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1 Introduction

The active magnetic bearing (AMB)-rotor system is inherently nonlinear. During
operation, most components may show nonlinear characteristics, such as the
nonlinearity of electromagnetic force (the nonlinear relationship of electromagnetic
force with respect to rotor displacement and currents) [1, 2], saturation nonlinearities
[3], hysteresis [4], and rotor nonlinearities including the internal friction [5] and
rotor crack [6]. If the operating condition is harsh, some of nonlinear factors will be
prominent and exert influences on the systems.

Nonlinear factors can lead to unexpected behaviors. For example, the nonlin-
earity of electromagnetic force could cause jump phenomenon, period doubling,
quasi-periodic motion, and chaos. The nonlinearity of electromagnetic force is
common in the AMB-rotor system. Its effects have been discussed in [2, 7, 8].
Other nonlinear factors can also lead to complicated behaviors. Refs. [9, 10]
considered both current saturation and nonlinearity of electromagnetic force and
found supercritical pitchfork bifurcation in an AMB-rotor system. Generally, these
nonlinear behaviors have negative influences. It is necessary to investigate them and
thereby propose effective measures to prevent them.

The approximate analytical methods are effective and common in nonlinear
analyses of AMB-rotor systems. Ref. [2] utilized the method of multiple scales to
obtain analytical solutions describing dynamic characteristics in main resonance
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region. The jump phenomenon was found. The harmonic balance method can
also be used to analyze nonlinear behaviors in main and harmonic resonance
regions [11]. These analytical analyses of AMB-rotor systems usually focused
on the vibration characteristics. The approximate solutions obtained only contain
the vibration amplitude and phase. There were some limitations. The suspension
characteristics that are also important to the system were not mentioned.

During operation of the AMB-rotor system, the rotor suspends without contact
with the stator. This brings some advantages, such as no mechanical wear and low
maintenance cost. But it also means that mechanical clearance between the rotor and
stator is much larger than those of mechanical bearings, and the rotor can move in a
relatively large physical space. The rotor may suspend steadily in different positions
for different conditions. The steady suspension position of the rotor is called static
equilibrium. Due to large mechanical clearance of AMBs, the static equilibrium
can make contributions to the rotor displacement that is defined with respect to the
reference position. In the AMB-rotor system, the rotor displacement depends on
both vibration amplitude and static equilibrium. Therefore, the researches that only
focused on the rotor vibration amplitude and phase [2, 7, 8, 11] cannot obtain the
comprehensive dynamic characteristics. However, the effects of static equilibrium
on system performance and stability were only discussed in a few researches [12],
which needs to be explored further.

In this research background, this chapter analyzed both effects of rotor vibration
and static equilibrium analytically. Compared with the method of multiple scales
adopted in [12] that can only get static equilibrium and vibration amplitude but
no vibration phase, the harmonic balance method adopted in this chapter can obtain
approximate solutions including all of them. Nonlinear behaviors of the system were
further investigated based on the solutions.

2 Mathematical Model

As Fig. 1 shows, an AMB-rotor system consists of the sensor, controller, power
amplifier, electromagnets, and rotor. During operation, once the rotor deviates
from the reference position, its displacement is measured by the sensor, and the
measurement signal is transmitted to the controller. The controller gives the control
command based on its control law. Thereby, the power amplifier outputs currents,
which generate electromagnetic forces in the actuator to act on the rotor and return
it to the reference position. By this way, AMBs can support the rotor without contact
force.

However, some nonlinear factors exist in the system. The current output from
the power amplifier has extreme limits. The electromagnetic force generated in
the electromagnet is inherently nonlinear. The AMB-rotor system with current
saturation and nonlinear electromagnetic force has been introduced in [9, 12]. The
same model is adopted in this chapter.
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Fig. 1 System diagram of AMB-rotor system

This chapter only focuses on the direction where unexpected behaviors happen,
and the high-order actual controller is simplified into a PD controller equivalently.
By considering the nonlinearity of electromagnetic force and current saturation, a
single degree-of-freedom model can be obtained. To facilitate subsequent analysis,
the model has been transformed into a non-dimensional one.

Under the action of PD controller, the control current can be expressed as

i = Kpy + Kdẏ, (1)

where y is the rotor displacement, ẏ is its first derivative with respect to time, and
Kp, Kd are proportional and differential gains of PD controller, respectively.

The electromagnetic force is generated by control current i and bias current i0
together. But limited by output capacity of power amplifier, system currents i± in
opposite electromagnets have extremum values, which are formulated in

i± = med (0, i0 ± i, 1) , (2)

where “med” means taking the median value among three values in the bracket and
the bias current is i0 = 0.5.

According to [1], the electromagnetic force F can be formulated as

F = KF

((
i+

1 + y

)2

−
(

i−
1 − y

)2
)

, (3)

where KF is the force coefficient determined by the system structure, whose value
is 0.0097.

Under the action of unbalance excitation, the motion differential equation is

ÿ = −F + f cos (�t) , (4)
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where f is the amplitude of unbalance excitation, while � is the excitation
frequency, namely the rotor speed.

Equations (1)–(4) make up the nonlinear model. However, the fraction expression
of electromagnetic force (3) brings challenges to subsequent analysis. In order to get
analytical solutions, the approximation of electromagnetic force is obtained in the
possible operating region of the system. A polynomial fitting of the electromagnetic
force Ff with respect to i and y is performed. The fitting model is obtained as
follows:

ÿ = −Ff + f cos (�t) . (5)

In this equation, the fitting electromagnetic force can be expressed as

Ff =
∑

1≤m+n≤11

km,ny
mẏn, (6)

where km,n = 0 if m + n is even number; otherwise, km,n are relational expressions
about controller parameters Kp, Kd . The nonlinearity of electromagnetic force
and current saturation are approximated by fitting electromagnetic force to this
polynomial. Subsequent analysis is conducted based on polynomial model (5).

3 Analytical Analysis

The harmonic balance method is a common one of approximate analytical methods
to do dynamic analyses of nonlinear systems. In this chapter, it is used to study both
effects of rotor vibration and static equilibrium on dynamic characteristics of the
AMB-rotor system. The solving procedure is as follows.

This chapter only focuses on the first-order approximate solution. The solution
of polynomial model (5) is set as

y = C + a cos (�t + φ) , (7)

where a and φ are the vibration amplitude and phase, respectively, while C

represents the static equilibrium. All of them need to be determined.
Substitution of (7) into (5) leads to a polynomial equation withC, a, and φ, which

contains a constant term, a first-order harmonic term, and high-order harmonic
terms. By neglecting high-order harmonic terms and collecting the similar terms
according to constant term, cos (�t) and sin (�t), respectively, we can obtain three
algebraic equations,

G1 (a, φ, C) = 0, (8)

G2 (a, φ, C) = 0, (9)



Analysis of Nonlinear Behaviors 653

G3 (a, φ, C) = 0, (10)

where G1 (a, φ, C), G2 (a, φ, C), and G3 (a, φ, C) are the polynomial expressions
whose coefficients depend on system parameters including Kp, Kd , and �.

Solving algebraic equations (8), (9), and (10), the static equilibrium C, vibration
amplitude a, and vibration phase φ can be obtained. Then, the periodic solution y

shown in (7) is determined.
The stability of periodic solutions can be analyzed by the Floquet theory.
Introduce state variables x1 = ẏ, x2 = y, and x3 = �t , and transform

polynomial model (5) into an autonomous one,

ẋ =
⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣−Ff (x1, x2) + f cos (x3)

x1

�.

⎤
⎦ = G (x) . (11)

Equation (11) is a periodic function whose period is T = 2π
�
. According to [13],

its monodromy matrix can be calculated by

dM (t)

dt
= ∂G (x)

∂x

∣∣
x0
M (t) ,

M (0) = I,
(12)

where x0 is the corresponding periodic solution of (11). Integrate (12) in a period T

and obtain monodromy matrix M (T ). Then, the stability of each periodic solution
can be determined by eigenvalues of the monodromy matrix.

4 Results and Discussions

4.1 Supercritical Pitchfork Bifurcation

In this chapter, the system parameters are chosen as Kp = 1.904, Kd = 4.801, and
� = 1. The approximate solutions and their stability can be obtained through above
analysis procedure. It is found that the number and stability of solutions may change
for different excitations. The coexistence of multiple solutions leads to nonlinear
behaviors.

In the AMB-rotor system, the rotor displacement can intuitively show effects
of nonlinear factors and indicate the system performance. Under the influences of
nonlinearity of electromagnetic force and current saturation, the rotor displacement
exhibits complicated behaviors, as shown in Fig. 2. There are three different
solutions that are represented by y1, y2, and y3, respectively. It is the extremum
values of rotor displacement that affect system performance and stability. Therefore,
the maximum and minimum values are marked. During operation, the rotor can
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Fig. 2 Rotor displacement with respect to excitation amplitude: black line—mechanical limit,
red line—y1, blue line—y2, green line—y3, solid line—stable solution, dashed line—unstable
solution, dotted line—range of motion of rotor

move in the range of motion limited by maximum and minimum displacements.
The dotted line represents the range of motion.

It can be seen that there is only one periodic solution y1 for small f . The
maximum and minimum displacements y1max, y1min are symmetric around the
reference position, namely the zero displacement point in Fig. 2. As f increases
in a certain range, y1 increases nearly linearly (see y1max). No unexpected behaviors
occur. However, as f increases to a critical value, namely f = 0.156, nonlinear
factors become prominent and complicated behaviors occur. The trivial solution
y1 still exists, but its stability changes. Namely, the trivial solution y1 becomes
unstable. In addition, two other solutions y2 and y3 appear. In this situation, three
solutions coexist, but only one of the stable solutions, namely y2 or y3, can be
exhibited in actual system. This is a bifurcation of rotor displacement with respect
to excitation amplitude. After bifurcation, the absolute values of y2max and y3min are
much larger than y1max.

The bifurcation of rotor displacement will affect the system performance and
stability. There are auxiliary bearings in the system, which can avoid damage
to the rotor and stator during a touchdown process. But auxiliary bearings also
create mechanical limits for the rotor, which are defined as the relative positions
of auxiliary bearings from the reference position and marked in Fig. 2. If the rotor
displacement exceeds mechanical limits, it will collide with auxiliary bearings that
will lead to instability. Before bifurcation, maximum and minimum displacements
y1max, y1min are acceptable. However, after bifurcation, difference values of y2max or
y3min to mechanical limits become much smaller. The rotor approaches the auxiliary
bearings much closer. This will weaken the capacity of resisting to a disturbance.
Under the effect of disturbance, the possibility of collision between rotor and stator
increases. The system performance deteriorates. As f is further increased to 0.195,
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Fig. 3 Static equilibrium with respect to excitation amplitude: solid line—stable solution, dashed
line—unstable solution

y2max and y3min will exceed the mechanical limits and the system cannot keep stable
even if there is no disturbance.

It should also be noted that unexpected behaviors appearing in the system are
not only about the dynamic characteristics of vibration. After bifurcation, for y2 and
y3 that can be exhibited during operation, the range of motion of the rotor is not
symmetric around the reference position. It means that the static equilibrium does
not coincide with the reference position all the time.

It can also be known from analytical results that all of C, a, and φ in solution (7)
have multiple values. The static equilibrium C, vibration amplitude a, and phase φ

are illustrated, respectively, to explain their effects on rotor displacement.
Figure 3 shows the relationship between the static equilibrium C and f . The

stability of static equilibrium can be determined as follows: the static equilibria
in stable periodic solutions are thought to be stable, and that in unstable periodic
solution is thought to be unstable. The static equilibrium exhibits complicated
characteristics. As f is small, there is only one static equilibrium, namely the
stable trivial equilibrium. It coincides with the reference position. However, as f is
increased to 0.156, where the bifurcation of rotor displacement occurs, both number
and stability of static equilibrium change. The trivial equilibrium loses its stability.
And two stable nontrivial equilibria appear. The nontrivial equilibria are symmetric
around the reference position and increase gradually with the further increase of f .
The relatively large mechanical clearance makes existence of nontrivial equilibria
physically possible. The phenomenon is called pitchfork bifurcation. The branch
solution and unstable trivial solution locate in the same side of the critical point.
Therefore, the bifurcation is a supercritical one.

To make clear the role of rotor vibrations in nonlinear behaviors of the AMB-
rotor system, the vibration amplitude a and phase φ are obtained and shown in
Fig. 4. There is a one-to-one correspondence between a and φ. For small f , there is
one solution for vibration amplitude and phase. However, after bifurcation point of
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Fig. 4 Vibration amplitude and phase with respect to excitation amplitude: solid line—stable
solution, dashed line—unstable solution

the rotor displacement, there are two solutions for vibration amplitude and phase,
while there are three solutions for rotor displacement and static equilibrium. And a1,
φ1 are the vibration amplitudes in solution y1. The vibration amplitude and phase in
solution y2 and y3 are the same, and they are a2 and φ2. It can be seen that values
of a1 and a2, φ1 and φ2 have slight differences. They hardly have influences on the
rotor displacement.

It can be concluded that the complicated behaviors reflected in the rotor
displacement are caused by the bifurcation of static equilibrium. The dynamic
characteristics of vibration are not complicated. Under influences of the nonlinearity
of electromagnetic force and current saturation, the number and stability of static
equilibrium will be different for different conditions. The relatively large mechan-
ical clearance creates physical conditions for the existence of nontrivial equilibria.
As a result, the supercritical pitchfork bifurcation of static equilibrium occurs in the
AMB-rotor system.

Looking back to Fig. 2, as f is small, the bifurcation of static equilibrium
has not appeared and the rotor vibrates around the trivial equilibrium. With the
gradual increase of f , the static equilibrium remains zero. The maximum rotor
displacement increases because the vibration amplitude increases. At this stage,
the maximum rotor displacement is exactly the vibration amplitude. However, after
bifurcation of static equilibrium, the trivial equilibrium loses its stability. The rotor
deviates from the reference position and starts to vibrate around one of nontrivial
equilibria. The maximum rotor displacement is the sum of vibration amplitude
and absolute value of the static equilibrium. The supercritical pitchfork bifurcation
of static equilibrium results in the fact that the maximum rotor displacement
increases dramatically. Although the bifurcation of static equilibrium does not cause
instability in mathematics, it can make system performance deteriorate and even lose
stability during actual operation.
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Fig. 5 Comparison of numerical and analytical results: solid line—stable analytical solution,
dashed line—unstable analytical solution, circle—numerical solution, note: the same color rep-
resents same solution

4.2 Numerical Validation

The analysis results obtained through harmonic balance method are validated
numerically in this section.

The bifurcation of static equilibrium is also obtained through numerical method.
The numerical integration can obtain the stable equilibria but no unstable equilibria.
The comparison of analytical and numerical results is shown in Fig. 5. It can be seen
that the analytical and numerical results are generally in agreement.

To illustrate the bifurcation, the time-domain responses before and after bifurca-
tion are shown in Fig. 6a,b, respectively. For f = 0.1, the rotor vibrates slightly
around the trivial equilibrium. There is only one stable analytical solution. The
numerical results and analytical solution are highly consistent. For f = 0.2, the
nonlinear characteristics of the AMB-rotor system become prominent and multiple
solutions coexist. There is one unstable solution and two stable solutions. In the
numerical simulation, the stable solution can be exhibited, while the unstable
cannot. Two time-domain responses are obtained for two different initial conditions
and are consistent with two stable analytical solutions after entering the steady state.
There is no numerical solution corresponding to the unstable solution.

The analytical solutions obtained through harmonic balance method and their
stability results are proved to be correct and accurate.

5 Conclusions

The dynamic characteristics of the AMB-rotor system were analyzed by considering
the nonlinearity of electromagnetic force and current saturation. The analytical
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Fig. 6 Time-domain responses: solid line—stable analytical solution, dashed line—unstable
analytical solution, circle—numerical solution, note: the same color represents the same solution.
(a) f = 0.1. (b) f = 0.2.

solutions containing both information of rotor vibration and suspension were
obtained through the harmonic balance method, and nonlinear dynamic analysis was
performed based on the solutions. It was found there might be multiple solutions
for the rotor displacement. During actual operation, the rotor may vibrate around a
position deviating from the reference position. The system performance deteriorates
and even instability may happen. Through further analysis, it is found that the
unexpected behaviors are mainly caused by a supercritical pitchfork bifurcation of
the static equilibrium. In other words, the effects of nonlinear are reflected in the
static equilibrium rather than vibration amplitude and phase. At last, the accuracy
and stability of the solutions were validated.
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