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1 Introduction

The linear and nonlinear dynamic response behavior of rotating rings has been
studied in several recent articles. The nonlinear equations of motion considering
only the in-plane vibrations of a ring were derived in [1]. The formulation of
nonlinear equations of motion of ring-type gyroscope using two vibration modes has
been performed employing Galerkin’s procedure in [2]. The influence of rotation
and flexible base on the natural frequencies and mode shapes have been investigated
in detail in [3]. The modal behavior as well as stability of rotating rings in 3D
under magnetic levitation has been studied via an analytical model and validated
employing Finite Element Analysis [4]. The Coriolis forces induced in the ring
gyroscope due to the ring’s rotation cause the resonant mode to shift vibration into
the next resonance mode, as described in [5].

The influences of extensional and shear deformation and inertia on natural
frequency differences have been performed in [6]. The plane wave motion to solve
the fixed deflection, natural frequency split, and mode contamination of the rotating
ring-shaped periodic structures have been analytically examined [7].

In the present paper, the nonlinear dynamic behavior of rotating flexible rings for
use in vibratory angular rate sensors has been studied via numerical simulations. A
homogenous, isotropic ring is chosen as the resonator. The investigation of dynamic
response analysis and the rotating macro ring gyroscope’s stability behavior has
been studied by [8] and Gebrel et al. [9] by considering the linearized model
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associated with the second flexural modes. In [9], a theoretical model for generating
nonlinear electromagnetic excitation forces is developed. The schematic of the
rotating ring geometry used in the present study has been described in detail in
[8, 9].

One of the most critical challenges in constructing ring-based vibratory gyro-
scopes is the requirement to operate at one of the highly resonant natural frequencies
in order to maximize device sensitivity. However, large resonant amplitudes tend
to bring out the undesirable nonlinear effects due to geometric as well actuator
nonlinearities. Consequently, the dynamic response of thin circular rings and
consideration of input nonlinear actuator dynamics is warranted to gain a complete
understanding of performance enhancements that can be achieved for this class of
gyroscopes.

In the present paper, a mathematical model that represents the nonlinear dynamic
behavior of a ring-type gyroscope is formulated. The nonlinear equations of motion
are simplified by considering only the highly resonant second flexural mode the
device utilizes and by ignoring the presence of extensional modes of vibration.
Due to gyroscopic coupling present in the system and angular input rate, the
natural frequency variations have been described in the prior study [9]. A suitable
electromagnetic actuator model has been developed for the purposes of examining
the nonlinear dynamic response.

2 Equation of Motion

In this study, the nonlinear equations of motion have been obtained by considering
that the circumferential strain in the mid-surface is zero, and the equations of motion
have been reduced to a suitable discrete form via Galerkin’s procedure and the
resulting equations permit the application of dynamic response analysis. The ring
used for the present study is assumed to possess isotropic and homogenous material
properties. Besides, under the Euler-Bernoulli theory, the transverse shear deforma-
tion influence is neglected since it is assumed that plane sections remain plane as
well stay normal to the neutral surfaces after deformation [10]. Figure 1a shows the
ring geometry and relevant parameters used in this paper. The stiffness components
kr and kθ , respectively, denote the radial and circumferential components, while
ur and uθ symbolize the transverse and circumferential displacements. The eight
support springs considered to represent the flexible mounting are assumed to possess
significantly low stiffness and are expected not to have an influence on the ring
dynamics. A body-fixed set of axes X, Y, Z has been assigned to represent the
angular motion of the ring with respect to an inertial frame R. In this formulation,
the curvilinear surface coordinates α1, α2, and α3 are used for locating the neutral
surface elements.

The second flexural mode shapes that possess identical natural frequencies for
the ring are known as degenerate modes shapes and are separated by 45 degrees as
shown in Fig. 1b. It may be noted that the presence of degenerate mode shapes is
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Fig. 1 (a) Ring geometry and parameters. (b) Degenerate second flexural mode shapes

due to the ring symmetry. The geometry and parameters used in the present paper
have been described in detail in the prior research [9].

In this paper, the nonlinear equations of motion in terms of the generalized
coordinates associated with the flexural coordinates An and Bn are developed to
investigate a ring gyroscope’s nonlinear dynamic behavior. As described in the
previous study [9], the nonlinear governing equations for the rotating ring-type
gyroscope with the consideration of in-extensional mid-surface when sinusoidal
external electromagnetic forces in the radial direction are considered take the form:
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where ˙( ) represents time derivative while the spatial derivatives are denoted by ( )
′
.

In Eq. (1), E represents the Young’s modulus, I indicates area moment of inertia
for ring cross-section, ρ is mass density, EI denotes flexural rigidity, A represents
the cross sectional area of ring, b is the axial thickness of ring, h indicates radial
thickness, r denotes the radius of the ring while ω is the excitation frequency.
The term fNem(An,Bn, θ i) represents sinusoidal nonlinear external electromagnetic
force magnitude, while input angular rate and angular acceleration are, respectively,
denoted by � and Ω̇ .

In this study, the partial differential Eq. (1) is reduced to nonlinear ordinary
differential equations by employing Galerkin’s method. The general radial and
circumferential displacements that satisfy the continuity conditions are employed in
this discretization process. Under these conditions, considering the periodic nature
of solutions, the deflection modes can be chosen as [2, 9].
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where the mode functions are observed to be composed of time-dependent gener-
alized co-ordinates An and Bn, mode number n, ring radius r, and the nonlinear
parameter γ . As seen from Eqs. (2) and (3) this parameter has an influence on
both homogenous and the non-homogenous part of Eq. (1). Hence, the influence
of the parameter γ which results from the in-extensionality of the middle surface is
termed as system nonlinearity. In this paper, Eqs. (2) and (3) represent practically
any transverse or circumferential deflection where nonlinear additive terms are
incorporated in the mode function via the nonlinear term γ . In Eqs. (2) and (3), n
takes the value 2 since only the second flexural modes are considered to contribute
to the ring vibration. Galerkin’s method is applied by employing Eqs. (2) and (3)
in Eq. (1), multiplying by the appropriate weighting function associated with An(t)
and Bn(t) and integrating with respect to θ from 0 to 2π . The resulting discretized
set of nonlinear differential equations take the form:
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n Ȧn = 0,

(5)

where the parameter ζ is the mechanical damping ratio, and n denotes the number
of modes which is taken to be 2 in this study. A nonlinear electromagnetic
force fNem(An,Bn, θ i) cos (ωt) is considered to provide external sinusoidal excitation
which is essential for the operation of the gyroscope where ω represents the
excitation frequency. The angular position of electrostatic forces on the system
is denoted by θ i, i = 1, 2, 3, 4. Various configurations for the electromagnetic
force are considered for the purposes of designing a ring gyroscope with effective
second flexural resonant mode participation. Also, a suitable theoretical formulation
of the electromagnetic force magnitude is developed considering the interactions
between the electromagnet (em) and permanent magnets (pm) as shown in Fig. 2.
The potential energy and force formulations are obtained from a dipole model by the
law of Biot and Savart [11]. The expressions for nonlinear electromagnetic forces
that affect the system from four positions are derived in the primary coordinate An

as

fNem (An, Bn, θi) = μ0
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where μ0 = 4π × 10−7H/m represents the magnetic permeability of free space,

A = π
∼
R

2
is the area of the loop, the number of coil turns is denoted by N while i,

∼
R , respectively, represent the coil current and radius of coil circular loop. Ma is

the magnetization, and Va represents the volume of the source magnet. In Eq. (6),
consideration for the use of an iron core has been included via a relative permeability
constant k. This equation has been employed for studying the effect of nonlinear
actuator dynamics employing the system of Eqs. (4) and (5). The distance between
electromagnetic (em) and the permanent magnet (pm) is designated as d as shown
in Fig. 2.
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Fig. 2 Schematic representation of ring dynamics and actuator configurations

3 Results and Discussion

The dynamic response of the system when subjected to an external nonlinear
actuator is examined via a numerical solution scheme in the present study. The
mathematical model presented in Eqs. (4), (5), and (6) is employed for this purpose.
Also, natural frequency variation due to rotation has been quantified and discussed
in detail [9]. The operation of ring-based vibratory gyroscopes relies on nonlinear
external excitation close to one of the resonant frequencies in order that device
sensitivity may be maximized. To this end, variation of the second flexural natural
frequency with the input angular rate is quantified using this model. It may be
noted that as described in the studies [8, 9], the experimentally predicted natural
frequencies agree with those predicted by the mathematical model presented in the
present paper.

Furthermore, a nonlinear model which includes complex nonlinear iner-
tia/stiffness terms, as well as a nonlinear electrometric force as depicted in Eqs. (4)
and (5), have been employed. Equations (4) and (5) have been solved numerically
to predict nonlinear response features of a ring gyroscope. At a nominal input
angular rate of 2π rad/sec, the natural frequencies used in the present study have
been evaluated as ω1= 58.6218 rad/sec, and ω2 = 64.8218 rad/sec. In the absence
of input angular rate of the ring, two identical natural frequencies are predicted
and they take the values ω1 = ω2 = 61rad/sec. The generalized coordinates
q1 = An/h, q2 = Bn/h have been used for the non-dimensional equations. The
following typical ring design parameters: radius of r = 92.5 × 10−3 m, thickness
of h = 0.1016 × 10−3 m, and a height of b = 150 × 10−3 m with Young’s modulus
of E = 2.068 × 1011 N/m2 and the density of ρ = 7833.41 kg/m3 have been chosen
in the present study. Besides, for all time as well as frequency response simulations,
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a damping ratio, ζ of 0.01 has been assumed for the system. For all numerical
simulations, a zero-velocity initial condition together with an initial displacement
amplitude of 5 × 10−3m is imposed.

3.1 Nonlinear Dynamic Response in the Driving and Sensing
Directions

The time history with long time records in the driving An and sensing Bn coordinates
of a ring gyroscope shown in Fig. 3a, b are obtained using Eqs. (4), (5), and (6) in
the presence of nonlinear term at an excitation frequency 60 rad/sec. The response

Fig. 3 Radial displacement
for � = 2 rad/sec in (a)
driving and (b) sensing
directions
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Fig. 4 Phase diagram in (a)
driving and (b) sensing
directions

of the ring in the driving and the sensing directions, respectively, are displayed in
Figs. 3a, b. This study concludes that due to the gyroscopic coupling present in the
system, a transfer of energy takes place between the two modes in the presence of
angular velocity input.

For the same system parameters and initial conditions, when the gyroscope is
given an input angular rate of 2π rad/sec, the phase-plane trajectory based on the
steady-state response in the driving and sensing directions, respectively, is shown in
Fig. 4a, b.

Moreover, effects of nonlinearity can be seen in the Poincare’ map plots in Fig.
5a, b and is indicated via multiple equilibrium points. Also, it can be observed
that the resulting Poincare’ map appears as a cloud of unorganized points due
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Fig. 5 Poincare’ map in (a)
driving and (b) sensing
directions
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to the influence of the nonlinear term associated with the system as well as the
electromagnetic force.

4 Conclusions

The nonlinear dynamic response of a macro ring-based gyroscope has been
investigated for the purpose of quantifying the effects of system as well as
actuator nonlinearities inherently present in such systems under operation. The
device exhibits high nonlinearity in the presence of nonlinear term in the model
which may be attributed to high vibration amplitudes. A suitable electromagnetic
actuator model has been developed for the purposes of examining the nonlinear
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dynamic response. The nonlinear dynamic response obtained via time-response,
Phase portraits, and Poincare’ maps indicates that the nonlinearity in the model and
actuation play an essential role in shaping the dynamic ring behavior. Comparison
with the linear model study [9], revealed that the inclusion of model nonlinearities
in the presence of high vibration amplitudes has a strong influence and hence greatly
demonstrates its significance.
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