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1 Introduction

The concept of nonlinear modal analysis (NMA) has become a very popular
analytical as well as computational tool in the study of nonlinear structural
systems. There have been several formulations of a computational procedure for
this [1, 2], including time-domain [3] and frequency-domain methods [4]. Quasi-
static approaches have also gained popularity in recent years, and this chapter
considers such a formulation that is based on earlier work in [5].

Recent efforts by the authors [5] have indicated that a generalization of the con-
strained minimization of Rayleigh quotients provides an interesting nonlinear modal
analysis approach (termed Rayleigh quotient-based NMA (RQNMA)) closely
related to some of the other methods above. This chapter considers improvements
to this formulation in three areas, namely: (1) modal analysis under dynamical
operation; (2) forced response synthesis; and (3) investigation of modal coupling.
A 1-dimensional (1D) finite element model of a bar with a frictional end will be
used for numerical demonstration.

The rest of this chapter is organized as follows: Sect. 2 provides an overview
of the methodologies including RQNMA and the chosen example; Sect. 3 presents
results for nonlinear modal analysis, forced response synthesis, and an investigation
of a case with modal coupling; and finally, Sect. 4 draws conclusions from the study.
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2 Methodology

The current section provides an overview of the computational procedures involved
in RQNMA and a description of the numerical benchmark that will be used for
demonstrations in the rest of this chapter.

2.1 Rayleigh Quotient-Based Nonlinear Modal Analysis

Consider a (discrete, multiple degree-of-freedom) nonlinear dynamic system gov-
erned by the equations of motion,

M ¨̄u + C ˙̄u + Kū + f̄nl(ū, ˙̄u, . . . ) = f̄ex(t)

M,C,K ∈ R
n×n (1)

t ∈ R+; ū, f̄ex : R+ → R
n; f̄nl : Rn × · · · → R

n.

Here, n denotes the number of degrees of freedom (DoFs) in the system, and the
solution, excitation, and nonlinearity are functions denoted above. The mass matrix
(M) is taken to be symmetric positive definite; the stiffness matrix (K), symmetric
positive semi-definite, and the damping matrix (C), symmetric.

The definition for the nonlinear modes of this system used in [5] was the
extremizing eigenpair of the corresponding eigenvector-dependent nonlinear eigen-
problem (NEPv). Mathematically, this can be expressed as an algebraic system
representing the first-order optimality conditions of the corresponding Rayleigh
quotient extremization problem (constrained potential energy minimization),1

Kū + f̄nl − λMū = 0

ūT Kū − ūT f̄nl − λq2 = 0. (2)

In the above algebraic system of equations, parameterized by the modal amplitude
q, the multiplier λ was interpreted as the square of the natural frequency of the
nonlinear mode under consideration. This interpretation presents certain difficulties
in the applicability of the procedure for problems with even nonlinearities (non-
linear forces unsymmetric about the equilibrium). Furthermore, the relationship to
dynamic operation is not very clear, introducing difficulties in the incorporation
of nonlinear terms that are fundamentally dynamic such as rate-dependent friction
models, etc. Although some preliminary efforts were undertaken in [5, 6], these
aspects need to be investigated further.

1Equation (2) is a restatement of the optimality conditions in [5], with the second equation modified
to a form more suitable for numerical implementations.
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This chapter explores an alternative interpretation of the multipliers λ, assessing
its ramifications using a numerical example. Upon solving Eq. (2) for a range of
modal amplitudes q ∈ [−Q,Q], one obtains parameteric relationships ū(q) and
λ(q), denoting the deflection shape and multiplier (Rayleigh quotient), respectively.
Note that hysteretic nonlinearities, at this stage, are only evaluated quasi-statically
along the modal backbone.2 These are interpreted to describe the terms in the
equations of motion of the system at the modal level as

q̈(t) + λ(q(t))q(t) = 0. (3)

This system, by construction, is conservative and does not possess any dissipative
characteristics, eventhough the original system may be dissipative. The interpre-
tation here is that this represents the conservative part of the complete system.
Since λ(q) is known from the above, this equation may be solved using any NMA
technique applicable to conservative systems. For example, using a single (cosine-)
harmonic expansion, an estimate of the modal natural frequency may be made.
Assuming q(t) = Q cos(ωn(Q)t) (with natural frequency (ωn(Q) depending on
the harmonic amplitude of the solution), one obtains

ωn(Q) =
√
F (c){λ(q(t))q(t)}

Q
, (4)

where F (c)(.) denotes the discrete Fourier cosine transform. ωn(Q) represents
the effective natural frequency of an oscillation of the system that extremizes the
nonlinear Rayleigh quotient at each instant of oscillation.

The effective mode shape of the nonlinear mode is taken to be the gradient of the
solution ū(q(t)) with respect to q averaged over a cycle. This can be computed as
the zeroth harmonic (denoted by F (0)(.)) of the gradient,

φ̄(Q) = F (0)
{

∂ū

∂q
(Q cos(ωnt))

}
. (5)

Here, ωn(Q) and φ̄(Q) denote the undamped natural frequency and the mode shape.
The dissipative characteristics of a mode can be estimated by obtaining an

effective coefficient describing the non-conservative forces from a time-domain
evaluation of the nonlinearities. Following the procedure above, assuming q(t) =
Q cos(ωnt) allows for the definition of q̇(t), which can then be used to evaluate the
nonlinear force in the modal domain (f (m)(t) below) as

˙̄u(q(t)) = ∂ū

∂t
(Q cos(ωnt))(−Qωn sin(ωnt)),

2Details on hysteretic evaluation are left out for brevity. The interested reader is directed to [5].



332 N. N. Balaji and M. R. W. Brake

f (m)(t) = φ̄T (Q)

(
Kū(q(t)) + C ˙̄u(q(t)) + f̄nl(ū, ˙̄u, . . . )

)
. (6)

Introducing a damping term in the modal level of the form

q̈(t) + c(Q)q̇(t) + ω2
n(Q)︸ ︷︷ ︸
λ(Q)

q(t) = 0 (7)

allows the estimation of the coefficient c(Q) through the sine harmonics of f (m) as

c(Q) = F (s){f (m)(t)}
−Qωn(Q)

. (8)

This can also be used to estimate a “modal damping factor” given by ζ(Q) =
c(Q)/(2ωn(Q)), which is a quantity that is often used in system identification and
modal testing practice.

The natural frequency (ωn(Q)), mode shape (φ̄(Q)), and damping coefficient
(c(Q)) estimated above represent quantities that may be readily employed for
systems operating close to the nonlinear resonance corresponding to the considered
nonlinear mode. The forced response of the system can be synthesized in such
regimes using the so-called single-mode theory [7], which will briefly be presented
here for completeness. For a complex excitation of the form f̄exe

iΩt (with Ω and
f̄ex being the excitation frequency and some complex amplitude), the solution is
assumed to be of the form, u(t) = Qeiθ eiΩt , with θ representing the phase of
the response (assumed constant in time). Substituting this into the equations of
motion and conducting an inner product with φ̄(Q) will yield the complex algebraic
equation in terms of unknown amplitude Q and phase θ

(λ(Q) − Ω2) + i(c(Q)Ω) = φ̄H (Q)F̄ex

Q
e−iθ . (9)

This can be solved analytically to yield,

Ω2 = (λ(Q) − c2(Q)

2
) ±

√
c4(Q)

4
− λ(Q)c2(Q) + |φ̄H (Q)F̄ex |2

Q2

θ = Arg

(
φ̄T (Q)F̄ex

Q

)
− tan−1 c(Q)Ω

λ(Q) − Ω2 , (10)

provided Ω is real. Note that ()H indicates the Hermitian transpose in the above.
In the described approach, the requirement of solving a potentially large nonlin-

ear system is only for solving the RQNMA equations (Eq. (2)), and all of the other
steps only involve post-processing the RQNMA results through interpolation and
single-time function evaluations, which are typically several orders of magnitude
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faster than nonlinear equation solving. Further, the use of analytical gradients of the
solutions of Eq. (2) with respect to q enables one to employ Hermite interpolants,
improving accuracy of the post-processing steps.

In order to consider two modes concurrently, the following formulation is
proposed (functional dependence on (Q1,Q2) is dropped for brevity of notation):

[
1 m12

m12 1

] {
q̈1

q̈2

}
+

[
c11 c12

c12 c22

]{
q̇1

q̇2

}
+

[
k11 k12

k12 k22

] {
q1

q2

}
=

{
φ̄T
1 f̄ex

φ̄T
2 f̄ex

}
. (11)

Since nonlinear modes may not always be expected to be exactly orthogonal to
each other, an off-diagonal mass matrix term m12 is included in the above (diagonal
terms are 1 from definition). The terms kij (Q1,Q2) and cij (Q1,Q2) represent
the nonlinear damping and stiffness terms and are assumed to be functions of the
harmonic amplitudes of both the modes under consideration. The mode shapes
φ̄1(Q1) and φ̄2(Q2) are, however, assumed to only be dependent on the amplitudes
of their respective modes.

Given a pair of harmonic amplitudes (Q1,Q2), the solution ansatz u(t) =
2∑

i=1
Qiφ̄i(Qi) cos(ωn,i(Qi)t) will be used to evaluate the nonlinear forces in the

system. Since ωn,1/ωn,2 need not be a rational fraction, one cannot use a periodic
assumption here. Although multi-component Fourier techniques may be employed,
they are avoided here since the evaluation of frictional nonlinearities is not very
straightforward. Therefore, the nonlinear forces are generated over an arbitrarily
long period of time (covering several cycles of each mode), and the parameters
cij (Q1,Q2), kij (Q1,Q2) are estimated using linear regression (iterations not nec-
essary). Note that m12(Q1,Q2) = φ̄T

1 (Q1)Mφ̄2(Q2) by definition.

2.2 Benchmark Model Description

The procedures described in Sect. 2.1 will be demonstrated using a nine-noded finite
element model of a linear bar with a frictional end as shown in Fig. 1. The governing
partial differential equations are

ρA
∂2u

∂t2
+

(
α

∂u

∂t
− β

∂3u

∂x2∂t

)
− EA

∂2u

∂x2 = fex(t)δ(x − 
) x ∈ (0, 
), (12)

where δ(x) denotes the dirac delta distribution indicating excitation at the end. This
is discretized using eight linear finite elements. The last node is connected to the
ground using an elastic dry friction element [8] parameterized by the stiffness kt

and slip force μN . Two cases are considered:

1. kt = 2.5 MN m−1; μN = 0.75 MN.
2. kt = 6 MN m−1; μN = 0.75 MN.
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Fig. 1 Bar model

The parameters of case 2 are set in such a way as to highlight mode-coupling effects,
whereas such effects are intentionally avoided in case 1.

3 Results

The current section presents the results of the application of the procedures
described in Sect. 2.1 to the 1D bar model described above. The nonlinear modal
analysis results are compared against frequency-domain references based on the
periodic motion concept [4] (EPMC). All frequency-domain computations are
conducted using the first five harmonics with harmonic balance.

3.1 Nonlinear Modal Analysis

Figure 2 presents the nonlinear modal characteristics for mode 1 of the system for
both the cases. Case 1 (Fig. 2a) is a scenario where a single mode responds in an
isolated manner around resonance, while case 2 (Fig. 2b) is a scenario where this
is not so. A “tongue-like” projection typical of modal coupling in periodic motion
backbones can be seen in the EPMC backbone in the boxed region in Fig. 2b. This
feature is not captured by the RQNM formulation due to its fundamentally single
modal definition.

Figure 3 depicts the frequency characteristics of the first mode and the 1/3rd
frequency characteristics of the second mode, indicating a 1:3 internal resonance.

3.2 Synthesis of Frequency Responses

Figure 4 plots the frequency responses for the two cases (simulated using single
harmonic forcing with different amplitudes solved using HBM), along with the
nonlinear modal backbones from EPMC and RQNM. It can be seen that both the
backbones follow the frequency response peaks closely.

The frequency response synthesis formulation in Eq. (10) can be traced back to
classical multiple-scale approaches [9] and is presently employed to determine the
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Fig. 2 The nonlinear frequency–amplitude and damping–amplitude relationship for (a) case 1 and
(b) case 2. Boxed region(s) in (b) indicates relics of modal-coupling effects
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Fig. 3 The EPMC frequency–amplitude plot of mode 1 along with the mode 3 backbone (with
frequency divided by 3) with an enlarged version
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Fig. 4 The frequency response of the system in terms of the RMS displacement amplitude of the
forcing node along with the modal backbones for (a) case 1, and (b) case 2
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Fig. 5 Synthesis of forced responses: (a) case 1 and (b) case 2. See Fig. 4 for forcing amplitudes

accuracy of the developed reduced equations at the modal level. The accuracy of the
synthesized responses can be taken to be indicative of the utility of the underlying
nonlinear modal characteristics.

Figure 5 depicts the frequency responses (amplitudes) synthesized using Eq. (10)
for the two cases under consideration. Although the synthesized responses follow
the references closely, small discrepancies may be seen, especially for case 2. This
is thought to be due to the internal resonance noted above.

3.3 Nonlinear Modal Modeling in the Presence of Modal
Coupling

The possibility of using a multi-modal nonlinear expansion is explored here. Using
harmonic amplitudes Q1 and Q2 for modes 1 and 2, respectively, the solution ansatz
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that will be used is

ū(t) = φ̄1(Q1)Q1 cos(ω1(Q)t) + φ̄2(Q2)Q2 cos(ω2(Q)t). (13)

Note that both modes are assumed to have only a cosine harmonic for simplicity. The
next task will be to fit the parameters cij , kij to the internal forces of the system.
As already mentioned, ū(t) cannot be expected to be periodic for arbitrary Q1, Q2.
Therefore, a time series is generated with t ∈ (0, T ) with an arbitrarily large T.
Using this, the internal forces are evaluated and transformed to the modal domain
to yield modal forces as follows:

f (m,1)(t) = φ̄T
1 (Q1)

(
Kū(t) + C ˙̄u(t) + f̄nl(t, ū, . . . )

) ;
f (m,2)(t) = φ̄T

2 (Q2)
(
Kū(t) + C ˙̄u(t) + f̄nl(t, ū, . . . )

)
. (14)

This is fit to parameters cij , kij by solving the linear regression problem

⎡
⎢⎢⎢⎢⎣

q1(t) q2(t) 0 q̇1(t) q̇2(t) 0
...

...
...

...
...

...

0 q1(t) q2(t) 0 q̇1(t) q̇2(t)
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k11

k12

k22

c11

c12

c22

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

f (m,1)(t)
...

f (m,2)(t)
...

⎤
⎥⎥⎥⎥⎦ . (15)

Figure 6 depicts an example of the performance of such a fit (2D maps param-
eterized by Q1,Q2). Note that this approach (along with the cosine assumption in
Eq. (13)) is justified only for time-invariant nonlinearities. Some observations that
may be made from the parameter estimates are:

– The parameters have non-trivial relationships to the modal amplitudes.
– The non-diagonal modal stiffness terms k1,2 (which are zero in linear modal

analysis) seem to play an appreciable role in at least some regimes.
– The c2,2 damping term even takes negative values in the presence of small mode
2 and intermediate mode 1 amplitudes.

For frequency response synthesis, analytical approaches like in Eq. (10) are not
trivial for multi-mode expansions. Therefore, a HBM implementation is developed
that interpolates (using linear interpolants) the quantities kij (Q1,Q2), cij (Q1,Q2),
m12(Q1,Q2), and φ̄T

i (Qi)f̄ex to evaluate the internal forces. Since these quantities
are estimated from the above regression over a uniform grid of (Q1,Q2), the
interpolation can be carried out in a very fast manner.3

3NLvib [10], an open-source MATLAB nonlinear vibration/continuation package, was used for
the numerical continuation in this case.
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Fig. 6 (a) An example of the fitting procedure (case 1, (Q1,Q2) = (100, 100)). The dots depict
the reference forces, and the continuous lines depict the fitted forces. (b) Parameter fits as functions
of Q1, Q2 for case 2

Figure 7a, b plots the frequency response of the original system along with the
synthesized frequency responses from the single-mode and two-mode expansions,
and Fig. 7c, d shows the contributions of the individual modes in the response for
the two cases. The two-mode expansion performs much better than the single-
mode formulation in predicting the frequency responses, especially toward the
higher amplitude regimes. However, the modal interaction features in case 2 are
still not captured by this formulation. The reason is possibly due to the fact that
such features may not be explained using just a single harmonic formulation.
It will therefore be meaningful to explore multi-harmonic implementations of
the modal analysis procedure outlined in Sect. 2.1, starting with obtaining multi-
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Fig. 7 The reference frequency response of the system (blue solid lines), single-mode synthesis
(black dashed lines), and two-mode synthesis (red solid lines) for (a) case 1 and (b) case 2. Also
plotted are the harmonic modal amplitudes for mode 1 (green) and mode 2 (magenta) along with
the single-mode expansion (black dashed lines) for the two cases in (c), (d), respectively

harmonic mode shapes and/or natural frequency and damping estimates from a
multi-harmonic approximation of Eq. (3) (see [7, 11], for instance).

4 Conclusions

An improved formulation of the Rayleigh quotient-based nonlinear modal analysis
has been presented and its applicability demonstrated using a numerical benchmark.

Using a numerical multi-degree-of-freedom (MDoF) benchmark, response syn-
thesis using single-mode and two-mode expansions has been compared, showing
that the two-mode expansion offers superior overall accuracy. Both techniques,
however, fail to detect nonlinear modal interaction/internal resonance phenomena.
The results indicate that a multi-harmonic multi-modal expansion could yield better
results. Time- domain (transient response) synthesis will require the extension of
modal models of the form in Eq. (11), where the nonlinearities are dependent on the
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harmonic amplitude and not on the instantaneous amplitude. Results and techniques
from classical multiple time-scale approaches [9] are promising for such extensions.

The major advantage with the proposed approach comes from the fact that the
computational requirements for large problems are minimized. The only nonlinear
algebraic solution operations with sizes as large as the system are necessary in the
initial NEPv stage. Further, evaluations of the nonlinear functions (which could be
expensive in some cases) are only necessary for the modal model regression, which
does not involve any further large nonlinear solutions. Therefore, the construction as
well as utilization of the modal models is both relatively very cheap in comparison
to evaluation of the full-order model.
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