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1 Introduction

In this paper, we study the responses of an oscillator with van der Pol terms,
parametric damping, and direct excitation. A potential application of this system is a
vertical-axis wind-turbine blade, which can endure direct excitation and parametric
damping [1, 2], as well as aeroelastic self-excitation, the mechanism of which can be
loosely modeled with van der Pol-type nonlinearity [3, 4]. Here, the general behavior
of this system is studied, rather than the specific responses of a specific model of an
application system. As both parametric excitation and van der Pol nonlinearity can
induce instabilities and oscillations, we seek to understand the combined effect of
such terms in this system.

Parametric damping has been shown to generate instabilities [2, 5], similar to
those of the Mathieu equation [3, 4], with period-1 or period-2 oscillation, and to
decay with quasiperiodic dynamics when stable [2]. The study [2] used the Floquet
solution combined with harmonic balance [6, 7].

Szabelski andWarminski [8] performed an analytical examinations on the system
with three sources of vibration, parametric, self-excited, and inertial. Warminski
[9] studied the nonlinear dynamics of a self, parametric, and externally excited
oscillator with time delay analytically applying the method of multiple scales.
Warminski also discussed the similarities and differences between the van der Pol
and Rayleigh for regular, periodic, quasiperiodic, and chaotic oscillations.
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Parametric excitation has also been studied in the context of wind-turbine blades
[10–13]. Luongo and Zulli [14] studied a self-excited tower under turbulent wind
flow. The tower was assumed to be a nonlinear system where the stationary wind
imposed the self-excitation, and the turbulent flow drove both parametric and
external excitation. Combining parametric damping with self-excitation of nonlinear
damping as in a van der Pol equation, with a particular choice of scaling and
excitation frequencies, results in an equation given as

ẍ + ε(c0 + c1 cosωt + x2)ẋ + ωn
2x = f0 + f1 sin(ωt), (1)

where ε � 1. The variables c0 and c1 are the mean damping and amplitude of
the parametric damping, respectively, and f0 and f1 are mean and cyclic direct
excitation amplitudes. The excitation frequency is ω and the natural frequency is ωn.
We will refer to this as the parametrically damped van der Pol (PDVDP) equation
with external excitation.

In this work, we apply the first-order method of multiple scales [3, 15] to study
an unforced and externally forced van der Pol equation with parametric damping
at frequency ω. We study the sub-harmonic resonance of order 1/2 as well as the
nonresonant dynamics.

2 Perturbation Analysis: Method of Multiple Scales

The core of this study is the approximation of the solution to Eq. (1) based on the
method of multiple scale (MMS) [3, 4]. Therefore, we expand the displacement as

x(T0, T1, · · · ) = x0(T0, T1, · · · ) + εx1(T0, T1, · · · ) + ε2x2(T0, T1, · · · ) + · · · ,

(2)
where the time scales are Ti = εi t , and ε � 1. By using the chain rule, we obtain the
derivatives for n ∈ N as dn

dtn
(·) = (D0 + εD1 + ε2D2 + · · · )n(·) , where Di = ∂

∂Ti
.

Here, we carry out the analysis up to the first order by considering the two time
scales, T0 = t and T1 = εt , and therefore expand the displacement as

x(T0, T1) ≈ x0(T0, T1) + εx1(T0, T1). (3)

By substituting the expansion (3) in Eq. (1) and using the derivatives, coefficients of
similar powers of ε equate as

ε0 : D0
2x0 + wn

2x0 = f0 + f1 sin(ωt), (4)

ε1 : D0
2x1 + wn

2x1 = −2D0D1x0 − (c0 + c1 cosωT0 + x0
2)(D0x0). (5)

The relationship between the excitation and the natural frequencies specifies
different cases of resonance:
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1. Nonresonant: no specific relationship between ω and ωn

2. Primary resonance: ω ≈ ωn

3. Super-harmonic resonance: ω ≈ ωn/m (m ∈ N)
4. Sub-harmonic resonance: ω ≈ mωn (m ∈ N)

In the next sections, we elaborate on this perturbation analysis for specific cases
with and without external excitation, and apply other tools, to examine the dynamics
with emphasis on secondary resonances.

3 Parametric Excitation Without External Excitation

We start with the case where there is no external forcing, i.e. f0 = f1 = 0. As
a survey of the possible dynamics, Fig. 1 shows a frequency sweep from ω = 0
to beyond ω = 2ωn, when ωn = 1, ε = 0.1, c0 = −1, and c1 = 1 (these
parameters are dimensionless). The sweep, as a bifurcation diagram, is a plot of
samples of the x variable of the nonwandering set in a Poincaré section [16] for
various values of the frequency parameter. A Runge–Kutta method (Matlab ode45)
is used to obtain numerical solutions of several periods to achieve steady-state. As
the responses are typically quasiperiodic, the plots are generated by recording at
each excitation frequency, 50 values of x at the downward ẋ = 0 crossing in the
phase space.

We appeal to perturbation analysis to explain these responses. The solution to the
leading-order Eq. (4) is

x0(T0, T1) = A(T1)e
iωnT0 + c.c., (6)

where c.c. stands for the corresponding complex conjugate terms. We obtain the
solvability conditions by substituting Eq. (6) into the right-hand-side of Eq. (5) and
eliminating the “secular terms.” In MMS, the secular terms are defined as the terms
that make the solution to grow without bound in time, and thus should be eliminated.
By plugging Eq. (6) into Eq. (5), we obtain

D0
2x1 + wn

2x1 = (−2iωnA
′ − ic0ωnA − iωnA

2Ā)eiωnT0 (7)

−c1

2

(
iωnĀei(ω−ωn)T0

)
+ N.S.T.,

where N.S.T stands for non-secular terms and A′ = D1A. The homogeneous
solution of Eq. (7) is of the form eiωnT0 and therefore any right-hand-side term that
is of the same form will become secular and cause x1 to grow without bound. We
seek the resonance cases that lead to additional secular terms. The right-hand-side of
Eq. (7) merely shows the sub-harmonic resonance case. However, as shown in Fig. 1
as well as Eq. (7), the system has significant oscillatory behavior at the nonresonant
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Fig. 1 PDVDP with parametric excitation only. The response amplitude versus the excitation
frequency when f0 = f1 = 0, ωn = 1, ε = 0.1, c0 = −1, and c1 = 1. The embedded sub-
plot zooms in on the strong sub-harmonic resonance window. The circles are amplitudes predicted
by the perturbation analysis

case, that is when there is no specific relationship between the excitation frequency
ω and the natural frequency ωn.

3.1 Nonresonant Case

We first consider the nonresonant case, where the solvability condition takes the
form 2A′ + c0A + A2Ā = 0. We recall that A is a complex function of T1. Writing
it as A(T1) = 1

2a(T1)e
iβ(T1), the solvability condition becomes

a′ + iaβ ′ + 1

2
c0a + 1

8
a3 = 0. (8)

By separating the real and imaginary parts, we obtain

a′ + 1

2
c0a + 1

8
a3 = 0, aβ ′ = 0. (9)

The response amplitude has steady-state values that depend on the parameter c0 and
are obtained by setting a′ = 0. When c0 < 0, there is a stable steady-state amplitude
of a = 2

√|c0|. This amplitude and the solvability condition that leads to it are the
same as in the regular van der Pol equation when c0 = −1.



Parametric Damping 481

3.2 Sub-harmonic Resonance of Order 1/2

Here, we focus on the sub-harmonic resonance case, where the excitation frequency
is tuned to be close to the double natural frequency, i.e. ω = 2ωn + εσ . In this
setting, the solvability condition is comprised of more terms and is given as 2A′ +
c0A + A2Ā − c1

2 ĀeiσT1 = 0. By letting A(T1) = 1
2a(T1)e

iβ(T1), we obtain

a′ + iaβ ′ + 1

2
c0a + 1

8
a3 − 1

4
c1aei(σT1−2β) = 0. (10)

We separate the real and imaginary parts and then make the system autonomous via
the change of variables γ = σT1 − 2β to obtain the following governing equations
of amplitude a and phase γ as

a′ + 1

2
c0a + 1

8
a3 − 1

4
c1a cos(γ ) = 0, aγ ′ + 1

2
c1a sin(γ ) − σa = 0. (11)

The response amplitude has steady-state values that depend on the parameters
c0 and c1 and are obtained by setting a′ = γ ′ = 0. By using the trigonometric
identities, we remove γ and finally obtain the response amplitude as

a = 0, or a2 = −4c0 ± 4

√
c21

4
− σ 2. (12)

If
c21
4 − σ 2 > 0, then Eq. (12) indicates that there are both zero and nonzero real-

valued response amplitudes. Otherwise, the only steady-state amplitude is zero.
Stability of these solutions is determined from the Jacobian of Eqs. (11).

Figure 2 shows the steady-state amplitude versus the excitation frequency ω =
2ωn + εσ for different values of c0 and c1 where ε = 0.1 and ωn = 1. By slightly
sweeping the detuning parameter σ , we keep the excitation frequency ω close to
2ωn. We observe the emergence of a limit cycle at ω ≈ 1.95, whose amplitude
grows and then disappears at ω ≈ 2.05. When c0 = −1, a larger amplitude of
parametric damping c1 leads to a larger response amplitude; see the left panel in
Fig. 2 where the inner and outer ellipses are associated with c1 = 0.2 and c1 =
1, respectively. An increase in the mean value of damping c0, however, decreases
the response amplitude by moving down the ellipse till the horizontal axis a = 0,
beyond which the lower branch of ellipse disappears; see the right panel in Fig. 2.

4 Parametric and External Excitation

In this case, the external forcing terms f0 and f1 are nonzero. Similar to the previous
case, as a survey of the possible dynamics, Fig. 3 shows a frequency sweep fromω =
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Fig. 2 PDVDP with parametric excitation only: nonzero steady-state response amplitude versus
the excitation frequency in the case of sub-harmonic resonance. Left: c0 = −1 and c1 =
{0.2, 0.4, 0.6, 0.8, 1}. Right: c1 = 1 and c0 = {−1,−0.7,−0.4,−0.1, 0.2}. Solid and dotted
curves are stable and unstable branches

Fig. 3 PDVDP with parametric and external excitation. The response amplitude versus the
excitation frequency ω where f0 = 0.2, f1 = 1, ωn = 1, ε = 0.1, c0 = −1, and c1 = 1

0 to beyond ω = 3ωn, with parameters ωn = 1, c0 = −1, c1 = 1, f0 = 0.2, and
f1 = 1. The sweep is based on numerical simulations, and the steady-state response
amplitudes are plotted. The plot shows that significant quasiperiodic dynamics occur
for a large range of excitation frequencies with periodic windows around ω ≈ ωn,
ω ≈ 2ωn, and ω ≈ 3ωn. The largest responses occur near the primary resonance
range and then for sub-harmonic ones. Super-harmonic resonances are not apparent.

In this case, the particular solution to the leading order Eq. (4) is
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x0(T0, T1) = Γ + iΛ eiωT0 + A(T1)e
iωnT0 − iΛ e−iωT0 + Ā(T1)e

−iωnT0 , (13)

where Γ = f0
ω2

n
and Λ = f1

2(ω2−ω2
n)
. By plugging Eq. (13) in Eq. (5), we obtain

D0
2x1 + wn

2x1 =
(
−2iωnA

′ − ic0ωnA − iωnΓ
2A − iωnA

2Ā − 2iωnΛ
2A

)
eiωnT0

+
(
c0ωΛ + ωΓ 2Λ + ωΛ3 + 2ωAĀΛ

)
eiωT0

+
( c1

2
ωΛ + 2iωΓ Λ2

)
e2iωT0

−ωΛ3 e3iωT0 +
(
i
c1

2
ωnĀ − 2ωnΛΓ Ā + 2ωΛΓ Ā

)
ei(ω−ωn)T0

+i(2ω − ωn)Λ
2 Āei(2ω−ωn)T0 + (ω − 2ωn)ΛĀ2ei(ω−2ωn)T0

+c.c. + N.S.T. (14)

The right-hand-side of Eq. (14) shows different cases of resonance; each can
produce different secular terms. The cases are nonresonant, sub-harmonic resonance
of orders 1/2 and 1/3, and super-harmonic resonance of order 2. Here we study the
first two cases. The third case (super-harmonic of order 1/3) does not involve the
parametric term, and others turn out to be of minimal significance. For the first two
cases, we obtain the following solvability conditions:

• Nonresonant:

2A′ + c0A + Γ 2A + A2Ā + 2Λ2A = 0 (15)

• Sub-harmonic Resonance of Order 1/2 (ω ≈ 2ωn):

2A′ + c0A + Γ 2A + A2Ā + 2Λ2A −
(

c1

2
− 2iΛΓ

(
ω

ωn

− 1

))
ĀeiσT1 = 0. (16)

Although Fig. 3 indicates the primary resonance as a prominent case when
ω ≈ ωn, the coefficient Λ becomes singular and would contradict the multiple-
scales bookkeeping strategy. The analysis of primary resonance case requires weak
excitation, as well as a second-order perturbation analysis to capture the parametric
term, as in [17]. This will be analyzed in a separate study.

4.1 Nonresonant Case

The solvability condition in Eq. (15) is not affected by the parametric damping term,
and hence the behavior is similar to the forced van der Pol equation [3, 4]. In this
case, the phase equation becomes β ′ = 0, and hence the phase β is constant and does
not influence the oscillation frequency. The amplitude equation yields the following
steady-state solutions:
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a = 0, a = 2
√

−c0 − Γ 2 − 2Λ2, (17)

where the zero solution is unstable and the nonzero solution exists and is stable
when Γ 2 + 2Λ2 < −c0. Since Γ 2 + 2Λ2 > 0, a negative value of c0 is necessary
(but not sufficient) for nonzero a. If the above condition is not satisfied, then the
trivial solution a = 0 is stable.

Since the leading-order solution has the form

x0 = Γ − 2Λ sinωT0 + a cos(ωnT0 + β) (18)

when the condition Γ 2 + 2Λ2 < −c0 is satisfied, a �= 0 and the response becomes
quasiperiodic. Otherwise, with sufficient increase in the excitation (Λ and Γ ), a is
suppressed and the response becomes periodic; known as quenching [3, 4].

The parametric terms affect the first-order correction, x1, in the approximate
solution x(t) = x0(t0, T1) + εx1(T0, T1). In eliminating the secular terms, there are
several contributions of different frequency components, including 2ω,ω−ωn, ω+
ωn, from parametric excitation and van der Pol terms, and 2ωn, 3ωn, 3ω, 2ω −
ωn, 2ω + ωn, ω − 2ωn, and ω + 2ωn, from the van der Pol terms. Thus the first-
order solution can contribute two-frequency quasiperiodic effects, as the content of
the total response has a linear combination of two frequencies.

4.2 Sub-harmonic Resonance of Order 1/2

In this case, the excitation and natural frequency form the relation ω = 2ωn + εσ .
We see from the solvability condition in Eq. (16) that in addition to the nonresonant
secular terms in Eq. (15), the parametric damping and forcing appear. We substitute
A(T1) = 1

2a(T1)e
iβ(T1) into the equation and let γ = σT1 − 2β. Then, the

autonomous coupled system of governing equations of the amplitude a and phase γ

becomes

a′ + 1

8
a3 +

(
c0

2
+ ωnΓ

2

2
+ Λ2 − c1

4
cos γ + Γ Λ

(
1 − ω

ωn

)
sin γ

)
a = 0,

aγ ′ − aσ + c1

2
a sin γ + 2aΓ Λ

(
1 − ω

ωn

)
cos γ = 0.

(19)

The fixed points of Eq. (19) are obtained in the steady-state case when a′ = γ ′ = 0,
which admits a = 0 and a nontrivial solution. The equations for the nontrivial
solution take the form A1 sin γ + B1 cos γ = C1 and A2 sin γ + B2 cos γ = C2
where the coefficients A1, A2, B1, B2, C1, and C2 are functions of the parameters
and the amplitude a. By solving for sin γ and cos γ , and using the trigonometric
identities, we remove the variable γ and form a parametric algebraic equation to
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Fig. 4 PDVDP with parametric and external excitation in the case of sub-harmonic resonance
where c0 = −1 and f1 = 1. The three plotted curves correspond to c1 = {0.2, 0.5, 1}, and the
panels are for f0 = {0.2, 0.4, 0.6}. Solid and dotted curves are stable and unstable branches

obtain the steady-state amplitude a as,

a4 + 8a2(c0 + 2Λ2 + Γ 2) + 4
(
4c0

2 + 16c0Λ
2 − c1

2 + 16Λ4 + 4σ 2
)
(20)

+16Γ 2
(
2c0 − 4Λ2 ω

ωn

(
ω

ωn

− 2) + Γ 2
)

= 0.

Solving for a2 yields the steady-state response amplitude, which is valid if the
square root in the quadratic-equation solution is real, and if a2 ≥ 0. The first
criterion reduces to 4σ 2 < c21 + 16Γ 2Λ2, when using ω − ωn ≈ ωn. Thus the
frequency range of fixed amplitude solutions increases with c1, f0, and f1. For the
case in which a and γ are fixed and stable, based on Eq. (13) and the definition of
γ , the leading order solution takes the form

x0 = Γ − 2Λ sin(ωT0) + a cos
(ω

2
T0 − γ

2

)
, (21)

which is a periodic (phase locked) response of fundamental frequency ω/2. When
a steady-state solution a does not exist, the response is in phase drift, and is
quasiperiodic.

Figure 4 shows the steady-state response amplitude versus the excitation fre-
quency for small value of detuning parameter, when ε = 0.1 and −0.5 < σ < 0.5.
Note that these figures show the amplitude a of one term in Eq. (21). The phase
γ would affect peak-to-peak amplitudes. The mean damping and periodic forcing
are set to be constant, c0 = −1 and f1 = 1, while different values of c1 =
{0.2, 0.5, 1} are showing the ellipses. The larger values of c1 are associated with
the larger ellipses. We see that as the constant forcing term f0 is varying between
{0.2, 0.4, 0.6}, the ellipses are distorted and the limit cycle amplitude is increased.
The sub-harmonic behavior of the parametric plus direct excitation is thus similar
to that of the parametric excitation only, except that the solutions for the steady
amplitudes are complicated and distorted by the direct excitation terms f0 and f1.
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5 Summary and Conclusions

In this paper, we studied the resonance of a forced and unforced van der Pol
equation with parametric damping. Applications can include vertical-axis wind-
turbine blade vibration, which can have parametric damping and van-der-Pol type
terms in simplified models. The first-order method of multiple scales and numerical
solutions were used.

The parametric damping with no external excitation demonstrated nonreso-
nant and sub-harmonic resonance cases, where the system shows an oscillatory
quasiperiodic behavior in the former case. In the latter resonance case, we found
the steady-state amplitude versus the excitation frequency for different damping
parameters. When c0 = −1 (negative linear damping as with the van der Pol
oscillator), the resonant response amplitude increases with the parametric damping
c1. An increase in the mean value of damping c0, however, decreases the response
amplitude.

We then studied van der Pol with parametric and direct excitation. In the
nonresonant case the parametric damping term does not contribute in the solvability
condition and therefore it showed the same behavior as the forced van der Pol. The
nonresonant system can exhibit the quenching phenomenon when the excitation
through the direct forcing is sufficiently large.

Our numerical studies showed the primary resonance as a dominant forced
response case. The analysis of this case requires further investigation that will be
done as a subsequent study with weak excitation. Based on previous studies on the
cases with forcing and cyclic stiffness [17], we expect that a second-order multiple-
scales analysis should be considered to correctly pull out the contribution of the
parametric damping to the different resonance cases.
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