents the design variables, including the frequency, amplitude, and
duty cycle ratio of the excitation square signal, and Xy, Xy, and =AX are the lower
and upper limits and the fluctuation range for the design parameters, respectively.
Z represents the environmental variable, namely, the uncertainty of the friction
coefficient in the small bowel; Z; and Zy are its lower and upper limits. G is the
constraint condition, where the accepted velocity range for the capsule movement
in each optimization case can be set. uy(X,Z) and oy(X, Z) represent the average
velocity of the capsule and its standard deviation, respectively. n is the number of
sigma; when n = 6, the reliability of the optimization result is the highest; hence,
this method is called Six Sigma algorithm. F is the objective function, and M is the
target speed of the capsule; hence, the purpose of the optimization is to make the
capsule speed be close to the proposed speed step.

3.2 Optimization Case: Forward Movement with Medium
Speed

The optimization case for the capsule moving forward with medium speed (5 mm/s)
is taken as an example to introduce the whole optimization process. Primarily, all
the parameter ranges for the environmental variable and the three optimization
parameters are listed in Table 2. In particular, the optimized Latin square method
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Table 2 Parameter settings for optimization

Parameters Unit Signs Mode Lower Upper
Friction coefficient - 7 Input 0.2 0.5
Frequency Hz f Input 1 50.0
Amplitude N P, Input 0.001 0.03
Duty cycle ratio % D Input 10.0 90.0
Velocity of capsule mm/s Vavg Output 0.1 10.0
(b)
L] L L]
L
Monte Carlo1

8 — g —>e

+
Six Sigmat

MATLAB
s—> A —e

MATLAB

Fig. 3 Optimization by integrating Isight and MATLAB. (a) Combination of optimization
algorithms; (b) reliability verification of the obtained optimal solution

is applied to build a uniform distribution for the uncertainty friction coefficient,
which is an array with 50 different friction coefficients whose valves are within 0.2
and 0.5. Furthermore, the lower and upper boundaries for the capsule speed are set
as 0.1 mm/s and 10 mm/s, respectively; namely, as a fundamental requirement, the
capsule should keep moving forward. Based on the optimization flow built in Isight
(see Fig. 3a), in total, 50 combinations of the design parameters were tested, and
for each combination, 50 different friction coefficients were simulated; eventually,
the average velocity for such combination under the 50 different friction coefficients
was calculated. The variations of both the three design parameters and the obtained
average velocity of capsule are shown in Fig. 4. From Fig. 4, the average velocity of
the capsule cannot be stabilized exactly as 5 mm/s; however, if the design parameters
shown in Table 3 are used to excite the capsule system, an approximate speed of
4.5840136 mm/s can be obtained, which can be accepted as the medium speed for
the capsule moving forward.

Subsequently, both the variation range of the friction coefficient and the bound-
aries of the capsule speed are kept to be consistent with that in the optimization
process, while the optimization parameters are set to fluctuate slightly near the
obtained optimal result; see Table 4. Based on the flow path for the reliability



Variable Speed Optimization of a Vibro-impact Capsule System in Both. . . 121

(a) @0 (b) s

4
0
70 b
30
) s0 r
£ 1
20
30

o 10 20 30 0 50 o % % ~ % 0

Index of test case Index of test case
c) (d)
0.031 g
! S I
i (]
0.021 2 h r
8 al (] t
Py ng_z J-} \cv 1 ‘iVI
L
0.011 -4
-6
| s
0001 g 10 0 20 10 50 b 10 0 30 40 50
Index of test case Index of'test case

Fig. 4 Variations of the parameters and the capsule speed in the optimization process and the
green point in each subplot corresponds to the optimal solution

Table 3 Result of Parameters | Unit | Values

optimization
D % 34.233768
f Hz 40.949187
Py N 0.0251731
Vavg mm/s | 4.5840136

Table 4 Parameter settings for reliability verification

Parameters Mode Mean Lower Upper Distribution

n Input 0.35 0.2 0.5 Uniform

Py Input 0.0251731 0.02473 0.02561 Uniform

f Input 40.949187 40.2398 41.6584 Uniform

D Input 34.233768 33.6408 34.8267 Uniform

Vavg Output 4.5840136 0.1 10.0 -

verification shown in Fig. 3b, 1000 combinations of the optimization parameters,
whose distributions are shown in Fig. 5, are simulated numerically to check whether
the capsule speed crosses the defined boundaries 0.1 mm/s or 10 mm/s. The obtained
distribution of the capsule speed is displayed in Fig. 6, and the corresponding
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Fig. 5 Distributions of parameters for reliability verification
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Fig. 6 Distributions of average velocity of capsule for reliability verification
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Table 5 Results of reliability

; . Type Value
verification -
Mean velocity 4.091490737
Standard deviation 0.685242201
Minimum velocity 0.505602717
Maximum velocity 5.473377537

Probability between limits | 100%

Table 6 Optimization results of seven speed steps for the capsule movement

Target Allowed Obtained
speed speed Optimized speed
Speed steps | (mm/s) | (mm/s) parameters (mm/s)
S (Hz) Pq(N) | D (%)
Fast -10 (—15,-5) 33.77 0.0223 | 66.86 -9.01
backward
Medium -5 (=10, —-0.1) |44.14 0.0242 14.66 —5.05
backward
Slow -1 (=3,-0.1) |44.14 0.0044 | 25.70 —-0.91
backward
Hover 0 (-0.1,0.1) 21.84 0.0043 | 86.75 0
Slow 1 (0.5, 1.5) Failed
forward
Medium 5 (0.1, 10) 40.95 0.0251 34.23 4.58
forward
Fast forward 10 (5,15) Failed

statistical result is listed in Table 5, where the reliability for the capsule moving
forward is verified as 100%, since, when setting the excitation signal as the obtained
optimal combination of parameters, the minimal velocity is around 0.51 mm/s;
moreover, the average velocity is 4.1 mm/s which is still close to the predefined
medium speed (5 mm/s).

3.3 Optimization Results

By using the same way introduced in Subsection 3.2, the proposed seven speed
steps are optimized one by one, and the obtained results are listed in Table 6.
Specifically, according to the optimization of excitation parameters for the vibro-
impact capsule, five speed steps for the capsule moving steady under uncertain
small-bowel environment are explored. However, given the current excitation
parameter ranges, the steady slow and fast-forward movements cannot be achieved
by the studied capsule. Therefore, if the rest two speed steps are required for the
practical application of the capsule system, both the modification of the structure
parameters and the broader ranges of control parameters deserve to be tried.
According to the obtained parameter combinations for five different speed steps,
the numerical simulations are conducted to observe the changes of the capsule
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Fig. 7 Results of numerical simulations with different parameter combinations for five different
speed steps: (a) fast backward, (b) medium backward, (¢) slow backward, (d) hover, and (e)
medium forward

speed. For all the five cases, the friction factor is set the same as 0.2293. Eventually,

the

simulated results are shown in Fig. 7 where the corresponding velocities of the

capsule are (a) vavg= —8.3068 mm/s for fast backward, (b) vavg= —3.3368 mm/s for

me
for
vel

4

1.

dium backward, (c) vayg= —0.6142 mm/s for slow backward, (d) vayg= 0 mm/s
hover, and (e) vayg= 4.28 mm/s for medium forward. All the obtained five
ocities of capsule are close to the predefined targets of speed steps.

Concluding Remarks

In this paper, a graded variable speed design for a self-propulsion capsule system
was carried out, in which three types of movements, including forward, back-
ward, and hover, were considered; meanwhile, the fast, medium, and slow speeds
were classified for both the forward and backward movements of the capsule;
thus, in total, seven speed steps were defined for the further optimization.

. According to the seven speed steps defined in this paper, the optimization was

conducted via the combination of the MATLAB and Isight software. Specifically,
three controllable parameters, including frequency, amplitude, and duty cycle
ratio, were optimized, and the influence of the friction coefficient in the uncertain
small-bowel environment was also introduced in the optimization process.
Finally, it was demonstrated that the capsule can achieve five speed steps: fast
backward, medium speed backward, slow backward, hover, and medium speed
forward; however, it was also found that for the given structure parameters of
the capsule, the stable fast-forward movements and the stable slow forward
movements cannot be obtained by the optimization of the three controllable
parameters.
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3.

In future work, by resorting on the guidance of the numerical simulation
conducted in this paper, the corresponding variable speed steps will be exper-
imentally tested, and the optimization design method will also be improved
according to the obtained experimental results.
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Exploring the Dynamics of a )
Vibro-Impact Capsule Moving on the et
Small Intestine Using Finite Element

Analysis

Jiyuan Tian, Yang Liu, and Shyam Prasad

1 Introduction

Since its introduction into clinical practice two decades ago, capsule endoscopy
has become established as the primary modality for examining the surface lining
of the small intestine, an anatomical site previously considered to be inaccessible
to clinicians. However, its reliance on peristalsis for passage through the intestine
leads to significant limitations, in particular due to the unpredictable and variable
locomotion speeds. Significant abnormalities may be missed, due to intermittent
high transit speeds that lead to incomplete visualisation of the intestinal surface.
Furthermore, each case produces up to 100,000 still images, from which video
footage is generated, taking between 30 and 90 min for the clinician to examine
in its entirety. The procedure is therefore considered both time consuming and
burdensome for clinicians. There is, therefore, in gastrointestinal (GI) endoscopic
practice a desperate need for new modalities that are safe, painless, accurate and
reliable, which require minimal training for practitioners.

Leveraging their pioneering work in the field of controllable capsule endoscopy,
the Applied Dynamics and Control Lab at the University of Exeter has devel-
oped a novel untethered, self-propelled, endoscopic capsule [1], with the aim
of enabling cost-effective small-bowel examination. Design innovations include
self-propulsion for mobility and visualisation, facilitated manipulation, real-time
screening and short examination time. Building upon their successful pilot studies,
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including capsule—bowel contact modelling [2], experimental and numerical studies
of intestinal frictions [3], capsule dynamics in the bowel environment [4] and their
proof-of-concept validations [5, 6], with this further research, the present work
will study the dynamic response of the vibro-impact capsule when it moves in the
intestinal environment with the consideration of tissue’s mechanical properties by
using finite element (FE) methods. This model can then be utilised to describe the
detailed locomotion of the capsule and capsule—intestine interaction under vibro-
impact dynamics.

The principle of the vibro-impact self-propulsion technique is that the rectilinear
motion of the capsule can be obtained using a periodically driven inner mass
interacting with the main capsule body in the presence of environmental resistance
[7]. The merit of such a system is its simplicity in mechanical design and control,
which does not require any external driving accessories, while allowing independent
movement in a complex environment inaccessible for the legged and wheeled
robots [8]. Imagine, for example, a miniaturised vibro-impact capsule, which is
moving inside the small intestine by adopting this method. In this case, many
complications induced by external driving accessories, e.g. [9], can be avoided.
However, understanding of the dynamics and efficient control of such a driving
mechanism are critical, and the researchers have been working on the modelling
[10, 11], bifurcation analysis [12] and proof-of-concept verification [13]. So, it is
critical to study the complex dynamics of the capsule in a real intestinal environment
by considering the intestinal anatomy and mechanical properties, such as the
viscoelasticity, the hoop stress and the haustral folds of the intestine.

In this chapter, a new FE model of capsule—intestine contact coupling with the
vibro-impact mechanism in the capsule was studied. Material properties of the
intestinal tissue (e.g. viscoelasticity) and the geometry of the capsule (e.g. the
arced shape) were considered in the model. The dynamic response of the capsule
and the capsule—intestine interaction were studied through FE analysis in order
to complement the insufficient consideration of environmental influence in the
previous models [10, 12]. Some new phenomena of the capsule were observed,
which were not discovered in the literature before. The rest of the chapter is
organised as follows. In Sect. 2, FE modelling of the vibro-impact capsule moving
on the small intestine is studied. A brief introduction of the experimental apparatus
and procedure is provided in Sect. 3. In Sect. 4, FE results are compared with the
simulation and the experimental results. Finally, conclusions are drawn in Sect. 5.

2 Finite Element Modelling

In this section, the material properties, the geometry and the boundary conditions
of the capsule and the small intestine are elaborated. The FE model was developed
using ANSYS WORKBENCH Transient Structural module for which an implicit
dynamics was applied.
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Table 1 Material properties of the FE model obtained from [2, 3]

Parameters Values Units Parameters Values Units

E. 0.11 GPa De 0.95 g-mm™3
E, 71 GPa Da 2.77 g-mm™3
E, 200 GPa Ds 7.85 g-mm>
E; 25 kPa Di 1 g mm™3
E; 196.43 kPa Ve 0.42 -

E> 757.48 kPa Va 0.33 -

N1 5.36 MPa Vg 0.3

Ha 0.3117 - Vi 0.49 -

i 0.2293 -

2.1 Material Properties

Since it fits better with our stress relaxation experiment [2], the three-element
Maxwell model that contains two elastic springs and one viscous dashpot was
adopted to describe the viscoelasticity of the synthetic small intestine. The three-
element Maxwell model can expressed as

£

E(t) = Ee "' + Es, (1)

where Ep, E, and 717 are the Young’s moduli of the springs and the damping
coefficient, respectively. In order to compare different supporting substrates for the
capsule, aluminium bench was also tested in the FE model. Table 1 summarises
all the parameters used in the FE model, where E is the Young’s modulus, p is
the material density, v is the Poisson’s ratio, w is the friction coefficient and the
subscripts ‘c’, ‘a’, ‘s’ and ‘1’ represent the capsule, the aluminium bench, the inner
mass and the intestine, respectively. It is worth noting that Ej is the Young’s modulus
of the intestine for compression, and E(¢) is the one for tension. In this study, only

E; was used in the FE model as the capsule was placed on a cut-open intestine.

2.2 Model Description and Hypotheses

The 3D conceptual design of the capsule prototype is presented in Fig. 1a, where
the capsule has a primary and a secondary impact constraints and a linear bearing.
The linear bearing holds a T-shaped magnet (inner mass) and restricts its motion in
the axial direction of the capsule. The magnet is controlled by an external magnetic
field excited by a pulse-width modulation signal. A helical spring connecting the
magnet and the bearing was used to push the magnet back to its original position
after each external excitation. The two impact constraints restrict the axial motion
of the magnet within a limited distance but magnify the excitation force through the
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Fig. 1 (a) 3D conceptual design and (b) 2D FE model of the vibro-impact capsule moving on a
cut-open small intestine

Table 2 Physical parameters for the FE model obtained from [1]

Parameters Values Units Parameters Values Units
M, 1.80 g M; 1.67 g

K| 14.24 N-mm~! Ci 0.01 Ns-m™!
K> 97.06 N - mm™! C, 0.35 Ns-m™!
K3 0.06 N-mm~! C; 0.01 Ns-m™!

vibro-impact dynamics. Due to the nonlinear characteristics of the small intestine
and the nonlinear nature of the capsule system, computing a 3D FE model is time
consuming. So, the 2D FE model shown in Fig. 1b was developed, and the following
hypotheses were introduced:

1. The stress of the 2D plane along the Z-axis of the 3D model is zero.

2. The primary and the secondary constraints in the 3D model were replaced by
using the springs connecting with two rigid plates in the 2D model.

3. The inner mass can move in the axial direction of the capsule along the
frictionless bearing only.

All the identified parameters of the 2D FE model were listed in Table 2, where
M and M, are the weights of the magnet and the capsule, K1, K> and K3 are the
stiffness and C1, C» and C3 are the damping coefficients of the primary constraint,
the secondary constraint and the helical springs, respectively.

2.3 FE Setup and Mesh Convergence Test

The dimension of the FE model is presented in Fig. 2a, where the total length, the
diameter and the thickness of the capsule are 26, 11 and 1 mm, respectively. The
total weight of the capsule is 3.47 g, including the capsule 1.67 g and the inner mass
(magnet) 1.8 g. The thickness of the small intestine is 0.69 mm measured from the
synthetic small intestine used in [3]. In order to consider the energy loss by the
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Fig. 2 (a) Dimension of the FE model and (b) mesh convergence tests: the capsule moving on
the intestine at the excitation frequency of 30 Hz, the duty cycle 0.8 and the excitation amplitude
6.8 mN. Red dot marks the chosen mesh size for the intestine

collisions between the inner mass and the primary and the secondary constraints,
they were set as quasi-rigid bodies in the FE model, so the primary spring K| and
the secondary spring K, were more accurate to represent the constraints in the 3D
model. The contact pair between the capsule and the substrate was set as frictional
with their corresponding coefficients listed in Table 1. In order to get a more accurate
simulation, the capsule—intestine contact algorithm was configured as pure penalty,
the normal contact stiffness factor was set as 1 and the sliding motion between the
internal mass and the bearing was frictionless.

Due to the requirement of deformation, two types of elements were used to
mesh the proposed model. The 4-node plane element (PLANE182) was used for
modelling the capsule, the inner mass and the aluminum bench. The higher order
8-node plane element (PLANE183) that exhibits quadratic displacement behaviour
was used to simulate the viscoelasticity of the intestine. Convergence tests using
different mesh sizes were implemented, and their results were summarised in
Fig. 2b. It can be seen from the movement speed of the capsule that when the small
intestine mesh is less than 1 mm, the FE result tends to converge. In order to obtain
the best performance for the FE model, the mesh sizes for the capsule and the small
intestine were set to 1 and 0.3 mm, respectively, and the three-layer small intestine
mesh was considered as presented in Fig.2a. For the boundary condition of the
FE model, the substrates were fixed on the bottom surface. For the first 0.3 s of
the simulation, the standard gravity was applied to the capsule, and the external
excitation was applied to the inner mass after the capsule settled down along the Y
axis.

3 Experimental Apparatus and Procedure

The prototype of the vibro-impact capsule is presented in the left panels of Fig. 3,
and its experimental rig is shown in the right panel. The magnet inside the capsule
was excited through an on-off electromagnetic field B and the helical spring to
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Fig. 3 [1] Left panels: components and dimension of the prototype. Right panel: photograph of
the experimental setup

generate forward and backward impact motion, leading to the locomotion of the
prototype. The on—off external excitation was generated using a signal generator
producing a pulse-width modulation signal via a power amplifier, and the amplifier
can control the voltage applied to the coil by adjusting a DC power supply. The
prototype was put on a piece of cut-open synthetic small intestine supported by a
halved black plastic tube, which was placed along the axis centre of the coil. On
the top of the experimental setup, a video camera was used to record the motion of
the capsule, and recorded videos were analysed by using an open-source software
to generate the time history of capsule’s displacement and velocity. A detailed
experimental study and identification of the physical parameters can be found from

[1].

4 Results and Analysis

FE results for the capsule moving on the small intestine are compared with the
simulation obtained using MATLAB and experimental results [1] in Fig. 4. It can be
seen that both forward and backward progressions are in good agreement. In Fig. 4a,
the progression speed of the capsule obtained from FE simulation is slightly higher
than the other two results, which might be due to the experimental inaccuracy in
measuring the friction coefficient between the capsule and the intestinal surface. In
Fig. 4b, a backward progression of the capsule was recorded, but it was a chaotic
motion in FE and experiment while was a periodic motion in simulation. This
reveals that the FE model is more realistic than the simulation model in terms of
the asymmetries caused by the impact constraint and the capsule—intestine contact.

One of the merits of the FE model is that it allows a close monitoring of different
variables of the capsule system, which cannot be obtained from Matlab simulation
or even be measured from experiment. Figure5 presents such variables as the
functions of time by using the excitation parameters in Fig. 4a. In Fig. 5a, capsule’s
displacements in Y-axis at different positions of the capsule are presented, where
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Fig. 5 (a) FE time histories of capsule’s displacements in Y-axis measured at the front (green
line), middle (red line) and back (blue line) of the capsule, (b) capsule—intestine maximum (red
line) and average (blue line) contact pressures, (¢) magnet-capsule relative displacement and (d)
intestinal friction obtained at the excitation frequency of 30 Hz, the amplitude 6.8 mN and the duty
cycle 0.8. Extra panels in (a) present the contour map of displacement of the capsule in Y-axis,
where red and blue colours denote large and small displacements, respectively. Extra panels in (b)
present the contour map of pressure distribution on the small intestine, where red and blue colours
represent high and low pressure, respectively
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Fig. 6 (a) FE time histories of capsule’s displacement in X-axis and (b) phase trajectories
obtained at the excitation frequency of 30Hz, the amplitude 6.8 mN and the duty cycle 0.8.
Green, red and blue lines represent the FE results obtained on the intestine (u; = 0.2293) and
the aluminium bench (1, = 0.3117 and 0.2293), respectively. The vertical black line stands for
the back impact boundary

intestinal deformation at about 6.8 pwm due to the capsule’s weight was recorded.
Compared with the relative displacement between the magnet and the capsule in
Fig. Sc, it reveals that the capsule tilts up when their relative displacement increases,
while it moves down if the magnet reverses back to its original position, which
can be demonstrated in the extra panels of Fig. 5a. This tilted motion affects the
distribution of the contact pressure between the capsule and the intestine as shown
in Fig. 5b and its extra panels, so leading to a quasi-periodic intestinal friction on the
capsule as presented in Fig. 5d. This reason also explains the discrepancies observed
in Fig. 4.

To further investigate the influence of the friction coefficient and intestinal
deformation on the capsule, FE simulations under different friction coefficients
and supporting substrates are compared in Fig. 6. Experimental identification of the
friction coefficients was carried out by lifting one side of the supporting surface
slowly until the stationary capsule started to move. So the friction coefficient was
determined by the angle of the surface slope at that moment. It can be seen from
Fig. 6a that although their friction coefficients were set the same, the capsule moved
faster on the intestine as the intestinal deformation can prevent its backward motion
at each period of excitation. While when the capsule moved on the rigid aluminium
bench, it had backward motion at each period of excitation. When the capsule moved
on the aluminium bench with a larger friction coefficient (14, = 0.3117) measured
from experiment, the capsule bifurcated from a period-one forward motion without
any impact (at uya = 0.2293) to a period-one backward motion with one back
impact. Such a qualitative change was due to the grazing-induced bifurcation as
demonstrated in Fig. 6b, where the capsule’s phase trajectory crossed over the back
impact boundary indicating the contact between the magnet and the secondary
constraint.
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Fig. 8 The contour map of pressure distribution on the aluminium bench corresponding to points
(a) A and (b) B marked in Fig. 7a

To compare the tilted motion of the capsule on different substrates, Fig. 7 presents
the maximum contact pressures on the substrates and its relevant intestinal frictions
on the capsule. As can be seen from Fig. 7a, the maximum contact pressure on the
aluminium bench is much larger than the one on the intestine. This is due to the
rigidity of the aluminium bench as illustrated in Fig. 8 such that when the capsule
tilts up, it has much less contact area with the bench, while the intestine is “soft”
resulting in a large contact area. Hence, such a difference in the supporting materials
led to different frictions on the capsule.

5 Conclusions

This chapter studied a realistic 2D FE model to depict the nonlinear motion of the
vibro-impact capsule moving on the small intestine. FE results were validated by
using the simulation results obtained using non-smooth differential equations and
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the experimental results in [1]. Comparative analysis indicates that the FE model
can better represent the capsule’s dynamics and the contact with its substrate. It was
found that the titled motion of the capsule during progression may cause asymmetric
pressure on the substrate leading to quasi-periodic friction on the capsule. Therefore,
a comprehensive bifurcation study for fully understanding its dynamics under
intestinal peristalsis is recommended for future development.
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Vibro-Impact Capsule Under Different )
Conditions of Friction oo

Ngoc-Tuan La, Thanh-Toan Nguyen, Ky-Thanh Ho, Quoc-Huy Ngo,
and Van-Du Nguyen

1 Introduction

Recently, the application of vibration-driven locomotion in capsule robots has
been widely considered. A capsule robot is a platform that can self-propel in a
resistive environment but can be encapsuled in a smooth form, without any external
propellers [1]. The design of the locomotion systems is based on the two major
mechanics of the interaction between the internal mass and the system body, known
as vibration-driven and vibro-impact-driven principles.

In vibration-driven locomotion systems, initially proposed by Chernous’ko
[2], the rectilinear motion can be achieved by using an additional internal mass
interacting with the body frame. On the one hand, the simplicity in structure of the
system makes it well suitable to form capsule robots. On the other hand, it is required
that the relative motion of the internal mass must be controlled to have an exact form
of multiphase accelerations. The vibration-driven platforms have been extensively
investigated from various aspects, such as designing, modeling, and experimental
validation [3—10]; dynamical analysis [11-16]; and optimal progression and motion
control [14, 17-24]. The internal mass can connect with the body by means of an
elastic spring to enhance the resonant characteristics. Various methods have been
proposed to actuate the internal drives, including DC-motor-driven pendulum [25],
unbalance rotor [10, 26], electromagnetic mechanisms [14, 27-29], and solenoid
[15], [28]. Several useful guidelines for the design and control of bistable vibration-
driven locomotion systems were also provided. However, for periodic relative
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motion of the internal mass, the friction must be anisotropic, i.e., friction force in the
forward direction is smaller than that in backward trend (e.g., [7, 15, 18, 30, 31]). As
a whole, the major concerns of the first design option would be the complex motion
control and special demand of anisotropic friction.

In a vibro-impact-driven locomotion system, the internal mass oscillates and has
periodical impacts with the system body [32], resulted in a jump-up of the inertial
force. When the impact force exceeds the friction force, the system is displaced. The
drifting oscillator proposed by Pavlovskaia et al. [33] provided a fundamental model
for distinctive locomotion systems. The internal mass (impact oscillator) has been
driven by various ways, for example, a system of motor and cam mechanism [34],
solenoid working with sinusoidal in an RLC circuit [35, 36], electromagnetic device
[37, 38], linear motor [9], and electrodynamic shaker [16, 22]. The system can be
either position feedback controlled [23] or reverse the impact side [5] to obtain the
expected direction of motion.

In previous experimental studies on the locomotion platforms, the friction force
was considered as either an isotropic [13] or an anisotropic [18] resistance. Several
experimental studies have been investigated. However, the effect of various friction
levels on the system behavior was not fully examined.

With isotronic assumption, the excitation force was usually compared with the
friction force magnitude, using the force ratio between the excited amplitude and
the friction force. The motion of the system was examined for different levels of the
excitation by varying such force ratio (see, e.g., in [5, 9, 25, 32, 33]). In experimental
studies, a preset and unchanged dry friction was usually implemented (see [8, 9, 22,
39, 40]). The dependence of the system response as a function of the friction variable
has rarely been experimentally examined [35, 41]. Several interesting phenomena
have been observed [9, 23]. For example, when the elastic force acting on the
system body becomes greater than the friction threshold, the system may move
backward [23]. In some situations, applying a larger excited amplitude would not
improve the performance of the system [9]. It is regretted that such interesting
interpretations were carried out at a certain value of friction. Besides, the magnitude
of excitation force was counted by comparing it with the friction. The results of our
study revealed that with the same force ratio, different values of friction provided
different average velocities and also the direction of the progression. Recently,
several interesting investigations were implemented, focusing on the efficacy of
the model and its feasibility under various isotropic frictional conditions [42, 43].
Various capsule—intestine contact conditions for which the capsule moves include
four cases of isotropic friction: flat-open synthetic small intestine in a flat form
and in a curve form, collapsed and loose synthetic small intestine, and contractive
synthetic intestine whose inner diameter was smaller than the capsule’s external
diameter.

Several studies were made for anisotropic friction, where the friction force in
forward motion is different from that in backward motion. However, most of the
experimental studies assumed that the forward friction is smaller than the backward
friction [18, 30]. Such systems either were built with asymmetric legs [30] or were
able to move downward on an inclined chute only [18]. In our study, the response
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of the locomotion system was experimentally examined under a more general case
of anisotropic friction, where the resistant force in the forward direction is larger
than that in the backward motion. The experimental setup was built similar to the
one implemented in [18], but the forward direction was considered to be the upward
trend on an inclined chute. Moreover, the resistant force consisted of two contents:
one preset and an adjustable level.

This report presents an experimental study on the vibro-impact-driven capsule,
working under different friction conditions, including isotropic and anisotropic
resistant forces. The experimental setup made it possible to vary the friction force
easily.

2 Experimental Setup

The model of a vibro-impact locomotion system is shown in Fig. 1a.

An internal mass m is connected with the system frame mass my by a spring
with stiffness k and a linear viscous damper c¢. A harmonic sinusoidal force F;, acts
on both masses as an interaction force. The impact stiffness is modeled as a linear
spring ko. X1 and X, are the absolute displacements of the two masses m and m;,
respectively. At the initial stage, the two masses gave a gap G. Whenever X; — X»
overcomes the gap G, impact happens, and thus, the system can move forward. A
dry friction force Fg presents the environment resistance acting against the motion
of the system frame.

In this study, the experimental apparatus was made to provide either isotropic
friction or anisotropic friction resistance. When the system is arranged horizontally,
as shown in Fig. la, the resistant forces in forward and backward motions are
considered to be the same, i.e., the friction force is isotropic. The setup was then
developed to examine the anisotropic friction, referring to previous studies [7, 18],

(a) (b)

m;

Fig. 1 Models of the vibro-impact locomotion system with (a) isotropic friction and (b)
anisotropic friction
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where the forward resistance is smaller than the backward resistance. When the
prototype is placed on an inclined surface, as shown in Fig. 1b, the anisotropy
characteristic of the friction coefficients can be achieved by making use of the
gravity effect.

When the prototype is moving on the chute, the equivalent friction force consists
of two parts: one is the dry friction force Fs, and the other is the gravitational
force component along the inclined chute direction. In contrast to [7, 18], this study
assigned the upward direction as the forward motion, i.e., the forward resistance
force is larger than the backward resistance. Increasing the inclined angle, 6 leads
to increase in the ratio between forward friction and backward friction. In this study,
such ratio will be called the anisotropic ratio. Two levels of the ratio were examined,
represented by two values of the inclined angle, 6.

The detailed experimental setup is described in Fig. 2, where the experimental
schema is depicted in Fig. 2a and a photograph of the realized apparatus is shown
in Fig. 2b.

In Fig. 2, a mini electrodynamic shaker (1) was used to provide relative
oscillations between the two massed. The shaker was fixed on a rolling slider guide
(4), provided that a tiny rolling friction force is available when the system moves.
The slider can be adjusted to provide a certain inclined angle 6, with respect to the
horizontal surface. An additional mass (2) was fixed on the shaker shaft. Exciting the
shaker by a sinusoidal current, a linear oscillation of the shaker shaft with respect to
the shaker body was generated. The internal mass m; involves the addition of mass
and the shaker shaft weight. A noncontact position sensor (7) was used to measure
the relative motion of the internal mass mj. The displacement of the shaker body was
collected by a linear variable displacement transformer (LVDT). The body shaker,
including the sensors and the carbon tube, is denoted as the mass my. An obstacle
block (3) was used to absorb the impact force. A carbon tube (5), which has a tiny
weight, is connected with the shaker body by means of a flexible joint and can be
slid inside a coupled V-block. This mechanism provided the ability to adjust the
resistance (friction) force when the system is moving. The detailed mechanism of
providing preset friction is depicted in Fig. 3.

Fig. 2 Models of the vibro-impact locomotion system with (a) isotropic friction and (b)
anisotropic friction
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Fig. 3 Varying the friction force: (a) apparatus structure and (b) the dependency of friction force
on the supplied voltage

Table 1 Experimental factors

Factor Notation Value Unit
Internal mass m 0.518 Kg
Body mass my 1.818 Kg
Impact gap G 0.5 mm
Friction force Fg 2.4;6.8;and 13.6 N
Force ratio o = A/Fg 0.59; 0.79; 0.99; and 1.19 -
Inclined angle 0 0;25and 5 °
Excitation frequency Jexe 15 Hz

As depicted in Fig. 3a, the carbon tube (5) connects with and moves together with
the system body. The tube is clamped by means of two aluminum V-block (6), which
are fixed on two electromagnets (7). By adjusting the electrical current supplied
to the electromagnets, it is able to obtain the expected force clamping the carbon
tube. As a result, the sliding friction force exerting on the tube when moving can
be predetermined. Moving the body at a slow and steady speed, the preset friction
force corresponding to the voltage supplied can be collected (see more details in
[41]). Figure 3b presents the relationship between the control voltage and the slide
friction force. Based on such relationship, the preset friction between the system
and the environment can be adjusted, without changing the weight of the system.
Table 1 shows the values of experimental parameters.

3 Results and Discussions

Figure 4 shows the time history of the motion X of the internal mass and the motion
X, of the whole body for various preset friction levels and inclined angles.

Overall, the system works under higher preset friction force would have more
ability to move forward. Besides, increasing the inclined angle 6 resulted in either
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Fig. 4 Time history of the motions of the two masses for various values of preset friction and
inclined angle; a force ratio « = 0.59 and an excitation frequency of 15 Hz were applied

backward motion or a lower forward progression rate. It is reasonable due to the
effect of the gravity force, which always tends to draw the system to move backward.

As shown in the first-row subplots of Fig. 4, under the isotropic friction
(6 = 0°), increasing the preset friction would provide a higher progression rate.
For anisotropic friction (6§ = 2.5° and 8 = 5°), a low preset friction resulted in a
backward motion, whereas the highest preset friction provided the fastest forward
motion.

In order to examine the moving direction as well as the progression rate of the
system under the concurrent effect of the force ratio and the preset friction, three
sets for inclined angles of 0°, 2.5°, and 5° were implemented. Each set includes 12
runs, combining three levels of friction (Fs = 2.3 N, 6.8 N, and 13.6 N), and four
levels of the force ratio (¢ = 0.59, 0.79, 0.99, and 1.19) were implemented. The
progression velocity obtained is represented by two-parameter contour plots in Fig.
5. The plots were made directly from experimental data by OriginLab® software. In
Fig. 5, the areas of backward motion (denoted by the sign “—"") were represented by
gray, dark grey, violet, blue, purple, and navy, whereas the areas of forward motion
(denoted by the sign “+”) were shown in green, yellow, orange, and magenta.

As can be seen, in the investigated ranges of the two parameters, for isotropic
friction (Fig. 5a), the system had forward motion for most combination values of
the preset friction force and the force ratio. The system moved backward in a small
range of the force ratio a€[1.05, 1.19] combined with a large range of friction force
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Fig. 5 (Color online) Contour plots of the progression rate with respects to the preset friction force
F; and the force ratio « for (a) 6 = 0°, (b) § = 2.5°, and (¢) 6 = 5°

Fge[4.5, 13.6] N. With higher inclined angles, the areas of backward motion became
larger, and the forward motion appeared in smaller ranges of the parameters. With
an inclined angle of 5°, the system had forward motion in small ranges of Fse[10,
13.6] N and «€[0.59, 0.79]. Generally, larger friction combined with a smaller value
of the force ratio would result in faster moving forward.

4 Conclusions

This paper presented experimental results of a vibro-impact-driven locomotion
system under different friction conditions, including both isotropic and anisotropic
friction.

The following remarks would be useful for further studies:

e For the system working with isotropic friction, the level of preset friction
force would have significant effects both on the rate and the direction of the
progression.

* For the system working with anisotropic friction, the vibro-impact would provide
forward motion of the whole system. Larger friction combined with a smaller
value of the force ratio would result in faster moving forward.
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Modeling the Fear-Induced )
Spatiotemporal Dynamics of et
Three-Species Interaction in

Agroecosystems

Swati Mishra and Ranjit Kumar Upadhyay

1 Introduction

Herbivory can be very overpricing as it significantly removes the valuable photosyn-
thesis material of plants required for the growth and reproduction of plants. Every
year millions of dollars losses occur in the agricultural industry due to herbivory.
Usually, pesticides are used to reduce herbivory. These synthetic chemicals have
an adverse effect on the environment. For environment-friendly concern, utilizing
natural methods for controlling pest density is the need of the day. A good number of
biological control agents showed promising results as an alternative to pesticides [1].
In the agricultural ecosystem, “non-web building” wolf spider of family Lycosidae
is often the dominant predatory arthropods [2] and a good candidate for biological
control measures.

The presence of spiders in an agroecosystem impacts insect pests not only
through direct predation but also through the fear effects. Silk draglines and
pheromones produced by wolf spiders serve as chemical cues [3]. These cues cause
fear among the herbivores, and they avoid the plants bearing the spiders or their
cues. Thus, it alters the foraging behavior of herbivores insects [4]. Recently, Suraci
et al. [5] manipulated the fear of large carnivores (wolves, cougars, and black bears)
on the mesocarnivore (raccoons) on several small coastal Gulf Islands by using the
month-long vocalizations of large carnivore in their field experiment. They reported
66% less time foraging over the course of the month. This dramatic reduction
in mesocarnivore foraging in turn dramatically benefits the mesocarnivore’s prey
(intertidal crabs, intertidal fish, polychaete worms, and subtidal red rock crabs).
They observed that due to the month-long large carnivore playbacks, there were
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97% more intertidal crabs, 81% more intertidal fish, 59% more polychaete worms,
and 61% more subtidal red rock crabs.

Fear effects in predator—prey interaction models are first introduced by Wang et
al. [6]. After this work, various studies have been done to investigate the impact
of fear in predator—prey systems [7—-10]. Recently, Panday et al. [11] studied a
tri-trophic food chain model with a specialist top predator in which they have
incorporated the lowered foraging behavior due to the fear of top predator. In this
work, we have proposed mathematical model for wolf spiders, insect pests, and
plant community interactions in an agroecosystem. Experimental studies [4] have
reported that the chemical cues by wolf spiders affect the behavior of herbivore
insects and thus limit their feeding activities in agriculture systems. To model the
reduced foraging time due to fear of wolf spiders, we have multiplied the predation
rate of insect pests by the factor f(k, S) = ﬁ, where k is the level of fear.

Populations are rarely homogeneously distributed in space what makes the study
of pattern formation a very important issue. Turing’s seminal work [12] explained
that a stationary stable homogeneous distribution of two chemical substances
in the absence of diffusion can be destabilized by heterogeneous perturbations
when diffusion is present. Segel and Jakson [13] have presented Turing’s idea of
instability induced by diffusion in ecological context. Gierer and Meinhardt [14]
identified the “activator—inhibitor mechanism.” Since then various studies have
been done on pattern formation scenario via Turing instability [15—17]. These
studies have not considered the impact of fear in species interactions. Recently,
Wang and Zou [8] first time explored pattern formation scenario in a predator—prey
model with fear effect. After that Upadhyay and Mishra [9] have illustrated the
spatiotemporal dynamics and pattern formation in a system with fearful prey and
predator population. Pattern formation and pattern selection in the modified Leslie-
Gower (LG) predator—prey model with fear effect are studied by Han et al. [18]. All
these works have explored the pattern formation in the two-species predator—prey
model with fear effect. In this work, we have investigated the pattern formation and
Turing instability conditions in a three-species plant community—insect pests—wolf
spiders interaction model in an agroecosystem.

In this chapter, we have studied the temporal and spatiotemporal dynamics
of a tri-trophic food-chain model with fear effect in an agroecosystem. We have
discussed the stability and Turing instability analysis of the proposed system. It
is obtained that fear level k has stabilizing impact on the temporal dynamics and
destabilizing impact on the spatial dynamics. We have presented 1D and 2D Turing
patterns. We have explored the “wave of chaos” phenomenon first time in the food-
chain model with fear effect. The chapter is organized as follows. In Sect. 2, we have
given model formulation. Analysis of the temporal system is performed in Sect. 3.
In Sect.4, we have analyzed the spatiotemporal system and obtained the Turing
instability conditions. Numerical simulations are carried out in Sect. 5. Finally, the
chapter ends with brief discussions and conclusions.
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2 Model Formulation

The proposed model system is given by the following reaction—diffusion system:

P P wPI

—=nP(l-—)-—————+d1AP, >0, (u,v) €,

or K (I +kS$)(P+ D)

al w PI wyI%S

— =—0B+m)l + — +drAI, t>0, (u,v) € 2,

or = MY S P D) 20 ° @, v) ey

) S(l S )+7w3123 Fd3AS, 10, (,v) € R
=N - 3 5 >0, (u,v s
at K>) (12 +D?)

with the initial conditions
PO,u,v) >0, I0,u,v)>0, SO,u,v) >0, (u,v) € 2 2)
and the zero-flux boundary conditions

opP 9l dS
— =—=—=0, t>0, (u,v) €982, 3)
av av av

where P(t,u,v), I(t,u,v), and S(¢,u, v) be the population densities of plant
community, insect pests, and wolf spiders at time ¢ and position (u, v) € £2. All
the system parameters, vy, K, o, k, D, §, m, wi, wiy, D1, r3, K», and
w3, are positive and their definitions are given in Table 1. Also, d;, d>, and d3
are self-diffusion coefficients for the species P, I, and S, respectively, and v is the
outward normal to the 32. Zero-flux boundary conditions specify that population is
self-contained, and there is no population flux across the boundary of the domain.

3 Analysis of the Temporal System

3.1 Boundedness

Theorem 1

Q21 =1(P@®), 1) S(t))eR3'O<P(t)<K10<1(t)<K1w1 <1+ " )
AT U= - - w 468+m) )’
w3
K2§S(t)§Kz<l+r—)}
2

is a region of attraction for all the solutions of the system (1) without diffusion
initiating in the interior of Ri.
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Table 1 Meaning of the system parameters used in the model system (1)

Parameters Biological meaning

r Intrinsic growth rate of plant community

K, Environmental carrying capacity of plant community

w Maximum predation rate of insect pests on plant community

D Half saturation constant of insect pests

k Reflects the level of fear of wolf spiders

) Natural death rate of insect pests

m Migration rate of insect pests due to fear of wolf spiders

w1 Conversion rate of plant biomass to insect pests biomass

w2 Maximum predation rate of wolf spiders on insect pests

r Intrinsic growth rate of wolf spiders

K> Environmental carrying capacity of wolf spiders

w3 Conversion rate of insect pests biomass to wolf spiders biomass
Dy Insect pests density at which the population killed by wolf spiders

reached half of its maximum value

Proof Proof directly follows from the article [19] and hence omitted.

3.2 Equilibria and Stability Analysis

1. The trivial equilibrium point E((0, 0, 0) always exists. The eigenvalues corre-
sponding to Eg are r; > 0, —(m + §) < 0, and r» > 0. Therefore, E is a saddle
point.

2. The insect pests and wolf spiders population-free axial equilibrium point
E1(K1,0,0) always exists. The eigenvalues corresponding to Ej are —r; < O,
—(m+68)+ 151 fb, and rp > 0. Therefore, E is a saddle point.

3. The axial equilibrium point E5(0, 0, K») always exists. The eigenvalues corre-
sponding to E, are r; > 0, —(m + §) < 0, and —rp < 0. Therefore, E> is a
saddle point.

4. The planer equilibrium point Eg(ﬁ, I, 0), where P = % and [ =
W, exists provided w; > & + m. The eigenvalues corresponding
to E3 are

i’ +nrb
A= B0 TR
Bi

A AR

A AA A An A A An A ~ A A2 N
wK 1 PT —r 2P + \/(rlﬁlﬂgp - le,BlPI) — dwwy DK2 2 PI

and )»2’3 = =
2[(1/31/32

5

where ,31 =P+ D and ,32 =712+ D%. Therefore, E3 is unstable.
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5. The planer equilibrium point E4(K1, 0, K7) always exists. The eigenvalues
corresponding to E4 are —r; < 0, —(m + §) + Ml@% and —rp, < 0.

Ko

m and a saddle

E4 is locally asymptotically stable if (6 + m) >

point if (8 +m) < RS 5y
6. The interior equilibrium point E*(P*, I'*, §*) exists if and only if there is a

positive solution to the following set of equations:

< P> wl
mll-—)-—2  _y,
K:) (U +kS)(P +D)
w1 P _ wrlS _
(I+kHYP+D)  (I2+D) “)

S a)312
(11— 2)+ B0
2( K2> (12 + DY)

It seems difficult to find values of P*, I'*, and S* explicitly. The existence of
interior equilibrium point E*(P*, I*, §*) can be established with the help of
graphical method technique. Readers may refer [20] for better understanding.
Here, we have shown the existence of E*(P*, I'*, $*) numerically taking the
following set of parameter values:

~@+m)+

rn=12, K1 =100, o =5.89, D =10,k =0.015,
8§ =0.05, m =0.001, w; =2.58,
wy =0.25, D1 =20, r, =0.05, K, =20, w3 =0.8.
We obtained the interior equilibrium point E*(P*, I*, §*) as E*(0.582489,

3.01515,27.1113) for the above set of parameter values. Jacobian matrix J at
E*(P*, I'*, §*) is given below:

_rnP* | wP*I* _wP* wkP*I*
K 2 B1p2 2

iy ¥2 o ps Pip2 ) ajp a2 ai3

J w1 DI* oy (I —D))S*I* ok P*I*  wpl* _
- 163 A Bi B2 By | T | 921 922923
0 203Dy S*I* _rs* 0 a3 a3z

B3 Le
The characteristic equation of Jacobian matrix J is given by
A+ AN+ Ad+ A3 =0, 5)

where

Ay = —(a11 +axn +asz), Ay =ajax —apay + axnassz — axasp + a1ass,
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A3 = —ajzaz1a3; + aj1a3az + ajpaz1azz — aj1axas;.

According to the Routh-Hurwitz criterion, E*(P*, I'*, S§*) is locally asymp-
totically stable provided that A; > 0, A3 > 0 and AjA> — A3 > 0. After
simple mathematical manipulations, stability condition about E*(P*, I'*, §*) is
summarized in the theorem below.

Theorem 2 The interior equilibrium point E*(P*, I'*, §*) is locally asymptoti-
cally stable, provided the following conditions are satisfied:

2
Dy = I*, (1+kS*) > P I"K:1K2p
B B2 (B2r1 Ko P* + 12 K1) + @n S*I*K Ko (D} = 1+2))
(6)
r1B4Be P* 4 r2B1B5S* 4 ri P*Bg(D? — I*2)
Ky K> K
> BaBoBr + kBsPel* + P13 (DT — I*?), (7)
st (. BsK3(D] —1I*?) (rlp* )2
1+ -
K, < 2572 BaPe K B
L BEIDI I (1 P* | s
rzzS*2 Ky K3
N r3s*2 B r P* N (D} — I"}) 3K, N 2r1 By P*(D? — I*2)
K2 5\ 7k, 7y S* K
> B7 (B1Bs + 285D} - I'?)
ry§*2 N BIK3(D} — I*2)? ®
K2 ra§%2 ’
where
Bi=(1+kS*), po=(P*+D), B3=(I"?+Dp,
ko1 P¥I* wpI*?
Pa = 12 + ;
,31 52 /33
Dww) P*I* 2D3w3S*I* wP*I* rawp I*8*2
/352—, = T 5 7 = ﬂgz—.

BiB3 B3 BB’ BIK>
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4 Stability Analysis of the Spatiotemporal System
To understand the dynamics of the spatiotemporal system (1), we linearize the

system (1) about the interior equilibrium point E*(P*, I*, $*) by introducing the
following transformations:

P=P+Puvt), I=I"+Iunv1), S=S84S8u,v,1), )

where |P(u,v,1)| < P*, |[(u,v,t)] < I*, and |S(u,v,1)| < S*. In the
linearized form, the model system (1) is given by

aP A ~ A A
— =anP +apnl +a3S+d1AP,

ot

al R . . .

vl an P +anl +ax3S+drAl, (10)
a8 . . .

E =anl +a33S + dzAS.

Conventionally, we choose
Pu,v, 1) = Sle)LKl+1(Kuu+Kuv)’ T(u,v,t) = 82(3AK[+’(K"M+K”U),

SV(M’ v, t) — 836)»1(l‘H‘(KMzkl»K,ﬂ))7 (11)

where ¢;, i = 1, 2, 3, are the corresponding amplitudes of perturbations, Ag is the
wavelength, K = (K, K,) is the wave number vector, and K = |K| is the wave

number.
Now, the characteristic equation of the linearized system (10) is given by

&1 ai az ais d 00

(Jgx — Al — sz) & | =0, where Jgx = |ari axnax |, d=|04dy 0|,
&3 0 asp aszj 00 d3

(12)

and 7 is the 3 x 3 identity matrix. Now, for a nonzero solution of (12), we require
that det(Jg« — Al — K2d) = 0, which yields the following dispersion relation:
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24 K2+ o+ dy) + A |22+ [KHids + dads + dady) + K2 (—a11(ds + ds)
—ay(d) +d3) —az3(d) +dp)) + Az} A
+ {K6(d1d2d3) + K*(—ay1dyds — axpydyds — az3didy)
+K2(d) (axas3 — az3az) + da(ayyass3) + d3(ayaz — appaz))) + A3] =0.
We rewrite the dispersion relation as
3+ (K22 4 w1 (KA + po(K?) = 0, (13)
where
pa(K?) = K*(di + do +d3) + Ay,
ui(K?) = (K*(did> + dads + dydy)
+ K*(—a11(dy + d3) — an(dy + d3) — az3(di + do)) + Aa, (14
no(K?) = K°(didads) + K*(=anidads — axndids — aszdida)
+ K*(di (axna33 — axaz) + da(ariazs)

+ ds(aj1a — appazy)) + As.

Next, we obtain the value of (uju2 — o) (K 2y, which is given in the expression
below:

(a1 — o) (K?) = {(d1 + do)(da + d3)(d5 + d1)} K©
+{—a11(d2 +d3)2d| + dr + d3)
—an(dy + d3)(dy + 2dy + d3) — az3(dy + da)(dy + do + 2d3)} K*

+ ’(—0126121 + a3, + 2axnazs + a3y + 2a11 (ax + a3))d
+(a}, — anay — anaz + 2anazs + a3y + 2a11(axn + a33))da

+(a}, + a3, — axzaz, + 2axnazs + 2a11(axn + a33))d3} K>+ A1As — As.
(15)

According to the Routh—Hurwitz criterion for stability, Re(1) < 0, iff the following
conditions hold:

p2(K? >0, uo(K?) >0, and [uop1 — pol(K?) > 0. (16)
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Theorem 3 The interior equilibrium point E3(x*, y*, z*) is locally asymptoti-
cally stable in the presence of diffusion provided the condition (16) holds.

4.1 Turing Instability

Turing instability breaks the spatial symmetry of the system and leads to formation
of spatial patterns, which are stationary in time and oscillatory in space. It is also
known as diffusion-driven instability. Turing instability occurs when the model sys-
tem without diffusion is stable and model system with diffusion becomes unstable
for small perturbations about the homogeneous steady state E*(P*, I'*, §*). That
is, if 2(0) > 0, uo(0) > 0, [u2p1 — o](0) > 0, and anyone of these conditions
wr(K?) >0, puo(K?) >0, [puap1 — pol(K?) > 0 fails to hold.

It can be easily seen that diffusion-driven instability cannot occur by contradict-
ing the condition ,uz(K2) >0asd;, dp, d3, K? are all positive and Ay > 0 from
the stability condition of interior equilibrium point E*(P*, I'*, $*). Hence, we are
dependent on the signs of po(K 2y and [pap1 — pol(K?) for Turing instability to
occur in the system (1)—(3). The expressions of wo(K?) and [pop1 — nol(K?) are
both cubic polynomials in K2 of the form

0(K?) = 03K + 0mK* + 61K* + 09, suchthat o3 >0, op > 0.

The coefficients o;s (i = 0, 1, 2, 3) for expressions of 1o(K2) and [1241—40](K?)
are the same as those given in the third equation of (14) and (15), respectively. For
o (K?) to be negative for some positive real number K2 # 0, the minimum must be

_ for2—
negative. The minimum of o (K 2y occurs at K2 = K c2r — Vo300 Now,

303
K2, is real and positive if
o1 <0 or (0p <0 and 022 > 30103). a7
Hence,
3 2 3 2
o 2. 205 — 9010203 — 2(0y — 30103)2 + 270500
Omin = G(Kcr) = 3 .
270
Thus,
G(KCZ,) <0, if 20’23 — 9010703 — 2(022 — 30103)% + 2703200 < 0. (18)

Theorem 4 The spatial model system (1)—(3) will undergo the Turing instability at
the homogeneous steady state E*(P*, I*, S*) provided the following conditions are
satisfied:
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01 <0 or (02 <0 and 0’22 > 30103)

and
(19)

27 9 :
<023 Tt 300 — 5010203> < (03 = 30103)*.

Example 1 To explore the above phenomenon numerically, we have chosen the
following set of parameter values:

rp=1.2, K; =100, v =5.89, D =10, k = 0.015,

8 =0.05, m =0.001, w; =2.58,

wr =0.25, D1 =20, r, =0.05, K2 =20, w3 =0.8,

d1 =0.0001, d» =0.001, d3 = 1.

(20)

For this set of parameter values, ©>(0) = —(aj1 + a22 + az3) = 0.056836 > 0,
no(0) = —azaziaz + aijaxazxy + apazasz — ajjaxpas; = 0.006219 >
0 and [pop; — wol](0) = 0.000205 > 0. Thus, model system (1) with-
out diffusion is locally asymptotically stable about homogeneous steady state
E*(0.582489, 3.01515,27.1113). 0, = —2.46006 < 0, 022 = 6.05189 > 30103 =

0.015555 and (023 + 020y —3010203)2 = 219942 < (0} — 30103)° =
219.948. Thus, Turing instability conditions are satisfied. In Fig. 1a, we have shown
the plot of [ap; — pol(K 2y with respect to wave number K. From this figure, it
is clear that [y — mnol(K 2)] < 0 for some values of wave number K, and this
implies that Turing instability occurs in the system (1) for the given set of parameter
values. In Fig. 1b, we have shown [uau — pol(K 2y vs. K2 plot for three different
values of fear level £k = 0.015, 0.018, 0.023, and the other parameter values

— k=0.015 — k=0.018 — k=0.023

0.5 1.0

0.4
o o 05
& 03 &
,;?_ 0.2 Tw?_ 0.0
|
=~ 01 =~

3

S 00 g 703

-0.1 ~10

02 1 2 3 4 5 0 1 2 3 4 5

K’ K’
(a) (b)

Fig. 1 (a)Plotof [uop1 — pol(K 2y with respect to K 2 showing occurrence of Turing instability,
(b) [ap1 — pol(K?) vs. K2 plot for three different values of fear level k = 0.015, 0.018, 0.023
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are the same as given in Eq. (20). It is observed that the interval of negativity of
[opr — pol(K 2y increases with increase in the value of fear level k. Thus, the level
of fear k has a destabilizing impact on the spatial dynamics.

5 Numerical Simulations

In this section, we have performed simulation experiments to validate the analytical
findings and to illustrate the various dynamical behaviors. We have taken the same
set of parameter values as given in Eq. (20). For this set of parameter values, model
system (1) without diffusion is showing stable dynamics (cf. Fig.2a). Increasing
the value of migration coefficient m to 0.01, system loses its stability and goes to
limit cycle oscillations (cf. Fig. 2b). Further increasing the value of m to 0.4, system
again becomes stable (cf. Fig.2c); thus, migration coefficient m has a significant
impact on the temporal dynamics of the system (1). In Fig. 3a, we have presented
the bifurcation diagram with respect to fear level k. For small values of fear level
k, system (1) without diffusion is showing oscillatory behaviors and becomes stable

nnnnnnnnnnnnnnnnn

(a) (b) (c)

Fig. 2 Phase diagram of the system (1) without diffusion at (a) m = 0.001, asymptotically stable,
(b) m = 0.01, limit cycle, and (¢) m = 0.4, stable focus. Other parameter values are given in
Eq. (20)

(a)

Fig. 3 (a) Bifurcation diagram of P (), /(t), and S(¢) populations with respect to fear level , (b)
time series plot at k = 0.01, and (c) time series plot at £ = 0.02. Other parameter values are given
in Eq. (20)
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with increase in the value of fear level k (cf. Fig. 3a). In Fig. 3b, c, we have given
time series plots at k = 0.01 and k = 0.02. At k = 0.01, we obtained periodic
oscillations, and at k = 0.02, system is stable.

Next, we have numerically explored the dynamics of the spatiotemporal sys-
tem (1) with one- and two-dimensional diffusions. Simulation experiments are
performed in Matlab (R2013a). The temporal part of the system (1) is solved by
using Euler’s methods, central difference scheme is used for one-dimensional case,
and standard five-point explicit finite difference scheme is used for two-dimensional
diffusion terms. Space and time steps are taken as Ah = 1 and At = 0.01. In every
pattern, blue color corresponds to low density and red color corresponds to high
density of the species.

1D Diffusion In this subsection, we have presented the space vs. population density
plots (cf. Fig.4). We have assumed that the domain is of size 7000. We have
considered a nonmonotonic form of initial condition as P(u,0) = P* + e€(u —
u)w —up), I(m,0) = I*, Su,0) = S*,where E*(P*, I*, S*) is the interior
equilibrium point, and € = 1078, u; = 1200, and uy = 2800 are the parameters
affecting the system dynamics. We have taken the same set of parameter values
as given in Eq.(20) except at k = 0.1 and d; = 0.01. Initially, at time level
t = 100, plant community P(¢) and insect pests /(#) populations are distributed
in form of regular patterns (cf. Fig. 4a). Increasing time level to t = 3000, irregular
patterns representing chaotic behavior are observed (cf. Fig. 4c). It is found that the
irregular chaotic patterns grows steadily with time (cf. Fig.4d, e). At r+ = 10,000,

Population densiy
Population density

Population densiy

0 1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000
Space Space

Popuation density

Population density

; I
! ‘ u

o o aAll (AR i 4
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Space ‘Space Space

(d) (e) ()

Fig. 4 Spatial distribution of plant community and insect pests populations at different time levels:
(a) t = 100, (b) t = 1500, (c) t = 3000, (d) r = 5000, (e) r = 8000, and (f) r = 10,000
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Fig. 5 (a)—(c) Contour plots showing the population density of plant community, insect pests, and
wolf spiders in u — ¢ plane

22

n-

i

u
2
o8
0

t
o2

Fig. 6 (a—c) Snapshots of Turing patterns at 1950 days, for parameters given in Eq. (20)

almost whole domain is occupied by these irregular chaotic patterns (cf. Fig. 4f).
This phenomenon is called wave of chaos (WOC) [21].

To investigate the spatiotemporal dynamics of the system (1), we have presented
spatial patterns of plant community, insect pests, and wolf spiders as contour plots
in Fig. Sa—c. From this figure, it is clear that these populations are distributed in the
form of patches in the physical domain.

2D Diffusion In this subsection, we have presented Turing pattern forma-
tion for the system (1). The initial distribution of the species is consid-
ered to be a small spatial perturbation of the form P(0,u,v) = P* +
0.5cos?(10u) cos?(10v),  1(0, u, v) = I* +0.5cos?(10u) cos?(10v), S(0, u, v)
= §* + 0.5 cos?(10u) cos?(10v).

In Fig. 6, we have presented Turing patterns of the system (1) for the parameter
set given in Eq. (20) at 1950 days. It is observed that plant community and insect
pests are distributed in the form of small patches over two-dimensional domain
(Fig. 6a, b). Wolf spiders are distributed in the form of large patches (Fig. 6¢). In
Fig. 7, we have shown evolutionary process of patterns shown in Fig. 6¢ at different
time levels + = 25,000, 55,000, 95,000, 155,000, 195,000, and 225,000.
Initially, at ¢+ = 25,000, high density of wolf spiders is located at the boundary of the
domain (Fig. 7a). Increasing time level to ¢t = 55,000, high-density region increases
(Fig. 7b). Further increasing time level to t = 95,000, almost the whole domain is
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(b) (c)
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Fig. 7 Snapshots of contour pictures of time evaluation of wolf spiders at (a) r = 250 days, (b)
t = 550 days, (¢) t+ = 950 days, (d) + = 1550 days, (e) t = 1950 days, and (f) r = 2250 days.
Parameter values are the same as given in (20)

occupied with high density of wolf spiders (Fig. 7c). At t = 195,000, wolf spiders
are distributed in form of large patches over the whole domain (Fig. 7e). Further
increasing time level to r = 225,000, distribution remains unaltered (Fig. 7f).

6 Discussions and Conclusions

In herbivorous insects, the indirect trait-mediated effects of predators have been
repeatedly shown to reduce herbivory and consequently plant damage; the examples
of this include the effect of spiders on the feeding of grasshoppers [22]. In this work,
we have investigated the three-species food chain model of plant community, insect
pests, and wolf spiders interactions, incorporating the cost of fear in predation rate
of insect pests. Spatial random movement of species in one and two dimensions
is considered. We have analyzed the proposed system analytically as well as
numerically, and the main findings are as follows:

1. We have presented time series, phase plots, and bifurcation diagram for the
temporal system. It is observed that the fear level of wolf spiders has stabilizing
impact on the temporal dynamics of the system.

2. We have obtained the Turing instability conditions and shown the interesting
Turing patterns. It is found that plant community, insect pests, and wolf spiders
are distributed in the form of patches over the physical domain.

3. We have explored the wave of chaos phenomenon, which is not discussed yet in
the food-chain model with fear effects.
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4. Tt is observed that the fear level k& of wolf spiders has destabilizing effect on the

spatial system.

In this work, we have first time explored a three-species food chain model in an
agroecosystem with fear effects. Our results are general in nature and will help to
understand the plant community, insect pests, and wolf spiders interactions in the
agroecosystem.
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Optimal Birth Control of Population )
Dynamics with Time-Varying Diffusivity et
Coefficient

Manoj Kumar and Syed Abbas

1 Introduction

Birth control is among the most effective control strategies to reduce the population
of harmful or invading species. There are only few papers concerned with optimal
control problems in size-structured population models (see [1-4] and references
therein). Size-structured population models play a significant role in mathematical
analysis and control of a biological population. Size can be considered as a
variable, which is continuous and shows statistical or physiological characteristics
of population. Depending on the population under study, age, mass, maturity,
diameter, and length can be taken as size.

Using semigroup theory, N. Kato [5] qualitatively analyzed the abstract differen-
tial equations arising from a population model with spatial diffusion. The semigroup
approach [6] enables to describe a population process as a dynamical system in a
state space. Rong et al. [1] studied an optimal birth control problem for a size-
structured population model without diffusion term. Ze-Rong et al. [2] also studied
similar kind of problem but with a different form of cost functional. In this work,
we extend the model of N. Kato [5] and S. Abbas et al. [3]. S. Abbas et al. [3]
also studied optimal control problem for a population model but with a constant
diffusivity coefficient.

Using semigroup theory and fixed point arguments, we obtained important esti-
mates on the mild solution of given population model with time-varying diffusion
rate. By fixing fertility rate on three sets, we obtained optimality conditions to our
model. Using Ekeland’s variational principle, we have shown the existence of an
optimal birth controller, which is also unique under some conditions.
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2 Model Formulation

Let us consider a biological population living in a habitat I' C R" with smooth
boundary oI". Let u(s, ¢, x) be the population density of size s € [0, sy, ] individuals
attime ¢t € [0, T'] in spatial position x € T.

Size will increase in the similar manner for all individuals, and the individuals
do not move outside of their habitat through boundary.

Let V (s, t) be the growth rate of individuals of size s at time ¢ and m(s, ¢, x)
and v(s, t, x) be mortality and reproduction rates, respectively. Let f;(s, ¢, x) and
Co(t, x) be the inflow of s size and zero size individuals, respectively, from outside
of the environment. Let 't = (0, 7)) x I', I’y = (0, s,,) x ', I'ry = (0, 5,) X
0,T) xI',and X7y = (0, 55) X (0, T) x oI'. Then, the evolution with respect to
size and time is given by the following system:

2_1: + aa—s(V(s, Hu) = k(t)Au —m(s, t, x)u + fs(s,t,x) in Tz (D

Sm
V@O, Hu,t,x) = Co(t, x) + / v(s, t,x)u(s,t,x)ds in I'r 2)
0
au . .
a—(s, t,x) =0 in Zps, u(s,0,x) =ug(s,x) in Ty. 3
v

LetU ={v e L®Try) | vi(s, t,x) <v(s,t,x) < vp(s,t,x)a.e. in Irgl,

where v; and v,, are functions that are non-negative and lie in L°°(I'ry). Let
u’(s, t, x) be the solution of (1)—(3), and then optimal birth control problem can
be stated as

T Sm
minimize E(v) = / / / [u”(s, t,x)+ l,o(v(s, t, x)z)i| dsdtdx @
o Jo Jr 2

subject to v € U (v is a control variable). Here, p is a weight factor, which is a
positive constant. Let us take realization of A(¢) of —k(¢)A in L?(T"), p in (1, 00).
Foreacht € [0, T],

D(A®)) = {v e W2P(I) | g—z =0 ae. on BF}.

For ¢ € LP(T"), operators M (s, t) and V(s, t), which are bounded linear, are defined
according to [5].
So, our model in operator form can be written as

u

o1 +:—S(V(s, Hu) = [—A@®)—M(s, t)]u+ fs(s, 1), (s,1) € St = 1[0, sm1x[0, T]

®)



Size-Structured Population Model 165

V(0. H)u(0. 1) =Co(r)+/sm Vs, uls. t)ds. € [0.T] )
0

u(s,0) =up(s), s €l0,sn]. @)

3 Estimates on Mild Solution

Here, we have taken some assumptions. Some of the assumptions have biological
significance, and some are required to derive mild solution.

(H1) V: St > [0, 00) is of class C! w.r.t. both s, and V(s,t) > 0on S7. Here,
growth is the rate of change in size with respect to time and for most of
the species size either remains constant or increases. So, it makes sense to
consider the growth rate as non-negative function. Also, for each ¢ € [0, T],
we consider the following cases:

(@ V(@,7) >0and V(sy,t) >0, () V(@O,t) > 0and V(sy,t) =
0;
(¢) V(0,t)=0and V(sy,t) >0; (d) V(0,t)=0and V(sy,t)=0.

(H2) Foreacht > 0, —A(r) generates a Cy semigroup {S;(r)|r > 0} in Z. Here,
semigroup is the solution operator corresponding to Laplacian.

(H3) It would be a strange model if suddenly infinitely many animals are die/born.
Therefore, we take V(s, t) and M (s, t) as bounded linear operators in Z for
(s, 1) € St.

H4) f; € LY(Sr:2),Co € LY0,T;Z), and ug € L0, sm; Z). This
assumption also makes sense biologically because initial population and
individuals coming from outside of the environment cannot be infinite.

The extension of function V (s, ) on R x [0, T'] is done according to [5].
Assumption (H1) guarantees the existence and uniqueness of solution of IVP
(initial value problem)

%s(t) =V(s(),t), s(ty) =s90 where s09€ R. (8)

Let us denote the solution of above initial value problem by s(f) =
@(t; to, 50), s1(t) = @(t;0,0), and s2(t) =@ T, sm).

Initial time 7p and final time 7| are defined according to [5]. Suppose u(s, )
satisfies (5)—(7) in strict sense, and let

p(n;t,s) =exp |:/r/ osV(p(o;t,s), a)do] u(s(n),n), where ¢(o;t,s)=s(0).

70
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Differentiation of p(n; t, s) with respect to n gives
d
%(p(n; t,5)) =[=A@m) — M(s(m), Dlp(; t,s)
n
+exp (/ o V(p(o:t,s), 0)d0> Fs(s(m), m). )

0

To carry out further analysis, we assume that the assumptions given in parabolic
case [6, Section 5.6] hold. Under those assumptions, the homogeneous system

?—FA(t)p(t):O, 0<r<t<Twith p(r)=z (10)

has a unique evolution system {X (¢,7) | 0 < r < t < T} with some properties (for
more details, see Pazy [6]).
Variation of constant formula and substitution of n = ¢ give us

u(s, 1) = Qo)X (1, 70)u(0, 7o)

t
+/ Q@)X (t,0)[-M(s(0),0)u(s(0),0)) + fs(s(o),0)ldo,
70

t
where Q (1) = exp (—/ 0sg(p(o;t,s), 0)d0> .

0
For the case (H1)-(a) and (H1)-(b), V(0, ) > 0, so u(0, t) is defined by

Sm

u(0,1) =

[Co(t) + V(s, tu(s, t)ds] for te(0,7). 1D
0

1
V(@,1)
In the case (H1)-(a) and (H1)-(b), initial time will be given by

t(t,s) =19 for se€(0,51()) and 719(t,s) =0 for s € (51(8), S;m).

For this case a.e. t € (0, T), mild solution u(s, t) is given by

Q(z0) X (1, 70)u(0, 70)

u(s. 1) = + [rg X O M A=M (s, uls@), m) + fs(s),m} Q(mdn . ae. s e ©0,50)
Q)X (7, 0ug(p(0; 1, 5))
+Jo XU (=M (s, mutsm, )+ fs(sm), M} Q(mdn ,  ae. s € (s1(1),5m)

Note that ug = up(¢(0;t,s)), and for the case (H1)-(c) and (H1)-(d), there is
no fecundity rate, so u(s, t) will be defined accordingly. C‘]; (ST; Z) is the collection
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of functions with values in Banach space Z and continuously differentiable along
curve ¢, and Dyu(s, t) is the derivative along curve (characteristic) ¢.

Theorem 1 Let u € L0, T; L'(0, s,u; Z)) be mild solution of (1)~(3); then, in
the Case (H1)-(a) and Case (HI)-(b), it is of class C(]; (St; Z) and satisfies

Dyu(s,t) = —A@)u(s, 1) — oV (s, Hu(s, 1) — M(s, Hu(s, 1) + fs(s, 1) a.e. (s,t) € S,

(12)

V0. )u(0, 1) = Co(t)—l-/sm Vs, Ouls. ds, ae. te(0.T), (13)
0

u(s,0) = up(s), ae se(0,sy). (14)

Proof The proof follows the same steps as given in [5].

Theorem 2 Under the assumptions (HI)—(H4), let u¥', u?2 € L0, T; L'(0, s,;
7)) be mild solutions with birth rates vi and v,, respectively. Then,

”uvl (.’ t) _ uUZ(.y t)”LI(O’Sm;Z) S N6<THV1—VZHLOO(ST;E(Z)))7 (15)

where N is a generic constant which depends on L norm of M, constant T, and

the bound of the evolutio:g system {X(¢t,7r),0 <r <t < oo}.

ey ¢ .. ~
B . —
Also, if N < i —Vil~ereay Y vy, v2 € U for some positive constant C,

then ||MU1(', 1) —u"(, l)||L1(0,Sm;Z) < M1|V1 = VallLeo(sy: £(2)) (16)

for some positive constant M.

Proof Let0 <t < T and u¥,u"2 € L>(0, T; L'(0, 5,,; Z)), and then we have
™ (1) —u(, N L10,5m:2)

s1(1)
< /(; 1Q(T0) X (t, T0) (u"' (0, T9) — u"?(0, 10)) ||z ds
s1(t) t
+/ / Q)X (t, 0)M(s(o), o) (u" —u")|z dods
0 70

Sm t
+/ / Q@)X (t,0)M(s(0),0)(u" —u"?)|z dods
s1) Jo

=T+ +1T1s.
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In the integral 77, let us use the substitution s = n = 1o(¢, 5), and then we have

ds

t
= =V (0, n)exp (—f 058(p(o;n,0), 0)d0> .
n n

t
So, T} S/
0

- /Sm Us(s(o), 0)u"(s(o), o)do)
0

X(t,n) (/Y Ui(s(o),0)u" (s(0), 0)do
0

dn.
z

The authors of [5] have proved that if vy < vy, then u"? < u"!. Using this, we will
derive a new inequality. Let us assume that v > vy; then,

vu’ —vu" < viu'' + vou”? — v — vu'! = (v1 — vg)(uv‘ — uvz).

t
Therefore, Ty < N||V| — V2||L°°(ST;£(Z))/ u o) — w2 (-, 7))||L1(0 52 410
0 OMms

Now, lets = & = ¢(n; t, 5); then,

t
Z_; = exp (/;7 s V(p(o;t,s), 0)d0> ,

and we can always find N such that

t
Th+ T3 < N[V — V2||L°°(ST;L(Z))/(; o) — u™ ) |‘Ll(0,sm;z) dn.
Therefore,
||I’tv1 ('1 t) - MUZ(.’ t)“Ll(O,Sm;Z) =< C + N”Vl - V2||L°°(ST,£(Z))

t
x /O [ Comy = w2 o oy A ()

where C is an arbitrary constant which is positive, and N is also a constant (generic
constant), which depends on || M| o (s;.c(z)), T» and the bound of the evolution
system {X (¢,7),0 <r <t < oo}. Now, using the Gronwall inequality, we get

Ju o) = w0 g5 2) = Ce(NT”V'_VZHLOCGT;“Z”).
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We can always find constant C such that
C < CIVI = WVallroo(sy:£(2)) -

Because of the bound of N , we have
Jutt 0y — w2, 0| < ClIVi = Vallz(spicine’”
9 ) LI(O,Sm;Z) — L (ST,E(Z)) .

Taking M| = CeéT, results of the theorem will hold. O

Now, let us consider the dual problem to (12)—(14).
In the case (H1)-(a) and (H1)-(c),

Dyq(s,t) = A*()q(s, 1) + M*(s,)q(s, 1) — V*(s, g0, )] + f(s, 1) a.e. (s,1) € St
q(sm,t) =limp_10q(p —h;t,sym),t —h)=0 ae. t € (0, T)
q(s, T) =limp40q@(T —h; T,s), T —h) =0, a.e. s e (0,sy),

(18)

and for the case (H1)-(b) and (H1)-(d), it will satisfy (19)(i) and (19)(ii).

Here, g € L*°(S7; D(A*)) N C(:)(ST; Z*) is unknown. In dual problem (adjoint
system), A*, M*, and V* are adjoint operators of A, M, and V, respectively. For
t € [0, T, let us assume that A*(¢) also satisfies the assumptions (A1)—-(A3) and
{X*(t,r); 0 <r <t < T} be evolution system corresponding to A*(¢).

M* and V* will be defined by [M*(s, t)q](x) = m(s, t, x)q(x),
V*(s, )gl(x) = v(s, 1, x)g(x).

Also, [|M*||Leo(s7:z%) < ImllLoeryy)s IV loecsy:Lizey) < Ivllzoeryy)-

Using the transformation g(s,t) = ¢q(s,, — s, T — t), we can transform the data
q(sm,t) = q(s,t) = 0 into the data g(0,¢) = ¢(s,0) = 0. Also, following the
same procedure as we followed in Theorem 1, we can show the existence of unique
solution to the dual problem.

Theorem 3 Let us assume that the assumptions (HI)—(H4) hold and g*' and g2
be solutions to the adjoint equation with birth rates v| and vy, respectively; then,

g (s, 1) — g% (s, D)llzx < MallVi — V5 |l Loo(sp:2(2%)) - (19)
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4 Optimal Birth Control Problem

Here, our objective functional (also called energy functional) is given by

T Sm
E(v) :/ / / [u“(s,t,x) + lp(u(s,z,x))2] dxdsdt, (20)
o Jo Jr 2

and our task is to minimize it. Let ® be the functional which is equal to E(v) if
v € U and +o0 otherwise.

Theorem 4 Let (vy, u) be optimal pair which minimizes E(v) and g be the
solution of dual problem (18).
Then, for f}(s,t,x) =—c,c >0

Vg Ve
U*(S,l,x)=f<q O, 7, x)u (S,t,x)>

co
F: LY (T'rg) = L®(I'ry) is defined by
v, if¢(s,t,x) <y

(FO)s,t,x) = (s, t,x), ifvyy <C(s,1,%) < U (21)

U, 1fC(s, 1, X) > vy

Proof Let we = é[u”**‘e‘s* — u"], where 8§, = v — vy; then, we converges to
w € L*®(St; Z), and w satisfies

Dyw(s,t) = A®w(s,t) — o,V (s, Hw(s, 1) — M(s,Hw(s, ) ae. (s,t) €St
V@O, Hw(0,1) = [3" V¥(s, Dw(s, D)ds + [3" Swu (s, t)ds, ae. te€(0,T)

w(s,0=0, ae. se€,sy),
(22)

where 8*u¥" (s, 1) = 8*(s, 1, )u¥" (s, 1, ), and also §*u" € L®°(Sr; Z).
Because w(s, t) is a weak solution of (22), we have

T Sm
[ [ [ w6 r0epaatn - kosge.
0 0 r
+m(s,t,x)q (s, t,x) —v(s, t,x)q(0, t, x))dxdsdt

T Sm
:/ / /5*(s, t, x)u(s, t,x)q(s, t, x)dxdsdt.
0 0 r
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As g (s, t) satisfies

D(PQ(Ss t) = _-A*(t)CI(S, t) - M*(S, t)Q(Sv t) + V*(Sv t)q(ov t) + f:y*(ss t)v

T Sm
f f f w(s, t,x)f (s, 1, x)dxdsdt
0 0 r

T Sm
=/ / /S*r*(s,t,x)uv*(s, t,x)q(0,t, x)dxdsdt. 23)
0 0 r

we have

Because (v, u"*) is a pair with optimal controller, we have

1
lim —[®(vy + €8x) — P(vy)] = 0,
e—40 €

T Sm V€85 _ 5, Uk g} 2
which implies lim / / / |:u v pe(d.) + pv*rﬁ*:l dxdsdt > 0,
o Jo Jr € 2

e—>+0

T Sm
which further implies / / / (w(s, t, x) + pvydy) dxdsdt > 0.
0o Jo r

For ff(s,t,x) = —c, ¢ > 0 and using (23), we get

T Ui (s, 1, X)g"* (0, 1,
/ / /(v — ) (pv* B RACLILL e x)) dxdsdt > 0,
0 0 r Cc

rorom Ve (s, 1,%)g" (0, 1,
which implies / / f 0 —vy) <v* _ s 1, g x)) dxdsdt > 0.
o Jo Jr cp

u¥ (s, t, x)q" 0, t, x
Let ¥, ={(s,t,x)eFTs| ( )a™ )<v1}.

cp

Choose v = v; on ¥;. So, in this case,

U* 9 t’ v* 0’ t7
/ p(v] — vy) (v* _U (s, 1, )q ™ ( x)) dxdsdt =0,
21 cp

because p cannot be zero, we have v, = v;.

- u' (s, 1, x)q" (0, 1, x)
Similarly, let Vo = { (s, ¢, x) € I'rg | > U ¢

cp
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and choose v = v,,, on ¥;. Then, vy = v,, on V5.

U* ’t7 U* ()’t7
If‘IJ3={(S,t,X)€FTs|U1§u LI x)svm},

cp

g (0, t, x)u"* (s, t, x)
cp '

then on W3, v, =

O

Theorem 5 Under the assumptions (H1)—(H4) and assumptions of Theorem 4 with

M P, + My P
cp

<1,

uniqueness of optimal birth controller v € I'7, is guaranteed for the optimal birth
control problem (4), where Py and P, are supremum of |u| and |q|, respectively.

Proof The lower semicontinuity of functional @ is easy to check, so using
Ekeland’s variational principle, for every € > 0, we can find v € U such that

®d(ve) < inf ®(v) + ¢ 24)
velU
O(ve) = Inf{® )+ Vellv = velliqry,)- (25)
Thus, the functional in perturbed form

De(v) = @) + Vellv = vell 1y (26)

will attain its infimum at v.. Therefore,

o1
lim — [De(ve + €84) — Pe(ve)] = 0,
€—0 €

1
therefore, limO — [®(ve + €'8,) + Vell€"84]l — P(ve] = 0.
€'—0 €

The procedure followed in Theorem 4 will help us to obtain the following:

T ps v, v,
m (s, t, 3 O’ t,
/ / /,08* (v5+” (s, 7, X)g™( x)>dxdsdt
0 0 r cp

T Sm
+ﬁ/ / / |8«ldxdsdt > 0. 27)
0 0 r

384 lies in tangent cone 7,(U) and also §, = v — v, is dependent on the control
variable v which lies in U, which implies (27) holds for any 8, € 7T,(U).
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Therefore, according to the structure of normal cones [3, Proposition 5.3], there
exists 6(s, t, x) € L°°(I'7,), which lies in unit ball, and the following holds:

ube(s,t,x)q% 0, t, x
pve + ( )Cq ( ) + V€0 € Ny (ve).

Ve (s, t, x)q" (0, t, 0
Therefore, ve(s, 1, x) :]__<_u (5,2, X)q7( X) + Ve )

cp o

Now, we will prove the uniqueness part. For this purpose, firstly let us define

G:U C L®('y,) — U by

_u”(s, t,x)q" (0,1, x) n \/EB)

Gv)(s,t,x) = ]-"(
cp P

Then, for any (s, ¢, x) € I',, we have
[(Gui)(s, 1, x) — (Gu2)(s, 1, x)|
1
= ‘—‘ (Ju" (s, 1, x) —u®(s, 1, x)[1g" (0, 1, x)|
cp
+ [u¥ (s, 1, 0)[1g" (0, 1, x) — g™ (0,1, x)])

1
< E(Mle + My P)lvr — v2llzoe(rgy)-

Therefore, G is a contraction mapping, and the existence of unique fixed point is
assured. Uniqueness of the optimal control will be due to optimality conditions in
Theorem 4. Now, our task is to show the existence of optimal controller.

Let &) =inf{® ) :v e U}.
Je

Clearly, |Gve — vellLory,) < —-

Therefore, ||V — vellLory,) = 19V — vellLory,)

IA

G0 — GuellLoo(ry,) + 1Gve — vellLory,)

1 _ Ve
— (M Py + MaPD)||v — vellLoory) + —-
cp S p

IA

o 1 1 -1
That is, || — vellzoo(ry,) < s (1 — ;(M1P2 + M2P1)> NG



174 M. Kumar and S. Abbas

which implies ve — v in L*°(I'7,) as € — 0. Hence, by (24), we have

& (D) = inf ®(v).
velU

5 Conclusions

Optimal birth control for a structured population model with time-varying diffusion
rate is qualitatively analyzed. The existence and uniqueness of mild solution is
shown with the help of semigroup of operators and characteristic method. We
take fertility rate as a control variable to study the optimal control problem which
minimizes a given cost functional. Necessary optimality conditions of first order are
established in the form of an Euler—Lagrange system. The existence and uniqueness
of optimal birth controller is shown with the help of Ekeland’s variational principle.
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On Energy Harvesting )
with Time-Varying Frequency by Using ik
Magneto-Piezo-Elastic Oscillators

with Memory

Angelo M. Tusset, Jose M. Balthazar, Rodrigo T. Rocha, Jorge L. P. Felix,
Marcus Varanis, Mauricio A. Ribeiro, Clivaldo de Oliveira, Itamar Iliuk,
and Grzegorz Litak

1 Introduction

With the increasing demand for energy consumption in recent years, several areas
of science have been looking for the production of clean and renewable energy. In
this context, several devices are used, such as converting mechanical movement of
sea waves [1-3] and portal frame systems [4-7].

However, many of these devices contain piezoceramic patches (PZT). These
materials have the ability to generate electrical tension when under a mechanical
stress. This deformation of the material allows the creation of electrical energy.
The reverse is also possible, that is, the application of an electrical voltage to these
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materials causes a mechanical deformation in the system. Therefore, following this
line of thought, we can define the term energy generation or harvesting [1-6].

In this context, we highlight the devices in which we can apply an external
excitation force to the system and thus converting the PZT deformation into
electrical voltage. According to [8], we propose a system for collecting energy based
on a structure with two bars, in which one of its ends is embedded in the moving
system frame and the other end is under the action of magnetic fields. The recessed
tips are connected to an electrical system in which a resistor generates a voltage
due to the current produced by the PZT deformations. However, the external force
comprises a harmonic oscillation of the type, being applied to the oscillators and
showing the conditions for the behavior of the system.

In [8], the authors discuss the production of energy with a structure comprising a
bar under the action of two magnetic poles, forming coupled bistable oscillators. The
external force applied for energy production is characterized as excitation at the base
of the system. The energy is accumulated in mechanical nonlinear resonators and
transduced into the electrical power output by the piezoelectric elements. Nonlinear
effects from the magnetic field assure the increase of the energy harvesting
efficiency in variable source conditions (frequency and amplitude) through the so-
called frequency broadband effect. Such nonlinear effects were discussed previously
for a single degree of freedom [9—12]. For systems with multiple oscillators [8],
dynamics and synchronization of the oscillator responses were studied for various
system parameters.

Note also other forms of a multiple-degree-of-freedom harvesting device for
collecting energy were proposed including piezoelectric or electromagnetics trans-
duction laws with various mass distributions [13—15]. Harmonic excitation force is
applied to the system and also under the action of multiple power wells [16]. Thus,
describing the dynamic behavior of the structure with phase portraits and bifurcation
diagrams, the model is validated using an experimental device with three different
tip masses, representing three interesting cases: a linear system; a non-curved beam
of natural low frequency, and a deformed beam.

However, many studies explore systems for the collection of energy-containing
harmonic excitation forces in the system and analyzed the nonlinear dynamics of
the system and its energy production. Alternatively, they analyze the systems with
optimization techniques to obtain parameters in which the system is taken to more
energetic orbits. Based on these discussions of external forces acting on the system,
Ref. [5] proposes the investigation of energy collection on a portal frame system
composed of PZT material. The authors consider the variable of the motor that
produces the external force that is determined by the parameters that determine the
active interaction between the oscillatory system and the excitation source. In this
way, we analyzed a system with two degrees of freedom with a similar structure
proposed by [8, 10], in which the system is coupled to two cantilevers with PZT
patches that undergo the deformation of magnetic fields that form the potential
well; these piezoceramic patches contain an electrical circuit for collecting energy.
Therefore, this paper is an extension of the mathematical model proposed by [8,
10], considering that beams have some hysteresis properties. For this behavior, we
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(B)

Piezoceramic
patches

Piezoceramic

patches

Magnets

Fig. 1 (a) Scheme of a magnetoelastic system for energy harvesting consisting of two beams with
applied the external force F(f). R is the load resistance, and v is the voltage. Dampers are not
indicated and (b) represent the patches of the piezoceramic material in beam

use Bouc-Wen damping to numerical simulation the hysteresis behavior. In [25],
the authors investigate the effect of hysterical in a beam containing PZT patches
for use in vibration-based energy harvesting. In Fig. la represents a schematic of
the structure under the action of the acting force and that couples two beams with
patches of PZT materials submitted to the potential caused to magnetic poles in the
base, and Fig. 1b represents the patches PZT material in the beam.

1.1 Mathematical Modeling

For the mathematical model, we consider the system based on the structures
described in Fig. 1. However, we consider the potential wells in their mathematical
form described. In our case, we have two potentials: the first described in Eq. (1) for
the displacement in x and for the displacement y in Eq. (2), for the displacement
of mechanical oscillators, as follows. Equations (1) and (2) are based on the
approximate description of the potential wells formed by the magnetic poles of the
system [8].

4

Vi(x) = —x2 + % (1)



180 A. M. Tusset et al.

4
Va(y) = o (—y2 + %) )

where « is the parameter that regulates the amplitude of the powers acting in the
system and are the displacements of the tips subjected to the magnetic compound.
However, considering the actuation and coupling force as [10, 13]:

F(t) = focos(wt + agsin (bgwt)) 3)

where fj is the amplitude of the excitation force, it is the system frequency, and they

define the interaction constants between the oscillatory system and the excitation

force. Therefore, if we consider @y = 0, in Eq. (3), we will have a force external

to F(t) = fo cos (wt) the type oscillatory system. However, we consider Bouc-Wen
Damping, described as follows [23, 24]:

{ ®BW (x)(1) = kix (1) + (1 — n) Dkiz(t) @)

i(0) = D7 (A% = Bl IzI" 2 — yx2]")

where >1, D >0, k1 > 0,0 <« < 1, « is the ratio between post-flow and pre-flow
stiffness, and x(¢) is the yield displacement [20, 21]. Therefore, considering Eqgs.
(1)—(4), we obtain the mathematical model that describes the movement of the two
coupled beams, together with the equation of the electric current produced, which
are given by:

¥4 20x (1 —x%) = Xv+ @BV (x)(1) = fy cos (wt + ag sin (bowt))
5+ say (1 —y?) — Xv+ @BY(3)(1) = fo cos (wt + ag sin (bowt))
VAV kX +ky=0 (5)
() = D7 (A% = Bl a2y — yxlzl”)

&0 = D7 (45 = B3l 5] 2y — valzy]")

where x and y are the transverse displacements of the beam, v is the voltage across
the resistor, X is the coupling term of the piezoelectric system in electrical equations,
k 1is the reciprocal temporal constant of the electrical circuit, R is the resistance, and
e C, = Cp1 + Cpy is the capacitance of the piezoelectric material and finally is the
stiffness mistuning parameter which should be considered in any realistic system.

2 Numerical Results

For the numerical analysis, we considered the constants in Table 1 [12, 20, 21]:
We also consider for numerical analysis the following initial condition
xo = [0.01,0,0.01,0,0,0], and for the integration of the system of differential
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Table 1 Parameter of
numerical simulation (for a

Parameter | Values | Parameter | Values

dimensionless model) X 0.05 b 1.0
K 0.5 ki 0.25
c 001 |8 0.55
o 02 |A 1.0
o 1.1 1% 0.45
A 0.01 n 3.0
b
2 “ 1-2
L5 L5 -« 1

e ol SN 0.8

M . 0.6

0.5 0.4

0.2

0 = < , 7 R = - 0
0 0.5 1 0 0.5 1

Fig. 2 (a) Color plot of o(x — y) versus (wp X ap) in which the black region represents values
in which the system is o (x — y) = 0, with a value of by = 0.5; (b) o(x — y) versus (wg X byp) in
which the black region represents values in which the system is o (x — y) &~ 0, with the parameter
aop = 0.2 and initial condition xy = [0.01,0,0.01,0, 0, 0]

equations, it is the method of Runge-Kutta of fourth order implicitly [12], with an
integration step 4 = 0.001 and a time of convergence of the system trajectories in
t = 300,000 s (dimensionless units) with a transient time of 40% of the total time.
Therefore, we analyze the dynamic behavior of the structure by doing some sweeps
with the parameters wg € [0, 2], ag € [0, 1], and by € [0, 1]. We check the behavior
of the system coupling, calculating o (x — y) from Eq. (4), the standard deviation
between the displacements. Thus, if o(x — y) & 0, the value of the synchronization
process occurs. According to [8—10], for values ag = 0O in the force, the frequency
is w = 1.1, the system has a maximum power, and the system is decoupled. Then,
Fig. 2 represents the coupling behavior between the two trajectories x and y, so we
use the standard deviation between the trajectories and, that is, when the trajectories
are in sync. Therefore, the black regions of Fig. 2a, b represent the accompaniment
of the trajectories of the PZT energy harvesting substems with the variation in
(wo X ap) and (wg X bg), respectively.

Thus, we analyze the behavior of the (v2) as an approximation of the power of the
system, i.e., oc(v%) [22]. We can observe that Fig. 3a, b represents an approximation
of the behavior of the power for (wg x ag) and (wg X bg), respectively. The black
region represents the minimum power obtained by the system; however, for the
values in white to red, the maximum power values stand out. Therefore, we can
see that the regions of possible synchronization have the black regions in Fig. 2
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0.8
0.6
0.4
0.2

0
0 0.5 1

Fig. 3 (a) Color plot of power output P versus (wp X ap) in which the black region represents
maximum values for P (brown region), with a value of by = 0.5; (b) Similarly, power output P
versus (wp X ap) in which the black region represents maximum values for P (brown region), with
the parameter ap = 0.2. Initial conditions and the system parameters are the same as in Fig. 2

0.15 0.15
0.1

0.05

Fig. 4 (a) Color plot of maximum Lyapunov exponent Ayax versus (wo X ag) in which the black
region represents Amax<O (periodic region) and yellow to brown region Ap.x > O (chaotic region),
with parameter bp = 0.5. (b); similarly, maximum Lyapunov exponent Anmax versus (wg X bp) in
which the black region represents Amax < 0 (periodic region) and yellow to brown region Amax > 0
(chaotic region), with parameter ap = 0.2. Initial conditions and the system parameters are the
same as in Fig. 2

that are approximately compatible with the maximum average power regions of the
system.

The synchronous behavior of the system is linked to the production of average
power and results of the dynamics of the system. We analyze the dynamic behavior
of the energy collection structure, with the maximum exponents of Lyapunov and
determine the possible regions in which the system has a chaotic behavior and
the regions that have a periodic behavior [17-19]. Figure 4 shows the regions in
which Amax > 0, which represents a chaotic behavior for the system which are the
regions Amax€ [0, 0.16], and for the regions Apax < 0, we can observe a periodic
behavior. Determining the periodic and chaotic regions is important to contribute to
the regions found in the coupling and the power.
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©)

0

Fig. 5 (a) Bifurcation diagram for x, (b) bifurcation diagram for y, and (¢) Lyapunov’s maximum
exponent with wg € [0, 2]. Initial conditions xop = [0.01,0,0.01,0, 0, 0] and the system parameters
are the same as in Fig. 2

Thus, we consider the following parameters ag = 0.2 and by = 0.5 to determine
the bifurcation diagrams. Figure 5a, b represents the bifurcation diagram of variables
x1 and x3 determining the time series maximums, and thus, we can observe the
periodic windows for wg € [0.6097;0.8242] and wq € [1.716; 2];the other intervals
had a chaotic behavior. These interleavings are confirmed with the Lyapunov’s
maximum exponent, which demonstrated the same periodic ones in Fig. Sc.

Typically, Figs. 6, 7, 8, and 9 represent the phase portrait of the structures for the
values of wy = 0.7468, 1.061, 1.897, and 1.179, respectively. Thus, we observe the
nonlinear dynamics behavior of wq in the Eq. (4).

3 Conclusions

In this paper, we analyze the nonlinear dynamic behavior of an oscillator-type
structure using elastic magneto under the action of the external force of an eccentric
rotating mass-motor. As the structure has two oscillators under the action of
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)
2

Fig. 6 Phase portrait with Poincare points for the value of wy = 0.7468 using Eq. (4) with 2-
periodic behavior. (a) x — xand (b) y — y

@ @)
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-2 0 2 -
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Fig. 7 Phase portrait with Poincare points for the value of wyp = 1.061 using Eq. (4) with chaotic
behavior. (a) x —x and (b) y — y

magnetic potential wells, we analyzed the coupling of this system based on the
parameters of the external force eccentric rotating mass motor ap and by in relation
to the frequency wo da acting force and thus determining the regions in which
8(x1 — x3) &~ 0 in which the trajectory of the system is in sync. Another amount
that we calculated was the average power for the same parameters, and we observed
that for maximum average power, they are for values close to wg = 1.1; the regions
of maximum power are close to the regions where the oscillators are synchronous,
that is, 8(x; — x3) &~ 0 Thus, we calculate the dynamic parameters of the Eq. (4);
the first to be calculated was the maximum exponent of Lyapunov, making a scan
for the same parameters, and we observed that the region of maximum power and
synchronism of the system is close to the periodicity region, that is, Apmax < O This
analysis allowed us to observe regions where the system’s orbits can produce more
power from this system under the action of magnetic poles. And for the values
of ap = 0.2 and by = 0.5, we calculate the bifurcation diagram and observe the
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Fig. 8 Phase portrait with Poincare points for the value of wy = 1.082 using Eq. (4) with chaotic
behavior. (a) x —x and (b) y — y
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Fig. 9 Phase portrait with Poincare points for the value of wy = 1.897using Eq. (4) with 2-periodic
behavior. (a) x — xand (b) y — y

periodic windows that have been confirmed with the Lyapunov exponent. In both
calculations, we use the frequency scan. Once this analysis is done, we determine

the phase diagrams and the Poincare maps close to the regions of maximum power
as observed in Figs. 2 and 3.
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Galloping Piezoelectric Energy Harvester  m)
for Low Wind Speed et

Kaiyuan Zhao, Qichang Zhang, and Shuying Hao

1 Introduction

Energy harvester is customarily the procedure of converting light, heat, solar energy,
and vibration energy into electric energy. Its ultimate goal is to develop self-powered
sensors, actuators, and other electronic devices. Wind is one of the main natural
energy sources that cause structural vibration. In the past few years, wind-induced
vibration clean energy harvesters have been investigated in small-scale applications
for the purpose of converting unused aeroelastic vibrations to usable amount of
electric power [1]. These wind-induced vibration energy harvesters can be used to
power important and sensitive electronic devices without the need of a main power
grid. The design and optimization of wind-induced vibration energy harvester are
mainly divided into three parts: wind energy harvesting, kinetic energy harvesting,
and electric energy harvesting.

In order to collect wind-induced vibration energy more efficiently, researchers
showed quantitatively and qualitatively that the structure subjected to gallop
oscillations is more efficient than vortex-induced vibration (VIV) and flutter-based
vibration. In addition to that, since the galloping system is the one single free
system, the structural design of the galloping energy harvester is simpler than that
of the flutter one, which makes it easier to miniaturize, integrate, and mass produce
the galloping energy harvester. Furthermore, it was indicated that compared with
the vortex-induced vibration energy collector, galloping vibration energy collector
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can work in a wider wind speed range which is due to the fact that the galloping
harvester is useful for any speed higher than the onset speed of galloping. Several
investigations have been performed in order to accurately predict the response of
the galloping energy harvester with the influences of the cross-sectional geometry
[2], Reynolds number [3], and base excitation [4]. The main purpose of these
studies is to improve the efficiency of converting wind energy into kinetic energy.
However, the object of study is mainly focused on the section of the basic shape
of the column, such as D-shaped [5], triangle [6], square [7], and circular [8].
This is mainly because the expression of flow force is the difficulty in this part.
In our study, a square prism with a V-shaped groove on the windward side is
used to optimize wind energy harvesting. One of the challenging tasks in this
analytical modeling of the galloping systems is the representation of galloping fore.
First, we establish the mathematical model of energy harvester based on study
of Abdelmoula [9]. Then, the empirical parameters of dance power in the model
are set as undetermined parameters. Then, the sparse identification algorithm is
used to establish the parameters to be determined by combining the wind tunnel
experimental data and mathematical model. Finally, the theoretical analysis results
of the system are improved.

A large number of literatures show that the piezoelectric cantilever beam can
realize the efficient collection of kinetic energy in the vibration energy harvester
[10]. At present, the optimization of cantilever beam mainly focuses on the length
thickness ratio of beam [11], trapezoid beam, triangle beam, and so on [12]. There
are still some limitations in these optimizations. Therefore, how to break through the
conventional shape and optimize the shape of beam based on big data calculation
has become the main content of this part of research. In this part of the study, we
use semi-analytical method to analyze the energy harvester with variable cross-
sectional piezoelectric cantilever beam and then use particle swarm optimization
(PSO) method to optimize the topology of piezoelectric cantilever beam.

The direct output of piezoelectric vibration energy harvester is AC with large
voltage and small current. But in engineering application, DC voltage is often
needed for various electric loads. Therefore, AC-DC conversion and power storage
must be carried out. This part is mainly based on the nonlinear rectifier interface
circuit of synchronous switch to optimize [10]. Because of the reverse piezoelectric
effect, there is coupling between the piezoelectric generator and the interface circuit.
The coupling phenomenon directly affects the efficiency of DC voltage conversion
to AC voltage. Therefore, this part mainly optimizes the system efficiency, output
power, and critical flow rate of the energy harvester based on the analysis of rectifier
circuit.

2 Optimization of Wind Energy

We proposed the concept of the galloping piezoelectric energy harvester with a V-
shaped groove (GPEH-V). The GPEH-V system consisting of a square prismatic
with a V-shaped groove and subjected to wind flow is considered, as shown in
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Fig. 1 Schematic of » D «
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Fig. 1. It is mainly composed of a square prismatic with a V-groove on windward
side and a piezoelectric cantilever beam. The piezoelectric cantilever beam consists
of a beryllium bronze support layer with length, width, and thickness of 110 mm,
15 mm, and 0.8 mm, respectively, and its bonded piezoelectric composite (MFC
MS8507 P2). The free end of the piezoelectric cantilever beam is attached to the
square prismatic having a mass of mg, a width of 2 x 20 mm, a moment of inertia J,
and a V-groove with o degrees. In addition, the piezoelectric cantilever is connected
to an electric impedance composed of a load resistance R and a capacitance C
in parallel connection. From the analysis of mathematical principles, it is clear
that the vibration phenomenon is possible when the derivative of the steady-state
aerodynamic lift coefficient is negative. As the wind speed increases, there may be
a critical speed, named galloping critical speed, at which single-mode self-excited
vibration takes place. The main reason for this phenomenon is that the structural
damping is insufficient to damp out motions due to the aerodynamic effects.

The response behavior of the galloping energy harvester is modeled based on
the Lagrangian equation and the virtual work principle, combined with the Galerkin
discrete method:

X

d
LpaDeL UR x .Zl“ 1| o 2 4 UO] (5 = L) + LY,
i=

Ela w(x D4 oc Bw(x D) +meqa (x D) +0V () (dS(x—xl) _ ds(x—;I—Lp)> _

(D

To improve the accuracy of the calculation, the torque of the square prismatic
is taken into account in the boundary conditions, and the associated boundary
conditions are given by the following:

w (0, 1) = 0, 2200 — g,

5 Wil _  2u(Ly.) D, 33w (Ly.1)
EI—= 3= = me—— 3= +me 5 —5 o (2)
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According to the first-order modal ordinary differential equations, when the
energy input from the fluid is equal to the energy consumed by the damping, the
critical velocity can be calculated as follows:

U, = 4Z101 3)

- .
poDLoai[¢1 (L) + 2] (Lp)]

It can be seen from Eq. (3) that the galloping critical velocity Uy is closely related
to seven parameters, which are damping, intrinsic frequency, prismatic density,
length, section edge length, and piezoelectric cantilever beam modal function. When
the mass of the prismatic and the piezoelectric cantilever beam is constant, the key
factor affecting the critical flow velocity is the shape of the windward side of the
prismatic. The fluid force coefficients a; change significantly with the shape of the
windward surface, which in turn affects the change of the critical flow velocity.
Figure 2 shows the trend between the critical flow velocity and the fluid force
parameters for different masses of the column. Figure 3 shows the cross-sectional
shape of the prismatic with a V-groove on the windward side. Starting from model
2, the values of o are 13°, 20°, 27°, 34°, 45°, and 64°, respectively.

Fig. 2 The relationship between a; and Ug of different mass cylinders

0

model 1 model 2-7

Fig. 3 Column section model
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Figure 4 shows the critical flow rate of the GPEH-V system for different models.
Figure 5 shows the output energy of the GPEH-V system for different models.

3 Optimization of Kinetic Energy

As shown in Fig. 6, the schematic diagram of variable cross-sectional piezoelectric
wind-induced vibration energy harvester system is shown, and the beam width can
be expressed as a function wy(x) of position coordinate x. The governing equation

of the energy harvester can be written as follows:

92 M (x,1)
x2

+ CBw(x 1) + meq(x)i) w(x 1) _ —
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Fig. 6 Schematic diagram of variable cross-sectional energy harvester
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The variable cross-sectional beam is divided into several connected segments.
When the number of segments is enough, each segment is regarded as a uniform
section. Based on the analytical expression of the modal function of the beam, the
modal function of the i segment of the beam is obtained as follows:

¢i(x) = Ajcos X; + B; cosh X; + C; sin X; + D; sinh X;, )
where

Xi=/3i(x_xi*1)1xi*1Exsxi5i=1127"'9N’x0=O’ (10)
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According to the continuity of displacement, rotation angle, bending moment,
and shear force at the connection point of segments i and i + 1, the following
relationship is obtained:

Giv1 (i) oi (xi)
By () | e o
(Eplp(x))i19] 1 (xi) (Eplp(x)); 9] (xi)

((EpIp(x))is19),, () ((EpIp(x)); ] (x)))'

By substituting the i-order mode and i + 1 mode into Eq. (9), the relationship
between the undetermined coefficients of adjacent modal functions can be obtained
as follows:

Ai+1) = ZiAg)- (12)
ANy and A1) can be obtained by iteration:
Ay =ZAq), (13)
where
Z=ZN-1)Zin-1)---Z2)Z(1). (14)

Each element in Z matrix is a function of the natural circle frequency w, which
establishes the relationship between the undetermined coefficient A(j) of the first
equivalent segment and the undetermined coefficient Ay of the equivalent segment
N. Therefore, as long as the four boundary conditions at the left and right ends
of the beam are given, the expression of the natural circular frequency w can be
obtained, and then, the modal function of each segment can be obtained from the
boundary conditions and Eq. (11). The modal function of the cantilever beam with
variable cross-sectional ¢(x) is obtained by orthogonalization and normalization of
the modal function of the segment. Finally, the ordinary differential equations of the
system are obtained:

P4 200f + w*r—

500D LoUoar (¢ (L) + 29" (Lp)) [¢ (Ly) + 2¢" (Lp)] -
550D Loas (¢ (Ly) + 29 (L)) [¢ (Lv) + 2 (Ly)] 7+
01V =0,

15)

i 1%
CpV =017 + & =0, (16)
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where
Ly
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With this method, the natural frequency with variable cross section can be solved
directly from the stiffness and linear density functions along the axis direction. This
method can be used to solve any kind of variable cross-sectional beam quickly, but
if the finite element method is used, the model needs to be rebuilt and meshed for
calculation, which increases a lot of time calculation cost for the purpose of using
big data method for optimization.

We first define the width function of the beam by defining the width of the beam
at a finite number of locations. Then, the width function of the beam is optimized
by particle swarm optimization algorithm. When the wind speed is 11 m/s, the
beam model is optimized. The maximum width of setting beam is 40 mm, and
the minimum width is 8 mm. In the optimization, the population size is 50 and
the evolution times are 50. Figure 7 shows the iteration results of PSO optimization
process. By about 30 generations, the collected power has converged to a maximum.
The shape of the optimized beam is shown in Fig. 8. At this time, the collected
electric energy is 65.5 mW.

66 |

65.5

65 |

64.5

Power (mW)

64 |

63.5

0 10 20 30 40 50
Gen

Fig. 7 Iteration results of PSO optimization process
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Fig. 8 Optimal beam model
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Fig. 9 Parallel synchronous switch interface circuit

4 Energy Collection Interface Circuit

The energy harvester interface circuit adopts parallel synchronous switch interface
circuit, as shown in Fig. 9. Its basic principle is as follows: first, the cantilever
piezoelectric vibrator starts to vibrate from the initial position, and the switch is
in the off state, and the parallel synchronous switch interface circuit is equivalent to
the standard bridge rectifier interface circuit. Without considering the diode voltage
drop, the output voltage VP of the piezoelectric harvester is equal to the voltage
Vs at both ends of the load. When the vibration displacement of the cantilever
piezoelectric vibrator reaches the maximum value, the switch is closed, and the
inductance and capacitance constitute a vibration circuit. After half an oscillation
cycle, the switch automatically opens, and the output voltage VP turns over. When
the output voltage is reversed and keeps synchronous with the vibration speed,
VP will increase to —Vs. After that, the voltage reversal process will be repeated
periodically. The conversion efficiency of the parallel synchronous switch interface
circuit is closely related to the load, and there is an optimal load to maximize the
conversion efficiency. Through numerical calculation, the optimal load of the system
is 180 K Q.
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5 Conclusions

By changing the shape of the windward side of the square cylinder, not only the
critical velocity of the cylinder galloping but also the amplitude of the cylinder
vibration can be changed. When the sharp angle of the windward side is around
45°, the falling-off speed of the vortex will accelerate the pressure difference of
the cylinder in the direction perpendicular to the incoming flow, and the increase
of the pressure difference will increase the lift coefficient of the cylinder and the
amplitude of the cylinder. More electric energy is collected in the same environment.
This study provides a new idea and a more concise analysis method for the study of
wind-induced vibration energy harvester.

The use of optimized piezoelectric cantilever beam can effectively improve the
efficiency of electromechanical conversion, reduce the deformation fatigue at the
root of the cantilever beam, increase the life of piezoelectric materials, and increase
the deformation at the end of the cantilever beam, so that the system can generate
greater voltage.
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Nonlinear Resonator-Based )
Metastructures for Vibration Attenuation %
and Energy Harvesting

P. V. Malaji, T. Mukhopadhyay, and S. S. Chappar

1 Introduction

Mitigation of vibration is a serious concern for most of the practical applications
across different disciplines. For example, machines are subjected to huge dynamic
loading during operation. Tall buildings and bridges are subjected to the large
amplitude of vibration due to wind, earthquake, water waves, and traffic motions.
Keeping structures safe and improving durability are crucial to economic progress
and sustainability [1]. Application of vibration absorbers or tuned mass dampers is
the conventional method for suppressing vibrations. These absorbers are tuned to
the frequency of a structure where the structure is under a high level of vibrations.
Such absorbers can considerably minimize the vibrations at that frequency. This
approach of vibration mitigation has multiple limitations such as these absorbers
would add mass up to 30% to the host structure and are effective only at frequency
they have been tuned. Though nonlinear energy sinks use relatively smaller masses
compared to vibration absorbers and cover a wider range of frequencies for
vibration mitigation [2, 3], such systems do not perform adequately for sophisticated
lightweight structural systems.

Artificial materials such as metamaterials/metastructures exhibit unique proper-
ties such as negative stiffness, negative density, and negative modulus. Bandgap
enhancement and control is one of the attractive applications of the metastruc-
ture [4]. Bandgap is the ability to restrict the wave transmission over a specified
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frequency range. Within this bandgap, vibration attenuation of a primary structure
can be attained. The metastructure for such applications consists of a number of
small absorber unit cells, which allow distribution and integration of absorbers into
the structure. With many absorbers in place, it gives the flexibility of tuning more
parameters to attain the desirable bandgap [5].

Huang and Sun [6] proposed a two-resonator mass in mass lattice system with
a multi-resonator acoustic metamaterial to attain multiple bandgaps. They reported
that the major bandgap was created by the outer mass of the mass-in-mass lattice
system, whereas the minor bandgap can be achieved by changing the inner mass—
spring constants. A dual-resonator metamaterial design was proposed by Tan et
al. [7] to optimize the bandgap. This dual-resonator design proved to have a wider
bandgap and reduced vibration amplitude than that of the single-resonator design.

Most of the literature has considered linear local resonators. This results in
limited attenuation bandgap which is controlled by added mass [5]. Nonlinear local
resonators exhibit rich dynamics such as chaotic behavior and sub-harmonic and
super-harmonic resonances. Yiwei et al. [8] investigated metastructure with non-
linear local resonators to enhance amplitude-dependent frequency bandwidth both
numerically and experimentally. They demonstrated that bandgap offered by non-
linear attachments is significantly higher than the corresponding linear resonators.
Similarly, Mohammad and Oumar [9] investigated the nonlinear metamaterials
with nonlinear chains along with multiple nonlinear local resonators to understand
spectro-spatial properties of wave propagation. They used numerical results to
validate analytical results. Similarly way, various researches have been conducted
on metamaterials regarding bandgap enhancement for vibration suppression.

An interesting aspect is that the metastructures for vibration mitigation can
be simultaneously used for energy harvesting to power the necessary sensors
for health monitoring and low-powered autonomous devices, essentially replacing
conventional batteries. Energy harvesting has potential applications in the fields of
industrial automation, structural monitoring, and medical implants. The objective
is to harvest energy from the ambient environment and serve as the power
source for wireless electronic devices instead of conventional batteries [10, 11].
Metamaterials have shown promising applications in energy harvesting. Carrara et
al. [12] used three concepts: wave focusing, energy localization, and waveguiding
to develop metamaterial for energy harvesting. The wave energy is converted into
electrical energy by coupling the metamaterial and electroelastic domains. Shen
et al. [13] used an array of spiral beams to design a phononic crystal plate for
energy harvesting. They reported enhanced energy output at a dozen of resonant
frequencies. An energy harvesting system using a series of spring loaded magnets
was proposed by Mikoshiba et al. [14]. The magnet oscillation inside the fixed
coils induced the current over a broad frequency range. Ahmed et al. [15] proposed
AEMM-based energy harvester, which served the dual purpose of wave filtering and
energy harvesting.

Many of the literatures have studied metastructures with repeated similar non-
linear resonators for vibration attenuation and energy harvesting. In this chapter,
we consider resonators with spring softening and spring hardening effect with
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different linear natural frequencies to understand its effect on vibration attenuation
and energy harvesting. The chapter is organized as follows: Sect. 2 presents the
model description and electromechanical equations. Section 3 presents numerically
simulated results for various parameters. A brief discussion of the work along with
conclusions of the work is provided in Sect. 4.

2 System Model

Schematic of a harmonically excited metastructure with nonlinear resonators is
shown in Fig. 1. The primary system is considered as a chain of linear spring
(k1), damper (c1), and mass (m) system. Each main mass (m1) consists of local
nonlinear resonator with nonlinear spring (with linear stiffness k;i and nonlinear
cubic stiffness k,i), damping (c3), and mass (mj). These resonators are attached
with a piezoelectric patch for energy harvesting with electromechanical coupling
coefficient 6, capacitance C, and resistance R. The system is subjected to harmonic
base excitation x,cos(wt) of amplitude x. The electromechanical equations of the
system are given as

miXi; + c1(=x1¢G-1) + 2x1; — X1641) + c2(x1; — x2) + ki (—=x16-1+
2x1; — x1G+1) + ki (17 — x27) + kni (X1 — x20)° = —m %
MuX1n + 1 (=X1(n—1) + X1n) + c2(X1n — X20) + kp(=x10 — 1 + x1,)+
Kin (tn = X20) + K (K10 — x22)° = —m1g ()

maxXs; + ea(x — X1i) + ki (xai — x17) + ki (2 — x11)° + Ov; = —max,y

Vi o o
& T CUi + 60 —xi) =0

ki
k k
\ k>0, Kn1>0 —/\/\1/\,- K;>0, Kni<0 —AMVA K<, Knn>0
s s
m m: —M— Mz || - —%— m:
— C, | M {— C, m:| —1— G m:

C
C L> X1 G —>X>i ' —>Xon
<> X11 Xij X1n

Xq

Fig. 1 Schematic representation of metastructure model
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The value of nonlinear cubic stiffness can be changed to get spring hardening (k;; >
0) and spring softening (k;; < 0) effect. The nondimensional form of the above
electromechanical equations is given as

X +a(=Xj,_p) +2X3 — Xigq) + lin(Xy; — X5) + (=X16-1+
2X1; — X1g41) + T (X 1i — Xai) + Ani T (X1 — X2i)? = 22X gcos (o)
X1y + 0 (=X,_1) + X1,) + 2t lapn(X), — X5,) + (=X1n — 1+ X1,)+
T (Xin = X2n) + A T (X 10 — X20)? = 2% Xgcos (01)
Xy + Q00 (X — X1) + T (Xai — X1i) + dni T (X2 — X1)°
—H'}%ﬂVi = 2% feos(w1)
Vi+nVi+Kk(Xy — X)) =0 2

The nondimensional parameters used are {; = ﬁ, & = m;iz., I; = 0(:)_211"
1

— ki o _ma — o — kg0 ,__1 L _0 — %
)\'_km"’u_ml’g_a)l’wl_ m’ﬂ_kli’n_chgi’K_C’anng_ [
T = wqt 18 the nondimensional time.

Equations (2) will be solved numerically using the Runge—Kutta method and
results are presented in the next section.

3 Results and Discussion

This section presents the numerical results for two unit cell (four degrees of free-
dom) system to show the influence of parameters on the amplitude of the primary
system and the energy harvested by resonators. The simulation is considered for
1000 time length; first 75% of them were eliminated to count transient time. The
following parameters were used unless otherwise mentioned; X, = 0.1, {1 = 0.03,
& = 01, 0 = 02, n = 1,and B = « = 0.05. A forward frequency
sweep is considered for the frequency response analysis of the system over the
nondimensional frequency range of 0.2 < £ < 2.

3.1 Effect of Nonlinear Stiffness Coelfficient A

Nondimensional numerical results of frequency RMS response for the second mass
and the total RMS voltage generated (open circuit) are presented in Fig.2a, b,
respectively. The response ratio X/ X, represents transmissibility (the ratio of steady
state response of end mass to base excitation amplitude). The plain beam refers
to the primary system without the resonators. The first mode of the plain beam is
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Fig. 2 (a) Primary system response of second mass and (b) total voltage generated by resonators,
with I7; = I, = 0.61

identified to be at £2 = 0.61, and this will be the target mode to be attenuated.
The region between two dotted lines shows the theoretical linear bandgap for
metamaterial given by £2; < 2 < §2;4/1 + w [16]. With the addition of nonlinear
resonators the target mode of the plain beam is attenuated. An additional resonances
around the target mode is observed. An enhancement in bandgap can be observed
with a hardening effect in both the resonators (A1 = Ay = 0.1) with a higher peak at
the lower frequency as shown in Fig. 2a. Spring softening effect (A = A = —0.1)
in both the resonators shows frequency response similar to the fixed point method of
linear absorber explained by Den Hartog [17]. The softening effect has shown more
promising effects compared to the hardening effect on attenuation. Many of the
literatures on metastructures have considered repeated unit cells (similar resonators
as explained above), in order to check the robustness of metastructure with different
unit cells (functionally graded metastructure), both softening (A = —0.1) and
hardening (A = 0.1) spring effects are considered. This mixed hardening and
softening have shown promising effects on attenuation and bandgap. Around 200%
enhancement in bandgap with mixed effect can be obtained compared to linear
bandgap.

Simultaneous energy harvesting from resonators was the secondary function of
the metastructure, and the effect of nonlinear stiffness on the voltage generated is
shown in Fig. 2b. Hardening spring configuration has a higher magnitude voltage
compared to other configurations. The bandwidth at V = 0.02 of all configurations
is nearly the same. With the primary objective being attenuation mixed configuration
is preferred over others. The effect of other parameters on this mixed configuration
is presented in the next subsections.
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Fig. 3 (a) Primary system response and (b) total voltage generated by resonators, with I} =
I =0.61,1; =0.1,and 2, = —0.1

3.2 Effect of Coupling Coefficient

The frequency response of the primary system and the voltage for different values
of coupling coefficient 8 are shown in Fig. 3a, b. From the frequency response plot,
it is observed that the amplitude of the primary system decreases by a small amount
with the increase in coupling coefficient as shown in Fig. 3a. This is due to the added
damping to the system due to coupling. A large increment in the voltage generated
with the increase in coupling coefficient can be observed in Fig. 3b.

3.3 Effect of Excitation Amplitude X ¢

The frequency response of the primary system and the voltage for a higher value of
excitation amplitudes X, are shown in Fig. 4a, b. From the frequency response plot,
it is observed that with the increase in excitation amplitude, the nonlinear resonators
can enhance bandgap at target frequency although the peak at lower frequency is
a bit higher. This shows the robustness of nonlinear resonators against excitation
amplitude as shown in Fig. 4a. With the increase in excitation amplitude, the voltage
generated increases as expected with clear jump phenomenon appearing as shown
in Fig. 4b.

3.4 Effect of Linear Stiffness Coefficient of Resonator I

The frequency response of the primary system and the voltage with different values
of linear stiffness coefficient (linear resonance of nonlinear resonators) I" are shown



Functionally Graded Metastructure 207

RMS(X/X,)
>

Fig. 4 (a) Primary system response and (b) total voltage generated by resonators, with I7; =
I =0.61,A1 =0.1, 2, = —0.1,and 8 = 0.1
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Fig. 5 (a) Primary system response and (b) total voltage generated by resonators, with 11 = 0.1,
A2 =-0.1,8=0.1,and X[, = 0.1

in Fig. 5a, b. From the frequency response plot, it is observed that the higher bandgap
is obtained with the I" = 0.65, 0.58 for resonator 1 and 2 respectively. This also
gives rise to an extra peak at target frequency as shown in Fig. 5a. This extra peak
can also be observed in the voltage frequency response plot with compromise in
voltage amplitude as shown in Fig. 5b.

4 Summary and Conclusions

A metastructure with nonlinear resonators is analyzed parametrically to attenuate
the primary structure and harvest energy simultaneously in this chapter. A primary
structure with n masses and resonators is considered. Parameters like nonlinear
stiffness, linear stiffness, excitation, and coupling coefficient are considered for
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the study. A different combination of parameters representing functionally graded
metastructure is reported.

In conclusion, the frequency bandgap with nonlinear resonator metastructures
is enhanced when the optimal combination of different parameters is used (func-
tionally graded metastructure). Purely spring hardening resonators are found to be
less effective. Optimal values to obtain a higher bandgap of primary structure and
a higher bandwidth for voltage generated are to be considered in the future study.
The results presented here are the initial analysis of a bigger problem. In the future
analysis, a higher number of masses and optimal combination of parameters will be
considered.
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Dynamic Modeling for a Mechatronic )
Energy Harvesting Shock Absorber ez

Jing Li, Lei Luo, Dong Guan, Hui Shen, and Junjie Gong

1 Introduction

Traveling on roads, vehicles are subjected to different disturbances such as road
irregularities, braking force, acceleration forces, and centrifugal forces on a curved
road. Those disturbances not only cause discomfort to the driver and passengers
but also reduce the energy efficiency of vehicles. The shock absorber is widely
used in vehicles, for vibration absorption and system stability [1]. The vibration
energy dissipated by shock absorber is nearly 400 watts in the typical passenger
vehicles traveling at 60 miles h™! on good and average roads [2]. The energy
efficiency can reach 2.5% by harvesting the vibration energy in shock absorber,
which can not only improve fuel economy of petrol vehicles but also increase the
range of electric vehicle [3]. Recently, energy harvesting shock absorbers, composed
of transmission structure and electromagnetic generator, have been analyzed and
tested to verify the capabilities of energy harvesting. There are several types of
transmission structure which convert a translation into a rotation, such as hydraulic
[3], rack and pinion [4, 5], ball screw [6, 7], multi-connecting rods [8, 9], and cable
transmission [10]. In order to keep good contact with roads and reduce vibration
to the vehicle body, the shock absorber with asymmetric damping coefficients is
designed. By shunting the EHSA with different electric loads during the upward
and downward stroke, Li et al. [5] presented the EHSA with asymmetric damping
coefficients. Wang et al. [6] designed an EHSA with asymmetric transmission chain.
Because of the different transmission paths in two strokes, this kind of EHSA has
asymmetric damping coefficients. Although existing regenerative shock absorbers
can provide the different damping coefficients in upward stroke and downward
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stroke, the other dynamic performances of such EHSA still challenge researchers.
This paper seeks to demonstrate an asymmetric characteristics of EHSA. For this,
the EHSA with asymmetric transmission chain is designed; dynamic modeling
of EHSA is established. This work focuses on the relationship between the
asymmetric transmission chain and asymmetric characteristics of EHSA, in which
a computational model is developed.

This paper is divided into four sections. The second section describes the
structure of the EHSA, along with its lumped model and dynamic model carried
out. The third section shows the force-displacement and the force-velocity loops
of the EHSA, the variations of the equivalent stiffness and the equivalent damping
coefficient in two strokes, and the output voltage of the EHSA in time domain. In
Sect. 4, some conclusions have been given.

2 Modeling for EHSA

The structure of EHSA is shown in Fig. 1. It is mainly composed of generator,
gearbox, coupling, rack and pinion, and overrun clutch. The rack and pinion
converts a translation into a rotation. The overrun clutch keeps the unidirectional
rotation. The coupling connects the overrun clutch with the gearbox. The gearbox
is used to magnify the motion and reduce the torque. The electric generator will
generate the electricity from the motion of the rotor.

By using the overrun clutch, the transmission paths in upward stroke and
downward stroke are different. In order to analyze the transmission paths, a lumped
EHSA transmission model is built and shown in Fig. 2. In the downward stroke, the
displacement excitation drives the rack downward, which causes a counterclockwise

Rack and pinion with

Generator Gearbox  Coupling overrun clutch
Wiel Rack
| : Pinion |
'_",_.’: : Pinion 2
f ;: Pinion 3
Y B Clutch 1
. Pinion 4
Clutch 2

Fig. 1 Structure of EHSA
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Fig. 2 Lumped model of EHSA

rotation (as viewed from left to right in Fig. 1) of the pinion 1, the pinion 2, and the
pinion 4. Then, the pinion 3 rotates in clockwise direction. Thus, the overrun clutch
1 between the pinion 3 and the shaft will provide the actual torque and the velocity
transmitted when the pinion 3 rotates clockwise, and the overrun clutch 2 between
the pinion 4 and the shaft will be disengagement to keep the pinion 4 and the shaft
in independent rotation. As a result, the torque and the velocity will be transmitted
through the blue path as shown in Fig. 2. Conversely, in the upward stroke, the
upward movement of the rack causes the clockwise rotation (as viewed from left to
right in Fig. 1) of the pinion 1, the pinion 2, and the pinion 4. Therefore, the pinion
3 rotates counterclockwise, and the overrun clutch 1 is disengagement. The pinion 4
rotates clockwise and drives the shaft through the overrun clutch 2. As a result, the
torque and the velocity will be transmitted through the red path as shown in Fig. 2.

In Fig. 2, m and J represent the mass and inertia of the corresponding compo-
nents, respectively. n and i represent the transmission efficiency and transmission
ratio of the EMSA, respectively. rp is the radius of the pinion 1 and pinion 4. R
is the effective resistance of load circuit. K is the stiffness of shafts. Considering
that the output force induced by EHSA is usually in the range from 0 to 1000 N,
which makes very small torsional deformation of shafts, the influence of the
shafts’ stiffness can be neglected. Due to the low-frequency small amplitude of
applied vibration and small rotational inertia of moving parts, Sommerfeld effect
phenomenon is ignored as well. Because of the high transmission efficiency of gear
transmission, we assume that the transmission efficiency between gears is 0.99,
and the transmission efficiency between rack and pinion is 0.95. Table 1 shows the
parameters used in the model.

The vibration induced by the road irregularities can be equivalent to the sum of
the simple harmonic oscillations. And the harmonic oscillations can be expressed as

x = Xgcos (wt)
X = —wXg sin (wt) €Y
¥ = —w?Xp cos (wf)

where x, x, and X are displacement, velocity, and acceleration, respectively. w
represents angular velocity, @ = 27f. Xo, wXo, and —w*Xo denote the amplitude
of displacement, velocity, and acceleration, respectively.



214 J.Lietal.

Table 1 Key parameters

- Symbol Name Value

used in the model
mpo Rack 0.491 kg
Jp Pinion 1 3.140e-6 kg-m?
Jp> Pinion 2 7.066e-6 kg-m?>
Jp3 Pinion 3 3.140e-6 kg-m?
Jps Pinion 4 3.140e-6 kg-m?
Jsi Pinion shaft 1 0.279¢-6 kg~m2
Jso Pinion shaft 2 0.420e-6 kg~m2
Jc Coupling 3.106e-6 kg-m?
M Rotor in motor 11.212e-6 kg-m?
JGi Gear 1 0.105e-6 kg-m?
Jgra + Jgon | Gear 2 0.185e-6 kg~m2
JG3a + Jaap | Gear 3 0.149¢-6 kg-m?
JGaa + Jgap | Gear 4 0.148¢-6 kg-m?
Jas Gear 5 7.066e-6 kg~m2
Jasi Gear shaft 1 0.064e-6 kg~m2
Jgs2 Gear shaft 2 0.147e-6 kg~m2
rp Pinion 1 and pinion4 | 12 mm
ip Pinion 2 to pinion 3 1.5
iG12 Gear 1 to gear 2 1.9
iG23 Gear 2 to gear 3 2.7
iG34 Gear 3 to gear 4 2.7
iG45 Gear 4 to gear 5 3.2
R Resistance 1.5Q

As analyzed before, the transmission chain changes with the direction of rack
movement. In the upward stroke, the output force Fy can be expressed as

Ji N T
Fy=(mp+—=% i+ — )
NRPp NRPTP

where T is the torque from the coupling, Jurp denotes the total inertial of the shafts
and the pinions in the upward stroke, and Jyrp can be calculated by

Jp3
Jurp = Jp1 + Jp2 + Jpa + Jsi + Jso + — (3)
1pPlp
Similarly, the output force Fp in the downward stroke can be expressed as
Ji . T
Fo = [ mg + DRP ) & C @)

NRPFS 1RPTIPPTPIP
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where Jprp denotes the total inertial of the shafts and the pinions in the downward
stroke, and it can be calculated by

Jpz + Js2
Jprp = Jp1 + Jp2 + Jps + Js1 + ——— ()

-2
1pPPlp

The transmission chain after the overrun clutch is unchanged in both stroke.
Thus, the torque 7T¢ can be calculated by

ac\ _ [Gearbox 0 am 6
T - Jeam 1 T ( )
C NGearboxiGearbox  )Gearbox ! Gearbox M

where Jcgm denotes the total inertial of the coupling, the gearbox, and the rotor in
the motor. ac and o denote the angular acceleration of the coupling and the rotor,
respectively. nGearbox and iGearbox denote the total transmission efficiency and the
transmission ratio in the gearbox, respectively. Ty represents the torque which is
produced by the motor, and it can be calculated by

where k; is the torque constant, and it equals to 0.044. I is the electric current. Based
on Ohm’s law, we can get

I=— ®)

where E is the back electromotive force voltage, and it can be written as
E = ke 9)

where k is the back electromotive voltage constant, and it equals to 0.045. 6y is the
angular velocity of the rotor, and it is determined by the transmission ratio and the
velocity of the rack. Substitution of Eqgs. (1), (3), and (5)—(9) into Egs. (2) and (4),
the output force of the EHSA in two strokes can be obtained:

Fuy = Myx + b

nuigR

ViR (10)
nDi%Rx

Fp = Mpi +
where M represents the effective inertial mass of the EHSA and n and i are the total
transmission efficiency and the ratio of the transmission chain, respectively. The
subscripts U and D denote the parameters in the upward stroke and the downward
stroke, respectively. From Eq. (10), we can find that the output force consists of
two parts: one is the inertial force and the other is the damping force. The inertial
force depends on the effective inertial mass. And the electromagnetic damping
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force is affected by the transmission efficiency 7, the transmission ratio 7, the back
electromotive voltage constant k., the torque constant k¢, and the effective resistance
of load circuit R.

3 Results and Discussion

Figure 3 shows the force-displacement loops and the force-velocity loops under the
harmonic vibration, respectively. The frequency and the amplitude of this vibration
are 0.5 Hz and 10 mm, respectively. From Fig. 3a, we can find that the curve of the
damping force is the ellipse which is symmetric around the Y-axis and asymmetric
around the X-axis. The maximum and the minimum of the damping force are 223 N
and —94 N, respectively. And both of them are at zero point of displacement. The
curve of the inertial force is the broken line which passes through the origin twice.
Under the combination of the damping force and the inertial force, the curve of the
output force is elliptic and deflects in a clockwise direction. From Fig. 3b, we can
find that the curve of the inertial force is the ellipse which is symmetric around the
X-axis and asymmetric around Y-axis, and the right half of the curve is larger than
the left half. The curve of the damping force consists of two lines with different
slopes. The sum of the damping force and the inertial force gives the output force.
Thus, the shape and the position of the output force curve are determined by the
inertial force and the damping force.

By comparing Fig. 3a, b, we can find that the curve of the inertial force in Fig. 3a
and the curve of the damping force in Fig. 3b are both lines, which means the inertial
force and the damping force are linearly related to the displacement and the velocity,
respectively. The relationship between the inertial force and the displacement can be
expressed as the equivalent stiffness, and the relationship between the damping force

Output force Qutput force

300 ————7——71 Inertial force 300 —————1 Inertial force
Damping force Damping force

200 — 200

100 - 100

Force(N)
Force(N)

-100 = -100

2200 PR I NI R B N 200 s 1 s 1 s I A
-15 10 -5 0 5 10 15 -0.050 -0.025 0.000 0.025 0.050

Displacement(mm) Velocity(m/s)

(a) (b)

Fig. 3 Force-displacement loops (a) and force-velocity loops (b) of EHSA
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and the velocity can be expressed as the equivalent damping coefficient. Therefore,
in order to investigate the dynamic performance of the EHSA in depth, the
equivalent stiffness and the damping coefficient are calculated by using the force-
displacement and the force-velocity results, respectively. The equivalent stiffness
and the damping coefficient can be expressed as follows [4]:

k = Finertial

(1)

F damping

c = T

Substitute the data of Fig. 3 into Eq. (11), the variations of the equivalent stiffness
and the equivalent damping coefficient at time domain can be obtained. Moreover,
substitute the Eq. (10) into Eq. (11); the relationship between the parameters of the
structure and the equivalent parameters can be obtained, as shown in Eq. (12):

keky (12)

From Eq. (12), we can find that the equivalent stiffness is determined by the
angular frequency and the effective inertial mass of the transmission chain, and
the equivalent damping coefficient is determined by the transmission efficiency, the
transmission ratio, and the resistance of the load circuit.

Figure 4a shows the variations of the equivalent stiffness at time domain, under
three different frequencies of 0.25 Hz, 0.5 Hz, and 1 Hz. The amplitude of those
applied vibrations are 10 mm, and the resistance of the load circuit is 10 . In
Fig. 4a, we can find that the equivalent stiffness curves at time domain are almost
square wave, where the high level of each curve is the equivalent stiffness in the

—a—(.25Hz —8—0.50 Hz —&— .00 Hz —a—50 ——10Q ——200Q
o B = B
-% + 4
= Z 10000 |- -
£ 5000 s
3 2 L .
wl = -
& S 7500 - v e
g 2 U jeesee  |eeees
£ -10000 = L 1
tn S 5000 pE-E-E-E- s = 2 -
_S E [ A b b b & P
g 15000 = o-0-m-0 O
‘5 = 2500 -
5 :_1.; e A A b A A A & ]
=
-20000 ks S E 0 i
2 m 0 1 2 3 4
Time(s) Time(s)

(a) (b)

Fig. 4 Equivalent stiffness (a) and equivalent damping coefficient (b) at time domain
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downward stroke and the low level of each curve is the equivalent stiffness in the
upward stroke. And the high level and the low level both decrease with the increase
of frequency. To observe Egs. (3) and (5), we can find that the inertia is related to
the square of transmission ratio 7. Therefore, the ratio of the high level to the low
level in different excitation frequencies is 2.36, which is very similar to the square
of transmission ratio ip. Figure 4b shows the variations of the equivalent damping
coefficient at time domain, under three different resistances of 5 €2, 10 €2, and 20 Q.
The frequency and the amplitude of the applied vibration are 0.5 Hz and 10 mm,
respectively. In Fig. 4b, we can find that the equivalent damping coefficient curves
at time domain are also square wave. However, the high level of each curve is the
equivalent damping coefficient in the upward stroke, and the low level of each curve
is the equivalent damping coefficient in the downward stroke. The high level and the
low level both decrease with the increase of resistance. The ratio of the high level to
the low level in different resistances is 2.37, which is also very similar to the square
of transmission ratio ip. This can be explained by using Eq. (12), where we can find
the square of transmission ratio i in the denominator.

Figure 5 shows the variations of the output voltage at time domain. The resistance
in the load circuit is 10 2. The amplitude of the applied harmonic vibration in
Fig. 5a is 10 mm. The frequency of the applied harmonic vibration in Fig. 5b
is 0.5 Hz. To observe Fig. 5, we can find that the shape of the output voltage
is the rectified sine curve where the two adjacent amplitudes are different. This
can be explained by using the overrun clutch and the transmission path. Due to
the use of the overrun clutch, the reciprocating motion of the rack is converted
to the unidirectional rotation of the rotor in motor. Thus, the output voltage is
positive, while the harmonic vibration excites the EHSA. Because of the different
transmission paths in the upward stroke and the downward stroke, the transmission
ratio in the upward stroke is larger than that in the downward stroke. Therefore, the

0.25 Hz 0.50 Hz 1.00 Hz 5 mm 10 mm 20 mm
15 T T T T T T g 15 T T T T T T
10 |-
s s
& )
& 3
0 % ©
> 5 =
0 - . :
0 | 2 3 4 0 1 2 3 4
Timel(s) Time(s)
(a) (b)

Fig. 5 Effect of frequency (a) and amplitude (b) on output voltage at time domain
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angular velocity in the downward stroke is smaller than that in the upward stroke.
Thus, the output voltages in those two strokes are different. The ratio between the
peak values in those two strokes is 1.5, which equals to the transmission ratio i,.
To compare the different curves in Fig. 5a, b, we can find that the output voltage
increases with the frequency and the amplitude of applied vibration.

4 Conclusions

In this paper, The EHSA with asymmetric performance is presented, and the lumped
model and the dynamic model of the EHSA are presented and analyzed. The results
show that the transmission paths in the upward stroke and the downward stroke are
different because of the use of the overrun clutch and the rack and pinion. The output
force of the EHSA is composed of the inertial force and the damping force, where
the inertial force and the damping force can be converted into the equivalent stiffness
and the equivalent damping coefficient. The shapes of the equivalent stiffness and
the equivalent damping coefficient in time domain are the square wave. And the ratio
between the high level and the low level in this square wave equals to the square of
transmission ratio ip. The output voltage at time domain is the rectified sine curve
in which two adjacent amplitudes are different. And the ratio between two adjacent
amplitudes equals to the transmission ratio 7.
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Bistable Electromagnetic Energy ®)
Harvesting Enhanced with a Resonant oo
Circuit

Ning Yu, Chuanyu Wu, Gaohong Yu, and Bo Yan

1 Introduction

Recently, energy harvesting is attractive for their good application potential in the
field of powering the microelectronic components in the ambient environment of
broad frequency range [1]. Electromagnetic vibration energy harvesting technology
has the advantages of high efficiency, low cost, and strong durability. However,
conventional electromagnetic energy harvesters are designed as linear resonant
oscillators. The limited frequency range results linear energy harvester in a narrow
effective working range [2]. In this case, nonlinearity has been proposed to fill this
shortcoming.

Possessing the ability of tuning dynamic stiffness characteristic, nonlinear energy
harvesting has attracted widely attentions. For the bistable energy harvesters (BEHs)
under random base excitations, the dynamic response mechanism and enhanced
energy harvesting were numerically and experimentally verified by Litak [3]. The
tristable energy harvesters (TEHs) can be optimally designed so that it increases the
frequency bandwidth and achieves a high energy harvesting efficiency at coherence
resonance under a low-level excitation.

The previous scholars mainly concentrated on a pure external load resistance
to harvest the ambient vibration. Yan et al. [4] analyzed the TEH with a series
resistor-inductor (RL) resonant. The result shows the TEH with the RL circuit can
greatly enhance energy harvesting efficiency. And it provides another method to
improve the energy harvesting efficiency of nonlinear energy harvesters. Zhou et
al. [5] made a further analysis for a TEH with the RL resonant circuit. It found the
effect of the excitation amplitude and the electromechanical coupling coefficient
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on the energy harvesting performance. Chen et al. [6] used various values of
inductance and excitation frequencies to calculate the output voltage of the unit
cell. They found inserting an inductor parallel with the clamped capacitor of the
piezoelectric patch can generate a new dispersion curve, enlarge the first-order
bandgap, and decrease the frequency band region, which is more beneficial for low-
frequency and broadband harvesting. Pei et al. [7] proposed two multi-resonant
electromagnetic shunts, to effectively mitigate the vibration for the isolations,
and simultaneously harvest the vibrational energy generated by the dampers. The
practical tests validated the effectiveness of multi-resonant electromagnetic shunts
in both vibration damping and energy harvesting.

This paper proposes the theoretical model and simulated investigation of a
broadband vibration electromagnetic energy harvester with twin-well potential. The
effects of various initial conditions and the resonant frequency of the circuit on
the energy harvesting characteristics of the bistable energy harvester are discussed.
The performance of the output voltage of the energy harvester with resonant circuit
is compared to the one with pure resistance. It can be seen from Fig. 2 that the
maximum output voltage of the harvester with resonant circuit is bigger than the
conventional one. It demonstrates that the proposed harvester has a larger bandwidth
for harvesting the high energy interwell oscillation.

2 Modeling of the Bistable Electromagnetic Energy
Harvester (BEEH) with the Resonance Circuit

Figure 1 presents the schematic diagram of the proposed BEEH with the resonant
circuit. A group of permanent magnets are used to build nonlinear force. The
nonlinear restoring force can be simplified as kjz + k3z>. This paper focuses on
numerically exploring the influence mechanism of the resonant circuit on bistable
energy harvesting via a basic model.

(a) (b) (c)
Load plate 00 ﬁ g x10”
& . B
a3 &8 ¢
Spring o0 o0o—T 4
Bearing 2
c kq ks
Permanent 0
Magnet -2
f -5 0 5

Base plate

Fig. 1 The BEEH with resonance circuit: (a) picture, (b) schematic diagram, and (c) the potential
energy
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2.1 Electromagnetic Coupling

According to Faraday’s law, an induced emf V,(t) writes in the following form:
Ve(t) = Cez (D

where C, denotes the electromechanical coupling coefficient of the BEEH.
The Lorenz force will be generated correspondingly when the coil and the
resistance compose a closed loop circuit, which can be expressed as

Fe = Cpi(t) 2)

where i(t) is the induced current flowing in the circuit. Cy, is the electromagnetic
coupling coefficient of the nonlinear electromagnetic isolator that can be measured
experimentally, and Cr, is equal to Ce. C; is equal to 27w NrgBg, where N is the turns
of coil, 7y is the internal diameter of working air gap, and B is magnetic induction
intensity [8]. C. and Cy, mainly depended on the turns of coil and the arrangement
of magnets in simOulation. The wire diameter of the coils used in the test is 0.1 mm.
And the internal resistance of the coils is constant when we change the value of
inductance in simulation to obtain different circuit resonant frequencies.

When a resistor R is connected to the terminals of the coil, the electrical
governing equation is

Ve =1L di-i—(R +R)'(l)-‘rfidt 3)
e = edl‘ e l C

where L. and R, denote the inherent inductance and impendence of the coil.

2.2 Equation of Motion

According to the analysis above, the BEEH can be simplified into a one degree of
freedom (1-DOF) system. If the BEEH is subjected to a base motion z; cos (wt + 6),
the equation of motion of the BEEH is as follows:

mz + ¢z + kiz + koz® + k32> + Fe = mzpw? cos (wf + 6) )

where m, ¢, and k; denote the mass, the structural damping coefficient, and the
linear stiffness, respectively. z is the relative displacement. z, and w indicate the
amplitude and angular frequency of the base excitation, respectively. 6 is the phase
of the response. The superscript dots () and () are the first-order and second-order
derivatives with respect to time variable ¢, respectively.
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Substituting (1) into (3), (3) will be as follows:

di . [idt .
—+(R+Re)l(t)+T_CeZ:O (5)

L
°dt

Substituting (2) into (4), the equation of motion will be as follows:

mi + ¢z + kiz + kaz® 4 k3z® + Cei (t) = mzpw® cos (wt + 6) 6)

3 Energy Harvesting Performance of the BEEH
with the Resonance Circuit

In this section, the nonlinear dynamics of the BEEH with the resonant circuit is
numerically analyzed using frequency sweep excitations, and the generated voltage
is discussed. Bifurcation diagrams, frequency response curves, and Poincaré maps
are presented to analyze the influence of the two-order electrical circuit on the
dynamic response and energy harvesting performance of the BEEH. Simulation
parameters of the BEEH with the resonant circuit are given in Table 1. The
coefficient of stiffness k1 is —480 N/m, while k3 is 4.74e7; the corresponding figure
of potential well is shown in Fig. 1c.

Figure 2 presents energy harvesting comparison of the BEEH with the resonant
circuit and that with a pure resistor (R = 500 2), where the electrical governing
equation of the resonant circuit is defined by Eq. (3). The result shows that the
displacement of the BEEH is almost the same with the resonant circuit and pure
resistor circuits when f; is 4.24. The maximum voltage is only 3.4 V for the pure
resistor, while the maximum generated voltage increases to 4 V according to the
resonant circuit. It implies the performance of the BEEH with resonance circuit can
be changed by adjusting the parameters of the circuit.

When the circuit resonance frequency is 9.48 while the capacitance is set as
470 nF, the performance of two cases is shown in Fig. 3. It can be seen that the
output voltage of the BEEH with the resonant circuit can reach up to 3.62 V while
the pure resistance one is only 0.21 V. It is demonstrated that the output voltage
increased a lot by the resonant circuit while the displacement of the BEEH of the two

Table 1 Parameters of the BEEH with resonant circuit

Parameter Value
m(kg) 0.5
c(Ns/m) 2.81
k1(N/m) —480
R(2) 500

R(Q) 500
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0 5 10 15 20

Fig. 2 (a) Displacement and (b) output of the BEEH with resonant circuit (blue solid line) and
with a pure resistance (red dash line), R = 500 ©

a
( )0.01 '
_fr=9.48
W o, Y pure resistor
-0.01
S
(b)
5 : .
&0 |
5 : ' '

/

Fig. 3 Comparison of the BEEH with the resonant circuit and with a pure resistor, R = 500 Q: (a)
displacement and (b) the output voltage

cases is almost the same. We can harvest a large voltage by changing the resonance
frequency when other conditions are the same.

The internal resistance of the coils is constant when we change the value
of inductance in simulation to obtain different circuit resonant frequencies. The
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Fig. 4 Bifurcation diagram of the output voltage of the BEEH with the resonant circuit under the
excitation condition of A = 0.3 g and (a) f = 5 Hz, C = 4700 nF, (b) f = 13 Hz, C = 47 uF, (¢)
f =5Hz, and C =470 nF

relationship between the output voltage and resonance frequency is as follows.
Figure 4a shows the bifurcation diagram of the output voltage with respect to the
circuit resonance frequency when C = 4700 nF and the excitation frequency f is
5 Hz. The excitation amplitude A is 0.3 g. It shows that the output voltage increases
with the increase of f; until 5 Hz. Then, the value of vg in bifurcation diagram
experiences from decreasing to increasing and finally tending to be stable, while
the output voltage reaches up to 1.48 V when f;, = 14.9 Hz. When the excitation
frequency f is 13 Hz and C = 47 uF, the output voltage is increasing with the
increase of f;. The output voltage of the BEEH is less than 1.6 V with the change of



Bistable Electromagnetic Energy Harvesting Enhanced with a Resonant Circuit 227

fr- The motion of BEEH undergoes the periodic and chaotic responses comparing
with Fig. 4a when the excitation frequency f = 5 Hz and C = 470 nF. There are also
two peaks appearing in the diagram while the performance of the output voltage and
the bandwidth is worse. It implies the performance of the BEEH also depends on the
value of the circuit parameters even if the circuit resonance frequency is the same.

Figure 5 shows the bifurcation diagram of vg with respect to excitation frequency
f under the excitation amplitude A = 0.3 g. It shows that the motion of BEEH with
resonant circuit enters into periodic when the excitation frequency increases from
4.3 to 7.2 Hz. It also experiences chaotic motion in other excitation frequency. The
output voltage reaches a maximum value as 3.97 V when the excitation frequency
is 7.4 Hz.

Figure 6 shows the bifurcation diagram of the output power versus the load
resistance R. It can be seen that the output power increases with the increase of

Fig. 5 Bifurcation diagram 4 T T
of the output voltage of the : B
BEEH with the resonant 30 X fr=948 |
circuit under the excitation
condition of A = 0.3 g and
resonance frequency
fr=9.48Hz

-2 L L L

0 5 10 15 20
A
Fig. 6 Bifurcation diagram 0.01 T " T
of output power of the BEEH f =6
with resonant circuit versus ettt bt / r 58
the load resistance 0.008 ¢ ..."' foee '0-14 =0.3g
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Fig. 7 BEEH with the resonant circuit: output voltage, phase orbit, Poincaré map, and frequency
response for (a) f =5, =948, A=03g,(b)f =126,/ =948, A =03 g, (c)f = 12.3,
fi=367,A=03gand(d)f=13,/,=474,andA=03¢g

R at the beginning. The output power reaches a maximum value when R is 1560 .
Then, the output power decreases and tends to be a stable value.

The dynamic response of the BEEH with resonant circuit is discussed for the
further analyzing of the influence of f; on the energy harvesting. Figure 7a presents
the output voltage, the frequency response, the phase orbit, Poincaré map, and
frequency response of the BEEH when A = 0.3 g, f = 5 Hz, and f; = 9.48. It can
be seen that the motion of the BEEH is in the interwell oscillation and the steady-
state voltage can reach up to 0.7 V. The BEEH is in a periodic motion for there is
only one point in Poincaré map. The corresponding Fourier spectrum indicates the
subharmonic component of the order 3.
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Fig. 8 Output voltage of the BEEH with the resonant circuit under different resonance frequencies

The output voltage, the frequency response, the phase orbit, Poincaré map, and
frequency response is shown in Fig. 7b when the excitation frequency increases to
12.6 Hz as other conditions remain unchanged. It is seen that the BEEH enters into
the chaos-dominated parametric region and is also in the interwell oscillation. In
this case, the output voltage is smaller than 0.8 V. The continuous frequency band
is also shown in the frequency response curse.

When f is 12.3 Hz and f; is 3.67, Fig. 7c shows the output voltage, phase orbit,
and Poincaré map and frequency response of the BEEH. It is seen that there is a
strange attractor appearing in the Poincaré map, which indicates that the BEEH is
in the chaotic motion.

When the excitation frequency increases to 13 Hz, Fig. 7d indicates that the
motion of the BEEH transforms from interwell oscillation to intrawell oscillation.
The corresponding Fourier spectrum shows the subharmonic resonance. The output
voltage is 0.2 V for the small amplitude of oscillation under the period of intrawell
vibration.

Figure 8 shows the relationship between the output voltage of the harvester and
the resonance frequency of the circuit. It can be seen from Fig. 8 that the frequency
of the resonant peak is close to the resonance frequency of the circuit, which means
that the selection of the circuit parameters can influence the performance of the
BEEH with resonance circuit. The maximum value of output voltage reaches up to
6 V when the resonance frequency f; is 9 Hz. The maximum output voltage of the
harvester decreases with the decrease of the f;.. When the resonance frequency of the
circuit exceeds 9 Hz, the harvester begins to underperform, which means the ideal
resonance frequency of the circuit is around 9 Hz.

When the resonant frequency f; is relatively small, there is some interesting
phenomenon occurring under the forward sweeping frequency response comparing
to the BEEH with a pure resistor. When f; is 5 Hz, there is only one single resonance
peak as shown in Fig. 9a. The curve of the output voltage appears as two resonant
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Fig. 9 Comparison of the output voltage between the BEEH with the resonant circuit and the pure
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peaks when the circuit resonance frequency f; decreases to 4 Hz. The second
resonance peak surpasses the first resonance peak while f; is 3.6 Hz. But the curve
of the output voltage returns to one single peak when f; is 3 Hz.

4 Conclusions

This paper analyzes the bistable electromagnetic energy harvester with a resonance
circuit to improve the performance of energy harvesting. The resonance circuit is
conducted by attaching a capacitance to the induction coil comparing to the normal
circuit which contain a pure resistance. The numerical simulations under frequency
sweep excitation indicate that the BEEH with the resonant circuit can improve the
performance of energy harvesting to some extent. The influence of the resonant
frequency f; and the excitation frequency on dynamic behaviors is analyzed using
the bifurcation diagram, the phase trajectory, the power spectrum, and the Poincaré
map.

Under some excitation frequencies, the results show that the BEEH with the
resonance circuit undergoes periodic and chaotic motion. Under the same excitation
conditions, the maximum output voltage can be obtained when f; is around 9 Hz.
As for the BEEH with resonance circuit being a two degree of freedom system, the
output voltage of the harvester can get two resonance peaks when f; is relatively
small. It means that the working bandwidth can be broadened comparing to the
one with pure resistance. It demonstrates that it is a feasible method to enhance
the performance of energy harvesting via adjusting the frequency of the resonant
circuit.



Bistable Electromagnetic Energy Harvesting Enhanced with a Resonant Circuit 231

References

1. Z. Yang, S. Zhou, J.W. Zu, et al., High-performance piezoelectric energy harvesters and their
applications. Joule 2(4), 642-697 (2018)

2. W. Liu, C. Liu, B. Ren, et al., Bandwidth increasing mechanism by introducing a curve fixture
to the cantilever generator. Appl. Phys. Lett. 109(4), 043905 (2016)

3. G. Litak, M.I. Friswell, S. Adhikari, Magnetopiezoelastic energy harvesting driven by random
excitations. Appl. Phys. Lett. 96(21), 214103 (2010)

4. B. Yan, S. Zhou, G. Litak, Nonlinear analysis of the Tristable energy harvester with a resonant
circuit for performance enhancement. Int. J. Bifurcat. Chaos 28(07), 1850092 (2018)

5. D. Huang, S. Zhou, G. Litak, Analytical analysis of the vibrational Tristable energy harvester
with a RI resonant circuit. Nonlinear Dyn. 97(1), 663-677 (2019)

6. Z. Chen, Y. Xia, J. He, et al., Elastic-electro-mechanical modeling and analysis of piezoelectric
metamaterial plate with a self-powered synchronized charge extraction circuit for vibration
energy harvesting. Mech. Syst. Signal Pr. 143, 106824 (2020)

7.Y. Pei, Y. Liu, L. Zuo, Multi-resonant electromagnetic shunt in base isolation for vibration
damping and energy harvesting. J. Sound Vib. 423, 1-17 (2018)

8. B. Yan, X. Zhang, Y. Luo, et al., Negative impedance shunted electromagnetic absorber for
broadband absorbing: experimental investigation. Smart Mater. Struct. 23(12), 125044 (2014)



An Internally Resonant Tunable )
Generator for Wave Energy Harvesting ik

Mohammad A. Khasawneh and Mohammed F. Daqaq

1 Introduction

Point wave energy absorbers (PWAs) are considered to be the simplest, most
efficient, and widely-utilized approach to harness wave energy. They currently
occupy 40% of the market share and are often preferred over other types because
they can be scaled down without considerably reducing efficiency. However, PWAs
suffer from a main shortcoming which limits their efficacy. This shortcoming
emanates from their very fundamental principle of operation which is based on
establishing resonance conditions between the sea waves and the absorber [1]. This
occurs when the natural frequency of the converter is close to one of the dominant
frequencies in the wave energy spectrum. Establishment of resonance however leads
to three main issues. (1) Because of the high stiffness of the hydrostatic restoring
force resulting from buoyancy, the natural frequency of the absorber is typically
higher than that of the dominant frequencies in the wave energy spectrum [2]. As
a result, to reduce its natural frequency, the absorber has to be augmented with
a heavy submerged body [3] or other complex mechanical and control solutions
[4]. (2) Even when incorporating the proper design means to reduce the frequency
of the PWA such that it matches the dominant frequencies in the spectrum of the
incident waves, much of the available wave energy is still lost. This is because the
resonant bandwidth of the PWA is narrower than the spectrum of the incident waves
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whose energy is distributed over a wide range of frequencies [5, 6]. (3) Operating
the absorber at the linear resonance can also sometimes lead to very large amplitude
motions that adversely influence the structural integrity of the absorber [7].

To overcome the abovementioned issues, we propose a new design of PWAs that
has (1) a broader bandwidth and lesser sensitivity to variations in the excitation
frequency, (2) can respond to excitation frequencies that are as low as half
its fundamental frequency, and (3) does not exhibit the large-amplitude small-
bandwidth resonance peak typical of the linear PWAs. The absorber consists of
two coupled oscillators. The first, denoted here as the primary oscillator, comprises
a partially submerged buoy. Here, the mass of the buoy provides the inertial forces
while the hydrostatic buoyancy provides the restoring force. The primary oscillator
has a high natural frequency due to the high stiffness of the hydrostatic restoring
force. The second oscillator, denoted here as the auxiliary oscillator, consists of a
moving mass and a nonlinear restoring force element created by magnetic levitation.
The auxiliary oscillator is mounted inside the buoy and has its natural frequency
tuned to the dominant frequency in the wave spectrum and to half the natural
frequency of the primary oscillator. When the buoy is subjected to the low-frequency
wave excitation, the auxiliary oscillator resonates with the wave excitation and starts
to move. Energy is then channeled to the primary oscillator due to the 2-to-1 internal
resonance between the two oscillators. This results in a reasonably large-amplitude
relative motion between the two oscillators over a wide spectrum of frequencies.
This motion can then be channeled into electricity as per Faraday’s law.

2 Mathematical Formulation

The schematic for the 2-to-1 internally resonant wave energy harvester is shown in
Fig. 1. The system consists of two degrees-of-freedom, y;, and y,, where y; stands
for the displacement of the primary oscillator while y, stands for the displacement of
the auxiliary oscillator. The primary oscillator has a mass, m1, and a linear stiffness
k1. The primary oscillator is also coupled to a power take-off unit (PTO) which
comprises an electromagnetic linear generator. The auxiliary oscillator has a mass,
mo, and a nonlinear stiffness resulting from repulsive magnetic forces as shown in

Fig. 1 A schematic diagram =]
of the harvester
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Magnets
Primary Oscillator
:(—c
Ky Coil
Base % EMF
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the figure. The magnets also serve to limit the amplitude of oscillations so that it
does not cause damage to the energy harvesting unit.

2.1 Governing Equations

The dynamics of the aforementioned system is captured by the following set of
equations:

3
miyl+e1y; =2y —yD+kiyi— Y di(ya—y)) +aVL =miApcos(2t) (1)

i=1

3

mayy + 2y — Y + Y di(y2 — y1)' = maAycos(821) )
i=1

V[Z + oV = 8c0)cy1 (3)

where the overprime represents a temporal derivative, m and my are, respectively,
the effective masses of the primary and auxiliary oscillators, & is the effective linear
stiffness of the primary oscillator, d; represent the effective stiffness components
resulting from the magnetic field, c; and ¢, are the effective damping coefficients,
Ay and §2 are respectively the magnitude and frequency of a harmonic base
acceleration used to mimic excitation forces imparted by regular ocean incident
waves. Equation (3) represents the response of the electrical subsystem associated
with the PTO. Here, V, is the voltage across the load resistance, w, is the cut-off
frequency of the circuit, « is the coupling parameter, and §,. is the conversion factor

[8].

2.2 Natural Frequencies

In order to obtain the natural frequencies of the system and create the 2-to-1 tuning
between the modal frequencies, the restoring force of the auxiliary oscillator was
measured using a force gauge. Figure 2 shows variation of the nonlinear magnetic
restoring force with the deflection and the corresponding potential energy function.
Due to the asymmetric nature of the magnetic forces imposed by using two different
magnets as shown in Fig. 1, the nonlinear restoring force has quadratic nonlinearities
resulting in an asymmetric potential function. These nonlinearities are crucial to
activate the 2-to-1 internal resonance between the two vibration modes. The best fit
of the experimental data yields a cubic polynomial: F = dy + dyy? + d3y> with
dy =7955N-m™!, dy = —23,660N-m~2, and d3 = 439,300 N - m 3. Using the
experimental parameters listed in Table 1, we evaluated the natural frequencies of
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Fig. 2 (a) Nonlinear restoring force of the auxiliary oscillator fitted to third order polynomial. (b)
The corresponding potential function

Table 1 Parameters used in

; Parameter | Value
the experiment

m 1.8 [ke]

my 0.665 [kg]

k 5922 [N-m™!]

d; 795.5 [N -m™']

dy —23,660 [N - m~2]

d3 439,300 [N - m~3]

cl 2[N-s-m™1]

e 126 [N-s-m™!]

Af 0.981 [m - s~2]

¢ 13 [rad - s~
0.0987 [N - V1]

Se 98.7[V-s-m™

the two modes as w; = 31.66rad - s~! and wy = 62.65rad - s~!, which are nearly
commensurate in 2-to-1 ratio.

3 Experiment

An overview of the experimental setup is shown in Fig. 3. The setup is mounted
on a LabWorks electrodynamic shaker which excites the system harmonically. The
frequency sweep experiment is conducted quasi-statically at constant acceleration
around the primary resonant frequency of the auxiliary oscillator. The magnitude
of the base acceleration provided by the shaker is maintained at a constant value
by implementing a feedback algorithm using an accelerometer mounted on the
shaker’s base. The displacements y; and y, of the primary and secondary oscillators,
respectively, are measured using two micro-epsilon laser Doppler vibrometers.
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Fig. 3 (a) An overview of the experimental setup. (b) Primary and auxiliary oscillators

A PTO unit which consists of a multi-turns coil and a cylindrical magnet was
used to induce current in a purely resistive load. In order to create the relative
displacement between the magnet and the coil, the cylindrical magnet was mounted
on the primary oscillator’s plate while the coil is fixed on the base such that they are
concentrically aligned. The coil was fabricated by winding 5000 turns of grade 36-
AWG enameled copper wire. All measurement were logged in sync to a computer
using NI-DAQ data acquisition system.

4 Results and Discussion

In order to verify the theoretical model, a direct numerical simulation was carried
out and compared to the experimental results as shown in Fig.4. A fairly good
qualitative agreement between the numerical simulation and experimental results
can be observed. However, due to many uncertainties in this complex nonlinear
system, full quantitative agreement could not be achieved. In particular, the
theoretical results under-predicted the size of the actual harvester’s bandwidth. We
attribute this disagreement to the sensitivity of the response bandwidth to variations
in the nonlinear coefficients, d», and d3. It is also worth noting that, over the
frequency range of interest, both experimental and theoretical results had revealed
no hysteresis jumps in the response and almost identical frequency response curves
were obtained for both forward and backward frequency sweeps.

A comparison between the system’s response with and without the 2-to-1 internal
resonance tuning is illustrated in Fig. 5. The comparison clearly reveals a significant
enhancement in the effective voltage bandwidth of the converter. Unlike the detuned
case, it was also observed that the internally resonant case does not exhibit a
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hysteretic jump as the driving frequency is changed in both directions of the
frequency sweep. Upon inspecting the induced voltage plots in Fig.5, it becomes
evident that the response is almost flat around the primary resonance. This wide
and almost flat response bandwidth is one of the key advantages in exploiting
the 2-to-1 nonlinear interactions in wave energy harvesting. Since incident waves
come in a wide frequency spectrum and conventional point wave energy absorbers
possess a distinct and a narrow resonance peak, only a small portion of the wave
energy can be harnessed which leaves most of the energy inefficiently exploited.
The current system overcomes this issue by providing a response that is less
sensitive to the shape of the incoming waves spectrum. Moreover, it was reported
by various researchers that, operating at resonance is not desirable because the
amplitude of oscillations becomes too large that it influences the structural integrity
of the converter specially at high sea states [1]. The proposed system operates at a
reasonably medium-amplitude response over a wide spectrum of incoming waves
frequencies, and in return contributes to alleviating the heavy loads exerted on the
structure at resonance.
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5 Conclusions

This chapter presented a theoretical and experimental proof of concept for a
proposed PWA that exploits the 2-to-1 internal resonance phenomenon. The system
is proposed in order to address some of the shortcomings which are associated
with the conventional linear PWAs. The main advantages of the current system
are (1) reducing the resonant frequency to match the dominant frequency of the
incoming waves, and (2) obtaining a broader flat effective resonant bandwidth that
is less sensitive to variations in the frequency of the incident waves. In addition to
that, unlike the typical linear PWA, the proposed system operates at a reasonably
medium-amplitude response over a wide spectrum of incoming waves frequencies,
and, in return, contributes to alleviating the heavy loads exerted on the structure at
resonance. This had been achieved through exploiting 2:1 internal resonance energy

pump.
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Nonlinear Dynamics Analysis of Electric )
Energy Regeneration Device Based e
on Vibration Energy Recovery

Wei Wang, Yan Li, Kehong Wu, Yongjie Cui, and Yuling Song

1 Introduction

The energy crisis has attracted more and more attention to energy-saving and
environmentally friendly technologies, and related research on vibration energy
recovery of electric vehicles has become a current research hotspot [1]. At present,
research scholars mainly carry out research on energy recovery devices for vehicle
suspension systems [2, 3]. The feasibility of energy recovery for the shock absorber
has been studied and analyzed [4]; a variety of different types of devices have been
proposed based on the vehicle’s suspension system.

Taghavifar [2] researched the recovery of vibration energy of off-road vehicles,
mainly considering the suspension system based on hybrid electromagnetic, and
combined with the circuit dynamics of the electromagnetic energy recovery system
to analyze the effectiveness of energy recovery. Through the acceleration response
of chassis in the frequency domain and time domain, the influence of the vibration
energy recovery system on driver/passenger riding comfort is studied and analyzed.
Li et al. [5] proposed a new vibration energy collecting suspension system based
on a generator and ball screw mechanism. Vehicle vibration energy is collected
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from the suspension system, and stored in the battery. Zhang et al. [3] integrated an
arm-tooth drive electric energy regeneration device based on the vehicle suspension
system to obtain a more accurate power output response. Through the 1/4, 1/2, and
full-vehicle electric energy regeneration system models reveal the influence of road
unevenness on the system power output. Unlike the above method, vibration energy
recovery by functional materials has great advantages for small-amplitude vibration.
Tavares and Ruderman [6] used piezoelectric ceramics to convert mechanical energy
into electrical energy. The piezoelectric ceramic sensor’s ability and efficiency of
electric energy regeneration under two different types of external excitations are
studied. Genovese et al. [7] studied the recovery of wasted energy from the vibration
of train air suspension, design and develop an energy collection system integrated
into a pneumatic spring. The boundary volume of the new equipment is defined
mainly through reverse engineering technology, and the energy is collected by
means of a resonance system and a temporary conversion mechanism located in
a defined enclosed space.

On the basis of existing research, this paper proposes an electromechanical
energy regeneration device with two one-way clutches for the reduction vibration
of the power battery pack of an electric vehicle and extending the cruising range
of electric vehicles. The transmission system in this device converts the two-way
vibration of the rack into one-way rotation of the input shaft of the generator, thereby
greatly improving reliability and efficiency. The generator will be driven in one
direction to convert kinetic energy into electrical energy. In the movement process,
the meshing of gears and racks, the transmission of bevel gears, the working process
of a one-way clutch, and the process of contact, paired contact impact and separation
processes occur at all times. In theory, chaos may occur in the system, which will
lead to the decline of the motion stability of the electric energy regeneration device.
The stability of system motion depends on whether the design of key parameters
in the device is reasonable [8—10]. Many researches have been conducted on the
influence of gear transmission system design parameters on performance.

Yang et al. [11] established a one-DOF gear pair model including time-varying
meshing stiffness, static transmission error, and nonlinear backlash, and analyzed
the stability of the gear system to obtain stable and unstable boundary conditions
of the area. Finally, a parameter study is carried out to reveal the influence of
several key parameters on the system performance. Xiao et al. [12] installed a
dumbbell-shaped damper in the damping hole. Based on the nonlinear energy
dissipation mechanism, the damping force is used as an external excitation and its
damping effect is discussed. Using the dynamic coupling method of continuum and
discontinuity, the equivalent displacement mapping of the contact load from the
discontinuous domain of the gear to the node of the continuous element is realized.
Zhu et al. [13] established the nonlinear dynamic model of the segmented bending
and pendulum of the gear transmission system and studied its nonlinear dynamic
characteristics and dynamic characteristics. Based on three different Poincaré
maps, defined by bifurcation diagram, Lyapunov exponent diagram, phase diagram,
and dynamic change curve, the effects of the load factor, meshing frequency,
comprehensive transmission error on system dynamics and nonlinear dynamics are
studied. Shin and Palazzolo [14] proposed a new method for modeling and analyzing
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Fig. 1 Flow chart of nonlinear dynamic analysis of electric energy regeneration device

gear rotor-bearing systems. Considering the nonlinear force in the gear set and the
supporting liquid film journal bearing, a rotor dynamic model with five degrees of
freedom is established. Yi et al. [15] proposed a new nonlinear dynamic model of
the spur gear system, which considered the time-varying behavior of pressure angle
and gear clearance, as well as the influence of gear gravity, unbalanced mass, and
internal/external excitation. The motion equation of the system is derived strictly by
the Lagrange method and solved by the numerical integration method.

To sum up, this paper proposes a mechanical electromagnetic electric energy
regeneration device. The layout design of two one-way clutches transforms the
reciprocating vibration into a one-way rotation of the generator. In order to improve
the motion stability of the electric energy regeneration device, the analysis of
the nonlinear parameters in the device, considering the time-varying meshing
stiffness, meshing damping, tooth side clearance, comprehensive transmission error
of the meshing pair, and the reserve clearance of the one-way clutch. The mass
concentration method is used to establish a multi-degree-of-freedom nonlinear
dynamic model. The effects of excitation frequency, reserve gap, and integrated
transfer error on the nonlinear dynamic performance were analyzed by time-series
response diagrams, phase diagrams, Poincaré diagrams, and bifurcation diagrams,
revealing the law of influence of parameters on the damping characteristics of
the device. The research will lay a profound theoretical foundation and practical
significance for improving the stability of the power regeneration system. Figure 1
shows the technical route studied in the paper.

2 Dynamic Model of Electric Energy Regeneration Device

2.1 Device Structure Design

This paper proposes an electromagnetic electric energy regeneration device using
two one-way clutches. As shown in Fig. 2, it mainly has four parts: a rack and pinion
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Fig. 2 Schematic diagram of
electromagnetic energy
regeneration device structure
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mechanism, a bevel gear transmission mechanism, a generator, and an electric
energy storage module. When an electric vehicle is driving on a road, the unevenness
of the road elevation will cause a vibration of the electric vehicle. In order to
alleviate the vibration of the battery pack, an electric energy regeneration device
is installed between the battery pack and the chassis of the electric vehicle. The
function of the rack and pinion transmission mechanism is to convert the relative
linear motion between the battery pack and the chassis into the rotational motion
of the generator. The bevel gear transmission mechanism includes two one-way
clutches and three bevel gears. Its function is to convert the bidirectional rotation
of the gears in the rack and pinion mechanism into unidirectional rotation of the
bevel gears and drive the speed increaser and generator to rotate in one direction
so that the generator can output electricity. The electric energy storage module
is directly connected to the generator and contains three components of the filter
circuit, voltage stabilizing circuit, and supercapacitor. The purpose is to store the
electrical electric energy by the electrical energy regeneration system to increase the
mileage of electric vehicles. The device can recover energy from vibrations with a
large range of amplitude, effectively improve the cruising range of electric vehicles,
take into account the safety of the power battery pack, and increase the rate of the
energy regeneration and vibration energy recovery of the device.

2.2 Road Incentive and Time Domain Description

In the design process of the electric energy regeneration device, not only the strength
and rigidity of the components must be considered, but also the vibration caused by
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the unevenness of the road during the road driving process [16, 17]. The unevenness
of the road is unpredictable, and the excitation to the car body is random, belonging
to random loads. This kind of load cannot be used to express the load time history
with a function, but this relationship can be described by statistics and probability
theory. Bearing this kind of random load for a long time may cause large vibrations
in the electrical energy regeneration device, which may affect the safety of the
power battery pack and may cause cracks or fractures in the structure due to fatigue,
shortening the service life of the device as a whole [18, 19].

The external excitation of the device comes from the unevenness of the road
elevation. When performing device simulation research and performance evaluation,
it is necessary to obtain accurate road information. The road unevenness input of
vehicle vibration mainly adopts the form of road power spectrum density. The most
direct method to obtain the road surface spectrum is measurement, but it is laborious,
time-consuming, and uneconomical. Many scholars have measured road surface
unevenness and determined that the power spectrum density function and variance
of the road surface describe its statistical characteristics. In 1984, the International
Organization for Standardization put forward the “Draft Representation Method
for Descriptive Roughness” in the document ISO/TCI08/SC2N67. China also
formulated the corresponding national standards by referring to it. The Changchun
Automobile Research Institute drafted and formulated GB/T7031-1986 “Vehicle
Vibration Input-Standard for Road Surface Roughness Representation Method. The
formula (1) is used in the documents to fit and describe the road power spectrum
density [17].

Gq(n) = Gy (no) (nﬁo) (1)

where n is spatial frequency, ng is reference spatial frequency, G,(ng) is the
road power spectral density at the reference spatial frequency, and G,(n) is the
road roughness coefficient. w is the frequency index, which is the slope of the
diagonal line in double logarithmic coordinates and usually takes the value of 2.
The document divides the road into eight classes, and in this paper, we mainly use
class D road for the study. The roughness coefficient of class D road is 1024 x 10-
6 m3, and the root mean square value is 30.45 x 10-3 m.

There is no speed influence factor present in the spatial frequency power
spectrum description. But for vehicle vibration systems, the vehicle speed is a factor
that must be considered [18]. When a car travels on a road surface with a spatial
frequency n at speed u, the equivalent time-frequency is f = un.

Therefore, the time-frequency power spectral density is

u
f2
Since the road surface is regarded as a superposition of a group of sine waves with

different wavelengths, amplitudes, and phases, it can be assumed that the spatial
frequency range of the group of waves is (11, n) and the interval (n1, ny) is divided

1 —w
Gy(f) = ;Gq (no) <n£0> = Gy (ng) n(z) )
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Fig. 3 Time-domain displacement excitation for class D road (¢« = 5 m/s)

into N cells. The center frequency between ith cell is nmiq.;, the interval width is
An = (np—n1)/N, then the corresponding road surface displacement power spectrum
density is:

1
Gy (fi) = Gq (no) ng—5— 3)

M mid—i

Therefore, the expression of the sine signal corresponding to this interval is

V2G4 (fi) Ansin Qrunmig—ix + o;) 4)

As shown in Fig. 3, multiple sine signal waveforms are superimposed to obtain
an expression for the random excitation of farm pavements:

N
q(x) = Z V2G4 (fi) uAnsin Qrunmig—ix + a;) 5)
i=1

where «; is a random number uniformly distributed in [0, 277]. In this study, the first
harmonic term of the road displacement excitation is selected, and the time domain
road displacement excitation is:

q(t) = Asin (ot + ¢) (6)

2.3 System Dynamics Model

The dynamic model of the mechanical electromagnetic power regeneration system
is shown in Fig. 4. In the figure, Z, is the displacement excitation of the soil road
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surface; Z is the vertical displacement of the lithium battery pack; and rj, I;, 0;
(i = 1,2,3,4) are the base radius, inertia, and angular displacement of torsional
vibration of the gear, respectively. C1, K1, b1, and e; are the meshing damping, time-
varying meshing stiffness, tooth side clearance, and comprehensive transmission
error of the rack and pinion meshing pair respectively. C;, K;, b;, and e; (i = 2,3)
are the meshing damping, time-varying meshing stiffness, tooth side clearance, and
comprehensive transmission error of the ith gear meshing pair respectively. C,, K¢,
b. are the torsional damping, torsional stiffness, and reserve clearance when the one-
way clutch is in contact. T, is the induced torque generated during the operation of
the generator.

Considering the time-varying meshing stiffness, meshing damping, tooth side
clearance, and comprehensive transmission error of the meshing pair, as well as the
reserve clearance of the one-way clutch, the mass concentration method [20] is used
to establish the nonlinear vibration equation of the dynamic model shown in Fig. 4
as

Ilé] = (Klfl + CIXI) —Kcfe — CCXC

Lo, = K. fo + CcXc — 2 (Ka fo + C2X2)

13?23 =r3(Kafa + Cz):(z) —r3(K3f3 + C3X3) - T, (7N
1464 = r4 (K3 f3 + C3X3)

mZ = KaXa+ K1 f1+ Cle

Among them, the relative displacement of each meshing pair is:

X1=Z;,—r16y —Zcosa —e;

X, =01 —6

Xo =nrb —r30; — e 3
X3 =1r303 — 1464 — €3

Xa=Zin—Z7Z
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fi(®) is the nonlinear function of the side clearance of the gear meshing pair, then:
1 >
fi() = 0, IXil <hbi,i=123; €))

The nonlinear function of the reserve clearance of the roller one-way clutch is:

Xere —be,  Xere > be
fe@®) = 0, | Xcrel < be (10)
Xcre +be, Xere < —be

where r, is the radius of movement of the one-way bearing roller.
Taking the first harmonic component of the meshing stiffness of the gear meshing
pair, the time-varying meshing stiffness is

K; = kayi + kmicos (wit +¢;) i=1,2,3; (11)

where w; = 4Awl/p, p is the tooth pitch of the driving gear in the meshing pair, A is
the amplitude of the displacement excitation, and w; = pwi, i = 2, 3.

In order to solve the problem smoothly, relative coordinates are introduced to
eliminate rigid body displacements:

X\ = Zin— n (K fi +1C1 X1 — Ke fe — CeX)

-1 (K4X4 +r K ficosa +rC1 X, cosa)cosa — &
X = T (rlKlfl +r1C X1 — Kefe — CeXe) — % (Kefe + CcXe — 1Ko fo — 1202 X))
Xz = L (K fe+Ce X —nnKyfr— r2C2X2)

-7 (reKzfz +7r3C Xy —13Kafs —r3C3X3 — T,) — &
X3 = 7 (r3K2f2 +1r3C2 Xy —r3K3 f3 —r3C3X3 — T,) — N (raK3 f3 +r4C3X3) — &3
Xy = Zin — L (KsXs + K1 fL + C1 X))

12)

Defining the nominal time scale w, = /kqy1/m1, let T = w.t, wpi = wilw.. Xis

. . . .. X; bi
the derivative of xto, Using characteristic length b, let x; = 5, by = %, €;(t) =
ei(t) _ ey
P s Cai = T
Defining dimensionless parameters:
£ _712CI+C| cosa o r]Z avl+ avlcosa £ __nCe __ ke K __Kjcosa
=T mawe 1 Iwe? 1e=" T, "1™ Iwc? 14= mawc?
__n¢G __ kgl _C K¢ _ rkan
Se1=— Toc Kcl—_ﬁ Ecc—[lcf)g"‘]zwc Kee= T o 2+12a) 7 §c2= lzw rC Kc2—_127u:
2 2 2 2
:_r2CL- Koo—— K. :’2C2 r3c2 ’zkaUZ kav2 r3C3 K :_r3kau3
&2 122,,)(, 2¢ 122(’) 2 0] Izwc + 13a;(- 12‘;‘ haé' 2 TIZoc w2
_7r3C2 _7}‘3/(‘“,2 _r3C3 r;C3 r3kau’% r4kav3
8= T, Kn= oo §3= T, T e, K33= Ty Tt Lo
_ G _ kavi Ky
§41=70 Ka1= P K44—me

13)
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The dimensionless differential equation of motion for the electrical energy
regeneration system is obtained by transforming:

X1 +é&nxs + Kiky (7) f1 (7) + 1cXc + Kie fe () + Kiaxa = py (7)
Xe +E&c1x1 + Kerkr (v) fi (7)) + EceXe + Kee fo (T) + &2z + Keaka (7) f2(7) =0
X2+ Eacxe + Kac fe (T) + &a2%2 + Kook (7) f2 () + 62343 + Kazks (1) f3 (T) = p2 (7)
X3+ &32X2 + K32ka (7) f2 (7) + &33%3 + K33k3 (7) f3 (7)) = p3 ()
X4 +Enx1 + Karky (7) f1 (7)) + Kaaxq = pa (1)
(14)

T, ps=Zip.

__n
Lbw,?

Where, p1 = Zin —é1 pa = Thozle =€ p3=—&
xi—b,-, xi>bi,i=1,2,3;

fi(r) = 0, lxil <b;i,i=1,2,3;

x;i+bi, x;i<-b,i=1,273.

3 Simulation Investigation

Taking the two one-way clutches mechanical electromagnetic power regeneration
system as the research object, considering the time-varying meshing stiffness,
meshing damping, tooth side clearance, and comprehensive transmission error of
the meshing pair, as well as the reserve clearance of the one-way clutch, based on the
above differential equation of motion group, using variable step size Runge-Kutta
algorithm for the numerical solution of system dynamics [21]. The parameters used
in the calculation are shown in Tables 1 and 2.

The bifurcation diagram of the dimensionless displacement of the first-stage
bevel gear with the meshing frequency is shown in Fig. 5. It can be seen from
Fig. 5 that when the meshing frequency w is less than 2.56 Hz, the electric energy
regeneration system exhibits a stable single-cycle motion. Taking w = 2.02 Hz as
an example, the dimensionless time-domain response diagram, phase diagram, and
Poincaré cross-sectional diagram of the first-stage bevel gear are shown in Fig. 6.
The movement process of the gear is expressed from the tooth surface meshing to
the disengagement then to the tooth surface meshing. When the meshing frequency
continues to increase, the single-period motion becomes unstable, and the motion
state of the system is transformed into quasiperiodic motion from periodic motion.
Taking @w = 2.58 Hz as an example, the dimensionless time-domain response
diagram, phase diagram, and Poincaré cross-sectional diagram of the first-stage
bevel gear are shown in Fig. 7. The phase diagram is shown as an annular band
with a certain width, and the Poincaré cross-section is shown by a circle composed
of points. Continue to increase the meshing frequency, and the system motion is
transformed from quasiperiodic motion to chaotic motion. Taking w = 4.54 Hz as
an example, the dimensionless time-domain response diagram, phase diagram, and
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Table 1 Gear system parameters

Parameter Symbol Value Parameter Symbol Value
Battery quality m(kg) 90 o) 50
Gear shaft m(kg) 0. 6691 Number of 3 50
quality bevel gear

teeth
Number of rack |z 20 24 50
teeth
Number of gear | z; 18 I (10~%g - m?) | 819.7169
shaft teeth
Moment of L (10~%kg - m?) |56.5730 | Bevel gear | I3(10~%kg - m?) | 2050.2
inertia of gear moment of
shaft inertia
Gear shaft radius | r1(m) 0.018 14(10~%kg - m?) | 819.7169
One-way clutch C:(N - m - s/rad) | 400 r2(m) 0.05
damping
One-way clutch | K (N - m/rad) 3.5 x 10* | Bevel gear r3(m) 0.05
stiffness radius
One-way clutch | b.(m) 8 x 107° r4(m) 0.05
clearance
Gear rack b1(m) 5x 107 | Bevel gear byb3(m) 2 x 1076
clearance meshing

clearance

Table 2 Generator

Parameter Value

parameters Generator rotor inertia 0.4 x 10~* kg - m?
Internal resistance 045 Q@
External load 5Q
Back electromotive voltage constant | 0.0458 V - s/rad
Speed increaser transmission ratio 1:10

Poincaré cross-sectional diagram of the first-stage bevel gear are shown in Fig. 8.
The Chaotic motion causes the unstable vibration of the electric energy regeneration
system.

4 Conclusions

A mechanical electromagnetic energy regeneration device using two one-way
clutches is proposed to extend the range of electric vehicles. The transmission
system converts the bidirectional vibration of the rack into unidirectional rotation
of the input shaft of the generator, which greatly increases reliability and efficiency.
The generator will be driven in one direction to convert the kinetic energy into
electrical energy. Nonlinear parameters in the energy regeneration device will affect
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Fig. 5 Bifurcation diagram of the system changing with the meshing frequency

or (a) T (b)

o8
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Fig. 6 Phase diagram (a) and Poincaré cross section (b) (w = 2.02 Hz)

the stability of the system and the efficiency of electric energy regeneration. Through
the analysis of the nonlinear parameters in the device, considering the time-varying
mesh stiffness, mesh damping, backlash and dynamic transmission error of the
meshing pair, and the reserve clearance of the one-way clutch, using the mass
centralized method to establish the multiple degrees of freedom nonlinear dynamic
model. The Runge-Kutta method is used to calculate the nonlinear differential
equation. The time-series response chart, kinematic phase diagram, Poincare map,
and bifurcation diagram are used to analyze the influence of parameters. The results
show that as the meshing frequency changes, the system response changes from
period-doubling bifurcation to chaotic motion. In addition, The influence law of
parameters on the damping characteristics of the device is revealed. The research
results can improve the stability and the efficiency of electric energy regeneration
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Fig. 8 Phase diagram (a) and Poincaré cross section (b) (w = 4.54 Hz)

devices and achieve the goals of prolonging the cruising mileage. It can lay a
profound theoretical foundation and reality significance for the research of electric
energy regeneration devices.
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Harvesting Energy from 2D Array )
of Harvesters Qe

Mohammad Reyaz Ahmad Vali and Ali Shaikh Faruque

1 Introduction

The dream of smart facilities across the world with information at everyone’s
hand requires sensing all around. This requires millions of sensors to be employed
measuring different sets of data. Running these sensors requires electrical power.
Thousands of wireless sensors are used for structural health monitoring, environ-
mental control, military applications, etc. Powering them using batteries poses
challenges in replacement, maintenance, and disposal. This can be overcome
by directly powering them by ambient sources of energy. Vibrational energy
from ambient sources is tapped to convert it into electrical energy by means of
electromagnetic, electrostatic, and piezoelectric transduction [1-3]. In this study,
electromagnetic principle is used to tap the ambient energy by means of 2D array
of interconnected pendulums. Magnets are attached at the end of pendulums, and
magnetic coil placed just below each of them serves the purpose of harvesting
energy. The magnetic interaction among the neighboring pendulums is assumed
to be small and is therefore neglected. Equations of motion are obtained from
Lagrange’s method, and voltage generated in each harvester is calculated by voltage
equation for the coil [4]. Numerical solution of this system is obtained which
provides time histories of displacement and velocity of harvesters. Mistuning of
pendulum lengths is introduced to study the broadband harvesting characteristics of
the system [5, 6]. Operating bandwidth of frequency is analyzed for different sets
of values of mistuned lengths for 10 x 10 array for relatively optimal harvesting
characteristics.
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2 System Model and Mathematical Formulation

In this section, model of the system is explained with the schematic diagram, and
governing equations of motion of the system is derived.

2.1 System Model

Figure 1 shows the schematic of the system which has been considered for study
in this manuscript. It consists of a series of electromagnetic pendulum harvesters
connected to the same base, and harmonic base excitation is given to the system.
Each pendulum harvester has a magnet attached to its free end, and an electric coil
is placed beneath it. Further, each pendulum is connected with another pendulum
by a spring of stiffness “ka” at a distance of “a” from the hinge of the pendulum
along the row wise, and torsional spring with stiffness of “kt” is attached to the base
of the system along the column wise. Support excitation generates a relative motion
between the coil and the magnet attached with the pendulum, and the change in
magnetic field due to pendulum motion generates electricity in the coils. Voltage is
received across each coil through a load resistor (R) connected to it. In Fig. 1, x_g
denotes the amplitude of support motion which has been assumed to be harmonic
in the current study. As standalone harvester produces less power, to generate

Fig. 1 Schematic of 2D
array of harvesters

Magnetic coil
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higher power, an array of tuned (lengths are the same) electromagnetic pendulum
harvesters are used in this study. In practice, manufacturing a set of tuned harvesters
is difficult. Further, due to operational non-similarity, tuning may get lost. There
may be power loss from the designed power due to loss in tuning.

2.2 Mathematical Formulation

The mathematical equations for the abovementioned system is developed here. The
magnetic interaction among the neighboring pendulums is assumed to be small and
is, therefore, neglected.

Equations of Motion The equations are framed using Lagrange’s equations [4, 7].
Final formulated equations are shown as below:

mlzé.,"j + Clzél'h,' +mglsing; j +mXgl cosb; ;
— kqa®cos 0, j (Sjt1+ Sj—1) + ki (Ti1 + Ti-1) =0

i=1,2,.2;j=12.n (1)

where S/+1 = sin 9,',/'4_1 — sin 9,',./'; S,'_ 1 = sin 9,',1'_1 — sin 9,',.,'; Ti+l =
Oit1,j—0ij;Ti—1=0i.1,j — 0i j; 2=no. of rows; n = no. of columns.

The terms containing indices outside the ranges of i and j vanish for a given
particular equation of the harvester.

Electrical Equation for Harvester The electrical equation of harvester is given as
below where the equation of voltage developed in the individual harvester is given

[7]:

V = BLDw )

L = Coil length.

B = Magnetic flux density.

D = Distance between coil and magnet.
o = Angular velocity of harvester.

3 Different Types of Mistuning Patterns

In this section, different patterns of mistuning considered for numerical simulations
are discussed here for analyzing broadband harvesting characteristics of 10 x 10
array.
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2 4 ] 8 10 2 4 6 8 10

Fig. 2 Different types of mistuning patterns considered for study. (a) Rectangular mistuning. (b)
Diagonal mistuning. (¢) Middle rows and columns mistuned. (d) One of unsymmetric mistuning
pattern

Study is done on 10 x 10 array. Mistuning in lengths of harvesters is considered
for study. Random mistuning patterns based on positioning of mistuning and
mistuning values of harvesters are designed and the mistuning patterns are divided
as rectangular (sub-array of harvesters in center are mistuned), diagonal, middle
rows and columns mistuned and unsymmetric mistuning. The matching of colors
in the mistuned harvesters for Fig. 2a—c corresponds that the mistuned lengths are
equal for those harvesters.

In symmetric mistuning patterns, it is considered that positions of mistuned
harvesters are symmetric about the center of the array and percentage of mistuning is
equal in the mistuned harvesters. In the present study, Fig. 2a—c types of symmetric
mistuning patterns are studied. For unsymmetric mistuning patterns, positions of
mistuning may or may not be symmetric, but the percentage of mistuning is different
among them. The color deviation in the mistuned rectangular array at the center of
Fig. 2d corresponds to different lengths of mistuned harvesters.
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4 Results and Discussions

In this section, different results and observations from the numerical simulations
are discussed. Unless otherwise mentioned, ka = 2 N/m and kt = 0.02 N-m/rad
(Table 1).

4.1 Response of the System to Harmonic Excitation

For each type of mistuning pattern, simulations are ran for different positions
and values of mistuning. These simulations are done for all types of mistuning
patterns mentioned in Sect. 3. Harmonic excitation sweep is carried out from 0.8*
(natural frequency of tuned individual harvester) to 1.2* (natural frequency of tuned
individual harvester) for each of the mistuning pattern. From these sweeps, time
histories of few harvesters at certain frequencies are shown in Fig. 3 to depict that
the system is operating in nonlinear zone.

4.2 Power and Peak Power Plots

Different power plots showing the variation of maximum, minimum, and average
power of individual harvesters and total power for each mistuning pattern for the
entire frequency sweep are plotted. Peak power coming from each harvester is
plotted with color code representing the distribution of peak power among the
harvesters.

Figure 4 shows the power plots for one of rectangular mistuning pattern where
the center 4 x 4 array is mistuned as —2%, and Fig. 5 represents its corresponding
peak power plot.

Table 1 Values of parameters used in the simulations

Parameter Value

Axial spring stiffness (ka) 2 N/m
Torsional spring stiffness (kt) 0.02 N-m/rad
Offset of axial spring (a) 0.02 m
Excitation amplitude (x_g) 2.3 mm
Distance between coil and magnet (D) 3 mm
Mechanical damping constant (c) 0.004 N-s/m
Magnetic flux density (B) 0.2094 T
Coil length (L) 10 m

Coil resistance (R) 120 @

Tuned pendulum length (1), Mass of each pendulum () 0.06 m13 g
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Fig. 4 Power plots for 4 x 4 mistuning in the center of 10 x 10 harvesters array

4.3 Observations in Peak Power Plots

e For symmetric mistuning patterns, the power FRFs of harvesters which are
symmetric about rows’ center line in peak power graph were found to be
matching. So, the peak powers are also matching. These observations can be
seen in the Figs. 6 and 7 for a few types of symmetric mistuning pattern.
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Fig. 5 Peak power plot for (4,4)-(4,7),(5,4)-(5,7),(6,4)-(6,7),(7,4)-(7,7) with 0.98"tuned. Ka=2,Kt=0.0020°
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Fig. 6 Peak power distribution of (a) middle harvesters (center four harvesters) mistuned by —2%
and (b) diagonal harvesters mistuned as —5%

For the unsymmetric mistuning pattern, the power FRFs of harvesters which are
not symmetric about rows’ center line in peak power graph were found to be not
matching. This can be seen in the Fig. 8 for a particular type of unsymmetric
mistuning pattern.

The time histories of symmetric harvesters along rows’ center line for few
mistuning patterns are showing frequency sync or almost frequency sync or
complete sync at close to natural frequencies for visibly color matching of
symmetric harvesters in peak power plot. This can be seen in Fig. 9 where
frequencies or time scales were matching for few of the harvesters.

For all mistuning patterns, given ka = 2 N/m, and for certain values of kt,
energy is getting concentrated in some local regions. For all mistuning patterns,
at ka = 2 N/m and kt = 0.02 N-m/rad, maximum peaks and close to maximum



262

o (24)

*

5
57x10 °
®
4.5
4r ®
@ o
35 ®
= 3r
B
= ®
22.5 ®
5
o, .
15 %®
@&
&,
1 ®
s ©
R NN
051 ®
0 . . . N

0.8 0.85 0.9 0.95 1 1.05

Frequency ratio (£2)

11

1.15

12

M. R. A. Vali and A. S. Faruque

o x10°
® o
181 ®
@
16 ¢
%®
L @
1.4 °
®
~12r @
2
s 1 @
H L.13
2 0.8 :
. o g
@8
0.6 @
@ ®
& @
04 3
o
02
0 n . . . . . 1
08 08 09 095 1 1.05 1.1 115 1.2

Frequency ratio (£2)

Fig. 7 Power FRFs for a set of symmetric harvesters for (a) middle harvesters (center four
harvesters) mistuned by —2% and (b) diagonal harvesters mistuned as —5%
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peak are observed in the first two rows and last two rows, i.e., energy is getting
concentrated in the first two rows and last two rows. This is shown in Fig. 10. This
phenomenon of localization of energy can be made use by utilizing high-energy
concentration pendulums as harvesters and remaining as oscillators to save the
material for coils. So, in Fig. 10, the first two rows and last two rows can be
harvesters, and the remaining pendulums can be oscillators.
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Fig. 10 Peak power distribution of (a) one of unsymmetric mistuning patterns (b) Peak power
plots for 4 x 4 mistuning as —2% in the center of 10 x 10 harvesters array

4.4 Bandwidths Observed in Different Mistuning Patterns

Bandwidths are also calculated for these mistuning patterns, and from those, max-
imum bandwidth giving pattern for the required targeted power of 900 microwatts
is identified. The maximum bandwidth pattern is middle two rows and columns
mistuned as —2%.
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4.5 Optimization of Bandwidth

The maximum bandwidth pattern is middle two rows and columns mistuned as
—2%. For this mistuning pattern, the variation in bandwidth with change in values
of stiffness is plotted. Torsional stiffness is varied from 0 to 0.1 N-m/rad, and axial
stiffness is varied from O to 30 N/m. The distribution of nondimensional bandwidth
(bandwidth/tuned pendulum natural frequency) at 900 mW can be seen in Fig. 11.
From all these stiffness pairs, the stiffness pairs giving maximum bandwidth are
identified. Optimum stiffness pairs are identified as kt = 0 N-m/rad and ka = 0 N/m.
These pairs of stiffness, i.e., uncoupled configuration, gives maximum bandwidth.

5 Conclusions

The system under different patterns of mistuning is studied. Different observations
from them are noted. Energy localization phenomenon is observed which can be
used to save the material by removing electric coils below the harvesters which
are giving less power. Later, the bandwidth for a mistuning pattern giving largest
value of bandwidth among mistuning patterns is optimized for stiffness values, and
it came out to be uncoupled configuration, which further reduces material used in
form of springs.
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Generalized Energy Balanced Method )
for a Combined Nonlinear Vibration e
Absorber Energy Harvester with

Nonlinear Energy Sink

B. Santhosh, I. R. Praveenkrishna, and Aalokeparno Dhar

1 Introduction

Enhancing the performance of physical system considering nonlinearities leads
to new design concepts in vibration absorption, vibration isolation, and energy
harvesting [1]. Linear vibration absorbers without or with damping are effectively
used to reduce the vibrations of primary systems in different applications [2, 3].
Nonlinear vibration absorbers are also effectively used in vibration attenuation.
Nonlinear energy sink (NES) is a special type of absorber which has an essentially
nonlinear element, a small mass and a damper is used in number of applications
to effectively channelize the energy from the primary system [4]. NES facilitates
irreversible transfer of energy through the process of targeted energy transfer (TET).
Dynamics of NES based absorber systems were investigated using numerical and
analytical methods to understand the energy transfer in such systems [5].

Energy harvesting from vibrations can be used in low power devices like sensors
used in remote locations and in condition monitoring and bio-applications [6].
Linear vibration energy harvesters are more effective in a region close to the
resonance. It is understood that nonlinear vibration energy harvesters do not have a
preferential natural frequency and thus effective over a larger band of excitation
frequencies [7]. Piezoelectric transduction mechanism is found to be the most
effective way for the conversion of mechanical energy to electrical energy. Attempts
were made in a direction to combine the vibration absorber and energy harvester
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system to develop a multifunctional energy harvesting system [8—10]. In this case,
the vibrational energy transferred to the absorber can be harvested using a suitable
transduction mechanism.

This work considers a combined vibration absorber energy harvester system
and investigated using numerical and semi-analytical methods. The vibration
absorber is used in as NES, and it is combined with a piezoelectric transduction
mechanism for energy harvesting. The primary system is excited harmonically. The
non-dimensional equations of motion are derived and the generalized harmonic
energy balance method (HEBM) [11] is used along with numerical integration and
conventional harmonic balance method (HBM) to investigate the dynamics of the
system through phase plots, time history, and frequency response. The paper is
organized as follows. The mathematical model is discussed in Sect. 2. The procedure
involved in the formulation of HEBM is explained in Sect. 3. Important results based
on HEBM, numerical integration, and HBM are discussed in Sect. 4. Conclusions
and references are provided at the end.

2 Mathematical Model

The model of a harmonically excited linear primary system with nonlinear energy
sink (NES) absorber and piezoelectric energy harvester is shown in Fig. 1. The
primary linear system is with mass m, stiffness ki, and damping c;. It is excited
harmonically with a forcing function F(t) = Fpcoswt with Fy and w as the
amplitude and frequency of the external excitation. The NES system consists of a
small mass m,, an essentially nonlinear stiffness element k»,,;, and viscous damping
¢2. The piezoelectric transduction mechanism attached to the NES is characterized
by its capacitance C, and internal resistance R;. The response of the primary and
NES systems is given by the coordinates X and X5, and the voltage generated
across the resistance is given by V. The equation of motion for the combined
vibration absorber energy harvester system in dimensional form is given by

mi X1 +c1 X1+ ki X1 4 ca(Xy — X2) + ko (X1 — X2)° = Focoswt (1)

.. . . 3
myXs — c2(X1 — X2) — ko (X1 — X2)° = ©1V =0 2
. \% .
CpV+—+62X,=0 3)
R

Equation of motion can be expressed in the non-dimensional form by assuming the
-di i = X = X . i} = _<a =
non-dimensional paramiters, X = g ;cz = X”,X” = él L8 = rnllwnl’;z =
(5} = m — Kom 2 =t 4y - oy, VvV .- __1 =

mlwrﬂ"u =2 = X”’XO - /’ﬂXsr’)L wnlv Vo"E Cplenl’X

01 Vo — Xy

i = |k
hie K = T with Vp as a reference voltage and w,| = e The order of

primes denotes the differentiation with the non-dimensional time T = w, 7. In the
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Fig. 1 Harmonically excited
primary system with NES X
absorber and piezoelectric )
energy harvester 2

X, F

next section, the computational methods used for the solution of the system are
explained.

3 Generalized Harmonic Energy Balance Method

In this section, the generalized harmonic energy balance method (HEBM) used to
find the periodic solutions of externally excited multi-degree of freedom nonlinear
system is explained. The equation of motion for a general multi-degree of freedom
system is given by

M5 + Cx + Kx + Fy = Fext )

where M, C, and K are the linear mass, damping, and stiffness matrices, X is the
displacement vector, Fyy is the vector of nonlinear functions, and Fey; is the vector
of external excitation. The solution and its derivatives are expressed in a truncated
Fourier series as

X = XTII (5)
%X = oX'n (6)
%= ’X'n" (7

where n(7) is the vector of Fourier functions with t as the non-dimensional time and
X is the Fourier coefficient vector. Applying the approximation and time scaling, the
equation of motion can be expressed as
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= (szXTD(z)T + XDV L KXTDOT 4 F, DO FextTD(O)T> n
®)

where D© = ﬁ f02” mnTdr =1, D0 = ﬁ fozﬂ n'n’dr, D? = L f()z” nnTdz.
Applying Galerkin procedure

1 2
RHBM = — rdt (9)
2 0
Rypy = o*MX™D?’ 4 0cX™D®" L KXT+FL —FL,  (10)
The energy equation can be obtained as
y7 (M& + Cx + Kx 4 Fy — Fext) =0 (11)

where y is the vector containing functions of x, X. Using the Fourier approximation,
the equation of motion can now be expressed as

rp=nlY (wZMXTD@)T +oCcX DV 4 KXTDO7 L F, /DO _ FextTD(O)T> n

12)
Applying the Galerkin procedure to the new residue
1 2
Rp=— redt (13)
2w 0

On combining the residues for original equation of motion r and the residue for the
energy equation rg, the new residue can be expressed as

Ruesm = |:RHBMi| (14)
Rg

Minimizing the above residue using Galerkin procedure and subsequent application

of Newton Raphson method to the resulting nonlinear equations results in actual

Fourier coefficients. This method can be easily programmed and can be imple-

mented with less computational effort.

4 Results and Discussions

In this section, the response of the combined vibration absorber harvester system
considered in this paper is investigated using the energy balanced method, numerical
integration, and conventional HBM.
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Fig. 2 Phase plane plots for (a) response of primary system (b) NES (c) voltage for A = 1

(a) (b) (c)

Fig. 3 Phase plane plots for (a) response of primary system (b) NES (c) voltage for A = 2

4.1 HEBM Results

The phase plane plot of the response for ¢ = ¢ = 0.01, u = 0.05, p = 0.25, x =
0.0467, k = 0.0515,¢ = 0.6501, A = 1, and Xo = 0.2 is obtained by HEBM and
is shown in Fig.2a—c. The phase plane plots for A = 2 and X( = 1 are shown
in Fig.3a—c. The HEBM results are found to match exactly with the numerical
integration (NI) and harmonic balance method (HBM).

4.2 Numerical Analysis

To get further insight into the vibration absorption capability of the NES, the
equations of motion are integrated numerically to understand the dynamics with
& = & = 00l,p = 025,40 = 0.05 x = 0.0467,« = 0.0515,¢ =
0.6501, Xg = 0.1, and A = 0.5. The time histories of the primary system amplitude,
NES amplitude, and voltage are shown in Fig. 4a, b. It is found that the amplitude
of the primary system is less compared to the NES. Energy transfer takes place
from the primary system to NES. The voltage generated also show substantial
amplitude. The dynamics is investigated close to the linear resonance of the system
by taking A = 1 and retained the other parameters the same. The time history of
the primary system response, NES, and the voltage obtained are shown in Fig. 5a, b.
NES performs better in this frequency region also, and the voltage generated also has
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Fig. 5 Time history of (a) response of primary system and NES (b) voltage for A = 1

substantial amplitude. The response of the NES is similar to the beat phenomenon
and is known as the strongly modulated response (SMR). The transfer of energy
from the primary system to NES takes place effectively when SMR is initiated [12].

4.3 Harmonic Balance Method for Frequency Response

In this section, the harmonic balance method (HBM) is used to find the periodic
solutions of the system considered in this paper. In HBM, the response and its
derivatives are assumed as a truncated Fourier series. The Fourier expressions are
substituted in the equation of motion to find the residual. The residual is made
orthogonal with respect to the basis function using the Galerkin procedure. This
process generates a set of algebraic equations which will be solved numerically to
find the unknown Fourier coefficients. There are variants of HBM like incremental
harmonic balance (IHBM) and Fourier—Galerkin—-Newton method (FGNM) which
are successfully used to find periodic solutions of systems with continuous and
discontinuous nonlinearities [13, 14]. HBM can be combined with a path tracing
algorithm to generate the frequency response plots. In this section, HBM along with
the arc length continuation method is used to obtain the frequency response plots
for the response of the primary system, NES, and voltage generated. Frequency
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Fig. 7 Frequency response (a) amplitude of primary system and NES (b) maximum amplitude of
voltage for Xo = 0.25

response plots are generated for three values of excitation amplitudes Xg =
0.1, 0.25, and 0.5 and are shown in Figs. 6, 7, and 8. All the other parameters are
retained as in the previous section.

The following observations were made with reference to the frequency response
plots. The nonlinear behavior of the system is evident from the response plots with
multiple solutions observed at different frequency ranges. The amplitude of NES is
larger compared to the primary system indicating that the energy transfer takes place
effectively in the system. The zoomed view of the multiple solution regions is shown
in the inset. The frequency response of the voltage generated is also given, which
shows substantial improvement with increase in the value of forcing amplitude.
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5 Conclusions

The dynamics of an NES based vibration absorption system with a piezoelectric
energy harvesting mechanism is investigated in this paper. The periodic solutions
of the combined system are found using the generalized harmonic energy balance
method. This is the first time that such a method is used to find the solution of
multifunctional energy harvesting systems. The method is found to be a computa-
tionally efficient way to investigate dynamics of such systems. The time histories
of the NES and primary system reveal the existence of strongly modulated response
(SMR), which facilitate effective energy transfer close to the resonant region of the
linear system. The frequency response plots obtained by harmonic balance method
in combination with a continuation technique show multiple solution regions and
also reveal the effectiveness of the NES in reducing the vibrations of the primary
system. The generalized energy balance method along with the numerical solution
and HBM is an effective tool for the analysis of multifunctional energy harvesting
systems.
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Nonlinear Reduced Order Modeling )
of a Buckled Piezoelectric Beam for e
Energy Harvesting

X. Q. Wang, Yabin Liao, and M. P. Mignolet

1 Introduction

Piezoelectric energy harvesting from ambient vibrations has attracted extensive
research interest as a potential solution to continuous and convenient energy supply
for consumer electronics, wireless sensors, portable health monitors, etc. Earlier
studies were focused on the harvesting of vibratory energy around a dominant
natural frequency. This linear energy harvester performs well when the ambient
vibration is narrow-banded close to the natural frequency but is less efficient
when the environmental vibration has a wide frequency spectrum. In recent years,
more and more research has been shifting to the utilization of nonlinear vibration
behaviors to broaden the effective bandwidth of energy harvesting [1]. One such
way is to use the buckling responses of the structure as a baseline configuration [2].

The study of nonlinear energy harvester motivated the development of efficient
computational methods for the coupled electromechanical analysis of nonlinear
energy harvesters. The technique of reduced order modeling appears to be an attrac-
tive one [3] since it significantly reduces the computational cost while essentially
preserving the accuracy of prediction. As a matter of fact, a nonintrusive reduced
order modeling methodology has been well developed for nonlinear geometric
vibration, see the review paper [4]. This method is particularly noteworthy since
the reduced order model is constructed using data from commercial finite element
software; hence, it is applicable to practical and complex configurations. The
method has been extended to include the thermal effects [5] and the piezoelectric
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(a) (b)

Fig. 1 The buckled piezoelectric beam for energy harvesting of [2]. (a) Beam configuration; (b)
finite element model

effects through the piezoelectric-thermal analogy [6] and is also used for strongly
nonlinear behavior such as the snap-through of curved structures [7, 8].

In this study, this nonintrusive reduced order modeling method is applied to the
buckled piezoelectric beam configuration for energy harvesting of [2], as shown
in Fig. la. The beam is subjected to an axial compressive force so that it would
operate in a buckling status and a dynamic random acceleration is simulated as
the source of energy harvesting. A finite element model of this beam structure is
firstly constructed with Nastran, then the structural reduced order model including
the piezoelectric effect is developed following the approach proposed in [6]. The
reduced order model is next validated against Nastran results of nonlinear static
and dynamic responses to the aforementioned load, then used to predict structural
vibrations for various axial forces and corresponding voltage output assuming an
open circuit.

2 Reduced Order Modeling of the Piezoelectric Beam

2.1 Finite Element Model

A finite element model of the piezoelectric beam was constructed with Nastran using
CQUAD4 shell elements, as shown in Fig. 1b.

The geometric and material properties of the beam are essentially the same as
those [2] listed in Table 1. These multilayer piezoelectric properties are defined
using the composite material card with the CQUAD4 shell element. The beam is
clamped at both ends, except for the right end which is free to move in the axial
direction.

The thermal analogy is invoked with Nastran to implement the piezoelectric
properties. This analogy is based on the similarity in the strain induced by the
piezoelectric and thermal effects. For the current beam model, considering the
piezoelectric material with direction 1 defined along the axial (X-) direction and
direction 3 defined along the transverse (Z-) direction, the normal strain in the 1-
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Table 1 Geometric and

i - Property Symbol | Value

material properties of the

beam Length Ly 55 mm
Width b 11 mm
Thickness of steel shim hy 0.1 mm
Thickness of piezo layer hp 0.08 mm
Density of steel shim Ps 7850 kg/m?
Density of piezo layer Pp 4000 kg/m?
Young’s modulus of steel shim | E 2.03e+11 Pa
Young’s modulus of piezo layer | E, 4.00e+10 Pa
Damping ratio ¢ 0.02
Coupling coefficient D3 —10 pC/N
Electrical permittivity 83T3 100 g9
Vacuum permittivity &0 8.854e-12 F/m

direction induced by the piezoelectric effect, i.e., €1, due to an applied electric field
in the 3-direction, E3, is given as

Ef) = ds B, (1)

where d3 is the piezoelectric coefficient. Assume that the electrical field is uniform

and given as E ;p) = V/hy, where V is the voltage across the PZT element (between
the electrodes on the top and bottom surfaces) and /£, is the thickness of the PZT.
Equation (1) can be rewritten as

EY) =ds1 - V/hy, @)

On the other hand, the thermal strain induced by a temperature change is given
as

ES =ay - (T — Twep) 3)

where o is the coefficient of thermal expansion, T the current temperature, and Tief
is the reference temperature.

Comparing Egs. (2) and (3) and setting Tr.r = 0 lead to the piezoelectric-thermal
analogy

T =V when a) = dgl/hp, “4)

that is, the piezoelectric effect can be equivalently modeled by a temperature change
when the thermal expansion coefficient is set according to Eq. (4).
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2.2 Reduced Order Modeling

Formulation. In the present nonlinear reduced order modeling approach, a set of
basis functions are constructed so that the nonlinear structural displacements of the
finite element model u(#), which are supposed to be well predicted by the developed
reduced order model, are expressed as

N
u®) =y g, )
n=1

where ¢,(f) is the time-dependent generalized coordinates and ¢ are the set of
basis functions. Noting that the nonlinear reduced order model is supposed to predict
structural responses in both transverse and inplane directions, the basis functions
should represent both with sufficient accuracy.

Assuming the material is linearly elastic and including the piezoelectric effect,
the constitutive equation can be written as

S = CynEy + e B (©6)

where S® is the second Piola-Kirchhoff stress tensor, E® is the Green strain
tensor related to the structural displacement, u, e;; is the electromechanical coupling
coefficients, and E(P) is the electric field vector.

The electric field can be expressed as, in terms of a set of electric basis functions

NP
EP®) =Y 50 o0 %)

m=1

Substituting Eqgs. (5) and (7) into Eq. (6) and using the Galerkin approach, the
governing equation of the nonlinear reduced order model is obtained as

. . 1 2 3
Mijj (1) + Dijgj (1) + K q;(0) + K3 q;(0a0) + K3 a; 0qi()g, (1)
— KD ai0nd () = Fi@) + FY ol o),
8)

i,j=1,2,...,N; I=j,j+1,...,N; p=Ll+1,...,N; and m=1,2,..., Ny,

where M;; denotes the elements of the mass matrix, Kl.(j]), Kl.(]z[), and Ki(;l; are
() (p)

ijm? and F;, " are the elec-
tromechanical coupling coefficients, and F; = QZT F is the modal force associated

the linear, quadratic, and cubic stiffness coefficients, K
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with mode i. The damping matrix D;; is added to collectively represent various
energy dissipation mechanisms. One commonly used damping model, the Rayleigh
damping model, is adopted in this paper, defined as D;; = a M;; + 8 K i(jl),where
« and B are the Rayleigh damping coefficients. Summation over repeated indices is
implied here.

In nonintrusive reduced order models, the ROM matrices in Eq. (8) are identified
using data from commercial finite element software. The computation of the mass
and linear stiffness matrices is straightforward once their finite element counterparts
MTE) and KFP) are extracted from the finite element software, as the following

M=o"M™¢p and KV =0Tk e, 9)

The damping matrix can then be computed using the Rayleigh damping model.
The evaluation of the nonlinear stiffness coefficients, Ki(jz), and Ki(;l)p’ has to
proceed differently since the global nonlinear stiffness operator is typically not
computed/not available in a commercial finite element code. The evaluation is
carried out without electromechanical or thermal-structural coupling.

In one proposed approach, the displacement-force method [9, 10], a set of
designed static displacements are imposed to the structure, and the corresponding
nonlinear forces are obtained from the finite element code. They are then used to
compute the corresponding modal forces F;. Finally, imposing the same modal
displacements and modal forces to the ROM governing equation, Eq. (8), leads to
the conditions

1 2 3
K,-(,-) q;j + Kf,-l)qjqz + K,»(j,)quqqu = Fi, (10)

which can be used to determine the stiffness coefficients K i(j.zl) and K i(;l)p.

When the basis of a ROM is large, this displacement-force method requires a
large number of static solutions, i.e., O(N3/6). To resolve this issue, a method using
the tangent stiffness matrix denoted as KD in the identification has been developed
[11]. This displacement-K”) method relies on the availability of the tangent stiffness
matrix for each imposed displacement. Once this matrix has been obtained, it is
projected on the basis and then matched to its ROM counterpart of iu element given
by

dF;
0 = g [k + kD), + [KS)

3) (3)
Aqu iju iuj tjlu+K' I+Kiujl] q;41-

iu iju

(11)
Construction of the Current ROM. From the above formulation, it can be seen
that there remain two key issues in the nonlinear reduced order modeling: (a)
the construction of basis functions, and (b) the identification of electromechanical
coupling coefficients.
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(a) Construction of Basis Functions. The basis functions of the reduced order model
should account for both transverse and inplane displacements. For the present
beam structure, the following basis functions are included:

1. For the transverse displacements, linear modes of the structure are usually the
first choice. For the present beam structure, the first two symmetric “beam-
like” linear modes are taken as transverse basis functions since they are
dominant in transverse structural responses.

2. Noting that the beam buckles in the current study under the action of an axial
compressive force, the linear response of the beam to such an axial force,
normalized with respect to the mass matrix of the beam, is taken as the third
basis function. This basis function included only inplane displacements.

3. Finally, for the inplane displacements due to the nonlinear geometric effect
(membrane stretching), some “dual modes” are constructed, see [4] and
[5-9, 11, 12]. The dual modes are extracted from a set of nonlinear static
displacements which are the responses to the loadings that, in the linear
case, would induce the displacements along a single or combination of two
selected transverse basis functions. To this end, these loadings are generated
as the forces on the finite element mesh of the form

Efff) = KT I::f:()lij,y (g + gj) /2], (12)

where i and j are the indices of the two transverse basis functions (the case
i = j emulates the single basis function case). In this equation, a;;, s are a
set of scaling factors selected so that the corresponding structural response
spans a given range of levels. In this study, three combinations out of the
two transverse basis functions taken in (1), i.e., combo i — j = 1-1, 1-2,
and 2-2, are considered, and s spans 10 levels with the maximum transverse
displacement of about six thicknesses. Once these responses have been
obtained from Nastran, their transverse components are first removed by
making the displacements orthogonal to the two transverse basis functions.
Next, a proper orthogonal decomposition (POD) analysis is carried out and
dominant POD eigenvectors are retained as dual modes. For the current beam
structure, one dual mode is taken from each combination, and totally three
dual modes are constructed.

The final basis has six basis functions.
(b) Identification of Stiffness and Electromechanical Coupling Coefficients

The identification of electromechanical coupling coefficients is performed as
follows. For the K i(P) coefficients, the displacement-K(T) method is used with the

Jm
applied electric (temperature) field from each electric (thermal) mode, t,,(f)q_bif),
instead of the imposed displacement. The corresponding tangent stiffness matrix
is expressed as
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iu le

The coefficient KP) is then obtained as kP = [K.(.l) — K.(.T)] /r(p).

ijm ijm

For the F;,, ®) coefficients, the same electric field, T(p)¢(p) is applied to the Nastran
mesh with all degrees of freedom blocked. The correspondmg reaction forces of a
linear static solution are then output, from which the corresponding modal forces
F; are computed. They are related to the Fi(,fl) coefficients by F; = Fl.(,fl) t,ﬁp), from

which the coefficient Fl.(ri) is computed as Fl.(}:l) =F;/ t,,(lp ),

3 Results and Discussions

3.1 Validation Results

Critical Buckling Load and Modes. Firstly, a buckling analysis is carried out
using the constructed ROM. The predicted inplane critical buckling force is
P = —10.78 N (see Fig. 1a), matching very well the Nastran result of —10.75 N.
The agreement of the predicted buckling mode shape, not present here for brevity,
is also very good.

Nonlinear Static Responses. The constructed ROM is then validated against the
Nastran results for combined transverse and axial static forces. The transverse force
is equivalent to the amplitude of the force due to the base acceleration at the level of
3 g. The single axial compressive force P of Fig. 1a is also applied with increasing
magnitude so that the beam will buckle eventually.

Shown in Fig. 2 are the ROM predictions as compared to the Nastran results.
The agreement is very good for both the transverse (Z-) and the inplane (X-)
displacements until the beam starts to buckle.

It should be noted that the structural response in this region is very sensitive to
the key stiffness coefficients. In fact, shown in Fig. 2 are the predictions of two
ROMs, the first one with stiffness coefficients as identified and the other with the
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Fig. 2 Comparison of static displacements, ROM versus Nastran, as a function of axial force P.
(a) Transverse displacement, center point, and (b) Inplane displacement right end point
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Fig. 3 Comparison of the power spectral density (PSD) of the center displacement in dynamic
response. ROM versus Nastran. (a) Transverse (Z-direction); and (b) Inplane (X-direction)

key stiffness coefficient K 1(?)1 |» the cubic coefficient of linear mode 1, reduced by
a tiny amount, i.e., 0.035%. One can see that the response has a significant change
due to this very small adjustment. This has been discussed in [12], where a tuning
technique was developed to cope with this high sensitivity issue. In this study, the
original ROM is retained, and the tuning technique will be implemented in the
subsequent extensive studies.

Nonlinear Dynamic Responses. The constructed ROM is used to predict the
dynamic structural responses which are the source of energy harvesting. Spatially,
the dynamic load is the same as the previous static load, but temporally, the
transverse force has a random time-variant part, given as the bounded white noise
with the cutoff frequency of 1000 Hz.

Shown in Fig. 3 are the power spectral densities of transverse and inplane
displacements at the beam center point predicted by the ROM, as compared to
Nastran results, for three axial forces P = 0 N, —8.4 N, and —10.8 N. When the
axial force is zero, there is a clear frequency peak in the spectra. When the force is
increased to —8.4 N, the peak is shifted to the lower frequency due to the softening
effect of the axial force. When the force is further increased to —10.8 N, just above
the buckling force, the peak in the transverse PSD almost disappears, suggesting the
buckling is occurring. For the first two axial force levels, the ROM predictions match
Nastran results very well, and for the last axial force, the matching of the transverse
PSD is still good although that of the inplane PSD becomes a little worse. Based on
these results and the static ones of Fig. 2, it is concluded that the constructed ROM
is very good to excellent up to the buckling.

3.2 Electromechanical Analysis: Voltage Output with Open
Circuit

The time histories of the structural generalized coordinates obtained from the
constructed ROM are further used to predict the voltage output of the piezoelectric
layers. This is done by assuming an open-loop circuit and ignoring the piezoelectric
feedback effect on the structural vibration. Specifically, the formula derived in [6] is
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revised for the current uniform electric field, and the voltage output due to structural
vibration is then

Lo ®
V) = EK,'iji(t)‘Ij(t) + F,, qi(®)|/Cyp, (14)
where Ki(jp,zl and Fl.(};) are the electromechanical coupling coefficients in Eq. (8),

m = 1 corresponding to the uniform electric field, and C;, is the total electric capacity
of the piezoelectric patch. This effort is carried out for the dynamic base acceleration
of 3 g and a set of applied axial forces P.

Shown in Fig. 4 are the time histories of the beam center transverse displacement
and the output voltage for three representative axial forces, P = 0 N, —8.4 N, and
—10.8 N, as in Fig. 3. The time history plots clearly show that the buckling occurs
when the applied axial force exceeds the buckling threshold (P = —10.78 N) and
that the vibration magnitude and the corresponding output voltage are significantly
increased. The time variations of these two entities are very similar because the
effect of nonlinear coupling, dictated by K i(JPr)n, is, in fact, very small here.

Furthermore, the standard deviation (STD) of the time-variant voltage output is
computed and shown in Fig. 5. It can be seen that when the axial force is small and
well below the buckling value, the output voltage is small. However, when the force
is increased to approach the buckling threshold, the output voltage becomes larger,
and once the force exceeds the buckling value, there is a significant increase in the
output voltage. This is consistent with the observation in the literature [13].
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4 Summary

A nonlinear reduced order model (ROM) has been developed for a piezoelectric
energy harvesting beam structure subjected to a random base acceleration and an
axial compressive force for potential operation around the buckled configuration.
The nonintrusive ROM is constructed using a finite element model and data from
commercial software (Nastran). The ROM predictions are shown to match very well
for the critical buckling force and shape and the static and dynamic responses to
the aforementioned working load. Given the ROM computed structural responses
for a set of axial forces, the corresponding voltage outputs are also determined. It
is shown that the voltage is significantly increased when the beam is right on the
buckling configuration, which is consistent with the observation in the literature.
The developed ROM provides a computationally efficient tool for the analysis of
the piezoelectric energy harvester and can be further used in the fully coupled
electromechanical analysis.
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Part IV
MEMS/NEMS



Full-Order Frequency-Domain )
Simulations of Nonlinear Piezoelectric Sk for
MEMS

Andrea Opreni and Attilio Frangi

1 Introduction

Scanning micromirrors belong to the family of optical Micro-Electro-Mechanical
Systems (MEMS), i.e. MEMS that involve sensing or manipulating optical signals
on a very small size scale, using integrated mechanical, optical, and electrical
systems [1]. Successful applications range from consumer pico projectors to
holographic lenses [2].

Several actuation systems have been proposed in the past. In [3, 4] prototypes of
electrostatic micromirrors have been thoroughly analyzed, with particular empha-
sis on the phenomenon of parametric resonance which governs their dynamical
response. However, mainly due to the high level of voltage bias required to
control the device and to the strong nonlinearities in the response, the attention
has progressively shifted towards magnetic- [5] and piezo-actuation [6]. One of
the expected benefits is an enhanced linear behavior, even if the large rotations
experienced by the mirror generally prevent reaching a perfectly linear regime.

Focusing on piezoelectric actuation, this is achieved exploiting piezoelectric
materials as Lead-Zirconate Titanate (PZT) [7] or Aluminum Nitride [8], the former
being the preferred choice since it has large electromechanical coupling coefficients
[9].

Even if piezoelectric actuation develops higher forces compared to electrostatic
actuation at moderate voltages, the electric fields generated within thin piezoelectric
films reach values that deny the validity of the linearized theory of piezoelectric
materials [10]. Indeed, assuming a voltage bias of 10V, across a piezoelectric film
with a thickness of 1 pum, electric fields of the order of 107 V/m are generated within
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Fig. 1 Optical image of the device (a), schematic representation of the tested device (b), and
displacement field of the excited mode (c)

the material, hence electromechanical nonlinearities arise. Therefore, a complete
model for predicting the dynamic response of piezoelectric micromirrors should
account for two main types of nonlinearities: geometric and piezoelectric.

In the present work, a fully nonlinear model to describe the nonlinear dynamic
behavior of piezo MEMS subjected to finite transformations is detailed. The model
is an extension of the technique presented in [11, 12] and it aims at adding the effect
of large displacements of the piezoelectric films upon device actuation. Validation
of the model is performed on the device depicted in Fig. 1a. The full-order model is
derived using the finite element approximation of the differential equation that stems
from the approach in [11] for MEMS actuated with thin films of piezoelectrics, and
the resulting system of differential equations is solved using the Harmonic Balance
Method (HBM) to compute the steady dynamic response of the system.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
the nonlinear model for piezoelectric MEMS developed in [11, 12]. Next, in
Sect. 3 we provide a comprehensive description of the device and its experimental
characterization. In Sect. 4 we report the comparison between the proposed model
and the experimental data. At last, in Sect. 5 we summarize the outcomes the present
work.

2 Full-Order Nonlinear Piezoelectric Model and Numerical
Methods

We start our derivation from the principle of virtual power written in spatial
configuration for a mechanical system:

/put,~wd9+fa[u,p]:deQ=O Yw e C(0) (D
Q Q

where p is the density in spatial configuration, u is the displacement field, (-); is the
time derivative operator applied twice, o [u, p] is the Cauchy’s stress tensor, w is a
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suitable test function belonging to the space C(0), that is the space of functions that
vanish on the boundary where Dirichlet boundary conditions on the displacement
field are prescribed, €2 is the domain in spatial configuration, and V (-) is the spatial
gradient operator. Square brackets highlight that in the application at hand the stress
tensor is a function of both displacement vector u and polarization vector p.

In piezoelectric materials, in accordance with the Landau-Devonshire theory
of ferroelectrics [13], the polarization field induces inelastic stresses within the
material. Therefore, we operate an additive decomposition of o [u, p] in an elastic
term o¢[u], and an inelastic one o ”[p], that is o[u, p] = o¢[u] — o”[p]. This
allows rewriting Eq. (1) as:

f pu,;~wd§2+/ ae[u]:deﬂzfo”[p]:deQ YweCO ()
Q Q Q

We introduce the assumption that the orientation of the polarization field is not
affected by the motion of the system. This assumption is introduced since in MEMS
the piezoelectric patches used for actuation are placed in sections of the structure
that do not undergo large strains. Furthermore, we describe the system with respect
to reference configuration using the well known transformation derived from the
theory of finite elasticity:

/pou,,-wdszo+ S°u) : (FT Vow) dQ =
Q0 Qo

fS”[p]:(FTVOw)on Yw e C(0) 3)
Qo

where 2 is the domain in reference configuration, pg is the density of the material
in reference configuration, F is the deformation gradient, i.e. I+ Vou with I identity
tensor, S¢[u] is the elastic second Piola-Kirchhoff stress tensor, SP[u] is the inelastic
second Piola-Kirchhoff stress tensor, and Vy(-) is the gradient operator with respect
to reference configuration. The superscript (-)7 denotes the transpose operator.

The right-hand side of Eq.(3) is split in two terms, one that is constant with
respect to the displacement, and one that is linear with respect to the displacement:

S?[p]: (FTVow) dQ =/ SP[p]: Vow+ (Vou-SP[p]) : Vowdp (4)
Qo

The relation between inelastic stresses and polarization field is taken from the
Landau-Devonshire theory of ferroelectrics [13] assuming that the electrostrictive
effect dominates the electromechanical response of the piezoelectric material, as
usually happens in structures excited at finite voltage amplitudes:

SP[pl=C:Q: (p®p) &)
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where C is the fourth-order elasticity tensor, Q is the fourth-order tensor that collects
the electrostrictive coefficients of the piezoelectric material, and ® denotes the
tensor product.

Finally, we operate one last approximation on Eq. (3) derived from the analysis
reported in [11]. Piezoelectric patches exploited for actuation are thin, hence upon
application of a potential difference between the two sides of the patch the electric
field E is oriented along the thickness direction, that is E = E[V]e3, with E[V]
scalar proportional to the applied voltage V and e3 unit vector oriented along
the thickness direction. Since piezoelectric materials used in thin films have cubic
symmetry, with at least one symmetry axis oriented along the deposition direction,
we have p = P[V]e3, with P[V] scalar function of the applied voltage. We did
not include any dependence of the polarization on the displacement field since
in actuators applied voltages are so high that any dependence of the polarization
field on the displacement would be negligible. Furthermore, the polarization within
the film is assumed uniform over the patch. This last assumption is not true from
a physical standpoint since piezoelectric films are characterized by domains of
uniform polarization, yet from a macroscopic standpoint we can interpret P[V] as
the averaged value of the polarization within the film. Using these last assumptions,
and by restraining the integral of the right-hand side of Eq. (3) to the portion of the
domain where piezoelectric materials are defined, we simplify Eq. (3) to:

/ po Uy - wdQ +f S¢u] : (FT Vow) d =
o) o)

NP

ZP?[VJ[ A Vow+ (Vou - A) : Vowd<),  Yw € C(0) (6)

i=1 2,

where Q{)’ » denotes the ith-piezoelectric material domain, and N, is the number of
piezoelectric domains. Equation (6) highlights that the different actuation patches
of the system can be subjected to different actuation voltage histories. In cartesian
coordinates, the second-order tensor A has the form:

A=ai(e1®er) +aj(ex ®er) +az(e3 R ez) @)

with o1 and o3 material constants derived from the elasticity and the electrostrictive
tensors.

The formulation presented in Eq. (6) offers several interesting features that make
it appealing from a numerical and academic standpoint. First, the piezoelectric force
is nonlinear with respect to the polarization field. Second, the piezoelectric force is
made by two terms: the first term is constant with respect to the displacement, while
the second is linear with respect to the displacement itself. This last term implies
that since the polarization is a function of time, then the stiffness of the system
is modulated in time by the piezoelectric force. This aspect is not investigated in
the present work but it is subject of future studies. Furthermore, the piezoelectric
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force introduces integrals that are already implemented in most commercial finite
element software since the mathematical formulation of the piezoelectric force
coincides with the formulation used for prestressed structures. Finally, since the
polarization field is interpreted as the average value of the polarization field within
the piezoelectric film, direct characterization of P[ V'] within the film can be operated
with simple experimental setups, as, for instance, a Sawyer-Tower circuit.

Numerical solution of Eq. (6) is performed using a finite element discretization
of the problem that leads to the following system of time-dependent coupled
differential equations:

N,

[MI{Uy/} + (FU)} = Y P2LV;] ({FP); + KP1,{U}) ()
i=1

where [M] is the mass matrix, {U;;} is the nodal acceleration vector, {U} is the nodal
displacement vector, {IF(U)} is the nonlinear internal force vector, and the right-
hand side defines the nodal piezoelectric forces {F”}; and stiffness [K”];. Rayleigh
damping proportional to the mass matrix is added to the system:

NP
(MI{U) + 5 D) + (F@) = 3 (FRVIE ) + E3(0) - ©)
i=1

where oy is the resonance frequency of the mode of interest and Q is the so-called
quality factor. The term (wo/ Q)[M] denotes the damping matrix [C].

2.1 Harmonic Balance Method

Solving Eq.(9) through direct time integration to compute the steady dynamic
response of the system would be prohibitively costly. Therefore, we exploit the
HBM. The displacement field {U} is expanded as Fourier series:

N
{U} = (U)o + Y_{U}2 cos (nwr) + {U}! sin (nor) (10)

n=1

with {U}o, {U}%, and {U}; unknowns, and N expansion order. The new problem is
formulated by substituting Eq. (10) in Eq. (9) and by imposing orthogonality with
the Fourier basis. This yields the following system of nonlinear algebraic equations:

1 27
- (nw)z[M]{IU}Z + no[CI{U}; + ;/ {F(U)}cos (nt)dt =
0

l%/zn [(PZ[V-]{FP}- +[KP]-{U})]cos (t)dt  Vn=1,...,N
7Ti=1 ) iLVi i i =1...,
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1 2
~ (1)’ MUY} — no[CHUY, + — / {F(U)} sin (n7) dt =
0

—Z/ PZ[V, Fp}i+[Kp]i{U})]sin(nr)dr Van=1,...,N

[Eor=t Z [P ao

where the change of variable T = wt was used.

The accuracy of the solution computed through the HBM is directly proportional
to the order of the expansion. Nevertheless, the number of unknowns of the problem
scales as 2N + 1, hence the computational cost for solving the problem dramatically
increases by increasing the expansion order. In this work, the expansion order was
chosen based on a simple consideration regarding the system motion. Assuming
a rotation 6 of the device around a fixed axis, the cartesian coordinates of the
displacement of a point on the mirror surface is expressed as:

uy =ro(cos (@) — 1) = ro (%9 + 0(93))
uy =résin (0) = ro <1 - 192 + 0(94)) (12)
v B 6

Therefore, we need to include terms at least up to N = 3 to reach an order of
accuracy greater or equal than O (63).

3 Device Overview and Characterization

The device under investigation is a piezoelectric micromirror developed by
STMicroelectronics™. A picture of the device is reported in Fig.la, and a
schematic representation of the device geometry is visible in Fig. 1b. The central
circular reflective surface of the device is attached to the substrate by means of two
torsional beams, while actuation is achieved by means of two pairs of trapezoidal
beams that act as mechanical hinges. The structure of the device is made by
monocrystalline silicon with the [110] orientation aligned with the torsional springs.
The sol-gel-deposited piezoelectric patches used for actuation are deposited on the
trapezoidal beams and they are highlighted in light purple in Fig. 1b. The patches
are deposited together with electrodes and passivation layers through the Petra
Thin-Film-Piezoelectric technology developed by STMicroelectronics™.
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The device is actuated at its first resonant mode, that is a rotation around an axis
parallel to e;. The displacement field of the torsional mode is reported in Fig. 1c.

To excite this mode, piezoelectric patches are organized in two actuation groups.
The two groups are labeled as 1 and 2 and they are highlighted by the markers in
Fig. 1b. During actuation, the voltage laws applied to the patches groups are Vi (¢) =
Vo/2)(1 + cos (wt)) and Va(t) = (Vo /2)(1 — cos (wt)).

3.1 Frequency Response Measurements

The Frequency Response Function (FRF) of the device was experimentally deter-
mined from the opening angle. Its characterization was performed by measuring
the deflection of a laser beam incident on the device. The experimental apparatus is
reported in Fig.2a. The actuation signal was produced by the function generator
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Fig. 2 Optical setup used to characterize the FRFs of the device (a), measured FRFs (b),
polarization measurements setup (c¢), and measured polarization curves (d)
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“Agilent 33521A”. A He-Ne laser was used to measure the rotation angle. The
device was mounted on an optical alignment bench to provide a 45° laser beam
incidence and a perpendicular projection of the reflected beam on the millimetric
target. The resonant movement of the mirror spanned a segment that was acquired
by a camera and processed using LabView™.

The FRF of the device is reported in Fig.2b, where the maximum tilting
angle for a given frequency is reported. The frequency axis is normalized by the
eigenfrequency of the torsional mode. As highlighted in the chart, the micromirror
shows hardening behavior with formation of an unstable branch for Vj equal to
20 V. Only stable branches were measured during the experiment since the data
were collected under frequency control.

3.2 Piezoelectric Film Measurements

The devices were actuated using a prescribed potential law, yet the model reported
in Eq. (6) requires the polarization field within the patches P[V]. Its value can be
either computed using numerical simulations of the film microstructure, or it can
be experimentally measured. In this work we chose the second technique, i.e. we
experimentally characterized the polarization history of the piezoelectric film. This
was performed by resorting to a Sawyer-Tower circuit. The experimental setup is
shown in Fig. 2c. The experimental test was performed by applying first a constant
potential equal to Vj to the piezoelectric patches for 5 min. Then, five bipolar and
five unipolar cycles were applied to the patches. Bipolar cycles follow the law
V(t) = Vpcos(wt), while unipolar potential cycles are prescribed as V(t) =
(Vo/2)(1 4 cos (wt)). Only data corresponding to the last unipolar cycle were
collected. The P[V] curves are reported in Fig. 2d. We remark the nonlinear response
of the piezoelectric patches with respect to the applied voltage, as highlighted by the
hysteresis of the polarization curves.

4 Results

Numerical simulations are performed by solving Eq.(11) for two Vj values: 15
and 20 V. For each voltage value, the corresponding polarization history P[V ()] is
expressed as a function of time and fed to the model to compute the corresponding
piezoelectric force. This approach is based on the assumption that the polarization
of the patches is not affected by the frequency of excitation, that is reasonable for
devices working in the range of tens of kilohertz.

The damping in the model is calibrated from experimental data using the
relation provided in equation 14 of the work by Davis [14] for each Vj value
under the assumption of linear damping, as the one adopted in the present work.
Measured quality factors are collected in Table 1. Regarding constitutive models,
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Table 1 Quality factor values computed from experimental data

Vo[V] 15 20
Ql-] 133.1 104.1
15.0 24
a) * 15V Experimental b} * 20V Experimental
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Fig. 3 Comparison between numerical and experimental FRFs

all materials are treated with a Saint-Venant Kirchhoff model. The monocrystalline
silicon mechanical parameters are taken from the work by Hopcroft [15], while PZT
patches are modeled as isotropic with a Young’s modulus of 64 GPa and a Poisson’s
ration of 0.34. Lastly, the electrostrictive coefficients of the PZT are taken from the
work by Haun [7].

We developed a harmonic balance finite element code to solve the proposed
model. The resulting solution of the numerical model is compared with the
experimental data for the two V values in Fig. 3. Figure 3a shows a mild hardening
response, while Fig.3b shows for both numerical and experimental data the
formation of an unstable branch. For both actuation voltages the piezoelectric
model predicts the correct actuation force, as highlighted by the excellent agreement
between numerical and experimental data far from the resonance peak. Overall, the
numerical analyses accurately reproduce the nonlinear response of the device for
both excitation voltages.

5 Conclusions

In the present work we extended the thin piezoelectric film model presented in
[11, 12] to handle the large displacements the piezoelectric patches are subjected
to during device actuation. The model is developed starting from the conservation
of linear momentum and from the theory of ferroelectrics developed by Landau-
Devonshire. The model embeds both geometric nonlinearities caused by the finite
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rotation amplitudes of the structure, and material nonlinearities induced by excita-
tion of the piezoelectric material at high electric potentials.

The model is then applied to study a piezoelectric scanning micromirror excited
at large voltages and consequently at large rotation amplitudes. Solution of the
models is performed using the HBM for direct computation of the steady dynamic
response of the system. The results of the analyses show that the proposed technique
efficiently predicts the nonlinear dynamic response of the device, hence it proves
reliable and efficient for modeling piezo MEMS.

Acknowledgments The authors express their gratitude towards STMicroelectronics™ for the
device exploited for this study.
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Global Analysis and Experimental )
Dynamics of the 2:1 Internal Resonance i
in the Higher-Order Modes of a MEMS
Microbeam

Laura Ruzziconi, Nizar Jaber, Lakshmoji Kosuru, Mohammed L. Bellaredj,
and Mohammad 1. Younis

1 Introduction

In micro and nano-electromechanical systems, nonlinear phenomena are extensively
investigated to be implemented in novel devices and satisfy increasingly more
sophisticated requirements [1]. Ruzziconi et al. [2] acquire extensive experimental
data of MEMS devices and compare the experimental response with the simulated
dynamical integrity charts. Kacem et al. [3] examine the problem of overcoming
the limitations of nano-mechanical resonators and, to this extent, make use of
simultaneous resonance. Alcheikh et al. [4] fabricate curved resonators and track
multiple modes of vibration, which are used to develop resonant pressure sensors
of high sensitivity. Settimi and Rega [5] explore the feasibility of different control
techniques for controlling the dynamics of a cantilever microbeam used for atomic
force microscopy. Medina et al. [6] consider curved bistable microbeams exhibiting
latching phenomenon and demonstrate dynamic releases as the beam is subjected
to transverse loading. Jaber et al. [7] release a smart switch via the fabrication of a
resonant gas sensor, which presents metal-organic frameworks coating. Bassinello
et al. [8] explore the possibility of driving a MEMS resonator in the nonlinear
regime and exhibit both chaotic and periodic motion. Kumar et al. [9] make use
of the dynamic transitions across saddle-node bifurcations to develop an alternative
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sensing approach. Alneamy et al. [10] present an electrostatic micro-tweezers based
on the multistability related to the snap-through phenomenon. Lenci and Rega [11]
propose a control method for increasing the operational range of a MEMS device,
suggesting to shift the safe basin erosion toward excitations of higher amplitudes.
Hafiz et al. [12] consider an arch resonator and apply the nonlinearity arising in the
response to develop mechanical memory operation.

Different vibration modes may exhibit nonlinear interactions, which are raising
increasing interest in the research community due to the variety of their possible
applications [13, 14]. Yang and Towfighian [15] take advantage of the internal
resonance to develop a nonlinear energy harvester. Internal resonances are analyzed
in Vyas et al. [16] between flexural-torsional modes of a microresonator, in Potekin
et al. [17] in multifrequency atomic force microscopy, in Nathamgari et al. [18]
in a nanoresonator, where multiple internal resonances are detected. In magnetic
resonance force microscopy, Hacker and Gottlieb [19] address the mechanism
of energy transfer related to the two-to-one internal resonance. Kirkendall et al.
[20] analyze the internal resonance in a quartz crystal resonator at large forcing
amplitudes. Daqaq et al. [21] investigate the internal resonance in a micromirror.
Simulations are reported in Ouakad et al. [22] for internal resonances between
symmetric and antisymmetric modes of MEMS with half-electrode actuation.
Sarrafan et al. [23] fabricate a nonlinear rate microsensor based on the internal
resonance phenomenon. Hajjaj et al. [24] tune the electrothermal voltage in MEMS
arches in order to experimentally excite different internal resonances. Ruzziconi et
al. [25] explore the coexistence of attractors at internal resonance and the related
nonlinearities in the experimental dynamics of a MEMS.

This study considers a MEMS device electrically actuated, where the third-mode
dynamics exhibit internal resonance with fifth mode. Tracking each single branch,
the main attractors are examined, up to final disappearance. Simulations and data are
compared. We analyze the bifurcational behavior related to the internal resonance
activation, and we alert that this may actually shrink the operational range.

This paper is organized as follows. In Sect. 2, we report on the forward and the
backward frequency sweeps experimentally acquired, and we analyze the numerical
simulations developed via shooting technique. Section 3 investigates the activation
of the 2:1 internal resonance by performing sections of basins of attraction. Section
4 summarizes the main conclusions.

2 Experimental 2:1 Internal Resonance

2.1 MEMS Device

An optical image showing the microbeam-based MEMS device considered in the
present work is reported in Fig. 1. The microbeam has a length of 400 pwm. It is
clamped-clamped and presents rectangular cross section. The width is 50 pm. To



Global Analysis and Experimental Dynamics of the 2:1 Internal Resonance. . . 303

Fig. 1 MEMS device

excite both symmetric and antisymmetric modes, the lower electrode covers half of
the length of the microbeam. The device is electrically actuated, and the separation
gap is 2.5 pm.

The first (first symmetric) natural frequency occurs at fi = 145.2 kHz, the
second (first antisymmetric) at f> = 314.8 kHz, the third (second symmetric) at
f3 = 526.6 kHz, the fourth (second antisymmetric) at f4 = 787 kHz, and the fifth
(third symmetric) at f5 = 1105 kHz.

2.2 Experimental and Simulated Response

We analyze the experimental behavior at the third-mode dynamics, for
Vac = 21.5 V. In Fig. 2a, we show the frequency response diagram, where the
maximum oscillation amplitude versus the driving frequency is reported, while in
Fig. 2b, we show the FFT diagram, which reports the corresponding FFT amplitude.
The device exhibits hardening bending.

As forward sweeping, the resonant branch Py¢s progressively raises the oscillation
amplitude up to about 2 = 573.5 kHz. After that, we can observe the activation of
the 2:1 internal resonance with the fifth mode. This phenomenon induces a visible
change in the oscillation amplitude, which continues up to the disappearance of
the attractor occurring at about 2 = 589.7 kHz. In the following, this second part of
the resonant branch where the 2:1 internal resonance is taking place is denoted Siyes.
Analyzing the FFT diagram, along this range, the third mode saturates and performs
a practically constant plateau, while the dynamics of the fifth mode progressively
raise, still exhibiting hardening bending. The amplitude gradually reached by the
fifth mode component is rather elevated, although its contribution remains smaller
than the third mode one.
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Fig. 2 Experimental dynamics at Vac = 21.5 V, with Vpc = 30 V. (a) Frequency response
diagram. (b) FFT diagram. Scale of response frequency for the fifth mode is shown above the
corresponding curve

As backward sweeping, we can see the nonresonant branch Pponres, Which, at
about 2 = 530.5 kHz, performs a saddle-node bifurcation after which it disappears
and the dynamics jump to the resonant branch P.s. Also, the nonresonant branch
is involved in the 2:1 internal resonance. In fact, at about Q2 = 554 kHz, the
experimental data show the nonresonant branch evolving into resonant dynamics
(S2res) and nonresonant ones (Soponres)- This activation involves a narrow frequency
range, 2 = [552.8; 555.0] kHz. Since only the backward sweep is acquired for the
nonresonant branch, we have no information about the experimental length of Sos.

It is worth noting that the 2:1 internal resonance is activated along the nonres-
onant branch Pponres at about half of the value of the fifth-mode natural frequency.
Conversely, the activation in the resonant branch Py is shifted and takes place at
higher frequencies, which is related to the nonlinearities of the system.

To simulate the experimental behavior, we derive a reduced-order model. This is
based on the Galerkin technique, where 2 d.o.f. are considered to take into account
both the third and the fifth mode (Appendix).

The simulated frequency response diagram is shown in Fig. 3a, and the simulated
FFT diagram is in Fig. 3b. To detect the periodic orbits and their stability,
these results are obtained via self-developed codes based on shooting technique
and Floquet theory [26]. Simulations detect all the main features arising in the
experimental data. We can observe the activation of the 2:1 internal resonance along
both the resonant branch and the nonresonant one. The theoretical results alert on
the coexistence of additional attractors. There is the novel Pr.s, which appears by
saddle-node bifurcation after the 2:1 internal resonance activation along P and
shares very similar features with this branch. There is Siresph, Which similarly
appears at about the same range by saddle-node bifurcation, and its development
presents similar aspects to Syres, except for a phase shift between the coupling modes
[27]. Overall, close is the correspondence between simulations and experimental
data.
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Fig. 3 Numerical simulations at Voc =21.5 'V, with Vpc = 30 V. (a) Frequency response diagram.
(b) FFT diagram

3 Basins of Attraction

We focus on the progression of the basins of attraction at the activation of the 2:1
internal resonance. We mainly investigate the basin of Sy, of which we analyze
its metamorphoses along the fifth-mode plane (u3, u4), as increasing the driving
frequency. The basin of this attractor along this plane is computed by considering as
initial conditions along the third-mode plane the ones of its Poincaré map [28]. All
simulations are developed via long-time integration.

The scenario at 2 = 580 kHz, i.e., soon after the 2:1 internal resonance
activation, is reported in Fig. 4a. The basin of Sy (yellow) is close to the one
of Stnonres, 1.€., the novel Py (blue). These basins are spiraling around each other,
and both of them are provided with an evident compact core, which suggests that
both these attractors may be safely operated under realistic conditions [1]. We can
observe the appearance of the basin of Sires-ph (pink), which develops close to the
compact core of the novel Ps. Although this section of attractor basins is soon after
its appearance by saddle-node bifurcation, its basin is clearly evident, despite being
smaller than the others, denoting that the basin of this attractor is rapidly enlarging
after its appearance. The basins of all these three attractors jointly extend for a large
part of the reported phase space. This area is about the same area that previously
was of the basin of P, before the 2:1 internal resonance activation. Outside this
area, the phase space is mainly covered by the basin of Pponres (green), although this
is tangled with the basins of the other attractors.

As increasing the driving frequency, the region formed by the aforementioned
three basins progressively widens. The attractor-basin scenario around Sy, at
€ = 590 kHz is reported in Fig. 4b. The basin of Sirs (yellow) is progressively
shifted toward the right-hand side, while the basin of Sires-ph (pink) toward the
opposite direction. The shape of these basins appears very similar, and their
wideness is increased. In the central part of the phase space, there is the basin of
the novel P (blue), which progressively widens. A minor attractor (gray) appears,
whose basin presents two main disconnected parts. Even if the three main basins



306 L. Ruzziconi et al.

60 60

40

20

Veloeity
Veloeity

=20

-40 4 40

-6 - -6}
015 010 005 000 005 010 015 005 000 005 000 005 000 015

(a) Displacement (b) Displacement

Fig. 4 Attractor basins at 2:1 internal resonance, at Vac = 21.5 V, with Vpc = 30 V. The figure
shows the scenario around Sjyes, assuming the fifth-mode plane. The basins of Sjres, novel Preg,
S1res-ph» and Phonres are yellow, blue, pink, and green, respectively. The basin of a minor attractor
is gray, and the escape is white. The Poincaré map of S} is in green asterisk. (a) 2 = 580 kHz;
(b) Q =590 kHz

are still close to each other, their compact cores are progressively separated by non-
compact parts of their own basins.

Up to about the values of Q2 previously considered, the initial conditions of
Sires-ph and of the novel Pres in the third mode plane are about close to the ones
of Sires; thus, the attractor-basin scenario drawn around this attractor in the present
plane is about similar to the one drawn around the other attractors (not reported).
As further increasing €2, instead, differences become more evident. We continue to
analyze sections centered at Syres.

At Q = 625 kHz in Fig. 5a, the three basins are no further close to each other.
The basin of Syres (yellow) and the basin of Sires-ph (pink) are increasingly located
toward the right- and the left-hand side of the present section of the phase space,
respectively. From this section, we can observe only two main compact portions of
the basin of the novel Py (blue). The central part of the section is covered by the
basin of Pponres (green), which further spans not only the outer region of the phase
space section but also the inner one, denoting wide robustness for this attractor. All
these aspects become further evident as increasing €2, Fig. 5b.

4 Conclusions

We have analyzed a microbeam-based MEMS device exhibiting internal reso-
nance in the higher-order modes, in particular between the third and fifth modes.
Experimental data and numerical simulations have been performed, which have
emphasized the interesting dynamics induced by the 2:1 internal resonance. We have
observed the coexistence of different attractors undergoing qualitatively different
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Fig. 5 Attractor basins at 2:1 internal resonance, at Vac = 21.5 V, with Vpc = 30 V. Scenario
around Sjps, in the fifth-mode plane. (a) 2 = 625 kHz; (b) 2 = 725 kHz

behaviors. The attractors involved in the 2:1 internal resonance present a non-
negligible safe basin, which remains moderately large and compact for a substantial
range of the driving parameters. This suggests the possibility of designing novel
devices deliberately making use of the internal resonance and of the concurrent
nonlinear features related to its activation. We have shown that the microbeam may
be operated actively at internal resonance, as confirmed by the data experimentally
acquired.

A.1 Appendix: Mechanical Model

We model the device as a parallel plate capacitor. The upper electrode is represented
by a clamped-clamped microbeam with a rectangular cross section and straight
configuration. To model the residual stresses, we assume a constant axial load P.
To represent the half-electrode configuration, only half of the microbeam length is
supposed to provide the electric contribution. The governing equation of motion is
[29]

i+ E0+0" 4o = —yF, (A.1)
with
11,2 Ve + Vac cos (£21))>
a=n—ka/0§(v)dz F = 1 G HE - H @)
(A2)

with H(z1) and H(z») unit step functions, which are used to define the length and the
position of the lower electrode. The considered nondimensional parameters are
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Table A.1 Coefficients of the model in Eq. (A.4)

Eq. ui u u% u% ulu% ugu%
Ist 28,904.48 0 137,150 74,958 388,510 81,656
2nd 0 127,495.86 27,219 1,040,200 224,870 388,510

ka = (EA)d*/(EJ) n= (EA)Lwg/(EJ) & =cL*/(EJT)

y = Seoes ALY/ (PEJ) T = /(0 ALY J(EJ) 2 =QT (A2

where L is length, A and J are respectively area and moment of inertia, p is the
material density, E is the effective Young’s modulus, ¢ is damping coefficient, d
is the capacitor gap, ¢ is dielectric constant in the free space, &; is the relative
permittivity of the gap space medium (air) with respect to the free space, and A is
the area overlapping between the electrodes.

The dynamics of the microbeam are approximated as v (z, 1) = Y /_ i (2)u; (1),
where ¢;(z) are the mode shapes under consideration (third and fifth). We derive the
reduced-order model by applying the Galerkin procedure, which yields the 2 d.o.f.
system [25]

ity + ciiy + @02u, — ka (ap1us + appu’ + apzuiu? + agausu?
n 1 2 2 1

¢n

_ 2005 - (A4)
=—yV/, —(1_¢1u1_¢2u2)2dz forn=1,2

where numerical integration is applied to evaluate the electric force term. Table A.1
reports the coefficients used in the model.
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Nonlinear Dynamics of NEMS/MEMS )
Elements in the Form of Beams Taking Qe
into Account the Temperature Field,

Radiation Exposure, Elastoplastic
Deformations

Irina Papkova (%), Tatiana Yakovleva (%), Anton Krysko ), and
Vadim Krysko

1 Introduction

In this work, we study the development problem of NEMS (nanoelectromechanical
systems) as a continuation of the microelectromechanical devices’ development
(MEMS). One of the MEMS evolutionary ways is to reduce their mechanical com-
ponents to nanoscale up to 10 nm and thereby decrease their mass, which leads to an
increase in their resonance frequencies. This leads to a NEMS energy consumption
decrease, a significant increase in the functionality of this kind of devices, and their
application field expansion when taking into account dynamic, thermal, noise, and
radiation effects, which entail the need to build mathematical models taking into
account the dependence of material properties on these influences.

In the proposed work, a mathematical model is built taking into account physical
nonlinearity, residual plastic deformations, and cyclic loading, and this is possible
when constructing a mathematical model, the dependence of material properties
on the deformations intensity, temperature, and radiation exposure; nanoeffects are
taken into account. This model type does not exist in the literature known to us,
since classical mechanics does not allow this.

The first attempt to construct an elasticity theory with an asymmetric stress tensor
belongs to the Cosserat brothers [1]. In their work, the Cosserat brothers developed
the elasticity theory, using a variational principle, which they called “L’Action
Euclidienne.” In the 1960s, the Cosserat brothers’ idea received the attention
of researchers, and many continuum theories were proposed. These theories can
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be divided into three classes: strain gradient theory, microelasticity theory, and
nonlocal elasticity theory.

These theories account for the size effect using scale material length parameters.

The moment theory proposed by Toupin [2], Mindlin [3], and Koiter [4]
considers only the rotation vector gradient in the strain energy, and therefore, only
two scale parameters of the material length are required. In a modified moment
theory proposed by Yang et al. [5], one scale parameter is used.

The microelasticity theory was proposed by Eringen [6] as a generalization of the
Cosserat brothers’ theory. The microelasticity theory made it possible to obtain the
microinertia conservation law, which was lacking in previous theories, and that did
not allow determining the change in body position during movement. For modeling
small-sized structures, several nonclassical higher-order continuum theories have
been developed, such as the moment theory [2, 3, 7-9].

After the first study of the microbeams, a static analysis based on the modified
moment theory of Park S.K. and Gao X.L. [10], many studies were carried out to
determine the static characteristics, stability, and vibrations for microbeams [11—
17]. Nonlinear effects in fine structural elements have been studied by Xia W.
[18], Ke L.L. [19], and Ghayes M.H. [20, 21] using the modified moment theory.
All the theories discussed in the introduction are based on the theory of elasticity.
The main problems in the literature known to us are devoted to the problem when
the elastic characteristics change according to a given law. This is a functionally
gradient theory [22-24]. In this paper, the material properties depend on the stress
intensity diagram of the strain intensity and, as a result, on the x, z coordinates
and temperature. Thus, the analysis theory of the elastic-plastic deformations is
constructed on the basis of the modified moment theory.

The relationship between deformations and stresses is given according to
experimental data and depends on temperature.

2 Problem Formulation

In the modified moment theory [5], the deformation potential energy II in an elastic
body occupying the region 2 = {0 <x <a; —%’ <y< %; —h<z< h} where a
is the beam length, b beam width, # beam thickness, and x, y, z Cartesian coordinates
(Fig. 1), at infinitesimal strains, is written in the form:

| fa (b2 ph
I = E/ / / (aijel-j —i—m,-jxij) dxdydz (D)
o) b2 —n

where o ; is the classical stress tensor, ¢;; strain tensor components, x;; components
of the symmetric curvature gradient tensor, and m;; the moment of higher orders.
Accepted b = 1.
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q

Fig. 1 Computational beam scheme

To build a mathematical model, the following hypotheses are accepted: The
Bernoulli-Euler hypothesis is used. The material is isotropic, but inhomogeneous; its
properties depend on the x, z coordinates, strain intensity e;j, temperature increment
0(x,z) = T(x,z) — To(x, 2), where T(x, z) is the specified temperature and Ty(x, z) the
initial temperature. The Duhamel-Neumann law is used. The deformation theory of
plasticity and the von Mises plasticity criterion are used. The deformation diagram
depends on temperature; the temperature field is determined from the solution of the
two-dimensional stationary heat equation. The nanostructure is taken into account
using the modified moment theory.

According to the modified moment theory, the symmetric curvature gradient
tensor components x; take the form

o 19%w @
X12 = 292
. . . 2
where w is deflection. The strain tensor components take the form e,, = —z%T’f +

a0 (x, 7), where o is the linear expansion of the material. Let’s write Hooke’s law:
Opy = (1+Eu()1(—1)2v)exx’ where E is the elasticity modulus and v Poisson’s ratio.

Taking into account (Eq. 2), we obtain for my: my, = —%%27'5. Loads
and moments, taking into account the modified moment theory, are as follows:
M, = f}ihoxxzdz; Yoy = f}ihmxydz. The parameter /, which appears at the
higher-order moment m;;, is an additional independent material length parameter
associated with the symmetric rotation gradient tensor. In this model, in addition
to the usual Lamé parameters, it is necessary to take into account one more scale
parameter of length [ [1]. This is a direct consequence of the fact that, in the
moment theory of elasticity, the strain energy density is a function of the strain
tensor and the symmetric curvature tensor. It does not explicitly depend on rotation
(the asymmetric part of the deformation gradient) and the asymmetric part of the
curvature tensor.
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From the Ostrogradsky-Hamilton variational principle, we obtain the equations
of motion for a flexible shell element taking into account the modified moment
theory:

92 h E(1—-v) 2 Ea;(1—v)z60

a2 |~ (f ((H—v)(l =i l+v> ) f h2(1-|,—v)(1 gu)dz] +q 3)

= da['f h,odz+8 o f ZPdz
where ¢ is the dissipation coefficient, p beam material density, and g(x, ) external
normal load.

To solve Eq. (3), the temperature 6 should be determined. The 6 value is not
given, but is determined from the Eq. (4) solution with the corresponding boundary
conditions of the first, second, and third kinds:

920 9%0

2 +32—O. “)

Boundary and initial conditions for the beam:

. . dw (0, 1) dw (a, 1)
Rigid clampingw (0,#) =0, ——— =0, w (a,t) =0, ——— =0,
0x 0x
)
, 92w (0, 1) 2w (a, 1)
Articulated support w (0,7) =0, ——— =0, w(a,t) =0, ——— =0,
ax2 ax2
(6)
.. .. Jw
Initial conditions w ’ 1=ty = o1 ‘l = =0. 7

The required equations were reduced for a numerical solution to a dimensionless
form in the usual way [25]. Integration of Egs. (3)—(7) with respect to coordinate and
time is carried out by the finite differences method of the second accuracy order.

The derivation of the governing equations on the theory of plasticity, where E and
v are coupled with the shear modulus G and the beam modulus of the volumetric
deformation K, is obtained via the following relations:

9KG _ 13K -2G

= v=- ®)
3K +G 23K+G

We take K = K = const. The Young module and the Poisson ratio depend on the
coordinates {x, z}, temperature 7, and the deformation intensity e;. In the theory of
small elastic-plastic deformations, the shear modulus is determined by the formula
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G = %U‘é—e‘) , where o stands for the stress intensity and e; describes the deformation
1

intensity:
V2 v % 2
eg=— |1+ +(1+—) )lex!. €))
3 1—v 1—v

The convergence of the method in spatial and temporal coordinates is investi-
gated. It was found that to obtain results with the required accuracy degree, it is
sufficient to divide the integration interval [0, 1] into 120 parts. The results were
compared for 10, 20, 40, 80, 120, 160, and 200 sections of the segment division [0,
1]. The convergence conditions were set not only for the deflection function itself
but also for its first and second derivatives. The Cauchy problem for the obtained
results reliability was solved by the Runge-Kutta methods from the second to eighth
order of accuracy: Runge-Kutta second and fourth order, Runge-Kutta-Felberg of
the fourth-order method, Cache-Carp fourth order, Runge-Kutta Prince-Dormand
eighth order, implicit Runge-Kutta second-order and fourth-order method, and New-
mark method. For determining reliable decisions used the methodology described in
[26, 27]. The Newmark method was chosen. The solution stability in time, i.e., time
step, is carried out according to the Runge principle. At each time layer, an iterative
procedure of the Birger variable parameters method of elasticity [23] is constructed;
the value of You