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Preface

This volume is part of three volumes collecting the Proceedings of the Second
International Nonlinear Dynamics Conference (NODYCON 2021) held as a virtual
(online) conference, February 16–19, 2021. NODYCON was launched in 2019 to
foster the tradition of the conference series originally established by Prof. Ali H.
Nayfeh in 1986 at Virginia Tech, Blacksburg, VA, USA, as the Nonlinear Vibrations,
Stability and Dynamics of Structures Conference. With the passing in 2017 of Prof.
Nayfeh, NODYCON 2019 was organized as a collective tribute to Prof. Nayfeh.
NODYCON 2019 received an extraordinary response from the community with
408 abstracts (out of 450 submissions) presented by nearly 400 participants from
68 countries.

After the successful launch of NODYCON, NODYCON 2021, originally
planned to be held in Rome, was hosted as a virtual (online) conference given
the uncertainties related to the COVID-19 world crisis. The online conference was
creatively designed to help corroborate and cement the sense of cohesiveness and
liveliness of the NODYCON community. The NODYCON 2021 online conference
featured 16 keynotes and mini-keynotes of broad interest, a panel, two workshops,
and 442 oral presentations covering recent advances in the rich spectrum of topics
covered by Nonlinear Dynamics, including new frontiers and challenges. The
Special Session and Panel entitled “Complex dynamics of COVID-19: modeling,
prediction and control” offered important outlooks into the nonlinear dynamic
evolution and prediction of the global disease spreading across different scales by
using a variety of analysis tools and modeling approaches.

For NODYCON 2021, the Organizing Committee received 478 abstracts and,
after rigorous review cycles, 442 one-page abstracts were accepted and published in
the Conference Book of Abstracts.

The diverse topics covered by the papers were clustered along the following four
major themes to organize the technical sessions:

A. Concepts and methods in nonlinear dynamics
B. Nonlinear dynamics of mechanical and structural systems
C. Nonlinear dynamics and control
D. Recent trends in nonlinear dynamics
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vi Preface

The authors of a selection of approximately 60 papers were invited to publish
in the Special Issue of Nonlinear Dynamics entitled “NODYCON 2021 Second
International Nonlinear Dynamics Conference.” At the same time, about 200 full
papers were submitted to Advances in Nonlinear Dynamics – Proceedings of the
Second International Nonlinear Dynamics Conference (NODYCON 2021) within
the newly established NODYCON Conference Proceedings Series. One hundred
and eighty-one papers were accepted. These papers have been collected into three
volumes, which are listed below together with a sub-topical organization.

Volume 1: Nonlinear Dynamics of Structures, Systems,
and Devices

A. Fluid-structure interaction
B. Mechanical systems and structures
C. Computational nonlinear dynamics
D. Analytical techniques
E. Bifurcation and dynamic instability
F. Rotating systems
G. Modal interactions and energy transfer
H. Nonsmooth systems

Volume 2: Nonlinear Dynamics and Control

A. Nonlinear vibration control
B. Control of nonlinear systems and synchronization
C. Experimental dynamics
D. System identification and SHM
E. Multibody dynamics

Volume 3: New Trends in Nonlinear Dynamics

A. Complex dynamics of COVID-19: modeling, prediction and control
B. Nonlinear phenomena in bio- and eco-systems
C. Energy harvesting
D. MEMS/NEMS
E. Multifunctional structures, materials and metamaterials
F. Nonlinear waves
G. Chaotic systems, stochasticity and uncertainty
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I wish to acknowledge the work and dedication of the co-editors of the NODY-
CON 2021 Proceedings: Prof. Bala Balachandran (University of Maryland, College
Park, USA), Prof. Michael J. Leamy (Georgia Institute of Technology, USA), Prof.
Jun Ma (Lanzhou University of Technology, China), Prof. Jose Antonio Tenreiro
Machado (Instituto Superior de Engenharia do Porto, Portugal), and Prof. Gabor
Stepan (Budapest University of Technology and Economics, Hungary).

The success of the fully online conference NODYCON 2021 is due to the efforts,
talent, energy, and enthusiasm of all researchers in the field of nonlinear dynamics
who wrote, submitted, and presented their papers in a very lively way. Special
praise is also deserved for the reviewers who invested significant time in reading,
examining, and assessing multiple papers, thus ensuring a high standard of quality
for this conference proceedings.

NODYCON 2021 Chair

Walter Lacarbonara, Rome, Italy
May 2021



Preface for Volume 2: Nonlinear
Dynamics and Control

Volume 2 of the NODYCON 2021 Proceedings is composed of 50 chapters,
which are spread across the following groupings: i) nonlinear vibration control
(19 papers), ii) control of nonlinear systems and synchronization (8 papers), iii)
experimental dynamics (4 papers), iv) system identification and SHM (10 papers),
and v) multibody dynamics (9 papers). Due to the cross-cutting nature of the topics,
the editors acknowledge that a paper placed in one grouping could have easily been
placed in another grouping as well. As one reads through these 50 contributions,
one will note the use of a wide range of experimental, analytical, and numerical
techniques for studying the nonlinear dynamics of a wealth of systems across
different space and time scales.

In the area of nonlinear dynamics concerning nonlinear vibration control, the
reader will find studies concerning nonlinear damping mechanisms using friction,
viscoelasticity, inerters, magnetic springs, tuned mass dampers, and nonlinear
energy sinks (E. Denimal et al.; C. Silva et al.; J. Dekemele et al.; S. Pagliaro and A.
Di Egidio; M. Cabral et al.; Z. Dong et al.; R. Philip et al.; M. Bednarek et al.; H.J.
da Cruz Neto and M.A. Trindade, A.L. Silva et al.; S. Ikkurthi et al.; N. Menga et al.;
D. De Domenico et al.) and applications such as turbine blades, twin rotor systems,
airfoils, heavy chains, high-speed railway vehicles, and cart-pendulum systems (Y.
Fahmy and A. El-Badawy; A. Chelihi et al.; G. Pepe et al.; E.A.R. Ribeiro et al.; Y.
Zhao et al.; J.C. Basilio et al.).

In the area of control of nonlinear systems and synchronization, the reader will
find works concerning control of cantilever beams, load hoisting, offshore cranes,
bipedal walkers, chaotic systems, and riser re-entry (E. A. Petrocino et al.; A.
Morock et al.; A. Rustico et al.; Y. Luo et al.; S. Lal De and S.F. Ali; I. Adamiec-
Wójcik et al.) and studies on synchronization control (D.L. Xuan et al.; T. Chen).

In the area of experimental dynamics, the reader will find measurement results
and their analyses to characterize nonlinear vibrations occurring in vibro-impact
systems (G. Stefani et al.), in flight simulators (G. Avon et al.) and during greyhound
galloping (H. Hayati et al.). The design of a Foucault pendulum of extreme
sensitivity is also presented here (M.P. Cartmell et al.).

ix



x Preface for Volume 2: Nonlinear Dynamics and Control

In the area of system identification and structural health monitoring (SHM), the
reader will find identification techniques for nonlinear damping (H. P. Chintha and
A. Chatterjee; R. Zhu et al.), for nonlinear stiffness (Q. Liu et al.), and for inertia
and control delay (M. Ghani and A. Banazadeh). Nonlinear parameter identification
techniques are applied and developed for MEMS resonators (R. T. Rocha et al.), for
mine clearance (F. Mezzani et al.), and also for damage detection of large structures
(M. Pinto et al.), for the gait analysis of robot quadrupeds (M. Laurenza et al.), for
monitoring gear systems in rotating machinery (Z. Liu et al.), and for the Duffing
oscillator (D. M. S. Lopes and A. Cunha Jr).

In the area of multibody dynamics, the reader will find the analysis of multibody
models of bicycles (A. G. Agùndez et al.) and systems with nonlinear components
or with frictional impacts (S. Natsiavas et al.). Multibody modelling is applied
for legged robots (G. Chen et al.), in robot-trajectory processes (F. Pfeiffer),
also in vehicle road dynamics (W.V. Wedig), and for the wear analysis of knee
arthroplasties (E. Askari and M.S. Andersen). Efficient algorithms are discussed
for the dynamic analysis of non-smooth multibody systems (A. Tasora et al.) and
autonomous vehicles (S. Benatti et al.).

In conclusion, this volume represents a multifaceted cross section of recent
advances in nonlinear vibration control, control of nonlinear systems and synchro-
nization, experimental dynamics, system identification and SHM, and multibody
dynamics. We hope that readers will benefit from the rich work portrayed here on
nonlinear dynamics and control, and that this work will spur and inspire new ideas
and future contributions.

Co-editors of the NODYCON 2021 Proceedings

Bala Balachandran, College Park, MD, USA
Walter Lacarbonara, Rome, Italy
Michael J. Leamy, Atlanta, GA, USA
Jun Ma, Lanzhou, China
J. A. Tenreiro Machado, Porto, Portugal
Gabor Stepan, Budapest, Hungary
May 2021
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Topological Optimisation of Friction
Dampers for Nonlinear Resonances
Mitigation

Enora Denimal, Ludovic Renson, and Loic Salles

1 Introduction

In the design of aircraft turbines, vibration analysis is of major importance to avoid
high-cycle fatigue failures. Due to the high modal density, resonance cannot be
avoided. A classic solution to limit the vibration amplitudes at resonance consists of
introducing dry friction damping in the system to dissipate energy. This dissipation
can take place in different locations, as shrouds, blades tips, or roots, but the most
efficient solution is the use of underplatform dampers (UPDs) [1]. Located between
adjacent blades and maintained in contact due to the centrifugal loading, UPD
dissipates energy through friction contact when the blades are vibrating. The UPD
geometry at the interface has a significant impact on the damping characteristics and
on the overall nonlinear dynamic behaviour of the structure [2]. With the coming of
additive manufacturing, new breakthrough UPD geometries could be obtained to
improve their efficiency.

Topological optimisation (TO) of continuum structures consists of identifying
the part of a given space occupied by material when only the boundary conditions
are known [3–5]. It is mostly employed in pre-design stage to identify efficient
layouts. The topology of a component is defined by its boundaries between the
interior and the exterior, as well as by the number and the location of inner
holes. They are optimised simultaneously to minimise an objective function with
respect to constraints defined by the user. Two main approaches exist to solve such
problems, namely density-based methods and level-set methods. In the density-
based approach, the density of each element of a mesh is optimised based on
their sensitivity to the objective function [3]. In the second approach, the geometry
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is described implicitly by a level-set function (LSF) propagated by solving an
Hamilton–Jacobi equation [3, 5]. These two approaches require the sensitivities of
the densities or of the shape with respect to the objective function and the con-
straints. If the sensitivities are analytically unknown, they might be too expensive
to determine numerically. In a recent framework called the Moving Morphable
Component (MMC), proposed by Guo et al [4], the LSF of the structure is defined
as an assembly of several local LSFs. Each of this local LSF is described explicitly
through few parameters, which reduces drastically the number of optimisation
parameters and makes possible the use of standard optimisation methods such as
global optimisation [6].

TO has been used for linear vibrations by optimising the structure eigenval-
ues [7]. In [8], the cross section of a beam with a geometrical nonlinearity has
been optimised to reduce the nonlinear resonant response using a gradient-based
approach. Contact problems have been addressed mostly in a quasi-static context [9]
using both LSM and density-based approaches. In [10], the MMC framework
coupled with Kriging-based optimisation was employed to optimise the nonlinear
frequency response of blades with a UPD. If promising results were obtained,
the computation of the full dynamic response over a large frequency range was
required, which resulted in large computational times. Moreover, the contact law
was simplistic and did not allow for contact separation, so the variability of the
nonlinear dynamic response with regard to the UPD geometry was limited making
the optimisation easier.

This chapter proposes to reduce the computational cost associated with the
nonlinear resonance calculation by directly solving for responses that are in
phase quadrature with the applied excitation [11]. A more complex and realistic
contact law is considered where contact separation is possible, bringing a softening
behaviour and large variations of the nonlinear dynamic response when the UPD
geometry varies. Directly tracking the resonance with this approach will allow for
exploiting the sensitivity of the resonance and perform robust topological optimisa-
tion in the future. Global optimisation is performed, and new UPD geometries that
divide the level of vibrations by 8 are found at reasonable computational costs.

2 Mechanical System Under Study

The system under study is a 2D system that simulates the dynamic behaviour of a
pair of high-pressure turbine blades [12]. It is displayed in Fig. 1a and is composed
of two blades represented by two beams with platforms. They are connected to a
basis that represents the disc. Between the two blades sits the damper that is in
contact with the two platforms. In normal working conditions, the latter is kept
in this position due to the centrifugal loading. When the blades vibrate, a relative
displacement between the platforms and the damper appears. Energy is dissipated
by friction, which damps the vibrations. In the rest of the study, the system is excited
at the basis of blade 1 (see blue point in Fig. 1a), with an amplitude of 8 N to
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(a) Scheme of the system under study

(b) IP mode

(c) OOP mode

Fig. 1 System under study (a) and the two first bending modes of the blades (b,c)

activate the contact nonlinearity, and displacements are considered at the blade 1
tip (see green point in Fig. 1a). The finite-element model of the blades is composed
of 3324 8-nodes bi-quadratic plane strain elements. The structure is composed of
steel with a Young modulus of 197 GPa and a density of 7800 kg/m3. The first two
bending modes of the system correspond to in-phase (IP) and out-of-phase (OOP)
motions of the blades and take place at 246.73 Hz and 247.51 Hz, respectively. They
are represented in Fig. 1b,c, respectively. These natural frequencies are determined
without the presence of the damper. An initial mesh for the damper is created and is
composed of 3604 elements with the same material properties than the blades. The
mesh is constructed to ensure matching at the contact points between the platforms
and the damper. This mesh will be updated during the topological optimisation as it
will be explained in the following.

The two contact surfaces are discretised, and a node-to-node contact modelling
approach is employed. 2D friction contact elements are employed, one of them
consisting of one Jenkins element and one normal spring to allow normal load
variations [13]. Each contact element is characterised by four parameters, namely
the friction coefficient μ, the tangential contact stiffness kt , the normal contact
stiffness kn, and the normal pre-load N0. This contact element allows for three
different states: stuck, stick/slip, and separation. Energy is dissipated by friction
during stick/slip. This contact formulation allows the analytical evaluation of the
Jacobian matrix. The initial contact pressure is supposed to be homogeneous over
the contact surface and depends directly on the centrifugal loading CF and the
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number of contact points nco [14]. In the case of a full damper, 51 contact points are
present at each contact surface, and the normal pre-load is equal to N0 = 9.8987 N.
The friction coefficient μ is equal to 0.5, and the normal contact stiffness is taken
equal to kn = 20000 N/m for this case. The tangential contact stiffness is chosen
equal to the normal contact stiffness.

3 Geometry Description and Optimisation Process

3.1 Geometry Parametrisation

The geometry of the damper is described by a level-set function (LSF) Ψ [3]. This
LSF is defined on the design space D and gives an implicit description of the domain
Ω occupied by the material. Ψ is defined as follows:

Ψ (x, y) =
⎧
⎨

⎩

Ψ (x, y) > 0,if x ∈ Ω
Ψ (x, y) = 0,if x ∈ δΩ
Ψ (x, y) < 0,if x ∈ D\Ω,

(1)

where (x, y) is a point of the design space. Hence, the void is characterised by
negative values of the LSF, and the material domain by positive values. The 0-
iso-line marks the limit of the material domain. The MMC framework proposes
to see this LSF as the union of several “local” LSFs ψi defined explicitly by few
parameters [4]. Each local LSF describes an elementary beam that can be moved
and deformed. Finally, each local LSF ψi describes a domain Ωi occupied by the
material, and the total domain Ω occupied by the material is equal to the union of
the different subdomains, i.e., Ω = ∪iΩi . More concretely, each component i is
described by the explicit LSF ψi given by Guo et al. [4]:

ψi(x, y) = −
[(

cos θi(x − x0,i )+ sin θi(y − y0,i )

Li/2

)m

+
(− sin θi(x − x0,i )+ cos θi(y − y0,i )

ti/2

)m

− 1

]

, (2)

where (x, y) are the coordinates of a point of the design space, θi is the inclination
angle of the component, Li its length, ti its thickness, (x0,i , y0,i ) its centre, andm is
an even number taken equal to 6 here [4]. It describes the sharpness of the LSF. As an
example, the geometry of an elementary component is shown in Fig. 2a, and its LSF
is displayed in Fig. 2b, where negative values are set to zero for better readability.
Hence, each component is described by a set of five parameters, namely θi , x0,i ,
y0,i , Li , and ti . By modifying these parameters, one can translate, rotate, shrink, or
spread the component. And by assembling several components, complex geometries
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Fig. 2 (a) A component and its parameters and (b) its level-set function (negative values are set
to zero for better readability)

can be described [4] with a very low number of parameters, hence making the use
of gradient-free optimisation methods possible [6].

To get a mechanical translation of the geometry, the global LSF Ψ is then
mapped on a mesh. An initial mesh of the damper is created, and it is composed of
3604 elements. The LSF is discretised in the centre of each element of the damper
mesh [5]. Elements that correspond to material (positive value of the LSF) are kept,
when elements that correspond to void (negative value of the LSF) are removed to
avoid any residual modes in the mode computation. The connectivity of the local
LSF is checked, and discontinuous geometries are avoided through a penalisation in
the optimisation process, explained in the following.

3.2 Efficient Global Optimisation (EGO) Algorithm

Considering the strong non-convexity of the optimisation problem and the difficulty
of the evaluation of the gradients, a global gradient-free optimisation method
is adopted, namely the Efficient Global Optimisation (EGO) algorithm [15] that
exploits a Kriging meta-model of the objective function together with an adaptive
sampling process. The general idea is the following: an initial set of inputs (i.e.,
damper geometries denoted by x) and outputs (i.e., the amplitude of vibration at
resonance peak, denoted by upeak , of these geometries) is generated. This set is
often called an initial learning set. Then, an iterative process is adopted. At each
iteration, a Kriging meta-model of the objective function is generated first, based
on the set of inputs and outputs. Second, this meta-model is exploited to find the
point that satisfies a given criterion. The objective function is evaluated for this new
point, and the learning set is extended with this new point. The iterative process
is often stopped when a limit number of iterations are reached. The choice of the
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criterion to find a new point is important and must balance local and global search
to be more precise around possible minima but also to explore unknown parts of
the design space. A classic and efficient criterion is the expected improvement (EI)
defined as [15]:

E[I (x)] =
(
u
(min)
peak − ũpeak(x)

)
Φ

(
u
(min)
peak − ũpeak(x)

s(x)

)

+ s(x)φ
(
u
(min)
peak − ũpeak(x)

s(x)

)

, (3)

where x is the point of the input space in which the EI is computed, u(min)
peak is the

minimum of the outputs observed so far, ũpeak(x) is the Kriging prediction at x, s(x)
is the prediction standard deviation at x,Φ(.) is the normal distribution function, and
φ(.) is the normal density function. The new point added in the learning set is the
point that maximises the EI. Some geometries defined by some parameters might not
be connected. To face this issue, in the evaluation of the EI, first the connectivity of
the different local LSFsψi is checked. If the geometry defined by x is not connected,
the EI is penalised with a negative value [6]. This EI maximisation problem is solved
with the rgenoud algorithm [16], which couples a genetic algorithm with a gradient
evaluation of the EI.

For each new damper geometry, the contact conditions are updated. More
particularly, the centrifugal loading directly related to the damper mass is calculated
as well as the new contact loading N0. The normal contact stiffness kn is also
updated so that the ratio kn/N0 remains constant over the different geometries [17].
The tangential contact stiffness kt is taken equal to kn.

3.3 Nonlinear Analysis

For each damper geometry, the nonlinear dynamic response is computed. The
equation of motion of the problem is given by

Mq̈(t)+ Cq̇(t)+Kq(t)+ Fnl(q(t), q̇(t)) = Fexc(t), (4)

where q is the displacement vector, M is the mass matrix, C is the damping matrix,
K is the stiffness matrix, Fnl is the vector of the nonlinear forces due to contact,
and Fexc is the excitation force vector. A Craig–Bampton reduction is applied on
the damper and on the platform mass and stiffness structural matrices. The number
of retained modes is kept constant for numerical convenience and taken high to
ensure the quality of the reduction basis on the frequency range of interest. Thus,
12 modes are kept for the platform and 30 for the damper. Contact points, as well
as excitation and output points for the platform, are taken as reduction nodes. To
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take into consideration the structural damping [12], a Rayleigh damping of 0.2% is
added for each component. These different matrices are then assembled to form the
global mass, damping, and stiffness matrices M, C, and K. It is worth emphasising
here that the size of the matrices is directly related to the damper geometry and
to the number of contact nodes. The largest possible size for the system is for the
full damper case and is of size 454. During optimisation, the size of the matrices is
smaller as less contact points are usually present.

The nonlinear dynamic response of the blades is determined with the Harmonic
Balance Method [18]. The displacements are written as a truncated Fourier series
including Nh harmonics. The equation of movement can then be written in the
frequency domain and transformed into the problem:

J1(Q, ω) = Z(ω)Q+ F̃nl(Q)− F̃exc = 0, (5)

where Q = [a0, a1,b1, . . . , aNh,bNh ]T denotes the vector of the cosine and sine
coefficient. The resonant solution is directly sought by adding a constraint on the
phase φ between the response and the excitation [11], i.e., the phase must be equal
to π/2 between the two:

J2(Q, ω) = φ − π/2 = 0. (6)

By adding this constraint, the resonant peak is directly assessed, which avoids
the computation of the full FRF. The angular frequency also becomes an
unknown, and the vector of unknown is α = [Q;ω]. The problem J(Q, ω) =
[J1(Q, ω), J2(Q, ω)] = 0 is then solved with a Trust-Region-Dogleg algorithm.

4 Results

4.1 Optimisation Parameters Presentation

The number of components describing the damper geometry is chosen equal to
five here. To reduce the size of the optimisation problem, a few assumptions are
made. First, a component is set to be horizontal and thin at the top of the damper,
to ensure that the damper seals the platforms. Second, the damper is assumed to
be symmetric about its vertical central axis, which divides by two the number of
optimisation parameters. To ensure the existence of the contact between the damper
and the platforms, the centre of one component must be on the contact line (i.e., the
vertical and horizontal coordinates of one component are linked). Finally, with these
choices, the optimisation problem is of dimension 9.

The optimisation problem is a minimisation problem, where the objective
function is the vibration amplitude at resonance, determined according to Sect. 3.3.
This approach might seem unrealistic as there is no constraint on the damper
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volume. However, putting a constraint could lead to missing some interesting
features. For this reason, no volume constraints are added here.

To ensure a good convergence and a better efficiency of the optimisation,
the objective function is slightly modified. Instead of minimising the vibration
amplitude at resonance, denoted by upeak , the opposite of the inverse of the vibration
amplitude at resonance is minimised (i.e., fobj = −1/upeak). This choice is
motivated by the fact that the vibration amplitude is low as well as their variation.
This makes the optimisation difficult as all the points are “compacted”. By using
the transformation proposed, the points are spread, and a small improvement in
vibration amplitude corresponds to large variation of the objective function.

4.2 Optimisation Results

Results are illustrated for one optimisation case. Similar results were obtained for
other cases and are not presented here for the sake of concision. The initial learning
set is generated based on a Latin Hypercube Sampling of 200 points of the input
space. The non-connected geometries are removed, so it remains 53 initial points.
The optimisation loop is stopped after 100 iterations.

Results are shown in Fig. 3 where the evolution of the objective function is
displayed versus the iteration number (see Fig. 3a). The current minimum in the
optimisation is displayed with red points. The initial learning set is composed of 53
points, the minimum observed in this set is equal to−2.1 mm−1 (blue triangle), and
it corresponds to a vibration amplitude equal to 0.47 mm. The corresponding damper
geometry is given in Fig. 3d, which corresponds to a very light damper. After that,
in 100 iterations, the algorithm has identified new more efficient geometries and
the final minimum is equal to −2.49 mm−1 (light blue triangle). It corresponds to
a vibration amplitude equal to 0.4 mm, i.e., the vibrations at resonance have been
divided by about 15%. The best identified geometry is the light blue one where
a large amount of material have been removed. An intermediary geometry is also
given (see the green one), and the material distribution is somewhat between the blue
and the light blue geometries. This demonstrates the good ability of the approach to
identify efficient UPD geometries, but also its capacity to optimise with precision
this geometry. This example also shows how sensitive is the dynamic behaviour to
the damper geometry.

Another interest of this approach is that many configurations are tested and a
map is obtained. It is then possible to observe the properties of other geometries. For
example, the resonance frequency and the mass ratio (mass of the considered UPD
over the mass of the full damper) are given in Fig. 3b,c. For example, a geometry
with a mass reduction of about 50% with good damping properties is given in
yellow. Compared to the other geometries, the total contact surface is present here.
As an illustration, the damper geometry associated to the largest vibration amplitude
is also given in orange. Its shape is very similar to the optimised one, but a large
difference in the dynamic response is observed. As a reference, the full damper case
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Fig. 3 Evolution of the objective function (a)—Resonance frequency (b) and mass ratio (c) of the
tested configurations—UPD geometries (d) of some cases

is also illustrated in purple. One can notice that the different geometries presented
here (the blue geometries, the yellow and the green ones) have better damping
properties (up to 42% of vibration reduction) and are also lighter (up to 90% mass
reduction). The frequency shift between these geometries is about 50 Hz. Finally,
one can identify different geometries with different features and make conception
choices based on criterion such as mass reduction, vibration reduction, or frequency
shift.

5 Conclusions and Perspectives

Through this example, we illustrated the good capacity of the MMC approach
coupled with EGO algorithm to optimise UPD geometry precisely at reasonable
computational costs even with a complex contact law. Because many geometries are
tested during the optimisation, it also gives tools for the analysis of the impact of
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the UPD geometry on the nonlinear dynamic behaviour of the blades. The approach
has shown promising results on a simple academic case for global optimisation, and
more realistic optimisation problems will be considered in the future, by considering
a volume constraint for example. The low numerical cost associated to the method
and its formulation could be exploited to optimise other nonlinear dynamic features
as bifurcation points [19] or to expand the optimisation to robust optimisation.
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Experimental Demonstration of the Use
of a Nonlinear Energy Sink with Rigid
Lateral Boundaries as an Attenuator
for Impulsive Vibrations

Christian E. Silva, Amin Maghareh, James M. Gibert, and
Shirley J. Dyke

1 Introduction

In this chapter, we extend the results presented in [1], and [2] on the assessment and
performance of a class of nonlinear energy sinks (NES) whose physical realization
consists of a cantilevered beam with bounded lateral vibrations by means of two
specially shaped rigid surfaces placed on both sides of the beam (in the vibra-
tion direction) thus providing nonlinear characteristics to the force–displacement
response of the system. Nonlinear energy sinks are a category of passive vibration
absorbers that use nonlinear energy pumping principles: A transference of vibratory
energy from the point of occurrence in the host structure to a point of dissipation in
the energy sinking device, where energy ideally travels irreversibly and dissipates
entirely [3, 4].

Nonlinear energy sinks have received notable attention in recent years, due
to some advantageous features in their performance when compared with their
linear counterparts (tuned mass dampers, TMD). Among these advantages lie their
capability to resonate at broadband frequencies, which makes them less prone to
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detuning and thus reducing the need of inspection and maintenance. A second
characteristic of such devices is their capability of locally transfer and fully dissipate
energy by means of a “controlled one-way channeling of the vibratory energy”
as was stated by Gendelman et. al in a seminal paper in the topic [3]. Another
interesting feature is the wide range of sources for geometric nonlinearities that
can be exploited. These sources of nonlinear behavior can be even combined
accordingly to produce different types of energy dissipation characteristics: e.g.,
nonlinear stiffness, nonlinear damping, or a combination thereof [5].

Despite the widespread variety of NES, within a large range of physical princi-
ples, few researchers have attempted to construct NES devices based on cantilevered
beams, probably due to the fact that cantilever beams are classic examples of linear
oscillators when the amplitudes of oscillation are small, which is usually the case
for beams. Looking specifically at nonlinear springs based upon cantilevered beams,
a number of researchers have reported the use of such devices in applications more
related with energy harvesting, which use the opposite principle of energy collection
instead of energy dissipation, but the physical principles are similar (e.g., same
equations of motion). Among these studies rise the reports by Kluger et al. [6], who
used a prototype of beam-based nonlinear spring as an energy harvesting device
and load cell. In their study, they explored how the level of nonlinearity changes
when the boundary surface order is modified. Along the same line of analysis,
Liu et al. [7] expanded Kluger’s study by presenting a comparative study with
different curve fixtures, but adding a magnet to the tip of the beam for increasing
the nonlinear behavior by changing the potential of the system. Furthermore, Wang
et al. [8] proposed a similar idea with two sources of induced current that produced
a four-well potential in the system. This device was also used in energy harvesting
applications. Yuan et al. [9] explored a technique of expanding the bandwidth of
beam-based energy harvesters by using optimization methods.

An extension of the concept of energy harvester was reported by Shmulevich
et al. [10], in a study focused on a mechanical battery that used energy harvesting
principles for generating energy produced by vibratory response of a linear host
structure, and further storage of such energy that provided their system rechargeable
battery features. To the best of the authors’ knowledge, few researchers have
indeed studied the vibration absorption phenomena with these types of systems
in linear motion. Most of the existing studies are related with rotational motion
vibration absorbers, where centrifugal pendulum vibration absorbers have been
proved to reduce excessive torsional vibration in rotating systems [11], particularly
in light aircraft, helicopter rotors, and automotive applications. One example is
the study proposed by Borowski et al. [12], of the application of pendulums for
reducing excessive vibrations in four-cylinder engines. Such pendulums were to be
carefully designed for their optimal trajectories through the variation of a parameter
that defines the curvature of the path followed by the pendulum, from circular
to cycloidal. Following this finding, several other researchers proposed similar
solutions for different cases of rotating systems [13–15].
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2 Problem Definition

The proposed nonlinear spring to be used as an NES is comprised of a long
homogeneous beam with one of its ends fixed between two rigid surfaces as shown
in Fig. 1a. The spring has a linear damping coefficient, c, and an equivalent nonlinear
stiffness κ . Quantity φ is the angle defining the angular displacement of the device
with respect to the equilibrium position, and ẍb is the linear base excitation that
perturbs the system.

The host structure consists of a two-DOF structure with the nonlinear spring
attached to the second mass, as shown in Fig. 1b, for this case, üb = Ẍ2, and
the NES is idealized as an inverted pendulum with a linear rotational dashpot
of damping coefficient cNES , and equivalent rotational spring of stiffness κ =
kL(lφ)+ kNL(lφ)

9, which will be defined shortly.

b

mNES

c, κ

φ

(a)

+

(b)

Fig. 1 Schematic diagrams (a) beam NES; (b) full system including host structure and NES
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2.1 Model of the NES

It was demonstrated in [2] that this system can be modeled by using a rotational
equation of motion with a ninth order polynomial nonlinearity, given by

(IB +ml2)φ̈ + cl(lφ̇)+ fsp(lφ)−mgl(lφ) = −mlẍb, (1)

where l, IB , and g are the length, rotational moment of inertia of the mass, and
gravitational acceleration, respectively. The quantity fsp is the nonlinear spring
force, associated with the equivalent stiffness of the beam, κ , defined by

fsp = kL lφ + kNL(lφ)
9, (2)

where kL and kNL are the linear and nonlinear stiffness coefficients of the device. For
the purposes of the present study, the gravitational effects are dropped as the device
is installed in the horizontal plane.

2.2 Model of the Beam NES Coupled to the Primary System

The proposed nonlinear spring is now treated as an NES attached to the second
mass of a linear system as schematically shown in Fig. 1b. The equations of motion
of this system are derived using Lagrangian mechanics. The first step is to establish
the position and velocity of the center of mass at the tip of the beam NES (pointG),
with respect to the coupling point at the second DOF (point B). From kinematics of
rigid bodies, and choosing

xG/B = xNES = −l sin(φ)i+ l cosφj+X2i, (3)

where X2 is equivalent to the velocity of point B, and after taking the first time
derivative, the velocity of B is obtained:

ẋNES = [Ẋ2 − φ̇l cos(φ)]i− φ̇l sinφj. (4)

To construct the Lagrangian, the energy quantities of the system need to be obtained.
The total kinetic energy of the system is

T = 1
2m1Ẋ

2
1 + 1

2m2Ẋ
2
2 + 1

2mNES |ẊNES |2 + 1
2IB φ̇

2, (5)

where IB is the rotational moment of inertia of the mass of the beam NES with
respect to the connecting point B (IB = IG+ml2), and the magnitude of the velocity
vector of the NES is given by
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|XNES |2 = Ẋ2
2 + l2φ̇2 + 2Ẋ2lφ̇ cosφ, (6)

and the remaining quantities are defined in Fig. 1b. The potential energy is

V = 1
2k1(X1 − xb)

2 + 1
2k2(X2 −X1)

2 + 1
2kL(lφ)

2 + 1
10kNL(lφ)

10. (7)

Finally, the third element of Lagrange’s formulation is to determine the non-
conservative forces. The Rayleigh dissipation function is

D = 1
2c1Ẋ

2
1 + 1

2c2(Ẋ2 − Ẋ1)
2 + 1

2cNES(lφ̇)
2. (8)

The Lagrangian of the system is then L = T−V . Applying Lagrange’s equations
produces a system of equations of motion of the entire 3-DOF system. Considering
that the acceleration obtained by taking the time derivative of the velocities is
absolute (i.e., Ẍ1 = ẍ1 + ẍb, Ẍ2 = ẍ2 + ẍb, and so forth), the resulting EOMs
of the system are given by

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẏ2)+ k1x1 + k2(x1 − x2) = −m1ẍb (9a)

(m2 +mNES)ẍ2 + c2(ẋ2 − ẏ1)+ k2(x2 − x1)−mNES lφ̈ +mNES lx2ẋ
2
2

= −(m2 +mNES)ẍb

(9b)

(IG +mNES)φ̈ −mNES lẍ2 + cNES l
2φ̇ + kl2φ + kNL l

10φ9 = +mNES lẍb. (9c)

This constitutes the model of a two-DOF linear oscillator host structure, with masses
m1 and m2, stiffness coefficients k1 and k2, and damping coefficients c1 and c2,
coupled to a beam NES of mass mNES , damping coefficient cNES , linear component
of stiffness kL , and nonlinear component of stiffness kNL , which is of order 9. To
properly analyze this system numerically, by evaluating the relative contribution
of terms in Eqns. (9), it is convenient to express them in nondimensional form.

Choosing the inverse of the first linear natural frequency ω1 =
√
k1
m1

and the length
of the beam l as time and length scales, respectively, such that τ = ω1t , and xi = zi l,
i = 1, 2, the resulting nondimensional equations of motion are

z′′1 + 2λ1z
′
1 + λ2(z

′
1 − z′2)+ z1 + η1(z1 − z2) = −m1

k1
lz′′b(τ ) (10a)

μ2z
′′
2 + 2λ2(z

′
2 − z′1)+ η1(z2 − z1)− μNES lϕ

′′ + μNES l
3ϕ(ϕ′)2 = − μ2

m1k1
lzb(τ )

′′

(10b)

μϕϕ
′′ − μNES lz

′′
2 + λNES l

2ϕ′ + ηNL l
18ϕ9 = +mNES

k1
zb(τ )

′′. (10c)



20 C. E. Silva et al.

Here, z is the nondimensional displacement, and the new parameters are now

λi = ci

2
√
m1k1

, (i = 1, 2,NES) η1 = k2

k1
, ηNL =

kNL

kL

,

μ2 = m2 +mNES

m1
, μϕ = IG +mNES l

2
b

m1
, μNES =

mNES

m1
.

3 Numerical Simulations

A comprehensive numerical study of the response of the developed model of the
NES was presented in [2] with the aid of techniques proposed in [1]. Here, we
extend the study by coupling the device to a physics-based model of a two-DOF
base structure with the following characteristics [1]:

M =
[
m1 0
0 m2

]

=
[

23 0
0 24.0

]

kg; Z =
[
k1 + k2 −k2

−k2 k2

]

=
[

58 −29
−29 29

]

kN/m.

The higher mass on the second DOF accounts for the NES mounting bracket. The
eigenvalue problem determined the natural frequencies of the system to be 3.4
and 9.2 Hz, and mode shapes to be [0.66 1]ᵀ, and [1 −0.56]ᵀ. The system is
initially at rest and then excited with an experimentally obtained base excitation
signal that produces an effect similar to an impulse excitation. The development of
the technique to carry out blast simulations (equivalent to initial velocity impulses
to the structure), using ground motions such as those produced by shake tables, was
reported by [16]. Here, the base excitation is dependent on several parameters that
need to be designed. The base acceleration should generate a bounded displacement
response. A sample of the shape of the ground motion that produces a valid impulse
excitation to a structure is shown in Fig. 2a. The designed signal is

t+hold =
1

αEacc
(Eacct

+
hold + amax − amaxα

2), (11)

where all the variables are indicated in Fig. 2a. This function produces a bounded
displacement, similar to a Haversine ramp with time t+hold + t−hold.

4 Experimental Procedure

The experimental setup is a 2DOF system with the NES attached on the top
floor as shown in Fig. 2b. A six-DOF servohydraulic shake table with an inter-
nal PID controller, model SC6000, manufactured by Shore Western is used to
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Fig. 2 Simulation and experimental setup: (a) Ground acceleration signal; (b) experimental
schematic

perform this experiment. Four ceramic capacitive accelerometers, model 333B40,
manufactured by PCB are used for measuring the accelerations of the system,
with a frequency range of 0.5–3000 Hz, a measurement range of ±98 m/s2, and a
broadband resolution of 0.0005 m/s2. One accelerometer is fixed to each DOF. The
base displacement generated by the shake table is measured using an LVDT located
internally in the hydraulic actuator. Data is acquired using an analog, 8 channel
input, 18-bit precision data acquisition box, model VibPilot-8 manufactured by m+p
International, with built-in anti-aliasing filter and sampling time capacity of up to
104 kHz (for this experiment, data is sampled at 256 Hz).

Out of the original six cases of study presented in [2], corresponding to low,
moderate, and high levels of excitation after the NES activation threshold has
been surpassed, for two different boundary curvature orders, two limiting cases are
selected: Limiting Case 1 (LC1), which has a total base displacement of 30 mm,
an initial velocity v0 = 0.21 m/s, and a curvature order 3; Limiting Case 2 (LC2),
which has a total base displacement of 50 mm, an initial velocity v0 = 0.233 m/s,
and a curvature order 5. For both cases, the value of thold is set to 0.3 s.

4.1 Limiting Case 1 Results

The acceleration time histories of the NES with a rigid boundary whose curvature
follows a function of third order are presented in Fig. 3 (top plot), and of both DOFs
of the host structure (middle and bottom), when the NES is locked or inactive (light
thick line) and unlocked or active (dark thin line). Figure 3a corresponds to the
case of the numerical simulation, and Fig. 3b, of the experimental measurement.
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(a) (b)

Fig. 3 Time and frequency modulation responses (LC1): (a) Numerical. (b) Experimental

Acceptable agreement is observed between numerical simulations and experiments.
Significant reduction in the responses of the two DOFs of the host structure is also
observed, and a response decay to near-zero values, when the NES is active, occurs
before 5 s in the simulated case and at approximately 8 s in the experimental case.
Despite the low excitation level, it is observed that the NES engages in resonance
capture rapidly, contributing to a response reduction of the whole structure. Both
DOFs of the structure experience response reduction due to the effect of the NES,
suggesting that high energetic activity occurs on both modes of vibration. These
results show that though the excitation level is in the low range, the NES is very
effective at passively extracting and locally dissipating energy from the PO as a
result of its nonlinear characteristics.

4.2 Limiting Case 2 Results

The simulated and measured results corresponding to an amplitude of excitation
associated to a high level of impulsive energy (LC2) are now analyzed. The
acceleration time histories of this case are shown in Fig. 3a, for the numerical
simulation case, and in Fig. 3b, for the measured response case. This is an extreme
case of impulsive excitation where the NES acceleration history shows very
high peak amplitudes of acceleration. The acceleration of the beam NES can be
exacerbated by the fact that the mass tends to impact the edges of the boundaries
at high amplitudes of oscillation. The responses of the 1st and 2nd DOFs of the
PO show a decay rate comparable with the previous case, reaching a near-zero
response after about 9 s, only a second later than the previous case, but here with
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(a) (b)

Fig. 4 Time and frequency modulation responses (LC2): (a) Numerical. (b) Experimental

(a) (b)

Fig. 5 Wavelet spectra associated with velocity response: (a) LC1; (b) LC2

a higher amplitude of impulsive excitation. The characteristic hardening behavior
of the spring can be clearly noticed in Fig. 4a (top plot).

Further demonstration of the capacity of the NES in engaging in energy transfer
with the PO is presented in Fig. 5, for both study cases (LC1 and LC2), where the
wavelet spectra associated with the velocity of the systems are shown. In Fig. 5a,
high-frequency activity can be observed where a small region of bandwidth starts
to appear from 4 to 12 Hz, which suggests, as expected, that the NES has the
nonlinear characteristics that allow it to engage in TET through resonance captures
with the host structure, whose first resonant frequency is 3.4 Hz. It can also be
observed that the frequency bandwidth of the device is not concentrated around
a single frequency but dispersed from low- to high-frequency values, though the
energy levels for the higher frequencies are low, as indicated by light shades of
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activity. In Fig. 5b, the broadband energetic activity of the device of LC2 is rather
more apparent, reaching up and beyond 30 Hz, and the linear natural frequency
of the device appearing very dispersed without a clear constant value, consistent
with the behavior of a hardening nonlinear spring, acting as an NES, and also
with the modeled and experimental results of the NES characterization presented
in [2]. The simulated velocity was obtained from the state-space model, whereas
the experimental velocity was obtained by numerically integrating the acceleration
response with intermediate steps of filtering and detrending of the signal.

5 Concluding Remarks

The development of a refined, physics-based model for a proposed NES configura-
tion, which predicts its behavior and energy absorption capacity with reasonable
accuracy, is further investigated and correlated with a series of experimental
realizations. Both responses of the model and physical setup confirm the nonlinear
energy absorption properties of this beam NES device.
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Equivalence of Grounded and
Non-grounded NES Tuning and
Performance in Mitigating Transient
Vibrations

Kevin Dekemele, Lennert De Knop, Patrick Van Torre, and Mia Loccufier

1 Introduction

When a nonlinear energy sink (NES) is attached to a mechanical system, the
vibration energy is irreversibly transferred from the mechanical system to the NES
through targeted energy transfer (TET). This occurs because of highly localized
nonlinear normal modes, where the vibration energy is mainly localized in the
NES. The first research about these NESs focused on grounded NESs (GNESs)
(Fig. 1a). It was investigated in the context of the redistribution of energy between
a highly nonlinear and a linear oscillator, connected by a weak linear stiffness [1].
Later, non-grounded NESs (NGNESs) (Fig. 1b) were given more attention in the
literature, primarily as vibration absorbers [2]. As a NGNES rests on the vibrating
mechanical system, the NES mass is typically only a fraction of the mechanical
system, e.g., 2%. Yet in [3], it was shown that increasing the NES mass expedited
vibration transfer. GNESs do not have this limitation and additionally have more
design freedom with the weak connecting spring. In engineering applications, the
NGNES has been widely applied to civil structures [4], (rotating) machinery [5, 6],
and aerospace [7], but GNES applications are few and far between. In [8], a
GNES was developed to suppress lateral vibrations in a rotor system. An equivalent
GNES model also appears when shunting piezoelectric material with a nonlinear
impedance for vibration absorption [9]. In the research presented here, the GNES’s
dynamics will be analyzed by deriving its slow invariant manifold (SIM), expressing
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Fig. 1 The grounded (a) and non-grounded (b) NES coupled to an SDOF system. Mechanical
system’s (c) and NES’s vibrations (d)

the evolution of the vibrations envelope on a slow time scale. The contributions
are 1) the SIM is found to be equivalent to the SIM derived for the NGNES in
[3], 2) the GNES performance can be predicted from simple formulae that solely
depend on properties of the mechanical system and GNES, 3) the introduction of a
novel beating measure, expressing the degree of back-and-forth vibration reflection
between the GNES and the mechanical system, and 4) a tuning methodology based
on maximizing GNES performance by increasing mitigation speed while steering
clear of beating.

This chapter is structured in the following manner: in the next section, the SIM
for the GNES is derived and compared to NGNES’s SIM. Then in Sect. 3, analytical
performance measures are derived, expressing the mitigation speed, dissipated
energy, and beating. Section 4 presents the novel tuning methodology balancing
the aforementioned performance measure, and finally, in Sect. 5, the conclusions
are made.

2 System Dynamics

The dynamics of a GNES coupled to a mechanical system (Fig. 1a) is described by
the following differential equations:

{
mẍ + cẋ + kx + kc(x − xna) = 0

mnaẍna + cnaẋna + knax3
na + klinxna + kc(x − xna) = 0.

(1)

Similarly for the NGNES:

{
mẍ + cẋ + kx + cna(ẋ − ẋna)+ kna(x − xna)3 + klin(x − xna) = 0

mnaẍna + cna(ẋna − ẋ)+ kna(xna − x)3 + klin(xna − x) = 0.
(2)

A first numerical simulation is presented in Fig. 1c,d. Here the mechanical system
has a mass m = 1 kg, a stiffness k = 1 N/m, and no damping. It has an initial speed
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of x(0) = 1 m/s. The NGNES has an NES mass mna = 0.02 kg, a damping
cna = 0.002 Ns/m, and a cubic nonlinear stiffness of kna = 0.004 N/m3 and
the GNES mna = 0.04 kg, cna = 0.002 Ns/m, and kna = 0.004 N/m3. For this
particular set of parameters, the vibrations are highly similar. The vibrations in
the mechanical system decrease until about 70 s, after which a residual amount
of energy is dissipated very slowly, typical of NESs. To clarify why they are similar,
the SIM for both the GNES and the NGNES is derived next.

2.1 Grounded Absorber

Dividing (1) by mass m yields

{
ẍ + ελẋ + ω2

0x + εω2
0(x − xna) = 0

εμẍna + ελnaẋna + εΩ3ω
4
0x

3
na + εκω2

0xna + εω2
0(xna − x) = 0,

where

ελ = c

m
ω2

0 =
k

m
ε = kc

k
μ = mna

kc
ω2

0

κ = klin
kc

λna = cna
kc
ω2

0 Ω3 = kna

kcω
2
0

(3)

with ε � 1. For κ < − 1
1+ε , the NES is bistable. Bistable NESs have two stable

resting positions where x �= 0 and xna �= 0, which may strain the system at
rest. Furthermore, unoptimal chaotic vibrations may occur [10]. This will not be
considered in this chapter.

The slow flow dynamics are obtained by applying the following steps:

– A 1:1 resonance with frequency ω0 is assumed.
– A complexification of the dynamic variables to ϕ(t)ejω0t = ẋ + jω0x and
ϕna(t)e

jω0t = ẋna + jω0xna is applied with ϕna and ϕ ∈ C the dynamic
envelopes.

– The complex variables are expressed as a perturbation series in ε, ϕ = ϕ0+ εϕ1,
and ϕna = ϕna,0 + εϕna,1.

– The dynamics are regarded on two time scales, T0 = t , the fast time, and T1 = εt ,
the slow time.

– The complex, slow time variables are expressed in their polar notation: ϕ0(T1) =
R0e

jδ0 and ϕna,0(T1) = Rnaejδna .
– Dimensionless envelope variables Z0 = Ω3E0 and Zna = Ω3Ena are

introduced, with E0 = R2
0 = |ϕ0(T1)|2 and Ena = R2

na = |ϕna(T1)|2.
– Damping is made dimensionless with ξ = λ

ω0
and ξna = λna

ω0
.
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A more thorough derivation is found in [3]. While applying these steps, all terms
O(ε2) were neglected.

The result is the slow flow dynamics:

∂Z0

∂T1
= −λZ0 − λnaZna

Z0 =
[

ξ2
na +

(

μ− κ − 1− 3

4
Zna

)2
]

Zna.
(4)

The set of equations in (4) has a dynamic and static relation between the
dimensionless envelope of the mechanical system Z0 and the NES’s vibration Zna .
The dynamic relation dictates that Z0 decreases if there is damping (λ and λna). The
static relation is called the slow invariant manifold (SIM) and constrains the relation
between Zna and Z0. Next, the SIM for the NGNES is derived.

2.2 Non-grounded Absorber

Dividing (2) by mass m:

{
ẍ + ελẋ + ω2

0x + εẍna = 0
εẍna + ελna(ẋna − ẋ)+ εΩ3ω

4
0(xna − x)3 + εκω2

0(xna − x) = 0
(5)

with

ελ = c

m
ω2

0 =
k

m
ε = mna

m

κ = klin

mnaω
2
0

λna = cna

mna
Ω3 = kna

mnaω
4
0

.

(6)

Although these parameters share the same symbols as in (3), their physical meaning
is different.

To derive the slow flow dynamics, similar steps are applied as above, except the
complexified variables are now defined as ϕ(t)ejω0t = ẋ + εẋna + jω0(x + εxna)
and ϕna(t)ejω0t = ẋna− ẋ+jω0(xna−x). The slow flow dynamics for the NGNES
are

∂Z0

∂T1
= −λZ0 − λnaZna

Z0 =
[

ξ2
na +

(

1− κ − 3

4
Zna

)2
]

Zna.
(7)
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The dynamic relation is equivalent as in (4), while the SIM is slightly different. The
SIM is now generalized for both NESs.

2.3 Slow Dynamics

The slow flow dynamics and SIM for both NESs, (4) and (7) are generalized as

∂Z0

∂T1
= −λZ0 − λnaZna

Z0 =
[

ξ2
na +

(

Γ − 3

4
Zna

)2
]

Zna

(8)

with Γ = 1−κ for the non-grounded absorber, and Γ = μ−κ−1 for the grounded
absorber. Note that the dimensionless constants have a different physical meaning
for the GNES (3) and NGNES (6). The simulations in Figs. 1c,d are compared to
their slow flow dynamics in Fig. 2. For the GNES, μ = 2 and κ = 0, and for the
NGNES, κ = 0. Thus for both NESs, Γ = 1, ξna = 0.1, and Z0(0) = 0.2020, and
as such their SIM and slow flow evolutions are equivalent. The actual vibrations of
the NESs follow the slow flow on average. The SIM as seen in Fig. 2c has a fold and
two local extrema:

⎧
⎪⎪⎨

⎪⎪⎩

Zna± = 4

9

(
2Γ ±

√

Γ 2 − 3ξ2
na

)

Z±0 =
[

ξ2
na +

(

Γ − 3

4
Zna∓

)2
]

Zna∓
(9)

with {Z+0 , Z−na} a local maximum and {Z−0 , Z+na} a local minimum that exists for

ξna <
Γ√

3
. (10)

(a) (b) (c)

Fig. 2 Comparison of slow flow dynamics and simulation of complete dynamics with (a) the
envelope of the mechanical system Z0, (b) the envelope of the NES Zna and (c) the phase plane of
Z0 and Zna with the SIM
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The condition (10) for the existence of the extrema and thus the fold is required
for efficient energy transfer [3, 10]. Optimal energy transfer occurs when the
dynamics initiate on the right branch of the SIM, where according to the dynamic
relation of (8), the decay rate of Z0 is the highest. The SIM also has a local
minimum. The vibrations decay efficiently to the minimum and then jump to the
left branch. This explains the residual energy.

3 Performance

Observing the slow flow evolution in Fig. 2 reveals that Z0 decays almost linearly
at a high rate until a change of slope. The remaining Z0 after the slope change is
the residual energy that is dissipated slowly. At the same time, Zna drops to a low
value. On the SIM in Fig. 2c, this drop in NES efficiency corresponds to the jump
from the right branch to the left branch. Now, simple analytic formulae expressing
the duration of efficient energy transfer (or pumping time) and the residual energy
are derived from (8).

3.1 Analytical Performance Measures

3.1.1 Residual Energy

The residual energy is the vibration energy left after the slow flow dynamics jump
from the right to the left branch. Relative to the initial energy, it is found as

Eres = Z−0
Z0(0)

= E−0
E0(0)

. (11)

These energy measures are calculated from the compound system’s parameters (9)
and the initial energy Z0(0) = Ω3(ẋ(0)2 + ω2

0x
2(0)).

3.1.2 Pumping Time

From (4), the expression for ∂Zna
∂T1

can be determined. By neglecting system
damping, ξ ≈ 0, the expression is integrated to obtain:

I (Zna)
︷ ︸︸ ︷
27

32
Z2
na − 3Γ Zna +

(
Γ 2 + ξ2

na

)
ln(Zna) = C − ω0ξnaT1.

(12)
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The duration between two values of Zna can be calculated from (12). The
pumping time can then be calculated as

εTpump = 1

ω0ξna

(
I (Zna(0))− I (Z+na)

)
. (13)

This expression also depends only on the compound system’s parameters and the
initial energy. Here Zna(0) is the value on the right branch corresponding with
Z0(0). The pumping time is inversely proportional to ε. For the NGNES, this is
the mass ratio, which has hard upper limit. For the GNES, this is the stiffness ratio,
which does not have a hard constraint.

3.1.3 Prediction of Performance

For the coefficient and initial conditions of simulations in Figs. 1 and 2, the pumping
time Tpump is 58.2 s, and the residual energy is 0.066. These can be calculated before
a numerical simulation, to predict the performance.

3.2 Beating Index

A vibration consisting of two closely spaced frequencies ω1 and ω2 has a significant
amplitude modulating beat of frequency ω2−ω1

2 . In the simulations in Fig. 1, the
GNES shows some slight beating, where vibration energy is reflected back and forth
from NES to mechanical system.

The linear eigenfrequencies of the grounded absorber are derived from the
following determinant, obtained from a linearized version of (1):

∣
∣
∣
∣
(1+ ε)ω2

0 − ω2 −εω2
0

−εω2
0 εω2

0(1+ κ)− εμω2

∣
∣
∣
∣ = 0


⇒ ω2 = 1+ μ(1+ ε)+ κ ±√(1+ μ(1+ ε)+ κ)2 − 4μ(1+ κ + εκ)
2μ

ω2
0

≈ 1+ μ+ κ ± (μ− 1− κ)
2μ

ω2
0 ⇒ ω2

1,2 ≈ {
1+ κ
μ

, 1} · ω2
0.

(14)
Similar, for the non-grounded absorber:

∣
∣
∣
∣
(1+ εκ)ω2

0 − ω2 −εκω2
0

−εκω2
0 εκω2

0 − εω2

∣
∣
∣
∣ = 0 
⇒ ω2

1,2 = {κ, 1} · ω2
0. (15)
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The following measures express the proximity of the eigenfrequencies:

I 2
beat =

ω2
2 − ω2

1

ω2
0

GNES= μ− κ − 1

μ

NGNES= 1− κ. (16)

For the simulation in Fig. 1, I 2
beat is 0.5 for the GNES and 1 for the NGNES. The

linearized eigenfrequencies for the GNES are closer, explaining the higher degree
of beating in the GNES.

4 Tuning

Although the GNES and NGNES have an equivalent SIM and performance
measures, tuning and designing the physical parameters of both NESs are different.
While the NGNES has a hard constraint on the absorber mass, directly impacting ε
and thus the performance (it is in the denominator in (13)), this is less of an issue
for the GNES. Moreover, the ε for the GNES, the stiffness ratio, generally does not
have a hard constraint. The only real tuning parameters for the NGNES are thus the
damping ξna and κ . For the GNES, ε, μ, κ , and ξna can be considered to be design
parameters. However, this high-dimensional design space increases the complexity
of finding suitable GNES parameters. Therefore, a novel tuning methodology is
presented next.

4.1 Tuning Plane GNES

To obtain a suitable choice for μ and κ , the tuning plane is presented in Fig. 3. The
choice for μ and κ is constrained by the conditions for the fold in the SIM, (10),
μ > κ+1+√3ξna , by the condition for bistability and chaotic vibrations κ > − 1

1ε
and by an optional mass constraint μ < μmax . These constraints form a triangle of
admissible μ and κ values, within the black lines in Fig. 3.

The class of GNESs with equal Γ , or where μ − κ = C, C > 1 have the same
analytical performance, (13) and (11). Two equi-performance lines are drawn in
Fig. 3. Additionally, lines for constant beating index, μ = 1+κ

1−I 2
beat

, are also shown.

For the same predicted performance, GNES more to the right on the tuning plane
suffers more from beating.
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Fig. 3 Tuning plane for
grounded NES for ε = .02
and ξna = 0.1
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Table 1 NES parameters
and static performance

Ω3 μ κ ε Eres Tpmp I 2
beat

1 10.7 4 0 0.02 0.003 1021 s 0.75

2 10.7 24 20 0.02 0.003 1021 s 0.125

3 0.404 1.1 −0.9 0.02 0.03 112 s 0.9

4 0.404 5 3 0.02 0.03 112 s 0.2

5 10.7 4 0 0.12 0.003 170 s 0.75

4.2 Simulations

For the mechanical system presented in Sect. 2, several GNESs are now tuned, with
parameters given in Table 1. Each time, Ω3 is chosen such that Z0(0) = 2 · Z+0
to ensure the dynamics attract to the right branch of the SIM. Five NESs will be
simulated for ẋ(0) = 1 m/s. The first two NESs, where μ− κ = 4, lay on an equi-
performance line but have a different beating index. The simulations in Fig. 4a,d
reveal a similar performance, but significant beating for the second NES. The next
2 NESs have μ − κ = 2, and a faster GNES is predicted with the pumping time
and is confirmed in Fig. 4b,e. However, the NES with the lower beating index has
significantly more residual energy in the simulation, not predicted by (11). From
these simulations, one might suggest that an as small μ−κ with an as small μ is the
optimal choice. As a counterexample, NES 5 is simulated, having an ε = 0.12 and
a μ = 4, or mna = 0.48. It is compared to NES 3 in Fig. 4c,f and has comparable
performance. Additionally, NES 5 has a lower stroke. The high absorber mass of
this NES, 0.48 kg, would not be feasible for NGNESs.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Simulation of NES in Table 1, NESs 1 and 2 (a)(d), 3 and 4 (b)(e), and 3 and 5 (c)(f)

5 Conclusions

This chapter presented a thorough research of the grounded nonlinear energy sink
(GNES) based on its slow invariant manifold (SIM). It was shown that the SIM
has an equivalent shape as the SIM of non-grounded NESs, but where the GNES
mass and coupling spring have a different role. The performance of the GNES
could be predicted with static performance measures and the novel beating index.
These allowed to construct a tuning plane GNES, constrained by constant lines
of performance and beating. It was shown that for GNESs with distant linear
eigenfrequencies or a high beating index, the static performance measures are good
predictors of the duration of energy transfer and residual energy. The opposite
was true GNESs with close eigenfrequencies or low beating index. The increased
design freedom of the GNES allows a performant vibration mitigation for both small
NES mass with weak coupling spring and higher NES mass with stronger coupling
spring. The latter configuration has a smaller stroke.
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Dynamic Performances of a 2 DOF
System Coupled with Rigid Block and
Inerters

Stefano Pagliaro and Angelo Di Egidio

1 Introduction

Recently, many papers have studied the coupling between mechanical systems,
where rigid blocks are combined with devices or structures. An interesting work
is [1], where the effectiveness of base anchorages is studied. In [2, 3], the effects
of base isolated systems are investigated. Another interesting technique to improve
the behaviour of rigid block-like structures is the mass-damper dynamic absorber,
as highlighted in [4, 5]. Instead, a safety device can be the mass damper, where in
[6, 7] it is modelled as a single degree of freedom that runs on the top of the block.
The use of semi-active anchorages was investigated in [8], whereas an active control
technique was used to protect the rigid block from overturning [9].

An interesting issue is the protection of frame structures or bridges by using
rocking rigid blocks. The paper [10] investigated the effects of a structure placed
on a rocking podium, whereas [11] discussed the rocking isolation. An interesting
technique to protect frame structures by using a rigid block can be carried out using
a rigid coupling between a frame and a rocking wall, as showed in [12]. Instead,
[13] studied an elastic link between the frame structure and the block.

Recent papers deal with the use of inerter devices to improve the dynamic and
seismic response of structures. For instance in [14, 15], Tuned Mass Damper Inerter
devices were used to improve the behaviour of base isolated structures. Instead,
in [16, 17], the controlled dynamics of two adjacent structures linked by a spring-
dashpot-inerter was investigated.
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The coupling between a frame structure and an external rocking wall is exam-
ined in this chapter with the purpose of improving the dynamical behaviour. A
multi-storey frame structure is modelled by means of an equivalent two-degree-
of-freedom linear system, whereas the classical model of rigid block is used to
represent the wall. The top of the block is connected to the first storey of the frame
structure with an elastic device. The inerter devices considered in this chapter are
connected to the vertical sides of block and to the ground as investigated in [18]
for stand-alone rigid blocks. The inerter devices possess the ability to increase the
inertial mass of the mechanical system introducing apparent inertial mass, which
depends only on the acceleration.

The dynamical behaviour of coupled system is analyzed by means of numerical
integrations of the equations of motion. Simulations are performed using several
earthquakes records as forcing term. A parametric analysis is carried out, and
the results are organized in gain maps. The maps show the ratio between the
maximum displacements or drifts of coupled and uncoupled systems in the system’s
parameters. Wide regions of the maps, where coupling is effective, are found.
Results also show that the effectiveness of the coupling can be increased with the
use of inerters and makes possible the use of blocks with smaller dimensions.

2 Mechanical System

The mechanical system is portrayed in Fig. 1. It is a planar structural system
composed of a 2-DOF linear system, which represents the frame structure, and a
rocking block whose purpose is to reduce the horizontal displacement derived from
a base motion. The mass of the rocking block is M = ρ × 2b × h1 × s, where
ρ = 2500 kg/m3 and s is the length (orthogonal to the plane of the figure). An
elastic device represents the connection between the first level of the 2-DOF system
and block. Two inerter devices, whose apparent inertial mass is mR , are considered.
They connect the ground and the vertical sides of the block. The inerter devices
posses the notably ability to behave as virtual added masses since they can transform
the rotational inertia of a flywheel in translational inertia.

As observed in previous paper [13], the effectiveness of the coupling depends
on the ratio between the mass of the block and the mass of the frame, in particular
to achieve good results the mass of the block should be about 10–30% of the total
mass of the structure to be protected. The introduction of inerter devices is intended
to make coupling effective by using relatively small block, since the inerter devices
can provide the additional mass needed.

The procedure developed in [19] allows the two-degree-of-freedom system to
represent the main dynamic characteristics of a general multi-storey frame structure.
Such a dynamic equivalence refers to stand-alone frame structures. It is based on two
main assumptions: (i) the frequency of the first mode of the multi-DOF system is
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Fig. 1 Coupling of a frame with rocking block: (a) Mechanical and geometrical characteristics of
the reduced-order model; (b) Positive directions of the Lagrangian parameters

the same of the 2-DOF system and (ii) the modal components of the 2-DOF system
and those ones associated to the two reference storeys of the multi-DOF system
are equal. These assumptions implicitly require that the frame structure has to be
sufficiently regular. It is reasonably assumed that, if the dynamic equivalence works
correctly for stand-alone structures, it works correctly for the same structures also
after the coupling with an external rocking block.

2.1 Equations of Motion

The dynamic response of the reduced-order model is defined by three Lagrangian
parameters: two displacements u1 and u2, and the rotation θ of the block. In order
to represent the motion of the system when block rocks around either left corner or
right corner, two sets of three nonlinear equations of motion are derived through a
Lagrangian approach, whose positive directions of Lagrangian parameters u1, u2,
and θ are shown in Fig. 1b. In this section, only the first set of equations, which
describes the motion of the system when the block is rocking around left corner, are
reported. The second set of equations, which describe the rocking motion around
the right corner, can be found in [20]. The two sets of equations that describe the
motion of the system without inerter devices are reported in [13].

The introduction of the inerter devices modifies the equations by adding sup-
plemental inertia terms, since they introduce apparent inertial masses in the system
(underlined term). The equations of motion are
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−kC (d − h1 sin θ − u1)×Q1 + (c1 + c2) u̇1−
c2u̇2 + (k1 + k2) u1 − k2u2 +m1

(
ẍg + ü1

) = 0
−−−−−−−−

c2 (u̇2 − u̇1)+ k2 (u2 − u1)+m2
(
ẍg + ü2

) = 0
−−−−−−−−

kCh1 ((u1 − d) cos θ + h1 sin θ)×Q1−
ẍg (hbM cos θ + bM sin θ)+ bgM cos θ − hbgM+(

JA +mR
(
(2b + dR)cos(θ)− 2

3hb sin(θ)
)2
)

θ̈ = 0,

(1)

wheremR is the apparent inertial mass of the inerter devices; JA = JC+M(b2+h2
b)

and JC are the total polar inertia of block with respect to left base corner and to its
centre, respectively; quantityQ1 reads

Q1 =
−d +

√

d2 − 2 (d − u1) h1 sin θ − 2du1 − 2h1
2 cos θ1 + 2h2

1 + u2
1

√

d2 − 2 (d − u1) h1 sin θ − 2du1 − 2h1
2 cos θ + 2h2

1 + u2
1

. (2)

2.2 Uplift and Impact Conditions

When the stabilizing moment MR = M g b, which depends on the weight of the
block, is smaller than the overturning moment MO = −M ẍg(t) hb + kCu1(t)h1
that depends on inertial forces and elastic reaction of the coupling device, the uplift
of the block around left base occurs. If uplift does not take place, the elastic reaction
of coupling device depends only on the displacement of the 2-DOF system. By
simplifying the sum of two previous moments, the uplift acceleration ẍg = aUP
around base left corner is obtained. The uplift acceleration reads

aUP (t) = g
λ
+ kCu1(t)h1

Mhb
, (3)

where λ = hb/b is the slenderness of the block. If there is no coupling, the same
uplift condition of a stand-alone block is obtained. The uplift condition around the
right corner can be found in [20].

During rocking motion, when the rotation θ(t) approaches zero, an impact
between the block and the support takes place. The impact condition provides the
angular velocity θ̇+ as a function of the pre-impact velocity θ̇−, (θ̇+/θ̇−)2 = η2 · r ,
where r = (JO − 2bSy/JO)2 is the restitution coefficient. Quantity JO represents
polar inertia of block with respect to one of the two base corners, whereas the static
moment of the block with respect to a vertical axis passing through one of the two
base corners is defined by Sy = ±M b (sign+ refers to a block that re-uplifts around
the left corner, sign − refers to a block that re-uplifts around the right corner). The
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coefficient η represents an additional loss of mechanical energy. In case the impact
is perfectly rigid, then η = 1; otherwise, it is less than unity. Such a coefficient
can be experimentally obtained as in [5]. In the analyses carried out in this chapter,
the value of η is fixed (η = 0.9). Finally, it is worth to notice that the restitution
coefficient r is the same as that of the classical stand-alone rigid block model [21].

3 Parametric Analysis

The dynamical behaviour of the coupled mechanical system is investigated by
means of an extensive parametric analysis, in which three parameters have been
varied: (i) the base dimension of the block 2b, (ii) the coupling stiffness ratio
β = kC/k1, and (iii) the apparent inertial mass ratio of the inerter devices
γ = mR/M (see Fig. 1).

In the parametric analyses, the 2-DOF system refers to two buildings whose
proprieties are shown in Table 1. Considering the values reported in Table 1, the
dynamical characteristics of the equivalent model, shown in Table 2, are obtained
from the procedure described in [19].

The two modes of the 2-DOF system have a modal damping ratio ξ , that is
reported in Table 2.

3.1 Gain Coefficients

The displacement u1 and the drift u2 − u1 of the system with coupling and inerters
are compared to those obtained from the stand-alone frame in order to provide an
indication of the efficiency of the method. The comparison is carried out introducing
two gain coefficients as follows:

α1 = max |u1(t)|
max |ũ1(t)| , α2 = max |u2(t)− u1(t)|

max |ũ2(t)− ũ1(t)| , (4)

Table 1 Proprieties of the two reference buildings

Storeys Connection level Storey area Storey mass ms Storey height

3 1 100 m2 120.6× 103 kg 3 m

5 1 250 m2 301.5× 103 kg 3 m

Table 2 Characteristics of the reduced-order models

Storeys k1 [N/m] k2 [N/m] m1 [kg] m2 [kg] ξ

3 2.194415× 108 0.940463× 108 120.6× 103 241.2× 103 0.05

5 7.641287× 108 1.819354× 108 301.5× 103 1206.0× 103 0.05
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where the displacements ũ1 and ũ2 refer to the stand-alone frame. Equation (4)
shows that the effectiveness of the coupling increases when α1 and α2 decrease.
Specifically, values of the gain coefficients less than unit represent good perfor-
mances of the coupling.

The purpose of parametric analysis is to evaluate gain coefficients α1 and α2 in a
specific parameter plane and summarize the results in gain maps.

3.2 Seismic Excitation

Four earthquake records were used as exciting input. The earthquake records (later
called with underlined name) are listed below:

– Kobe, Takarazuka-000 station, ground motion recorded during the 1995 Japan
earthquake

– L’Aquila, IT.AQV.HNE.D.20090406.013240.X.ACC station, ground motion
recorded during the 2009 Italian earthquake

– Pacoima, Dam-164 ground motion recorded during the 1971 San Fernando,
California earthquake

– Parkfield, CO2-065 ground motion recorded during the California earthquake
1966

4 Discussion of the Results

The gain maps summarize the results of the simulations and represent the contour
plots (for a single earthquake) of gain coefficients α1 and α2 in a specific parameter
plane. When gain parameters are less than unity, the region is coloured in light grey.
These regions are named gain regions and define the optimal design parameters.

Figure 2 shows the maps obtained for the three-storey frame (first rows of
Tables 1 and 2) in the parameter plane γ -β, whose geometrical scheme is portrayed
in Fig. 2a. The maps in Fig. 2b refer to two earthquakes. In particular, the first row
refers to Pacoima and the second row to Parkfield earthquakes. The maps show that
the ability of coupling with external wall to reduce displacement increases when
the apparent inertial mass ratio γ grows up, since the gain regions become wider
and the value of gain coefficients reduces. Moreover, when γ = 0 (i.e., when there
are no inerters), the coupling is not able to reduce the displacement of the frame
because gain coefficients are higher or close to unity. The minimum values of the
α1 gain coefficient are located along the straight dotted lines, whereas the minimum
values of the α2 coefficient are along the dash-dotted straight lines. It is possible to
observe that the minimum values of the α1 coefficient do not depend on the seismic
excitation. Several numerical simulations, carried out using many other earthquake
records, have confirmed this assertion. Instead, the straight lines of minimum values
of the α2 coefficient change with the earthquake.
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Fig. 2 Gain maps: (a) Geometrical coupling scheme; (b) Gain maps α1 and α2 for a fixed base
dimension of the block 2b = 1.0 m and two different earthquakes (Pacoima and Parkfield)

The effects of the coupling with an external rocking wall equipped with vertical
inerters are investigated by means of the observation of some time histories. In
particular, the parameters of the coupled system are indicated with the letters A,
B, and C in Fig. 2b. The time histories of displacement u1 and of rocking angle
θ of a system whose proprieties are labelled with A, are shown in Fig. 3a. The
point A (γ = 8, β = 0.10) lies on the dotted line and is inside the gain regions
of both gain coefficients. The time histories of u1 and θ (Fig. 3a) reveal that the
block and the first storey of frame move in counter phase (see the signs convention
of the Lagrangian parameters in Fig. 1b). Therefore, the rocking block behaves as a
tuned mass damper with respect to the first storey of the frame and is able to reduce
the displacements of the structure. Figure 3b shows the time histories of a coupled
frame whose parameters are labelled with B. Point B (γ = 8, β = 0.24) lies on a
dash-dotted line and is inside the gain regions of both maps. The examination of the
graph of Fig. 3b) reveals that motion of block and first storey is slightly out of phase.
Therefore, wall does not behave correctly as a tuned mass damper; nevertheless, it
is still able to reduce the displacements. Lastly, point C (γ = 8, β = 0.40) is
outside the gain region of the first gain coefficient (but is inside the gain region
of the second gain coefficient). In fact, Fig. 3c displays that the block and the first
storey are approximately in phase and an increase of the displacement of the first
storey with respect to the stand-alone frame occurs.

The analyses are carried out also for a five-storey frame as shown in Fig. 4a
(second rows of Tables 1 and 2), coupled with a block whose base is 2b = 1.5 m.
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Fig. 4 Gain maps: (a) Geometrical coupling scheme; (b) Gain maps α2 for Kobe and L’Aquila
(left column γ = 0; right column γ = 20)

The α1 and α2 gain maps, built for two different earthquakes (Kobe and L’Aquila),
are showed in Fig. 4b. The seismic records used in this analysis are different
from those used in Fig. 2 to show that the proposed method works correctly with
different seismic records. Differently from Fig. 2, the maps of Fig. 4b show the
gain coefficient α2 in the parameter plane 2b-β. The maps on the left column
refer to the coupling without inerters, whereas those on the right column consider
a coupling with inerters, with apparent mass ratio γ = 20. The performance of the
coupled system with rocking block grows up when the apparent inertial mass ratio
γ increases; in fact, the gain regions may become larger and the value of the gain
coefficients decreases.
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As further consideration, the oscillation period of rigid blocks depends on the
rocking amplitude because of their natural nonlinearity. When the block starts to
move in counter-phase motion, it can keep moving in counter phase also if a change
of characteristics of motion occurs in time by appropriately adapting the rocking
amplitude. The block acts almost as a hysteretic mass damper [22], being able to
work properly in wide ranges of frequencies.

5 Conclusions

In this chapter, the coupling between a 2-DOF system and an external rocking block
was investigated with the aim to improve the behaviour of the coupled system
under base excitations. An inerter device was introduced to add virtual mass to
the system. The connection of the top of block to the first level of the of 2-DOF
system is carried out by means of an elastic device. Under sufficient regularity of
the multi-DOF frame structure, the main dynamical characteristics of such multi-
DOF system can be represented by an equivalent 2-DOF model. The behaviour of
coupled system was studied by numerically integrating the nonlinear equations of
motion. The coupling with block and the use of inerters were considered effective
for the structure when there is a reduction in the displacements and drifts of the
coupled system with respect to the stand-alone frame. Many analyses were carried
out considering four earthquakes records. The gain maps, which provide the ratio
between maximum displacement (or the drift) of coupled and uncoupled system,
were used to collect the results of an extensive parametric analysis.

The analysis showed that wide gain regions, where the coupling improves the
dynamical behaviour of the coupled system with respect to the stand-alone frame,
exist in the parameter plane. In these gain regions, the block behaves as a tuned
mass damper for the frame system. The size of the gain regions strongly depend on
the apparent inertial mass of the inerter devices. In fact, higher is the value of the
apparent inertial mass, smaller can be the dimensions of the block to achieve the
same reduction of the displacements.
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Fuzzy Model Predictive Pitch Control
of Flexible Wind Turbine Blade

Youssef Fahmy and Ayman El-Badawy

1 Introduction

Renewable systems in general and wind turbines (WTs) in particular have gained
recently a high research interest. This is due to the natural problems the world
is facing nowadays such as limited fossil fuels, climate changes, and the carbon
dioxide emissions. Thereby, the worldwide wind energy capacity has reached about
600 GW with 53.9 GW at the end of 2018, with an annual installations of an average
50 GW each year since 2014 [1]. This growth rate gives a good motivation to put
more effort into developing advanced and reliable control algorithms in order to
enhance their performance.

The operation of the WT can be classified into 3 regions, depending on the wind
speed, and the control objectives are different for each region. Region 1 is where the
wind speed is less than the cut-in speed where the control objective is to accelerate
the rotor for start-up, as for Region 2, defined between the cut-in and rated wind
speeds where the control objective is to extract maximum available power. Region
3 is defined by wind speeds above the rated speed and below the cut-out speed. The
control objectives are to regulate the generator speed and power to their rated values
and to reduce the mechanical loads induced by the wind on the blades.

Significant challenges are being investigated throughout the research to guarantee
the energy sustainability of WTs. One of the most complex challenges is the turbine
model because of its highly nonlinear nature. The problem gets more complicated
when the blades’ deflections are taken into consideration in the model that makes
the control algorithm very challenging. Furthermore, region 3 rotor over-speed
scenario represents another major challenge regarding the pitch-regulated WTs.
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Thus, it experiences the risk of flutter instability due to the interaction of the elastic
vibrations and the unsteady aerodynamic forces on the blades[2]. Moreover, the
design of recent WTs tends to increase in size and capacity to reduce the energy
cost compared to the other energy resources [3]. However, lighter structures design
is required in order to overcome the weight limitation issue. Accordingly, WT blades
turn out to be longer and more flexible; this could result in large deformations under
aerodynamic loading, even under nominal operating conditions due to the reduction
of the blade torsional stiffness [4].

There is a broad literature that addresses the control of the WTs across its
different operating regions. Also, it tackled a major challenge of the WTs regarding
the flutter instability at rotor over-speed situations in region 3. Jonkman et al.
developed a gain-scheduled PI controller based on a linearized one-mass drive-
train model, since speed and power regulations are his main control objectives.
The controller was investigated on the NREL reference 5MW WT [5]. Duong et
al. carried out a comparative study between the conventional PI controller, fuzzy
controller, and a hybrid fuzzy,PI based on linearized one-mass drive-train model.
This chapter aimed to handle the different operating points due to varying wind
speeds [6].

Several approaches used optimal control techniques, and the authors in [7, 8]
demonstrated that using model predictive control (MPC) can lead to a better
load mitigation and optimal power tracking than using a PI controller that is still
widely used in the industry. MPC can avoid unnecessary shutdowns, due to over-
speed limits, for its effective use of information about system constraints and
predicted behavior. In [8], Soliman et al. implemented multiple MPC based on
the NREL WT linearized model for drive train and generator degrees of freedom
(DOFs) at different wind speeds. The main drawbacks for such a controller are
the computational complexity and the sharp switching behavior. Lasheen et al. [9]
proposed a collective pitch control using MPC with fuzzy logic rules, where the
prediction model is based on FAST linearized model for drive train and generator
DOFs, to regulate the power to its rated value in region 3. The MPC is coupled with
individual PI pitch controllers, one for each blade, to reduce the moment acting on
the blade. However, the flap-wise deflections were not considered in the prediction
model. Also, the controller was not tested under flutter conditions. The authors in
[10] approximated the model of the WT by a T–S fuzzy model and proposed parallel
distributed compensation and fuzzy observe-based H∞ controller to stabilize the
generator speed. Their model did not include the flap-wise deflections of the blades.
Moodi et al. introduced a T–S model of the WT while including the blade flap-wise
and tower fore-aft deflections. However, they did not test their H∞ controller under
flutter conditions [11]. The authors in [12] developed a robust H∞ controller based
on a T–S fuzzy model for the WT’s generator, to control a variable speed WT. In
[13], the author used genetic algorithm to optimize the fuzzy controller designed to
stabilize the WT power.

The nonlinear aspect of the WT’s operating problems is handled by the imple-
mentation of nonlinear MPC (NMPC). A suitable reduced-order model for com-
putational efficiency should therefore be developed to capture enough degrees
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of freedom that are of interest to the control objectives. The authors in [14]
implemented an NMPC with a reduced nonlinear model that represents a one-mass
drive train together with the first tower fore-aft bending mode. Their approach was
motivated by the objectives of the controller, which were to regulate the generated
power, generator speed, and reduction of the tower mechanical loads. Flutter is a
particularly important aspect for pitch-regulated HAWTs [15]. Lobitz in [16] has
shown that flutter can occur in rotor over-speed situations where tip speeds are high
enough for aerodynamic forces to have sufficient energy. This instability occurs
because the angle of attack changes due to torsion deflection that changes the lift
force in an unfortunate condition with flap-wise bending. The authors in [17, 18]
present an aero-elastic model that governs the extensional, chordwise, flap-wise, and
torsional vibrations of an isolated HAWT blade in addition to investigation of the
blade’s flutter stability limit that was carried out. El-Baklish et al. [19] implemented
an NMPC algorithm based on an aero-elastic rotor nonlinear prediction model for
regulating the WT performance, alleviating mechanical loads on the blades, and
avoiding flutter instability.

This chapter presents a collective pitch control using fuzzy-based MPC algorithm
capable of regulating the WT performance and reducing blades flap-wise deflections
through feedback while operating in region 3. The proposed prediction model takes
into consideration the generator, drive train, and flap-wise deflections of the blades.
In order to demonstrate the effectiveness of including the flap-wise deflections in
the prediction model, the proposed controller was compared to the GSPI controller
under steady wind, turbulent wind, and conditions inducing flutter instability.

2 T–S Fuzzy Wind Turbine Model

The WT system is highly nonlinear, and it is difficult to develop a perfect mathemat-
ical model that can effectively capture all its dynamics and more difficult to design
a controller based on the nonlinear model that would have low computational time.
In this chapter, linear models for the wind turbine are used to develop the T–S fuzzy
model to combine the advantage of low computational time of linear controllers and
a wide range of operations of nonlinear controllers.

FAST (Fatigue, Aero-dynamics, Structure, and Turbulence) is used to model and
simulate a 5 MW Horizontal Axis 3-bladed WT [20]. Linearized models of the WT
were extracted through FAST linearization capabilities for wind speed range from
12 m/s to 24 m/s with a step of 1 m/s. The linearized model that FAST provides
around specific operating point is in the form of state-space representation as stated
in Eq. (1). The operating point was specified by the main variables that are: generator
speed, azimuth angle of the rotor, the hub height wind speed, and the steady-state
pitch angle [20].

Δẋ = AΔx + BΔucpc, (1)
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where Δucpc is the perturbation in the collective pitch control input. Δx describes
the perturbation in the system states. Since the blades are controlled collectively, the
model that undergoes the control investigation is presenting one blade rather than
three blades to decrease the computational time. The perturbation in system states
vector is expressed as

Δx = [θgen θDrT r wb1 θ̇gen θ̇DrT r ẇb1
]T
, (2)

where θgen, θ̇gen are the angular displacement and angular velocity of generator,
respectively. θDrT r and θ̇DrT r represent the angular displacement and angular
velocity of drive-train rotational flexibility, respectively. wb1 and ẇb1 are the
displacement and velocity of flap-wise bending mode of blade 1, respectively.

Δẋ =
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(3)

The T–S fuzzy model was developed to represent the WT model considering the
wind speed variation in region 3. This was achieved by blending of linear system
models. First, the gap metric approach was applied to select the minimum number
of models that are capable of representing the dynamics of the WT in region 3 using
Eq. (4) [21].

δ
(
Gi,Gj

) =
∥
∥
∥
∥
∥
∥

(
Gi −Gj

)

√
1+GiḠi

√

1+GjḠj

∥
∥
∥
∥
∥
∥
∞

, (4)

where Gi and Gj are the transfer functions of the models obtained at the wind
speeds i m/s and j m/s, respectively. Ḡi and Ḡj are their conjugates. The models
were approximated according to a prescribed level of gap metric measure δ between
two models, and the measure δ decides either they can be sufficiently represented in
one model or not.

The results of the gap metric approach are shown in Table 1. The entries of the
table represent the gap metric measure δ

(
Gi,Gj

)
between two transfer functions

(Gi,Gj ). The results are obtained ranging between zero and one. The closer the
value to the zero the better in terms of model dynamics equality.
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Table 1 Gap metric approach results on the wind turbine linearized models

G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24

G12 0 0.162 0.261 0.345 0.411 0.470 0.530 0.578 0.610 0.646 0.677 0.712 0.746

G13 0.162 0 0.102 0.188 0.259 0.332 0.402 0.454 0.490 0.529 0.564 0.603 0.642

G14 0.261 0.102 0 0.087 0.160 0.239 0.313 0.367 0.404 0.445 0.482 0.524 0.566

G15 0.345 0.188 0.087 0 0.074 0.155 0.230 0.286 0.324 0.367 0.405 0.449 0.493

G16 0.411 0.259 0.160 0.074 0 0.082 0.157 0.214 0.253 0.297 0.336 0.382 0.427

G17 0.470 0.332 0.239 0.155 0.082 0 0.076 0.133 0.173 0.217 0.258 0.305 0.352

G18 0.530 0.402 0.313 0.230 0.157 0.076 0 0.057 0.097 0.142 0.184 0.231 0.279

G19 0.578 0.454 0.367 0.286 0.214 0.133 0.057 0 0.045 0.085 0.127 0.175 0.224

G20 0.610 0.490 0.404 0.324 0.253 0.173 0.097 0.045 0 0.045 0.087 0.135 0.184

G21 0.646 0.529 0.445 0.367 0.297 0.217 0.142 0.085 0.045 0 0.041 0.090 0.139

G22 0.677 0.564 0.482 0.405 0.336 0.258 0.184 0.127 0.087 0.041 0 0.048 0.098

G23 0.712 0.603 0.524 0.449 0.382 0.305 0.231 0.175 0.135 0.090 0.048 0 0.049

G24 0.746 0.642 0.566 0.493 0.427 0.352 0.279 0.224 0.184 0.139 0.098 0.049 0

Based on the gap metric approach results, three models that correspond to wind
speeds 12 m/s, 16 m/s, and 20 m/s have been chosen to represent the dynamics of
the WT covering the operating region. These three models were selected to balance
between the overall T–S fuzzy model simplicity and the computational efficiency.
The T–S fuzzy WT model is represented as a weighted sum of the linearized models
as shown in the linear parameter-varying (LPV) representation in Eq. (5).

x(k + 1) =
n∑

j=1

Qj(k)
{
Adjx(k)+ Bdjucpc(k)

}

y(k) =
n∑

j=1

Qj(k)
{
Cdjx(k)

}
,

(5)

where Qj(k) is the membership function value at a certain sample time, and n is
the number of fuzzy rules. The matrices Adj , Bdj , and Cdj are the system dynamics
matrices having constant coefficients. x and ucpc represent the vectors of the system
states and the control input, respectively. y represents the output vector states.

There are three fuzzy rules corresponding to each of the mentioned models.
When a measurement of the wind speed is received, the fuzzy rules are fired
calculating the rules’ strength, which are obtained by direct substitution of the
measured wind speed into the membership functions (6, 7, 8). The resulting rule
strength is a weight between 0 and 1 as shown in Fig. 1. The output of each rule is the
product of the rule strength and the rule consequent, which is the linearized model.
Finally, the outputs of the rules are aggregated to form the fuzzified model (5).
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Fig. 1 Fuzzy membership functions

Q1(Wi) = Wmax −Wi
Wmax −Wmin ; 12 ≤ Wi ≤ 16 (6)

Q2(Wi) =
{

Wi−Wmin
Wmax−Wmin ; 12 ≤ Wi ≤ 16
Wmax−Wi
Wmax−Wmin ; 16 ≤ Wi ≤ 20

(7)

Q3(Wi) = Wi −Wmin
Wmax −Wmin ; 16 ≤ Wi ≤ 20. (8)

As a verification for the T–S fuzzy model, the linear model, extracted from FAST
at wind speed 14 m/s, G14 was compared to the fuzzified model Ĝ14 using the gap
metric approach δ(G14, Ĝ14) = 0.044, which shows a good agreement with the
system dynamics at that wind speed.

3 Control Approach

Model predictive control (MPC) is used in this chapter as it tackles the multivariable
control problem with the ability of working with constraints and due to its predicted
behavior. MPC is a model-based optimal control method that utilizes the system’s
model to predict the future response of the plant. The goal of the optimal control
problem (OCP) is to find the vector of manipulated inputs, [Δu∗(k) Δu∗(k +
1) . . . Δu∗(k + N − 1)], which is obtained by optimizing the objective function in
(9) over prediction horizon N based on the Karush–Kuhn–Tucker (KKT) optimality
conditions. Only the first control input of the optimal sequence is used according
to the receding horizon policy. The obtained control input is added to the nominal
pitch angle and applied to the system as illustrated in Fig. 2.

The T–S fuzzy model developed in (5) is used as the prediction model for the
MPC algorithm. At every sample step, the model is obtained and then simulated for
targeting the optimal control input to achieve the desired behavior by solving the
OCP in Eq. (9). In addition, pitching the blades is subjected to magnitude and rate
constraints [5], by which the collective pitch angle must not exceed 90 deg and must
not be below 0 deg and its rate of change must not exceed 8 deg/sec. Therefore, the



FMPC of Flexible Wind Turbine Blade 55

Wind Speed

Model Predictive
Control

Nominal Pitch
Angle

Wind Turbine
xu

u0

uΔ

T-S Fuzzy Model

Fig. 2 Pitch control diagram

OCP is formulated as

ΔU∗ = min
Δx,Δu

Δx
(
Tp
)T

PΔx
(
Tp
)+

∫ Tp

0
Δx(t)TQΔx(t)+Δu(t)TRΔu(t) dt

(9)

s.t.Δẋ = AΔx + BΔu, Δx(0) = Δx(t), − u0 ≤ Δu ≤ π2 − u0,
−8π

180
≤ Δu̇ ≤ 8π

180
,

(10)

where Tp is the time horizon,Δx(t) is the vector of perturbation in the system states,
Δu(t) is the perturbation in the input to the system,Δu̇(t) is the rate of change of the
perturbation in the input, u0 is the nominal blade pitch, Q is the weight function of
the stage cost penalizing the perturbation in system states, R is the weight function
of the stage cost penalizing the control effort, and P is the weight function of the
terminal cost that is calculated by solving the Riccati equation.

The OCP is then converted by the direct multiple shooting method into a
nonlinear program and solved by the ACADO toolkit, which is an open-source
software framework for automatic control and dynamic optimization [22].

4 Simulation Results

The wind turbine nonlinear model was simulated on MATLAB/SIMULINK with all
the turbine DOFs enabled, with ElastoDyn for structural dynamics and BeamDyn
for the blades structural model. The FMPC algorithm was investigated on the WT
model and then compared to FAST baseline GSPI controller [5], on three test cases:
steady and uniform wind, turbulent wind, and conditions that induce flutter.

A steady wind speed of 15 m/s was applied with an initial rotor speed of 12.1 rpm.
Then, the wind speed stepped up to 17 m/s. The two controllers managed to
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Fig. 3 Wind turbine response using both the FMPC and baseline GSPI controller under steady
wind profile. (a) Rotor speed response. (b) Power response. (c) Blade flap-wise deflection response.
(d) Blade flap-wise moment response

Fig. 4 Flap-wise deflection
response under two
controllers with different
prediction models
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regulate the generator speed and power to their rated values 1173.1 rpm and 5 MW,
respectively, and the flap-wise deflection and moment to remain bounded as shown
in Fig. 3. The proposed FMPC showed better response in terms of less overshoot and
settling time due to the utilization of the T–S fuzzy model as prediction, in contrast
with the baseline controller, which showed higher overshoot and settling time at the
beginning of the simulation and after stepping up the wind speed as well.

For further investigation, a model excluding the flap-wise flexibility DOF was
used as prediction for the MPC and compared to the prediction model proposed that
includes the flap-wise deflections. Both controllers were simulated at wind speed
15 m/s, and the result is shown in Fig. 4.
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Fig. 5 Wind turbine response using both the FMPC and the baseline GSPI controller under
turbulent Von Karman wind profile. (a) Rotor speed response. (b) Power response. (c) Blade flap-
wise deflection response. (d) Blade flap-wise moment response

Additionally, a von Karman turbulent wind profile with a mean speed of 18 m/s is
generated using TurbSim software [23] and applied to the WT. The two controllers
were capable of regulating the WT performance as shown in Fig. 5. However, the
proposed FMPC showed better performance with less deviations from the WT rated
values. The simulations data for the first two cases were analyzed and summarized
in Table 2.

The proposed FMPC was tested on the WT using the ElastoDyn module for the
blades structural model and the turbulent wind profile used in [9]. The comparison
results showed that the standard deviation of the flap-wise moment improved by
13.1% due to the inclusion of the flap-wise deflections in the objective function of
the MPC, with the advantage of using one controller that governs the drive train,
generator, and flap-wise deflections of the blades.

Finally, the WT model was simulated under conditions inducing flutter instabil-
ity, with a constant wind speed of 24 m/s and a rotor over-speed of 14 rpm, adopted
from the case study on the NREL 5MW WT in [2]. The results are shown in Figs. 6
and 7.

In which, the baseline GSPI controller failed to handle the instability after
approximately 0.07 s as shown in Fig. 6, where the torsional deflection is increased
to 4 of the Wiener–Milenkovic-dimensional rotation parameter corresponding to
120 degrees, which is structurally unstable and features flutter, while the FMPC
in Fig. 7 succeeded in suppressing flutter due to the utilization of the proposed
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Table 2 Result summary of the FMPC and the baseline GSPI controller under steady and turbulent
wind profiles

Steady wind Turbulent wind

Performance
Parameter measure GSPI FMPC Improvement GSPI FMPC Improvement

Rotor speed
(rpm)

Max abs
(error)

1.175 0.573 51.2% 0.755 0.599 20.7%

Sum of
squared
error

0.0015 0.0004 73.3% 0.0017 0.0008 52.94%

Power (KW) Max abs
(error)

317.53 223.84 29.5% 386.14 219.48 43.16%

Sum of
squared
error

0.264 0.121 54.1% 0.339 0.155 54.3%

Flap-wise
deflection (m)

Max.
overshoot

5.70 2.87 49.6% 8.53 5.14 39.7%

Flap-wise
moment
(KN.m)

Max.
overshoot

10997 6353 42.2% 16038 11563 27.9%
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Fig. 6 Wind turbine response using baseline GSPI controller under risk of flutter conditions. (a)
Rotor speed response. (b) Blade tip torsional deflection response

0 5 10 15 20 25
Time (second)

11

12

13

14

R
o
t
o
r
 
S
p
e
e
d

(
r
p
m
)
 
 
 
 
 
 

(a)

0 5 10 15 20 25
Time (second)

-0.2

-0.1

0
0.05

D
e
f
l
e
c
t
i
o
n
(
-
)

(b)

Fig. 7 Wind turbine response using the fuzzy MPC under risk of flutter conditions. (a) Rotor
speed response. (b) Blade tip torsional deflection response

prediction model. The computational time of the controller was 0.5 ms, which is
less than the sample time of the system; therefore, the controller is applicable for
practical implementation.
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5 Conclusions

In conclusion, the FMPC algorithm was able to utilize the T–S fuzzy model to have
a good approximation of the nonlinear wind turbine model and showed promising
performance compared to the baseline GSPI controller, for regulating the turbine
performance and suppressing flutter instability. Moreover, including the flap-wise
deflections in the prediction model of the MPC showed improvements in reducing
mechanical loads compared to [9]. The proposed control algorithm has a low
computational time that could be implemented on embedded hardware.
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Nonlinear Flutter Suppression of
Composite Panels with Nonlinear Energy
Sinks

Myrella V. Cabral, Flávio D. Marques, and António J. M. Ferreira

1 Introduction

Aerospace structures subjected to supersonic flow can undergo aeroelastic insta-
bility, such as panel flutter. These vibrations imposed on aerospace skin make
it susceptible to fatigue failure. Thus, various techniques have been designed to
passively or actively manage this undesired phenomenon. Passive methods do not
need additional energy and sensors to function, being more stable and simple to
design. In this context, the NES has been receiving growing attention due to its
simplicity and ability to extract energy from the system [1]. NES is an oscillator
connected to a structure to extract and dissipate the energy input by external loads.
A nonlinear spring prevents the energy transferred to the NES from returning to
the primary structure, and a linear damper dissipates such energy. Zhang Y et al.
[2] analyzed a 4-layered cross-ply composite plate with a nonlinear energy sink.
They concluded that this technique can effectively suppress the plate’s excessive
vibration in a short time. However, their study comprises only pre-flutter conditions,
leaving aside the flutter suppression and the NES’s capability to reduce limit cycle
oscillation (LCOs) amplitudes. Pacheco et al. [3] analyzed the pre- and post-flutter
conditions of isotropic plates and provided an energy pumping quantification. He
showed that even a non-optimized NES manages to suppress flutter for an extent
of flow velocities and significantly diminish the LCO amplitudes of isotropic plates
subjected to higher flow velocities.
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This chapter investigates the use of NES for suppressing flutter of composite
laminated plates under supersonic flow regimes. The main goal is to assess the
NES’s effectiveness for angle-ply laminates, which is not available in the current
literature. The Mindlin theory is coupled with von Kármán’s nonlinear strain–
displacements to form the structural panel model. The NES is attached to a certain
point of the panel, including a small mass, a linear damper, and a purely cubic
spring. The first-order piston theory is applied to model the supersonic aerodynamic
loads. The iterative Newmark method solves the second-order nonlinear equation
system that results from the aeroelastic model discretized with the finite-element
method. The numerical study comprises motion analysis and mechanical energy
quantification to assess the NES’s capability to passively control panel flutter. Pre-
and post-flutter conditions are analyzed for different angle-ply laminates, and a
parametric study is presented.

2 Aeroelastic Model

The structural model is described by the Mindlin theory combined with the von
Kármán’s nonlinear strain–displacement relations, which can be written as Pica
et al. [4]

ε =

⎧
⎪⎪⎪⎪⎪⎨
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, (1)

in which ŵ, û, v̂ are the translational midsurface degrees of freedom; and φx and φy
are the rotation DOFs with respect to y and x directions, respectively [4]. To derive
the equations of motion, the principle of virtual work (PVW) is employed:

δWint − δWext = 0. (2)

The virtual work done by internal forces due to a virtual strain δε over the entire
structural volume can be written as

δWint =
∫

V

σT δε dV =
∫

V

δεT σ dV =
∫

V

δεT Q̄ε dV, (3)

where σ is the stress vector and Q̄ is the plane-stress constitutive matrix with respect
to the (x, y, z) system adopted, as in Reddy [5].

The aerodynamic pressure to which the panel is subjected during flight oper-
ations will be obtained by the first-order piston theory. Recently, Alder [6] and
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Vedeneev [7] proved, through comparisons between theory and high-fidelity mod-
els, that the piston theory produces results with good precision for the panel flutter
for Mach> 1.7. The formulation of the piston theory applied to panel flutter can
also be found in Pacheco et al. [3].

The virtual external work is composed by a term from the pressure field due to
the aerodynamic loads and another term derived from the inertial forces:

δWext =
∫

A

δŵΔp dA−
∫

A

ρ

[

h

(

δû
∂2û

∂t2
+ δv̂ ∂

2v̂

∂t2
+ δŵ ∂

2ŵ

∂t2

)

+ h3

12

(

δφx
∂2φx

∂t2
+ δφy ∂

2φy

∂t2

)]

dA, (4)

in which ρ and h are the panel’s density and thickness, respectively. The PVW
is applied to combine the aerodynamic and structural models. The four-node
Lagrangian finite element was used to discretize the domain. If all the elemental
participations were put together, the PVW allows [3]

δUT
([M]Ü+ ga[Ca]U̇+ (λ[Ka] + [K0] + [K1] + [K2])U

) = 0, (5)

in which Ü and U̇ are the derivatives of the total DOF vector, U; [M] is the mass
matrix; [K0], [K1], and [K2] are the structural stiffness of zero, first, and second
order, respectively. λ[Ka] and ga[Ca] are the aerodynamic stiffness and damping
matrices, where

λ = 2qL3

D
√
M2 − 1

, (6)

D = E1h
3

12
(

1− E1
E2
ν12

) , (7)

and

ga =
√

λμ√
M2 − 1

(
M2 − 2

M2 − 1

)

�
√
μλ

M
, (8)

in which μ = Lρ∞
hρ

.
The NES is designed as a small mass, a purely cubic spring, and a linear

damping attached to a certain point (xq, yq) in the panel midplane, Fig. 1. Since
the mass, m, can move, it is necessary to introduce one new displacement, q, as the
(N + 1)-th DOF to the plate model to obtain the final coupled model. Thereby, the
instantaneous force imposed by the NES to the panel is [3]
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Fig. 1 Illustration of a composite panel with a NES

F = c(q̇ − ẇq)+ k(q − wq)3, (9)

where c and k are the damping and stiffness constants, and wq is the plate’s
transverse displacement at (xq, yq). Therefore, the virtual work δW done by the
NES upon the plate is

δW = Fδwq = δwq [c(q̇ − ẇq)+ k(q − wq)3], (10)

in which wq is defined as the n-th DOF in U, then Eq. (5) should be extended to add
the virtual work done by the NES. A new vector of DOFs was defined, in which
the last value corresponds to the NES vertical displacement, q. The stiffness and
damping matrix due to the NES, [Cq ], and [Kq ], were also defined as

Ū =
{

U
q

}

, [Cq ] = c[T ], [Kq ] = k(q − wq)2[T ], (11)

in which [T ] is a (N + 1)× (N + 1) matrix defined as

Tij =

⎧
⎪⎪⎨

⎪⎪⎩

1, if (i, j) = (n, n);
−1, if (i, j) = (n,N + 1);
0, otherwise.

(12)

Therefore, Eq. (5) is rewritten including the NES as

δŪT
{[[M] 0

0 ... 0

]
¨̄U+

([
ga[Ca] 0

0 ... 0

]

+ [Cq ]
)
˙̄U+

([ [K] 0
0 ... 0

]

+ [Kq ]
)

Ū
}

= 0,

(13)
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in which [K] is the sum of the plate stiffness matrices and aerodynamic matrix.
Based on the PVW, Eq. (13) maintains its validity for any compatible δŪ. Conse-
quently, the aeroelastic equations of motion of a plate coupled with a NES are

[[M] 0
0 ... 0

]
¨̄U+

([
ga[Ca] 0

0 ... 0

]

+ [Cq ]
)
˙̄U+

([ [K] 0
0 ... 0

]

+ [Kq ]
)

Ū = 0. (14)

The equation of motion of the NES can be expressed as

mq̈ + c(q̇ − ẇq)+ k(q − wq)2(q − wq) = 0, (15)

which substitutes the line of zeros in Eq. (14). The results presented in Sect. 3 are
nondimensionalized. Considering the plate’s mass, mp = ρhL2, the NES mass,
damping, and stiffness coefficients are

m̄ := m

mp
, c̄ := c

2mpω0
, and k̄ := k

D/(hL)2
, (16)

in which ω0 =
√

D
ρhL4 is the reference frequency. The final nonlinear system of

ordinary differential equations in Eq. (14) is solved by the Newmark method with
an effective treatment of nonlinear terms and an iterative scheme with a constant
coefficient matrix as proposed by Akay [8]. The integration time step Δt is the one
also used by Pacheco [9], namely:

Δt = 1

ω0

(
Δd

2L

)2

, (17)

where Δd is the minimum element size in the mesh.
The mechanical energy is computed to evaluate the NES’s effectiveness and

performance. By pumping the input energy from the flow, the NES yields the plate
a considerably less energetic motion. The total mechanical energy instantaneously
contained in the plate, Ep, is the amount of the panel strain and kinetic energies as
defined by Pacheco et al. [3], which can be nondimensionalized as

Ēp := Ep

D(h/L)2
. (18)

3 Results and Discussion

This section reports and discusses the results regarding the nonlinear dynamic
analysis of composite laminate panels with an attached NES at the 3

4 position. The
length of the square plate is L, and the boundary condition is simply supported:
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Table 1 Analysis cases determined from LHS

# m̄ k̄ c̄ # m̄ k̄ c̄ # m̄ k̄ c̄

1 0.08 76 286 8 0.60 33 33 15 0.09 41 743

2 0.12 53 388 9 0.12 56 777 16 0.09 21 958

3 0.13 2 164 10 0.14 63 888 17 0.06 10 843

4 0.106 85 669 11 0.08 17 514 18 0.06 85 221

5 0.10 92 420 12 0.14 26 307 19 0.07 68 632

6 0.11 73 917 13 0.073 45 586 20 0.126 97 60

7 0.10 69 148 14 0.13 38 463

û(x, y, t) = v̂(x, y, t) = ŵ(x, y, t) = 0 for all edges, φy(x, 0, t) = φy(x, L, t) =
0, and φx(0, y, t) = φx(L, y, t) = 0. The composite square panel used in this
chapter is Graphite-epoxy AS-3002 with the following properties: h = L/100,
E1/E2 = 26.5, ν12 = 0.21, G12 = 1.184E2, G13 = G12, G23 = G12,
μ/M = 0.01. The initial condition for the time solution corresponds to the static
deflections due to the application of a uniform pressure Δp = 0.01E2(h/L)

4 field.
The mesh used for all the analysis was Δx = L/32, which was the same used by
Pacheco et al. [3] to guarantee highly accurate results.

The analyzed lamination scheme was the 10-layered [+θ,−θ,+θ,−θ,+θ ]s
symmetric laminate. Three values of θ were evaluated: 10◦, 30◦, and 60◦. Pre-
flutter and post-flutter conditions are surveyed, and a parametric study concerning
the stiffness and damping constants is performed to appraise the system sensitivity
to the NES parameters.

The Latin hypercube sampling (LHS) was applied to select a n number of
combinations of NES constants: mass, stiffness, and damping from a range of
chosen values of these constants. The LHS is one popular modern design of
experiments (DOE) method that has found wide computational application [10].
The ranges of chosen values were: 0.05 to 0.15 for m̄, 1 to 100 for k̄, and 1 to
1000 for c̄. The number of samples was n = 20; hence, 20 different combinations
of mass, stiffness, and damping constants were simulated, as presented in Table 1.
All these cases were simulated for θ = 30 and λ = 300 to found that the NES is
capable to withhold flutter for the following cases: 3, 10, 14, and 20. The cases 10
and 20 were picked to analyze the other θ , 10◦ and 60◦, for a post-flutter condition
to determine which case has the best parameters for these angle-ply laminates. As
done for θ = 30◦, the dynamic pressure λ ≈ 1.1λf30 was chosen to simulate
cases 10 and 20 for θ = 10◦ and 60◦. The critical flutter dynamic pressures are
λf10 = 354.2, λf30 = 271.5, and λf60 = 144.5, where the subscript numbers
represent the θ angle of the lamination scheme. Therefore, λ = 390 (θ = 10◦) and
λ = 160 (θ = 60◦) were used to analyze these laminates and, finally, the following
parameters: m̄ = 0.14, k̄ = 63, and c̄ = 888 were chosen for the NES attached to
all angle-ply laminates.
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3.1 Motion and Energy Analysis

The reference point for measuring displacements was [x, y] = [0.75, 0.5]L, which
is well known from previous studies as the position where the maximum oscillation
amplitudes occur. Figure 2 shows the vertical displacements at the aforementioned
reference point, with and without NES, for a pre-flutter and a post-flutter condition,
for θ = 10◦. The NES leads to a faster return to equilibrium for λ = 352 (pre-
flutter) and reduces the LCO amplitudes for λ = 390 (post-flutter) in approximately
78.5%. This reduction in amplitude implies in smaller strains and stress, leading to
a longer lifetime for fatigue-life design of structural skins.

Figure 3 shows the panel’s response for a pre-flutter and a post-flutter condition
for θ = 30◦. In the pre-flutter condition, the plate with NES achieves stability
faster, similarly to the previously laminated angle, θ = 10◦. As stated before, for
λ = 1.1λf30 , the NES parameters lead the plate to static equilibrium, indicating
the NES’s ability to postpone the flutter onset. By increasing λ to 350, the NES is
no longer able to suppress the flutter, although it reduces the LCO amplitudes in
approximately 30%.

The last analyzed laminate concerns θ = 60◦. Once again, the NES allows a
faster return to stability for the pre-flutter condition, Fig. 4a. For the post-flutter
condition, λ = 1.1λf60 , the NES dissipates the energy input by the flow, prompting
the structure to return to equilibrium, as shown in Fig. 4b. By increasing the dynamic
pressure to λ = 175, the NES leads the plate to chaotic motion, Fig. 5a. Although
the oscillation amplitudes reduce, the chaotic motion is associated with much
more energy than the limit cycle oscillations, as can be verified through Fig. 5b.
Consequently, the potential for causing fatigue failure in the structure greatly
increases by adding a NES with these parameters. Therefore, either the dynamic
pressure of operation must comprise values lower than 175 or the NES parameters
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Fig. 2 Panel’s response for θ = 10◦. (a) Pre-flutter, λ = 352. (b) Post-flutter, λ = 390
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Fig. 4 Panel’s response for θ = 60◦. (a) Pre-flutter, λ = 144. (b) Post-flutter, λ = 160

must properly change, since a suitably engineered NES must operate by passively
extracting the energy input to the structure.

3.2 Parametric Study

To assess how distinct parameters of the NES affect its performance, this section
provides a simple parametric study for the θ = 10◦ angle-ply laminate. For this
study, the mass and position of the NES remain constant (m̄ = 0.14, and [xq, yq ] =
[0.75, 0.5]L); k̄ and c̄ vary, one at a time. The reference parameters are set as before,
m̄ = 0.14, k̄ = 63, and c̄ = 888. Moreover, the dynamic pressure is also fixed for
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Fig. 6 Effect of damping and stiffness coefficients on the maximum LCO energy for λ = 380 and
θ = 10◦. (a) Damping. (b) Stiffness

each laminate, which corresponds to determine a critical operational flight condition
for aircraft design. The measure used to evaluate the NES’s performance was the
upmost energy held in the panel while having LCO, Ēmax

p , as the principle of a NES
is to extract energy from the structure.

Figure 6a shows the high-peak LCO energy for various damping coefficients.
The graphic presents two horizontal asymptotes and a peak of maximum energy.
The lower horizontal asymptote comprises the NES parameters that better provide
energy pumping, which corresponds to higher values of c̄. The higher horizontal
asymptote, achieved when c̄ tends to zero, approaches the upmost LCO energy
of a panel without NES. Figure 6b shows the influence of the nonlinear stiffness
coefficient in the NES’s efficiency for a broad range of values: 10−7 ≤ k̄ ≤ 107.
The LCO energy is minimized in approximately 50% in relation to the case without
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NES. For a NES with this damping coefficient: c̄ = 888, the stiffness coefficient
seems not to have an imperative role in the behavior of the system.

The purpose of this parametric analysis is to assess how the NES’s effectiveness
concerning flutter application of composite laminate panels can be affected by such
parameters. Hence, the aim of this chapter is not to perform an optimization analysis,
although it provides some insights indicating that the panel flutter design with this
passive control technique may highly benefit from optimization study.

4 Conclusions

This chapter presented a numerical investigation on the nonlinear aeroelastic
behavior of composite laminate panels endowed with a passive controller, namely
nonlinear energy sinks. The Mindlin theory coupled with the von Kármán’s strain–
displacement is applied to model the geometrically nonlinear structural behavior of
the panel, and the first-order piston theory is used to determine the aerodynamic
loads. The analyzed lamination scheme was the 10-layered [+θ,−θ,+θ,−θ,+θ ]s
symmetric laminate, for three different values of θ .

The panel’s time responses have shown that the NES’s efficiency varies with
the lamination scheme if the same parameters are used. Moreover, as the dynamic
pressure increases from the flutter onset, the NES’s effectiveness decreases. An
interesting result is found for θ = 60◦. When λ increases from 1.1λf60 to 1.21λf60 ,
the NES that once suppressed the flutter leads the system to chaotic motion when
the dynamic pressure goes up. Hence, besides affecting the NES performance, the
NES parameters have demonstrated to have an impact on the dynamic behavior of
the panel. This shows the necessity to define an operational range of λ to properly
design an efficient NES. It also indicates that an optimization study would greatly
benefit the design of this passive control technique. The parametric study—varying
only the c̄ and k̄ coefficients—reassures the importance of properly determining the
NES parameters to provide maximum energy pumping.

The study of nonlinear panel flutter suppression with NES is performed for the
first time regarding composite laminates through this chapter. The investigation
of different angle-ply laminates provided some insights on how different NES
parameters affect the nonlinear aeroelastic response of angle-ply laminates.
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Dynamic Analysis of a Coupled System
with a Nonlinear Inerter-Based Device

Zhuang Dong, Jian Yang , and Dimitrios Chronopoulos

1 Introduction

The inerter is a relatively recently proposed passive device with the property that
the applied force at its two terminals is proportional to the relative acceleration
between them, that is, Fb = b

(
V̇1 − V̇2

)
, where Fb is the coupling inertial force, b

is the inertance, an intrinsic parameter of the inerter, V̇1 and V̇2 are the accelerations
of the two terminals [1]. Benefits of introducing the inerter in vibration mitigation
have been demonstrated in many applications including automobile shock absorbers
[2], building vibration control systems [3], and landing gear shimmy vibration
suppression systems [4]. Some studies have also been reported on the performance
of inerter-based single degree-of-freedom (DOF) vibration isolators [5], dual-stage
isolators [6], coupled oscillators with an inerter-based joint [7], laminated composite
plates with inerter-based suppression configurations [8], and metamaterial beam
structures with an embedded inerter-based configuration [9]. Basili et al. [10–12]
studied the dynamics of coupled two-degree-of-freedom (2-DOF) systems linked by
linear spring-damper-inerter elements. Masri and Caffrey [13] presented a damped
linear 2-DOF system, which resembles a primary system provided with an auxiliary
mass damper as well as an inerter.

Nonlinearities are often encountered in the design and analysis of physical
systems and engineering structures [14]. Nonlinear isolators are considered to
obtain low amplitude response and low vibration transmission in a wide range of
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excitation frequencies [15–17]. Yang et al. [18] presented a nonlinear absorber with
cubic stiffness and damping nonlinearities attached to a nonlinear primary system.
Nonlinearities are usually introduced into dynamical systems through restoring
or damping forces as nonlinear smooth functions of the dynamic response. For
instance, the restoring force of the Duffing oscillator is a smooth cubic function of
the displacement [19]. However, only few studies have considered the nonlinearities
arising from the use of the inerter. Papageorgiu et al. [20] and Gonzalez Buelga et
al. [21] used experimental tests to analyze the nonlinear effects on two types of
inerters including the friction. Very recently, Yang et al. [22] proposed a nonlinear
geometric configuration of inerters and examined its dynamics and performance in
nonlinear vibration isolators. They showed that the addition of a nonlinear inertance
mechanism (NIM) to a quasi-zero-stiffness isolator enhances vibration isolation
performance by providing a wider frequency band of low amplitude response and
force transmissibility. It was also found that the frequency response curves of the
nonlinear inerter-based isolation system bend toward the low-frequency range in
contrast to a linear inerter-based system.

In this work, the influence of a nonlinear inerter on the dynamic response of
a coupled system is studied. The nonlinearity in the inerter is introduced through
nonlinear geometric configuration. In Sect. 2, the NIM and the coupled oscillator
system are briefly introduced and modelled. The analysis method is also introduced
to obtain the steady-state response. In Sect. 3, the response of each subsystem for
two different locations of nonlinear inerter is obtained. Also, the effects of different
levels of inertance on the dynamic response are investigated. Conclusions are drawn
in at the end of the paper.

2 Mathematical Modelling

2.1 NIM

Figure 1 provides a schematic representation of the NIM created by using a pair
of oblique inerters proposed by Yang et al. [22]. Two inerters are hinged together at
terminal A and their other terminals are fixed at points C and D, which are separated
horizontally by 2l0. The two inerters are assumed to be ideal with inertance b so
that the inertance force in the axial direction AB is proportional to the relative
acceleration across the terminals. The displacement, velocity, and acceleration of the
moving terminal A are x2, ˙x2, and ẍ2, whereas, x1, ˙x1, and ẍ1 are the displacement,
velocity, and acceleration of terminal B. The dynamic displacement between the two
terminals is defined as δ = x1 − x2. Hence, a geometric nonlinearity is introduced
by the NIM, with the total force between A and B expressed by [22]:

fb = 2b

(
δ2δ̈

l0
2 + δ2

+ l0
2δδ̇

2

(
l0

2 + δ2
)2

)

. (1)
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Fig. 1 Schematic model of
the NIM

2.2 Coupled Oscillators

Figure 2 shows a model of the coupled oscillators comprising of two subsystems
connected through a mechanical joint characterized by a spring with stiffness
coefficient k0. Subsystem 1 is a single-DOF system consisting of mass m1 subjected
to an external harmonic excitation of amplitude f0 with frequency ω, a linear
spring with stiffness coefficient k1, and a viscous damper of damping coefficient c1.
Subsystem 2 is another single-DOF system consisting of mass m2, a linear spring
k2, and a viscous damper c2. It is assumed that both masses move horizontally
without friction and their static equilibrium positions are taken as reference where
x1 = x2 = 0 and the springs are unstretched. The influence of NIM on the dynamic
behavior of the coupled system is studied by placing it at different locations. When
the nonlinear inerter is placed at P, the dynamic governing equations of the system
could be expressed as follows:

m1ẍ1 + c1ẋ1 + k1x1 + fb + k0 (x1 − x2) = f0eiωt , (2a)

m2ẍ2 + c2ẋ2 + k2x2 − fb − k0 (x1 − x2) = 0, (2b)

where

fb = 2b

(
δ2δ̈

l0
2 + δ2

+ l0
2δδ̇

2

(
l0

2 + δ2
)2

)

. (3)
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Fig. 2 A schematic of the
coupled oscillators with a
nonlinear inerter-based joint

k1 k2

c1 c2

x1 x2

m1 m2

k0

Subsystem 1 Subsystem 2

Q
P

To facilitate later formulations, the following parameters are introduced:

ω1 =
√
k1

m1
, ω2 =

√
k2

m2
, μ = m2

m1
, X1 = x1

l0
, X2 = x2

l0
,

Δ = X1 −X2, γ = k2

k1
, ϕ = k0

k1
, ζ1 = c1

2m1ω1
,

ζ2 = c2

2m2ω1
, λ = b

m1
, F0 = f0

k1l0
, Ω = ω

ω1
, τ = ω1t,

where ω1 and ω2 are the natural frequencies of subsystems 1 and 2, respectively, μ
is the mass ratio, X1 and X2 are the nondimensional displacements of masses m1 and
m2, respectively,� is the relative displacement between m1 and m2, γ is the stiffness
ratio, ζ 1 and ζ 2 are the damping ratios, λ is the inertance-to-mass ratio, F0 is the
nondimensional force amplitude, and � and τ are the dimensionless frequency and
time. By using these parameters, Eqs. (2) and (3) can be rearranged as follows:

X1
′′ + 2ζ1X1

′ +X1 + Fb + ϕΔ = F0ei�τ , (4a)

μ
(
X1

′′ −Δ′′)+ 2μζ2
(
X1

′ −Δ′)+ γ (X1 −Δ)− Fb − ϕΔ = 0, (4b)

respectively, where the nonlinear force arising from the NIM is

Fb = 2λ

(
Δ2Δ′′

1+Δ2 +
ΔΔ′2

(
1+Δ2

)2

)

. (5)

Similarly, when the nonlinear inerter is placed at position Q, the governing
equations of the system can be derived as

m1ẍ1 + c1ẋ1 + k1x1 + fb2 + k0 (x1 − x2) = f0eiωt , (6a)
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m2ẍ2 + c2ẋ2 + k2x2 − k0 (x1 − x2) = 0, (6b)

where

fb2 = 2b

(
x1

2ẍ1

l0
2 + x1

2
+ l0

2x1ẋ1
2

(
l0

2 + x1
2
)2

)

. (7)

By using the previously defined parameters, the nondimensional equations can
be obtained:

X1
′′ + 2ζ1X1

′ +X1 + Fb2 + ϕ� = F0e
i�τ , (8a)

μ
(
X1

′′ −Δ′′)+ 2μζ2
(
X1

′ −Δ′)+ γ (X1 −Δ)− ϕΔ = 0, (8b)

where the nonlinear force induced by the addition of the NIM is

Fb2 = 2λ

(
X1

2X1
′′

1+X1
2 +

X1X1
′2

(
1+X1

2
)2

)

. (9)

2.3 Alternating-Frequency-Time (AFT) Scheme

In this paper, the dynamic responses of the coupled system are obtained using
the harmonic balance (HB) method with alternating-frequency-time (AFT) scheme
[23, 24]. For complex systems, the determination of the Fourier coefficients of the
nonlinear force (i.e., Eq. (5)) is the primary challenge in the implementation of
the HB method. The AFT scheme is one of the most efficient ways to determine
the Fourier coefficients associated with a general nonlinear force, which may be
smooth or non-smooth functions of the displacement, velocity, or the acceleration.
The main idea of the AFT scheme is to replace the continuous Fourier transform of
the nonlinear forces by a discrete Fourier transform so that samples of the nonlinear
forces at equidistant time instants within one period of oscillation are taken. This
scheme is one of the general and efficient numerical methods to solve nonlinear
governing equations within the HB method and is thus used in the current study.
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3 Response Analysis

3.1 Nonlinear Inerter at Position P

By using the HB method, the steady-state response amplitudes of the oscillator
masses are obtained and shown in Figs. 3 and 4. Four different values of the
inertance-to-mass ratio with λ = 0, 1, 5, 10 are selected and the corresponding
results are shown by solid, dashed, dash-dot, and dotted lines. The other parameters
are set as μ = 1, γ = 1, ϕ = 10, ζ 1 = ζ 2 = 0.01, F0 = 0.05. Figure 3 plots the
response amplitude R1 of mass m1. When the nonlinear inerter is added in between
the two subsystems, two resonant peaks are observed in the response curve. With
the increase of the inertance-to-mass ratio λ, the second peak for each curve bends
to the lower frequency range. However, the first peak in the response curve remains
at the same frequency with the change of inertance-to-mass ratio λ. An anti-peak
is also observed in Fig. 3, which remains almost the same with the change in the
value of λ. An explanation for the effects of the nonlinear inerter is that when the
response amplitude is large, the nonlinearity introduced by the nonlinear inerter
becomes stronger. In contrast, when the response amplitude is low, as is the case
at the anti-peak, the nonlinearity is small, leading to negligible effects of the NIM
on the response. The figure also shows that the response amplitude at the original
second peak of the corresponding linear system is reduced by adding the NIM. This
behavior demonstrates that the NIM may be used to suppress vibration at prescribed
excitation frequencies. As shown in Fig. 4, the response behavior of mass m2 is
analyzed by investigating the response amplitude R2. The figure shows a similar

Fig. 3 Effects of the NIM on the response amplitude of mass m1 when the nonlinear inerter is
added at position P (μ = 1, γ = 1, ϕ = 10, ζ 1 = ζ 2 = 0.01, F0 = 0.05)
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Fig. 4 Effects of the NIM on the response amplitude of mass m2 when the nonlinear inerter is
added at position P (μ = 1, γ = 1, ϕ = 10, ζ 1 = ζ 2 = 0.01, F0 = 0.05)

bending of the second peak to the left toward the low-frequency range. The first
peak value and the peak frequency change a little. Also, no clear anti-peak is found
in this case.

3.2 Nonlinear Inerter at Position Q

The effects of inertance on the response amplitudes of the oscillator masses with
the nonlinear inerter added at position Q in Fig. 2 are obtained, and the results
are shown in Figs. 5 and 6. Four different values of the inertance-to-mass ratio
with λ = 0, 1, 5, 10 are selected and the corresponding results are shown by solid,
dashed, dash-dot, and dotted lines. The other parameters are set as μ = 1, γ = 1,
ϕ = 10, ζ 1 = ζ 2 = 0.01, F0 = 0.05. Figure 5a plots the response amplitude curves
of mass m1. When NIM is added in the subsystem 1, both peaks on each curve of the
response amplitude X1 bend toward the lower frequency range. With the increase in
the value of λ from 1 to 10, the response curve bends further to the low frequencies.
Compared with the effects of the NIM on the first peak found at a lower frequency,
there are weaker effects of the nonlinearity on the second peak found at higher
frequencies. Figure 5b provides an enlarged view of the first peak shown in Fig. 5a.
It shows that on the bending resonance response branch found at low frequencies,
another local anti-peak is introduced with the increase of inertance-to-mass ratio λ.
This behavior indicates that the vibration suppression is possible in particular range
of the excitation frequency for λ = 5 and λ = 10 cases.
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Fig. 5 Effects of the NIM on the response amplitude of mass m1 (a), and enlargement (b), when
the nonlinear inerter is added to position Q (μ = 1, γ = 1, ϕ = 10, ζ 1 = ζ 2 = 0.01, F0 = 0.05)

Fig. 6 Effects of the NIM on the response amplitude of mass m2 (a), and enlargement (b), when
the nonlinear inerter is added to position Q (μ = 1, γ = 1, ϕ = 10, ζ 1 = ζ 2 = 0.01, F0 = 0.05)

Figure 6a plots the steady-state response amplitude R2 of mass m2 under different
values of inertance. When the nonlinear inerter is added into subsystem 1, both
peaks of response amplitude R2 bend toward the lower frequency range. With the
increase in the value of λ from 1 to 10, the response curve bends further to the left.
The second peak is relatively less affected by the change in λ. Figure 6b provides
a better view of the neighborhood of the first peak. It shows that another anti-peak
may appear when the inertance-to-mass ratio λ increases to 5 or 10. This behavior
demonstrates the rich nonlinear phenomenon arising from the using of NIM. The
figure also shows that for λ = 5 and 10, at specific excitation frequencies, it is
possible to reduce the response amplitude by adding NIM.
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4 Conclusions

This study investigated the effects of adding a nonlinear inerter on the vibration
behavior of a coupled system. The nonlinear inerter is created by a pair of
linear inerters resulting in a geometric nonlinearity. The steady-state response
amplitudes of the two subsystems were obtained for two different positions of the
nonlinear inerter. When the nonlinear inerter is added between two subsystems as
a mechanical joint, it was shown that with the increase of the inertance-to-mass
ratio, the second peak in the response amplitude curves can bend toward the lower
frequency range. When the nonlinear inerter is added to the force-excited subsystem
1, both peaks of the response amplitude curve bend toward lower frequencies with
the increase of the inertance-to-mass ratio. The effects of the nonlinearity on the
first peak were found to be stronger than those on the second peak. It was found
that an extra anti-peak could be generated in the first peak response branch due to
the addition of the nonlinear inerter. The study showed that the vibration response
amplitude of the coupled oscillators can be reduced at predetermined excitation
frequencies by the addition of the nonlinear inerter. These findings improve the
understanding of the dynamic properties of NIM and provide insights for enhancing
vibration attenuation using the nonlinear inerter element.
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Optimal Direct Adaptive Model-Free
Controller for Twin Rotor MIMO System
Using Legendre Polynomials and PSO
Algorithm

Abdelghani Chelihi, Gabriele Perozzi, and Chouki Sentouh

1 Introduction

TRMS is widely used by researchers and engineers as benchmark for exploring,
testing, and validating flight control and optimization schemes in the recent
technologies, i.e., helicopters, airplanes, spacecraft, unmanned aerial vehicles, as
well as broad-ranging multiple-input multiple-output (MIMO) systems with varying
degrees of nonlinearities and complexities. These control and estimation methods
are first validated on the TRMS test bed using the real-world online sensors’ data.

Different control techniques and architectures were developed [1]. Fractional-
order proportional–integral–derivative (PID) controllers with optimized tuning
parameters (i.e., neuro-based, swarm-based, genetic-based, and bacterial-foraging-
based) were discussed in [2–5]. In [6], a robust H∞ controller was designed. The
Takagi–Sugeno fuzzy modeling and fuzzy controllers were applied in [7]. Linear
quadratic regulator, linear quadratic Gaussian, and sliding mode controllers were
discussed in [8–10]. Using the Lie derivatives, the TRMS model is transformed and
a model reference adaptive controller was applied in [11]. The main drawback of the
cited works is that they all require a previous knowledge of the platform dynamics.
For this reason, the model-free controllers have increased in popularity in the last
years. Motivated by the previous discussion, we propose in this chapter an optimal
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model-free controller based on Legendre polynomials (LP) and particle swarm
optimization (PSO) algorithm for attitude control of the TRMS in the presence
of disturbances. The originality of the proposed approach lies in the design of a
simple robust control law without any prior knowledge of the system’s dynamics,
unlike to the most of model-free intelligent control approaches that are complex and
difficult to be implemented in real time, see [2, 12]. Therewith, in some works as in
[13, 14], the stability proof of TRMS control system is not studied, which decreases
the reliability of the controller.

In this chapter, the TRMS is considered as large-scale system that can be
decoupled into two SISO subsystems describing its motion in vertical and horizontal
planes. For each subsystem, an adaptive model-free controller is designed using
LPs to approximate directly the ideal control law. Then, the tuning parameters
of our controllers are selected by PSO algorithm to maintain best performance
of the TRMS even in the presence of unknown dynamics and disturbances. The
overall stability of the closed-loop control system and boundedness of signals is
demonstrated.

2 Dynamical Model

The TRMS, as shown in Fig. 1, is a laboratory setup designed for flight control
experiments. It consists of a beam with main and tail rotors driven by direct current
(DC) motors. The two rotors are connected perpendicularly and controlled by their
variable speeds enabling the TRMS to rotate in vertical and horizontal planes with
pitch and yaw angles denoted as θv and θh, respectively. The TRMS is constructed
such that the aerodynamic force is controlled by varying the speed of the rotors
that are ensured by their supply voltages denoted as uv and uh. As supplied by
the manufacturer [15], the dynamic motion of the TRMS in vertical and horizontal
planes is given by the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ̇v = Ωv
Ω̇v = σv
Ωv = (Sv + Jtrωt ) /Jv
Ṡv = lmFv(ωm)+ g ((A− B) cos θv − C sin θv)−Ωvkv + ghv
u̇vv = (Kmruv − uvv) /Tmr

(1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ̇h = Ωh
Ω̇h = σh
Ωh = (Sh + Jmrωm cos θv) /Jh
Ṡh = ltFh (ωt ) cos θv −Ωhkh
uhh = (Ktruh − uhh) /Ttr ,

(2)
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Fig. 1 Twin rotor MIMO system [17]

where Ωv (Ωh) is the angular velocity around the vertical (horizontal) axis, σv (σh)
is the beam acceleration in the vertical (horizontal) plane, Sv (Sh) is the angular
momentum in vertical (horizontal) plane of the beam, uvv (uhh) is the rotation angle
of the main (tail) DC motor. Fv (Fh) is the propulsive force generated by the DC
motor rotational speed ωm (ωt ) of the main (tail) rotor, with

{
Fv = Lv(ωm) and Fh = Lh(ωt )
ωm = Pv(uvv) and ωt = Ph(uhh), (3)

where Lv , Lh, Pv , and Ph are nonlinear functions identified experimentally with
the model parameters provided by the manufacturer, which are available in [16].
From the previous development, we can conclude that the TRMS model is a MIMO
complex nonlinear system composed of two single-input single-output (SISO)
interconnected subsystems models. Thus, the model of TRMS can be decoupled
to simplify the design of our controller. The vertical and horizontal sub-models are
derived, respectively, from the coupled model by setting θh = 0 and substituting
uh = 0 in Eq. (1), and by fixing θv = θv(0) and substituting uv = 0 in Eq. (2).
These two models can be rewritten in a generalized state form as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi,1 = xv,2
ẋi,2 = xv,3
ẋi (t) = Fi (xi)+ Gi (xi)ui(t)+ Ri (x, t)
yi(t) = xi,1(t), i ∈ {v, h} ,

(4)
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where x = [
xv, xh

]T
denotes the total state variables vector of TRMS, xi =

[
xi,1, xi,2, xi,3

]T = [
θi, Ωi, σi

]T
are the local state vectors, ui are the control

inputs, yi = θi are the output variables, Fi (xi), Gi (xi), and Ri (x, t) are nonlinear
functions that represent the dynamic functions, input gains, and disturbance effects
including the interactions between subsystems, respectively, with

{Fv(xv) = − g
Jv

(
(A− B) sin xv,1 + C cos xv,1

)
xv,2 − Kv

Jv
xv,3

Gv(xv) = lmKmr
Jv
Δv, Rv(xv) = − lm

JvTmr
Δvuvv, Δv = ∂Lv

∂ωm
. ∂Pv
∂uvv

(5)

{Fh(xh) = −Khxh,3, Gh(xh) = ltKtr
Jh0

cos xv,1(0)Δh

Rh(xh) = − lt cos xv,1(0)
Jh0Ttr

Δhuhh, Δh = ∂Lh

∂ωm
.
∂Ph
∂uhh

.
(6)

The control problem considered in this chapter is to develop a simple and robust
controller for the model (3) ensuring that the TRMS angles θi for i ∈ {v, h} track
asymptotically and optimally the desired signals θ∗i . In addition, it should guarantee
the stability and boundedness of all closed-loop signals even in the presence of
unknown nonlinear dynamics, parameter variations, and external disturbances. Both
goals may be achieved by means of the chosen controller in the next section.

3 Control System Design

This section presents the proposed optimal direct adaptive model-free control
(ODAMFC) strategy for controlling the attitude TRMS angles, θi for i ∈ {v, h}.
The control structure is made by two independent parallel control loops for the
vertical and horizontal subsystems where the interconnections between them are
considered as model uncertainties or disturbances. Each control loop is performed
into two steps. In the first step, a direct adaptive model-free control (DAMFC) law is
developed for the two subsystems using Legendre polynomials (LP). In the second
step, the accelerated PSO meta-heuristic algorithm is introduced to find the optimal
design parameters of the DAMFC law that are then applied to the DC motors of
the main and tail rotors. The closed-loop structure of the TRMS control system is
shown in Fig. 2. First, let us define the reference signal vectors x∗i and the tracking
error vectors ei as

⎧
⎨

⎩

ei = x∗i − xi f or i = v, h;
with x∗i =

[

θ∗i , Ω∗i , σ ∗i
]T =

[

θ∗i , θ̇∗i , θ̈∗i
]T
.

(7)
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Fig. 2 Block diagram of the proposed optimal direct model-free control scheme

From (4) and (7), the error dynamics is defined by the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

ėi,1 = ei,2;
ėi,2 = ei,3;
ėi,3 = θ̈∗i − Fi (xi)− Gi (xi)ui(t)− Ri (x, t).

(8)

Using feedback linearization technique, the control law takes the form

u∗i = Gi (xi)−1
[
−Fi (xi)+ θ̈∗i +KTi ei

]
, (9)

where Ki =
[
ki,1, ki,2, ki,3

]T
are gain vectors designed to have a stable closed-

loop system, i.e., ei → 0 when t → 0. The control objective can be obtained with
(9) if the functions Fi and Gi are known exactly and the TRMS subsystems are
free of disturbances, Ri = 0. To deal with the nonlinear problems, traditionally
the proposed works in the literature use neural networks and/or fuzzy networks
to estimate directly or indirectly the ideal control law u∗i . Despite their universal
approximation property and linear parameterization, these approaches increase the
computational burden of the controller that can lead to the convergence problem and
consequently limits their applicability in real time. As a solution in this chapter, we
have employed LP to replace (9) by a simple robust controller.
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3.1 Direct Adaptive Model-Free Control

The LPs are approximation techniques used in general for uncertainty estimation.
They have simple structures and few tuning parameters and can approximate
continuous-time functions with an arbitrary accuracy. In our case, a direct adaptive
control of TRMS using LP is developed, in which the ideal control law (10) is
replaced by its LP approximation as follows [18]:

u∗i = ϕTi (zi(t))π∗i (ei)+ εi(t), (10)

where ϕTi = [
ϕi,0(zi), . . . , ϕi,m(zi)

]T are the vectors of Legendre functions in
which zi(t) are the time functions chosen by the user to be mutually orthogonal on
the interval [−1, 1]. In our case, they are chosen as zi(t) = sin(2t). The elements
of φi are calculated from the following orthogonal basis algorithm [18]:

⎧
⎨

⎩

ϕi,0(zi) = 1
ϕi,1(zi) = zi
(j + 1)ϕi,j+1(zi) = (2j + 1)ϕi,j (zi)− jϕi,j (zi) f or j = 1, . . . , m− 1,

(11)

where π∗i =
[
π∗i,0, . . . , π∗i,m

]T
are the optimal Legendre coefficients minimizing

the approximation errors εi(t) that are assumed small and bounded according to the
theory of the universal approximation, i.e., |εi(t)| < εi0, for εi0 > 0 and t > 0,
since π∗i are unknown and hence u∗i cannot be computed explicitly according to
(10). The convergence of the tracking errors ei is influenced by the approximation
errors and the disturbances. The control law (10) is approximated by

ui = ϕTi (zi)π̂i(ei)+ uri(t), (12)

where π̂i are the estimation of π∗i , and uri are the robust control terms that should
be designed to deal with the disturbances and approximation errors. From (8), (9),
and by expliciting (12), the error equations of the closed-loop TRMS become

ėi (t) =
(
Λi − ΓiKTi

)
ei(t)+ Γiψi(t) (13)

with Λi =
⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ , Γi =
⎡

⎣
0
0
1

⎤

⎦ and

ψi = Gi (xi)
[
ϕTi (zi)π̃i(ei)− uri +Di (x, t)

]
, (14)

where Di (x, t) = εi(t) − G−1
i (xi)Ri (x, t) and π̃i = π∗i − π̂i are the estimation

errors.
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To investigate the stability of the overall TRMS control system, the Lyapunov
method is used with the following assumptions:

Assumption 1 According to [11], the control gains are positive and bounded on all
the operating space as 0 < Gi (xi) < Gi0, where Gi0 are positive constants.

Assumption 2 There exist positive definite matrices Pi and Qi for horizontal and

vertical subsystems, such as Pi
(
Λi − ΓiKTi

)+ (Λi − ΓiKTi
)T
Pi = −Qi .

Theorem 1 Consider the TRMS system (4) with the proposed DAMFC law (12).
The closed-loop signals are bounded, and the tracking errors ei asymptotically
converge to zero if Assumptions 1 and 2 are satisfied and

˙̂πi = αieTi PiΓiϕi(zi) (15)

uri = D̂i sgn
(
eTi PiΓi

)
,
˙̂Di = βi

∣
∣
∣e
T
i PiΓi

∣
∣
∣ , (16)

where sgn(.) denotes the sign function replaced in simulations by tanh(.) to avoid
chattering problem, D̂i are the estimates of Di , and αi and βi are the positive
constants.

The stability analysis of the proposed controller has been analyzed and given in
[19]. It is established based on rigorous proof that leads to imply that the signals
ei , ėi , π̃i , ω̃i , and ui are bounded. Furthermore, ei and ėi for i ∈ {v, h} converge
asymptotically to zero when t →∞.

Remark 1 From a practical point of view, these assumptions are reasonable and
acceptable. Assumption 1 is standard for system control designing, and it is made to
ensure the controllability of TRMS system (4). This assumption is proved in [11],
in which the knowledge of precise value of upper bounded Gi0 is not necessary for
developing our controller. The Lyapunov equation in Assumption 2 is quite natural
and is common in the robust nonlinear control literature to prove the stability of
closed-loop system. It also allows to find the tuning parameters so that Λi − ΓiKTi
in (13) are Hurwitz matrix and the tracking errors converge exponentially to zero.

3.2 Optimal Control Based on Accelerated PSO

From the laws given by (15) and (16), it is clear that the TRMS performances are
influenced by the setting parameters αi , βi , and Pi for i ∈ {v, h}. So, we propose an
accelerated PSO algorithm for autonomous tuning and to find the best values, i.e.,
α∗i , β∗i , and P ∗i . The goal is to make maximum performances even with changing the
reference trajectory. To describe the process of the accelerated PSO algorithm, let
us put ρμ(t) ∈ {αv, βv, Pv, αh, βh, Ph} as a position vector and vμ(t) as a velocity
vector of the particle μ. The new velocity vector vμ(t + 1) is defined through the
current global best G = min

{
J
(
ρμ(t)

)}
as [20]:
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Algorithm 1 Pseudocode of the acceleration PSO
Objective cost function Min Ji for i ∈ {v, h}
Initialize ρμ and vμ with random solution.
Find the best position G∗ in the initial population, at t = 0.
while t <Max Generation do

Generate new velocities vμ(t + 1) using eq (17)
Generate new locations ρμ(t + 1) using eq (18)
Evaluate objective functions J (ρ(t + 1)) using eq (19)
Rank the swarms and find the current best solution S∗.

end while
Final result optimal output (ρ∗μ ∈ {α∗i , β∗i , P ∗i })

vμ(t+1) = wvμ(t)+γt (ε−1/2)+C1r1
(
ρ∗μ − ρμ(t)

)+C2r2
(
G− ρμ(t)

)
, (17)

where ε ∈ [0, 1] is a random variable, γt = γ0e
−λt the cognition decreasing

function with γ0 = 0.5, 0 < λ < 1, w is the inertia weight, C1 and C2 represent the
cognition learning and the social learning factors, respectively, and r1, r2 ∈ [0, 1]
are generated random numbers. The new position is then computed as

ρμ(t + 1) = ρμ(t)+ vμ(t + 1). (18)

The optimal required parameters must minimize the mean absolute error (MAE) as
a fitness function Ji

Ji =
∑N
j=1

(
θ∗i − θi

)

N
, (19)

where j th is a sampling time and N is the sampling size. Also, it can be seen from
(1) and (2) that the main and tail subsystems have the same dimension. So, we
propose to consider the global objective function during the optimization process as
J = ∑

i∈{v,h}
Ji/2. The main steps of accelerated PSO process applied to the TRMS

are summarized in Algorithm 1.

4 Simulation Results

To show the performance of the proposed control scheme, numerical simulation tests
on the phenomenological model of the TRMS system are carried out for different
reference signals in regulation and tracking problems. All tests are performed using
the same initial states xv = [−0.63, 0, 0]T and xh = [0, 0, 0]T , which represent
the static equilibrium point at rest. The robustness against external disturbances is
evaluated with external force applied to the system from t = 40 s. to t = 100 s. For
both horizontal and vertical controllers, the parameters of the accelerated PSO algo-
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Fig. 3 Simulation results for square wave references. (a) Pitch and yaw angles (θv ,θh), (b) main
and tail input voltages (uv , uh)

0 20 40 60 80 100 120 140 160 180 200
Time (sec)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Pi
tc

h 
an

d 
ya

w
 a

ng
le

s (
ra

d)

(a)

Reference

Yaw angle

Reference

Pich angle

0 20 40 60 80 100 120 140 160 180 200
Time (sec)

-3

-2

-1

0

1

2

3

In
pu

t v
ol

ta
ge

s (
V

)

(b)

Tail rotor
Main rotor

Fig. 4 Simulation results for sin wave references. (a) Pitch and yaw angles (θv ,θh), (b) main and
tail input voltages (uv , uh)

rithm are chosen as: swarm size n = 10, w = 2, C1 = 2, C2 = 2 and the number
of iterations is set to 100. The optimal values minimizing MAE are α∗v = 0.1682,
β∗v = 0.8891, α∗h = 0.0686, β∗h = 0.9997, Q∗v = diag {62.6771; 20.0237; 5.0053},
andQ∗h = diag {205.6015; 200.3968; 10.0657}.

By solving the Lyapunov equation for Kv = Kh = [1, 2.24, 1.89]T , we can
compute P ∗v and P ∗h . These values have been determined through offline simulation
tests, and they work well under all conditions.

The simulation results for the two scenarios are sketched in Figs. 3 and 4. Figure 3
shows the responses of the control system according to square reference signals for
pitch and yaw angles. Figure 4 depicts the performance of the controller for sine
reference signals with disturbance injections. From the results, it is evident that
the proposed control scheme leads to excellent tracking performance, despite the
presence of nonlinearities and cross-coupling effects in TRMS device. The input
control voltages do not show any chattering phenomenon and saturation, while the
occurrence of peaks represents the transient of the adaptation to compensate the
sudden change of TRMS angles and disturbances injection. Besides, the control
input signal of each subsystem is computed only from local measurements without
the knowledge of the precise dynamic model.
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5 Conclusions

The results of this chapter can be summarized as follows. First, the extracted
TRMS model is decoupled into vertical and horizontal subsystems. Then, for each
subsystem, a DAMFC law is designed using LP to drive the TRMS to the desired
position trajectory with null steady-state errors. Finally, the design parameters of
DAMFC are tuned by using accelerated PSO algorithm to find optimal control law
that leads to best performances. This approach does not require a prior knowledge of
the model, it is simple to implement, and it deals with unknown dynamics system,
coupling effects, and external disturbances. The simulation results show that the
proposed controller improves the overall tracking performance and robustness of
TRMS control system. In future, the controller will be tested on a real device dealing
with the time discretization and the limits of the control saturation.
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Dynamics and Performance Analysis
of a Nonlinear Energy Sink with
Geometric Nonlinear Damping

Rony Philip, B. Santhosh, and Bipin Balaram

1 Introduction

Performance of linear dampers is limited under certain conditions such as detuning
effect of tuned mass dampers under non-stationary excitations and at high velocities
when excessive damping forces are generated [1]. In the absence of a generic com-
putational framework and the difficulty with comprehending complex dynamics,
the conventional design techniques ignored the impact of nonlinearity. With the
advancement in computational technology, efficient algorithms, and experiments,
there is a paradigm shift in the conventional thought process and it leads to a new
research direction “Exploiting the nonlinear behavior in physical systems to improve
its performance.” Nonlinear vibration absorbers have been recognized to be able
to efficiently absorb and disperse the vibration energy of the primary structure
over a frequency band and have been extensively used in different engineering
applications [2].

Over the last two decades, it has been shown that nonlinear energy sink (NES),
which is an essentially nonlinear element, when attached to a vibrating system can
provide a unidirectional flow of energy through targeted energy transfer (TET) [3].
NES has been used widely in engineering applications from vibration suppression
and isolation to harvesting energy, due to their exceptional properties and robustness
[4]. To study the harmonically excited NES system, Gendelman et al. [5, 6]
suggested a standardized analysis and numerical procedure. In [7, 8], Gendelman
et al. revealed that there is a response regime near the 1:1 resonance termed as
strongly modulated response (SMR), which can be described as a jump between
two stable branches in a slow invariant manifold (SIM). A SIM is developed using
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the complex-averaging (CX-A) methodology by partitioning between slow and fast
dynamics, leading to a reduced-order system dynamics. The SIM topology is used
to predict the NES response in all of the above studies. The NES is very sensitive to
the excitation amplitude. Most of the previous studies were mainly based on NES
with linear viscous damping [9, 10].

Later studies that examine the dynamics of NES with both nonlinear damping
and stiffness reveal that the inclusion of nonlinearity in damping will lead to
complex dynamics, like transient disturbance. In most cases, geometric nonlinear
damping NES has been used because these nonlinear damping conditions can be
easily fabricated and physically realized through the geometry of the deformation
of linear components. The transient instability induced by nonlinear damping results
in a strong energy transfer facilitates its use in various applications, such as vibration
isolation, energy localization, and energy harvesting. It was also observed that the
NES with a nonlinear damper could provide better energy absorption of the main
structure than that of a linear viscous damper. Andersen et al. [11] investigated the
dynamics of a coupled oscillator model for strong nonlinear stiffness and damping,
and a continuous vibration dispersion phenomenon was noted. Previous studies
showed that the nonlinear damping, which is normally ignored in most research,
has a crucial role in vibrating systems with NES. However, the previous studies
were concentrated on single-degree-of-freedom systems, and limited works were
carried out on multi-degree-of-freedom systems.

In this chapter, the work is extended to the study of two-degree-of-freedom
systems with a NES, coupled with a nonlinear damping mechanism, and is
investigated analytically and numerically to reveal the dynamics, including the
evolution of the different energy transfer regimes involved in the system. In Sect. 2,
the equations of motion in the non-dimensional form are derived, and an analytical
study by the complex-averaging method is explained. The dynamics of the NES
with nonlinear damping is discussed in Sect. 3. The complex response regimes in
slow and fast dynamics are described in Sect. 4. Section 5 offers a comparison of
the performance of a system with NES having linear and nonlinear damping using
the harmonic balance method.

2 Problem Formulation

2.1 Modeling

In this section, a harmonically excited linear oscillator consisting of masses mi ,
linear springs ki , and dampers ci (i = 1, 2, 3) with an NES absorber attached to the
mass m1 as shown in Fig. 1 is considered. The NES is induced by cubic nonlinear
stiffness (kn) and geometric nonlinear damping (cn). Geometrically nonlinear
damping is in the form cn (x1 − x3)

2 (ẋ1 − ẋ3). A thorough understanding of this
form of geometric nonlinear damping by two linear viscous dampers was given
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Fig. 1 Model of 2-dof
oscillator with NES

by Andersen et al. [11]. The equations of motion of this system can be expressed
in a non-dimensional form by defining the following non-dimensional parameters:
μi = mi

m1
, βi = ki

k1
, ζi = ci

m1ω1
, βn = β3X

2
st , ζn = ζ3X

2
st , f = F

k1Xst
, ω = Ω

ω1
,

τ = ω1 t , Xst = F
k1

. The non-dimensional equations of motion are given by

ẍ1 + x1 + ζ1ẋ1 + β2 (x1 − x2)+ ζ2 (ẋ1 − ẋ2)+ βn (x1 − x3)
3

+ ζn (ẋ1 − ẋ3) (x1 − x3)
2 = f cos (ω τ)

μ2 ẍ2 + β2 (x2 − x1)+ ζ2 (ẋ2 − ẋ1) = 0 (1)

μ3 ẍ3 + ζn (ẋ3 − ẋ1) (x3 − x1)
2 + βn (x3 − x1)

3 = 0.

The system undergoing study is assumed to be in the nearby area of 1:1 resonance,
where the excitation force frequency is near the eigenfrequency of the primary
oscillator.

2.2 Analytical Study Using Complex Averaging

The complex-averaging method (CX-A) [9] is used to determine the analytical
approximation for the system dynamics. It is difficult to explore directly Eq. (1),
to understand the system dynamics. The two assumptions in Eq. (2) are as follows:
the dynamics of the system are studied in the vicinity of the fundamental transient
resonance; hence, the fast frequency for all three masses is ω and the excitation
amplitudes considered are low-to-medium energy levels [12].

ψj = ẋi + i ω xi . (2)
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Introducing new complex variables [13] and substituting Eq. (2) as ψj = φiei ω t ,
j = 1, 2, 3, across the fast time scale, Eq. (1) can be averaged. It yields

φ̇1 + i φ1
(
ω2 − 1

)

ω
+ ζ1 φ1

2
− iβ2 (φ1 − φ2)

2ω
+ ζ2 (φ1 − φ2)

2

+ ζn (φ1 − φ3)
2 (| φ1 − φ3 |)

8ω2
− 3i βn | φ1 − φ3 | (φ1 − φ3)

2

8ω3
= f/2

μ2 φ̇2 + i μ2 ω φ2

2
+ i β2 (φ1 − φ2)

2ω
− ζ2 (φ1 − φ2)

2
= 0 (3)

μ3 φ̇3+ i μ3 ω φ3

2
− ζn (φ1 − φ3)

2 | φ1 − φ3 |
8ω2 +3i | φ1 − φ3 | βn (φ1 − φ3)

2

8ω3 = 0.

Now another set of new variables u, v, and w are introduced into Eq. (3). Define
u = φ1−φ2, v = φ1−φ3, and w = φ1+μ2 φ2+μ3 φ3. The differential equations
in new variables u, v, and w can now be derived from Eq. (3) and are given below

u̇+ ζ1 (w + μ2u+ μ3v)

2 (1+ μ2 + μ3)
+ u (1+ μ2) (ζ2 ω − i β2)

2μ2 ω
− i (w + μ2u+ μ3v)

2 (1+ μ2 + μ3) ω

+ i ω u
2
+ (ζn ω − 3i βn) v2 | v |

8ω3
= f

2

v̇ + ζ1 (w + μ2u+ μ3v)

2 (1+ μ2 + μ3)
+ (ζ2 ω − iβ2) u

2ω
− i (w + μ2u+ μ3v)

2 (1+ μ2 + μ3) ω

+ i ω v
2
+ (1+ μ3 (ζnω − 3 iβn)) v2 | v |

8μ3ω3
= f

2
(4)

ẇ + ζ1 (w + μ2 u+ μ3 v)

2 (1+ μ2 + μ3)
− i (w + μ2u+ μ3v)

2 (1+ μ2 + μ3) ω
+ i ω w

2
= f

2
.

Equation (4) is known as the averaged flow of the system shown in Fig. 1.

3 Dynamics of the NES with Nonlinear Damping

In this section, the dynamics introduced in the system due to the inclusion of
nonlinear damping element in the NES, which helps to identify the evolution of the
different energy transfers in the system, is discussed. It is possible to incorporate
slow time-scale variables in time and to define different energy transfers that occur
among the primary oscillator and the NES using Eq. (4). The time-series plot of
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Fig. 3 Wavelet spectrum of the system

| v(τ) | for a specific set of model parameters ζ1 = 0.009, ζ2 = 0.06, ζn =
0.01, β2 = 1.1429, βn = 0.15, μ2 = 0.2, μ3 = 0.04, and f = 0.0159 is shown in
Fig. 2. Since the fundamental resonance capture and sub-harmonic orbits energy
transfer regimes cannot be directly triggered by the excitation force, there is a
nonlinear beat phenomenon that occurs at the initial stages of the response that helps
the system to get captured into 1:1 transient resonance and eventually transfers all
energies to NES.

Figure 3 shows the wavelet spectrum of the relative response. After the prelim-
inary high-frequency nonlinear beat phenomenon, the damped dynamics adopt the
1:1 resonance branch as energy decreases as a result of the action of the damping
components. Shortly after the initial 1:1 resonance capture, the system settles itself
into a sub-harmonic resonance capture state. During this complex transition, the
primary masses oscillate mostly with its own natural frequency, and the existence
of lower frequencies in the wavelet spectrum is mainly due to the oscillation of the
NES. It is found that this transformation is due to the nonlinear damping present in
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the NES. Though these transitions were observed for the NES with only nonlinear
stiffness, it is evident from Figs. 2 and 3 that in this case the geometric nonlinearity
in damping triggers the transition and changes the system’s dynamic behavior even
without triggering any of the impulsive orbits of the system.

4 Response Regimes (Slow Invariant Manifold)

The complex response regime in the system that arises due to the presence of
strongly modulated response (SMR) and the transient orbits projected in the slow
invariant manifold (SIM) is described in this section. Eq. (4) can be analyzed by
the method of multiple scales with respect to a small parameter ε (0 << ε =
μ3 << 1). Define u = u (τ0, τ1), v = v (τ0, τ1), w = w (τ0, τ1), τn = εnτ ,
d
dτ
= ∂

∂τ0
+ ε ∂

∂τ1
and n = 0, 1. Substituting in Eq. (4), equating the coefficients of

ε0, and making its time derivatives to zero lead to

ζ1 (w + μ2u)

2 (1+ μ2)
+ (1+ μ2) (ζ2 ω − iβ2) u

2μ2 ω
+ (ζnω − 3 iβn) v (|v|)2

8ω3 − i (w + μ2u)

2ω (1+ μ2)

+ i ω u
2

= f
2

ζ1 (w + μ2u)

2 (1+ μ2)
+ (ζ2 ω − iβ2) u

2ω
+ (2+ μ2) (ζnω − 3 iβn) v (|v|)2

8ω3 (1+ μ2)
− i (w + μ2u)

2ω (1+ μ2)

+ i ω v
2

= f
2

(5)

ζ1 (w + μ2u)

2 (1+ μ2)
− i (w + μ2u)

2ω (1+ μ2)
+ i ω w

2
= f

2
,

where u, v, and w indicate the fixed points of the system. Eq. (5) can be simplified
and combined in terms of w and v into a single equation of the form

α1N3
3 + α2N3

2 + α3N3 = N1, (6)

where N1 = | w2 | and N3 = | v2 |; α1, α2, and α3 are the coefficients of N3.
Such a SIM topology indicates that there exists SMR in the system near to its
resonance frequency. It can also lead directly to relaxation oscillations. There are
three solutions for Eq. (6) among which, two of them are stable and one is unstable
with respect to time τ0. Variations of system responses, where the jump phenomenon
exists between the stable branches that are marked by firm lines, are shown in
Fig. 4. However, this motion is only feasible unless the system is capable of reaching
the boundary of stable branches when moving along the SIM about the slow time
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Fig. 4 SIM topology of the
system with nonlinear
damping
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scale. A linearized analysis can obtain the stability of the branches, as described in
previous works [8]. Thus, correctly to the approximation of the slow time scale, the
dynamics will be drawn to any one of the stable branches. If the SIM has turning
points, there seems to be a significant chance of jump phenomena as the orbits on the
SIM encounter abrupt shifts among stable branches as shown by the black dashed
lines whereNu andNd in Fig. 4 represent the landing points on the SIM. This opens
the way for forced dynamics relaxation oscillations and tends to create SMR. The
indication of such SMRs is advantageous for the objective of vibration suppression
of harmonically excited systems and energy localization from linear oscillators to
the NES. It is clear from the SIM topology in Fig. 4 that the localization of energy
to the NES takes place, where the NES oscillates with much higher amplitude than
the primary system under consideration.

An illustration of SIM with NES having viscous damping and the one with
nonlinear damping is shown in Fig. 5. The two different SIMs were plotted for a
specific set of parameters ζ1 = 0.009, ζ2 = 0.06, ζn = 0.01, β2 = 1.1429, βn =
0.15, μ2 = 0.2, μ3 = 0.04, and f = 0.0159. The comparison is made between
normal NES and NES with nonlinear damping. The topological shape of the SIM
for both NES looks similar, but the SIM for normal NES is larger and the unstable
branch is pushed to the right.

The stable branches of NES with nonlinear damping shift slightly closer to
each other compared to the normal NES. To determine the response, the orbital
motion of the system is projected into the SIM as shown in Fig. 6. For the
model described in Fig. 1, under harmonic excitation, the transient modulus of the

primary mass and NES is defined as N1 = | (ẇ + i ω w) exp−iω τ |2 and N3 =
| (v̇ + i ω v) exp−iω τ |2. Figure 6 clearly explains the difference in the dynamic
behavior of the two types of NES. In normal NES, the horizontal orbits representing
the projection of motion of the system clearly show that the system’s motion is
confined to one of SIM’s stable branches. But in the case of NES with nonlinear
damping, a quasi-periodic response is observed with both linear oscillator and NES
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Fig. 5 Comparison of SIM
topology for NDNES with
NES
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Fig. 6 Time–displacement response of linear oscillator and NES projected into SIM. (a) NES with
nonlinear damping. (b) Normal NES

amplitudes. Even at low excitation amplitude, the system’s orbital motion shows the
jump phenomenon. This opens a way for relaxation oscillations to occur and leads
to the SMR regime.

5 Periodic Solutions of the System

The method of harmonic balance is a semi-analytical approach that can generate the
periodic solutions directly from the steady-state response of a system that are excited
harmonically. Harmonic balance method (HBM) can be extended to nonlinear
systems that are strongly nonlinear or discontinuous [14]. The method outlined
in [15] is used here to obtain the periodic solution. To construct the frequency
response of the system under consideration, HBM is used together with the arc-
length continuation for ζ1 = 0.009, ζ2 = 0.06, ζn = 0.01, β2 = 1.1429, βn =
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Fig. 7 Frequency response plot to compare the proposed NDNES with normal NES. (a) Fre-
quency response plots of primary system amplitude. (b) Frequency response plots of the mass
(m2) amplitude. (c) Frequency response plots of the NES amplitude

0.15, μ2 = 0.2, μ3 = 0.04, and f = 0.0159. For comparison, the frequency
response of the system with the normal NES and NES with nonlinear damping is
shown in Fig. 7. The frequency response in Fig. 7a indicates that there are multiple
stable periodic solutions and jump phenomenon at ω = 0.875, which is nearer to
the resonance frequency, where exactly the SMR regime occurs. It is evident from
Fig. 7c that the energy from the main mass (m1) is more efficiently transmitted to
the NES with nonlinear damping. This effective localization of energy is due to
the occurrence of relaxation oscillations leading to the SMR regime as discussed
in Sect. 4. In the frequency response of the NES, it also appears that the NES with
nonlinear damping has high amplitudes not only at the near-resonance frequency
but even after it the NES with nonlinear damping has carried forward with a higher
amplitude value. It is due to the motion of the system crosses the boundary of
the low-amplitude stable branch when moving along the SIM, it jumps to the Nu
point, which is on the high-amplitude stable branch, and it continues its motion
on that branch until it crosses the next jump point to the low-amplitude branch of
the SIM (Fig. 4). In the case of normal NES, the energy is transferred only at the
neighborhood of resonance frequency, and the displacement amplitude of the NES
is much lower than the NES with nonlinear damping as shown in Fig. 7c. It means
that in normal NES the energy transmitted from mass m1 to m2 is relatively greater
than to the NES and clearly visible in Fig. 7b.

6 Conclusions

In this chapter, using a combination of analytical and numerical approaches, a
framework for the computation of system parameters leading to the efficient transfer
of energy in a two-degree-of-freedom system with geometric damping is discussed.
The results obtained from the dynamics of the system with nonlinear damping show
that nonlinear damping can lead to different bifurcations and response regimes.
The SMR and SIM topologies also explain the formation and dynamic behavior
of the system. The SMR of the system under study paves the way for relaxation
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oscillations that lead to the effective energy transfer to the NES from the main
structure. Analytical approximations of the dynamics governing the evolution of
the energy transfer due to resonance capture have been determined by complex-
averaging method. This chapter shows that NES with nonlinear damping results in
higher energy transfer from the linear oscillator to the NES compared to the standard
NES that signals the potential for various applications. The findings also show that
even at low excitation amplitude, the NES with nonlinear damping is superior to the
standard NES in its efficiency and robustness.
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Aeroelastic Dynamic Feedback Control
of a Volterra Airfoil

Gianluca Pepe , Elena Paifelman, and Antonio Carcaterra

1 Introduction

Dynamic behavior analysis of the nonlinear aeroelastic system is one of the inter-
esting topics among researchers that have been studied in recent years. Nonlinear
airfoil instability and behavior analysis in subsonic flow are one of the main parts in
this field. Aeroelastic systems are characterized by complex nonlinear phenomena
due to structural oscillations coupled with the fluid dynamic. The coexistence of
phenomena, such as limit cycle oscillation and chaotic vibrations induced by the
fluid, can lead the dynamic systems to instability such as flutter which can decrease
the system performance, as well as the damage of the structure itself.

Historically, the main approach to analyze the dynamic instability of nonlinear
aeroelastic systems has been developed by Theodorsen [1] in the frequency domain.
His theory aimed to model the aerodynamic loads on an airfoil when the wake
releasing is considered as a memory effect on the global fluid-structure interaction
dynamic. Wagner proposed a time-domain analysis where the memory effects are
represented by convolution Volterra integrals [2]. Both these traditional models are
linear, but, in many cases, the dynamic equations of an airfoil became nonlinear
due to the presence of nonlinear elements (dampers, stiffness) or for the instabilities
generated from the fluid-structure interaction. The nonlinear aerodynamic model
in the time domain can be solved by numerical techniques or analytical methods.
In the first case, the solutions such as the finite difference method, Runge–Kutta,

G. Pepe · A. Carcaterra (�)
Department of Mechanical and Aerospace Engineering, Sapienza University of Rome,
Rome, Italy
e-mail: gianluca.pepe@uniroma1.it; antonio.carcaterra@uniroma1.it

E. Paifelman
Italian National Research Council, Institute of Marine Engineering of Rome, Rome, Italy
e-mail: elena.paifelman@inm.cnr.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Lacarbonara et al. (eds.), Advances in Nonlinear Dynamics, NODYCON
Conference Proceedings Series, https://doi.org/10.1007/978-3-030-81166-2_10

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81166-2_10&domain=pdf
https://orcid.org/0000-0002-1444-7765
mailto:gianluca.pepe@uniroma1.it
mailto:antonio.carcaterra@uniroma1.it
mailto:elena.paifelman@inm.cnr.it
https://doi.org/10.1007/978-3-030-81166-2_10


106 G. Pepe et al.

and cyclic method were employed to solve differential equations of a nonlinear
system. Moreover, analytical and semi-analytical solutions including describing
function technique were used to analyze the instability of control surfaces of a
wing with nonlinear stiffness [3]. In the last decade, different methods have been
used to investigate nonlinear dynamic systems [4, 5], some, based on perturbation
method and stochastic approach [6], have been developed to analyze nonlinear
aeroelastic systems such as perturbation incremental or transformation point method
and homotropy method [7, 8].

In the literature, several authors have provided extensive reviews about nonlinear
control methods for the minimization of oscillations of elastic wings and aircraft;
moreover, in recent years, many control strategies for flutter avoidance have been
developed. Partial feedback linearization methodology was also applied to the
design of nonlinear controllers for the nonlinear aeroelastic system [9]. The state-
dependent Riccati equation (SDRE) method was developed for nonlinear control
problems and used to design suboptimal control laws of nonlinear aeroelastic
systems considering both quasi-steady [10] and unsteady aerodynamics. Recently,
an output feedback and an adaptive decoupled fuzzy sliding-mode control laws
have been implemented for suppressing flutter and reducing the vibrational level
in the subcritical flight speed range [11]. Moreover, based on the tensor-product
model transformation and the parallel distributed compensation, a control law for
the prototypical aeroelastic wing section was designed and presented in [12].

This work aims to develop a novel variational optimal control strategy to control
the aerodynamic behavior of an aerofoil which presents a memory effect from
wake production. Integral memory terms, representing, in this case, the release
of wake, are normally not included in variational control algorithms. From the
control point of view, the Volterra models are solved through direct methods,
discretizing the equations, and then the optimal problem is solved through nonlinear
programming [11]. The proposed optimal control, called Proportional-Nth-order-
Integral control, PI(N), fills this gap and it belongs to the category of Variational
Feedback Controls (VFCs) [13–18]. The solution of the optimal problem is provided
through a particular solution of Riccati’s equation including the memory terms
generated by the past system evolution [19, 20]. The structure of the control law
shows how the optimal solution is related to the kernel function order, that is, of the
Volterra integral typology.

Finally, the analytical solution PI(N) is tested on a prototypical wing and the
numerical results show how is possible to reach the best performance of the
proposed controller in comparison with the classical Linear Quadratic Regulator
(LQR) method.

2 Mathematical Model of Wagner’s Controlled Wing

Theodorsen’s theory is widely used to achieve the mathematical model of the
aerodynamic problem [1]. It provides the generalized unsteady aerodynamic forces
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Fig. 1 Theodorsen’s airfoil section geometry

due to an arbitrary motion of the airfoil, which generates a vortex wake. The
time-domain counterpart of the Theodorsen’s theory, formulated by Wagner [2],
is considered in this work to formulate an optimal control law which includes
Volterra’s memory effects.

The engineering control application of a two-degree-of-freedom airfoil is here
investigated, where the pitch degree of freedom is actively controlled.

The sketch in Fig. 1 shows the geometry of the typical Theodorsen airfoil section
where the x-axis is chord-wise axis (positive towards the trailing edge) and E is the
center of rotation. The airfoil is a simple two degree-of-freedom system, elastically
constrained by a pair of springs, kl and kt, oscillating in plunge and pitch. The
actuation force, u, is meant here as dimensionless torque applied on the pitch
rotation degree-of-freedom β. By using standard notations, the nondimensional
plunge deflection at the elastic center is denoted by w,while β represents the pitch
motion. The elastic center, E, is located at a distance OE= ahc/2 from the mid-chord
(ah is the dimensionless distance, considered with respect to the half-cord length,
c/2, between the center of the foil O, and the elastic axis), while the mass center,
G, is located at a distance EG = xαc/2. With these assumptions, the aeroelastic
equations of the typical wing are:

{
ẅ + xαβ̈ +Ω2w = −p (w, β)
xα
r2
α
ẅ + β̈ + β = r (w, β)+ u (1)

where the overdot denotes differentiation with respect to a dimensionless time
τ = ωαt; � = ωw/ωα is the heave stiffness, being ωw and ωα the uncoupled

natural frequencies of heave and pitch modes; rα =
√

4Iβ/mc2is the dimensionless
radius of gyration about the elastic axis and m, Iβ , c are the mass, the moment of
inertia per unit length with respect to the elastic center, and the wing chord. For
an incompressible two-dimensional flow, Wagner defines the aerodynamic loads
as the sum of two contributions [2]: (i) a linear composition of degree-of-freedom
which represents the added mass, damping, and stiffness due to the fluid-structure
interaction and (ii) a convolution term including the memory effects defined as
follows:
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p (w, β) = 1

μ

(
ẅ − ahβ̈ + Uβ̇

)+ 2U

μ

t∫

−∞
KW (t − τ) ˙̃w3/4 (τ ) dτ

r (w, β) = 1

μr2
α

[

ah
(
ẅ − ahβ̈

)− 1

2
U (1− ah) β̇ − 1

8
β̈

]

+U (1+ 2ah)

μr2
α

t∫

−∞
KW (t − τ) ˙̃w3/4 (τ ) dτ

(2)

where p and r are the lift and pitching moment, respectively, μ = πρc2/4m is
the mass ratio, and U = 2V/cωα is the dimensionless inflow velocity and V is
the inflow velocity, oriented along the x-axis. The time-dependent known function
∼
w3/4 (τ ) = ẇ (τ )−

(
1
2 − ah

)
β̇ (τ )+Uβ (τ) andKW (t − τ) =∑N

k=1 αke
−βk(t−τ)

are the downwash and the Wagner function, respectively. Using a standard notation

in control theory, by defining a new state vector x = [w, β, ẇ, β̇]T , the system can
be arranged in its matrix notation:

ẋ = Ax +K(t) ∗ x + Bu (3)

where the following definitions are used:

A =
[

02×2 I2×2
−M−1Ω −M−1C

]

;M =
⎡

⎣
1+ 1

μ xα − ah
μ

xα
r2
α
− ah
μr2
α

1+ a2
h

μr2
α
+ 1

8μr2
α

⎤

⎦ ;C =
[

0 U
μ

0 U(1−ah)
2μr2

α

]

K(t) =
[

02×2 02×2
−M−1Φ(t) 02×2

]

; B =
⎡

⎢
⎣

02×1
8μr2

α (ah − μxα) /ε
8μr2

α (μ+ 1) /ε

⎤

⎥
⎦

Ω =
[
Ω2 0
0 1

]

;Φ(t) =
⎡

⎣

2U
μ K̈w

2U
μ

[(
ah − 1

2

)
K̈w + UK̇w

]

− (1+2ah)U
μr2
α

K̈w − (1+2ah)U
μr2
α

[(
ah − 1

2

)
K̈w + UK̇w

]

⎤

⎦

ε = 8a2
h
μ+ 16ahμxα + 8r2

αμ ( μ+ 1)− 8μ2x2
α + μ+ 1

(4)

and I is indicating the identity matrix. The term expressed by the operator ∗ indicates
the convolution integral or Volterra integral between the element i-row j-column of
K matrix and the state x.

Kij ∗ xi =
∫ t

0
Kij (t − τ) xi (τ ) dτ (5)

This work aims to find an optimal control that can minimize a given objective
function J under the constraint hypotheses of the differential system (3). Usually,
the Pontryagin problem is not easily solved except through numerical approaches
based on the discretization of the equations making use of direct control methods
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such as single-multiple shooting or collocation methods. In this case, the open-loop
control solution is founded by the solution of a nonlinear programming system,
which requires high computational efforts and therefore cannot be used for real-time
applications. Here, the authors propose an indirect and analytical solution of the
Pontryagin problem for Volterra equations, which can be used in feedback, making
the algorithm suitable for real-time applications. The objective function is defined
as the classical quadratic form in terms of both the state x and the control u, and the
constraint expressed by the integral differential equation of first species Volterra:

min J = min

{
T∫

0

1
2xTQx + 1

2Ru
2 + λT (ẋ −Ax −K ∗ x − Bu) dt

}

i.c. x(0) = x0

(6)

Equation (6) represents a typical optimal problem in which the integral differ-
ential constraint is considered using the Lagrange multiplier λ. The matrix Q and
the coefficient R are generally gains of the objective function or also called penalty
parameters suitably selected to best tune the optimal control solution.

3 Theory of the Proportional Integrative N-Order PI(N)
Control

The proposed optimal control theory of the Volterra Eq. (3) is here presented in
a scalar formulation without loss of generality for more clarification. Therefore,
starting with the minimizing of the following cost function:

min J = min

{∫ T

0

1

2
qx + 1

2
ru2 + λ (ẋ − ax − k ∗ x − bu) dt

}

(7)

and doing the δ variations and imposing δJ = 0, a set of differential equations in x
and λ is found (see Ref. [16] for more details):

⎧
⎨

⎩

ẋ = ax + bu+ ∫∞0 k (t − τ) x (τ ) dτ
λ̇ = qx − aλ− ∫∞0 k (τ − t) λ (τ ) dτ
λ(T ) = 0, u = b

r
λ

(8)

The first integral of (8) is the convolutional term k ∗ x; instead, the second integral
is associated to the δ-variation of k ∗ x in the x variable that is a nontrivial problem.
Both can be derived under the kernel causality proprieties k(t − τ ) = 0 for t < 0
and τ > t (see Ref. [16] for more details). The transversality condition of Eq. (8),
λ(T) = 0, makes the problem difficult to solve, and only an open loop control
solution is naturally stated, precluding the chance of a direct feedback control.
As it happens for physical systems described by differential equations, the infinite
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time-horizon presents the chance of a direct feedback control passing through some
assumptions. The proposed method is based on the use of a specific exponential
kernel function, which may well represent most convolutional memory phenomena
or hysteresis models:

k(t) =
N∑

k=1

αke
−βkt (9)

where αk and βk are general coefficients of the exponential series. Now, eliminating
u through the third of Eq. (8) and considering the Eq. (9), one can easily obtain

{

ẋ = ax + λb2

r
+ ∫∞0

∑N
k=1 αke

−βkt x (τ ) dτ
λ̇ = qx − aλ− ∫∞0

∑N
k=1 αke

−βktλ (τ ) dτ
(10)

Thanks to the special form of k, the two integral terms of (10) can be easily
Laplace-transformed L {} with variable s:

(sX(s)− x0) = (a − dN−1)X(s)

+
N∑

j=1

(

adN−jX(s)+ pN−jX(s)+ b
2

r
dN−jΛ(s)+ x0dN−j

−dN−1−jX(s)
)
s−j + b

2

r
Λ(s)

(sΛ(s)− λ0) = −
(
a + d̃N−1

)
Λ(s)

+
N∑

j=1

(
qd̃N−jX(s)+ p̃N−jΛ(s)− ad̃N−jΛ(s)+ λ0d̃N−j

−d̃N−1−jΛ(s)
)
s−j + qX(s)

(11)

where dj, d̃j ,pj , p̃j are general coefficients. Now Laplace antitransforming
L−1 {} and reducing the integral-differential equation to a set of first order, the
Eq. (11) can be reduced to an LTI system with the state vector q = [ξ , η]T ,
ξ = [ξ1, . . . , ξN + 1]T , η = [η1, . . . , ηN + 1]T where ξ1 = L−1 {X(s)} and
η1 = L−1 { (s)}; the following variables ξ k, ηk present integrals of state and
lambda up to the k-order and matrix H = [HξξHξη;HηξHηη] ∈ R

(2N + 2) x (2N + 2):

q̇ = Hq (12)
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Its solution can be expressed in function of its 2N + 2 eigenvectors ψk θk

and eigenvalues p = [p1, . . . pk, . . . , p2N + 2]. Arranging the eigenvalues pk with
R-positive and Y-negative real part, Eq. (12) can be written as follows:

q =
[

ξ

η

]

=
Y∑

k=1

c
{−}
k

[
ψ
{−}
k

θ
{−}
k

]

ep
{−}
k t +

R∑

k=1

c
{+}
k

[
ψ
{+}
k

θ
{+}
k

]

ep
{+}
k t (13)

where Y + R = 2N + 2 and the superscript {+} identify the set of values ψk, θk,
ck referred to the positive real parts Re {pk} ≥ 0 and vice versa the superscript {−}
is referred to the set of Re {pk} < 0. The ck are the unknown coefficients found by
imposing the boundary conditions. The system (13) can be solved assuming R ≥ Y
or the number of eigenvalues pk with negative real part are more than the others.
The solution can be found by imposingc{+}k = 0 to satisfy the boundary condition
lim
T→∞λ(T ) = 0 and its derivatives, that is, lim

T→∞η
(T ) = 0. By selecting N + 1

equations with p{−}k , from Eq. (13), one obtains:

η =
[
θ
{−}
1 , . . . , θ

{−}
N+1

] [
ψ
{−}
1 , . . . ,ψ

{−}
N+1

]−1
ξ = Pξ (14)

Finally, from Eq. (8), since u = b
r
λ, extracting from η the last subvector

ηN + 1 = λ, the optimal feedback control variable u can be found as follows:

u= − P1,1x +
∑N

i=1
P1,i+1

∫

. . .

∫

︸ ︷︷ ︸
i

(
d̂ ix+ p̂iu

)
dt . . . dt︸ ︷︷ ︸

i

+
∑N

i=1
x0dN−i

t i−1

(j − 1)!

(15)

with d̂ i , p̂i , P1, j are general coefficients. The structure of Eq. (15) shows the explicit
optimal control solution of Volterra’s differential equations here called PI(N). The
form of u is mainly related to the structure of the kernel k(t), because it presents
a combination of state integral of order equal to the number of the k exponential
terms. The explicit control solution has been obtained not only by satisfying the
transversality condition stated in (8), but also imposing the same condition for its

higher derivatives lim
T→∞

diλ(T )

dti
= 0. Moreover, the control solution is also strictly

related to the state initial condition x0.
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4 Results and Discussion

In this section, the numerical results are discussed. The proposed PI(N) controller is
here developed to control the airfoil motion of Eq. (3) by minimizing the release
of vortex wake. The novel algorithm is compared with the benchmarking LQR
method, in terms of cost function 1/2( xTQx + Ru2). The benchmarking LQR
method has been developed for the model in analysis by disregarding convolutive
memory effects that cannot be included in the method K(t) ∗ x = 0. Moreover,
both controllers, LQR and PI(N), have been applied to the real Volterra wing
model. Table 1 below shows the geometric and dynamic adimensional parameters
considered as input for the numerical simulations.

Results in Fig. 2 show the behavior of heave (a) and pitch wing (b) motion,
when the PIN and LQR controllers are, respectively, acting on the system. For both
degree-of-freedom the novel PIN algorithm presents a faster attitude to reach the rest
condition, that is, the minimization of memory wake effect, compared to the LQR,
which is around 20% of the maximum reached value of the pitch degree-of-freedom.
Particularly, the LQR solution presents discontinuity in the heave evolution possibly
caused by the presence of memory effects generated by the kernel function. Indeed
these effects, which take place during the first seconds of the simulation, are not
taken into account in the LQR algorithm.

Also, the control in Fig. 3a underlying a lower effort for the PI(N) controller
and in Fig. 3b the cost functions for both methods are compared. The PIN solution
presents a lower value of the cost function J than the LQR, confirming a better
behavior of the proposed control both in terms of minimization of memory wake
effects and cost function itself. This result is due to the fact that the LQR method is
not taking into account the memory effects differently from PIN whose behavior is
favored by this feature.

Table 1 Dimensionless parameters (see [21] for more details)

Description Parameters Value

Dimensionless distance OE ah 0.2
Dimensionless mass μ 26.18
Dimensionless radius of gyration rα 4.8
Dimensionless distance GE xα 0.2
Frequency � 0.55
Dimensionless inflow velocity U 2
Kernel function KW 1 − 0.165e−0.0009Ut − 0.335e−0.006Ut

Control gain Q; R diag(5e4; 250; 500; 40); 0.2
Initial displacement w(0), β(0), ẇ(0), β̇(0) [10, 0, 0, 0]
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a) b)

Fig. 2 Heave (a) and pitch (b) motion: PIN vs LQR

a) b)

Fig. 3 Control law (a) and cost function (b) PI(N) vs LQR

5 Conclusions

This work aims to develop a novel optimal control strategy for Volterra models,
based on the variational optimal control theory, which normally is applied only
to differential equations. In this paper, the proposed algorithm is applied to the
control of the aerodynamic behavior of an airfoil which presents a memory effect
from wake production. The optimal control, called Proportional-Nth-order-Integral
control, PI(N), is here proposed as the indirect solution of the Pontryagin theory
applied to the Volterra equation of motions. The analytical control solution has an
integral form of order equal to the order of the kernel function series expansion
for modelling the wake vortex. Numerical results show the better performances of
the proposed PI(N) controller compared with the classic LQR method in terms of
reaching rest conditions and minimizing the cost function value.
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Magnetic and Electromagnetic Springs
Forces: Determination and Usage
in Damping Vibrations

Maksymilian Bednarek, Donat Lewandowski, and Jan Awrejcewicz

1 Introduction

Springs are commonly used in the technical industry, thanks to their ability to
store energy or, in certain cases, to damp some movement. Technological progress
allows creating devices that act as a spring (e.g., rubber, hydro-pneumatic, magnetic,
or electromagnetic springs). Electromagnetic spring has an advantage because its
parameters can be controllable by changing the current in the coil. The idea
of using an electromagnet to achieve varying stiffness has already found usage
in biomechanics. Liang et al. [1] designed a finger exoskeleton with a variable
stiffness which can be used in hand rehabilitation. Liu et al. [2] developed a
controllable electromagnetic vibration isolator. Authors have introduced negative
stiffness which opposes the excited movement in some working range. As a result,
the amplitude of this vibration has been decreased. Since electromagnets can operate
with varying forces, they can be successfully used for shock absorption [3, 4].
We can treat two or more magnets moving coaxially as a nonlinear magnetic
spring. By electromagnetic spring we mean here a magnet moving coaxially in
the vicinity of the powered coil. Usually, the identification of spring parameters,
such as stiffness or damping coefficient, is biased with an error resulting from dry
friction. Experimental stand consisting of aerostatic bearings allows us to minimize
this error. There are numerous publications that try to model the strength of a
magnet or powered coil depending on the distance from it [5–7]. In this work, the
interaction between a pair of magnets and between a magnet and a coil has been
described and experimentally validated. Sometimes in an application, one needs a
spring with a particular characteristic, for example, linear or progressive. Finding
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a proper combination of springs to achieve the desired characteristic might be
troublesome, especially for complex stiffness shapes. This work presents a method
for tailoring any characteristic of electromagnetic spring. It should be emphasized
that by changing characteristics of certain components of the system during its
motion in an appropriate way, we can dampen or additionally force the motion.
That property allows one to create active damping, which, unlike passive damping,
can adapt to changing conditions in which the device is operated. In this article, we
present the current controller with a feedback loop, which allows us to dampen any
movement that appears as a result of some external excitation. This article extends
our previous work [6] by introducing a new formula to approximate electromagnetic
force. Furthermore, a concept of tailoring electromagnetic stiffness characteristic is
introduced. This paper is constructed in the following way: Sect. 2 – description of
the experimental setup, Sect. 3 – investigations of spring stiffness characteristic,
Sect. 4 – shaping the electromagnetic stiffness characteristic, Sect. 5 – active
damping.

2 Experimental Rig

Our experimental rig allows us to test a wide spectrum of properties of stiffness
elements (springs). Thanks to the use of nonferromagnetic elements, we can study
not only mechanical springs but also magnetic and electromagnetic springs. The
setup consists of a guide 6 suspended in two closed aerostatic supports (see Fig. 1)
which allows for full elimination of dry friction between the guide and the supports.
Universal spring holders are placed at the ends of the guide 6 and on the brackets
7. The distance between the handles and the guide’s face can be adjusted by axial
movement of the brackets 7 in the t-slots of the base 9. It is possible to measure the
displacement of the guide with an accuracy of 1 micrometer. Position of the guide
is measured with Hall sensor 3 and gathered by data acquisition card. The value of
force F is changed by setting the angle α, relative to the direction of gravity, with a
self-locking worm gear 12. Inclinometer 2 ensures accurate angle reading.

3 Determining Spring Stiffness Characteristics

We study two different types of springs which will be subject to theoretical and
experimental analysis: magnetic and electromagnetic (see Fig. 2). Their forces will
be denoted as Fm and Fe, where Fm is the force of magnetic spring and Fe indicates
the force of electromagnetic spring. Static stiffness characteristic was collected
using a dynamometer.
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Fig. 1 Photo (a) and diagram
(b) of the experimental rig
with aerostatic supports: 1 –
coil, 2 – inclinometer, 3 –
position sensor, 4 – aerostatic
supports, 5 – air preparation
system, 6 – guide, 7 –
brackets, 8 – compressed air,
9 – base, 10 – magnet, 11 –
angle adjustment locks, 12 –
worm gear, 13 – magnetic
ruler, 14 – supports, 15 –
displacement display, 16 –
angular scale, 17- rig frame,
18 – power supply, 19 – data
acquisition card, 20 –
H-bridge

Fig. 2 Test objects: (a) magnetic spring (magnet - magnet), (b) electromagnetic spring (powered
coil - magnet)

3.1 Magnetic Spring

A magnetic spring is defined as two magnets arranged coaxially with identical poles
relative to each other as it is shown in Fig. 2a. One magnet was attached to the fixed
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Fig. 3 Graph representing repulsive force vs. displacement of magnetic spring. For x = 0, the
surfaces of magnets adjoin. Dots represent experimental values; red (green) curve represents Eq.
(1) with (without) regard to environmental conditions

mounting, while the other to the guide. Repulsive force of two magnets moving
coaxially on the guide without friction is nonlinear and can be determined by the
formula:

Fm = A(γ x + 2b)−2, (1)

where A is a magnet constant, b is the distance between the center of the magnet
and the magnet’s front surface, while γ is a constant of distance influences for given
conditions. Constant A can be determined from the formula:

A = F0(2b)
2, (2)

where F0 is the value of force that occurs between connected identical poles of
magnets. The green curve shown in Fig. 3 displays formula (1) without taking into
consideration environmental conditions represented by parameter γ , while the red
curve represents formula (1) with regard to them.

3.2 Electromagnetic Spring

An electromagnetic spring is defined as a pair of a magnet and powered coil
arranged coaxially, so that magnet can move freely inside and outside the coil (see
Fig. 2b). Depending on the polarization of the current, the magnet is repelled or
attracted to the center of the coil. Measurement was carried out in the same way
as magnetic spring. The coil used in the experiment has 30 mm in length, 26 mm
on the inner diameter, and 45 mm in outer diameter. Static tests have shown that the
stiffness of the electromagnetic spring is linear inside the coil and strongly nonlinear



Magnetic and Electromagnetic Springs Forces: Determination and Usage. . . 119

Fig. 4 Fitting of Eqs. (3), (4), and (5) to the experimental data for I = 2A

Table 1 Values of parameters used in Eqs. (3), (4), and (5)

a1 [Nm] a2[m2] b1

[
N

mb2

]
b2 b3

[
1
m

]
c1
[
N
A

]
c2[m]

0.6782 0.000388 106100 1.953 −153.6 2.6857 0.0175

outside the coil (see Fig. 4). Such a line can be approximated with many formulas.
To distinguish and compare them, they are named Fe1, Fe2, and Fe3. In each of
three mathematical descriptions of the electromagnetic force, the force reaches a
maximum value when the center of magnet meets the frontal surface of the coil.
Force is equal to 0 when center of the magnet is located in the center of the coil
(x = 0). Figure 4 shows a correspondence between the experimental dots and an
analytical curve in all three variants. The parameters in formulas of electromagnetic
spring are purely mathematical. They have no physical meaning, unlike parameters
in formula (1) and (2). All values have been adjusted by Matlab curve fitting tool,
using nonlinear least squares method. Obtained values are given in Table 1.

Term Fe1 is described by the expression [8]

Fe1 = 2a1

a2
· x · e− x

2
a2 , (3)

where a1 [Nm] and a2[m2] are constant coefficients for the given current amplitude.
Term Fe2 is described by the expression [6]

Fe2 = b1x
b2eb3x, (4)

where b1

[
N

mb2

]
, b2, and b3

[
1
m

]
are coil-current-dependent parameters.

Term Fe3 we propose to describe by the following expression
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Fig. 5 Congruence of Eq. (5) for various values of current

Fe3 = c1 · I ·
x
c2

1+
(
x
c2

)4 , (5)

where c1
[
N
A

]
and c2[m] are constant parameters for a given coil-magnet pair. In

our case, c1 = 2.6857 N
A

and c2 = 0.0175 m. The electric current in the coil is
represented by I.

Analysis of all three mathematical description methods shows that Fe3 has the
best fitting with experimental data. To measure the value of fitness, coefficient of
measurement(R2) was determined. For Fe1: R2 = 0.9853, for Fe2: R2 = 0.9971, and
for Fe3: R2 = 0.9985. Moreover, the dependency between c1 and c2 parameters and
current is linear, which is a very useful phenomenon for tailoring characteristic of
electromagnetic spring. Figure 5 shows fitting Fe3 to values of current from 0.5A to
2.5A.

4 Tailoring Characteristics of the Electromagnet

Knowing that the force of an arbitrary spring is denoted as F = kx, we can use
it along with Eq. (5) to tailor the characteristic of the electromagnetic spring.
Let us denote ke as an established linear stiffness that we want to achieve in
electromagnetic spring. Transforming Eq. (5), we achieve following expression:

⎧
⎨

⎩

Fe = ke· x
I = Fec2

c1x

(

1+
(
x
c2

)4
)
. (6)
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Fig. 6 Force vs. displacement chart of electromagnetic spring for the value of current calculated
by Eq. (6), under assumption that ke = 200 (dashed curve represents arbitrary linear function)

Fig. 7 Force vs. displacement chart of electromagnetic spring for the value of current calculated
by Eq. (6), under assumption that ke = 20000x (dashed curve represents arbitrary progressive
power function)

Figures 6, 7, and 8 show force versus displacement of an electromagnet with
various linear and nonlinear set stiffness ke. The idea is to make linear, progressive,
and regressive characteristic.

This section has shown that by manipulating the current in a coil, we can use
electromagnetic spring as a substitute for an arbitrary spring. Of course, above
certain distance from the coil, needed current grows exponentially, so in order to
use this solution efficiently, working space should be limited to double or triple of a
coil length (depending on the specification of a coil).

5 Active Damping

Since force characteristic of electromagnetic spring can be tailored arbitrary, it can
also be amplified or diminished in such a way, so that the resulting force will be
opposite to the movement. To achieve such behaviour, a control system with a
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Fig. 8 Force vs. displacement chart of electromagnetic spring for the value of current calculated
by Eq. (6), under assumption that ke = 200000√

x
(dashed curve represents arbitrary regressive power

function)

Fig. 9 Diagram showing communications between components of the control system

feedback loop has been developed. It allows data to be acquired and processed in
real time. To acquire measurements, we use the NI USB-6341 device, sensors, and
a computer connected to the card (see Fig. 9). In order for the current to flow in
both directions, the H-bridge is used. The program shows parameters such as guide
inclination, displacement, and current sent to the coil in runtime.

The algorithm, which controls the current, is represented by the following
expression:

I (x, ẋ) = Kpx +Kdẋ +Ki
∫

xdt, (7)

where Kp, Kd, and Ki are coefficients of the proportional, derivative, and integral
terms, respectively. All tune settings parameters have been adjusted experimentally
by trails and error method. In each loop iteration, the displacement is numerically
differentiated to obtain the velocity and it is proportionally converted to the coil
current. The fourth order Runge-Kutta method was used to integrate displacement
in time in order to get a second component of the algorithm which is first amplified
by a tuning constant. Thanks to this, we achieve the effect in which the guide
moving toward the electromagnet is repelled from it, while moving in the opposite
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Fig. 10 Time history of the guide movement and value of the coil current. The blue curve stands
for the displacement of the guide, whereas orange curve stands for coil current

direction, it is attracted. Figure 10 shows the damping of the guide movement
using the presented algorithm. External excitation is an impulse force which is used
for presentation purposes. Without active damping, the guide would move in the
direction compatible with the direction of external excitation until it meets one of
the brackets.

6 Concluding Remarks

The formula for the magnetic force between two magnets is proposed and experi-
mentally validated. It might be very useful for engineers who need to calculate the
force of a magnet in a given distance from each other, knowing only maximum force
between them, and length of the magnets. The formula for tailoring characteristic
of electromagnet has been presented and proven experimentally. It is shown that
electromagnetic spring can also be a successful shock absorber. It may be useful for
applications where there is a need for varying stiffness of the spring. For example, in
suspension systems for active vibration damping or in systems where it is necessary
to pass through resonance to achieve target rotational speeds.

Acknowledgments This work has been supported by the Polish National Science Centre under
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A Novel Methodology for Controlling
Stick–Slip Vibrations in Drill Strings

Hélio Jacinto da Cruz Neto and Marcelo Areias Trindade

1 Introduction

Oil-drilling systems have complex dynamics and can present vibrations in multiple
directions. Vibrations during drilling are a major cause of loss of efficiency and
damage to drill-string components. Indeed, statistics indicate that up to 25% of
the annual non-productive time is caused by shocks and vibrations [1], and their
presence can also increase drilling costs by up to 10% [2]. In the particular case of
torsional vibrations, experimental studies have shown that the bit rotation is almost
always irregular and the stick–slip phenomenon is present in nearly 50% of the
drilling process [3]. Several approaches have been proposed to model and control
drill-string torsional vibrations, many of them relying on active vibration control
techniques. For instance, soft torque [4] and torsional rectification [5] techniques
were developed specifically for the problem of drill-string vibrations. Later, general
control techniques were also employed, such as LQR [6], feedback linearization [7],
sliding mode [8], PI control [9, 10], and H∞ control [11].

Recently, the authors proposed some changes in the optimal static output feed-
back (OSOF) control [12] involving the addition of sensor locations as optimization
variables and a new way of dealing with the dependence of optimal variables on
system initial conditions. When applied to vibration control problems in linear
systems, this technique presented meaningful results, such as good performance
using a reduced number of sensors and low sensitivity to uncertainties and spillover.
In this contribution, we propose the application of this technique to suppress stick–
slip oscillations in drilling systems. The continuous nature of the structure and
the nonsmooth interaction between drill bit and rock formation are represented
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by a finite element (FE) model and a non-regularized dry friction function. As
required by the OSOF controller, a translated modal form removing the rigid-body
modal displacement is developed to rewrite the original problem as a stabilization
problem. In order to achieve robust regulation, the error integral is added as a
system state. Although the control design is based on the deterministic linearized
system, numerical simulations considering the nonlinear system in regions far from
the linearization point and also subjected to uncertainties are performed in order to
evaluate stability and performance of the proposed controller.

2 Drilling System Model

The torsional dynamics of the drilling system is represented in a simplified way
considering three main components: the rotary table, the bottom hole assembly
(BHA), and the drill string, which are depicted schematically in Fig. 1. The BHA
contains the stabilizers, drill collars, and drill bit and, for modeling purposes, is
represented as a rigid body with rotary inertia Jb. The hypothesis of rigid body is
also assumed for the rotary table, which has a rotary inertia Jt . The drill string is
modeled as a circular shaft using the fundamental torsional-deformation assump-
tions [13]. Additionally, the material is considered linear elastic with constant
properties (Table 1).

Two main external sources are acting on this system: a drive torque on the rotary
table and a reaction torque induced by the bit–rock interaction. The drive torque
is taken as a control input variable, which will be determined later in the controller
design. The reaction torque Tb is modeled as frictional force using Karnopp’s model
with an exponential decaying friction term

Fig. 1 Basic components of
a rotary drilling system

Bottom Hole
Assembly (BHA)
(Mb, Jb)

Rotary table
(Mt, Jt)

Drillstring
(ρ, G, L, Ri, Ro)

Tt

Tb

ωt

ωb

Nb
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Table 1 Numerical values of
the drilling system general
parameters

Drill-string mass density (kg/m3) 8010

Drill-string shear modulus (GPa) 79.6

Drill-string length (m) 3000

Drill-string inner radius—Ri (m) 0.0543

Drill-string outer radius—Ro (m) 0.0635

BHA effective rotary inertia (kg.m2) 394

Driving table effective rotary inertia (kg.m2) 500

Tb =
⎧
⎨

⎩

T , for |ωb| ≤ δ and |T | ≤ a2Nb,

a2Nbsgn(T ), for |ωb| ≤ δ and |T | > a2Nb,[
a1 + (a2 − a1)e

−β|ωb|]Nbsgn(ωb), for |ωb| > δ
(1)

in which the values a1 and a2 are called dynamic and static friction coefficients,
respectively, β is a positive exponential friction coefficient, T is the torque
transmitted by the drill string to the bit,Nb is the normal force applied to the bit, and
ωb is the bit angular speed. The parameters for the dry friction model were taken
from [9]: a1 = 0.029, a2 = 0.079, β = 0.097, δ = 10−4, which are associated with a
WOB of 120 kN.

The frictional force is the element that makes the system nonlinear and non-
smooth, bringing dynamical characteristics that were not present in its absence,
such as new equilibrium points, self-excited oscillations, a lower limit for a stable
constant angular speed, and so forth [8].

To represent this system using a FE model, a regular mesh was constructed and
refined until there was a negligible variation in the natural frequencies up until 6 Hz,
which, by rounding up, implied in the use of 30 elements with Hermite cubics
as interpolation functions. To reduce computational effort, a modal reduction was
performed retaining only the thirteen modes that were within the range of 6 Hz
(including a rigid-body mode). The approximate eigenfunctions were determined in
order to simplify sensors positioning in the implementation of the OSOF controller.
An additional modal damping factor of 1% was added for each mode in order
to represent the interaction between the drill string and drilling mud and other
dissipation sources. Using these assumptions, the system equations were written
using a state-space representation:

ẋ = Ax+ BcTt + BrTb

x =
[

η

η̇

]

, A =
[

0 I
−Λ −D

]

, Bc =
[

0
φ(0)

]

, Br =
[

0
−φ(L)

] (2)

in which η ∈ R
n is the vector of modal displacements, Λ ∈ R

n×n is a diagonal
matrix of system eigenvalues or natural frequencies squared, D ∈ R

n×n is a diagonal
matrix of damping, and φ : R→ R

n is the vector of approximated eigenfunctions.
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Some transformations were applied to Eq. (2) in order to make it suitable for the
design of the OSOF controller. First, as the rigid-body displacement does not appear
on the right side of Eq. (2), it does not affect system dynamics and can be eliminated.
By doing this, we obtain

ẋ′ = A′x′ + B′cTt + B′rTb

ẋ′ = f(x′, Tt )
(3)

in which the apostrophe ′ is used to indicate that all components associated
with the rigid-body displacement were removed from matrices and vectors, for
example, the first element of the vector x and the first row and column of the
matrix A. Henceforth, this notation will be used for all variables that do not
have the component associated with the rigid-body displacement. Then, we denote
the configuration corresponding to the drill-string rotating at the desired angular
velocity (ωref ) in terms of system states as x′eq = [η′eq η̇eq ]ᵀ. The applied torque is
decomposed into a feedforward constant component ũ, inducing x′eq , and a feedback
component u to avoid oscillations, such that Tt = ũ + u. The constant parameters
η′eq and ũ can be obtained from the equilibrium condition of Eq. (3), f(x′eq, ũ) = 0:

Λ′η′eq − φ(0)ũ+ φ(L)Tb(ωref ) = 0. (4)

Using these results and defining the change of coordinates

ξ =
[

ξd
ξv

]

=
[

η′ − η′eq
η̇ − η̇eq

]

= x′ − x′eq, (5)

we get the following system of equations in which the point x′eq has been shifted to
the origin:

ξ̇ = A′ξ + B′cu+ B′r
[
Tb
(
φᵀ(L)ξv + ωref

)− Tb
(
ωref

)]
. (6)

Thus, the original problem of keeping the system rotating with constant angular
speed and applied torque is transformed into a stabilization problem in coordinate
ξ . Examining Eq. (4), we see that the constant feedforward torque ũ that induces
the desired drilling operating condition is a function of the bit–rock interaction
model. The variables that characterize the bit–rock interaction are rarely known and
are subject to changes according to the rock formation lithology. Therefore, these
uncertainties may yield a steady-state error. To achieve robust regulation, Eq. (6) is
augmented with the integrator:

ė = φᵀ(0)ξv = ωt − ωref (7)
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such that the augmented system is rewritten as

ė = φᵀ(0)ξv
ξ̇ = A′ξ + B′cu+ B′r

[
Tb
(
φᵀ(L)ξv + ωref

)− Tb
(
ωref

)]
.

(8)

The augmented system is represented by the state ψ = [e ξ ]ᵀ. In the OSOF
controller design, the state e is feed back to the system, providing an integral action
that regulates the error to zero if the closed-loop system is structurally stable [14].

3 OSOF Control

The optimal static output feedback (OSOF) is a control technique based on the linear
quadratic regulator (LQR) formulation. Despite having some substantial frequency
margins and reduced sensitivity, the LQR control has a disadvantage of requiring,
in most cases, measurement of all states for feedback. A common approach to solve
this problem is to use linear quadratic Gaussian (LQG) control, which consists of
using an observer to estimate unmeasured states. However, LQG control does not
have guaranteed stability margins [15], and the loop transfer recovery procedures are
limited to minimum phase plants and tend to produce high gains [16]. The OSOF
control, initially proposed by Levine and Athans [17], appears as a simple alternative
that uses the quadratic cost function of LQR, but with the constraint of using only
measured signals for feedback.

Recently, some contributions to the OSOF control have been proposed in [12].
Initially, aiming to apply the OSOF control to distributed parameter systems, sensor
locations were included as optimization variables. Moreover, a new approach to
deal with the dependence on system initial conditions was suggested. Since any
output controller has a performance criterion below that of the full-state feedback
controller, it would be desirable that the cost function values of both controllers
would be as close as possible for any initial condition. Based on this statement, a
new optimization was proposed

min
(K,α)

max
x0

xᵀ0 Po(K,α)x0

xᵀ0 Plx0
(9a)

subject to Aᵀ
c Po + PoAc +Q+ (KC(α))ᵀ RKC(α) = 0, (9b)

in which K is the output control gain, α represents sensor locations, x0 is the initial
condition, Po and Pl are positive definite matrices associated with the OSOF and
LQR cost functions, Ac is the closed-loop state matrix, C(α) is the output matrix,
and (Q,R) are standard LQR weighting matrices. The criterion minimized is a ratio
between the cost functions of the OSOF and LQR controllers and possesses the
benefit of being independent of measurement and excitation locations. Additionally,
as the cost function of the LQR is minimal for any initial condition, this ratio is
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always greater than or equal to one, and it also gives a measure of the maximum
difference between LQR and OSOF considering performance and control effort.

Since the problem given in Eq. (9a) is a ratio of quadratic forms, the initial
condition that maximizes this ratio is the solution of the generalized eigenvalue
problem involving matrices Po and Pl [12]. Therefore, the optimization (9a) can be
rewritten as

min
(K,α)

λm(Po,Pl ) (10)

in which λm is the largest eigenvalue of the generalized eigenvalue problem:

Pov = λPlv. (11)

More details on the numerical solution of this problem are given in [12].
To apply this controller to the drilling system, Eqs. (8) are linearized at the

origin. Since measurements along the whole drill string are available only in the
minority of oil wells, only two sensors whose signals could be processed in order
to obtain angular displacements and velocities are considered. Due to the need for
an integrator at the rotary table, one of the sensors was fixed at this location, while
the other could be positioned up to 10% of the total drill-string length. Under this
assumption, the output matrix C(α) is given by

C(α) =
⎡

⎣
1 0 0 0 0
0 φ′(α1) φ′(α2) 0 0
0 0 0 φ(α1) φ(α2)

⎤

⎦

ᵀ

(12)

and the OSOF control law is expressed as

u = −KC(α)ψ . (13)

4 Numerical Results

In this section, the OSOF controller aforementioned is applied to the drill-string
model described in Sect. 2. The first step in designing the OSOF controller is to
choose the weighting matrices (Q,R) that yield a controller with reasonable trade-
off between control effort and performance. The matrix Q is adopted such that
xᵀQx is the system total energy with an additional weighting factor (qi) for the
error integral:

Q =
⎡

⎣
qi 0 0
0 Λ′ 0
0 0 I.

⎤

⎦ (14)
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Fig. 2 J as a function of qi for the closed-loop system using OSOF control

The constant qi is chosen such that, when applying the OSOF controller, the
average deviation from the drill-bit target angular velocity (criterion proposed in
[9]) is minimized

J = 1

Δt

∫ Δt

0

|ωb − ωref |
ωref

dt . (15)

To evaluate this criterion, the initial condition is established as the entire system
rotating undeformed at a constant speed of 70 rpm and the simulation time is taken
as 100 s. Figure 2 indicates how qi influences the magnitude of J . For each value of
qi , the value of R (which is a scalar for this problem) has been adjusted to ensure
that the highest value of control effort over time does not exceed 1.2× 104 Nm.

For qi ≈ 0 (the Hamiltonian associated with the algebraic Riccati equation has
eigenvalues on the imaginary axis for qi = 0), the system has no integral gain;
therefore, the time response is benefited by the absence of overshoot. However, this
system is not robust to parameter variations, so the minimum desired is in the region
after the first peak, which is around qi = 100. The time response of the closed-loop
systems with OSOF control for qi ≈ 0 and qi = 100 is compared in Fig. 3. In
both cases, one can observe that despite being designed based on the linearized
system, the OSOF control was able to keep the nonlinear system stable even when
the system’s trajectory went to regions far from the linearization point. Indeed, for
any simulated initial condition, it was found that the closed-loop system with the
OSOF controller remained stable. For instance, the cases in which the drill string
starts with null angular velocity undeformed and with a deformation η′ = η′eq are
shown in Fig. 4. For simulations corresponding to Fig. 4 and the subsequent ones,
the closed-loop system is equipped with the OSOF obtained from qi = 100, which
is characterized by the output gain K = [47.7 697.7 665.7 − 263.2 55.9] and
sensors locations α = [0.0 300.0] m.
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Fig. 3 Comparison of the closed-loop systems using the OSOF controllers obtained with qi ≈ 0
(left) and qi = 100 (right)
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Fig. 4 Time response when the drill string starts with null angular velocity undeformed (left) and
with a deformation η′ = η′eq (right)

Another interesting aspect of the closed-loop system with OSOF is its behavior
in the presence of uncertainties. To analyze this aspect, let c1 = (1− ε)a1 and c2 =
(1+ ε)a2 be the modified dynamic and static friction coefficients, respectively, with
ε > 0. Let also Υ (Ac) be the spectral abcissa of closed-loop system (6), linearized
at ξ = 0, using the OSOF controller without integral action. The influence of ε in
the spectral abscissa Υ (Ac) is depicted in Fig. 5. The discontinuity in the derivative
occurs due to a change in the eigenvector associated with the spectral abscissa.

From Fig. 5, we conclude that the closed-loop system is exponentially stable for
ε < 0.47. Therefore, there is a small enough integral gain ki such that the closed-
loop system is locally stable for all values of ε below 0.47 [18]. Two additional
results were obtained numerically for this problem: 1. for each ε, the set of values
that ki can assume in order to make the system locally stable is an interval (0,kmax),
with kmax decreasing as ε increases; 2. In agreement with the results obtained for
the system without uncertainties, the stability of the closed-loop system seems to
hold globally. Both of these results are highlighted in Fig. 6, in which the integral
gain ki = kmax was applied to different ε values. These results indicate that,
assuming that the occurrence of stick/slip is due to variations in friction coefficients,
an alternative to avoid it would be to reduce the integral gain, as small ki values
ensure stability over a larger range of ε. It is also worth mentioning that, although
the model tolerates a variation of 46% in both friction coefficients, it is noted that
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Fig. 6 Time response for the closed-loop system with ε = 0.2, ki = 83.8 (left) and ε = 0.46,
ki = 0.5 (right)

the period in the stick region for this case is long, which indicates that the drill string
is subjected to a large deformation, which may violate the assumptions adopted in
modeling.

5 Conclusions

A novel strategy for the suppression of stick–slip oscillations in rotary drilling
systems was proposed. As required by the strategy, the equations of motion were
rewritten using a translated modal form without the rigid-body displacement,
transforming the original problem into a stabilization problem. A change in the
traditional design of the proposed controller is also developed, incorporating the
integral action to ensure robust regulation. Numerical simulations indicate the
proposed controller has good performance and can handle large uncertainties in
the bit–rock interaction. It was also shown numerically that the analysis of stability
using the linearized controlled system with OSOF may be reliable to characterize
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the global stability of the nonlinear system. Further analytical analyses are required
to corroborate or refute these results. Future works will be directed to the robust
design of the proposed controller considering different types of uncertainties.
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Suppression of the Sommerfeld Effect in
a Cantilever Beam Through a
Viscoelastic Dynamic Neutralizer: An
Experimental Study

Anderson L. Silva, Marcus Varanis, Eduardo M. O. Lopes, José M. Balthazar,
and Carlos A. Bavastri

1 Introduction

Several efforts are made in order to generate more efficient methods for vibration
control. In this sense, several studies have addressed the use of viscoelastic materials
for viscoelastic dynamic neutralizers (VDN). Viscoelastic materials have been
widely used in vibration control due to their high capacity to dissipate vibratory
energy and the improvement of vulcanization techniques, which make it possible
to manufacture devices of all sizes and shapes. These materials can be used in
dynamic neutralizers and isolators. VDNs are simple resonant devices, composed
of a mass and a viscoelastic material that connects it to the primary system and
provides stiffness and damping [1].

A robust methodology for designing a set of VDNs to reduce the vibration levels
of a geometrically complex, linear, and multiple-degree-of-freedom structure was
proposed by Espíndola and Silva [2] and expanded by Espíndola and Bavastri
[3]. The proposed methodology is based on the modal parameters of the system
to be controlled, dynamic characteristics of the viscoelastic material, generalized
equivalent parameters (GEP) of the dynamic neutralizer, and nonlinear optimization
techniques. This methodology allows to design the optimal VDNs that minimize
the system response in the desired frequency band. A comprehensive study on the
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methodology for the optimal design of VDNs by means of the GEP theory can be
carried out in [1–9].

Some efforts are also made regarding the passive control of nonlinear systems. In
[10, 11], the use of the similarity principle for the design of nonlinear neutralizers
is proposed, obtaining good results in controlling the system’s amplitude and also
linearizing the system in some cases.

Recent works show that the use of VDNs in nonlinear one-degree-of-freedom
primary systems also has excellent results, considerably reducing the amplitude of
vibration and linearizing the primary system [4, 5]. These results are obtained due
to the high-energy dissipation capacity of viscoelastic materials that considerably
reduce the vibration amplitude of the system. Nonlinear phenomena related to
non-ideal energy sources are quite interesting. Among them, the Sommerfeld
effect, which has been the subject of several studies [12, 14–17], stands out. The
Sommerfeld effect occurs when there is an interaction between an elastic system
and its energy source. In this phenomenon, the power source does not have enough
energy to pass through the resonance frequencies of the elastic system, and its
operating frequency remains fixed at a resonance frequency of the system (for
instance, the first one), which can be temporary. During the Sommerfeld effect,
the system becomes unstable, so that small external excitations can fully change the
system response.

The Sommerfeld effect can be easily seen in the system temporal response, in
the form of sudden reductions in the amplitude of vibration. Another way to identify
the phenomenon is through time–frequency analyzes, where a sudden increase in the
frequency of the system response can be observed simultaneously with the reduction
in amplitude. In [12, 13], the characterization of the Sommerfeld effect is performed
using wavelet transform techniques, which highlights several characteristics of the
phenomenon in the time–frequency plane.

Several works address the mathematical modeling of electromechanical systems
where the Sommerfeld effect is present. In [14], a continuous linear beam model is
presented to which two non-ideal DC motors are coupled. Some parameters of the
model are analyzed for their influence on the Sommerfeld effect, and the model is
validated experimentally, showing a good coherence with the experimental system.
Models for similar systems can be found in [15–17].

The aim of this chapter is to design an optimal VDN to suppress the occurrence
of the Sommerfeld effect on a linear metallic cantilever beam with a non-ideal
unbalanced DC motor at its free end. For the VDN design, the coupling between the
beam and the motor was disregarded, considering only the dynamics of the beam.

This chapter consists of five sections: in Sect. 1, a brief discussion was held on
the topics covered in the present work; in Sect. 2, the experimental apparatus used is
presented, as well as the experiments carried out; in Sect. 3, the experimental results
are presented; and in Sect. 4, some final comments are made on the methodology
presented in this chapter.
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2 Methodology

Experiments were carried out on a stainless steel cantilever beam with an unbal-
anced DC motor coupled to its free end. The motor was manually controlled using
a DC power supply. The beam dimension is 540× 37× 4.8 mm, and the motor was
unbalanced with 6.59 g at 15 mm of rotation axis. The total mass of the motor is
85 g. The system under study is shown in Fig. 1.

Initially, experiments were carried out to identify the Sommerfeld effect during
the motor operation. The phenomenon was identified both in the time domain
and in the frequency domain. Subsequently, a finite-element mathematical model
was developed, which was calibrated experimentally. With this, it is possible
to determine which modes interact with the DC motor and extract the modal
parameters for the VDN design. Then, based on the modal parameters of the system
and the characteristics of the viscoelastic material, the design of the VDN is carried
out, which, after being manufactured, will be coupled to the primary system to carry
out new experiments in order to verify the efficiency of the VDN.

2.1 Identification of the Sommerfeld Effect

Preliminary tests were carried out, in which the motor was accelerated to its
working speed, 6600 RPM. In those tests, the system was instrumented using
an accelerometer, model 32C68, PCB Piezotronics, and the DataPhysics Quattro
signal analyzer. The accelerometer was positioned at 520 mm from the fixed end.
A sampling frequency of 1000 Hz was used, and the signal was acquired for
approximately 32 s.

The occurrence of the Sommerfeld effect was observed in the preliminary tests by
means of the temporal signal and using the methodology proposed in [12, 13], with
the occurrence of the resonance capture phenomenon at 72 Hz, the second natural
frequency. In order to efficiently control the phenomenon, it was decided to perform

Fig. 1 Primary system to be controlled, stainless steel cantilever beam with an unbalanced DC
motor coupled to its free end
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Fig. 2 Frequency response function of the primary system, obtained with excitation at 140 mm
and measuring the response at 520 mm from the fixed end

passive vibration control in the range of 50 to 100 Hz, as highlighted in Fig. 2. The
results for this experiment, in the time and frequency domains, are presented in the
next section, Fig. 5.

2.2 Finite-Element Model

By using ANSYS software, a finite-element model was developed for the beam.
The model parameters were calibrated in such a way that the system’s numerical
frequency response functions could match the experimental counterparts. The
system was modeled using beam elements with three degrees of freedom per node.
A total of 54 elements were generated. The torsional modes were neglected in the
mathematical model, and it should be noted that the proposed mathematical model
considers only the cantilever beam with a point mass at its free end, disregarding
the nonlinear coupling between the DC motor and the beam.

Experimental FRFs were obtained using a DataPhysics Quattro signal analyzer, a
PCB Piezotronics impact hammer, model 086C04, and a 32C68 accelerometer, also
PCB Piezotronics. Excitation was performed at 140 mm of the fixed end, and the
response was also measured at 520 mm from the fixed end. The experimental results
were used to calibrate the finite-element model. The numerical and experimental
FRFs are presented in Fig. 2.
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As can be seen in Fig. 2, the mathematical model faithfully represents the
structure, except for the torsional modes.

2.3 VDN Design

The VDN design was carried out using the LAVIBS-ND software, which is based
on the methodology proposed in [3], considering only the dynamics of the cantilever
beam with a point mass at its free end and omitting the coupling between the beam
and the DC motor. Genetic algorithms were utilized to minimize the FRF amplitude
in the control range, in this case 50 to 100 Hz. The viscoelastic material used to
manufacture the device was the butyl rubber, and its parameters can be found in
[18]. The device was designed to operate at 300 K.

The optimal parameters obtained in the LAVIBS-ND software were 0.044 kg
and 60.31 Hz, and the manufactured VDN, as well as its drawing with designed
dimensions, can be seen in Fig. 3.

After coupling the VDN to the primary system, new tests were performed to
check the efficiency of the device in controlling the Sommerfeld effect. The results
obtained are presented in the next section.

Fig. 3 Optimal VDN for the system control: (a) Drawing of the designed device, (b) Designed
device, and (c) Device attached to the primary system
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3 Results and Discussion

In the first tests, the DC motor was accelerated to its working speed, 6600 RPM. The
Sommerfeld effect was identified in the tests through the analysis of the temporal
signal, Fig. 4a, which shows a sudden reduction in the vibration amplitude of the
system. In addition, the time–frequency analysis using wavelet synchrosqueezed
transform—WSST, Fig. 4b, shows that the system response frequency remains
constant at 72 Hz, between 7 and 12 s, which indicates the occurrence of the
resonance capture phenomenon, characteristic of the Sommerfeld effect, as shown
in [12].

The use of WSST for time–frequency analysis in this chapter is due to its anti-
noise capability and high time–frequency resolution [14]. It should also be noted
that, as it is based on empirical mode decomposition, the WSST does not depend on
the mother wavelet used [19].

After coupling the VDN to the primary system, new tests were performed during
the start-up of the DC motor. The vibration amplitude of the system decreased as
expected, and there were no sudden changes in amplitude during the operation of
the motor, as can be seen in Fig. 5a. In addition, in the analysis using the WSST,
Fig. 5b, it is observed that the motor speed increases gradually, without stagnation
regions.

The results presented in Fig. 5 show that the Sommerfeld effect was suppressed
after coupling the VDN to the primary system. In addition, the amplitude of
vibration decreases considerably, from 471 m/s2 to just 58 m/s2, an 8 times decrease,
approximately 18 dB.

Fig. 4 System response without passive control: (a) Acceleration response, and (b) Time–
frequency plane obtained with WST
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Fig. 5 System response after coupling the VDN to the primary system: (a) Acceleration response,
and (b) Time–frequency plane obtained with WST

4 Conclusions

The results show that VDNs are excellent devices for the passive control of large
amplitudes of vibrations, even during the Sommerfeld effect. This is due to the fact
that the viscoelastic materials used in the manufacture of VDNs have high-energy
dissipation capacities which, together with the optimal design of the VDN, provide
an excellent reduction in the amplitude of vibration.

It is observed that the presented results were obtained with a VDN designed
only considering the system composed by the beam with a point mass at the end,
disregarding the interaction between the motor and the beam. In this way, a high
mechanical impedance was added in the frequency range of the second mode, the
occurrence mode of the phenomenon, by means of the VDN, which proved to be
sufficient to suppress the occurrence of the Sommerfeld effect. The VDN could also
be designed taking into account the electromechanical system in order to prevent
the phenomenon from occurring in the motor operating range.

The main contribution of this chapter is the suppression of the Sommerfeld
effect through VDNs. Despite the fact that VDNs are widely used in passive
vibration control, the application of this device is unusual for the suppression of
the Sommerfeld effect and nonlinear jumps.

In future work the goal is to extend the design methodology of VDNs to nonlinear
systems with multiple degrees of freedom to evaluate the efficiency of the device in
the control of the Sommerfeld effect in primary systems with stiffness nonlinearity.
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Stabilisation of a Heavy Chain Buckled
Configuration Through Parametric
Excitation

Eduardo A. R. Ribeiro , Breno A. P. Mendes, and Carlos E. N. Mazzilli

1 Introduction

Since Stephenson [1–3] firstly observed that the vibrations of inverted pendula could
be stabilised in the upward configuration with the aid of high-frequency vertical base
excitations, the theme of stabilisation has been studied in the context of different
mechanical systems by many authors. Among them, we mention Hirsch [4], Kapitza
[5], Chelomei [6, 7], Kalmus [8], Acheson and Mullin [9–11], Champneys and
Fraser [12, 13], Butikov [14], Anderson and Tadjbakhsh [15], Thomsen [16], Galán
and others [17], Seyrarian, Arkhipova and others [18–25]. For the sake of examples,
in [17], the problem of stabilisation was applied to an inverted pendula chain. In
[15], the same was done with a Ziegler’s column. In [16], experimental results
were obtained for an axially excited piano string. In [11–13], different authors
tried to explain the so-called Indian rope trick. In [19], a parametrically excited
beam was regarded and it was found that stabilisation could be also achieved
from low forcing frequencies. Such works are just a small sample of the extensive
literature about the role of parametric excitation for stabilisation of otherwise
unstable configurations.

In this work, we address the same for the case study of a heavy chain (see Fig.
1). This model has been studied before [26–30], under the condition of modal
asynchrony, which in this context refers to localised modes (for the sake of an
illustration, see forthcoming Fig. 2a). In some cases, asynchronous modes may
be unstable (they have a complex frequency) as a result of a supercritical statical
loading. In fact, static instability and modal asynchronicity may, sometimes, be
related. This was our motivation to further exploit such a relationship and investigate
whether unstable configurations and ensuing motions can be stabilised with the
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Fig. 1 Heavy chain

Fig. 2 Modes for α = 0.01, σ = 1.20 and θ3 = 2.3798. Eigenvalues: (a) λ = − 0.1906, (b)
λ = 1.7070 and (c) λ = 5.1222

aid of parametric excitation. Heavy chains are convenient reduced-order models
(ROMs) of slender structures subjected to variable axial tension, which is the case
of buoying structures, risers, bridge cables, etc.enlargethispage-24pt

2 Problem Statement

Consider the heavy chain of Fig. 1, which is composed of four massless rigid bars
of length ", transverse and rotation springs of stiffness kt and kr. The heavy chain
is subjected to a tensile force T + �T sin �t, where � is the forcing frequency,
and to dead weights P = mg, in which m stands for point masses and g refers to the
gravity acceleration. This system has three degrees of freedom (DOFs) qi – see (3) –
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so that the following kinematical relationships between the bar x-axis displacements
ui, y-axis displacements vi and rotations of bars ϕi can be written:

ui = " sinϕi + ui−1 (1)

and

vi = " (1− cosϕi)+ vi−1, (2)

where i = 1, . . . , 3 and u0 = v0 = ϕ0 = 0. Defining

qi = ui
"

(3)

as the system’s generalised co-ordinates and following the Lagrangian formulation,
we obtain the system’ equations of motion. To benefit from a dimensionless
approach, we define

τ =
√
kt

m
t, (4)

which can be interpreted as the dimensionless time, and also.

α = kr

kt "2 , σ =
P

kt"
, θ = T

kt"
and Δθ = ΔT

kt"
. (5)

For small vibrations about the rest position, the linearised motion equations can
be written in matrix form:

Mq′′ +Kq = 0, (6)

where ( ) ′ = d( )
dτ

means differentiation with respect to the dimensionless time τ,
and M and K are the dimensionless mass and stiffness matrices. In this case, M = I
is simply the identity matrix, and K(τ ) = Ks + Ke(τ ), in which

Ks =
⎡

⎣
1+ 5α − 5σ + 2θ −4α + 2σ − θ α

− 4α + 2σ − θ 1+ 6α − 3σ + 2θ −4α + σ − θ
α −4α + σ − θ 1+ 5α − σ + 2θ

⎤

⎦ (7)

already incorporates the geometric stiffness due to the static loading, while

Ke = Δθ sin
√
Λτ

⎡

⎣
+2 −1 +0
− 1 +2 −1
+ 0 −1 +2

⎤

⎦ (8)
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accounts for the stiffness variation with time due to the harmonic excitation. The
dimensionless parameter

Λ = m
kt
Ω2 (9)

is related to the forcing frequency.

2.1 Modal Analysis

The modal analysis of discrete linear systems usually reduces to an eigenproblem,
in which the eigenvalues λ supply the system’s natural frequencies, while the
eigenvectors φ are the vibration modes, as indicated by

(
M−1Ks − λI

)
φ = 0, (10)

which comes from the substitution of q = φ sin
√
λτ into (6). In the above

expression, the eigenvalue

λ = m
kt
ω2 (11)

is proportional to the square of a natural frequency ω.
Usually, one departs from known structural parameters to calculate frequencies

and modes. However, we actually want to fine-tune the system to display a given
mode, namely, an asynchronous one. Therefore, we substitute

φ = {1 q2 0}T , (12)

which is knowingly asynchronous, into (10), and then we get the admissibility
conditions for that mode to exist, from the resulting system of algebraic equations.
They supply the unknown co-ordinate:

q2 = α

4α + θ − σ , (13)

and two independent expressions for the eigenvalue appear, which must be identified
to yield a cubic equation in α, σ and θ :

θ3+ (12α−4σ) θ2+
(

46α2−34ασ+5σ 2
)
θ+56α3−69α2σ+22ασ 2−2σ 3=0.

(14)
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Equation (14) is the admissibility condition to be satisfied for the asynchronous
mode (12) to exist.

After adopting, for the sake of an illustration, α = 0.01 and σ = 1.20, the three
alternative solutions for θ come out from (14):

θ1 = 1.1361, θ2 = 1.1641 and θ3 = 2.3798, (15)

so that the respective eigenvalues are

λ1 = −3.1903, λ2 = 0.2809 and λ3 = −0.1906 . (16)

Notice that λ1 and λ3 are negative and thus lead to complex natural frequencies,
which means that the corresponding modes are unstable. In Fig. 2, the asynchronous
modes (blue) for α = 0.01, σ = 1.20 and θ3 = 2.3798, with its almost asynchronous
companion modes, are shown together with their corresponding eigenvalues.

2.2 Buckling Analysis

If all inertial effects are disregarded, the system’s response becomes

Ksqs = Fs, (17)

in which qs refers to the static deflection, and Fs to the static forces acting upon the
structure. If the axial compression along the structure is progressively increased, it
will eventually reach a critical value (Fs = Fcrit) and the heavy chain will buckle.
From a mathematical viewpoint, buckling corresponds to a singular stiffness matrix,
that is, to

det Ks = 0. (18)

If we consider such a progressive increase of axial stress by means of

σ = (1+ η) σ0, (19)

then Ks = K0 + η�K0, where

K0 =
⎡

⎣
1+ 5α − 5σ0 + 2θ −4α + 2σ0 − θ α

− 4α + 2σ0 − θ 1+ 6α − 3σ0 + 2θ −4α + σ0 − θ
α −4α + σ0 − θ 1+ 5α − σ0 + 2θ

⎤

⎦ (20)

and
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Fig. 3 Buckling modes for α = 0.01, σ = 1.20 and θ3 = 2.3798. (a) η1 = − 0.0325, (b)
η2 = 0.8182 and (c) η3 = 6.0456

ΔK0 =
⎡

⎣
−5σ0 +2σ0 +0
+ 2σ0 −3σ0 +σ0

0 +1σ0 −σ0

⎤

⎦ , (21)

and (17) can be rewritten as an eigenvalue problem:

(
−ΔK−1

0 K0 − ηI
)

ψ = 0, (22)

in which η gives the magnification factor of σ 0 for which the structure buckles, and
ψ tells the respective buckling modes.

For the buckling analysis, we choose the same parameters of Fig. 2, namely,
α = 0.01, σ 0 = 1.20 and θ3 = 2.3798, which yield

η1 = −0.0325, η2 = 0.8182 and η3 = 6.0456 . (23)

Observe that η1 is negative, which means that for σ 0 = 1.20, the heavy chain
has already buckled and, therefore, it is a supercritical loading. Furthermore, as
illustrated in Fig. 3, two buckling modes are nearly localised, which suggests that,
in this heavy chain, modal asynchronicity and buckling might be related.

3 Stabilisation of the Linear System Response

We now investigate the parametrically excited response of the linearised system
when the system’s parameters are α = 0.01, σ = 1.20 and θ3 = 2.3798. They lead
to an unstable asynchronous mode and also to a supercritical load configuration.
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Fig. 4 Strutt-like diagram for the linear system, in which γ is the Floquet’s multiplier for each
( ,�θ ) pair. (a) General view. (b) Detail of the stabilised region for low parametric excitation
frequency

Fig. 5 Linear system time responses for  = 4.0 and (a) �θ = 0.3 (unstable), (b) �θ = 0.7
(stable) and (c) �θ = 1.1 (unstable)

Hence, for such an unfavourable scenario, large responses are to be expected.
However, if we bear in mind that the parametric excitation brings additional energy
to the system, it may happen that, for some combinations of �θ and  , the
instability can actually be reverted.

Figure 4 shows the Strutt-like diagram built for the chosen system parameters and
several values for the pair ( ,�θ ). For each pair, the highest Floquet’s multiplier
γ is computed. Notice the existence of regions (in purple) for which | γ | ≈ 1.
According to [29], for |γ | = 1, the equilibrium of a linear system will be stable
if and only if the unitary Floquet’s multipliers are simple or semi-simple. In this
work, this feature will not be assessed. Instead, we will assume such purple zones
are (potentially) stable. This assumption will be later confirmed in Sect. 5, after
geometric non-linearities are regarded.

In Fig. 5, three responses for the linear system are regarded. Those of Fig. 5a, c
are within the red zone; as expected, they are unstable. The one depicted in Fig. 5b
is within the purple zone, and it is stable, conforming our expectations anticipated in
Fig. 4. It is noteworthy that, although the potentially stable zone increases with the
forcing frequency (which was expected), stable responses also appear at relatively
small frequencies. For instance, for the stabilised response of Fig. 5b, the forcing
frequency associated to = 4.0 is lower than the system’s highest natural frequency
(corresponding to λ = 5.1222).
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Fig. 6 Typical Strutt’s diagram of systems governed by Mathieu’s Eq. (29)

4 Reduced-Order Model

Figure 6 illustrates the typical Strutt’s diagram of undamped systems governed by
Mathieu’s equation:

q̈ + (δ + 2ε cos 2t) q = 0. (24)

In the classical problem of a parametrically excited pendulum,

δ = 4
( ω

Ω

)2
and ε = 2ΔH

"
(25)

correlate the natural and forcing frequencies, support-excitation amplitude �H and
the pendulum length ". Notice that, on the left-hand side of the δ-axis (where ω
is always complex), responses are predominantly unstable, except for those within
a tiny region near the origin. This is precisely the region where statically unstable
responses can be stabilised by parametric excitation.

In order to demonstrate that the potentially stabilised responses of Fig. 4
correspond to that tiny region of Fig. 6, we propose a ROM for the 3DOF model
of the heavy chain. We again recall α = 0.01, σ = 1.20 and θ3 = 2.3798, which,
according to (12) and (13), yield the following asynchronous mode:

φ = { 1 0.0097 0
}T

sin
√
λτ, (26)

and we then substitute it into (6), yielding
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Fig. 7 ROM responses. δ = − 0.1906 and (a) ε1 = 0.2971, (b) ε2 = 0.6932 and (c) ε3 = 1.0893

Mφ′′ +Kφ = ε, (27)

where ε is the residual error inherent to Galerkin’s projection. Next, we consider
that ε will be orthogonal to φ. This leads to an equation in the form of (24), in
which

δ = 1+
(
6q2

2 − 8q2 + 5
)
α + (−3q2

2 + 4q2 − 5
)
σ + (2q2

2 − 2q2 + 2
)
θ

1+ q2
2

(28)

and

ε =
(

1+ q2

1+ q2
2

)

Δθ. (29)

Let us now consider  = 4.0 and, alternatively, �θ1 = 0.3, �θ2 = 0.7 and
�θ3 = 1.1, that is, two unstable responses (1 and 3) and a stabilised one (2), as seen
in Fig. 5. According to (28) and (29), such values correspond to

δ = −0.1906 (30)

and

ε1 = 0.2971, ε2 = 0.6932 and ε3 = 1.0893 , (31)

which confirm that all cases fall within the left side of Strutt’s diagram. Furthermore,
as predicted, (δ, ε2) is inside the stabilised-response region, as shown in Fig. 7b.

5 Stabilisation of Non-linear Responses

Since the stable responses obtained for the 3DOF linear model and for its ROM
were very close to the instability boundary, it is convenient to further investigate the
effect of geometric non-linearities upon the conclusions withdrawn for the linear
system.



154 E. A. R. Ribeiro et al.

Fig. 8 Stability map for the
non-linear system, in which
q1 is the RMS value of q1(τ )

Fig. 9 Non-linear-system time responses for  = 4.0 and (a) �θ = 0.3, (b) �θ = 0.7 and
(c) �θ = 1.1

The non-linear motion equations can be written as

M (q) q′′ + (Ks +Ke (τ )) q+Knl
(
q,q′, τ

) = 0. (32)

For the sake of brevity, the terms of M(q) and Knl(q, q
′
, τ ) are not shown

explicitly here, but can be deduced from the expressions supplied in [30].
Figure 8 displays the non-linear system’s stability map. It computes the root

mean square (RMS) of q1(τ ) for different values of  and �θ . Blank regions refer
to unbounded responses. The analysis of stable wells in Figs. 4 and 8 shows that the
responses close to the stability boundary for the linear system are definitely stable
for the non-linear system. Hence, the effect of parametric excitation to stabilise
unbounded responses is enhanced by geometric non-linearities. Figure 9 confirms
the same findings of Fig. 5 for the selected time responses.

6 Conclusions

In this work, a 3DOF heavy chain model was considered for the sake of investigating
the role of parametric excitation on the stabilisation of unstable asynchronous
responses. In the linear system, Strutt-like diagrams revealed that the parametric
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excitation yields a large range of potentially stable responses. Nevertheless, such
results must be seen with caution, as they are near the stability boundary (Floquet’s
multiplier near to unity). Still, stable time responses were successfully obtained,
both in the 3DOF and in the associated 1DOF reduced-order model. More clearly
stable responses were obtained for the non-linear system. This is due to the com-
bined effect of geometric non-linearities and parametric excitation. Furthermore,
stabilisation was achieved with relatively small forcing frequencies, in between the
system’s natural frequencies. Damping has not been considered throughout, but as
in the case of the Mathieu’s equation, its effect is expected to be favourable for
stabilisation of the solutions.
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A New Semi-Active Control Method
of Yaw Damper in High-Speed Railway
Vehicle and Its Experiment
in Hardware-in-the-Loop System

Yiwei Zhao, Shaopu Yang, Yongqiang Liu, and Ya Li

1 Introduction

With the rapid development of high-speed railway technology, many dynamic
problems have been found and have been researched. In order to avoid hunting
instability when the train is running at high speed on a straight line, greater
longitudinal damping between the body and the frame is required in most cases,
while the longitudinal damping should not be too large when the train passes
through the curve to ensure the safety performance. Therefore, the contradiction
between lateral stability and curving performance has always been difficult to
solve in the process of increasing train speed. This is one of many problems.
Engineers constantly optimize the suspension parameters and bogie structure to
coordinate the relationship between them to finally achieve overall balance [1–5].
However, the process of parameter and structure optimization is not endless. When
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the optimization reaches a certain degree, the contradiction between lateral stability
and curving performance will become a main bottleneck for further improving train
speed.

Experts and scholars from all around the world have proposed a variety of
solutions to the contradiction between lateral stability and curvilinear trafficability.
A new type of radial bogie was proposed in [6]. According to the design principle
of radial bogie, a breakthrough design of axle box positioning mode is carried
out. The contradiction between curve negotiation performance and lateral stability
of the bogie is solved with the least number of bars. The dynamic models of
electric locomotive with radial bogies and conventional bogies are established by
using multi-rigid body dynamics software in [7]. The two models are compared by
simulation. The results show that the curving performance of the locomotive model
with radial bogies is better than that of the other vehicle. At the same time, the
wheel rail wear is reduced significantly. An independent wheelset structure with
active control capability is proposed in [8]. The running ability on straight track and
curving ability are simulated and analyzed. A curvature measuring method that can
be implemented in a railway vehicle system is proposed to steer a railway vehicle in
[9]. The field test is carried out by this method. The results show that the method can
enhance the curving performance of trains and keep the lateral stability. The primary
suspension stiffness is optimized to evaluate the curving performance and stability
of trains to meet the operational requirements better in [10]. It can be concluded
that the main ways to solve the problem are to use radial bogies and independent
wheelsets, as well as parameter optimization, and so on. These solutions can solve
the problem to a certain extent.

This chapter presents a semi-active control system of anti-hunting shock
absorber, which can change the damping coefficient between straight track and
curve track so as to solve the contradiction between lateral stability and curving
performance of trains.

At present, semi-active control technology is a kind of control technology which
scholars have studied extensively and deeply. Crosby and Karnopp [11] from the
United States put forward the concept of semi-active suspension control in the
1970s. Its control mode was applied to actual vehicles in the early 1980s. Up to
now, semi-active control technology has been applied in many fields [12–15] such
as automobile, railway, and building. In 1983, Toyota developed an “on-off” semi-
active suspension which can generate corresponding damping force by adjusting a
switch and applied it to the 280GT car. In 1985, Dominy and Bulman designed a
Formula One racing car with semi-active suspension. In 2014, Yutong Bus Company
developed the semi-active suspension system with variable damping and variable
stiffness, which greatly improved the ride comfort of the car. In order to verify the
performance of semi-active vibration reduction and improve the ride comfort of
high-speed trains, Japanese railway vehicle engineers carried out vehicle tests on
500 series EMUs at 300 km/h on Shanyang Shinkansen Line. The results showed
a significant decrease in the energy spectrum of lateral acceleration and lateral
acceleration of the vehicle body. Semi-active suspension has gradually become
a standardized device on Shinkansen vehicles in Japan. Meanwhile, there are
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many types of semi-active control strategies for adjusting the damping coefficient
[16–20].

Generally speaking, semi-active control is a mature and reliable control method.
It is feasible to apply semi-active control technology to anti-hunting shock
absorbers, which can solve the problems described in the chapter. This method does
not need to change the structure of the system and to optimize some parameters
to redesign the components. This method only needs to replace the traditional oil
damper, which can reduce costs.

The content of this work discussed in this chapter is based on the railway field,
and the research object is a railway vehicle. The first purpose is to build a simple
single wheelset model to study the influence of large damping and small damping
on curving performance.

The second goal is to establish the UM-MATLAB co-simulation model of
railway vehicles, to propose a new semi-active control strategy, and to study the
influence of the control strategy on the dynamic performance of trains, such as ride
comfort, safety, and stability.

The third purpose is to carry out the hardware-in-the-loop test and apply the
semi-active control strategy to the actual MR damper to verify the effectiveness of
the control method.

2 Establishment and Simulation of Single Wheelset Model

This work first considers the problem from a simple model. A single wheelset model
used in curve track is established. The longitudinal positioning stiffness kx, lateral
positioning stiffness ky, and anti-yaw damping cx of single wheelset are considered
in the model as shown in Fig. 1.

The model includes lateral and yaw degrees of freedom. The parameters denoted
in Table 1 are derived from a type of high-speed EMUs.

The differential equations of the model are established, which are as follows
[21, 22]:

Fig. 1 Two freedom
dynamics model of single
wheelset

Table 1 The model parameters

Parameters m/kg Jw/kg kx/(N·m−1) ky/(N·m−1) cx/ (N·s·m−1)

Value 1901.8 685 9.8e06 9.8e05 2.45e06
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mÿw + 2f22

(
ẏw
v − ϕw

)
+ 2kyyw + kg (yw − ya)−mgφ +mv2

R
+mr0ϕ̈ = 0

Jw

(
ϕ̈w + vd

(
1
R

))
+ 2f11

(
λb
r0
yw + b2

v ϕ̇w

)
+ 2kx l2ϕw + 2cx l2ϕ̇w + kgϕϕw − 2f11

λb
r0
ya = 0

(1)

where f11 is the longitudinal creep coefficient, 1e07 N; f22 is the lateral creep
coefficient, 1e07 N; R is the radius of the curve track,1500 m; λ is the equivalent
conicity, 0.15; v is the running speed, 200 km/h; kg is the gravity stiffness, 2e04
N/m; kgϕ is the gravity angular stiffness, 1.1e04 N/m; r0 is the rolling circle radius,
0.43 m; b is the half of the rolling circle distance, 0.7465 m; l is the half the length of
axle, 1 m; and φ is the superelevation angle of track, 0.1 rad. ya is input excitation,
yw is the lateral displacement of the wheelset, ϕw is the wheelset yaw angle.

According to the Eq. (1), the Simulink model of the single wheelset is estab-
lished, and the parameters are input into the model for simulation. The radius of
the curve track used in the model is 1500 m, and the random excitation is German
lateral irregularity spectrum.

First, the lateral displacement curves of wheelset and longitudinal creep force
under different yaw dampings are obtained, respectively, when the wheelset passes
through the ideal curve track as shown in Fig. 2.

The lateral displacement curves of wheelset and longitudinal creep force under
different yaw dampings are obtained under the random excitation condition as
shown in Fig. 3.

The simulation results show that the larger the damping coefficient, the larger the
wheel rail lateral displacement and longitudinal creep force. It is very obvious on
the transition curve track. When the damping coefficient is too large, the safety of
trains will be reduced, which is not conducive to passing through the curve track.
Therefore, the damping coefficient should be smaller so that the train can easily pass
through the curve track.

3 Research and Simulation of Semi-Active Control Based for
a Whole Car Model

In the second section, the single wheelset is simulated under different damping
coefficients. In this section, a vehicle model is built for more in-depth and accurate
research. The model of a certain-type high-speed train is established as shown in
Fig. 4 by using the UM dynamics simulation software.

The wheel tread is LMA type. The rail profile is T60. The train speed is 200 km/h.
Dynamic simulation analysis is carried out using the UM software. The curve track
is used. The radius is 1500 m.
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Fig. 2 Parameters using different damping coefficients under ideal track. (a) Lateral displacement
of wheelset. (b) Longitudinal creep force

3.1 Control Strategy Design

Analyzing critical speed is a common way of evaluating train hunting stability. This
chapter analyzes the stability of the train on the straight track and safety on the
curve track. The critical speeds of the train are obtained under different damping
coefficients of yaw dampers. The maximum derailment coefficients under different
damping coefficients are obtained when the train runs on the curve track. Derailment
coefficient which is used for evaluating train safety is defined as the vertical force
on the wheel divided by the lateral force. In order to make the results clear and easy
to understand, the simulation data are standardized to ensure them in the range of
0–1.The standardized formula is shown in (2). After normalization of simulation
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Fig. 3 Parameters using different damping coefficients under random excitation. (a) Lateral
displacement of wheelset under random excitation. (b) Longitudinal creep force under random
excitation

data, the two indexes are put on a picture for analysis as shown in Fig. 5.

f(0∼1) = x −Xmin

Xmax −Xmin
(2)

where Xmin is the minimum value of sample data, Xmax is the maximum value of
sample data, and x and f are the values before and after standardization, respectively.
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Fig. 4 Vehicle model built by UM software
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Fig. 5 Comparison chart of normalized indexes

It can be seen from Fig. 5 that the stability is getting higher and higher with
the increase of damping coefficient, but the safety performance becomes worse and
worse as the train passes through the curve track. Therefore, we need to control the
damping coefficient. When a train passes through a straight track, in order to ensure
the stability of the train, the damping coefficient needs to be increased, whereas
when the train enters a curve track, the damping coefficient is reduced to improve
the train running safety. Figure 6 shows the idea of damping control directly.

While, how to identify the train entering the curve track and control the damping
has become a core problem of the semi-active control strategy. It is generally known
that there will be a height difference between the two sides of a train when the train
enters a curve track, while the height difference between the two sides of the train
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on the straight track is close to zero. Therefore, the height difference is used as a
control strategy to adjust the damping coefficient as shown in Fig. 7.

Therefore, the control strategy is as follows:

c =
{
cmax Δh ≤ 0
cmin Δh > 0

(3)

where �h is the height difference between the two sides of the bogie.
When a train runs on a straight track with excitation, the height difference

between the two sides will not be exactly equal to 0, and it will fluctuate within
a threshold. After simulation, the threshold value obtained is 5 mm. Therefore, the
control strategy is as follows:

c =
{
cmax Δh ≤ δ
cmin Δh > δ

(4)
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where δ is the threshold.
This kind of control strategy is a switch-type control strategy. When the damping

coefficient is switched, the shock absorber may be impacted. The continuous control
strategy is discussed in this chapter. In other words, an intermediate damping
coefficient is added between the maximum and minimum damping coefficients to
mitigate the impact, which is formed by a first-order function, the independent
variable of which is height difference between the maximum and minimum damping
coefficients to mitigate the impact. The control strategy is as follows:

c =
⎧
⎨

⎩

cmax Δh ≤ δ
aΔh+ b Δh > δ and Δh < σ
cmin Δh ≥ σ

(5)

where a and b are the slope and intercept values of the first-order function
respectively, and σ is a threshold which is bigger than δ, 10 mm in this paper.

In order to apply semi-active control strategy to the vehicle, it is imported into
MATLAB/Simulink in the form of S-function. The co-simulation model built is
shown in Fig. 8. The control strategy is applied to the yaw dampers in Simulink.

In this work, different damping coefficients of yaw dampers are used to simulate
when the model is running on the curve track. For each damping value, a corre-
sponding peak value of derailment coefficient is obtained. The simulation curve is
shown in Fig. 9.

When the damping coefficient is 2 × 105 N s m−1, the peak value of derailment
coefficient is minimum and the train safety is best. The minimum damping
coefficient for the control strategy is obtained based on the maximum derailment
coefficient in the simulations according to Fig. 9; the maximum damping coefficient
obtained is 5 × 106 N s m−1. It can be specifically expressed as follows:

c =
⎧
⎨

⎩

cmax Δh ≤ 5
− 958000 Δh+ 9790000 Δh > 5 and Δh < 10
cmin Δh ≥ 10

(6)

3.2 The Simulation Based on Semi-Active Control

The control strategy is applied to the UM model and the semi-active control
simulation is carried out. The curving performance of the model is analyzed, and
the comparison curves of derailment coefficient, wheel axle lateral force, and wear
work are obtained as shown in Fig. 10.

It can be seen from Fig. 10 that the maximum derailment coefficient decreases
by 41.75%, the maximum value of wheel axle lateral force by 17.65%, and
the maximum wear power by 57.67%. The safety is enhanced and the curving
performance is improved by using the semi-active control strategy. Meanwhile, the
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Fig. 8 The co-simulation model

wheel rail wear is reduced substantially. Therefore, the semi-active control strategy
proposed in this chapter is effective.

The lateral acceleration curve of the train is obtained as shown in Fig. 11.
Through comparison, it is found that the influence of semi-active control on the
lateral acceleration is not obvious.

In general, the control strategy proposed in this chapter can improve the curving
performance of the train. Meanwhile, it can ensure the stability of the train and the
contradiction between the stability and curving performance is solved.

4 Hardware in the Loop Experiment

The semi-active control experiment is analyzed by the MR damper hardware in the
loop test. Hardware in the loop (HIL) means that the research object is made into a
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real object instead of a virtual model. The shock absorber is embedded in the two
degree of freedom model in the work. The real shock absorbers are used to verify
the effectiveness of the control strategy. The schematic and physical configuration
of HIL test are shown in Fig. 12.

The experimental platform system built by the research team mainly includes
upper computer/lower computer, servo electric cylinder, drive controller, force sen-
sor, magnetorheological damper, input/output board, and so on. In the experiment,
the RTX real-time simulation system of the ADI company is adopted. The drive
controller receives the analog voltages from I/O boards and sends them to the
electric cylinder making the MR damper move. The signal received by the electric
cylinder comes from the relative velocity at both ends of the shock absorber in the
model. The force generated by the real damper is returned to the model through the
sensor. Thus, the whole system forms a loop. It can be close to the real operating
conditions. In order to apply the control strategy to the test system, damping values
in the control strategy need to be represented by the current values.

The lateral displacement and longitudinal creep force of wheelset are obtained
by using the test to evaluate the effectiveness of the control strategy as shown in
Figs. 13 and 14. In order to match the real shock absorber, the model needs to be
scaled and random excitation is applied.

It can be found in the test from the Figs. 13 and 14 that the control effect of semi-
active control is better than passive control under the condition of random excitation.
This proves the effectiveness of the control strategy proposed in this chapter.



168 Y. Zhao et al.

Fig. 10 Comparison of
curving performance under
different control. (a)
Comparison chart of
derailment coefficient. (b)
Comparison chart of wheel
axle lateral force. (c)
Comparison chart of wear
power
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Fig. 11 Comparison of car
body acceleration under
different control
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Fig. 14 Longitudinal creep force obtained from the HIL test

5 Conclusions

The results are here summarized.

1. The single wheelset model is established, and the curving performance of
wheelsets is analyzed by changing the damping coefficient of yaw dampers.
The results show that it is easy to pass the curve track by reducing the damping
coefficient.
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2. A new type of semi-active control is proposed through vehicle dynamics simula-
tion. The UM-MATLAB simulation results show that the safety is enhanced and
the curving performance is improved by using the semi-active control strategy.
The contradiction between the stability and curving performance is solved.

3. In this chapter, the hardware in the loop method is used to analyze the new
semi-active control strategy. The results show that the experimental results are
consistent with the theoretical results, which prove that the control strategy
proposed in this chapter is practical.

4. It is very interesting to study semi-active control strategies. The work discussed
in this chapter is just the beginning. The most important thing is that the research
results should be applied to the engineering practice. In the future, the control
strategy will be materialized, the controller will be developed, and the real
vehicle test will be carried out.
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Analysis of Half-Car Model with
Nonlinear Damper Under Sinusoidal
Road Excitation

Sivakoteswararao Ikkurthi, Priyank Prakash, and Ashok Kumar Pandey

1 Introduction

A road vehicle vibrates when running on sinusoidal road surface. For better
passenger comfort, the vibration amplitude needs to be reduced using the dampers.
The dampers are classified as passive, semi-active, and active dampers. The semi-
active and active dampers are known to use control force to suppress the vibration
of vehicle due to road excitation [1–4]; nevertheless, almost all the road vehicles use
passive oil dampers due to their low cost.

The active suspension with full feedback control and optimization with respect
to ride comfort, working space of the suspension, road holding, and control force
of the suspension is studied by Hac [3] when the vehicle is traversing on random
road surface. The quarter car model with MR dampers is studied by Prabakar et
al. [4]. The stability and frequency analysis of quarter car model is carried out
by Siewe [5], and they concluded that the periodic motion of the system becomes
chaotic motion with the increasing force. The homoclinic bifurcation in quarter car
model using Melnikov criterion is studied by Litak et al. [6] in which they found
critical Melnikov amplitude of the road surface profile above which the system
shows chaotic behaviour. The linear time delay active control in nonlinear quarter
car model is studied by Naik et al. [7] where they used Melnikov technique to study
onset of chaos from homoclinic bifurcation and concluded that there is effect of
time delay on the critical forces that lead to Melnikov chaos. They also concluded
that the delayed feedback prevents the stable and unstable manifolds from tangling.
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To capture the dynamics of front and rear wheels, the half-car model with time delay
with MR dampers at the front and rear wheels is studied by Prabakar et al. [8]. The
rms state variables for the control force, suspension length, and tyre deflection are
computed using spectral decomposition methods by Thompson et al. [9]. Using the
semi-active MR damper, the preview distance control is studied by Rao et al. [10],
and they concluded that the overall performance improves with preview distance
and has a limit after which the performance saturates. To include the nonlinear
properties of suspension system, the half-car model is studied by Zhu et al [11]
in which the stiffness and damping are assumed to be nonlinear. It is observed by
Zhu et al. [11] that the unstable region in frequency response diagram could lead
to chaotic response. From the bifurcation diagram, they concluded that the chaotic
motion is sensitive to the damping value of the system. The full-car nonlinear model
is studied by Zhu et al. [12] in which the full vehicle is studied with the nonlinear
stiffness and damping. They concluded that the chaotic vibration of the system could
be avoided by having the frequency of excitation away from the unstable regions
of the frequency response diagram. Thus, due to nonlinear characteristics of these
dampers, the influence of suspension characteristics with delay in road excitation of
front and rear wheels should be studied to understand the vehicle dynamics.

In this chapter, nonlinear damper with cubic nonlinearity for the stiffness and
damping is considered. The system is converted from heave and pitch motions into
two degrees of freedom at the front and rear vertical vibrations. The method of
multiple scales [13] is used to arrive at the envelope equations by equating the
secular terms to zero. The frequency response curves are obtained by using the
envelope equations.

2 Mathematical Model

The schematic diagram of half-car suspension is shown in Fig. 1. The equation
of motion for the half-car can be derived using Newton’s laws for transverse
displacement yc and pitch angle θ as [1]

Mÿc +K1f z1 + Fhf +K1rz2 + Fhr = 0 (1)

I θ̈ + aK1f z1 + aFhf − bK1rz2 − bFhr = 0, (2)

where road excitation provided through sinusoidal road profile of amplitude A and
frequency Ω at front and rear wheels as yf = A sin(Ωt), yr = A sin(Ωt − φ),
z1 = yc + aθ − yf , z2 = yc − bθ − yr , Fhf = K2f z1

3 + C1f ż1 + C2f ż1
3, Fhr =

K2rz2
3 + C1r ż2 + C2r ż2

3. The above equations in ÿc and θ̈ can be converted into
equations in terms of transverse displacements z̈1 and z̈2 of front and rear wheels
at distances a and b, respectively, from the centre of gravity subjected to sinusoidal
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Fig. 1 (a) Half-car model with periodic excitation, (b) Experimental setup, (c) Force vs. displace-
ment, and (d) Force vs. velocity

excitation of front and rear wheels with delay angle of φ. The equations can be non-
dimensionalized by dividing them with ω1

2, where ω1t = τ and Ω
′ = Ω

ω1
. The

resulting equation can be written as

z̈1+z1+B1z1
3+B2ż1+B3ż1

3+B4z2+B5z2
3+B6ż2+B7ż2

3 = F sin(Ω
′
τ) (3)

z̈2 + ω2
2

ω1
2 z2 + B8z1 + B9z1

3 + B10ż1 + B11ż1
3 + B12z2

3 + B13ż2 + B14ż2
3

= F sin(Ω
′
τ − φ), (4)

where F = AΩ ′2 scaled version of road profile amplitude, ω1
2 = ( 1

M
+ a2

I
)K1f ,

B1 = ( 1
M
+ a2

I
)
K2f

ω1
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M
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2 , B10 = ( 1

M
− ab

I
)
C1f
ω1

, B11 = ( 1
M
−

ab
I
)C2f ω1, B12 = ( 1

M
+ b2

I
)K2r
ω1

2 , B13 = ( 1
M
+ b2

I
)C1r
ω1

, B14 = ( 1
M
+ b2

I
)C2rω1.

Suspension parameters are obtained from the silicon oil damper used in Tavera front
suspension using MTS test machine as shown in Fig. 1b. The cubic nonlinearity of
stiffness coefficient and linear and cubic nonlinearity of damping coefficients of
damper are considered based on the curve fitting the experimental and analytical
force displacement, and force velocity curves are shown in Fig. 1c, d. Now, the
frequency analysis is done for half-car model under different resonance conditions:
(a) ω1 = 1,Ω

′ = ω1 + εσ1 and ω1 = ω2 + εσ2, (b) ω1 = 1,Ω
′ = ω1 + εσ1 and

3ω1 = ω2 − εσ2, (c) ω1 = 1,3Ω
′ = ω1 + εσ1 and 3ω1 = ω2 + εσ2.
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3 Modulation Equations

The solution to Eqs. (3) and (4) can be obtained using the method of multiple scales
as follows:

z1 = z10(T0, T1)+ εz11(T0, T1)+O(ε2)

z2 = z20(T0, T1)+ εz21(T0, T1)+O(ε2), (5)

where z10, z11, z20, z21 are functions to be determined, T0 = t , T1 = εt , and
Tn = εnt . The differential operators become

d

dt
= D0 + εD1 + ...; d

2

dt2
= D0

2 + εD0D1 + ε2(D1
2 + 2D0D2)+ ... (6)

3.1 Primary Resonance When Front Wheel and Rear Wheel
Have Nearly Equal Resonance Frequencies

To determine the amplitude of oscillation at primary resonance, the force term and
the nonlinear terms are assumed to be small and of the order of ε. Equating the
coefficients of the like powers of ε gives the following differential equations.

D0
2z10 + ω1

2z10 = 0,D0
2z20 + ω2

2z20 = 0, (7)

D0
2z11 + z11 = −2D0D1z10 − B1z10

3 − B2D0z10 − B3(D0z10)
3 − B4z20

− B5z20
3 − B6D0z20 − B7D0z20

3 + F sin(Ω
′
τ),

D0
2z21+

(
ω2

2

ω1
2

)

z21=− 2D0D1z20−B8z10−B9z10
3−B10D0z10−B11(D0z10)

3

− B12z20
3 − B13D0z20 − B14(D0z20)

3 + F sin(Ω
′
τ − φ).

(8)

The general solution to Eq. (7) is given by

z10 = A1(T1)e
iω1T0 + −

A1(T1)e
−iω1T0 , z20 = A2(T1)e

iω2T0 + −
A2(T1)e

−iω2T0 . (9)

Substituting Eq. (9) into Eq. (8), collecting the secular terms with the conditions
ω1 = 1, Ω

′ = ω1 + εσ1 and ω1 = ω2 + εσ2, and equating the real and imaginary
parts to zero give the following modulation equations for primary resonance at front
wheel with internal resonance at rear wheel. Here, we substitute Am = 1

2ame
iθm .
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The φ is calculated using the time taken for the vehicle to travel its length of 2.5 m
using 10 m/s speed. The corresponding modulation equations are

a′1 =
B2a1

2
+ 3B3a

3
1ω

2
1

8
+ B4a2 sin(γ2)

2ω1
+ 3B5a

3
2 sin(γ2)

8ω1

+ B6a2ω2 cos(γ2)

2ω1
+ 3B7a

3
2ω

3
2 cos(γ2)

8ω1
+ F cos(γ1)

2ω1
(10)

γ ′1 = σ1 − 3B1a1
3

8a1ω1
− B4a2 cos(γ2)

2a1ω1
− 3B5a

3
2 cos(γ2)

8a1ω1

+ B6a2ω2 sin(γ2)

2a1ω1
+ 3B7a

3
2ω

3
2 sin(γ2)

8a1ω1
+ F sin(γ1)

2a1ω1
(11)

a′2 =
B8a1 sin(γ2)

2ω2
+ 3B9a

3
1 sin(γ2)

8ω2
− B10a1ω1 cos(γ2)

2ω2
− 3B11a

3
1ω

3
1 cos(γ2)

8ω2

− B13a2ω2

2ω2
− 3B14a

3
2ω

3
2

8ω2
− F cos(γ1 − γ2 −Ωφ)

2ω2
(12)

γ ′2 = −σ2 + B8a1 cos(γ2)

2a2ω2
+ 3B9a

3
1 cos(γ2)

8a2ω2
+ B10a1ω1 sin(γ2)

2a2ω2
(13)

+3B11a
3
1ω

3
1 sin(γ2)

8a2ω2
+ 3B12a

3
2

8a2ω2
− F sin(γ1 − γ2 −Ωφ)

2a2ω2
, (14)

where γ1 = σ1T1 − θ1 and γ2 = −σ2T1 + θ2 − θ1.

3.2 Primary Resonance at the Front Wheel When Resonance
Frequency of the Rear Wheel Is 3 Times That of the Front
Wheel

To determine the amplitude of oscillation at primary resonance, the force term and
the nonlinear terms are assumed to be small and are of the order of ε. Equating the
coefficients of the like powers of ε, we get the following equations:

D0
2z10 + ω1

2z10 = 0;D0
2z20 + ω2

2z20 = 0 (15)
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D0
2z11 + z11 = −2D0D1z10 − B1z10

3 − B2D0z10 − B3(D0z10)
3 − B4z20

− B5z20
3 − B6D0z20 − B7D0z20

3 + F sin(Ω
′
τ)

D0
2z21+

(
ω2

2

ω1
2

)

z21=− 2D0D1z20−B8z10−sB9z10
3−B10D0z10−B11(D0z10)

3

− B12z20
3 − B13D0z20 − B14(D0z20)

3 + F sin(Ω
′
τ − φ).

(16)

The general solution of Eq. (15) can be written as

z10 = A1(T1)e
iω1T0 + −

A1(T1)e
−iω1T0

z20 = A2(T1)e
iω2T0 + −

A2(T1)e
−iω2T0 . (17)

Substituting Eq. (17) into Eq. (16), collecting the secular terms with the conditions
ω1 = 1, Ω

′ = ω1 + εσ1 and 3ω1 = ω2 − εσ2, and equating the real and imaginary
parts to zero give the following modulation equations for primary resonance at front
wheel with internal resonance at rear wheel. Here, we substitute Am = 1

2ame
iθm .

The φ is calculated using the time taken for the vehicle to travel its length of 2.5 m
using 10 m/s speed.

a′1 = −
B2a1

2
− 3B3a

3
1

8
− F cos(γ1)

2
, γ ′1 = σ1 − 3B1a1

2

8
+ F sin(γ1)

a1

a′2 = −
B9a

3
1 sin(γ2)

24
− B11a

3
1 cos(γ2)

24
− B13a2

2
− 27B14a

3
2

8

γ ′2 = −σ2 + 9B1a1
2

8
− F sin(γ1)

2a1
− B9a

3
1 cos(γ2)

24a2
+ B11a

3
1 sin(γ2)

24a2
− 3B12a

3
2

24a2
,

(18)

where γ1 = σ1T1 − θ1 and γ2 = −σ2T1 + 3θ1 − θ2.

3.3 Superharmonic Resonance at the Front Wheel with
Internal Resonance at Rear Wheel

Now including the forcing term in Eq. (15) gives the below equations

D0
2z10 + ω1

2z10 = F sin(Ω
′
τ);D0

2z20 + ω2
2z20 = F sin(Ω

′
τ − φ) (19)
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D0
2z11 + z11 = −2D0D1z10 − B1z10

3 − B2D0z10 − B3(D0z10)
3 − B4z20

− B5z20
3 − B6D0z20 − B7D0z20

3

D0
2z21 +

(
ω2

2

ω1
2

)

z21 = −2D0D1z20 − B8z10 − B9z10
3 − B10D0z10 − B11(D0z10)

3

− B12z20
3 − B13D0z20 − B14(D0z20)

3. (20)

The general solution to Eq. (19) gives

z10 = A1(T1)e
iω1T0 + −

A1(T1)e
−iω1T0 + Fei(ΩT0− π2 )

2(ω1
2 −Ω ′2

)
− Fe−i(ΩT0+ π2 )

2(ω1
2 −Ω ′2

)

z20 = A2(T1)e
iω2T0+ −

A2(T1)e
−iω2T0+Fe

i(ΩT0−φ− π2 )

2(ω2
2 −Ω ′2

)
−Fe

−i(ΩT0−φ+ π2 )

2(ω2
2−Ω ′2

)
. (21)

Substituting Eq. (21) into Eq. (20), collecting the secular terms with the conditions
ω1 = 1, 3Ω

′ = ω1+ εσ1 and 3ω1 = ω2+ εσ2, and equating the real and imaginary
parts to zero give the following envelope equations for superharmonic resonance at
front wheel with internal resonance at rear wheel.

a′1 = −B1B
3
111 cos(γ1)− B2a1

2
− 3B3a

3
1

8
− 3B3B

2
111Ω

′2
a1 − B3B

3
111Ω

′3
sin(γ1)

− B5B
3
111 cos(γ1 − 3φ)− B7B

3
111Ω

′3
sin(γ1 − 3φ)

γ ′1 = σ1 − 3B1a
2
1

8
− 3B1B

2
111 +

B1B
3
111 sin(γ1)

a1
− B3B

3
111Ω

′3
cos(γ1)

a1

+ B5B
3
111 sin(γ1 − 3φ)

a1
− B7B

3
111Ω

′3 cos(γ1 − 3φ)

a1

a′2 =
−B9a

3
1 sin(γ2)

24
+ B11a

3
1 cos(γ2)

24
− B13a2

2
− 27B14a

3
2

8
− 3B14B

2
222Ω

′2a2

γ ′2 = σ2 + 9B1a
2
1

8
+ 9B1B

2
111 −

3B1B
3
111 sin(γ1)

a1
+ 3B3B

3
111Ω

′3 cos(γ1)

a1

− 3B5B
3
111 sin(γ1 − 3φ)

a1
+ 3B7B

3
111Ω

′3 cos(γ1 − 3φ)

a1
− −B9a

3
1 cos(γ2)

24a2

− B11a
3
1 sin(γ2)

24
− B12a

3
2

8a2
− B12B

2
222a2,

where γ1 = σ1T1−θ1, γ2 = σ2T1+3θ1−θ2,B111 = F

2(ω2
1−Ω2)

andB222 = F

2(ω2
2−Ω2)

.
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4 Results and Discussion

Modulation equations are obtained under different conditions and are used to obtain
frequency response curves. Here, a1, a2, and σ1, σ2 are vibration amplitudes and
detuning factors of front and rear wheels. They are plotted for different values of
excitation amplitude F in order to show significant nonlinear effects under different
resonance conditions.

4.1 Frequency Response Results

To obtain the amplitude versus frequency response curves at the front and rear
wheels, we use the following parameter values from Popp et al. [14]. Approximate
values of nonlinear coefficients and parameter values are M = 1250 kg, I =
2000 kgm2, a = 1.2 m, b = 1.3 m, K1f = 50 kN/m, K1r = 50 kN/m, K2f =
−5000 kN/m3, K2r = −5000 kN/m3, C1f = 3500 Ns/m, C1r = 3500 Ns/m,
C2f = −350 Ns3/m3,C2r = −350 Ns3/m3, and ε << 1. The vehicle is assumed to
travel at a speed of 10 m/s to obtain the time delay between front and rear wheels of
φ = 0.25Ω

′
rad, whereΩ

′
is the road profile frequency. For nearly equal frequencies

of front and rear wheels, we have limit cycles formed as amplitude vs. frequency
response curves with two limit points (−58.74, 0.531) and (−58.39, 0.5294) in a1
vs. σ . Similarly, for a2 vs. σ , the limit points are observed at (−58.39, 0.00623)
and (−58.74, 0.006226). For case in which the resonance of the rear wheel is
three times the frequency of the front wheel, Fig. 2a shows the comparison between
solution of modulation equation obtained using MATCONT and solution based on
Runge–Kutta method for the primary resonance at the front wheel. Fig. 2b, c shows
frequency response curves of front and rear wheels due to primary excitation at front
wheel. Figure 2d shows frequency response curve of rear wheels when excitation is
at rear wheel. Similarly, the response under superharmonic condition is observed in
Fig. 3a–c.

4.2 Frequency Response Results with Parameters from
Experiment

In this section, we obtain the solution under primary resonance and superharmonic
resonance corresponding to the suspension parameters obtained from the experi-
mental values [15] as K1f = 9 kN/m, K1r = 9 kN/m, K2f = −5000 kN/m3,
K2r = −5000 kN/m3, C1f = 12 kNs/m, C1r = 12 kNs/m, C2f = −4 kNs3/m3,
C2r = −4 kNs3/m3, and ε << 1. Like previous case, for nearly equal frequencies
of front and rear wheels, we get isolated limit cycles formed as amplitude vs.
frequency response curves with two limit points in a1 vs. σ as well as a2 vs. σ
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Fig. 2 (a) Validation of MMS solution with numerical results as per a1 versus σ1. Frequency
response of (b) a1 versus σ1, (c) a2 versus σ1, and (d) a2 versus σ2 for Ω

′ = ω1 + εσ1, 3ω1 =
ω2 − εσ2 and F = 0.098N

Fig. 3 Frequency response of (a) a1 versus σ1, (b) a2 versus σ1, and (c) a2 versus σ2 for 3Ω
′ =

ω1 + εσ1, 3ω1 = ω2 + εσ2 and F = 0.2

for the same speed and delay as in the previous case. For other cases, we obtain the
response curve of front wheels and rear wheels in Fig. 4a, b when excitation is at
front wheel under primary resonance condition. Figure 4c shows the response of rear
wheel when excitation is near the resonance condition of rear wheel. Similarly, the
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Fig. 4 Frequency response of (a) a1 versus σ1, (b) a2 versus σ1, and (c) a2 versus σ2 for Ω
′ =

ω1 + εσ1, 3ω1 = ω2 − εσ2 and F = 1

Fig. 5 Frequency response of (a) a1 versus σ1, (b) a2 versus σ1, and (c) a2 versus σ2 for 3Ω
′ =

ω1 + εσ1, 3ω1 = ω2 + εσ2 and F = 0.16

response of front and rear wheels under superharmonic condition is also obtained in
Fig. 5.

Based on the observation of results, it is found that delay in road excitation
between front and rear wheels induces coupled nonlinear response that should be
controlled by tuning the vehicle parameters or damper characteristics.

5 Conclusions

The envelope equations are derived using the method of multiple scales for half-
car model with nonlinear damper having cubic nonlinearity for the stiffness and
damping coefficients. The frequency response curves are presented for primary
and superharmonic resonances of front and rear wheel with periodic kinematic
excitation from the road surface. The internal resonance effect between the front
and rear wheels is present because of the damper nonlinearity.



Half-Car Model with Nonlinear Damper 183

References

1. I. Sivakoteswarrao, Performance characteristics of semi-active and passive damper using
different car models. Master’s thesis (2015). Indian Institute of Technology Hyderabad

2. V. Rajath, I. Sivakoteswarrao, A.K.P. Pandey, Performance characteristics of 2 and 3 dofs
quarter car models with MR damper, in 24th International Congress on Sound and Vibration
(ICSV24), 23–27 July 2017, London

3. A. Hac, Suspension optimization of a 2-dof vehicle model using a stochastic optimal
control technique. J. Sound Vib. 100(3), 343–357 (1985). https://doi.org/10.1016/0022-
460X(85)90291-3

4. R.S. Prabakar, C. Sujatha, S. Narayanan, Response of a quarter car model with optimal
magnetorheological damper parameters. J. Sound Vib. 332, 2191–2206 (2013). https://doi.org/
10.1016/j.jsv.2012.08.021

5. M. Siewe Siewe, Resonance, stability and period-doubling bifurcation of a quarter-car model
excited by the road surface profile. Phys. Lett. A 374(13–14), 1469–1476 (2010). https://doi.
org/10.1016/j.physleta.2010.01.043

6. G. Litak, M. Borowiec, M.I. Friswell, K. Szabelski, Chaotic vibration of a quarter-car model
excited by the road surface profile. Commun. Nonlinear. Sci. Numer. Simul. 13, 1373–1383
(2008). https://doi.org/10.1016/j.cnsns.2007.01.003

7. R.D. Naik, P.M. Singru, Resonance, stability and chaotic vibration of a quarter-car vehicle
model with time-delay feedback. Commun. Nonlinear. Sci. Numer. Simul. 16, 3397–3410
(2011). https://doi.org/10.1016/j.cnsns.2010.11.006

8. R.S. Prabakar, C. Sujatha, S. Narayanan, Response of a half-car model with optimal magne-
torheological damper parameters. J. Vib. Control 22(3), 784–798 (2016). https://doi.org/10.
1177/1077546314532300

9. A.G. Thompson, B.R. Davis, Computation of the rms state variables and control forces in a
half-car model with preview active suspension using spectral decomposition methods. J. Sound
Vib. 285, 571–583 (2005). https://doi.org/10.1016/j.jsv.2004.08.017

10. L.V.V. Gopala Rao, S. Narayanan, Preview control of random response of a half car vehicle
model traversing rough road. J. Sound Vib. 310, 352–365 (2008). https://doi.org/10.1016/j.jsv.
2007.08.004

11. Q. Zhu, M. Ishitobi, Chaos and bifurcations in a nonlinear vehicle model. J. Sound Vib. 275,
1136–1146 (2004). https://doi.org/10.1016/j.ijsolstr.2005.06.070

12. Q. Zhu, M. Ishitobi, Chaotic vibration of a nonlinear full-vehicle model. Int. J. Solids Struct.
43, 747–759 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.070

13. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, Hoboken, 2004). https://www.wiley.
com/en-in/Nonlinear+Oscillations-p-9780471121428

14. K. Popp, W. Schiehlen, Ground Vehicle Dynamics (Springer, Berlin, 2010). https://www.
springer.com/gp/book/9783540240389

15. P. Prakash, Experimental and analytical studies of MR damper under dynamic loading,
MTech Thesis. Indian Institute of Technology Hyderabad (2014). https://doi.org/10.1177/
1077546314532300

https://doi.org/10.1016/0022-460X(85)90291-3
https://doi.org/10.1016/0022-460X(85)90291-3
https://doi.org/10.1016/j.jsv.2012.08.021
https://doi.org/10.1016/j.jsv.2012.08.021
https://doi.org/10.1016/j.physleta.2010.01.043
https://doi.org/10.1016/j.physleta.2010.01.043
https://doi.org/10.1016/j.cnsns.2007.01.003
https://doi.org/10.1016/j.cnsns.2010.11.006
https://doi.org/10.1177/1077546314532300
https://doi.org/10.1177/1077546314532300
https://doi.org/10.1016/j.jsv.2004.08.017
https://doi.org/10.1016/j.jsv.2007.08.004
https://doi.org/10.1016/j.jsv.2007.08.004
https://doi.org/10.1016/j.ijsolstr.2005.06.070
https://doi.org/10.1016/j.ijsolstr.2005.06.070
https://www.wiley.com/en-in/Nonlinear+Oscillations-p-9780471121428
https://www.wiley.com/en-in/Nonlinear+Oscillations-p-9780471121428
https://www.springer.com/gp/book/9783540240389
https://www.springer.com/gp/book/9783540240389
https://doi.org/10.1177/1077546314532300
https://doi.org/10.1177/1077546314532300


An Optimal Fractional LQR-Based
Control Approach Applied to a
Cart-Pendulum System

Julio Cesar Basilio, José Geraldo Telles Ribeiro, Americo Cunha Jr,
and Tiago Roux Oliveira

1 Introduction

The idea of the fractional calculus was introduced in 1695, when L’Hôpital in a
letter to Leibniz questions what would be the mathematical interpretation for the
notation of the derivative dnf/dxn (created by Leibniz) if it has a non-integer
order (n = 1/2, for example). The search to find this interpretation involved
many mathematicians like Euler, Fourier, Laplace, among others. Its first practical
application was made in 1823 by Niels Henrik Abel, to solve problem of tautochrone
curve, for which the time of descent of a body abandoned on it and subject to
the action of gravity is the same regardless of the starting point where the body
is abandoned [1, 2].

During the following centuries, many pure and applied mathematicians con-
tributed to the development of the theory of fractional calculus, and many dif-
ferent fractional operators were proposed, including the fractional derivatives of
Grünwald–Letnikov, Riemann–Liouville, and Caputo [3].

The Riemann–Liouville fractional integral [3] of order α, where α ∈ IR and
α > 0, is defined in terms of a convolution-type operation between the real-valued
function y(t) and the kernel tα−1

Iαa,t y(t) =
1

Γ (α)

∫ t

a

(t − τ)α−1 y(τ) dτ , t > a (1)

being Γ the Gamma function, and the Riemann–Liouville fractional derivative [3] is
defined in terms of the classical derivative of order n ∈ ZZ+ of this fractional-order
integral
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RLDαa,t y(t) =
1

Γ (n− α)
dn

dxn

∫ t

a

(t − τ)n−α−1 y(τ) dτ , (2)

which is a global operator (not local as in classical calculus) that presents
“memory”, being t > a and n− 1 < α < n.

The development of new definitions is an active field of research in mathematics
[4, 5], including unified definitions [6]. On the other hand, the use in applications
was possible mainly due to the development of numerical methods to simulate
fractional systems [7], which also allowed the use of fractional operators in
engineering analysis [8] and in control theory [9], especially when dealing with
delays [10] or chaotic nonlinear systems [11].

In addition to the favorable feature of fractional-order operators in providing a
natural framework for describing phenomena with memory, the fractional exponent
in control theory also offers a type of additional degree of freedom to tune a
controller, opening up opportunities for further performance improvements in the
controller project. In this context, this chapter proposes a LQR-based control system
with cross-entropy method to stabilize an inverted cart-pendulum system and ana-
lyzes the possibility of improving the performance of the controller using fractional
integrators, comparing this with the integer-order. Performance is evaluated through
indexes related to the control error, the settling time of the system output, and the
control effort. To find the parameters that result in the best performance for the
controller, including the possibility of fractional-order, and find the most efficient
method to optimize systems that use fractional control, two methods of global
optimization are used, the genetic algorithm [12] and the cross-entropy method
[13, 14]. The inverted pendulum is chosen as a reference because it is a classic
control problem, a nonlinear system widely studied using integer-order controllers
[15], which has also started to be tested in the fractional control literature [16].

2 Nonlinear Dynamic System

An inverted pendulum has its center of mass above its pivot point, so when in the
vertical position it is in its unstable equilibrium position, and a small disturbance
can bring down the pendulum. Maintaining this equilibrium position or at a desired
reference angle is done by changing the cart position. The inverted cart-pendulum
used in this chapter is shown in Fig. 1 (left), where M is the cart mass; m is the
inverted pendulum mass; L is the distance from the center of pendulum’s mass to
the fixation point; x is the cart’s horizontal displacement; θ is the angle between
the pendulum and a perpendicular axis through the cart’s centroid; and u is the
force applied to the cart to control the system. The mass of the rod is neglected,
the surface is considered to be frictionless, and the mechanical joint is considered
smooth.
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The dynamics of the system evolve according to the nonlinear model

(J +mL2) θ̈ −mg L sin θ = −mL ẍ cos θ (3)

(m+M) ẍ +mL θ̈ cos θ −mL θ̇2 sin θ = u, (4)

where J is the pendulum moment of inertia. As can be seen, the dynamics of the
plant is nonlinear, and a suitable controller is needed to keep the pendulum in a
certain position. In this chapter, we considered the values of m equal to 0.1 kg, M
equal to 2 kg, L is the length of 0.5 m, and the moment of inertia J is equal to
0.006 kg.m2. The upper dot is an abbreviation for time derivative.

3 Control Strategy

3.1 Controller Design

Figure 1 (right) shows the LQR-based controller proposed to control the inverted
cart-pendulum system.

In this proposed controller, r is the reference input signal; e is the tracking error;
u is the control signal; K1, K2, K3, K4, Kl are the control gains; Iα1 , Iα2 , Iα3 , Iαl
are the integrators, if α ∈ ZZ (integer order) and if α /∈ ZZ (fractional-order). In
this plant, the feedback is done through two state variables, angular speed θ̇ and cart
speed ẋ, chosen to be the observed states. Therefore, to obtain the angular position
of the pendulum and the position of the car, these variables are integrated by Iα1

and Iα3 , respectively, as defined by the fractional integral of Riemann–Liouville in
Eq. (2). In addition, a feedback in the input through the integrals Iα2 and Iαl of the
car position is performed.

θ
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+
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e Iαl Kl
+

-

u

θ

θ̇
x
ẋ

Iα1K1

K2

K3 Iα3

K4

Iα2

Fig. 1 Schematic illustration of the cart-pendulum system (left), and the proposed LQR-based
controller (right)
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To know the performance of an integer-order controller, used as a reference
in the comparisons of this work, the pole placement method was used to obtain
the controller gains Ki . This is a classic and widely used method, developed for
linear systems using integer-order controllers, where the location of the poles is
chosen based on the desired performance of the closed-loop system. Since this
method is based on the linear system hypothesis, the inverted cart-pendulum model
is linearized. Using the Matlab to calculate the gains, the following values are
obtained: K1 = −200.6; K2 = −50.3; K3 = −70.1; K4 = −46.8; Kl = −63.8.

3.2 Controller Performance

Performance indexes of control systems are indicators of the quality of the
elaborated project, being possible to evaluate quantitatively the performance of
different controllers. Mathematically, a performance index is a function of system
states, inputs, and time. In addition, performance indices can also be used as an
objective function for obtaining controllers. In this chapter, the performance of the
controllers is evaluated using the following criteria:

– Integrated square error: ISE = ∫ t0 e(t)2 dt
– Settling time (ST)
– Integrated square control signal: ISU = ∫ t0 u(t)2 dt

The first two indices refer to the state variables (θ , θ̇ , x, and ẋ). The ISE index is
related to the area displaced by the car or the pendulum during the evaluated period
until reaching the reference. The settling time, as the name says, is the time it takes
the signal to reach the reference. The latter, the ISU index, quantifies the control
effort during the evaluated period.

4 Controller Optimization Problem

4.1 LQR-Based Fitness Function

The objective of this chapter is to find the set of controller parameters that
maximize the performance of the controller. Thus, the design variables chosen for
the optimization problem are the gains and the order of the integrators, especially
the latter that define whether the controller will be fractional or integer.

The lower and upper bounds of the variables must be defined according to the
computational capacity of the optimization method and in a way that allows the
search for the global maximum, without one or more variables being close to the
stipulated limit. This problem with the bounds of the variables is one of the reasons
for using more than one optimization method.
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As explained in Sect. 3.2, the performance evaluation is made through the
indexes chosen here; however, for the optimization process, evaluating the indexes
separately would make a multi-objective optimization of high computational cost,
since the number of design variables is relatively high. Therefore, it is necessary to
develop an objective function that takes into account all these performance indices,
including the one that assesses the control effort. Control theory has an optimized
controller design technique well known in the literature called linear quadratic
regulator (LQR). This technique is used in linear systems and has a quadratic cost
function that includes the state variables and the control signal, in order to find the
optimized gains for the control project [17].

A fitness function based on the LQR was developed mainly because it also takes
into account the state variables and the control signal in the formulation

F =
∫ τ

0

(

w1
x2(t)

ISExI
+ w2

θ2(t)

ISEθI
+ w3

u2(t)

ISUuI
+ w4

ẋ2(t)

ISEẋI
+ w5

θ̇2(t)

ISEθ̇I

)

dt,

(5)
where t is the time variable, τ is the final evaluation time, and the w’s are the
weights for each component of the objective function. It is worth mentioning
that as the reference for the control is zero, the state variables used directly in
the function quantify the error, one of the performance indices evaluated in this
chapter. State variables are divided by the respective performance value (ISE and
ISU ) in integer-order control, minimizing the difference in order of magnitude of
each component, trying to allow the weight to be defined as much as possible by
w1 = w2 = w3 = 0.3 and w4 = w5 = 0.05. Thus, the value of the fitness function
for the classical controller is equal to 1.

Therefore, to obtain a better performance F < 1 must be obtained, that is,
the objective function must be minimized. To turn this minimization problem in
a maximization problem, as is treated in the optimization methods applied in this
chapter, it is considered S = −F. The constraints are incorporated into the objective
function through a penalty function

P = 100 (max(0, STθ − ST ∗θ ))2 + 100 (max(0, STx − ST ∗x ))2, (6)

where STθ and STx are the settling time of the angular position and the position of
the car; ST ∗θ and ST ∗x are the respective values in the classic controller.

4.2 Genetic Algorithms

Genetic algorithms (GA) are heuristic search approaches applicable to a wide
range of optimization problems. Invented by Holland (1975, 1992), this stochastic
optimization and global search technique are successful methods for use in problems
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with difficult solution spaces, for example, if no derivatives are available and if the
fitness scenario suffers from poorly conditioned parts [12].

Using the principle of genetics and natural selection, evolution is the basis of
genetic algorithms, together with their main genetic operators, which are crossover,
mutation, and selection. Crossover operators combine the genomes of two or more
solutions. The mutation operator adds randomness to the solutions. And finally, the
selection operator chooses the best solutions in a population for survival [18].

4.3 Cross-Entropy Method

Global search methods like genetic algorithms are quite effective in overcoming
local minimums or maximums, unlike gradient-based methods; however, its control
parameters are not intuitive and most of the time its tuning is done through trial
and error, which can lead to loss of performance and accuracy. In an attempt to
overcome such difficulties and succeed in the search for the controller with the best
performance, this work uses, in addition to the GA method, another global search
algorithm known as the cross-entropy (CE) method. More robust and simple, it was
proposed by R. Rubinstein in 1997 [13] initially for simulation of rare events, and
then its effectiveness in application in optimization problems was observed [19,
20]. The idea of the method is to transform a non-convex optimization problem
into a rare event estimation problem that can be solved by Monte Carlo sampling
technique. The process consists of:

(i) Sampling the feasible region according to a given probability distribution
(ii) Evaluating the objective function in each of these samples

(iii) Identifying the samples that produced the highest values for the objective
function, this subset being defined as the elite sample set

(iv) Updating the parameters of the probability distribution based on the mean and
standard deviation of the elite sample set, modifying the distribution in order
to try to make it as close as possible to the global optimum

(v) Repeating steps (2) to (4) as long as a stop criterion is not met.

This iterative process can be classified into two stages: sampling (i and ii) and
learning (iii to v). Furthermore, this process only requires the user to define the
number of samples Ns , the number of elite samples Ne < Ns , a tolerance of
convergence tol, and the maximum number of levels (iterations) lmax [14].

5 Numerical Experiments

The numerical experiments presented here consist of the execution of optimizations
using GA and CE methods through numerical simulations in Matlab, where several
evaluations of the objective function are performed and the ideal parameters of
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the controller that result in its best performance are found. For the operations of
fractional integrators, the FOMCON toolbox is employed [7].

The initial conditions for the numerical simulations are defined: x0 = 0 m;
ẋ0 = 0 m/s; θ0 = 10 × π/180 rad; θ̇0 = 0 rad/s. Note that the initial condition
of the angular position other than 0 (zero) will force the control system to act to find
stabilization. The dynamics are integrated over the time interval [0; τ ] = [0; 10] s.

The optimizations will be divided into two stages according to the choice of
design variables to be analyzed. In the first round of optimization, it seeks to find the
optimal values of α1 and α3, which results in the best performance for the controller,
keeping the other parameters fixed. The strategy is to use the controller’s gains,
obtained by the linear pole placement method, and consider the order of the integers
α2 and αl equal to 1. Then, optimizations are performed with all system parameters
(gains and integrators) to find the one that results in the best control performance.

5.1 Optimization of α1 and α3

Initially, the GA and CE optimizations are made with the design variables being α1
and α3, keeping the other controller parameters fixed and equal to 1. The results
obtained in each of these optimizations are presented in Table 1.

Table 1 Optimal values of the design variables (α1 and α3) with their respective performance
indexes and fitness function value

Integer Fractional Fractional
controller controller GA controller CE

Parameters α1 1.00 1.03 1.03

α2 1.00 1.00 1.00

α3 1.00 0.93 0.93

αl 1.00 1.00 1.00

K1 −200.60 −200.60 −200.60

K2 −50.30 −50.30 −50.30

K3 −70.10 −70.10 −70.10

K4 −46.80 −46.80 −46.80

Kl −63.80 −63.80 −63.80

Performance ISE θ 0.021 0.017 −20% 0.017 −20%

index ISE θ̇ 0.190 0.204 7% 0.204 7%

ISE x 0.257 0.230 −11% 0.230 −11%

ISE ẋ 0.660 0.509 −23% 0.509 −23%

ISU u 23.659 24.412 3% 24.411 3%

ST θ 4.873 4.088 −16% 4.088 −16%

ST x 5.073 5.100 1% 5.100 1%

Fitness function 1.000 0.909 −9% 0.909 −9%
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Fig. 2 Time series of the angular position (left), car position (center), and the control signal (right)
for results for first optimization

Table 2 Bounds and performance of GA and CE algorithm for optimization evaluated

Bounds Function
Method α1,2,3,l K1 K2,3,4,l Levels evaluation

GA [0.8 1.1] [−250 −150] [−90 −30] 327 generations 29,520

CE [0.5 1.5] [−350 −1] [−150 −1] 88 iterations 4400

The first highlight can be made on the efficiency of the CE method compared
to GA to obtain the same result more quickly and with less computational cost.
Another observation is that the use of fractional-order integrators can improve the
performance of the controller, with an optimization close to 10% of the overall
performance (based on the fitness function) of the controller. The ISE of the angular
position had a reduction of 20% compared to the integer order. The ISE of the
angular velocity, the settling time of x, and the control effort were slightly higher;
however, compared to the improvement obtained in the others, they are irrelevant.
Some of these results are highlighted in Fig. 2, with the time series of the angular
position, car position, and control effort.

5.2 Optimization of All Parameters

Based on the results of Sect. 5.1, the following question is asked: “if the gains are
also optimized, will the integrators also have a fractional order?”. To answer this
question, new optimizations are developed with the GA and CE methods, now with
all the parameters of the controller as design variables. The results are compared
with the integer-order controller, as done previously. Table 2 shows the configuration
of the methods, the bounds of all design variables, and the performance of each
method for optimization evaluated with all parameters.

Unlike the previous optimization, the optimizations performed with all parame-
ters required a higher computational cost. However, as shown in Table 3, the results
of the performance indices and the fitness function of the optimized parameters
show that the use of fractional-order integrators together with the optimal gains can
further improve the performance of the controller designed through the method of
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Table 3 Controller configuration with the optimal values of the design variables (all parameters)
and their respective performance indexes and fitness function value

Integer Fractional Fractional
controller controller GA controller CE

Parameters α1 1.00 0.96 0.72

α2 1.00 0.94 0.79

α3 1.00 0.91 1.22

αl 1.00 0.97 0.80

K1 −200.60 −249.98 −205.68

K2 −50.30 −60.08 −86.97

K3 −70.10 −89.96 −67.54

K4 −46.80 −70.35 −124.60

Kl −63.80 −83.01 −65.56

Performance ISE θ 0.021 0.012 −45% 0.009 −55%

index ISE θ̇ 0.190 0.169 −11% 0.157 −17%

ISE x 0.257 0.182 −29% 0.136 −47%

ISE ẋ 0.660 0.357 −46% 0.283 −57%

ISU u 23.659 22.158 −6% 21.497 −9%

ST θ 4.873 3.952 −19% 3.949 −19%

ST x 5.073 4.899 −3% 5.100 1%

Fitness function 1.000 0.730 −27% 0.630 −37%

pole placement. The optimization methods GA and CE allowed results in general
(fitness function) with 27% and 37% better than the controller used as reference,
respectively.

This difference in methods is linked to the better efficiency of the CE in relation
to the operational cost (time/function evaluates). Because in GA, due to the CPU
time and the number of variables in the problem, it was necessary to establish
lower bound limits of each parameter/design variable for the method to run. This
problem can be seen in the values of K1 and K3, which were very close to the
lower bounds established for them. Another important highlight is how errors can
be reduced by up to 50% with fractional integrators, yet requiring 9% less effort
from the controller. The time series of the angular position, the car position, and the
control effort is shown in Fig. 3, with the comparison of the result of each method
with the integer controller.

6 Concluding Remarks

This chapter used the stability problem of an inverted cart-pendulum to develop a
study on the performance of fractional controllers compared to those with integer-
order integrators. So there is a nonlinear non-convex optimization problem that
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Fig. 3 Time series of the angular position (top-left), car position (top-right), and the control signal
(bottom) for result optimization of all the parameters

aims to maximize the performance of the control system, taking into account the
error, the settling time, and the control effort. For this, two different optimization
methods were used: genetic algorithms and cross-entropy. The latter being faster
and more robust for optimization that involves fractional-order integrators, i.e., the
cross-entropy presents better performance for problems with many variables, which
is the case of systems with fractional control.

As in [9], there is an improvement in the performance of the control circuit that
has fractional-order operators, but in this chapter for a LQR-based controller using
cross-entropy method. The results show that the use of controllers with fractional
integrators instead of integer-order controllers makes the control more efficient and
faster, approximately 20% faster to reach the benchmark (θ = 0 rad), with less error
and requiring less effort of control. With the reduction of all control parameters,
integrators, and gains, the fitness function can be reduced by more than a third,
allowing to find a better answer from the results of the pole placement method.
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Nonlinear Viscoelastic Damping for
Seismic Isolation

Nicola Menga, Francesco Bottiglione, and Giuseppe Carbone

1 Introduction

Suppressing structural vibration has pushed the development of innovative devices
and modelling methodologies tailored for the purpose up to the latest years. Since
vibration is a common issue, several engineering applications have to face with it.
It is the case, for instance, of wind energy converters which may undergo vibration
due to internal sources (e.g., rotordynamics unbalance) or external forcing (e.g.,
wind blows, sea waves). Numerous techniques have been adopted to control the
dynamic response of these structures [1], belonging to both families of the passive
[2–6] and active systems [7]. Analogue issues exist aiming at isolating heavy
mechanical equipment [8], in which case solutions span from hybrid spring-actuator
complex [9] to specific actuators [10] and pneumatic suspensions [11]. Although
higher performance is in most cases associated with active systems, these are
unfeasible when dealing with enough large systems. In these cases, passive isolator
is the preferred one. Power plants, as well as schools and medical institutions,
require the highest degree of reliability; therefore, we need to enforce the structural
integrity of large systems via vibrations control. Due to the broader input spectrum
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effectiveness, nonlinear passive isolation techniques are very promising; indeed,
recent studies have focused on different kinds of nonlinearity [12, 13]. Base isolation
techniques are mostly indicated in case of single or two storied buildings, with
specific focus on rolling devices [14] with rolling path specifically shaped to
promote nonlinear re-centering effects [15, 16]. The effectiveness of nonlinear
damping is of primary interest as well [17, 18]. Nonlinear dampers can overcome
typical limitations of linear ones [19] by acting as low-pass filters, thus being
suitable for applications in which stochastic excitations are expected (e.g., wind
and earthquakes). For example, nonlinear viscous dampers (NVDs), particle impact
dampers (PIDs), and nonlinear energy sinks (NESs) are increasingly adopted in
civil engineering applications [20–22] due to their ability to reduce both the relative
displacement and the inertial loads acting on the structure [23]. Furthermore, since
the overall behavior is nonlinear, higher energy dissipation can also be achieved
through wider hysteretic cycles. Interestingly, by relying on viscoelastic NVDs,
the overall nonlinear damping behavior can be combined with the nonmonotonic
velocity-related dissipation of viscoelastic materials, in order to achieve a low-pass
response of the NVD whose maximum damping force is limited.

Rubber-Layer Roller Bearings (RLRBs) are possible NVDs based on viscoelas-
ticity. Indeed, in these systems, depending on the specific application, both metal
balls [24–28] and cylinders [29–31] are in contact with viscoelastic coatings
deposed onto rigid plates fixed to the ground and the superstructure. During the seis-
mic shock, the relative oscillation between the ground and the superstructure leads
to a rolling contact of the balls/cylinders and, in turn, to viscoelastic dissipation.
A former investigation has shown promising results achievable with a viscoelastic
RLRB with linear stiffness [32, 33] in comparison with linear base isolation, when
the nonlinear damping is opportunely tuned for the seismic shock. However, the
effectiveness of this kind of nonlinear isolation when dealing with excitation sources
unknown a priori, as in the case of earthquakes, needs to be properly assessed.
Indeed, in this case, their effectiveness relies on the ability to exhibit a convenient
behavior with respect to the wider possible excitation bandwidth.

This study focuses on the isolation performance of an RLRB coupled to a
nonlinear cubic spring. The effectiveness of such a nonlinear isolation scheme
is investigated, with specific focus on the performance robustness. In order to
accomplish this purpose, we focus on a set of three historical seismic shocks
with different spectra. The nonlinear damping force is calculated via an accurate
previously developed [34–38] model based on a Boundary Element Method (BEM)
to formalize the viscoelastic contact behavior of the roller-coating interface. Finally,
we compare the RLRB performance with that associated with a linear isolator.

2 Dynamic Model

Figure 1a shows a schematic of the system at hand. The inertial mass m2 is
connected by an elastic superstructure (bending stiffness kS) to the RLRB, which
isolates the superstructure from the ground horizontal seismic oscillation. The
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Fig. 1 (a) is the functional scheme of the isolator: an heavy mass m2 is connected by an elastic
beam to the RLRB body of mass m1, which is in turn connected to the ground by means of
a nonlinear spring and a nonlinear damper (i.e., the viscoelastic rolling contact between rigid
cylinders and rubber pads). (b) shows the nonlinear elastic Fel and damping Fd forces, with
μ = 2 × 104 kN/m3. (c) reports the lumped scheme, showing that the connection to the ground
occurs via the nonlinear elastic element and the nonlinear RLRB damper

RLRB mass is m1̧ whereas the nonlinear damping force is Fd (ż) and the nonlinear
elastic force is Fel(z).

Specifically, we focus on the case of a cubic spring; therefore, the elastic force
is Fel(z) = μz3, where z is the relative displacement between the ground and the
RLRB.

The RLRB is made of a linear array of rollers with equal radius R, axial length b,
and spacing λ, moving in a reciprocating fashion on a viscoelastic layer of thickness
h.

The nonlinear damper is a lumped representation of the nonlinear damping effect
arising due to the rolling contact between the rigid rollers and the viscoelastic
coating, as already shown in Refs. [32, 39].

In this study, we focus on the case of a viscoelastic material with relaxation
time τ . Moreover, the damping force Fd (ż) arising from the viscoelastic contact is
calculated by exploiting the contact solution already given for thin layers or coatings
in Refs. [36–38, 40, 41]. Notably, we assume incompressible material behavior (i.e.,
ν = 0.5).

In Fig. 1b, the nonlinear forces Fel(z) and Fd (ż) are shown. The effects of two
relevant parameters of the RLRB are emphasized: the relaxation time τ and the
cylinder spacing λ. Interestingly, the effect of the term τ /λ is to shift velocity ż∗
corresponding to the force peak, whereas λ affects the peak amplitude.

Finally, assuming pure horizontal oscillation, with reference to the lumped
parameters schematic given in Fig. 1c, the following linear momentum balance
equations are derived:
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m1 (ẍ + z̈)+ μz3 + Fd (ż)− ksζ = 0

m2
(
ẍ + z̈+ ζ̈ )+ ksζ = 0 (1)

With the total displacement of the inertial mass:

η(t) = x(t)+ z(t)+ ζ(t) (2)

We also considered a linearized version of the system for comparison. In this
case, the governing equations are as follows:

m1 (ẍ + z̈l )+ klzl + cl żl − ksζl = 0

m2
(
ẍ + z̈l + ζ̈ l

)+ ksζl = 0 (3)

where the subscript l means linear.

3 Results

In our calculation, we set E0 = E∞/3 = 50 MPa, where the subscripts 0 and ∞
refer to the low- and high-frequency elastic moduli of the viscoelastic material,
respectively. Furthermore, we set h/λ = 0.13, R/λ = 0.3, and b = 1 m. For each set
of requested values of λ and τ , the nonlinear damping force was therefore calculated
following the procedure extensively described in [39].

The system physical parameters have been estimated from real civil applications.
Indeed, we set [33] m1 = 1× 102 kg, m2 = 1× 105 kg, and ks = 6× 106 N/m (i.e.,
the bending stiffness of a HEB 300 steel beam of length L = 3 m). The cubic spring
stiffness is μ = μ0 6.2 × 107N/m3, with μ0 being a dimensionless coefficient.

Furthermore, with reference to Eq. (3), the parameters of the linear stiffness have
been also expressed in a more readable form. Specifically, kl = κ l × 3.1 × 106 N/m
and cl = ψ l × 104 N/m.

3.1 Seismic Dynamics

The robustness of the isolation performance is of primary importance when dealing
with excitations whose spectra are unknown a priori, such as in the case of seismic
events or wind and sea-wave forcing. Therefore, our goal is to understand if a
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nonlinear system and, specifically, an RLRB isolator with both nonlinear damping
and stiffness is more robust than an equivalent simpler linear one.

To achieve this goal, we perform a global optimization of both the systems
assuming as inputs five different seismic events. After that, the isolation achieved
by both systems in optimal conditions is compared for each seismic event here
considered.

According to Refs. [33, 42–44], with reference to the force F(t) = ksζ (t)
acting through the nonlinear spring on the structural mass m2, we consider the
following possible damages: (i) the instantaneous structural damage, correlated to
the amplitude Fm of the force F(t); (ii) the fatigue damage, correlated to the root-
mean-square Frms = 1/T[

∫
TF(t)2dt]1/2 of the force F(t) (notably, T is the shock

duration); (iii) the compatibility of the relative displacement between the ground
and the superstructure base, correlated to the amplitude zm of the displacement z(t).
All these damage/compatibility parameters are collected to define the following cost
function:

ϕ = 1

n

n∑

k=1

(
1

3

Fm,k

Fm,0
+ 1

3

Frms,k

Frms,0
+ 1

3

zm,k

zm,0

)

(4)

where n is the number of seismic events here considered (i.e., n= 3). In Eq. (4) Fm, 0,
Frms, 0, and zm, 0 are homogenization terms which represent the absolute maximum
values assumed by Fm, Frms, and zm in the investigated domain. Since the focus of
this study is on the physical effect of nonlinear base isolation more than on specific
optimization strategies, here a brute force search has been implemented to solve
the optimization process. The lower the cost function, the better the performance is.
Therefore, the optimization consists of the cost minimization.

Figure 2 shows the effect of system parameters on the cost function for both
(a) the linear isolator and (b) the nonlinear RLRB. For the linear system, we
show the value of the cost function versus κ l and cl. For the nonlinear RLRB, it
emerged interestingly that the stiffness parameter is less influential than the damping
parameter in determining the isolation performance; thus, we show here the cost
function versus μ0 and λ with τ = 0.013 s.

The relaxation time τ affects only and directly the damping force slope, whereas
changing λ also leads to different peak values. This can be a reason for the observed
behavior.

Similarly, we observe that effect of the nonlinear stiffness μ0 on the overall
behavior of the isolator is nonmonotonic, with the optimal conditions associated
with relatively low values of μ0.

The results in terms of optimal behavior are shown in Table 1. From them, we
observe that the optimal tuning of the nonlinear RLRB is able to produce a more
robust isolation behavior, as the seismic mass m2 is subjected to lower loads during
each seismic shock compared to the system equipped with linear isolation. The
only drawback is the presence of slightly larger base displacements associated with
the RLRB. The lower standard deviation of the achieved result indicates that the
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Fig. 2 The cost function maps. Figure (a) refers to the linear system, whereas figure (b) shows
nonlinear system results with τ = 0.013 s

Table 1 Linear and nonlinear system performance at optimal conditions. Optimal parameters are:
κ = 0.001 and ψ l = 77.17 for the linear system; μ0 = 0.059, λ = 0.06 m and τ = 0.013 s for the
RLRB

Linear Nonlinear
Force
amplitude
(kN)

Force rms
(kN)

Displacement
(cm)

Force
amplitude
(kN)

Force rms
(kN)

Displacement
(cm)

Irpinia
1980

84.2 18.0 18.6 175 25.6 9.1

Waianu
2016

122 21.9 26.6 500 52.0 10.7

Christchurch
2010

569 67.4 52.2 418 63.0 13.7

RLRB presents a higher robustness, since its performance is less affected by the
actual spectral content of the excitation signal. This is remarkable property, which
can be highly desirable when the input spectrum cannot be predicted as in several
engineering applications requiring blind design of the isolation.

Finally, we report here the time history of η (Fig. 3a, c, e) for the three seismic
events considered under optimal conditions (see Table 1). We observe that the
data associated with the systems equipped with the RLRB show a smoother trend
compared to the linear case. This is associated to lower peak displacement and lower
acceleration, thus leading to lower inertial loads acting on the seismic mass m2.
We also observe that, due to the nonlinear recentering force (i.e., Fel(z) � klz for
z � 1), a residual offset is still present at the end of the shocks, which is expected
to asymptotically decay for very long times.

Figure 3b, d, f shows the spectral contribution of the acceleration η̈ of the seismic
mass m2, under the same optimal conditions. A low-pass filter behavior is reported
for both the RLRB and the linear isolator, with a more marked attenuation associated
with the RLRB due to the nonmonotonic viscoelastic damping behavior (see Fig.
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Fig. 3 (a, c, e) The seismic mass displacement η and (b, d, f) the spectrum of the seismic mass
acceleration η̈. Data refers to systems under optimal conditions (see Table 1) isolated by a linear
device (green curves) and an RLRB (red curves)

1b). Moreover, regardless of the specific seismic shock under consideration, the
shock attenuation is particularly remarkable in the low-frequency range, where the
largest differences are observed with respect to the linear isolator.

4 Conclusions

In this work, the isolation performance of an RLRB with viscoelastic nonlinear
damping and nonlinear stiffness is investigated.

We investigate the robustness of the isolation effectiveness of a complex isolator
composed of an RLRB coupled with a cubic spring under different seismic shocks,
by tuning the system parameters (in terms of damping and stiffness) via a global
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optimization procedure based on three different earthquakes. We performed the
same optimization also in the case of a linear isolator, to compare the results of
the nonlinear system in terms of isolation performance, with a simpler linear system
as a reference. According to our results, a better load isolation is achieved by means
of a nonlinear RLRB. In particular, our main result is that the system equipped with
the RLRB is able to provide significantly higher isolation for a wider range of input
spectra compared to the case where linear isolation is employed. Such a result may
be of interest for several applications (e.g., seismic, marine, wind engineering) in
which stochastic nonstationary excitation occurs. Indeed, in this case, the design of
the isolation system can only count on statistical data, and isolators with the broadest
effective frequency bandwidth are the preferred choice.
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Optimal Design and Seismic Performance
of a Nonlinear TMD with Pinched
Hysteresis

Dario De Domenico, Giuseppe Quaranta, Giuseppe Ricciardi,
and Walter Lacarbonara

1 Introduction

Tuned mass dampers (TMDs) can be an effective control strategy to mitigate wind-
and earthquake-induced vibrations of the structures. In the linear version, a TMD
consists of a secondary system (i.e., an oscillatory mass) connected to a main system
(i.e., the structure to be protected) by means of a linear elastic spring and a linear
dashpot. By properly calibrating the linear spring constant, it is possible to obtain
an anti-resonant behavior for the secondary mass, which thus absorbs the kinetic
energy transferred from the primary system (thereby justifying the alternative name
of “dynamic vibration absorber”). The absorbed energy is then partially dissipated
through the dashpot element.

The optimum design of the linear TMD has been thoroughly investigated in
the past decades by considering different criteria and dynamic loading conditions.
Deterministic, stochastic, and even hybrid fuzzy-stochastic design procedures have
been also developed [1]. More recent attempts to improve the performance of the
linear TMD have addressed the use of inerter-based amplification mechanisms [2].
On the other hand, nonlinear TMDs have been also studied in the past years. One
of the first study in this field employs an additional cubic spring, besides the linear
spring, to widen the operational bandwidth [3]. A TMD with Duffing-type (cubic)
stiffness [4] and an inelastic TMD with bilinear hysteretic restoring force without
viscous damper [5] have been investigated more recently.
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Within this framework, the present contribution is concerned with a TMD
featuring pinched hysteresis (TMD-PH) previously proposed by one of the co-
authors. Unlike other nonlinear TMDs proposed in the literature, this device is
characterized by a pinched hysteretic behavior offered by a combination of wire
ropes made of shape memory alloy (SMA) and steel wires under axial-flexural
loading [6]. The resulting behavior has been efficiently described by means of a
modified Bouc–Wen model, where the main change basically concerns with an
additional term tailored at simulating the contribution of the observed pinching
phenomenon [7]. Notably, the hysteretic behavior of the device can be adjusted by
modifying arrangement and proportion of SMA and steel wires [6]. This makes
the TMD-PH very versatile and motivates the optimization of its features. Previous
optimization strategies for such TMD-PH employed a deterministic definition of
the seismic ground motion [7, 8]. In order to account for the uncertainties inherent
in the seismic excitation, this contribution explores a stochastic-based optimum
design procedure, wherein the ground motion is modeled as a zero-mean filtered
non-stationary Gaussian random process. The nonlinear constitutive behavior of the
TMD-PH is accounted for via stochastic linearization, where the expressions of the
linearization coefficients are derived in the present study from the modified Bouc–
Wen model describing the pinched hysteresis of the device. Final numerical results
demonstrate the accuracy of the stochastic linearization and highlight the seismic
performance of the TMD-PH optimized for a multi-storey reinforced concrete frame
according to the proposed approach.

2 Constitutive Behavior of the TMD-PH

The TMD-PH under consideration is realized by an assembly of mixed NiTiNOL-
steel wire ropes undergoing combined tension-flexure cycles [6, 7]. Based on
previous experimental findings, a large variety of nonlinear constitutive behaviors
can be obtained through different wire ropes arrangements by modulating concur-
rent interwire friction, phase transformation in the shape memory material, and
geometric nonlinearities. The observed hysteretic behavior with pinching ranges
from quasi-linear softening to strongly pinched hardening, and was described by
means of a 6-parameter modified Bouc–Wen model [7]. In particular, without
geometric nonlinearities, the restoring force f of the TMD-PH is given by the sum
of a linear elastic force and a hysteretic contribution:

f = ku+ z, (1)

where u is the TMD displacement relative to the main structure (i.e., TMD stroke).
The evolution of the hysteretic force z is governed by the following first-order
differential equation:



Nonlinear TMD with Pinched Hysteresis 209

Fig. 1 Effect of pinching severity (left) and pinching localization (right) on the hysteretic force of
the TMD-PH (kd = 1 kN/mm, γ = β = 1 kN1−n/mm, n = 1)

ż =
[
kd

(
1− ξhe−u2/uh

)
− (γ + βsgn (u̇z)) |z|n

]
u̇, (2)

where the overdot denotes the derivative with respect to time, k + kd represents the
tangent stiffness at the origin, the exponential functionH = 1−ξhe−u2/uh describes
the pinching behavior in the neighborhood of the origin through the parameters ξh ∈
[0, 1) (pinching severity parameter) and uh > 0 (pinching localization parameter).
Finally, γ and β are two hysteretic parameters that rule the softening or hardening
behavior of the device (β + γ > 0 results in a softening restoring force), whereas
n governs the smoothness of the transition between the elastic and the post-elastic
phase. The influence of the pinching phenomenon on the hysteretic force exerted by
a small-scale device is illustrated in Fig. 1 for different ξh values (for fixed uh) and
for different uh values (for fixed ξh).

3 Stochastic Optimization of the TMD-PH

3.1 Equations of Motion

Let us consider a linear elastic structure with linear viscous damping whose dynam-
ics are reduced to that of a single-degree-of-freedom (SDOF) system representative
of its fundamental mode. The equations of motion of a linear elastic, viscously
damped SDOF system equipped with the TMD-PH under base acceleration ẍg are:

m1ü1 + k1u1 + c1u̇1 − k2u2 − z = −m1ẍg, (3a)
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m2ü2 +m2ü1 + k2u2 + z = −m2ẍg. (3b)

where k1, m1, and c1 denote stiffness, mass, and viscous damping coefficients of
the SDOF system, respectively. The natural period of the SDOF system will be
denoted by the term T1 = 2π/ω1, where ω1 = √

k1/m1 is the natural circular
frequency while ξ1 = c1/(2m1ω1) is its damping ratio. Herein, u1 represents the
structural displacement of the SDOF system. On the other hand,m2 and k2 are mass
and elastic stiffness of the TMD-PH, respectively; ω2 = √

k2/m2 will denote the
circular natural frequency of the TMD-PH associated with the stiffness k2, while u2
is the TMD stroke. Here and henceforth, the absorber mass is set according tom2 =
μm1, where μ is the mass ratio of the TMD-PH. The evolution of the hysteretic
force z is ruled by Eq. (2).

A stochastic approach is adopted to optimize the TMD-PH. In this context, the
base acceleration is represented by a zero-mean filtered non-stationary (uniformly
modulated) Gaussian random process whose evolutionary power spectral density
(PSD) function Sẍg(ω, t) is the following:

Sẍg(ω, t) = |ϕ(t)|2S̄ẍg(ω), (4a)

S̄ẍg(ω) =
ω4
k + 4ζ 2

k ω
2
kω

2

(
ω2
k − ω2

)2 + 4ζ 2
k ω

2
kω

2

ω4

(
ω2
p − ω2

)2 + 4ζ 2
pω

2
pω

2
S0, (4b)

where ϕ(t) is the modulating function whereas ωk , ξk , ωp, and ξp are determin-
istic parameters of the Kanai–Tajimi/Clough–Penzien (KTCP) filter. These filter
parameters can be chosen so as to represent different soil characteristics, thereby
allowing the simulation of various frequency contents in the seismic excitation.
Finally, S0 is the constant PSD value of the white noise W . Among the alternative
formulations available for the modulating function, without loss of generality, it is
assumed ϕ(t) = a1t e−a2t , with a1 = 0.45 s−1 and a2 = 1/6 s−1.

3.2 Stochastic Linearization

Linear random vibration theory is not applicable to Eq. (3) because of the nonlin-
ear constitutive behavior of the TMD-PH. Therefore, the stochastic linearization
technique (SLT) is employed to take into proper account the pinched hysteresis of
the device. Assuming n = 1 in agreement with available experimental data, the
nonlinear differential equation of the hysteretic force is first rewritten as follows:

g(u2, u̇2, z) = 0 → ż+ γ u̇2|z| + β|u̇2|z− kd2

(
1− ξhe−u2

2/uh
)
u̇2 = 0. (5)

The linearized expression corresponding to Eq. (5) is:
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ż+ ceq u̇2 + keq,zz+ keq,uu2 = 0, (6)

where ceq = E [∂g/∂u̇2], keq,z = E [∂g/∂z], and keq,u = E [∂g/∂u2] denote the
linearization coefficients (E[·] is the mean value operator).

Following the standard assumption of a multivariate Gaussian distribution for u2,
u̇2, z, the following expressions are obtained:

keq,u = −2kd2

uh
ξh

(
uh

uh + 2σ 2
u2

)3/2

σu2u̇2 , (7a)

keq,z =
√

2

π

(

γ
σu̇2z

σz
+ βσu̇2

)

, (7b)

ceq = −kd2

(

1− ξh
√

uh

uh + 2σ 2
u2

)

+
√

2

π

(

β
σu̇2z

σu̇2

+ γ σz
)

, (7c)

where σx denotes the standard deviation of the generic response x whereas σxy
represents the cross-covariance of the generic responses x and y.

Note that Eq. (7) is valid under the assumption n = 1. This assumption, however,
does not restrict the applicability of Eq. (7) since it is in good agreement with
available experimental results [6].

3.3 Optimum Design

A time-domain stochastic dynamic analysis is performed in order to determine the
covariance matrix of the system response upon which the linearization coefficients
in Eq. (7) depend. By introducing the state-space vector of the filter parameters yp =
{
xp ẋp xk ẋk

}�
, the time-domain representation of the KTCP filter in Eq. (4) takes

on the form:

ẍg = a�p yp, (8a)

ẏp = Dpyp + vpW, (8b)

with

ap =

⎧
⎪⎪⎨

⎪⎪⎩

−ω2
p

−2ξpωp
ω2
k

2ξkωk

⎫
⎪⎪⎬

⎪⎪⎭

, Dp =

⎡

⎢
⎢
⎣

0 1 0 0
−ω2

p −2ξpωp ω2
k 2ξkωk

0 0 0 1
0 0 −ω2

k −2ξkωk

⎤

⎥
⎥
⎦ , vp =

⎧
⎪⎪⎨

⎪⎪⎩

0
0
0
−ϕ

⎫
⎪⎪⎬

⎪⎪⎭

.

(9)
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If the state-space vector of the mechanical states ys =
{
u1 u2 z u̇1 u̇2

}�
is also

introduced, then Eq. (3) can be arranged after stochastic linearization as:

{
ẏs
ẏp

}

︸ ︷︷ ︸
ẏ

=
[

As Hp
04×5 Dp

]

︸ ︷︷ ︸
A

{
ys
yp

}

︸ ︷︷ ︸
y

+
{

05×1

vpW

}

︸ ︷︷ ︸
f

, (10)

with

As =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0
0 0 0 0 1
0 −keq,u −keq,z 0 −ceq

− k1

m1

k2

m1

1

m1
− c1

m1
0

k1

m1
−1+ μ

μ

k2

m1
−1+ μ

μ

1

m1

c1

m1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Hp =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

01×4

01×4

01×4

−a�p
01×4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (11)

The covariance matrix of the system response is thus the following:

R = E
[
yy�

]
=
[

Rysys Rysyp
Rypys Rypyp

]

, (12)

in which

Rysys = E
[
ysy�s

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

σ 2
u1
σu1u2 σu1z σu1u̇1 σu1u̇2

σ 2
u2
σu2z σu2u̇1 σu2u̇2

σ 2
z σzu̇1 σzu̇2

sym σ 2
u̇1
σu̇1u̇2

σ 2
u̇2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (13)

The covariance matrix of the system response R is determined by solving the
following Lyapunov equation:

AR+ RA� + B = Ṙ, (14)

where B is a 9 × 9 matrix whose (9, 9) element is equal to 2πS0ϕ
2 and all the

other entries are equal to 0. The solution of Eq. (14) provides the time-history of the
covariance matrix of the system response. It is worth noting that an inner predictor–
corrector cycle must be implemented at each time step of the analysis because the
coefficients of the stochastic linearization depend, in turn, on the covariance matrix
of the system response as per Eq. (7).

Finally, the optimal parameters of the TMD-PH are determined as the solution of
the following box-constrained single-objective optimization problem:
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min
d"≤d≤du

{F }. (15)

In general, the objective function F can be defined according to one of the following
formulations:

F =
∫ T

0
σ 2
u1

dt
︸ ︷︷ ︸

displacement− based

, F =
∫ T

0
σ 2
ü1,tot

dt
︸ ︷︷ ︸
acceleration− based

, F =
∫ T

0
σ 2
u̇1

dt
︸ ︷︷ ︸

energy− based

. (16)

It is highlighted that these three objective function formulations reflect alternative
design criteria, namely displacement-, acceleration-, and energy-based designs [9].
Additionally, d" and du are lower and upper bounds of the design vector d, with

d = {d1 . . . d6
}� = {k2 kd2 ξh uh γ β

}�
. These bounds are assumed according to

available experimental results [6, 7], whereas [0, T ] represents the time window of
the analysis (i.e., the seismic ground motion duration).

4 Numerical Results

The reliability of the stochastic-based optimum design of the TMD-PH depends on
the correctness of the linearization coefficients in Eq. (7). Hence, the accuracy of
the SLT is first estimated by comparison with Monte Carlo simulation (MCS).

The comparison between the results carried out analytically from the SLT and
those obtained from MCS (considering 1000 samples) is reported in Fig. 2. For the
sake of simplicity, a stationary, white Gaussian noise is considered as base exci-
tation. A wide range of intensity levels is explored, e.g., S0 = 10−3−102 m2/m3.
A SDOF system with T1 = 0.5 s, m1 = 1 kg and ξ1 = 0.05 is assumed. On the
other hand, a TMD-PH with μ = 0.05, ω2/ω1 = 0.9, ξh = 0.9, uh = 0.5 m2,
γ = β = 0.5 N1−n/m (given n = 1) is considered. The results plotted in Fig. 2
demonstrate a very good agreement between SLT and MCS for the entire range
of seismic intensity levels and different values of the kd2/k2 ratio. It is pointed
out that such wide range of values for S0 is intended to trigger different levels of
nonlinear behavior in the TMD-PH, even if S0 � 1 m2/m3 is unrealistically high
in earthquake engineering applications. The relative errors in the displacement and
velocity do not exceed 10% in all simulations. This confirms the correctness of the
linearization coefficients in Eq. (7).

Previous studies about the stochastic-based optimum design of a linear TMD
attached to a linear elastic SDOF system suggest that the energy-based design
leads to a satisfactory trade-off between the requirement of reducing displacement-
induced damage in structural components and the needs of mitigating the damage
in acceleration-sensitive equipment [9]. For the sake of conciseness, therefore, only
the energy-based formulation of the objective function is plotted in Fig. 3. Filter
parameters corresponding to firm soil condition are assumed [10], with S0 =
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Fig. 2 Normalized standard deviations of the dynamic response: comparison between SLT (lines)
and MCS (markers)

Fig. 3 Objective function for the energy-based design strategy, and identification of the global
optimum

0.03 m2/s3. The previous sets of data are adopted for, both, the SDOF system and
the TMD-PH, except for kd2 and ξh. It is pointed out that the shapes of displacement-
and acceleration-based objective function look like the one illustrated in Fig. 3, but
their global optima do not coincide.

The seismic effectiveness of the TMD-PH optimized according to the proposed
stochastic approach is finally assessed through time-history analyses. The case
study is a 20-storey, 5-bay reinforced concrete framed building, whose geometrical
and mechanical properties are described in [11]. The TMD-PH is installed on the
top floor, and its optimum parameters (for μ = 0.05) are calculated according
to the proposed stochastic approach. The energy-based criterion is employed and
the TMD-PH is designed to mitigate the seismic demand due to the fundamental
mode of the structure. Considering firm and soft soil conditions according to [10]
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Table 1 Optimum parameters of the TMD-PH for firm and soft soil conditions

Soil conditions k2[N/m] kd2[N/m] ξh[−] uh[m2] β[N1−n/m] γ [N1−n/m]

Firm soil 3.73 · 104 5.43 · 106 0.914 0.800 1.25 1.25

Soft soil 2.79 · 105 1.50 · 106 0.812 0.529 1.25 1.25

−30.9%

−24.5%

−13.3%

−43.5%

−44.2%

−40.0%

Fig. 4 Seismic performance of the TMD-PH for firm and soft soil conditions

and assuming a peak ground acceleration ẍg,max = 0.3 g (where g is the gravity
acceleration), the optimum design parameters listed in Table 1 are obtained.

Figure 4 highlights the seismic performance of the TMD-PH in terms of floor
displacements relative to the ground ufloor, inter-storey drift ratios IDRfloor, and
floor accelerations üfloor, considering the average of the peak values carried out
from time-history analyses based on 400 synthetic seismic ground motion records
generated according to the specific soil conditions. The results in Fig. 4 demonstrate
that the TMD-PH leads to a drastic reduction of the seismic demand in the reinforced
concrete structure. This reduction is more evident for the soft soil condition because
the frequency content of the corresponding seismic excitation is close to the natural
period of the first mode of the building, whose period is T1 = 1.296 s.
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5 Conclusions

The stochastic-based optimum design of a tuned mass damper with pinched hys-
teresis (TMD-PH) for linear elastic, damped structures has been here addressed. The
seismic excitation has been modeled as a non-stationary zero-mean filtered Gaussian
random process, and the TMD-PH has been designed by solving a box-constrained
single-objective optimization problem. The stochastic dynamic analysis has been
performed by resorting to the stochastic linearization technique. The correctness
of the stochastic linearization as applied to the peculiar pinched hysteresis of the
device under consideration has been first demonstrated through a comparison with
Monte Carlo simulations. A 20-story, 5-bay reinforced concrete framed building
with the TMD-PH optimized according to the proposed stochastic procedure has
been investigated. The obtained results for this case study demonstrated that the
TMD-PH is effective in reducing floor displacements relative to the ground, inter-
storey drift ratios, and floor accelerations under earthquakes.

This preliminary study will be extended in future studies. The main novelty
will deal with the gradient-based solution of the design optimization problem, for
which an analytical approach based on the explicit evaluation of the gradient will be
implemented. More extensive parametric studies and larger numerical investigations
will be further carried out.
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Vibration Control of a Cantilever Beam
Coupled to a Non-ideal Power Source by
Coil Impedance Matching

E. A. Petrocino, J. M. Balthazar, A. M. Tusset, P. J. Gonçalves, M. Silveira,
W. M. Kuhnert, G. Kudra, and J. Awrejcewicz

1 Introduction

Ideal dynamic systems are those whose excitation is known and not influenced
by the dynamics of the structure, that is, it is simply a function of time, whereas
a non-ideal system is based on the interaction of the structure with the energy
source of limited power supply, thus, the excitation depends not only on time,
but also on coupling and behavior of the structure. One of these behaviors was
investigated experimentally by Sommerfeld in 1902, where a motor coupled to a
flexible structure had its energy converted into vibration of the structure instead
of increasing the speed of rotation, keeping the rotation constant even with the
energy increase, until the moment of the “jump” when it exceeds the resonance
regime. Kononenko in 1969 [1] studied several engine situations as a non-ideal
energy source, showing that the load on the rotor shaft depends on the oscillation
of the structure and that in soft variations the forced oscillation curve is obtained
as a function of the angular velocity, which together with the torque response as a
function of the angular speed, the jumps are predicted with the increase and decrease
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Fig. 1 Schematic representation of the system with clamped-free beam, DC motor, permanent
magnet, and fixed coil (a); representative model of the system (b)

of the angular speed. A complete review of different aspects of non-ideal problems
may be found in [2–7] without prejudice of others. The objective of this work
is to perform numerical simulations, analytical and experimental modeling of the
magnetic interaction [8, 9] in a non-ideal oscillatory system.

2 Mathematical Model

Figure 1a presents a schematic representation of the system, with an elastic beam
with clamped-free boundary conditions, a DC motor with an unbalanced mass
attached to the upper part of the free end of the beam, a permanent magnet attached
to the lower side of the free end of the beam, and a coil fixed at the base. Figure 1b
presents the simplified physical model of this system with a mass-spring-damper
with unbalanced mass coupled to a RL circuit. In this model M is the equivalent
mass of the beam, DC motor, and magnet, m is the unbalanced mass, k is the
bending stiffness of the beam, c is the structural damping, L is the coil inductance,
R is the external resistance, Rc is the coil resistance, x is the vertical displacement
of the free end, ϕ is the angular displacement of the unbalanced mass, and e is
the electrical voltage. If the electric circuit is open, the mechanical and electrical
subsystems are decoupled. If the electric circuit is closed, the moving magnet inside
the coil results in an electromotive force acting on the beam, and electrical current
on the circuit, as energy from the mechanical vibrations is converted into electrical
energy. The magnet-coil interaction acts as a vibration damper and can be used to
mitigate resonance capture.
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2.1 Governing Equations of Motion

The kinetic energy of the system is given by:

T = 1

2
(M +m)ẋ2 + 1

2
(J0 +mr2)φ2 −mrẋφ̇ sinφ + 1

2
Liq̇

2 (1)

in which r is the distance from unbalanced mass to the shaft center and J0 is the
motor shaft moment of inertia. The potential energy is given by:

V = 1

2
kx2 + 1

2
βq̇x (2)

in which β = Bl is the product of magnetic induction module and coil length.
Applying Eqs. (1) and (2) to the Lagrange equations and considering the motive and
damping forces, the equations of motion of the system are written as:

(M +m)ẍ + cẋ + kx − βq̇ = mr(ϕ̈ sinϕ + ϕ̇2 cosϕ)

(J0 +mr2)ϕ̈ = ẍmr sinϕ +M(ϕ̇)

Li q̈ + Rq̇ + βẋ = V (3)

The term ẍmr sinϕ represents the action of the oscillating system on the source
of the energy and the term M(ϕ̇) defines the torque curve of a motor with limited
power, given by M(ϕ̇) = L(ϕ̇) − H(ϕ̇). The terms L(ϕ̇) and H(ϕ̇) respectively
represent the driving torque and the resistive torque of the motor.

3 Analytical Modelling

Rewriting Eq. (3) in terms of the small parameter ε, one gets:

ẍ + ω2x = ε(q2ϕ̈ sinϕ + q2ϕ̇
2 cosϕ − hẋ + q4gẋ)

ϕ̈ = ε(q3ẍ sinϕ +M)

Q̈ = ε(q7 − q5gẋ − q6ẋ) (4)

in which ω2 = k
m+M ; εq2 = mr

m+M ; εq3 = mr
J

; εh = c
m+M ; εq4 = β

m+M ; εq5 = R
Li

;

εq6 = β
Li

; εq7 = V
Li

; εM = M(ϕ̇)
J

; Q̇ = − β
R
ẋ; g = − β

R
.

To obtain the approximate solutions of Eq. (4), the method of averaging is used
adopting x = A cos (ϕ +Σ); ẋ = −Aω sin (ϕ +Σ); Q̇ = −gAω sin (ϕ +Σ);
ϕ̇ = θ .
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Following Kononenko’s proposal, the new variables A, Σ , and θ , respectively,
the amplitude of the oscillations, the angular phase shift of the reference x, and
the frequency of the exciting force, should vary slowly over time. Differentiating
x; ẋ and substituting in Eq. (4), a system of four equations in the standard form is
obtained as:

dA

dt
= − ε

ω

[
(hAω + εgωq4A) sin (ϕ +Σ)+ q2 cos (ϕ)θ2

]
sin (ϕ +Σ)

dΣ

dt
= ε

{

α0 − 1

Aω

[
(εhAω + εgωq4A) sin (ϕ +Σ)+ q2 cos (ϕ)θ2

]
cos (ϕ +Σ)

}

dΘ

dt
= ε [M(θ)− q3θAω cos (ϕ +Σ) sin (ϕ)]

dQ̇

dt
= ε [q7 + q5gAω sin (ϕ +Σ)+ q6Aω sin (ϕ +Σ)] (5)

in which α0 = ω − θ . Using the Bogolyubov’s perturbation method to calculate
the approximate solution of Eq. (5), the following form can be used: θ = Ω +
εU1(t,Ω, a, ξ); A = A+ εU2(t,Ω, a, ξ); Σ = ξ + εU3(t,Ω, a, ξ).

Realizing the method of averaging in Eq. (5) in the format fi(A,Θ, ξ) =
1

2π

∫ 2π
0 εfi(A,Θ, ξ)dt results in:

dΩ

dt
= ε

(

M(Ω)+ 1

2
q3ωaΩ sin (ξ)

)

da

dt
= −ε

2

(

ha + agq4 + q2Ω
2 sin (ξ)

ω

)

dξ

dt
= ε

(

α − Ω
2q2 cos (ξ)

2aω

)

dQ̇

dt
= εq7 (6)

Integrating Eq. (6) the results of which are shown in Figs. 2 and 3 with initial
values a0 = 0 mm andΩ0 = 174 rad/s for (a) increasing frequency, and with initial
values a0 = 0 mm and Ω0 = 180 rad/s for (b) decreasing frequency. It is observed
that in the interval close to 0.1 s in which the amplitude increases rapidly, the angular
velocity has smaller variations for the system without electromagnetic interaction,
being reduced as the counter-electromotive force increases.

For stationary states of motions, i.e.,
dΩ

dt
= 0,

da

dt
= 0,

dξ

dt
= 0, the following

expressions are obtained:

M(Ω)

J
+ 1

2

mr

J
ωaΩ sin (ξ) = 0

c

m0
a + ag β

m0
+

mr
m0
Ω2 sin (ξ)

ω
= 0
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Fig. 2 Amplitude of the oscillations with transitions across a resonance for different resistor
values with (a) increasing frequency and (b) decreasing frequency

Fig. 3 Frequency of the oscillations with transitions across a resonance for different resistor values
with (a) increasing frequency and (b) decreasing frequency

ω −Ω − Ω
2mr
m0

cos (ξ)

2aω
= 0 (7)

Thus, the expressions for the amplitude and phase of the oscillation are obtained:

a = Ω2mr

ω

√

4m2
0(ω −Ω)2 + (βg + c)2

tan (ξ) = βg − c
2m0(Ω − ω)

S(φ̇) = H(φ̇)+ ω3m2r2(βg + c)
8m2

0(Ω − ω)2 + 2(βg + c)2 (8)
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Fig. 4 (a) Frequency response curve and (b) Stationary conditions in the resonance region with
resistance variations in the magnetic circuit

Figure 4a shows the amplitude of the oscillation in stationary condition S(φ̇),
whose shape resembles an ideal energy source together with the motor drive torque
L1(φ̇) and L2(φ̇), demonstrating the resonance capture jump. Figure 4b shows the
changes in S(φ̇) varying the resistance of the electromagnetic circuit.

4 Numerical Simulations

For the implementation of numerical simulation, the dynamical equations (Eq. (3))
were rewritten in state space form. Assuming x, ϕ, and q as state variables, the state
equations are obtaining using:

ẍ = L(mr
2 + J0)(−cẋ − kx +m cos (ϕ)ϕ2r + βq̇

L(m+M)(mr2 + J0)− Lm2 sin (ϕ)2r2

+ LmM(ϕ̇) sin (ϕ)r

L(m+M)(mr2 + J0)− Lm2 sin (ϕ)2r2

ϕ̈ = Lm sin (ϕ)r(−cẋ − kx +m cos (ϕ)ϕ2r + βq̇)
L(m+M)(mr2 + J0)− Lm2 sin (ϕ)2r2

+ L(m+M)M(ϕ̇)
L(m+M)(mr2 + J0)− Lm2 sin (ϕ)2r2

q̈ =
(
(m+M)(mr2 + J0)−m2 sin (ϕ)2r2

)
(−βẋ − Rq̇ + V )

L(m+M)(mr2 + J0)− Lm2 sin (ϕ)2r2
(9)

The values of parameters are: M = 0.1465 kg, m = 0.0048 kg, r = 0.003 m,
k = 4.57 kN/m, c = 0.01 Ns/m, J0 = 1e − 7 Nm2, Rc = 3300 Ω , L = 10.8 H.
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Fig. 5 Time history of (a) acceleration, (b) tip displacement of the beam, (c) angular velocity of
the motor shaft, and (d) the current of the magnet circuit of the coil with increasing frequency

These values were determined based on the experimental setup, which is shown in
the next section.

Simulations were performed to increase and decrease the voltage supplied to the
motor so that the increase in the rotation of the shaft was linearly proportional, thus,
the terms of coupling and energy limitation influence the rotation, characterizing
a non-ideal system. Figure 5 shows the amplitude of (a) acceleration and (b)
displacement of the tip, (c) angular velocity of the motor, and (d) electrical current
for increasing voltage and the four different values of resistance. With open circuit
(R = ∞), there is no electric current circulating through the coil, consequently there
is no electromagnetic force acting on the beam. The term βẋ is not relevant, and
terms βq̇ and Rq̇ are null. With closed circuit, the amplitude of displacement and
acceleration decreases with decreasing equivalent resistance in the electric circuit.
Conversely, the current in the electrical circuit increases with decreasing resistance.
The situation with short circuit (R = 0) results in very small resonance capture, and
the Sommerfeld effect cannot be noticed on the motor velocity response, as there
is no sudden jump. Figure 6 shows the simulation results for decreasing voltage.
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Fig. 6 Time history of (a) acceleration and (b) displacement of the beam, (c) angular velocity of
the motor shaft, and (d) current in the magnet circuit with decreasing frequency

The Sommerfeld effect is seen near the natural frequency of the system at ω =
175.93 rad/s, characterized by the rapid increase in acceleration and displacement.

5 Experimental Results

Figure 7 shows the experimental setup. A stainless steel beam is used with clamped-
free boundary conditions. A DC motor with an unbalanced rotating mass is attached
to the upper side of the free end of the beam, and a cylindrical neodymium magnet
is attached to the lower side. A copper coil is fixed at the base. An accelerometer
is placed on the motor, and an optical switch is used to measure the rotational
speed of the unbalanced mass. Three voltage meters are used: one to measure the
electric power supplied to the DC motor, another on an auxiliary resistor for current
measurement of the DC motor, and a third to measure the voltage induced in the
coil when it is open.
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Fig. 7 The setup (a) beam free side, (b) top view, and (c) complete setup

Fig. 8 Time history of (a) acceleration at the beam’s tip, (b) angular velocity of the motor shaft
and (c) DC motor current with electrical circuit resistance variation and increasing frequency

In order to study the behavior of the system, the experimental response is shown
with varying motor voltage and current. A PWM controller is used in the range
from 0 to 2.5 V, duty cycle from 18% to 60%, with 100%= 5V, step 0.8%, duration
of 5 s each. Data acquisition was performed by a National Instruments USB-
4431, with four simultaneous inputs. Data was acquired and recorded with National
Instruments LabView, with sampling rate of 5 kHz, 1,325,000 total samples, and
total time of 265 s.

The measurements made with the variations of the resistances in the magnetic
circuit had an impact on the Sommerfeld effect. The coil current with the closed
magnetic circuit was influenced by the measurement, so they were discarded.
The displacement has the same characteristics as the acceleration measurements.
Figure 8a shows the results with increasing voltage. It is observed that the amplitude
of the acceleration is reduced with the reduction of the total resistance of the circuit.
The jump occurred around 176 rad/s is advanced in time with the reduction of the
impedance in the magnetic circuit observed in Fig. 8b, c. A similar procedure is
performed to decrease the electrical voltage, with results shown in Fig. 9.
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Fig. 9 Time history of (a) acceleration at the beam’s tip, (b) angular velocity of the motor shaft
and (c) DC motor current with electrical circuit resistance variation and decreasing frequency

6 Conclusions

The analytical and numerical results regarding the oscillatory behavior are similar
to the experimental data. Some discrepancies occurred due to the way the voltage
is increased and decreased using the PWM controller, and also by the non-linearity
of the magnetic interaction between the elements, which was neglected. The effect
of the magnetic field created by the oscillation does not affect the system in open
circuit configuration. Therefore, the cantilever beam is limited only to its own
structural parameters. However, when closing the magnetic circuit, the generated
electromotive force produces a magnetic field proportional to the induced current.
The magnetic field induced in the coil, when interacting with the permanent magnet,
increases its damping in proportion to the oscillation speed. The various external
resistances applied to the electrical circuit provide control over the acceleration
and displacement amplitudes, maintaining the beam with its natural flexibility in
situations far from the resonance frequency.
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Variable Length Sling Load Hoisting
Control Method

Austin Morock, Andrea Arena, Mary Lanzerotti, Thomas Aldhizer,
Jacob Capps, and Walter Lacarbonara

1 Introduction

Understanding the behavior of the pendulum has captivated study for centuries [1–
3]. When the bob of a pendulum is displaced above the lowest point of the stable
equilibrium position and released from rest, the bob will typically swing indefinitely
in the absence of external dissipative forces. The bob placed at the upper equilibrium
point is unstable, and methods have been developed to induce stabilization of this
case (“inverted pendulum”) [4, 5] and related physical situations [6]. A bob attached
to a shortening cable [7–10], driven pendulum [11, 12], and RLC circuits can exhibit
unstable behavior. Stability in the pendulum is shown in this work to be induced
making use of a parametric effect that has an analogy in other physical systems
including parametric feedback cooling of atoms in optical cavities [13].

The aim of this work is to present a strategy to stabilize a low-mass sling
load or hoist employing a variable length hoisting control method [14] and a
hoisting control strategy that takes advantage of damping during the lengthening of a
pendulum [15, 16] at the middle of the swing and of less harmful negative damping
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effects during the shortening phase near the maximum swing angles. Indeed, the
cable is shortened when the swing angle nears its maximum value and the slowing
pendulum has sufficiently low kinetic energy [17]. Lengthening the cable in the
middle of the swing and shortening the cable at the end were shown with MATLAB
simulations to decrease swing angle and cable length [17]. If a helicopter crew
member does not observe the swinging payload, the cable could strike the helicopter,
resulting in essentially a pulse input into the controls, likely resulting in a crash
if the pilot cannot recover properly. In severe oscillation conditions, the hoist’s
contact with the frame could create a serrated edge, resulting in the sling being cut.
Hoisting a rescued individual on a 6 m to 32 m cable in 90 s may be taken as a worst
case scenario, implying a need for fast and precise control, as required in several
rescue missions [18, 19]. Several models were proposed for the control problem
of containers and slung loads [20–23]. Prior work presented control strategies to
stabilize sling loads and hoists based on active and semi-active vibration control
devices [24–26].

2 Mechanical Model

Figure 1 shows a photograph of a medical evacuation on the Matterhorn and
schematic of a fixed Cartesian frame (O, e1, e2) with e1 and e2 collinear with the
horizontal and the vertical directions, respectively. The position of the payload with
respect to its suspension point is given, at time t , by the position vector r(t) =
l(t) sin θ(t)e1 − l(t) cos θ(t)e2, where l(t) is the time-varying length of the cable,
and θ(t) indicates the rotation of the hoisting sling. Finally, the payload weight
is w = −M g e2, where M represents the payload mass. The equation of motion
of the one-degree-of-freedom (1 dof) mechanical system is obtained employing the
Euler–Lagrange approach [27]. The potential energy V = −Mgl(t) cos θ(t) and

kinetic energy T = 1
2M

{
[l̇(t)]2 + [l(t)θ̇ (t)]2

}
are substituted into the Lagrangian

L = T −V = 1
2M

{
[l̇(t)]2+[l(t)θ̇ (t)]2

}
+mgl(t) cos θ(t), from which the equation

of motion is obtained [27]. The proposed mechanical model incorporates a real-
time control system in which the cable length is alternatively constant or varied
in time with a constant velocity proportional to the reference value v through the
nondimensional gain αL,S(t), accordingly to a given control law. The system of
equations including the pendulum nonlinear equation of motion and the time-rate
of change of the cable length can be written as

θ̈ (t)+
[
2ζω(t)+ 2 l̇(t)

l(t)

]
θ̇ (t)+ g

l(t)
sin θ(t) = 0,

l̇(t) = α(t) v,
(1)

together with the initial conditions θ(0) = θ0, θ̇ (0) = θ̇0, l(0) = l0, where
ω(t) = √

g/l(t) is the time-varying frequency of the pendulum; and θ0,
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Fig. 1 (a) Photograph from a video of a medical evacuation rescue (MEDEVAC) with permission
from Joseph Vanderlip, January 24, 2021. (b) Schematic representation of the hoisted payload and
adopted fixed frame with variable cable length l(t)

θ̇0, and l0 are the initial angle, initial angular speed, and initial cable length,
respectively. Moreover, α(t) is the nondimensional gain assuming the values α(t) =
(αL, 0,−αS), respectively, during the time integration. Subscripts (L,S) indicate
values prescribed during lengthening and shortening phases, respectively.

3 Variable Length Hoisting Control Strategy

In the hoist case, the cable length is varying in time, which produces a time-
varying oscillation frequency. The aim of the control strategy is to shorten the
cable length and reduce the oscillation amplitude so that the maximum allowed
value θref attained at the end of the hoisting phase is not exceeded. For a medical
evacuation (MEDEVAC) rescue to hoist the payload into the helicopter, θref = 5
deg [19]. The goal is to obtain a minimum of the objective function F tar defined by
F tar = |θ tar

max − θref| according to an algorithm that provides new generations of
parameters vectors [εθ , εθ̇ , αL, αS]. Here, εθ is the tolerance on the angle θ(t) that
determines the switching from the free swinging phase to the lengthening phase, and
vice versa. Also, εθ̇ is the tolerance on the angular speed that decides the switching
from the free swinging phase to the shortening phase, and vice versa. The objective
function is evaluated for the parameters vector using a global optimization search.
If F tri < F tar, the trial vector survives; otherwise, the target vector is selected for
creating the new generation of parameters vectors which perform best in terms of
control. This work adopts so-called Differential Evolution (DE) algorithm [28].
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Fig. 2 Schematic
representation of the
shortening (S), lengthening
(L), and free swinging (F )
phases

The set of n parameter vectors is generated from uniform probability distribu-
tions to ensure that the parameters span the space equally and respect the constraints.
Time integration of the controlled system reproducing the entire retrieving maneu-
ver is then performed for each set of vectors, and the maximum oscillation angle
(that is, θmax) is calculated for each simulation. The DE algorithm then perturbs a
randomly selected vector chosen from among n − 1 vectors of the first generation
and provides a new mutated parameters vector (that is, a trial vector); θ tri

max is
then calculated for the generated trial parameters vector, and the objective function
F tri = |θ tri

max − θref| is compared with the objective function instance of the previous
generation.

The following control laws are assigned for t > tmin (see Fig. 2):

1. For θ = εθ and θ̇ < −εθ̇ then α = αL,
2. For θ = −εθ and θ̇ < −εθ̇ then α = 0,
3. For θ < −εθ and θ̇ = −εθ̇ then α = −αS,
4. For θ < −εθ and θ̇ = εθ̇ then α = 0,
5. For θ = −εθ and θ̇ > εθ̇ then α = αL,
6. For θ = εθ and θ̇ > εθ̇ then α = 0,
7. For θ > εθ and θ̇ = εθ̇ then α = −αS,
8. For θ > εθ and θ̇ = −εθ̇ then α = 0,

where tmin is the control starting time, and parameters αL and αS take on values
lower than or equal to 1. The constraint prescribed on the cable length at all times
t in the simulations is lmin ≤ l(t) ≤ lmax. The values of the mechanical parameters
were adopted for a cable initially released from rest (θ̇0 = 0) at the maximum
angle θ0 = 15 deg at which a medical evacuation is initiated [14]: g = 9.807 m/s2,
ζ = 0 (the case of no viscous damping), the maximum reeling speed in hoist rescues
v = 0.5 m/s [14] with typical length l0 = 32 m [14], and lmax = l0. The final length
is set to lmin = 1.8 m [14], and tmin = 10 s.

Without the control law, if no viscous damping is considered, the oscillations are
stable only when the cable length is constant or when the cable is monotonically
lengthening in time (l̇(t) ≥ 0); otherwise, for l̇(t) < 0, the oscillations become
unstable. In both cases, the time integration of the linearized equation of motion
can be calculated in closed form expression through the combination of the Bessel
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Fig. 3 (a) Unstable oscillations corresponding to the case in which the cable length is (b)
monotonically shortening when a payload is released from rest with θ̇0 = 0, where the reeling
speed takes on the maximum value v = 0.5 m/s for a medical evacuation with l0 = 32 m [14] and
initial swing angle θ0 = 15 deg [14]

functions of the first kind J1(2
√
g t/v) and of the second kind Y1(2

√
g t/v) (for the

lengthening case) and the combination of the modified Bessel functions of the first
kind I1(2

√
g t/v) and of the second kind K1(2

√
g t/v) (for the shortening case),

where v > 0. The unstable behavior is shown in Fig. 3 for the case of a cable that is
shortening with a constant speed, such that l̇(t) = −v for t > tmin.

3.1 Four-Parameter Optimization

The four control parameters (εθ , εθ̇ , αL, αS) are optimized via the DE algorithm.
The effectiveness of the control is a tradeoff between different choices of these
parameters/gains which also affect importantly the speed of the hoisting phase.
Figure 4 displays the minimum value Fmin of the objective function at every
generation of the n four-dimensional parameters vectors and demonstrates that
fewer than 50 generations are sufficient to determine a minimum. The optimal
set of parameters corresponding to the last computed generation were found to
be [εθ , εθ̇ , αL, αS] = [2.8 deg, 4.47 deg/s, 0.29, 0.93] with the angle 12.6 deg
corresponding to εθ̇ , and the angular speed 8.13 deg/s corresponding to εθ .

Figure 5a–d show the time histories of the swing angle θ and cable length l,
respectively, in the case of controlled oscillations with the optimal parameters.
Figure 5b shows the earliest 25 s of the time response as functions of θ and θ̇
(black and gray lines, respectively) by highlighting the switching conditions when
the black curve θ reaches the tolerance εθ and when the gray curve θ̇ reaches the
tolerance εθ̇ . Figure 5d shows the corresponding earliest 25 s of the time history of
the cable length l. Dots in Figs. 2 and 5 indicate the onset of the shortening phase
S (thresholds 1 and 5, blue), lengthening phase L (3 and 7, red), and free swinging
phase F (2, 4, 6, 8, green) of the control law.

The computed ratio, at time t , between the frequency ωc of the controlled length
l(t) assumed as the frequency at which the switching conditions 1 or 5 (blue
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Fig. 4 Four-parameter optimization showing the minimum value of the objective function at each
generation

Fig. 5 Controlled θ (black line) and θ̇ (orange line) in (a) 400 s and (b) 25 s. In (b), the dashed
black and orange lines indicate tolerances εθ and εθ̇ , respectively. Time history of the cable length
in (c) 400 s and (d) 25 s

dots), or 3 or 7 (red dots), repeat, and the oscillation frequency ω(t) = √
g/l(t)

is equal to two. The time-varying length produces a parametric behavior of the
oscillations as a result of parametric coupling between the length and swing angle.
Figure 6 shows the payload position relative to the helicopter, where r1 and r2 are
the component of the position vector r(t) along e1 and e2 directions, respectively.
To show the robustness of the control method toward uncertainties related to the
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Fig. 6 (a) Payload position relative to the helicopter for the full length of the hoist for the
proposed variable length control strategy. (b) Trajectory of the hoist cable from 3.5 m to 1.8 m.
Blue circles indicate selected positions of the payload. Dashed lines indicate the corresponding
cable configurations at selected time instants

Fig. 7 (a) Residual oscillation amplitude θmax of the controlled system varying the initial
conditions θ0 and θ̇0. (b) Time tr to achieve θmax varying the initial conditions θ0 and θ̇0. The
red (black) line indicates initial conditions in which the initial angle is changed (fixed to 15 deg)
while the speed is constant and set to zero (changed)

initial conditions, the latter were varied in a feasible range of values. The maximum
controlled oscillation amplitude θmax was computed together with the time tr at
which θmax is obtained. Figure 7a, b show the sensitivity to initial conditions in
terms of the swing angle θmax and time tr to achieve the control. The results in this
figure show that for the case in which θ0 and θ̇0 take on values that are greater
than those for which the optimal parameters are calculated (that is, θ0 = 15 deg
and θ̇0 = 0), a loss of control efficiency occurs because both θmax and tr increase,
thereby producing larger residual oscillations and longer times to hoist the payload.
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Fig. 8 Set of tolerances in angle and angular speed, εθ and εθ̇ , respectively, for stable control (blue
points) and loss of control (red points)

Fig. 9 (a) Residual oscillation amplitude θmax of the controlled oscillation varying tolerances εθ
and εθ̇ . (b) Time tr to achieve θmax varying tolerances εθ and εθ̇

3.2 Two-Parameter Optimization and Sensitivity

This section discusses the case in which the control parameters α are fixed, and the
different tolerances εθ and εθ̇ are optimized via DE. In particular, it is assumed that
the values of αL = 0.2 and αS = 1 are close to the optimal values calculated in
the previous section. The optimal parameters turn out to be εoptθ = 2.91 deg, and
ε
opt

θ̇
= 3.26 deg/s, respectively. Sensitivity analyses on εθ and εθ̇ are carried out by

varying the tolerances in the range [0.8, 1.2] times the optimal values (that is, a 20%
detuning from the optimal values). In Fig. 8, blue points indicate the set of tolerances
εθ and εθ̇ for which a stable solution is attained, and red points indicate the case in
which the length of the cable shortens back to the initial length l0. Figure 9a, b show
the sensitivity to the tolerances in terms of the residual swing angle and time tr at
which the target residual controlled oscillation amplitude is obtained, respectively.
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4 Conclusions

The proposed variable length control method is shown to be another effective and
feasible approach [18] for reducing payload oscillations encountered during typical
helicopter maneuvers. Further testing and modeling will be carried out to include
time-varying cable length, scenarios for MEDEVAC rescues and 3D model of the
controller, winch and hoist, and small-scale testing of the control feedback in a drone
or advanced computer model. Future work will estimate downwash, or the velocity
of air deflected downward by helicopter rotor blades.
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Dynamic Actuation Model for Vibration
Reduction in Offshore Cranes

Althea Rustico, Nicholas Fantuzzi, Massimiliano Formenti,
and Antonio J. M. Ferreira

1 Introduction

Despite the high level of competence of skilled tower crane operators, it is hardly
possible to completely remove payload oscillations in all possible circumstances
[1]. External disturbances such as wind can easily initiate an oscillation. After a
while, the oscillations can become larger, until the point is reached where the crane
operations have to be stopped and the oscillation has to die out, which can take
a very long time [2]. Even without these disturbances, due to the complex effects
of the crane movements on the payload, oscillations are still hard to suppress [3].
Therefore, researchers have tried to find different ways to control the movement of
the crane in order to prevent or reduce this payload swinging, with varying levels of
success [4]. Tower cranes are one of the intricate pieces of machinery constructed
and they exhibit complex dynamic behaviors [5]. Their design has to take into
account diverse and various environmental conditions, such as on land or at sea,
or in adverse weather conditions. Crane systems have been studied theoretically,
along with its optimized control factors and non-linear dynamics behavior [6].
Most of the research to date has limited itself to several assumptions regarding the
crane, such as it has a rigid structure or boom, and a simple beam [7]. Another
interesting study was done about the dynamical behavior on the mobile elevating
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work platform (MEWP). The study was inspired by an accident happened during
a pruning operation. A big branch of three fell down and bumped the basket of
MEWP. The consequent dynamical actions have made the operator jump out of the
basket of MEWP [8]. Other works on the dynamics of big gantry crane subjected to
different trolley motions [9] and cranes subjected to impulse loadings [10] have been
recently presented. The present work focuses on the anti-sway reduction of hanging
payloads. The oscillation reduction is led by the trolley motion which is able to
reduce oscillations of hook and payload system (double-pendulum configuration)
[11]. Several techniques have been presented in the past years [12]. However,
in this work PID (proportional, integral, derivative) controllers are adopted. Such
controllers are able to tailor an acting force according to three parameters which are
proportional, integral, and derivative forms of a pre-defined error.

This work presents the mathematical development of a 2D and a 3D double-
pendulum crane system with PID control. The crane system is displaced from
its initial configuration, and it is left in free vibrations. Comparison between
uncontrolled and PID controlled configurations is shown in terms of displacements.
The actuation is performed by the introduction of a trolley which is able to reduce
sway payload motion with its motion.

2 The 2D Double-Pendulum Model

Figure 1a illustrates the schematic representation of a 2D double-pendulum-type
crane in the Cartesian space that is driven by the force F which moves along the
x axis. Such crane system consists in a trolley, hook, and payload. The trolley
position with respect to the origin is described by x. The double-pendulum motion
is described by two angles, the hook angle with respect to the vertical line θ1 and the

Fig. 1 (a) Schematic of two-dimensional double-pendulum-type overhead. (b) Schematic of
three-dimensional double-pendulum-type overhead cranes
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payload angle with respect to the vertical line θ2. Other symbols in Fig. 1a are the
trolley mass M , the hook mass m1, the payload mass m2, the cable length between
the trolley and the hook l1, and the cable length between the hook and the payload
l2.

Consider some mild and ideal assumptions such as no friction, mass-less cables,
mass-point hook, and mass-point payload. Since the crane system in Fig. 1a contains
three degrees of freedom, three generalized variables are needed to describe its
dynamics. In Cartesian space, the trolley position xt , the hook angle θ1, and the
payload angle θ2 are adopted to describe the three degrees of freedom. Thus, the
following Lagrangian equation can be obtained as

d

dt

(
∂L
∂q̇j

)

− ∂L
∂qj

= Fj (1)

where j = 1, 2, 3; qj is the generalized coordinate, meaning x, θ1, and θ2; Fj is the
external force; L = K − U indicates the Lagrangian of the crane system, where K
is the kinetic energy, and U denotes the potential energy. From the aforementioned
assumptions, the hook and payload are considered as point masses so that the kinetic
energy K can be written as

K = 1

2
Mẋ2 + 1

2
m1

(
v2

1x + v2
1y

)
+ 1

2
m2

(
v2

2x + v2
2y

)
(2)

where v1x , v1y and v2x , v2y are the hook and payload velocity components in the x
and y directions, respectively.

In Fig. 1a, the potential energy of the trolley is kept unchanged. Due to the fact,
the potential energy of the crane system is exhibited by the potential energies of the
hook and payload determined as

U = m1gl1(1− cos θ1 +m2g[l1(1− cos θ1 + l2(1− cos θ2)] (3)

where g denotes the gravity acceleration.
After several differentiation operations, the dynamic model of the crane system

can be written as

(M +m1 +m2)ẍ + (m1 +m2)l1θ̈1 cos θ1

−(m1 +m2)l1θ̇
2
1 sin θ1 +m2l2θ̈2 cos θ2 −m2l2θ̇

2
2 sin θ2 = F

(m1 +m2)l1ẍ cos θ1 + (m1 +m2)l
2
1 θ̈1 +m2l1l2θ̈2 cos (θ1 − θ2)

+m2l1l2θ̇
2
2 sin (θ1 − θ2)+ (m1 +m2)gl1 sin θ1 = 0

m2l2ẍ cos θ2 +m2l
2
2 θ̈2 +m2l1l2θ̈1cos(θ1 − θ2)

−m2l1l2θ̇
2
1 sin (θ1 − θ2)+m2gl2 sin θ2 = 0

(4)

For safe operations, the swing angle should be kept small sin θ ≈ θ , cos θ ≈ 1,
θ1θ2 ≈ 0. So, considering also the damping factor B, the equations of motion (4)
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become

(M +m1 +m2)ẍ + Bẋ + (m1 +m2)l1θ̈1 +m2l2θ̈2 = F
(m1 +m2)l1ẍ + (m1 +m2)l

2
1 θ̈1 +m2l1l2θ̈2 + (m1 +m2)gl1θ1 = 0

m2l2ẍ +m2l1l2θ̈1 +m2l
2
2 θ̈2 +m2gl2θ2 = 0

(5)

In matrix form Eq. (5) are

⎡

⎣
(M +m1 +m2) (m1 +m2)l1 m2l2

(m1 +m2)l1 (m1 +m2)l
2
1 m2l1l2

m2l2 m2l1l2 m2l
2
2

⎤

⎦

⎧
⎨

⎩

ẍ

θ̈1

θ̈2

⎫
⎬

⎭
+
⎡

⎣
B 0 0
0 0 0
0 0 0

⎤

⎦

⎧
⎨

⎩

ẋ

θ̇1

θ̇2

⎫
⎬

⎭

+
⎡

⎣
0 0 0
0 (m1 +m2)gl1 0
0 0 m2gl2

⎤

⎦

⎧
⎨

⎩

x

θ1

θ2

⎫
⎬

⎭
=
⎧
⎨

⎩

F

0
0

⎫
⎬

⎭

(6)

A numerical solution is carried out according to space-state approach, thus, the
system of three equations of second order should be converted into a system of six
equations of first order as

ẋ = y
(M +m1 +m2)ẏ + (m1 +m2)l1α̇ +m2l2β̇ = −By + F

θ̇1 = α
(m1 +m2)l1ẏ + (m1 +m2)l

2
1 α̇ +m2l1l2β̇ = −(m1 +m2)gl1θ1

θ̇2 = β
m2l2ẏ +m2l1l2α̇ +m2l

2
2 β̇ = −m22gl2θ2

(7)

In Table 1, the double-pendulum parameters are reported. The obtained results
are reported in Fig. 2. Figure 2a represents the trolley, hook, and payload displace-
ments without control system. Figure 2b represents the same displacements when
the control based on the applied force F is active. The trolley force, that actuates
the dynamic system, has been obtained via PID control system. This kind of control
works according to the following formula:

Table 1 Double-pendulum
crane parameters

Parameter Symbol Value Unit

Trolley mass M 500 kg

Hook mass m1 500 kg

Payload mass m2 40,000 kg

Wire 1 length l1 10 m

Wire 2 length l2 10 m

Gravity acceleration g 9.81 m/s2

Damping factor B 10,000 Nm/s
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Fig. 2 (a) 2D Double-pendulum displacements w/o control. (b) 2D Double-pendulum displace-
ments w/ control

Table 2 PID control
parameters used in the
computations

kp ki kd

Trolley x 1000 15 300

Trolley y 1500 20 700

Hook x 100 0 100

Hook y 1000 0 500

Payload x 100 0 100

Payload y 1000 0 200

f (t) = kpe(t)+ ki
∫ t

0
e(τ )dτ + kd de(t)

dt
(8)

where the function f (t) is optimized according to the proportional, integral, and
derivative parameters which consider the error e(t). The PID coefficients used in
the computations below are listed in Table 2, where only values for x are considered
for the 2D case. It is noted that for the hook and payload angles only PD control is
necessary in order to avoid crane overshoot. Note that high damping is introduced
with the coefficient kd and to act on the velocity of the system ki should be increased
but for the present case equilibrium configuration is not achieved.

In order to study the actuation model, the double-pendulum is displaced from
the equilibrium configuration of an angle of six degrees and let in free oscillations.
Clearly the system with the control active is able to suppress vibrations in less than
20 seconds, whereas the system without control continues the oscillations for several
minutes before stopping.
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3 The 3D Double-Pendulum Model

The aforementioned case can be extended to the 3D case as depicted in Fig. 1b. In
the X–Y plane, the trolley can simultaneously move in both x− and y− directions.
The reference system with coordinates x1–y1–z1 is attached to the hook with z1
pointing downward. The hook is connected to the trolley by a light, rigid cable
of length l2, with the cable mass considered negligible in comparison with that of
the hook and the payload. The hook is assumed to be a point mass m1. The rigid
cable length between the hook and the trolley is l1. In 3D space, the hook angle
has two components, θ1x and θ1y . The two variables are the projections of the cable
onto the X–Z and Y–Z planes, respectively. In Fig. 1b, the second reference frame
with coordinates x2–y2–z2, parallel to the first reference system, has its origin at the
payload. The second reference system is utilized to describe the swing rotation of
the payload. Similarly, the payload rotation can be described by two angles, θ2x and
θ2y , which are projections of the payload angle onto the X–Z and Y–Z planes,
respectively. From Fig. 1b, the instantaneous location of hook [x1, y1, z1]� with
respect to an inertial coordinate system can have the form

x1 = xt + l1 sin θ1x

y1 = yt + l1 cos θ1x sin θ1y

z1 = l1 cos θ1x cos θ1y

(9)

where xt and yt are the trolley positions in the inertial reference frame. The
instantaneous location of the payload [x2 y2 z2]� has the form

x2 = xt + l1 sin θ1x + l2
2 sin θ2x

y2 = yt + l1 cos θ1x sin θ1y + l2
2 cos θ2x sin θ2y

z2 = l1 cos θ1x cos θ1y + l2
2 cos θ2x cos θ2y

(10)

Differentiating Eq. (9) with respect to time t we have

ẋ1 = ẋt + l1θ̇1x cos θ1x−→v 1 : ẏ1 = ẏt − l1θ̇1x sin θ1x sin θ1y + l1θ̇1y cos θ1x cos θ1y

ż1 = −l1θ̇1x sin θ1x cos θ1y − l1θ̇1y cos θ1x sin θ1y

(11)

where −→v 1 = [ẋ1 ẏ1 ż1]� is the instantaneous velocity of the hook. Differentiating
Eq. (10) with respect to time t we have

ẋ2 = ẋ1 + l2
2 θ̇2x cos θ2x−→v 2 : ẏ2 = ẏ1 − l2
2 θ̇2x sin θ2x sin θ2y + l2

2 θ̇2y cos θ2x cos θ2y

ż2 = ż1 − l2
2 θ̇2x sin θ2x cos θ2y − l2

2 θ̇2y cos θ2x sin θ2y

(12)
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where −→v 2 = [ẋ2 ẏ2 ż2]� is the instantaneous velocity of the payload. Take the
four variables θ1x , θ1y , θ2x , and θ2y into account as generalized coordinates. The
following Lagrangian equation can be obtained:

d
dt

(
∂L
∂q̇i

)
−
(
∂L
∂qi

)
= 0 (13)

where qi for i = 1, 2, 3, 4 is the generalized coordinate. The right-hand side in
Eq. (13) is set to be zero because there are no external inputs applied to the hook as
well as the payload. After several differentiation operations, the dynamic model of
the crane system can be written as

(m1l
2
1 +m2l

2
1)θ̈1x + (m1 +m2)l1ẍT cos θ1x

−(m1 +m2)l1ÿt sin θ1x sin θ1y + (m1 +m2)l
2
1(θ̇1y)

2 cos θ1x sin θ1x

+ 1
2m2l1l2θ̈2x cos θ1x cos θ2x − 1

2m2l1l2(θ̇2x)
2 cos θ1x sin θ2x

+ 1
2m2l1l2θ̈2x sin θ1x sin θ2x cos (θ1y − θ2y)

+ 1
2m2l1l2(θ̇2x)

2 + (θ̇2y)
2 sin θ1x cos θ2x cos (θ1y − θ2y)

+ 1
2m2l1l2θ̈2y sin θ1x cos θ2x sin (θ2y − θ1y)

+m2l1l2θ̇2x θ̇2y sin θ1x sin θ2x sin (θ1y − θ2y)

+(m1 +m2)gl1 sin θ1x cos θ1y = 0

(14)

(m1 +m2)l
2
1 cos2 θ1x θ̈1y − 2(m1 +m2)l

2
1 θ̇1x θ̇1y cos θ1x sin θ1x

+(m1 +m2)l1ÿt cos θ1x cos θ1y

+ 1
2m2l1l2θ̈2y cos θ1x cos θ2x cos (θ1y − θ2y)

+ 1
2m2l1l2(θ̇2x)

2 + (θ̇2y)
2 cos θ1x cos θ2x sin (θ1y − θ2y)

+ 1
2m2l1l2θ̈2x cos θ1x sin θ2x sin (θ1y − θ2y)

−m2l1l2θ̇2x θ̇2y cos θ1x sin θ2x cos (θ1y − θ2y)

+(m1 +m2)gl1 cos θ1x sin θ1y = 0

(15)

(

m2
l22
4 + Iyy

)

θ̈2x + 1
2m2l2ẍt cos θ2x

− 1
2m2l2ÿt sin θ2x sin θ2y + 1

2m2l1l2θ̈1x cos θ1x cos θ2x

− 1
2m2l1l2(θ̇1x)

2 sin θ1x cos θ2x

+ 1
2m2l1l2θ̈1x sin θ1x sin θ2x cos (θ1y − θ2y)

+ 1
2m2l1l2(θ̇1x)

2 + (θ̇1y)
2 cos θ1x sin θ2x cos (θ1y − θ2y)

−m2l1l2θ̇1x θ̇1y sin θ1x sin θ2x sin (θ1y − θ2y)

+m2
l22
4 (θ̇2y)

2 cos θ2x sin θ2x + (Ixx − Izz)(θ̇2y)
2 cos θ2x sin θ2x

+m2g
l2
2 cos θ2x sin θ2y = 0

(16)
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(

m2
l22
4 cos2 θ2x + Ixx cos2 θ2x + Izz sin2 θ2x

)

θ̈2y

−m2
l22
2 θ̇2x θ̇2y cos θ2x sin θ2x + 1

2m2l2ÿt cos θ2x cos θ2y

+ 1
2m2l1l2θ̈1x sin θ1x cos θ2x sin (θ2y − θ1y)

+ 1
2m2l1l2(θ̇

2
1x + θ̇2

1y) cos θ1x cos θ2x sin (θ2y − θ1y)

+ 1
2m2l1l2θ̈1y cos θ1x cos θ2x cos (θ1y − θ2y)

−m2l1l2θ̇1x θ̇1y sin θ1x cos θ2x cos (θ2y − θ1y)

+(Ixx − Izz)θ̇2x θ̇2y sin (2θ2x)+m2g
l2
2 cos θ2x sin θ2y = 0

(17)

Regarding the trolley dynamics, taking into account an active control, the right-
hand side is characterize by an external force F = (Fx, Fy). As aforementioned, the
external forces are obtained via PID control system. When the PID control system is
not active, the system is studied in its free vibration configuration. The two equations
of motion for the trolley along x and y can be written as

(M +m1 +m2)ẍ + (m1 +m2)l1θ̈1x cos θ1x

−(m1 +m2)l1θ̇
2
1x sin θ1x +m2l2θ̈2x cos θ2x −m2l2θ̇

2
2x sin θ2x = Fx

(M +m1 +m2)ẍ + (m1 +m2)l1θ̈1y cos θ1y

−(m1 +m2)l1θ̇
2
1y sin θ1y +m2l2θ̈2y cos θ2y −m2l2θ̇

2
2y sin θ2y = Fy

(18)

The obtained results are reported in Fig. 3. Figure 3a–c represents displacements
of the trolley, the hook, and the payload along x and y. Figure 3b–d represents the
same displacements with an active control based on the applied force F = (Fx, Fy).

4 Conclusions

In this work, a dynamic actuation model for vibration reduction in double-pendulum
crane type has been presented. Starting from a 2D double-pendulum model, all the
equations of motion have been obtained through the Lagrange method, and later,
a more refined model consisting of a 3D double-pendulum has been considered:
its main anchor point being able to translate on a Cartesian plane integral to the
crane’s jib (called trolley), a first mass characterized by the hook, and a second
mass characterized by the payload. For the payload, different masses were taken
into consideration, with the lightest one being 4 tons and the heaviest one being 100
tons. The initial simulations involved a 2D model without any external control action
being performed to control the payload’s oscillations: Different boundary conditions
in terms of characteristic angles and displacements were injected into the solver in
order to understand the dynamic behavior of the system. In this phase of the work, all
the calculations were performed by making use of the sole MATLAB environment,
given the simplicity of the reduced 3 DOF model: These initial trials served as
very valuable data to subsequently set the main stability goals for the controlled
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Fig. 3 (a) 3D Double-pendulum x displacements w/o control. (b) 3D Double-pendulum x
displacements w/. (c) 3D Double-pendulum y displacements w/o control. (d) 3D Double-pendulum
y displacements w/

system. With the increase in number of DOFs considered, it came to be the necessity
of building and implementing a Simulink model that could better represent the
increased level of complexity of the system. The second phase in this study has
been characterized by such activity, including the verification and validation of the
numerous output measures that came with it and their comparison with the outputs
coming from analysis. After this crucial step, a PID control system was selected
for the trolley actuation (displacement) in order to start the feasibility investigation
that is object of this work. The control system was devised with the assumption
that all the measurements concerning trolley, hook, and payload displacements are
accessible in real-time by using appropriate sensors. In order to retrieve the PID
values useful for a correct control of the payload oscillations, a manual method
based on the system’s characteristic step response was used: The results showed that,
when considering a simplified 2D model, it is possible to suppress the payload’s
oscillations in a time-frame that ranges between 10 and 15 s with respect to the
several minutes needed for the uncontrolled system, depending on the payload mass
and the requested actuation force to be applied to the trolley. In conclusion, from
this preliminary study it emerges that it is indeed possible to suppress or at least
mitigate the payload’s oscillations by means of a sliding trolley displaced through a
PID controller.
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Improving Energy Efficiency of a Bipedal
Walker with Optimized Nonlinear Elastic
Coupling

Yinnan Luo, Ulrich J. Römer, Lena Zentner, and Alexander Fidlin

1 Introduction

Bipedal robots are capable of walking in many different environments and have
therefore a wide range of applications. For example, humanoid robots are used for
supporting rescue missions in many natural disaster scenarios that are demonstrated
in the DARPA Robotics Challenge. Besides stabilizing the walking movements,
improving the energy efficiency of locomotion is another major challenge in the
development of these robots. An autonomous robot has to carry its energy source
(e.g. a battery) which limits its operation time and range. Compared to humans, even
the latest developed humanoid walking robots such as Boston Dynamics ATLAS
and Honda Asimo show poorer energy efficiencies [1–3]. One of the main reasons
of the less efficient walking lies on the control strategies, whose major task is to
generate and stabilize the walking motion. There are many strategies focusing on
different goals: e.g. the zero moment point (ZMP) principle enforces a nearly static
stability of each robot body during the movement [4–6]. The controller focuses on
giving the robot the capability to interact with the environments but may sacrifice
the energy efficiency of the periodic movements like walking or running [7–9].

Other control strategies make use of the robot’s natural dynamics and allow for
higher efficiencies. For example, hybrid zero dynamics (HZD) based controllers
stabilize periodic walking movements of underactuated robots. The dynamics are
similar to human walking which utilizes the system’s natural dynamics to achieve
a high efficiency. The system’s natural dynamics, which are preserved due to the
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underactuation, are influenced by the mechanical design parameters. Coupling the
robot’s segments with linear elastic torsion springs significantly increases the energy
efficiency [10–12]. A numerical optimization process simultaneously optimizes the
walking gaits as well as the elasticity of the torsion spring to minimize the energy
consumption of locomotion. This paper investigates the influence of the elastic
coupling’s nonlinearity on the efficiency of walking using cubic splines to describe
and optimize the spring characteristics.

2 Model of the Robot and the Nonlinear Spring

Since the energy efficiency of locomotion mainly depends on the motion in the
walking direction [13, 14], the focus of the presented research lies on a planer robot
model whose lateral stabilizations are not considered. The robot model consists
of five rigid segments, representing an upper body, two thighs, and two shanks,
which are connected by ideal revolute joints. Four electric motors installed at each
joint provide the driving torque for the motion. The robot’s thighs are coupled by a
nonlinear torsion spring, whose characteristics are described by cubic splines. The
parameters of the cubic splines are considered as mechanical design parameters of
the robot.

As depicted in Fig. 1, the robot has periodic walking gaits that can be mathe-
matically described as a hybrid dynamic model including two alternating phases:
a single support phase (SSP) and a double support phase (DSP). In both walking
phases, point feet are modeled at the end of the shanks. Therefore, no torques can

Fig. 1 Left: In the single support phase (SSP), leg 1 is in contact with the ground and leg 2 swings
forward. Right: In the double support phase (DSP), both legs instantaneously touch the ground.
The former swing leg impacts the ground and the former stance leg lifts off
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be transmitted between the contacting leg and the ground. In the SSP, the stance leg
is in contact with the ground and the other leg swings forward without scuffing. The
contact of the stance foot is modeled as an ideal revolute joint without actuation,
which gives the robot model one degree of underactuation. The continuous motion
in the SSP is described via differential equations. In the DSP, a discrete mapping
models an instantaneous impact of the swing leg with the ground; at the same
time, the former stance leg lifts off. Physical conditions of walks without slipping,
unilateral contacts, and static frictions at the contacting feet are ensured through
further constraints.

A nonlinear controller generates and stabilizes the periodic walking gaits, namely
a limit cycle of the hybrid dynamic system [15, 16]. The angles of the four
actuated joints are synchronized to a set of time-invariant reference trajectories,
described by Bézier polynomials with the parameters α. The remaining one degree
of underactuation, namely the absolute rotation of the whole robot body about the
contacting foot, is the controlled system’s hybrid zero dynamics, if the error between
the joint angles and the reference trajectories vanishes. Furthermore, the required
driving torques u = [u1, . . . , u4]T in each electric motor are calculated through
inverse dynamics, considering the elastic torques that are produced by the nonlinear
torsion spring between the thighs.

In the mathematical description of the spring’s nonlinearity, cubic splines show
several advantages against high order polynomials. Cubic splines are smooth
functions, combined by piecewise third-order polynomials, which pass through a
set of control points (knots) [17]. Excluding the endpoints of the spline, whose
second derivatives are set to zero, the first and the second derivatives of the knots
are set equal to their neighborhoods. These boundary conditions uniquely define the
complete spline, which is also known as a natural cubic spline.

It is assumed that the robot model is symmetric and its walking gaits are periodic.
In this manner, the characteristic of the torsion spring between the thighs is supposed
to be centrally symmetric. According to simulations, the maximal relative angle
between the thighs of the robot without elastic couplings is 0.45 rad at the walking
speed of 1.4 m/s. Thus, the active deflections of the nonlinear torsion spring are
interpolated via splines in the interval of [-0.5, 0.5] rad; for larger deflections
beyond this range a linear extrapolation is used. The spline is defined by a set of
knots with the coordinates (ϕi, yi) for i = 0, . . . , 10: [(−0.5,−m5), (−0.4,−m4),
(−0.3,−m3), (−0.2,−m2), (−0.1,−m1), (0, 0), (0.1,m1), (0.2,m2), (0.3,m3),
(0.4,m4), (0.5,m5)]. The nonlinear characteristic c(ϕ) of the nonlinear torsion
spring has the property of central symmetry and is defined by the set of parameters
Msp = (m1,m2, . . . , m5)

T .

3 Simultaneous Optimization

Solving the closed loop walking motion is formulated as an optimization problem.
On the one hand, the robot’s walking gaits are defined by the Bézier parameters α;
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on the other hand, the nonlinear characteristics of the torsion spring are determined
by the cubic spline with knots valuesMsp. While minimizing the energy consump-
tion of walking, both parameter sets α and Msp are optimized simultaneously. The
energy efficiency is optimized for different walking speeds from 0.2 m/s to 1.4 m/s.
Sequential quadratic programming (SQP) is used as the optimization algorithms,
which is mainly supported by the open source libraries “NLop.jl” and “OSQP.jl” in
the programming language Julia. All derivatives required by the SQP algorithms are
evaluated by automatic differentiation (AD) using the library “ForwardDiff.jl”.

The objective of the numerical optimization is the energy consumption of
locomotion. This is evaluated by a dimensionless quantity cost of transport (COT ):
the total supplied energy divided by the walking distance and the robot’s weight.
DC servo motors including gear transmissions convert the electrical energy into
heat losses and mechanical energy. This work does not consider the heat losses,
that are produced by the electric motor while it is maintaining static torques [11].
Furthermore, it is assumed that none of the generated electrical energy from the DC
motors can be recovered during their braking operations (generator mode). So only
positive mechanical power is considered in calculating

COT =
∑4
i=1

∫ t−
0 max(ui(t)q̇i(t), 0) dt

"stepmg
(1)

with the step length "step and the total weight of the robot mg.
The physical conditions, which are introduced in Sect. 2, are considered as

constraints in the numerical optimization [10–12]. Besides the walking speed v,
which is enforced by an equality constraint g(x), other conditions are guaranteed
through a set of inequality constraints h(x). These are unilateral ground contacts;
the condition of static frictions at the contact; no scuffing of the swing foot and no
hyperextension of the knees.

The characteristics of the torsion spring are assumed to be constant once it has
been manufactured and assembled. On the other hand, the walking gaits can be
changed by reprogramming the controller according to the desired operating states.
To identify the optimal elastic coupling for a range of walking speeds, the mean
COT by considering different walking speeds V = [v1 = 0.2, v2 = 0.3, . . . , vn =
1.4]m/s with the same spring characteristic is minimized. An optimization problem
is formulated for each desired walking speed vi with the constraints gi(x) and hi(x).
These problems are combined into an extended optimization problem with x =
[Msp, α1, . . . , αn]. In this way, a nonlinear torsion spring is identified that increases
the overall energy efficiency at different walking speeds.
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4 Results and Discussion

The nonlinear elastic coupling shows significant improvements even compared to
a linear characteristic, as depicted in Fig. 2. In comparison to the robot without
any elastic couplings, the mean energy consumption is reduced by 78% for the
investigated walking speeds. This is significantly better than using linear torsion
springs, which results in a mean reduction of 62%. In Fig. 2, COT represents the
total positive mechanical work that is supplied to the walking system from electric
motors for compensating the energy losses to maintain the periodic walking gaits.
From the aspect of the energy balance, less energy losses result in a high energy
efficiency using nonlinear springs. Besides, the maximal power of the electric
motors is also reduced through the elastic coupling: Without torsion springs the
total maximal electrical power of four DC motors is 157.70 W at the speed 1.4 m/s;
this is reduced to 71.63 W by using nonlinear springs. This makes the downsizing
of the electric motors possible in an early development stage of any bipedal robots.

The optimal characteristic of the nonlinear torsion spring c(ϕ) (the optimal
parameter set Msp = [−1.89,−6.89,−24.82,−183.35,−798.69]T Nm) and the
optimal stiffness (k = 120.44 Nm/rad) of the linear torsion spring are presented in
Fig. 3. The deflections of the elastic couplings are equivalent to the relative angle
ϕ between the thighs, which can be derived from the kinematical relationships.
The simulations generally show an approximately linear relationship between the
maximum relative angle of the thighs and the walking speed. At the walking speed
of 1.4 m/s, the maximal deflection angle of the nonlinear torsion spring is 0.36 rad,
which becomes 0.10 rad at 0.2 m/s; in the case of the optimal linear torsion spring,
0.33 rad is reached at 1.4 m/s and 0.05 at 0.2 m/s.

During one step, the optimal nonlinear torsion spring provides little elastic
torques at smaller deflection angles, where the swing leg finds itself in the swing

Fig. 2 The optimized cost of transport COT for different walking speeds from 0.2 m/s to 1.4 m/s
with and without elastic couplings
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Fig. 3 The optimized linear and nonlinear torsion springs. The active operating ranges of the
springs are plotted with solid lines

period. At the beginning as well as the end of the step, the deflection angle reaches
its maximum in this step and the elastic torque increases dramatically. This implies
that the nonlinear spring tends to be activated only at the beginning and the end of
the step. According to the studies about the normal human walk in [18] and [19],
the muscles of the swing leg are mainly activated just right at the beginning and
end of one step. During the swing period in the middle of this step, the muscles
are normally inactive. In this sense, the optimized nonlinear torsion spring acts in a
way similar to the human muscles. The natural dynamics of the swing leg are less
suppressed through a nonlinear torsion spring during the swing period. Also, this
leads to a larger step length and therefore less steps required for the same walking
distance: 0.20 m for using nonlinear torsion springs at the speed of 1.4 m/s; 0.18
m for linear torsion springs. The increased elastic torque decelerates the movement
right before the swing leg touches the ground. In this process, kinetic energy is
stored as potential energy into the torsion spring, which is reused for accelerating
the robot at the beginning of the next step.

A closer study on the walking motion is employed based on a simplified
compound pendulum model in Fig. 4: Both stance and swing leg are considered
as rigid rods, whose mechanical parameters are derived from the thigh and shank of
the formal complete robot model in Table 1. The stance leg is assumed to be firmly
attached to the ground and connected to the swing leg by the torsion spring that is
introduced in Fig. 3. The characteristic of the torsion spring therefore determines the
free oscillations frequency of the simplified pendulum model. As the cubic spline
c(ϕ) is defined by piecewise cubic polynomials, the potential energy of the nonlinear
spring is evaluated via integration:

V (ϕ) = −
∫ ϕ

0
c(ϕ) dϕ. (2)
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Fig. 4 Left: Simplified pendulum model for the analysis of the free oscillations frequency of the
system consisting of two rigid bodies coupled by a nonlinear torsion spring. Right: Comparison
of the derived free oscillations frequency of the pendulum model (dashed line) to the double step
frequency of the complete robot (solid line)

Table 1 Model parameters

Upper body Thigh Shank Simplified model

Moment of inertia (in kgm2) 0.15 0.02 0.01 0.27

Mass (in kg) 6.00 2.00 0.98 2.98

Length (in m) 0.55 0.30 0.30 0.60

Center of mass position (in m) 0.21 0.13 0.16 0.24

No energy dissipation is considered, the sum of the kinetic energy and the potential
energy is constant

1

2
Joϕ̇

2 +mgr(1− cos(ϕ))+ V (ϕ) = mgr(1− cos(ϕMAX))+ V (ϕMAX) (3)

with the maximal deflection ϕMAX of the spring, where the velocity ϕ̇(ϕMAX) = 0
and Jo = Jsmp+msmpr2

smp, with the model parameters given in Table 1. The angular
velocity ϕ̇ is then given by

ϕ̇ =
√

2(mgr(cos(ϕ)− cos(ϕMAX))+ V (ϕMAX)− V (ϕ))
Jo

. (4)

The swing period T
4 , starting from the position ϕ(0) = 0 and ending at ϕ(T4 ) =

ϕMAX, of this nonlinear system can be determined via numerical integration

T

4
= ∫ ϕMAX

0
1
ϕ̇

dϕ =
√
Jo
2

∫ ϕMAX
0

1√
mgr(cos(ϕ)−cos(ϕMAX))+V (ϕMAX)−V (ϕ) dϕ. (5)
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Fig. 5 Top: Removed energy due to the braking mode of the electric motors. Bottom: Energy
losses due to the impact of the swing leg on the ground

The effective free oscillations frequency is given by feff = 1
T

. The effective
frequencies for the linear torsion spring flin and without any elastic coupling
frobot also follow from equation (5) by changing the elastic potential energy V (ϕ)
accordingly.

As depicted in Fig. 4, the double step frequencies of the optimized gaits using
nonlinear springs are very close to the effective frequency feff of the corresponding
pendulum model at different walking speeds, i.e. at different amplitudes of the
spring. In contrast, the pendulum model containing linear or no springs has an
almost constant free oscillations frequency due to small oscillations amplitude.
Studies in [20] and [21] approach a nearly linear relationship between the step
frequency and the walking speed according to observations of the normal human
walk. Thus, the major effect of the optimized nonlinear torsion spring is that the
walking gaits and the characteristics of the spring are simultaneously optimized in
such a way, that the robot always walks near the resonance of the system even at
different walking speeds with a very high efficiency.

Figure 5 illustrates that both linear and nonlinear torsion springs reduce the
energy losses while walking. These consist of two parts: the energy losses caused
by the inelastic impact of the swing leg on the ground in the DSP, and the generated
electrical energy from the electric motors in their braking operations, which is
mainly turned into heat. Since the periodic walking gaits are limit cycles of the
controlled system, any energy which is removed from the system due to braking
or impact losses has to be supplied by the electric motors at some time. In all
considered cases in Fig. 5, the impact losses are minimized by the optimization
algorithm. After the numerical optimization, the robot always brakes its motion right
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before the impact in order to minimize the impact losses. This braking torque must
be provided through the electric motors in the case that the robot has no elastic
couplings. As described in Fig. 3, the spring contributes to the braking operations at
the right moments which greatly reduces the required energy input by the electric
motors.

5 Conclusions

A method to improve the energy efficiency of a bipedal walking robot is investigated
using nonlinear torsion springs characterized by cubic splines to couple its thighs.
The underactuated robot is controlled by a nonlinear controller based on the hybrid
zero dynamics approach. Its periodic walking gaits and the nonlinearity of the spring
are determined simultaneously via numerical optimization, during the process of
minimizing the energy consumption. Through the optimized nonlinear torsion
spring, the mean energy consumption for walking speeds from 0.2 m/s to 1.4 m/s
is reduced by 78%. This is significantly better than an optimal linear spring that
reduces 62% of energy for the same conditions. The nonlinear spring tends to be
activated only at the beginning and the end of one step, and remains silent during
the swing period of the swing leg, which functions in a way similar to the human
muscles. The free oscillations frequency of the swing leg is derived from a simplified
pendulum model that is connected to the environment over the nonlinear spring. The
free oscillations frequency of the pendulum model closely matches with the double
step frequencies of the robot, that has optimum gaits generated by the optimization,
i.e. the robot walks in resonance to achieve a very high energy efficiency at different
walking speeds. According to simulations, not only the optimal step lengths but
also step frequencies increase at larger walking speeds. This is in accordance with
the studies about the relationship between the normal human step frequency and
walking speeds.

In future works, the nonlinear elastic couplings between the other segments of the
robot will be investigated. The nonlinear characteristics are supposed to be realized
in praxis through compliant smart mechanisms [22]. The simulation results will be
validated on a prototype of the robot with the real nonlinear torsion springs.
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Study on Control of Chaotic Systems

Srimanta Lal De and Shaikh Faruque Ali

1 Introduction

Chaos is one of the most interesting and widely studied subject in dynamical system
after its initiation in 1963 [1] and with the advent of digital calculation. Soon it
was evident that chaotic system exhibits much richer and intricate dynamics than
a simple nonlinear system. After its initial inception a burst of research activities
happened in the fields of mathematics, physics, biology, chemistry, economics,
and various streams in engineering [2–4]. It has changed the way scientists and
researchers have looked at the dynamical systems. Soon it was felt that for real
engineering applications, one needs to tame chaotic system and drive them to
periodic motions [5–7]. Therefore, ‘Chaos control’ came into existence [8, 9] with
first application is unanimously considered to be the work of Ott, Grebogi and Yorke
[8]. Following this a large volume of literature dedicated chaos control, to improve
OGY technique and for possible applications [10–12]. Though many parallel works
have been reported, OGY has been largely developed to control chaos [9]. This
paper sheds light on the various aspects of this widely popular method through
examples.

Section 2 briefs about OGY technique and its core philosophy. Section 3
describes some important extensions and generalized OGY algorithm. Implemen-
tation of these algorithms with well-known examples from dynamical systems and
observation of some the key features are summarised in Sect. 4. Section 5 briefly
discusses recent applications followed by a conclusion.
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2 OGY Technique: Basic Philosophy

A chaotic system shows the following properties which are essential for OGY
implementation:

1. System is highly sensitive to the initial condition: Trajectories originated from
almost same initial condition diverge exponentially with time.

2. Existence of strange attractor: Infinitely many Unstable Periodic Orbits (UPOs)
are embedded inside chaotic attractor. UPOs are saddle orbits because they have
both attracting and repulsing directions.

3. Ergodicity: Single trajectory originated from an arbitrary initial condition for a
sufficiently long time represents the chaotic attractor containing all the possible
evolutions.

With revolution in computational power, researchers were embolden to exploit
these strange properties and to create control algorithm dealing with chaos. OGY
algorithm exploits these properties of a chaotic system, to push trajectories into
one of its UPOs by applying perturbation to a control parameter. Distinct UPOs
represent distinct dynamical behaviour and seamless to switch from one dynamics
to another using OGY for feasibility of application. One needs to understand though,
which control parameter to use and how to identify one. The following section will
detail such discussions.

3 OGY Technique: Implementation and Challenges

OGY control method was developed for discrete time systems or maps unlike real
systems that are continuous in nature. Thus rather than working with a continuous
time history ofN -dimension, one takes transverse cuts through the chaotic attractor.
This yields a set of cut points (say, S ∈ R

N−1). Poincare section is the collection Σ
where the set S lies, which can be represented as

xi+1 = P(xi, p) (1)

Here xi ∈ S, P(xi) ∈ S is the first return map. Let us consider p as the system
parameter (OGY control parameter) and it has a nominal value of p̄.

For explaining the implementation of control on chaos, following four systems
are considered:

1. Logistic Map:

xi+1 = rxi(1− xi) (2)

2. Henon Map:
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xi+1 = yi + 1− ax2
i ; yi+1 = bxi (3)

3. Ikeda Map:

xi+1 = a + u(xi cos(ti)− yi sin(ti)); yi+1 = u(xi sin(ti)+ yi cos(ti))

where ti = c − d

1+ x2
i + y2

i
(4)

4. Duffing Oscillator:

ẍ + αẋ + βx + δx3 = γ cosωt (5)

Many often dynamical system responses are measured without a mathematical
description. OGY can be extended to such systems as shown next. This has made
OGY widespread in control of experimental systems [13, 14].

3.1 Delay-Coordinate Embedding

OGY technique is extended to time evolution data using Packard’s algorithm [15]
which can create phase space from time evolution data. The idea is extended to
experimental systems [16]. As an example, phase space reconstruction of Eq. 5 is
shown below.

Define ti as discrete form for ith time step, tF as time gap (ti+1 − ti) between
two successive poincare sections. n is the number of time-delay coordinate used to
reconstruct phase space with τ as time delay. Define a new state,

Z(ti) = [x(ti), x(ti − τ), . . . , x(ti − (n− 1)τ )] (6)

It is clear to see that when (n − 1)τ > tF , the delay coordinate Z(ti) at time
ti contains information of the previous Poincare intersection. So the influence of
parameter perturbation at time (ti − tF ) = ti−1 can be captured at time ti . In fact,
all parameter values {pi, pi−1, . . . , pi−r } have influence on the variable Zi , where
r is the smallest integer such that (n − 1)τ < rtF . This observation leads to an
alternative description of the system:

Zi+1 = P(Zi, pi, pi−1, . . . , pi−r ) (7)

Equation 7 is applied on data obtained from the system in Eq. 5, to generate Fig. 1.
As shown, reconstructed phase captures the original phase.
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Fig. 1 Dynamics of Duffing oscillator showing (a) phase space, (b) poincare section, (c) poincare
section using delay coordinate

Fig. 2 Dynamics of Ikeda map showing (a) chaotic attractor at u = 0.86, (b) location of different
m-periodic UPOs and (c) distribution of m-periodic orbits inside attractor

3.2 Determination of the UPOs Embedded Inside Chaotic
Attractor

Once the phase space is determined, one needs to identify UPOs not required.
Lathrop and Kostelich [17] reported a general procedure to identify UPOs (periodic
saddle orbit) embedded inside a chaotic attractor reconstructed from experimental
time-series data. The idea is when a random trajectory comes close to the UPO it
moves with approximately same frequency of the orbit before diverging away.

Let xi be a point in the reconstructed phase space and let ε > 0 be a sufficiently
small scalar. Then following the subsequent map of xi i.e., xi+1, xi+2, ..., find the
smallest index k such that ‖xk − xi‖ < ε. xi is a (m, ε) recurrent point where m is
defined as m = k − i. In case of maps, m also represents the period of the located
saddle orbit.

Figure 2 represents successful implementation of this identification algorithm in
Ikeda Map by taking 105 sample points. The histogram depicts number of times
trajectory comes near a particular UPO.
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3.3 OGY as Pole-Placement Method

One of the simpler way to implement OGY is to augment it with pole placement.
Romeiras et al. [18] first reported OGY as pole-placement method. For example,
consider the system in Eq. 1, where p is considered as the control parameter that
can be adjusted. A bound on p around its nominal value, p̄ can be considered.

|p − p̄| < δ (8)

Consider the fixed point xi+1 = xi = x∗ of the system and linearizing it about the
fixed point gives

xi+1 − x∗(p̄) = A(xi − x∗(p̄))+ B(p − p̄) (9)

Where A is a n× n Jacobian matrix and B is an n-dimensional column vector.

A = DxP (x∗, p̄); B = DpP(x∗, p̄) (10)

Define time dependence of control parameter p by giving it a linear dependence on
state xi of the system, as shown below

p − p̄ = −KT (xi − x∗) (11)

Where KT1×n is a vector of control gain obtained using pole placement [19], such
that the fixed point x∗ stabilize. Substituting Eq. 11 into Eq. 9,

xi+1 − x∗(p̄) = (A− BKT )(xi − x∗(p̄)) (12)

It is clear x∗ will be a stable fixed point if the eigenvalues of (A − BKT ) have
modulus less than unity. KT can be designed so that eigenvalues of matrix (A −
BKT ) have some specified value {μ1, μ2, . . . , μn} (called regular poles).

Note that Eq. 9 is valid only in local region around fixed point x∗(p̄). Equation 8
also gives a bound on the maximum allowable control.

|KT (xi − x∗(p̄)| < δ (13)

This gives a slab of width 2δ/|KT | around the fixed point, and the control will be
activated if xi comes inside this slab otherwise p = p̄. KT is chosen such that ns
stable poles of A remain unchanged whereas the remaining (n− ns) unstable poles
are fixed to 0. This choice of KT orients the slab along with the stable manifold.

OGY algorithm has also been focused on reducing transient time, controlling fast
dynamics, multiple parameters and higher periodic orbits [10, 20].
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3.4 Determination of A and B on a Particular Orbit

Other than a few limited cases, typically it is not possible to determine A and B
analytically from Eq. 10. Numerical techniques like linear curve fitting are generally
applied to estimate the values of A and B in a least square sense [21].

3.4.1 Estimation of A

A is estimated from the time-series data of the nominal system (i.e. p = p̄) with
arbitrary initial conditions. As δp = 0, Eq. 9 becomes

δxi+1 = A · δxi (14)

with (δxi+1, δxi) = (xi+1 − x∗, xi − x∗) and δp = p − p̄. For a sufficiently small
vicinity ξ (where ξ > ε), take a note of all such points for which both δxi < ξ and
δxi+1 < ξ . For m periodic saddle orbits, defined as x1∗, x2∗, . . . , xm∗, one has to
check for the points for which ‖xi − xi∗‖ < ξ and its image ‖xi+1 − xi+1∗‖ < ξ .

E(Â) =
q∑

n=1

∥
∥
∥δxi+1 − Â · δxi

∥
∥
∥

2

n
(15)

A L2 norm of the error (Eq. 15) is minimized for an optimal estimate (Â) of the
matrix A. For a good estimate of A a large collection of points (q), is necessary.

3.4.2 Estimation of B

To estimateB with minimal computation, a strategy of alternate activation of control
with each return of trajectory, is adopted. With an estimate Â, the linearized system
is

δxi+1 = Â · δxi + Bδp (16)

Sampling the generated time series with alternate control on/off results in two
separate series. δxi results from the control turned off and δxi+1 from the other
part. Collecting q such (δxi+1, δxi) pairs, B̂ is estimated using Eq. 17.

B̂ = 〈B〉 =
〈

1

δp
(δxi+1 − Â · δxi)

〉

averaged over q samples

(17)

In case of control using delay coordinate, parameters of Eq. 18 are estimated.
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Zi+1 − Z∗i+1 = Ai(Zi − Z∗i )+ B1
i (pi − p̄)+ · · · + Br+1

i (pi−r − p̄) (18)

Where Bji = Dpi−(j−1)P (Zi, pi, pi−1, . . . , pi−r ). For detailed discussion on
estimation on Bij , refer to [16].

Once the A and B matrices are estimated, one can proceed with pole-placement
technique to determine control requirement. In the next section, a few simulation
results are shown.

4 Results and Discussion

This section implements OGY control on four dynamical systems (Eqs. 2–5) and
reports the results and associated improvement over classical OGY [8].

Bifurcation diagram pictorially describes a system’s transition from a stable
equilibrium to a chaotic attractor with change in parameter value as in Fig. 3a.
Methods described in Sect. 3 for identification of UPO and for design of controller
have been applied on Ikeda map to restore its equilibrium from chaotic attractor by
perturbing parameter at the correct instant as shown in Fig. 3b, c.

Logistic map (Eq. 2) has the most simplified form but has wide applications in
population dynamics. OGY algorithm has been applied for two variation in max-
imum allowable perturbation of parameter, δ. Single realization of state evolution
for two different control effort is shown in Fig. 4. Observation shows an increase in
transition time before stabilization, with decrease in control effort.

Along with Ikeda and Logistic map, Henon map has been a popular choice in the
literatures related to development of OGY algorithm [22, 23]. An extended version
of the described method has been applied, to stabilize higher periodic orbit inside
Henon attractor. A single realization, illustrated in Fig. 5 shows with increase in
order of UPO, transition time decreases. Explanation of such observations comes
from natural measures on chaotic attractor, which says average time spent by a
random trajectory outside a control volume region of chaotic attractor, is inversely
proportional to the volume of that region [21]. From Eq. 13 it can be inferred that

Fig. 3 Dynamics of Ikeda map showing (a) bifurcation with parameter u, (b) OGY control at fixed
point at u = 0.7 and (c) control time history
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Fig. 4 OGY control of Logistic map at r = 3.8 with maximum parameter perturbation (a) δr =
0.002r , (b) δr = 0.001r

Fig. 5 OGY control of Henon Map at a = 1.4 and b = 0.3 showing (a) fixed point, (b) saddle
orbit of period 2 and (c) saddle orbit of period 8

trajectory can only be stabilized inside δ/|KT | region surrounding the UPO. In case
of Logistic map, δ has been increased directly. In Henon map due to increase in orbit
order, net control region is increased i.e. δnet = ∑

δi > δi . So in both situations
average transient time decreases. Our choice of realizations in these two systems
represents this trend.

Duffing oscillator has been used widely in many literatures related to extension
of OGY to continuous and non-autonomous systems [12, 16]. Such systems can
be controlled by two methods, as described in Sect. 3. When state space model of
a periodic non-autonomous system is available, it is recommended to create first
return map by taking stroboscopic section as in Fig. 6a. In the absence of a model,
delay-coordinate embedding method is used to create the first return map as in
Fig. 6b. After identifying the UPO and acquiring data-set as discrete map, standard
pole-placement method is applied to stabilize the orbits as in Fig. 6b–d.

5 Recent Trends in Application of OGY

This section briefs the relevance of OGY across fields. Gritli et al. [5] have studied
characteristics of chaotic dynamics in biped robot walking on an inclined plane.
Dynamics of simple and coupled mechanical impact oscillators have been studied
under control of OGY algorithm [6, 24]. Biologists use discrete time models to
study evolution and dynamics of biological systems. Some such biological system



Control of Chaotic Systems 271

Fig. 6 Location of period-1 orbit in poincare section and OGY control of Duffing oscillator (a,
b) based on known system dynamics, (c, d) based on phase space reconstruction using time-delay
coordinate

models undergo bifurcation and become chaotic. Many such biological systems
have found application of OGY algorithm in stabilizing their equilibrium viz. host–
parasite models; prey–predator models; glycolysis model [3, 25, 26] and population
dynamics [27]. Geiyer et al. [7] have found application of OGY in broadband energy
harvesting using piezo-electric material. Kumar et al. have used OGY algorithm to
enhance energy harvesting from nonlinear oscillator [28]. Salman et al. have studied
and controlled theoretical model such as complex Riccati and logistic type map [4].
OGY based chaos control has tremendous potential for applications, we restricted
to a very selected ones due to limitation in space.

6 Conclusions

The goal of writing this paper is to shed some light on the challenges in imple-
mentation of OGY algorithm for chaos control. It is a very short summary on the
development of three decades of OGY, and a proper justification can be made with
a longer and more thorough review of the subject. In discussion, OGY control
is formulated as a variant of pole-placement method, which is much simpler
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to understand and implement. This considers linearization of the system about
UPOs. Application of OGY algorithm as a delayed feedback controller is also
shown. Though researchers have investigated robustness and optimality of the OGY
controller in the presence of noise, those remain outside the scope of this article
[11]. The implementation of OGY on four example systems has been demonstrated.

Increasing the effective volume (in phase-space) around UPO inside which
successful stabilization of a trajectory is possible, has remained the central idea
behind further sophistication of OGY algorithm [10, 20]. Achieving it reduces
average transient time, control gain and increases probability of successful control
simultaneously. This article gives a short summary on early development of OGY
algorithm and its recent applications.
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Stabilizing-Delay-Based Impulsive
Control for Cluster Synchronization of
Nonlinearly Coupled Lur’e Networks

Deli Xuan, Ze Tang, and Ju H. Park

1 Introduction

In recent years, the exploration on complex networks has received widespread
attention due to its important applications in artificial and natural networks like
biological networks and financial networks [1, 2]. As a typical collective behavior,
synchronization has received extensive attention from scholars in various fields
[3, 4]. For instance, Yu et al. in [5] studied the local synchronization for a
class of complex networks. The global synchronization for the complex network
with coupling delay was discussed by Li et al. in [6]. In addition, the impulsive
synchronization [7] and cluster synchronization [8] were deeply investigated.

However, in most of existing results that discussed the cluster synchronization
issues, such as [9, 10], they only focused on the cluster synchronization of the
identically and linearly coupled complex networks. In particular, Ma et al. in [9]
considered the cluster synchronization of complex networks with general linear cou-
plings. Furthermore, as a kind of discontinuous control protocols, impulsive control
[11, 12], which will be activated only at impulse time instants, efficiently reduces
the control cost. Tang et al. in [11] investigated the impulsive synchronization for
derivative coupled neural networks with the delay in impulsive controller. By the
comparison principle, [12] discussed the synchronization for stochastic reaction–
diffusion dynamical networks with impulsive delay.

To the best of authors’ knowledge, the global and exponential cluster synchro-
nization of nonlinearly coupled complex dynamical networks with nonidentical
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Lur’e systems and asymmetrical matrices, until now, receives little attention. It
motivates us to investigate this work. In this chapter, the distinguished features
different from other papers can be summarized as: (1) The global and exponential
cluster synchronization of nonlinearly and nonidentically coupled Lur’e dynamical
networks with an asymmetrical matrix is explored under the impulsive controller
with stabilizing delay. (2) By considering the cluster-tree topology structures of the
Lur’e networks, a kind of pinning feedback controllers is elaborately designed to be
imposed on the Lur’e systems in the cluster that exist directed connections with the
Lur’e systems in other clusters, which is more practical and closer to real situations
than some previous works like [13]. (3) By introducing the average impulsive
interval [14], sufficient conditions for the exponential cluster synchronization of
nonlinearly coupled Lur’e dynamical networks are obtained in view of the Lyapunov
stability theorem, mathematical induction method, and the projection method.

2 Model Description and Preliminaries

Before starting the theme, some assumptions for the nonlinearly coupled Lur’e
dynamical networks with cluster-tree topology structure in the following are
defined. Consider the coupled Lur’e networks with a total of m Lur’e systems and r
clusters with m > r ≥ 2. If the i-th Lur’e system belongs to the j -th cluster, it will
be denoted as μi = j . Let Uj be the set of all Lur’e systems in the j -th cluster and
the set Ũj be all Lur’e systems in the j -th cluster that are directly connected to the
Lur’e systems in other clusters. Therefore, we have: (i).Ui ∩Uj = ∅, for i �= j and
i, j = 1, 2, · · · , r; (ii). ∪ri=1 Ui = {1, 2, · · · ,m}.

Consider the nonlinearly and nonidentically coupled Lur’e dynamical networks
with r clusters and asymmetrical couplings

żi (t) =Jμi zi(t)+Hμi f̃ 1
μi
(Azi(t))+Kμi f̃ 2

μi
(Qzi(t − τ1(t)))

+ c
m∑

j=1

bijΓ G(zj (t))+ ui(t), (1)

where zi(t) = [z1
i (t), z

2
i (t), · · · , zni (t)]T ∈ R

n, i = 1, 2, · · · ,m, is the state
variable of the i-th Lur’e system. Jμi ∈ R

n×n,Hμi ∈ R
n×l , Kμi ∈ R

n×l , A ∈
R
l×n,Q ∈ R

l×n are the constant matrices. The constant c > 0 is the coupling
strength, and Γ =diag{γ1, γ2, · · · , γn} ∈ R

n×n is the inner connection matrix with
γi > 0. In this chapter, it assumes that Γ = In for simplicity; f̃ ςμi (·) : Rl → R

l

are memoryless nonlinear vector-valued function that is continuously differentiable
on R for ς = 2. τ1(t) is the system time-varying delay and satisfies 0 ≤ τ1(t) ≤ τ̂ .
Matrix B = (bij )m×m represents the topology of a directed graph and is considered
to be asymmetric and irreducible in this chapter. In addition, bij > 0 if and only
if there is a connection from the j -th Lur’e system to the i-th Lur’e system for
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i �= j , and bij = 0, otherwise. Moreover, B satisfies the diffusive condition∑m
j=1 bij = 0, i.e., bii = −∑m

j �=i,j=1 bij . ui(t) is the controller, which will be
discussed later. G(·) : Rn → R

n is the nonlinear coupling function with the form
G(zi(t)) = [g1(z

1
i (t)), g2(z

2
i (t)), · · · , gn(zni (t))], and it is assumed that gk(·) ∈

NCF(α, ν) for k = 1, 2, · · · , n with positive constants α and ν [15]. Denote
matrices A = [aT1 , aT2 , · · · , aTl ]T andQ = [qT1 , qT2 , · · · , qTl ]T with aj , qj ∈ R

1×n
for j = 1, 2, · · · , l. Then Azi(t) = [a1zi(t), a2zi(t), · · · , alzi(t)]T , f̃ 1

μi
(Azi(t)) =

[f̃ 11
μi
(a1zi(t)), f̃

12
μi
(a2zi(t)), · · · , f̃ 1l

μi
(alzi(t))]T and Qzi(t − τ1(t)) = [q1zi(t −

τ1(t)), q2zi(t − τ1(t)), . . . , qlzi(t − τ1(t))]T , f̃ 2
μi
(Qzi(t − τ1(t))) = [f̃ 21

μi
(q1zi(t −

τ1(t))), f̃
22
μi
(q2zi(t − τ1(t))), · · · , f̃ 2l

μi
(qlzi(t − τ1(t)))]T .

Let sμi (t) = [s1
μi
(t), s2

μi
(t), · · · , snμi (t)]T ∈ R

n, i = 1, 2, · · · , r be the
synchronization target in the i-th cluster satisfying

ṡμi (t) = Jμi sμi (t)+Hμi f̃ 1
μi
(Asμi (t))+Kμi f̃ 2

μi
(Qsμi (t − τ1(t))), (2)

where limt→+∞ ‖sμi − sμj ‖ �= 0. The delayed impulsive pinning controller is

ui(t) = u0,i (t)+ u1,i (t), i = 1, 2, · · · ,m, (3)

where the delayed impulsive control part is designed as

u0,i (t) =
∞∑

k=1

(ηδzi(t)+ ρδzi(t − τ2(t)))σ (t − tk), (4)

and the pinning feedback control part u1,i (t) is

u1,i (t) =

⎧
⎪⎨

⎪⎩

−cεi(G(zi(t))−G(sμi (t)))− c
m∑

j=1
bijG(sμj (t)), i ∈ Ũμi ,

0, i ∈ Uμi \ Ũμi ,
(5)

εi ≥ 0 is the feedback control gain, η and ρ represent impulsive effects and satisfy
0 < η, ρ < 1. σ(·) is the Dirac function, and the time series ξ = {t1, t2, · · · } is a
sequence of strictly increasing impulsive instants, which satisfy limk→∞ tk = +∞
for k ∈ N+. Let the control strength matrix be D =diag{ε1, ε2, · · · , εn}.

Define error vector δzi(t) = zi(t)−sμi (t), δzi(t) = [δz1
i (t), δz

2
i (t), · · · , δzni (t)]T∈ R

n for i = 1, 2, · · · , n. Therefore, the controlled error Lur’e network is

⎧
⎪⎪⎨

⎪⎪⎩

δ̇zi (t) = Jμi δzi(t)+Hμi f 1
μi
(Aδzi(t))+Kμi f 2

μi
(Qδzi(t − τ1(t)))

+c
m∑

j=1
bij (G(zj (t))−G(sμj (t)))− cεi(G(zi(t))−G(sμi (t))), t �= tk,

δzi(t
+
k ) = (η + 1)δzi(t

−
k )+ ρδzi(t − τ2(t−k )), t = tk,

(6)
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where 0 ≤ τ2(t) ≤ τ , fμi (Aδzi(t)) = f̃μi (Azi(t))−f̃μi (Asμi (t)) and f 2
μi
(Qδzi(t−

τ1(t))) = f̃ 2
μi
(Qzi(t − τ1(t))) − f̃ 2

μi
(Qsμi (t − τ1(t))). Throughout this chapter,

δzi(t) is presumed to be right-hand continuous at t = tk, k ∈ N+, and δzi(tk) =
δzi(t

+
k ) = limt→t+k δzi(t), δzi(t

−
k ) = limt→t−k δzi(t). Then the solutions of the

controlled error Lur’e network (6) are piecewise right-hand continuous functions
with discontinuities at t = tk for k ∈ N+.

Definition 1 ([16]) The nonlinearly coupled Lur’e network (1) is globally and
exponentially synchronized to the target Lur’e system (2), if and only if for any
initial state zi(t0) ∈ R

n, there exist constantsM0, λ > 0 and t > t0 satisfying

‖zi(t)− s(t)‖ ≤ M0 sup
t0∈[t−τ̂,t]

‖zi(t0)− s(t0)‖e−λ(t−t0).

Lemma 1 ([17]) Suppose that there exists a positive function V (t) that satisfies the
following impulsive differential inequalities:

{
D+V (t) ≤ −ιV (t)+ ω sup'∈[t−τ̂,t]{V (')},
V (t) = ψ(t), t ∈ [t0 − τ̂, t0]

for ι > ω ≥ 0; then one may derive that V (t) ≤ V̄ (t0)e−λ(t−t0), t ≥ t0, where ψ(t)
is a piecewise continuous function and V̄ (t0) = sup'∈[t0−τ̂,t0]{V (')}, λ > 0 is the

unique feasible solution to the equation λ− ι+ ωeλτ̂ = 0.

Assumption 1 The two nonlinear system functions f̃ 1
μi
(·) and f̃ 2

μi
(·) are deemed to

satisfy the Lipschitz condition. That is, there exist two related positive constants pμi
and qμi , for any a, b ∈ R

n, which satisfy

‖f 1
μi
(a)− f 1

μi
(b)‖ ≤ pμi‖a − b‖, ‖f 2

μi
(a)− f 2

μi
(b)‖ ≤ qμi‖a − b‖.

3 Main Result

In this section, the global and exponential cluster synchronization of the nonlin-
early and nonidentically coupled Lur’e networks (1) is discussed. Then, sufficient
conditions will be acquired under the delayed impulsive pinning controllers (3).

Theorem 1 Suppose that Assumption 1 holds and the average impulsive interval is
no larger than Na for the impulsive sequence ζ = {t1, t2, · · · }. If there exist positive
parameters c, α, ν, υ and the control strength matrix D, such that:

(i) The matrix inequality W − c(α − ν)D + υIm ≤ 0.
(ii) For positive constant μ, the inequality {κ + βeλτ , eλτ̂ } ≤ μ holds,

whereW = cαB+ c
2εBB

T +cν2ε(1− 1
m
)Im, κ = (1+η)(1+η+ρ), β = ρ(1+
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η+ρ) and λ is the unique feasible solution to the equation λ−ι+ωeλτ̂ = 0 with
parameters ι = −min1≤i≤m{λmax(J

s
μi
+HμiHTμi+p2

μi
AT A+KμiKTμi−2υIn)}

and ω = max1≤i≤m{λmax(q
2
μi
QTQ)} satisfy ι ≥ ω. Then, the controlled error

Lur’e networks (6) are globally and exponentially stable with the convergence
rate 1

2 (λ − lnμ
Na
). That is, the global and exponential cluster synchronization

between the nonlinearly and nonidentically coupled Lur’e networks (1) and
leader Lur’e system (2) is ultimately obtained by means of the delayed impulsive
pinning controllers (3).

Proof Construct the suitable Lyapunov function: V (t) = 1
2δz(t)

T δz(t), where
δz(t) = [δz1(t), δz2(t), · · · , δzn(t)]T . For easy analysis later, denote δ̃zk(t) =
[δzk1(t), δzk2(t), · · · , δzkm(t)]T , g̃k(zk(t)) = [gk(zk1(t)), gk(zk2(t)), · · · , gk(zkm(t))]T ,
g̃k(s

k(t)) = [gk(skμ1
(t)), gk(s

k
μ2
(t)), · · · , gk(skμm(t))]T , ỹk(zk(t)) = [yk(zk1(t)),

yk(z
k
2(t)), · · · , yk(zkm(t))]T , ỹk(sk(t)) = [yk(skμ1

(t)), yk(s
k
μ2
(t)), · · · , yk(skμm(t))]T .

On the one hand, for the impulsive time instant t = tk, k ∈ N+, we have the
following results based on the controlled error Lur’e networks(6):

V (t+k ) =
1

2
δz(t+k )

T δz(t+k )

= 1

2
((1+ η)δz(t−k )+ ρδz(t−k − τ2(t−k )))T ((1+ η)δz(t−k )

+ ρδz(t−k − τ2(t−k )))

≤ 1

2
(1+ η)(1+ η + ρ)δz(t−k )T δz(t−k )

+ 1

2
ρ(1+ η + ρ)δz(t−k − τ2(t−k )))T δz(t−k − τ2(t−k ))

= κV (t−k )+ βV (t−k − τ2(t−k )). (7)

On the other hand, for t ∈ [tk−1, tk) k ∈ N+, calculating D+V (t) along the
controlled error Lur’e networks (6) under controllers (5) derives

D+V (t) =
m∑

i=1

δzi(t)
T δ̇zi(t)

≤1

2

m∑

i=1

δzi(t)
T
(

2Jμi +HμiHTμi + p2
μi
AT A+KμiKTμi

)
δzi(t)

+ 1

2

m∑

i=1

δzi(t − τ1(t))T q2
μi
QTQδzi(t − τ1(t)))
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+ c
m∑

i=1

m∑

j=1

bij δzi(t)
T (G(zj (t))−G(sμj (t)))

− c
m∑

i=1

εiδzi(t)
T (G(zi(t))−G(sμi (t)))). (8)

In addition, the nonlinear coupling function gk(·) ∈ NCF(α, ν) gives

c

m∑

i=1

m∑

j=1

δzTi (t)bij (G(zj (t))−G(sμj (t)))

= cα
n∑

k=1

δ̃zk(t)
T Bδ̃zk(t)+ c

n∑

k=1

δ̃zk(t)
T B(ỹk(z

k(t))− ỹk(sk(t))). (9)

Furthermore, as B is a zero-row-sum matrix, it implies that

c

n∑

k=1

δ̃zk(t)
T B(ỹk(z

k(t))− ỹk(sk(t)))

=
n∑

k=1

c

2ε
δ̃zk(t)

T BBT δ̃zk(t)+
n∑

k=1

cε

2
(ỹk(z

k(t))− ỹk(sk(t)))T

×M(ỹk(zk(t))− ỹk(sk(t))) =
n∑

k=1

c

2ε
δ̃zk(t)

T BBT δ̃zk(t)

− cε
2

n∑

k=1

∑

i>j

mij (ỹk(z
k
i (t))− ỹk(skμi (t))+ ỹk(zkj (t))− ỹk(skμj (t)))2

≤
n∑

k=1

c

2ε
δ̃zk(t)

T BBT δ̃zk(t)− cε
n∑

k=1

∑

i>j

mij ((ỹk(z
k
i (t))− ỹk(skμi (t)))2

+ (ỹk(zkj (t))− ỹk(skμj (t)))2) =
n∑

k=1

c

2ε
δ̃zk(t)

T BBT δ̃zk(t)

− cν2ε

n∑

k=1

∑

i>j

mij (δ̃
k
i (t)

2 + δ̃kj (t)2)

= c
n∑

k=1

δ̃zk(t)
T

(
1

2ε
BBT + ν2ε

(

1− 1

m

)

Im

)

δ̃zk(t). (10)
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Define the matrixW = cαB+ c
2εBB

T + cν2ε(1− 1
m
)Im. By jointly considering

the inequalities (8), (9), and (10), we can derive the following conclusion:

D+V (t) ≤1

2

m∑

i=1

δzi(t)
T (2Jμi +HμiHTμi + p2

μi
AT A+KμiKTμi − 2υIn)δzi(t)

+ 1

2

m∑

i=1

δzi(t − τ1(t))T q2
μi
QTQδzi(t − τ1(t)))

+
n∑

k=1

δ̃zk(t)
T (W − c(α − ν)D + υIm)δ̃zk(t)

≤− ιV (t)+ ω sup
'∈[t−τ̂,t]

V ('). (11)

Therefore, in accordance with Lemma 1, for V̄ (tk−1) = sup'∈[tk−1−τ̂,tk−1] V (')
at the impulsive time interval t ∈ [tk−1 − tk), we have

V (t) ≤ V̄ (tk−1)e
−λ(t−tk−1). (12)

Considering the inequality (12), for the given positive parameters μ and t > t0 > 0,
we will illustrate the following inequality:

V (t) ≤ μk−1V̄ (t0)e
−λ(t−t0) (13)

holds by introducing the mathematical induction method.
For the situation that t ∈ [t0, t1) with k = 1, these is a positive parameter μ

satisfying

V (t) ≤ V̄ (t0)e−λ(t−t0) = μk−1V̄ (t0)e
−λ(t−t0).

Next, assume that the inequality (13) holds for t ∈ [t'−1, t') with k = '. Then,
we have the following result in the light of condition (ii) in Theorem 1:

V (t') ≤κV (t−' )+ βV (t−k − τ2(t−' ))
≤κμ'−1V̄ (t0)e

−λ(t'−t0) + βμ'−1V̄ (t0)e
−λ(t'−τ2(t')−t0)

≤(κ + βeλτ )μ'−1V̄ (t0)e
−λ(t'−t0) ≤ μ'V̄ (t0)e−λ(t'−t0).

Finally, we will prove the inequality (13) is correct for k = ' + 1, i.e., t ∈
[t', t'+1). Based on the above analysis, it derives

V (t) ≤V̄ (t')e−λ(t−t') = sup
+∈[t'−τ̂,t']

V (+)e−λ(t−t')
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=max{ sup
+∈[t'−τ̂,t')

V (+), V (t')}e−λ(t−t')

≤max{eλτ̂ , μ}μ'−1V̄ (t0)e
−λ(t−t0) ≤ μ'V̄ (t0)e−λ(t−t0).

Until now, it has explained the correctness of the inequality (13) for any t ∈
[tk−1, tk) k ∈ N+. Considering that μ is a positive parameter, in the following,
by applying the concept of the average impulsive interval [14], we study the global
and exponential cluster synchronization of the nonlinearly coupled Lur’e networks
according to the selection of the positive parameter μ.

First, if μ ∈ (0, 1), then for t ∈ [tk−1, tk) k ∈ N+, it follows that

V (t) ≤ μk−1V̄ (t0)e
−λ(t−t0) ≤ μt−t0

Na
−N0 V̄ (t0)e

−λ(t−t0)

= μ−N0 V̄ (t0)e
−(λ− lnμ

Na
)(t−t0). (14)

Second, if μ ∈ (1,+∞), then for t ∈ [tk−1, tk) k ∈ N+, it implies that

V (t) ≤ μk−1V̄ (t0)e
−λ(t−t0) ≤ μt−t0

Na
+N0 V̄ (t0)e

−λ(t−t0)

= μN0 V̄ (t0)e
−(λ− lnμ

Na
)(t−t0). (15)

Specially, when μ = 1, for t ∈ [tk−1, tk), we have

V (t) ≤ μk−1V̄ (t0)e
−λ(t−t0) = V̄ (t0)e−(λ−

lnμ
Na
)(t−t0). (16)

Through the analysis of the above three situations on the positive parameterμ, we
have three results (14), (15), and (16), which regards to the ultimate synchronization
state. Then, according to Definition 1, it is obvious that there exist two positive
parameters λ andM0 satisfying

‖δzi(t)‖ ≤ M0V̄ (t0)e
− 1

2 (λ− lnμ
Na
)(t−t0).

Namely, it shows that the controlled error Lur’e network (6) is globally and
exponentially stable with the convergence rate 1

2 (λ − lnμ
Na
). Moreover, the expo-

nential cluster synchronization between the nonlinearly and nonidentically coupled
Lur’e networks (1) and the leader Lur’e system (2) is finally realized under the
delayed impulsive pinning controllers (3). Until now, we have finished the proof of
Theorem 1.
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4 Numerical Simulations

Consider the Chua’s circuit with diverse system parameters [18]

ż(t) = Jiz(t)+Hif 1
i (Aiz(t))+Kif 2

i (Qiz(t − πi(t))),

z(t) =
⎡

⎣
z1(t)

z2(t)

z3(t)

⎤

⎦ , H1 = H2 =
⎡

⎣
3.247

0
0

⎤

⎦ ,K1 = K2 =
⎡

⎣
0
0

−3.906

⎤

⎦ ,

J1 =
⎡

⎣
− 13

6 10 0
1 −1 1
0 −19.53 −0.201

⎤

⎦ , J2 =
⎡

⎣
−2.169 10 0

1 −1 1
0 −19.53 −0.1636

⎤

⎦ ,

where Ai = Qi = [1, 0, 0],f 1
i (Aiz(t)) = (|z1(t) + 1| − |z1(t) − 1|) and

f 2
i (Qiz(t)) = sin(0.5z1(t − πi(t))), where π1 = 0.01et

1+et and π2 = 0.2et
1+et . For two

different Chua’s circuits, the phase graphs are plotted in Fig. 1a.

(a) (b)
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Fig. 1 (a) The phase graphs of two Chua’s circuits with distinct parameters. (b) The structure of
the Lur’e networks. (c) Synchronization error Ej (t)(j = 1, 2) in each cluster. (d) The error curves
between two clusters
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In this numerical example, we orderly divided the complex network with six
Lur’e systems into two distinct clusters U1 = {1, 2, 3} and U2 = {4, 5, 6} (see
Fig. 1b). Therefore, the pinning feedback controllers (5) will be imposed on the
second and fourth Lur’e systems because they are directly connected between two
different clusters. Let B = [−1, 1, 0, 0, 0, 0; 0,−2, 1, 1, 0, 0; 0, 1,−1, 0, 0, 0; 0, 0,
0,−1, 1, 0; 0, 0, 0, 0,−1, 1; 0, 0, 0, 0, 1,−1], G(zi(t)) = zi(t) + 0.5 sin(zi(t)),
c = 0.5, and D = diag{0, 1.161, 0, 0.6157, 0, 0}. In addition, assume that the
average impulsive interval Na is less than 0.02.

The synchronization error evolution curves in two different clusters are plotted

in Fig. 1c based on the definition Ej(t) =
√

1
3

∑3
i=1(‖zi(t)− sμi (t))‖, j =

1, 2, which implies that cluster synchronization is realized. Define the state
error between two clusters as E12(t) =

√
1/3((z1(t))2 + (z2(t))2 + (z3(t))2) −√

1/3((z4(t))2 + (z5(t))2 + (z6(t))2). It is clearly shown from Fig. 1c–d that the
synchronization error curves in the same cluster approach to zero at about 0.25 s,
but the error E12(t) shows irregular oscillations between two different clusters.

5 Conclusions

This chapter has proposed an impulsive pinning control protocol with stabilizing
delay for the cluster synchronization issue of a class of nonlinearly coupled Lur’e
networks with an asymmetrical coupling matrix. By introducing the average impul-
sive interval and applying the Lyapunov stability theorem as well as mathematical
induction method, sufficient conditions have been derived that ensure the realization
of the global and exponential cluster synchronization for the Lur’e networks.
Finally, a numerical example has been implemented to prove the correctness of the
theoretical analyses and control schemes.
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Influence of Sea Currents on the Strategy
of Riser Re-Entry

Iwona Adamiec-Wójcik , Lucyna Brzozowska
and Stanisław Wojciech

1 Introduction

Flexible risers used for transporting oil and gas from the seabed to platforms or
ships become longer and longer as the water depths in exploration of hydrocarbons
increase. Risers are long slender elements (with length up to 3000 m). Their
diameters usually do not exceed 1 m, while the deformations caused by the sea
environment (waves, sea currents, buoyancy, and hydrodynamic drag forces) can
be large. Even in the case of hanging risers, the deflections can be hundreds
of meters. For this reason, the mathematical models of risers have to take into
account large deformations and consequently geometrical and sometimes physical
nonlinearities. Sometimes the vibrations of the risers are influenced not only by the
sea environment but also by internal fluid flow, which additionally complicates the
equations of motion. Re-entry, namely, moving a free-hanging riser from a random
position to the wellhead, is one of the most important operations on risers. The free-
hanging riser is usually treated as a beam with a free bottom end, which has to be
situated at a desired position by means of the movement of its upper end, while
ensuring that the vibrations of the beam are substantially reduced. Figure 1 presents
an illustration of the maneuver of re-entry for different directions of the sea-current
with respect to plane xy.

A number of research papers are concerned [1–4] with the re-entry operation.
The problem of the choice of movement of the top end of the riser without sea
currents for a planar model is solved in [4]. The solution presented is obtained by
means of the finite difference method for discretizing the riser and the ant colony
algorithm for searching the optimal trajectory of the top end of the riser.
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Fig. 1 Movement of the riser (a) sea current in-plane (b) sea current out of plane

In this paper, we use a modified formulation of the segment method (MS) [5, 6]
for discretization of the riser and our own computer implementation of the method.
It enables us to formulate the equations of motion using joint coordinates with
consideration of bending, torsion, and elongation of the flexible riser. The possibility
of elimination of some generalized coordinates is an important feature of the model,
which can help to considerably improve the numerical effectiveness of the model
and program. This is crucial since the choice of the base optimal trajectory ensuring
realization of the required movement of the bottom end of the riser requires several
integrations of the equations of motion. The equations of dynamics of the system
are integrated for each combination of parameters defining the motion of the base in
order to define the value of the objective function (minimal distance of the bottom
end of the riser from the defined destination during a defined period of time and
defined kinetic energy at the end of motion). The downhill simplex method is used
for solving the optimization problem.

2 Discretization of the Riser and Equations of Motion

The segment method is one of the methods used for discretization of slender beam-
like links. The finite element method [2], the finite difference method [1], and the
lumped mass method [7] are examples of other methods used for this purpose.
The most popular one – the finite element method – is implemented in commercial
software packages, including those dedicated to analysis of offshore structures.

The extensive description of the method and the comparison of its numerical
effectiveness in formulations using absolute and joint coordinates is presented in
[8]. When using the absolute coordinates, the generalized coordinates of the i-th
segment (rfe) are the components of a vector with six elements:
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qA,i =
[

ri
ϕi

]

(1)

where ri =
⎡

⎣
xi

yi

zi

⎤

⎦ are coordinates of point Ai with respect to the global reference

system { }, ϕi =
⎡

⎣
ϕi

θi

ψi

⎤

⎦ are ZYX Euler angles (see Fig. 2) [9].

The vector of generalized coordinates of the flexible link consists of
NA = 6(n + 1) components and takes the following form:

qA =
[

qTA,0 . . . qTA,i . . . qTA,n
]T
. (2)

The vectors of generalized coordinates of the segments, when joint coordinates
are used [8], take the following form:

qJ,i = ϕi , (3)

where ϕi is defined in (1) and the vector of generalized coordinates of the whole
link has NJ=3 + 3(n+1) components:

Fig. 2 ZYX Euler angles, cϕ – spring reflecting torsion, cθψ – spring reflecting bending
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qJ =
[

rT0 qTJ,0 . . . qTJ,i . . . qTJ,n
]T

(4)

where r0 =
[
x0 y0 z0

]T
are coordinates of point A0 with respect to global reference

system { }.
For absolute coordinates, transformation of coordinates from local system {i}′ to

the global system (Fig. 2) is carried out as follows:

r = ri + Rir′, (5)

where r is the vector of coordinates of a chosen point of segment i in global system
{ }, r

′
is the coordinate vector of this point with respect to local coordinate system

{i}′ , Ri = R(ψ)i R(θ)i R(ϕ)i is the rotation matrix.
When joint coordinates are used, coordinates ri of point Ai can be calculated

from the relation:

ri = r0 +
i−1∑

j=0

Rj

⎡

⎣
lj

0
0

⎤

⎦ = r0 +
i−1∑

j=0

ljφj (6)

and vector φj =
[
cθj cψj cθj sψj −sθj

]T
is the first column of matrix Ri defined

in (5).
Papers [10, 11] present a formulation of the method, in which, in order to

consider elongation of a flexible link, each rfe from Fig. 3 is additionally divided into
two parts connected by means of spring-damping element reflecting longitudinal
flexibility. The vector of generalized coordinates of rfe i is then defined in the
following form:

qΔ,i =
[

ri ϕi Δi
]T
, (7)

where ri, ϕi are defined by (1), Δi is the elongation of rfe i.
This paper presents a new formulation of the segment method with consideration

of the elongation of a flexible link but by means of joint coordinates.
When discretizing the flexible link (Fig. 3), as in the Rigid Finite Element

Method [9], primary division is carried out first. It is assumed that the generalized
coordinates of the link are

r0 =
[
x0 y0 z0

]T
– coordinates of point A0, (8a)

qi =
[
�i Δi

]T
–generalized coordinates of rfe i, i = 0, . . . , n− 1, (8b)
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Fig. 3 Discretization of the flexible link (a) primary division (b) secondary division (c) transla-
tional coordinates Δi

qn = �n − generalized coordinates of rfe n, (8c)

where �i =
[
ψi θi ϕi

]T
, ψ i, θ i, ϕi are ZYX Euler angles defining orientation of

rfe i, �i is the elongation of primary element i (Fig. 3).Coordinates of any point of
rfe i with respect to global reference system can be defined by the relation:

r = r0 +
i−1∑

j=0

Tj + Rir′, (9)

where Tj = R(ψ)j R(θ)j R(ϕ)j �j , �j =
[
lj−1 +Δj 0 0

]T
, r

′
are the coordinates of

the point in the local system of rfe i.
The equations of motion are derived from the Lagrange equations of the second

kind. The kinetic energy of rfe, the potential energy of the spring damping elements
(sde) as well as the sea environment such as drag, buoyancy forces, added mass
(according to the Morison equation), and internal flow are included in the equations.

Having omitted laborious transformations, the equations of motion can be written
as a set of 6 + 4n = N nonlinear differential equations of the second order in the
following form:

M (q) q̈ = f (t,q, q̇) , (10)

where q =
[

rT0 qT0 . . . qTn−1 qTn
]T

; r0 = [
x0 y0 z0

]T
; qi =

[
�Ti Δi

]T
for

i = 0,1, . . . ,n-1; qn = �n; �i defined in (8) for i = 0,1, . . . ,n.
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Table 1 Special cases of the equations of motion for the segment method in joint coordinates

Notation r0 qi qn �i Description

M0

r0 =
⎡

⎢
⎣

x0

y0

z0

⎤

⎥
⎦

qi =
[

�i

�i

]
qn = �n

�i =
⎡

⎢
⎣

ψi

θi

ϕi

⎤

⎥
⎦

General case described
above; consideration of
bending, and torsional
and longitudinal
flexibilities.

M1 As above qi = �i As above As above Classic case of MS
described in [5, 8].

M2
As above qi =

[
�i

�i

]

As above �i =
[
ψi

θi

]

Torsional flexibility is
omitted, bending and
longitudinal are taken
into account.

M3 As above qi = �i As above As above Only bending flexibility
is considered [6]

M4
r0 =

[
x0

y0

]

qi =
[

�i

�i

]

As above �i =
[

ψi

]
Bending in plane xy and
extensibility are
considered.

M5 As above qi = �i As above As above Only bending in xy
plane is taken into
account [12].

Specific cases with smaller numbers of degrees of freedom can be obtained from
Eq. (10), by appropriate modifications. They are presented in Table 1. Models M0,
M1, M2, and M3 are spatial models (3D), while models M4 and M5 are planar (2D).

3 Validation of the Model

The model and formulae presented are implemented on a computer in Delphi 10.1.
Validation of models and the computer program is carried out by comparison of
our own results obtained for simulations of vibrations of the vertical riser with
experimental measurements performed at MARITEK and presented in [13]. Paper
[13] presents also results of numerical simulations using RIFLEX for a model of a
riser with parameters as in Table 2.

Values of the first three frequencies of free vibrations are given in Table 3. The
calculations were performed assuming n = 25.

The results obtained are very close to those obtained by RIFLEX, and the
percentage error with reference to the experimental measurements does not exceed
5%.

Displacements and curvature of the riser were also measured in the experiment
for harmonic motion imposed on the top end of the riser along the direction of axis
x with amplitude A = 0.013 [m] and period P = 0.677 [s], which correspond to the
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Table 2 Parameters of the riser analyzed

Riser analyzed Parameter Notation Unit Value

O 1.
36

8 
m

E

8.
99

6 
m

waterline

Outer diameter Dout m 0.028

Inner diameter Dinn m 0.017
Bending stiffness EI Nm2 120
Spring stiffness EA Nm2 1.819E+5
Top tension T0 N 212
Unit mass of the riser ρr kg/m 0.668
Water density ρw, ρF kgm−3 1025
Normal drag coefficient D′x − 0.1
Tangential drag coeff. D′yz − 1.0

Added mass coefficient cM − 2.1

Table 3 Frequencies of free vibrations

Experiment e Riflex r MS s

Mode f [Hz] f [Hz]
∣
∣ e−r
e

∣
∣ · 100% f [Hz]

∣
∣ e−s
e

∣
∣ · 100%

1 0.646 0.648 0.3 0.642 0.6
2 1.477 1.445 2.2 1.436 2.8
3 2.619 2.503 4.4 2.492 4.8

second frequency of the riser (according to measurements). Figure 4 presents the
comparison of displacement amplitudes and curvature of the riser.

The comparison shows acceptable compatibility with the experiment and sub-
stantial agreement with the results of simulations by RIFLEX.

4 Optimization of the Base Trajectory in Re-Entry

Movement of the riser during its installation requires precise definition of the final
position of the bottom end of the riser during a desired period of time tm. This means
that it is necessary to plan the motion of the base (vessel or platform) so that after
desired time tm, point E of the riser is as close as possible to the target position
defined as Em in Fig. 1. Moreover, the vibrations of the riser after time tm should
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Fig. 4 Comparison of results obtained by experimental measurements, simulations by RIFLEX
and the segment method (a) displacement amplitudes (b) curvature

also be reduced. According to the above requirements, the objective function in the
optimization task is formulated in the form of the following functional:

Ω = c1
∣
∣rE (tm) −rEm

∣
∣ 2 + c2

tk∫

tm

Ekdt, (11)

where rE(tm) is the vector defining the position of the bottom end of the riser (point
E) at time moment tm, rEm is the target position of point E of the riser at time tm,
tk∫

tm

Ekdt is the kinetic energy of the riser in time interval <tm, tk>, tk defines the end

of simulations, and c1, c2 are chosen constants.
The equations of motion (10) have to be integrated for each possible trajectory

of the base, which is defined by vector r0 = r0(t) in order to calculate the value
of functional �. The problem defined is a 3D problem due to the sea current. It is
assumed that the motion of the base is defined by the following functions x0 = x0 (t),
y0 ≡ 0, z0 = z0 (t), which means that the vertical movement is omitted. Time interval
<0, tm> is divided into m subintervals and the courses of velocities v0,x = ẋ0 and
v0,z = ż0 are defined as splines of the third order and fulfil the following conditions:

{
x0(0) = 0, x0 (tm) = ΔxE
v0,x(0) = v0,x (tm) = 0

{
z0(0) = 0, z0 (tm) = ΔzE
v0,z(0) = v0,z (tm) = 0

. (12)

Values vi,x = ẋ0 (ti), vi,z = ż0 (ti) for i = 1, . . . , m − 1, defining courses of
functions x0(t) and z0(t), which fulfil conditions (12) and functional �, are sought.
For each combination of 2(m− 1) parameters defining the trajectory of the base, the
equations of motion of the riser (10) have to be integrated in order to calculate the
value of functional �(v1, x, . . . , vm − 1, z). The results presented below are obtained
for the riser with parameters as in Table 4 identical to those in [4].
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Table 4 Parameters of the riser

Parameter Notation Unit Value

Length L m 1500
Outer diameter Dout m 0.406
Inner diameter Dinn m 0.375
Cross-section moment of inertia I m4 3.63E-6
Mass in air per unit length m kg/m 229
Added mass per unit length ma kg/m 137.4
Weight in water per unit length W N/m 1950
Young’s module E N/m2 2.07E+11
Drag coefficient cD − 1.2
Added mass coefficient cM − 1.5
Water density ρw kg/m3 1025

Table 5 Static deflection of point E for vw = 0.8 m/s

Static deflection of the riser αw ΔxE [m] ΔzE [m]

0 122.11 0

45 86.34 −86.34
90 0 −122.11
135 −86.34 −86.34
180 −122.11 0

Point O (the upper end) of the riser is attached by means of a ball-joint with
the base. Torsion and elongation deformations are omitted in the optimization
calculations due to their negligible influence on the trajectory of point E. Thus,
model M3 from Table 1 is considered. Table 5 presents static deflections ΔxE and
ΔzE dependent on angle αw for vw = 0.8 m/s.

Values from Table 5 were used for defining boundary conditions from (12)
assuming the following:

{
x0 (tm)−ΔxE = 100+ΔxE

z0 (tm)−ΔzE = ΔzE
. (13)

For optimization calculations, it was assumed that tm = 600 s and tk = 900 s.
Courses of coordinates x0 and z0 as well as velocities of the base motion in this
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directions after optimization for different angles αw of the sea current acting on the
riser are shown in Fig. 5.

Figure 6 presents the motion of the bottom end of the riser in both directions and
its trajectory.

It can be seen that the position of the bottom end of the riser stabilizes in near
proximity to the desired position (xE = 100, zE = 0) in the given time period and
the final base velocity is equal to 0. In some cases, longer simulation time may be
required (e.g., for αw = 90

◦
).

Fig. 5 Motion of the top end of the riser for different angles αw (a) x0 (b) z0 (c) ẋ0 (d) ż0

Fig. 6 Motion of the riser for different angles of sea current (a) xE of the bottom end (point E) (b)
zE of the bottom end (point E) (c) trajectory of the top end of the riser (point O)
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5 Closing Remarks

The paper applies the segment method to solve the dynamic optimization problem
of choosing the trajectory of the base with an attached riser so that the bottom end
of the riser is relocated to a defined destination during a given time. The equations
of motion are integrated at each optimization step for each combination of motion
parameters describing the trajectory of the base. Thus, the numerical effectiveness
of the method used for discretization of the riser is crucial. The segment method
proposed, due to its facility for simplifications (by elimination of bending and
longitudinal vibrations), enables us to solve the equations of motion for a single
combination of input parameters with a relatively large integration step. Integrating
the equations of motion formulated for model M3 over the interval <0,900 s> with
time stepΔt = 0.2 s, for n= 10, (division of the riser into 11 rfes and 10 sdes) takes
less than 1 s.

Validation of the method and the program is carried out by comparison of
the authors’ own results with experimental measurements presented by other
researchers. Good compatibility of the results has been achieved.

The model presented has been used for several optimization simulations in which
the trajectory of the base was calculated for different angles of the sea current acting
on the riser.
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Continuous Leaderless Synchronization
Control of Multiple Spacecraft on SO(3)

Ti Chen

1 Introduction

Attitude coordination is one key to some spacecraft formation flying missions,
such as interferometry and inter-spacecraft communication. However, since the
configuration space of the spacecraft attitude is the special orthogonal group
SO(3), the strongly nonlinear attitude dynamics poses great challenges for the
controller design. Generally, attitude control is investigated based on some attitude
parameterizations [1, 2], such as Euler angles, Modified Rodriguez Parameters
(MRPs), or quaternions. The first two attitude representations cannot describe the
rotation globally, i.e., the minimal attitude representations have singular points.
Quaternions double cover SO(3), i.e., two antipodal quaternions represent a single
attitude [3]. As a result, quaternions are not unique in attitude representation. With
continuous control laws, the undesirable unwinding phenomenon may happen. To
avoid the singularities of Euler angles and Modified Rodriguez Parameters (MRPs)
and the ambiguity associated with quaternions, some control algorithms have been
developed directly on SO(3). However, no continuous time-invariant control laws
can globally stabilize the attitude maneuvering, and almost global asymptotic
stability is the best result because SO(3) is not diffeomorphic to any Euclidean
space [4].

Furthermore, in the attitude consensus control, the leader–follower case has been
widely studied with various attitude representations [5–7]. However, the leader–
follower architecture relies heavily on the leader. The error or loss of a leader
will cause the mission’s failure. The leaderless consensus strategy can avoid this
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problem. Hence, it is necessary to consider the leaderless consensus of multiple
spacecraft [8]. However, all existing studies on leaderless attitude consensus are
based on specified communication topologies or with local stability. The available
methods with a distributed observer to estimate the leader’s information do not work
in the case of the leaderless consensus under a general undirected graph. For exam-
ple, both the observers in [9] and [10] are proposed for a specified communication
topology. It is almost impossible that the finite-time observer in [11] converges to a
matrix on SO(3) without the leader’s information, i.e., the observer cannot provide
a feasible reference trajectory. Hence, the leaderless attitude synchronization on
SO(3) under a general connected undirected graph is still unsolved. This work
will provide a solution to such an open problem. Furthermore, the commonly used
actuators, such as reaction wheels and control moment gyroscopes, can only provide
continuous control torques. Hence, a continuous controller is desired for practical
applications. The main contribution of this paper is that the leaderless consensus
of multiple spacecraft is solved directly on SO(3) under a general connected
undirected graph. Compared with the existing studies [12] on leaderless consensus,
the graph in this study is more general. Different from [13], an almost global
stability is achieved.

2 Problem Formulation

2.1 Notations and Graph Theory

SO(3) = {R ∈ R
3×3|det(R) = 1,RTR = RRT = I 3} is a special orthogonal

group in R
3×3 with determinant 1, where I 3 is the identity matrix of 3× 3. Let

SO(3) be the group of skew-symmetric matrices in R
3×3, i.e., SO(3) = {Ω̄|Ω̄ ∈

R
3×3, Ω̄ = −Ω̄T }. SO(3) is referred as the Lie algebra of the Lie group SO(3). The

mapping (·)× : R3 → SO(3) is defined such that a×b = a × b for vectors a ∈ R
3

and b ∈ R
3. The wedge mapping (·)∨ : SO(3)→ R

3 denotes the inverse mapping
of a×, i.e., (a×)∨ = a. For a ∈ R

3 and R ∈ SO(3), we have (i) tr(Ra×) =
−aT (R − RT )∨; (ii) (a×R + RT a×)∨ = (

tr(R)I 3 − R
)
a; and (iii) (Ra)× =

Ra×RT .
An undirected graph G = (V,E) is adopted to describe the communication

among N spacecraft. V = {1, 2, · · · , N} and E ⊂ V×V are the node set and the
edge set, respectively. The element (i, j) ∈ E means that the j th node can receive
information from node i. Nodes i and j are the parent and the child, respectively.
The in-degree and out-degree of the ith node are the number of edges having node
i as a head and having node i as a tail. The set of the neighbors of the ith node is
denoted by Ni = {j |(j, i) ∈ E}. The number of neighbors of the ith node is equal
to its in-degree. The adjacency matrix of the communication graph is represented
by A = [aij ] ∈ R

N×N , where aij = 1 if (j, i) ∈ E and aij = 0 otherwise.
Note that aii = 0. For (i, j) ∈ E implies (j, i) ∈ E ∀i, j , the graph is said to
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be undirected. A path is defined as a sequence of nodes i1, i2,· · · , ir such that
(ik, ik+1) ∈ E holds for k = 1, · · · , r − 1. If there exists a path from node i to
node j , the two nodes are said to be connected. The undirected graph G is said
to be connected if any two distinct nodes are connected. A tree is defined as an
undirected graph in which any two nodes are connected by exactly one path. Define
the in-degree of node i as di = ∑

j∈Ni
aij . Denote the diagonal in-degree matrix

as D = diag{di} and the graph Laplacian matrix as L = D − A. In this study, it is
assumed that the undirected communication graph G is connected. Hence, the graph
Laplacian matrix L is positive semidefinite and zero is a simple eigenvalue of L,
and 1 = [1, 1, · · · , 1]T ∈ R

N is the associated eigenvector [14].

2.2 Spacecraft Dynamics

The dynamics equations of the ith spacecraft on SO(3) are

Ṙi = Riω
×
i (1)

J iω̇i = −ω×i J iωi + ui + d̄ i (2)

where Ri ∈ SO(3) is the rotation matrix from the body frame to the inertial
reference frame, ωi ∈ R

3 is the angular velocity, J i ∈ R
3×3 is the inertia matrix of

the spacecraft, ui is the control torque, and d̄ i is the external disturbance. Suppose
that the inertia matrix J i is uncertain and d̄ i is bounded by a positive constant μ0,
i.e, ‖d̄ i‖2 ≤ μ0 holds.

3 Leaderless Consensus

This section aims to design a distributed controller to achieve the attitude and angu-
lar velocity synchronization of multiple spacecraft under a connected undirected
graph. That is, the control input ui is designed such that

lim
t→∞Ri = lim

t→∞Rj , lim
t→∞ωi = lim

t→∞ωj (3)

hold for ∀i, j ∈ V and i �= j . Note that the final synchronized angular velocity can
be non-zero.
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3.1 Generating an Undirected Tree Graph

Indeed, there are many algorithms [15] for traversing or searching tree structures,
such as breadth-first search. However, usually, the global information is needed in
these algorithms. Hence, in this subsection, to facilitate the design of a distributed
controller, as shown in Algorithm 1, a method is proposed to generate an undirected
tree graph based on the local information only. The generated undirected tree
graph is referred as G′ in what follows. Essentially, some communication edges
are blocked based on the Algorithm 1 to obtain an undirected tree graph. Note that
the information that flows in the edge contains layer number, friend flag (0 or 1), and
its own attitude. Figure 1 gives one example to show how to generate an undirected
tree graph based on the proposed algorithm. In Step A, the five nodes are divided
into three layers. According to the rules in Step B, the red dotted communication
should be blocked because their friend flags are equal to 0 and two possible tree
graphs shown in Fig. 1(iii) and (iv) can be obtained.

Algorithm 1
Initialize:

The 1st node is listed in Layer 1, i.e., Ly1 = 1,
The layer numbers of the other nodes are −1 i.e., Lyi = −1, where i = 2, · · · , N
The friend flag Fk is initialized as 0 for each communication edge.

Algorithm Main():
Step A: Assign Layer number for each node.

For node i, if Lyi = −1, the Layer number is set as 1 plus the minimum layer number that
node i can receive.

Step B: Extract an undirected tree graph.
Rule 1: All nodes in Layer j must choose only one neighbor (friend) from the previous

layer for j ≥ 2 and change the friend flag of the relevant undirected edge to 1.
Rule 2: All nodes drop the information received from the nodes in the same layer, i.e., the

communication edges between two nodes in the same layer are with Fk = 0.

Fig. 1 An example of generating a tree graph using Algorithm 1
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3.2 Distributed Observer

Based on the generated tree graph G′ in Sect. 3.1, a distributed observer shown in
the following equation is designed for each spacecraft in the group:

˙̂
Ri = R̂iω̂i× , ˙̂ωi = ûi (4)

where R̂i ∈ R
3×3 and ω̂i ∈ R

3 are the estimates of the final convergence attitude
and angular velocity, respectively. ûi ∈ R

3 is a virtual control input of the designed

observer and defined as ûi = −κ1
∑N
j=1 a

′
ij (R̂

T

j R̂i − R̂
T

i R̂j )
∨ − κ2

∑N
j=1a

′
ij (ω̂i −

ω̂j ), where a′ij is the (i, j) element of the adjacency matrix of the communication

graph G′. Note that the initial values of R̂i and ω̂i are set as Ri (0) and ωi (0),
respectively.

Lemma 1 The synchronization of the N observers governed by Eq. (4) can be
achieved almost globally asymptotically under the generated tree graph G′. Fur-
thermore, the acceleration ˙̂ωi will converge to zero asymptotically.

Proof Consider the following Lyapunov function V1 = κ1
2

∑N
i=1

∑N
j=1 a

′
ij tr(I 3 −

R̂
T

j R̂i ) + 1
2Ω̂

T
Ω̂ , where tr(·) represents the trace of a matrix and Ω̂ is

defined as [ω̂T1 , · · · , ω̂TN ]T . V1 = 0 holds if and only if R̂j = R̂i and
ω̂i = ω̂j = 0 hold for ∀i, j ∈ V. The time derivative of V1 along Eq. (4) is V̇1 =
κ1
∑N
i=1

∑N
j=1 a

′
ij

[
ω̂
T
i (R̂

T

j R̂i − R̂
T

i R̂j )
∨
]
+ ∑N

i=1 ω̂
T
i [−κ1

∑N
j=1 a

′
ij (R̂

T

j R̂i −
R̂
T

i R̂j )
∨−κ2

∑N
j=1 a

′
ij (ω̂i−ω̂j )] = −Ω̂

T
(L′⊗I 3)Ω̂ = −Ω̂

T

1 L′Ω̂1−Ω̂
T

2 L′Ω̂2−
Ω̂
T

3 L′Ω̂3, where Ω̂k ∈ R
N is a column vector consisting of the kth element of

ω̂1, · · · , ω̂N and L′ is the Laplacian matrix of the graph G′. The real symmetric
matrix L′ can be decomposed as L′ = QΛQT , where Λ is a diagonal matrix whose
entries are the eigenvalues of L′ and Q is an orthogonal matrix whose columns are
the eigenvectors of L′. Since zero is a simple eigenvalue of L′, only the (1,1) element
of Λ is zero and the first column of Q is 1/

√
N . Letting Y 1 = QT Ω̂1, the solution

to Ω̂
T

1 L′Ω̂1 = Ω̂
T

1 QΛQT Ω̂1 = Y T1 ΛY 1 = 0 is Y 1 = [α, 0, · · · , 0]T ∈ R
N and

Ω̂1 = α1 with a constant α. The similar conclusions can be drawn for Ω̂2 and Ω̂3.
Hence, the solution to V̇1 = 0 is ω̂i = ω̂j for ∀i, j ∈ V. In the case of ω̂i = ω̂j ,
one has ˙̂ωi = ˙̂ωj , i.e.,

N∑

k=1

a′i1k(R̂
T

k R̂i1 − R̂
T

i1
R̂k)

∨ =
N∑

k=1

a′i2k(R̂
T

k R̂i2 − R̂
T

i2
R̂k)

∨ = ˙̂ω1 (5)

where (i1, i2) is one edge in G′. Denote Δik = (R̂Tk R̂i − R̂
T

i R̂k)
∨. Note that Δik =

−Δki . Since the undirected graph G′ is a tree, a directed spanning tree Ḡ′ with
the first node as the root can be obtained by designating a proper direction to each
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undirected edge in G′. Note that the graph Ḡ′ has N agents and N − 1 directed
communication edges. Equation (5) can be expressed as (C̄ ⊗ I 3)Δ̄ = 0, where
Δ̄ = [ΔT , ˙̂ωT1 ]T with Δ as the column stack vector consisting of Δik and C̄ =
[C − 1N ] ∈ R

N×N with C ∈ R
N×(N−1) is the incidence matrix of Ḡ′. Note

that each column of C only contains two non-zero elements, i.e., 1 or −1. Because
Ḡ′ is a directed spanning tree, C is full column rank, i.e., the N − 1 columns of
C are linearly independent. It is easy to verify that the inner product between the
vector −1N and each column of C is zero, i.e., −1N is orthogonal to each column
of C. Hence, the N columns of C̄ are linearly independent. The only solution to

(C̄ ⊗ I 3)Δ̄ = 0 is Δ̄ = 0. As shown in [16], (R̂
T

k R̂i − R̂
T

i R̂k)
∨ = 0 has two

solutions, i.e., R̂k = R̂i and tr(R̂
T

k R̂i ) = −1. The two solutions corresponds to the

minimum and the maximum of the potential function tr(I 3 − R̂
T

k R̂i ). Considering
that G′ is an undirected tree graph, only R̂1 = · · · = R̂N is stable. According
to LaSalle’s invariance principle, the synchronization of the N observers can be
achieved almost globally asymptotically.

Furthermore, since the N observer will be driven to the equilibrium {Δ̄ =
0, ω̂1 = · · · = ω̂N }, ˙̂ωi will converge to zero asymptotically according to Eq. (4).

Remark 1 Note that the convergence of the observers in Eq. (4) has nothing to do
with the real-time state of the networked spacecraft and its responses are continuous.
Essentially, the observer (4) provides the reference attitude and angular velocity for
each node in spacecraft formation flying missions. Both R̂i and ω̂i will start from
the initial conditions of the ith spacecraft.

3.3 Controller Design

A synchronization controller is designed in this section under a connected undi-
rected graph. Based on the distributed estimator governed by Eq. (4), for the ith
spacecraft, a sliding variable can be defined as si = ωi + Φi , where Φi =
β1(R̂

T

i Ri − RTi R̂i )
∨ − RTi R̂iω̂i with a positive constant β1. Note that the time

derivative of Φi can be expressed as Φ̇i = β1
(
tr(RTi R̂i )I 3 − RTi R̂i

)
ωi −

β1
(
tr(R̂

T

i Ri )I 3−R̂
T

i Ri
)
ω̂i+ω×i RTi R̂iω̂i−RTi R̂i ˙̂ωi . Note that the term−RTi R̂i ˙̂ωi

goes to zero as time goes to infinity according to Lemma 1. Denote Φ◦i = Φ̇i +
RTi R̂i ˙̂ωi . The controller can be designed as

ui = −k1si + ω×i Ĵ iωi − Ĵ iΦ
◦
i −

d̂isi

‖si‖2 + α2
i

− k2

∑

j∈Ni

[β2(R
T
j Ri −RTi Rj )

∨ + si − sj ] (6)
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where k1, k2, and β2 are three positive constants, and Ĵ i , d̂i , and αi are three adaptive
parameters. Note that the terms −k1si and −k2

∑
j∈Ni

aij [β2(R
T
j Ri −RTi Rj )

∨ +
si − sj ] are used to track the observer state and achieve the synchronization,
respectively. Essentially, Ĵ i is the estimate of the positive definite matrix J i . Note
that J iΦ

◦
i − ω×i J iωi can be expressed as J iΦ

◦
i − ω×i J iωi = Ψ iJ

-
i , where

Ψ i ∈ R
3×6 and J -i = [Ji,11, Ji,12, Ji,13, Ji,22, Ji,23, Ji,33]T ∈ R

6×1, where Ji,kr
represents the (k, r) element of J i . Similarly, Ĵ -i can be obtained for Ĵ i , i.e.,
Ĵ -i = [Ĵi,11, Ĵi,12, Ĵi,13, Ĵi,22, Ĵi,23, Ĵi,33]T . The updating law of Ĵ -i can be defined
as

˙̂
J -i = Γ0Ψ

T
i si (7)

where Γ0 is a positive constant.
Since RTj Ri is also one element of SO(3), based on Rodrigues’ rotation formula,

one has RTj Ri = I 3 + (1 − cos θ)n̄×n̄× + sin θ n̄×, where θ and n̄ are the

rotation angle and a unit vector, respectively. Hence, (RTj Ri − RTi Rj )
∨ satisfies

the inequality ‖(RTj Ri −RTi Rj )
∨‖2 = ‖2 sin θ n̄‖2 ≤ 2.

The closed-loop system can be expressed as

J i ṡi = J̃ iΦ
◦
i − J iR

T
i R̂i ˙̂ωi − ω×i J̃ iωi − k1si − d̂isi

‖si‖2 + α2
i

− k2

∑

j∈Ni

(si − sj )+ d i (8)

where J̃ i = J i − Ĵ i and d i = d̄ i − k2
∑
j∈Ni

β2(R
T
j Ri − RTi Rj )

∨. Note that d i

is bounded by μ0 + 2(N − 1)β2κ2. d̂i is updated by the following law to estimate
the bound of d i :

˙̂
di =

⎧
⎨

⎩

Γ1‖si‖2 if d̂ i ≤ μ̄0

Γ1‖si‖2(1− d̂χ1
i + μ̄χ1

0 ) otherwise
(9)

where χ1 > 0 is a even number, Γ1 > 0, and μ̄0 is chosen large enough such that
μ̄0 > μ0 + 2(N − 1)β2κ2 holds. αi is introduced to avoid the possible control
chattering with the following adaption law:

α̇i = −Γ2αid̂i‖si‖2

‖si‖2 + α2
i

(10)

with Γ2 > 0.
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Theorem 1 With the observer in Eq. (4) and the updating laws (7), (9), and (10),
if μ̄0 > μ0 + 2(N − 1)β2κ2 holds, the controller (6) can complete the attitude
synchronization mission almost globally asymptotically.

Proof Choose the following Lyapunov function V2 = ∑N
i=1(

1
2sTi J isi +

1
2Γ0

J̃
-T

i J̃
-

i + 1
2Γ1
d̃

2
i + 1

2Γ2
α2
i ), where d̃ i = μ̄0 − d̂ i .

In the case of d̂ i ≤ μ̄0, −sTi d i + 1
Γ1
d̃ i
˙̃
di = −sTi d i − d̃ i‖si‖2 ≤ d̂i‖si‖2 holds.

Otherwise, one has −sTi d i + 1
Γ1
d̃ i
˙̃
di = −sTi d i − (μ̄0− d̂ i )‖si‖2(1− d̂χ1

i + μ̄χ1
0 ) ≤

μ̄0‖si‖2− (μ̄0− d̂ i )‖si‖2(1− d̂χ1
i + μ̄χ1

0 ) = μ̄0‖si‖2− μ̄0‖si‖2(1− d̂χ1
i + μ̄χ1

0 )+
d̂ i‖si‖2(1−d̂χ1

i +μ̄χ1
0 ) = μ̄0‖si‖2(−d̂χ1

i +μ̄χ1
0 )+d̂ i‖si‖2+d̂ i‖si‖2(−d̂χ1

i +μ̄χ1
0 ) <

d̂i‖si‖2. Hence, V̇2 satisfies the following inequality:

V̇2 ≤∑N
i=1

[

sTi (−J iR
T
i R̂i ˙̂ωi − k1si − d̂isi

‖si‖2+α2
i

− k2
∑
j∈Ni

(si − sj ))

+d̂i‖si‖2 − α2
i d̂ i‖si‖2

‖si‖2+α2
i

]

≤∑N
i=1

[

sTi (−J iR
T
i R̂i ˙̂ωi − k1si )

]
(11)

If ‖si‖2 > ‖J i‖2‖ ˙̂ωi‖2/k1, V̇2 < 0 holds. According to Lemma 1, ‖ ˙̂ωi‖2 → 0
as time goes to infinity. Hence, si will go to zero as t →∞. From the definition of

si , we have the system governed by ωi − RTi R̂iω̂i + β1(R̂
T

i Ri − RTi R̂i )
∨ = si ,

where si is considered as a decreasing control input with time. For such a system, a

Morse–Lyapunov function is chosen as Vsi = tr(I 3−R̂
T

i Ri ), whose time derivative
is

V̇si = ωTi (R̂
T

i Ri −RTi R̂i )
∨ + ω̂

T
i (R

T
i R̂i − R̂

T

i Ri )
∨

= −β1(R̂
T

i Ri −RTi R̂i )
∨T (R̂Ti Ri −RTi R̂i )

∨ + sTi (R̂
T

i Ri −RTi R̂i )
∨

(12)

In the case of ‖(R̂Ti Ri − RTi R̂i )
∨‖2 > ‖si‖2/β1, V̇si < 0 holds. Considering

si → 0 as t →∞, (R̂
T

i Ri − RTi R̂i )
∨ will go to zero as time goes to infinity. Note

that (R̂
T

i Ri −RTi R̂i )
∨ = 0 means Ri = R̂i or tr(RTi R̂i ) = −1, where Vsi is equal

to 0 or 4. Hence, only Ri = R̂i is the stable equilibrium.
Hence, considering the conclusions in Lemma 1, the attitude synchronization of

multiple spacecraft can be achieved almost globally asymptotically.

Remark 2 Note that the conclusion of Theorem 1 is attitude synchronization of
multiple spacecraft, i.e., Ri → Rj and ωi → ωj as t →∞ almost globally. The
final values of Ri can be time-varying and ωi can converge to a non-zero value.
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4 Simulations

In this section, a numerical simulation is presented to show the effectiveness of the
proposed control scheme in Eq. (6) using five rigid spacecraft under the original
graph in Fig. 1. The tree graph in Step B(1) in Fig. 1 is used as the generated graph
G′. The inertia matrix J i is chosen as diag{25, 20, 8}. The external disturbance
d̄ i is set as 0.1 sin(5t) Nm. The initial attitudes and angular velocities of the five
spacecraft are

R1(0) =
⎡

⎣
0.7474 0.5387 −0.3887
−0.5534 0.8287 0.0844
0.3676 0.1521 0.9175

⎤

⎦ , ω1(0) = [0.0337, 0.0145, 0.0711]T

(13)

R2(0) =
⎡

⎣
0.3478 −0.7321 −0.5858
0.5453 0.6662 −0.5088
0.7627 −0.1425 0.6309

⎤

⎦ , ω2(0) = [0.3455, 0.0671, 0.2494]T

(14)

R3(0) =
⎡

⎣
−0.1476 0.346 −0.9265
0.7834 −0.5309 −0.3231
−0.6037 −0.7735 −0.1927

⎤

⎦ ,

ω3(0) = [−0.1604,−0.1939,−0.0512]T (15)

R4(0) =
⎡

⎣
0.7255 −0.6582 −0.2011
0.5594 0.7342 −0.3848
0.4009 0.1667 0.9008

⎤

⎦ , ω4(0) = [−0.2,−0.208,−0.0381]T

(16)

R5(0) =
⎡

⎣
0.7822 −0.5668 −0.2586
−0.5456 −0.4229 −0.7235
0.3007 0.707 −0.6401

⎤

⎦ , ω5(0) = [0.022, 0.0235, 0.0719]T

(17)

Since the necessary and sufficient condition of tr(I 3 − RTj Ri ) = 0 is Rj = Ri .

Hence, Vsyn = tr(I 3−RT1 R2)+tr(I 3−RT2 R3)+tr(I 3−RT3 R4)+tr(I 3−RT4 R5) ∈
[0, 16] is used to indicate the synchronization error of the five spacecraft. It is
straightforward that Vsyn = 0 holds if and only if the synchronization of the

networked spacecraft is achieved. Vt,i = tr(I 3 − R̂Ti Ri ) ∈ [0, 4] denotes the
tracking error of the ith spacecraft with the attitude in the distributed observer as
the reference trajectory.

The observer parameters κ1 and κ2 are chosen as 0.1 and 0.5, respectively. The
remaining control parameters β1, k1, k2, β2, μ̄0, Γ0, Γ1, and Γ2 are 0.1, 2, 1, 0.1,
1, 0.01, 0.1, and 0.01, respectively. The initial value of the adaptive parameters Ĵ -i ,
d̂i , and αi are set as 0, 0, and 0.1. As shown in Figs. 2 and 3, the controller finishes
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Fig. 2 The synchronization
error Vsyn
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Fig. 3 The tracking error Vt,i
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the leaderless consensus of the networked spacecraft at 70 s. Note that Fig. 3 gives
the tracking error of each spacecraft. It can be found that the potential function Vt,i
is less than 1 during the whole mission, i.e., all five spacecraft are far from the
undesired equilibriums, where Vt,i = 4 holds.

5 Conclusions

The leaderless consensus of multiple rigid spacecraft is studied directly on SO(3)
under connected undirected graphs. To provide the reference signal for each
spacecraft, distributed observers are designed under an undirected tree graph.
A control algorithm is presented to achieve leaderless consensus. The stability
conditions are given based on the rigorous theoretical analyses. Since the controllers
are continuous and developed directly on SO(3), the singularities and ambiguities
associated with other attitude representations can be avoided and the controllers’
continuity facilitates its implementation in practice. How to extend the current work
to the leaderless attitude synchronization on SO(3) under a directed graph can be a
future research direction.
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Preliminary Experimental Study on the
Influence of the Gap in a Vibro-Impact
System with Two-Sided Constraints

Giulia Stefani, Maurizio De Angelis, and Ugo Andreaus

1 Introduction

The impact phenomenon is ubiquitous in many engineering applications involving
mechanical components or structures repeatedly colliding with one another or
with obstacles. In the context of structural pounding, the occurrence of strong
earthquakes can produce large horizontal displacements in base-isolated structures,
which can damage the isolation system or can lead to pounding with the surrounding
moat walls or adjacent structures, if the available clearance is not sufficient. A
possible mitigation measure consists in the interposition of deformable shock
absorbers (bumpers). The introduction of the bumpers limits the displacement of the
structure, but the possible occurrence of the impact with the bumpers can involve an
increase in acceleration which can be detrimental, not only for the structure itself,
but also for any sensitive equipment housed in it. At the same time, the occurrence
of impact can excessively deform the bumpers. The effect of the introduction of
the obstacle depends on several factors, including the mechanical properties of the
bumpers and the distance between them and the structure (gap).

The influence of the gap size on the system response was investigated by several
authors. In general, the response decreases as the gap increases [1–5]. According to
Polycarpou and Komodromos [4, 5], very small seismic gaps, in combination with
strong ground excitation, not allowing the structure to develop high velocities before
the impact, can lead to relatively milder consequences from pounding. According
to Jankowski et al. [6], the optimal gap size to reduce the response is either a
very small one or large enough to avoid collisions. The zero-gap configuration was
recommended by Aguiar and Weber [7], since it allows to maximize the impact force
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in a vibro-impact system without the occurrence of nonlinear jumps. Few works,
on the contrary, deal with negative gaps, resulting in an initial pre-stress/pre-strain
state in the bumpers. In [8] the authors studied the two cases of normal clearance
and prepressing constraints in a two-degree-of-freedom periodically forced system
and found that, if the constraints are initially prepressed, the observed behaviors
are relatively simpler. The effect of the introduction of a prepressing constraint in a
capsule system was investigated in [9].

The practical problem of excessive displacements in base-isolated structures
inspired several works of the authors, of both numerical and experimental nature, in
which a single-degree-of-freedom oscillator, impacting against two deformable and
dissipative bumpers, was considered [10, 11]. The numerical analyses highlighted
gradually more varied and complex behaviors, decreasing the gap between mass and
bumpers [11]. Furthermore, the combination of small gaps with quite deformable
bumpers appeared to be a good choice which allows to realize, compared to
the free flight condition, a reduction of both accelerations and displacements or
a good compromise between reduction of displacements and limited increase in
accelerations [10].

Based on the results of these previous studies, a new laboratory campaign
was designed and conducted to investigate, in particular, small positive, null, and
small negative values of the total gap between mass and bumpers, not previously
tested, in order to validate the numerical predictions. Furthermore, compared to
the previous experimental investigations made by the authors, additional sensors
were used to better characterize the experimentation. In particular, impact load cells
were installed between the mass and the bumpers, to directly measure the contact
force during the impact phases. In this work, some preliminary results of the new
laboratory campaign will be presented. The attention is focused on the influence
of the gap amplitude on the system (mass and bumpers) response, considering, in
particular, small, null, and negative gaps. The selected response quantities are the
relative displacement and the absolute acceleration of the mass, the contact forces,
and the deformation of the bumpers. Although the impact problem has been the
subject of several scientific works, there are not too much studies that address this
topic in such a systematic way.

The paper is organized as follows. The experimental apparatus, together with the
performed tests are introduced in Sect. 2; some preliminary experimental results are
presented and discussed in Sect. 3; the conclusions and future developments of the
work are finally drawn in Sect. 4.

2 Experimental Setup and Performed Tests

The experimental apparatus is shown in Fig. 1. It consists of a rigid body (massM =
550 kg), an elastomeric high damping rubber bearing (HDRB) isolator (denoted as
“damper” in Fig. 1), and two elastomeric shock absorbers (denoted as right and left
bumper, respectively), symmetrically mounted on steel moat walls.
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Fig. 1 Experimental setup: (a) plan view and (b) side view (Section A-A). The zoomed areas
show two photos with details of the impact load cells, enclosed by red squares

2.1 Bumpers

Two configurations, namely with and without bumpers (the latter will be referred
to as free flight condition), under the same base excitation, were considered. In
the experimental laboratory campaign, to study the response of the system in the
presence of obstacles, a single elastomeric bumper, with D-shape hollow section
(denoted as B2), was tested.

2.2 Gap

Several values of the gap were considered, namely: G∞, G30, G16, G10, G4, G0,
G-1, G-2, G-10, where the number, expressed in mm, denotes the amplitude of the
total gap, defined as the sum of the right and left gaps (Fig. 1) and G∞ indicates the
free flight condition. The negative gaps (G-1, G-2, G-10), obtained experimentally
by slightly compressing the bumpers against the mass, involve, as a consequence, an
initial pre-stress/pre-strain state in the bumpers. The investigation of small positive,
null, and negative gaps represents one of the novelty elements of this laboratory
campaign, compared to previous tests and works of the authors.
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2.3 Input

The system was excited, using the shaking table, by a stepwise forward and
backward sine sweep in displacement control, in order to impose a given value
of peak table acceleration A, with a number of cycles nc, in each sub-frequency
range, such as to reach the steady state condition. In this work, some of the
results corresponding to A= 0.05g, where g is the gravity’s acceleration, will be
shown. For G> 0, the investigated frequency range was between 0.5 and 5 Hz, with
frequency step Δf = 0.1 Hz and nc = 10. For G≤ 0, the investigated frequency
range was extended from 0.5 to 10 Hz, with frequency step Δf = 0.1 Hz and
nc = 10. In some cases, especially for small positive gaps, in order to better capture
the experimental response of the system in the low frequency range, further input
signals were imposed, characterized by reduced frequency stepsΔf (up to 0.03 Hz)
and greater number of cycles nc (up to 30 cycles), depending on the performances
of the shaking table.

2.4 Sensors

The measured quantities during the tests were the absolute (or total) accelerations
and displacements of the mass and of the shaking table and the contact forces
between mass and bumpers. The accelerations were measured by accelerometers
and the displacements by laser transducers (Fig. 1). The forces developed at the
moment of impact between mass and bumpers were measured by four impact load
cells, symmetrically mounted on the mass, two on each side (see the two zoomed
areas in Fig. 1). Between the impact load cells and the bumpers, steel plates were
mounted to distribute the impact force. The use of impact load cells represents
another novelty element of this laboratory campaign, compared to previous tests
and works of the authors.

3 Preliminary Experimental Results

The evolution of the experimental forward (solid lines) and backward (dashed lines)
Pseudo-Resonance Curves (PRCs) with the total gap G is represented in Fig. 2,
where each color corresponds to a gap amplitude and the thickness of the lines
is gradually reduced as G decreases. In Fig. 2a,b the black curves denote the free
flight condition. The represented response quantities are: the normalized excursion
of relative displacement of the mass ηd = Ed

Ed0
= umax−umin

2u∗ (Fig. 2a), the normalized

excursion of absolute acceleration of the mass ηa = Ea
Ea0

= amax−amin
2a∗ (Fig. 2b),

the normalized deformation ηj = uj,max
u∗ (j = R, L) (Fig. 2c), and contact force

rj = Fj,max
Mg

(j = R, L) (Fig. 2d) of the right (BR) and left (BL) bumpers, respectively.
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Fig. 2 Forward (solid lines) and backward (dashed lines) PRCs of: (a) ηd; (b) ηa; (c) ηj (j =
R, L) and (d) rj (j = R, L) for different values of the total gap G. In (a) and (b), the free flight
condition (G∞) is represented with black curves and the PRCs corresponding to G-2 and G-10 are
substantially superimposed on each other

In the first three cases, the normalization was made with respect to the free flight
resonance condition (u∗ and a∗ denote the maximum relative displacement and
absolute acceleration of the mass in free flight resonance condition).

As concerns the mass (Fig. 2a,b), it can be observed that, compared to the free
flight condition (black curves), the hardening caused by the impact between the
mass and the bumpers (G> 0) bends the PRCs to the right, causing the occurrence
of jumps (represented with vertical arrows for G4), and thus of a primary right
hysteresis (highlighted in yellow for G4). As G decreases, the maximum value of
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ηd decreases due to the constrain exerted by the bumpers, whereas the acceleration,
after an initial increase, starts to decrease. Gradually more complex scenarios at low
frequencies, associated with secondary resonances, as G decreases were observed,
confirming previous numerical results [11]. The situation returns to be smooth for
bumpers initially more or less in contact with the mass (G� 0), with the resonance
shifted to higher frequencies and without jumps or hysteresis. For small negative
values of the gap (G-1), PRCs bend to the left, due to a softening-like behavior,
showing jumps (represented with vertical arrows) and a primary left hysteresis
(highlighted in cyan). The softening is caused by the detachment of the mass from
the bumpers, during its motion. For negative gaps exceeding a certain value which,
for B2, is between G-1 and G-2, the mass, during its motion, always remains in
contact with both bumpers and therefore, the resisting force is given by the sum of
the forces exerted by the damper and the two bumpers. Consequently, for G-2 and
G-10, since detachment never occurs, the PRCs of ηd and ηa are no longer bent
and show neither jumps nor hysteresis. Furthermore, they appear to be substantially
overlapped. This is due to the fact that, further increasing the negative gap, beyond
a certain value, does not affect the mass response.

As concerns the two bumpers (Fig. 2c,d), the PRCs of the normalized deforma-
tion and contact force are symmetrical due to the mostly symmetric behavior of the
studied system. It can be observed that the trends of both the deformation (Fig. 2c)
and the contact force (Fig. 2d) are qualitative similar to each other and, for what
concerns the cases where G ≥ 0, they are analogous to that of the acceleration of
the mass (Fig. 2b). The jumps and hysteresis are still visible also in these curves.
Compared to the PRCs of ηd and ηa, for G ≥ 0, the PRCs of ηj and rj (j = R, L)
are zero in the absence of impact. On the contrary, for negative gaps (G < 0) the
PRCs assume non-zero values for all frequencies, due to the initial pre-stress/pre-
strain state of the bumpers resulting from the negative gaps. Unlike what was seen
for the mass (Fig. 2a,b), the PRCs of ηj and rj (j = R, L) for G-2 and G-10 do not
overlap, but they have shifted with respect to each other. Passing from G-2 to G-10,
the PRCs move away from the frequency axis, with the extent of the shift related
to initial pre-stress/pre-strain state caused by the negative gap. It can be observed
that these PRCs, once the initial shift value has been removed, are substantially the
same.

Analogous considerations can be made by looking at Fig. 3, in which the force-
displacement cycles, in primary resonance condition, are represented, for both the
mass (inertia force FI vs. relative displacement u of the mass, Fig. 3a) and the two
bumpers (contact force Fj vs. position vj (j = R, L) of the bumper, Fig. 3b). As
in Fig. 2, each color corresponds to a gap amplitude G and the vertical dashed
lines represent the initial position of the bumpers for G> 0. These synthetic
representations allow to see, in the same figure, the evolution of both the forces and
the displacements with the amplitude of the gap. In Fig. 3a both the hardening-like
behavior, caused by the occurrence of impact (for G> 0) and the softening-
like behavior, caused by the detachment, for small negative gaps (G-1, light
orange curve) are observable. For G-2 and G-10, the FI-u cycles are substantially
overlapped, since, as previously said, negative gaps beyond a certain value, do not
affect the mass response. On the contrary, the pre-stress state induced in the bumpers
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Fig. 3 Force-displacement cycles in primary resonance condition corresponding to the investi-
gated values of the total gap G: (a) mass; (b) bumpers

by the negative gap causes the Fj -vj (j = R, L) cycles to move away from the x-axis
(Fig. 3b).

4 Conclusions and Future Developments

Some preliminary results of an experimental laboratory campaign, designed based
on the outcomes of previous studies of the authors, were presented. Compared
to previous tests, also small positive, null, and small negative values of the total
gap between mass and bumpers G were considered. Furthermore, impact load cells
were used to directly measure the contact force between mass and bumpers during
the impact phases. The preliminary experimental results confirmed the numerical
outcomes.

The amplitude of the gap was found to influence the response of both the mass
and the bumpers for G> 0, where the occurrence of impact causes a hardening-like
behavior, characterized by the presence of jumps and a primary right hysteresis in
the PRCs. In particular, referring to the primary resonance condition, the reduction
of the gap causes the reduction of the relative displacement of the mass and an
increase, followed by a decrease, of the absolute acceleration. A trend similar to
the latter one was observed also in the deformation of the bumpers and in the
impact force, which attain zero values in the absence of impact. By putting the
bumpers initially, more or less, in contact with the mass (G� 0) the situation
returns to be smooth, without jumps and hysteresis, although the behavior is still
nonlinear. For small negative gaps (G-1), both the relative displacement and the
absolute acceleration of the mass, the bumpers’ deformation, and the contact force,
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in resonance condition, continue to decrease. Compared to G> 0, a softening-like
behavior was observed, characterized by the occurrence of jumps and a primary left
hysteresis. Furthermore, due to initial pre-stress/pre-strain state resulting from the
negative gap, the PRCs of both the bumpers’ deformation and the contact forces are
always greater than zero for each frequency value. In a dual manner with respect to
G> 0, the softening-like behavior is caused by the detachment from the mass and
the bumpers. For negative gaps exceeding a certain value which, for bumper B2, is
between G-1 and G-2, the mass, during its motion, always remains in contact with
both bumpers and therefore, the resisting force is given by the sum of the forces
exerted by the damper and the two bumpers. In this case, further increasing the
absolute value of the negative gap will only increase the stress and strain state of the
bumpers without further affecting the response of the mass.

With regard to the future developments of this work, the authors intend to finish
processing the recorded data and to extend the experimental laboratory campaign
also considering the earthquake excitation. Furthermore, comparisons with the
results obtained with a suitable numerical model will be carried out.

Acknowledgments “Vibration mitigation via advanced engineered devices and materials”, Great
Research projects of Sapienza University of Rome, N◦ RG11916B8160BCCC.

References

1. S.A. Anagnostopoulos, Pounding of buildings in series during earthquakes. Earthq. Eng. Struct.
Dyn. 16, 443–456 (1988)

2. P. Komodromos, P.C. Polycarpou, L. Papaloizou, M.C. Phocas, Response of seismically isolated
buildings considering poundings. Earthq. Eng. Struct. Dyn. 36, 1605–1622 (2007). https://doi.
org/10.1002/eqe.692

3. P. Komodroms, Simulation of the earthquake-induced pounding of seismically isolated build-
ings. Comput. Struct. 86, 618–626 (2008)

4. P.C. Polycarpou, P. Komodromos, On poundings of a seismically isolated building with adjacent
structures during strong earthquakes. Earthq. Eng. Struct. Dyn. 39, 933–940 (2010)

5. P.C. Polycarpou, P. Komodromos, Earthquake-induced poundings of a seismically isolated
building with adjacent structures. Eng. Struct. 32, 1937–1951 (2010)

6. R. Jankowski, K. Wilde, Y. Fujino, Reduction of pounding effects in elevated bridges during
earthquakes. Earthq. Eng. Struct. Dyn. 29, 195–212 (2000)

7. R.R. Aguiar, H. Weber, Impact force magnitude analysis of an impact pendulum suspended in a
vibrating structure. Shock Vib. 19, 1359—1372 (2012)

8. T. Luo, Z. Wang, Periodically forced system with symmetric motion limiting constraints:
Dynamic characteristics and equivalent electronic circuit realization. Int. J. Nonlin. Mech. 81,
283—302 (2016)

9. Y. Yan, Y. Liu, M. Liao, A comparative study of the vibro-impact capsule systems with one-sided
and two-sided constraints. Nonlinear Dyn. 89, 1063—1087 (2017)

10. U. Andreaus, M. De Angelis, Influence of the characteristics of isolation and mitigation devices
on the response of single-degree-of-freedom vibro-impact systems with two-sided bumpers and
gaps via shaking table tests. Struct. Control Heal. Monit. 27(5), e2517 (2020)

11. G. Stefani, M. De Angelis, U. Andreaus, Scenarios in the experimental response of a vibro-
impact single-degree-of-freedom system and numerical simulations. Nonlinear Dyn. 103, 3465–
3488 (2021). https://doi.org/10.1007/s11071-020-05791-4

https://doi.org/10.1002/eqe.692
https://doi.org/10.1002/eqe.692
https://doi.org/10.1007/s11071-020-05791-4


Experimental Investigation of Nonlinear
Dynamics in Pilot Induced Oscillations
Using FlightGear Flight Simulator

Giuseppe Avon, Arturo Buscarino, and Luigi Fortuna

1 Introduction

Pilot induced oscillation is the result of a detrimental collaboration between human
and machine [1]. PIOs onset conditions are usually related to high gain tasks, which
intuitively could be associated with abrupt and abnormal changes in flight envelope
but also, counterintuitively, are part of standard and well-defined flight operations
[2].

While high precision tasks are normal part of the pilot routine, the onset of severe
PIO is an extraordinary event. This implies the need of a precursory trigger, which
can be embodied in an unexpected event produced by the external environment [3].
Generating PIOs as a result of specific aircraft model input excitation allows the
study of their onset, of their detection and eventual mitigation and/or suppression.
Interesting results may be observed by feeding waveforms to pilot inputs and
studying the response of the aircraft flying inside a simulator, which has several
different physics models working together to calculate the overall vehicle dynamics.

Following recent results [4], the paper aims at investigating the onset of PIOs as
a consequence of a nonlinear dynamical process. For the purpose of the work, pilot
contribution is reduced to a simplified model which includes parametrizable delays,
dead bands, gains and saturations. The artificial nature of the input waveforms
represents a valid expedient to model the abrupt PIO triggering event. Feeding
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these as pilot actions to the simulator input endpoints finally allows their study and
characterization.

The paper is organized as follows. In Sect. 2, the aircraft–pilot coupling is
described, in Sect. 3, the system setup and in Sect. 4 the experimental setup are
discussed. In Sect. 5 simulation setup and experimental results are discussed.
Finally, conclusive remarks are reported in Sect. 6.

2 Aircraft–Pilot Coupling (APC)

Aircraft–Pilot coupling events are unwanted aircraft motions originating from the
interactions between the craft itself and the pilot. These motions include changes
in the flight path, which may result in sustained oscillatory motions. The APC term
is used aside PIO, sometimes as a substitute, to remove the subtle presumption of
blame on the human component of the loop. Although APC events have traces back
in the history of the aviation, most of the severe events results from lacks in the
aircraft design, especially regarding the flight control system. APC events are not
necessarily oscillatory, giving another reason for the term substitution. However,
even if is often difficult to pinpoint the cause of specific events, both oscillatory
and non-oscillatory APCs result from a deviation between pilot intentions and
aircraft response. Moreover, considering that aircraft (either by design or by the FCS
actions) is dynamically stable, APCs events result only from the added collaboration
of the pilot, which is misled in taking actions which derive in an adverse or
catastrophic result.

3 System Setup Analysis

The setup phase, which led to this initial investigation, was aimed at finding a
simplified model which can be fed to the flight simulator environment as pilot
input, in order to recreate the oscillations. Key to the right model re-creation is
the understanding of the cardinal points, which involves the aircraft part, the human
part and their coupling, in order to create the oscillation.

Severe PIOs start from a triggering event, which generally involves the pilot,
the craft or both. The trigger can be produced by the environment (wind gusts,
turbulences) or from the aircraft (system failure, mode shifting of the flight control
system). The trigger changes the pilot dynamic response to a high gain closed-loop
mode, which may lead to a momentary excessive and exclusive concentration (the
so-called tunnelling), which results in overreaction. The severity, which result in the
increased gain, is inversely proportional to the expectance of the event (resulting
from the adrenaline surge) or the stress of the task (refuelling, landing, take-off,
evasive manoeuvres). The gain in pilot response application is also function of
the experience of the pilot: novices attempt to control the aircraft with higher
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gain, where experienced pilots tend to have a more developed mental model of
the controlled dynamics. Moreover, a wrong control variable used by the pilot to
recreate the mental process image may also represent a key to the PIO triggering.
However, a trigger is a fundamental condition to the PIO onset.

From the aircraft side, the onset of PIOs is helped by some onboard mechanisms,
which are in-between the pilot input and the control surfaces. Rate limiting has
been recorded in most severe PIO events, alongside with time lags. Rate limiting is
usually introduced explicitly by the command gain shaping (flight control system
modes), and implicitly from the actuator and surface rate. Moreover, another source
of nonlinearity in whole piloting process is due to the saturations: Starting from the
flight stick and ending with the obvious surface, every element in the control chain
has to deal with saturations. While these effects are limited in the primitive “manual”
control systems, where pilot had direct (or quasi-direct) mechanical connection
from the stick to the control surface, the problem is exacerbated in modern Fly-
By-Wire flight control systems. In fact, in modern flight solutions, rate limiting,
saturations and time lag may not be indicated (visually or by some sort of feedback)
in the highly mediated control platform they propose. When the pilot has to deal
with demanding tasks which require a higher gain, it becomes easy to enter the
nonlinear rate limiting regions, which are immediately translated in sudden phase
lag introduction, typical of the “jump resonance” phenomenon [5].

Another source of nonlinearity which is PIO related is intrinsic in the Fly-By-
Wire systems. They in fact tend to apply a specific gain as a function of the pilot’s
command signal or on the current flight mode.

4 Experimental Setup

The experimental setup is essentially composed of two elements: the flight simulator
and the pilot model. The pilot model is essentially a simplified pilot model, which
has sensory input from the aircraft simulation platform, uses a setpoint to produce an
output and sends it again to the flight simulator. FlightGear was chosen as simulator
platform, essentially for two reasons: free availability and customization options.
This allows a very fast setup of a test bench which can be further improved once
assessed its validity.

4.1 The Flight Simulator Platform

FlightGear is an open-source flight simulator which can run on almost every major
platform (Windows, MAC, Linux). Source code for the entire project is available
and the purpose of the project is to create a framework which is suitable for use in
research, academic environment, pilot training and other flight-related tasks. Among
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the features, the main which is used in the experimental setup is called Generic
Protocol and allows external programs to communicate with the flight simulator.

4.2 Pilot Model

The pilot action is modelled using a Python script, in which customization is allowed
in terms of:

– Dead bands;
– Saturation;
– Rate limiting;
– Time-delay.

The pilot itself is modelled as a PID controller, in which a sinusoidal setpoint,
in terms of roll or pitch, is given. The sinusoidal input in setpoint is given as a
frequency sweep. The Python script is conceived as a listener from the UDP socket
where the flight simulator is producing and streaming data. As long as samples
arrive, they are parsed and an output is produced accordingly.

The pilot routine in the script requires the aircraft to be started from straight-
and-level flight from an adequate flight level, in order to avoid terrain collision. The
routine takes control of the aircraft and sustains the straight-and-level condition for
a specified amount of time, before starting with the sinusoidal sweep. The initial
straight and level is maintained to allow the dissipation of oscillations due to the
mode switching. When the timeout expires, the script starts by changing the roll or
the pitch setpoint, allowing for the pilot controller to do the adjustments. Aircraft
response is observed, in order to understand what are the main factors that promote
the PIO onset. Output data is saved locally, in order to allow further analysis and
processing.

4.3 FlightGear Generic Protocol

As mentioned before, FlightGear supports a simple yet powerful interface to
produce and consume data for the simulator. This is done essentially using an
XML file where specifications on the variables produced or consumed, together
with a protocol format specification can be given. In the experiment setup, format
chosen was simply a CSV list of the values for roll/pitch/yaw (input) and normalized
aileron/elevator/rudder position (outputs). Generic protocol definition also allows
the use of binary or text modes, alongside with line separators, variable separators,
pre-amble and post-ambles. The generic protocol input and outputs can be directed
towards serial port or network; in the chosen testbench, UDP protocol was chosen.
Moreover, the sampling frequency can be also chosen, which specifies the rate of
production of data and was fixed to 10 Hz.
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5 Simulation Setup and Results

The chosen aircraft, which is the default FlightGear one, is the Cessna 172. It
was chose as it is one of the most detailed models (in terms of simulation and
since it has no flight control systems or fly-by-wire, which can introduce further
elements in the control chain. Simulation conditions are always chosen to be the
best for the flight (fair day, noon). Manual take-off is carried on to bring the aircraft
to a defined altitude. Script is started once the aircraft is in the straight-and-level
condition. First test campaign was assessed on the roll axis. As the Cessna 172 is
a propeller aircraft, every measurement has an offset which is due to the propeller
torque factor. Initial or residual oscillations shown in figures are mainly due to the
controller action compensation for the left bank/yaw tendency of the aircraft against
the aforementioned propeller parasitic effect. The initial experimental campaign,
which actually confirmed PIO literature, is proof of the platform setup suitability
for analysis.

5.1 Pilot Gain

As mentioned before, pilot gain is not always constant and PIO onset is often
associated with an increase of this value. This is mainly due to the increased
attention, to the degree of the expectancy of the event and to the experience of the
pilot. As expected, an increase on the pilot static gain, as in Fig. 1, is translated
in a more pronounced oscillatory behaviour around the setpoints, as shown in
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Fig. 1 Square wave input signal for roll under ideal conditions (Kp = 0.025 and delay 1 sample)
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Fig. 2 Nonlinear effects enhanced by pilot gain, with Kp 0.055, deadband 0.5 and saturation 0.9
with 1 sample delay

Fig. 2. However, anomalous high gain control results in immediate aircraft loss of
control, which translates into a crash without recovery possibility in the simulator.
Breakdown values are observable for gain values around 0.06 on the specific
setup. This value is however, as expected, extremely sensitive to other simulation
parameters.

5.2 Delay Effect

Delay effect, as it may be introduced from a digital flight control system or by a
real pilot has a detrimental effect on the oscillation onset. As pilot delay increases,
its control action becomes more and more out of phase, with respect to the real
aircraft situation. In the specific example, a delay of 10 samples (which is 1 s
delay) in the control action has obviously a catastrophic effect on the aircraft
flight, to the point where no straight-and-level condition can be achieved and a
triggering event may lead to a total loss of control in about 3 cycles. Test campaigns
which were conducted, has evidence that the maximum allowable delay is around
0.3 s. Figure 3 shows the detrimental effect of 10 samples delay in the controller,
which unavoidably leads the aircraft to an out-of-control status. However, the exact
breakdown point for maximum allowable delay has, again, dependency on the other
controller parameters.
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Fig. 3 Nonlinear effects enhanced by time-delay, Kp at 0.02625 with a time-delay of 10 samples

5.3 Saturation Effect

In this initial test campaign, the effect of saturation was simply modelled by
putting a maximum on the allowed stick position for the pilot. The increment of
the saturation width is also a detrimental effect on the PIO onset as increases the
pilot feeling of aircraft non-responsiveness, which from the control point of view
translates in missing or ineffective control action on the aircraft dynamics. Test
campaign, summarized in Fig. 4, conducted evidence that a reduction of about 20%
is allowable in sustaining triggering events, while losing the 25% of the stick effect
is sufficient to lead to aircraft loss of control. The effect is more visible in one
direction, due to the ease for the aircraft to bank in the p-factor induced preferential
direction.

5.4 Deadband Effect

Deadband has, counterintuitively, a positive effect on the PIO mitigation. Deadband
increase subtly implements the “stick-freezing” manoeuvre, which is commonly
used to mitigate the aircraft oscillations. The introduction of deadbands in controls
shows the rise of superimposed harmonics on the aircraft roll, as reported in Fig. 5.
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Fig. 4 Nonlinear effects enhanced by saturation, Kp at 0.0525, saturation at 0.25 and delay of
three samples. Notice the saturation hitting during the left bank, due to the p-factor imbalance in
banking ease
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Fig. 5 Nonlinear effects enhanced by deadband, Kp at 0.0525, deadband at 1.5◦ of bank in both
directions
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6 Discussions and Conclusions

The study of PIOs as a result of oscillatory perturbation on flight sticks while
observing the aircraft response is generally carried out as part of the aircrafts
testing routine to assess their resilience, while PIO handling and suppression are
part of the pilot knowledge base. The examination of the PIO phenomena as
scenarios of nonlinear dynamics can give possible further explanations to their
occurrence. Through the use of FlightGear simulator, which offers reasonably good
flight dynamic models and superb integration possibilities, a simulation routine is
established. The routine consists mainly of the setup of consistent conditions over
all the experiments conducted, including weather, flight level, aircraft weights and
other major flight-influencing aspects. Aircraft data are flowed out the simulator as
a stream, which feeds the custom developed aircraft simulation model. First of all, a
fixed amount of time pursuing the straight-and-level flight is given to allow decay of
residual oscillations arising from the switch between manual and automated modes.
After that, a setpoint variation waveform is fed into the pilot model, which translates
into the related stick movement and, consequentially, into aircraft angles. The pilot
model, which has configurable delays, setpoints, saturations and gains, flies the
aircraft into pursuing the desired pitch and bank angles. The onset of oscillations
is then studied, relating the frequency of occurrence, the amplitude and the oscil-
latory mode to the pilot model parameters. Results suggest relationships between
deadband width, rate limitation and delay on pilot intervention which could, in
turn, suggest mitigation and suppression strategies. Significant combinations for
Kp, deadband, saturation and roll setpoint frequency were chosen among significant
ones by systematically sweeping on them, with suitable ranges.
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Recurrence Plot Qualification Analysis
of the Greyhound Rotary Gallop Gait

Hasti Hayati, David Eager, and Sebastian Oberst

1 Introduction

Accelerometry has been widely used in the field of biomechanics for different
purposes from clinical setting [1, 2] to gait characteristics analysis [1, 3–7]. Inertial
measurement units (IMU), which are usually equipped with accelerometers, gyro-
scope and magnetometer [8], can be used to study dynamics such as turning [9, 10],
locomotion on difficult terrains [11] and amusement rides [12] where conventional
measurement methods are not feasible. One common drawback of IMU is that their
sampling rate is rather low as compared to high-end laboratory equipment, a trade-
off to the versatility of these devices.

Accelerometry has been used to analyse the hunting dynamics of wild cheetah via
a collar-shaped IMU. Using a conventional time-domain analysis, it is found that the
spike in the anterior–posterior signals is approximately the stride-cuts and was due
to the hind-leg impacts [13]. The same results have been observed, both through the
time-domain and time-frequency-domain analysis on racing greyhounds [9, 10, 14].
Accelerometry has also been shown to be suited to study indirectly different terrains
or the effect of different terrains on the dynamics of locomotion, a problem less often
explored. Spence et al. used a custom designed accelerometer backpack attached
close to the centre of mass (CoM) of a cockroach to study the effect of leaf-litter as
complex terrain on the locomotion dynamics of rapid insects [11]. The peaks of the
CoM dorsal-ventral acceleration on soft surfaces were smaller compared to those
belonging to running on rigid surfaces [11].

While incredibly robust and fast to compute, frequency-domain approaches do
not provide the same level of information as time-domain methods [15]. The latter
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on the other hand, often fail to provide reliable measures or their ease of application
is significantly hampered either due to missing analysis frameworks or due to the
complexity of the analysis itself [16].

The greyhound racing pushes the dogs to their physical limits which sometimes
results in injuries and subsequent euthanisation; to prevent this and to develop
countermeasures, the biomechanics and dynamics of greyhound galloping gait
including the relationship to ground reaction forces need to be better understood.
This research uses an IMU to measure and then explain greyhound characteristics
galloping over two different terrains, wet sand and natural grass. An IMU was
chosen as it is capable of reliably recording field data for a galloping greyhound.
In addition to conducting a frequency-domain analysis, we also conducted a
continuous wavelet transform (CWT) and an extended time-domain analysis based
on the reconstructed phase space (RPS), making use of nonlinear time series
analysis, founded on nonlinear dynamics theory. While being more complex, we
hypothesise that the CWT and especially the RPS will provide more information,
beneficial to study the effect of different racing track grounds.

2 Methods

2.1 Experimental Setup

Two oval-shaped greyhound race tracks of different surface type–wet sand and
natural grass–were selected.

Six randomly selected greyhounds ran individually on a track with a grass
surface. The grass track was oval-shaped with a turn radius of 84 m. Six randomly
selected greyhounds ran individually on a track with a wet sand surface. The sand
track was also oval-shaped with a turn radius of 53 m.

Only galloping on the straight section of the tracks was analysed so as to
eliminate the effect of other possible variables such as Turning.

To measure the dynamics, an in-house IMU device equipped with a 185 Hz tri-
axial accelerometer capable of measuring acceleration up to 16G was used. The
IMU allows tracking of tri-axial body rotation, tri-axial linear body acceleration
and tri-axial magnetic heading. Only the tri-axial linear accelerations were analysed
in this study. A simultaneous kinematics study was performed using two Sony DSC-
RX10-III HFR cameras, one set to 50 fps to capture the entire race, the other set to
500 fps to capture at least two full strides of the greyhound with greater resolution.
The HFR camera was mounted close to the finish line ensuring greyhounds were at
their highest speed and at a steady-state gallop (Fig. 1).
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Fig. 1 A greyhound galloping over a sand track with the IMU mounted approximately above the
greyhound’s centre of mass

2.2 Frequency-Domain, Time-Frequency Domain Analysis
and Phase-Space Analysis

2.2.1 Fast Fourier Transform (FFT)

This is a powerful tool in signal processing which is applied in numerous fields
[17]. The FFT is based on the discrete Fourier transforms (DFT) but is much faster
than DFT and allows to determine the dominant modes (resonances) in a vibrating
system. The DFT is defined as

X(k) =
N−1∑

n=0

x(n)e−j2πn/k, k = 0, 1, ..., N (1)

where x(n) is a finite data sequence in time-domain consisting of N elements and
e−j2πn/k is a primitive N th root of 1 [18].

2.2.2 Continuous Wavelet Transform (CWT)

This is another strong tool in signal processing which decomposes a time series
into time-frequency space. In other words, using wavelets allows determining both
the dominant modes and how those modes vary with time. The CWT is a type of
wavelet analysis that provides an over-complete representation of a signal by letting
the translation and scale parameter of the wavelets vary continuously and is defined
as

Wn(s) =
N−1∑

n′=0

x(n′)
√
δt

S
Ψ ∗0
[
(n− n′δt

S

]

(2)

where S is the wavelet scale and Ψ is wavelet translation with ∗ symbolising a
complex conjunction [19].
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Although the use of FFTs and CWT, and linear-time-series analyses could
provide informative data with regards greyhound gait, they are limited and are not
the best tools to understand complex and highly nonlinear dynamics or transient
processes of galloping greyhounds. Thus, frequency and wavelet analyses are
compared to each other and complemented by a recurrence plot quantification
analysis (RPQA) based on embedding the dynamics in the phase space which is
suitable to study nonlinear dynamics but also allows a study of stochastic processes
and non-stationary events [16]. These methods will be briefly introduced.

2.2.3 Phase-Space Reconstruction (RPS) and Recurrence Plots (RP)

Phase-space reconstruction is the foundation of nonlinear time series analysis
that allows the reconstruction of complete system dynamics using a single time
series [20]. The most common approach for RPS time series is based on Takens’
delay embedding theorem [21]. Using this theorem, a single vector of the obser-
vations representing a chaotic system is used to reconstruct a multi-dimensional
system. The regenerated vectors can thus display numerous essential properties of
its real time series provided that the embedding dimension is sufficiently large [22].

RP is an advanced technique of nonlinear data analysis, introduced in late 1980s
[16]. It is a visualisation (or a graph) of a square matrix, in which the matrix
elements correspond to those times at which a state of a dynamical system recurs
(columns and rows correspond then to a time-delayed pair of values) [16, 23].

3 Results and Discussion

FFT Results The frequency-domain results of a greyhound galloping on a grass
track and on a sand track are shown in Fig. 2. There are three dominant frequencies
at 3.5, 7 and 10 Hz, cf. Fig. 2a,c. The 3.5 Hz frequency is attributed to the gait
frequency of the galloping greyhound (cycle) and 7 Hz frequency is the step
frequency. The 12 Hz frequency attributes to paw strikes repeating four times each
stride [14].

CWT Results The discrete wavelet transform was applied on data indicated as
abrupt signal alterations shown in Fig. 2b,d, where the time-varying frequency (Hz)
is plotted against time (s). Magnitude (indicated by colour gradient) refers to the
value of the anterior–posterior acceleration. Abrupt changes in signals suggest
anomaly in the gait, which may be caused by the design of the track, such as the
lack of a transition into and out of the bend and inconsistency in the surface [14].

The CWT results of a greyhound galloping on a grass track and on a sand track
are shown in Fig. 2b,d.

Three dominant frequencies were observed around 3, 6 and 10 Hz. The high-
power frequency is at approximate 10 Hz. The similar patterns are observed in all
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Fig. 2 (a) FFT plot of track with a grass surface. (b) CWT plot of track with a grass surface. (c)
FFT plot of track with a sand surface. (d) CWT plot of track with a sand surface

data sets. Since the greyhounds are galloping straight, they are in a pseudo steady-
state and no fluctuation in frequency and power is observed. However, there are few
high-power spots on the plots.

A higher power stride frequency is observed on grass compared to sand. The
CWT pattern on sand is more consistent which suggests a relative unchanging
surface condition. Fatigue during racing, indicated as abrupt signal alterations has
been observed from our recent work, where the CWT was applied on the whole race
rather than isolated straight running sections of the race [14].

3.1 Nonlinear Time Series Method

3.1.1 RPS and RP Results

The averaged auto-mutual information (mi) determines a suitable delay τ and
applying then the global false nearest neighbour (fnn) algorithm provides a suitable
embedding dimensionm to embed the time series into a n-dimensional phase space.
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Table 1 The delay τ , the
embedding dimension m and
the phase-space size (pss) are
given for accelerations of
extracted track sections of
grass (G) and sand (S)

Grass m τ pss Sand m τ pss

G1 4 5 14.5 S1 5 4 14.7

G2 4 4 16.8 S2 4 4 14.7

G3 5 5 16.0 S3 4 4 17.7

G4 4 4 14.8 S4 3 3 17.7

G5 4 4 15.5 S5 4 5 12.3

G6 4 4 18.6 S6 4 4 16.3

Both, τ and m are needed to span up the phase space and to unfold the attracting set
of the dynamics [24]. The phase space is required to set up the RP matrices, to study
the phase-space diameter and to a conduct recurrence plot quantification analysis
[16]. The mi as a general dependence (correlation) measure indicates how much
of the information of the previous sample is contained in subsequent sample points
[25]. Table 1 lists the identified delays τ and embedding dimensionsm. As shown in
[26], the delay and the dimension alone can already provide hints on how the phase-
space size (pss) is calculated for the each RPS. From Table 1 it appears that the τ
and m for grass are slightly larger, indicating a tendency for higher dimensionality.
A higher sampling rate would facilitate the discrimination of different τ 1.

Figure 3 shows a sample of signal, represented in three different ways using
the time-domain (Fig. 4a), RPS (Fig. 4b) and RP (Fig. 4c). The time-domain signals
were synchronised with HFR videos in our recent work [14], which is now used
to correlate with RPS and RP representations. The phase space indicates stable and
unstable periodic orbits which are depicted in (c) as solid and interrupted diagonal
lines [27, 28].

Figure 4 shows the RPS and RP on sand and grass. On the RSP plots, two
trajectories lying in the negative quadrant are due to fore-leg strikes and the
compressed flight. The trajectories in the first quadrant are attributed to the hind-
leg strikes and the extended flight. The large trajectories in the third quadrant are
attributed to the fore-leg strikes, and the second largest one is due to the compressed
flight. The large trajectory in the first quadrant is attributed to the hind-leg strikes.
The part with faster dynamics (high-frequency content) attributed to the extended
flight its exact is, however, origin unknown.

The following patterns are generally seen in all recurrence plots of all twelve data
sets. A solid black diagonal represents a clear periodicity, the main running cycle.
The only clear periodicity in the current system is the main galloping cycle of the
greyhound at 3.5 Hz, indicated as solid black diagonal line, which is also seen in
the FFT and CWT plots. The two dashed-lines between each rigid diagonal lines
are attributed to the compressed flight and hind-leg strikes, which have about half
the sampling points of the main cycle. The dot-shaped pattern on the plots is also
attributed to the extended flight (fast dynamics).

1The dimension estimate would not change.
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Fig. 3 (a) Time-domain signals, (b) RPS plots and (c) RP of a sample data set (greyhound
galloping on a sand surface)

Fig. 4 (a) RPS plots of grass surface. (b) RPs of grass surface. (c) RPS plots of sand surface. (d)
RPs of sand surface
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The main observation based on Fig. 4 is that the RPS of sand surface appear
clearer than that of grass. Sand surfaces are better maintained than grass surfaces
in general resulting in a smoother arena ground and more consistent gallop. The
large trajectories in the third quadrant, which are attributed to the fore-leg strikes,
appear relatively larger on sand than on grass, which may suggest a harder surface.
It has been observed in our recent work that sand surface is harder than the grass
one but was not seen in the time-domain and frequency-domain analysis of the
signal [14]. However, using RPS representations shows the potential to derive a
method to estimate the difference in the surface stiffness relatively compared with
each other.

It can be seen from Fig. 4 that the black rigid lines, attributed to stride frequency,
are clear on both sand and grass surface. The extended flight dynamic is more
distinguishable in RP representation than the RPS, where it was represented as
more random appearing trajectories. The RP representation could reveal dynamics
which could not be observed in other signal representations, i.e. extended flight
dynamics which seems to be represented as positive random trajectories on RPS
plots. However, the low frequency range does not allow to see more details. Also
the correlation with other measurements (e.g. rotational sensors, videos) has not
been conducted specifically for the purpose of studying these fast dynamics during
extended flight, which is an outstanding task for the near future.

3.1.2 Cross Recurrence Quantification Analysis (CRQA)

Figure 5 shows the CRQA results of all samples via three different measurements of
determinism (DET), divided by its laminarity (LAM); DET and LAM are calculated
as percentage of recurrence points which form diagonal and vertical lines [16]. DET
expresses how deterministic, i.e. predictable the data is as opposed to random data.
For fully deterministic data, such as for a sinusoidal or a quasi-periodic signal, a
value of one is obtained; for deterministic chaos, a value between 1 and 0 and for
random data a value of 0 is expected. LAM indicates whether a system remains
in a certain state or not. In both plots, the green lines attribute to the grass surface
while the brown lines represent the sand surface. As can be observed from Fig. 5, the
ratio of DET to LAM approximates unity which is indicative for having similarly
high values. Both individual metrics were oscillating in phase at a value of around
0.8, which shows that the system is not fully predictable and that changes of states
influence proportionally predictability. From Fig. 3 one can see that the main period,
shown up at diagonal line (and related to the main frequency of the system) is
predictable but that the subsequent motions are more recurrent than strictly periodic.

To test whether the measurements are significantly different, notched box plots
are used. The notches indicate 95% confidence intervals (CI); non-overlapping
confidence intervals indicate statistically significant results. The data related to sand
has slightly higher values; S2 seems to be a very different measurement though and
could be treated as outlier. Comparing the CI between the two groups (removing in
both cases the boxplot with the minimum and the maximum median) indicates that
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Fig. 5 (a) Determinism/laminarity of a greyhound galloping on grass (represented by green lines)
and sand (represented by brown lines). (b) The notched box plots of grass. (c) The notched box
plots of sand

the ratio DET/LAM for the sand tracks is significantly different to those of grass
(average CI for grass is [1.033, 1.018] while that of sand is [1.09, 1.08]). Taking the
median values of all DET/LAM for each of the two types of tracks and using a 1-way
ANOVA test (assuming a parametric distribution) provides non-significant results
(df = 13, SS = 0.05002, F = 0.97, p = 0.3434); removing the outliers, however,
provides significant differences between sand and grass at the 5% significance level
(df = 7, SS = 0.01531, F = 6.11, p = 0.0484).

4 Conclusions

In this work the nonlinear-time-series-analysis techniques of RPS and RP were
applied for the first time to study greyhound dynamics. IMU signals measured
from greyhounds galloping on grass surfaces were used to investigate whether these
methods can detect a difference in the mechanical properties of the racing track
surface. The results showed that using RPS and RP, the mechanical properties
of the track surface can be generally be compared with each other. For the first
time, the galloping gait segments of greyhounds were correlated with the RPS
and RP representations. The overall motion can be classified as having a period-
4 limit cycle, whereas only the main cycle is clearly periodic. RPS plots could
identify the harder surface type; RP could identify dynamics on the system which
were difficult to detect using other methods. Similar to identifying instabilities in
technical systems long time before they occur [29], RP and RPQA may be used
to extract otherwise hidden information to identify motion components from the
attractor’s trajectory as potential source of injuries. Using RPQA measures, we
showed that the ratio of determinism and laminarity shows significantly different
results between grass and sand. Using a Bonferroni correction would explicitly
allow to study the group differences. While the different parts of the gait cycle have
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been distinguished, a closer look at the recurrence plots and their quantification
analysis may reveal differences in step pattern. The high-frequency content in the
flight phase has not yet been fully analysed, for which potentially a higher sampling
rate would be required.
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Towards a High-Performance Foucault
Pendulum

Matthew P. Cartmell , Nicholas A. Lockerbie , and James E. Faller

1 Introduction

1.1 Mathematical Modelling of the Foucault Pendulum
Dynamics

There are many models of the Foucault pendulum to be found in the literature, see
[1] for a substantial review, but not all are directly useful for accurate performance
prediction. The model summarised here is taken from a previous study [1] and based
on the system shown in Fig. 1, in which there is an Earth fixed frame, EXYZ, and a
local frame pxyz. The unit vectors in each frame are represented by the following,
where φ is the latitude:

eZ = sinφ.ez + cos φ.ey (1)

The equations of motion can be expressed in local Cartesian coordinates, and
include aerodynamic dissipation, Coriolis terms, and parametric excitation of the
length [1]:
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Fig. 1 Earth-centred frame EXYZ and local frame pxyz, showing pendulum deflected through α
and located at a latitude defined by φ, [1]

ẍ + η |ẋ| ẋ − 2ẏ�sinφ − x�2 + gx

l(t)

√

1− x2+y2

l(t)2

= 0, (2)

ÿ + η |ẏ| ẏ + 2ẋ�sinφ − y�2sin2φ + r�2sinφcosφ + gy

l(t)

√

1− x2+y2

l(t)2

= 0.

(3)

The time-variant length due to the parametric excitation is defined by
l(t) = l0 + l1Cos(ω1t), where ω1 = 2ωn + εσ , to permit the conditions for
principal parametric resonance (PPR), excited at frequency ω1. We note that ωn

and εσ are the undamped natural frequency of free vibration, and detuning from
the perfect resonance condition, respectively. The lengths l0 and l1 are the nominal
pendulum length and the imposed parametric excitation amplitude, respectively, and
l1 ≤ 0.01l0 in order to establish a region for the parametric resonance [1]. Equations
(2) and (3) can be numerically integrated to obtain the pendulum’s response as a
result of the Newtonian rotation of the Earth, local radius r, at angular rate �. The

aerodynamic damping is η = ρCdπ
R2
bob

2m , where Rbob and m are the radius and
mass of the bob, respectively. One should minimise η, by shielding the pendulum
and introducing a partial vacuum around it. It is shown in [1] that the aerodynamic
damping will greatly exceed the pivot friction in a well-designed system. There is a
large literature on Foucault pendulums, and a consistent theme is the profound need
to remove all ellipticity from the motion [1].
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1.2 Theoretical Response Predictions to the Rotation
of the Earth

Equations (2) and (3) are numerically integrated for pragmatic data, and the inte-
grations may be performed within Mathematica using stringent accuracy controls.
Results are presented in Figs. 2, 3, 4, and 5, for a 4 m pendulum, with all data
shown in the captions. This data is derived from official physical data for two
chosen locations, and pendulum design data extrapolated from experience gained
from [1]. Two locations are considered: North Pole (NP) and Glasgow, Scotland,
with the North Pole taken to benchmark the predicted results for the rotation of the
Earth, over the same time period at Glasgow. The x, y responses of the pendulum are
calculated with respect to the Earth-fixed frame EXYZ, confirming that the pendulum
remains fixed in inertial space relative to the fixed stars, whilst the laboratory
attached to the Earth rotates below it (displacements in m).

The effect of parametrically exciting the pendulum is very clear from the results
shown in Fig. 2 (left and right), and that the magnification can be calculated in terms
of the ratio of the Euclidean distances between the red and blue points of the two
cases.

Principal parametric resonance gives a magnification, or gain, k, which can
reach up to at least 6, and potentially higher, with some cyclical variation during
each oscillation as the pendulum precesses round. This has some very significant
advantages, as discussed in Sect. 1.3. Table 1 shows the precession predicted over
�t = tend − t0 equals one hour (3600 s) in the second and third rows for the
pendulum without and with principal parametric resonance (PPR), located at the
North Pole, and then extrapolated linearly over one sidereal day (SD). The data in
the lowest row is for precession over 4 hours (14400 s) at the North Pole, see Fig. 3
for the (x, y) precessions, with a much larger initial displacement condition in the
x direction, and which is then extrapolated linearly again over one sidereal day.

Fig. 2 Pendulum response over 1 hour at the North Pole for no parametric excitation, l1 = 0 (left)
and for parametric excitation, l1 = 0.040 m (right). Red dots: displ. ICs (x0, y0) = (0.1, 0) m, blue
dots: end points (xtend , ytend), vel ICs are ẋ0 = ẏ0 = 0 m/s. Data: l0 = 4 m, g = 9.8320m/s2,
� = 7.2921150 ∗ 10−5 rad/s, φ = 1.5705 rad, r = 6357.00 ∗ 103 m, m = 5 kg, ρ = 1.189 kg/m3,
CD = 10−6, Rbob = 0.0463134 m, tend = 3600 s, εσ = 0
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Fig. 3 Pendulum response over 4 hours at the North Pole for no parametric excitation, same data
as for Fig. 2 (left) except for x0 = 0.5 m and tend = 14400 s

Fig. 4 Pendulum responses over 1 hour at Glasgow for no parametric excitation, l1 = 0 (left) and
for parametric excitation, l1 = 0.040 m (right). Red dots: displ. ICs (x0, y0)= (0.1, 0) m, blue dots:
end points (xtend , ytend), velocity ICs are ẋ0 = ẏ0 = 0 m/s. Data: l0 = 4 m, g = 9.8156m/s2,
� = 7.2921150 ∗ 10−5 rad/s, φ = 0.9750 rad, r = 6363.18 ∗ 103 m, m = 5 kg, ρ = 1.189 kg/m3,
CD = 10−6, Rbob = 0.0463134 m, tend = 3600 s, εσ = 0

Fig. 5 Time responses over 8 hours at Glasgow for the parametrically excited case, l1 = 0.040 m,
same data as for Fig. 4 except for tend = 28800 s, showing the persistence of lobing

Clearly, one should generally expect a precession of exactly 360◦ over one sidereal
day at the North Pole, indicating that the biggest error (for the parametrically
excited case) obtained here is 0.09%. The results for precession are almost entirely
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Table 1 Precessions over �t
(see text) at NP

PPR 3,600 s Sidereal day

off 15.042 ◦ 360.029 ◦
on 15.027 ◦ 359.671 ◦
PPR 14,400 s Sidereal day
off 60.016◦ 360.095◦

Table 2 Precessions over �t
at Glasgow

PPR 3,600 s Sidereal day

off 12.420 ◦ 297.265 ◦
on 12.358 ◦ 296.503 ◦

independent of initial conditions [1], and as long as suitable accuracy controls
are in place for the numerical integration, they can also be made to be largely
independent of the integration time, defined as �t = tend, when t0 = 0. It is
significant to note from Fig. 2 (right) that the parametrically excited results display
large lobes in the (x, y) responses, and these are extremely prominent in the time
responses for x and y for this case as large, low-frequency amplitude modulations.
The amplitude modulation depths in x and y can be reduced when the principal
parametric resonance is slightly detuned, noting that this also reduces the available
gain somewhat. It is evident from the basic results shown here for the North Pole
that the Foucault pendulum will precess through exactly 360◦ over one sidereal
day, as one would expect. These numerical results suggest that the North Pole
can be a benchmark location for validating the numerical integration routine, and
therefore predicting the operation of the pendulum in other places. See [1] for a
fuller exploration of locations.

The remaining discussion in this section is based on the latitude of 55.86◦ N
(0.975 rad N) for Glasgow, Scotland, UK, noting that the local values for the
acceleration due to gravity, g, and the radius of the Earth, r, vary from those for
the North Pole, all other data maintained except where specifically indicated. The
results in Fig. 4 are without and with the same level of parametric excitation as for
the cases in Fig. 2 for Glasgow.

In Fig. 4, the lobed response phenomenon is as evident for Glasgow as it was for
the NP and wider analysis shows this to be a persistent feature of Foucault pendulum
response when under principal parametric excitation of the length, and this is
also dependent on the phase between the excitation and the response. However,
the advantage of a positive gain (k > 0) and the beneficial effects of parametric
resonance on ellipticity (Sect. 1.3) can outweigh the effect of the lobing. The lobes
are very clearly depicted as a persistent feature over time in Fig. 5, for the responses
in x and y, over 8 hours.

Precession data for Glasgow (Fig. 4) is given in Table 2 above, over 1 hour and
then extrapolated over one sidereal day, and there is reasonable consistency between
the cases for no parametric excitation and parametric excitation.

The results of Figs. 2, 3, 4, and 5 are developments of a wider study into
Foucault pendulum response [1] and the main conclusion is that although numerical
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accuracy has to be tightly controlled, the aggregated numerical error can potentially
be <0.1%.

1.3 Discussion of General Foucault Pendulum Performance

A fundamental problem with all Foucault pendulums is a tendency for the planar
motion to degenerate into ellipticity over time. This phenomenon is associated
with a frequency anisotropy effect, specifically manifesting as increasingly different
periods of each axis of the developing elliptical response. This effect is triggered in
practice by structural asymmetries, and is greatly exacerbated in shorter pendulums.
This is why Foucault’s 67-metre installation in the Panthéon operated quite
successfully over time, given the very long length of that pendulum [1]. There are
several ways to overcome this inherent problem, starting with symmetrical design
and high-quality manufacture and installation, together with mechanical and electro-
mechanical mitigation measures (the Charron ring and various electromagnetic
pusher drives [2, 3]). It was suggested by Pippard [4] in 1988 that parametric
excitation of the length could mitigate this effect.

We start with ‘self-sustaining’ passive pendulums which depend for their
subsequent motion on the launch that they get from suitable initial conditions.
Olsson [5] analysed Foucault pendulum ellipticity and obtained a precession rate
from structural asymmetry-driven frequency anisotropy, based on the lowest order
Lindstedt-Poincaré perturbation solution to the ellipticity problem. This is defined
by

Ωep = 3ω0ab

8
, (4)

where the subscript denotes ellipticity precession. We note that ω0 = sign
√
g
l
, and a

and b are, respectively, the semi-major and semi-minor axes of the elliptical motion
which are nondimensionalised in [5] and in equation (4), by dividing by l. Clearly, if
the pendulum is working exactly as intended, then b = 0 and so �ep = 0. Ellipticity
precession is most certainly not the only source of error within Foucault pendulum
systems, but is the most significant because of the inherent difficulty in controlling b
over time and the generally high magnitude of the subsequent ellipticity precession
rate. Equation (4) shows that the ellipticity precession is linearly proportional to both
a and b. Plewes [6] defines a useful metric for Foucault pendulum performance,
described in [6] as ‘error sensitivity’, in the form of d�ep/db. It is interesting to
compare the ellipticity error sensitivity for Foucault’s original pendulum (which
performed rather well due to its very long length and high bob momentum), at
0.00013, with a higher value of 0.00917 calculated for the 4 metre pendulum
considered here, showing that the shorter pendulum is 70 times more sensitive
to ellipticity error, assuming a constant l/a ratio of 16 for both designs. Taking
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an l/a ratio of 40 instead, we get ellipticity error sensitivities of 0.00005 and
0.00367 respectively, which show that for this l/a ratio too, the shorter pendulum
is still almost 70 times more sensitive to ellipticity error precession than Foucault’s
original pendulum. This confirms that longer Foucault pendulums are inherently
less sensitive to ellipticity error than shorter pendulums, and so, it is logical to try
to maximise pendulum length as far as possible. Using equation (4) to obtain dΩep

db

shows that the dependence on length is proportional to 1
l5/2

.
This discussion emphasises the great importance of minimising the natural

propensity of shorter Foucault pendulums to frequency anisotropy, at source, by
means of good design, manufacture, installation, and also by means of active
mitigation measures which we discuss next. The usual approach for providing a
continuous excitation of a Foucault pendulum in order to confine its long-term
motion within a stable response region has been to use some form of timed
electromagnetic pulse which pushes or pulls the magnetised pendulum bob as
it passes over an exciter coil. The exciter coil couples electromagnetically in a
carefully timed manner, with a powerful magnet set into the bob [2, 3, 6]. There are
various designs for such systems, with the ‘pusher’ installation of Schumacher and
Tarbet [3] offering effective reduction in b. The penalties for adopting this approach
are that the electromagnetic and mechanical properties of the bespoke exciter coil
and bob magnet must be very precisely matched to ensure perfect and appropriate
alignment of the electromagnetic field. The installation of these components directly
under the bob may preclude the use of a highly accurate direct-view imaging system
for tracking the motion of the pendulum.

Returning to the application of a parametric resonance in a Foucault pendulum,
we start by considering the general benefit obtained by introducing this feature into
a simple pendulum system. It is very well known that an ‘unstable’ parametrically
excited pendulum or beam will in practice always display a softening response that
is bounded due to the effect of the prevailing large deflection nonlinearity [7], noting
the full analysis of a simple non-precessing pendulum in section 3.1.2 (pp. 139-145)
in that reference. A cursory visual analysis of the results for principal parametric
resonance (PPR) in the Foucault pendulum, in Fig. 2 (right), Fig. 4 (right), and Fig.
5, shows that the response is of large magnitude and certainly bounded. According
to [7] such nonlinear parametrically resonant systems are strongly stable to small
perturbations, and in practice, the smallness of such perturbations depends on the
physical scale of the system. So, in the case of the 4-metre Foucault pendulum,
the perturbation that would be necessary to knock the system out of its stable,
nonlinear, precessing planar response would be of the order of several tens of cm.
This tends to underpin the effectiveness of the use of PPR as a stabilising form
of excitation, which may be applicable to the Foucault pendulum. Pippard [4, 8]
examined this in some detail, starting with the premise that any pendulum motion
normal to the precessing swing plane is in phase quadrature with the oscillation
in the swing plane. So, if the excitation reaches its maximum velocity when the
pendulum swing is at zero, maximum energy is transferred to the pendulum. This
will strongly amplify the planar response and attenuate any normal motion. The
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parametric excitation also counteracts dissipative effects within the system, in order
to maintain the oscillating and precessional motions of the system, so a is naturally
amplified and b is similarly attenuated. This effect was usefully quantified for the
location of Cambridge, England, UK, in [4]. Pippard [4] also gives one of the
most complete accounts of error sources in Foucault pendulum systems, discussing
three principal sources in detail: suspension design, dissipation (as this may cause
secondary anharmonicity leading to growth in b), and noise effects.

2 Frame-Dragging

2.1 Lense-Thirring Precession of a Test Mass due
to the Rotation of the Earth

General Relativity states that inertial frames are ‘influenced and dragged by
the distribution and flow of mass–energy in the universe’, noting the relativistic
equivalence of mass and energy [9]. A theory for frame-dragging was proposed
by Thirring and Lense in 1918, in which inertial frames are dragged around a
central rotating mass due to the effect of its gravity on the surrounding spacetime
[10]. The rotation of the central mass twists the surrounding spacetime, and this
perturbs the orbits of other masses nearby. This effect is now known as Lense-
Thirring precession, and henceforth as LT. The Earth’s gravitational field is capable
of generating frame-dragging and this is generally considered to be demonstrable in
three gravitomagnetic manifestations: the precession of a gyroscope in orbit around
the Earth, the precession of orbital planes where a mass orbiting the Earth constitutes
a gyroscope whose orbital axis will precess, and the precession of the pericentre of
the orbit of the test mass about the Earth.

GP-B measured the first two [11], and the LAGEOS satellites measured the
second one only [12]. LAGEOS measured the LT drag of their orbital planes to
~0.031 arcsecs/year [9] which is ~ 8.611 x 10−6 ◦ /year. This was subject to error
due to uncertainty in the Earth’s mass distribution, and there is still some debate
about the true size of the error in LAGEOS’s LT measurement, but it mainly
derived from the low eccentricity of the LAGEOS orbits and the difficulties in
eliminating Earth multipoles. GP-B measured LT to ~0.039 arcsecs/year [9], which
is 10.833 x 10−6 ◦ /year. GP-B used IM Pegasi HR 8703 as the guide star and
operated on a circular polar orbit of 642 km altitude [9]. The spin axes of GP-
B’s gyroscopes drifted, so the Geodetic precession [13] (due simply to the presence
of the mass of Earth rather than its presence and its rotation) was only measured
to a precision of 1.5%, which had a relatively significant knock-on effect on the
measurement of LT. The relationships between the directions of the LT and the
Geodetic precessions are orthogonal, and the total relativistic precession on the body
is therefore the vector sum of the LT and Geodetic precessions. Our main interest
is the LT component. The analysis behind LT, in terms of (weak) gravitomagnetic
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effects on an accelerating mass, can be considered analogously with an accelerating
charge producing a magnetic field. Specifically, the analogy is between the equations
that govern the forces on a spinning electric charge with magnetic moment μ
which moves through a magnetic field, and the forces of a spinning mass moving
through the gravitational field of a rotating mass [9], and this analogy is made
through Maxwell’s equations. Fortunately, in exploring LT in the vicinity of the
Earth, we are dealing with weak fields and non-relativistic velocities, so the full
form of general relativity is not necessary and a linearised version of the theory
is sufficient [14]. An analogy between weak-field, low-velocity general relativity
and Maxwellian electrodynamics offers a simple basis for gravitoelectromagnetism
(GEM), and Lense-Thirring precession can be shown to be one manifestation of
that. The background for this can be found in [14], leading to an expression for LT
precession of a test mass about the Earth:

ΩLT = G

c2R3L
′ ∣∣1− 3

∣
∣Z · r∣∣∣∣ , (5)

where the scalar angular momentum L
′

is given by L
′ = I⊕�⊕, G is Newton’s

gravitational constant, c is the speed of light, and considering the Earth initially as a
non-oblate sphere, then I⊕ = 2

5Mr
2. But the actual radius of gyration of the Earth

[15, 16] is 0.576 r, so the factor of 2
5 becomes 0.5762 which is 0.3316. Therefore,

I⊕ = 0.3316 Mr2. We note also that the test mass, which is actually going to be
the bob of the Foucault pendulum, is elevated at h from the surface of the Earth
(therefore at radius R, where R = r + h, and r denotes the radius of the Earth at
the location), and also Z · z = cosθ and R ≈ r for h very small (assuming that the
bob is hanging at approximately a metre above the ground). This result does not
include the Geodetic precession and is purely the LT component. The angle θ is the
colatitude which is the included angle between Z and z (the spin axis of Earth, Fig.
1, and the vertical axis at the location, respectively), so θ = π

2 − φ, where φ is the
latitude as measured from the equator.

2.2 Numerical Predictions for Frame-Dragging at the North
Pole and Glasgow

Based on the following data, the LT precessions at the NP and Glasgow can
both be calculated: G = 6.67408x10-11 m3 kg-1 s-2, M = 5.972x1024 kg, �⊕ =
7.2921150x10-5 rad/s, c = 2.99792488x108 m/s, R = 6358.00x103 m at the NP,
R = 6364.18x103 m at Glasgow, φ = 1.5707963 rad at the NP, and φ = 0.9750
rad at Glasgow. The prediction for LT at the NP is 219.5 mas/year (noting it is 220
mas/year in [4]), and at Glasgow, the prediction is 162.8 mas/year. For the NP, the
LT prediction is 2.15x109 times smaller than the Newtonian rotation of the Earth, as
is also discussed in the seminal paper [17].



352 M. P. Cartmell et al.

2.3 An Experimental Challenge

A precursor Foucault pendulum experiment has been undertaken by the authors
[1] and the effectiveness of parametric excitation on minor axis minimisation, and
response gain amplification and stabilisation, has been explored. Work is currently
in progress to complete the preparations for a further experiment capable of
resolving LT precession in the laboratory. This will require an exceptional increase
in mechanical and instrumentation precision, and outstanding noise rejection capa-
bility. This analysis and design work will be reported on in detail in the literature in
due course.

3 Conclusions

It has been shown that a laboratory Foucault pendulum with parametric excitation
of the length can be modelled to track the Newtonian rotation of the Earth to
an accuracy of <0.1%. A precursor experiment has verified the effectiveness of
parametric excitation in stabilising the motion of a practical mid-length pendulum
of ~ 4 metres. Measurement of LT requires an increase in resolution of >2× 109, as
shown by the modelling in this paper, putting great reliance on mechanical accuracy
and exceptional signal processing capability. A very high-resolution optical imaging
system specification and novel designs for the pendulum, fixturing, and shielded
installation are under way.
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Part IV
System Identification and SHM



Identification of Nonpolynomial Forms
of Damping Nonlinearity in Dynamic
Systems Using Harmonic Probing
and Higher Order FRFs

Hari Prasad Chintha and Animesh Chatterjee

1 Introduction

The identification of nonlinear dynamic systems from input-output data is often
represented through the Volterra series, which provides an efficient mathematical
platform for parametric and nonparametric modeling of various physical systems in
many engineering applications. Nonlinearity in the system can result in extensive
behavior; hence, prediction of nonlinear behavior in dynamic models is significant,
to understand the nature of nonlinearity, whether it is in stiffness or in damping. If
the nonlinearity is present in damping, it is classified as symmetric and asymmetric
damping nonlinearity and further classification is extended to polynomial and
nonpolynomial.

Nayfeh [1] has discussed various physical models with a damped unforced single
degree of freedom such as hysteretic damping, Coulomb damping, and bilinear
oscillators etc., and also studied quadratic damping of an immersed body when it
moves through a fluid at high Reynolds numbers. The nonlinear quadratic form is
also associated with many physical models such as the motion of swinging spring,
the motion of the ship, the motion of the fluid interface, the motion of the rotating
shaft, the vibration of shells and composite plates, and coupled longitudinal and
transverse oscillation of column, etc. Dixon [2] studied the bilinear model with two
coefficients for the two directions of motion because the asymmetry in operation is
a significant feature of real suspension dampers.

Damping is inherently present in all dynamic systems and more often in a
nonlinear form which can be symmetric or asymmetric and further of polynomial
form or nonpolynomial form as given below.
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(i) Cubic damping with FD [ẋ(t)] = c1ẋ(t) + c3ẋ
3(t) is symmetric and polyno-

mial form.
(ii) Quadratic damping with FD [ẋ(t)] = c2ẋ(t) |ẋ(t)| is symmetric and nonpoly-

nomial form.
(iii) Square damping with FD [ẋ(t)] = c1ẋ(t) + c2ẋ

2(t) is asymmetric and
polynomial form.

(iv) Bilinear damping FD [ẋ(t)] = λcẋ(t) f or ẋ(t) > 0 and FD [ẋ(t)] =
cẋ(t) f or ẋ(t) < 0 is asymmetric and nonpolynomial form.

Although identification work has been done for polynomial forms of damping
by the earlier researchers Balachandran et al. [3], Adhikari et al. [4] Chatterjee
and Chintha [5], it is not yet done for nonpolynomial forms. Here, we present the
identification of nonpolynomial forms, i.e., case ii) and case iv).

In this paper, the proposed work consists of the identification of nonpolynomial
form damping nonlinearity such as quadratic and bilinear damping forms. This
presentation attempts an approximate analytical method to a model with nonpolyno-
mial function through the Volterra series. In Sect. 2, nonlinear response formulation
through the Volterra series and its higher order FRFs has been presented. In Sect.
3, coefficients of nonpolynomial function with a single degree of freedom system
can be obtained through an analytical approximate solution. The identification
of nonpolynomial form damping nonlinearity through the response spectrum and
harmonic amplitude characteristic behavior has been studied (Sect. 4).

2 Volterra Series Representation of Nonlinear Structure

Volterra series representation for a general physical model with input excitation
force as f (t) and output response as x(t) can be in the form of

x(t) =
∫ ∞

−∞
h1 (τ1) f (t − τ1) dτ1

+ . . .
∞∫

−∞
. . .

∞∫

−∞
hn (τ1, τ2, . . . , τn) f (t − τ1) . . . f (t − τn) dτ1 . . . dτn

= x1(t)+ x2(t)+ · · · + xn(t)+ (1)

where hn(τ 1, τ 2, . . . , τ n) are known as nth order Volterra kernels and its Fourier
transform gives the nth order frequency response functions (FRFs)
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Hn (ω1, ω2, . . . , ωn) =
∞∫

−∞
. . .

∞∫

−∞
hn (τ1, τ2, . . . , τn)

n∏

i=1

e−jωiτi dτ1 . . . dτn

(2)

For a single-degree-of-freedom system with a polynomial from in damping
nonlinearity under harmonic excitation force with f (t) = Acos (ωt) = A

2 e
jωt +

A
2 e
−jωt , the governing equation of motion is in the form

mẍ(t)+ c1ẋ(t)+ c2ẋ
2(t)+ c3ẋ

3(t)+ · · · + k1x(t) = f (t) (3)

The first three response components obtained to follow Eq. (3), becomes

x1(t) = A
2
H1 (ω) e

jωt + A
2
H1 (−ω) e−jωt (4)

x2(t) = A
2

2
H2 (ω,−ω)+ A

2

4
H2 (ω, ω) e

j2ωt + A
2

4
H2 (−ω,−ω) e−j2ωt (5)

x3(t) =A
3

8
H3 (ω, ω, ω) e

j3ωt + 3A3

8
H3 (ω, ω,−ω) ejωt

+ 3A3

8
H3 (ω,−ω,−ω) e−jωt + A

3

8
H3 (−ω,−ω,−ω) e−j3ωt

(6)

The total response, x(t), in the form

x(t) = x1(t)+ x2(t)+ · · · =
∞∑

n=1

(
A

2

)n ∑

p+q=n
nCqH

p,q
n (ω) ejωp,q t (7)

where Hp,qn (ω) = Hn

(
ω,ω, . . . ,
︸ ︷︷ ︸
p times

−ω,−ω, . . .
)

︸ ︷︷ ︸
q times

, ωp, q = (p − q)ω and nCq =

n!
(n−q)!q!

The response amplitude of mth harmonic X(mω) can be obtained as

X (mω) =
∞∑

i=1

2

(
A

2

)m+2i−2
m+2i−2Ci−1H

m+i−1,i−1
m+2i−1 (ω) (8)

Using Eq. (8), the first three harmonic amplitudes in addition with excitation
frequency in the form of series as
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X (ω) = AH1 (ω)+ 3

4
A3H3 (ω, ω,−ω)+ 5

8
A5H5 (ω, ω, ω,−ω,−ω)+ . . .

(9)

X (2ω) = A
2

2
H2 (ω, ω)+ A

4

2
H4 (ω, ω, ω,−ω)+ . . . (10)

X (3ω) = A
3

4
H3 (ω, ω, ω)+ 5

16
A5H5 (ω, ω, ω, ω,−ω)+ . . . (11)

By substituting Eqs. (7) in (3), functional series is synthesized into higher order
FRFs in terms of first-order FRFs and nonlinear parameters as given as

ncqH
p,q
n (ω)

H1
(
ωp,q

) =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−c2

∑

pi + qi = ni
n1 + n2 = n

{
jωp1,q1

n1cq1H
p1,q1
n1 (ω)

} {
jωp2,q2

n2cq2H
p2,q2
n2 (ω)

}

− c3

∑

pi + qi = ni
n1 + n2 + n3 = n

{
jωp1,q1

n1cq1H
p1,q1
n1 (ω)

} {
jωp2,q2

n2cq2H
p2,q2
n2 (ω)

}

{
jωp3,q3

n3cq3H
p3,q3
n2 (ω)

}

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(12)

From Eq. (12), second- and third-order FRFs are

H2 (ω, ω) = c2ω
2H 2

1 (ω)H1 (2ω) (13)

H3 (ω, ω, ω) = H 3
1 (ω)H1 (3ω)

[
4c2

2ω
4H1 (2ω)+ jc3ω

3
]

(14)
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3 Mathematical Models and Approximate Solution

3.1 Bilinear Damping

Considering the system with bilinear damping under harmonic excitation force, and
the governing equation of motion in the form of

mẍ(t)+ g [ẋ(t)]+ kx(t) = A coswt (15)

where

g [ẋ(t)] =
{
λcẋ(t), ẋ(t) < 0, λ = 1
λcẋ(t), ẋ(t) ≥ 0, λ < 1

(16)

where m is the mass of the system, k is the stiffness, and c is the damping coefficient
of a system. The bilinear damping force function g [ẋ(t)] is a nonpolynomial
nonlinear, asymmetric, function which varies over a velocity range−Ẋ(t) ≤ ẋ(t) ≤
Ẋ(t), with two-liner elements shown in Fig. 1. From Eq. (16), if λ= 1, the system is
considered as linear damping oscillator and for λ < 1, then the system is represented
as bilinear damping form. In order to obtain response analysis through the Volterra
series, asymmetric bilinear damping form can be approximated with polynomial
form as ĝ [ẋ(t)] that is assumed as

ĝ [ẋ(t)] = g0 + c1ẋ(t)+ c2ẋ
2(t)+ c3ẋ

3(t)+ . . . (17)

Fig. 1 Bilinear damping force function variation over velocity range for λ = 0.95
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Since ĝ [ẋ(t)] is a continuous nonlinear function with an appropriate number
of powers over the interval of

(−Ẋ(t), Ẋ(t)), the approximate solution in Eqs.
(17) can be simplified by truncating the polynomial form up to cubic terms. In
order to solve approximate solution it is convenient to replace the velocity ẋ(t)
by introducing a new independent variable that is y(t) = ẋ(t) and Eqs. (16 and 17)
can be expressed in terms of new independent variable in the form of g[y(t)] and
ĝ
[
y (t)

]
. The coefficients of the polynomial ci (where i=1, 2, 3..,) are determined

by minimizing the integral

E
(
c1c1, c2, c3

) =
∫ Y

−Y

{
g
[
y (t)

]− ĝ [y (t)]}2
dy (18)

where Y denotes the maximum velocity. The minimization of the function of Eq.
(18) requires

∂E

∂ci
= 0 f or i = 1, 2, 3, ..n (19)

Eq. (19) represents a system of “n” algebraic equations that can be solved
simultaneously to obtain the coefficients of polynomials ci (c1, c2, c3. .), but we limit
the discussion up to case i=3, which can be determined as

c1 = (λ+ 1) c

2
, c2 = −15c (1− λ)

32Y
= −15c (1− λ)

32 ωXmax
, c3 = 0 (20)

where Y = ωXmax , ω is the excitation frequency, Xmax is the maximum amplitude.

3.2 Quadratic Damping

Similarly, the governing equation of motion of quadratic damping under harmonic
excitation force is in the form of

mẍ(t)+ k1x(t)+ g [ẋ(t)] = Acos (ωt) (21)

Here g [ẋ(t)] = cẋ(t) |ẋ(t)|

g [ẋ(t)] =
{−cẋ2(t), ẋ(t) < 0
cẋ2(t), ẋ(t) ≥ 0

(22)

Here g [ẋ(t)] is the quadratic damping force function, which varies over a
velocity range −Ẋ(t) ≤ ẋ(t) ≤ Ẋ(t). Quadratic damping form is also a
nonpolynomial nonlinear function but symmetric.
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The approximate solution is assumed as

ĝ [ẋ(t)] = c1ẋ(t)+ c2ẋ
2(t)+ c3ẋ

3(t) (23)

Solving for y(t) = ẋ(t), similar to bilinear damping, the coefficients of
polynomial ci (where i=1, 2, 3..,) are determined by minimizing the integral

E (c1, c2, c3) =
∫ Y

−Y

{
g
[
y (t)

]− ĝ [y (t)]}2
dy (24)

The minimization of function of Eq. (24) applies

∂E

∂ci
= 0 f or i = 1, 2, 3, ..n (25)

Eq. (25) consists of the system of equations, which can be solved simultaneously
to determine the values of c1, c2, c3.

c1 = 5

16
cY = 5

16
cωXmax, c2 = 0, c3 = 35

48

c

ωY
= 35

48

c

ωXmax
(26)

4 Identification of Nonpolynomial Nonlinear Damping

4.1 Bilinear Damping Form

Figure 2a. shows the response spectrum of bilinear damping in which a second
harmonic is present and it shows that bilinear damping is in the group of asymmetric
nonlinearity forms. But a similar spectrum is exhibited by square damping also.
Further classification is provided by the variation of second harmonic amplitude
with excitation level as shown in Fig. 2b. This distinctive behavior has been
explained by second harmonic amplitude, and which is formulated using Volterra
series and second-order Frequency Response Functions. From the Volterra series
and FRF synthesis formula, it can be explained that the second-order FRF H2(ω,ω)
can be obtained by truncating Eq. (10) up to the first term of second harmonic
amplitude X(2ω), which is also a function of the nonlinear parameter c2. For square
damping nonlinearity,

X (2ω) = A
2

2
H2 (ω, ω) = A

2

2
c2ω

2H 2
1 (ω)H1 (2ω) (27)
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Fig. 2 (a) Response spectrum for bilinear damping (ω/ωn = 0.5) (b) Second harmonic amplitude
variation with excitation level(ω/ωn = 0.33)

X (2ω) ∝ A2 (28)

Similarly for bilinear damping, nonlinear parameter c2 becomes

c2 = −15c (1− λ)
32Ẋ

= −15c (1− λ)
32 ωX

≈ − 15c (1− λ)
32 ωAH1 (ω)

(29)

where X ≈ X(ω) = AH1(ω) is obtained by truncating the first term of the first
harmonic amplitude of Eq. (9). If Eq. (29) is substituted in Eq. (27), then second
harmonic amplitude X(2ω) for bilinear damping becomes

X (2ω) = −15

64
Ac (1− λ)H1 (ω)H1 (2ω) (30)

X (2ω) ∝ A (31)

From Eq. (28), it can be shown that second harmonic amplitude varies as a square
function of excitation level for square nonlinearity, whereas it varies linearly (Eq.
31) for bilinear form. Although the bilinear function is a nonpolynomial function,
it is approximated by a polynomial function which shows that the polynomial
coefficients are amplitude dependent, which in turn is dependent on the excitation
level. Thus, the second harmonic for bilinear damping behaves differently from a
square damping form.
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. 

Fig. 3 Response harmonic amplitudes for bilinear damping (λ = 0.95 ) (a) First harmonic
amplitude (b) Second harmonic amplitude

4.1.1 Response Characteristic Behavior of Bilinear Damping Form

The response characteristic variation of the harmonic amplitudes over the excitation
frequency range is computed through numerical simulation using Runge-Kutta
fourth-order method with m = 1.0, k1 = 1.0 and c = 0.1.

From Fig. 3, the following distinctive features have been observed in the bilinear
damping form.

• The first harmonic amplitude in bilinear damping (Fig. 3a): the response variation
is seen as a smooth curve over the frequency range.

• The second harmonic amplitude in bilinear damping (Fig. 3b): it will have two
peaks. The first peak occurs around 50% of natural frequency, whereas the second
peak occurs near the resonance. The first peak is smaller than the second peak.
As λ decreases, amplitude increases in both harmonic amplitudes.

4.2 Quadratic Damping Form

Similarly, Fig. 4a shows the response spectrum of quadratic damping in which a
third harmonic is present and it shows that quadratic damping is falling under the
group of symmetric nonlinearity form. But, a similar spectrum is also exhibited
by the cubic damping nonlinearity. Quadratic damping also further classifies by
variation of third harmonic amplitude with excitation level shown in Fig. 4b.
One can notice here that third harmonic amplitude varies as a square function
for quadratic damping form, whereas it varies cubic function for cubic damping.
This distinct behavior is explained through the Volterra series. The third harmonic
amplitude can be obtained from the Volterra series synthesis formulae and its higher
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Fig. 4 (a) Response spectrum for quadratic damping (ω/ωn = 0.33) (b) Third harmonic ampli-
tude variation with excitation level(ω/ωn = 0.33)

order FRFs as given in Eq. (11). For cubic damping nonlinearity, c2 is zero, then
from Eq. (14), H3(ω,ω,ω) is defined as

H3 (ω, ω, ω) = jc3ω
3H 3

1 (ω)H1 (3ω) (32)

Let us consider a first term of third harmonic amplitude

X (3ω) = A
3

4
H3 (ω, ω, ω) ≈ A

3

4
jc3ω

3H 3
1 (ω)H1 (3ω) (33)

X (3ω) ∝ A3 (34)

From Eq. (26), nonlinear parameter c3 for quadratic damping is

c3 = 35

48

c

ωAH1 (ω)
(35)

By substituting c3 in Eq. (32)

X (3ω) = jω2A2 35

192
H 2

1 (ω)H1 (3ω) (36)

X (3ω) ∝ A2 (37)

From Eq. (34), it is clearly shown that third harmonic amplitude varies as a cubic
function of excitation level for cubic damping nonlinearity, whereas it varies square
function for quadratic damping nonlinearity form (Eq. 37). The quadratic damping
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Fig. 5 Response harmonic amplitudes for quadratic damping (a) First harmonic amplitude (b)
Third harmonic amplitude

nonlinearity function is also a nonpolynomial function, and it is approximated by
a polynomial function which shows that the polynomial coefficients are amplitude
dependent, which in turn is dependent on the square of excitation level. Thus, the
third harmonic for quadratic damping behaves differently from a cubic damping
form.

4.2.1 Response Characteristic Behavior of Quadratic Damping Form

From Fig. 5, the following distinctive features have been observed in the quadratic
damping form.

• The first harmonic amplitude in quadratic damping appears similar to bilinear
damping that is the response variation is along a smooth curve over the frequency
range as shown in Fig. 5a.

• The third harmonic amplitude (Fig. 5b) in quadratic damping: it will also have
two peaks. The first peak occurs around 33% of natural frequency, whereas the
second peak occurs near the resonance. The first peak is bigger than the second
peak.

5 Conclusions

The identification procedure is presented here to classify nonpolynomial form
damping nonlinearity from polynomial form damping nonlinearity. It is illustrated
that Volterra series synthesis formulation and its frequency response functions
are employed to explicate the distinct response characteristic behavior of bilinear
damping form and quadratic damping form qualitatively. The advantage of the
Volterra series is higher order harmonic amplitudes obtained in the form of explicit
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series, which is easy to compute and the disadvantage is an error due to series
truncation that can be overcome by proper selection of excitation frequency and
excitation level in order to accurately estimate nonlinear damping parameters.
Estimation errors in can be decreased employing a higher order polynomial
approximation; however, this involves exhaustive computational work of response
harmonic amplitude since it requires higher order FRFs. Three independent methods
such as response spectrum and its harmonic amplitude characteristic behavior and
variation of harmonic amplitude with excitation level have been provided to identify
the presence of bilinear form and quadratic form in a physical system with a
damping force.
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Identification of Nonlinear Damping
Using Nonlinear Subspace Method

Rui Zhu, Stefano Marchesiello, Dario Anastasio, Dong Jiang,
and Qingguo Fei

1 Introduction

In engineering, structures often exhibit nonlinear behavior. Nonlinear damping [1]
is a common nonlinear type, which may lead to difficulties in predicting the system
response [2]. Therefore, it is essential to identify the nonlinear damping parameters
from the measured vibration data [3].

The reader can refer to the extensive review of Noël et al. [4] about the devel-
opments in nonlinear system identification during the past ten years, emphasizing
the progress realized over that period. As for nonlinear damping, an identification
method based on the harmonic balance analysis was implemented in [5], considering
softening and hardening behaviors. Amabili et al. [6] identified the nonlinear
damping at each excitation level in the nonlinear regime from the experimental data
of a rubber plate. Moreover, it should be highlighted that damping identification can
be a tricky task also in the linear case, as studied by Naylor et al. [7], characterizing
the nonproportional damping distribution of a multi-degrees-of freedom system
using the resonant decay method.

Among the several publications about the nonlinear system identification of
structures, Marchesiello et al. [8] adopted the perspective of nonlinearities as inter-
nal feedback forces and proposed the nonlinear subspace identification technique
(NSI). Given the robustness and efficacy of the subspace method, these nonlinear
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subspace algorithms open up new horizons for the identification of nonlinear
mechanical systems.

In this paper, NSI is extended to identify the nonlinear damping. Two numerical
examples are used to verify the proposed method.

2 Nonlinear Subspace Method Considering Friction

The nonlinear damping is considered. The equation of the system can be written as
follows:

Mẍ(t)+ Cẋ(t)+Kx(t)+ fd = f (t) (1)

where M is the mass matrix, C is the damping matrix, and K is the linear stiffness
matrix.

The system can be viewed as subjected to the external forces f (t) and the internal
feedback forces due to nonlinearities fd as shown in Fig. 1.

A one-degree-of-freedom mass-spring system with the Coulomb friction is used
to elaborate the nonlinear subspace method.

mẍ(t)+ cẋ(t)+ kx(t)+ α sgn (ẋ(t)) = f (t) (2)

By moving the nonlinear term of Eq. (2) to the right-hand side

mẍ(t)+ cẋ(t)+ kx(t) = f (t)− α sgn (ẋ(t)) = f (t)− fd (3)

A state vector is used by z = [x ẋ]T , the state-space formulation of the equation
of motion can be expressed as

{
ẋ

ẍ

}

=
[

0 1
− k
m
− c
m

]

︸ ︷︷ ︸
Ac

{
x

ẋ

}

+
[

0 0
1
m
α
m

]

︸ ︷︷ ︸
Bc

{
f (t)

− Sgn (ẋ)
}

(4)

Linear system

fd : Nonlinear
dissipative force

f (t) x (t)

-
+

Nonlinear feedback

Fig. 1 Closed-loop representation with nonlinear damping
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y = [1 0
]

︸ ︷︷ ︸
C

{
x

ẋ

}

+ [0 0
]

︸ ︷︷ ︸
D

{
f (t)

− Sgn (ẋ)
}

(5)

where Ac, Bc, C, and D are the continuous state-space matrix.
The “extended” frequency response function can be derived based on authors’

previous work about the nonlinear subspace identification.

HE (ω) = D + C(iωI − Ac)−1Bc (6)

where I is the unit matrix, and ω is the angular frequency and i = √-1.
Substituting Eqs. (4) and (5) into Eq. (6), one can obtain

HE (ω) =
[
H Hα

]
(7)

where H is the underlying linear system receptance matrix. The nonlinear damping
coefficients can be identified based on Eq. (7).

3 Simulation

3.1 Single-degree-of-freedom System with ‘Cubic Stiffness
and Quadratic Friction

The SDOF system with cubic stiffness and coulomb friction is described in Fig. 1,
whose motion is described by the following equation (Fig. 2):

mẍ(t)+ cẋ(t)+ kx(t)+ αẋ(t) |ẋ(t)| = f (t) (8)

with system parameters summarized in. Assume that the type and the location of the
nonlinearity are unknown (Table 1).

The SDOF system is excited by a zero-mean Gaussian random input, whose root-
mean-square (r.m.s) value is 5. The response is calculated by Runge-Kutta. The
effect of the measurement noise on the parameter estimation results is investigated

Fig. 2 A mass-spring system
with quadratic friction

Quadratic friction

x

F
m

k

c
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Table 1 System parameters
of the SDOF system

m (kg) k (N/m) c (Ns/m) α(N)

2 1000 1 0.5

0 20 40 60 80 100
-12

-8

-4

0

4

8

12
 tne

mecalpsi
D

x/
m

time/s

×10-3

Fig. 3 The displacement of the system

42 6 8 10 12 14 16 18 2010-14

10-12

10-10

10-8

10-6

10-4

10-2

Model order n

Fig. 4 Singular value plot with 5% measurement error and i = 20

by corrupting the previously generated output by adding 5% Gaussian zero-mean
noise. The displacement is shown in Fig. 3.

The model order n = 2 is determined by inspecting the singular value plot in
Fig. 4 (with i= 20 block rows), where a jump of seven orders of magnitude between
model order two and three is observed.
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Fig. 5 Real and imaginary parts of the identified coefficients
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Fig. 6 Underlying linear FRF h11

The determined coefficients are shown in Fig. 5. The error of the nonlinear
damping coefficient α is only 1.2%. As shown in Fig. 6, the underlying estimated
FRF h can be obtained by the NSI. Results show that the underlying estimated FRF
h is in quite good agreement with the true value.
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3.2 Three-degrees-of-freedom System with Coulomb
and Quadratic Friction

The three-degree-of-freedom nonlinear system shown in Fig. 5 is excited by a zero-
mean Gaussian random force at DOF 3 only. The system parameters are summarized
in Table 2 (Fig. 7).

The system is excited by a zero-mean Gaussian random input, whose root-mean-
square (r.m.s) value is 5 at node 3. The response is calculated by fourth Runge-
Kutta. The effect of the measurement noise on the parameter estimation results is
investigated by corrupting the previously generated output by adding 2% Gaussian
zero-mean noise. The displacement is shown in Fig. 8.

The model order n = 6 is determined by inspecting the singular value plot in
Fig. 4 (with i = 40 block rows), where a jump of four orders of magnitude between
model order six and seven is observed (Fig. 9).

The determined coefficients are shown in Figs. 10 and 11. It is worth highlighting
that the imaginary part is always much lower than the absolute value of the real part
in the selected frequency range, which assesses the goodness of the identification.
The identified damping coefficients are reported in Table 3. The max error is only
0.18%.

As shown in Fig. 12, the underlying estimated FRF h13 can be obtained by the
NSI. Results show that the underlying estimated FRF h13 is in quite good agreement
with the true value.

Table 2 System parameters of the 3-DOF system

Mass (kg) Linear stiffness (N/m) Damping (Ns/m) Nonlinear damping

m1 = m2 = 1 k1 = k3 = 800 c1 = c2 = 2 α1 = 5
m3 = 1.5 k2 = 1000 c3 = 1 α2 = 0.2

Quadratic friction

m1 m2 m3

k 1 k 2 k 3

c 1 c 2 c 3

x 1 x 2 x 3 f 2,

Coulomb friction

Fig. 7 Three-degree-of-freedom nonlinear system with quadratic friction to ground at DOF 1 and
the Coulomb friction to ground at DOF 3
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Fig. 8 The displacement of the system
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Fig. 9 Singular value plot with 2% measurement error and i = 40

4 Conclusions

Two common kinds of nonlinear damping are successfully identified by nonlinear
subspace method. The effect of the measurement noise on the parameter estimation
results is investigated by corrupting the previously generated output adding different
Gaussian zero-mean noise. Results show that the proposed method can fully
characterize the nonlinearities in the structure and effectively identify the nonlinear
damping parameters.
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Table 3 Identified results

Nonlinear damping coefficients Exact value Identified value Error/%

α1 5 5.010 0.18
α2 0.2 0.199 0.11
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 estimated

Fig. 12 Underlying linear FRF h13
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Nonlinear Restoring Force Subspace
Identification of Negative Stiffness
Nonlinear Oscillators

Qinghua Liu, Fangyuan Hu, Junyi Cao, and Xingjian Jing

1 Introduction

In recent years, many negative stiffness structures have been developed to enhance
the ability of energy harvesting or vibration control [1–4]. Harne and Wang
investigated the engineering application status of bistable structure dynamics in their
book [1]. Daqaq et al. made a critical review and discussion on energy harvester
using a bistable beam [2]. Jing et al. proposed a class of X-shaped structures for
vibration isolation [3]. Yan et al. utilized symmetric permanent magnets to construct
a bistate nonlinear vibration isolator [4]. The basic principle of these structures is to
couple nonlinear negative stiffness on linear oscillators.However, it is hard to obtain
the accurate nonlinear restoring force (NRF) in negative stiffness oscillators for
dynamic analysis. In recent decades, much effort has been devoted to investigating
the governing model derivation and the effect of NRF, such as analytical theory
and direct measurement using a dynamometer, which are only suitable for ideal
conditions [5–7]. Leng et al. utilized equivalent magnetizing current theory to
calculate the potential wells function and Santon et al. calculated magnetic force
based on the magnetic dipoles theory [5, 6]. The limitation of these two models
is magnet’s dimensions must be much less than the magnet interval. Zhou et al.
measured the magnetic force and then fitted it with empirical polynomial function
[7]. It will lead to failure when considering large deformation and asymmetric
conditions. Therefore, modeling based on system identification of NRF is necessary.

Q. Liu · F. Hu · J. Cao (�)
Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an
Jiaotong University, Xi’an, China
e-mail: caojy@mail.xjtu.edu.cn

X. Jing
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong,
China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Lacarbonara et al. (eds.), Advances in Nonlinear Dynamics, NODYCON
Conference Proceedings Series, https://doi.org/10.1007/978-3-030-81166-2_34

379

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81166-2_34&domain=pdf
mailto:caojy@mail.xjtu.edu.cn
https://doi.org/10.1007/978-3-030-81166-2_34


380 Q. Liu et al.

For the identification of restoring force in nonlinear oscillators, many identifica-
tion algorithms have been proposed [8]. Marchesiello et al. proposed a time-domain
subspace identification algorithm to simulate the identification of NRF in an
oscillator with the cubic stiffness and clearance type nonlinearity [9]. Noël, Filippis,
and Anastasio et al. had improved this method to identify impact stiffness in
SmallSat spacecraft [10], contact stiffness in bolted connected solar array structure
and aircraft [11, 12], and distributed nonlinearities in slender beam [13]. Moreover,
Zhang et al. investigated a two-stage time-domain approach based on the subspace
method to identify multiple degree-of-freedom nonlinear structures [14]. Liu et
al. proposed a novel nonlinear separation subspace identification algorithm to get
contact stiffness in the cantilever beam system [15, 16]. It’s attractive that this
identification technology is used to identify NRF in negative stiffness oscillators,
because of its robustness and high numerical performances.

2 Subspace Identification Method

2.1 Linear Subspace Identification

For the linear subspace identification method, the calculation process is conducted
on the discrete-time state-space model of the dynamic system and can be expressed
as

xr+1 = Axr + Bur + pr
yr = Cxr +Dur + qr (1)

where A, B, C, and D are, respectively, system matrix, input matrix, output matrix,
and direct feedthrough matrix. ur, yr, and xr are input, output, and state vector at
time instant r. pr and qr represent the process error and measurement error and are
all considered to be the zero-mean Gaussian white noises in this paper.

The goal of the subspace identification problem is to estimate the model order
and the system matrices A, B, C, and D based on the input and output matrix. By
iterating the two equations in Eq. (1) yields

yk = CAr−1x1 + CAr−2Bu1 + CAr−3Bu2 + · · ·CBuk−1

+ CAr−2p1 + CAr−3p2 + · · ·Cpk−1 +Duk + qk
(2)

Then extended observability matrix 1 and two triangular Toeplitz matrix 2 and
 are defined as follows:

Γ = [C CA · · · CAr]T (3)
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Θ =

⎡

⎢
⎢
⎢
⎣

D 0 · · · 0
CB D · · · 0
...

...
. . .

...

CAr−2B CAr−3B · · · D

⎤

⎥
⎥
⎥
⎦

(4)

Λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 0
C 0 · · · 0 0
CA C · · · 0 0
...

...
. . . 0 0

CAr−2 CAr−3 · · · C 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(5)

Then Eqs. (2) can be rearranged as

Y = ΓX +ΘU +ΛP +Q (6)

Finally, the input and output data should be gathered in the block Hankel matrix,
and matrix projection theory should be utilized to calculate the estimated matrices
[17].

A = T ÂT −1; B = T B̂; C = ĈT −1; D = D̂ (7)

where ˆ denotes estimated matrics, T is an invertible matrix.

2.2 Nonlinear Subspace Identification

According to Newton’s second law of motion, the mechanical equation of multi-
stable oscillator with magnetic coupling can be written as follows:

Mẅ(t)+ Cẇ(t)+Kw(t)+
p∑

n=1

knw
n(t) = F(t) (8)

where M, C, and K are equivalent linear mass, viscous damping, and stiffness, w(t)
is negative stiffness oscillator’s displacement vector, and F(t) is the input force.
The nonlinear magnetic force can often be defined as high-order polynomial form∑p

n=1knw
n(t) and can be seen as a feedback force on the underlying linear system,

then the nonlinear term in Eq. (8) can be moved to the right-hand side.

Mẅ(t)+ Cẇ(t)+Kw(t) = F(t)−
p∑

n=1

knw
n(t) (9)
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The Eq. (9) can be converted into a continuous-time state-space model

ẋ = Acx + Bcu
y = Ccx +Dcu (10)

where Ac, Bc, Cc, and Dc are system matrices, input matrics, output metrics, and
direct feedthrough term. The continuous model can be converted into a discrete
state-space model and a discrete state vector is defined as xr = x(r�t). Then the
following discrete state-space model is obtained:

xr+1 = Axr + Bur
yr = Cxr +Dur (11)

where A = eAc�t , B = (eAc�t − I)Ac−1Bc .
Assuming that the displacement w at the end of the cantilever beam can be

measured, the state-space formulation of the Eq. (9), corresponding to a state vector
chosen as x = [w ẇ]T and to an input vector u= [F(t)− k1w(t)· · · − knwn(t)]T , is.

{
ẇ

ẅ

}

=
[

0h×h Ih×h
−M−1K −M−1C

]{
w

ẇ

}

+
[

0h×h · · · 0h×1

M−1 · · · M−1kn

]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F

− w
...

− wn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

y = [Ih×h 0h×h]

{
w

ẇ

}

+
[

0h×h 0h×1 · · · 0h×1

]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F

− k1
...

− knwn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(12)

The “extended” frequency response function (FRF) matrix HE(ω) of the nonlin-
ear system is

ĤE (ω) = D̂ + Ĉ
(
iωI − Âc

)−1
B̂c

= D + CT T −1(iωI − Ac)−1T T −1Ac(A− I )−1B

= D + C(iωI − Ac)−1Bc = HE (ω)
(13)

It’s obvious that the “extended” FRF contains the parameters of the system
(include M, C, K, and kn). Taking into account Eq. (12), the “extended” FRF
becomes

HE (ω) = (iωI − Ac)−1M−1
[
I k1 · · · kn

]

= (K + iωC − ω2M
)−1 [

I k1 · · · kn
] (14)

and particularly, in the case ω = 0,
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HE(0) =
[
K−1 K−1k1 · · · K−nkn

]
(15)

Then the NRF function can be characterized as

fnon =
(
K−1k1 −K−1

)
w +K−1k2w

2 + · · · +K−1knw
n (16)

3 Numerical Examples

Considering the simplest negative stiffness nonlinear oscillator, the NRF is at least
third-order polynomial, where K + k1 is negative and k3 is positive. If k2 is not
zero, the system is asymmetric. This kind of oscillator is often called a bistable
oscillator, which has two steady states and one unstable state. When designing a
bistable oscillator, three equilibrium points w1, w2, and w3 must be given first and
unstable point w2 is often designed as zero. Decompose the NRF into the following
equation

fnon = k3 (w − w1) (w − w3) (17)

where K + k1 = k3w1w3 and k2 = − k3(w1 + w3).
The tristable oscillator has five equilibrium points and three of them are stable.

Similarly, five equilibrium points w1, w2, w3, w4, and w5 must be given first and
unstable point w3 is often designed as zero. Then, the NRF can be expressed by

fnon = k5 (w − w1) (w − w2) w (w − w4) (w − w5) (18)

where

k5 = K + k1/w1w2w4w5

k2 = −k5 ((w1 + w2) w4w5 + (w4 + w5) w1w2)

k3 = k5 ((w1 + w2) (w4 + w5)+ w1w2 + w4w5)

k4 = −k5 (w1 + w2 + w4 + w5)

Four types of oscillators’ parameters are listed in Table 1.
The linear stiffness K of the beam and first-order polynomial coefficient of

nonlinear magnetic force must be given first. In this paper, K is chosen to be 75 N/m,
and k1 is an interval value be designed between −120 N/m to −20 N/m. As can be
seen in Fig. 1, k1 can determine the depth of the potential wells of the bistable or
tristable oscillators.

In the following simulations, k1 = −120 N/m was considered for symmetric
bistable and asymmetric bistable oscillator, k1 = −60 N/m was considered for
symmetric tristable and asymmetric tristable oscillator. Equivalent mass M and
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Table 1 The parameter of four different types of negative stiffness oscillators

Types NRF function Equilibrium points w(m)
Symmetric bistable fnon = (K + k1)w + k3w3 −0.005 0 0.005

Asymmetric bistable fnon = (K + k1)w + k2w2

+ k3w3
−0.007 0 0.005

Symmetric tristable fnon = (K + k1)w + k3w3

+ k5w5
−0.01 −0.005 0 0.005 0.01

Asymmetric tristable fnon = (K + k1)w + k2w2

+ k3w3 + k4w4 + k5w5
−0.012 −0.006 0 0.005 0.01

Fig. 1 (a) Symmetric bistable with k1 from −120 N/m to −80 N/m; (b) asymmetric bistable with
k1 from −120 N/m to −80 N/m; (c) symmetric tristable with k1 from -60 N/m to -20 N/m; (d)
asymmetric tristable with k1 from −60 N/m to −20 N/m

viscous damping C of the cantilever beam are 0.006 kg and 0.01 N • (s/m). In
Table 2, the four types of NRF are simulated in Newton’s second law of motion.

It is important to note that the bistable and tristable oscillator can behave inter-
well or intrawell oscillation, the selection of identification data sets is particularly
important. The numerical examples show that the selected output displacement
signal must contain both interwell or intrawell oscillation. In this paper, a sweep
signal with constant excitation acceleration was chosen, it ensures that the amplitude
of input excitation force is constant. Moreover, the sweep frequency range is
determined by the natural frequency of the underlying linear system derived from
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Table 2 Numerical simulation equations

Types NRF function

Symmetric bistable fnon = − 45w + 1.8 × 106w3

Asymmetric bistable fnon = − 45w + 2.6 × 103w2+ 1.29 × 106w3

Symmetric tristable fnon = 15w − 7.5 × 105w3+ 6 × 109w5

Asymmetric tristable fnon = 15w − 750w2 − 6.2 × 105w3 + 1.25 × 107w4+ 4.2 × 109w5

the nonlinear oscillator. Based on these principles, the frequency-swept response
of Fig. 2(a, c, e, g) was used to make an identification simulation. Considering the
noise pollution in real applications, signal-to-noise ratio 40 dB, 30 dB, and 20 dB
gradually enhanced white Gaussian noise signal was added to the data set. Because
the difference in the identification accuracy under different noises is not very big,
it is not necessary to compare all of them. Here, only the case with the maximum
noise of 20 dB is selected and all results show that the identified NRFs are all above
93% compared to the theoretical curve in Fig. 2(b, d, f, h).

Though the identified accuracy is slightly different between the four types of the
oscillator, it must be noted that these differences depend on many factors like the
optimal order of system matrix or selected identification signal. So, the comparison
of identification ability between these four types of oscillators is unnecessary.

4 Experimental Verification

In this section, experiments are carried out to validate the ability of the nonlinear
subspace identification method. The experimental system shown in Fig. 3 is set
up and excited under constant and sweep frequency excitations by a vibration
exciter (JZK-50) controlled by a signal generator (VT-9002-1) and a power amplifier
(YE5874A). A displacement sensor (HL-G112-A-C5) is applied to measure the
absolute displacement of the beam’s displacement response and an oscilloscope
(TBS2000) is used to collect the experimental data.

It’s hard to achieve a completely symmetric condition because of the cantilever
beam’s internal stress, inhomogeneity of two rotating magnets, or installation
conditions. So, if the position accuracy of the two steady-state points is higher than
95%, it will be regarded as symmetric.

The four different types of multistable oscillators’ equilibrium points and other
experimental parameters are listed in Table 3.

The restoring force surface (RFS) method can be used to verify the accuracy of
NRF identified by the nonlinear subspace identification method. So, the multistable
beams’ displacement response was processed to get velocity and acceleration and
then construct their RFS. The comparison between identified NRF and experimental
RFS is illustrated in Fig. 4(a–d). It can be seen from Fig. 4 that the errors in the four
types of oscillators are slightly different. However, it cannot explain that identifi-
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Fig. 2 (a) Symmetric bistable, (c) asymmetric bistable, (e) symmetric tristable, and (g) asymmet-
ric tristable frequency-swept displacement response and identified results under 20 dB noise; (b,
d, f, h) Comparsion between the identified NRF (20 dB) and theoretical NRF

cation accuracy is affected by different types of NRF. Through a large number of
simulation data and experimental data sets identification results, it can be concluded
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Fig. 3 Photo of the experimental test rig

Table 3 The experimental parameters of four different types of multistable oscillators

Types Equilibrium pointsw(mm)
Sweep amplitude
(m/s2) Sweep time (s)

Sweep
range (Hz)

Symmetric bistable −6.69; 0; 6.73 3 40 5 ~ 25
Asymmetric bistable −8.81; 0; 6.21 10 40 15 ~ 35
Symmetric tristable −10.95; 0; 11.09−5. 3; 5.2 5.5 40 10 ~ 30
Asymmetric tristable −12.50; 0; 9.60−6.3; 4.0 9 40 10 ~ 30

that the accuracy identified by the nonlinear subspace identification method strongly
depends on the selection of excitation signal and measurement noises. Anyway, the
identified NRF always keeps good agreement with the measured RFS.

5 Conclusions

In this paper, the four types of negative stiffness nonlinear oscillators were con-
structed by using a magnetically coupled multistable cantilever beam. To verify the
identification ability of the nonlinear subspace identification algorithm, the sweep
response signals of the multistable oscillator under different noises are selected. The
simulation results show that at least above 93% accuracy was guaranteed though
20 dB noise was added. Moreover, the oscillators’ Frequency-Sweeping response
signal must contain both interwell oscillation and intrawell oscillation. In other
words, the selection of the excitation signal is significant. In real experimental
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Fig. 4 The comparison between identified NRF and experimental RFS. (a) bistable oscillator; (b)
asymmetric bistable; (c) tristable oscillator; (d) asymmetric tristable

conditions, the theoretical NRF is not known. So, experimental RFS was constructed
to compare with the NRF identified by the nonlinear subspace algorithm. From the
experimental results, four multistable oscillators’ NRF are in good agreement with
the measured RFS.
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Accurate Model Identification
of Quadcopters with Moments of Inertia
Uncertainty and Time Delay

Marzieh Ghani and Afshin Banazadeh

1 Introduction

Unmanned Aerial Vehicles (UAVs) have a wide range of applications in both
military and commercial areas as they can hover, land and take off vertically; move
in any direction and also fly at both high and low speed. Remote monitoring,
surveillance and transportation of small packages are some of the applications of
UAVs. Quadcopters are the most popular UAVs [1] due to their advantages: one of
them is the lack of need for complex mechanical controller as they are controlled
with the variation of rotor speed. Moreover, they can fly indoor and outdoor in
light wind conditions. With the increase of interest in Quadcopters, the necessity
of establishing a precise and fast mathematical model has increased in order to
simulate dynamic behaviour and estimate dynamic characteristics with the aid of
computers which lead to the cost and time reduction in the development of flight
controllers [2].

Mathematical model of quadcopters can be derived in traditional way using
Newton-Euler [3, 4] or Euler-Lagrange formalism [5] which is followed by a
comparison between flight test data and simulation results for additional fine-
tuning to enhance the accuracy of the model [2]. On the top of that is the system
identification or the art of extracting mathematical model from measured input and
output data [6–8] which not only is used to establish the dynamic model equations
but also is useful to determine the constant parameters in the equations [9–12] or
to obtain the dynamic of the subsystem of quadcopter like its rotors [13]. In [14]
moment of inertia and thrust parameters of a hexacopter are evaluated by time
domain system identification method. Inertia tensor of a quadcopter is investigated
using test benches in [4]. A real-time estimator determining the inertia tensor of
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a three degrees of freedom quadcopter hover platform is designed in [15]. System
identification of quadcopters is accomplished also by employing frequency domain
methods commonly applied to large-scale rotorcrafts and fixed wing aircraft [16–
18]. Also, bare airframe dynamics is extracted in hover flight condition [19].

With regard to controller design, however, it is necessary that the main param-
eters to be known especially the moment of inertia, since it is not measurable
through static tests [1]. However, analytical methods or CAD software can be
used for geometrically simple objects which are impractical for quadcopters due to
complexity in the equations and also the possibility of change from one mission
to another due to payload requirements. Therefore, flight tests would be more
convenient to obtain moments of inertia.

This paper proposes a method to obtain accurate moments of inertia of quad-
copters with the aid of frequency domain system identification technique which is
a fast and precise technique and also directly applicable to control system design.
There are other methods to identify or simulate moments of inertia of quadcopters,
but the advantage of frequency domain system identification technique is its high
accuracy, low computational workload and capability to be implemented in different
dynamic modes. Moreover, it can be easily used in control system design with regard
to the extraction of the transfer function. The process has been firstly applied in a
captive form to a quadcopter attached to the laboratory test stand with three degrees
of freedom. Afterwards, the tests are repeated for F450 quadcopter and the extracted
dynamic models are verified. Moreover, delay of the rotors as an important criterion
in controller design is also identified.

2 Mathematical Model

Quadcopter consists of four identical motors with cross- or plus-form structure, as
shown in Fig. 1. It is typically controlled by the speed of its motors. The equations
of motion of this vehicle, with respect to the body reference frame, is expressed as
follows:

F = md (V )
dt

+m(ω × V ) (1)

M = [I ]
d (V )

dt
+ ω × ([I ] ω) (2)

where V= [Vx Vy Vz]T and ω = [p q r ]T are translational and angular velocities

in body reference frame, respectively. F = [
Fx Fy Fz

]T
is the external force

vector, M = [
Mx My Mz

]T
is the external moment vector and [I] is the matrix

of moments of inertia which is a diagonal matrix and m is the mass of the vehicle.
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Fig. 1 Schematic of a quadcopter

External forces and moments are calculated based on the thrust force of each
rotor, Ti, i = 1, 2, 3, 4 [3]:

Fz = − (T1 + T2 + T3 + T4) (3)

Mx = (T1 − T3)D (4)

My = (T4 − T2)D (5)

Mz = (T1 + T3 − T2 − T4)K (6)

where D is the distance from propellers to the Quadcopter’s center of gravity and K
is a constant that relates propeller’s thrust to the yaw moment. The transformation
matrix from the inertial reference frame to the body reference frame is written as
follows:

[T ]BI =
⎡

⎣
cφcψ cθcψ −sθ

sφsθcψ − cφsψ cφcψ + sφsθsψ sφcθ
cφsθcψ + sφsψ sθcφsψ − sφcψ cθcφ

⎤

⎦ (7)

2.1 3- and 6-DOF Newton-Euler Formalism

As shown in Fig. 2, the Quadcopter that is attached to a laboratory stand has only
three rotational degree of freedom and its state vector consists of Euler angles

and angular velocities as: x =
[

p q r φ θ ψ

]T
. According to (2) and (7), the

mathematical model of the 3-DOF Quadcopter is as follows:
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Fig. 2 The captive test stand

ẋ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Mx
Ixx
− (Izz−Iyy)qr

Ixx
My

Iyy
− (Ixx−Izz)pr

Iyy

Mz

Izz
− (Iyy−Ixx)pq

Izz

p + qtanθsinφ + rtanθcosφ
qcosφ − rsinφ
qsinφ
cosθ

+ rcosφ
cosθ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)

In case of considering both translational and rotational motion, the state vector is

extended as: x =
[

p q r Vx Vy Vz φ θ ψ

]T
and three differential equations are

also added to (8), so the mathematical model of 6-DOF Quadcopter is as follows:

ẋ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Mx
Ixx
− (Izz−Iyy)qr

Ixx
My

Iyy
− (Ixx−Izz)pr

Iyy

Mz

Izz
− (Iyy−Ixx)pq

Izz
Fx
m
− gsinθ − (qVz − rVy

)

Fy
m
+ gcosθsinφ − (rVx − pVz)

Fz
m
+ gcosθcosφ − (pVy − qVx

)

p + qtanθsinφ + rtanθcosφ
qcosφ − rsinφ
qsinφ
cosθ

+ rcosφ
cosθ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)
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3 System Identification

System identification or the art of extracting mathematical model of a system from
measured input and output time history data has been developing since 1965 [6]. It is
well suited to obtain a low-cost dynamic model of a quadcopter [2]. Firstly, a generic
mathematical model is considered for the system that is enriched by processing
flight test data to derive aerodynamic coefficients. Generally, enormous methods are
presented for system identification, one of which is frequency domain identification
[20].

Frequency domain system identification not only represents a linear dynamical
model of the system, but also gives a relative robust model due to reduction in errors
associated with bias effects and process noise [20]. Comprehensive Identification
from FrEquency Response (CIFER) program is used to obtain a closed-loop
dynamical model of quadcopters. CIFER has been successfully applied in the
system identification of various aircraft and rotorcraft such as the XV-15, Bell-
214ST and UH-60 [2]. It is possible to check the validity of frequency response
data in CIFER after acquiring it by evaluating its coherence which is an indication
of how well the output and input data are correlated. Coherence is given as follows:

Y2
xy (ω) =

∣
∣
∣Ĝxy(f )

∣
∣
∣
2

∣
∣
∣Ĝxx(f )

∣
∣
∣

∣
∣
∣Ĝyy(f )

∣
∣
∣

(10)

where Ĝxx(f ), Ĝyy(f ) and Ĝxy(f ) are auto-spectral densities of the input, output
and cross-spectral density of the input and output, respectively. A perfect correlation
between input and output would result in a coherence value of unity, whilst poor
coherence typically falls below a value of 0.6 [20]. After validating the coherence
of the data, decoupling must be implemented such that the inputs provided by off-
axis commands are removed from the output of the axis of interest. The frequency
response function can be directly estimated as follows:

Ĥ (f ) = Ĝ−1
xx (f )Ĝxy(f ) (11)

The cost function to optimize a single-input single-output (SISO) transfer
function is defined as follows:

J = 20

nω

ωnω∑

ω1

Wγ

[

Wg

(∣
∣
∣T̂ c

∣
∣
∣− |T |

)2 +Wp
(
< T̂ c− < T

)2
]

(12)

where nω is the number of frequency points, ω1 and ωnω define the starting and
ending frequencies of interest, || and < are the magnitude (dB) and phase (degree)
at each frequency, Wγ , Wg and Wp are the total, magnitude and phase weights,
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and as T̂ c and T represent the estimated and actual values of each frequency point,
respectively.

4 Results and Discussion

Experimental tests for transfer function extraction of both quadcopters are presented
here. Single-input single-output (SISO) system identification is just implemented
with regard to the cross control talk in control mechanism which results in an intense
control coupling because of gyroscopic effects. However, multi-input single-output
(MISO) analysis can be neglected due to great difference between the main or
on-axis input and other correlated off-axis inputs. Specification of the quadcopter
attached to the laboratory stand is described in Table 1.

The process of identification starts with the chirp signal known as a frequency
sweep which consists of a sinusoidal function. In order to excite all different modes
of the system, this signal starts at a low frequency and slowly increases to higher
frequencies [16]. After performing experimental tests with different frequency
sweeps for this quadcopter, it is found that inputs above 8 rad/sec are not followed by
the system. Therefore, the maximum frequency of the input is set to be 10 rad/sec.
Furthermore, regarding to the coherence, the minimum frequency of the input is
defined to be 1.2 rad/sec. Thus, the frequency sweep input covers the frequency
range of [1.2 10] rad/sec. In frequency domain system identification, the minimum
identifiable frequency of the system depends on the data record duration, Trec, that
should be≥ 8π

ωmin
. Hence, the input that is applied to the system is a frequency sweep

illustrated in Fig. 3.
The dynamic model of the lateral mode is extracted from CIFER in the form

of transfer function. The resulting magnitude, phase and coherence of the lateral
transfer function is shown in Fig. 4. An examination of this figure shows a good
coherence (Y2

xy ≥ 0.6) for the frequency range of identification that confirms the
dynamic is well excited. Therefore, the system is well representable by a linear
model. The resulting transfer function of the lateral mode is as follows:

G(s) = θ

Tc
= 8948.57

s3 + 7.3494s2

(
deg

N

)

(13)

Table 1 The laboratory
stand specification

Arm length 25 cm
Stand height 150 cm
Type of motor Brushless motor
Limited range (Pitch & Roll) ±50

◦

Limited range (yaw) ±180
◦

Sampling frequency 50 Hz
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Fig. 3 The frequency sweep input, designed for the captive quadcopter

Fig. 4 Bode diagram of the lateral mode dynamics for the captive quadcopter

This is a low order transfer function of the quadcopter [17] that is convertible
to a specific layout in order to obtain parameters such as inertia and motor latency
based on theoretical basis and Pade´ approximation. From the theoretical basis, the
transfer function for the longitudinal and lateral axes of the quadcopter is written as
follows [21]:

G(s) = θ

Tc
= D

Is2 (14)

where D is the arm length and I is defined as Ixx or Iyy depending on which axis the
manoeuvre is done about it. Due to the time lag between a change of an input and
output in real dynamic systems, it is necessary to approximate this time delay for a
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precise model identification. This is usually done through Pade´ approximation of
the exponential function [22]. Here, the time delay is approximated as follows:

e−T s = 1

1+ T s (15)

where, T is the motor lag. Using (14) and (15), estimation of the phase lag and the
moment of inertia of the motors about the lateral axis can be made by the following
equation:

G(s) = θ

Tc
= D

Is2

1

T s + 1
(16)

where D, I and T are the arm length, the moment of inertia and the motor lag,
respectively. Comparing (13) and (14), the motor lag and the moment of inertia are
estimated to be 0.136 sec and 0.03 kg.m2, which is well matched with the moment
of inertia calculated by SolidWorks for this quadcopter.

For the F450 quadcopter which is shown in Fig. 5, the frequency sweep input is
applied with regard to the aforementioned rules in the previous part. Specification
of this F450 quadcopter is described in Table 2. The data record duration is set to be
60 sec. An examination of Fig. 6 shows a good coherence for the frequency range
of [6.0 15.0] rad/sec, so the system can be well identified in this range of frequency.

The resulting transfer function about the longitudinal axes is as follows:

Fig. 5 F450 quadcopter

Table 2 The F450
quadcopter specification

Arm length 25 cm
Weight 1.1 kg
Type of motor Brushless motor Emax 2213
Blade size 8045
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Fig. 6 Bode diagram of the longitudinal mode dynamics for the F450 quadcopter

G(s) = θ

Tc
= 5128.04

s2 + 7.226s

(
deg

N

)

(17)

Estimation of the phase lag and the moment of inertia of the motors about the
lateral axes for this system can also be done using the following equation:

G(s) = θ

Tc
= D

Is

1

T s + 1
(18)

Comparing (15) and (16), the motor lag and the moment of inertia are estimated
to be 0.1384 sec and 0.0242 kg.m2, which is sensible with regard to the parameters
estimated by SolidWorks modelling.

5 Model Verification

Following to identification results, extracted models are needed to be verified in
time domain with doublet manoeuvres. Both the extracted model and the real system
should be in the same but separate control loop as shown in Fig. 7. The upper part
of this figure belongs to the actual flight test data and the lower part belongs to the
simulation of the identified model. It is seen that both parts are excited by the same
input for comparison purposes and to validate the obtained transfer function.

It is seen that the extracted dynamic model has an excellent agreement with the
flight test data in Fig. 8; thus, the closed-loop dynamic model of the quadcopters is
successfully identified and accurately compared with the actual system.
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Fig. 8 Response about the longitudinal axis of the extracted transfer function compared to the
flight test data

6 Concluding Remarks

In this study, a fast and practical method for identification of the critical parameters
such as the moment of inertia and the motor lag of quadcopters has been successfully
implemented. This method is based on the system identification in frequency
domain. CIFER program is used to extract a bare airframe model using the motor
speed as an input and orientation angle as an output with the control system in
the loop due to marginal stability/instability of the system. Therefore, the extracted
model was compared against flight test data in a manoeuvre not used in the process
of system identification to examine the validity and accuracy.

Moreover, identified moment of inertia shows the same result as the outcome
acquired from the SolidWorks modelling. It is found that the proposed method is
precise, fast and simple compared to traditional modelling techniques. Here, the
data acquisition rate plays a key role in the identification process and should not be
less than 10 HZ for common quadcopters. It is notable that dynamics identification
of quadcopters in frequency domain is immense because applying the periodic input
is tough on these systems. Hence, identification of a captive quadcopter attached to
the laboratory stand is a more attractive option.
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Nonparametric Identification
of a Nonlinear MEMS Resonator

Rodrigo T. Rocha , Feras Alfosail , Wen Zhao ,
Mohammad I. Younis , and Sami F. Masri

1 Introduction

Accurate mathematical models bring many advantages, such as enabling predic-
tions, and allowing the optimization of a system without the need to fabricate
it, which reduces the cost and improves prototyping new designs. However, a
mathematical model is different for each case of a different system. Thus, the
challenge to obtain dynamical equations of motion for system with high complexity
behavior due to the presence of nonlinearities becomes very high.

Nonparametric identification methods have shown to be a valuable strategy for
formulating accurate models [1–5]. These methods can obtain a function from data
measurements that may provide physical representation of a system without prior
knowledge of the nature of the system restoring force or nonlinearities. In addition,
these techniques have been recently implemented in machine learning applications
through neural networks and optimization algorithms [4, 5].

Dynamical structures usually exhibit nonlinear behavior due to geometric,
material, and external forces nonlinearities when undergoing large deformations.
Microelectromechanical systems (MEMS) are well known to exhibit various non-
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linear behaviors. Mainly, when microsystems are excited near resonance conditions
by electrostatic DC and AC voltages, geometric and/or electrostatic nonlinearities
can be activated. Among the common nonlinear dynamical phenomena in MEMS
are jumps of hardening and softening type, and internal resonance among vibration
modes. In addition, MEMS systems have been extensively studied in the past two
decades due to their wide range of applications [6–10].

Therefore, the formulation of accurate mathematical models for MEMS systems
is very important due to the need for a better understanding of their features.
Hence, this work aims to extend the application of the nonparametric identification
technique demonstrated in [2] to identify the dynamic response behavior of the first
symmetric mode of a nonlinear MEMS resonator through experimental data.

2 MEMS Resonator

The MEMS resonator utilized for data measurement is a clamped-clamped
microbeam (CC-microbeam), illustrated in Fig. 1a and b. The microbeam is made
of SiN3 and is fabricated using conventional surface micromachining processes
[10]. It has Young’s modulus E = 160 GPa, mass density ρ = 2500 kg/m3, length
L = 253.6 μm, depth b = 49.2 μm, and width h = 2.7 μm. A stationary actuation
electrode is located under the microbeam, which is separated from it at a distance
d = 2.5 μm.

(b)(a)

Fig. 1 (a) A schematic of the microbeam resonator. (b) Top view of the fabricated microbeam
made of SiN3
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2.1 Mathematical Modelling

The microbeam is modeled as an Euler-Bernoulli beam accounting for nonlinear
midplane stretching. The developed equation of motion accounts only for one mode
of vibration of the microbeam, and it is used for validating the experimental data.
In addition, it provides an analytical restoring force function that is used along
with the nonparametric identification method, which is necessary for extracting the
coefficients using the experimental data. The equation that governs the transverse
motion w of the microbeam along length x̂ and in time t is written as

EI ∂
4w

∂x̂4 +m∂2w
∂t2
+ c ∂w

∂t
−N ∂2w

∂x̂2 − EA
2L

(∫ L
0

(
∂w
∂x̂

)2
dx
)
∂2w

∂x̂2

= bε(VDC+VAC cosΩt)2

2(d−w)2
(1)

where m is mass per unit length, I is the area moment of inertia defined as
I = (bh3/12), c is the viscous damping, N is the axial load, A is the cross-section
area of the beam, ε is the dielectric constant, VDC is the DC electrostatic voltage,
VAC is the amplitude of the harmonic electric voltage of frequency �.

We write the fixed-fixed boundary conditions as w(0, t) = 0; w(L, t) = 0.
The new dimensionless variables are written as

y = w
d
; x = x̂

L
; τ = t

√
EI

L4m
(2)

Substituting Eqs. (2) into (1) yields

∂4y

∂x4
+ ∂

2y

∂t2
+ 2μ

∂y

∂t
−Nnon ∂

2y

∂x2
− α1

(∫ 1

0

(
∂y

∂x

)2
dx

)
∂2y

∂x2
= β(VDC + VAC cosΩτ)2

(1− y)2
(3)

where the dimensionless coefficients in Eq. (3) are defined as

2μ = c
√
EI

L4m
; Nnon = NL

2

EI
; α1 = 6

(
d

h

)2

; β = bL4ε

2d3EI
(4)

Accounting for the influence of electrostatic actuations VDC and VAC, the equa-
tion governing the static deflection ys is obtained by dropping the time dependent
terms, which yields

[
d4ys

dx4
−Nnon d

2ys

dx2
− α1

(∫ 1

0

(
dys

dx

)2
dx

)
d2ys

dx2

]

(1− ys)2 = β
(

VDC
2 + VAC

2

2

)

(5)

Next, Eq. (3) is perturbed around the equilibrium state by assuming the solution
y composed of the static part and the dynamic part yd as y = yd + ys. Omitting
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the static equation, Eq. (5), and further simplifying the equation governing yd, the
nonlinear beam equation reduces to

(
∂4yd
∂x4 + ∂2yd

∂t2
+ 2μ∂yd

∂t
−N ∂2yd

∂x2

) (
1− 2yd

(1−ys) +
yd

2

(1−ys)2
)

−
(

α1

(
∫ 1

0

[(
dys
dx

)2 + 2 dys
dx

∂yd
∂x
+
(
∂yd
∂x

)2
]

dx

)
∂2yd
∂x2

)(
1− 2yd

(1−ys) +
yd

2

(1−ys)2
)

−
(

α1

(
∫ 1

0

[

2 dys
dx

∂yd
∂x
+
(
∂yd
∂x

)2
]

dx

)
d2ys
dx2

)(
1− 2yd

(1−ys) +
yd

2

(1−ys)2
)

− β
(
2VDC2+VAC2)

(1−ys)3 yd + β
(
2VDC2+VAC2)

2(1−ys)4 yd
2

= 2β VDCVAC cos(Ωτ)
(1−ys)2 + β VAC2 cos(2Ωτ)

2(1−ys)2
(6)

The linear free vibration problem of Eq. (6) is obtained by dropping the forcing,
damping, and nonlinear terms, which yields

∂4yd
∂x4 + ∂2yd

∂t2
−
[

Nnon +
(

α1
∫ 1

0

(
dys
dx

)2
dx

)]
∂2yd
∂x2

− 2α1

(∫ 1
0
dys
dx

∂yd
∂x

dx
)
d2ys
dx2 − β

(
2VDC2+VAC2)

(1−ys)3 yd = 0
(7)

The eigenvalue solution of the linear dynamic equation is assumed as
yd = φ(x)eiωt. Substituting this form into Eq. (7), and using the orthogonality
of the modes, the mode shape and the natural frequency are identified. Further,
the nonlinear dynamic equation is solved by assuming the solution to be
yd(x,t) = φ(x)u(t) under a single mode assumption. Then, substituting yd(x,t)
into Eq. (6) and using the orthogonality of the mode shapes, it results in the below
equation of the modal coordinate u(t)

ü+ 2μu̇+ ω2u+ α21u
2 + α22üu+ α23u̇u+ α31u

3

+ α32üu
2 + α33u̇u

2 + α4u
4 + α5u

5 = F1 cos (Ωt)+ F2 cos (2Ωt)
(8)

where the equation is written in terms of dimensionless coefficients, and the dot
denotes diferentiation with respect to time. For the dynamic simulations, Eq. (8) is
integrated in time using a Runge-Kutta numerical scheme.

3 Experimental Setup and Validation of the Model

The validation of the mathematical model is carried out along with the simulated
and experimental frequency response curves.
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Fig. 2 Frequency-response curves of the microbeam, numerical simulation and experimental data.
(a) Forward sweep, (b) backward sweep

The resonance frequencies are measured using the laser Doppler vibrometer of
the Micro System Analyzer (MSA) from Polytec. Due to the small gap between the
resonator and the electrode, a vacuum chamber is required to minimize the squeeze-
film damping effect [9], with a pressure of 50mTorr set throughout the experiments.

To capture the frequency-response of the microbeam, a data acquisition card NI
PXIe-1073 from National Instruments is used to excite the resonator and record
the output from the Laser Doppler Vibrometer. The excitation signal is generated
using the LabView software. The measurements are acquired by the laser and then
postprocessed. Finally, the measurements are presented in the form of frequency-
response curves plotted in MATLAB. The first resonance frequency was initially
measured as 283.73 kHz at VAC = 1 V and VDC = 0 V to avoid frequency shift due
to the electrostatic effect.

For the numerical simulations, the axial load is estimated to be Nnon = −4.365
and the damping coefficient is μ = 3 × 10−4 due to vacuum conditions. The
frequency-response curves of Eq. (8) and the experimental data around the first
mode of vibration are depicted in Fig. 2a and b, for VAC = 5.0 V and no DC load.
A nonlinear hardening behavior is noted, from both experiments and numerical
simulations, with good agreement observed between them for both forward and
backward sweeps. The agreement justifies that the analytical model can be used
as a representation of the experiment, which is used for the identification process in
the following sections.
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4 The Nonparametric Identification Technique
and Application

The nonparametric identification technique uses the state variables of a system to
be identified, expressing its characteristics in terms of orthogonal functions [2]. The
main purpose of the procedure is to find a restoring force f (u, u̇) using Chebyshev
polynomials, which for the current MEMS device and based on Eq. (8) can be
expressed as

f (u, u̇, ü) = F1 cos (Ωt)+ F2 cos (2Ωt)− ü (9)

where the restoring force is expressed as

f (u, u̇, ü) = 2μu̇+ ω2u+ α21u
2 + α22üu+ α23u̇u

+ α31u
3 + α32üu

2 + α33u̇u
2 + α4u

4 + α5u
5 (10)

The restoring force of the resonator has linear terms, nonlinear terms up to
the fifth order, and cross-terms of the displacement, velocity, and acceleration. As
the Laser Doppler Vibrometer uses a module that only can measure displacement
and velocity, it is not possible to obtain the accelerations experimentally using the
current setup. Hence, assuming that these cross-terms have no major influences
on the system, they are neglected. Then, the restoring force of the microresonator
reduces to

f (u, u̇) = 2μu̇+ ω2u+ α21u
2 + α23u̇u+ α31u

3 + α33u̇u
2 + α4u

4 + α5u
5

(11)

We aim to identify the analytical restoring force of Eq. (11) from the identifica-
tion procedure without any prior knowledge of the system. Based on Eq. (11), the
extraction of data for displacement and velocity through the experimental system
is carried out. The experimental data must be nondimensionalized according to
Eq. (3), and yd = y – ys. The nondimensional data are normalized to generate the
surface of the restoring in a normalized interval to be least-square fit with Chebyshev
polynomials Tn(q), where n is the order of the Chebyshev polynomial for a generic
variable q [2]. The least-square method using Chebyshev polynomials is utilized to
yield the restoring force in the form

f
(
u′, u̇′

) =
n∑

i=0

m∑

j=0

CijTi
(
u′
)
Tj
(
u̇′
)

(12)

where n and m are the order of the Chebyshev polynomials for u′ and u̇′,
respectively.
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Fig. 3 Measured time histories of (a) displacement, (b) velocity versus the number of data points
of the microbeam under VAC = 5 V and VDC = 0 V

The convergence of the Cij coefficients depends directly on the values of n and
m, and the complexity of the restoring force surface to be least-square fitted. If
the restoring force is complex enough, higher order Chebyshev polynomials are
required so that all the needed coefficients are fitted to the restoring force. However,
the increase of the number of higher order terms increases the computational
cost. Therefore, an efficient interpolation scheme is highly recommended in order
to increase the convergence of the coefficients and, consequently, reduces the
computation cost. In addition, the convergence also depends on the values of n
and m to be sufficient to identify the most effective Cij coefficients, and reduce
the noneffective ones at negligible orders.

Considering an electrostatic excitation of VAC = 5 V and no DC load, the
restoring force of the microbeam based on the model is given by

f (u, u̇) = 446.82u− 1163.68u2 + 1828.68u3 − 3189.86u4 + 2351.32u5

+ 6.00× 10−4u̇− 15.95× 10−4uu̇+ 111.13× 10−5u2u̇

(13)

Figure 2 shows the frequency response obtained through experiments with
forward and backward sweeps, where hardening behavior is noted.

Then, the time history of displacement and velocity are extracted around the
resonance region of Fig. 2. Figure 3a and b depict the time histories of the
displacement and velocity, respectively. Each time history was obtained within
8 × 105 points, and for each consecutive 104 points, the frequency is changed.

The measured data are nondimensionalized and normalized with the function
below
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Fig. 4 (a) Surface of the normalized restoring forces of Eq. (15) using FND for the case of
VAC = 5 V, and VDC = 0 V. (b) Displacement vs velocity

u′ =
[
u−(umax+umin)

2

]
/
[
(umax−umin)

2

]

u̇′ =
[
u̇−(u̇max+u̇min)

2

]
/
[
(u̇max−u̇min)

2

] (14)

where umax = 0.16, umin = −0.16, u̇max = 25169.8, and u̇min = −25093.6. To
reduce the computational cost and keep an acceptable accuracy of the data, the
vectors for displacement and velocity are normalized for each 100 points, yielding
8000 data points for each vector. In addition, substituting Eqs. (14) into (13), the
restoring force is given in the normalized form as

fnorm
(
u′, u̇′

) = −0.20+ 73.31u′ − 31.25u′2 + 8.05u′3 − 2.29u′4 + 0.28u′5
+ 15.10u̇′ − 6.57u′u̇′ + 0.75u′2u̇′

(15)

Since we do not have an experimental way of measuring the restoring force,
we resort here to calculate it as based on Eq. (15) and the full normalized data
(FND). Hence, the surface of the normalized restoring force is obtained, as shown
in Fig. 4a, which represents the “measured” restoring force. The restoring force for a
microbeam is quite distinctive and due to the nonlinearities presented in the system,
the surfaces are curved and very complex.

To guarantee a precise convergence of the restoring force, an efficient interpola-
tion scheme is required. It is noted that the restoring force data points only allow
certain pairs of displacement and velocity that are obtained due to the nature of
the problem. However, equally spaced increments for each pair of data points are
required. Therefore, it is possible to create an interpolated surface by using one-
dimensional least-square fit using Chebyshev polynomials, which is given by
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f1D
(
u′, u̇′

) =
n∑

i=0

aiTi
(
u′
)+

m∑

i=0

bjTj
(
u̇′
) = g (u′)+ h (u̇′) (16)

where ai and bj are the Chebyshev polynomial coefficients for a one-dimensional
(1D) least-square fit obtained from

a0 = 1
M(u′)

M(u′)∑

i=1
f (ξi, 0) ak = 2

M(u′)

M(u′)∑

i=1
f (ξi, 0) Tk (ξi)

b0 = 1
N(u̇′)

N(u̇′)∑

i=1
f (0, ξi) bk = 2

N(u̇′)

N(u̇′)∑

i=1
f (0, ξi) Tk (ξi)

(17)

where the abscissa variables u′ and u̇′ are transformed to satisfy the normalized
interval as

ξi = cos

[
(2i + 1) π

2n

]

i = 0, 1, . . . , n− 1 (18)

In addition, the cross-terms are approximated by applying 2D least-square fit
directly in the cross-term subregions. From Eq. (17), the 1D least-square fit of the
restoring force surface of Fig. 4 is carried out. To maximize the convergence of the
Cij’s coefficients, short intervals for displacements and velocities are set to select
data points that yield independent condensed displacement and velocity vectors, for
their respective values of the restoring force. Setting the intervals to −0.08 ≤ u′ ≤
0.08 and − 0.5 ≤ u̇′ ≤ 0.5, the least-square fit for each vector is given by

g
(
u′
) = −16.69T0 + 79.52T1 − 16.77T2 + 2.10T3 − 0.28T4 + 0.01T5

+ 3.10× 10−3T6 − 2.49× 10−3T7 + 1.55× 10−3T8 − 2.98× 10−4T9

h
(
u̇′
) = −0.35T0 + 14.81T1 − 0.28T2 − 0.27T3 − 0.25T4 − 0.23T5

− 0.21T6 − 0.18T7 − 0.15T8 − 0.12T9

Cr
(
u′, u̇′

) = −4.39Tu′1 Tu̇′1 + 0.10Tu′2 Tu̇′1 + 0.47Tu′3 Tu̇′1 − 0.13Tu′4 Tu̇′1
− 0.07Tu′5 Tu̇′1 + 0.01Tu′6 Tu̇′1 + 0.32Tu′7 Tu̇′1 − 0.16Tu′8 Tu̇′1

(19)

Substituting the Chebyshev polynomials in Eq. (19), and from Eq. (16) added to
the cross-terms Cr, the 2D least-square fit using Chebyshev polynomials is carried
out, obtaining the restoring force of Eq. (20), where H.O.T are higher order terms
with very small coefficients below than 10−8. The obtained surface using Eq. (20)
is shown in Fig. 5 by the red surface.

Figure 5 shows the comparison between the normalized restoring force surfaces
from the one obtained through Galerkin (Eq. 15) to the identified one (Eq. 20) using
FND. It is clear that the identified surface converges to the original one, including
for large deformations of the system (

(
u′, u̇′

) ≈ −1 and 1). It is also important
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Fig. 5 Surface of the original normalized restoring force obtained using the Galerkin (Eq. 20),
and the one (extrapolated red surface) identified based on the 2D least square fit with Chebyshev
polynomials for VAC=5V, VDC=0V

to highlight that Eq. (20) can extrapolate very accurately the original values of the
restoring force, which is made possible by the 1D interpolation scheme.

Accounting for the FND points for both surfaces, the relative error [2] between
both of them is around 1.06%, showing a very close agreement of the identified
restoring force through the least square fit with Chebyshev polynomials.

fident
(
u′, u̇′

) = −0.31+ 73.30u′ − 31.25u′2 + 8.11u′3 − 2.38u′4
+0.22u′5 + 0.10u′6 + 14.22u̇′ − 6.14u′u̇′ + 1.46u′2u̇′
+3.28u′3u̇′ − 1.61u′4u̇′ − 1.13u′4u̇′ + 0.37u′6u̇′ − 2.27u̇′2
+3.51u̇′3 + 7.86u̇′4 − 3.67u̇′5 − 6.56u̇′6 +H.O.T

(20)

5 Conclusions

This work presented the nonparametric identification of an MEMS resonator by
using experimental data measurements. The analytical modeling of the resonator
was needed to construct a restoring force surface dependent on the displacement and
velocities, whose data were experimentally acquired, as it is not possible to measure
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the restoring force in the current experimental setup. Therefore, the validation of the
analytical model with the experimental data was carried out.

Once the restoring force is obtained, the nonparametric identification method was
used. It proved to be very efficient to identify all the linear and nonlinear features of
the system without prior knowledge of them. To show the strength of the method,
we plan to carry out the identification of the MEMS resonator for different DC and
AC actuations.

References

1. J. He, B. Xu, S.F. Masri, Restoring force and dynamic loadings identification for a nonlinear
chain-like structure with partially unknown excitations. Nonlinear Dyn. 69(1–2), 231–245
(2012)

2. S.F. Masri, T. Caughey, A nonparametric identification technique for nonlinear dynamic
problems. J. Appl. Mech. 46(2), 433–447 (1979)

3. G. Birpoutsoukis, A. Marconato, J. Lataire, J. Schoukens, Regularized nonparametric Volterra
kernel estimation. Automatica 82, 324–327 (2017)

4. R.A. Sandler, S.A. Deadwyler, R.E. Hampson, D. Song, T.W. Berger, V.Z. Marmarelis, System
identification of point-process neural systems using probability based Volterra kernels. J.
Neurosci. Methods 240, 179–192 (2015)

5. G. Song, V. Chaudhry, C. Batur, A neural network inverse model for a shape memory alloy
wire actuator. J. Intell. Mater. Syst. Struct. 14(6), 371–377 (2003)

6. M.I. Younis, A.H. Nayfeh, A study of the nonlinear response of a resonant microbeam to an
electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003)

7. A.M. Tusset, J.M. Balthazar, D.G. Bassinello, B.R. Pontes, J.L.P. Felix, Statements on chaos
control designs, including a fractional order dynamical system, applied to a “MEMS” comb-
drive actuator. Nonlinear Dyn. 69(4), 1837–1857 (2012)

8. A.Z. Hajjaj, N. Jaber, S. Ilyas, F.K. Alfosail, M.I. Younis, Linear and nonlinear dynamics of
micro and nano-resonators: Review of recent advances. Inter J Non-Linear Mech 119, 103328
(2020)

9. M.I. Younis, MEMS Linear and Nonlinear Statics and Dynamics (Springer Science and
Business Media, New York, 2011)

10. S. Saghir, M.L. Bellaredj, A. Ramini, M.I. Younis, Initially curved microplates under electro-
static actuation: Theory and experiment. J. Micromech. Microeng. 26(9), 095004 (2016)



Mine Clearance through an Artificial
Intelligence Flying Drone

Federica Mezzani, Gianluca Pepe , Nicola Roveri, and Antonio Carcaterra

1 Introduction

Landmines, heritage of the wars spreading between 1990 and 2000, are dissemi-
nated in more than 10 countries, with numbers far beyond tens of millions. The
dramatic effects do not only involve victims, whose number reaches 6000 per year
children included, but also the economic development based on an agricultural
sector which is brutally jeopardized. The produced social impact is hard to estimate
accounting for public health costs and psychological effects as post-traumatic
stress disorder and depression. Thanks to the recent progresses in increasingly
performing and portable sensors, the automation of the landmine searches through
autonomous robots became possible, preventing the exploitation of traditional
demining techniques, which still rely on human intervention and trained animals.

The present investigation focuses on the development of machine learning
techniques for the identification and the localization of mines spread over an
unknown territory. This is only an initial phase of a larger project, named MINOR,
MINe Overall Recognition, which is aimed at generating a real-time map of the
territory completed with the exact position of the mines, localized through a swarm
of autonomous flying drones, equipped with a set of advanced sensors, as Ground
Penetrating Radar (GPR) [1], high-sensitivity MEMS gravimeters, able to detect
tiny variations of the local gravitational acceleration, tomography [2, 3], X-rays
[4], infrared [5], metal detector [6], acoustic waves [7, 8], ultrasounds [9, 10], and
thermal image camera. The autonomous vehicles are equipped with a co-operative
driving and control system recently developed by the Sapienza research group
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under the name of variational feedback controls (VFCs) that allow a detailed and
optimized soil scan [11, 12].

The GPR has frequently been used in sub-soil examinations, given its upgraded
capacity to separate little metal components [13]. Its slightest invasiveness, security,
and speed point as a usually favourite apparatus for mine clearance investigation
and UXOs (unexploded arms) localization [14]. However, in spite of the viable
points of interest, mine location through GPR is frequently influenced by clutter
defilement due to wire coupling, ground reflection, and other conceivably covered-
up objects [15], which might sabotage the application of an automated discovery
strategy. Indeed, clutter effect, primarily due to ground reflections, might produce a
signature of the target barely recognizable. In this sense, the implementation of anti-
clutter strategies [16] are needed to mitigate the effect of ground surface roughness
[17] and to include the reduced number of metal components in the mines and the
limited depth of burial.

The present work illustrates a two-step technique to precisely identify the near-
ness of a mine and to distinguish mines from other covered-up objects. At first, an
off-line algorithm is used to train and tune a deep learning neural network by auto-
generated GPR-like data. The produced network selects those data characterized
by alike mine reflection signature, hence to recognize potential buried mines. A
second algorithm, which relies on Symbolic Data Analysis (SDA), automatically
clusters data and dividing mines from other objects. A convolutional neural network
(CNN) is introduced to appropriately cluster the signals in the radargrams; however,
the reliability can be ensured only by an extremely broad and various database.
Moreover, data can be considered accurate only if the elements of the dataset are
generated by experimental acquisitions. The combination of these two elements
implies a time-consuming and costly experimental campaign. On the other hand,
SDA is an unsupervised process and does not need a pre-defined database. This
aspect makes SDA one of the most powerful tools to reduce the detection of false
positives, that is, objects which are not mines however recognized as though they
were. A still rough experimental campaign, carried out to validate the procedure,
concludes this preliminary phase of the project.

2 MINOR Project

The entire project is based on three main key points: i) drones equipped with a
complex network of sensors scan the surface; ii) innovative post-processing data
techniques are implemented for the mine identification procedure by data fusion
from the several sensors; iii) feasibility analysis completes the investigation through
a comparison with other existing technologies.

The use of larger number of drones guarantees the enhancement of the accuracy,
the reduction of the scanning time and optimize the drone’s path. The drones fly at
different heights; higher they fly, wider the scanned surface (Fig. 1), even though
it leads to a reduction in the sensitivity. The flying logic includes only few master
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Fig. 1 Drone prototype and flying levels are determined based on a compromise between the
scanned area and the sensitivity

drones which fly at h1 covering in little time a broad area, according to a chessboard
geometry, and detecting the areas that might contain mines; in a second phase, a
larger swarm flies at the lower level h2 over the regions detected as containing mines,
indicated by the master drones, and find the exact location of the mines.

3 First Step Post-Processing Data Algorithm: Numerical
Data Generation

The two-step algorithm relies on a convolutional neural network for the first item
classification. An existing CNN, AlexNet, has been used. The choice of an already
trained CNN is driven by the large amount of data and time that would be required
to prepare a neural network from the beginning. AlexNet has been trained on a more
than a million of images and can classify about 1000 objects. More than the input
and output layers, constituted by 1000 neurons devoted to the classification, AlexNet
is composed of 23 hidden layers meant to compute convolutional processes.

The CNN is implemented so to identify objects buried underground; accordingly,
only two classification outputs, namely “Target,” related to any detected object,
and “Free areas,” are returned by the CNN. The network has been trained through
numerically generated radargrams, typical of GPR acquisitions. Buried objects
produce a signal in the shape of a hyperbola. Figure 2 compares the signatures
of a “Target” and “Free area.” These radargrams have been created by GprMax
[18], a Finite-Difference Time-Domain software that simulates the propagation of
an electromagnetic wave inside a medium. The medium is discretized in a grid and
each element of the grid has the physical parameters of the medium assigned, such
as dielectric constant and magnetic permeability. At each section of the grid, the
electromagnetic field is computed in time. The hyperbola training radargram is
produced by providing to the software a precise model of the searched object, in
this case a mine. The model considers the specific geometry as well as material
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Fig. 2 Radargrams numerically generated by GPRMax: “target” on the left and “Free area” on the
right

properties. The “Free area” instead includes only the ground interface signature.
2400 radargrams have been generated, of which 1200 are “Free area” and the
remaining 1200 are “Target” with objects placed at different positions and depths.

The trained convolutional neural network is then applied to the experimental
radargrams which does not consist of a single frame, but it is long as the length
of the acquisition. To investigate the presence of mines, the algorithm generates a
window which translates along the radargram, scanning all the frames. Each frame
is compared with the reference radargrams in Fig. 2. The level of match defines
the probability the detected object is a mine: indeed, the higher the probability, the
more likely the target is a mine, even though the possibility of false positive is not
cancelled yet. In the same way, low probability values indicate “Free areas.”

4 Second Step Post-Processing Data Algorithm: Symbolic
Data Analysis

Symbolic data analysis (SDA) is part of data mining techniques; in particular, it
belongs to the data clustering methods. In data clustering, an entire set of data
is divided into sub-groups according to the level of similarity of its composing
elements. The classification does not require any a priori information about the
common features of the data which are gathered only according to their level
of homogeneity [19]. This technique, processing an unlabelled dataset, unveils
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the hidden main structure/feature of each group. The data can appear as either
time-series or space-series. In both cases, data are dynamics, implying each value
of the dataset varies with either the space or the time coordinate. Besides, it is easy
to notice how space and time series are high-dimensional data since each point of
the series can be considered as an observation sequentially made. This technique
praises two advantages [20]: the hidden information and the main features lost in
the space-series are disclosed; secondly, SDA return images which facilitate the
cluster understanding, the outliers, and the structures.

Among the several existing clustering algorithms [20, 21], such as hierarchical,
partitioning clustering, and multi-step clustering, here, only a hierarchical one is
used. In hierarchical methods, the cluster hierarchy is obtained either with agglom-
erative or divisive algorithms. The former, here used, considers each symbolic
component of the data as a cluster, and consecutively combines the groups; the result
is a nested hierarchy of similar clusters. A dendrogram, a tree-like diagram that
records the sequences of merges [22], displays the generated groups. This method is
surely effective given the fact it does not need a priori information about properties
and number of the groups to be generated. However, applications to large amount
of data set are prevented given its quadratic computational complexity. Moreover,
when agglomerative cluster is used, no cluster adjustment is possible after the group
generation, limiting the accuracy of the method.

5 Experiments and Results

The experimental campaign, which is only at its preliminary phase, is here
devoted to validating the algorithm that must identify buried mines via GPR data
acquisitions. To prove the reliability of the proposed technique, three types of mine
prototypes as well as other metallic and non-metallic objects have been buried in the
prepared terrain at the locations shown in Fig. 3. The grid has overall dimensions
of 2 m × 0, 6 m, being the objects at distance of 1 m along the x axis and of 0,
3 m along the y axis. The depth of burial varies from 15 cm for h1 up to 7 cm
for h3. The grid dimensions are set so as to ensure a space wide enough in between
targets, a region that the GPR antenna can identify as uncontaminated, which should
apparently appear in the radargrams.

The terrain, mixture of clay and topsoil, simulates woods conditions. The
acquisition system consists of a commercial 1.6-GHz GPR antenna, RIS MF Hi-
Mod model, which moves along both x and y directions and produces radargrams as
reported in Figs. 4 and 5. In particular, Fig. 4 is related to the transverse acquisition
in correspondence of the three mines M3, M4, and M7. Indeed, the different burials
depths are clearly recognizable. It is noteworthy how the simulated mine signature
shown in Fig. 2 well mimics the experimental curves here displayed. Figure 5 refers
to the longitudinal acquisition at h2 and is another interesting example since it shows
how different objects produce different characteristic signatures. The first detected
object is a brick and as it contains no metal components is barely detectable. Vice
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Fig. 3 Experimental grid

Fig. 4 Example of transverse acquisition

Fig. 5 Example of longitudinal acquisition at h2

versa, being the two following objects a metal can and a mine, respectively, the
antenna clearly detects them. Indeed, in general the higher the metal content, the
clearer the signature, whilst what regards the depth depends upon the frequency of
the antenna. In this specific example, 1.6 GHz prevents a good acquisition of objects
just underneath the surface.

The greatest difference between numerical and experimental signature stands in
the clutter effect related to ground reflections, as apparent in Fig. 4 and Fig. 5. Clut-
ter noise is highly affected by the terrain composition and especially to moisture.
A clayish terrain, as the one used in this experimental camping, though it depicts a
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more realistic scenario with respect to other investigations [23, 24], which instead
uses sandy soil, induces a slower drying and consequently less defined radargrams.
Eventually, this aspect compromises the neural network training, which should rely
on a vast image dataset, hardly acquirable in these conditions. Furthermore, the
employed antenna with a frequency of 1.6 GHz is not extremely accurate for shallow
buried objects. Its resolution in depth is as high as at least 10 cm. Accordingly, the
radargram in Fig. 4 is more readable that the one in Fig. 5.

All the obtained radargrams are inputs for the CNN. Since the CNN returns
the probability the detected object is a mine, that is, the higher the value of the
probability, the more likely the target is a mine, the algorithm is practically able to
distinguish targets from free areas, whose probability is nearly zero. As mentioned
in Sect. 3, a window slides rightward along the radargram frame by frame. At
each frame, the probability is computed as results of the comparison between the
selected frame and the numerical signature. For easiness of reading, the “Free area,”
corresponding to an almost zero probability, is encircled in green; the target is
encircled in red, as shown in Fig. 6, which reports few exemplifying frames of the
transversal acquisition of Fig. 4.

Figure 7 reports only two frames as distinguishing of the clustering process on
the acquisition at h2, corresponding to Fig. 5. In the first sub-plot, the first signature
corresponds to the brick and it is correctly labelled as “Free area,” given the value
of probability of only 21%. The second sub-plot shows the result of the clustering
in correspondence of the metal can. Given the large amount of metal, even higher
than the mine, the target is recognized as a mine, with a probability of 98%. This
is a clear example of “false positive,” namely, when objects are identified as mines
even though they are not.

It is apparent how the clustering process via CNN correctly tells apart “Free
areas” and non-metallic objects from “Targets”; however, among all the metallic
objects, the accuracy is not sufficient to distinguish mines. This implies the need of
a more intense training and the employment of an SDA algorithm, which is still in
progress.

6 Conclusions

The present work is part of a larger research project, named MINOR, MINe Overall
Recognition, which has the ambition to generate a real-time map with the exact
location of anti-personnel mines. Mines will be detected through a swarm of
autonomous drones and the data will be processed via a complex set of algorithms.
Here, a two-step strategy is described as applied to GPR acquisition, being this
sensor of the possible candidate to equip the drones. The algorithm, aimed at
identifying buried antipersonnel mines, is the combination of a convolutional neural
network and a symbolic data analysis process. The experimental campaign proved
the effectiveness of the algorithm, which appears as a powerful tool to automatically
detect buried objects with even small metal content. The inevitable clutter noise,
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Fig. 6 Target estimation of transverse radargram

affecting all the measurements, does not compromise the results and the CNN
algorithm correctly distinguishes “Free areas” and non-metal objects from mine-
like targets. However, uncertainty is still high among the metallic objects. The SDA,
which has the great advantage of not requiring a predefined dataset and which is
still in progress, would solve the issue related to “false positives,” that is, objects
identified as mines, even though they are not.

Acknowledgements The present project has been funded by the L’Oréal-UNESCO Foundation
through the “For Women In Science” prize, 2019 edition.
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Fig. 7 Target estimation of h2
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A New Approach for Structural Health
Monitoring: Damage Detection on Large
Structures through a Swarm of Moving
Sensors

Manuel Pinto, Nicola Roveri, Gianluca Pepe , and Antonio Carcaterra

1 Introduction

Identification problems have been highly investigated over the past decades and
represent a common topic of different disciplines, such as structural engineering,
acoustic, environmental analysis. The key point is the ability of identifying the
environment parameters. Indeed, the major task of this research branch is the
characterization of an observed system, i.e. the environmental field, according to
the set of data perceived by sensors array.

One peculiar category of these kind of problems takes place in the context
of structural monitoring and deals with the identification of structural anomalies.
In this type of applications, indeed, the possibility of monitoring the temporal
behaviour of mechanical structures has a considerable importance since it can
unveil conditions that can rapidly turn into critical. In the past years, several studies
have been performed using time-frequency analysis techniques based on Wavelet
transform [1–3]. The monitoring procedure consists of measurements acquired
through conventional sensors, such as strain gauges, accelerometers and FBG
optical sensors held at a fixed position [4–6].

The innovation of the presented approach lies in the chance to optimally move
the used sensors along a defined trajectory.

In several parameter estimation and control theory application, the concept of
the optimal observability plays a key role. The effects of the measurement location
and the number of sensors have been studied in several works [7, 8], with the aim
to develop strategies to determine a set of measurement locations which lead to the
best state estimates [9].
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In the present paper, the possibility of optimally control sensors dynamics is
investigated, in order to obtain infomation regarding the state of the observed
system (e.g. stress state) and to obtain point information about the presence of an
irregularity along the structure (e.g. localized damage).

The control of the sensors motion and the consequent damage identification
are achieved through a two-step strategy. The first step is based on creating a
set of equations containing both models for the dynamics of the structure and
for the dynamics of the sensors; a linear quadratic regulator (LQR) control logic
is developed to define the optimal trajectory of the swarm. The second step
includes the identification of the damage module: the process of data analysis is
investigated through the use of the technique based on Ensemble Empirical Mode
Decomposition, combined with the Hilbert-Huang Transform (HHT) [10, 11].

The analysis is also focused on the evaluation of the possible advantages of
having, instead of an array of fixed measurement stations, one or few moving sensors
able to explore the whole system.

The statement of the problem is formulated as follows: a set of moving sensors
can explore a space region R characterized by the presence of a propagating scalar
field in the space and time coordinates ξ and t. Each of the sensors can move
autonomously with an associated state variable xi, whose dynamics can be written

in the form ẋi = fi (xi, ui), where xi =
{
ξi

vi

}

is the state vector associated to the

sensors dynamics, in which ξ i is the spatial position, and vi is its velocity.
The observed system, i.e. the observed field, can be generally described by a

differential operator Dξ , t(w), with respect both to the space and the time variables.
The field w obeys indeed to a known partial differential equation Dξ , t(w)= 0. Given
the premises, we can describe the problem with the following set of equations:

⎧
⎨

⎩

ẋi = Axi + Bui + nxi
Dξ,t (w) = 0

si = giw (xi, t)+ nsi
. (1)

2 Beam Dynamics and Damage Modelling

The general elastic shape w(x, t) is expressed in terms of an expansion of know
eigenfunctions φn(x), combined through a set of weighting unknown time-
dependent coefficients qn(t). The general response of the beam deflection, according
to Euler-Bernoulli theory, is a linear combination from all vibration modes:

w (x, t) =
Nmodes∑

n=1

φn(x) · qn(t). (2)
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The crack has been modelled as a torsional spring acting at the junction between
the two segments of the beam. At that point, the continuity of the shear force and
bending moment needs to be guaranteed through the compatibility conditions. The
stiffness of the modelled spring is related to the geometrical characteristics of the
crack [10, 12], namely, its depth, through the parameter k:

k =
(

6πμ2f (μ) h
)−1
, (3)

where f (μ) is a polynomial relation, function of the non-dimensional parameter
μ = d

μ
:

{
f (μ) = 0.6384− 1.035 μ+ 3.7201μ2 − 5.1773μ3 + 7.553μ4 − 7.332μ5 + 2.4909μ6

μ = d
h

(4)

3 Compact Form Including the Sensor’s Dynamics

For the sake of simplicity in the present section, the following notation will be

adopted: the state vector for sensor dynamics is x =
{
ξ(j)

v(j)

}

;
∼
ξ (j) = ξ(j) − L1,

with ξ (j) being the j-th sensor along the longitudinal coordinate ξ , and L1 being the

position of the crack. The modal shapes are φ(i)n,j .
Dynamic equations of sensors have been represented through a moving mass

system subjected to external forces acting on the ξ axes, as mv̇j ξ = Fj ξ .
All these relations can be reduced to a set of matrix equations that includes the

carrier dynamics, the mechanical structure model, and the sensor model equation.
As a preliminary study, the effect of external noise will not be considered, so that
Eq. (1) becomes:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = Ax + Bu

y = q̇

ẏ = −�q −Dq̇ +�

s = G (x) q

(5)

Where the vector Y =
{

q

q̇

}

contains the principal coordinates of the decou-

pled time-dependent equation of the beam dynamics: q̈n + ωnqn + ζnq̇n =
∫ L

03(x)P (x, t) dx. � = diag
[
ω2

1, ω
2
2, . . . , ω

2
Nmodes

]
is the natural frequencies

matrix of the structure and Ψ is the input vector. The damping factors are contained
in the diagonal matrix D = diag [ζ nωn ], where ζn = c

2ωn ρS
. Proceeding as for

Kalman’s filter approach, let’s consider a unique state vector in which we write the
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assembly of the first three theoretical models, that is rT = [x, q, y]T , the problem can
be rewritten in a compact form:

⎧
⎨

⎩

ṙ = ∼
Ar + ∼

Bu+ ∼
�

∼
s = ∼

G (x) r
. (6)

With state space augmented matrices and vectors
∼
A,

∼
B,

∼
Ψ ,

∼
n,

∼
G of dimension

respectively:
∼
A = (2 ·NS + 2 ·N) × (2 ·NS + 2 ·N); ∼B = (2 ·NS + 2 ·N) × 1;

∼
Ψ = (2 ·NS + 2 ·N)× 1; rectangular measure matrix

∼
G = Ns × (2 ·NS + 2 ·N).

The observation equation considers the rectangular matrix
∼
G containing the

modal eigenfunctions φn(ξ ), so that it is a time-variant matrix depending on the
state (i.e. position) of the moving sensor.

4 Simulations

Simulations have been carried out considering a simply supported beam with
length L = 20 m, with rectangular cross section of S = 0.04 m2, Young modulus
E = 200 GPa and moment of inertia I = 1.33 · 10−4m4. Referring to Eqs. (3) and
(4), the damage has been modelled as a torsional spring of stiffness k = 1.55N

m
,

while the crack depth is half of the beam height, i.e. μ = 0.5. Since the presence of
the damage, compared to the case of the undamaged beam, has a noticeable effect on
the beam dynamics in terms of natural frequencies with modes higher than fourth,
the first six modes have been considered in the simulations.

In order to test the strategy, different scenarios have been considered, in which
the crack has been positioned respectively at the coordinates ξ c = 0.7L and 0.8L.
The source exciting the beam is a moving load |P| = 1000N crossing the beam with
velocity vL = 40Km

h
.

Two main groups of tests have been performed. The first case considers four
accelerometers moving along the beam; the second case considers the same four
accelerometers held at fixed position. Differences between both cases in terms of
accuracy and efficiency will be compared in order to evaluate advantages of the
proposed strategy.

The measurement stations have been modelled as four accelerometers moving
along the structure within four different constrained regions.

The motion of the set of sensors is regulated through the development of a
Linear Quadratic Regulator algorithm (i.e. LQR). The request to move along a
specific region of the beam is formulated using the optimal control theory by the
minimization or maximization of a given cost functions J:
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J = min
u ∈ U
x ∈ X

∫ T

0
E (x,u) dt (7)

The objective function E(x, u) indicates the distance (i.e. the target position) that
must be reached by the sensor carrier, satisfying state and control constraints u ∈ U,
x ∈ X respectively. That leads to the equation of the control vector:

u = −KLQR (x − xT ) , (8)

where KLQR and S are the optimal gain of the control action and the solution matrix
of the Riccati equation, respectively, defined as follows:

KLQR = R−1BT S, (9)

−Ṡ = AT S + SA+Q− SBR−1BT S. (10)

In Table 1 are reported the chosen initial and target state vectors (position
and velocity), respectively, of the four accelerometers, that will lead to the four
trajectories. Trajectories are chosen so that each sensor covers the entire constrained
regions during the time of acquiring (crossing time of the moving load). Namely,
through the selection of the matrices Q and R, as the sensors approach their target
position, the control action is adjusted so that the sensors smoothly reach the target
points with velocity equal to zero.

For what it concerns the location of the fixed sensors, they were respectively
positioned at the coordinates: ξ s1 = 0.15L, ξ s2 = 0.3L, ξ s3 = 0.6L, ξ s4 = 0.8L.

5 Data Processing with EMD and HHT

Once simulations have been performed, all the collected data goes under the
processing through the Hilbert-Huang Transform (HHT), which is based on the

Table 1 Chosen trajectories of the moving sensors

Sensor # Initial condition [ξ0, v0] Target point [ξT , vT ]

Accelerometer 1 [0,0] [0.3 L,0]
Accelerometer 2 [0.3 L,0] [0.6 L,0]
Accelerometer 3 [0.6 L,0] [0.8 L,0]
Accelerometer 4 [L,0] [0.8 L,0]
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analysis of monocomponent signals obtained through the Empirical Mode Decom-
position (EMD) of the original acquired acceleration signals and the subsequent
Hilbert Transform (HT). The method of EMD, described ahead, is a tool for
multicomponent nonlinear signal analysis, highly investigated over the past decades
in the context of damage identification [13–17].

The EMD method is developed from the assumption that any non-stationary and
non-linear time series consists of different simple intrinsic modes of oscillation.
Given an observation of a multicomponent signal x(t), it could be essentially
represented as a superposition of several components of different scales, i.e. the
superposition of high-frequency oscillation over-low frequency oscillation. The
presence of the damage causes a discontinuity in the vibration response of the
excited beam which may result in the variation of structural stiffness and hence
enable structures to vibrate nonlinearly.

The EMD is an adaptive time-frequency data analysis method; its aim is to
identify proper time scales that reveals physical characteristics of the processed
signals, decomposing them into a finite number of components which are referred
to as Intrinsic Mode Functions (i.e. IMF). Every obtained IMF is basically mono-
component and has to satisfy two main conditions:

(i) In the whole data set, the number of extrema and the number of zero-crossings
must either be equal or differ at most by one.

(ii) At any point, the mean value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero.

Based on the previous conditions, the procedure to extract the IMFs from a given
signal x(t) is called sifting process, which consists of the following steps:

1. Identification of all the local extrema and interpolation through a cubic spline
function of all the local maxima and local minima, respectively.

2. Once the upper and the lower envelopes (xmax and xmin) are obtained, compute
the envelope mean between the two functions, i.e. m1(t) = xmax(t)+xmin(t)

2 .
3. Extract the estimation of the first IMF by subtracting m1(t) from the original

signal: h1(t) = x(t) − m1(t).
4. Using h1(t) as new input signal, iterate steps from 1 to 3 until the IMF is obtained

through the verifying of a proper stopping criterium [14]. The original signal is
so decomposed in the first Intrinsic Mode Function IMF1(t) and a residue r1(t).
Update the residue r1(t) = x(t) − IMF1(t).

5. Using the residue r1(t) as the new input signal, iterate steps from 1 to 4 until the
final residue rk(t) becomes monotone.

At the end of the process, the original signal is a combination of all the computed
IMFs plus the last residue, i.e. x(t) =∑k

1 IMFk(t)+ rk(t).
The damage identification process is performed through the analysis of the

first Instantaneous Frequency functions, computed through the use of the Hilbert
Transform (HT), applied to each IMF around the first natural frequency of the
system.
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Considering x(t) as the IMF(t) to be processed, the Hilbert Transform is defined:

y(t) = H (x(t)) = 1

π

∫
x(t)

t − τ dτ. (11)

The Hilbert transform applies a phase shift of π
2 to the signal and leads to its

analytical representation as a complex-valued function:

z(t) = x(t)+ iy(t). (12)

From Eq. (12) the phase ϕ(t) is defined:

ϕ(t) = atany(t)
x(t)

. (13)

The Instantaneous Frequency function is then computed:

IF (t) = 1

2π

dϕ(t)

dt
, (14)

where ω(t) = dϕ(t)
dt

is the instantaneous angular frequency. Note that the phase
of Eq. (13) has to be the unwrapped phase angle of the signal, in order to avoid
discontinuities in the resulting IFs.

6 Results and Discussions

Results of the methodology are here presented. The presence of the damage causes
a noticeable effect in the frequency response of the excited beam: in particular,
the crack induces a local change in frequency well enhanced in the Instantaneous
Frequency functions so that, as the load crosses the damaged section of the structure,
they show a narrow peak.

In Figs. 1 and 2 the Instantaneous Frequency (IF) functions versus the normalized
beam length are reported, for different positions of the crack, extrapolated from
the processing through EMD of the acceleration signals measured by the sensors,
according to the setup described in Sect. 4. For a moving load with velocity of
vL = 40Km

h
, three scenarios are presented: the cases in which the damage is located

at ξ c = 0.8L and 0.7L, respectively.
In details blue plots represent the response for the case of moving sensors, while

the red graphs are referred to the case in which the sensors don’t have any actuation
(u = 0), so that they are held at fixed location.

The general response of the method is the same in every curve: the presence of the
damage causes a discontinuity in the frequency content around the first fundamental
frequency f1 (f1 ≈ 1.13 Hz). The global effect is a general frequency modulation
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Fig. 1 Instantaneous Frequency functions of the acquired signals for the case of a moving load
with velocity v = 40 km

h
. Dashed line represents the crack position located at Lcrack = 0.8L

below the value of f1; there is also a local effect enhanced by the IF: in proximity
of the damage (as the load crosses the crack), the IF curves show a narrow peak
generally above f1, allowing a direct and effective crack identification.

The comparison between the scenarios shows the method provides a general
better response for the cases of moving sensors. In particular, as shown in Fig. 1, the
peaks of the blue IFs are well sharp and narrow and they are able to identify, except
for a small spatial error, the position of the damage. The use of moving sensors
seems to have a relevant influence on the accuracy of the method, especially for the
sensors located in proximity to the external boundaries of the beam (Accelerometers
#1 and #4): as it is shown in the first and the last subplot of Fig. 1, indeed, the poor
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Fig. 2 Instantaneous Frequency function of the acquired signals for the case of a moving load
with velocity v = 40 km

h
. Dashed line represents the crack position located at Lcrack = 0.7L

response enhanced by the red curves has been overcome through the deployment of
the sensors towards more sensible location of the structure.

Similar considerations can be made for the other set of results reported in Fig.
2, in which the moving sensors allow to identify the damage position all the time
with the minimum error, even if in some cases, some false-positive peaks occur
(subplot #3 of Fig. 2). Few cases of noisy response occurred, as reported for
example in subplot #2 of Fig. 2 both for moving and fixed sensors. Although the
response shows a peak, or at least a local maximum at the crack location, the general
trend is not sharp, but shows several noisy oscillations. These phenomena could be
caused by some inaccuracy of the sifting process which did not allow a perfect
monocomponent decomposition of the original signals, leading to a noisy and not
precise response in the resulting Instantaneous Frequency functions.
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7 Conclusions

In the present paper, a methodology for damage deduction in large structures
is presented. The method, instead of using a classical set of fixed measurement
stations, proposes the use of an array of moving accelerometers, able to explore
specific constrained regions of the structure. The whole procedure involves a two-
step strategy: i) through the development of an LQR control logic, it is possible to
establish the trajectories of the moving sensors and ii) the identification procedure
involves data processing based on Empirical Mode Decomposition, combined with
the Hilbert-Huang Transform.

The crack estimation procedure has been performed through direct analysis of
the Instantaneous Functions around the value of the first fundamental frequency of
the system. The frequency changes induced by the presence of the damaged result in
a global effect, i.e. a frequency modulation below the first natural frequency value.
A more important local effect is shown at the crack location, where, as the load
crosses the damage, the IFs show a narrow peak above the fundamental frequency,
allowing a direct identification of the crack.

Our results show the potential of the strategy: the possibility of heading the mea-
surement stations to more optimal and sensitive positions leads to an enhancement
of the crack identification.

The comparison between the results performed with moving sensors and fixed
sensors shows that the motion of the measurement station improves the accuracy of
the estimation, and an increase of the sensitivity of the sensors occurs, especially for
the first and last accelerometers of the array. In the specific instantaneous functions,
indeed, the peaks of the curves are well enhanced.

The strategy is still under investigation. Further analysis will concern the
influence of the sensors velocity and the influence of noise corrupting the acquired
data, leading to the development of an estimator based on Extended Kalman Filter
in order to reconstruct the elastic shape of the observed structure.
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Gait Optimization Method for
Quadruped Locomotion

Maicol Laurenza, Gianluca Pepe , and Antonio Carcaterra

1 Introduction

Nature has always been a source of inspiration for engineers and scientists who
have always tried to replicate or at least develop systems that resemble it. This is
because nature, in its many forms, is a system that in millions of years of evolution
has selected and perfected beings that excel in specific tasks. However, often
nature operates a selection characterized by constraints that modern technology can
partially overcome, and possible innovative solutions emerge even looking in the
groove of nature bioinspired mechanisms.

In this context, the present paper follows a twofold inspiration in the investigation
of quadrupedal robots. On one hand, it is scientifically interesting to explore how
quadrupedal locomotion, suitably modelled, can produce gaits that resemble results
to which nature arrived over a long evolution. On the other hand, the investigation
tries to go beyond the solutions proposed by nature: is it possible to disclose different
kind of gaits for a quadrupedal mechanism as the product of a strict optimization
process, making these gaits solutions for the best desirable performances?

To obtain a natural and efficient gait for legged robots, two kinds of strategies for
sequencing or coordination of the leg movements can be followed. The first strategy
assumes that the gaits of animals are optimal, as otherwise they would not have been
able to survive the competition and natural selection proposed by Darwin’s Theory
of Evolution [1]. However, biological locomotion data cannot be used directly for
a legged robot due to kinematic and dynamic inconsistencies between animals and
legged robots. Today’s mechanisms are heavy and have large energy consumption,
since they need large number of actuators to move multiple degree-of-freedom legs
[2]. The second strategy formulates the gait generation problem of the legged robot
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as an optimal optimization problem with multiples constraints [3–7]. It generates
the optimal gait cycle by minimizing some performance indexes, like motion
speed, stability criteria, actuating forces, energy consumption, etc. Evolutionary
computation, including the Genetic Algorithm (GA), is a natural choice for the gait
optimization of legged robots, since it uses optimization methods based on Darwin’s
Theory of Evolution [8–10]. The result of the optimal trajectories is then tracked
through feedback controllers. Typical controls are Hybrid Zero Dynamics or the
simplest PD [11–13]. Nonlinear variational optimal controls have been analyzed
and studied to include nonquadratic penalty function and nonlinear affine systems
[14–19] to better chase the trajectories.

The main idea of this paper is based on an optimal optimization process where
only the forces transmitted to the ground are considered, without imposing no leg
elements or kinematic constraints. The force profiles are morphologically modified
through a parametric optimization to guarantee the body attitude, moving at a certain
speed. The optimization is performed by GA. The optimum is determined, over a
time period, to minimize the Cost of Transport (COT), i.e., the amount of energy
used over time.

The paper is organized as follows: Section 2 describes the dynamic model and
definition of the ground reaction forces. Section 3 defines the optimization variables
and discusses the objective functions and stability constraints of the optimization.
Section 4 provides the optimization results and a comparison between different
natural gaits.

2 Mathematical Model for the Gait Optimization

The optimization model, proposed in this paper, consists of identifying an optimal
gait capable of moving a suspended body through the succession of four alternating
thrusts generated by legs. The innovation of this approach lies in the absence of
a specific kinematic configuration of the legs, thus leaving room for possible free
solutions that maybe nature hasn’t found. It will then be a later problem identifying
the best kinematic configurations that best approximate the optimal solution found.
The quadrupedal model is illustrated in Fig. 1, where the body is suspended on four
legs, transmitting forces and moments, thanks to the interaction with the ground.

The legs are labelled as FL (front left), FR (front right), HL (hind left), HR (hind
right) and the period in which the legs are in contact with the ground is called
conctact phase (CP), while the one in which the legs are in the air is called swing
phase (SP).

Newton-Euler equations that govern the rigid body dynamics can be expressed in
the fixed reference frame for the translational components and in the body reference
frame for the rotational components:
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Fig. 1 Lateral (a) and rear (b) view of the model

m r̈ = f e,

I ω̇ = me − ω × (Iω) , (1)

where r identify the centre of gravity (CoG) of mass m, fe the external forces,
with respect to the fixed reference frame, while inertia matrix I, angular velocity
ω, and external moments me are computed in the body reference frame. Assuming
I as principal inertia matrix and small pitch and roll angles, we can approximate
the equations of motion in the fixed reference frame for a 4 dof rigid body in
longitudinal motion x, vertical motion z, roll φ, and pitch θ (Fig. 1):

mẍ = Fx Ixφ̈ = Mx
mz̈ = Fz Iyθ̈ = My , (2)

where Ix, Iy are the inertias along the two axes; Fx, Fz, Mx, My are the total forces
and moments in the fixed frame coming from the four legs FR, FL, HR and HL.

From Fig. 2, the duration of the entire locomotion cycle, in which the four legs
follow one another, is defined by T and leg contact duration by Ti. The time at which
each leg touches the ground is ti ∈ [0, T], where i = FR, FL, HR, HL.

When an animal moves on the ground, its limb contacts and pushes against the
ground, so expressing a ground reaction force. The vertical component Fz of the
ground reaction force serves to support the animal’s weight, while the horizontal
component Fy allows the animal to accelerate and decelerate. Even when an animal
moves at a steady speed, its limbs exert decelerating and accelerating horizontal
forces to control the balance. In this paper, the focus of the work is to find compatible
contact forces for each leg that allows the body to move at a certain speed and keep
a stable attitude. Considering a single leg, the vertical force Fzi is bound to act only
during the CP and it must start and end with zero value to represent the arriving
and leaving phases [20]. The shape is defined through a spline function passing
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Fig. 2 Temporal diagram of the entire period of locomotion of the quadruped

Fig. 3 Vertical (a) and longitudinal (b) ground force for one leg during the gait period

across three unknown points [P1, P2, P3] which have to be optimized (Fig. 3a). The
longitudinal ground reaction for each leg Fxi is instead identified by the Coulomb
expression (Fig. 3b). The force is defined as the product of the grip coefficient μ
and the vertical force Fzi with the hyperbolic tangent that allows to consider the
acceleration and deceleration grip phase of the foot.

Fxi = −μFzi tanh (γ (ti − tsw)) . (3)

The tanh function is translated with a parameter tsw ∈ [ti, ti + Ti] that identifies
the time at which the foot switch from decelerating to accelerating grip. This model
excludes the possibility of foot slipping, as it is a dissipative action that lowers the
efficiency of the motion.

Moreover, the transition phase is governed by the parameter γ that considers the
characteristics of the actuators. Eventually, moments Mx and My on CoG can be
computed by identifying the foot force arm. From Fig. 1a, let’s consider the FR
foot at the beginning of the contact phase tFR = 0 with a position xFR0. Given
the lack of slipping, the horizontal arm between CoG and the foot contact point is
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ΔxFR(t) = xFR0−x. In the same way, the vertical arm component can be evaluated
as ΔzFR(t) = zFR0 − z, giving the opportunity to express the two moments like:

Myi = FxiΔzi − FziΔxi
Mxi = FziΔyi

, (4)

where �yi, in our case, is a constant parameter stating the mounting spacing of the
legs along the y axis. Clearly, the two momentsMxi (t) andMyi (t) are nonnull only
during the contact phase where t ∈ [ti, ti + Ti].

3 Optimization Model

Usually, in the quadruped legged locomotion, the stability of a gait is guaranteed
using criteria such as Zero-Moment Point [21, 22]. Other studies face the stability
problem with Poincare map [23, 24] or ground reference points [25]. In this paper,
unlike the classical approaches, the gait stability is guaranteed by satisfying periodic
limit cycle conditions.

The optimization is performed over a single period which begins and ends when
the FR leg meets the ground. The algorithm selected is the well-known genetic
algorithm (GA) which has been used to find not only the stride length, frequencies,
and velocities but also the quantity and form of the forces exchanged on the
ground compatibly with the constraints. The parameters pGA serve as inputs for the
optimization algorithm to minimize a specific objective function. The optimization
is designed to find the optimal gait to maintain constant the initial speed and height,
selecting the relative phases of each legs ti, the time duration of the contact phase,
which is here imposed the same for all the legs Ti = TCP, and the shape of the
normal force through Pj points (see Fig. 3).

pGA =
[
ti , TCP , Pj

]
(5)

The entire cycle duration T is an imposed parameter as it depends directly on
the actuator’s technology and hardware available. Sure enough, reducing the time T
will raise the cost of technology to be used. Higher computational costs and power
density of the actuators are required, along with high accuracy and sensitivity of
sensors.

Once the pGA parameters have been assigned, the solution provides an iterative
resolution scheme that resolves independently first the vertical dynamics, then the
horizontal dynamics, and then ends with the rotational dynamics.

Over the single stride, the average vertical force exerted on the ground by all the
limbs must equal the body weight m multiplying the gravity force g:
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1

T

∫ T

0

∑

i
Fzi

(
Pj
)
α dt = mg (6)

The force shape is randomly defined by the GA with a spline interpolation
through Pj points. The parameter α rescales the normal force to satisfy the constraint
eq. (6) for the entire cycle. The condition (6) involves that the initial velocity along
the z axis will be the same at the time T.

ż(0) = ż(T ) (7)

However, another condition is needed to assure that the cyclic motion along z axis
doesn’t diverge. At the end of the cycle, the body needs to return to the initial height:

z(0) = z(T ). (8)

Identifying the initial vertical speed as the double integral of the vertical
acceleration allows to satisfy the requirement (8):

ż(0) = − 1

mT

∫ T

0

∫ τ

0

(∑

i
Fzi

(
Pj
)
α −mg

)
dtdτ. (9)

The same strategy can be used to maintain a periodic longitudinal speed, as long
as the following integral is satisfied:

∫ T

0

∑

i
Fxi (tsw) dt = 0, (10)

which depends on the parameter tsw, the time at which the transition between
acceleration and deceleration grip phase is realized. The eq. (10) is solved by a
nonlinear numerical solver to guarantee the periodicity of the speed:

ẋ(0) = ẋ(T ). (11)

This doesn’t assure that the average speed is the desired one, but at least we
guarantee a certain stability of the velocity.

On the other hand, also the resulting moments must assure a stable attitude
during the stride cycle, similarly to what has been stated for vertical and longitudinal
motion. The following constraints are consequently required:

∫ T

0
My

(
xFR0

)
dt = 0,

∫ T

0
Mx

(
Δy
)
dt = 0 dt = 0. (12)
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Solving the eq. (12), through the identification of the maximum stride span xFR0

and the mounting spacing �y, allows to find the initial and final velocity of roll and
pitch that guarantees a periodic motion:

θ̇ (0) = θ̇ (T ) = − 1

IyT

∫ T

0

∫ τ

0
My

(
xFR0

)
dtdτ,

φ̇(0) = φ̇(T ) = − 1

Ix
(
Δy
)
T

∫ T

0

∫ τ

0
Mx

(
Δy
)
dtdτ. (13)

Eventually, the objective function, that has to be minimized for identifying the
most efficient gait, can be expressed. The energy cost E should be defined as the
integral of the absolute value of the power, given the periodicity of the motion and
the absence of non-conservative forces:

E = 1

T

∫ T

0
|Power | dt. (14)

Equation (14) must consider kinetic and potential power of the CoG during the
entire cycle. Computing the integral of the power absolute value allows a correlation
with possible dissipative forces of real applications. In fact, it is reasonable
considering dissipative power dependent from quadratic speed and so proportional
to |Power|.

4 Results

The mass properties of the body are selected considering the characteristic parame-
ters of quadrupeds in nature, in particular horses. Consequently, the optimization is
performed with the purpose of finding the energy-efficient gait that moves the body
at an average speed of 1.35 m/s, with a gait period T of 1s, which are common
parameters of horses walking gait. In nature, walking gaits involve overlapping
contact phase such that TCP

T
> 0.5, i.e., each leg remains in contact more time than

in the air, providing a stable base of support. The results show that the optimal gait
found by GA follows the characteristics of a classical walking gait for a quadruped
animal. In fact, the sequence of the legs is shown to be FR− HL− FL− HR, with a
ti = [0.25; 0.5; 0.75; 1] multiples of ¼ and the time of contact phase of TCP

T
= 0.58.

In Fig. 4, the numerical results of the optimization problem are presented. It can
be seen how the body keeps a steady longitudinal speed ẋ, around the target speed
of 1.35 m/s, maintaining a stable and restrained attitude and assuring the periodical
constraints. What we are showing is one of the possible solutions, as the genetic
algorithm can also find points of local optimum, depending on the weights of the
objective function.
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Fig. 4 Motion and attitude of the body during the single stride

Consequently, we decided to investigate other gaits, existing in nature, and find
out how much energy they consume to make the body move at the same target
speed. In a quadrupedal trot, for example, the diagonal forelimb and hindlimb move
in phase, while, in pacing, the forelimb and hindlimb on the same side of the body
are in phase. Instead, when the forelimbs and hindlimbs each move together in
phase, the gait is considered a “full-bound.” To assure the selection of these gaits,
we imposed only the time ti between the legs as constraints:

T rot : tFR = tHL
tFL = tHR Pace :

tFR = tHR
tFL = tHL

Full − bound : tFR = tFL
tHL = tHR (15)

In Fig. 5a are shown the resulting ratios TCP
T

for each of the analyzed gaits. Trotting

and running gaits are typically characterized by TCP
T
≤ 0.5; however, we can see that

the optimization isn’t consistent to what happens in nature. That’s because animals
change gait from a walk to a trot or a run only to move at increasing speed, instead
we imposed the same target velocity to the body.

Eventually, comparing the energy consumption of these analyzed gaits with the
optimal one, we can confirm how the walking gait is the most efficient one for a
quadruped at the target speed of 1.35 m/s and a gait period of 1 s (Fig. 5b).
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Fig. 5 Ratios of the contact time (a) and energy consumption (b) over cycle time for imposed
gaits

5 Conclusions

In this work, a legged optimization model is proposed to identify different gaits of
a quadruped system regardless of the physical characteristics of the system itself.
The advantage is to be able to find optimal features of the gait without the constraint
of any kinematic mechanism for the legs, body, etc., allowing a free search of the
optimum. Preimposed forces profiles are shaped to guarantee stability of the motion,
at a constant speed. The scope is to find optimal gaits that move a body in the most
efficient way, and then compare them to the ones resulting from natural evolution to
see if there exist more efficient ones.

The optimal gait was found to be consistent to that found in nature, suggesting
that energy consumption is one of the factors contributing to the evolution of gaiting
patterns in quadrupeds. Future works will consist in finding a kinematic mechanism
compatible with the optimal gait and using nonlinear feedback controls to control
the quadruped robot.
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Early Detection of Cracks in a
Gear-Train System Using Proper and
Smooth Orthogonal Decompositions

Zihan Liu, T. Haj Mohamad, Shahab Ilbeigi, and C. Nataraj

1 Introduction

In rotating machinery, gears are common components, which interconnect mechan-
ical parts and allow them to be engaged in a mechanical system. They play the role
of transmitting kinetic energy and transforming rotation. Due to the importance of
gears, any degradation of its performance affects the function of the whole system
and leads to machine breakdown. In general, gear faults are the most prevailing
causes of transmission system failure, which makes the diagnostic technology
of gear faults significant in improving safety, reducing breakdown and economic
losses.

In modern industry, there are three main maintenance strategies including Break-
down Maintenance, Time-Based Maintenance, and Condition-Based Maintenance
(CBM). Breakdown Maintenance is performed on a machine that has broken down
and cannot operate. Time-Based Maintenance is routine maintenance performed on
a machine at fixed time intervals regardless of its condition. On the other hand, CBM
relies on implementing online assessments of the current machine condition without
interrupting normal machine operation. This chapter focuses on developing a CBM
algorithm for early detection of gear cracks.

A successful fault detection at an early stage is of paramount importance as most
of the catastrophic machinery failures are caused by undetected minute faults that
are aggravated over time. Furthermore, early detection can also help in avoiding
expensive repair costs. The difficulty in detecting cracks at early stages is due to the
fact that minute faults cause changes in the vibration signal at a very low energy that
are barely detectable [1] and obscured by more prominent frequency components.
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In gear trains, cracks occurring on the gear tooth surface during gear meshing are
prevalent damage in early stages.

In the field of vibration monitoring of rotating machinery, more and more
techniques based on extracting features of vibrational signals are developed [2, 3].
In earlier work, we introduced the Phase Space Topology (PST) family of methods
to diagnose nonlinear systems by describing the topology of the phase space
trajectory quantitatively [4–8]. In this chapter, we extract features by using Proper
Orthogonal Decomposition (POD) and a newly developed method called Smooth
Orthogonal Decomposition (SOD) [9]. POD and SOD are techniques used to map
multi-dimensional data into basis vectors. POD, also known as principal component
analysis (PCA), finds orthogonal basis vectors such that the projection of the data
onto these basis vectors has maximum variance. SOD can be viewed as an extension
to POD, which alters these basis vectors in a way that the evolution of data, or in
other words the dominant flow, has the maximum smoothness, which releases the
condition of basis orthogonality.

The rest of this chapter is organized as follows: Sect. 2 introduces the experi-
mental setup and gear tooth cracks. Section 3 presents the diagnostic method and
the proposed feature extraction techniques. In Sect. 4, extracted features are plotted
and fault detection results are presented. Finally, Sect. 5 summarizes and concludes
this chapter.

2 Experimental Setup

In this research, the proposed method is applied to a mock-up of a helicopter
gearbox system, which is a 5 m large-scale machine shown in Fig. 1. As is shown
in the figure, its main structure consists of a motor, a dynamometer, and four
gearboxes. The system schematic diagram is illustrated in Fig. 2. For this study,
gear defects are introduced by replacing the gear located in gearbox number 3 and
shown in green color in Fig. 2, while the remaining gears are kept unchanged. The
defective gear with a root crack of 2 mm size located on one tooth is shown in Fig. 3.

The triaxial accelerometer is equipped on the gearbox number 3 to record the
vibrational signal of the gearbox at a sampling frequency of 102,400 Hz. Two
encoders are mounted on shafts A and C to measure rotational speeds of shafts
A and C with a resolution of 360 pulse /rev. A tachometer is installed on shaft B
to measure the shaft rotational speed at a rate of 1 pulse/rev. The recording of the
vibrational signal lasts 64 s for both healthy, and the cracked tooth conditions, which
can ensure the same data capacity of two conditions.
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Fig. 1 Gear-train experimental setup, four gray metal boxes denote 4 gearboxes

Motor

Load72 T

19 T 48 T
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23 T

44 T 44 T44 T44 T

23 T 23 T
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TachometerAccelerometer
(Triaxial)

Encoder 1

Encoder 2y

x

900 rpm
900 rpm
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Shaft BShaft A

Shaft C

Fig. 2 Gear-train schematic. The number in every gear represents the number of teeth for each
gear. Shafts A and C are connected to the motor and load, respectively

3 Diagnostic Method

Figure 4 demonstrates the overall flow of the proposed diagnostic strategy. First,
the vibrational signal of the shaft is collected by the accelerometer for two gear
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Fig. 3 Gear defects: crack on
one tooth with 2 mm depth

Gear Train

Vibration Data

POD/SOD

Feature Extraction

Basis Vector Construction

Train ANN

Test ANN

Data Acquisition Feature Extraction Gear Diagnostics

Fig. 4 Diagnostic approach

conditions such as healthy and cracked tooth. Then POD and SOD methods are
implemented to establish the construction of basis vectors. Second, the projection
of data on these basis vectors can be obtained as features of each data set, and more
details on this step will follow. Finally, extracted features are employed as an input
to develop a classification model using ANN. This section will proceed to provide a
brief theory and mathematics of POD and SOD methods.

3.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) [10, 11], also referred to as principal
component analysis (PCA), is a statistical approach that can be used to represent
multi-dimensional data as orthogonal base vectors while retaining the dominant
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components of the original data set. Suppose we have a sampled scalar filed in
the form of a matrix X ∈ R

r×n, which contains r snapshots of n scalar time
series. The linear projection of X can be obtained using Q = XΦ, where Φ =
[φ1, φ2, . . . , φn] ∈ R

n×n are the orthogonal basis vectors. We are looking for a
basis vector φk ∈ R

n such that there is maximum variance in a projection of the
data matrix on this vector. The problem of finding such a basis vector φk can be
translated into the following restricted problem of maximization:

max
φk
‖Xφk‖2 while ‖φk‖ = 1 . (1)

The solution to the POD problem is obtained by solving the eigenvalue problem of
the auto-covariance matrix Σxx .

Σxxφk = λkφk . (2)

The corresponding auto-covariance matrices Σxx can be obtained by

Σxx = 1

r − 1
XTX . (3)

In this form, λk are proper orthogonal values (POVs), φk ∈ R
n are proper orthogonal

modes (POMs), and columns ofQ are proper orthogonal coordinates (POCs). POVs
are ordered such that λ1 ≥ λ2 ≥ . . . ≥ λn and reflect the variances in X data along
the corresponding POMs.

3.2 Smooth Orthogonal Decomposition

Smooth Orthogonal Decomposition (SOD) [10, 11] can be seen as an extension
to POD. Assume we have a projection of the data matrix P = XΨ , where Ψ =
[ψ1, ψ2, . . . , ψn] ∈ R

n×n. We are looking for a basis vector ψk ∈ R
n, such that

a projection of the data onto this vector has both maximal variance and minimal
roughness (i.e., maximal smoothness). Roughness can be defined as the squared L2
norm of the data change rate. Thus, the roughness of a scalar field X is equal to
‖Ẋψk‖, where Ẋ ∈ R

r×n is the derivative of X, which corresponds to the rate of
changes in data or information.

Therefore, the description of SOD can be translated into maximizing the
following function:

max
ψk
‖Xψk‖2 while min

ψk
‖Ẋψk‖2 . (4)

By defining λ(ψk) as the ration of ‖Xψk‖ and ‖ẊψK‖, Eq. (4) can be translated into
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max
ψK
λ(ψk) = ‖Xψk‖2

‖Ẋψk‖2
. (5)

We can rewrite the above equation in the following form:

max
ψk
λ(ψk) = ψk

T Σxxψk

ψk
T Σẋẋψk

, (6)

where the auto-covariance matrix Σxx is from Eq. (3), and the auto-covariance
matrix of Ẋ can be obtained by

Σẋẋ = 1

r − 1
ẊTẊ . (7)

In order to maximize λ(ψk), we make the first derivative equal to zero:

∂λ(ψk)

∂ψk
= 2(ψkT Σẋẋψk)Σxxψk − 2(ψkT Σxxψk)Σẋẋψk

(ψk
T Σẋẋψk)2

= 0. (8)

After simplification by using Eq. (6), we can obtain

Σxxψk = λkΣẋẋψk. (9)

Equation (9) is a generalized eigenvalue problem of the matrix pairs Σxx and Σẋẋ .
The solution to the SOD problem can be obtained by solving the above eigenvalue
problem. In this equation, λk are smooth orthogonal values (SOVs), and ψk ∈ R

n

are smooth projection modes (SPMs). Simplifying Eq. (9) further, the equation can
be summarized into the following matrix form:

ΣxxΨ = ΣẋẋΨΛ. (10)

In the above equation, each column of Ψ denotes an SPM.Λ is a matrix in the form
ofΛ = diag([λ1, λ2, . . . , λ2n]) ∈ R

n×n, which contains all the SOVs. To define the
degree of smoothness of the coordinates, the magnitude of the corresponding SOV
can be used. This implies that the larger the SOV in magnitude, the smoother the
related coordination is in time. A matrix of smooth orthogonal modes (SOMs) Φ
can be defined to satisfy orthogonality as follows:

ΦT Ψ = I and Φ = Ψ−T . (11)

To sum up, POD and SOD are techniques used to map multi-dimensional data
into basis vectors. POD takes the spatial or geometric consequences of this
mapping into account, while the temporal structure of state evolution is ignored. In
contrast, in terms of total spatial variation and temporal smoothness of the related
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Fig. 5 Smooth orthogonal mode features for healthy gear condition (blue) and cracked tooth
condition (red). (a) The third coordinate of the first smooth orthogonal mode. (b) The second
coordinate of the third smooth orthogonal mode

coordinates, SOD considers both the geometrical characteristics of states and their
time evolution.

3.3 Feature Extraction and Supervised Learning

The most striking advantage of both POD and SOD techniques is their optimality:
they offer efficient way to capture the dominant components of an high-dimensional
process by projecting the original data flow onto only a few numbers of “modes.”
This projection preserves the nonlinearity of the original data flow in the form of
basis vectors; therefore, POD and SOD techniques are able to characterize nonlinear
dynamical systems and identify trends in the data.

In this chapter, POD and SOD methods are used as feature extraction techniques
for detection of gear system defects. For the POD technique, a feature set is extracted
from each data sample including: (1) the proper orthogonal modes, (2) proper
orthogonal values, and (3) the angle lying between each proper orthogonal mode
and the positive x-axis. For the SOD technique, the feature set from each data set
consists of: (1) the smooth orthogonal modes, (2) smooth orthogonal values, and (3)
the angle lying between each smooth orthogonal mode and the positive x-axis.

In Fig. 5, two mode features obtained by the SOD technique are demonstrated. Y -
axis denotes the smooth orthogonal mode, and the x-axis is the number of samples.
In Fig. 5a, the average values of healthy tooth and cracked tooth are about 0.2 and
0.1, while in Fig. 5b, the mean values for healthy and cracked gear are 0.35 and 0.45,
respectively. The significant difference of average values ensures that the two states
are separable. Two mode features obtained by the POD technique are exhibited in
Fig. 6. As seen in Fig. 6a, the values of the proper orthogonal modes are overlapping,
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Fig. 6 Proper orthogonal mode features for healthy gear condition (blue) and cracked tooth
condition (red). (a) The third coordinate of the first proper orthogonal mode. (b) The second
coordinate of the third proper orthogonal mode
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Fig. 7 Features extracted by POD technique. Blue plot is for the healthy tooth, and red plot is for
the cracked tooth. (a) Proper orthogonal value. (b) Angle between proper orthogonal mode and the
positive x-axis

which makes it difficult to distinguish different gear conditions. In Fig. 6b, although
the two plots only overlap in a few sample points, the mean values of healthy tooth
and cracked tooth are 0.88 and 0.84, which are too close to separate two different
conditions. In Fig. 7, two different features obtained by the POD technique are
exhibited. Figure 7a demonstrates proper orthogonal values, and the two different
states are perfectly separated. Figure 7b shows the angle lying between the proper
orthogonal mode and the positive x-axis. In spite of the angle fluctuation for the
healthy tooth condition, a large mean difference still ensures that the two conditions
can be separated, which is proved by subsequent experiment results.

In the last step, an Artificial Neural Network (ANN) is developed in order to
find the relationship between the extracted features (input) and the gear conditions
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(output). A two-layer neural network with a single hidden layer is chosen to map
those features in order to predict gear health conditions. The total number of selected
neurons is twenty, and the back-propagation algorithm is used to train the ANN. In
the trained ANNs, the activation functions for the neurons of hidden and output
layers are Tansig (a hyperbolic tangent sigmoid transfer function) and Softmax (a
smooth approximation to the arguments of the maxima function), respectively.

4 Fault Detection Results

The effectiveness of the classification model is demonstrated by a confusion matrix.
A confusion matrix can compare the predicted classes with the actual classes and
help in analyzing the performance of the classification model by certain evaluation
matrices such as accuracy, sensitivity, and precision [12]. In both Tables 1 and 2,
each column of the confusion matrix corresponds to the result of the prediction of a
certain class, while each row represents the actual class. The elements placed in the
main diagonal exhibit the correct classified prediction for each corresponding class.
In each element of the confusion matrix, the upper number represents the number of
cases and the lower number represents the absolute percentage of these cases with
respect to the total number of cases.

Table 1 indicates the test performance of the classification model trained by the
SOD-based features. A total of 196 data points are collected, 50% of the total data
are set as training set, 20% are validation set, and 30% are testing set. As can be
seen, the SOD-based classifier is capable of predicting all the health conditions with
100% accuracy, 100% precision, and 100% sensitivity with no misclassification.

Table 2 shows the testing performance of the POD-based classifier, the same total
data capacity and the same training and testing ratio are implied to this classifier,
and 100% accuracy, 100% precision, and 100% sensitivity are also observed. All of
these indicate the validity of the SOD and POD techniques in diagnostics.

Table 1 ANN testing results
and confusion matrices of
SOD (H: healthy tooth C:
cracked tooth)

Target

Output H C Recall Precision

H 25 0 100.0% 100.0%

42.4% 0.0%

C 0 34 100.0% 100.0%

0.0% 57.6%

Overall accuracy 100.0%
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Table 2 ANN testing results
and confusion matrices of
POD (H: healthy tooth C:
cracked tooth)

Target

Output H C Recall Precision

H 30 0 100.0% 100.0%

50.8% 0.0%

C 0 29 100.0% 100.0%

0.0% 49.2%

Overall accuracy 100.0%

5 Conclusions

In this chapter, a mock-up of a helicopter gearbox system with two conditions is
studied in order to detect and identify a gear with a cracked tooth in the early
stage. The POD and SOD methods are introduced as feature extraction techniques
in the study. The diagnostic result validates that the POD- and SOD-based features
adequately portray the nonlinear behavior of the helicopter gearbox system by
preserving the nonlinearity of the original data flow. By extracting only 15 features
from the gearbox vibration data, we are able to achieve 100% accuracy. This high
detection accuracy ensures the timely and effective detection of gear cracks at the
early stage of mechanical operation. It is known that the shaft rotational speed can
have a big effect on the behavior of dynamics systems. Thus, these experiments
can be extended to consider various known and unknown operating speeds in future
studies.
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On the Physical Consistency of Evolution
Laws Obtained with Sparse Regression

Diego Matos Silva Lopes and Americo Cunha Jr

1 Introduction

Most classical dynamic systems, such as a harmonic oscillator and a simple
pendulum, have their evolution law inferred through the first principles [1, 2].
However, some modern dynamical systems, such as those that appear in areas like
epidemiological modeling [3, 4] and neuroscience [5–7], have the basic evolution
laws not well understood or even unknown so that the use of first principles to
obtain the governing equations is unfeasible. In other applications, structural health
monitoring [8, 9], for instance, it may be possible that the basic principles of
dynamics are well understood, but some peculiarities not, which make it difficult
to construct high-fidelity predictive models.

In this context, discovering the evolution law for this kind of dynamical system in
an analytical way becomes an almost impossible task. However, with the emergence
of the information age, where data are exponentially generated and stored, it is
natural to try to use information embedded in datasets associated with the dynamical
system of interest to infer its underlying evolution law.

Neural networks (NNs) [10–12] have a high capacity to learn complex patterns,
which makes them at first glance natural candidates to be used in the search for
mathematical expressions that represent the desired evolution law. However, despite
having incredible power of prediction (interpolation) in the domain spanned by the
training data, several NN architectures lack in providing interpretable expressions
for the identified dynamic model, which makes it difficult to generalize (extrapolate)
system behavior for unknown conditions.
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Alternatively, regression techniques are more proper for providing the inter-
pretability that NN does not have, which makes them an attractive tool to extract
dynamic evolution laws from datasets [13]. Considering that, the technique known
as sparse identification of nonlinear dynamics (SINDy) [13–16], a sparse regression
method to identify evolution equations from data that proven to be efficient in
different areas and problems, and stands out for three aspects: (1) interpretability
of the obtained equation, (2) excellent generalization (extrapolation) capability, and
(3) computational efficiency. As several dynamic systems have evolution laws with
only a few terms, SINDy looks for a sparse and parsimonious differential equation
that best fits the known data.

If the method is applied in a system where the first principles are unknown,
it is interesting to have some guarantee that the identified evolution law respects
fundamental physical laws since their violation can translate into a dynamic
behavior that is divergent from the original one. For instance, if the balance of
momentum is not respected, mass or velocity is affected, potentially changing
the inertial effects. When the energy balance is violated, the contribution from
kinetic/potential energy to the mechanical energy can be in a proportion far from the
original system, which can imply changes in the displacement/velocity. Even when
a qualitatively good result is observed, small differences in the system parameters
can significantly change quantitatively the long-term behavior.

This work aims to verify the physical consistency of the evolution law obtained
by SINDy, checking if the identified dynamical system respects physical principles
such as the balance of momentum and energy and if the underlying balance of
these quantities is an accurate approximation for those associated with the original
system. For this purpose, the Duffing oscillator is used as a benchmark, where
the underlying evolution equation is obtained from synthetic data that emulate
experimental measurements for the displacement time series of this dynamical
system.

The rest of this manuscript is organized as follows. In Sect. 2, it is presented a
brief explanation of the Duffing oscillator and the methodology used to identify the
dynamic evolution laws. Some examples and test results are presented in Sect. 3.
Finally, in Sect. 4, the final remarks are highlighted.

2 Methodology

The dynamical system chosen to test the physical consistency of the identified
dynamic laws obtained with SINDy is the Duffing oscillator, once this kind of
oscillator has many possible applications, such as structural dynamics and energy
harvesting [17–22], and a very rich and well-known dynamic behavior. Figure 1
shows a schematic of a vibratory system that behaves like a Duffing oscillator, in
which the dynamic behavior evolves according to

ẍ + δ ẋ + α x + β x3 = γ cos(ωt) , (1)
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Fig. 1 Schematic of a
Duffing oscillator driven by a
sinusoidal external excitation

x
S

N

S

N

where the function x = x(t) is the displacement of the beam tip, and the ẋ
and ẍ are, respectively, the first and second derivatives of x, i.e., the velocity
and acceleration [23]. The parameters in the equation of motion are the damping
coefficient δ, the linear stiffness α, the nonlinear stiffness β, the external excitation
amplitude γ , and the external excitation frequency ω.

2.1 Sparse Identification of Nonlinear Dynamics

The SINDy method can handle first-order dynamical systems of form

ẋ = f(x) , (2)

where x is the state vector, ẋ is the time derivative of the state vector, and f(x) is the
unknown evolution law. Higher order systems may be written as a first-order system
by increasing the state dimension. For instance, the Duffing oscillator in Eq. (1) can
be rewritten as

ẋ1 = φ x2,

ẋ2 = −δ x2 − α x1 − β x1
3 + γ cos x3, (3)

ẋ3 = ω.

To determine the dynamic evolution law f, it is necessary to have observations
(time series) of the system state x and velocity ẋ, which are organized as follows:
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X =

⎡

⎢
⎢
⎢
⎣

xT (t1)
xT (t2)
...

xT (tm)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

x1(t1) x2(t1) . . . xn(t1)

x1(t2) x2(t2) . . . xn(t2)
...

...
. . .

...

x1(tm) x2(tm) . . . xn(tm)

⎤

⎥
⎥
⎥
⎦
, (4)

Ẋ =

⎡

⎢
⎢
⎢
⎣

ẋT (t1)
ẋT (t2)
...

ẋT (tm)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

ẋ1(t1) ẋ2(t1) . . . ẋn(t1)

ẋ1(t2) ẋ2(t2) . . . ẋn(t2)
...

...
. . .

...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)

⎤

⎥
⎥
⎥
⎦
. (5)

After having the data arranged in a matrix form, it is possible to build a
library (dictionary) of candidate functions Θ(X) to construct the evolution law
terms. In general, this library includes polynomials, trigonometric, exponential, and
logarithmic functions (among other possibilities), i.e.,

Θ(X) =
⎡

⎣1 X XP2 XP3 XP4 . . . XPk sin(X) cos(X) eX

⎤

⎦ , (6)

where each column in this matrix represents a candidate function, the XPn notation
indicates all possible n-order polynomials formed by combining the state variables.

What SINDy does is to solve the following regression problem:

Ẋ ≈ Θ(X)Ξ, (7)

where the coefficient matrix Ξ is determined by minimizing a misfit function that
measures the discrepancy between Θ(X)Ξ and Ẋ, i.e.,

Ξ∗ = arg min
Ξ

||Ẋ−Θ(X)Ξ ||2 + λ ||Ξ ||1 , (8)

where || · ||2 and || · ||1 denote the norm-2 and norm-1, respectively.
Note that, to produce a sparse solution, a user-controlled λ parameter is

introduced, which acts as a threshold. A first least squares regression results in a
vector with estimated values for Ξ . Coefficients that represent the exact evolution
law have more meaningful value than those that are not. After that, the absolute
values of the coefficient vectors Ξ , which is smaller than a λ, have their values
changed to zero. This process, known as sequential thresholded least squares, is
repeated until a parsimonious evolution law is discovered [13]. For systems where
the best parameter λ is unknown, machine learning techniques for model validation
are necessary to ensure a good result, e.g., cross-validation, among others [24].
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2.2 Training Dataset

In a typical scenario, the dataset used to infer the evolution law of the dynamic
system is observations obtained with some type of sensor, in the field or in the
laboratory. To emulate a set of displacement and velocity measurements for the
Duffing oscillator, synthetic data are considered in this work. The corresponding
time series are generated with the aid of the numerical integrator ODE45 from
MATLAB, fixing the time step asΔt = 0.01. Concretely, a dataset with 151 equally
spaced samples between 0 and 15 s is obtained with the numerical integrator and
polluted with a zero-mean Gaussian white noise (with variance η2) to emulate the
fluctuations in experimental measurements.

2.3 Balance of Energy and Momentum

The total energy, for both the original and the identified system, is the sum of the
kinetic and potential energy

E = 1

2
x2

2 +
1

2
α x2

1 +
1

4
β x4

1 . (9)

Although this scalar quantity is not conserved, as the considered dynamics is
dissipative, the balance between the mechanical energy of the system and the work
done by external and dissipation forces must be respected, i.e.,

[
1

2
x2

2 +
1

2
α x2

1 +
1

4
β x4

1

]t

0
=
∫ t

0

[
−δ x2

2(τ )+ γ cos (ωτ) x2(τ )
]
dτ. (10)

Similarly, the linear momentum variation has to balance the impulse of the forces
acting on the system

x2(t)− x2(0) =
∫ t

0

[
−δ x2(τ )− α x1(τ )− β x3

1(τ )+ γ cos (ωτ)
]
dτ. (11)

Therefore, if SINDy identifies the correct candidate functions, the balance of
energy and momentum is respected by construction. However, even in this case,
a question persists: compared to the original dynamics, how representative (in
quantitative terms) are these balance principles?
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3 Results and Discussion

Two parameter settings are used to evaluate the balance of energy and momentum
in the SINDy method, nominally, the unforced conservative case, and the forced
dissipative dynamics. For all the numerical experiments done and the database used,
SINDy obtained enough parsimonious results to activate just the right candidate
functions.

In the first case, the unforced conservative dynamics, 151 equally spaced time
samples are used in the training step, with a library of polynomial functions up
to third order without trigonometrical terms, with λ = 0.2, and initial conditions
x0 = 2 and v0 = −2. Table 1 shows the values that SINDy inferred for two different
noise intensities. The more the noise, the less similar is the identified dynamics to
their original counterpart.

In Fig. 2, the reader can see a verification test that estimates if the identified
dynamics present an energy/momentum balance that is compatible with the invari-
ances intrinsic to the original dynamics. The right side of Eqs. (10) and (11) is
computed for both the identified dynamics and the original dynamics, and the
differences between the respective quantities are computed, to estimate the balance
error due to deviations in the identified coefficients. It is possible to notice that
the error in the momentum balance is directly proportional to the noise intensity,
emphasizing the importance of obtaining good quality data.

Therefore, despite identifying candidate functions correctly and with coefficients
close to the original, the difference in both balances is a sinusoidal growing function
over time. For the two noise intensities, the coefficients identified for the linear
stiffness are lower than the original, while the nonlinear stiffness is slightly higher.
Both systems after a long time become out of phase with the original one. For the
systems with η = 0.010, this is achieved early than the case where η = 0.001, with
time for that bigger than 300.

In Fig. 3, a case without noise is considered, to assess the fundamental limit
of noiseless measures. Note that, for different initial conditions, the error in the
momentum balance is comparable to floating point noise, so that for any practical
effect, SINDy can be considered to respect the linear momentum balance.

Now, the dissipative forced Duffing oscillator is considered. Two different noise
intensities, η = 0.001 and η = 0.010, are employed once again, as well as the
library of polynomial functions up to third order with trigonometrical terms, 151
equally spaced time samples, λ = 0.02, and initial conditions x0 = 2 and v0 = −2.

Table 1 Parameters of the original and identified dynamics in the conservative unforced case,
with noise intensities equal to η = 0.001 and η = 0.010

δ α β γ ω φ

Original value 0.0 1.0 −1.0 0.0 0.0 1.0

Identified value (η = 0.001) 0.0 0.9998 −0.9999 0.0 0.0 1.0000

Identified value (η = 0.010) 0.0 0.9976 −0.9993 0.0 0.0 1.0002
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Fig. 2 The difference in the balance of energy and momentum between the original and identified
dynamics for the unforced conservative case, with η = 0.001 (left) and η = 0.010 (right). The
two insets below each graph show a zoom from the upper rectangles, where it is possible to see
the symmetrical format of the curve. The velocity is plotted together with the momentum error, to
show that the error in the momentum is a local maximum whenever the oscillator velocity is zero

The SINDy is able to identify the correct terms with great accuracy, despite the
small amount of data, as can be seen in Table 2, which shows the system parameters
for the original and the identified dynamics.

The balance of energy and momentum is plotted for this second case in Fig. 4,
where it is possible to notice a richer oscillatory pattern, for both the momentum
and energy errors, when compared to the first case. Looking at the energy error,
initially, the local pikes and valleys are coinciding with those from the momentum
error curve, but after some time, they become out of phase.

The difference in the balance of momentum and energy both has the same
asymptotic behavior as in the conservative case, but now it is possible to observe an
oscillatory pattern that is completely different from the conservative unforced case.
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Fig. 3 The difference in the balance of energy and momentum between the original and identified
dynamics with noise-free data, for different initial conditions. On the top, the initial conditions are
x0 = 2 and v0 = −2, on the middle x0 = 3 and v0 = 2, and for last, on the bottom x0 = 1 and
v0 = 2.5

Table 2 Parameters of the original and identified dynamics in the dissipative forced case, with
noise intensities equal to η = 0.001 and η = 0.010

δ α β γ ω φ

Original value −0.1 1.0 −1.0 1.0 2.0 1.0

Identified value (η = 0.001) −0.0999 1.0001 −1.0000 0.9998 2.0000 1.0000

Identified value (η = 0.010) −0.0992 1.0006 −1.0001 0.9976 1.9996 1.0003

A transient is noticed that is quickly dampened giving rise to a periodic stationary
response, with an amplitude that increases (very slowly) with time.

4 Conclusions

This work presented a study on the physical consistency of the evolution law
inferred from a given dataset employing the SINDy method. Two configurations of
the Duffing oscillator are used to investigate the difference in energy and momentum
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Fig. 4 The difference in the balance of energy and momentum between the original and identified
dynamics for the dissipative forced case, with η = 0.001 (left) and η = 0.010 (right)

balance with respect to the original dynamics. In all cases, SINDy identified the
right candidate functions, and therefore the balance of energy and momentum is
respected. However, analyzing the difference in the energy and momentum balance
identified, in relation to the original, that function is growing rapidly over time. This
implies that for long time periods, the identified dynamic will be out of phase to the
original.
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Multibody Dynamics



Linear Stability Analysis of a Bicycle
Multibody Model with Toroidal Wheels

A. G. Agúndez, D. García-Vallejo, and E. Freire

1 Introduction

From the work of Whipple [1] to the present day, the stability analysis of bicycles
has been a subject of great interest. In 2007, a benchmark bicycle model was
presented by Meijaard et al. [2], which has been widely used in numerous
theoretical [3–5] and experimental works [6]. The discussion of the linear stability of
this benchmark along relevant trajectories, such as the straight and circular motions
with constant velocity, was thoroughly made by Basu-Mandal et al. [3] and Xiong et
al. [5, 7]. Moreover, this bicycle benchmark model recently allowed the validation
of novel linearization procedures for constrained multibody systems [8].

Some developments of the bicycle benchmark have been introduced in recent
times [9–12], consisting in more advanced models of frames, riders and tires, aimed
to further understanding the bicycle dynamics and stability. The multibody model
of this work presents toroid-shaped wheels, which are assumed to roll without
slipping, and the linearization of the equations of motion is performed resorting to
one of the procedures of Ref. [8]. The stability results of the benchmark showed the
accuracy and efficiency of this procedure with respect to the conventional symbolic
approaches. To perform an eigenvalue sensitivity analysis, the Jacobian matrix is
obtained as function of the dynamic and geometric parameters of the multibody
system. The influence of the steer axis tilt and the tori aspect ratios on the stability
of the bicycle is studied considering different scenarios.
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2 Description of the Model and Equations of Motion

The bicycle multibody model presents five rigid bodies: the inertial frame is
designated as body 1; the rear and front wheels, modelled as tori rolling without
slipping, are bodies R and F , respectively; the rear body and frame assembly,
including the rider, is designated as B and the front handlebar is represented by
H . The centres of mass Gj , with j = {B,H,R, F }, correspond to the origins of
the body frames. The n× 1 set of coordinates x, which belongs to a domain of Rn,
is given by

x = (xb yb zb ψb θb φb δ θR θF ξR ξF ηR ηF
)T
. (1)

The coordinates xb, yb and zb locateGB ; the angles {ψb, θb, φb}, which correspond
to a yaw–pitch–roll (3–2–1) sequence, orientate body B in space; the steering angle
δ represents the rotation of the handlebar with respect to body B and θR and θF
correspond to the rotations of the rear and front wheels with respect to bodies B and
H , respectively (Fig. 1).

The numbering of the bodies, the coordinates of the system, the body frames
and the main geometric parameters of the multibody model are shown in Fig. 2.
As in Ref. [13], the toroidal geometry of the wheels is described by means of four
non-generalized coordinates: ξR , ξF , ηR and ηF . The position vector of the contact
points P and Q can be expressed in the body frames of the rear and front wheels,
respectively, with these non-generalized coordinates. Denoting the minor and major
radii of the toroidal wheel by ai and bi , with i = {R,F }, the tori aspect ratios can
be defined as follows:

μR = aR
bR
, μF = aF

bF
. (2)

The minor and major radii can be related with the radius Ri of the hoop-shaped
wheels by means of the following relations:

aR + bR = RR, aF + bF = RF . (3)

The local frames and the non-generalized coordinates of the toroidal wheel are
shown in Fig. 2a. The middle plane of the torus, which contains the hoop of equiv-
alent radius Ri , is designated as πm, and the torus tube centre is Ci . Furthermore,
Fig. 2b depicts a front view of the wheel.

The equations of motion of the bicycle, constrained by holonomic and nonholo-
nomic constraints, are given by the following differential-algebraic system:

M (x) ẍ +DT (x)λ = Q
(
x, ẋ

)
, (4)

C (x) = 0, (5)

Cnh
(
x, ẋ

) = B (x) ẋ = 0. (6)
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Fig. 1 Bicycle multibody model with toroidal wheels: coordinates of the system, numbering of
the bodies, body frames and main geometric parameters

Fig. 2 Model of the toroidal wheels. (a) Toroidal wheel: local frames and non-generalized
coordinates. (b) Toroidal wheel: front view

In Eqs. (4)–(6), M (x) represents the n × n mass matrix; the n × 1 vector of
generalized forces is denoted by Q

(
x, ẋ

)
; C (x) corresponds to the m × 1 set of

holonomic constraints; Cnh
(
x, ẋ

)
is the l × 1 set of nonholonomic constraints,

linearly dependent on velocities and the (m+ l)× 1 vector of Lagrange multipliers
is denoted by λ. The matrices B (x) and D (x), whose dimensions are l × n and
(m+ l)× n, respectively, are given by
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B (x) = ∂Cnh
(
x, ẋ

)

∂ẋ
, D (x) =

(
Cx (x)

B (x)

)

, (7)

where Cx = ∂C
∂x

. All the terms in Eqs. (4)–(6) are smooth functions. The Newton–
Euler equilibrium equations (4) can be symbolically derived using Ref. [14]. Due to
the wheel–ground contact, the holonomic constraints are

C (x) = ( rPZ , rQZ , n · tLR , n · tTR , n · tLF , n · tTF
)T = 0, (8)

where rPZ and rQZ are the Z-components of the contact points position vectors rP
and rQ; tTi and tLi represent the transversal and longitudinal tangent vectors to
P and Q and n is the normal vector to the ground surface. These vectors can be
computed as follows:

rP = rGR +RR r̄RGRP , rQ = rGF +RF r̄FGFQ,

r̄RGRP = RξR

⎛

⎝

⎛

⎝
bR

0
0

⎞

⎠+RηR

⎛

⎝
aR

0
0

⎞

⎠

⎞

⎠ , r̄FGFQ = RξF

⎛

⎝

⎛

⎝
bF

0
0

⎞

⎠+RηF

⎛

⎝
aF

0
0

⎞

⎠

⎞

⎠ ,

tLR = RR
∂ r̄GRP

R

∂ξR
, tTR = RR

∂ r̄GRP
R

∂ηR
, tLF = RF

∂ r̄GFQ
F

∂ξF
, tTF = RF

∂ r̄GFQ
F

∂ηF
,

(9)
where RR and RF are the orientation matrices of the body frames R 〈XRYRZR〉
and F 〈XFYFZF 〉, respectively; the rotations corresponding to ξi and ηi are given
by the matrices Rξi and Rηi and r̄RGRP and r̄FGFQ, expressed in the body frames R
and F , respectively, are local position vectors.

Moreover, since the wheels are assumed to roll without slipping, one obtains four
nonholonomic constraints:

Cnh
(
x, ẋ

) = ( vPx , vPy , vQx , vQy
)T = 0, (10)

where vP and vQ are the velocity of the contact points P andQ, respectively.
Therefore, n = 13, m = 6 and l = 4 in the bicycle multibody model.

The combination of the time derivative of the holonomic constraints with the
nonholonomic constraints leads to the following index-2 DAE system:

M (x) ẍ +DT (x)λ = Q
(
x, ẋ

)
, (11)

D (x) ẋ = 0. (12)
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3 Linearization of the Equations of Motion

The rectilinear motion with constant velocity of the bicycle can be expressed as

x0 = (x0
b , y

0
b , z

0
b, ψ

0
b , θ

0
b , φ

0
b, δ

0, θ0
R, θ

0
F , ξ

0
R, ξ

0
F , η

0
R, η

0
F

)T
,

=
(

vt, 0, zB, 0, 0, 0, 0,
v

RR
t,
v

RF
t,

5π

2
− θ0

R, λ+
5π

2
− θ0

F , 0, 0

)T

.

(13)
Particularizing Eq. (11) for the equilibrium solution (13), the Lagrange multipliers

associated with this reference motion are given by λ0 = (λ0
1, λ

0
2, 01×8

)T
, with

λ0
1 = −

g

w
(mB (w − xB)+mH (zB tan (λ)− a cos (λ)− b sin (λ)− c)+mRw) ,

λ0
2 = −

g

w
(mBxB +mH (w − zB tan (λ)+ a cos (λ)+ b sin (λ)+ c)+mFw) .

(14)
The linearization approach is based on the implicit differentiation of the con-

straint equations (12), which avoids the problem of explicit solution of Eq. (12) at
the linearization. Defining the variations x̃, ˙̃x, ¨̃x and λ̃, the following relations can
be introduced:

x = x̃ + x0, ẋ = ˙̃x + ẋ0, ẍ = ¨̃x + ẍ0 and λ = λ̃+ λ0. (15)

Computing the Taylor expansion of Eqs. (11)–(12) with respect to the equilib-
rium (13), and neglecting second-order and higher terms, yields

M
(
x0
) ¨̃x +

∂
(
M (x) ẍ0

)

∂x

∣
∣
∣
∣
∣
∣
0

x̃ +DT
(
x0
)

λ̃+ ∂
(
DT (x)λ0

)

∂x

∣
∣
∣
∣
∣
0

x̃

= ∂Q

∂x

∣
∣
∣
∣
0
x̃ + ∂Q

∂ẋ

∣
∣
∣
∣
0

˙̃x, (16)

D
(
x0
) ˙̃x +

∂
(
D (x) ẋ0

)

∂x

∣
∣
∣
∣
∣
∣
0

x̃ = 0, (17)

where
∂(·)
∂x

∣
∣
∣
∣
0
= ∂(·)
∂x

∣
∣
∣
∣
x0,ẋ0

and
∂(·)
∂ẋ

∣
∣
∣
∣
0
= ∂(·)
∂ẋ

∣
∣
∣
∣
x0,ẋ0

are used for simplicity.

A coordinate split, consisting in m + l-dependent and n − m − l-independent
velocities, will be considered to reduce the linearized equations of motion: ˙̃x =
( ˙̃xai ˙̃xdd

)T
. In the same way, the following partition at position level is used: x̃ =
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(
x̃ai x̃dd

)T
. Choosing as independent coordinates xb, φb and δ, these sets are given

by

x̃ai =
(
x̃b φ̃b δ̃

)T
, x̃dd =

(
ỹb z̃b ψ̃b θ̃b θ̃R θ̃F ξ̃R ξ̃F η̃R η̃F

)T
. (18)

The use of the matrix D
(
x0
)

allows the elimination of the variation of the
Lagrange multipliers in Eq. (16). The following transformation matrix is defined:

T 0 =
(

I (n−m−l)
− (Ddd

(
x0
))−1

Dai

(
x0
)

)

, (19)

where Ddd

(
x0
)

is a square matrix of dimension m + l. Since the term
T T
(
x0
)
DT

(
x0
)
λ̃ fades away, Eq. (16) becomes

T T
0

⎛

⎝M
(
x0
) ¨̃x +

∂
(
M (x) ẍ0

)

∂x

∣
∣
∣
∣
∣
∣
0

x̃ + ∂
(
DT (x)λ0

)

∂x

∣
∣
∣
∣
∣
0

x̃

⎞

⎠

= T T
0

(
∂Q

∂x

∣
∣
∣
∣
0
x̃ + ∂Q

∂ẋ

∣
∣
∣
∣
0

˙̃x
)

. (20)

Equation (20) can be written in terms of x̃ai and x̃dd and their time derivatives.
To that end, the time derivative of Eq. (12) is used:

D (x) ẋ = 0
d(·)/dt−−−−→ D (x) ẍ + d

(
x, ẋ

) = 0, (21)

where d
(
x, ẋ

) = ∂
(
D (x) ẋ

)

∂x
ẋ. Equation (21) can be linearized with respect to the

equilibrium (13), leading to

D
(
x0
) ¨̃x +

∂
(
D (x) ẍ0

)

∂x

∣
∣
∣
∣
∣
∣
0

x̃ + ∂d

∂x

∣
∣
∣
∣
0
x̃ + ∂d

∂ẋ

∣
∣
∣
∣
0

˙̃x = 0. (22)

The expression (22) enables the obtaining of ¨̃xdd in terms of ¨̃xai , which results in
the acceleration relation:

¨̃x = T 0 ¨̃xai + U0 ˙̃x + V 0x̃, (23)

with
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U0 =
⎛

⎝
0(n−m−l)×n

− (Ddd

(
x0
))−1 ∂d

∂ẋ

∣
∣
∣
∣
0

⎞

⎠ ,

V 0 =

⎛

⎜
⎜
⎝

0(n−m−l)×n

− (Ddd

(
x0
))−1

⎛

⎝
∂
(
D (x) ẍ0

)

∂x

∣
∣
∣
∣
∣
∣
0

+ ∂d

∂x

∣
∣
∣
∣
0

⎞

⎠

⎞

⎟
⎟
⎠ .

(24)

Moreover, one resorts to Eq. (17) to write the set ˙̃xdd as

˙̃xdd = T 0
dd

˙̃xai + V̄ 0x̃, (25)

where

T 0
dd = −

(
Ddd

(
x0
))−1

Dai

(
x0
)
, V̄ 0 = −

(
Ddd

(
x0
))−1 ∂

(
D (x) ẋ0

)

∂x

∣
∣
∣
∣
∣
∣
0

.

(26)
The following velocity relation is obtained using Eq. (25):

˙̃x = T 0 ˙̃xai + ¯̄V 0x̃, (27)

where ¯̄V 0 =
(

0(n−m−l)×n
V̄ 0

)

. Furthermore, the coordinate partition of Eq. (18)

allows the obtaining of the following expression:

x̃ = Eai x̃ai +Edd x̃dd , (28)

with Eai and Edd given by

Eai =
(

I (n−m−l)
0(m+l)×(n−m−l)

)

, Edd =
(

0(n−m−l)×(m+l)
I (m+l)

)

. (29)

Substituting Eqs. (23), (27) and (28) in Eq. (20), and resorting to Eq. (25), one
obtains the resulting linear ODE system:

m0 ¨̃xai =
(
R0

¯̄V 0 + S0

)
Eai x̃ai +

(
R0

¯̄V 0 + S0

)
Edd x̃dd +R0T 0 ˙̃xai, (30)

˙̃xdd = V̄ 0Eai x̃ai + V̄ 0Edd x̃dd + T 0
dd
˙̃xai, (31)

where
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m0 = T T
0 M

(
x0
)

T 0, R0 = T T
0

(
∂Q

∂ẋ

∣
∣
∣
∣
0
−M

(
x0
)

U0

)

,

S0 = T T
0

⎛

⎝
∂Q

∂x

∣
∣
∣
∣
0
−M

(
x0
)

V 0 −
∂
(
M (x) ẍ0

)

∂x

∣
∣
∣
∣
∣
∣
0

− ∂
(
DT (x)λ0

)

∂x

∣
∣
∣
∣
∣
0

⎞

⎠ .

(32)

Finally, introducing X̃ = ( x̃ai ˙̃xai x̃dd
)T

, the system of equations (30) and (31) is

expressed as ˙̃X = JX̃, with J being the Jacobian matrix:

J =

⎛

⎜
⎜
⎝

0(n−m−l) I (n−m−l) 0(n−m−l)×(m+l)
m−1

0

(
R0

¯̄V 0 + S0

)
Eai m−1

0 R0T 0 m−1
0

(
R0

¯̄V 0 + S0

)
Edd

V̄ 0Eai T 0
dd V̄ 0Edd

⎞

⎟
⎟
⎠ . (33)

Note that J is a square matrix of dimension 2n−m− l = 16.

4 Results and Discussion

Due to the translational nature of the equilibrium solution (13), the Jacobian
matrix of Eq. (33) exhibits time-independent coefficients, expressed in terms of the
parameters of the bicycle benchmark. This allows the performance of the stability
analysis by directly computing its set of eigenvalues. To illustrate the effect of
the steer axis angle and the rear and front tori aspect ratios on the eigenvalues of
the system, a sensitivity analysis will be made. The chart of Fig. 3 shows all the
considered scenarios.

The results of the bicycle benchmark [2] showed that, when the weave speed vw
is reached, the stabilization of the weave mode occurs and the uncontrolled bicycle
becomes stable. Conversely, when the capsize speed vc is achieved, the uncontrolled
bicycle becomes unstable. Therefore, the self-stability range of the bicycle is vw <
v < vc. The inclusion of torus-shaped wheels greatly impacts on this self-stability
velocity range, being highly sensitive to the tori aspect ratios. Figure 4a shows the
influence of the front torus aspect ratio μF for λ = {10◦, 18◦, 30◦}. An increase of
the minor radius of the front tire decreases the width of the stability regions, which
finally fade out. The speeds vw and vc are reduced as μF increases, being more
pronounced the decrease of vc. By contrast, Fig. 4b shows, for the velocity range
0–15 m/s, the stabilizing effect of the rear aspect ratio μR , since the widths of the
stability regions grow as μR rises. As for μF , the change in vc is more significant
than in vw. These results are in agreement with those of Ref. [10], where the finite-
cross-sectional radii of the tires are considered by including an overturning moment
in each of the tires of the benchmark model. When both wheels are modelled with
the same aspect ratio, μR = μF = μ, the destabilizing effect of the front tire
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Eigenvalues
sensitivity
analysis

Influence of rear
torus aspect

ratio μR ∈ [0, 0.2]

Influence of
steer axis tilt

angle λ ∈ [5◦, 40◦]

Influence
of both tori
aspect ratios
μR = μF = μ,

μ ∈ [0, 0.2]

Influence of
front torus
aspect ratio
μF ∈ [0, 0.2]

μF = 0,
λ= {10◦, 18◦, 30◦},
Fig. 4 (b)

μF =μR =μ,
μ= {0; 0:05; 0:1},
Fig. 5 (b)

λ= {10◦; 18◦; 30◦},
Fig. 5 (a)

μR = 0,
λ= {10◦, 18◦, 30◦},
Fig. 4 (a)

Fig. 3 Sensitivity analysis: combinations of the design parameters considered

Fig. 4 Influence of μF and μR on the stability range. (a) Stability regions μF -v, with μR = 0.
(b) Stability regions μR-v, with μF = 0

prevails, being the stability regions of Fig. 5a very similar to those of Fig. 4a. The
size of the stability regions decreases as the steer axis tilt λ increases. Lastly, Fig. 5b
shows the effect of λ, in the range λ ∈ [5◦, 40◦], forμR = μF = μ = {0, 0.05, 0.1}.
In the hoop-shaped wheels case, with μ = 0, the capsize speed vc initially decreases
as λ rises until λ � 17.5◦ and then increases. This tendency of vc can also be seen
for μ = 0.05. The consideration of the toroidal wheels shrinks the stability regions,
as can be seen for μ = 0.05 and μ = 0.1.
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Fig. 5 Influence of μ and λ on the stability range. (a) Stability regions μ-v. (b) Stability regions
λ-v

5 Conclusions

In this work, the stability of a bicycle with toroid-shaped wheels, based on the
benchmark of Meijaard et al. [2], is analysed. The equations of motion of the multi-
body system are linearized resorting to a novel numerical linearization approach,
which exhibits an excellent efficiency with constrained multibody systems of high
complexity. With this approach, the Jacobian matrix is expressed in terms of the
dynamic and geometric parameters of the multibody system. A wide variety of
scenarios (see Fig. 3) is considered in the stability analysis, studying the effect of
the tori aspect ratios and the steer axis tilt on the self-stability of the bicycle. The
obtained results are consistent with those of the literature.

In future work, the multibody model will be extended by adding suspensions and
more realistic models of tires and riders, and the stability analysis of more complex
trajectories will be addressed resorting to the linearization approach here described.

References

1. F.J.W. Whipple, The stability of the motion of a bicycle. Q. J. Pure Appl. Math. 30(120),
312–321 (1899)

2. J.P. Meijaard, J.M. Papadopoulos, A. Ruina, A.L. Schwab, Linearized dynamics equations for
the balance and steer of a bicycle: a benchmark and review. Proc. R. Soc. A Math. Phys. Eng.
Sci. 463(2084), 1955–1982 (2007)

3. P. Basu-Mandal, A. Chatterjee, J.M. Papadopoulos, Hands-free circular motions of a
benchmark bicycle. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2084), 1983–2003 (2007)

4. J.L. Escalona, A.M. Recuero, A bicycle model for education in multibody dynamics and real-
time interactive simulation. Multibody Syst. Dyn. 27(3), 383–402 (2012)



Linear Stability Analysis of a Bicycle Multibody Model with Toroidal Wheels 487

5. J. Xiong, N. Wang, C. Liu, Stability analysis for the Whipple bicycle dynamics. Multibody
Syst. Dyn. 48(3), 311–335 (2020)

6. J.D.G. Kooijman, A.L. Schwab, J.P. Meijaard, Experimental validation of a model of an
uncontrolled bicycle. Multibody Syst. Dyn. 19(1–2), 115–132 (2008)

7. J. Xiong, N. Wang, C. Liu, Bicycle dynamics and its circular solution on a revolution surface.
Acta Mech. Sin. 36(1), 220–233 (2020)

8. A. García-Agúndez, D. García-Vallejo, E. Freire, Linearization approaches for general multi-
body systems validated through stability analysis of a benchmark bicycle model. Nonlinear
Dyn. 103(1), 557–580 (2021)

9. A.L. Schwab, J.P. Meijaard, J.D.G. Kooijman, Some recent developments in bicycle dynamics,
in Proceedings of the 12th World Congress in Mechanism and Machine Science (2007), pp. 1–6

10. R.S. Sharp, On the stability and control of the bicycle. Appl. Mech. Rev. 61(6), 1–24 (2008)
11. J.K. Moore, Human Control of a Bicycle (University of California, Davis, 2012)
12. V.E. Bulsink, A. Doria, D. van de Belt, B. Koopman, The effect of tyre and rider properties on

the stability of a bicycle. Adv. Mech. Eng. 7(12), 1687814015622596 (2015)
13. A. García-Agúndez, D. García-Vallejo, E. Freire, Study of the forward locomotion of a three-

dimensional multibody model of a waveboard by inverse dynamics. Mech. Mach. Theory 149,
103826 (2020)

14. W. Schiehlen, Multibody system dynamics: Roots and perspectives. Multibody Syst. Dyn.
1(2), 149–188 (1997)



Co-Simulation in Mechanical Systems
with Non-linear Components

Evangelos Koutras, Elias Paraskevopoulos, and Sotirios Natsiavas

1 Introduction

Co-simulation or solver coupling has already been applied extensively to various
engineering fields [1, 2]. The basic idea is founded on a decomposition of the global
model into two or more sub-models. The different sub-systems are connected by
coupling variables which are exchanged only at the macro-time (or communica-
tion) points. Between these points, the sub-systems are integrated independently,
using their own solver. Generally, the sub-systems can be coupled by physical
force/torque laws (applied forces/torques) or by algebraic constraint equations
(reaction forces/torques) [3, 4]. Here, solver coupling by applied forces/torques
is considered only. Also, two well-known co-simulation approaches are used.
More specifically, a parallel and a sequential scheme is applied, known as Jacobi
and Gauss-Seidel scheme, respectively. Furthermore, co-simulation approaches
can be sub-divided into explicit, implicit and semi-implicit methods. Finally,
concerning the decomposition of the overall system into sub-systems, three different
possibilities can be distinguished. Namely, force/force, force/displacement and
displacement/displacement decomposition.

In the present work, the attention is focused on starting a systematic investigation
on the effect of non-linearities in the convergence and numerical error behavior of
various co-simulation schemes, which are available in the literature. For this, a two
degree of freedom weakly non-linear system is employed as a model. This system
consists of two oscillators, interconnected by a linear damper and a non-linear
Duffing type spring, involving linear and cubic displacement terms. In addition, the
external forcing possesses a component with frequency close to one of the natural
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frequencies of the linearized model. Despite the fact that the model examined has a
simple structure, the dynamics is sufficiently complex. Moreover, the co-simulation
techniques used can be extended and applied to arbitrary multibody or structural
dynamics systems.

The main emphasis of this study is placed on developing a formulation with
general validity, providing information that will help in starting the process of
revealing global dynamics of non-linear systems, by employing reliable and efficient
co-simulation techniques. In the next section, the example dynamical system is
introduced and an analytical solution is derived by applying the method of multiple
scales. This solution is then used as a guide for the numerical results obtained
by co-simulation. These results illustrate the effectiveness and accuracy of the co-
simulation techniques employed.

2 Example Mechanical Model

The main objective of the present work is to investigate effects caused in a general
co-simulation process, related to the presence of non-linearities, in a systematic
way. The example model selected is shown in Fig. 1. It consists of a two-degree
of freedom oscillator, including an interconnecting spring with a Duffing type non-
linearity. Specifically, the spring force connecting masses m1 and m2 equals k0x +
k̂0x

3, where x is their relative displacement. This model was chosen since it is simple
enough but possesses the main ingredients of a co-simulation model involving non-
linearities. Namely, it has two distinct mechanical components coupled through a
non-linear connection. Moreover, the resulting dynamical system is amenable to
analysis. That is, when the system is weakly non-linear, the method of multiple
scales can be applied for capturing its dynamics in an analytic manner.

The equations of motion of the system examined are first derived and put in the
form of a set of two coupled non-linear ordinary differential equations (ODEs)

M ẍ + C ẋ +Kx + g (x) = F(t) (1)

Fig. 1 Example mechanical model
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with

x =
(
x1

x2

)

,M =
[
m1 0
0 m2

]

, C =
[
c1 + c0 −c0

− c0 c2 + c0

]

,K =
[
k1 + k0 −k0

− k0 k2 + k0

]

g
(
x
) = k̂0(x1 − x2)

3
(

1
− 1

)

, F (t) =
(
F1(t)

F2(t)

)

These equations are first put in a normalized form, by introducing the parameters

ω̂n =
√
kn/mn, ζn = cn/

(
2
√
knmn

)
, n = 0, 1, 2

with m0 = m2. Then, selecting the normalized time and displacement by

τ = ω̂1t, yn (τ ) = xn(t)/xc, n = 1, 2

where xc is a characteristic length, Eq. (1) appears in the normalized form

M̂ÿ + Ĉ ẏ + K̂ y + ĝ
(
y
)
= F̂ (τ ) (2)

for harmonic forcing Fn(t) = F̂ n cos (�t − ϕn), with

M̂ =
[

1 0
0 μ

]

, Ĉ =
[
δ̂1 + δ̂0 −δ̂0

− δ̂0 δ̂2 + δ̂0

]

, ĝ
(
y
)
= κ̂0(y1 − y2)

3
(

1
− 1

)

,

F̂ (τ ) =
(
f̂ 1 cos (ωτ − ϕ1)

f̂ 2 cos (ωτ − ϕ2)

)

μ = m2/m1, ρ = ω̂2/ω̂1, ρ0 = ω̂0/ω̂1, δ = μρ2, δ0 = μρ2
0 , δ̂1 = 2ζ1, δ̂2 = 2μρζ 2

δ̂0 = 2μρ0ζ0, κ̂0 =
(
k̂0/k1

)
x2
c , f̂ 1 = F̂ 1/ (k1xc) , f̂ 2 = μF̂ 2/ (k1xc) , ω = Ω/ω̂1

The study focuses on primary resonance of the first linear mode, that is

ω = ω1 + εσ 1 (3)

where ω1 is the lower natural frequency of the linear system. This makes necessary
an appropriate ordering in the terms appearing in the equations of motion [5]. For
this, set

ε = 2μρ0ζ0, δ̂n = εδn, κ̂0 = εκ0, f̂ n = εfn, n = 1, 2
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Then, the equations of motion appear in the following normalized form

M̂ÿ + K̂ y = εp
(
τ, y, ẏ

)
(4)

with

p
(
τ, y, ẏ

)
=
(
f1 cos (ωτ − ϕ1)− (1+ δ1) ẏ1 + ẏ2 − κ0(y1 − y2)

3

f2 cos (ωτ − ϕ2)+ ẏ1 − (1+ δ2) ẏ2 − κ0(y2 − y1)
3

)

(5)

Next, employ the modal transformation

y (τ) = Y u (τ) (6)

where the 2x2 matrix Y = [y
1
y

2
] is formed by the two linear modes of the system.

Then, using the appropriate orthonormality conditions, Eq. (4) takes the form

ü+Λu = ε
[
h0 (τ )+ h

(
y, ẏ

)]
(7)

with

h0 (τ ) = YT
(
f1 cos (ωτ − ϕ1)

f2 cos (ωτ − ϕ2)

)

≡
(
ξ̂1 cos (ωτ + θ1)

ξ̂2 cos (ωτ + θ2)

)

(8)

and

h
(
y, ẏ

)
= YT

( − (1+ δ1) ẏ1 + ẏ2 − κ0(y1 − y2)
3

+ ẏ1 − (1+ δ2) ẏ2 − κ0(y2 − y1)
3

)

≡
(
α11u̇1 + α12u̇2 + γ11u

3
1 + γ12u

2
1u2 + γ13u1u

2
2 + γ14u

3
2

α21u̇1 + α22u̇2 + γ21u
3
1 + γ22u

2
1u2 + γ23u1u

2
2 + γ24u

3
2

)

(9)

The values of the constants ξ̂ i , θ i, αij (i, j= 1, 2) and γ ij (i, j= 1− 4) in Eqs. (8)
and (9) are easily determined with respect to the system parameters defined before
[5]. Then, for small values of the parameter ε, application of the method of multiple
time scales provides approximate analytical solutions with asymptotic form

u (τ ; ε) = u0 (τ0, τ1)+O (ε) (10)

where τ 0 = τ is the fast time scale and τ 1 = ετ is the slow time scale of the system
examined. Specifically, this solution is obtained in the form

u0 (τ0, τ1) =
(
a1 (τ1) cos (ωτ 0 + θ1 − γ1 (τ1))

a2 (τ1) cos
(
ω̂τ0 − γ2 (τ1)

)

)

(11)

with γ 1 = σ 1τ 1 + θ1 − ϕ1, γ2 = σ̂ 2τ1 − ϕ2 and ω̂ = ω2 + εσ̂ 2. For the resonance
considered, the amplitudes and phases satisfy the following set of slow flow ODEs



Co-Simulation in Mechanical Systems with Non-linear Components 493

a′1 = c1a1 + c4 sin γ1, a1γ
′
1 = σ1a1 + c5a

3
1 + c6a1a

2
2 + c4 cos γ1, (12)

a′2 = e1a2, a2γ
′
2 = σ̂ 2a2 + e5a

2
1a2 + e6a

2
1a2 (13)

Among all the possible solutions of these equations, constant solutions, with

a′1 = γ ′1 = a′2 = γ ′2 = 0 (14)

possess a prominent place. The last conditions lead immediately to α2 = 0, which
corresponds to motions involving the directly excited mode only, with amplitude
and phase determined by the modulation equations

a′1 = c1a1 + c4 sin γ1, (15)

a1γ
′
1 = σ1a1 + c5a

3
1 + c4 cos γ1 (16)

These equations have identical structure with the modulation equations obtained
for the single degree of freedom Duffing oscillator [5]. Based on Eqs. (6), (10) and
(11), constant solutions correspond to harmonic response of the original system,
with

y (τ) = a1 cos (ωτ 0 + θ1 − γ1) y1
(17)

Finally, the stability properties of these solutions can also be determined [5].

3 Description of the co-Simulation Method

In this work, the example mechanical system shown in Fig. 1 is examined [5, 6].
The basic idea of co-simulation consists in a decomposition of the overall system
into two (or more) sub-systems, which are connected through appropriate coupling
variables. Communication of sub-systems takes places at pre-defined time points. In
the meanwhile, they are integrated independently from each other using their own
solver.

A separate sub-system is responsible for the proper communication between
the sub-systems, called master (or orchestrator). The way this is accomplished
is through appropriate (based on decomposition approach) coupling conditions
Gj (j= 1, . . . , k) that need to be satisfied at the macro-time points. Specifically, solv-
ing from TN to TN + 1, master initially provides sub-systems with input (coupling)
variables U i (i = 1, . . . , n). The sub-systems are then responsible for solving
from TN to TN + 1 using their own solver. As a next step, the orchestrator collects
the output variables Y i of the submodels at communication point TN + 1. Based
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Fig. 2 Co-simulation procedure

on these variables and the coupling conditions, improved predictions for the input
variables are provided to the sub-systems (Fig. 2).

Co-simulation approaches can be subdivided into explicit, implicit and semi-
implicit methods. Using an implicit approach, the methodology explained previ-
ously is accomplished through a predictor-corrector approach until the coupling
conditions are fully satisfied. Using a semi-implicit approach, the corrector step
has to be repeated only once. As a consequence, solver re-initialization is necessary
in both cases. On the contrary, in explicit methods, only matching of the coupling
variables takes place based on the coupling conditions and the simulation proceeds
on to the next macro-time step H.

Regarding implicit and semi-implicit methods, the core idea is to formulate the
Newton method at the interface level to find corrected coupling variables [3, 7]. By
collecting the vector of input and output variables and the residuals’ vector

U =
⎛

⎜
⎝

U1
...

Un

⎞

⎟
⎠ , Y =

⎛

⎜
⎝

Y 1
...

Y n

⎞

⎟
⎠ , R =

⎛

⎜
⎝

G1
(
U, Y

)

...

Gk
(
U, Y

)

⎞

⎟
⎠ (18)

the corrected coupling variables can be calculated by solving the linear system

∂G

∂U
ΔU = −R,ΔU = Um+1 − Um (19)

For the predictor part, extrapolation of coupling variables based on previous
converged values takes place during initialization of a macro-time step H. Constant,
linear and quadratic Lagrange polynomials can be used. For the decomposition of
the global model into sub-models, three different techniques can be used. Namely,
force-force, force-displacement and displacement-displacement approaches.
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3.1 Force-Force Decomposition

In this case, both sub-systems are force-driven single-mass oscillators, excited by
the coupling force λ̃, as shown in Fig. 3. The input variable U1,2 = λ̃ is given by

G = λ̃− c0 (u2 − u1)− k0 (x2 − x1)− k̂0(x2 − x1)
3 (20)

3.2 Force-Displacement Decomposition

In this approach, the first sub-system is excited by the coupling force λ̃, while the
second is a base-point excited single-mass oscillator, as shown in Fig. 4. The input
variables

U1 = λ̃, U2 =
(
x̃1

ũ1

)

(21)

Fig. 3 Force-force decomposition

Fig. 4 Force-displacement decomposition
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are given by the coupling conditions

G =
⎛

⎝
λ̃− c0 (u2 − u1)− k0 (x2 − x1)− k̂0(x2 − x1)

3

x̃1 − x1

ũ1 − u1

⎞

⎠ (22)

3.3 Displacement-Displacement

In a displacement-displacement decomposition approach, both sub-systems are
base-point excited single-mass oscillators, as depicted in Fig. 5. The input variables

U1 =
(
x̃2

ũ2

)

, U2 =
(
x̃1

ũ1

)

(23)

are given by the coupling conditions

G =

⎛

⎜
⎜
⎝

x̃1 − x1

ũ1 − u1

x̃2 − x2

ũ2 − u2

⎞

⎟
⎟
⎠ (24)

Communication between sub-systems at macro-time points is necessary. As a
consequence, the choice of the way that the information is exchanged between the
different models is another important property of the co-simulation method. There
are mainly two possibilities, which correspond to a parallel (Jacobi) and a serial
(Gauss-Seidel) data exchange, as their properties are similar to the linear iterative
solvers.

In the Jacobi pattern, each sub-system integrates its own dynamics in parallel
and independently, as shown in Fig. 6(a). Hence, there is no data flow dependency
within the time step and also no need for sub-models to wait each other. The
disadvantage of this communication pattern lies in its accuracy which is usually

Fig. 5 Displacement-displacement decomposition
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Fig. 6 Jacobi (a) and Gauss-Seidel (b) communication patterns

worse in comparison with Gauss-Seidel, due to extrapolation of coupling variables
in both sub-systems.

In the Gauss-Seidel approach, the coupled sub-systems integrate their own
dynamics sequentially, as depicted in Fig. 6(b). The advantage of this pattern
is its higher accuracy compared with the Jacobi pattern due to the fact that a
better prediction for the coupling variables is provided to the second sub-system
through interpolation. However, the different sub-systems need to wait each other
resulting in a higher computational cost. Furthermore, as the number of sub-systems
increases, this drawback gets even worse.

4 Numerical Results and Discussion

Initially, emphasis was placed on activating the non-linear behaviour of the oscilla-
tor through proper selection of the system parameters. Using their numerical values,

μ=0.5, ζ0=0.1, ζ1=0.01=ζ2, ρ=1.8, ρ0 = 0.6, ε = 0.06, κ0 = 1/3, f̂ 1 = 0.55

led to the results of Fig. 7. Two regions are of interest, one near σ 1 = 0 and the other
around σ 1 = 4. In this work, the focus was placed on the first of these two regions.

As usual, multiple solutions exist within a frequency range in Fig. 7. Con-
sequently, a pure numerical solution would be dangerous to use. However, the
non-linear analysis described previously revealed approximate analytical solutions
of the system examined which were then used as a basis for producing accurate
co-simulation results.

To examine the convergence behaviour of the co-simulation schemes, a proper
measure of the global error was first established. The error at each macro-time point
was set as

εp(t) = xcs(t)− xref (t), εv(t) = ẋcs(t)− ẋref (t)
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Fig. 7 Normalized displacement amplitude for linear and non-linear system

where a numerical solution of Eq. (1) is used as reference. Then, the global error in
the position and the velocity is calculated by taking the RMS value of the quantities

εpos(t) =
√
εTpMεp, εvel(t) =

√

εTv Mεv

Figure 8 shows the position and velocity error for the Jacobi pattern and
force-force decomposition of the system. A comparison of the explicit (constant
extrapolation) and implicit co-simulation approach reveals that the latter provides
more accurate results, due to its iterative nature. Also, for the same system param-
eters, use of the Gauss-Seidel pattern and/or different decomposition approaches
leads to quite similar behaviour.

In Fig. 9, the convergence behaviour of Jacobi and Gauss-Seidel patterns is
under investigation. The decomposition of the global system is displacement-
displacement, while an explicit co-simulation approach is used. The extracted
results are in agreement with the theoretical background. Specifically, the Gauss-
Seidel pattern provides more accurate results due to its sequential nature. Similar
results are also observed for the cases of force-force and force-displacement
decomposition of the overall system.

Finally, a detailed analysis of the convergence behaviour of explicit co-simulation
approaches for different extrapolation orders is carried out, as depicted in Fig. 10.
For higher approximation orders, the accuracy is improved which usually comes
with the drawback of reduced stability. In this case, a Jacobi communication pattern
and a force-force decomposition is used, while the corresponding results using a
Gauss-Seidel pattern and/or different decomposition types show a similar behaviour.
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Fig. 8 Convergence plots for Jacobi communication pattern and force-force decomposition
(constant extrapolation)

Fig. 9 Convergence plots for explicit communication approach and displacement-displacement
decomposition (constant extrapolation)

5 Synopsis and Future Work

A co-simulation approach has been developed and applied to a (weakly) non-linear
system. A detailed analysis of the convergence behaviour has also been carried
out. Four different categories were examined, namely communication pattern,
decomposition type, extrapolation order and numerical scheme (implicit/explicit).
The main emphasis was placed on the accuracy of the schemes. However, a detailed
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Fig. 10 Convergence plots for Jacobi communication pattern and force-force decomposition

analysis of the stability behaviour must be carried out in order to create a complete
picture. Finally, the new approach will be applied to complex mechanical problems
[2], in order to demonstrate its effectiveness to arbitrary multibody or structural
dynamics systems.
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A Novel Time-Stepping Method for
Multibody Systems with Frictional
Impacts

Sotirios Natsiavas, Panagiotis Passas, and Elias Paraskevopoulos

1 Introduction

Dynamics of mechanical systems with impact and friction is a challenging research
topic [1]. The strongly nonlinear and numerically stiff nature of the equations of
motion necessitates application of special techniques. In engineering, numerical
integration techniques were developed along two main avenues. First, a large group
of publications focused on models arising by application of the finite element
method to elastodynamic problems [2, 3]. Also, a lot of research was devoted to
multibody systems [4, 5]. A combination of the methods developed in both of these
areas is needed in solving complex engineering problems, like in the discipline of
flexible multibody dynamics.

In this study, the attention focused on developing an efficient time-stepping
method for the integration of the equations of motion of multibody systems subject
to a single unilateral and a set of bilateral motion constraints. This was achieved by
seeking a better modeling of the dynamics process. First, a consistent application
of Newton’s law is performed in both the impact-free and the impact phases, using
concepts of Analytical Dynamics [6, 7]. Moreover, once a potential impact event
is detected, an appropriate return map is applied, bringing the state of the system
back to the allowable domain [8]. This avoids interpenetration and provides the
preimpact conditions. Then, the postimpact state of a system involving frictional
impacts is determined by solving a system of three ODEs (Ordinary Differential
Equations) only, obtained through a suitable change of coordinates [7]. In this way,
the problem of numerical stiffness, which is inherent to impact problems and is
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related to the large difference in the timescales associated with the dynamics during
the free and the impact phase of the motion, is handled in an efficient manner.

Here, the methodology presented in [6] is extended to systems involving a
unilateral constraint. The presence of a unilateral constraint, arising from an impact
or a friction event (like slip or stick), causes additional difficulties [9, 10]. In essence,
the relatively small duration of an impact event induces severe numerical stiffness in
the equations of motion. Due to these inherent difficulties, an accurate and efficient
numerical integration requires development of special techniques. Here, this is
achieved by developing an appropriate time-stepping scheme, involving a return
map, which is activated when an impact event is detected. The idea of a return map
is similar to that applied earlier to other problems of mechanics [11, 12]. Here, a
large modification is necessary since the configuration space is non-Euclidean [8,
13]. In addition, following the detection of an impact, the equations of motion are
transformed into a set of three equations, evolving over a much smaller timescale
than the others, which are solved separately, until the end of the impact event. This
is based on theory presented in earlier work [7] and is a key to overcome numerical
stiffness problems in an efficient manner.

The material of this paper is organized as follows. First, the governing equations
of motion are presented briefly in Sec. 2. Next, the basic ingredients of the new
numerical integration scheme, including the incorporation of a suitable return
mapping, are presented in Sec. 3. Selected numerical results are then presented in
Sec. 4.

2 Equations of Motion

The configuration of the class of systems examined is described by a set of
generalized coordinates, q = (q1, . . . , qn). Their motion is represented by a
point p, moving along the configuration manifold M as a function of time t [14].
The generalized velocity v belongs to a vector space TpM. Using the summation
convention on repeated indices, v = vI e I , with I = 1, . . . , n, where Be ={
e 1 . . . e n

}
is a basis of TpM. Employing the duality pairing ˜u

∗ (w
) ≡ 〈

u,w
〉
,

∀w ∈ TpM , where 〈·, ·〉 is the inner product of TpM selected based on the
kinetic energy of the system, the elements of the cotangent space T ∗pM represent
generalized momenta. These elements can be expressed in the form ˜u

∗
M = uI ˜e

I ,
with respect to a dual basis B∗

e =
{

˜e
1 . . . ˜e

n
}
.

When there are no motion constraints, the solution is determined by Newton’s
law

˜h
∗
M ≡ ∇v ˜

p∗M − ˜
f ∗M = 0∼. (1)

Covectors
˜
f ∗M = fI ˜e

I and
˜
p∗M = pI ˜e

I represent applied forces and generalized
momenta, respectively, with pI = gIJ vJ , where gIJ represent the components
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of the metric tensor at point p. Also, the covariant differential of covector
˜
p∗M ,

corresponding to tangent vector v, takes the form ∇v ˜
p∗(t) = (ṗI −ΛKJIpKvJ

)

˜e
I ,

with I, J, K = 1, . . . , n, where the quantities ΛKIJ are known as affinities [15].
The presence of a contact event is signaled by an inequality

ρ(p) ≥ 0 (2)

This establishes a new n-dimensional manifold X = {p ∈ M | ρ(p) ≥ 0}, so that
the motion of point p is restricted to one side of a hypersurface ∂X of M, defined
by ρ = 0 and known as the boundary of X. This makes possible the application of
results from the theory of manifolds with a boundary [16]. First, among all smooth
vector fields on X, only those tangent to ∂X are allowable. Moreover, the metric and
the connection (affinities) are virtually unaffected at points away from the boundary,
but they are affected significantly at points near the boundary [7].

The presence of equality motion constraints is expressed in the general form.

ψ̇
R ≡ aRI (q)vI = 0, I = 1, . . . , n and R = 1, . . . , k. (3)

When a constraint is holonomic, the corresponding equation becomes φR(q)= 0.
Then, the equations of motion are obtained by

˜h
∗ ≡ ˜h

∗
M − ˜h

∗
C = ˜0, (4)

in place of Eq. (1), where.

˜h
∗
C =

∑k

R=1
hRa

R
I ˜e

I with hR = (mRRλ̇R)
· + cRRλ̇R + kRRλR − f R. (5)

The convention on repeated indices does not apply to index R, while the
quantities mRR , cRR , kRR , and f R are determined by the constraints (for details,
see [17]). Also,

˜h
∗
M = hI ˜e

I with hI = (gIJ vJ )· −ΛKLIgK J vJ vL − fI (6)

Finally, substitution of Eqs. (5) and (6) into (4) leads to a set of n second-order ODEs
in the n + k unknowns qI

′
and λR. The formulation is completed after including the

k equations of the constraints (3), which are also put eventually in a second-order
ODE form, providing a natural stabilization effect on the constraints. Namely,

gR = (mRRψ̇R)
· + cRRψ̇R = 0 or gR = (mRRφ̇R)

· + cRRφ̇R + kRRφR = 0,
(7)

for a nonholonomic and a holonomic constraint, respectively [17].
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In the absence of significant friction effects, the dominant dynamics during the
contact phase is captured by a single ODE with form

(g11v
1)
· −Λ1

11g11v
1v1 − f 1 = 0, (8)

along the direction of a special coordinate x1, starting from the boundary, with a
direction normal to it [7]. All terms in Eq. (8) are of order O(1/x1), while the
terms in the remaining equations of motion are O(1). This separation of scales in
the equations of motion is exploited to avoid stiffness problems during numerical
integration. Finally, the introduction of friction effects causes the appearance of two
more equations.

(g22v
2)
· − f 2 = 0 and (g33v

3)
· − f 3 = 0, (9)

representing action along the tangential directions of the physical space. Then,
Eqs. (8) and (9) constitute a set of three coupled ODEs (Ordinary Differential
Equations), capturing the dominant dynamic behavior, which is confined in the
three-dimensional cotangent distribution in the configuration space affected by the
contact action [7].

3 Numerical Integration of the Equations of Motion

The presence of strongly nonlinear terms in the equations of motion and the numer-
ical stiffness in these equations necessitate application of a numerical integration
method. In this work, a new time-stepping method is developed, which is set up
in a way to avoid them. The basic steps of this numerical procedure are briefly
summarized next.

In the absence of impact and friction, a three-field augmented Lagrangian
formulation is available [6]. The process starts by putting the equations of motion
in a suitable weak form, leading to an efficient temporal discretization. When an
impact is detected, some modifications are in order. Figure 1 is used to illustrate the
scenario followed in such a case. Specifically, at time tm, the system configuration
in the physical space is represented by a point pm, which lies in the interior Xo of the

Fig. 1 Illustration of the total
action of the return map
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constrained configuration manifold X. At the next time tm + 1, the new configuration
point pm + 1 is located outside X, indicating that an impact event may have occurred
during the current time step. In practice, this is verified by using a suitable contact
detection algorithm, which determines both the location of the contact point and the
normal contact direction in the physical space [18]. The next step is to return to a
point on the boundary ∂X, representing the configuration of the system where the
impact event took place. This is achieved through the development and application
of an appropriate return mapping (for details, see [6]). Similar maps have also been
constructed in other situations [11, 12]. In this work, this step is performed with
more care, by taking into account that the configuration manifold M is nonflat [13],
in general, as explained briefly next.

The boundary ∂X is locally convex. Then, the task of returning from pm + 1
back to a point on the boundary ∂X in a unique way is reduced to finding the
autoparallel starting from point pm + 1 and ending on ∂X, having the shortest length.
The iterations are stopped when the final point of this process, say p−m+1, is located
inside X and sufficiently close to the boundary ∂X. Symbolically, these can be
represented by

p−m+1 = P (pm+1) . (10)

The overall equations of motion are solved in a block-wise manner. This means
that, assuming a fixed position, the system’s velocity is calculated, followed by an
update to the positions. If the updated positions lead the system’s position outside
the boundary, an iteration of the return map procedure takes place, driving the
position back to the boundary. This is repeated until both the overall residual and
the returned positions converge. The final point p−m+1 lies inside the constrained
configuration manifold X, sufficiently close to the boundary ∂X. This result provides
the updated values at the position level and the equations of motion are solved
to provide the corresponding velocity vector v−m+1. If this vector points toward
the interior Xo of the constrained manifold, the solution process continues without
considering occurrence of an impact. However, if vector v−m+1 points toward the
boundary ∂X of the constrained manifold, its value is used as a preimpact velocity
and the solution process is continued in the next step, which leads to determination
of the postimpact state, say (p+m+1, v

+
m+1).

The equations of motion within the boundary layer are first put in a weak
form. For their numerical discretization, special curves are selected to approximate
the natural trajectory near the boundary of manifold X. The first natural choice
is the autoparallel curves [15]. However, using such curves for the geometric
discretization of the natural trajectory inside the boundary layer leads to numerical
problems since the value of v1 takes relatively small values. Consequently, such
curves tend to become tangent and stay close to the boundary ∂X. For this reason,
a higher order set of curves on X is considered, giving rise to a geometric cubic
spline on manifold X in the vicinity of the boundary ∂X [19]. The numerical
integration advances up until the value of x1

m+1 becomes equal to the value of the
boundary layer width b. At that point, the velocity of the system is first transformed
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from the x-coordinate system, which was employed for performing the evaluations
within the boundary layer, back to the original q-coordinate system. In addition, the
position of the system is assumed to remain virtually equal to the preimpact position
q−
m+1

. Using these values as initial conditions, the numerical integration continues
according to the process described for impact-free motions.

4 Numerical Results

A set of numerical results is presented next, illustrating the accuracy and effec-
tiveness of the new methodology, applied to systems with rigid members. First,
dynamics of the classical problem of a ball bouncing on a rigid plane is considered.
Next, a more involved problem, considering impact dynamics of a die with a rigid
ground, is examined.

4.1 Bouncing Sphere

The first example is a rigid sphere of unit mass and radius r= 0.1 m, bouncing on a
rigid plane. The sphere motion starts with a zero initial velocity when its center is
located at a height h = 0.5 m, under the action of gravity, with gravity acceleration
g = −9.81 m/s2. The position of its center is determined by a single Cartesian
coordinate, χ1, having its origin on the ground. For this case, an analytical solution
is available for both the impact-free phase and the impact phase.

Some typical results are presented in Fig. 2, obtained by employing the new time-
stepping scheme. First, Fig. 2a shows the histories of the vertical displacement of the
lowest point of the sphere, for two values of the kinematic coefficient of restitution
e. Likewise, Fig. 2b depicts the histories of the corresponding mechanical energies.
As expected, there is no energy dissipation for the value e = 1, corresponding to
an elastic impact and leading to an infinite number of contact events. However, this
picture changes for e = 0.8, leading to a gradual loss of mechanical energy at each
impact. This is demonstrated by Fig. 2b and is reflected by the decreasing amplitude
of the displacement in Fig. 2a.

The results of Fig. 2 were compared and found to be in virtual coincidence
with the results from the exact solution, in both the free and the impact phases.
For example, Fig. 3 presents results determined during the first impact phase. These
results were obtained for a value of a maximum penetration ratio δ = 0.8. In general,
the values of the parameters δ and e are needed in order to determine the force
f 1 in Eq. (8). First, Fig. 3a shows histories of the vertical displacement of the
sphere, while Fig. 3b depicts the corresponding histories of the vertical velocity,
determined for e = 1. The results obtained reveal that application of the new
numerical discretization procedure leads to a virtual coincidence with the analytical
solution by using a relatively small number of time steps. More specifically, this was
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Fig. 2 A sphere bouncing on a rigid ground: (a) vertical displacement and (b) mechanical energy,
for e = 1 and 0.8

Fig. 3 Histories obtained during the first impact phase by the analytical solution, the new
geometric method and the HHT- α method for (a) the vertical displacement and (b) the vertical
velocity of the sphere, with e = 1

achieved by using only two time steps in the case examined. Next, the emphasis
was put on a comparison with classical integration methods. In particular, results
obtained by employing the HHT- α method are presented next. Several values of
the numerical dissipation parameter α were tried, in the range 0 ≤ α ≤ 1/3, with
β = (1 + α)2/4 and γ = α + 1/2. The results presented next were obtained for
α = 0, but no noticeable differences were detected for other values of α. First, it was
found that the impact phase interval should be split to at least seven steps, before
the HHT- α method can run and yield a solution. Also, quite a large number of time
steps are required in order for the numerical results to be of a reasonable accuracy.
This comparison illustrates that the new integration method is more effective, since
it leads to the exact solution with a much bigger time step. This, instead, is attributed
to the fact that the new method exploits the geometric properties of the system
examined during its dynamic evolution in the impact phase.

4.2 Die Tossing

The next set of numerical results was obtained for the motion of a die thrown over
a rigid ground. This motion is viewed from a coordinate system Oxyz, which is
fixed on the ground. It is affected by gravity, acting along the negative z-axis and
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Fig. 4 Plane die tossing. Projection of the trajectory of the cube center on: (a) the vertical Ozx and
(b) the horizontal plane Oxy. Histories of (c) the velocity components of the mass center and (d)
the angular velocity of the cube

involves frictional impacts. The die considered is a homogeneous rigid cube, with
a mass of 0.016 kg and edge length of 0.02 m. It starts from a position above the
ground, with the cube edges parallel to the axes of the Oxyz coordinate system.
Moreover, the initial position and velocity are chosen to satisfy two scenarios. In the
first, the cube executes a planar motion, taking place in the vertical plane Ozx. In the
second scenario, the initial conditions are modified so that the cube exhibits a spatial
motion and hits the ground with one of its vertices. In all cases, the value of the
kinematic restitution parameter was chosen as e= 0.5 [20]. Moreover, the maximum
penetration ratio was selected as δ = 0.20, while the value of the coefficient of
friction between the die and the ground was chosen as μ = 0.05 or 0.20.

First, in the results presented in Fig. 4, the initial position of the cube center
is at (0, 0, 0.3) m, while its initial velocity is (0.5, 0, −0.5) m/s. Moreover, the
initial angular velocity of the cube is (0, 10, 0) rad/s. These initial conditions lead
to a subsequent planar motion of the cube. First, Fig. 4a shows the projection
of the trajectory executed by the cube center of mass on the vertical plane Ozx
for the values selected for μ. Likewise, Fig. 4b shows the projection of the same
trajectory on the horizontal plane Oxy. Then, the histories of the two nonzero
velocity components of the mass center are shown in Fig. 4c. Finally, the history
of angular velocity of the cube is presented in Fig. 4d. A remarkable result is that,
for the case with μ = 0.20, the cube starts moving in the opposite direction than it
was thrown after the first impact, as it becomes clear by Figs. 4a and c.

Next, in the set of results presented in Fig. 5, the initial position of the cube
center and its initial velocity are kept the same as in the previous case. However,
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Fig. 5 Spatial die tossing. Projection of the trajectory of the cube center on (a) the vertical plane
Ozx and (b) the horizontal plane Oxy

an angular velocity component about the x-axis is added, so that the initial cube
angular velocity is (10, 10, 0) rad/s. These initial conditions lead to a general spatial
motion of the cube. First, Fig. 5a shows the projection of the trajectory executed by
the cube center of mass on plane Ozx for the two values selected for the coefficient
of friction. Likewise, Fig. 5b shows the projection of the same trajectory on plane
Oxy.

Finally, the emphasis was placed on investigating the dynamics of the cube
arising during the first impact phase. Specifically, the history of the tangential
velocity component Vx of the cube contact point is presented in Fig. 6a, while the
corresponding histories of the tangential velocity Vy and the normal velocity Vz

are included in Fig. 6b, for the plane motion of the die. Similar results were also
obtained for the spatial motion of the die. In all cases examined, a smooth change is
observed to occur in the velocity components throughout the impact phase.

5 Synopsis and Extensions

In the first part of this study, the basic steps of a new time stepping scheme were
presented, for capturing dynamics of multibody systems involving impacts and
friction. A vital part of that scheme was the development of a new return map.
This need arises from the fact that the configuration space of the class of systems
examined is non-Euclidean. Specifically, application of this map in order to return
a point from the outside to the boundary of the constrained manifold, defined by a
unilateral constraint, leads to a curve with the shortest length among a special set of
curves emanating from the outer point. In addition, the final curve selected crosses
the boundary of the allowable motions in a normal way. In this way, the new return
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Fig. 6 Velocity components of the cube contact point during the first impact phase: (a) tangential
component Vx (plane motion), (b) tangential component Vy and normal component Vz (plane
motion)

map is a generalization of the classical orthogonal projection operation performed in
Euclidean spaces. Based on these ideas, a complete numerical algorithm was set up,
providing the means to capture dynamics of multibody systems involving a single
impact and several bilateral constraints. Finally, the accuracy and effectiveness of
the new time stepping scheme were verified in the second part of this work, by
presenting numerical results for two representative mechanical examples.

The methodology developed can be applied to discrete mechanical systems
subject to a set of bilateral motion constraints and a single unilateral constraint.
A first possible step is to extend it in order to cover cases involving permanent
contact. In such cases, the contact is modeled as a bilateral constraint up to a
point where separation of the contacting bodies occurs. Another useful extension
of this study is to cases with multiple impacts. This is a theoretically challenging
subject, involving consideration of configuration manifolds with corners, having a
significant engineering importance [5, 16].
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A Generalized Spring-Loaded Inverted
Pendulum Model for Legged Robots

Guangrong Chen, Sheng Guo, Bowen Hou, Junzheng Wang, and
Huafeng Lu

1 Introduction

Spring-loaded inverted pendulum (SLIP) model has been verified to be an effective
model to simulate the locomotion of legged robots [1], including walking and
running [2] and bipeds and quadrupeds [3].

Unfortunately, the analytical solutions of SLIP model are difficult to obtain
since there exist some coupling terms or nonlinear stance equations. Schwind and
Koditschek proposed Picard iterative method to generate closed-form approxima-
tions to the return map associated with a family of non-integrable Hamiltonian
systems [4]. Geyer et al. derived an approximate solution in elementary functions
assuming a small angular sweep and a small spring compression during stance [5].
Arslan et al. introduced a novel gravity correction scheme that extends on one
of the more recent analytic approximations to the SLIP dynamics and achieves
good accuracy even for highly non-symmetric trajectories [6]. Yu et al. presented
a novel method of perturbation to obtain the analytic approximate solution to the
SLIP dynamics in stance phase with considering the effect of gravity from sagittal
hopping [7] into spatially running [1].

However, the classical SLIP model only considers the axial force along the
equivalent leg. This disadvantage limits the potential of SLIP when it is employed
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to do the locomotion control for legged robots even though it is simple. Therefore,
an improved SLIP model considering both axial and tangential forces along the
equivalent leg should be issued to tap the potential of modified SLIP model.

2 Generalized SLIP Model

2.1 SLIP Model

The classical SLIP model is shown in Fig. 1a. The mathematical model of SLIP
model contains flight and stance phases, as shown in Fig. 1b.

The dynamics of flight phase of SLIP model can be simplified as

{
ẍ = 0
z̈ = −g (1)

where x and z are the horizontal and vertical position of CoM of SLIP model,
respectively, and g is the acceleration of gravity.

The dynamics of stance phase of SLIP model can be expressed as

{
α̈ = g sinα−2ρ̇α̇

ρ

ρ̈ = ρα̇2 − g cosα − k
m
(ρ − ρ0)

(2)

where α is the angle between the leg and the vertical direction, ρ is the leg length,
m is the mass of load, and k is the stiffness of spring.

As shown in Fig. 1a, the equivalent system of classical SLIP model is constructed
between the point of hip joint (H) and the foot end effector (E). However, the actual
spring is configured between the point of ankle joint (A) and point E, as shown
in Fig. 2a. There exists an inconsistence in the direction of spring between the

Fig. 1 The SLIP model and its flight and stance phases. (a) The classical SLIP model. (b) The
flight and stance phases of SLIP model
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Fig. 2 The equivalent systems of classical and articulated/generalized SLIP models. (a) The
equivalent system of classical SLIP. (b) The equivalent system of articulated/generalized SLIP

Fig. 3 The proposed GSLIP
model 1F

mg

( )r t

( )l t

( )tθ

( )tα

( )tρ A

E

H

equivalent and actual springs. Thus, the equivalent system of articulated/generalized
SLIP is proposed to handle this problem. The GSLIP model is shown in Fig. 2b.

Based on the SLIP model in Fig. 1a and its mathematical model in (1) and (2),
the proposed GSLIP model can be shown in Fig. 3, where r(t) is the length of link
HA, l(t) is the length of spring or AE, ρ(t) is the length of HE or the equivalent leg
length, θ(t) is the joint angle � HAE, α(t) is the contact angle of GSLIP model,mg
is the gravity of load, and Fl is the axial force of load along HE.
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Since the dynamics of flight phase of GSLIP model is the same as that of SLIP
model, it can also be written as (1). As for the dynamics of stance phase of GSLIP
model, it can be reformulated as

⎧
⎪⎨

⎪⎩

α̈ = g sinα−2ρ̇α̇
ρ

ρ̈ = ρα̇2 − g cosα − k
m

ρ
(
r cos θ+

√
ρ2−r2sin2θ−l0

)

√
ρ2−r2sin2θ

(3)

Compare (3) with (2), the main difference is the second equation, which mainly
reflects the differential equation of axial length.

2.2 Normalization

Defining the time scale as s, the dimensionless time t̄ and the actual time t under the
time scale s satisfy t = st̄ . Under the definition, the differential operation d

dt
(•) can

be represented as d
dt
(•) = 1

s
d
dt̄
(•) = 1

s
(•)′, where (•)′ is the differential operation

under the new time scale s. Through this definition, the dimensionless form of the
parameters in (3) can be written as follows:

ρ = ρ0ρ̄, ρ̇ = ρ0ρ̄
′

s
, ρ̈ = ρ0ρ̄

′′
s2

r = r0r̄, ṙ = r0 r̄
′
s
, r̈ = r0 r̄

′′
s2

α = ᾱ, α̇ = ᾱ′
s
, α̈ = ᾱ′′

s2

θ = θ̄ , θ̇ = θ̄ ′
s
, θ̈ = θ̄ ′′

s2

(4)

where •̄ is the dimensionless form of •, and •̄′ and •̄′′ are the dimensionless
derivative and the second derivative of •̄, respectively.

The choice of time scale s directly affects the simplicity of GSLIP model in
dimensionless form. Therefore, based on the Froude constant used by Alexander

[8], the time scale is set as s =
√
ρ0
g

. Substituting (4) into (3), it yields

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ̄ᾱ′′ + 2ρ̄′ᾱ′ − sin ᾱ = 0

ρ̄′′ = ρ̄ᾱ′2 − cos ᾱ − kρ0
mg

ρ̄

(
r0
ρ0
r̄ cos θ+

√

ρ̄2−
(
r0
ρ0

)2
r̄2sin2θ− l0

ρ0

)

√

ρ̄2−
(
r0
ρ0

)2
r̄2sin2θ

(5)

Define the dimensionless stiffness of spring of leg as k̄ = kρ0
mg

, and define the

ratio of leg length as η = r0
ρ0

. Based on the geometric relationships, it yields
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l0

ρ0
= η cos θ +

√

1− η2sin2θ (6)

Substituting (6) into (5), it yields

⎧
⎨

⎩

ρ̄ᾱ′′ + 2ρ̄′ᾱ′ − sin ᾱ = 0

ρ̄′′ = ρ̄ᾱ′2 − cos ᾱ − k̄ ρ̄
(
ηr̄ cos θ+

√
ρ̄2−η2 r̄2sin2θ−η cos θ−

√
1−η2sin2θ

)

√
ρ̄2−η2 r̄2sin2θ

(7)

3 Approximate Analytic Solutions to GSLIP Model

Some reasonable assumptions and simplifications should be set to make it easier
to get the approximate analytic solutions even through these assumptions and
simplifications will increase the errors of solutions.

Assumption 1 Small spring compression: if the spring compression in the stance
phase is assumed as a zeroth-order small quantity, then 0 < l0−l

l0
� 1 and 0 <

ρ0−ρ
ρ0

� 1.

Assumption 2 Small scanning angle: if the scanning angle of leg in the stance
phase is assumed as a first-order small quantity, then sin θ ≈ θ and cos θ ≈ 1.

Assumption 3 Conservation of angular momentum: this assumption is used in the
process of solving the axial length, but not in the process of solving the scanning
angle, so as to improve the accuracy of the solution in the case of asymmetric
scanning angle.

3.1 Approximations for Axial Length ρ̄

Based on Assumption 3, the angular momentum is constant when solving the axial

length ρ̄ and it can be defined as pθ = ρ̄2ᾱ′. Then, it yields ρ̄ᾱ′2 = p2
θ

ρ̄3 . Combining

Assumption 2, the second equation of (7) can be rewritten as

ρ̄′′ = p
2
θ

ρ̄3 − 1− k̄
ρ̄
(
δ (r̄, η, θ)+

√
ρ̄2 − τ (r̄, η, θ)

)

√
ρ̄2 − τ (r̄, η, θ)

(8)

where δ (r̄, η, θ) = ηr̄ cos θ − η cos θ −
√

1− η2sin2θ and τ (r̄, η, θ) = η2r̄2sin2θ

are known parameters.
Based on Assumption 1, the Taylor series expansion of 1

ρ̄3 at ρ̄ = 1 can be written
as
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1

ρ̄3

∣
∣
∣
∣
ρ̄=1

= 1− 3 (ρ̄ − 1)+ o
(
(ρ̄ − 1)2

)
(9)

And, the Taylor series expansion of ρ̄√
ρ̄2−τ(r̄,η,θ) at ρ̄ = 1 can be written as

ρ̄
√
ρ̄2 − τ (r̄, η, θ)

∣
∣
∣
∣
∣
ρ̄=1

= 1
√
(1− τ)3

− τ
√
(1− τ)3

ρ̄ + o
(
(ρ̄ − 1)2

)
(10)

Omitting the higher order terms in (9) and (10), and substituting them into (8), it
yields

ρ̄′′ =
(

−3p2
θ − k̄ +

k̄δτ
√
(1− τ)3

)

ρ̄ +
(

4p2
θ − 1− k̄δ

√
(1− τ)3

)

(11)

Solving the second-order ordinary differential equation shown in (11), the
expression of axial length ρ̄ of GSLIP model can be obtained as

ρ̄ = ρ̄m + a cos
(
ω0 t̄ + ϕ

)
(12)

where ω0 =
√

k̄ + 3p2
θ − k̄δτ√

(1−τ)3 is the vibration frequency in the axial

direction, ρ̄m =
(

4p2
θ−1− k̄δ√

(1−τ )3

)

√

k̄+3p2
θ− k̄δτ√

(1−τ)3
is the mean value of vibration, and a =

√
(
1− ρ̄m

)2 +
(
ρ̄T D

′
ω0

)2
> 0 and ϕ = arctan

(
ρ̄T D

′
(ρ̄m−1)

)
∈ [0, π ] are, respectively,

the amplitude and initial phase of vibration. And, a and ϕ are determined by initial
values of stance phase.

3.2 Approximations for Scanning Angle ᾱ

Based on Assumption 2, the first equation in (7) can be rewritten as

ᾱ′′ + 2ρ̄′

ρ̄
ᾱ′ − 1

ρ̄
ᾱ = 0 (13)

where the axial length ρ̄ and its differential ρ̄′ have been solved and can be regarded
as known variables.

In order to solve (13), the first-order differential term ᾱ′ should be eliminated
first. Introducing auxiliary variables p

(
t̄
)

and u
(
t̄
)

to satisfy
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ᾱ
(
t̄
) = p (t̄) u (t̄) , (14)

(13) can be rewritten as

pu′′ +
(

2p′ + 2ρ̄′p
ρ̄

)

u′ +
(

p′′ + 2ρ̄′p′

ρ̄
− 1

ρ̄

)

u = 0 (15)

Letting the coefficient of the first-order differential term u′ be zero, it yields

p′ + ρ̄
′p
ρ̄
= 0 (16)

Integrating (16) can obtain

p = c

ρ̄
(17)

where c is an undetermined constant, and p is an auxiliary variable. Taking c = 1
directly and substituting (17) into (15) yield

u′′ =
(

1+ ρ̄
′′

ρ̄

)

u (18)

Substituting the axial length (12) into (18) yields

u′′ −
(

1− ω2
0ε cosψ

1+ ε cosψ

)

u = 0 (19)

where ε = a
ρ̄m
, ψ = ω0 t̄+ϕ. Noting that the definition of ε owns real clear physical

meaning, which is the length ratio of axial vibration amplitude of CoM of GSLIP
model to the equilibrium position of vibration. Based on Assumption 1, it can be
found that ε is a small quantity. Since cosψ is bounded, the Taylor series expansion
of the fraction containing ε in (19) at ε = 0 can be written as

ε cosψ

1+ ε cosψ
= ε cosψ + o

(
ε2
)

(20)

Ignoring the second-order small quantity in (20) and substituting (20) into (19),
the differential equation with Mathieu function format can be obtained as

u′′ −
(

1− ω2
0ε cosψ

)
u = 0 (21)

Using the conventional perturbation method and choosing ε as the perturbation
parameter, the power series perturbation solution of the above Mathieu equation
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(21) can be obtained as

u
(
t̄ , ε
) = u0

(
t̄
)+ εu1

(
t̄
)+ ε2u2

(
t̄
)+ · · · (22)

where ui is the perturbed solution of each order, which is corresponding to the
perturbation parameter ε.

Substituting (22) into (21) and combining the terms with the same order of ε, it
yields

⎧
⎨

⎩

ε0 : u′′0 − u0 = 0
ε1 : u′′1 − u1 = −ω2

0u0 cosψ
ε2 : · · ·

(23)

The general solution of u0 can be obtained directly through the differential
equation corresponding to the zero power of ε and that is

u0 = c1e
t̄ + c2e

−t̄ (24)

where the coefficients c1 and c2 are determined by initial values.
Substituting (24) into the first power expression in (23), it yields

u1 = ω2
0c1

ω2
0 + 4

et̄
(

cosψ − 2

ω0
sinψ

)

+ ω2
0c2

ω2
0 + 4

e−t̄
(

cosψ + 2

ω0
sinψ

)

(25)

In order to balance the simplicity and the accuracy of approximate analytical
solutions, the second-order and other higher order terms in (23) are ignored, and
only the zeroth-order term (24) and the first-order term (25) are retained. As thus,
the final perturbation solution of Mathieu equation (22) is obtained as

u = u0 + εu1

= c1e
t̄ + c2e

−t̄ + ω2
0c1

ω2
0+4
et̄
(

cosψ − 2
ω0

sinψ
)
+ ω2

0c2

ω2
0+4
e−t̄

(
cosψ + 2

ω0
sinψ

)

(26)

When the initial state of GSLIP model at the touchdown
{
ρ̄T D, ρ̄TD

′, αTD, αTD ′
}

is known, the undetermined coefficients in (26) can be obtained as

[
σ11 σ12

σ21 σ22

] [
c1

c2

]

=
[

ρ̄T DαTD

ρ̄TD
′αTD + ρ̄T DαTD ′

]

=
[
uTD

uTD
′
]

(27)

where
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σ11 = 1+ ω2
0ε

ω2
0+4

(
cosϕ − 2

ω0
sinϕ

)

σ12 = 1+ ω2
0ε

ω2
0+4

(
cosϕ + 2

ω0
sinϕ

)

σ21 = 1+ ω2
0ε

ω2
0+4

(
− cosϕ −

(
ω0 + 2

ω0

)
sinϕ

)

σ22 = −1+ ω2
0ε

ω2
0+4

(
cosϕ −

(
ω0 + 2

ω0

)
sinϕ

)

(28)

Substituting (28) into (27) yields

c1 = σ22uTD−σ12uTD
′

σ11σ22−σ12σ21

c2 = −σ21uTD+σ11uTD
′

σ11σ22−σ12σ21

(29)

Combining (14), (17), and (26), the approximate analytic solutions for scanning
angle ᾱ can be obtained as

ᾱ
(
t̄
) = u

(
t̄
)

ρ̄
(
t̄
) (30)

Thus, approximate analytic solutions to the GSLIP model are (12) and (30).

4 Simulation Results and Performance Analysis

The system parameters of SLIP and GSLIP models are shown in Table 1.

Table 1 System parameters
of SLIP and GSLIP models

Parameter Symbol Value

Mass of load m 80 kg

Equivalent leg length ρ0 1 m

Joint angle θ 135◦

Spring length l0 0.1 m

Ratio of leg length η 0.89

Acceleration of gravity g 9.8 m/s2

Spring stiffness k 20 ∼ 50 kN/m

Initial apex height of CoM h0 0.95 ∼ 1.05 m

Initial forward velocity v0 2 ∼ 6 m/s

Contact angle α 5 ∼ 25◦
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4.1 Prediction Performance of Approximations

Taking the relative error of the apex state of system in flight phase, including forward
velocity vapex and apex height of CoM hapex , as the main index to evaluate the
prediction performance of approximate solution, it yields

eapex
(
sappr

) =
∣
∣sr − sappr

∣
∣

sr
× 100% (31)

where eapex is the relative error of prediction of apex state of flight phase, sappr is
the prediction of apex state of approximate solution (forward velocity vapex or apex
height hapex), sr is the prediction of apex state of (2) or (3) without approximation,
and it is calculated by the fourth-order Runge–Kutta method. The relative errors
of SLIP model in (2) and GSLIP model in (3) are calculated via the index (31),
respectively.

For two system models, the relative errors of forward velocity vapex and apex
height hapex are calculated separately. And, the statistics of eapex

(
vappr

)
and

eapex
(
happr

)
, error mean μe, standard deviation σe, and maximum prediction error

Me, are calculated as

μe = 1
N

N∑

j=1
eapex−j

σe =
√

1
N

N∑

j=1

(
eapex−j − μe

)2

Me = max
(
eapex−j

)

(32)

where N is the size of test groups. A different test is with different initial states: k,
h, v0, and α, as shown in Table 1.

4.2 Simulation Results

The overall errors of two models for apex state prediction are shown in Fig. 4.
It can be found that both the models can achieve high prediction performance of

apex state in the approximations by using perturbation method, and the mean errors
of predictions are all smaller than 5%, which provides a high prediction accuracy
for locomotion control for legged robot. By comparison between SLIP model and
GSLIP model, the error mean μe, standard deviation σe, and maximum prediction
errorMe, of the relative errors of apex state of the approximations based on GSLIP
model, including forward velocity vapex and apex height hapex , are all smaller than
those based on SLIP model. That means that the approximations based on the GSLIP
model have higher prediction accuracy than the approximations based on SLIP
model. That is, the prediction accuracy of approximations is model-dependent.
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Fig. 4 The overall errors of two models for apex state prediction

5 Conclusions

In this chapter, an approximate analytic solution to a generalized SLIP model is
proposed and investigated for legged robots. Firstly, an articulated/generalized SLIP
model is proposed, in which both axial and tangential forces along the equivalent leg
are considered. Secondly, the analytical approximation of proposed GSLIP model is
addressed through the method of perturbation. Thirdly, the prediction performances
of approximations of proposed GSLIP model are discussed. Finally, comparative
simulations show that the GSLIP model would achieve better prediction perfor-
mance than the classical SLIP model. This research provides an insight for the
locomotion control of hydraulic legged robots. Future works will focus on the
advantages and disadvantages between GSLIP and classical SLIP.
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On the Mobility of a Robot-Trajectory
Process

Friedrich Pfeiffer

1 Introduction

A machine possesses a kinematic and a dynamic structure, so does the process.
One art of engineering consists in matching both as optimally possible. An example
is a robot following a prescribed path by one degree of freedom only, namely
the curvilinear coordinate s along that path. All robot degrees of freedom are
projected to this single path coordinate coming out with a linear system of ordinary
differential equations of motion in the square of the path velocity. Many applications
of trajectory planning and comparisons with measurements were carried out through
[1–5]. By analyzing various types of processes, we find an astonishingly large
number being defined by one trajectory only, from manufacturing to transport tech-
nologies. Therefore, the one-dimensional robot example represents some amount of
generality.

2 General Equations

For technological processes, kinematics and possibly some forces are known, and
the machine dynamics is unknown. This requires a multibody dynamical model of
the machine with the necessity, that all machine components follow the prescribed
process. Constraints resulting from that requirement will be expressed by some
gradients ( ∂z

∂s
) and ( ∂s

∂z
), where z and s are machine and process coordinates,

respectively. We start with models for the machine, represented by a robot.
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In a first step and for later definitions, we consider Jourdain’s principle of lost
power for a rigid multibody system [6]

n∑

i=1

δ

(
vO ′
ω

)

︸ ︷︷ ︸

żT

T {(
mI mr̃T

O ′S
mr̃O ′S ΘO ′

)

︸ ︷︷ ︸
M

(
aO ′
ω̇

)

︸ ︷︷ ︸
z̈

+
(
mω̃ω̃rO ′S
ω̃ΘO ′ω

)

︸ ︷︷ ︸
f g

−
(

F e + F a + Fp

Me
O ′ +Ma

O ′ +M
p

O ′

)

︸ ︷︷ ︸
f e+f a+f p

−
(

F c

Mc
O ′

)

︸ ︷︷ ︸
f c

}

i

= 0 (1)

(vO ′ and ω are translational and rotational velocities, aO ′ and ω̇ translational and
rotational accelerations, m, I ,ΘO ′ masses and mass moments of inertia, O’ and S
reference point and center of gravity, and f g,f e,f a,f p,f c gyroscopic, applied,
driving, process and constraint forces and torques).

The virtual velocities δż cannot be chosen arbitrarily, but they must satisfy side
conditions in form of constraints. In the following, we shall focus on non-holonomic
and scleronomic constraints, which means no loss of generality [2]. Following the
ideas of Jacobi [7] in the form given in [8], we come out with the well-known non-
minimal form as a typical example [9, 10].

Mz̈+ f − f c = 0, with f = f g − f e − f a − f p, f c = −W (z, t)λ,

Φ̇ =W T ż+ w̄ = 0, Φ̈ = W T z̈+
[(
dW T

dt

)

ż+
(
dw̄

dt

)]

= W T z̈+ ŵ = 0,

(2)

where Φ̈ follows from d
dt
(W T ż + w̄). The mass matrix is positive definite and

symmetric. The constraints Φ̇ may include the machine and process constraints Φ,
but they may also include the machine constraints alone or the process constraints
alone depending on the specific model under consideration. The non-minimal
coordinates depend on the minimal ones z = z(q). Therefore, ż = ( ∂z

∂q
)q̇, which

gives for the constraints of equations (2) the well-known relation ∂Φ̇
∂ q̇
= W T ( ∂z

∂q
) =

( ∂z
∂q
)TW = 0, very convenient for eliminating constraint forces (example F i from

Fig. 4 and [8]).
In many cases of practical relevancy, the minimal coordinates q are known. For

this case, we project the vector z directly to q and in a second step from q to the
path coordinates (see [1, 3–5, 11]). With the help of the derivatives

ż =
(
∂z

∂q

)

q̇, z̈ =
[
∂

∂q

(
∂z

∂q

)

q̇

]

q̇ +
(
∂z

∂q

)

q̈, q̇ =
(
∂q

∂s

)

ṡ, q̈ =
(
∂q

∂s

)

s̈ +
(
∂2q

∂s2

)

ṡ2,

(3)
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and following equations (2), we come out with

Mq q̈ +
(
∂z

∂q

)T

M

[
∂

∂q
(
∂z

∂q
)q̇

]

q̇ +
(
∂z

∂q

)T

(f g − f e − f a − f p) = 0,

Mq =
[(
∂z

∂q

)T

M

(
∂z

∂q

)]

. (4)

These are the equations of motion in terms of the minimal coordinates q. Using the
relations (3) and applying additionally the abbreviations dq

ds
= q ′, q̈ = 1

2q ′(ṡ2)′ +
q ′′(ṡ2), and s̈ = dṡ

dt
= ( dṡ

ds
)ṡ = 1

2 (ṡ
2)′, we may project them directly onto the given

trajectory, which comes out with the following form:

A(s)(ṡ2)′ + B(s)(ṡ2)+ C(s) = T (s), (A,B,C,T ) ∈ Rnq ,

B(s) =Mqq
′′ + ( ∂z

∂q
)TM[ ∂

∂q
(
∂z

∂q
)q ′]q ′,

A(s) = 1

2
Mqq

′, C(s) = f eq, T (s) = f aq, (5)

with the abbreviations:

f q = ( ∂z
∂q
)T (f g − f e − f a − f p)q, f

g
q = ( ∂z

∂q
)TM[ ∂

∂q
(
∂z

∂q
)q̇]q̇. (6)

Note that f
g
q is already part of the coefficient B(s). Equation (5) represents a

quadratic form being linear in (ṡ2). Note also that Eq. (4) represents only one form
to produce the first equation (5), there exist related ways to come from (2) to (5)
with a gradient ( ∂z

∂q
) expressed by W [2, 8].

A remark concerning Cartesian and joint spaces: the strength of the method
presented consists in a tool for design and layout, where the Cartesian space of
the machine components represents simply geometrical position and orientation
as known for example from CAD analysis. For dynamical analysis, the minimal
coordinates, for example the joint space of robots, concentrate dynamics to a
minimum as given by the constraints. This is not a must, but an advantage.

For numerical simulations, it sometimes makes sense to use dimensionless
magnitudes. Referring all geometrical parameters to some length, all masses to some
mass and time to gravity and length give z̄ = z

l
, s̄ = s

l
, q̄ = q, m̄i =

mi
m
, t̄ =

√
g
l
t, f̄ = f

mg
, l =

√∑
j l

2
j , and m =

√∑
j m

2
j . These

modifications have to be included into the equations above, which is straightforward.
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3 Mobility Space by Ruled Surfaces

The general mobility problem for a machine consists in an initial value problem or in
a stationary operation situation, usually accompanied by some performance criteria.
Such criteria might be minimum time, minimum energy, maximum mobility, and
the like. The solution of this problem is constrained, where the most important
constraints are as follows:

The constraining torques or forces are limited, which means (Eq. 5)

Ti,min ≤ [Ai(s)(ṡ2)′ + Bi(s)(ṡ2)+ Ci(s)] ≤ Ti,max,

(ṡ2)′ =
−Bi(s)(ṡ2)− Ci(s)+

(
Ti,max

Ti,min

)

Ai(s)
, (ṡ2)A=0 =

−Ci(s)+
(
Ti,max

Ti,min

)

Bi(s)
,

(7)

where the last equation can be seen as an additional constraint. Further possible
constraints are the following: the angular or translational velocities of constraining
elements may be limited due to some maximum speeds of the drive train com-
ponents (q̇i,min ≤ [q ′i ṡ] ≤ q̇i,max), and the path velocity itself might become
constrained by some manufacturing process (−vmax ≤ |r′|ṡ ≤ +vmax) with the
vector r from the constrained machine element under consideration to a process
path point. These relations define together a limiting velocity ṡL along the path
which must not be exceeded:

0 ≤ (ṡ2) ≤ (ṡ2)L, with (ṡ2)L = min

[(
q̇i,max

q ′i

)2

,

(
vmax

|r′|
)2

, (ṡ2)A=0

]

.

(8)
Extremum mobility can be achieved by applying in equations (7) the maximum
and minimum torques (forces) (Ti,min, Ti,max). Operation at the torque limits takes
place for

(ṡ2)′max =
−Bi(s)ṡ2 − Ci(s)+ Ti,max

Ai(s)
, (ṡ2)′min =

−Bi(s)ṡ2 − Ci(s)− Ti,min
Ai(s)

,

(9)

which define two straight lines in the [(ṡ2)′, (ṡ2)]-plane. The altogether (2fD)
straight lines (fD ≤ f ) form a polygon confined at the left side by the axis
(ṡ2) = 0 and at the right side by the (Ti,min, Ti,max)-straight-lines or by the
constraint (ṡ2)L given by Eq. (8). Without violating the constraints, which may
be extended without many problems, motion can take place only within or on the
polygons, which contain the following information: the maximum possible velocity
ṡ2
max and for each point (ṡ2) a maximum and a minimum acceleration or deceleration



Mobility 529

y

x

a

b
c

y

x

e

c

y

x

d

Fig. 1 Polygons of possible motion for s = constant [1, 3]

[(ṡ2)′max, (ṡ2)′min]. For finding time-optimal solutions, we have to go along the
assemblage of these polygons and generate what we call extremals (Fig. 1).

Combining all polygons for all path points s, we obtain a constrained phase space
bounded by ruled surfaces due to the straight-line characteristics of the polygons
[12]. We call this phase space motion or mobility space. These polygons appear as
plain cuts perpendicular to the s-axis, Fig. 6. The evaluation of these polygons with
the help of equations (7) to (9) is difficult. From many trials, a numerical procedure
is chosen, being the most efficient at the time being.

4 Example Multi-DOF Robot with Revolute Joints

Kinematics and Initial Conditions We consider a robot with n links and (n+1)
revolute joints and a corresponding number of degrees of freedom. These links have
the length li , the center of mass Ci , and the distance di from the link joint i to the
center of mass Ci (see Figs. 2 and 3). A typical example with five DOFs is depicted
by Fig. 2. The robot can move around a vertical z-axis with an angular coordinate
q0, and each of the links moves in one plane with relative angular coordinates qi .
With respect to the coordinate systems, we shall use an inertial reference.

We project the equations of motion to minimal coordinates. From kinematics, we
need the derivatives ( ∂z

∂q
) and

[(
∂
∂q
( ∂z
∂q
)q̇
)
q̇
]
, which we evaluate in the following,

considering also Eq. (1) and keeping in mind that any ẋ = (x)′ṡ. Additionally, we
define

I ż = (I żi I ż2.............I żnm)
T , q = (q0 q1 q2...........qnq )

T ,

I żi = (ṙTi ωTi )
T , ṙ i = (ẋ ẏ ż)T , Bζ i = (ξ η ζ )T , ω̇i = (ω̇x ω̇y ω̇z)T ,

z ∈ Rnm, q ∈ Rnq zi ∈ R6, r i ∈ R3, ζ i ∈ R3 ωi ∈ R3. (10)
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Fig. 2 Geometry of a multi-DOF robot

The Cartesian coordinates z depend on a set of angular joint coordinates q or q̄.
They represent the minimal coordinates of the system. The indices I and B stand for
“inertial” and “body.” Two sets of angles are needed, the relative link angles qi as
already defined above and the absolute link angles q̄i indicated by Fig. 3.

q̄i = π
2
−

i∑

j=1

qj = q̄i−1 − qi, qi = q̄i−1 − q̄i , q̄0 = Π
2
. (11)

With these definitions, the joint vectors zJ i and the center of mass vectors zCi
possess the following elements:

rJ i =
i−1∑

j=1

lj

⎛

⎜
⎝

cos q̄j cos q0
cos q̄j sin q0

sin q̄j

⎞

⎟
⎠ , rCi =

i−1∑

j=1

lj

⎛

⎜
⎝

cos q̄j cos q0
cos q̄j sin q0

sin q̄j

⎞

⎟
⎠+ di

⎛

⎝
cos q̄i cos q0
cos q̄i sin q0

sin q̄i

⎞

⎠ . (12)

It should be noted that for the rotation around the vertical inertial z1-axis (Fig. 2),
the above vectors are zero, rJ i = 0, and rCi = 0. The angular velocities ωi are
determined by the well-known relations I ω̃i = ȦIBABI = ȦIBATIB with the result
[2]

Iωi =
⎛

⎝
− ˙̄qi sin q0
+ ˙̄qi cos q0

q̇0

⎞

⎠ , Bωi =
⎛

⎝
−q̇0 sin q̄i˙̄qi
+q̇0 cos q̄i

⎞

⎠ , AIB =
⎛

⎝
cos q0cosq̄i − sin q0 cos q0 sin q̄i
sin q0cosq̄i + cos q0 sin q0 sin q̄i
− sin q̄i 0 cos q̄i

⎞

⎠ . (13)
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Fig. 3 Robot tracking a path and corresponding joint angles in the u–z plane, see Fig. 2

The matrix AIB follows from two rotations, first around the inertial z-axis and
second around the body-fixed y-axis. For i = 1 (first degree of freedom with q0),
the angular velocity is Iω1 = Bω1 = (0 0 q̇0)

T .
For positioning the robot end effector at the target point, we apply formula (12)

and require (Fig. 3)

rJn = r(q(s)) =
n∑

j=1

lj

⎛

⎝
cos q̄j cos q0

cos q̄j sin q0

sin q̄j

⎞

⎠ =
⎛

⎝
x

y

z

⎞

⎠

trajectory

. (14)

This represents a nonlinear set of equations for the determination of robot coor-
dinates q. It is solved by an optimization algorithm, where for an estimate of the
starting position of the robot, all joints are approximately assembled along a circular
line.

Gradients and Derivatives Equations (12) and (13) together with (10) form the
vector z with its time derivative

I żJ i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑i−1
j=1 lj [− cos q0 sin q̄j ˙̄qj − sin q0 cos q̄j q̇0]

∑i−1
j=1 lj [− sin q0 sin q̄j ˙̄qj + cos q0 cos q̄j q̇0]

∑i−1
j=1 lj [+ cos q̄j ˙̄qj ]
− ˙̄qi sin q0
+ ˙̄qi cos q0

q̇0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, I żJ1 = I żC1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
q̇0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15)

According to the definitions in (10) and the relation ( ∂z
∂q
) = ( ∂ ż

∂ q̇
), we construct

from the time derivatives (Eqs. (15)) and from the formula dzi
dt
= ( ∂zi

∂q
)q̇ all first and

second derivatives being needed in the following.
The gradients above need the first derivative (q ′) = (

∂q
∂s
) and the second one

(q ′′) = ( ∂2q

∂s2 ). The trajectory with the path coordinate s is prescribed, we know all
path points, for example in an inertial frame, and we know all derivatives of the
path itself. According to the solution of Eqs. (14), we also know the robot angles
q = q(r(q(s))), which then allows the application of a numerical procedure
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q ′ = q(si+1)− q(si−1)

si+1 − si−1
, q ′′ = q(si+1)− 2q(si)+ q(si)

[ 1
2 (si+1 − si−1)]2

. (16)

To evaluate the same information for the angle q0, we start with the (x,y,z)-position
of each trajectory point and calculate q0 and its derivatives (Fig. 2)

tan q0 = (y
x
)path, q ′0 =

y′x − yx′
x2 + y2 ,

q ′′0 =
[
y′′x − yx′′
x2 + y2

+ 2
x′y′(y2 − x2)− xy((y′)2 − (x′)2)

(x2 + y2)2

]

. (17)

For our specific case of an n-link robot following a trajectory we determine q =
q(r(s)) by an optimization algorithm, see above.

Equations of Motion Following Eq. (1), the mass matrix and its derivatives write

M i =
(
mE mr̃T

O ′S
mr̃O ′S ΘO ′

)

i

∈ Rnm,nm, with ΘO ′i = −
∑

Δm

[r̃O ′S r̃O ′SΔm]i

dM i

dt
=
(

0 m ˙̃rT
O ′S

m ˙̃rO ′S Θ̇O ′

)

i

,
dΘO ′i
dt

= −
∑

Δm

[ ˙̃rO ′S r̃O ′S + r̃O ′S ˙̃rO ′S]iΔmi.
(18)

For some link i, we choose as a reference point the center of mass S, which makes
rO ′S = 0 and ṙO ′S = 0. A special case is the first coordinate q0, where the
reference point O ′ is the coordinate origin with (rO ′S)i �= 0 being the distance
to the mass centers of each link i. For this case and according to the equations
(12), we have (rO ′S)i = rCi . The moment of inertia for the bar-like links alone is
Θ̇Si = 1

3mil
2
i [1− 3( d

l
)+ 3( d

l
)2].

As a second step, we have to evaluate the forces and torques considered in an
inertial system. The external and applied forces and torques (Fig. 4) are
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Fig. 4 Trajectory, torques, and forces at link i
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If
e
i =[0 0 (−mig) 0 0 0]T , If

e
1 = 0, If

a
1 = [0 0 0 0 0 (T1)]T ,

If
a
i>1 =[0 0 0 (−(Ta(i+1) − Tai) sin q0) (+(Ta(i+1) − Tai) cos q0) 0]T .

(19)

According to the relations in (4), the equations of motion (5) will be used for further
evaluations.

5 Some Results

Larger scale applications have been performed in the framework of a collaborative
research center of the German research foundation [1, 3] and in the USA by Bobrow
et al. [4] and Dubowsky and Shiller [5]. These findings cannot be presented here.
The following results are given by dimensionless magnitudes, see the end of Sect. 2,
for example, s → (sl), (ṡ2)→ (gl)(ṡ2), (ṡ2)′ → g(ṡ2)′. Bars are omitted.

Horizontal Circle Trajectory Evaluating equations (5) for each trajectory point
results in Fig. 5, which depicts on the left side the horizontal circle with a robot
indication and in addition polygons for six trajectory points. These polygons are
scaled equally, giving some feeling for the motion capabilities of the robot around
the circle. The points furthest away from the robot base show relatively small
motion areas due to the fact that the robot being there in a stretched position
has to counterbalance its own weight by the given drives, leaving less power for
velocity and acceleration. At the position of start level and of the position 180◦,
opposite velocities are largest but accelerations diminished. Motion at these points
is dominantly performed by the arm drives and not so much by the vertical drive with
angular velocity q̇0. Another situation is illustrated by the two points nearest to the
robot base, exhibiting large acceleration capabilities and medium-sized velocities.
They are dominated by the drive around z with q̇0. The right side of Fig. 5 depicts
six polygons as illustrated in the middle graph. Considering more of these polygons
gives the left picture of Fig. 6 and arranging them along the path coordinate s the
right picture. We call this structure motion or mobility space.

Altogether it is a mountain-like construct generated by straight-lines forming
ruled surfaces as an exterior boundary. Motion can only take place on these ruled
surfaces originating from the extremum drive torques or forces, or it can take
place in the space bounded by these ruled surfaces. For ruled surfaces, see [12]
or elsewhere. The motion space of Fig. 6 represents a convenient tool for studying
various solution and motion concepts. For example, to go with constant velocity
within the free space, we put (ṡ2)′ = 0 and get immediately the necessary torques
from equations (5), namely T (s) = B(s)(ṡ2)+C(s). A more interesting case is that
of time-minimum motion requiring to find trajectories on the ruled surfaces only.
From Sect. 3, these extremals can be constructed on both sides of the motion space,
the side with maximum accelerations (ṡ2)′max containing the max-extremals and the



534 F. Pfeiffer

°

° °

°

°°

a

b

c

°

°
d

e

f

b

a

h

0 0.2 0.4 0.6 0.8 1 1.2
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 5 Motion areas (polygons) along a horizontal circular trajectory

4.1
2.1

1
8.0

6.0
4.0

2.0
0

5.1-

1-5. 0-

05. 0

15.1

a

b

0
2

101

0.5

8
0 6

1

4-1 2
-2

1.5

0

a

b

c

d

Fig. 6 Generation of motion space

side with minimum accelerations (ṡ2)′min containing the min-extremals. Figure 7
illustrates the projections of these extremals together with the maximum velocities
from motion space onto the [ṡ2 − s]-plane.

A time-optimal solution, for example, must be composed by several of these
extremals for following reasons. Requiring ṡ2 = 0 at s=0 and s = sF makes
it necessary to follow a certain combination of extremals for arriving at the final
point. Such a procedure needs an integration of the equations of motion along the
ruled surfaces and thus from polygon at s to the next one at (s + Δs). Integration
on polygons excludes normally a progress along the rim of the motion space,
exceptions are possible.

Figure 7 illustrates that procedure. The blue extremal at the beginning connects
s=0 with the maximum velocity curve at s ≈ 1.7, and the green extremal at the
end connects s = sE ≈ 8.8 with s ≈ 6.9. Note that the blue extremals are on
the motion space side with maximum accelerations and the green on the side with
minimum accelerations. As a further step, we construct all extremals originating
from the saddle point (minimum points) at s ≈ 2.2 and at s ≈ 6.7. These are
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Fig. 7 Field of extremals (blue lines are max-extremal and green lines are min-extremals) and an
extremal selection forming the time-optimal solution

points, where at least one coefficient Ai of the equations (5) vanishes, thus allowing
a smooth step from one side of the motion space to the other one. The extremals
from these points intersect the extremals coming from the beginning and from the
end. The ensemble of the six curves forms the time-optimal solution for the motion
under consideration, avoiding any limits and integration problems.

Considering the driving torques along the time-optimal solution confirms quali-
tatively the algorithm, comparisons with measurements in [2].

6 Conclusions

The sense of the method lies in providing some tool for design of machines
performing processes, especially with respect to parameter studies. The results give
all motion possibilities for the drive structure of the machine, modifications and
additional limits or constraints can easily be implemented. Within the resulting
motion space, any dynamics might be realized.

For the system considered, multibody equations of motion with constraints are
mapped to the trajectories by Jacobians or gradients resulting in quadratic form
relations, the solution space of which can be directly evaluated, addressed motion
space. As an example, a robot following some path is considered, and the results are
discussed.

Further research will concentrate on more general machines including existing
problems of mechanical engineering. Evaluation options will be expanded. In detail,
the numerical algorithms connected with all aspects of the polygons and the motion
space must be improved, especially with respect to numerical stability. Contact
forces will be included and constrained forces evaluated. Larger examples will be
investigated. Studies up to now confirm the potential of the method concerning
design evaluations and design improvements.
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Multiple Sommerfeld Effects in Vehicle
Dynamics

Walter V. Wedig

1 Introduction

Vertical vibrations of a vehicle driven by a constant force on sinusoidal road
surface are coupled with its horizontal drift motion effecting that the travel velocity
fluctuates around a speed mean. The coupling between both planar motions is
caused by the permanent direction change of the contact force to ground along the
contour of the road profile. The paper explains the non-linear model of this dynamic
problem applying averaging methods to calculate stationary solutions before and
after the resonance speed. Numerical integrations are applied to obtain limit cycles
around the averaged solutions plotting the changing car acceleration against the true
velocity. The stationary solutions are stable in mean when the slope of the force
speed characteristic is positive. This leads to the so-called Sommerfeld effect [1]
that for a given driving force, the car gets stuck before the resonance speed and can
only pass over the resonance to reach stable higher travel velocities by increasing the
driving force, considerably [2]. First investigations of velocity jumps and turbulent
speeds in non-linear vehicle road dynamics are given by Wedig in [3–7] applying
sinusoidal and random road models introduced by Robson and al. in [8–10]. The
first-order road model in [11, 12] is extended in [3, 4] to a second-order one which
includes sinusoidal models. Blekhman and Kremer studied the same vehicle road
system in [13, 14] for the special case of small road excitations to calculate the
averaged response of driving cars, only (see also [15]). In [2, 7], these investigations
are extended to sinusoidal road surfaces and limit cycles in the phase plane of
driving cars.
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2 Models of Non-linear Vehicle Road Dynamics

Figure 1 shows the applied quarter car model rolling on a wavy road with level z and
slope u that generates vertical car vibrations y and coupled velocity v described by

v̇ =
[
ω2

1 (y − z)+ 2Dω1 ( ẏ − ż)
]

tanα + f/m, (1)

ÿ + 2Dω1 (ẏ − ż)+ ω2
1 (y − z ) = 0, v = ṡ. (2)

In Eqs. (1) and (2), ω2
1 = c/m determines the natural frequency ω1 of the

vehicle, 2Dω1 = b/m denotes its damping, f is the driving force which is constant
when travelling on way s. The non-linear term in Eq. (1) represents the damper and
spring force multiplied by tanα that takes the horizontal component by tanα = dz/ds.

The road surface is given by z(s) = z0 cos (Ωs) and u(s) = − z0 sin (Ωs) where
z0 is the amplitude of the road level and Ω is the road frequency calculated by the
wave length L= 2π /Ω . We differentiate level z and slope u with respect to s in order
to obtain dz = − z0Ω sin (Ωs)ds and du = − z0Ω cos (Ωs)ds that leads to the
oscillator

ż = vΩu, u̇ = −vΩz. (3)

Eq. (3) is obtained when both increments above are divided by dt and ds/dt is
replaced by v. Furthermore, dz/ds = − zoΩ sin (Ωs) = Ωu is valid so that Eq. (1)
reads

Fig. 1 Quarter vehicle model on a wavy road with vertical vibrations and speed fluctuations
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v̇ =
[
ω2

1 (y − z)+ 2Dω1 ( ẏ − ż)
]
Ωu+ f/m. (4)

Eqs. (2), (3) and (4) describe a five-dimensional problem with the following five
unknowns [4, 7]: the horizontal velocity v(t) of the vehicle, its vertical vibration
by displacement y(t) and velocity ẏ(t) = ω1x(t) and the road level z(t) and slope
u(t). For analytical and numerical investigations, it is appropriate to introduce the
dimensionless time τ = ω1t and the related velocity ν = v�/ω1 as well as the co-
ordinates (z, u) = (z, u) /z0 and (y, x) = Ω (y, x). The insertion into Eqs. (4) and
(3) gives

ν′ + 2D(z0Ω)
2u2ν = z0Ω (uy + 2Dux)− (z0Ω)

2 zu+ fΩ/c, (5)

z′ = νu, u′ = −νz, IC. : z(0) = 1, u(0) = 0. (6)

Derivatives with respect to the time τ = ω1t are denoted by (•)
′
. The initial

conditions (IC) of the related road level and slope are given in Eq. (6). Note that the
velocity eq. (5) is determined by the co-variances of the two vibration co-ordinates y
and x= y

′
multiplied by level z and slope u of the road. The road equations in Eq. (6)

and the dimensionless first-order form of Eq. (2) are applied to derive the differential
equations of these co-variances with the 4x4 matrix of the skew-symmetric form

⎡

⎢
⎢
⎣

zy′
uy′
zx′
ux′

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎢
⎣

0 −ν −1 0
ν 0 0 −1
1
0

0
1

2D −ν
ν 2D

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

zy

uy

zx

ux

⎤

⎥
⎥
⎦ = z0Ω

⎡

⎢
⎢
⎣

0
0

z2 + 2Dνzu
zu+ 2Dνu2

⎤

⎥
⎥
⎦ . (7)

Since the related level and slope of the road are given by z = cos (ντ) and
u = − sin (ντ) ,averaging methods can be applied to Eqs. (7) and (5) by introducing
zu = 0 and z2 = u2 = 1/2 that leads to time-invariant co-variances in Eq. (7). The
insertion of these co-variances into Eq. (5) gives the driving force in dependence on
the averaged speed, as follows:

fΩ/c = (z0Ω)
2 Dν5

(
1− ν2

)2 + (2Dν)2
, ν = v�/ω1. (8)

In Fig. 2, the driving force (8) is marked by red color and plotted against
the related velocity ν = v�/ω1 for the damping D = 0.2 and the road
level zoΩ = 1. Note that the loss of energy per time in the damper is balanced
by the driving force times speed.
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Fig. 2 Limit cycles of acceleration versus travel velocity around driving speed mean

3 Stabilized Integration by Means of Polar Co-ordinates

To improve numerical integration [2, 7] in Eqs. (5), (6) and (7), the polar co-
ordinates z = r cosϕ and u = r sinϕ are introduced into the road eqs. (6) that
leads to

r ′ = 0, r = 1, ϕ′ = −ν. (9)

Obviously, the related radius r is integrated to r = 1 and the derivative ϕ
′

of the
polar angle ϕ is equal to the negative travel speed ν. Both results are inserted to get

ν′ + 2D(z0Ω)
2u2ν = z0Ω (uy + 2Dux)− (z0Ω)

2 sinϕ cosϕ + fΩ/c, (10)

⎡

⎢
⎢
⎣

zy′
uy′
zx′
ux′

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎢
⎣

0 −ν −1 0
ν 0 0 −1
1
0

0
1

2D −ν
ν 2D

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

zy

uy

zx

ux

⎤

⎥
⎥
⎦ = z0Ω

⎡

⎢
⎢
⎣

0
0

cos2ϕ + 2Dν sinϕ cosϕ
sinϕ cosϕ + 2Dν sin2ϕ

⎤

⎥
⎥
⎦

(11)

Numerical integration of Eqs. (9), (10) and (11) is performed by means of Euler
schemes applying the time stepΔτ = 10−4. Figure 3 shows a first result of periodic
limit cycles marked by yellow black line and plotted in the plane of the true travel
velocity and acceleration. The latter is scaled by the factor 0.3 and shifted from the
zero axis to the driving force fΩ/c marked by red line. This result is obtained for the
driving force fΩ/c = 0.6, the road level zoΩ = 0.9 and the damping D = 0.2. The
numerical integration is started with an initial velocity marked by a blue square and
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Fig. 3 Double periodic limit cycle of scaled and shifted acceleration vs. true travel speed

with initial co-variances calculated by means of the averaged eq. (7) for the same
velocity. The subsequent integration results are marked by blue dashed lines. They
are transients, which move clockwise in the phase plane and end in the periodic
limit cycle after a sufficiently long integration time. Afterwards, the integration is
continued in order to calculate the mean velocity and acceleration, both of which
are marked by a green triangle.

Figure 4 shows a further limit cycle applying the extended integration routine

y′ = x, x′ = − (y + 2Dx)+ zoΩ (cosϕ+ 2Dνsinϕ) . (12)

It is needed for the calculation of the vertical displacement and velocity of the
vehicle vibrations. For this purpose, ẏ = ω1x is inserted into Eq. (2) to obtain the
extended integration routine in Eq. (12), which is applied to calculate periodic limit
cycles of the quarter car model with the same road level. As before, the blue square
denotes the initial values by which the simulation is started. The results obtained, in
the beginning, are transients, marked by blue dashed lines. After sufficiently many
clockwise rotations, the transients end into a periodic limit cycle marked by a yellow
black line. Note that the application of polar co-ordinates in Eq. (9) excludes wheel
jumps in the numerical integration. In case of a weak spring pre-compression by
weight, the numerical results should be checked stepwise in order to switch into the
flight modus when the spring tension in the wheel suspension tends to zero.
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Fig. 4 Periodic limit cycle of the travel speed vs. vibration velocity with dashed transients

4 Multiple Sommerfeld Effects in Multi-Body Car Models

Figure 5 shows an example of multi-body quarter car models with two masses m
rolling with velocity v on wavy road surfaces modelled by means of z(s)= zo cosΩs
in dependence on the travel way co-ordinate s. The speed frequency v Ω is related
to the reference circle frequency ω1 introduced by ω2

1 = c/m. The car model shown
in Fig. 5 possesses 2 1/2 degrees of freedom described by the equations of motion

ÿ1 + 2d1ω1
(
ẏ1 − ẏ2

)+ 2Dω1
(
ẏ1 − ż

)+ ω2
1 (y1 − y2) = 0, (13)

ÿ2 + 2d2ω1
(
ẏ2 − ż

)− 2d1ω1
(
ẏ1 − ẏ2

)+ ω2
1 (2y2 − y1 − z) = 0, (14)

2v̇+ ω1 [ω1 (z− y2)+ 2d2( ż− ẏ2
)+2D

(
ż− ẏ1

)]
tanα = f/m. (15)

As noted in Fig. 5, B, b1and b2 are damping coefficients related to the reference
circle frequency. Eqs. (13) and (14) are derived by means of the dynamic balance
of all vertical forces acting at the upper and lower masses, respectively. Eq. (15)
follows from the horizontal dynamic equilibrium 2mv̇ + N sinα = f with the
horizontal component of the normal force. Its vertical component N cos α is equal
to the spring force c and damper forces D and d2 that leads to tan α = �u times the
spring damper force.
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Fig. 5 Quarter car model (2 1/2 DOF) rollingon a wavy surface driven by force f = const

For numerical integration, the time τ = ω1t and the velocity ν = vΩ/ω1 as well
as the vibration velocities ẏi = ω1xiare inserted with i = 1, 2 into Eq. (15) that
leads to

2ν′ + (zoΩ)22 (d2+D)u2ν = Ωzo
(
y2+ 2d2x2+ 2Dx1

)
u− (Ωzo)2zu+ fΩ/c.

(16)

In Eq. (16), the related co-ordinates (z, u) = (z, u) /zo and
(
yi, xi

) = (yi, xi)Ω,
are inserted into the road equation for both masses (i = 1, 2), respectively. The
equations of motion are re-written into a first-order system. In this form, they are
applied to derive the skew-symmetric matrix eq. (17) of all eight co-variances, as
follows:
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+
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(17)

Eqns. (16) and (17) are averaged by means of zu = 0 and z2 = u2 = 1/2 and
solved in this form to obtain the driving force in dependence on the averaged car
velocity. Fig. 6 shows this result marked by blue line which is calculated for the
road level zoΩ = 1 and the damping values D= d1 = d2 = 0.1. In the middle range
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Fig. 6 Driving force (blue) of averaged speed and limit cycles of acceleration vs true velocity

of the driving force assumed to be constant and independent of speed, there are five
stationary solutions: two solutions are unstable and three are stable. This stability
behaviour is numerically confirmed by the limit cycles shown in Fig. 6 which are
obtained by the above velocity and co-variance equations applying the polar co-
ordinates z = r cosϕ and u = r sinϕ of the road contour with the amplitude
r = 1 and the angle velocity ϕ

′ = − ν. Numerical results are calculated by means
of Euler schemes with the step size Δτ = 10−4. Fig. 6 shows three limit cycles
(red, yellow, green) before the first resonance, two further limit cycles (red, cyan)
between the first and second resonance and the last three limit cycles (yellow, red,
cyan) for overcritical speeds near the asymptote fΩ/c= 2(d2 +D)ν which is marked
by dashed line in red.

5 Limit Cycle Flow of Vehicles Rolling on Noisy Roads

Figure 7 shows stochastic limit cycles obtained for the quarter car model in case that
the angle motion on the sinusoidal road form is perturbed by additive noise given
by

dφτ = −Vτ dτ + σdWτ ,ΔWn =
√
Δτ Nn. (18)
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Fig. 7 Limit cycle flow with double period for quarter car models rolling on noisy road surface

In Eq. (18), capital letters with index τ denote set functions [16, 17] dependent
on time. Noise is generated by normally distributed numbers Nn with zero mean
[18].

The stochastic angle perturbation takes into account that the road surface is
no longer sinusoidal but more realistically irregular and noisy with bounded
realizations. This leads to response realizations which are bounded, as well. First
results are shown in Fig. 7 where trajectories of stochastic limit cycles are plotted in
the phase plane of travel velocity and acceleration multiplied by the factor 0.3 and
shifted by the driving force, applied. The realizations are calculated by means of
Eqs. (10), (11) and (18) for the damping D = 0.2, the driving force fΩ/c = 0.6,
the road level zoΩ = 0.9 and the noise intensity σ = 0.05 applying the Euler
scheme with time step Δτ = 10−4. The mean value of scaled acceleration and
velocity is marked by a yellow triangle on the red curve of the mean speed driving
force indicating that the mean acceleration is vanishing and the mean travel speed
coincides with Eq. (8). The comparison with the periodic limit cycle in Fig. 3 shows
that the sharp line is widened to a bundle of realizations, the boundaries of which are
double periodic with two loops and one node of two cross-free limit flows. Figure
8 shows its double crater like probability distribution density on the phase plane
of velocity and acceleration. The clockwise rotation of the phase is slow when the
density is high and vice versa fast for low densities.
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Fig. 8 Double crater like probability density with fast and slow motions in the phase plane

Fig. 9 Elastically supported
unbalanced rotor with 2 DOF
and driven by a constant
moment

6 Limit Cycle Flows and Sommerfeld Effects in Rotor
Dynamics

It is now interesting to compare the above results with corresponding ones, well
known in rotor dynamics [19–26]. For these purposes, consider the unbalanced
rotor, shown in Fig. 9. The rotor has the moment of inertia I and rotates with angle
velocity ϕ̇ = ω driven by the moment Ma. The rotor with mass M is supported by
spring c and damper b so that horizontal vibrations ξ = x/r are possibly excited by
the unbalanced mass m fixed at the radius r on the rotor. Rotation and translation of
the rotor are described by the two equations of motion
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ξ̈ + 2Dω1ξ̇ + ω2
1ξ = μ

(
ϕ̇2 cosϕ+̇ϕ̈ sinϕ

)
, (19)

(
I +mr2

)
ϕ̈ = mr2ξ̈ sinϕ +Ma, ξ = x/r. (20)

The frequency ω1, the damping D and the mass ratio μ are introduced as follows:

ω2
1 =

c

M +m, 2Dω1 = b

M +m,μ =
m

M +m ≤ 1. (21)

In a first investigation, the angle velocity of the rotor is assumed to be constant.
With ϕ̈ = 0. Eq. (19) becomes linear and can be solved. Its stationary solution is
inserted into Eq. (20) that gives the periodic driving moment needed to keep the
angle velocity constant. Its mean value [24–26], and is calculated as follows:

Ma

cr2 =
Dμ2η5

(
1− η2

)2 + (2Dη)2
, η = ω

ω1
. (22)

In Eq. (22), η denotes the rotor speed ω related to the circle frequency ω1 of the
engine. Note that this result coincides with Eq. (8) when the force fΩ/c is replaced
by the moment Ma/cr2, the related translation velocity by the rotation speed ratio and
the mass ratio μ replaced by zoΩ that determines the strength of the road excitation.
In order to improve numerical integrations, Eqs. (19) and (20) are rearranged to

ξ̈ =
[
μϕ̇2 cosϕ − ω2

1ξ − 2Dω1ξ̇ + μ
(
Ma/Ig

)
sinϕ

]
/Δ, (23)

ϕ̈ =
[(
Ma/Ig

)+
(
μϕ̇2 cosϕ − ω2

1ξ − 2Dω1ξ̇
)
ρ sinϕ

]
/Δ. (24)

In Eq. (24), ρ is the ratio of moments of inertia and Δ is the determinant given
by

Δ = 1− μρsin2ϕ > 0, ρ = mr2/
(
I +mr2

)
< 1. (25)

For μρ < 1, the determinant Δ is positive definite. In Eq. (24), the total mass of
inertia is denoted by Ig = I +mr2. Note that in Eqs. (23) and (24), both accelerations
of interest are decoupled and isolated on the left side of both equations of motion.
This corresponds to the iteration technique in classical non-linear equation systems.

Applying the dimensionless time τ = ω1t, Eqs. (23) and (24) are rewritten as
follows:

ξ ′ = ζ, ζ ′ =
(
μ η2 cosϕ − ξ − 2Dζ + ρma sinϕ

)
/Δ, (26)

ϕ′ = η, η′ = ρ
[(
μ η2 cosϕ − ξ − 2Dζ

)
sinϕ+ma/μ

]
/Δ. (27)
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Fig. 10 Double periodic limit cycle flow in the phase plane of perturbed motions

In these equations, ζ and η are velocities of the translation and rotation co-
ordinates ξ and ϕ, respectively. The dimensionless parameter ma denotes the related
driving moment given by ma =Ma/(cr2). In Eq. (27), this driving moment is applied
by ma/μ which is proportional to μ when Eq. (22) is inserted. Similar to Sect. 5,
it is assumed that the rotational speed of the rotor is perturbed by white noise of
intensity σ = 0.02 effected, e.g., by flow turbulence and combustion in the engine. In
correspondence to Eq. (18), ϕ

′ = η in Eq. (27) is replaced by dϕτ = ητdτ + σdWτ

so that the deterministic periodic limit cycle is widened to a bundle of non-periodic
trajectories. Fig. 10 shows numerical evaluation for D = 0.2, μ = 0.6, ρ = 0.9
and ma = 0.3 when the rotor gets stuck before resonance. In the stochastic case,
all non-periodic trajectories form a flow with inner and outer limits marked by
green colour which are double periodic with a periodic probability density similar
as shown in Fig. 8. Accordingly, the phase motion is fast when the flow is widened
and it becomes slow in the upper right part in Fig. 10, where two different narrow
flows are close to each other turning clockwise around. Finally, it is noted that in the
book of Lin and Cai [27], noise perturbations in sinusoidal terms applied above to
translation or rotation speeds are called Dimentberg-Wedig models.

7 Concluding Remarks

When vehicles are rolling on uneven roads driven by a constant force, vertical
vibrations of the vehicle are induced which are coupled with the horizontal motions
of the vehicle effecting that the travel velocity fluctuates around a stationary speed
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with zero mean acceleration. The coupling between both planar motions is caused
by the permanent direction change of the contact force to ground along the contour
of the road profile. In case of sinusoidal road profiles, the vehicle gets stuck before
the resonance speed and needs more power supply to overcome the resonance in
order to reach higher speeds. This is desirable when on unpaved roadways, the
resonance vibrations start with 30 km/h.

To enlighten these dynamic effects, the paper presents the following main new
results:

1. Multiple Sommerfeld effects are shown between the resonances and before and
after the peaks of all resonances. The periodic limit cycles in Fig. 6 are new
results showing how the car speed gets stuck on positive force slopes.

2. In Figs. 7 and 8, non-periodic stochastic limit cycles are calculated with a bundle
of realizations which are described by periodic probability density distributions
of travel speed against acceleration in the phase plane.

3. New robust integration routines are introduced into rotor dynamics in order
to derive non-periodic limit cycles of acceleration against rotation speed. All
realizations together form a periodic flow as shown in Fig. 10.

In vehicle road dynamics, these results are derived by means of co-variance
equations of the road times the vibration co-ordinates. They have skew symmetric
forms and can be averaged in order to get the averaged co-variances and averaged
vehicle speeds for given driving force. These results are applied as initial values
of the Euler integration to obtain the true velocity against the acceleration plotted
as periodic limit cycles around the averaged values. In [2], it is shown that the
co-variance equations and the drift equation can be solved by means of Fourier
expansions. In future, the same analytical technique should be introduced into rotor
dynamics, where up to now, the paper presents numerical results, only. Note that the
two equations of motion of the Sommerfeld model are ill conditioned in the sense
that numerical integration by means of Euler schemes fails. Therefore, the paper
proposes to re-arrange the equations of motion so that the unknown accelerations of
translation and rotation are decoupled and isolated on the left side of the equations
and can be integrated.

Conflict of Interest The author declares that he has no conflict of interest.
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A Forward Dynamics Methodology
to Study Nonlinear Dynamics and Wear
of Total Knee Arthroplasties

Ehsan Askari and Michael S. Andersen

1 Introduction

Relative motion between the knee components, dynamic loading, and contact
stresses in the knee joint play vital roles in the development and progression of
wear occurrence in total knee arthroplasty (TKA), which can ultimately cause the
implant to fail and require revision [1, 2]. Therefore, developing anatomical-based
models to study the kinetic and kinematic behavior of substructures of TKAs while
taking the real geometry and material properties of knee components is essential.
Having a look at the scientific history of knee joint models, the pioneering successful
work comes back to the anatomical and sophisticated three-dimensional (3D) quasi-
static model Wismans et al. developed in 1980 [3]. During the last decades, many
studies were carried out employing quasi-static knee models [4, 5]. However, quasi-
static models do not allow to consider inertial loads and detailed studies of such a
complex joint to determine, e.g., the tribological behavior of the joint [6, 7]. Much
of the mathematical dynamic approaches of the joint available in the literature are
two-dimensional, considering motions in the sagittal plane only [8]. One of the very
first successful attempts to determine the 3D dynamic solution of knee joint was
carried out by Abdel-Rahman and Hefzy [6], while the model did not account for the
deformation of the articular surfaces and the real geometry of the tibial insert. Later,
that model was improved by Caruntu and Hefzy [7] to take into account deformable
contact at the articular surfaces. Although much of the available knee joint dynamic
models just focused on the joint rather than whole body simulation, Piazza and
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Delp utilized a full-body dynamic model [9]. The drawback of that study, however,
was to employ the rigid-contact theory to simulate the knee joint, which was not
capable of calculating contact stresses. An efficient approach can be considered the
one that links an in-detail forward dynamic methodology of the knee joint with a
deformable contact model to a musculoskeletal system that is responsible to obtain
physiological forces and moment from surrounding tissues, e.g., muscles and hip,
for which commercial software is available [5].

The present study aims at developing a forward dynamics model of TKA being
subjected to the boundary conditions obtained from a musculoskeletal modeling
[4]. The real geometry of the bearing surfaces is used, which are smoothed using
a Laplacian smoothing technique. A specific contact search procedure is developed
that reduces computational time considerably. Ligaments are also modelled using
a nonlinear elastic model, accounting for a realistic asymmetric nonlinear ligament
behavior [4]. In addition, motion equations of the tibiofemoral joint are derived
based on Newton’s second law of motion and Euler’s equations [7]. Archard wear
law is then embedded in the present dynamic approach, which allows for the
prediction of TKA wear. A mesh density analysis is performed and the developed
approach is assessed comparing acquired outcomes with those available in the
literature.

2 Patient-Specific Musculoskeletal Modeling

To estimate patient-specific TKA knee joint loads, an already validated patient-
specific musculoskeletal model is employed [4]. Data for one male subject (age: 86,
height: 1.80 m and mass: 75 kg) with an instrumented, posterior cruciate-retaining
TKA prosthesis from the 5th Grand Challenge Competition to Predict In Vivo
Knee Loads [4] is applied for the model development. Among others, the dataset
contains pre- and postoperative Computed Tomography (CT) scans, trajectories of
skin markers and ground reactions during standing reference trials and dynamic
movement trials, including gait at a self-selected speed as well as measurements
from the instrumented knee prosthesis. Additionally, Stereolithography (STL) 3D
geometries of the femoral component, tibial tray and insert, patellar button, and
segmentation of the postoperative CTs of the partial pelvis, femur, patella, tibia,
fibula, partial talus, and partial calcaneus are also included in the dataset. For
the dynamic analysis, the one gait trial of level walking at self-selected speed
(PS_ngait_og_ss1) is utilized [4]. The musculoskeletal model is developed using the
AnyBody Modeling System (AMS) v. 7.1 (AnyBody Technology A/S, Denmark)
and based on the human model from the AnyBody Managed Model Repository
(AMMR) v. 1.6.
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3 Tribology and Forward Dynamics Modeling

We focus on an assembly consisting of the tibia and femur as the tibiofemoral joint’s
components along with its ligaments to develop a tribology and forward dynamic
model. In the following, the developing process of such a model is described
in detail. The bearing surfaces are constructed from a cloud of 3-D data points
before being meshed. Then, a forward dynamics model is derived after developing
an approach to compute contact stresses between articulating bodies. Finally, the
tribology of the polyethylene tibia is formulated to predict wear.

3.1 Surface Treatment

The Laplacian smoothing technique is used to smooth the triangulated surfaces of
the femoral part and tibial insert for which all vertices adjoining any vertex are
determined, to which the umbrella operator is employed. The bearing surface of
the tibial insert is constructed using the Non-Uniform Rational B-Spline (NURBS)
surface methodology and is in turn meshed using a uniformly discretized domain A,
shown in Fig. 1. Corresponding to each node on the tibial bearing surface, a node
on the master body, i.e., the femoral part, is determined using a minimum normal
distance approach. The technique to determine the minimum normal distance of a
node, e.g.,Qk,jT , with respect to the femoral body, is visualized in Fig. 2.

Fig. 1 The domain “A” that is discretized into a uniform mesh
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Fig. 2 Determination of the minimum distance of a node,Qk,jT , on the Body 2 to the Body 1

3.2 Contact Search and Detection

According to the translational and rotational motion of the knee components and
their irregular geometries, a spatial search is required and one always has to check
possible contacts at any time. The scheme developed in this study subdivides the
domain where the contact is likely to take place, i.e., the tibial bearing surface,
into uniform cells or bounding boxes, each of which includes several elements
of the surface discretized in the first place [10]. The upper-bound value, i.e., y,
of each bounding box is determined that is compared to the lower-bound value
of the femoral bearing surface in the differential domain of the bounding box. If
any intersection occurs, this bounding box gets opened to check all nodes herein.
Thereafter, the normal minimum distance of each node (i, j) of elements inside
the bounding boxes that is in contact is determined and is stored as the respective
penetration depth, Di, j.

3.3 Contact Formulation

The present study implements a concept proposed in [11] to evaluate the contact
stresses in TKA. Knowing the penetration depth Di, j and computing its time
derivative Ḋi,j from the dynamic motion of the knee, the normal contact pressure,
σ i, j, at any node can be evaluated based on the Kelvin-Voigt model as follows [11]:

σ i,j = −KDi,j −KτḊi,j , (1)
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in which K is the contact stiffness and τ the relaxation time. K is obtained from
K = /6where = (1− υ)E/[(1+ υ)(1− 2υ)] and6 is the tibia thickness. E and
υ are Young’s modulus and Poisson ratio of the polyethylene that are, respectively,
463 MPa and 0.46 as reported in [11, 12]. The resulting contact force imposed on
the femur is computed from the following integration:

Fcont =
∫∫

A

σn dA, (2)

where n indicates the normal unit vector of facets of the femur surface. The friction
force, designated by Fμ, is also taken into account using the Coulomb law as
Fμ = − μ‖σn‖t where μ denotes the friction coefficient and t is the tangential
vector along with the local motion occurring in the respective differential contact
area.

3.4 Ligament Modeling

In this study, ligament forces are modeled using an asymmetric nonlinear elastic
model. The force, f (ε), each ligament, i.e., PCL, LCL, and MCL, imposes on the
femur can be evaluated from the following formula, which also includes a slack
region [4]:

f (ε) =

⎧
⎪⎨

⎪⎩

kε2

4ε1
0 ≤ ε ≤ 2ε1

k (ε − ε1) ε > 2ε1

0 ε < 0

, (3)

where k is the ligament stiffness and ε depicts the strain while ε1 is a constant
with value of 0.03, which is associated with the transition phase between linear and
nonlinear regions of the force-strain curve. Stiffness and reference strain assigned
to each ligament bundles are adapted from the literature [4]. The resulting ligament
force and moment imposed to the femur are computed by the following formula:

Flig = FLCL + FPCL + FMCL,

Mlig = MLCL +MPCL +MMCL.
(4)

3.5 Forward Dynamics Modeling

The constitutive motion equations of tibiofemoral joints can be written based on
the general linear and angular momentum equations. The former is the so-called
Newton’s second law of motion, which is written as follows [13, 14]:
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MẌ = F, F = Fext + Fcont + Fμ + Flig, (5)

in which M is the femur mass, while Ẍ denotes the vector of translational
acceleration and F is the vector sum of all force vectors applied to the femur,
including the external forces, Fext, contact resultant forces, Fcont, friction force, Fμ,
and ligaments loads, Flig. The angular-momentum equation can also be given by:

M∗
C = IC∗ω̇∗ + ∼

ω
∗
IC∗ω∗, (6)

where M∗
C = RTMC is the sum of external moments that are computed with respect

to the body coordinate system of the femoral part (xyz). Moreover, MC is the sum
of the externally applied moments that are determined with respect to the origin of
the coordinate system (xyz), but computed in the global coordinate system. RT is
the transpose of the rotation tensor of the femur. IC∗ and ω∗ stand for the tensor of
inertia and the angular velocity of the femoral component in the body coordinate
system, respectively. In the dynamic model, a rotation tensor with Euler angles of
the z-x-y sequence is constructed with the array of Euler angles qT = {φ, θ ,ψ} to
determine the location of each node of the femur. The corresponding rotation tensor
can be given by

R ≡ Rz−x−y

=
⎡

⎢
⎣

cosφ cosψ − sinφ sin θ sinψ − sinφ cos θ cosφ sinψ + sinφ sin θ cosψ
sinφ cosψ + cosφ sin θ sinψ cosφ cos θ sinφ sinψ − cosφ sin θ cosψ

− cos θ sinψ sin θ cos θ cosψ

⎤

⎥
⎦ ,

(7)

where φ is the magnitude of the planar rotation around the axis z, which is the
flexion-extension angle. The angular velocity in the body coordinate system can be
written based on time derivatives of Euler angles as follows:

ω∗ = H∗z−x−y

⎧
⎨

⎩

φ̇

θ̇

ψ̇

⎫
⎬

⎭
. (8)

Operator H∗z−x−y is the tangent operator, that is, tangent to the rotation manifold.
The body coordinate system is set to coincide with the principal axes of the mass
moment of inertia tensor and Eq. (6) is thus reduced to a diagonal form. The
governing equations are further simplified to the so-called Euler’s equations for the
angular motion of a rigid body. In the analysis, the femur mass with all surrounding
tissues of the male subject is 7.5 kg, while the tensor of inertia with respect to
the body coordinate system is (0.4516 0 0; 0 0.0213 0, 0 0 0.4516) [4]. The
numerical integration of Eqs. (5) and (6) is performed using the adaptive Runge-
Kutta-Fehlberg method [15].
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3.6 Polyethylene Damage: Wear and Creep

Archard’s wear model is commonly used by the tribology community to describe
adhesive and abrasive wear mechanisms, although it is often adopted for a wide
range of applications as a result of its efficiency and simplicity [5]. Employing
Archard’s wear law, the linear wear rate can be computed using the following
expression [13]:

dh

ds
= kWP, (9)

in which h denotes the wear depth, while s stands for the sliding distance. The
variable kW is the wear factor with unit mm3N-1m-1. Kang and his colleagues
proposed formulations to compute wear factor based on both cross-shear ratio, I,
and the contact pressure of the UHMWPE tibial insert [16], which is given by

kw (I, p) = exp [−13.1+ 0.19 ln (I)− 0.29p] , (10)

where p is the average contact pressure for a given element, which is determined
by averaging contact stress over one gait cycle, and the definition of the cross-shear
ratio and the procedure to compute it is well described in [16]. Wear factor given
in Eq. (10) is dependent on the contact pressure and is not easily implemented into
computational wear modeling. Abdelgaied et al. [12] developed a wear model based
on the idea that wear volume (W) is proportional to the contact area (A) and sliding
distance (S) and a nondimensional wear coefficient (C) determined experimentally,
as follows:

C = (a + b × CS)−1/c, (11)

where CS is the cross-shear ratio, and parameters a, b, and c are constant and
determined from the experimental measurements of a multidirectional pin-on-disk
wear test [12] as a = 8.5173e-65, b = 9.3652e-60, and c = -6.7454.

4 Results and Discussion

To guarantee the accuracy and convergence of dynamics and contact simulations,
a mesh density analysis is performed. Three different element sizes to discretize
the domain A, Fig. 1, are considered, i.e., 0.2, 0.4, and 0.6 mm. Multiple system
parameters that can be influenced by the mesh size are used to assess the mesh
density, such as contact forces and moments on both medial and lateral condyles,
and maximum contact pressures on both condyles. According to the outcomes
obtained, the mesh size of 0.2 mm is deemed to produce accurate results and is
used in this study to perform the computational analysis. The developed model is
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Table 1 A comparative study of three techniques to compute wear: wear depth (W.D) (mm/mc);
volumetric wear (V.W.) (mm3/mc)

Method i1 Method ii2 Method iii3

W.D. V.W. W.D. V.W. W.D. V.W.

0.0924 / 0.0925 9.1 0.0364 / 0.0525 4.7 0.0514 / 0.0475 6.7

1Method i: Constant wear factor; 2Method ii: Kang et al. [16], Eq. (10); 3Method iii: Wear
coefficient [12], Eq. (11); 4Medial condyle; 5Lateral condyle

Table 2 Comparison of wear outcomes with those available in the literature

Study Study type Wear depth Volumetric wear

Present study Numerical 0.45901 / 0.45852 9.1
Fregly et al. [5] Numerical 0.51 / 0.52

Zhang et al. [17] Exp. / Numerical 0.441 / 0.432 7.8-8.5
Abdelgaed et al. [12] Numerical 5.7-6.0* / 8.3-8.7**

Gill et al. [18] Retrieval 0.50 (0.10 mm/mc)

1Medial condyle; 2Lateral condyle; *Intermediate kinematic input; **High kinematic inputs.

employed to compute linear and volumetric wear rates for one million cycles while
using three available wear techniques, Table 1. The highest values of both linear
and volumetric wear rates are reported employing Method i with a constant wear
factor of 2.2×10-16 mm3N-1m [5]. Using the wear factor suggested by Kang et al.
[16] gives less wear depth on the medial condyle than that on the lateral one, which
opposes the outcomes associated with the other two methodologies.

Moreover, the outcomes acquired using the developed methodology are com-
pared to those available in the literature as listed in Table 2 for comparison purpose.
Maximum linear wear rates (mm/mc) are reported on both medial and lateral
condyles that align with previous studies in terms of not only wear magnitudes but
also approximately similar values acquired on both condyles. The volumetric wear
(mm3/mc) that the developed model produces is comparable well with those other
researchers reported by either numerical, experimental, or retrieval studies.

4.1 Dynamics and Tribology of the Joint

The loci of the motion of the femur center with respect to the tibia on the transverse
plane for four different friction coefficients are illustrated in Fig. 3. It can be seen
that increasing friction coefficient leads to a significant change in the trajectory
of the femur center in lateral-medial direction in particular. However, the friction
influence is not that large in posterior-anterior direction, although some variations
have been observed for the case study with friction coefficient 0.04 and 0.12
compared to others. This is also observed that the trajectory loops of all case studies
are closed. Although friction and viscous contact lead to the energy loss in the
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Fig. 3 Effects of friction coefficient (Coulomb’s law) on trajectory of the tibiofemoral joint

system, energy is continuously introduced in the system due to the rheonomically
constrained flexion-extension rotation and boundary conditions, e.g., loads and
moments imposed on the femoral bone from muscles, hip joints, among others,
which is why the femur center motion converges to a steady-state periodic motion.

The effect of friction on linear and volumetric wear rates is also investigated and
acquired outcomes are listed in Table 3 using the wear coefficient [12]. It can be
observed that the maximum linear wear rates are obtained in the case study with μ
= 0.12. Lateral linear wear value of the case study with friction coefficient 0.08 is
lower than that with μ = 0.04, which means it is not a direct relationship between
the wear values and friction coefficient. The interesting outcome is the maximum
volumetric wear rate occurs for the case study with μ = 0.04, while the minimum
volumetric and linear wear rates are associated with the frictionless joint. When the
friction is higher, the greater linear wear can be expected as the worn area decreases
due to the changes in the trajectory of the femoral part. However, there is another
important contributing factor to wear occurrence, which can prevent the wear to
increase. When UHMWPE slides against a metallic counter face, molecular chains
preferentially become oriented along a so-called principal molecular orientation
(PMO), resulting in a higher wear resistance of polyethylene, which is called
orientation hardening in the direction of the PMO.

The wear map and distribution of four study cases considered in this article are
illustrated in Fig. 4. It can be observed that the distribution of wear in the medial
condyle shrinks in anterior-posterior direction once friction coefficient increases.
Moreover, increasing friction gives rise to wear values on the lateral condyle as can
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Table 3 Effects of friction coefficients on wear rates

Friction Co.
Medial linear wear rate
(mm/mc)

Lateral linear wear rate
(mm/mc)

Volumetric wear rate
(mm3/mc)

μ = 0.12 0.066 0.051 7.06
μ = 0.08 0.051 0.045 6.68
μ = 0.04 0.043 0.049 7.16
μ = 0 0.037 0.031 6.09

Fig. 4 Effect of friction coefficient on linear wear values (mm) of tibiofemoral joints after one
million cycles: (a) μ = 0; (b) μ = 0.04; (c) μ = 0.08; (d) μ = 0.12.

be observed in Fig. 4 and more intense color of the wear map becoming red. The
worn area on the lateral condyle of the knee joint is seen to be the same for all cases.
The other finding is the maximum linear wear rate on the lateral side of the joint
occurs close to the lateral periphery of the joint when μ = 0.04, while it is shifted
to the middle of the lateral condyle with increasing friction as is observable in Figs.
4c,d. The worn area on the medial condyle with high linear wear rates increases in
the case study with μ = 0.12 and is more uniform compared to others, Figs. 4a,b in
particular.
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5 Conclusions

A nonlinear forward dynamics approach was developed in which a tribology
methodology was integrated to investigate friction effects on dynamics and wear
of tibiofemoral joints. A mesh sensitivity was performed to come up with a mesh
size that can guarantee the accuracy, convergence, and efficiency of the developed
method. A comparison of acquired outcomes to those available in the literature
allowed the assessment of the developed model. It was shown that friction influences
the trajectory of the femoral part with respect to the tibial insert significantly in
medial-lateral direction as well as the gross motion loci. The maximum linear wear
rates occur for the case study with highest friction coefficient, while the maximum
volumetric wear value is associated with μ= 0.04, which is greater than those cases
with higher friction. It was also observed that the distribution of wear in the medial
condyle shrinks in anterior-posterior direction once friction coefficient increases.
Moreover, increasing friction gives rise to wear values on the lateral condyle.
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Solving Non-smooth Dynamic Problems
Using the Alternating Direction Method
of Multipliers

Alessandro Tasora, Dario Mangoni, and Simone Benatti

1 Introduction

Simulation of complex systems involving multiple contacts between mechanical
parts can lead to problems of non-smooth dynamics. In such framework, contacts
and frictional effects are represented by set-valued functions, thus leading to a more
complex mathematical framework with respect to conventional smooth ordinary
differential equations (ODEs) or differential-algebraic equations (DAEs). In the
latter, in fact, frictional contacts are often approximated as smooth regularizations,
hence, introducing spring-like penalty forces that allow the adoption of typical ODE
or DAE time integrators, but at the same time incurring in low stability unless very
small time steps are used.

Following the seminal works by Moreau [1, 2], most formulations for non-
smooth dynamical problems are based on measure differential inclusions (MDIs):
just like differential inclusions they allow set-valued force laws (such as the
Coulomb–Amontons dry friction model) but also generalize to the case where
velocity is assumed to be a possibly discontinuous function of bounded variation
in order to allow impulsive events.

These problems can be solved by means of special time-stepping methods that
offer superior robustness and stability at the cost of solving a complementarity
problem, or more in general a variational inequality (VI), per each time step [3].
In this context, unknowns to be solved are velocity measures and reaction impulses
at contact points and at joints: in cases of many parts with a lot of frictional contacts,
the large dimension of the VI could lead to a bottleneck in the time-stepping process.
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This stimulated a lot of research on efficient numerical methods in the last three
decades.

One of the former approaches, presented in [4], was based on solving a linear
complementarity problem (LCP) per each time step. LCPs are sub-cases of VIs, for
whom a direct method (Lemke’s algorithm) does exist. However, direct LCP solvers
offer exact solution at the cost of very expensive pivoting sub-iterations that scale
badly with an increasing number of unknowns, and for these reasons, they are not
much used nowadays.

On the other hand, approximate but efficient methods based on fixed-point
iterations became popular in the area of real-time simulators and robotics [5]. In
most cases, they are based on stationary methods like Gauss–Seidell or Jacobi
iterations interleaved with projections on friction cones. They can be used to solve
the LCP or the cone complementarity problem (CCP), another special case of the VI
in which the multibody contact problem can be formulated. Attempts were made in
order to parallelize them and to increase their convergence, such as over-relaxation,
the Krasnoselskii–Mann smoothing, and warm-starting, [6, 7] but in general they
perform poorly when there are odd mass ratios and when articulated mechanisms
such as robots are added to the scenarios—in those cases convergence often stalls,
and if the iteration is prematurely truncated, reaction impulses are badly estimated
and mechanisms fall apart or bend, and objects might interpenetrate.

Another option is to solve the CCP as an optimization problem, using first-
order optimization methods such as the Nesterov accelerated projected gradient
descent [8] or the Barzilai–Borwein spectral projected gradient [9]. These methods
are based on a simple projection operator, matrix-by-vector multiplications, and
inner products. Their convergence is better than for fixed-point iterations, however
they share with them the following issue: that they often require the building of a
Delassus operator, that is, a Schur complement matrix that is easy to compute in
efficient (factored and sparse) format if diagonal masses are used because these can
be easily inverted, but hard to handle if finite elements are added to the problem,
because they introduce stiffness and damping matrices whose inverse would be
needed as well.

A further class of solvers is represented by non-smooth Newton methods, such as
the one presented in [10] , that assume a generic nonlinear complemetarity problem
(NCP), again a sub-case of a VI, and represent the NCP complementarity constraints
using non-smooth functions like the Fisher–Burmeister function. A generalized non-
smooth Newton method can be used to find the zero of the functions, at the cost of
solving a linear system per each iteration.

Under mild assumptions, the VI can be stated as a convex CCP, which can
be also cast as an optimization problem, namely a quadratic program (QP) with
convex constraints [11]. For such a class of optimization problems, one can use
interior-point methods (IPMs), a class of solvers that share some similarities with
the abovementioned non-smooth Newton methods—for example, the solution of
a saddle-point linear system is required at each iteration. IPMs offer the best
theoretical convergence. However, their implementation is quite intricate, and
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despite the encouraging theoretical properties, in practice they do not scale well
for large problems. Also, there are no reliable ways to warm-start them [12] .

Recently, there has been a revival of alternating direction method of multipliers
(ADMMs) and similar operator-splitting methods for solving constrained optimiza-
tion problems [13]. Even if the theoretical convergence of such methods is worse
than the one of IPMs, recent developments showed that in practical scenarios they
offer superior speed, scalability, and robustness [14]. An attractive property of
ADMM is that it requires the solution of a linear system per each iteration, but unlike
IPMs, such linear system most often remains unchanged during the iterations, so a
factorization can be reused multiple times with a great benefit in terms of speed.

A similar scheme, based on a sequential unconstrained minimization technique,
has been proposed in [15] for non-smooth dynamics and robotics.

In [16], a specialized ADMM method for quadratic problems with conic
constraints has been presented: on the top of this method, we develop a solver that
can exploit the nature of non-smooth dynamical problems.

2 The Non-smooth Multibody Model

Different time-stepping schemes have been proposed for MDIs; here, we refer to the
one discussed [7] without lack of generality. After regularization and convexification
and discretization, the MDIs lead to a major numerical bottleneck to be solved at
each time step: a (mixed) CCP with unknowns v and γ ε :

⎧
⎪⎪⎨

⎪⎪⎩

Mv − k −Dεγ ε = 0

DTε v + bε = uε

−Υ ◦ & uε ⊥ γ ε ∈ Υ

(1a)

(1b)

(1c)

where

– unknown v is the speed at the end of the time step,
– unknown γ ε is the reaction in contacts and bilateral joints, a vector-signed mea-

sure with the Lebesgue decomposition in atomic parts (impacts) and continuous
parts (continuous reactions),

– M is a positive-definite block diagonal matrix containing masses and inertia
tensors of the bodies,

– Dε is a sparse matrix, the transpose Jacobian of all constraints,
– k is a vector containing terms proportional to applied forces, among other things,
– b is a vector containing constraint stabilization terms, among other things,
– Υ is the Cartesian product of all cones of admissible constraint forces, Υ =×i

Υi ,
– if a frictional contact is added, Υi ⊂ R

3 is a second-order Lorentz cone with
aperture proportional to friction coefficient,
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– if a bilateral constraint is added, Υi = R and Υ ◦i = {0},
– if a unilateral constraint is added, Υi = R

+ and Υ ◦i = R
−, and

– Υ ◦ is the polar cone, opposite of the dual cone, i.e., Υ ∗ = −Υ ◦.
For more details on the model, we refer to [17].
Introducing the Schur complement

N = DTε M−1Dε

and the vector

rε = DTε M−1k + bε

such that

uε = Nγ ε + rε

one can also write the problem as the following CCP:

−Υ ◦ & Nγ ε + rε ⊥ γ ε ∈ Υ (2)

This CCP corresponds exactly to a first-order optimality condition of a convex
quadratic program:

min
1

2
γ Tε Nγ ε + rTε γ ε

s.t. γ ε ∈ Υ
(3a)

(3b)

and in fact, the CCP (2) can be written in the more conventional language of the
KKT optimality conditions on dual variables y multipliers, for y = −uε and primal
variables γ ε :

Nγ ε + rε + Iy = 0 (4a)

γ ε = z (4b)

Υ & z ⊥ y ∈ Υ ◦ (4c)

After the convex program (3) is solved by ADMM, one can compute v = M−1(k+
D̄εγ ε) with a quick post-processing step.

The ADMM method in [16] can be used to solve problems in the form

Px + q + AT y = 0 (5a)

Ax − b = z (5b)
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C & z ⊥ y ∈ NC(z) (5c)

and one can see that (4) is a special case of (5), where A = I , P = N , C = Υ ,
and q = r , x = γ ε , b = 0, where some optimizations can take place because of the
structure of our problem.

We remark that the ADMM method just makes the assumption of Υ being
convex, so the problem can be generalized to γ ε ∈ C, where C is a generic convex
set, and at the same time, we assume an associated flow uε ∈ −NC(γ ε). For
instance, C could be a capped friction cone to represent plasticization of contacts,
or a cone translated downward to represent possible adhesion in contact up to a
threshold, or the Von Mises yield region if γ ε represent stresses in finite elements
undergoing plasticization.

Also, in sake of highest generality, in presence of finite elements, one might
need to use tangent stiffness matrices K and damping matrices D to accommodate
an implicit integration scheme for stiff elements, and this means that the Schur
complement would be computed as N = DTε H

−1Dε . Here, H , taking the place
of the originalM matrix, is rather a linear combination ofM , K , and D (depending
on the integration scheme) and in general is not diagonal anymore.

3 The ADMM Solver

For variables (x, z) ∈ R
m×Rn, the ADMM methods solve constrained optimization

problems with separable structure

min f (x)+ g(z) (6a)

s.t. Ax + Bz− b = 0 (6b)

by introducing an augmented Lagrangian

Lρ(x, z, y) = f (x)+ g(z)+ yT (Ax + Bz− b)+ ρ
2
‖Ax + Bz− b‖2 (7)

and by iterating over two minimization problems as in the following loop:

xk+1 ∈ argminLρ(x, zk, yk) (8)

zk+1 ∈ argminLρ(xk+1, z, yk) (9)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − b) (10)

Although the convergence is fast in the first iterations, it tends to deteriorate later as
in fixed-point iterations; however, in practical scenarios where loose tolerances can
be accepted, the method proves to be very efficient and robust.
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In order to rewrite (3) as a sum of two functions as in (6), we introduce the
auxiliary variables (γ̃ ε, z̃), we state the γ ε ∈ Υ constraint by adding a non-smooth
penalty function given by the indicator function IΥ (γ ε), where IΥ (γ ε) = 0 for
γ ε ∈ Υ and = ∞ otherwise, another indicator function Iγ ε=z(γ ε, z), and finally
we have

min
1

2
γ̃ Tε N γ̃ ε + rTε γ̃ ε + Iγ̃ ε=z̃(γ̃ ε, z̃)+ IΥ (γ ε) (11a)

s.t. (γ̃ ε, z̃) = (γ ε, z) (11b)

We can write the augmented Lagrangian introducing two step size parameters σ
and ρ and two vector of multipliers w and y, obtaining

Lσ,ρ
(
(γ̃ ε, z̃), (γ ε, z), (y,w)

) = 1

2
γ̃ Tε N γ̃ ε + rTε γ̃ ε + Iγ̃ ε=z̃(γ̃ ε, z̃)+ IΥ (γ ε)

+wT (γ̃ ε − γ ε)+
σ

2

∥
∥γ̃ ε − γ ε

∥
∥2 + yT (z̃− z)+ ρ

2
‖z̃− z‖2

(12)

that is also, using the property yT r + ρ
2 ‖r‖2 = ρ

2

∥
∥
∥r + 1

ρ
y

∥
∥
∥

2 − 1
2ρ ‖y‖2, the

following:

Lσ,ρ
(
(γ̃ ε, z̃), (γ ε, z), (y,w)

) = 1

2
γ̃ Tε N γ̃ ε + rTε γ̃ ε + Iγ̃ ε=z̃(γ̃ ε, z̃)+ IΥ (γ ε)

+σ
2

∥
∥
∥
∥γ̃ ε − γ ε +

1

σ
w

∥
∥
∥
∥

2

− 1

2σ
‖w‖2 + ρ

2

∥
∥
∥
∥z̃− z+ 1

ρ
y

∥
∥
∥
∥

2

− 1

2ρ
‖y‖2

(13)

The first step of ADMM requires to compute

(γ̃ k+1
ε , z̃k+1) = argminLσ,ρ

(
(γ̃ ε, z̃), (γ

k
ε , z

k), (yk,wk)
)

This can be simplified remembering that wk will always be zero, that some terms
are constant and can be left out, and that the Iγ̃ ε=z̃(γ̃ ε, z̃) term can be elided to
turn finally the unconstrained argminLσ,ρ into the equality constrained optimization
problem:

min
1

2
γ̃ Tε N γ̃ ε + rTε γ̃ ε +

σ

2

∥
∥
∥γ̃ ε − γ kε

∥
∥
∥

2 + ρ
2

∥
∥
∥
∥z̃− zk + 1

ρ
yk
∥
∥
∥
∥

2

(14a)

s.t. γ̃ = z̃ (14b)
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For such problem, the KKT conditions lead to the following linear problem:

[N + (σ + ρ)I ] γ̃ ε = σγ kε + ρzk − r − yk (15)

The linear system (15) can be solved as it is, but in our case it would be better to
exploit the fact that the Schur matrix N is a product DTε H

−1Dε . We would like to
avoid computing H−1, even storing a precomputed inverse for all iterations would
be unpractical because often dense (except when H is a diagonal mass matrix M).
So, we propose to replace (15) with the equivalent saddle-point problem:

[
H Dε

DT −(σ + ρ)I
]{

v

−γ̃ k+1
ε

}

=
{

k

−bε + σγ kε + ρzk − yk

}

(16)

which, even if it introduces an auxiliary variable v, is very sparse and does not
require computing any H−1.

A remarkable side effect of this approach is that its auxiliary variable v is also
the velocity term in the original MDI (1), so one does not need to compute it as
v = H−1(k + Dεγ ε) after the iteration converged because it is a byproduct of the
linear solver.

The second step of ADMM is a minimization problem too, but it can be rephrased
in terms of a projection on the separable set Υ of the friction cones; note that this
requires an inexpensive and parallelizable operation.

Using these results and adding a Krasnoselskii–Mann relaxation factor α ∈
(0, 2], one obtains the final algorithm:

[
H Dε

DT −(σ + ρ)I
]{

v

−γ̃ k+1
ε

}

=
{

k

−bε + σγ kε + ρzk − yk

}

(17a)

γ k+1
ε = γ̃ k+1

ε + (1− α)γ kε (17b)

zk+1 = ΠΥ
(

αγ̃ k+1
ε + (1− α)zk + 1

ρ
yk
)

(17c)

yk+1 = yk + ρ
(
αγ̃ k+1

ε + (1− α)zk − zk+1
)

(17d)

rprim = γ k+1
ε − zk+1 (17e)

rdual = Nγ k+1
ε + r + yk+1 (17f)

The iteration is terminated when rprim and rdual fall under prescribed tolerances.
We remark that setting proper values for ρ is of fundamental importance in order
to obtain a good speed of convergence. In most cases, one can use heuristics and
adjust ρ only one or two times during the iterations, hence allowing to reuse the
factorization of the linear system. Also, σ acts similarly to a regularization term and
can be left to low values anyway.
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4 Results and Conclusions

We performed benchmarks involving multibody systems with contacts between
multiple parts, showing that the performance of the ADMM method is capable of
handling problems that would converge too slowly using conventional projected
fixed-point methods (see Fig. 1) or even first-order SPG spectral methods [9]. An
additional benefit of ADMM, when compared with those methods, is that it does
not require the computation of a Schur complement, and hence it can be applied
seamlessly to problems featuring a block-sparse matrix in place of the diagonal M
in (1), such as when introducing stiffness and damping matrices for finite elements
(see Fig. 2).

Our ADMM method requires few computational primitives: basically, a projec-
tion of dual variables on conic sets, a backward solve of a linear system, and a
forward solve. The latter is a computational bottleneck, but it can be performed
only once per run, as the matrix does not change often during the iterations. A good
estimation of the ADMM step size proved to be fundamental in achieving good
convergence: using some heuristics, we obtained an efficient auto-tuning algorithm.
We noted that ADMM can be successfully applied to problems that exhibit temporal
coherence because, unlike IPMs, it supports warm-starting.

Fig. 1 Convergence of the ADMMM method within one time step of the wrecking ball benchmark
(600 bricks in four walls): residual in frictional constraint violation compared to fixed-point Jacobi
iterations and to first-order SPG methods

Fig. 2 Test 5. Large deformation of a finite element mesh colliding with a plane. Thanks to the
non-smooth formulation, large time steps can be used (only ten steps have been used from start to
end), and no penalty parameters must be used in contact points. Contacts between lugs and ground
show zero interpenetration regardless of the stiffness of the mesh
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PyChrono and gym-chrono: A Deep
Reinforcement Learning Framework
Leveraging Multibody Dynamics to
Control Autonomous Vehicles and Robots

Simone Benatti, Aaron Young, Asher Elmquist, Jay Taves, Radu Serban,
Dario Mangoni, Alessandro Tasora, and Dan Negrut

1 Introduction

Reinforcement Learning (RL) [1] is a Machine Learning technique based on agent–
environment interactions: at each interaction, the agent performs an action and
collects the state of the system and a reward measuring its performance in solving
some task; the goal of RL is, given the state, picking the action that maximizes
the expected sum of reward, thus solving the task. In the last few years [2], Deep
Learning used in conjunction with RL [called Deep Reinforcement Learning (DRL)]
has demonstrated to be a viable approach to solve complex real-world robotic tasks
[3]. DRL methods, like any other Deep Learning approach, require a large dataset to
optimize the Neural Networks, and this dataset can be collected by sampling from
real robots or through simulation, the latter being safer, cheaper, and easier to set up
and parallelize.

The results obtained in DRL-based controls has arisen interest in physics engine
providing a Python API. The DRL community heavily relies MuJoCo [4] and
PyBullet [5] for robotics environments and on CARLA [6] and AirSim [7] for
autonomous driving.

We provide in a single Python framework a set of reinforcement learning
environments that feature

– Multibody Dynamics simulation with constraints and smooth or non-smooth
contacts,

– deformable bodies simulation through Finite Element Analysis simulation,
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– vehicle dynamics simulation tools, and
– sensor simulation.

2 PyChrono

2.1 Interpreted Language

Python is an interpreted language. This brings obvious upsides in terms of ease
of use but greatly limits the computational performance. Python has also limited
parallelization capabilities, since each Python process is locked on a single thread
(Global Interpreter Lock, also known as GIL).

The reason behind Python success in high performance computing is the
interfacing with compiled libraries through Bindings. In this scenario, Python is
used as high-level interface.

2.1.1 SWIG

To create a Python Wrapper for Chrono, we rely on SWIG [8] (Simplified Wrapper
and Interface Generator). It generates bindings between C/C++ code and common
scripting languages, such as Perl, C#, and Python, without need to modify the
underlying code.

What the Python/C++ bindings do is creating hooks to call the compiled libraries,
and therefore while the functions are called from the Python API, the computation,
under the hood, calls the same libraries as the C++ API. By doing this, the
computational overhead of using Python is minimal while getting the usage and
compatibility benefits.

Besides allowing to solve the Python performance issues, Python bindings also
allow to use multithreading when it is leveraged by the underlying code. This
fits well into Python purpose, being a high-level programming language relying
on binary libraries for computation. In Fig. 1, we show how PyChrono can still
use multiple CPU cores while being used from Python in a simulation with finite
elements and contacts.

2.2 Package Features

2.2.1 Multibody Dynamics

PyChrono wraps the Multibody Dynamics simulation classes of Project Chrono,
providing
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Fig. 1 Speedup in computation when parallelizing the task on two cores

– multibody constrained dynamics,
– smooth and non-smooth contacts,
– FEA-based deformable bodies: beams, shells, and 3D elements,
– various solvers and timesteppers, and
– 1D shaft systems simulation

These features are provided by three sub-modules: core, fea, and mkl (the latter
only providing the interface to MKL PARDISO solver).

2.2.2 Modeling and Visualization Tools

The irrlicht and post-process sub-modules provide real-time 3D rendering and post-
processing tools (such as POV-Ray scripts for higher quality rendering).

2.2.3 Vehicle Dynamics

Wrapping all of Project Chrono vehicle simulation classes, PyChrono supports
template-based tools for modeling wheeled and tracked vehicles. The templates
include wheeled vehicle parts (steering, suspension, wheel, etc.), tracked vehicle
parts (track shoe, sprocket, idler, etc.), terrain, power train, and driver. For some
of these classes have several sub-classes that represent different mechanisms or
physics detail. For example, there are 19 different suspension mechanisms (double
wishbone, multi-link, etc.) and 13 different tire models (rigid, Pacejka, deformable
etc.). PyChrono vehicle also provides complete vehicle models that combined the
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aforementioned parts to give the user a pre-cooked vehicle model. This feature is
especially welcome in contexts, such as the topic of this work, in which the focus is
not on a specific vehicle model, but rather testing an autonomous driving tool on a
generic vehicle.

2.2.4 Sensor Simulation

The sensor sub-module wraps Chrono::Sensor functionalities, being

– support for exteroceptive sensing, which is the sensing providing scene infor-
mation. More specifically, it uses NVIDIA OptiX library ray tracing to simulate
camera and LiDAR sensors, whose process runs on the GPU;

– support for Interoceptive sensing, which is the sensing providing information
from the simulation itself (although processed, such as converting positions to
GPS coordinates). This family includes inertial measurement unit (IMU) sensors
and GPS; and

– parametrization of sensors specifics (update rate, field of view, and lag) and noise
models for every sensor supported.

Sensor Data Pipeline in Python API

Camera and LiDAR sensors outputs (RGB images and point clouds, respectively)
memory footprint are large and in a vision-based control moving these data at each
controller step might be a major bottleneck. To solve this, we cast map the data
as NumPy arrays [9] using the NumPy SWIG interface. Doing so, the NumPy
array class is wrapped around the raw array without instantiating new memory. This
comes with no overhead, saving both time and memory.

2.2.5 Deployment of the Python Package

Anaconda is a Python distribution that creates virtual environments of Python to
have various versions of Python and Python packages on the same machine. It
also manages the installation and dependency management of Python packages
through the Conda Package Manager. Through Anaconda toolchain, it is possible
to create packages using conda-build and make it available to the public through the
Anaconda Cloud platform.

For these reasons, we identified Anaconda packages as the right tool to deploy
and distribute PyChrono. This deployment strategy makes the simulation tool more
easily available for the user, and PyChrono had great benefited from this, having
reached more than 3000 downloads at the time of writing this document.
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3 gym-chrono

3.1 Motivations and Features

gym-chrono is a Python module that provides a set of Reinforcement Learning
virtual environments that use PyChrono for physics simulation. This package is an
extension of OpenAI gym package, and all its environments inherit from the OpenAI
gym environment class. Since every third-party algorithm and DRL framework
is compatible with OpenAI gym environments, they can be used for gym-chrono
environments as well. The same goes for environments utilities, such as the
subprocess environment parallelization provided by OpenAI Baselines. Moreover,
once the package is installed through Pytohn package manager, its environments
can be called from anywhere in the machine by their unique ID.

3.2 Environments

This is a list of the gym-chrono environments. We will refer to state as s and the
action as a.

3.2.1 Benchmarking Environments

These two environments are the simplest of the set and are used to benchmark
algorithms or hyperparameters tuning, without the pretense of modeling real-world
robots. The first is a reversed pendulum to be balanced (s ∈ R

4, a ∈ R) and the
second a 4-legged walker called ant (s ∈ R

30, a ∈ R
8) (Figs. 2 and 3).

3.2.2 Robotics Environments

These environments feature models of real robots created with our SolidWorks
plugin. We provide a 6-DOF robotic arm (Fig. 4) that has to reach a random end-
effector position without colliding with the floor or its own parts (s ∈ R

18, a ∈ R
6)

and a hexapod (Fig. 6) that must learn to walk (s ∈ R
53, a ∈ R

18).

3.2.3 Autonomous Driving Environments

These environments leverage the vehicle and sensor modules to reproduce
autonomous driving scenarios and are divided into two sub-categories:

– Vision-only:
These environments observation is an RGB image, thus the cannot navigate if the
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Fig. 2 Pendulum

Fig. 3 Ant

direction is not encoded in the image (such as in the cone track). We provide an
obstacle avoidance (Fig. 5) and a cone track environment (Fig. 8)

– Sensor Fusion:
These environments observation is a set (tuple) of heterogeneous tensors, usually
an image and a vector. They are capable of autonomous navigation since the
scene and the GPS information are encoded in the state. This family is composed
of a convoy following and off-road navigation environments.
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Fig. 4 Robotic arm environment

Fig. 5 Obstacle avoidance environment

4 DRL Algorithm Implementation

4.1 PPO Algorithm

To solve this environment, we wrote a custom PyTorch [10] implementation of the
Clipped Objective version of the Proximal Policy optimization algorithm [11].

Let the ratio rt (θ) = πθ (at |st )
πθk (at |st ) . Then, we can define the Clipped Objective

Function that is to be maximized as follows:

LCLIPθk (θ) = E
τ∼πk

[ ∞∑

t=0

[
min

(
rt (θ)Â

πk
t , clip (rt (θ), 1− ε, 1+ ε)

)
Â
πk
t

]
]

(1)

with

t timestep. The sum to ∞ is a generalization, in finite horizon scenarios the sum
ends a t the terminal step. The data might be collected over multiple simulations;
in this case, in the sum, there will be several initial and terminal timesteps;
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at action at timestep t;
st state at timestep t;
θ policy NN parameters;
πθ policy, the probability distribution of actions given the state. πθ (at |st ) is the

probability of taking the action at in state st ;
ε clipping ratio, ∼0.2;
k the k-th parameter update. Before the update, the parameters are θk , and the

Advantage Function is estimated on the Policy πθk ; and
Â
πk
t estimate of the Advantage Function at timestep t w.r.t. the policy πθk

We mentioned the Advantage Function. To define it, we first need to introduce
the State Value Function (or often only Value Function, also VF) as

V π(st ) := E

[ ∞∑

l=0

γ lrt+l | st
]

(2)

where

– r : t + l is the reward at timestep t + l, and
– γ is the discount factor.

The VF, being the expected value of the (discounted) sum of future reward given
the current policy π , tells how much a state is good when following the current
policy.

The Advantage Function (AF) is defined as

Aπ,γ = Est+1

[
rt + γV π,γ (st+1)− V π,γ (st )

] = Est+1

[
δV

π,γ

t

]
(3)

Being affected by a lower variance, it is more convenient to estimate the VF through
an NN rather than the AF, using the unbiased estimator proposed by Schulman et al.
[12].

The generalized advantage estimator GAE(γ, λ) is defined as a λ exponentially
weighted average:

Â
GAE(γ,λ)
t =

∞∑

l=0

(γ λ)lδVt+l (4)

4.2 Continuous Control

When using a DRL technique with a stochastic policy, we must sample the action
from a distribution determined by the NN. To do so, in continuous task, the typical
solution is to sample the action from a multivariate Gaussian distribution. The
means of the distributions are the NN outputs, while the variances are optimizable



PyChrono and gym-chrono 581

parameters. Variances are high during the early stages of the training to encourage
exploration and narrow down as the policy converges.

4.2.1 Implementation Details and Features

Our custom implementation of the PPO algorithm relies on PyTorch DL framework
and uses Adam optimizer

Our algorithm is able to deal with vector, image, and image+vector tuple inputs,
given that the right NN model is called (we also provide several NN architectures to
accommodate different input shapes).

5 Results Obtained

Using the aforementioned algorithm, with different NN architectures according to
the observation shape, we have been able to train the autonomous agents to solve all
the tasks of gym-chrono, while we mention here just a couple of them for the sake
of brevity (Fig. 6).

Hexapod The hexapod walker is the gym-chrono environment featuring the highest
number of actions, thus being the hardest of robotics environments. In fact, as
reported in Fig. 7, it took 6000 episodes to converge, being almost three times the
number of policy updates required by the robotic arm.

Hallway Cone Track In this environment (Fig. 8), a model of an RC car has to drive
in a reproduction of a real indoor hallway in a track delimited by red and green
cones. The agent only controls one action (the steering) since the speed is feedback
controlled to keep a constant value, and thus the convergence can be reached in
a relatively short amount of iteration (as shown in Fig. 9). This being said, this

Fig. 6 Hexapod environment



582 S. Benatti et al.

0 10000 20000 30000 40000 50000 60000
Number of Training Episodes

S
um

 o
f R

ew
ar

ds

10000

8000

6000

4000

2000

0

Fig. 7 Hexapod reward progression

Fig. 8 Hallway cone track environment

scenario proves the capability of PyChrono of dealing with large scenarios (the
hallway 3D mesh) and large dataset (the 160 × 90 image observation is the largest
of the set). In addition, this environment could be solved only after the starting
position was placed in proximity of a turn. Starting on a straight, with a 0 steering
angle, means starting in a local maximum that the algorithm is likely to overfit.

6 Conclusions

Together with a concerted effort to improve the Python wrappers of Chrono, which
lead to an Anaconda-distributed package with a good user base [13], we built a set
of increasingly challenging DRL environments and used state-of-the-art continuous
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Fig. 9 Hallway cone track reward progression

action DRL algorithms to solve them. The first step has been building and solving
benchmark environments such as the inverted pendulum and the 4-legged walker
[14]. Then, we included models of real 6-DOF robots by leveraging the tools for 3D
CAD parsing of Chrono [15] and more complex real-world robotic walkers. This
feature proved to be useful by making changes in the model extremely easy to be
passed to the training environment.

The latest development has been in the field of autonomous driving in off-road
conditions, simulating vehicle dynamics and terrain deformation. In this context,
we have been able to train autonomous agents to navigate in off-road unknown
scenarios with obstacles and height irregularities to reach a target location. These
results have been made possible by the capabilities of Chrono in vehicle and sensor
simulation, whose API allows to model vehicle and attach sensors to them, easing
the creation of autonomous driving virtual environments, while providing detailed
models of vehicles and terrain for accurate physical simulation.
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Bipedal walker, with optimized nonlinear
elastic coupling (cont.)

optimal characteristic, of nonlinear torsion
spring, 257

optimized gaits, double step frequencies of,
260

robot and nonlinear spring, model of,
254–255

simplified pendulum model, 258, 259
simultaneous optimization, 255–256
swing period, 258

Bistable oscillator, 388
Bogolyubov’s perturbation method, 224
Bottom hole assembly (BHA), 126
Bouc–Wen model, 208
Boundary Element Method (BEM), 198
Buckling analysis, 149–150
Bumpers, 315, 319

C
Cantilever beam, 15, 16, 230
Cartesian coordinates, 343
Cartesian space, 244
Cart-pendulum system, optimal fractional

LQR-based control approach
controller optimization problem
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nonlinear dynamic system, 186–187
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as pole-placement method, 267
UPOs embedded inside chaotic
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Cubic damping, 358
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Discrete mechanical systems, 510
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control system, 251
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lagrange method, 250
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values of current, 120

Empirical mode decomposition (EMD),
431–433, 436

Energy consumption, 446, 447
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Euler-Bernoulli theory, 428
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Fast Fourier transform (FFT), 333, 334
FBG optical sensors, 427
Feasibility analysis, 418
Feedback linearization technique, 85, 87, 106,
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Finite-Difference Time-Domain software, 419
Finite element method, 288
First-order function, 165
First-order piston theory, 62, 70
First-order SPG spectral methods, 570
Fisher–Burmeister function, 564
Flexible risers, 287
Floquet’s multipliers, 151
Foucault pendulum

aerodynamic damping, 344
pendulum performance, 348–350
time-variant length, 344
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Frame-dragging
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lense-thirring precession, 350–351
numerical predictions for, 351

Frequency-domain approaches, 331
Full-car nonlinear model, 174
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WTs

blade flap-wise deflection response, 56–58
blade flap-wise moment response, 56–58
blade tip torsional deflection response, 58
challenges, 49–50
control approach, 54–55
GSPI controller, 51, 55–59
HAWT, 51
NMPC, 50, 51
pitch control diagram, 55
power response, 56–58
rotor speed response, 56–58
T–S fuzzy wind turbine model

FAST linearized model, 51
fuzzy membership functions, 54
gap metric approach, 52, 53
LPV, 53
steady-state pitch angle, 51

G
Gap

influence of, 313
mass and bumpers, 314
zero-gap configuration, 313

Gaussian distribution, 211
Gears

breakdown maintenance, 451
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feature extraction techniques, 457–459
gear faults, 451
gear-train experimental setup, 453
gear-train schematic, 453
helicopter gearbox system, 460
kinetic energy and transforming rotation,

451
time-based maintenance, 451

Generalized equivalent parameters (GEP), 135
Generalized spring-loaded inverted pendulum

(GSLIP) model. see Spring-loaded
inverted pendulum (SLIP) model

Genetic algorithms, 189–190
Geometry parametrisation, 6–7
Glasgow, 346, 347
Global optimisation, 3, 4, 7–8, 12

linear vibrations, 4
GprMax, 419
Grounded nonlinear energy sink (GNES), 27

beating index, 33–34
differential equations, 28
grounded absorber, 29–30
prediction of performance, 33
pumping time, 32–33

residual energy, 32
simulations, 35, 36
slow flow dynamics, 29–31
tuning plane, 34–35

Ground Penetrating Radar (GPR), 417
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benchmarking environments, 577
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motivations and features, 577
robotics environments, 577
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Half-car model, nonlinear damper under

sinusoidal road excitation
frequency response, 180
mathematical model, 174–175
modulation equations, 176

front wheel when resonance frequency,
177–178

nearly equal resonance frequencies,
front wheel and rear wheel, 176–177

superharmonic resonance at the front
wheel, 178–179

parameters, frequency response with,
180–182
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Hardware in the loop (HIL), 157–159, 166–170
Harmonic balance method (HBM), 9, 77,

102–103
Haversine ramp, 20
Heavy chain stabilisation

buckling analysis, 149–150
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147
geometric stiffness, 147
linearised motion equations, 147
linear system’s response

Strutt-like diagram, 151
time responses, 150, 151

localised modes, 145
modal analysis, 148–149
motion equations, 147
non-linear responses

non-linear motion equations, 154
stability map, 154
time responses, 155

reduced-order model, 152–153
Henon map, 264–265, 269, 270
Hexapod walker, 581, 582
High damping rubber bearing (HDRB) isolator,

314
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Homoclinic bifurcation, 173
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motion areas, 534
motion space, 534
mountain-like construct, 533
time-optimal solution, 534, 535
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Hysteretic damping, 357
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Ikeda map, 265
Impulsive control, 275
Indian rope trick, 145
Inertial measurement units (IMU), 331
Innovative post-processing data techniques,

418
Instantaneous frequency function, 433–435
Intrinsic mode functions, 432
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Jacobian matrix, 5, 267, 477, 484, 486
Jacobi communication pattern, 498–500
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Kanai–Tajimi/Clough–Penzien (KTCP) filter,
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Karnopp’s model, 126
Karush–Kuhn–Tucker (KKT) optimality

conditions, 54
Kobe, 44, 46
Krasnoselskii–Mann

relaxation, 569
smoothing, 564
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Lagrange method, 250
Lagrangian mechanics, 18
Laplacian smoothing technique, 553
L’Aquila, 44, 46
Laser Doppler vibrometer, 410
Latin Hypercube Sampling, 10
Latin hypercube sampling (LHS), 66
LAVIBS-ND software, 139
Leaderless consensus, SO(3), 301

controller design, 304–306
distributed observer, 303–304
undirected tree graph, generating, 302

Legendre polynomials (LP), 84, 86–88, 92
Level-set function (LSF), 4, 6, 7
Lie derivatives, 83
Limit cycle flow

Sommerfeld effects in rotor dynamics,
546–548
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Limit cycle oscillation (LCOs), 61, 67, 105
Linear complementarity problem (LCP), 564
Linear dampers, 95
Linear damping coefficient, 17
Linear quadratic Gaussian (LQG) control,

129
Linear quadratic regulator (LQR)

algorithm, 189, 430
control logic, 428
control system, 186
formulation, 129, 130
method, 106, 112, 113, 125, 129, 130

Load cell, 314
Logistic map, 264, 269
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Longitudinal creep force, 167
Lyapunov function, 279
Lyapunov stability theorem, 284

M
Magnetic springs

experimental rig, 116, 117
stiffness characteristics, 117–118

Manual take-off, 325
MARITEK, 292
Mass, 319
Mass-damper dynamic absorber, 39
Mathematical induction method, 281
Matlab curve fitting tool, 119
MATLAB simulations, 234
MATLAB/SIMULINK, 55
Maximum derailment coefficients, 161, 165
Measure differential inclusions (MDIs), 563
Mechanical model, 490–493
MEDEVAC, 235, 241
Medical evacuation rescue, 235
Melnikov technique, 173
Microelectromechanical systems (MEMS)

experimental setup and validation, 408–409
mathematical modelling, 407–408
microbeam resonator, 406

Microresonator, 410
Mindlin theory, 62, 70
MINe Overall Recognition, 417
Minimum damping coefficient, 165
MINOR Project, 418–419
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Mobile elevating work platform (MEWP),
243–244

Model predictive control (MPC), 50, 51, 54,
56–59

Modified Rodriguez Parameters (MRPs), 299
Monte Carlo sampling technique, 190
Monte Carlo simulation (MCS), 213
Morison equation, 291
Moving Morphable Component (MMC), 4, 6
MR dampers, 173, 174
Multi-input single-output (MISO) analysis,

396
Multistable oscillators, 387

N
Neural networks (NNs)

interpretable expressions, 463
regression techniques, 464

Newmark method, 62, 65
New semi-active control method, 157–159

loop experiment, hardware in, 166–170
research and simulation of, 160, 163

control strategy design, 161–166
simulation, 165–166

single wheelset model, establishment and
simulation of, 159–160

Newton-Euler equations, 440
Newton-Euler/Euler-Lagrange formalism, 391
Newton’s laws, 174
Newton’s second law of motion, 384
NI USB-6341 device, 122
Node-to-node contact modelling approach, 5
Non-grounded nonlinear energy sink

(NGNES), 27
beating index, 33–34
differential equations, 28
non-grounded absorber, 30–31
prediction of performance, 33
pumping time, 32–33
residual energy, 32
simulations, 35, 36
slow flow dynamics, 30–31

Non-ideal energy source, 221
Non-ideal power source, 221, 222, 227
Nonlinear analysis, 8–9
Nonlinear damper under sinusoidal road

excitation, half-car model
frequency response, 180
mathematical model, 174–175
modulation equations, 176

front wheel when resonance frequency,
177–178

nearly equal resonance frequencies,
front wheel and rear wheel, 176–177

superharmonic resonance at the front
wheel, 178–179

parameters, frequency response with,
180–182

Nonlinear damping
closed-loop representation with, 370
extended frequency response function, 371
harmonic balance analysis, 369
multi-degrees-of freedom system, 369

Nonlinear damping, NES
complex-averaging method, 97–98
2-dof oscillator, 97
dynamics

time-series plot of, 98–99
wavelet spectrum, 99

harmonic balance method, 102–103
non-dimensional equations of motion, 97
slow invariant manifold, 100–102
strongly modulated response, 100–102

Nonlinear dynamics, 321, 332
optimal fractional LQR-based control

approach, 186–187
sparse identification of, 465–466

Nonlinear energy pumping principles, 15
Nonlinear energy sink (NES)

advantages, 15–16
beam-based nonlinear spring, 16
beam NES, 17
definition, 15
energy harvester, 16
experimental setup, 20–21
GNES

beating index, 33–34
differential equations, 28
grounded absorber, 29–30
prediction of performance, 33
pumping time, 32–33
residual energy, 32
simulations, 35, 36
slow flow dynamics, 29–31
tuning plane, 34–35

ground acceleration signal, 21
host structure and, 17
induced current, 16
limiting case 1 (LC1)

time and frequency modulation
responses, 22

wavelet spectra associated with velocity
response, 23

limiting case 2 (LC2)
time and frequency modulation

responses, 23
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wavelet spectra associated with velocity
response, 23

model, 18
model of beam NES coupled to primary

system, 18–20
NGNES

beating index, 33–34
differential equations, 28
non-grounded absorber, 30–31
prediction of performance, 33
pumping time, 32–33
residual energy, 32
simulations, 35, 36
slow flow dynamics, 30–31

nonlinear damping
complex-averaging method, 97–98
dynamics, 98–100
harmonic balance method, 102–103
non-dimensional equations of motion,

97
slow invariant manifold, 100–102
strongly modulated response, 100–102
2-dof oscillator, 97

nonlinear flutter suppression (see Nonlinear
flutter suppression)

numerical simulation, 20
pendulums, 16
TET, 27

Nonlinear flutter suppression
aeroelastic model

composite panel with NES, 64
equation of motion of NES, 65
integration time step, 65
Mindlin theory, 62, 70
PVW, 62, 63, 65
stiffness and damping matrices, 63, 64
virtual external work, 63
von Kármán’s nonlinear strain-

displacements, 62, 70
LCO amplitudes, 61
LCO energy, 69
LHS, 66
motion and energy analysis, 67–69
panel’s time responses, 70

Nonlinear inertance mechanism (NIM)
AFT scheme, 77
coupled oscillators, 75–77
model, 74–75
nonlinear inerter at position P, 78–79
nonlinear inerter at position Q, 79–80
steady-state response amplitudes, 78, 80

Nonlinear isolators, 73
Nonlinearly coupled complex dynamical

networks, 275–276

Nonlinearly coupled Lur’e networks, 275–276
average impulsive interval, 278–279
global and exponential cluster

synchronization, 278
and leader Lur’e system, 282
Lyapunov function, 279
mathematical induction method, 281
model description and preliminaries,

276–278
numerical simulations, 283–284
synchronization error evolution curves,

284
zero-row-sum matrix, 280

Nonlinear MPC (NMPC), 50, 51
Non-linear ordinary differential equations

(ODEs), 490
Nonlinear restoring force (NRF)

negative stiffness oscillators, 384
Newton’s second law of motion, 384
system identification of, 379

Nonlinear subspace identification technique
(NSI), 369

Nonlinear time series method
cross recurrence quantification analysis

(CRQA), 338–339
RPS and RP results, 335–338

Nonlinear TMD, 207–208
linear elastic SDOF system, 213
Monte Carlo simulation, 213
TMD-PH

constitutive behavior of, 208–209
equations of motion, 209–210
optimum design, 211–213
optimum parameters of, 215
seismic effectiveness of, 214
stochastic linearization, 210–211

Nonlinear variational optimal controls, 440
Nonlinear vibration

absorbers, 95
isolators, 74, 379

Nonlinear viscoelastic damping (NVD) for
seismic isolation, 197–198

dynamic model, 198–200
seismic dynamics, 200–203

Nonparametric identification technique
Chebyshev polynomials, 410, 411, 413,

414
experimental data, 410
full normalized data, 412
restoring force, 412

Nonpolynomial nonlinear damping
bilinear damping form, 363–365
quadratic damping form, 365–367

Non-smooth multibody model, 565–567
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North Pole (NP), 345
Foucault pendulum, 347
Pendulum response at, 345–346

Notations and graph theory, 300–301

O
Offshore cranes, dynamic actuation model

control system, 251
dynamic behavior of the system, 250
lagrange method, 250
Simulink model, 251
3D double-pendulum model, 248–250
2D double-pendulum model, 244–247

OGY technique, 263
application of, 270–271
delay-coordinate embedding, 265, 266
Duffing oscillator, 265, 270
Henon map, 264–265, 269, 270
Ikeda map, 265
implementation, 264
logistic map, 264
particular orbit, determination of A and B

on, 268–269
philosophy, 264
as pole-placement method, 267
UPOs embedded inside chaotic attractor,

determination of, 266
Optimal fractional LQR-based control

approach
controller optimization problem

cross-entropy method, 190
genetic algorithms, 189–190
LQR-based fitness function, 188–189

control strategy, 187
controller design, 187–188
controller performance, 188

nonlinear dynamic system, 186–187
numerical experiments, 190–191
α1 and α3 optimization, 190–191
optimization of all parameters, 192–194

Optimal gaits, 447
Optimal static output feed-back (OSOF)

control, 125–133
Optimization model

acceleration and deceleration grip phase,
444

initial vertical speed, 444
non-conservative forces, 445
zero-moment point, 443

Optimized nonlinear elastic coupling, bipedal
walker with, 253–254

effective free oscillations frequency, 260
electric motors, maximal power of, 257

energy losses, 260
free oscillations frequency, 261
model parameters, 259
optimal characteristic, of nonlinear torsion

spring, 257
optimized gaits, double step frequencies of,

260
robot and nonlinear spring, model of,

254–255
simplified pendulum model, 258, 259
simultaneous optimization, 255–256
swing period, 258

Oscillation reduction, 244

P
Pacoima, 44–46
Pade´approximation, 397, 398
Parametric excitation, 145, 151, 152, 154, 155
Parkfield, 44, 45
Particle swarm optimization (PSO) algorithm,

84, 86, 89–90, 92
PCB Piezotronics, 138
Pendulums, 16
Phase-space reconstruction (RPS), 334
Phase space topology (PST), 452
Picard iterative method, 513
PID control system, 250
Piezo-electric material, 271
Pilot gain, 325–326
Pinched hysteresis, 210
Pole-placement method, 267
Pontryagin problem, 108, 109
Power spectral density (PSD) function, 210
Primary left hysteresis, 318, 320
Primary right hysteresis, 319
Principal parametric resonance (PPR), 344,

345
Principle of virtual work (PVW), 62, 63, 65
Proper orthogonal decomposition (POD), 452,

454–455
Proportional–integral–derivative (PID)

controllers, 83, 244, 246, 247, 250,
251, 324

Proportional-Nth-order-Integral PI(N) control,
106, 109–113

Pseudo-Resonance Curves (PRCs), 316
Pumping time, 32–33
PyChrono

hallway cone track environment, 581–583
interpreted language, 574
modeling and visualization tools, 575
multibody dynamics simulation, 574–575
Python Package, 576



Index 593

sensor simulation, 576
SWIG, 574
vehicle dynamics, 575–576

Q
Quadcopter, 391

closed-loop dynamic model of, 399
moments of inertia

mathematical model, 392–394
system identification, 395–396

system identification of, 392
Quadratic damping, 358, 362–363, 365–367
Quadrupedal model, 440
Quarter car model, 173

R
Rate limiting, 323
Rayleigh damping, 9
Rayleigh dissipation function, 19
Reconstructed phase space (RPS), 332
Recurrence plots (RP), 334
Reduced-order models (ROMs), 146, 152–153
Regression techniques, 464
Reinforcement Learning (RL), 573
Residual energy, 32
Restoring force surface (RFS) method, 385
Riccati equation, 55, 106, 431
Riemann–Liouville fractional integral, 185
RIFLEX, 292
Rigid Finite Element Method, 290
RLC circuits, 233
Robot-trajectory process

cartesian and joint spaces, 527
general equations, 525–527
horizontal circle trajectory

field of extremals, 535
motion areas, 534
motion space, 534
mountain-like construct, 533
time-optimal solution, 534, 535

Jourdain’s principle, 526
mobility space by ruled surfaces,

528–529
multi-DOF robot with revolute joints

equations of motion, 532–533
gradients and derivatives, 531–532
kinematics and initial conditions,

529–531
Rocking isolation, 39
Rocking rigid block and 2 D.O.F. system

gain maps
Kobe and L’Aquila earthquakes, 44, 46

Pacoima and Parkfield earthquakes,
44–46

mechanical system, 40
equations of motion, 41–42
Lagrangian parameters, 41
mechanical and geometrical

characteristics of reduced-order
model, 41

uplift and impact conditions, 42–43
parametric analyses

characteristics of reduced-order models,
43

gain coefficients, 43–44
proprieties of the two reference

buildings, 43
seismic excitation, 44

tuned mass damper inerter, 39
Rotary drilling system

basic components, 126
eigenfunctions, 127
external sources, 126
feedback component, 128
feedforward constant component, 128
FE model, 127
numerical values, 127
OSOF control

comparison of closed-loop systems, 132
control law, 130
γ ²(Ac) as function of ε for linearized

closed-loop system, 133
J as function of qi for closed-loop

system, 131
largest eigenvalue, 130
LQG, 129
LQR, 129, 130
time response for closed-loop system,

133
time response when drill string starts

with null angular velocity, 132
Rubber-Layer Roller Bearings (RLRBs), 198,

199, 203–204
Runge-Kutta method, 105, 122, 180, 365, 371,

408, 522

S
Saturation effect, 327
Sea currents, 287, 288

discretization of riser and equations of
motion, 288–292

re-entry, optimization of base trajectory in,
293–296
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