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1 Introduction

Vortex-induced vibration (VIV) is a nonlinear resonant fluid–structure interaction
phenomenon due to the synchronization of vortex shedding frequency with one
of the natural frequencies of the structure. In engineering projects, VIV is usually
studied as a problem to be mitigated, as it is a factor of great impact in fatigue
analysis. Nevertheless, this phenomenon may be approached from a different
perspective, within the context of energy harvesting. In this case, the objective is a
controlled amplification of the response, to be used for obtaining electric energy. As
an example, [1] present the concept of VIVACE (Vortex-Induced Vibration Aquatic
Clean Energy), a device based on a series of cylinders in tandem arrangement that
uses electromagnetic transducers to convert structural kinetic energy into electricity.

Many of the classical studies of VIV phenomena concern rigid cylinders mounted
on an elastic base. However, from the low-power-energy-harvesting perspective,
the phenomenon on flexible cylinders with orthotropic bending stiffness may be
considered an interesting endeavor, since VIV leads to self-excited and self-limited
oscillations and, in this particular case, higher amplitudes are maintained for a broad
band of frequencies. First observed in [2] and later confirmed in [3], experiments
with flexible cylinders with larger stiffness in the in-line direction compared to
the cross-flow ones showed a new branch of response, called by the authors high-
speed mode. This new branch observed is stable and extends, with high-frequency
response, to large incoming flow velocities. The in-line and cross-wise amplitudes
obtained in this study for the first two bending vibration modes of a cantilever of
frequency ratio 4:1 are shown in Fig. 1, represented by their dominant intrinsic
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Fig. 1 Modal VIV response branches for orthotropic stiffened flexible cantilevered cylinder:
experimental set-up, in-line and cross-wise modal amplitudes as functions of reduced velocity
(adapted from [3])

mode function (IMF); see [4] for the definition of an IMF within the empirical
mode decomposition and [5] for their application in VIV analysis. This phenomenon
has been thought to be primarily caused by twisting–bending coupling, triggered
by VIV.

Concerning energy conversion, piezoelectric energy harvesting is a useful solu-
tion for reduced power demanded by electronic devices. Experimental and numeri-
cal studies on piezoelectric flexible cantilevered beams are found in [6, 7] and [8].

As a theoretical approach, this chapter derives a reduced-order model for
studying a cantilevered piezoelectric harvester with orthotropic bending stiffness
under VIV. The equations of motion coupling mechanical and electrical subsystems,
as well as the wake-oscillator model for the fluid–structure interaction, are addressed
in Sect. 2. Numerical simulations at chosen scenarios illustrate the problem in
Sect. 3.

2 Mathematical Model

The system modelled in this chapter is represented in Fig. 2. The harvester is com-
posed of a cantilevered flexible polymeric cylinder molded over a flat bar constituted
by a metallic substrate between two piezoelectric material layers connected in series
to an electrical resistance.

For the mathematical modelling, the Bernoulli–Euler’s cantilever model is taken.
A fixed frame XYZ with origin at the clamped end of the beam is adopted, with X

parallel to the incident flow direction, Y parallel to the cross-wise direction, and Z

aligned with the beam axis. The displacements in each of these directions are U , V ,
and W , respectively (see Fig. 2). The extended Hamilton’s principle for dissipative
systems then reads
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Fig. 2 Schematic representation of the energy harvesting system

∫ t2

t1

[
δT − δV + (

δWnc + δWi,e

) ]
dt = 0. (1)

Being μ the mass per unit length, Jp the mass moment of inertia around Z, and θ

the twist angle, the variation of the kinetic energy is given as

∫ t2

t1

δT dt = −
∫ t2

t1

∫ L

0

[
μ (üδu + v̈δv + ẅδw) + Jpθ̈δθ

]
dZ dt. (2)

The potential energy V can be divided into a portion due to external potential fields,
a portion due to strain energy, and a portion corresponding to the electric field in
the piezoelectric layers, namely V = Vf +Vk +Ve. Since the external conservative
forces are weight and buoyance, it follows that:

δVf = −
∫ L

0
γ δw dZ, (3)

with γ being the immersed weight per unit length. Following, the variation of
the strain energy, considering a linear-elastic and piezoelectric behavior for the
materials, is written as

δVk =
∫ L

0

∫∫
A

[
Eεzzδεzz + G

(
γxzδγxz + γyzδγxz

) ]
dA dZ, (4)
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with εzz being the axial strain, while γxz and γyz are the distortions in the cross-
section plane. In turn, E and G are the Young and Shear moduli, respectively. Since
the cross-sections are composed of different materials, the area integrals must be
carried out for each element. In order to proceed with a formulation that takes into
account axial extensibility, torsion, and bending in both transversal directions, the
relations presented in [9] for the axial strain and the distortions are used for each
element of the cross-section. These relations are correct up to second order, leading
to a model correct up to nonlinearities of third order. Substituting those relations
and adding up terms from different elements of the cross-sections lead to

δVk =
∫ L

0

[
EA

(
w′ +

(
u′)2
2

+
(
v′)2
2

)
+ EIp

2

(
θ ′)2

] [
δw′ + u′δu′ + v′δv′] dZ

+
∫ L

0

[
EIp

(
w′ +

(
u′)2
2

+
(
v′)2
2

)
θ ′ + EI4

2

(
θ ′)3

]
δθ ′ dZ

+
∫ L

0
EIXv′′δv′′ + EIY u′′δv′′ + GIpθ ′δθ ′ dZ. (5)

The stiffness products are taken in the whole cross-section, which requires the
contribution of each element to be added up. The area moment of inertia around
axis X and Y are IX and IY , respectively, while Ip = IX + IY is the polar moment
of inertia, It is the torsional moment of inertia, and I4 is an area integral given by

I4 =
∫∫

A

(
X2 + Y 2

)2
dA. (6)

Now, for the electric component of the deformation in the bimorphic piezoelectric
layers, following [8], the variation of the piezoelectric potential energy is given by

δVe = −
∫ L

0

(
e31

2hp

MXV δv′′ + e31

2hp

MXv′′δV
)

dZ. (7)

Only the coupling between the displacements v and the voltage V appears since
the static moment of each piezoelectric layer with respect to the Y axis is zero.
Equation (7) already added up both piezoelectric layers. The absolute value of
the static moment of each piezoelectric layer is MX, hp is the thickness of each
layer, and e31 is the constant of piezoelectric coupling. Finally, completing the
conservative terms, the variation of the generated electric energy is given as [8]:

δWi,e =
∫ L

0

(
e31

2hp

MXV δv′′ + e31

2hp

MXv′′δV + EAp

2h2p
V δV

)
dZ. (8)
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To close the mathematical model, the variation of the work of non-conservative
forces is given as

δWnc =
∫ L

0

[
(fu − cuu̇) δu + (fv − cvv̇) δv

]
dZ + QδV , (9)

with Q being the electric charge output of the electrical system, cu and cv are
the linear structural damping coefficients in the X and Y directions, respectively,
while fu and fv are the hydrodynamic forces in those same directions. Collecting
all variational terms in the extended Hamilton’s principle (Eq. 1), developing
the appropriate algebraic operations, and deriving the equation of the electric
charge with respect to time, one obtains the following system of nonlinear partial
differential equations of motion:

μẅ − EA
(
w′′ + u′u′′ + v′v′′) − EIpθ ′θ ′′ − γ = 0; (10)

μü + cuu̇ + EIY u′′′′ −
[
EAu′

(
w′ +

(
u′)2
2

+
(
v′)2
2

)
+ EIp

2
u′ (θ ′)2

]′
= fu;

(11)

μv̈ + cvv̇ + EIXv′′′′ −
[
EAv′

(
w′ +

(
u′)2
2

+
(
v′)2
2

)
+ EIp

2
v′ (θ ′)2

]′

− e31MX

hp

V
′′ = fv; (12)

Jpθ̈ − GItθ
′′ −

[
EIpθ ′

(
w′ +

(
u′)2
2

+
(
v′)2
2

)
+ EI4

2

(
θ ′)3

]′
= 0; (13)

∫ L

0

e31

hp

MXv̇′′ dZ + EApL

2h2P
V̇ + V

R
= 0. (14)

To complete the set of equations of motion, the hydrodynamic forces are adapted
from the model presented in [10]. Here, the wake variable q is taken as a continuous
variable that may vary with Z. The hydrodynamic forces are then written as

fu = −μaü − 1

2

(
qCL

2

)
ρDv̇

√
(U∞ − u̇)2 + v̇2

+ 1

2
CDρD (U∞ − u̇)

√
(U∞ − u̇)2 + v̇2

+ 1

2
α

(
qCL

2

)2

ρD (U∞ − u̇)

√
(U∞ − u̇)2 (15)
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fv = −μav̈ + 1

2

(
qCL

2

)
ρD (U∞ − u̇)

√
(U∞ − u̇)2 + v̇2

− 1

2
CDρDv̇

√
(U∞ − u̇)2 + v̇2. (16)

The coefficients CL and CD are the amplitude of oscillation of the lift coefficient
for a stationary cylinder and the mean drag coefficient for a stationary cylinder,
respectively. In turn, μa is the potential added mass for the cross-section and α is a
coefficient related to the drag amplification during VIV. The wake variable follows
the forced van der Pol equation:

q̈ + εvωs

(
q2 − 1

)
q̇ + ω2

s q − κ

D
üq = Av

D
v̈, (17)

with ωs being the vortex shedding frequency, while εv and Av are, respectively,
a van der Pol equation parameter and a coupling coefficient, both determined
experimentally [10]. In order to numerically integrate the mathematical model, a
Galerkin projection is made on the systems defined by Eqs. (11)–(14) and Eq. (17).
For the trial functions, the first three modes of vibration of the cantilever beam
are taken for the transversal displacements together with one mode for the axial
displacement and one for the angle of twist. For the wake variable, the three modal
shapes for transversal vibrations are also adopted as projection functions. Due to
the presence of the square root dependency on the velocity of each cross-section
in the hydrodynamic forces, the reduced-order model does not show up a closed
mathematical expression. This leads the projection for those terms to be made at
every time step of a numerical simulation.

Aiming at concluding the description of the mathematical modelling, a discus-
sion is needed on the adopted wake-oscillator model. The model was taken from
[10], where the parameters εv and Av are dependent on the reduced velocity that
is related to the incident flow, as Ur = U/fnD, being fn the natural frequency
corresponding to the transversal oscillations of a rigid cylinder mounted on an
linear-elastic 2-dof system. Herein, an ad hoc assumption is made to extend this
dependency to the case of a flexible cylinder, by taking fn as the natural frequency
related to vibration modes dominated by transversal oscillations. It is assumed
that these parameters are independent for each component of q obtained after the
Galerkin projection, being taken as εv,i and Av,i , with i being the mode number
of the component, ranging from one to three in the present work. With those
assumptions, and using a Heaviside function to represent that the electric tension
output occurs only at the clamped end as in [8], after some cumbersome algebraic
work, the equations for the reduced-order model are

mwẅ1 + βww1 +
3∑

k=1

3∑
l=1

βuu
k,lukul +

3∑
k=1

3∑
l=1

βvv
k,lvkvl + βφφφ2

1 = 0; (18)



Piezoelectric Cantilevered Flexible Cylinder Under VIV 125

mu
i üi + cu

i u̇i +
3∑

l=1

βu
i,lul +

3∑
l=1

βuw
i,l ulw1 +

3∑
j=1

3∑
k=1

3∑
l=1

βuuu
i,j,k,lujukul

+
3∑

j=1

3∑
k=1

3∑
l=1

βuvv
i,j,k,luj vkvl +

3∑
l=1

β
uφφ
i,l ulφ

2
1 = f u

i ; (19)

mv
i v̈i + cv

i v̇i +
3∑

l=1

βv
i,lvl +

3∑
l=1

βvw
i,l vlw1 +

3∑
j=1

3∑
k=1

3∑
l=1

βvuu
i,j,k,lvjukul

+
3∑

j=1

3∑
k=1

3∑
l=1

βvvv
i,j,k,lvj vkvl +

3∑
l=1

β
vφφ
i,l vlφ

2
1 + diV = f v

i ; (20)

mφφ̈1+βφφ1+βwφw1φ1+βφφφφ3
1+

3∑
k=1

3∑
l=1

β
uuφ
k,l ukulφ1+

3∑
k=1

3∑
l=1

β
vvφ
k,l vkvlφ1 = 0;

(21)

q̈i + εv,i

⎡
⎣ 3∑

j=1

3∑
k=1

3∑
l=1

Qi,j,k,lqj qkq̇l

⎤
⎦ − εv,iStUr q̇i + (StUr)

2 qi = Av,i v̈i;

(22)

V̇ + ηV +
3∑

l=1

ζl v̇l = 0, (23)

with ui , vi , and wi being the degrees of freedom relative to the projections of u,
v, and w, respectively. The index i refers to each of the three modal components
adopted for displacements u and v. The twist is φ, St is the Strouhal number, and
Ur = U∞/fy1D is the reduced velocity according to the frequency of the first
natural mode in the Y direction.

3 Results and Discussion

A case study is presented aiming at illustrating simulations based on the proposed
mathematical model. An aluminum flat bar of dimensions 10mm × 40mm gives
the structure with a frequency ratio close to 4:1 between in-line and cross-wise
directions. The structural and electric parameters considered are presented in
Table 1, where the index a refers to the aluminum bar, s to the silicon cylinder,
and p to the piezoelectric material. In order to analyze the response including the
three transverse modes in the Galerkin projection, reduced velocities up to 75 were
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Table 1 Simulation parameters

Parameter Value Parameter Value Parameter Value

L 1500mm Ea 70GPa νs 0.33

D 45mm Es 15MPa νa 0.39

bw 4mm Ep 60.6GPa νp 0.33

ha 1mm ρs 2710 kg/m3 e31 16.6 C/m2

hp 0.3mm ρa 1100 kg/m3 ε33 25.5 nF

ρp 7500 kg/m3 R 10 k�

Fig. 3 Cross-wise modal displacements and respective IMF, normalized with respect to the
cylinder diameter, as a function of reduced velocity based on the first transversal mode natural
frequency in still water. Reduced velocity linearly increasing with time at a rate Ur = αt , α = 0.01

considered. Practical design aspects such as intensity of incoming flow velocity and
the structure strength were not considered in the present simulations.

Equations (18)–(23) were numerically integrated under two different conditions:
(i) steady states obtained from a step-by-step increase in reduced velocity; (ii)
continuously increasing or decreasing the reduced velocity linearly with time. In
case (ii), a very slow increasing (or decreasing) rate is applied, at a time scale much
longer than the typical shedding periods, such that the ratio between them lies in the
interval 195 < ratio < 3500, being always of order 100 or larger. Hilbert–Huang
analyses were undertaken for the in-line and cross-wise displacements time series;
[3–5]. An empirical mode decomposition (EMD) algorithm is applied to each of
the modal time series, obtaining their respective intrinsic mode functions (IMF) as
exemplified in Fig. 3. A Hilbert transform is then calculated for these IMF, obtaining
the instantaneous amplitude modulation and response frequency of the system.
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Typical response amplitudes were calculated from the peak of the obtained
spectra, which are dominated by a single frequency value at each time instant.
The sum of the modal responses is presented in Fig. 4. Results for the simulation
run with linearly increasing velocities are represented in blue and for decreasing
velocities in red. Markers (*) are steady-state amplitude responses obtained from
series simulated at those respective reduced velocities.

As seen in Fig. 4, the transverse amplitudes exhibit three locked-in responses,
corresponding to the transverse natural frequencies of the structure. A hysteresis
loop, a phenomenon commonly present in experimental VIV studies, can be
identified as jumps between coexisting modes, where dynamic bifurcations show up
clearly. Such a jump phenomenon is clearly depicted in the interval 55 < Ur < 75,
where the transversal modes 2 and 3 coexist. As for the in-line response, a first
peak of amplitude is observed at reduced velocities around Ur = 5.5, along with
the transverse lock-in peak. The first in-line mode lock-in is also observed at higher
reduced velocities, close to Ur = 15.

When compared to the results presented in Fig. 1, the model herein developed
shows good qualitative results for typical VIV response. However, the high-energy
response branch, clearly observed in the experimental campaigns [2, 3], was not
captured by the proposed mathematical model. In addition, amplitudes in longi-
tudinal direction are considerably smaller than the ones obtained experimentally.
As a matter of fact, the high-speed (energy) response branch was thought to be
caused by the structure dynamics, through the twisting–bending coupling. As this
coupling has been taken into account, with twisting terms considered up to third
order, it appears that, so far, the fluid–structure interaction phenomenon has not
been modelled properly, at least not sufficiently well. Further investigation is surely
needed regarding the nature and the modelling of this intriguing fluid–structure
interaction phenomenon.

Even not capturing the high-speed (energy) response branch and assuming the
present reduced-order model as valid, an estimate for the electric power harvested
from the system was carried out. The results are presented in Fig. 5.

The power generated increases at a very strong rate with the vibration frequency
of the system, varying from very low values (of order of a few mW) at small
reduced velocities, close to the first mode lock-in peak, to low ones (of order of
1W) harvested at higher modes of vibration.

4 Concluding Remarks

A 3D mathematical model was proposed for the representation of a flexible
piezoelectric energy harvester under VIV, coupling structural, electrical, and hydro-
dynamics effects. The structural part of the model derived in this chapter is
robust including, besides bending, axial displacements and torsion. For the fluid–
structure interactions, represented by a wake-oscillator model, qualitative VIV
aspects were recovered, including hysteresis loops at reduced velocity ranges where
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Fig. 4 Cross-wise and in-line amplitudes, normalized with respect to the cylinder diameter, as a
function of reduced velocity based on the first transversal mode natural frequency in still water.
Continuous line: varying current speed slowly; in blue: increasing velocity; in red: decreasing
velocity. Modal amplitudes are determined by taking the Hilbert transform of the dominant IMF,
within a EMD scheme [3, 4]. Dots represent amplitudes measured after a steady-state response is
attained
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Fig. 5 Electric power harvested. Measure given in Watts. See Fig. 4 caption, for explanation on
lines and dots

vibration modes switching occurs. However, the high-energy branch experimentally
observed has not been captured by the present model yet. Therefore, the forms
of the equations of the phenomenological model, alongside the calibration of its
parameters, are objects of further work. In turn, as expected, the electric power
harvested is highly dependent on the frequency of the system. Considering the
results obtained by this model, the system presents a potential for energy harvesting,
in different scales, at lower and higher modes, with distinct applications for each
case. An experimental campaign on this subject is planned to be carried out in the
near future.

Acknowledgments L. Madi and W. Defensor Fo acknowledge their PhD scholarships, supported
by the CAPES social demand, through the Graduate Program in Naval and Ocean Engineering
(PPGEN). G. Vernizzi acknowledges the São Paulo Research Foundation (FAPESP), for the PhD
scholarship 2016/25457-1. C.P. Pesce acknowledges the CNPq Research Grant 308230/2018-3 and
the Technological Research Institute of São Paulo State (IPT) for partial support given to L. Madi
through its Young Talent Program.

References

1. M.M. Bernitsas, K. Raghavan, Y. Ben-Simos, E.M.H. Garcia, VIVACE (vortex induced vibra-
tion aquatic clean energy): a new concept in generation of clean and renewable energy from
fluid flow, in Proceedings of OMAE2006—International Conference on Offshore Mechanics
and Artic Engineering (2006)

2. A. Fujarra, C.P. Pesce, F. Flemming, C. Williamson, Vortex-induced vibration of a flexible
cantilever. J. Fluids Struct. 15, 651–658 (2001)



130 L. S. Madi et al.

3. W.A. Defensor Fo., C.P. Pesce, G.R. Franzini, An experimental investigation on vortex-induced
vibrations of cantilevered flexible cylinders with orthotropic bending stiffness, in Proceedings
of 9th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions,
Flow-Induced Vibration and Noise, Toronto, 2018

4. N.E. Huang et al., The empirical mode decomposition and the Hilbert spectrum for non-linear
and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998)

5. C.P. Pesce, A.L.C. Fujarra, L.K. Kubota, The Hilbert-Huang spectral analysis method applied
to VIV, in Proceedings of 25th International Conference on Offshore Mechanics and Arctic
Engineering, Hamburg, 2006

6. Tanaka, H., “Generalized basic equations for bending motions of piezoelectric bars formulated
from Hamilton’s principle”, The Journal of the Acoustical Society of America, 95(4):1768–
1772, (1994).

7. A. Abdelkefi, F. Najar, A.H. Nayfeh, S. Ben Ayed, An energy harvester using piezoelectric
cantilever beams undergoing coupled bending–torsion vibrations. Smart Mater. Struct. 20(11),
115007 (2011)

8. A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting (Wiley, London, 2011)
9. M.R.M. Crespo Da Silva, Non-linear flexural-flexural-torsional-extensional dynamics of

beams—I. Formulation. Int. J. Solids Struct. 24(12), 1225–1234 (1988). https://doi.org/10.
1016/0020-7683(88)90087-X

10. Y. Qu, A.V. Metrikine, A single van der Pol wake oscillator model for coupled cross-flow and
in-line vortex-induced vibrations. Ocean Eng. 196, 106732 (2020)

https://doi.org/10.1016/0020-7683(88)90087-X
https://doi.org/10.1016/0020-7683(88)90087-X

	3D Reduced-Order Model for an Orthotropic Stiffened Piezoelectric Cantilevered Flexible Cylinder Under VIV
	1 Introduction
	2 Mathematical Model
	3 Results and Discussion
	4 Concluding Remarks
	References


