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Preface

This volume is part of three volumes collecting the Proceedings of the Second
International Nonlinear Dynamics Conference (NODYCON 2021) held as a virtual
(online) conference, February 16–19, 2021. NODYCON was launched in 2019 to
foster the tradition of the conference series originally established by Prof. Ali H.
Nayfeh in 1986 at Virginia Tech, Blacksburg, VA, USA, as the Nonlinear Vibrations,
Stability and Dynamics of Structures Conference. With the passing in 2017 of Prof.
Nayfeh, NODYCON 2019 was organized as a collective tribute to Prof. Nayfeh.
NODYCON 2019 received an extraordinary response from the community with
408 abstracts (out of 450 submissions) presented by nearly 400 participants from
68 countries.

After the successful launch of NODYCON, NODYCON 2021, originally
planned to be held in Rome, was hosted as a virtual (online) conference given
the uncertainties related to the COVID-19 world crisis. The online conference was
creatively designed to help corroborate and cement the sense of cohesiveness and
liveliness of the NODYCON community. The NODYCON 2021 online conference
featured 16 keynotes and mini-keynotes of broad interest, a panel, two workshops,
and 442 oral presentations covering recent advances in the rich spectrum of topics
covered by Nonlinear Dynamics, including new frontiers and challenges. The
Special Session and Panel entitled “Complex dynamics of COVID-19: modeling,
prediction and control” offered important outlooks into the nonlinear dynamic
evolution and prediction of the global disease spreading across different scales by
using a variety of analysis tools and modeling approaches.

For NODYCON 2021, the Organizing Committee received 478 abstracts and,
after rigorous review cycles, 442 one-page abstracts were accepted and published in
the Conference Book of Abstracts.

The diverse topics covered by the papers were clustered along the following four
major themes to organize the technical sessions:

A. Concepts and methods in nonlinear dynamics
B. Nonlinear dynamics of mechanical and structural systems
C. Nonlinear dynamics and control
D. Recent trends in nonlinear dynamics
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vi Preface

The authors of a selection of approximately 60 papers were invited to publish
in the Special Issue of Nonlinear Dynamics entitled “NODYCON 2021 Second
International Nonlinear Dynamics Conference.” At the same time, about 200 full
papers were submitted to Advances in Nonlinear Dynamics – Proceedings of the
Second International Nonlinear Dynamics Conference (NODYCON 2021) within
the newly established NODYCON Conference Proceedings Series. One hundred
and eighty-one papers were accepted. These papers have been collected into three
volumes, which are listed below together with a sub-topical organization.

Volume 1: Nonlinear Dynamics of Structures, Systems,
and Devices

A. Fluid-structure interaction
B. Mechanical systems and structures
C. Computational nonlinear dynamics
D. Analytical techniques
E. Bifurcation and dynamic instability
F. Rotating systems
G. Modal interactions and energy transfer
H. Nonsmooth systems

Volume 2: Nonlinear Dynamics and Control

A. Nonlinear vibration control
B. Control of nonlinear systems and synchronization
C. Experimental dynamics
D. System identification and SHM
E. Multibody dynamics

Volume 3: New Trends in Nonlinear Dynamics

A. Complex dynamics of COVID-19: modeling, prediction and control
B. Nonlinear phenomena in bio- and eco-systems
C. Energy harvesting
D. MEMS/NEMS
E. Multifunctional structures, materials and metamaterials
F. Nonlinear waves
G. Chaotic systems, stochasticity and uncertainty
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I wish to acknowledge the work and dedication of the co-editors of the NODY-
CON 2021 Proceedings: Prof. Bala Balachandran (University of Maryland, College
Park, USA), Prof. Michael J. Leamy (Georgia Institute of Technology, USA), Prof.
Jun Ma (Lanzhou University of Technology, China), Prof. Jose Antonio Tenreiro
Machado (Instituto Superior de Engenharia do Porto, Portugal), and Prof. Gabor
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talent, energy, and enthusiasm of all researchers in the field of nonlinear dynamics
who wrote, submitted, and presented their papers in a very lively way. Special
praise is also deserved for the reviewers who invested significant time in reading,
examining, and assessing multiple papers, thus ensuring a high standard of quality
for this conference proceedings.

NODYCON 2021 Chair

Walter Lacarbonara, Rome, Italy
May 2021



Preface for Volume 1: Nonlinear
Dynamics of Structures, Systems and
Devices

Volume 1 of the NODYCON 2021 Proceedings is composed of 77 chapters,
which are spread across the following groupings: i) fluid-structure interactions
(12 papers), ii) mechanical systems and structures (16 papers), iii) computational
nonlinear dynamics (13 papers), iv) analytical techniques (12 papers), v) bifurcation
and dynamic instability (10 papers), vi) rotating systems (4 papers), vii) modal
interactions and energy transfer (3 papers), and viii) nonsmooth systems (7 papers).
Due to the cross-cutting nature of the topics, the editors acknowledge that a paper
placed in one grouping could have easily been placed in another grouping as well.
As one reads through these 77 contributions, one will note the use of a wide range
of experimental, analytical, and numerical techniques for study of the nonlinear
dynamics of a wealth of systems across different length and time scales.

In the area of nonlinear dynamics concerning fluid-structure interactions, the
reader will find efforts concerning fluid flow in pipes, arteries, and relief valves
(X. Wang et al.; H. Carpenter et al.; R. Orsino et al.; and W. Song et al.); on flow
past heat exchangers, and dynamics due to wind loads, concerning flutter, and wake
and vortex-induced vibrations (S.R. Rajidi et al.; K.H. Lee et al.; J. Viba et al.; R.
Mondal et al.; M. Hollm et al.; L.S. Madi et al.); and concerning strong viscosity
and damping (A. Mukhopadhyay et al.; A. Nuriev and A. Kamalutdinov).

In the area of mechanical systems and structures, the reader will find treatments
of beams, plates, caps, arches, and shells (G. Iarriccio and F. Pellicano et al.; J.K.A.
Pereiria et al.; M. Shitikova and A. Krusser; X. Haoran and H. Yuda; U. Eroğlu and
G. Ruta; D. Addessi et al.; and P. Di Re et al.); applications such as cranes, cable car
systems, gyroscopes, and spacecraft (M. Metelski et al. (2 papers); C.A. Fonseca
et al.; I. Gebrel et al.; A Doroshin; B. Ma et al.); and normal forms, perpetual
manifolds, and sensitivity analysis (A. Nasir et al.; F. Georgiades; Z. Cao et al.).

In the area of computational nonlinear dynamics, the reader will find studies
concerning data-driven methods and analytical methods for fatigue crack and
failure (M. Farid; S. Guth and T. Sapsis); reduced-order models (N.N. Balaji and
M.R.W. Brake; Y. Shen et al.; K. Vlachas et al.); continuation methods (C. Marry et
al.; and M. Blyth et al.); statistical analyses (C. Argáez et al.); global connections
and Wendland functions (B.-W. Qin et al.; C. Argáez et al.); functionally graded

ix



x Preface for Volume 1: Nonlinear Dynamics of Structures, Systems and Devices

shells (L. Kurpa et al.); structural optimization (S. Dou); and incremental harmonic
balance (S. Dou).

In the area of analytical techniques, the reader will find a diversity of efforts
concerning the van der Pol, Helmholtz, self, and Duffing oscillators (F. Afzali et al.;
E. Gourdon et al.; P. Udalov et al.; A. Dhar and I.R.P. Krishna); hybrid analytical-
numerical, expansion, and symbolic methods (M.-H. Tien and K. D’Souza; A.
Belyakov and A. Seyranian; P. Gomes et al.); supersymmetry (E. Howard et al.);
stability analysis (L.F. Vesa et al.); generic canard explosions (B.-W. Qin et al.);
non-rectification of heat (S. Carillo et al.); and exact solutions to polynomial semi-
definite problems (L. Menini et al.).

In the area of bifurcation and dynamic stability, the reader will find a range of
topics concerning rolling pendulum systems (K. Hedrih); fiber-reinforced polymer
systems and the Ziegler column (J. C. Coaquira et al.; G. Franzini and C. Mazzili);
rotor systems (X. Zhang et al.); characterization of resonances (M. Volvert and G.
Kerschen); cell mapping for global attractors (X. Wang et al.); Neimark-Sacker
bifurcation (E. Added and H. Gritli); degenerate bifurcation (A. Algaba et al.);
stability boundaries (E. Freire et al.); and systems subjected to quasi-periodic
excitations (K. Prabith and I.R.P. Krishna).

In the area of rotating systems, the reader will find studies on precise balancing
technology (S. Zhao et al.); backward whirling (T. Alzarooni and M.A. AL-
Shudeifat); stochastic resonances (E. Kremer); and internal resonances (B. Zhang
et al.).

In the area of modal interactions and energy transfers, the reader will find studies
concerning systems with internal resonances (G. Gobat et al.; A. Muralidharan and
S.F. Ali) and beam impact dynamics (Y. Georgiou).

In the area of nonsmooth systems, the reader will find studies related to multi-
degree-of-freedom oscillators (W. Dai and J. Yang); systems with dry friction (D.
Lyu et al.); piecewise linear systems (H. Zhang et al.); nonlinear oscillators with
compliant contacts (P. Kumar et al.); an aeroelastic system (D. Tripathi et al.); and
stability analysis of switched systems (A. Platonov; Y. Zhou and Z. Wang).

In conclusion, this volume represents a multifaceted cross-section of recent
advances in fluid-structure interactions, mechanical systems and structures, com-
putational nonlinear dynamics, analytical techniques, bifurcation and dynamic
instability, rotating systems, modal interactions and energy transfers, and nons-
mooth systems. We hope that readers will benefit from the rich work portrayed here
on nonlinear dynamics of structures, systems, and devices and that this work will
spur and inspire new ideas and future contributions.

Co-editors of the NODYCON 2021 Proceedings

Bala Balachandran, College Park, MD, USA
Walter Lacarbonara, Rome, Italy
Michael J. Leamy, Atlanta, GA, USA
Jun Ma, Lanzhou, China
J. A. Tenreiro Machado, Porto, Portugal
Gabor Stepan, Budapest, Hungary
May 2021
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Marek Metelski, Łukasz Drąg, and Stanisław Wojciech

Axisymmetric Nonlinear Free Vibration of a Conductive Annular
Plate Under Toroidal Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Xu Haoran and Hu Yuda

Modelling and Analysis of Vibrations on an Aerial Cable Car
System with Moving Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Cesar Augusto Fonseca, Guilherme Rodrigues Sampaio,
Geraldo F. de S. Rebouças, Marcelo Pereira, and Americo Cunha Jr.

Influence of Model Nonlinearities on the Dynamics of Ring-Type
Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Ibrahim F. Gebrel, Ligang Wang, and Samuel F. Asokanthan

Gravitational Dampers for Unloading Angular Momentum
of Nanosatellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Anton V. Doroshin

Studies on the Liquid Sloshing and Rigid-Liquid-Flexible
Coupling Dynamics of Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Bole Ma, Baozeng Yue, Yong Tang, and Jiarui Yu

Direct Sensitivity Analysis of Dynamic Responses for Nonlinear
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Zhifu Cao, Qingguo Fei, Dong Jiang, Rakesh K. Kapania, Hui Jin,
and Rui Zhu

Perturbations for Non-Local Elastic Vibration of Circular Arches . . . . . . . . 291
Ugurcan Eroglu and Giuseppe Ruta

Two-Scale Curved Beam Model for Dynamic Analysis of
Masonry Arches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Daniela Addessi, Paolo Di Re, Cristina Gatta, and Mariacarla Nocera

Enriched Vlasov Beam Model for Nonlinear Dynamic Analysis of
Thin-Walled Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Paolo Di Re, Daniela Addessi, and Cristina Gatta

Part III Computational Nonlinear Dynamics

Nonlinear Modal Analysis Through the Generalization of the
Eigenvalue Problem: Applications for Dissipative Dynamics . . . . . . . . . . . . . . . 329
Nidish Narayanaa Balaji and Matthew R. W. Brake



xiv Contents

Continuation-Based Design of Self-Contacting Soft Robotic
Manipulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Christopher Marry, Harry Dankowicz, and Girish Krishnan

Bayesian Local Surrogate Models for the Control-Based
Continuation of Multiple-Timescale Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Mark Blyth, Lucia Marucci, and Ludovic Renson

Predicting the Type of Nonlinearity of Shallow Spherical Shells:
Comparison of Direct Normal Form with Modal Derivatives . . . . . . . . . . . . . . . 361
Yichang Shen, Nassim Kesmia,Cyril Touzé, Alessandra Vizzaccaro,
Loïc Salles, and Olivier Thomas

Parametric Model Order Reduction for Localized Nonlinear
Feature Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Konstantinos Vlachas, Konstantinos Tatsis, Konstantinos Agathos,
Adam R. Brink, Dane Quinn, and Eleni Chatzi

Nonlinear Vibration of Functionally Graded Shallow Shells
Resting on Elastic Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Lidiya Kurpa, Tetyana Shmatko, and Jan Awrejcewicz

High-Order Approximation of Global Connections in Planar
Systems with the Nonlinear Time Transformation Method . . . . . . . . . . . . . . . . . 395
Bo-Wei Qin, Kwok-Wai Chung, Antonio Algaba,
and Alejandro J. Rodríguez-Luis

Analytic Methods for Estimating the Effects of Stochastic
Intermittent Loading on Fatigue-Crack Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . 407
Stephen Guth and Themistoklis Sapsis

Data-Driven Method for Real-Time Prediction of Fatigue Failure
Under Stochastic Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Maor Farid

An Improved Formulation for Structural Optimization of
Nonlinear Dynamic Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Suguang Dou

An Improved Tensorial Implementation of the Incremental
Harmonic Balance Method for Frequency-Domain Stability Analysis . . . . 443
Suguang Dou

Statistical Analysis of an Iterative Algorithm Class for Dynamical
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Carlos Argáez, Peter Giesl, and Sigurdur Freyr Hafstein

WendlandXool: Simplified C++ Code to Compute Wendland Functions . . 465
Carlos Argáez, Peter Giesl, and Sigurdur Freyr Hafstein



Contents xv

Part IV Analytical Techniques

Resonances of a Forced van der Pol Equation with Parametric
Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Fatemeh Afzali, Ehsan Kharazmi, and Brian F. Feeny

Analysis of General Piecewise-Linear Non-Smooth Systems
Using a Hybrid Analytical-Numeric Computational Method . . . . . . . . . . . . . . . 489
Meng-Hsuan Tien and Kiran D’Souza

Analytical Approximation of Forced Oscillations of Nonlinear
Helmholtz Resonator by Homotopy Analysis Method . . . . . . . . . . . . . . . . . . . . . . . 503
Emmanuel Gourdon, Alireza Ture Savadkoohi,
and Claude-Henri Lamarque

Nonlinear Aspects of One-dimensional Supersymmetry . . . . . . . . . . . . . . . . . . . . 515
Eric Howard, Iftekher S. Chowdhury, Ian Nagle

Global Stability Analysis of An Unemployment Model with Two
Distributed Time Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
Loredana Flavia Vesa, Eva Kaslik, and Mihaela Neamţu
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Nonlinear Dynamics of Cross-flow Heat
Exchanger Tube Conveying Fluid

Rajidi Shashidhar Reddy, Abhay Gupta, and Satyajit Panda

1 Introduction

The flow-induced vibration (FIV) is regarded as major problem in the heat exchang-
ers (HE) of power plants, petroleum refineries, chemical plants, nuclear reactors, etc.
A typical cross-flow HE transfers the heat between an internal fluid flowing through
the tubes and an external fluid flowing across the tubes. The high flow velocities
from the requirement of maximum and efficient heat transfer rate cause different
kinds of instabilities in the slender flexible HE tubes leading to tube-to-support and
tube-to-tube impact vibrations in HE array that induces the fretting failure of tubes
affecting production, economy and human safety. Thus, a large amount of research
had been conducted to study FIV of the tubes due to external [1, 2] and internal
flows [3].

The external cross-flow mainly causes fluidelastic instability (FEI) in the tube
beyond a critical flow velocity inducing the flutter of tubes [4]. A good number
of theoretical and experimental works have been conducted in the literature to
understand the mechanism of FEI and to develop an accurate model [5, 6] to
analyse the same. These studies revealed that at low mass damping parameters,
FEI arises through negative fluid damping [6] from the tube to surrounding fluid
interaction. Whereas for the high mass damping parameters, FEI appears through
the fluidelastic-stiffness-type mechanism from tube to neighbouring tubes and fluid
interaction. Consequently, it was showed that at low mass damping parameters, one
flexible tube in an array of rigid tubes undergoes FEI at an approximately same flow
velocity as an array of flexible tubes [6] and valid mainly for the rotated triangular
and in-line square array geometries [7, 8]. Hence, many works have been conducted
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on the dynamics of a single flexible tube in an array of rigid tubes [4, 8–15] to
study the effect of geometrical nonlinearity [14], axial loading [9, 14], tube-support
impact [3, 9, 15], wear and fatigue, etc.

Apart from the studies of FEI due to external flow, there exists a substantial
literature on the FIV of the tubes conveying fluid. The steady internal flow mainly
causes divergence in the tube with supported ends and flutter in the cantilever
tube [3]. In most of the engineering applications, the fluid flow in a tube becomes
pulsatile due to the bends, valves, change of cross-sections, pumps, etc. in the piping
networks. This pulsatile flow mainly causes parametric resonance/instability [16]
such as primary, secondary, combinatory resonances resulting in the oscillatory
motion of the tube. In all of these resonances, the principal primary parametric
resonance is the most critical one and appears at the pulsatile flow excitation
frequency of twice the natural frequency of the tube [16]. A significant amount
of literature is available on the study of parametric instability regions and the
corresponding nonlinear dynamics of the tube conveying pulsatile flow [3, 17, 18].

According to the knowledge of authors, in most of the theoretical and experi-
mental studies related to the instability of the heat exchanger tubes, the effect of
internal flow is omitted. A recent experimental study [19] considering the cross-
flow turbulence excitation and internal steady flow revealed a rise in amplitude
of vibration of the tube due to the increased mass of the system. Thus, it may be
important for the design of HE array to consider the effect of internal flow as the
dynamics may significantly vary due to the presence of aforesaid kinds of instability.
Therefore, the authors are intended to study the effect of internal steady/pulsatile
flow of the fluid on the nonlinear dynamics of heat exchanger tube under FEI and
the same is presented in the following sections.

2 System Model and Governing Equation of Motion

A schematic diagram of fluid conveying heat exchanger tube of an inline square
array subjected to an external cross-flow is shown in Fig. 1. The pinned supports are
considered at the ends of the tubes. According to Euler-Bernoulli beam theory and
plug-flow model, the governing differential equation of motion of tube conveying
pulsatile flow while considering the geometric stretching nonlinearity due to its
transverse deflection ( w (x, t) ) can be given as [16, 20, 21],

(
mf +mp

)
ẅ + E∗I ẇ′′′′ + 2mf U ẇ′ + EI w′′′′ +

[
mf U

2 +mf U̇ (L− x)

− (EA/2L)
∫ L

0
(
w′
)2
dx − (

E∗A/L
) ∫ L

0 w
′ ẇ′dx

]
w′′ = Fext,

mf = (π/4) ρf D
2
i
, mp = ρp A, A = (π/4)

(
D2
o −D2

i

)
, I = (π/64)

(
D4
o −D4

i

)

(1)

where ρf and ρp are densities of internal fluid and tube, respectively; Fext is external
transverse distributed force per unit length; U is pulsatile flow velocity of the
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Fig. 1 Schematic diagram of (a) a simply supported flexible fluid conveying tube at the midst of
(b) three-row in-line square array under cross-flow with a pitch to diameter ratio 1.5

internal fluid (U = Uf (1 + λ cos ω t)), where λ and ω are pulsatile velocity-
amplitude and frequency respectively; Do, Di, and L are the outer diameter, inner
diameter, length of the tube, respectively; E and E∗ are Young’s modulus and viscous
dissipation parameter of the material of the tube, respectively.

The cross-flow is modelled with a quasi-steady model [4, 7, 9, 13, 15] that
most realistically models the cross-flow over tube array based on the concept of
time delay (�t) between tube motion and fluid dynamic forces generated from its
motion. It mainly uses four experimentally derived parameters accounting for the
flow effects in the practical system such as drag (CD) and lift (CL) coefficients, time-
delay parameter (μ) and added mass coefficient of external fluid (Cma). Considering
an external flow with low mass damping parameter (<300), the dynamic coupling of
the tube with the motion of neighbouring tubes may be neglected [2]. Accordingly,
the cross-flow induces a dynamic transverse distributed force on the tube (Fext, Eq.
(1)) that can be written [4] as,

Fext (w, ẇ, ẅ) = −meẅ − Bẇ + C w(x, t −Δt),

me = π
4 ρeD

2
o Cma, B = 1

2ρe Ue Do CD, C = 1
2ρe U

2
e Do

∂CL
∂w

, Δt = μ
Do
Ue

(2)

where Ue is the gap flow velocity of external fluid; ρe is the density of external
fluid; Therefore, the nonlinear governing equation of motion of the tube conveying
steady/pulsatile flow and subjected to an external cross-flow in an array can be
obtained by substituting the Eq. (2) in Eq. (1) [22] as

(
mf+mp+me

)
ẅ+Bẇ−C w (x, t−Δt)+E∗I ẇ′′′′+2mfU ẇ′+EI w′ ′′′

+
[
mf U

2+mf U̇ (L− x)− (EA/2L)
∫ L

0
(
w′
)2
dx− (E∗A/L) ∫ L0 w′ ẇ′dx

]
w′′ = 0

(3)

For expressing the governing equation of motion (Eq. (3)) in the dimensionless
form, the following dimensionless quantities are introduced:
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η = w
Do
, ξ = x

L
, τ = Ω1 t, Ω1 = λ2

1

√
EI

mp L4 , Ω = ω
Ω1
, m̃ = mp

ρf D
2
o
, ue = 2πUe

Do Ω1
,

kc = AD2
o

2Iλ4
1
, v = (mf

EI

)1/2
UL, βe = me

mp+me
, βf = mf

mp+mf
, α = λ2

1E
∗

L2

(
I

E mp

)1/2

(4)

In Eq. (4), λ1 is the dimensionless eigenvalue corresponding to the first mode of
a pinned-pinned beam (i.e. λ1 = π ). Introducing these dimensionless quantities of
Eq. (4) in Eq. (3), the dimensionless governing equation of motion can be obtained
as,

M1 η̈ + C1 η̇ +
[
K1 v

2 + C2 v̇ (1− ξ)− kc
∫ 1

0

(
η′
)2
dξ − 2 kc α

∫ 1
0η
′η̇′dξ

]
η′′

+K1 η
′ ′′ ′ +K1 α η̇′′′′ + 2C2 v η̇

′ −K2 η (ξ, τ − T ) = 0,

M1 = 1+ βe
1−βe +

βf
1−βf , K1 = 1

λ4
1
, K2 = ue

2

8π2m̃

∂CL
∂η

, C1 = ueCD
4πm̃ ,

m1 =
√

βf
1−βf , C2 = m1

λ2
1
, T = μ 2π

ue

(5)

The above dimensionless governing equation (Eq. (5)) is discretized using the
analytical Galerkin method, where the transverse displacement is expressed in terms
of eigenbasis functions (φi) and generalized coordinates (qi) as,

η (ξ, τ ) =
N∑

i=1

φi (ξ) qi (τ ) , φi =
√

2 sin (iπξ) (6)

Therefore, by substituting Eq. (6) into Eq. (5) and integrating within the limits
of ξ = 0 and 1, the discretized form of the governing equation of motion can be
obtained as

M q̈+G q̇+K q+Kτ q (τ − T)+ kc

(
qTC q

)
C q+ 2 kc α

(
qTC q̇

)
C q = 0,

G = C1I+ 2C2vB+K1αΛ, K =
(
K1v

2 + C2v̇
)

C− C2v̇D+K1Λ, Kτ = −K2I

(7)

where the analytical forms of the matrices �, B, C, D are given in Ref. [21]. The
above set of simultaneous delay temporal differential equations (Eq. 7) are solved in
MATLAB using the built-in solver ‘dde23’. The solver utilizes the adaptive Runge-
Kutta explicit time integration method. For the evaluation of results, the number
of basis functions N = 4 is decided by conducting a convergence study on the
evaluation of dynamic response. Whereas, an initial condition, q1 = 0.001, qi =
0 (i �= 1), q̇ = 0 is used for the time integration.



Nonlinear Dynamics of Cross-flow Heat Exchanger Tube Conveying Fluid 7

3 Results and Discussion

In this section, the numerical results are presented to investigate the nonlinear
dynamics of a heat exchanger tube conveying steady/pulsatile flow and subjected to
an external cross-flow. The geometrical parameters of the tube Do, Di, L are taken
as 27 mm, 24 mm, 2 m, respectively. The material properties of the tube (steel)
are taken as E = 200 GPa, ρp = 7800 kg/m3, E∗ /E = 8 × 10−5. The internal and
external fluid is considered as water with density ρf = 1000 kg/m3. The geometrical
and material properties are taken such that the mass damping parameter is less than
300 [6] so that the modelling for the dynamics of a tube in a flexible heat exchanger
array is valid. The Reynolds number of cross-flow (6067 (0.2 m/s)-30,337 (1 m/s))
is also considered to be very high so that the assumption of constant fluid force
coefficients is valid [6, 11]. Considering the in-line square array with a pitch to
diameter ratio 1.5, the experimental parameters are taken as CD = 0.26, ∂CL/∂η=
−8.1, μ= 1 and Cma= 1.2 [4, 6]. The natural frequency of the tube can be obtained
as� = 1 (112.8 rad/s) (βe = β f = 0), 0.76 (β f = 0, βe = 0.423), 0.82 (β f = 0.325,
βe = 0), 0.67 (β f = 0.325, βe = 0.423). Reduced velocity and Reynolds number of
the internal flow for Uf = 5 m/s can be obtained as 11.6 and 134,230, respectively.

In order to verify the present formulation and in-house code, bifurcation dia-
grams for the amplitude of flutter of HE tube under cross-flow as well as the
amplitude of parametric resonant vibration of tube conveying pulsatile flow are
evaluated and shown in Fig. 2. For this purpose, Eq. (7) is solved in the time
domain keeping the appropriate terms related to the corresponding flows. The
good agreement between the present results and the similar results available in the
literature verifies the account of the influence of internal and external flows on the
HE tube.

Fig. 2 Validation of bifurcations diagrams of (a) flutter amplitude of HE tube under cross-flow
with Ref. [9], (b) parametric resonant amplitude of tube conveying pulsatile flow with Ref. [22]
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Fig. 3 (a) Bifurcation diagram for the oscillation of HE tube conveying steady flow (λ = 0) with
respect to cross-flow velocity, (b) corresponding variation of frequency of oscillation

3.1 Effect of Internal Steady Flow on the Dynamics
of Cross-flow HE Tube

In order to study the effect of internal steady flow (λ = 0), the bifurcation diagrams
with respect to cross-flow velocity are evaluated (Fig. 3a) for the cases of only
external flow (β f = 0) and with different internal flow velocities. The corresponding
flutter frequencies are depicted in Fig. 3b. The comparison of bifurcations diagrams
forβ f = 0 and Uf = 0 clearly shows that the mass of internal fluid enhances
the amplitude of periodic oscillations and reduces the critical cross-flow velocity
(0.7029 m/s (C) to 0.6342 m/s (D), Fig. 3a) with a slight reduction of the oscillation
frequencies. These phenomena mainly occur due to an increase in the inertia of the
system because of an increase in effective mass owing to the internal fluid. However,
the effect of flow velocity on the dynamics or aforesaid parameters can be seen as
negligible. It may be due to a very less increase of compressive stress in the tube
due to centrifugal force (mf U2

f ) of internal flow.

3.2 Effect of Internal Pulsatile Flow on the Dynamics
of Cross-flow HE Tube

Figure 4a–c shows the bifurcation diagrams with respect to cross-flow velocity at
different pulsatile flow excitation frequencies of � = 1.2, 1.5 and 1.8 (λ = 0.4,
Uf = 5 m/s), respectively. It can be seen that quasiperiodic oscillations appear while
the periodic oscillations appear in a small range of cross-flow velocities. However,
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Fig. 4 Bifurcation diagrams with respect to cross-flow velocity at different pulsatile flow (Uf =
5 m/s, λ = 0.4) excitation frequencies of (a) � = 1.2, (b) � = 1.5 and (c) � = 1.8

the cross-flow velocity range of periodic oscillations gradually shifts to the higher
velocities with increasing the pulsatile flow excitation frequency. The reason may
be realized from Figs. 4 and 3b, since these velocity ranges can be seen around a
cross-flow velocity where the pulsatile flow excitation frequency becomes twice of
the corresponding flutter frequencies (Fig. 3b). Thus, the periodic response occurs
due to the parametric resonance with respect to flutter frequency while the quasi-
periodic oscillations may be due to the multi-frequency excitation on the tube from
the pulsatile flow as well as FEI.

For further illustration of these phenomena, the bifurcation diagrams with respect
to pulsatile flow excitation frequency are shown in Fig. 5 for different cross-flow
velocities along with the case of only internal flow (βe = 0). Figure 5a shows the
periodic oscillations due to the principal primary parametric resonance that appears
at an excitation frequency equal to twice of the natural frequency of tube conveying
steady flow (Uf = 5 m/s, λ =0). With an increase in the cross-flow velocity, the
parametric resonance first disappears (0.2 m/s, Fig. 5b) and then appears beyond the
critical cross-flow velocity (0.635, 0.65 m/s, Fig. 5c–d) at the frequency of twice of
the corresponding flutter frequencies for steady internal flow (� = 0.624, 0.639).

To understand the characteristics of quasiperiodic response, the time histories,
phase plots and frequency spectrums are studied and presented at various pulsatile
flow excitation frequencies (Ue = 0.65 m/s, Uf = 5 m/s, λ = 0.4) in Fig. 6a–h.
First of all, for the confirmation of quasiperiodic nature of the response, Lyapunov
exponents are evaluated for the delay differential system corresponding to the
parameters of Fig. 5d and the variation of first three exponents is shown in Fig. 6i.
The appearance of the first two vanishing exponents dictates the existence of 2-torus
quasiperiodic response, while only one vanishing exponent dictates the existence
of periodic response. Figure 6c and f clearly shows the period-2 oscillations at a
pulsatile flow excitation frequency equal to the twice of flutter frequency (Fig. 3b).
The two sets of Figs. 6a, d, g and 6b, e, h show the quasiperiodic response at Ue

= 1.15 and 1.25 respectively. The frequency spectrums clearly show that the flutter
frequency appears as carrier frequency along with the sideband frequencies. Near
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Fig. 5 Bifurcation diagrams with respect to pulsatile flow (Uf = 5 m/s, λ = 0.4) excitation
frequency at different cross-flow velocities (a) Ue = 0, βe = 0, (b) Ue = 0.2 m/s, (c) Ue =
0.635 m/s, (d) Ue = 0.65 m/s

the pulsatile flow excitation frequency equal to the twice of flutter frequency, the
sideband frequencies gradually converge towards the carrier frequency and result in
parametric resonance with period-2 oscillations.

From Fig. 5, it is observed that parametric resonance due to pulsatile flow
disappears at subcritical cross-flow velocities where FEI does not appear. In order to
understand the mechanism behind this behaviour, parametric instability regions are
plotted in Fig. 7a for increasing cross-flow velocity from subcritical to supercritical
values. It can be observed that the parametric instability regions gradually reduce
and shift to higher pulsatile flow velocity-amplitudes with increasing cross-flow
velocity up to certain velocity and then increases. Thus, the appearance of paramet-
ric instability can be seen (λ < 0.5) around the cross-flow velocities corresponding
to FEI. It may be due to the induced damping from the time delay effect because it
causes fluid forces to act in the same direction as well as opposite to the direction
of motion of the tube. Generally, the out-of-phase component may introduce the
damping in the system. Thus, the variation of in-phase (K2 cos T) and out-of-phase
(K2 sin T) components of the fluid forces (Eq. (7)) is illustrated in Fig. 7b. Similar to
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Fig. 6 Steady-state responses of HE tube (Uf = 5 m/s, λ = 0.4, Ue = 0.65 m/s): time histories at
(a) � = 1.15, (b) � = 1.25; phase plots at (c) � = 1.28, (d) � = 1.15, (e) � = 1.25, frequency
spectrums at (f) � = 1.28, (g) � = 1.15, (h) � = 1.25, and (i) variation of Lyapunov exponents
corresponding to Fig. 4(d)

the effect on parametric instability regions, it can be observed from Fig. 7b that the
out-of-phase component of fluid force increases far from the cross-flow velocities
corresponding to FEI. Thus, the time delay effect may be the main reason behind
the disappearance of parametric instability. Therefore, the parametric instability due
to the internal pulsatile flow can be eliminated by maintaining cross-flow velocity
in its subcritical range.

4 Conclusions

In this work, the nonlinear dynamics of slender heat exchanger tube of an in-line
square array conveying steady/pulsatile flow and subjected to the external cross-flow
is studied. The tube is modelled using Euler-Bernoulli beam theory while the plug-
flow and quasi-steady models are utilized to model the internal and external flows,
respectively. Following the derivation of governing delay differential equation of
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Fig. 7 Variation of (a) parametric instability regions (Uf = 5 m/s) with cross-flow velocity, (b)
in-phase and out-of-phase components of fluid dynamic forces on the HE tube

motion, it is solved through Galerkin discretization and Runge-Kutta method time
integration method. The parametric instability regions are evaluated using Bolotin’s
method.

The investigation on the effect of internal steady flow revealed an increase in the
amplitude of periodic oscillations of the flutter of the tube but the reduction of crit-
ical cross-flow velocity and flutter frequency. Whereas these variants are very low
for an increase in internal flow velocity. However, for the supercritical cross-flow
velocities, the internal flow pulsation along with FEI induces 2-torus quasiperiodic
oscillations instead of periodic oscillations while exhibiting an insignificant change
in the oscillation amplitude. Here, the flutter frequency appears as its carrier
frequency. Near the pulsation frequency equal to twice the flutter frequency, the
side-band frequencies gradually converge towards the carrier frequency and result in
parametric resonance with period-2 oscillations. Whereas for the subcritical cross-
flow velocities, the damping phenomenon due to the time delay effect is shown
to eliminate the parametric instability. This study may provide new insights into
the design of heat exchangers for estimating the effect on fretting-wear due to the
qualitative and quantitative changes in the response. This effect of internal flow may
qualitatively remain the same even for practical heat exchangers.
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Approximate Model of Flat Ribbon
Vibrations in the Wind

Janis Viba , Grigory Panovko , Alexander Gouskov , and
Martins Irbe

1 Introduction

One of the most complex objects in the calculations of nonlinear dynamics in
nature, technology and everyday life is the model of a straight flat ribbon (belt,
tape and strip) (Fig. 1). The object under study consists of a flat ribbon 1, the ends
of which are statically stretched in the direction of the z-axis with a force T on
the supports 2 (0xyz – a fixed coordinate system with origin in the centre of the
ribbon). An additional flat element 3 is attached to the centre of the ribbon. Such a
ribbon is subjected to an airflow 4 at a constant velocity V . The direction of flow
is parallel to the x-axis and directed in the plane of the original position of the
ribbon. Typically, such a circuit can operate in addition to the acting gravitational
forces on the oscillation-absorbing or suggestive forces generated by the limiting or
electromagnetic elements.

Without stopping at the problems of mathematical simplification of the inter-
action between this infinite degree of airflow (∞ DOF) and solids (6DOF), we
note that the 3DOF system will be further analysed. In this system, generalized
coordinates are two centre C translational motions (parallel to the x and y axes) and
rotational motion at an angle ϕ around the axis parallel to the z axis (Fig. 1b).
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Fig. 1 Model of straight flat ribbon in the initial (a) and deformed (b) states

Long-term scientific research has shown theoretically and experimentally that
placing the ribbon parallel to the wind flow causes flow-induced forced oscillations.
Scientific research has adopted such a fluctuation system as a “flutter”. In addition,
these interactions and stationary, sometimes irregular oscillations can be used to
generate energy in a micro generator [1–7]. In this case, the system becomes more
complicated, because the magnetic element of the electrodynamics generator must
be attached to the ribbon.

For example, experimental studies for the change of the angle of attack (turning
angle ϕ, 1DOF) are given in [1]. In this work, experimental apparatus is developed to
study the effects of parameters such as wind speed, position and size of the magnets,
pre-applied tension of the membrane, angle of attack of the membrane, and the
direction of the generator on the output power and frequency of the wind belt. The
experimental tests are carried out in a subsonic wind tunnel. Research is useful for
the analysis of similar devices and for testing new theories in practice, for example,
it is found out how the frequency of flutter movement depends on the flow rate in a
given range.

A semi-empirical nonlinear aerodynamic model of a piezoelectric power gen-
eration device is proposed in [2]. It shows how to determine the parameters of an
empirical model with a wind tunnel test. Of course, such an approach is justified by
improving the given design or optimizing the parameters.

A new fundamental (non-empirical) method for approximating flutter motion in
two-dimensional (2DOF) space has been developed in [3]. In this work, the Galerkin
method is used to approximate the time-space model [4]. The obtained two-second
order differential equations are numerically modelled. As a result, it is shown how
this method can determine the boundary cycles of nonlinear dynamics and their
bifurcations.
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In addition, there are many other significant studies on the use of different ribbons
and sensors with different properties to generate energy from flow by flapping and
bending body motion [8–27].

Taking into account the previously analysed works, the following conclusions
can be drawn:

1. So far, the interaction and motion of ribbon and airflow have not been fully
studied even in the simplest case of cross-flow.

2. It is necessary to supplement the existing methods and develop new methods that
would allow to analyse and optimize the movement of the ribbon-type system at
the given criterion and constraints.

3. In parallel with the development of analytical methods, experimental studies
must be carried out in wind tunnels or in nature.

2 Approximate Model

The approximate model includes a thin symmetrical rectangular plate 5 fixed to the
base 6 by four stretched elastic bands 1–4 (Fig. 2). The characteristic geometrical
parameters of the system are the distance between the elastic bands 2a and their
length L, the width of the plate B and the height H (Fig. 2b). The plate has mass
m and moment of inertia Jz with respect to the central z-axis, respectively. The
simplified model assumes that the z-axis is vertical and thus the tensile forces of
the elastic elements compensate the gravitational interaction. In the analysis of the
model, the forces of two main interactions must be determined: the forces from the
airflow with velocity V parallel to x axis and the forces in the elastic elements.

The model assumes that the elastic bands are stretched evenly and the initial
motion conditions of the system are such that the plate moves parallel to the plane

Fig. 2 Approximate model in the xyz space (a) and geometrical parameters of the system (b)
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Fig. 3 Components of forces and moments in interaction with air flow

Oxy (Fig. 3). For further calculations, the moving axes ξCη, which move together
with the plate, were selected (Fig. 3).

The differential equations of motion of the simplified model as a three-degree of
freedom system are as follows (Fig. 3):

mẍ = Fx; mÿ = Fy; Jcϕ̈ = Mz. (1)

Here

F(x,y) = Pe(x,y) + Pf (x,y) + R(x,y);
Mz = Mz

(
Pe(x,y)

)+Mz

(
Pf (x,y)

)+Mz

(
R(x,y)

)
,

(2)

where m is a reduced mass; Jc is a reduced moment of inertia of the system
against the z axis at the centre of mass C; ẍ, ÿ, ϕ̈ are the second derivatives of
the corresponding generalized coordinates x, y and ϕ at time t; Fx, Fy and Mz are
the projection of the forces acting on the system on the x, y axes and the sum
of the force’s moments around the central z axis; Pe(x,y) are the components of
elastic band’s forces; Pf (x,y) are the components of flow interaction’s forces; R(x,y)
are the components of damping forces, including energy generator interactions;
Mz(Pe(x,y),Pf (x,y),R(x,y)) are the moments of the above-described components. It is
recommended to choose the main parameters of the proposed 3DOF model (for
mass, moment of inertia, stiffness, etc.) by classical mechanics reduction problems.

It should be noted that in a given model, forces R(x,y) and moment Mz(R(x,y))
could be of a different nature, for example, as energy generator interactions. They
can be expressed as linear or nonlinear functions of generalized velocities. It will be
used here in numerical modelling as next form:

R(x,y) =
{ −b1ẋ

− b2ẏ

}
; Mz

(
R(x,y)

) = −b3ϕ̇,



Approximate Model of Flat Ribbon Vibrations in the Wind 19

where b1, b2 and b3 are the constants.
For further clarity, other forces Pe(x,y), Pf (x,y) and moments Mz(Pe(x,y)), Mz(Pf (x,y))

are discussed in separate sections.

2.1 Airflow Interaction Forces

When determining the air interaction, the flow velocity V, parallel to the x-axis and
the fact that the additional plate moves in a flat motion with the coordinates x, y and
ϕ, must be taken into account. The theory of solving such a problem is developed in
works [28, 29]. According to this theory, the principle of superposition is applied,
dividing the interaction into two zones: the pressure zone and the suction zone [28].
For the determination of forces in a flat plate in the pressure zone, the projection of
the absolute velocity of each point of local interaction to normal must first be found
[29]. For this purpose, the vector relative rotation velocity ξ · ω must be added
to the local points, where ξ is a local coordinate along ξ axis, but ω is an angular
velocity of plate (Fig. 4). The resulting velocity must then be projected onto the area
normally and the force must be found as a function of this square of that projection.
Accordingly, the interaction of the suction zone is observed by the proportionality
coefficient from the interaction of the suction zone [28, 29]. The following is a closer
look at this force determination procedure. According to the given 3DOF model of
motion, the expression of the relative velocity of a local point in vector form is as
follows (Fig. 4):

Vξ,η =
{ − (V + ẋ) cos (ϕ)− ẏ sin (ϕ)
(V + ẋ) sin (ϕ)− ẏ cos (ϕ)− ξω

}
·
{
i

j

}
, (3)

where i, j are the unit vectors for the moving coordinate axes; ẋ, ẏ and ω are the first
derivatives of the respective coordinates x, y and ϕ at time t.

Using expression (3) we can find the normal components of the flow interaction
Nf and the moment Mf as follows [28, 29]:

Nf = (1+ C) Bρ

⎡

⎣
h∫

−h
[(V + ẋ) sin (ϕ)− ẏ cos (ϕ)− ξω]2

⎤

⎦ · ε · dξ, (4)

Mz

(
Pf (x,y)

) = (1+ C) Bρ

⎡

⎣
h∫

−h
[(V + ẋ) sin (ϕ)− ẏ cos (ϕ)− ξω]2

⎤

⎦ · ξ · ε · dξ.

(5)

Here
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Fig. 4 Components of the relative velocity of a local point and velocity projection Vη on a normal
direction

ε = sign [(V + ẋ) sin (ϕ)− ẏ cos (ϕ)− ξω] , (6)

where (1 + C) is a constant that describes the Drag coefficient of an object shape,
for example, C = 0,5 [28]; B is a width of the plate; ρ is an air density; h is a half
of plate height [28, 29].

Accordingly, the projections of the flow interaction forces to be placed in Eq. (2)
are (7):

Pf (x) = −Nf sin (ϕ) ; Pf (y) = Nf cos (ϕ) . (7)

Without stopping at the problems of space-time integration of expressions (2),
(4), (5), and (6), we note that in numerical calculations it is possible to divide the
height 2a of the plate into smaller areas where the value of ε can be controlled with
sufficient accuracy.

2.2 Forces in the Elastic Elements

The values of the tensile forces Pe(1,3) and Pe(2,4) in elements 1–4 of the accepted
model (see Fig. 3) in the linear case are as follows:

Pe(1,3) = c
(
D0(1,3) − L+D0

) ; Pe(2,4) = c
(
D0(2,4) − L+D0

)
. (8)

Here

D0(1,3) =
√
L2 + [x − a (1− cos (ϕ))]2 + [y + a sin (ϕ)]2;

D0(2,4) =
√
L2 + [x + a (1− cos (ϕ))]2 + [y − a sin (ϕ)]2,
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where c is the stiffness, D0(1,2,3,4) is the elements 1–4 lengths in the given time, and
D0 is the initial tension length. The distances L, a are given in Fig. 2.

Using the expression (7) the forces Pe(x,y) projection and moments M(Pe(x,y)) can
be found in the following form:

Pe(x) = −2c
(
Pe(1,3)

)
x−a(1−cos(ϕ))

D0(1,3)
− 2c

(
Pe(2,4)

)
x+a(1−cosϕ)

D0(2,4)
;

Pe(y) = −2c
(
Pe(1,3)

) y+a sin(ϕ)
D0(1,3)

− 2c
(
Pe(2,4)

) y−a sin(ϕ)
D0(2,4)

; (9)

M
(
Pe(x,y)

) = 2c
[
Pe(1,3)

x−a(1−cos(ϕ))
D0(1,3)

− Pe(2,4)
x+a(1−cos(ϕ))

D0(2,4)

]
a sin (ϕ)

+ 2c
[
−Pe(1,3) y+a sin(ϕ)

D0(1,3)
+ Pe(2,4)

y−a sin(ϕ)
D0(2,4)

]
a cos (ϕ) .

(10)

As before, the expressions (9) and (10) must be placed in the differential
equations (2), which must then be integrated with a computer.

2.3 Results of Numerical Calculations

When analysing the numerically obtained three differential equations (1), it is
necessary to understand the scope of the problem, which includes a system of
nonlinear dynamics with about ten parameters (they are C, B, D, L, V0, c, Jz, b1,
b2, b3). In addition, the result will depend on the movement of six initial conditions.
Therefore, we show here only some of the modelling examples given in Figs. 5, 6,
7, and 8.

Numerical modelling was performed in the SI system at the following parame-
ters: V = 10; C = 0,5; B = 0,1; D = 1·10−4; L = 0,075; c = 50·103; Jz = 2·10−4;
m = 0,04; h = 0,02; a = 0,01; b1 = 7; b2 = 5; b3 = 1·10−4.

The results of numerical modelling show that the oscillations of the centre of
mass or the flattening of the plate occur at a very high frequency (Fig. 8). This can
be explained by the fact that the ribbon has a small mass at a given tensile strength.

Fig. 5 Centre of mass
motion in phase plane x, ẋ
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Fig. 6 Centre of mass
motion in phase plane y, ẏ

Fig. 7 Centre of mass motion in vertical plane x, y

Fig. 8 Total tensile strength
T of the elastic elements,
depending on the time

In addition, it should be noted that in this model in the future all aspects of the
theory of nonlinear dynamics will be observed: bifurcations; strange attractors; rare
modes; local and global stability calculations and others.
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Fig. 9 Sample in a wind tunnel at a velocity V of 5 m/s

2.4 Results of Experimental Investigation

Small experiments were performed in the next Armfield wind tunnel: (Fan: down-
stream of the working section of airspeed between 0 and 26 m/s). Balance: Lift
◦7.0 N, Drag ◦2.5 N. Working section: 304 mm wide, 304 mm high, 457 mm
long [30]. Three-dimensional tensile force sensor was used as the main vibration
measuring instrument. The 3-axial force sensor ME K3D120, nominal force
500 N, accuracy class: 0.5% is used. It is connected with GSV 4USB 4-channel
measurement amplifier. Sampling frequencies up to 500 Hz [31]. To illustrate the
experiment, a photo and analysis of the average tensile strength T of the device are
given in system SI in Figs. 9 and 10.

The experiment was performed at the following flow rates: V = 5; 7; 9; A ribbon
with a length of 0.25 m, width 0.04 m and thickness 0.001 m was chosen, which
roughly corresponded to the computer-modelling example in Fig. 8. The results
obtained by the force sensor were processed digitally. The average values of the
obtained ribbon tension force are shown in Fig. 10. Additional experimental results
in the interpolation range 5 < V < 11 m/s were approximated by the step function
T = 0, 056 · V1, 798 + 0, 506 (Fig. 10). In addition, the result of the experiment and
an example of computer modelling results at a speed of 10 m/s are analysed (Figs.
5, 6, 7, 8, and 10).

The reliability of the experiment and the theory can be described as follows:

(a) the error of the mean deviations of the approximation curve is 4.17%;
(b) of the approximation curve (V = 10 m/s) the error of the experimental deviation

at this point is 7.28%;
(c) theoretical and experimental error (V = 10 m/s) is 5.81%.
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Fig. 10 Total average tensile strength T of the elastic ribbon depending on the flow velocity V: X,
x – velocity; Y – experiment; h2(x) –approximation by step function; T10 – computer modelling
results with V = 10 m/s (see Fig. 8)

3 Conclusions

1. A three-dimensional analytical model has been developed, which allows
analysing, synthesizing and optimizing the interaction and motion of the ribbon
and wind flow.

2. The main advantage of the model is that it significantly reduces the workload of
solving space-time tasks by reducing the movement of a continuous environment
and a flexible ribbon object to 3DOF.

3. The approximate analytical method can be applied in the analysis of vibrations
of existing objects as well as in the synthesis of new mechatronic systems with
application in energy extraction from airflow.

4. Subsequent numerical and experimental studies should determine how to select
the main parameters of the 3DOF system, using, for example, the Galerkin
method or others [4].

Acknowledgements This research is funded by the Russian Science Foundation, project No. 18-
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Wall Shear Stress for an Aorta
with Aneurysms Via Computational
Fluid Dynamics

Xiaochen Wang , Mergen H. Ghayesh , Andrei Kotousov ,
Anthony C. Zander , and Peter J. Psaltis

1 Introduction

Cardiovascular diseases are considered as one of the most significant causes of
death, representing nearly 31% of global annual death in 2019 [1]. Aortic aneurysms
are identified as the most common aortic diseases diagnosed with high risks.
Aortic aneurysm, as an abnormal condition related to aorta dilation, can lead
to fatal consequences such as aortic rupture, which is considered unpredictable
and generally unrecoverable [2]. Ruptures related to aortic aneurysms are usually
associated with the weak regions of the aortic wall under high shear stress, and the
initial estimation of the aneurysm condition is thus critical for rupture prediction
in both research and medical practice fields [3]. The mortality of abdominal aortic
aneurysm (AAA) is relatively high, with 15% for an AAA with dissection or rupture
[4]. Figure 1 shows a gadolinium-enhanced MRI image of an abdominal aortic
aneurysm. Clinical standards to diagnose the presence of an aortic aneurysm are
based on whether the maximum diameter of an AAA exceeds 5.5 cm [5]. However,
a number of studies stated that nearly 24% of AAAs with a smaller maximum aortic
diameter (<5.5 cm) were ruptured [6]. Limitations of using only AAA maximum
diameter as the only indicator to predict the rupture risk are highlighted in many
studies [7]. Therefore, a better and comprehensive rupture predictor is necessary for
the diagnosis of weak regions and prevention of rupture.
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Fig. 1 MRI of an abdominal
aortic aneurysm showing
tortuous aorta and iliac
arteries [8]

An AAA brings lower wall mechanical resistance and hence changes to local
blood pressure; a rupture in an AAA is commonly found at where the arterial wall
experiences high flow-induced wall stresses [9]. Further, such shear stress can cause
degradation of elastin. Also, the presence of thrombus can be observed in most of
AAA walls with different composition and mechanical behaviour; all these factors
would increase the wall stress [6, 9]. It has been proved that aortic expansion could
lead to a low wall shear stress load, generally less than 0.4 Pa as well as intraluminal
thrombus (ILT) accumulation [7]. The flow-induced damage or rupture in the blood
vessel is caused due to the high shear stress or high pressure-distribution working
on endothelial cells in the artery wall by blood flow. In accordance with the law of
Laplace, there is also a positive correlation between the artery diameter and pressure
on the inner surface of an aortic wall [10].

A computational fluid dynamics (CFD) analysis allows examinations on wall
shear stress numerically to investigate nonlinear dynamics and changes in the
mechanical properties of the aortic wall caused by aortic aneurysms [11]. This
technique has also been employed in some other vascular diseases, including
peripheral artery diseases and coronary artery diseases [12]. To establish a specific
model with indicators to reveal the risk of rupture associated with an AAA, several
different biomechanical parameters need to be taken into consideration, such as
pulsatile blood flow, the non-Newtonian fluid, and shapes and sizes of different
aneurysms, which eventually lead to the determination of shear stress distributions.
Evidence showed that structural-only model without fluids underestimates the peak
wall stress by 30.2% [6]. Joly et al. [9] conducted a rigid wall hypothesis validation
by observing lumen segmentation in different time of the cardiac cycle, i.e., systole
and diastole. The movement surface variation for patients with an AAA is 0.96%,
while for a healthy patient, it is 4.41% maximum; it was concluded that a rigid wall
assumption is valid for an AAA study due to the changes in arterial wall properties.
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In this study, the flow-induced wall shear stress and pressure distribution inside
a simplified patient-specific aorta model are obtained based on a CFD simulation.
Models are developed by incorporating the following parameters: non-Newtonian
blood flow, a pulsatile blood flow velocity and size and shape of aneurysm. This
study aims to predict the internal pressure and wall shear stress together with
physiological parameters. A model of healthy descending aorta was also built to
compare the impact of the aneurysm. For all the numerical results presented in this
chapter, a mesh convergence has been examined to ensure reliable and accurate
results.

2 Methodology

2.1 Geometry

The geometry of virtual realistic three-dimensional models was obtained and con-
structed using geometrical parameters of an AAA from patient-specific geometry
profile generalised by Soudah et al. [4]. Simplification retains major parameters used
for describing this patient-specific model, including aneurysm length, the maximum
diameter of the aneurysm, AAA proximal neck diameter, normal abdominal aorta
diameter, the actual length of the AAA centreline, tortuosity index and asymmetry
of the aneurysm. For a healthy aorta as a controlled case, the maximum diameter is
assumed to be equal to the proximal neck diameter. Figure 2 shows the geometry of
the diseased and healthy abdominal aortas under anterior view.

2.2 Boundary Conditions

The blood velocity profile used in this simulation is based on patient-specific data
obtained from PC-MRI 3D blood flow velocities [13]. Based on the experimental
data for the mean velocity across the descending aorta lumen within a cardiac cycle
from literature, Fig. 3 is plotted based on 20 divisions using a Fourier series [13].
From the profile, it can be visualised that four stages are presented in one cardiac
cycle: systolic acceleration (0.1 s), systolic peak (0.18 s), systolic deceleration
(0.3 s) and diastole (0.85 s).

Another boundary condition applied is the outlet pressure; the average pressure
in the AAA outlet section is around 13.332 kPa, according to patient-specific outlet
pressures adopted from Refs. [4, 14].
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Fig. 2 Schematics of an abdominal aorta: (a) aneurysmal aorta with maximum diameter < 5.5 cm;
(b) a healthy aorta with uniform aortic diameter

Fig. 3 Pulsatile blood flow velocity

2.3 Non-Newtonian Blood Flow Simulation

The main functions of blood flow in aorta include delivering oxygen and nutrient
to the whole body. Blood flow also undertakes resistance due to the architecture of
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the vascular system and behaviour of blood cells and plasma. From a macroscopic
perspective, blood shows complex fluid viscosity as a non-Newtonian fluid. Several
studies have reported that there are differences in wall shear stress distribution
of artery when using Newtonian and non-Newtonian fluid models [15]. In this
work, incompressible non-Newtonian flow is considered, and the non-Newtonian
model follows Quemada model. From the literature, Quemada model was initially
developed by Quemada [16, 17], and can be expressed with two major variables via

μeff = μp

(
1− α

k (γ, α)

2

)−2

(1)

k (γ, α) = k0 (α)+ k∞
√
γ /γc (α)

1+√γ /γc (α)
(2)

k0 = e3.874−1041α+13.8α2−6.378α3
(3)

k∞ = e1.3435−2.803α+2.711α2−0.6479α3
(4)

γc (α) = e−6.1508+27.923α−25.6α2+3.679α3
(5)

where α = 0.45, μp = 1.32×10−3 Pa•s, γ represents the magnitude of the shear
stress tensor γ ij = (∂ui/∂xj + ∂uj/∂xi) [18].

Application of the Quemada model includes taking into account the shear-
thinning behaviour of the blood and accounts for the decrease in viscosity under
shear strain. The Quemada model has been evaluated as a well-fitted model that
describes the viscosity in blood rheology [18].

Governing equations for blood motions in the aorta follow the conservation of
momentum and mass based on the Navier-Strokes equations for incompressible and
non-Newtonian flow from Eqs. (6) and (7), solved by FLUENT (ANSYS Academic
Research 2020R1) [4, 15, 18].

ρf� · v = 0 (6)

ρf
∂v

∂t
+ ρf

( (
v − ˙df

) • ∇) v = ∇ • τf + f B
f (7)

where ρf is the density of the fluid, v is the velocity vector, ḋf is the velocity vector
for moving coordinates, τ f is the fluid stress tensor, and f B

f represents the body
forces per unit volume.
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3 Results and Discussion

An aortic rupture could occur mainly due to the following reasons: material property
failure of the intima layer on the aneurysm or changes in blood flow caused by
geometry variation associated with aneurysm [19]. In order to compare the effect
of aneurysm shape and blood pulsation, an index – to analyse the wall condition
and risk of rupture or dissection – is developed, which considers the aneurysmal
shape, wall shear stress velocity profiles and pressure distribution. Conclusions can
be drawn from the stress concentration investigation as maximum wall shear stress
occurs when pulsation reaches its late systolic states, and the stress concentration
changes significantly with the size of aneurysms.

3.1 Velocity Profiles

The results for velocity streamline at late systole within a cardiac cycle are
significantly different. As seen in Fig. 4, for an aneurysmal aorta, a rapid decrease
in the velocity in late systole stage causes blood recirculation at the aneurysm sac.
This phenomenon contributes to the deposition of platelets and would cause changes

Fig. 4 The velocity distribution at late systole for (a) aneurysmal aorta and (b) healthy aorta
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in the material properties of the aortic wall. The two models analysed in this study
indicate that with higher tortuosity, irregular flow can be observed in diseased aorta
compared with the controlled case. Two types of irregular flow can be noticed: a
helix flow (in AAA neck) and a recirculation (in AAA sac). Blood recirculation is
one of the major causes of ILT formation as they stimulate endothelium loss and
platelet aggregation, and thus reduce the wall stiffness and cause possible rupture or
dissections.

3.2 Pressure Distributions

Imbalanced flow deformation is due to the irregular shape of the aorta and the
pulsatile inlet boundary condition. Thus, the imbalance flow also causes the flow
recirculation in the aneurysmal sac, which would potentially accelerate the dilation
and contribute to aortic dissection [4]. The enlarged sac in an aneurysmal aorta
promotes the flow recirculation, and from the results of velocity profiles, the
formation of vortex flow starts from late systole, and notable pressure drop would
occur from the AAA sac as a result of energy losses due to helix flow and
recirculation. With the flow acceleration and deceleration, there is a corresponding
positive and negative pressure difference from inlet to outlet. Therefore, the dynamic
vortices are developed during the deceleration period when the pressure gradient
reverses. However, from Fig. 5, the maximum pressure and its variation with the
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Fig. 5 Wall pressure change with time for two models of healthy and aneurysmal abdominal aortas
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Fig. 6 Pressure distribution for aneurysmal aorta at: (a) t = 0.1 s; (b) t = 0.18 s; (c) t = 0.3 s; (d)
t = 0.85 s; pressure distribution for healthy aorta at: (e) t = 0.1 s; (f) t = 0.18 s; (g) t = 0.3 s; (h)
t = 0.85 s

blood pulsation do not show a significant difference. A conclusion can be drawn that
the presence of the AAA makes the pressure difference during each cardiac cycle
reverse and causes blood recirculation. Figure 6 visualises the pressure contours
of two models at different stages, from which it can be concluded that for the
aneurysmal aorta, the pressure reaches it maximum at the inlet regions in diastole,
and in systole, the maximum pressure altered to the outlet region. Meanwhile, the
healthy aorta always has higher pressure close to the outlet than inlet.

3.3 Wall Shear Stress

Abrupt changes in wall shear stresses are generally associated with sudden
atherosclerosis in aorta geometry or narrowing in the vessel lumen [19]. The
flow-induced maximum wall shear stresses for the two models are displayed in
Fig. 7, from which it can be observed that the maximum wall shear stress occurs at
late systole for both the models. The maximum value for the aneurysmal aorta is
16.8 Pa, while for the healthy aorta, it is 5.565 Pa. As seen in Fig. 8, the tortuosity
and growing aneurysm change the stress distribution and hence lead to the initiation
of rupture for sufficiently large wall shear stresses.
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Fig. 7 Wall shear stress change in time for two models: healthy and aneurysmal abdominal aortas

The CFD models discussed in this chapter were proposed and validated with
those available in the literature for simpler models. Under the same lumen geometry
index, the wall internal pressure contour and the velocity across the lumen of
this study have a similar maximum value patterns as those in the literature. As a
summary of results, the velocity flow distribution has higher values during systole,
but helicity and recirculation appear during diastole. Evidence has shown that due
to the dynamic effect of the flow recirculation, the lumen wall would experience
a reversed pressure gradient in each cardiac cycle, which would influence the wall
stiffness. The aneurysm neck appears to have a higher risk for rupture due to the
high concentration of flow-induced wall shear stress.

4 Conclusions

The study discussed in this chapter investigated the wall shear stress and pressure
associated with hemodynamics in patient-specific AAA and healthy aortas under
pulsatile non-Newtonian flow conditions. For both the healthy and diseased aortas,
the influences of geometry and hemodynamics were examined. The following
conclusions can be drawn from the results: (1) flow recirculation present in
aneurysm sac region would potentially lead to the initiation of ILT; (2) tortuosity
of the AAA increases the chance of potential rupture even when maximum aortic
diameter is small; (3) the maximum wall shear stress occurs at the aneurysm neck;
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Fig. 8 Wall shear stress distribution at t = 0.58 s for (a) the aneurysmal aorta and (b) the healthy
aorta

(4) pressure gradients are significantly different for an aneurysmal aorta when
compared to the healthy one. From these findings, the importance of changing the
clinical diagnosis and prevention is highlighted as tortuosity would be more critical
than the aneurysm size in rupture prediction. It is essential to include more specific
clinical data to improve the model accuracy in the future study. In addition, this
study does not consider the interaction between the blood flow and the hyperelastic
walls. Although it has been proved that it is reasonable to use a CFD analysis due to
the stiffer aortic wall in the aneurysm sac caused by the decrease in elastic fibres and
collagen fibres, certainly a fluid-structure interaction can describe the flow-induced
dynamics of blood vessel more accurately.
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Effect of Nonlinear Blood Viscosity
on LDL Transport and Fluid-Structure
Interaction Biomechanics
of a Multi-stenosis Left Circumflex
Coronary Artery

Harry J. Carpenter , Mergen H. Ghayesh , Anthony C. Zander ,
and Peter J. Psaltis

1 Introduction

Low-density-lipoproteins (LDL) are widely associated with cardiovascular disease
and the initiation and progression of atherosclerosis. Their accumulation at the
artery wall, coupled with dysfunction of the endothelial cells that constitute the
innermost layer of the artery [1], leads to the formation of atherosclerotic plaques.
With growth over time, these plaques narrow the lumen, often leading to heart
attack. Heart attack and cardiovascular disease are now seen as one of the largest
economic burdens on society [2]. While medical technologies are advancing rapidly,
they cannot yet assess the highly nonlinear interactions in the coronary vasculature,
hence, cannot provide predictions on disease progression. The biomechanical
analysis of the coronary system using fluid-structure interaction (FSI) techniques
shows significant promise to address this gap and sheds light on the mechanisms
leading to cardiovascular disease and heart attack.

Literature to date has predominately focused on computational fluid dynam-
ics (CFD) techniques to investigate fluid dynamics/blood haemodynamics in the
coronary vasculature [2]. Often blood viscosity is simplified to being Newtonian
[3] despite its complex micro-constituents resulting in non-Newtonian properties.
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Several investigations assume that fluid strain rates exceed the range where non-
Newtonian fluid characteristics result in meaningful changes in outcomes, an
assumption that yields reasonable results in many CFD applications [4]; however,
for accurate assessment of artery biomechanics non-Newtonian power law models
best describe realistic patient properties and result in significant alterations in WSS
[5]. Accurate WSS assessment is critical due to its influence on LDL transport
in the vasculature [6], with LDL concentration seen as a better predictor of
plaque progression than WSS alone. While CFD-based models exhibited an inverse
relationship between LDL concentration and WSS, fluid-structure interaction (FSI)
techniques were shown to alter both WSS and LDL concentration [7] and could
more accurately capture effects such as heart dynamics [8]. FSI-based models also
show potential to link artery wall mechanics and particle transport [9], allowing for
analysis of LDL infiltration from the fluid into the intima layer at regions of high
particulate concentration [10]. However, these investigations are yet to include or
quantify the effect of changes in non-Newtonian fluid viscosity.

The innovation in this paper is the investigation and quantification of the
impact that varying nonlinear blood viscosity within physiological ranges has on
LDL transport in a realistic FSI model of the left circumflex coronary artery.
Included in the model are hyperelastic, viscoelastic and multi-layered arterial walls,
three-dimensional motion, two lipid-rich plaques, pulsatile blood velocity/pressure,
non-Newtonian blood flow and discrete phase particle transport. It is the first time
that the relationship between nonlinear viscosity changes, driven by physiological
haematocrit variability, and LDL transport has been investigated, which could pro-
vide important outcomes for clinicians and present best practice fluid characteristics
for coronary biomechanical modelling.

2 In vivo-based Model

Invasive angiography from a healthy male aged 24 with no angiographically evident
atherosclerosis was used as the basis for the model. Heart rate was 43 bpm (cardiac
cycle of 1.4 s). The three-dimensional centreline was constructed by choosing two
image planes with angle greater than 30 degrees between them [11]. End-diastole
images were chosen from each plane and processed in MATLAB (version 2018b,
Mathworks, Natick, MA, US) by manually picking points along the artery edges.
The centreline was generated by taking the midpoint of orthogonal projections
running between each edge line which was then imported into Autodesk® Inventor
LT™ (Autodesk, Inc. 2019). Each two-dimensional centreline was projected nor-
mally from its respective plane, with the intersection of the two projections giving
the three-dimensional vessel centreline. Cross-sections were assumed circular,
spaced at one-millimetre intervals along the centreline with diameters taken as
the average of the two respective angiographic images. Future work could include
more advanced methods to extract the complex artery cross section geometry [12].
Proximal and distal sections of the artery are shown in Fig. 1a. Intima and Adventitia
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Fig. 1 (a) Angiography of the left vascular tree with proximal and distal locations of the left
circumflex artery to be analysed and (b) the reconstructed three-dimensional model

thicknesses were 5.75% and 16.3% of the lumen diameter [13], respectively. Two
plaques were placed on opposing sides of the artery at known high-risk areas (low
WSS regions on the inside of bends) shown in Fig. 1b.

3 Computational Approach

The FSI model was analysed using ANSYS® (version 19.0, ANSYS Inc., Cannons-
burg, PA, US) with two-way coupling between the fluid and structural domains
and two-way coupling between the continuous fluid and discrete phases. Artery
hyperelastic properties were defined using the five-parameter Mooney-Rivlin model
[5] with coefficients obtained by curve fitting to longitudinal tensile test data for
the intima and adventitia [13] assuming isotropic, nearly incompressible material.
Viscoelastic effects using Prony shear relaxation [8] were defined with coefficients
used from the work in Ref. [5] which were fitted to experimental data. The
Horn-Schunk optical flow method was utilized through MATLAB’s computer
vision toolbox, with velocity vectors of the lumen boundary averaged across four
consecutive pixels to minimize noise, then converted to meters per second, divided
into equally spaced points along the two-dimensional curve and projected normal
to the plane. The midpoint of the minimum distance between projections was taken
as the three-dimensional temporal and spatial location. The result was applied as
transient displacement boundary conditions (Fig. 2) to the inlet and outlets.

Fluid boundary conditions, F(t), were set based on [14], with pulsatile, fully
developed inlet velocity and out of phase transient pressure outlets, which were
matched to patient-specific data, described by an eleven-term Fourier series
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Fig. 2 Transient displacement applied to the inlet and outlets of the model

Table 1 Fourier series coefficients for inlet velocity (m/s) and outlet pressures (Pa)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

Inlet (×10−3) 113 44.6 15.3 25.0 21.2 −3.04 −4.00 2.09 −8.15 −6.76 0.024
Outlet 1948 291 −525 −202 218 140 0.869 6.15 −4.20 −44.3 −18.8

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

Inlet (×10−3) 5.01 −16.7 −6.05 1.68 −19.2 −17.2 −1.66 −3.91 −5.65 5.27 2.50
Outlet −750 −1232 −383 324 185 −60.8 −39.4 6.58 −27.2 −8.10 11.8

F(t) = a0 +
11∑

n=1

an cos

(
2π

1.4
nt

)
+ bn sin

(
2π

1.4
nt

)
, (1)

with a0 equal to 0.154 and 1.01 × 104 for inlet and outlet, respectively, and
coefficients a0-11 and b1-11 as outlined in Table 1.

Fluid viscosity was set according to the nonlinear Power law non-Newtonian
model [4].

μ = μ0(γ̇ )
n−1, (2)

where μ0 and n are the zero-strain viscosity and power law index, respectively. For
haematocrit of 40% μ0 = 0.0147, n= 0.6155; for 60% μ0 = 0.0472 and n= 0.5036
based on curve fitting of data from [15]. Fluid strain rate is represented by γ .

The discrete phase model approach was used to incorporate LDL particle
transport in the fluid in ANSYS Fluent. Here, the particle force balance in the
arbitrary x direction with the Stokes-Cunningham drag law applied for submicron,
spherical particles [16] is described by
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dup

dt
= 18μ

d2
pρpCc

(
u− up

)+ gx
(
ρp − ρ

)

ρp
+ Fx, (3)

where u and up are the fluid and particle velocities respectively, ρ and ρp are the fluid
and particle densities respectively, μ is the fluid viscosity, dp is the particle diameter,
gx is the gravitational force in the x direction, Cc is the Cunningham correction
factor and Fx is a force term which includes the effect of rotating reference
frame, pressure gradient forces and stochastic tracking forces where the turbulent
dispersion of the particles is predicted using instantaneous velocity of the fluid.
While LDL particles are not perfectly spherical, in this preliminary investigation
we make this assumption for simplicity. The LDL particle diameter was defined
based on the Rosin-Rammler diameter distribution to capture size variation from
1.8–2.5× 10−8 m [17] with a distribution parameter of 3.5. Due to the small particle
size, Brownian motion is considered as well as discrete random walk for turbulent
dispersion. Average particle inlet flow rate was 1.64 × 10−18 kg/s [7] for a particle
density of 1031 kg/m3 [18]; particle inlet velocity matched the fluid inlet velocity
and fluid density was set to 1050 kg/m3 [4]. Wall boundary conditions were set as
reflective conditions and a mean wall roughness of 5 × 10−5 m was assumed. The
simulation was run over two-time steps (2 × 1.4 s cardiac phases). A time step of
0.007 s was used with up to 30 system coupling iterations, 26 structural iterations
and 100 fluid iterations per timestep with a further 3000 discrete particle phase steps
per time step. Structural mesh varied from 0.1 to 0.25 mm and the fluid domain was
discretized with 0.15 mm mesh and a boundary layer thickness to 0.05 mm.

4 Results and Discussion

Results were analysed at local WSS minima proximal to Plaque 1 and distal to
Plaque 2. All results presented are analysed from the second cardiac cycle to ensure
convergence. With the accumulation of LDL at the wall of the artery seen as a
major contributor to atherosclerosis initiation and progression as well as a potential
factor in endothelial permeability [19], we assessed LDL mass concentration, as a
measure of accumulation, as a risk factor. Curves along the lumen-wall interface
(Curves 1 and 2) were used to analyse WSS, LDL concentration and von Mises
stress during the systole (contraction) and diastole (rest) cycles and are outlined
in Fig. 3. Transient results for proximal and distal local minima are shown in Fig.
4. Increased viscosity (60% haematocrit) sees a 46% increase in WSS and a more
significant 126% increase in LDL concentration. Distal to Plaque 2 turbulent eddies
begin to alter the profile of LDL accumulation, with comparable peak concentration
but a significant increase of 330% seen by the highlighted secondary peak, shown
in Fig. 4b, emphasizing the highly nonlinear nature of the interactions. Steep
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Fig. 3 WSS distribution at t= 1.6 s (0.2 s into second cardiac cycle at end diastole). Maxima occur
at the stenosis throat with local minima at plaque shoulders. Transient WSS and LDL concentration
are assessed at the highlighted local minima proximal to Plaque 1 and distal to Plaque 2

WSS gradients show a significant clearing effect with dramatic decreases in LDL
concentration for both viscosity profiles (40% and 60% haematocrit). Mean LDL
concentration is increased by 29% and 38% at the proximal and distal locations
respectively when viscosity increases. These locations also see a decrease in the
oscillatory shear index (OSI) and slight increases in time-averaged wall shear
stress (TAWSS). At end systole Curves 1 and 2 show comparable WSS results
with peaks across the plaque locations, as seen in Fig. 5. This highlights how
Newtonian fluid assumptions may hold in higher WSS/strain rate environments
that are exacerbated by the rigid wall assumptions of CFD techniques. Nonlinear
fluid viscosity, however, results in significant alteration of LDL concentration, with
a 308% increase for 60% haematocrit at the region distal to Plaque 2, shown in
Fig. 5a; Curve 2 in Fig. 5b sees less significant changes. End diastole results in
a significant alteration in both WSS and LDL concentration. Figure 6a shows a
35% increase in wall shear stress with increased viscosity/haematocrit; however,
a 74% decrease in LDL concentration at regions distal to both plaque sites is
seen; mean LDL concentration along Curve 1 is decreased by 28% for the 60%
haematocrit model. Both curves show a decrease in OSI and a slight increase in
TAWSS with increased viscosity, with no significant changes in their distribution.
Conversely, at the location proximal to Plaque 2 a 309% increase in peak LDL
concentration results for increased viscosity, shown in Fig. 6b. The von Mises stress
showed no significant changes due to blood viscosity. As von Mises stress could
play a role in endothelial dysfunction, regions with both increased von Mises stress
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Fig. 4 Relationship between transient wall shear stress and LDL mass concentration when
nonlinear fluid viscosity is varied (based on haematocrit increasing from 40% to 60%) at locations
proximal to Plaque 1 (a) and distal to Plaque 2 (b). Results highlight the sensitivity of low wall
shear stress regions to fluid viscosity changes with the impacts resulting in considerable variation
in LDL mass concentration. The legend shown in (b) applies to both sub-figures

and increased LDL particle concentration could present an opportunity for plaque
progression. This occurs distal to Plaque 2, suggesting this as a possible site for
disease progression.

5 Conclusions

The effects of varying non-Newtonian fluid properties (depending on blood micro-
constituents) on LDL transport have been investigated in a realistic FSI model of
the left circumflex coronary artery. Critically, it is the first time that the interaction
between LDL concentration and nonlinear blood viscosity variation within phys-
iological ranges (based on haematocrit percentage) is investigated. Results show
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Fig. 5 Comparison of WSS and LDL concentration at end systole cycle (t = 0.7 s in second
cardiac cycle) along Curve 1 (a) and Curve 2 (b) for haematocrit values of 40% and 60%. WSS
peaks across plaque locations while LDL concentration peaks at plaque shoulders where WSS is
lowest. The legend shown in (b) applies to both sub-figures and Curve 1 and 2 are described in
Fig. 3

increased viscosity leads to increases in the minimum WSS and a mean increase
in LDL concentration at both proximal and distal locations. Interestingly, at end
diastole, lower viscosity results in a significant increase in LDL concentration along
one side of the artery wall, highlighting the inherent nonlinearity in the interaction.
The alignment of von Mises stress at the intima wall with peak LDL concentration
suggests a potential disease progression site, although this is highly dependent on
blood viscosity. This highlights the importance of both accurate nonlinear fluid
properties and LDL transport in fluid-structure interaction biomechanical modelling
of the coronary vasculature when investigating potential disease progression.
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Fig. 6 Comparison of WSS and LDL concentration at end diastole cycle (t = 0.2 s in second
cardiac cycle) along Curve 1 (a) and Curve 2 (b) for haematocrit values of 40% and 60%. The
legend shown in (a) applies to both sub-figures and Curve 1 and 2 are described in Fig. 3
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Reduced-Order Modelling of Flutter
Oscillations Using Normal Forms and
Scientific Machine Learning

K. H. Lee, D. A. W. Barton, and L. Renson

1 Introduction

Over the last decade, machine learning approaches have opened up many new
opportunities for exploiting data. However, in the context of physical engineered
systems machine learning is often constrained by burdensome data requirements
and a lack of interpretability. In recent years there has been a push towards
combining physics-based models (usually differential-equation-based models) with
machine-learnt models in an attempt to incorporate expert knowledge to reduce
data requirements and simultaneously increase the interpretability of the models.
Recent examples include physics-informed neural networks (PINNs) [1, 2], where
differential- equation models are incorporated into the cost function used for
learning the neural network; neural differential equations [3, 4], which use a neural
network on the right-hand side of the differential equation; and universal differential
equations [5], which use arbitrary machine-learnt models as sub-components of
a differential-equation model. Each of these approaches has had some success in
their respective fields but application to nonlinear differential-equation models that
undergo qualitative changes of behaviour (bifurcations) is very limited.

As such, in this chapter we focus on a combined differential-equation/machine
learning approach to produce an accurate model of the nonlinear dynamic behaviour
of a physical engineered system; specifically we focus on an aerofoil undergoing
aero-elastic flutter oscillations caused by a Hopf bifurcation.
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The underpinning idea is to start with a normal-form-like model of the bifurca-
tion phenomena of interest and then attempt to learn a coordinate transformation
from the normal-form model to the physical coordinate system. We illustrate this
idea using a 6-dimensional aero-elastic flutter model as the ground truth and learn
a coordinate transform to a (modified) 2-dimensional Hopf bifurcation normal
form. The ultimate aim is to use this approach on a physical wind-tunnel-based
experiment; the underlying assumption is that we are able to reveal the fundamental
bifurcation structure of a physical experiment using techniques such as control-
based continuation [6, 7] to create a simple phenomenological model that recreates
the bifurcation structure.

We begin by outlining a particular variant of control-based continuation that
can be used on autonomous self-excited systems in order to extract the bifurcation
structure from the physical experiment. Subsequently, in Sect. 3, we detail the
architecture of the hybrid differential-equation/machine-learnt model used to learn
the bifurcation structure revealed by control-based continuation. The specific
application area is presented in Sect. 4 along with the details of the data-driven
model in this context in Sect. 5. Results of the methodology and conclusions are
provided in Sect. 6 and Sect. 7, respectively.

2 Bifurcation Structure of an Experiment

Control-based continuation (CBC) [6–10] is a scheme to reveal the bifurcation
structure of an uncontrolled physical nonlinear experiment via controlled exper-
iments. In CBC, a root-finding problem is constructed such that, when a root
is found by iteratively refining the control target, the output of the controlled
experiment corresponds to a steady state (either an equilibrium or a limit cycle)
of the uncontrolled system. Hence, the control scheme is rendered non-invasive.
Previously, CBC has only been applied to periodically forced systems. Here, we
will show how CBC can be applied to self-excited systems undergoing a Hopf
bifurcation.

The key benefit of CBC is that it provides information about the unstable
long-time dynamics; this is particularly important at bifurcation points where the
dynamics are often organised by the unstable orbits. A common example is a
subcritical Hopf bifurcation where unstable orbits separate the stable equilibrium
from areas that spiral outwards, often to a large amplitude limit cycle oscillation.
As such, when constructing mathematical models, information about the unstable
orbits is invaluable.

Previous studies with CBC have relied on periodic forcing to avoid practical
issues around the synchronisation of the control target with the intrinsic dynamics
of the experiment. Without periodic forcing, small errors in estimating the frequency
of oscillation cause phase drift between the periodic control target (generated
by the control system) and the response of the experiment. Consequently, when
considering a Hopf bifurcation of an autonomous system alternative approaches are
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required. Here we make use of phase-plane CBC (PP-CBC), a geometric approach
to controlling the response of the experiment.

To explain the methodology of PP-CBC, we first assume that the dynamical
system under the experiment is governed by a parameter-dependent autonomous
ODE as

ż = F(z, μ), (1)

where F(z, μ) : RN × R→ R
N is the parameter-dependent vector field, z ∈ R

N is
the vector of the state variables, and μ is the bifurcation parameter. Furthermore,
we assume that this ODE exhibits periodic solutions that emerge from a Hopf
bifurcation for some value of μ.

A required feature of the limit cycles is that the measured response generates a
closed curve on some physically measurable two-dimensional plane; PP-CBC uses
a coordinate system within this plane to define the error between the control target
and the measured orbit. Let the corresponding coordinates be defined as z1 = π1 ◦z,
z2 = π2 ◦ z, where π1 and π2 are appropriate projections. Furthermore, define the
instantaneous amplitude and phase angle on the (z1, z2) plane as

R =
√
z2

1 + z2
2, and φ = tan−1

(
z2

z1

)
.

We assume that R is a 2π -periodic function of φ. As such, R can be expressed as a
Fourier series. Similarly, the control target can be defined by its Fourier coefficients.
Thus, the mathematical model of the controlled experiment takes the form

ż = F(z, μ)+ c(z1, z2, Ĉ), (2)

where the Ĉ ∈ R
2nh+1 = (â0, . . . , ânh, b̂1, . . . , b̂nh) is the control target defined by

its (truncated) Fourier coefficients. Finally, the feedback control force c is chosen to
be

c(z1, z2, Ĉ) =
(
K1(z1 − R̂ cos(φ))+K2(z2 − R̂ sin(φ))

)
ec, (3)

where the instantaneous amplitude of the control target is given by

R̂ = Ĉ · [1, cos(φ), . . . , cos(nhφ), sin(φ), . . . , sin(nhφ)]T, (4)

ec ∈ R
N is the direction vector of the control force as determined by the physical

constraints on the experiment, and (K1,K2) are the control gains. Although the
control target varies periodically, there is no explicit dependence on time. Instead,
the dependence on the instantaneous phase allows us to avoid synchronisation
problems.
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The main goal of PP-CBC is to determine Ĉ such that ‖c(z1, z2, Ĉ)‖ < ε, i.e.,
approximately non-invasive control for sufficiently small ε. In this case, the control
target Ĉ approximates a solution of the uncontrolled system (1) with the accuracy
of approximation given by ε. This goal is formulated as a root-finding problem.

As previously mentioned, we assume the existence of limit cycles of (2) and
discretise the instantaneous amplitude using a Fourier projection such that Φ(R) :
Cp([0, 2π ],R)→ R

2nh+1 = (a0, . . . , anh, b1, . . . , bnh), where

a0 = 1

2π

∫ 2π

0
Rdφ, (5a)

an = 1

π

∫ 2π

0
R cos(nφ)dφ for n = 1, 2, . . . , nh, (5b)

bn = 1

π

∫ 2π

0
R sin(nφ)dφ for n = 1, 2, . . . , nh. (5c)

Finally, we arrive at a discretized zero problem Φ(R) − Ĉ = 0, which can be
solved using standard root-finding methods to achieve non-invasive control. This
zero problem is the difference between the measured limit cycle and the desired
limit cycle as defined by the control target vector Ĉ (see Fig. 1 for a visualisation of
the concept).

Fig. 1 Geometric illustration of the phase-plane CBC. The control force is determined by the
difference between the instantaneous amplitudes of the control target and the measured response
at the measured instantaneous phase
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3 Structure of the Data-Driven Model

The goal of this chapter is to construct accurate data-driven models of a nonlinear
system by incorporating prior knowledge of the bifurcations that occur. Here, the
prior knowledge is encoded as a normal form of the bifurcation and a mapping from
the normal-form coordinates to the physical coordinates is learnt from data.

Assume that the vector field (1) has an equilibrium at the origin that undergoes
a Hopf bifurcation at μ = μ0. From centre manifold theory, we know that (1) has
a two-dimensional centre manifold [11] parametrized by μ near (z = 0, μ = μ0).
Furthermore, we assume that we can measure the limit cycles that reside on the
attracting centre manifold [11] via PP-CBC as described above.

The linearisation of F at (z = 0, μ = μ0), that is DF(0, μ0), has a 2-
dimensional centre subspace Ec with purely imaginary eigenvalues and a N −
2-dimensional hyperbolic subspace Eh in our setting. Therefore, there exists a
parameter-dependent centre manifold Wc

μ as a graph y = h(x, μ− μ0) [11]

Wc
μ = {(x, y) | y = h(x, μ− μ0)}, (6)

where x = (x1, x2) ∈ Ec, and y ∈ Eh. Note that x1 ± x2i corresponds to the
eigenvector of purely imaginary eigenvalue of DF(0, μ0).

The dynamics on the centre manifold can be expressed as

ẋ1 = −ωx2 + f1(x1, x2, μ− μ0)

ẋ2 = ωx1 + f2(x1, x2, μ− μ0),
(7)

where the (f1, f2) is the projection of the nonlinear part of the vector field F(z, μ)
to x ∈ Ec and ±iω are eigenvalues corresponding to Ec at μ = μ0.

In general, we consider the two-dimensional parameter-dependent ODE

du
dt
= g(u, ν), (8)

where g(u, ν) : R2 × R → R
2 is topologically equivalent to the dynamics on the

attracting centre manifold given by (7). As a result of topological equivalence, there
exists a homeomorphism U(u, ν) : R2×R→ R

2×R between the coordinates of (8)
and the physical coordinates of (2), defined in a neighbourhood of (u, ν) = (0, 0)
(see Fig. 2).

The underlying premise of this chapter is that it is possible to efficiently learn
the coordinate transform U from experimental data, given an appropriate choice of
g. For our purposes the Universal Approximation property [12, 13] of deep neural
networks provides an appropriate model structure learning the transform.
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Fig. 2 Geometric illustration of the coordinate transformation U from the underlying model in
(u, ν) to the physical coordinates (z, μ)

4 A Model of Aero-Elastic Flutter

To illustrate this data-driven approach, we consider a mathematical model of an
aerofoil undergoing aero-elastic flutter oscillations as given by Abdelkefi et al. [14].
This model provides the ground truth in place of a physical experiment for which
the ground truth is unknown. The model is 6- dimensional and takes the form

Mz̈+ Dż+Kz+ N(α) = 0, (9)

where z = [h, α,w]T comprises heave h, pitch angle α, and an aerodynamic
variable for the unsteady flow w; M, D, and K are mass, damping, and stiffness
matrices, respectively. The bifurcation parameter is the airspeed and is contained
within the D and K matrices. For the full specification of the matrices and parameter
values, see the appendix. The nonlinearity is purely a function of the pitch angle α
and is given by

N(α) = [0, kα2α
2 + kα3α

3, 0]T . (10)

For appropriate parameter values, the model undergoes a subcritical Hopf bifurca-
tion followed by a saddle-node bifurcation of limit cycles as the airspeed is varied.
Julia code to simulate orbits of model is available in [15].

To mimic the experimental procedures used, we add control for use with PP-CBC
to (9). Control forces are applied via an additional force in the heave direction as
follows:
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Fig. 3 Comparison of the bifurcation diagram of (9) and (11) demonstrating that PP-CBC
provides a good approximation to the uncontrolled dynamics

Mz̈+ Dż+Kz+ N(α) =
(
K1(h− R̂ cosφ)+K2(α − R̂ sinφ)

)
ec, (11)

where, in this case, ec = [1, 0, 0]T . The phase angle φ is given by φ = tan−1(α/h),
and for the discretisation of the control target, the Fourier series was truncated at ten
terms (nh = 10).

In order to verify that PP-CBC, as would be used in a physical experiment,
provides a good approximation to the true dynamics of the underlying system, we
compute the bifurcation diagram of both (9) and (11) using our own numerical
continuation codes (available to download from [15]). The results of the compu-
tation are shown in Fig. 3; there is no visible difference between the two bifurcation
diagrams. (The bifurcation diagram for the stable part is not reproduced for PP-CBC
since it could be reproduced by open-loop experiments.) Comparisons at the level
of individual (unstable) periodic orbits are shown in Fig. 4; there is good agreement
between the orbits of (9) and (11); moreover, it can be seen that the control forces
act to stabilise the system as intended, as shown by the Floquet multipliers of the
orbit.
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Fig. 4 A comparison of the unstable limit cycles of (9) and (11) at an airspeed of 16 ms−1. The
left-hand panel shows a phase-plane projection of the limit cycles in the (h, α) plane. The right-
hand panel shows the Floquet multipliers of the two limit cycles; as desired, the control scheme
stabilises the unstable limit cycle

5 Constructing the Data-Driven Model

The underlying assumption of this chapter is that PP-CBC is able to reveal the
bifurcation structure of an underlying physical experiment (see, for example, Fig. 3).
To this end, as a starting point for a data-driven model of (9), we choose the Hopf
bifurcation normal form modified to create a saddle-node bifurcation in the branch
of limit cycle oscillations:

u̇1 = νu1 −Ωu2 + a2u1(u
2
1 + u2

2)− u1(u
2
1 + u2

2)
2

u̇2 = νu2 +Ωu1 + a2u2(u
2
1 + u2

2)− u2(u
2
1 + u2

2)
2,

(12)

where Ω is the phase speed, a2 is a positive constant that determines the position of
the bifurcation and its criticality, and ν is the bifurcation parameter. The bifurcation
structure of (12) can be seen more clearly when transformed to polar coordinates to
give

ṙ = νr + a2r
3 − r5 (13a)

θ̇ = Ω. (13b)

Since (13a) is decoupled from (13b), plotting the fixed points of (13a) shows the
Hopf bifurcation followed by a saddle-node bifurcation.
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The next step is to incorporate the data-driven aspect of the model by defining
the transformation between the coordinate system of (12) and (9). To improve the
convergence of the optimiser used as part of the machine learning, we split the
transformation into two components:

U(u, ν) =
[
T1(u, ν)+ NNΘ1(u, ν)

ν + μ0

]
, (14)

where T1(u, ν) : R2 × R→ R
2 is a simple transformation that has the form

T1(u, ν) = ‖u‖ · [γ1, γ2]T +
[
γ3 γ4

γ5 γ6

]
uT, (15)

which is a combination of linear transformation and a function that gives a shift
proportional to the amplitude of the response in (u, ν) coordinates with unknown
parameters γ1, . . . , γ6. The neural network NNΘ1 : R2 ×R→ R

2 consists of three
input nodes, two hidden layers each with 21 neurons, and two output nodes.

All nodes use tanh as the activation function. In the initial stage of training, NNΘ1

is set to zero and T1 is optimised with a fixed value of a2 = 3.65 and μ0 = 18.3
(estimated from a crude visual match). In the second and final stage of training,
NNΘ1 , a2, and μ0 are allowed to vary in addition to T1. While in principle T1 is an
unnecessary addition to U since the neural network is sufficient to approximate the
transformation, it was found that this staged optimisation approach converges much
more reliably than using the neural network alone.

The cost function for training is defined by the sum of the Euclidean distances
between the actual response and the learnt response in Fourier space. For the flutter
model there are coexisting limit cycle oscillations (LCOs) with different stabilities
bounded in parameter values by those of the Hopf bifurcation and the saddle-
node bifurcation (see Fig. 3), and so we split the LCOs into two sets, one unstable
and one stable. For training data, we take ms time-series measurements of the
instantaneous amplitude from the upper-stable branch of LCOs labelled Rs

i where
i = 1, 2, . . . , ms along with mu measurements from the lower-unstable branch
labelled Ru

i where i = 1, 2, . . . , mu. Corresponding solutions are calculated from
the data-driven model at the same bifurcation parameter values for both the stable
and unstable branches, labelled R̄s

i and R̄u
i , respectively. The final cost function is

ΞU =
ms∑

i=1

∥∥Φ(R̄s
i )−Φ(Rs

i )
∥∥+

mu∑

i=1

∥∥Φ(R̄u
i )−Φ(Ru

i )
∥∥ , (16)

where Φ is Fourier projection (5).
While (12) is a good approximation to the dynamics close to the Hopf bifurca-

tion, away from the Hopf bifurcation the phase speed Ω (frequency of oscillation)
varies. As such, to better capture the behaviour, we allow the phase speed to vary
and treat it as a second function to learn, as given by
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Ω(u, ν) = ω0 + NNΘ2(u, ν), (17)

where ω0 is a constant and NNΘ2(u, ν) is a neural network with three input nodes,
two hidden layers each with 31 nodes, and a single output node. All nodes use
the tanh activation function. Since the original cost function (16) is invariant with
respect to the phase speed (by construction), this second function can be optimised
after the initial training is complete.

Take dsi (t) to be the time-series measurements in physical coordinates of an LCO
on the upper-stable branch, with dui (t) being corresponding measurements on the
lower-unstable branch. The cost function used to train Ω is thus

ΞΩ =
ms∑

i=1

∑

j

∥∥U(usi (tj ), μ
s
i )− dsi (tj )

∥∥+
mu∑

i=1

∑

j

∥∥U(uui (tj ), μ
u
i )− dui (tj )

∥∥ ,

(18)
where usi and uui are time-series measurements calculated from the data-driven
model.

6 Results

To train the data-driven model, we used 10 samples of stable LCOs and 2 samples
of unstable LCOs taken from (9), as marked in Fig. 5.

The optimisation routines were implemented in Julia using the Flux.jl [16]
deep learning package and stochastic gradient descent. Time series of the dif-
ferential equations were calculated with the DifferentialEquations.jl [17] and
DiffEqFlux.jl [5] packages, making use of pullbacks to enable the computation of
derivatives of the cost functions.

As shown in Fig. 5, the solution branches of the normal- form-based model (12)
and the underlying flutter mode (9) match well. This is particularly remarkable when
considering the simplicity of the normal-form-based model (12) and the relatively
sparse training dataset provided.

Figure 6 shows a comparison of the phase portraits of individual LCOs close to
the training points, one stable and one unstable. As expected due to the proximity
to the training data, the phase portraits show good agreement. Moreover, the phase
portraits show that the learnt transformation is non-trivial since the phase portraits
are clearly not circular as would be expected from the Hopf bifurcation normal form
used.

Away from the training points, there is a larger discrepancy between the phase
portraits as shown in Fig. 7; however, the discrepancy is still relatively small. This
provides confidence in the method since the model appears to interpolate well.

Finally, Fig. 8 shows time series of two LCOs. While there are slight discrepan-
cies at high amplitude, it can be seen that the learnt phase speed allows the time
series to be matched well.
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Fig. 5 A bifurcation diagram showing a comparison between the results of the hybrid differential-
equation/machine-learnt model and the underlying ground truth (9). Training data used for machine
learning is shown by the markers on the bifurcation curve. There is good agreement between the
two models even away from the training points

7 Conclusions

This chapter has proposed a hybrid machine learning/differential-equation approach
to the modelling of nonlinear experiments exhibiting different regimes of qualitative
behaviour separated by bifurcations. We have shown that the required knowledge
of the bifurcation structure can be extracted from a physical experiment by use of
phase-plane control-based continuation. This knowledge is then used to generate
a normal-form-like model that qualitatively matches the bifurcation structure of
the underlying experiment. Measured data is then used with machine learning
algorithms to construct a coordinate transformation between the normal-form-like
model and the physical coordinate system.

We have shown that this approach is an effective way to generate an accurate
nonlinear model based on limited data. In this chapter, the behaviour of a 6-
dimensional aero-elastic flutter model is reproduced using only 12 measured
limit cycle oscillations. Overall, this combination of knowledge of the physical
system and machine learning appears to be very versatile and opens up a wide
range of possibilities for future modelling work on nonlinear physical systems
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Fig. 6 Comparison of the phase portraits of the hybrid model and the underlying ground truth (9).
The limit cycles shown are calculated at an air speed of 15.0 ms−1 (left panel; stable oscillation)
and 17.1 ms−1 (right panel; unstable oscillation). These points are close to the training data points
and, as such, show very good agreement
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Fig. 7 Comparison of the phase portraits of the hybrid model and the underlying ground truth (9)
away from the training points. The limit cycles shown are calculated at an air speed of 15.4 ms−1

(left panel; unstable oscillation) and 18.13 ms−1 (right panel; unstable oscillation). Despite being
away from the training points, there is still good agreement
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Fig. 8 Comparison of the time-series response in the heave variable. The left-hand panel shows
the response at an air speed of 15.0 ms−1 and the right-hand panel shows the response at an air
speed of 18.0 ms−1

where experimental data is available, even where the underlying physics is poorly
understood (e.g., synthetic biology) or ill defined (e.g., macroscopic behaviour of
people in crowds).
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Appendix: Parameters of Aero-Elastic Flutter Model

The model matrices of (9), as derived in [14], are given by

M =
⎡

⎣
mT + πρb2 mxαb − aπρb3 0

mxαb − aπρb3 Iα + π(1/8+ a2)ρb4 0
0 0 1

⎤

⎦ , (A.1a)

D =
⎡

⎣
ch + πρbU (1+ (1/2− a))πb2U 2πU2b(c1c2 + c3c4)

−π(a + 1/2)ρb2 cα + (1/4− a2)πρb3U −2πρb2U2(a + 1/2)(c1c2 + c3c4)

−1/b a − 1/2 (c2 + c4)U/b

⎤

⎦ ,

(A.1b)

K =
⎡

⎣
kh πρbU2 2πU3c2c4(c1 + c3)

0 kα − π(1/2+ a)ρb2U2 −2πρbU3(a + 1/2)(c2c4(c1 + c3)

0 −U/b c2c4U
2/b2

⎤

⎦ . (A.1c)
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Table A.1 Parameters values
of the aero-elastic flutter
model (9)

Parameter Value

b 0.15

a −0.5

ρ 1.204

kh 3529.4

mw 5.3

mT 16.9

kα 54.11

kα2 751.6

kα3 5006

Parameter Value

Iα 0.1726

xα 0.24

cα 0.5628

ch 15.4430

c0 1

c1 0.1650

c2 0.0455

c3 0.335

c4 0.3

The parameter values used are given in Table A.1.
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Synchronization Study on
Vortex-Induced Vibrations Using Wake
Oscillator Model

Rik Mondal, Chandan Bose, and Sirshendu Mondal

1 Introduction

Vortex-induced vibration (VIV) occurs when the shed vortices behind a bluff
body exert oscillatory forces on the flexible structure. The structural vibration
thus produced, in turn, affects the vortex-shedding pattern, giving rise to two-way-
coupled interactions. VIV can limit the life expectancy of materials through fatigue
damage and may even lead to catastrophic failures in the engineering systems, such
as chimneys, suspended cables for bridges, power transmission lines, marine risers,
towing cables to name a few. On the other hand, VIV has recently been successfully
exploited to extract the flow energy for renewable energy harvesting. It has direct
applications in many industrial and engineering systems and therefore has been a
subject of extensive experimental and numerical investigations in the recent past
[1, 2].

VIV is characterized by the phenomenon of synchronization or lock-in. For low
flow speeds, the vortex-shedding frequency remains the same as that of a fixed
cylinder, particular to the Strouhal number. On the contrary, as the flow speed is
increased, the shedding frequency no longer obeys the Strouhal relationship and
synchronizes with the oscillation frequency of the cylinder. To that end, large body
motions are observed as the structure exhibits near-resonance dynamics when the
vortex-shedding and body oscillation frequencies coalesce into a single frequency
close to its natural frequency, marking the onset of the lock-in regime [1]. This
synchronization or lock-in phenomenon is dependent on several factors, among

R. Mondal (�) · S. Mondal
Department of Mechanical Engineering, National Institute of Technology Durgapur, Durgapur,
India

C. Bose
Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Lacarbonara et al. (eds.), Advances in Nonlinear Dynamics, NODYCON
Conference Proceedings Series, https://doi.org/10.1007/978-3-030-81162-4_6

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81162-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-81162-4_6


66 R. Mondal et al.

which the Reynolds number, the material damping and structural stiffness, the mass
ratio and associated added mass effect are worth mentioning [2]. Navrose and Mittal
[3] have revealed the mechanism of synchronization and lock-in during VIV of a
transversely oscillating cylinder through linear stability analysis.

To avoid the prohibitive computational cost of high-fidelity CFD simulations,
phenomenological low-order models of VIV for a one degree-of-freedom (Dof)
structures, considering a wake or fluid oscillator has been established to be very
much effective in capturing the essential dynamics of VIV [4]. The classical VDP
model is considered to be the base skeleton of the family of wake oscillator models
used to estimate the aerodynamic loads for predicting cross-flow VIV [5]. In this
modelling framework, the forcing term in the wake oscillator model is considered
to be proportional to structural acceleration, ensuring that both the wake motion
(or aerodynamic lift force) and structural motion drive each other. Furthermore, a
number of modifications have been implemented on this simplistic model over the
years to capture the underlying physics better and have a better validation with the
experimental results [6–8]. The weakly non-linear VDP oscillator results in steady
periodic response but may also give rise to chaotic response when the non-linearity
is strong [9].

While a majority of the existing studies in the literature have investigated the
VIV phenomenon by coupling a linear structure with the wake oscillator model,
there is a lack of understanding on the effect of structural non-linearity on the
synchronization behaviour. Note that the presence of structural non-linearity can
significantly alter the coupled fluid-elastic interactions. Hence, there is a need to
investigate the synchronization characteristics of VIV with a non-linear structural
oscillator in comparison to a linear one. Additionally, although the synchronization
limits have been identified through a number of studies, the synchronization route is
not clearly established from the dynamical systems point of view. The present study
takes up this analysis by considering a cubic non-linearity in the structure coupled
with a weekly non-linear VDP oscillator. A detailed response analysis is carried out
from the purview of synchronization theory.

The remainder of this chapter is organized in the following sections. The math-
ematical modelling is depicted in Sect. 2. Section 3 describes the synchronization
measures adopted in this chapter to characterize the coupled VIV response. The
primary findings of this chapter for a linear and a non-linear structural model and
the accompanied discussion are presented in Sect. 4. Finally, this chapter ends with
the summary of salient findings in Sect. 5.

2 Mathematical Model

In this chapter, we adopt a simplistic low-order model of transverse VIV, where the
single DoF structure is described by a linear (α = 0) as well as non-linear (α �= 0)
oscillator (Eq. 1), and a classical VDP oscillator (Eq. 2) is selected for capturing the
wake dynamics. For the sake of simplicity, a linear coupling is considered similar
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ℎ

( )

Fig. 1 Schematic for 2-D vortex-induced vibration in a fluid-elastic system comprising of coupled
structure and wake oscillators. h and r are the representative of stiffness and damping coefficient
of the elastic structure

to the model described in [5]. Although a number of modified wake oscillator
models [6–8] are available, we stick to the canonical VDP model to constrict our
focus solely on the synchronization behaviour. Figure 1 shows the schematic of the
cylindrical structure of mass m and diameter D exhibiting cross-flow (y-direction)
oscillations under steady uniform inflow with free stream velocity, U .

ÿ + (2ζ δ + γ

μ
)ẏ + δ2y + αy3 = s; (1)

q̈ + ε(q2 − 1)q̇ + q = f. (2)

Here, y(t) is the structural displacement and q(t) is the wake parameter. The
coupling between structure and wake is modelled through s and f . s captures the
effect of vortices on the structure as s = Mq, and f models the effect of structural
motion on the wake as f = Aẏ (velocity coupling) and f = Aÿ (acceleration
coupling). The parameters and their values are given as follows. Here, ζ is the
structure reduced damping (0.0052), δ is the reduced angular frequency of the
structure (1/0.2Ur , where Ur is the reduced flow velocity), γ is a stall parameter
(0.8), μ is the dimensionless mass ratio (1.1938), M is the mass number (0.0419), A
is the coupling strength (12), and ε is the non-linearity parameter in VDP oscillator
(0.3). The details of the model and the values of all model parameters can be found
in [5]. Following [10], a cubic non-linearity is added to the structure oscillator with
non-linearity coefficient α.
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The governing equations of this VIV system (Eqs. 1 and 2) are numerically
integrated using a Runge–Kutta method-based solver ODE45, available in MAT-
LAB. Removing the initial transients, the time series of the structure (y(t))
and the wake (q(t)) variables are analysed to evaluate various synchronization
measures, described in Sect. 3, in order to obtain amplitude, phase, and frequency
of oscillations.

3 Synchronization Measures

Synchronization is a fundamental non-linear phenomenon for two or more interac-
tive oscillators, wherein the time periods of the oscillators match due to coupled
interactions. In this regard, coupling strength between these oscillators is a crucial
parameter that determines the state of synchronization. The occurrence of synchro-
nization is usually examined by studying the locking of phase (or frequency) of the
signals [11]. In this chapter, the phase of a signal is estimated following Hilbert-
transform-based analytic signal approach [12].

An analytic signal is a complex quantity, denoted by ζ(t), whose real part is the
original signal, y(t), and imaginary part is the Hilbert transform of it, yH (t) = 1/π
P.V.

∫∞
−∞(y(t)/(t − τ)dτ), where P.V. is the Cauchy principle value of the integral.

Thus, an analytic signal is defined as ζ(t) = y(t) + iyH (t) = A(t)eiφ(t), where
φ(t) and A(t) represent the instantaneous phase and the instantaneous amplitude of
the signal, respectively. The synchronization of coupled oscillators is investigated
by studying the relative phase and is calculated as Δφi,j (t) = |φj (t)− φi(t)|.

In this chapter, we quantify the degree of synchronization between structure and
wake oscillators using the phase-locking value (PLV) and relative mean frequency
(Δω). PLV is defined as, PLV = N−1 ∑N

t=1 e
iΔφ(t), and computes the mean

variability of instantaneous relative phases [13]. This measure approaches 1 for a
perfectly synchronized state and becomes close to 0 for a perfectly desynchronized
state of oscillations. On the other hand, the frequency entrainment is analysed by
calculating relative mean frequency that is defined as Δω = |〈ωi(t)〉t −〈ωj (t)〉t | =
|〈 dφi(t)

dt
〉t − 〈 dφj (t)dt

〉t |.
Note that the notion of synchronization is applicable to the interaction between

two self-sustained oscillators. In the present model, the structure oscillator, in
isolation, does not behave like a self-sustained one. Therefore, we only use the
synchronization measures to analyse the phase and frequency relations between
structure and wake oscillators.
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4 Results and Discussions

The synchronization results are presented by comparing and contrasting the cases
considering the structure oscillator to be linear (α = 0 in Eq. 1) and non-linear
(α �= 0 in Eq. 1). We have investigated the synchronization behaviour for a range of
positive as well as negative α values; however, we present the results only for two
representative cases at α = 100 and α = −100 as we did not observe any change in
the dynamics for in-between positive and negative values.

4.1 Linear Structure Oscillator

The numerical solver is first validated by plotting the variation in structural
oscillation amplitude (Y0) as a function of reduced flow velocity (Ur ) considering
both velocity and acceleration coupling with the same calculated analytically by
Facchinetti et al. [5] (Fig. 2). We further compare with the experimental results of
Govardhan and Williamson [14]. The numerical results are found to closely follow
the trend of analytical results (Fig. 2). The difference in numerical values between
analytical and numerical solutions can be attributed to the approximation involved
in the analytical formulations.

As observed in Fig. 2 and also has been concluded by Facchinetti et al. [5],
although this simplistic model is not capable of capturing the correct experi-
mental amplitude, the sustained lock-in behaviour is correctly obtained through
the acceleration coupling in contrast to the velocity coupling. Therefore, we

Fig. 2 The change in amplitude of structure oscillation (Y0) with the variation of reduced flow
velocity (Ur ). Numerical solutions are plotted with analytical results of [5] for both velocity and
acceleration coupling, together with the experimental results of [14]
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Fig. 3 (a) Amplitude of structural and wake oscillation as a function of reduced flow velocity
(Ur ). (b) Variation in phase-locking value and relative mean frequency between structure and wake
oscillator with flow velocity

consider only acceleration coupling in the rest of this chapter. Next, we present
the synchronization feature between structure and wake oscillator as Ur is varied.

Towards that, the oscillation amplitudes of the structure and the wake are
presented in Fig. 3a. We observe that large-amplitude oscillation persists for high
reduced velocities, which is representative of persistent lock-in [5]. The phase and
frequency synchronization between structure and wake oscillations is then analysed
by evaluating PLV and relative-mean-coupled frequency (Δω), respectively. These
are plotted as a function of Ur in Fig. 3b. It is observed that two oscillators remain
phase- and frequency-locked throughout the range of flow speed as inferred from the
values of PLV close to 1 and Δω close to 0. Next, the case with non-linear structure
oscillator is investigated.

4.2 Non-Linear Structure Oscillator

In this section, we discuss the coupled dynamics of structure and wake oscillators,
considering a cubic non-linearity in structural stiffness. With this modification,
the structure can be described by a Duffing oscillator. To study the effect of non-
linearity, we choose the non-linearity coefficient of the Duffing oscillator (Eq. 1),
α to be +100 and −100, following [10]. The bifurcation diagram of the peaks of
structural oscillation as a function of Ur is shown in Fig. 4.

The sharp increase in the peak values around Ur = 5 shows the lock-in
zone and associated amplification of structural oscillations for both α = 100
(Fig. 4a) and α = −100 (Fig. 4b). A single peak value is obtained for most of
the Ur range considered, indicating the presence of a steady limit cycle oscillation
(LCO). However, interestingly, we find three distinct peaks, indicating period-3
oscillation in the structural response for Ur = 1.57–1.77, shown as insets in
Fig. 4. Furthermore, a slight amplification in the structural oscillation is noticed
around Ur = 1.68. This change in the dynamical behaviour is also reflected in
the synchronization feature between the structure and wake oscillations, which will
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Fig. 4 Bifurcation diagrams of the peaks of structural oscillation as a function of reduced flow
velocity (Ur ). The zoomed period-3 oscillations observed around Ur = 1.68 are depicted as insets.
(a) α = 100. (b) α = −100

Fig. 5 Amplitude response with respect to reduced flow velocity is shown for α = 100 (a) and
α = −100 (c). Variation in PLV and relative mean frequency (Δω) with Ur is shown for α = 100
(b) and α = −100 (d)

be presented in the following. However, studying the emergence of such dynamics
with given coupled oscillators system is beyond the scope of the present study and
the authors are presently working towards this.

Studying synchronization between a non-linear structural oscillator and a non-
linear wake oscillator can be insightful for the practical situation. Towards that,
amplitude of the structural and wake oscillators are first plotted against reduced
flow velocity (Ur ) for the non-linearity parameter α = 100 (Fig. 5a) and α = −100
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Fig. 6 Overlapped time series of structure (y) and wake (q) oscillations for (a) α = 100 and (b)
α = −100. Corresponding relative phase dynamics is shown in (c) and (d), respectively

(Fig. 5c). The amplitude response with a non-linear structure oscillator is found to
have a bounded lock-in regime in contrast to the persistent lock-in as observed for
the linear structure oscillator. The present results show a close agreement with those
reported by Vigneshvar et al. [10]. However, analysing the coupled dynamics brings
out an interesting phenomenon.

Similar to the previous case, the measures, PLV and Δω, are plotted as a function
of Ur for α = 100 and α = −100 in Fig. 5b, d, respectively. PLV is found to be
1 for all values of Ur (including the lock-in regime) except a small regime around
Ur = 1.68. The low values of PLV observed around Ur = 1.68 imply phase-
asynchronous behaviour between structure and wake oscillators. The difference in
mean frequencies is also observed as expected, indicating the absence of frequency
locking. In this range of Ur values, period-3 oscillations are observed for structure
oscillator (Fig. 4) that gives rise to the mismatch of time scales between structure
and wake oscillation. For a better understanding of the coupled interaction, we
next analyse the dynamics of structure and wake oscillations and the relative phase
dynamics.

Overlapped time series for structure (y) and wake (q) oscillations are shown
for α = 100 (Fig. 6a) and α = −100 (Fig. 6b). Period-3 oscillations are apparent
in structure dynamics (in blue), whereas wake continues to oscillate with a single
period (in red) irrespective of hardening or softening non-linearity. Such a disparity
leads to a difference in their mean frequencies (observed in Fig. 5b and d). This
difference in their mean frequency is also manifested in relative phase dynamics
(Δφ(t)) that are shown for α = 100 (Fig. 6c) and α = −100 (Fig. 6d). The



Synchronization Study on Vortex-Induced Vibrations 73

Fig. 7 (a) Peaks of structural oscillations are plotted against low value of flow speed. (b)
Corresponding PLV and relative mean frequency are shown

relative phase is observed to grow monotonically with time, known as phase
drifting [11]. This implies the absence of phase locking or phase synchronization
between structure and wake oscillator at Ur = 1.68 for both cubic hardening and
softening non-linearity. Such an asynchronous regime is observed only with non-
linear structure oscillator. The authors are currently working on why there is a
difference in dynamical and synchronization behaviour at Ur = 1.68.

We further notice an interesting dynamical transition for low values of flow
velocity (Ur < 1.1) as depicted in Fig. 7. This shows multiple peaks for short range
Ur . Although the dynamical transition appears to be very rich (Fig. 7a), we find
frequency entrainment for all values of Ur and phase locking for major part of Ur

values. However, this needs a thorough investigation and will be taken as future
scope of this chapter.

5 Conclusions

This chapter focuses on the coupled interaction between the structure and wake
oscillators, usually considered for modelling VIV. The wake dynamics is modelled
as a classical VDP oscillator, whereas the structural motion is modelled with a linear
as well as a non-linear Duffing oscillator. The coupled dynamics between these
oscillators are studied by invoking synchronization theory. To that end, phase and
frequency locking is characterized by evaluating PLV and relative mean frequency.
The coupled system with linear structure oscillator exhibits phase and frequency
locking throughout the range of flow speed considered. The fact that the phase
locking outside the lock-in regime does not follow the experimental observation
might be a model artifact and therefore needs to be addressed in future. On the
other hand, the system with non-linear structure oscillator exhibits asynchronous
behaviour prior to lock-in regime. Further, at low flow speed, the coupled system is
observed to apparently show a very rich dynamics with a detour from the completely
phase-synchronized behaviour. However, a detailed investigation on the dynamics
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and synchronization of such a simplistic model with non-linear structural oscillator
needs to be carried out and the authors are currently working on it.
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Effects of Strong Viscosity with Variable
Fluid Properties on Falling Film
Instability

Anandamoy Mukhopadhyay, Souradip Chattopadhyay, and Amlan K. Barua

1 Introduction

The effect of thermophysical properties with temperature variation for a thin film
flow along an inclined plane is a challenging problem due to its complicated formu-
lation. To avoid this complexity most of the researchers consider the thermophysical
properties, such as viscosity, density, thermal conductivity, surface tension, etc. as
constants for non-isothermal flow. Using the long-wave expansion method, Goussis
and Kelly [1] first studied the effects of viscosity variation on the stability of a non-
isothermal thin liquid film flow along an inclined plane. To obtain relatively simple
analytical results, they assumed the variation of the viscosity to be exponential with
the temperature that is an approximation to the Arrhenius-type relation. They found
that heating destabilizes the flow, whereas cooling stabilizes it. Since the Arrhenius-
type viscosity variation is based on physical grounds, therefore Goussis and Kelly
[2] further studied the above-stated problem considering the Arrhenius model as
well as by exponential model using the Orr–Sommerfeld equation. They compared
the results obtained by both the models and found qualitatively the same results
stated earlier.

Hwang and Weng [3] investigated the linear as well as weakly nonlinear stability
analysis of thin liquid film flow along a heated (cooled) rigid inclined plane
considering the viscosity variation of the Arrhenius model with the temperature.
Both the stability analysis again confirms that heating destabilizes the flow and
cooling stabilizes it, as obtained by Goussis and Kelly [2].
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Using the viscous scales and long-wave theory Reisfeld and Bankoff [4] derived
an evolution equation of a heated liquid thin film flow, considering the dynamic
viscosity as the linear function of temperature. They derived a relation between the
physical time variable for the temperature-dependent viscosity with that of the time
scale for constant viscosity when the Biot number is very small/very large. They
found that for large Biot numbers, due to variable viscosity, the rupture time of the
thin liquid film decreases relative to that of constant viscosity.

Pascal et al. [5] presented an analytical study of the interfacial instability of
a thin film flow along a uniformly heated inclined plane. To show the effect of
variation of different thermophysical properties, they assumed the linear variation
of density, dynamical viscosity, thermal conductivity, and specific heat along with
the temperature variation of surface tension. Later, D’Alessio et al. [6] studied
the effects of linear variation of different thermophysical quantities except for the
specific heat, on gravity-driven thin film flow along a uniformly heated incline. In
both these studies, only linear stability analysis was performed.

Mukhopadhyay and Chattopadhyay [7] proposed an analytical model of a thin,
Newtonian film flowing down a uniformly heated inclined plane, considering a
linear variation of various thermophysical properties. They performed both linear
as well as weakly nonlinear stability analysis and captured the effect of different
thermophysical properties on different stable/unstable zones.

In this study, we take all fluid properties including mass density, viscosity, surface
tension and thermal diffusivity to be temperature dependent. We assume that the
density, surface tension and thermal diffusivity vary linearly whereas the viscosity
varies exponentially with small variation of temperature. The exponential variation
of viscosity is physically more viable than its linear variation with temperature.
We aim to figure out the effects of strong (exponential variation) and weak (linear
variation) viscosity on the instability phenomena of the flow dynamics.

2 Physical Model and Formulation

We consider the two-dimensional laminar flow of a viscous, incompressible,
Newtonian, thin liquid film along an impermeable inclined plane of inclination
γ with the horizon that is uniformly heated from below with the temperature
T = TW > T∞ where T∞ is the ambient air temperature above the fluid layer
(see Fig. 1). We choose x, z-axes along the stream-wise and cross-stream direction
of the flow, respectively. The density (ρ), surface tension (σ ), thermal diffusivity
(κ), and dynamical viscosity (μ) are temperature-dependent fluid properties. We
assume that ρ, σ , and κ are varying linearly [7] with a small variation of temperature
ΔT = (TW − T∞) (> 0), whereas μ varies exponentially as

ρ = ρ∞
[
1−Kρ (T − T∞) /ΔT

]
, σ = σ∞ [1−Kσ (T − T∞) /ΔT ] ,

κ = κ∞ [1+Kκ (T − T∞) /ΔT ] , μ = μ∞exp
[−Kμ (T − T∞) /ΔT

]
, (1)
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Fig. 1 The flow configuration

where ρ∞, σ∞, κ∞ and μ∞ are the values of ρ, σ , κ , and μ at the
reference temperature T = T∞. Also Kρ = 1/ρ∞ (−dρ/dT )T=T∞ ΔT ,
Kσ = 1/σ∞ (−dσ/dT )T=T∞ ΔT , Kκ = 1/κ∞ (dκ/dT )T=T∞ ΔT and Kμ =
1/μ∞ (−dμ/dT )T=T∞ ΔT are the parameters measuring the rate of change with
respect to temperature.

Using (1), the governing equations (5)–(8) and the boundary conditions (9)–
(14) of the problem formulated by Mukhopadhyay and Chattopadhyay [7] are made

dimensionless by using viscous-gravity length scale lν∞ = (
ν2∞/(g sin γ )

)1/3
and

time scale tν∞ =
(
ν∞/(g sin γ )2

)1/3
as

(x, z) = hN
(
x�, z�

)
, h = hNh

�, t = (
tν∞ lν∞/hN

)
t�, p = p∞ + ρ∞

(
lν∞hN/t

2
ν∞

)
p�,

(u,w) =
(
h

2
N/

(
tν∞ lν∞

)) (
u�,w�

)
, T = T∞ + T �ΔT,

where hN is the uniform film thickness of the basic flow and ν∞ = μ∞/ρ∞ is the
kinematic viscosity at T = T∞.

In terms of these dimensionless variables, the equations of motion, energy, wall
boundary conditions, and free-surface boundary conditions of [7] reduce to the
following non-dimensional form after removing the star decoration as:

(i) Governing equations [(x, z, t) ∈ R× (0, h)× [0,∞)]:

ux + wz = 0, (2)

3Re (ut + uux + wuz) = −px +
(
1−KρT

)−Kμexp
(−KμT

)
(uxTx + uzTz)

+ exp
(−KμT

)
(uxx + uzz) , (3)

3Re (wt + uwx + wwz) = −pz − cot γ
(
1−KρT

)+ exp
(−KμT

)
(wxx + wzz)
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−Kμexp
(−KμT

)
(wxTx + wzTz) , (4)

3ReP r (Tt + uTx + wTz) = Kκ

(
T 2
x + T 2

z

)
+ (1+KκT ) (Txx + Tzz) .

(5)
(ii) Boundary conditions on z = 0:

u = w = 0 and T = 1. (6)

(iii) Boundary conditions on the free surface z = h(x, t):

exp
(−KμT

)
[(uz + wx)G− 2 (ux − wz) hx]+MF (Tx + hxTz) = 0,

(7)
p = 2 exp

(−KμT
) [
uxh

2
x − (uz + wx) hx + wz

]
F−2 − (We −MT )hxxF

−3,

(8)

w = ht + uhx, (9)

(1+KκT ) (Tz − Txhx)+ BFT = 0, (10)

where Re = g sin γ h
3
N/

(
3ν2∞

)
, Pr = ν∞/κ∞, We = σ∞/

(
ρ∞gh

2
N sin γ

)
,

M = (−dσ/dT )T=T∞ ΔT/
(
ρ∞gh

2
N sin γ

)
, B = kghN/kT are the Reynolds

number, Prandtl number, Weber number, film Marangoni number, and free-surface

Biot number, respectively. Here we introduce G = (
1− h2

x

)
and F = (

1+ h2
x

)1/2
.

If we set Kρ , Kμ, Kσ , and Kκ to 0, the above set of Eqs. (2)–(10) completely
matches with the study of Kalliadasis et al. [8].

3 Long-Wave Expansion

To perform long-wave expansion of the governing equations and associated bound-
ary conditions, we introduce a small parameter ε(� 1) through the transformations
(∂t , ∂x) → ε (∂t , ∂x) and w → εw followed by an asymptotic series expansion of
all pertinent variables in powers of ε as

u = u0+εu1+· · · , w = w0+εw1+· · · , p = p0+εp1+· · · , T = T0+εT1+· · · .
(11)

We assume that Re, Pr are of O(1), M is of O(1/ε), We is of O
(
1/ε2

)
, and B is

of O
(
ε2
)

for our further investigation.
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Substituting (11) into the re-scaled governing equations as well as boundary
conditions and collecting the coefficients of like powers of ε, the zeroth- and
first-order equations are obtained and the corresponding solutions are determined.
Following Mukhopadhyay and Chattopadhyay [7], we obtain the evolution equation
in terms of h(x, t) as

ht + A(h)hx + ε
[
B(h)hx + ε2C(h)hxxx

]

x
+O

(
ε2
)
= 0, (12)

where

A(h) = (
1−Kρ

) {
exp

(
Kμ

)− εexp
(
2Kμ

)}
h2,

B(h) = (2/5)Re
(
1−Kρ

)2 exp
(
3Kμ

)
h6 − (1/3) cot γ

(
1−Kρ

)
exp

(
Kμ

)
h3,

C(h) = (1/3)We (1−Kσ ) exp
(
Kμ

)
h3.

4 Stability Analysis

To study the growth of the disturbance with respect to the basic flow, the dimension-
less film thickness in the perturbed state may be written as h(x, t) = 1 + η(x, t),
where η(x, t) � 1 represents the perturbation at any instant. We eliminate the
dependency of Eq. (12) on ε by the transformations (t, x) = ε

(
t̃ , x̃

)
. Applying

these transformations with the perturbed film thickness, Eq. (12), after dropping the
tilde sign and retaining the terms up to the order O

(
η3
)
, reduces to the following

form:

ηt + Aηx + Bηxx + Cηxxxx + A′ηηx + B ′
(
ηηxx + η2

x

)
+ C′ (ηηxxxx + ηxηxxx)+ 1

2
A′′η2ηx

+ B ′′
(

1

2
η2ηxx + ηη2

x

)
+ C′′

(
1

2
η2ηxxxx + ηηxηxxx

)
+O

(
η4
)
= 0, (13)

where A, B, C and their corresponding derivatives are evaluated at h = 1.
To discuss the linear stability analysis, we consider only the linearized part of

Eq. (13). To study the linear response for a sinusoidal perturbation of the film we
assume the infinitesimal perturbation as

η = ξexp[i(kx − ωt)] + c.c., (14)

where ξ � 1 is the amplitude of the disturbance, k is the wavenumber, and ω =
ωr + iωi is the complex frequency where ωr , ωi are the real and complex parts,
respectively, and c.c. represents complex conjugate of the term preceding it.

Substituting (14) in the linearized part of (13) and then separating the real,
imaginary parts, we obtain ωr = Ak and ωi = Bk2 − Ck4. We observe that the
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Fig. 2 Variation of critical Reynolds number (Rec) with the variation of Kμ for different Kρ with
the fixed inclination γ = π/3

linear phase speed cr = ωr/k = A, i.e., independent of k that implies that the wave
is non-dispersive. The disturbance is asymptotically stable or unstable according to
ωi < 0 or ωi > 0. Also, the neutral stability condition ωi = 0 gives two branches
of the neutral curves k = 0, k = √

B/C, and the flow instability takes place in
between them.

The minimum Re at which instability sets in is known as the critical Reynolds
number (Rec) and is obtained as

Rec = 5

6

exp
(−2Kμ

)

(
1−Kρ

) cot γ. (15)

If we considerKμ ∈ (0, 1) to be small, then exp
(−2Kμ

) ≈ (1−Kμ)
2 and therefore

Rec obtained by (15) exactly matches with Rec obtained by Mukhopadhyay and
Chattopadhyay [7]. Further, for isothermal case with constant viscosity and density(
Kμ = 0 = Kρ

)
, Eq. (15) reduces to (5/6) cot γ as obtained by Benjamin [9] and

Yih [10]. Moreover, Rec in (15) is independent of Kσ and Kκ .
Expanding exp

(−2Kμ

)
in Taylor series, it is easy to show that for Kμ ∈ (0, 1),

exp
(−2Kμ

)
is always greater than

(
1−Kμ

)2. This implies that for a fixed Kρ ,
Rec in (15) is always greater than that of its corresponding value obtained by
Mukhopadhyay and Chattopadhyay [7]. Therefore, flow is more stable when the
variation of viscosity is exponential in comparison to its linear variation ∀ Kμ ∈
(0, 1). Figure 2 demonstrates the variation of Rec with a variation of Kμ ∈ [0, 1),
and it confirms the previous claim. Moreover, for both the cases (exponential and
linear variation), it interprets that as Kμ increases, Rec decreases, i.e., linear stable
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zone decreases. Physically, as Kμ(> 0) increases, the dynamic viscosity decreases,
and therefore, the Reynolds number, which is the ratio of inertial and viscous forces,
increases. As the inertia force increases, it leads to the destabilization of the flow
system. On the other hand for a fixed Kμ as Kρ(> 0) increases, Rec increases for
exponential as well as the linear variation of viscosity. Physically as Kρ increases,
the density of the liquid decreases; therefore, the mass flow rate decreases, which
leads to the stabilization of the flow system.

The linear theory fails to capture the flow behaviour accurately as the amplitude
of the perturbation grows to a finite value. Therefore, it is necessary to perform
weakly nonlinear stability analysis in the vicinity of the upper branch of the neutral
curve within a thin band of width ζ � 1. Following [7, 11–13], we obtain complex
Ginzburg–Landau equation for filtered waves as

∂ξ

∂t2
− ζ−2ωiξ + (J2 + iJ4) |ξ |2ξ = 0, (16)

where the expressions of J2, J4 are

J2 = 1

2

(
−B ′′k2 + C′′k4

)
+ (A′)2k2 − 2

(
B ′k2 − 7C′k4

) (
B ′k2 − C′k4

)

16Ck4 − 4Bk2
,

J4 = 1

2
A′′k + A′k

(
B ′k2 − 7C′k4

)+ 2A′k
(
B ′k2 − C′k4

)

16Ck4 − 4Bk2 .

Further, the threshold amplitude and the nonlinear wave speed are obtained by√
ωi/J2 and Ncr = cr + ci (J4/J2), where ci = ωi/k. The variation of J2 and

ωi with the variation of Kμ is portrayed in Fig. 3 for a fixed k = 0.045. Analysing
the nature of Fig. 3, we found that the subcritical unstable (ωi < 0, J2 < 0),
unconditional stable (ωi < 0, J2 > 0), supercritical stable (ωi > 0, J2 > 0), and
explosive zones (ωi > 0, J2 < 0) are possible with the variation of Kμ. Similarly,
for a fixed wavenumber and properly chosen parameters, it is observed that all the
above stability zones may exist with the variation of Kρ and Kσ [7]. Thus, Kμ, Kρ ,
and Kσ control the stability criteria of the flow dynamics.

5 Numerical Simulation

To capture the flow dynamics over a large period of time, we numerically solve (12)
in the spatial interval [−π/k, π/k] by considering the initial free surface as

h(x, 0) = 1− 0.1 cos(kx). (17)
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Fig. 3 Variation of J2 and ωi with the variation of Kμ for fixed values of k = 0.045, Kρ = 0.5,
Kσ = 0.1, Re = 10, We = 4000, ε = 0.1, and γ = π/3
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Fig. 4 Maximum amplitude (exponential variation of viscosity) of the wave for fixed values of
Kρ = 0.5, Kσ = 0.1 k = 0.045, Re = 10, We = 4000, ε = 0.1, and γ = π/3

We apply the Crank–Nicolson scheme and choose Δt = 0.01, the number of node
points N = 100 in space and stopping criteria for the iteration in the Newton–
Raphson method, tol=10−6.

The evolution of maximum (hmax) and minimum (hmin) thickness is presented
in Figs. 4 and 5 for different Kμ and for a fixed value of other parameters when
the viscosity variation is exponential. Figure 4 shows that for fixed Kμ as the time t
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Fig. 5 Minimum amplitude (exponential variation of viscosity) of the wave for fixed values of
Kρ = 0.5, Kσ = 0.1, k = 0.045, Re = 10, We = 4000, ε = 0.1, and γ = π/3

increases, hmax and hmin do not saturate to the basic state and further drift away from
the basic state. Careful observation of Figs. 4 and 5 interprets that as Kμ increases,
the drift for both hmax and hmin occurs within a short period of time. The numerical
simulation points out the destabilizing behaviour of increment of Kμ as already
found in linear as well as weakly nonlinear studies.

Figures 6 and 7 show the time behaviour of the maximum hmax and minimum
thickness hmin for different Kμ and for a fixed value of other parameters when the
viscosity variation is linear. We can easily observe that for the linear variation of
viscosity, both hmax and hmin drift away from the basic state in a shorter time
as compared to the cases for exponential variation of viscosity (Figs. 4 and 5).
The numerical simulations confirm the results found based on linear and weakly
nonlinear stability analysis.

6 Conclusions

We investigate the stability and dynamics of a thin film down a uniformly heated
impermeable inclined plane. The fluid properties such as density, surface tension,
and thermal diffusivity vary linearly, whereas the dynamical viscosity varies
exponentially with the small variation of the temperature. The main purpose of
the present investigation is to compare the instability phenomena by accounting
the exponential (strong viscosity) and linear (weak viscosity) variation of viscosity.
Both analytical and numerical methods have been utilized to better understand how
the complicated interplay between heating and variable fluid properties affects the
stability of the flow. The normal mode approach of the linear study establishes that
the flow is more stable for exponential variation of viscosity rather than linear. The
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Fig. 6 Maximum amplitude (linear variation of viscosity [7]) of the wave for fixed values ofKρ =
0.5, Kσ = 0.1, k = 0.045, Re = 10, We = 4000, ε = 0.1, and γ = π/3
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Fig. 7 Minimum amplitude (linear variation of viscosity [7]) of the wave for fixed values of Kρ =
0.5, Kσ = 0.1, k = 0.045, Re = 10, We = 4000, ε = 0.1, and γ = π/3
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numerical simulation successfully captures the evolution of the free-surface flow
and confirms the results of the linear and weakly nonlinear studies.
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Nonlinear Hydrodynamic Damping of
Elastic Vibrations of Beams Near a Plane
Boundary

Artem Nuriev and Airat Kamalutdinov

1 Introduction

Studies of aero-hydrodynamic effects acting on elongated small beam structures
undergoing elastic vibrations have been actively developed in the last two decades
in connection with the emergence of a number of innovative technological solutions
based on piezoelectric bending actuators. Due to their energy efficiency and
mobility, piezoelectric actuators are being successfully introduced in the field of
robotics, as a part of propulsion systems of autonomous underwater and aircraft
vehicles, as cooling systems and energy harvesters in microelectronics, as pump
systems in microfluidic devices, etc.

Most of the modern studies of vibrations of long elastic beams in a fluid are
based on a simplified quasi-two-dimensional model of interaction (see, e.g. [1–8]).
In the case of vibrations in unbounded fluid the hydrodynamic forces in each cross-
section can be represented (as for the case of oscillations of a rigid cylindrical body)
as functions of two main parameters: the dimensionless vibration frequency β and
the dimensionless local oscillation amplitude of the cross-section KCloc

KCloc(z) = 2π
Uloc(z)

bω
= 2π

Aloc(z)

b
, β = b2ω

2πν
. (1)
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Here Uloc(z) = Aloc(z)ω and Aloc(z) are the velocity oscillation amplitude and the
oscillation amplitude of the cross-section z = const , respectively, b is the width
of the beam, ω is the angular frequency, and ν is the fluid viscosity. For the case
of vibrations of the beam near the solid boundary, it is also necessary to take into
account the gap distance s between the plane boundary and the beam. Usually as
the third governing dimensionless parameter of the flow problem the gap-to-width
ratio σ is chosen (see, e.g. [9, 10]):

σ = s/b. (2)

In fact, the limits of applicability of the quasi-two-dimensional hypothesis are
only partially investigated. Three-dimensional studies of vibrations of long beams
in unbounded fluid were carried out in [11, 12]. Their results show that in the range
of small vibration amplitudes KCloc(l) < 0.3 (where l is the length of the beam), a
quasi-two-dimensional flow can be observed around the beams with a relative length
L = l/b ≥ 3. In the range of moderate and large amplitudes 2 < KCloc(l) < 6, the
flow around the beam can be considered as quasi-two-dimensional for L ≥ 10.
For the case of vibrations of beams near a plane boundary, there are very few
detailed studies of three-dimensional flows (see, e.g. [13]). Almost all of them
consider vibrations of very short beams, the flows around which are essentially
three-dimensional.

In this chapter, we carry out a three-dimensional numerical simulation of the flow
around long beams vibrating near a plane boundary in order to study the structure
of hydrodynamic forces and the ability of a quasi-two-dimensional model to predict
them.

2 Problem Statement

Let us conduct a study of the hydrodynamic forces acting on infinitely thin long
cantilever beams with a length l and a width b (l � b) that perform flexural
vibrations in the first natural mode in an incompressible viscous fluid near a
plane boundary. Consider the case when the bending plane is parallel to the plane
boundary (the gap distance between the plane boundary and the beam is constant
and equal to s). Normalizing the time, spatial coordinates, velocity, and pressure on
bU−1

L , b, UL, U2
Lρ, respectively, where UL = Uloc(L) is the velocity of the free end

of the beam, we write the Navier–Stokes system of equations to describe the fluid
motion

∂U
∂t
+ U · ∇U = −∇p + 1

KCβ
∇2U, (3)

∇ · U = 0.
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Fig. 1 The configuration of
the computational domain

Here p is the dimensionless pressure, U = (ux, uy, uz) is the dimensionless
velocity, L = l/b is the dimensionless length of the beam, and KC = KCloc(L)

is the dimensionless amplitude of oscillation of the free end of the beam. The
dimensionless oscillation amplitude of the cross-section KCloc, the dimensionless
frequency β, and the gap-to-width ratio σ are determined by the formulas (1), (2).

Numerical modeling of fluid flow around the beam is carried out in a rectangular
parallelepiped with dimensions (lx, ly, lz). The configuration of the computational
domain is shown in Fig. 1.

To describe the motion of a beam in a fluid, we use the classical Euler–Bernoulli
theory, according to which at an arbitrary time the position of any point of the beam
in the dimensionless variables is defined by the following formula:

w(ξ, t) = KC

2π
W(ξ) sin

(
2π

KC
t

)
, ξ = z/L, 0 ≤ ξ ≤ 1, (4)

where W (W(1) = 1) is the oscillation profile that is determined as

W(ξ) = −1

2

(
cos(kξ)− cosh(kξ)+ sin k − sinh k

cos k + cosh k
(sin(kξ)− sinh(kξ))

)
,

(5)

cos k cosh k = −1. (6)

We consider the vibrations of the beam in the first natural mode, so we find k =
1.875 as the smallest positive root of the characteristic equation (6).

In the dimensionless formulation, the hydrodynamic forces acting on the surface
element S of the beam can be calculated as

F =
(∫

S

pnds −
∫

S

G · nds
)
,

where n is the unit normal vector to S and G is a viscous stress tensor.
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3 Numerical Model

The numerical solution of the resulting problem was carried out on the basis of the
OpenFOAM package. A description of the numerical scheme can be found in the
work [12].

4 Results

Consider the results of three-dimensional numerical simulations obtained for
infinitely thin beams with a relative length L = 20, focusing on the distribution of
the Fy force component along the beam (that is inline with velocity of vibrations),
in the following range of parameters: 1 ≤ KC ≤ 6, 200 ≤ β ≤ 430, σ ≥ 0.5.

We use the Morison expansion [14] for the analysis of the inline force Fy :

Fy(z) = CM
π2

2KC
W(z/L) sin

(
2π

KC
t

)
− CD

W(z/L)2

2

∣∣
∣cos

(
2π

KC
t

)∣∣
∣ cos

(
2π

KC
t

)
.

The first term in this expansion is proportional to the acceleration. It describes the
added mass force that affects the change of the frequency of vibrations (see, e.g.
[6]). The second term is proportional to the square of the velocity. It defines the
drag force that is responsible for the hydrodynamic damping of the beam vibrations.
The added mass coefficient CM and the drag coefficient CD are calculated on each
oscillation period T = KC using the integration:

CM = 4

π2W

∫ T+t0

t0

Fy sin

(
2π

KC
t

)
dt, CD = − 3π

2TW 2

∫ T+t0

t0

Fy cos

(
2π

KC
t

)
dt.

In Fig. 2, added mass and drag coefficients (CM , CD) are shown as functions
of KCloc for the case of a large distance from the screen (hereinafter referred to
as σ = ∞). In the considered parameter range, the value of the coefficient CM is
almost completely determined by KCloc as the quasi-two-dimensional model states.
The presence of three-dimensional effects can be seen only near the free end of the
beam for the high values of KC. In the middle part of the beam, the obtained values
of CM are in good agreement with numerical estimates of CM for the pure plane
flows [15] and with the experimental measurements of CM [16].

The drag coefficient CD depends not only on the local parameters of the
oscillation of the cross-section, but also on the global amplitude KC. When KC ≤ 1
(see the results for KC = 1, β = 200 in Fig. 2), one can see the best match between
the CD values obtained in two-dimensional and three-dimensional calculations. As
KC get larger, the drag coefficient values start to increase near the fixed end of the
beam (for small KCloc values). At the same time, in the middle part of the beam,
the hydrodynamics for all values of KC remains close to two-dimensional one. The
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Fig. 2 The dependence of CM and CD on KCloc for σ = ∞

values of the local drag coefficient CD in this part of the beam agree well with the
data for the plate. In the vicinity of the free end of the beam, the value of CD rapidly
decreases in all calculations.

As the beam approaches the plane boundary, the CD(KCloc) dependencies
change significantly. In Fig. 3 the results of two-dimensional and three-dimensional
calculations for the cases σ = 1, 0.5 are shown. As you can see, the role of
three-dimensional effects near solid boundaries is largely enhanced. The data of the
two-dimensional modeling predict an almost proportional increase of CD by 25% in
the range 0.2 < KC ≤ 2 for σ = 0.5. The results of the three-dimensional modeling
indicate a much more significant increase of CD in the region of small values of the
local amplitude (more than 50% at KCloc = 0.2 for σ = 0.5 compared to σ = ∞).
At the same time, in a fairly wide zone near the free end, the values of CD become
lower than the data obtained in two-dimensional modeling. This suggests that near
the plane boundary, the results of two-dimensional modeling can be used to obtain
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Fig. 3 The dependence of CD and CM on KCloc for different values of σ

only a first-order approximation for the hydrodynamic damping force acting on the
beam.

In contrast to the drag force, the added mass force in the considered range of
parameters slightly changes with decreasing distance to the plane boundary (see
Fig. 3). The dependences for CM obtained in the framework of two-dimensional and
three-dimensional models for σ = 0.5, 1 are in good agreement with similar depen-
dences for the added mass coefficient in an unbounded fluid. Three-dimensional
effects have a visible influence on CM only in the vicinity of the free end of the
beam.

5 Conclusions

In this chapter, a study of the hydrodynamic effects acting on long beams that
perform flexural vibrations in a viscous incompressible fluid was carried out. The
analysis of the dependences of the drag force and the added mass force on the
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vibration amplitude and distance from the boundary was made. According to the
results of the study, the following key results were obtained:

1. For the long beams, located far from the plane boundary, the values of CD
and CM in the middle part of the beam are close to the quasi-two-dimensional
estimates. The values of CM for long beams and plates on average differ by
no more than 6%. In the middle part of long beams, the values of the drag
coefficient differ from the values of CD for the plates by no more than 9%.

2. The values of the coefficient CD begin to change significantly as the gap-to-
width ratio decreases to σ ≤ 1. The results of three-dimensional modeling
indicate a significant increase of the values of CD , especially in the region of
small values of the local amplitude of oscillations KCloc. The enhancement
of the role of three-dimensional effects in the vicinity of the plane boundary
significantly reduces the accuracy of quasi-two-dimensional models for esti-
mating CD . In contrast to the drag force, the added mass force in the considered
range of parameters (σ ≥ 0.5) slightly changes with decreasing gap distance
to the plane boundary. The dependences for CM obtained in the framework
of two-dimensional and three-dimensional models for σ = 0.5, 1 are in good
agreement.

Acknowledgement The reported study was supported by RFBR, research project No. 19-38-
60023.
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Hydrodynamic Forces Acting on
Cylindrical Piles Subjected to
Wind-Forced Random Nonlinear Water
Waves

Marten Hollm, Leo Dostal, and Robert Seifried

1 Introduction

Extreme water waves pose a huge risk for ships, offshore structures, and all persons
present. In order to make these mechanical structures resistant against upcoming
waves, it is necessary to know which hydrodynamic forces are acting on them. For a
pile, these forces can be computed by the equation of Morison [1] if the underlying
sea state is known.

For the study of water waves in the presence of random wind, Dias et al. [2]
have shown that it is sufficient to consider the Euler equations of fluid dynamics
instead of the Navier–Stokes equations. But since these equations are costly to solve
numerically, Zakharov [3] has shown that weakly nonlinear solutions of the Euler
equations can be reduced to solutions of the nonlinear Schrödinger equation (NLS).
After Zakharov has presented his results without the presence of wind, Leblanc [4]
has extended this by a constant unidirectional wind forcing. In order to model the
wind conditions more realistically, Dostal et al. [5] have studied the behavior of such
solutions in the presence of random wind forcing. They have concluded that these
solutions can exist in deep water even in the presence of random wind.

A closer look at the sea surface reveals the irregularity of ocean waves. Therefore,
Fischer et al. [6] have considered the influence of an irregular sea on the solitary
solution of the NLS. A result of this analysis is that such a disturbance does not
destroy the solitary structure of the solutions. Although solitary waves can exist
in the environment of random wind and irregular waves, it is not clear how the
trajectories of water particles and the corresponding hydrodynamic forces acting on
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mechanical structures are changed by these processes. In order to calculate them,
the velocity potential corresponding to the water waves has to be calculated. Carter
et al. [7] have theoretically presented how the velocity potential corresponding to a
solution of the NLS can be computed for the case of regular waves without forcing.
In this chapter, the effects of random wind and irregular seas on water trajectories
and hydrodynamic forces acting on a cylindrical pile are studied using the results of
Carter et al. [7] and the equation of Morison [1].

This chapter is structured as follows: In Sect. 2, the NLS for nonlinear dissipative
waves in deep water excited by random wind is introduced, the modeling of random
wind is shortly described, and the solitary solution disturbed by random waves is
presented. Furthermore, it is summarized how water particle trajectories and the
hydrodynamic forces acting on a cylindrical pile can be calculated. Based on this,
Sect. 3 presents results for the solitary solution, which is either excited by random
wind or disturbed by irregular seas. Finally, this chapter ends with a conclusion in
Sect. 4.

2 Construction of the Velocity Potential

In order to compute the velocity potential and the hydrodynamic forces acting on
mechanical structures, it is necessary to review the derivation of the NLS. Thereby,
random wind is considered.

2.1 Approximation of the Euler Equations

Deep water waves under the action of wind and dissipation in a sea of constant
depth z = −h are considered. Thereby, the surface elevation at time t and space
x is given by z = η = η(x, t). Here, x denotes the horizontal and z the vertical
axis. Furthermore, it is assumed that the still water level is located at z = 0 and
that the waves do not break such that η(x, t) is uniquely defined everywhere. Under
the assumption of an irrotational velocity field with velocity potential φ = φ(x, z, t)

and a wind-induced pressure Pa(x, t) at the free surface, the Euler equations of fluid
dynamics become [2]

φxx + φzz = 0, for − h ≤ z ≤ η(x, t), (1)

ηt + φxηx − φz = 2νηxx, for z = η(x, t), (2)

φt + 1

2
(∇φ)2 + g η = −Pa

ρw
− 2νφzz, for z = η(x, t), (3)

φz = 0, for z = −h, . (4)
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Thereby, ∇ denotes the nabla operator in space, g the acceleration due to gravity, ρw
the constant density of water, and μ the water kinematic viscosity, which includes
all dissipative effects.

Since the boundary conditions are formulated at the unknown surface elevation
η(x, t), the computation of solutions takes a considerable computational effort. In
order to reduce this effort, the method of multiple scales is used, cf. [8]. Following
[9], the scalings

ξ := ε(x − cgt), τ := ε2t, cg := g

2ω
(tanh kh+ kh(1− tanh2 kh)) (5)

are introduced, whereby ε denotes the wave steepness, cg the group velocity, ω the
wave frequency, and k the wave number of the corresponding carrier wave. Then, η
and φ are expanded in series of the form

η(x, t) =
∞∑

n=1

εn
n∑

m=−n
ηn,m(ξ, τ )Em, φ(x, z, t) =

∞∑

n=1

εn
n∑

m=−n
φn,m(ξ, z, τ )Em,

(6)
where

η(n,−m) = η̄(n,m), φ(n,−m) = φ̄(n,m), E := exp (i(kx − ωt)) . (7)

Thereby, a bar denotes the complex conjugate.
In a similar way, the wind-induced pressure field Pa evaluated at z = 0 is

expanded. Assuming an order of O(ε3), Pa is expanded as

Pa(x, t) =
∞∑

n=1

εn−1
n∑

m=−n
pn,m(ξ, τ )Em. (8)

Next, the series (6) and (8) are substituted into the Euler equations (1–4). Consider-
ing all terms up to order O(ε3) and h→ ∞, i.e. deep water, the wind-forced NLS
can be derived from the Euler equations [5] as

iψτ − ω

8k2ψξξ −
1

2
ωk2|ψ |2ψ = −i

p1,1

2ρw
− 2iνk2ψ. (9)

Thereby, p1,1 denotes the first-order term of Eq. (8). The solutions of the NLS yield
the wave envelope, from which the corresponding wave elevation η can be computed
by

η(x, t) = εψ(ξ(x, t), τ (x, t)) exp(i(kx − ωt))+ c.c., (10)

where c.c. denotes the complex conjugate of the previous term.
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2.2 Modeling of Random Wind

In order to model the stochastic wind in a realistic way, we follow the procedure
of Dostal et al. [5], who have used the Miles mechanism [10, 11]. This has proven
to be a simple, but versatile model for wind-induced wave growth [12]. Following
Dostal et al. and using only the wind pressure component in phase with the wave
slope, p1,1 can be simplified for a logarithmic velocity profile in the boundary layer
to

p1,1(ξ, τ ) = −ω
2

2g
ρa β

(
u∗(ξ, τ )

κ

)2

ψ(ξ, τ ), (11)

whereby ρa is the density of air, β is a coefficient as explained below, u∗ is the
friction velocity, and κ is the Karman constant. Assuming a given wind velocity
U(ξ, z, τ ) at height z, the corresponding friction velocity u∗(ξ, τ ) can be iteratively
computed by

U(ξ, z, τ ) = u∗(ξ, τ )
κ

ln

(
z

z0

)
. (12)

Here, the roughness length z0 is given by z0 = αchu
2∗/g with the Charnock’s

constant αch ≈ 0.01875. Following Dostal et al. [5], a realistic stochastic time-
dependent wind U(z, τ ) can be computed by a CARMA(2,1)-process. Thereby,
typical wind velocity spectra in the surface boundary layer are approximated, which
were measured by Van der Hoven [13]. This approach allows wind fluctuations in
the range of seconds and minutes as well as wind gusts to be represented by this
process.

After computing u∗ as a stochastic process, p1,1 is a stochastic process as well.
Substituting Eq. (11) into the NLS (9) leads to

iψτ − ω

8k2 ψξξ −
1

2
ω k2 |ψ |2ψ = i ζ ψ, (13)

whereby

ζ(ξ, τ ) = kω

2g

ρa

ρw
β

(
u∗(ξ, τ )

κ

)2

− 2 ν k2 (14)

is the difference between stochastic wind excitation and constant dissipative effects.
Thereby, the only unknown parameter is β. Conte and Miles [14] have computed
β as a function of κc/u∗, where c is the phase velocity of the wave. In all further
calculations, the dimensionless roughness length κ2gz0/u∗ = 0.003 is chosen.
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2.3 Choice of the Initial Condition

In order to compute numerical solutions of the forced NLS (13), an initial condition
has to be chosen. Thereby, the stationary soliton solution of the unperturbed NLS,
which is given by Eq. (13) with ζ = 0, is considered. This solution has an amplitude
constant in time and is given for an arbitrary constant a0 by

ψ = a0 sech(
√

2 a0k
2 x) exp

(
−i

1

4
|a0 k|2 ω t

)
. (15)

In order to model the sea surface more realistically, an irregular sea surface is
added to the initial condition. Thereby, random long-crested sea waves are modeled
by the superposition of harmonic waves with wave frequencies ω and wave numbers
k(ω). The corresponding wave amplitudes A depend on the underlying sea state
given by the corresponding one-sided spectral density S(ω). According to [6], the
irregular sea elevation Z(x, t) can then be calculated by

Z(x, t) =
∫ ∞

0
cos (ωt − k(ω)x + ε(ω))

√
2S(ω)dω, (16)

whereby the integral is not a Riemann integral but a summation rule over the
frequencies ω. With that, a disturbed initial condition based on the analytical
solution ψ(ξ, τ ) is given by Fischer et al. [6]

ψ̃0(ξ) =
(

1+ Z(ξ, 0)

|ψ(ξ, 0)|
)
ψ(ξ, 0). (17)

Figure 1 illustrates the effect of a random sea state onto a soliton solution of wave
frequency ω = 1 rad/s using Eq. (17).

Fig. 1 (a) General random sea state using a Pierson–Moskowitz spectrum [15] with significant
wave height Hs = 0.6 m and modal frequency ωm = 0.25 rad/s. (b) Soliton solution with wave
frequency ω = 1 rad/s at time t = 0 s with and without the irregular disturbance illustrated in (a)



100 M. Hollm et al.

2.4 Hydrodynamic Forces Acting on a Cylindrical Pile

After solving the wind-forced NLS using the relaxation pseudo-spectral scheme,
which is presented in [5], the corresponding wave surface can be computed
by Eq. (10). Moreover, it is possible to compute the wave kinematics, particle
trajectories, and hydrodynamic forces acting on submerged mechanical structures.
In order to do this, the velocities and accelerations of the water particles can be
determined by differentiation of the corresponding velocity potential. Using the
method of multiple scales, Carter et al. [7] have shown that the velocity potential
can be reconstructed in a similar way as the free surface profile and have given
the corresponding results for the NLS equation. Please note that compared to our
case the complex conjugate of the NLS (13) is used by Carter et al. [7]. In order to
compute the potential of the NLS (13) itself, the approach of Carter et al. has to be
adjusted, whereby the complex conjugated equations (24a-27g) from [7] have to be
used. The resulting velocity potential is given by

φ(x, z, t) =
{
− iεω

k
ψ̂+ ε2ω

2k2
ψ̂X+ε3

(
ikω

2
|ψ̂ |2ψ̂ + 3iω

8k3
ψ̂XX

)}
E+O(ε4)+c.c.,

(18)
whereby ψ̂ = ψ(X− iZ, T ), X = εx, Z = εz, T = ε2t , E = exp(kz+ i(kx−ωt))
and c.c. denotes the complex conjugate. Since ψ is unknown at location X − iZ, ψ̂
is also unknown and has to be determined by solving

ψ̂Z = −iψ̂X, (19)

ψ̂ = ψ at Z = 0. (20)

After computing the velocity potential φ, the velocity u in x−direction, v in
z−direction, and acceleration a in x−direction can be computed by

u(x, z, t) = ∂φ

∂x
(x, z, t), v(x, z, t) = ∂φ

∂z
(x, z, t), a(u, z, t) = ∂u

∂t
(x, z, t).

(21)
With that, the trajectory (x(t), z(t)) of a water particle is described by

dx

dt
= u(x(t), z(t), t),

dz

dt
= v(x(t), z(t), t). (22)

In order to compute the horizontal hydrodynamic force dFx acting on a part dz of a
vertical pile with diameter D, the equation of Morison [1] is used:

dFx = Cmρw
πD2

4
dza + Cd

ρw

2
Ddz|u|u. (23)

An integration of dFx over the wetted part of the cylinder leads to the resulting
hydrodynamic force. Thereby, Cm is the inertia and Cd is the drag coefficient. In
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all the following simulations, a cylindrical pile with diameter D = 6 m in a water
depth of H = 30 m is used. Following the suggestion of Sarpkaya [16], the inertia
and drag coefficient in Eq. (23) are chosen asCm = 1.8 andCd = 0.64, respectively.

3 Numerical Results

In this section, the effects of random wind and a disturbed initial sea surface
on a solitary solution are considered. For these cases, the corresponding particle
trajectories and Morison forces are compared.

3.1 The Influence of Random Wind

First of all, the soliton solution excited by random wind is considered. The pile is
placed in such a way that it is reached by the solitary wave after a long simulation
time. Figure 2 shows the soliton solution with and without the presence of a random
wind excitation with a mean velocity Vm = 50 km/h at a constant height z = 50 m.
As was also presented by Dostal et al. [5], the zero water level gets disturbed and
the envelope amplitude is slightly growing in time. But although the solution gets
steeper and higher, the solitary structure of the soliton is not destroyed by random
wind fluctuations.

The influence of the random wind on the particle trajectories is shown in Fig. 3.
Thereby, particles starting at x = 0 m and at heights from z = 0 m to z = −10 m
are considered with and without a stochastic wind excitation. Similar results for
the case without wind excitation are shown by Carter et al. [7], who have used
an analytical formulation. It is shown that the wind have a huge influence on the
system. Higher waves lead to a higher displacement in vertical direction, and the

Fig. 2 Temporal evolution of a solitary solution without (a) and with (b) the presence of random
wind
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Fig. 3 The paths of six particles at different heights in the time interval t ∈ [0 s, 2200 s] during
the propagation of a solitary wave without (a) and with (b) the presence of random wind

horizontal Lagrangian drift, i.e. the difference between the end and start positions
of the different particles in horizontal direction, grows up. Due to this larger drift, a
growing Morison force is expected.

In order to show the effect of the wind at the pile, the Morison force (23) is
integrated from the wave surface η(x, t) to the ground, which is assumed at depth
z = −30 m. The sea surface and the corresponding Morison force Fx at x = 0 m
with and without the presence of wind are presented in Fig. 4a, b. It is shown that
the forces are acting in a shorter period of time, but with an amplitude multiplied by
the factor about three. In order to show the effect of the wind in more detail, Fig. 4c
presents the sea surface and forces for a short time period. It is shown that the water
waves and the corresponding forces are time shifted. This results from the fact that
the force depends on the acceleration and velocity of the water particles. In addition
to this, it can again be seen that a stochastic wind process leads to different wave
heights and forces.

3.2 The Influence of an Irregular Sea Surface

Next, a solitary solution disturbed by a random sea surface is considered. Thereby,
the disturbance and initial condition shown in Fig. 1 are used. The corresponding
temporal development of the disturbed soliton is shown in Fig. 5. Although the
constant wave envelope, which is characteristic for the soliton, is replaced by an
oscillating behavior, the structure of the solitary solution is preserved.

Figure 6 shows that the disturbance has a huge impact at the trajectory of a
particle starting at (0, 0). Although the end position of the water particle is in both
cases nearly the same, the temporal evolution of the trajectory is different. In order
to show the effect on the hydrodynamic forces acting on a cylindrical pile, Fig. 7
illustrates the wave heights and forces for the regular as well as for the irregular sea
state. It can be seen that the maximal height of the waves and forces stays in the
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Fig. 4 (a) Sea surface at x = 0 m and (b) the corresponding Morison force acting on a cylindrical
pile. A closer look at the sea surface with (dash) and without a stochastic wind (solid) is presented
in (c)

Fig. 5 Temporal evolution of a solitary solution in an irregular sea state

same order of magnitude, but the temporal evolution is different as well. Therefore,
an irregular sea state has less effect on the maximal force amplitude, but it has an
effect on the temporal behavior.

4 Conclusions

A novel approach to examine the hydrodynamic forces acting on a cylindrical pile
is developed, which is based on the paths of fluid particles underneath of solutions
to the NLS. The foundation is the theory of Carter et al. [7]. Looking at the solitary
wave solutions of the NLS, the influence of a stochastic wind excitation and of
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Fig. 6 The paths of a water particle starting at position (0, 0) in the time interval t ∈ [0 s, 2200 s]
during the propagation of a solitary wave without (a) and with (b) an initial disturbance

Fig. 7 Sea surface and corresponding force on pile at x = 0 m without (a) and with (b) an irregular
disturbance of the sea

an irregular sea state on the water particles and hydrodynamic forces is studied.
It is shown that a random wind increases the wave heights in such a way that
the water particles are moving over a larger horizontal distance. This leads to a
higher maximal force acting on the pile. On the other hand, a disturbance due to
an irregular sea disturbs the temporal behavior of the excitation force and particle
paths. Thereby, an increase of the maximal force could not be observed. Therefore,
it can be concluded that these two processes have a considerable influence on the
water waves and their resulting forces acting on mechanical structures.
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A 3D Nonlinear Reduced-Order Model of
a Cantilevered Aspirating Pipe Under
VIV

Renato Maia Matarazzo Orsino, Celso Pupo Pesce, Fernando Geremias Toni,
Wagner Antonio Defensor Filho, and Guilherme Rosa Franzini

1 Introduction

The dynamics of cantilevered aspirating pipes has been the focus of thorough
investigations along the last 60 years, as testimonies to the treatise by Païdoussis
[1]. Many have been the efforts to deal with instability issues, either through
theoretical or experimental approaches. In fact, after [2] and [3], it has been shown
that a weak instability may arise at very low internal flow speeds, due to three-
dimensional effects at the aspirating pipe entrance [4]. Such a phenomenon has also
been analyzed and discussed from the experimental and numerical points of view
by Kuiper and Metrikine [5, 6].

On the other hand, vortex-induced vibration (VIV) of flexible vertical can-
tilevered rods has been intensively studied for the last three decades; see earlier
works by, e.g., [7] and [8]. Recently, applications in offshore engineering, as sea
water intake risers [9], raised the practical importance of assessing the dynamics of
long cantilevered pipes under concomitant actions of internal and external flow.

This chapter aims at presenting a 3D ROM for an archetypical problem. A
previous work by Orsino et al. [10] presented a 3D ROM of a cantilevered flexible
cylinder conveying fluid under VIV. Nevertheless, that paper was restricted to the
“discharging pipe case.” In this chapter, the same rationale is followed in order to
address “aspirating pipes.” The generalized extended Hamilton principle for non-
material volumes is applied [11], under the usual plug flow hypotheses. The effect
of the aspirating flow at the entrance considers a modified version of [4] model.
Non-conservative generalized forces due to vortex shedding are simply considered
with a wake-oscillator model scheme, inspired by the work of [12].
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Fig. 1 Schematic representation of a submerged cantilevered flexible pipe aspirating fluid (left)
and detail of a cross-section of this pipe (right)

The reduced-order model is set by using the Modular Modeling Methodology
(MMM), introduced by Orsino [13, 14], for lumped systems and extended further
to distributed ones [15, 16]. The 3D ROM is herein constructed for a long Euler–
Bernoulli linear elastic beam, allowed to undergo large displacements. The whole
formulation is given in dimensionless variables. An eigenvalue (root loci) analysis
at the trivial equilibrium position is carried out to guide choosing the simulation
scenarios. Numerical simulations illustrate the model response and the effects on
VIV, around the onset of instability at low internal velocities, by varying an integral
parameter related to the flow profile at the aspirating inlet.

2 Modeling

Consider a slender cylindrical flexible pipe, mounted vertically as a cantilever and
immersed in an infinite and open homogeneous fluid medium (Fig. 1). Assume that,
far from the pipe, the external flow is steady and horizontal. The pipe, in turn,
aspirates fluid at a constant rate. For further simplification of the analysis, the pipe is
considered homogeneous and inextensible, behaving like an Euler–Bernoulli linear
elastic beam. Small strains are implied, though large displacements are allowed to
occur. Moreover, the internal flow along the pipe, apart from the inlet sector (whose
length is negligible when compared to the total length), is modeled as a plug flow.

In order to express the model in non-dimensional form, denoted by l the total
length of the pipe, by EI its bending stiffness, and by md the total mass of fluid
displaced in the external medium in the presence of the pipe. Adopt md, l and√
mdl3/EI as the respective scales for mass, length, and time.
Denote by ξ the non-dimensional arc-length coordinate measured along the

center line of the pipe from the fixed top end (outlet section) at ξ = 0 to the free end
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(inlet section) at ξ = 1. The center O of the outlet section is adopted as the origin
of a coordinate system N = (O, n̂1, n̂2, n̂3) fixed to an inertial reference frame. The
unit vector n̂3 is vertical and points downward. Denote by Cξ the center of the cross-
section located at ξ , and let �r be the non-dimensional position vector from O to Cξ .
Partial derivatives of �r with respect to the non-dimensional arc-length coordinate ξ
and to the non-dimensional time τ are indicated by �r′ and �̇r, respectively. Notice
that due to the inextensibility hypothesis, �r′ must always be a unit vector tangent to
the center line.

Also, let u�uξ be the non-dimensional free-stream velocity at the depth of Cξ , with
u > 0 being a constant parameter chosen as a representative of the non-dimensional
magnitude of the external flow, and �uξ being a horizontal vector that may vary with
depth that represents the shape of this free-stream profile. Thus, define a cross-
section-fixed coordinate system Sξ = (Cξ , d̂ξ , l̂ξ , t̂ξ ), with the unit vector t̂ξ =
�r′ being the local tangent to the center line (i.e., orthogonal to the corresponding
cross-section) and l̂ξ being orthogonal to �uξ . The acceleration of Cξ can be either
represented in terms of its components r̈k (k = 1, 2, 3) in N or by its components
ẍk (k = 1, 2, 3) in Sk , the same being valid for the decomposition of the virtual
displacements δ�r:

�̈r = r̈1n̂1 + r̈2n̂2 + r̈3n̂3 = ẍ1d̂ξ + ẍ2 l̂ξ + ẍ3 t̂ξ (1)

δ�r = δr1n̂1 + δr2n̂2 + δr3n̂3 = δx1d̂ξ + δx2 l̂ξ + δx3 t̂ξ . (2)

Let μp and μi be the linear mass densities of the pipe itself and of the fluid
inside the pipe, respectively. Since the plug flow hypothesis is considered, the
non-dimensional relative velocity of the flow internal to the pipe with respect to
the center line can be expressed as −v �r′, v being a constant parameter. Also, let
γ = gl2md/EI be the non-dimensional acceleration of gravity. Since the effects
of gravity (weight and buoyancy) and flexural rigidity of the pipe can be included
in potential energy parcels, the Lagrangian of the system can be computed by the
following expression:

L = 1

2

∫ 1

0

[
μp
∣∣�̇r∣∣2 + μi

∣∣�̇r− v �r′∣∣2 + 2γ (μp + μi − 1)�r · n̂3 − �r′′ · �r′′
]
dξ.

(3)

Structural damping effects, added mass, lift and drag effects due to the pipe
interaction with external flow and inertial effects due to the flux of momentum in
the inlet section of the pipe are included as the following virtual work parcels:

δW =−
∫ 1

0
β�̇r · δ�r dξ −

∫ 1

0
�̈r · (μa,1d̂ξ d̂ξ + μa,2 l̂ξ l̂ξ + μa,3 t̂ξ t̂ξ ) · δ�r dξ

+
∫ 1

0

2u2

πde
(ċ1d̂ξ + ċ2 l̂ξ ) · δ�r dξ +

[
μiv(�̇r− χv�r′) · δ�r

]

ξ=1
. (4)
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In these expressions, β is a non-dimensional constant of proportional damping,
de is the non-dimensional external diameter of the pipe, and χ is an empirical
parameter related to the geometry of the internal flow velocity profile close to the
inlet section. The definition of χ is discussed later in Sect. 2.2. Also, considering
the axisymmetry of the pipe, the linear added mass density dyadic is expressed
simply as (μa,1d̂ξ d̂ξ + μa,2 l̂ξ l̂ξ + μa,3 t̂ξ t̂ξ ). Moreover, ċk (k = 1, 2) represent
the generalized hydrodynamic force coefficients expressed in the cross-section-fixed
coordinate system Sξ .

Denoting by Rξ the rotation matrix between the coordinate systems Sξ and
N, the following identities must be satisfied so that the formulation presented in
Eqs. (3) and (4) leads to equations of motion that are compatible with the modeling
assumptions and motion constraints of the system:

�r′ = t̂ξ , l̂ξ · �uξ = 0 and (r̈1, r̈2, r̈3)
T = Rξ (ẍ1, ẍ2, ẍ3)

T. (5)

The hydrodynamic force coefficients, on the other hand, can be computed according
to a usual phenomenological model defined by the following equations (see also
Fig. 1):

(u+ ẇξ )
2 = (

(u�uξ − �̇r) · d̂ξ
)2 + (�̇r · l̂ξ

)2 (6)

ċ1 = u+ ẇξ

u2

[
C̄0
D(u�uξ − �̇r) · d̂ξ +

qξ

q̂
Ĉ0
L�̇r · l̂ξ

]
(7)

ċ2 = u+ ẇξ

u2

[
qξ

q̂
Ĉ0
L(u�uξ − �̇r) · d̂ξ − C̄0

D�̇r · l̂ξ
]
. (8)

Following the conventions adopted in the phenomenological model proposed by
[12] for a rigid cylinder under single-dof VIV, C̄0

D corresponds to the mean drag
coefficient, Ĉ0

L to the amplitude of the lift coefficient of a stationary rigid cylinder
and q̂ = 2. The wake variables qξ , in turn, are defined locally, at each cross-
section of the pipe, according to the following forced van der Pol oscillator, whose
parameters are herein identical to the ones adopted in [12], despite the fact that we
treat a flexible pipe:

q̈ξ + εωs(q
2
ξ − 1)q̇ξ + ωs

2qξ = A

de
�̈r · l̂ξ . (9)

Particularly, the non-dimensional vortex shedding frequency is computed by the
expression ωs = 2πuSt/de. The values of ε and A, on the other hand, are adjusted
according to the VIV response regime, which is identified by the value of the
reduced velocity U∗m = 2πu/(ωmde). In this expression, ωm stands for the m-th
mode natural frequency of the pipe, considering free oscillations in water around
the static equilibrium configuration of the pipe when u = 0.
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It should be noticed that just one wake oscillator has been adopted at each section,
in the cross-wise instantaneous direction of the relative external flow. Differently, in
the 3D ROM model by Orsino et al. [10], two wake oscillators were adopted, one
cross-wise and the other in-line with the relative external flow, inspired by the model
adopted in [17], for a 2-dof rigid cylinder under VIV. In those cases, the in-line
oscillator is set in dual resonance with the cross-wise one.

Moreover, as shown experimentally [7], for low values of specific mass, here
computed as (μp + μi), flexible pipes, as well as rigid rods with 2-dof, present
cross-wise VIV amplitude curves, as a function of reduced velocities, with initial,
upper, and super-upper response branches [18, 19]. The lock-in peak appears at
larger reduced velocities when compared to the single-dof rigid cylinder case. This
means that further work is surely needed on adjusting the present modeling scheme
for flexible pipes.

Proceeding, in order to derive a reduced-order model for this system, the follow-
ing discretization scheme can be introduced in the formulation presented in Eqs. (3)
and (4): rk = ξδk3 + r̃T

k (ξ)rk(τ ), xk = x̃T
k (ξ)xk(τ ) and ck = C̄0

Dδk1 + c̃T
k (ξ)ck(τ ),

with δkl representing the Kronecker delta. In such case, rk(τ ) is a n-vector of
generalized coordinates, while xk(τ ) and ck(τ ) are n-vectors of quasi-coordinates.
On the other hand, r̃k(ξ), x̃k(ξ), and c̃k(ξ) are the n-vectors of projection functions
that identically satisfy the boundary conditions of the problem.

From now on, consider that �uξ = n̂1, i.e., the free-stream profile of the external
flow is uni-directional along the length of the pipe, and assume that r̃k(ξ) = x̃k(ξ) =
c̃k(ξ) = h̃(ξ) with h̃(ξ) representing the n-vector of normalized mode shapes1 of a
cantilevered Euler–Bernoulli beam.

2.1 Relaxed Model and Constraint Enforcement Strategy

Defining Gij =
∫ 1

0 h̃(i)(ξ) ⊗ h̃(j)(ξ) dξ , gi =
∫ 1

0 h̃(i)(ξ) dξ and Eij = h̃(1)(1) ⊗
h̃(j)(1), the equations of motion that follows from the formulation presented in
Eqs. (3) and (4) when the constraints in Eqs. (5)–(8) are neglected, which correspond
to the “relaxed model” in the scope of the Modular Modeling Methodology (MMM),
can be expressed as r̄k = 0 and x̄k = 0 (k = 1, 2, 3), with:

r̄k = (μp + μi)G00r̈k + [μiv(G10 −G01 − E00)+ βG00] ṙk

+
[
G22 − μiv

2(G11 − χE01)
]

rk − δk3

[
γ (μp + μi − 1)− (χ − 1)μiv

2
]

g0

(10)

x̄k = μa,kG00ẍk − 2u2

πde

(
G00ck + δk1C̄

0
Dg0

)
. (11)

1 Therefore, in this case, G00 is a n× n identity matrix.
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In order to obtain a consistent reduced-order model from this formulation using
the MMM, it is necessary to enforce the constraints described by Eqs. (5)–(8).
However, since each variable among the rk , xk , and ck is expressed in the ROM as a
function of n generalized coordinates, it is only possible to ensure the enforcement
of these constraint equations at n cross-sections along the pipe, for instance, at
ξ = 1/n, 2/n, . . . , 1. Thus, the generalized coordinates vector q adopted in this
model must be composed by the n-vectors rk(τ ), xk(τ ), and ck(τ ) (k = 1, 2, 3) as
well as by the variables adopted for parameterizing Rξ (Rodrigues parameters, in
the present case), wξ , and qξ (ξ = 1/n, 2/n, . . . , 1).

Therefore, writing down the “relaxed model” in the matrix form M(τ,q)q̈ =
f(τ,q, q̇) and the constraint equations in the form A(τ,q, q̇)q̈ = b(τ,q, q̇), and
considering a matrix S defining a linear operator onto ker(A), the reduced-order
model of this system can be expressed in the form [14]:

[
STM

A

]
q̈ =

[
STf
b

]
. (12)

2.2 On the Modeling of the Aspiration of Fluid

Denote by �p the position vector of a fluid particle inside the pipe. Assume that, at
each cross-section (0 ≤ ξ ≤ 1), (�̇p − �̇r)|ξ = �vξ (τ,q) is a function of time and of
the configuration of the system only. Indeed, such an assumption is an extension of
the plug flow hypothesis already considered for 0 ≤ ξ < 1 − δ (δ � 1), in which
(�̇p− �̇r)|ξ = −vt̂ξ .

According to the generalized Hamilton’s principle for non-material volumes
[11], the virtual work associated with the flux of mass through the inlet (S1) and
outlet (S0) sections of the pipe, due to the aspiration of fluid, can be expressed as
the sum of the following terms:

δWm =
∫∫

S1

1

2
ρ(�̇p · �̇p)(δ�p− δ�r) · t̂1 dS−

∫∫

S1

ρ(�̇p · δ�p)(�̇p− �̇r) · t̂1 dS. (13)

Indeed, since the outlet section of the pipe is clamped (i.e., δ�p = δ�r = �0), only
the influx of mass, at the inlet section, gives a non-zero contribution to this virtual
work. The first integral in Eq. (13) is also zero since (d�p − d�r)|ξ=1 = �v1dτ ⇒
(δ�p− δ�r)|ξ=1 = �0. Thus,

δWm = −
[∫∫

S1

ρ(�v1 · t̂1)(�̇r+ �v1) dS
]
· δ�r. (14)

Due to continuity, since the plug flow hypothesis is assumed for 0 ≤ ξ < 1 − δ

(δ � 1),
∫∫

S1
ρ(�v1 · t̂1) dS = −μiv. Finally, imposing an extra hypothesis that
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the internal flow has an axisymmetric profile at each cross-section of the pipe (see
Fig. 2), it can be stated that Eq. (14) is equivalent to the last term in Eq. (4) provided
that the non-dimensional parameter χ is defined as follows:

χ = 1

μiv2

∣∣∣∣

∫∫

S1

ρ(�v1 · t̂1)
2 dS

∣∣∣∣ . (15)

A CFD analysis was performed in STAR-CCM [20], in which a stationary
hollow cylindrical pipe aspirates incompressible fluid from the external medium at
a constant rate. According to the velocity profile obtained from this simulation, the
values of χ were computed not only at the inlet section itself, but also at some other
cross-sections within the inlet sector, as presented in Fig. 2. It is noticeable that close
to the inlet section the value of χ goes up to 1.35. Thus, in the analyses presented
in the following sections, two values of χ are adopted: 1, which corresponds to a
localized plug flow approximation, and 1.35.

3 Stability Analysis

In this section, the stability of the trivial equilibrium configuration, in which the
pipe remains vertical in the absence of free stream in the external medium (u = 0),
is analyzed. Root-loci diagrams obtained from the linearized reduced-order model
reveal how the eigenvalues of the system vary with the internal flow velocity v.

Particularly, adopting the values presented in Table 1 for the non-dimensional
parameters of the model and setting the number of projection functions adopted
in the derivation of the ROM to be n = 5, the corresponding root-loci diagrams
for χ = 1 and χ = 1.35 are the ones presented in Fig. 2. In these diagrams, the
absolute value of the imaginary parts of the eigenvalues λ, which correspond to the
oscillation frequencies of each of the n = 5 modes of the model, is displayed in the
vertical axis. The associated real parts of these eigenvalues, in turn, are represented
by a temperature map color scale, in which the cold colors correspond to stability
(Re(λ) < 0), while the hot ones indicate an unstable response of the system at that
internal flow velocity.

Table 1 Values adopted for non-dimensional parameters of the model in the numerical analyses

Pipe Wake-oscillator model [12]

Par. Value Par. Value Par. Value Par. Value

de 0.02 μi 0.48 C̄0
D 1.1856 A(U∗2 < 6.5) 4

β 1.0 μa,1 1.0 Ĉ0
L 0.3842 A(U∗2 > 6.5) 12

γ 1.0 μa,2 1.0 q̂ 2 ε(U∗2 < 6.5) 0.05

μp 1.92 μa,3 0.01 St 0.1932 ε(U∗2 > 6.5) 0.7
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(1− ξ)/de χ
0.0 1.06
0.3 1.35
0.6 1.32
2.9 1.05
5.9 1.00

Fig. 2 Left: schematic representation of an axisymmetric velocity profile close to the inlet section
of the pipe and estimation of χ along the inlet sector of a stationary hollow cylindrical pipe
according to the CFD analysis developed by Rosetti [20]. Right: root loci (| Im(λ)| vs. v, with
Re(λ) represented by the color scale) of the linearized model of the cantilevered pipe aspirating
fluid for two different values of χ

It is remarkable that the vertical equilibrium configuration of the system is stable
only for low values of v. The pipe does not exhibit an unstable response at very
low velocities for any rate of aspiration due to the presence of structural damping.
Indeed, the critical value v ≈ 0.52 above which instability arises is predominantly
a function of β, being almost insensitive to the factor χ that, as observed, does not
affect significantly the root-loci diagrams either.

Notice also that the second mode becomes stable again at high velocities (v ≈
7.4, χ = 1; v ≈ 7.5, χ = 1.35). Around the new transition of the second mode to
stability, the imaginary part of the first eigenvalue attains a maximum, followed by
a steeped decreasing trend, down to a bifurcation point at zero.

4 VIV Response Analysis

Still considering the reduced-order model with n = 5 and the parameters shown
in Table 1, the response of the system under VIV can be assessed by performing
numerical simulations. First, the following velocities of internal flow are chosen:
(i) v = 0, which corresponds to the absence of internal flow in which case the
single fluid–structure interaction phenomenon would be vortex-induced vibrations;
(ii) v = 0.50, slightly below the critical value of v, corresponding to a stable vertical
equilibrium configuration; and (iii) v = 0.54, slightly above the aforementioned
critical value. Particularly for v = 0.54 the dynamic response is investigated by
considering both χ = 1 and χ = 1.35, which leads to the four scenarios of internal
flow illustrated in Fig. 3.
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Fig. 3 In-line and cross-wise amplitudes of the oscillations of the center of the inlet section of the
pipe as a function of U∗2 for all the analyzed scenarios

For each scenario, 18 numerical simulations were performed, varying the
external flow free-stream speeds over a range in which the respective second mode
of vibration (check the values of ω2 in Fig. 2) is fully excitable (3.5 ≤ U∗2 ≤ 11.5).

Denote by x and y the oscillating parts of the steady-state responses of the
coordinates r1(τ, ξ) and r2(τ, ξ), normalized per unit of external diameter of the
pipe. Figure 3 exhibits the amplitudes of x and y that are referred, respectively, as
in-line (Ax) and cross-wise (Ay) amplitudes, as a function of U∗2 for each of the
four scenarios of internal flow considered. It is noticeable that when compared to
the scenario v = 0 the cross-wise amplitudes increase in the presence of internal
flow both in the upper and lower branches. Comparing the scenarios defined close
to the critical value v ≈ 0.52, however, it can be stated that Ay responses are
almost insensitive to the internal flow velocity v and to the factor χ , even though
some sensitivity to these parameters is observed in the Ax responses. It should
be observed that the in-line amplitudes seem to be underestimated by the model,
particularly when the v = 0 scenario is compared with 2-dof VIV experiments
found in the literature, e.g., [18]. Another remarkable characteristic of the responses
observed in Fig. 3 is the increase of Ay for U∗2 ≥ 10.5. Since ω3/ω2 ≈ 2.8, this
interval corresponds to U∗3 > 3.7, which indicates that the observed phenomenon
corresponds to an excitation of third mode responses.

Figure 4, in turn, focuses on detailing the dynamic response in the scenario v =
0.54 and χ = 1.35 in the 2nd mode lock-in peak simulation U∗2 = 1/St = 5.18,
exhibiting the steady-state y vs. x trajectories and the associate cross-wise vs. in-line
force coefficients plots (i.e., ċ2 vs. ċ1) for 5 selected cross-sections along the pipe.
In this simulation, it is noticeable the dual resonance between the in-line and cross-
wise responses, both in the shape of the trajectories and in the relation between
the force coefficients, which is induced mathematically by the phenomenological
model adopted, Eqs. (6)–(9). The synchronicity indicates the resonant response of
the second mode of the system, as expected.
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Fig. 4 Steady-state trajectories of centers and ċ2 vs. ċ1 plots for 5 cross-sections along the pipe
for a 2nd mode lock-in peak simulation scenario with v = 0.54 and χ = 1.35

5 Conclusions

This chapter introduced a 3D nonlinear reduced-order model for a pipe aspirating
fluid under the concomitant effect of vortex-induced vibrations by following the
Modular Modeling Methodology approach [13, 14]. By the use of the extended
Hamilton principle for non-material volumes [11], a model for the aspiration
procedure was proposed. Interactions of the pipe with the external flow were
modeled according to a phenomenological model available in the literature for
the VIV response of a rigid cylinder. After a stability analysis of the system and
a study of VIV responses in properly selected scenarios, it can be preliminarily
stated that for internal flow velocities below a critical value and even slightly
above, the dynamics of this system is dominated by the interaction with the external
flow, being much less sensible to the parameters associated to the fluid aspiration.
Certainly, further studies on this problem should concentrate first on adjusting the
phenomenological VIV model scheme to flexible cylinders. Experimental results
must then be used, both (i) under pure VIV, with 2-dof rigid cylinders, as those
by Jauvtis and Williamson [18], Franzini et al. [21] and with cantilevered flexible
cylinders, as those by Pesce and Fujarra [7] and (ii) from new specific experiments
with aspirating pipes under VIV.
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3D Reduced-Order Model for an
Orthotropic Stiffened Piezoelectric
Cantilevered Flexible Cylinder Under
VIV

Leticia S. Madi, Guilherme J. Vernizzi, Celso P. Pesce,
Wagner A. Defensor Fo., and Guilherme R. Franzini

1 Introduction

Vortex-induced vibration (VIV) is a nonlinear resonant fluid–structure interaction
phenomenon due to the synchronization of vortex shedding frequency with one
of the natural frequencies of the structure. In engineering projects, VIV is usually
studied as a problem to be mitigated, as it is a factor of great impact in fatigue
analysis. Nevertheless, this phenomenon may be approached from a different
perspective, within the context of energy harvesting. In this case, the objective is a
controlled amplification of the response, to be used for obtaining electric energy. As
an example, [1] present the concept of VIVACE (Vortex-Induced Vibration Aquatic
Clean Energy), a device based on a series of cylinders in tandem arrangement that
uses electromagnetic transducers to convert structural kinetic energy into electricity.

Many of the classical studies of VIV phenomena concern rigid cylinders mounted
on an elastic base. However, from the low-power-energy-harvesting perspective,
the phenomenon on flexible cylinders with orthotropic bending stiffness may be
considered an interesting endeavor, since VIV leads to self-excited and self-limited
oscillations and, in this particular case, higher amplitudes are maintained for a broad
band of frequencies. First observed in [2] and later confirmed in [3], experiments
with flexible cylinders with larger stiffness in the in-line direction compared to
the cross-flow ones showed a new branch of response, called by the authors high-
speed mode. This new branch observed is stable and extends, with high-frequency
response, to large incoming flow velocities. The in-line and cross-wise amplitudes
obtained in this study for the first two bending vibration modes of a cantilever of
frequency ratio 4:1 are shown in Fig. 1, represented by their dominant intrinsic
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Fig. 1 Modal VIV response branches for orthotropic stiffened flexible cantilevered cylinder:
experimental set-up, in-line and cross-wise modal amplitudes as functions of reduced velocity
(adapted from [3])

mode function (IMF); see [4] for the definition of an IMF within the empirical
mode decomposition and [5] for their application in VIV analysis. This phenomenon
has been thought to be primarily caused by twisting–bending coupling, triggered
by VIV.

Concerning energy conversion, piezoelectric energy harvesting is a useful solu-
tion for reduced power demanded by electronic devices. Experimental and numeri-
cal studies on piezoelectric flexible cantilevered beams are found in [6, 7] and [8].

As a theoretical approach, this chapter derives a reduced-order model for
studying a cantilevered piezoelectric harvester with orthotropic bending stiffness
under VIV. The equations of motion coupling mechanical and electrical subsystems,
as well as the wake-oscillator model for the fluid–structure interaction, are addressed
in Sect. 2. Numerical simulations at chosen scenarios illustrate the problem in
Sect. 3.

2 Mathematical Model

The system modelled in this chapter is represented in Fig. 2. The harvester is com-
posed of a cantilevered flexible polymeric cylinder molded over a flat bar constituted
by a metallic substrate between two piezoelectric material layers connected in series
to an electrical resistance.

For the mathematical modelling, the Bernoulli–Euler’s cantilever model is taken.
A fixed frame XYZ with origin at the clamped end of the beam is adopted, with X
parallel to the incident flow direction, Y parallel to the cross-wise direction, and Z
aligned with the beam axis. The displacements in each of these directions are U , V ,
and W , respectively (see Fig. 2). The extended Hamilton’s principle for dissipative
systems then reads
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Fig. 2 Schematic representation of the energy harvesting system

∫ t2

t1

[
δT − δV + (

δWnc + δWi,e

) ]
dt = 0. (1)

Being μ the mass per unit length, Jp the mass moment of inertia around Z, and θ
the twist angle, the variation of the kinetic energy is given as

∫ t2

t1

δT dt = −
∫ t2

t1

∫ L

0

[
μ (üδu+ v̈δv + ẅδw)+ Jpθ̈δθ

]
dZ dt. (2)

The potential energy V can be divided into a portion due to external potential fields,
a portion due to strain energy, and a portion corresponding to the electric field in
the piezoelectric layers, namely V = Vf +Vk +Ve. Since the external conservative
forces are weight and buoyance, it follows that:

δVf = −
∫ L

0
γ δw dZ, (3)

with γ being the immersed weight per unit length. Following, the variation of
the strain energy, considering a linear-elastic and piezoelectric behavior for the
materials, is written as

δVk =
∫ L

0

∫∫

A

[
Eεzzδεzz +G

(
γxzδγxz + γyzδγxz

) ]
dA dZ, (4)
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with εzz being the axial strain, while γxz and γyz are the distortions in the cross-
section plane. In turn, E and G are the Young and Shear moduli, respectively. Since
the cross-sections are composed of different materials, the area integrals must be
carried out for each element. In order to proceed with a formulation that takes into
account axial extensibility, torsion, and bending in both transversal directions, the
relations presented in [9] for the axial strain and the distortions are used for each
element of the cross-section. These relations are correct up to second order, leading
to a model correct up to nonlinearities of third order. Substituting those relations
and adding up terms from different elements of the cross-sections lead to

δVk =
∫ L

0

[

EA

(

w′ +
(
u′
)2

2
+
(
v′
)2

2

)

+ EIp

2

(
θ ′
)2

]
[
δw′ + u′δu′ + v′δv′

]
dZ

+
∫ L

0

[

EIp

(

w′ +
(
u′
)2

2
+
(
v′
)2

2

)

θ ′ + EI4

2

(
θ ′
)3

]

δθ ′ dZ

+
∫ L

0
EIXv

′′δv′′ + EIY u
′′δv′′ +GIpθ

′δθ ′ dZ. (5)

The stiffness products are taken in the whole cross-section, which requires the
contribution of each element to be added up. The area moment of inertia around
axis X and Y are IX and IY , respectively, while Ip = IX + IY is the polar moment
of inertia, It is the torsional moment of inertia, and I4 is an area integral given by

I4 =
∫∫

A

(
X2 + Y 2

)2
dA. (6)

Now, for the electric component of the deformation in the bimorphic piezoelectric
layers, following [8], the variation of the piezoelectric potential energy is given by

δVe = −
∫ L

0

(
e31

2hp
MXV δv

′′ + e31

2hp
MXv

′′δV
)

dZ. (7)

Only the coupling between the displacements v and the voltage V appears since
the static moment of each piezoelectric layer with respect to the Y axis is zero.
Equation (7) already added up both piezoelectric layers. The absolute value of
the static moment of each piezoelectric layer is MX, hp is the thickness of each
layer, and e31 is the constant of piezoelectric coupling. Finally, completing the
conservative terms, the variation of the generated electric energy is given as [8]:

δWi,e =
∫ L

0

(
e31

2hp
MXV δv

′′ + e31

2hp
MXv

′′δV + EAp

2h2
p

V δV

)

dZ. (8)
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To close the mathematical model, the variation of the work of non-conservative
forces is given as

δWnc =
∫ L

0

[
(fu − cuu̇) δu+ (fv − cvv̇) δv

]
dZ +QδV , (9)

with Q being the electric charge output of the electrical system, cu and cv are
the linear structural damping coefficients in the X and Y directions, respectively,
while fu and fv are the hydrodynamic forces in those same directions. Collecting
all variational terms in the extended Hamilton’s principle (Eq. 1), developing
the appropriate algebraic operations, and deriving the equation of the electric
charge with respect to time, one obtains the following system of nonlinear partial
differential equations of motion:

μẅ − EA
(
w′′ + u′u′′ + v′v′′

)− EIpθ
′θ ′′ − γ = 0; (10)

μü+ cuu̇+ EIY u
′′′′ −

[

EAu′
(

w′ +
(
u′
)2

2
+
(
v′
)2

2

)

+ EIp

2
u′
(
θ ′
)2

]′
= fu;

(11)

μv̈ + cvv̇ + EIXv
′′′′ −

[

EAv′
(

w′ +
(
u′
)2

2
+
(
v′
)2

2

)

+ EIp

2
v′
(
θ ′
)2

]′

− e31MX

hp
V
′′ = fv; (12)

Jpθ̈ −GItθ
′′ −

[

EIpθ
′
(

w′ +
(
u′
)2

2
+
(
v′
)2

2

)

+ EI4

2

(
θ ′
)3

]′
= 0; (13)

∫ L

0

e31

hp
MXv̇

′′ dZ + EApL

2h2
P

V̇ + V

R
= 0. (14)

To complete the set of equations of motion, the hydrodynamic forces are adapted
from the model presented in [10]. Here, the wake variable q is taken as a continuous
variable that may vary with Z. The hydrodynamic forces are then written as

fu = −μaü− 1

2

(
qCL

2

)
ρDv̇

√
(U∞ − u̇)2 + v̇2

+ 1

2
CDρD (U∞ − u̇)

√
(U∞ − u̇)2 + v̇2

+ 1

2
α

(
qCL

2

)2

ρD (U∞ − u̇)

√
(U∞ − u̇)2 (15)
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fv = −μav̈ + 1

2

(
qCL

2

)
ρD (U∞ − u̇)

√
(U∞ − u̇)2 + v̇2

− 1

2
CDρDv̇

√
(U∞ − u̇)2 + v̇2. (16)

The coefficients CL and CD are the amplitude of oscillation of the lift coefficient
for a stationary cylinder and the mean drag coefficient for a stationary cylinder,
respectively. In turn, μa is the potential added mass for the cross-section and α is a
coefficient related to the drag amplification during VIV. The wake variable follows
the forced van der Pol equation:

q̈ + εvωs

(
q2 − 1

)
q̇ + ω2

s q −
κ

D
üq = Av

D
v̈, (17)

with ωs being the vortex shedding frequency, while εv and Av are, respectively,
a van der Pol equation parameter and a coupling coefficient, both determined
experimentally [10]. In order to numerically integrate the mathematical model, a
Galerkin projection is made on the systems defined by Eqs. (11)–(14) and Eq. (17).
For the trial functions, the first three modes of vibration of the cantilever beam
are taken for the transversal displacements together with one mode for the axial
displacement and one for the angle of twist. For the wake variable, the three modal
shapes for transversal vibrations are also adopted as projection functions. Due to
the presence of the square root dependency on the velocity of each cross-section
in the hydrodynamic forces, the reduced-order model does not show up a closed
mathematical expression. This leads the projection for those terms to be made at
every time step of a numerical simulation.

Aiming at concluding the description of the mathematical modelling, a discus-
sion is needed on the adopted wake-oscillator model. The model was taken from
[10], where the parameters εv and Av are dependent on the reduced velocity that
is related to the incident flow, as Ur = U/fnD, being fn the natural frequency
corresponding to the transversal oscillations of a rigid cylinder mounted on an
linear-elastic 2-dof system. Herein, an ad hoc assumption is made to extend this
dependency to the case of a flexible cylinder, by taking fn as the natural frequency
related to vibration modes dominated by transversal oscillations. It is assumed
that these parameters are independent for each component of q obtained after the
Galerkin projection, being taken as εv,i and Av,i , with i being the mode number
of the component, ranging from one to three in the present work. With those
assumptions, and using a Heaviside function to represent that the electric tension
output occurs only at the clamped end as in [8], after some cumbersome algebraic
work, the equations for the reduced-order model are

mwẅ1 + βww1 +
3∑

k=1

3∑

l=1

βuuk,lukul +
3∑

k=1

3∑

l=1

βvvk,lvkvl + βφφφ2
1 = 0; (18)
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mu
i üi + cui u̇i +

3∑

l=1

βui,lul +
3∑

l=1

βuwi,l ulw1 +
3∑

j=1

3∑

k=1

3∑

l=1

βuuui,j,k,lujukul

+
3∑

j=1

3∑

k=1

3∑

l=1

βuvvi,j,k,luj vkvl +
3∑

l=1

β
uφφ
i,l ulφ

2
1 = f ui ; (19)

mv
i v̈i + cvi v̇i +

3∑

l=1

βvi,lvl +
3∑

l=1

βvwi,l vlw1 +
3∑

j=1

3∑

k=1

3∑

l=1

βvuui,j,k,lvjukul

+
3∑

j=1

3∑

k=1

3∑

l=1

βvvvi,j,k,lvj vkvl +
3∑

l=1

β
vφφ
i,l vlφ

2
1 + diV = f v

i ; (20)

mφφ̈1+βφφ1+βwφw1φ1+βφφφφ3
1+

3∑

k=1

3∑

l=1

β
uuφ
k,l ukulφ1+

3∑

k=1

3∑

l=1

β
vvφ
k,l vkvlφ1 = 0;

(21)

q̈i + εv,i

⎡

⎣
3∑

j=1

3∑

k=1

3∑

l=1

Qi,j,k,lqj qkq̇l

⎤

⎦− εv,iStUr q̇i + (StUr)
2 qi = Av,i v̈i;

(22)

V̇ + ηV +
3∑

l=1

ζl v̇l = 0, (23)

with ui , vi , and wi being the degrees of freedom relative to the projections of u,
v, and w, respectively. The index i refers to each of the three modal components
adopted for displacements u and v. The twist is φ, St is the Strouhal number, and
Ur = U∞/fy1D is the reduced velocity according to the frequency of the first
natural mode in the Y direction.

3 Results and Discussion

A case study is presented aiming at illustrating simulations based on the proposed
mathematical model. An aluminum flat bar of dimensions 10 mm × 40 mm gives
the structure with a frequency ratio close to 4:1 between in-line and cross-wise
directions. The structural and electric parameters considered are presented in
Table 1, where the index a refers to the aluminum bar, s to the silicon cylinder,
and p to the piezoelectric material. In order to analyze the response including the
three transverse modes in the Galerkin projection, reduced velocities up to 75 were



126 L. S. Madi et al.

Table 1 Simulation parameters

Parameter Value Parameter Value Parameter Value

L 1500 mm Ea 70 GPa νs 0.33

D 45 mm Es 15 MPa νa 0.39

bw 4 mm Ep 60.6 GPa νp 0.33

ha 1 mm ρs 2710 kg/m3 e31 16.6 C/m2

hp 0.3 mm ρa 1100 kg/m3 ε33 25.5 nF

ρp 7500 kg/m3 R 10 k�

Fig. 3 Cross-wise modal displacements and respective IMF, normalized with respect to the
cylinder diameter, as a function of reduced velocity based on the first transversal mode natural
frequency in still water. Reduced velocity linearly increasing with time at a rate Ur = αt , α = 0.01

considered. Practical design aspects such as intensity of incoming flow velocity and
the structure strength were not considered in the present simulations.

Equations (18)–(23) were numerically integrated under two different conditions:
(i) steady states obtained from a step-by-step increase in reduced velocity; (ii)
continuously increasing or decreasing the reduced velocity linearly with time. In
case (ii), a very slow increasing (or decreasing) rate is applied, at a time scale much
longer than the typical shedding periods, such that the ratio between them lies in the
interval 195 < ratio < 3500, being always of order 100 or larger. Hilbert–Huang
analyses were undertaken for the in-line and cross-wise displacements time series;
[3–5]. An empirical mode decomposition (EMD) algorithm is applied to each of
the modal time series, obtaining their respective intrinsic mode functions (IMF) as
exemplified in Fig. 3. A Hilbert transform is then calculated for these IMF, obtaining
the instantaneous amplitude modulation and response frequency of the system.
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Typical response amplitudes were calculated from the peak of the obtained
spectra, which are dominated by a single frequency value at each time instant.
The sum of the modal responses is presented in Fig. 4. Results for the simulation
run with linearly increasing velocities are represented in blue and for decreasing
velocities in red. Markers (*) are steady-state amplitude responses obtained from
series simulated at those respective reduced velocities.

As seen in Fig. 4, the transverse amplitudes exhibit three locked-in responses,
corresponding to the transverse natural frequencies of the structure. A hysteresis
loop, a phenomenon commonly present in experimental VIV studies, can be
identified as jumps between coexisting modes, where dynamic bifurcations show up
clearly. Such a jump phenomenon is clearly depicted in the interval 55 < Ur < 75,
where the transversal modes 2 and 3 coexist. As for the in-line response, a first
peak of amplitude is observed at reduced velocities around Ur = 5.5, along with
the transverse lock-in peak. The first in-line mode lock-in is also observed at higher
reduced velocities, close to Ur = 15.

When compared to the results presented in Fig. 1, the model herein developed
shows good qualitative results for typical VIV response. However, the high-energy
response branch, clearly observed in the experimental campaigns [2, 3], was not
captured by the proposed mathematical model. In addition, amplitudes in longi-
tudinal direction are considerably smaller than the ones obtained experimentally.
As a matter of fact, the high-speed (energy) response branch was thought to be
caused by the structure dynamics, through the twisting–bending coupling. As this
coupling has been taken into account, with twisting terms considered up to third
order, it appears that, so far, the fluid–structure interaction phenomenon has not
been modelled properly, at least not sufficiently well. Further investigation is surely
needed regarding the nature and the modelling of this intriguing fluid–structure
interaction phenomenon.

Even not capturing the high-speed (energy) response branch and assuming the
present reduced-order model as valid, an estimate for the electric power harvested
from the system was carried out. The results are presented in Fig. 5.

The power generated increases at a very strong rate with the vibration frequency
of the system, varying from very low values (of order of a few mW) at small
reduced velocities, close to the first mode lock-in peak, to low ones (of order of
1W) harvested at higher modes of vibration.

4 Concluding Remarks

A 3D mathematical model was proposed for the representation of a flexible
piezoelectric energy harvester under VIV, coupling structural, electrical, and hydro-
dynamics effects. The structural part of the model derived in this chapter is
robust including, besides bending, axial displacements and torsion. For the fluid–
structure interactions, represented by a wake-oscillator model, qualitative VIV
aspects were recovered, including hysteresis loops at reduced velocity ranges where
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Fig. 4 Cross-wise and in-line amplitudes, normalized with respect to the cylinder diameter, as a
function of reduced velocity based on the first transversal mode natural frequency in still water.
Continuous line: varying current speed slowly; in blue: increasing velocity; in red: decreasing
velocity. Modal amplitudes are determined by taking the Hilbert transform of the dominant IMF,
within a EMD scheme [3, 4]. Dots represent amplitudes measured after a steady-state response is
attained
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Fig. 5 Electric power harvested. Measure given in Watts. See Fig. 4 caption, for explanation on
lines and dots

vibration modes switching occurs. However, the high-energy branch experimentally
observed has not been captured by the present model yet. Therefore, the forms
of the equations of the phenomenological model, alongside the calibration of its
parameters, are objects of further work. In turn, as expected, the electric power
harvested is highly dependent on the frequency of the system. Considering the
results obtained by this model, the system presents a potential for energy harvesting,
in different scales, at lower and higher modes, with distinct applications for each
case. An experimental campaign on this subject is planned to be carried out in the
near future.
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Dynamics of the Fluid-Structure
Coupling Model of a Direct-Acting Relief
Valve

Wen Song, Maolin Liao, Yanli Xin, Xiaoyong Wang, Ke Fan, and Yongdong Li

1 Introduction

Direct-acting relief valve is widely applied for pressure adjustment in fuel pump
[1–3]; however, as the pressure fluctuation at the relief valve due to the influences
of external environment, the valve element can lose its stability via Hopf bifurcation
[4, 5], and which can further enter into chaos via grazing bifurcation due to the
axial impact between the valve element and valve seat [6–8]. In addition, when the
fuel flows through the valve element in a narrow space with high speed, the vortex-
shedding behind the valve element can excite its vibration in the vertical direction
[9, 10], which further triggers its vertical impact with the valve seat. Therefore, a
2-DOF fluid-structure coupling dynamic model is proposed in the present work, to
investigate the correlation between the vibration condition of valve and the sudden
jump of pressure of the pump observed in experiments.

2 Mathematical Modelling

In this section, a 2-DOF mathematical model about the fluid-structure coupling
system of a direct-acting relief valve is developed. Primarily, the physical model
is simplified from the schematical of the direct-acting relief valve; based on which,
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the dynamic model is developed and its corresponding nondimensionalization is
conducted.

2.1 Physical Model

Based on the schematic of the direct-acting relief valve shown in Fig. 1a, the
physical model can be simplified [6, 7] as shown in Fig. 1b, in which, two Kelvin-
Voigt models (c1 − k1, c2 − k2) are utilized to describe the vibrations of the valve
element (m) in both the axial and vertical directions. The axial vibration originates
from the interaction between the force of the fluid pressure difference at the valve
port (Fout) and the force (Fback) acting on the back pressure rod. While the vertical
vibration of the valve element is determined by both the inlet pressure force (Fin)
and the lifting force caused by the vortex shedding in vortex-induced vibration
(VIV). In addition, x and y are used to represent the displacements of the valve
element in the axial and vertical directions, respectively.

2.2 Dynamic Model of Relief Valve

In order to develop the dynamic model of the relief value, both a nonlinear fluid
differential pressure model at valve port [6–8] and a nonlinear wake oscillator model
are used [9, 10]; meanwhile, the contact nonlinearity between the valve element and
valve seat is also taken into consideration [11–13]. Therefore, a compact form of
the dynamic model of the direct-acting relief valve system can be described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = v

v̇ = − c1
m
v − k1

m
(x + x0)− ρwghπrb

2

m
+ p

m
πrz

2

ẏ = u

u̇ = − c2+cf
m+mf

u− k2
m+mf

y − Pin·2rb·(x+x1)·Cd
m+mf

+ 1
2
ρoVvalve

2πro
2x1·Cl

m+mf

ṗ = E
V

(
QP − A (x, y) · Cd ·

√
2
ρo
p
)

q̇ = w

ẇ = fs − c3Ωf

(
q2 − 1

)
w −Ωf

2q

(1)

Moreover, a detailed introduction about all the parameters and their correspond-
ing values for this relief valve system is listed in Table 1 in Sect. 3.
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Fig. 1 Schematic of the direct-acting relief valve (a) and its corresponding 2-DOF physical model
(b)

2.3 Nondimensionalization of Dynamic Model

Before the numerical simulation, the developed dynamic model is further nondi-
mensionalized to obtain the dimensionless equations. Firstly, three basic reference
parameters of the studied system are defined, including the natural frequency �0,
the reference time tr, and the reference displacement xr as

Ω0 =
√
k1

m
, tr =

√
m

k1
, xr = πrb

2po

k1
(2)

where po is the atmospheric intensity of pressure. Based on the above three basic
reference parameters, eight dimensionless variables can be obtained as



134 W. Song et al.

Table 1 List of system parameters

Parameters Signs Units Values

Rod body’s total mass m kg 13.7e−3
Oriented seat’s spring stiffness k1 N/m 1.266e5
Spring precompression xo m 2.227e−3
Overflow amount Qp m3/s 7.67e−5
Density of water ρw kg/m3 1000
Density of fuel ρo kg/m3 1232
Pump inlet pressure pin Pa 0.4e6~0.8e6
Pump outlet pressure pout Pa 10e6
Radius of back-pressure ejector pins rb m 3.0e−3
Radius of ball valve ro m 2.3812e−3
Radius of valve seat channel rz m 2. 2e−3
Radius of pump inlet x1 m 8e−3
Atmospheric pressure po Pa 1e5
Washer’s damping c1 N · s/m 30
Vertical vibration damping of the rod string c2 N · s/m 30
Fluid damping c3 1 0.9
Vertical stiffness of the rod string k2 N/m 1e6
Fluid compression modulus E Pa 5e9
Pore throat’s fluid volume V m3 1.1404e−7
Fluid resistance coefficient Cd 1 1.0
Fluid lift coefficient Cl 1 0.2
Added mass coefficients Cm 1 1.0
Strouhal number St 1 0.15~0.2
Restitution coefficient of impact r 1 0.2~0.4

{
τ = t

tr
, y1 = x

xr
, y2 = tr

xr
v, y3 = y

xr

y4 = tr
xr
u, y5 = p

po
, y6 = q, y7 = trw

(3)

Therefore, the dynamic model of the direct-acting relief valve system can be
transformed into the dimensionless equations as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1
′ = y2

y2
′ = −ξ1y2 − (y1 + δ0)− η + λy5

y3
′ = y4

y4
′ = −ξ2y4 − κy3 − ζ (y1 + δ1)+ γy6

y5
′ = q − β

√
y5

y6
′ = y7

y7
′ = −ξ3

(
y6

2 − 1
)
y7 − αy6 + 12yacc

(4)
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where yacc is the nondimensional acceleration of valve element in the vertical
direction, and 12yacc is generally applied to describes the influence of the structure
on the vortex-induced vibration [10, 11].

Moreover, in order to obtain the simplified form of Eq. 4, 14 new dimensionless
parameters, such as damping ratio, spring precompression ratio, system stiffness
ratio, dimensionless depth, and dimensionless pump displacement, are defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 = c1√
k1m

, ξ2 = c2+cf√
m+mf

· tr , ξ3 = c3Ωf · tr
δ0 = xo

xr
, δ1 = x1

xr
, η = ρwg

po
· h

λ = rz
2

rb
2 , κ = k2

m+mf
· tr2, ζ = 2rbpin

k1

q = EQp

√
m
k1

Vpo
, α = Ωf

2 · tr2, μ = m+mf

ρoπrz2x1

β = E
V
· CdA (x, y)

√
2m

ρ0k1po

γ = Cl
4π2St

2μ
· rz

2

xrx1
·Ωf

2 · tr2

(5)

In summary, a complete dynamic model about the fluid-structure coupling system
of the direct-acting relief valve has been developed.

3 Comparison of Experiments and Numerical Simulations

Based on the developed mathematical model in Sect. 2, the numerical simulation of
the studied system about the relief valve can be carried out, and thus the comparison
between the numerical simulation and the experimental measurements. For this
purpose, the actual parameters of an experimental device are used as the system
parameters for numerical simulations, see Table 1.

3.1 Condition One: 0.8 MPa Inlet Pressure

Primarily, the 0.8 MPa inlet pressure was considered since the unstable vibration of
the relief valve was explored experimentally in such condition, see Fig. 2a. Figure 2a
shows the variations of the pump inlet pressure, outlet pressure, and back pressure
from top to bottom. Moreover, the back pressure is determined by the hydraulic
pressure; hence the water depth can be calculated according to the back pressure,
and the corresponding result is depicted as the green curve in the third subplot of
Fig. 2a. During the experimental test, the torpedo was gradually sunk to the water
depth of 300 m, and then slowly lifted to the water surface. It can be seen from
Fig. 2a that an obvious pressure step appears at 20 s, whose corresponding water
depth is around 100 m where the back pressure rod was in contact with the guide
holder. From then on, the vibration condition of the relief valve can be simulated
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Fig. 2 Experimental signal (a) and numerical simulation (b) for the case with inlet pressure
0.8 MPa
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by the developed mathematical model, since the valve element (m) simplified in the
physical model consists of both the back pressure rod and the guide holder, see Fig.
1. Therefore, the range of the water depth for the numerical simulation was set as
[100 m, 300 m] with the depth interval 1 m, and the obtained result is shown in Fig.
2b. Specifically, the differential pressure at the valve port reflects the correlation
between the inlet pressure and the outlet pressure, which is basically consistent with
the trend of the outlet pressure measured during the experimental tests, since the
outlet pressure is much greater than the inlet pressure. In addition, due to the narrow
flow area at valve port, its differential pressure is larger than the pressure measured
in both the pump outlet and the pump inlet.

In addition, it is found from Fig. 2 that the relief valve is unstable which
experienced two sudden jumps of pressure during either the dropping process or
the lifting process. Specifically, during the process of dropping the relief valve
from 100 m to 300 m, the experimental signals showed the first sudden jump of
pressure at 137 m where an obvious pressure pulse can be observed. With the further
increase of the water depth, the experimental signals showed another sudden jump
of pressure at 265.3 m, whose inlet pressure was further magnified. Similarly, during
the process of lifting the relief valve from 300 m to 100 m, two sudden jumps
of pressure appeared at 267.9 m and 129.5 m, respectively. When compared with
the numerical simulations with the corresponding experimental measurements, the
same phenomenon can be observed. Specifically, during the dropping process, the
water depths of the two pressure jumps appeared at 141 m and 274 m, respectively.
While in the lifting process, the water depths for the two pressure jumps appeared at
270 m and 135 m, respectively. Figure 3 displays three typical vibration conditions
of the valve element obtained by numerical simulation; they represent the vibration
conditions of the valve element in the three depth regions divided by two pressure
jumps.

Furthermore, according to the error calculation, comparing with the experimental
measurements, the errors of the predicted depths for the four pressure jumps by the
numerical simulations are limited in 5%, which demonstrates the correctness and
accuracy of the developed mathematical model effectively.

3.2 Condition Two: 0.4 MPa Inlet Pressure

For this studied relief valve, the sudden jumps of pressure appeared in the case with
0.8 MPa inlet pressure brings negative influences on the system stability; hence, the
main purpose of this study is to eliminate these pressure jumps. Comparing with
the modification of structure parameters, the control of the pump inlet pressure is
the most convenient way during the practical operation. According to the massive
numerical simulation, 0.4 MPa inlet pressure was explored as the ideal parameter,
and its corresponding experimental test was also verified by the numerical result,
see Fig. 4. There is only one pressure step which has appeared at the water depth
of 59.56 m. This is the position where the back pressure rod was in contact with
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Fig. 3 2-D and 3-D phase portraits of the valve element in both the axial and vertical directions at
the water depths (a) 100 m axial vibration, (b) 100 m vertical vibration, (c) 150 m axial vibration,
(d) 150 m vertical vibration, (e) 300 m axial vibration, (f) 300 m vertical vibration, respectively

the guide holder. Except that, no other pressure jump was observed, namely, the
relief valve maintained stable condition during both the dropping and lifting process,
and this is the expected working condition of the relief valve. Hence, according
to the developed mathematical model, the optimized parameters can be explored
to maintain the stability of the system during its varied working condition, which
can be further applied for the design and optimization of the structure and control
parameters for this or similar systems.

4 Concluding Remarks

In this present work, a 2-DOF dynamic model was developed to simulate the
fluid-structure system of a direct-acting relief valve. When compared with the
experimental measurements, the prediction errors of the water depths for sudden
jumps of pressure from the numerical simulation were less than 5%. Therefore,
the results of numerical simulation were in good accordance with the experimental
measurements, which verified the correctness and accuracy of the developed
mathematical model.

In order to eliminate the pressure jumps explored during experimental tests, the
pump inlet pressure was adjusted, when it was decreased from 0.8 MPa to 0.4 MPa,



Dynamics of the Fluid-Structure Coupling Model of a Direct-Acting Relief Valve 139

Fig. 4 Experimental signal (a) and numerical simulation (b) for the case with inlet pressure of
0.4 MPa
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the pressure jumps that ever appeared during the dropping and lifting process were
removed totally, which further verified the proposed mathematical model in the
paper. Moreover, for the future work, this model can be applied for the design and
optimization of both the structure parameters and the control parameters for this or
similar dynamic systems.
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6. C.J. Hős, A.R. Champneys, K. Paul, et al., Dynamic behavior of direct spring loaded pressure
relief valves: III valves in liquid service. J. Loss Prev. Process Ind. 43, 1–9 (2016)
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Nonlinear Dynamics of Spherical Caps

Giovanni Iarriccio and Francesco Pellicano

1 Introduction

The present study is focused on nonlinear vibrations of spherical thin-walled caps,
which are a kind of structure widely used in engineering: pressure vessels, aerospace
and aeronautical components, civil structures like roofs.

Most of the previous theoretical studies on this topic were focused on axisymmet-
ric vibrations [1, 2], which neglect the possible onset of non-symmetric vibrations
due to the activation of asymmetric modes via nonlinear interactions.

This study aims to extend the recent analysis presented in Ref. [3], where a new
method is proposed to analyze axisymmetric and asymmetric vibrations of thin-
walled shallow spherical caps under the action of uniform static and fluctuating
pressure; the objective is investigating possible nonlinear modal interactions that
can lead to the activation of asymmetric modes.

In order to develop the method, the Novozhilov’s thin shell theory is considered
[4], such theory allows an accurate kinematic modeling in the case of moderately
large displacements. To analyze the nonlinear PDE set arising from the Novozhilov
theory, a meshless discretization approach is considered: the three displacement
fields are expanded through a double series: in the meridional direction Legendre
polynomials are considered in order to respect boundary conditions, in the circum-
ferential direction a Fourier series is used due to the periodicity. The nonlinear
reduced-order model is analyzed by means of path-following techniques and direct
time integration has been carried out as well; these numerical techniques allow to
investigate the dynamic scenario in detail. Results reveal that the axisymmetric
oscillations lose stability close to the resonance, the instability of axisymmetric
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vibration gives rise to the onset of asymmetric vibration of the spherical cup, even
though the pressure field is uniform.

2 Novozhilov’s Nonlinear Shell Theory

Consider a partially spherical cap-like structure having radius R, circular base radius
a, cap height s, half-opening angle ϕb, and thickness h, see Fig. 1. (O; ϕ, ϑ) is a
curvilinear coordinate system, where the origin O is located at the apex of the cap,
(ϕ, ϑ) are the meridional and circumferential coordinates, respectively. The three
displacement fields describe the motion of the generic point P, which lies on the
middle surface: u(ϕ, ϑ, t) in the meridional direction, v(ϕ, ϑ, t) in the circumferential
direction and w(ϕ, ϑ, t) in the radial direction; t is the time variable.

The Novozhilov’s nonlinear shell theory is based on Love’s first approximations
[5] where the small displacements assumption is relaxed: (i) the shell is thin h� R,
(ii) strains are small, (iii) transverse normal stresses are small, and (iv) normal to
the undeformed middle surface remain normal after deformation, and no thickness
stretching is present.

The Lamé parameters for the undeformed middle surface of a shallow spherical
cap are A1 = R, and A2 ∼= R · ϕb · η, where η= ϕ/ϕb is a non-dimensional meridional
coordinate.

The strain components at an arbitrary point of the shell ε̂η,ε̂ϑ , and γ̂ηϑ are

ε̂η = εη + z· kη, ε̂ϑ = εϑ + z· kϑ, γ̂ηϑ = γηϑ + z· kηϑ . (1)

εη, εϑ, and γ ηϑ are the middle surface strain and kη, kϑ, and kηϑ are the changes
in curvature and torsion of the middle surface [6]. By using the Novozhilov’s shell
theory [3, 4], εη, εϑ γ ηϑ, kη, kϑ, and kηϑ can be expressed as follows:
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Fig. 1 Shallow spherical cap: cross section (left) and top view (right)
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In case of thin shells, the nonlinear terms in the changes in curvature and torsion
can be neglected [7].

The elastic strain energy US of a thin shallow spherical cap, under the hypotheses
of plane stress, homogeneous and isotropic material, is given by [6]

US = 1

2

Eh

1− ν2

∫ 1

η0

∫ 2π

0

(
ε2
η + ε2

ϑ + 2νεηεϑ + 1− ν

2
γ 2
ηϑ

)
A1A2ϕBdϑdη+

+ 1

2

Eh3

12
(
1− ν2

)
∫ 1

η0

∫ 2π

0

(
k2
η + k2

ϑ + 2νkηkϑ + 1− ν

2
k2
ηϑ

)
A1A2ϕBdϑdη,

(4)

where E and ν νare the Young’s modulus and the Poisson’s ratio, respectively;
membrane and bending energies are uncoupled due to thinness approximation.

The kinetic energy TS of a thin shallow spherical cap, neglecting the rotary
inertia, is given by

TS = 1

2
ρSh

∫ 1

η0

∫ 2π

0

(
u̇2 + v̇2 + ẇ2

)
A1A2ϕBdϑdη, (5)

where ρS is the mass density of the shell material, the time derivatives are denoted
by the overdots.

To avoid the singularity in the origin of the meridional coordinate, a small conical
hole at the apex of the spherical cap is considered. Following the results given in Ref.
[8], the hole has a half-nondimensional opening angle η0 = 0.00125.

3 Displacement Fields Expansion and Reduced-order Model

The first step of the approach consists in analyzing the linearized equations in
order to obtain an approximation of the eigenfunctions. Under the hypothesis of
synchronous motion, i.e., the same time-law f (t) is assumed for all the displacement
fields, the generic mode of vibration can be written as:

u (η, ϑ, t) = U (η, ϑ) f (t), v (η, ϑ, t) = V (η, ϑ) f (t),

w (η, ϑ, t) = W (η, ϑ) f (t). (6)

The eigenfunctions U(η, ϑ), V(η, ϑ), and W(η, ϑ) are expanded by using the
following expression:

U (η, ϑ) =
Mu∑

m=0

N∑

n=0

∼
Um,nP

∗
m (η) cos (nϑ) , (7.a)
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V (η, ϑ) =
Mv∑

m=1

∼
Vm,0P

∗
m (η)+ +

Mv∑

m=0

N∑

n=1

∼
Vm,nP

∗
m (η) sin (nϑ) , (7.b)

W (η, ϑ) =
Mw∑

m=0

Nw∑

n=0

∼
Wm,nP

∗
m (η) cos (nϑ) . (7.c)

P ∗m (η) is the m-th Legendre polynomial (of the first kind) shifted in η ∈ [0, 1],
m and n are the numbers of meridional half-waves and circumferential waves,
respectively [3].

Clamped boundary conditions are applied on the circular planform edge of the
spherical cap:

u = v = w = ∂w

∂η
= 0 for η = 1. (8)

Since the Rayleigh-Ritz method requires that the trial functions respect at least
the geometric boundary conditions, no stress-free boundary conditions have been
imposed at η = η0 [9]. Equations (8) are imposed to the series (7.a, 7.b, and 7.c),
this leads to the following linear algebraic system, valid for any ϑ ∈ [0, 2 π ] and
n ∈ [0, N]

∑Mu
m=0

∼
Um,nP

∗
m (η) = 0,

∑Mv
m=0

∼
Vm,nP

∗
m (η) = 0,

for η=1
∑Mw

m=0

∼
Wm,nP

∗
m (η)=0,

∑Mw
m=0

∼
Wm,n

∂
∂η
P ∗m (η) = 0.

(9)

The system (9) can be solved analytically in terms of

(∼
U0,n,

∼
V 0,n,

∼
W 0,n,

∼
W 1,n

)
,

(∼
U0,n,

∼
V 0,n,

∼
W 0,n,

∼
W 1,n

)
which can be expressed in terms of the remaining

unknown coefficients. After the imposition of the boundary conditions, the number
of degrees of freedom (dofs) of the discretized system Nmax is equal to

Nmax = (Mu +Mv +Mw + 3− b) (N + 1) , (10)

where b is the number of boundary conditions to be respected (b = 4 for a clamped
spherical cap).

The Lagrangian variables

(∼
Um,n,

∼
Vm,n,

∼
Wm,n

)
are reordered in a vector

∼
q, see

Ref. [10]; imposing the stationarity of the Rayleigh’s quotient, and using Eqs. (4)
and (5), it possible to obtain the secular equation for the spherical cap
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(
−ω2M+K

)∼
q = 0, (11)

where ω is the circular frequency, and
∼
q is the eigenvector.

The i-th solution of (11),

(
ω(i),

∼
q
(i)
)

, is used in (7) in order to get the

approximation of the i-th eigenfunction of the linearized operator.
In the nonlinear analysis, the full expression of (2.a–f) are considered, the

hypothesis of synchronous motion is relaxed, and the displacement fields re-
expanded as follows

u (η, ϑ, t) =
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i

∑Nu

j

[
U
(d)
i,j (η, ϑ) f

(d)
u,i,j (t)+ U

(c)
i,j (η, ϑ) f

(c)
u,i,j (t)

]
,

(12.a)

v (η, ϑ, t) =
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i
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(d)
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(c)
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]
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(12.b)
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(c)
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]
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(12.c)

where superscripts d and c indicate the two conjugate modes, the subscripts i and
j are related to the number of meridional half-waves and circumferential waves,
respectively, and f

(d)
u,i,j (t), f

(c)
u,i,j (t), f

(d)
v,i,j (t), f

(c)
v,i,j (t), f

(d)
w,i,j (t), and f

(c)
w,i,j (t) are

the unknown generalized coordinates. A proper selection of the integers Mu, 1,
Mv, 1, Mw, 1, Nu, Nv, and Nw allows reliable results to be obtained with a reduced
dimension of the nonlinear problem.

The unknown generalized coordinates are ordered into a vector q(t) and the
equations of motion are derived through the Lagrange’s equations

d

dt

(
∂TS

∂q̇j

)
+ ∂US

∂qj
= ∂Wp

∂qj
, for j = 1, 2 . . . , Ndofs. (13)

The expression of the j-th generalized force due to a hydrostatic external pressure
p(t) [11] leads to

∂Wp

∂qj
�
∫ 1

η0

∫ 2π

0
p(t)

[
− ∂u

∂qj
e13− ∂v

∂qj
e23+ + ∂w

∂qj
(1+e11+e22)

]
A1A2ϕBdϑdη,

(14)

Considering a harmonic pressure with a static component and introducing a
damping matrix into the system, the Eq. (13) can be written in state-space form
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{
q̇ = y

ẏ = M−1 (−Cy−KNLq+ ps + pd cos (Ω t))
(15)

M−1C is a diagonal damping matrix of elements 2 ζ j ωj, ζ j, and ωj are the
modal damping ratio and the natural frequency of the j-th generalized coordinate,
respectively. The system (15) is suitable for direct numerical integration in time
as well as for bifurcation analysis of the periodic solutions using a continuation
software.

In the following, the equations of motion have been reduced to a nondimensional
form using the dimensionless variables q̂ = q/h, and τ = ω0t, where ω0 is a
suitable circular frequency of a reference mode of vibration; the static and dynamic
pressure amplitudes, ps and pd, respectively, have been normalized with respect
to the Zoelly’s critical buckling pressure pcr of an isotropic and homogeneous
complete spherical shell [12]

pcr = 2 E
√

3
(
1− υ2

)

(
h

R

)2

(16)

4 Numerical Results for Harmonic Pressure

A shallow spherical cap made of steel and rigidly clamped on the boundary
is considered for numerical analysis. In Table 1, the geometric dimensions and
material properties of the case study are listed. Same data are assumed in Ref. [3].

For spherical caps with such slenderness λ = 6, the buckling mode with n = 2
circumferential waves has a relevant role [13] thus, the modes with n = 2 (and
multiples) are considered into the nonlinear reduced order model. As done in
Ref. [3], a 38 dofs model (considering conjugate asymmetric modes) is used for
studying the nonlinear dynamic behavior of the cap under a harmonic pressure,
see Table 2. The natural frequency of the first axisymmetric modes, ω1, 0 is the
reference frequencyω1, 0 for time nondimensionalization, and a modal damping
factor ζ = 0.012 ζ j = 0.012 are assumed for every mode.

The software AUTO [14] is used to investigate the stability and bifurcation of
periodic solutions of the ODE system (15).

Figure 2a shows the amplitude-frequency diagram of the cap under a harmonic
pressure; max(fw, 1, 0/h) states for the maximum amplitude of fw, 1, 0 within the
period, normalized to the shell thickness h. A softening behavior is shown, the

Table 1 Dimensions and material properties of the structure

R h/R a s ϕb E ρS

0.8 m 1/300 0.152 m 0.0147 m 11.0◦ 200 GPa 7800 kg
m3
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Table 2 Displacement fields
expansion terms in (12.a,
12.b, and 12.c)

����m
n

1 2 3 4 5 6

0 w,u w,u w,u w,u w,u w,u

2 w,v,u w,v,u w,v,u – – –

4 v v v v – –

(a) (b)
2

0.78 0.79 0.8
1.75

1.8

1.85
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ps / pcr =–0.50
ps / pcr =–0.45
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Fig. 2 Amplitude-frequency diagrams: (a) softening behavior in absence of static pressure, (b)
effect of an increasing static pressure for a fixed dynamic pressure amplitude [3]

response is purely axisymmetric. For pd/pcr = 0.04, period doubling bifurcations
(PD) occur at �/ω1, 0 = 0.78, and �/ω1, 0 = 0.79.

Assuming a fixed dynamic pressure amplitude pd/pcr = 0.02, in Fig. 2b the
effects of a negative static pressure ps are shown. As ps decreases, the resonance
peaks move to lower frequencies; the resonance peaks at �/ω1, 0 > 1, which are
visible only for ps/pcr < − 0.4 in the investigated frequency range, are due to the
axisymmetric cap mode with two meridional half-waves (m = 2).

An in-depth analysis is carried out for the case with ps/pcr = − 0.4
and pd/pcr = 0.02, see Fig. 3a, b: within the unstable frequency range
�/ω1, 0 ∈ [1.083,1.102], following the period doubling bifurcations (PD), the
cap response is characterized by the activation of conjugate asymmetric modes, and
several bifurcations and multiple cusp points can be observed.

This complex behavior should deserve a specific analysis of possible chaotic
response, as suggested in Ref. [15] for a similar dynamic scenario. Using the
numerical integrator RADAU5 [16], the time response is numerically computed
by assuming the following parameters: the sampling frequency is 40 times the
forcing frequency, 40 frequency steps with an amplitude ω/� = 0.01, 300 periods
of excitation, and for cutting out the transient, only the last 100 periods of excitation
are retained in the post-processing analysis. For the sake of brevity, only results
obtained for a downward forcing frequency variation are reported here.

Focusing the analysis on the asymmetric generalized coordinate f
(d)
w,1,2, the

bifurcation diagram of the Poincaré section is shown, see Fig. 4a. A period doubling
bifurcation occurs at ω/� = 1.101, and the response of the cap ceases to be
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Fig. 3 Detailed views of the period doubling path following: (a) axisymmetric generalized
coordinate, (b) asymmetric generalized coordinate [3]

Fig. 4 Direct time integration of the equations of motion: (a) bifurcation diagram of the Poincaré
section, (b) time history, (c) Poincaré map, (d) Fourier spectrum

axisymmetric. In the interval ω/� ∈ [1.085,1.095] chaotic vibrations take place;
at ω/� = 1.085 the response becomes quasi-periodic until ω/� = 1.077, where the
shell vibration becomes periodic and axisymmetric.
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As an example, for ω/� = 1.085, the time history, the Ponicaré map and also
the Fourier spectrum are shown in Fig. 4b–d: the Poincaré map shows two circles,
and the Fourier spectrum has few well-pronounced peaks, where the main harmonic
component has ω/� = 0.5, with side-bands at ω/� = 0.39 and ω/� = 0.62. It is
possible to confirm that, in this case, the spherical cap shows a periodic vibration
with period 2.

5 Conclusions

In this paper, a numerical investigation into nonlinear dynamics of shallow spherical
caps under external pressure is presented. A nonlinear model of the spherical cap,
based on Novozhilov’s nonlinear shell theory, is developed.

The main result of this work consists in finding the activation of asymmet-
ric states in the cap response under symmetric pressure distribution: near the
resonances, the cap vibrations lose stability and turn out to be chaotic, with non-
negligible asymmetric motion. It means that a reduced-order model, which takes
into account only axisymmetric modes, would fail to predict the large-amplitude
dynamic behavior of the cap when subjected to a harmonic uniform pressure.

Future analyses will investigate the sensitivity of nonlinear vibrations of the cap
to geometric imperfections, possible mode interactions due to internal resonances,
and to fully validate the numerical results, experimental tests should be carried out.
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Exploring the Dynamics of Viscously
Damped Nonlinear Oscillators via
Damped Backbone Curves: A Normal
Form Approach

Ayman Nasir, Neil Sims, and David J. Wagg

1 Introduction

Nonlinear oscillators are widely used for modelling real-life engineering appli-
cations, including various types of single-degree-of-freedom (SDOF) and multi-
degree-of-freedom (MDOF) oscillators. For instance, single-mode approximations
of some structural elements such as cables and beams are typical examples of
nonlinear SDOF systems, while MDOF systems involve innumerable applications
according to the nature and complexity of the system being considered. One
important aspect of such nonlinear oscillator systems is the inclusion of viscous
damping and how it can affect the dynamical behaviour. Thus, in this chapter,
an approximate analytical technique for computing the damped backbone curves
resulting from the inclusion of viscous damping is presented.

The backbone curve concept has been used extensively in nonlinear dynamics—
see for example [1] and references therein for early examples. There are several
definitions of backbone curves in the literature—see for example the discussion in
[2]. In our interpretation, a backbone curve can be considered to be a submanifold
of an underlying invariant manifold representing periodic solutions (in the vicinity
of an equilibrium point) of the nonlinear oscillator under consideration. More
specifically, the backbone curves considered in this chapter will be defined as curves
that join all the points of maximum displacement amplitude of the underlying
periodic solutions as a function of the response frequency (defined below) of the
oscillator.

Backbone curves have been studied extensively for undamped nonlinear oscil-
lator systems, and we follow established convention by calling these conservative
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backbone curves—a recent application can be found in [3]. Several authors have
considered the more difficult problem of computing backbone curves for nonlinear
oscillators with damping. For example, Touzé et al. [4, 5] proposed a method
using a real normal form (see [6] for the definition of real normal form), Krack
[7] proposed a method based on the addition of fictitious forces, and Breunung
and Haller [2] present a method using spectral submanifolds. Non-conservative
nonlinear oscillators have also been studied in terms of nonlinear normal modes
following the work of Shaw and Pierre [8]. For instance, Jiang et. al. [9] introduced
a Galerkin-based technique where damping and forcing are included in the nonlinear
oscillator under consideration.

In this chapter, an approximate analytical methodology is used to compute the
damped backbone curves of SDOF nonlinear oscillators, which along with numer-
ical continuation techniques can be used to characterise the frequency response
functions of the nonlinear oscillator under consideration. There are two motivations
for introducing this new method. First, the method we present here is considerably
simpler to apply than some of the methods cited above. Second, the method is
related to previous techniques that to date have not been used in the context of
damped backbone curves. Specifically, the work of Burton [10] and the Wentzel,
Kramers and Brillouin (WKB) transformation [11] both of which are described in
further detail below.

Furthermore, the normal form method used here is implemented symbolically
using Maple software and thus in principle can be generalised to include any order
of the polynomial nonlinear terms. Two examples will be shown to demonstrate
the application of the technique to nonlinear oscillators and to obtain the associated
damped backbone curves.

2 Formulation

To start, we consider the example of a damped nonlinear oscillator of the form

ẍ + 2ζωnẋ + ω2
nx + εf (x) = 0, (1)

where ωn = √
k/m is the linear natural frequency, ζ = c/2mωn is the damping

ratio, ε is a small parameter, and f (x) is a nonlinear function of x. Here, m is
the mass in kg, k is the linear stiffness in N/m, and c is the viscous damping
coefficient in kg/s. For linear differential equations with viscous damping, using the
Wentzel, Kramers and Brillouin (WKB) transformation, [12–14], one can remove
the damping term as will be discussed later on. This method of transformation is
also called the “method of reduction of order” [11] or the “normal form” [15].

The method in the form presented here is a variation on the WKB method,
where an assumed solution is selected such that when substituted into Eq. (1)
the transformed equation of motion does not contain a damping term. Hence, the
assumed solution has the form
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x = q(t)e−ζωnt . (2)

Then for the linear case, when ε = 0, substituting (2) into (1) gives

q̈ + ω2
dq = 0, (3)

where ωd = ωn
√

1− ζ 2 is the damped natural frequency. Eq. (3) is a linearised
version of Eq. (1) that has been transformed into what appears to be an undamped
(conservative) oscillator with a damped natural frequency, ωd . Eq. (3) has solutions
that are an infinite family of periodic solutions that depend on the initial conditions,
q(0) and q̇(0). For the nonlinear case, when ε �= 0, this family of periodic solutions
will correspond to the damped nonlinear normal mode(s) with associated damped
backbone curve(s).

3 The Cubic Nonlinearity Case

Considering the case when ε �= 0, and f (x) = αx3 (the Duffing oscillator), then
substituting Eq. (2) into Eq. (1) leads to

q̈ + ω2
dq + εe−3ζωntαq3 = 0, (4)

so that now a time-dependent exponential function appears as part of the nonlinear
term. Dealing with this type of equation presents obvious difficulties, those to be
discussed in detail later. But first, we consider a method designed to overcome the
difficulties for a more general class of nonlinear oscillators.

3.1 Burton’s Method

In the work of Burton, [10], the approximation ω2(t)x = ω2
nx + εf (x) is made, so

that the general expression for the nonlinear oscillator, Eq. (1), becomes

ẍ + 2ζωnẋ + ω2(t)x = 0, (5)

where ω(t) is a time-varying “frequency" function. Using the transformation where
x = q(t)e−ζωnt substituted into Eq. (5), we now obtain

q̈ + ω̂d(t)
2q = 0, (6)

where ω̂d(t)2 = ω2 − ζ 2ω2
n is a time-varying approximation to the damped natural

frequency of the system (similar results were obtained by Kourdis and Vakakis [16]).
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Note also that in the caseω(t) is periodic, then Eq. (6) is a form of the widely studied
Hill equation, [17].

3.2 Finding Approximate Solutions to Eq. (6)

Using a similar approach to [10, 16], we now assume a trial solution of q = up+um
where

up = U(t)

2
eiψ(t) and um = U(t)

2
e−iψ(t), (7)

where U(t) is a time-dependent amplitude, and ψ(t) is a time-dependent phase. The
following relationships are assumed to hold for ψ(t)

d

dt
ψ(t) = ωr(t) and ψ(0) = ψ0, (8)

where ωr(t) is the time-dependent response frequency and ψ0 is the phase lag
(assumed to not be a function of time). Using those definitions, we have

q = U(t)

(
eiψ(t) + e−iψ(t)

2

)

.

Substituting into Eq. (6) and equating the coefficients of the exponential terms give

Ü + iω̇rU + 2iωrU̇ + (ωd(t)
2 − ω2

r )U = 0,
Ü − iω̇rU − 2iωrU̇ + (ωd(t)

2 − ω2
r )U = 0,

(9)

which are complex conjugate expressions. We can now compare the coefficients of
the real and imaginary parts of either of the equations in Eq. (9) to get

Re: Ü + (ω̂2
d − ω2

r )U = 0,

Im:
ω̇r

2ωr
+ U̇

U
= 0.

(10)

The second equation in Eq. (10) can be solved in the following way:

∫ t

0
− ω̇r

2ωr
dt =

∫ t

0

U̇

U
dt �ωr(t)

− 1
2ωr(0)

1
2 = U(t)

U(0)
� U(t) = U(0)

(
ωr(0)

ωr(t)

) 1
2

,

(11)
which gives the relationship between the time-dependent amplitude and the time-
dependent frequency. As a result, the complete solution can be written as
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x = e−ζωntX(0)
(
ωr(0)

ωr(t)

) 1
2

cosψ(t), (12)

where X(0) = Q(0) = U(0) is the initial amplitude of displacement at time t = 0
(assuming for now that ψ0 = 0). From Eq. (12), the amplitude decay of the solution
can be defined as

x

X(0)
= e−ζωnt

(
ωr(0)

ωr(t)

) 1
2

� t = 1

ζωn
ln

[
X(0)

x

(
ωr(0)

ωr(t)

) 1
2
]

, (13)

which can be used to get an expression for the time-dependent amplitude decay of
the oscillator. We note that the first equation of Eq. (10) is a conservative oscillator

equation with frequency
√
ω̂2
d − ω2

r . To find a solution for this and Eq. (13), we
need more specific detail on the exact form of ω(t). Generally, this type of Hill
equation is approximated using a Fourier type expansion, but it depends on the
specific properties of the frequency function. We will continue by first looking at
Burton’s method of solutions for the Duffing oscillator [10].

3.3 Burton’s Solution for the Duffing Oscillator

To continue, Burton’s method then computes the response frequency by studying
the original problem Eq. (1) but without damping (ζ = 0) and with f (x) defined.
Using harmonic balance, or a normal from method (see, for example, [3]) applied to
the Duffing oscillator (i.e., f (x) = αx3), the following backbone curve relationship
is obtained up to ε1 accuracy

ωr(t) =
√

ω2
n + ε

3α

4
U(t)2 and ωr(0) =

√

ω2
n + ε

3α

4
U(0)2.

These expressions give frequency approximations and can be used in Eq. (13) to
give amplitude approximations.

3.4 An Approximation for Small Damping

If the viscous damping is sufficiently small, then an assumption that 2ζωn = ε̂ can
be assumed, where ε̂ � 1 and the nonlinear parameter α can be rescaled such that
ε̂α̂ = εα. Then, we can rewrite the oscillator equation of motion as

ẍ + ε̂ẋ + ω2
nx + ε̂f (x) = 0, (14)
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or for the example of the Duffing oscillator

ẍ + ε̂ẋ + ω2
nx + ε̂α̂x3 = 0, (15)

then, by applying the WKB approach using x = q(t)e− ε̂
2 t , we get

q̈ + ω2
dq + ε̂e−ε̂t α̂q3 = 0. (16)

Now, by applying an approximation of the exponential function e−ε̂t = 1 − ε̂t +
. . .O(ε̂2t2), one should obtain

q̈ + ω2
dq + ε̂(1− ε̂t)α̂q3 = 0 � q̈ + ω2

dq + ε̂α̂q3 + . . .O(ε̂2) = 0. (17)

Finally, by applying a normal form transformation (or harmonic balance method)
to Eq. (17), we obtain an approximate frequency–amplitude relationship, or the
damped backbone curve of this oscillator [18].

ωr ≈
√

ω2
d + ε

3α

4
U2, (18)

where the rescaling has been removed, and since a steady-state solution is desired,
ωr and U are both assumed to be time independent. A numerical example is shown
in Fig. 1, where the damped backbone curves (given by Eq. (18)) are plotted along
with the undamped (conservative) backbone curves, which is governed by the same
expression as Eq. (18) but with ωd replaced by ωn on the right-hand side.

In order to study the effect of changing the nonlinear coefficient, α, for the
Duffing oscillator, in both hardening and softening cases, Fig. 2 has been generated
for the case when ωn = 1 rad/s and ζ = 0.1 and a range of both negative and
positive α values. The damped backbone curves are computed using the proposed
approximate technique, while the forced-damped frequency response curves are
found using numerical continuation (COCO toolbox in Matlab). From Fig. 2, it is
clear that, for each value of the nonlinear coefficient, the damped backbone curves
follow the curvature of the resonant peak defined by the forced-damped frequency
response curves, and the two lines cross close to the peak of each forced-damped
frequency response curve. This level of matching occurs, despite the truncation at
order ε2, and demonstrates the potential usefulness of this simple and direct method
in order to obtain an approximation to the damped backbone curve.

In order to investigate the effect of varying the damping ratio on the overall
results of this method, Fig. 3 shows the frequency–amplitude response for the
damped Duffing oscillator when ζ is varied. The numerical values chosen for this
graph are εα = 0.4, ωn = 1 rad/s. From this figure, it is noticed that the damped
backbone curves start from the damped natural frequency, ωd on the horizontal
axis, and for each value of ζ , the damped backbone curves and the forced-damped
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ζ = 0.1. The damped backbone curve can be compared to the forced-damped frequency response
curves (denoted “Forced-damped (COCO)” in the legend) and computed using COCO, this forced-
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Fig. 3 Damped backbone curves (denoted DBBC in the legend) for different values of ζ , when
εα = 0.4 and ωn = 1 rad/s, compared to the forced-damped frequency response curves (denoted
COCO in the legend). The conservative backbone curve with ζ = 0 (denoted “conservative BBC”
in the legend) is shown for comparison. The forced-damped frequency response curves represent
both stable and unstable parts of the solution

frequency response curves intersect at a similar position to the results shown in the
previous two figures.

4 Analysis of SDOF Systems with Polynomial Type
Nonlinearities

Considering a SDOF nonlinear oscillator with polynomial nonlinear stiffness term
and small viscous damping, then the EOM can be studied using the normal form
method (Sect. 2). The general form for this SDOF oscillator is

ẍ + εẋ + ω2
nx + εf (x) = 0, (19)

where the nonlinear vector f (x) contains all the polynomial nonlinear stiffness
terms. Using a normal form method (or any other appropriate method such as
harmonic balance), it is possible to find the conservative backbone curve, computed
in this case to ε1 accuracy (and in principle, for any degree of the polynomial non-
linearity). As shown above, the approximate expressions for the damped backbone
obtained in this way replaces the natural frequency, ωn, with the damped natural
frequency, ωd . This approximation of the damped backbone curve is restricted to
weak nonlinearities and small damping; however, compared to other techniques, the
simplicity of this technique has the potential to be useful for some non-conservative
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systems. It is noteworthy that ε1 normal form analysis in this chapter is able to
precisely detect the effect of odd nonlinear terms appearing in the equations of
motion, while for even nonlinearities, the analysis needs to be extended to include
ε2.

4.1 Example: Cubic–Quintic Oscillator with Viscous Damping

The problem of a cubic–quintic viscously damped SDOF oscillator is now consid-
ered. In the literature, the conservative case of this oscillator has been studied by a
number of authors, e.g., [1, 19, 20]. The equation of motion for the damped-unforced
cubic–quintic nonlinear oscillator can be written as

ẍ + εẋ + ω2
nx + εα1x

3 + εα2x
5 = 0, (20)

where ε ≈ 2ζωn and the coefficients of the nonlinear terms are assumed to be
relatively small. In order to visually illustrate the damping effect for this system,
Eq. (12) can be used to generate the phase portrait for this oscillator for any given
initial condition. For example, Fig. 4 shows the phase portrait for the cubic–quintic
oscillator for various values of ζ at the following initial conditions x(0) = 0.2 m
and ẋ(0) = 0.0 m/s. Now ε1 normal form analysis can be applied to Eq. (20) in
order to find the damped backbone curve of this oscillator, [21], which gives

ωr =
√

ω2
d + ε

3α1

4
U2 + ε

5α2

8
U4. (21)
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Fig. 4 Phase portrait for the damped cubic–quintic when εα = 0.1, ωn = 2 rad/s, and different
values of ζ
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Accordingly, Eq. (21) can be directly used to obtain the damped backbone curves
for this oscillator for small damping.

5 Conclusions

The problem of viscously damped nonlinear oscillators with geometric polynomial
stiffness nonlinearities has been discussed in this chapter. The proposed technique
is related to the WKB and Burton methods, in combination with a normal form
method. Approximate damped backbone curves were analytically computed and
compared to the numerically computed forced-damped frequency response curves.
In comparison to conservative backbone curves, damped backbone curves should
be more closely related to the numerically computed forced-damped frequency
response curves.

Furthermore, when the damping is relatively small, the proposed technique
can be used to analyse oscillators with multiple polynomial nonlinearities, and
straightforward approximations to the damped backbone curves are obtained in the
form of explicit expression truncated to ε1 order. While the proposed technique can
be directly implemented for many engineering applications, some restrictions need
to be realised. The technique is relatively simple to apply, but less sophisticated
than some other proposed methods. Furthermore, at present, it is limited to use in
small damping cases, and for ε1 accuracy. Moreover, the technique still needs to be
extended to study MDOF systems.

Acknowledgement A. Nasir is fully funded by AIZaytoonah University of Jordan to obtain his
PhD at the University of Sheffield.
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Influence of Circumferential
Discontinuity of an Elastic Foundation
on the Nonlinear Dynamics of Cylindrical
Shells with Functionally Graded Material

Jonathas K. A. Pereiria , Renata M. Soares , Frederico M. A. Silva ,
and Paulo B. Gonçalves

1 Introduction

Cylindrical shells resting on an elastic foundation are common structures in several
engineering fields. In many applications, discontinuities of the elastic foundation
along its circumferential direction are observed. However, the nonlinear dynamic
behavior of cylindrical shells with a discontinuous elastic foundation is seldom
treated in the literature. The majority of the works focus on the analysis of
problems with elastic foundation surrounding the entire shell surface. Amabili and
Dalpiaz [1] performed a linear analysis of cylindrical shells resting on an elastic
foundation with circumferential discontinuity. The displacement field is expanded
in the Fourier series with the analyses focusing on the convergence of the solution
and comparisons with a finite element model. Tj et al. [2, 3] developed parametric
studies to demonstrate the influence of the elastic foundation contact area on the
linear vibrations of the cylindrical shell. Considering the nonlinear behavior of
the cylindrical shell, Nejad and Bideleh [4] studied the vibrations of cylindrical
shells on an elastic foundation considering the discontinuous elastic base on the
circumferential direction and subjected to a lateral loading. Recently, Rodrigues [5]
and Silva et al. [6] analyzed the nonlinear vibrations considering the discontinuity
in the longitudinal direction of the cylindrical shell, contrasting the discontinuous
elastic case with the elastic base across the entire shell. Then, based on a previous
work [6], a consistent transversal displacement field that contains the main modal
coupling to describe the nonlinear behavior of FG cylindrical shell resting in the
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circumferential discontinuous elastic base is here proposed and the parametric
analysis clarifies the influence of the discontinuous foundation on the nonlinear shell
vibrations.

2 Theoretical Formulation

Consider a perfect cylindrical shell with radius R and thickness h, where h � R,
length L. Figure 1a shows the cylindrical shell geometry, the x, θ , and z coordinate
system and the associated displacements in the axial (u), circumferential (v), and
transversal (w) directions, respectively. The cylindrical shell is composed of a
functionally graded (FG) material, whose properties vary along the thickness,
obeying Hooke’s law. The physical parameters E, ρ, and ν are described, assuming
a sandwich distribution, by:

P = (PA − PC) VA(z)+ PC, with VA(z) =
(

1− 4z
2

h
2

)2N+1

(1)

where PA and PC are the properties of materials A and C, respectively, VA(z) is the
sandwich gradation equation, and N is the gradation exponent of the material.

The cylindrical shell is resting on a discontinuous elastic foundation in the
circumferential direction, delimited by the angles θE and θD, as shown in Fig. 1b,
where the origin of the circumferential coordinate axis is also shown. The cylindrical
shell is submitted to a time-dependent lateral pressure given by

P(t) = PLWθ sin
(mπx

L

)
cos (ω1t) (2)

Fig. 1 Shell characteristics: (a) geometry, (b) discontinuous foundation in the circumferential
direction, and (c) harmonic lateral pressure
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where PL is the forcing magnitude, Wθ is a function that determines the distribution
of the load in the circumferential direction, m is the number of half-waves in the
longitudinal direction, ω1 is the excitation frequency, and t is the time.

The nonlinear equations of motion based on Donnell shallow theory are given
by:

−Nx,x − 1
R
Nxθ,θ = 0, − 1

R
Nθ,θ −Nxθ,x = 0,

ρ1ẅ −Mx,xx − 2
R
Mxθ,xθ − 1

R2Mθθ,θθ + Nθ

R
+ (Nxβx0 +Nxθβθ0),x

+ 1
R
(Nxθβx0 +Nθβθ0),θ − PB − P = −2η1ρ1ω0ẇ − η2C11∇4ẇ.

(3)

where Nx, Nθ , Nxθ are membrane stresses and Mx, Mθ , Mxθ are bending and torsional
moments, ∇4 the bi-harmonic operator in cylindrical coordinates, η1 is the viscous
damping parameter, η2 the material damping, ω0 the natural frequency, and ρ1 the
average density of the material.

The membrane and flexural stress are given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Nx

Nθ

Nxθ

Mx

Mθ

Mxθ

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢⎢⎢⎢⎢
⎢
⎣

A11 A12 0 B11 B12 0
A12 A11 0 B12 B11 0
0 0 A66 0 0 B66

B11 B12 0 C11 C12 0
B12 B11 0 C12 C11 0
0 0 B66 0 0 C66

⎤

⎥
⎥⎥⎥⎥⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

εx0

εθ0

γxθ0

κx0

κθ0

κxθ0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4)

where the extensional, coupling, and bending stiffnesses of the FG material are
given, respectively (i, j = 1, 2, 6):

(
Aij , Bij , Cij

) =
+h/2∫

−h/2

Qij

(
1, z, z2

)
dz, with Q11 = E

1− ν2
, Q12 = Eν

1− ν2
, Q66 = E

2 (1− ν)

(5)

and εx0, εθ0, γ xθ0, κx0, κθ0, and κxθ0 are defined as:

[εx0, εθ0, γxθ0] =
[
u,x + 1

2w,x
2, 1

R

(
v,θ + w

)+ w,θ
2

2R2 ,
1
R
u,θ + v,x + w,xw,θ

R

]

[βx0, βθ0, κx0, κθ0, κxθ0] =
[
−w,x,−w,θ

R
,w,xx,−w,θθ

R2 ,− 2w,xθ
R

]

(6)

The elastic foundation reaction, considering the Winkler model, is given by:

PB = −KWw [H (θ − θE)−H (θ − θD)] (7)

where KW is the foundation stiffness and H is the Heaviside function.
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3 Reduced-order Model of the Shell Considering
Discontinuous Boundary in the Circumferential Direction

To obtain the reduced-order model and following numerical results, consider a
simply supported perfect cylindrical shell with radius R = 0.6 m, length L = 0.6 m,
thickness h = 0.003 m, and θD = −θE = 22.5◦. The FG shell is composed of the
following materials: steel (material A) and a ceramic (material C), whose properties
are: EA = 205.1× 109 N/m2, ρA = 8900 kg/m3, νA = 0.31, EC = 322.3× 109 N/m2,
ρC = 2370 kg/m3, and νC = 0.24.

As shown by Amabili and Dalpiaz [1], to ensure the convergence of the solution
considering the elastic base circumferential discontinuity, a large number of terms
in the Fourier series of the transversal displacement is necessary. However, in a
nonlinear dynamic scenario, this consideration demands a lot of computational
effort. So, from a perturbation procedure [6], a reduced-order model to describe
the nonlinear dynamic behavior of the FG cylindrical shell is derived. To achieve
this purpose, the ABAQUS® FEM software is used to model the problem and the
resulting displacement field is expanded in a Fourier series.

For the quantification of the participation of each term in the modal expansion,
the Parseval theorem is employed, assuming that the velocity field is analogous to
the transversal displacement. Then, the relation of the kinetic energy of shell and
the terms of Fourier series is given by:

∫

L

∫

h

∫

2πR

ρḟ (θ)2dθ dz dx = ω0
2

2π

∫

L

∫

h

∫

ω

ρF(iω)2dω dz dx (8)

where ω0 is the natural frequency of the shell and F(iω) is the amplitude of the
frequency obtained by the Fourier transform.

Figure 2 shows that the main cosine and sine modes of the Fourier series are
similar in magnitude [1], where KW = KnWA11/R2. However, for intermediary
terms, the magnitudes of the “cosine modes” and “sine modes” are different, with
the “cosine modes” higher than those of the “sine modes”. The slow decrease
of the modal amplitudes justifies the large number of terms necessary to obtain
the convergence of displacement field in [1]. These results are independent of the
stiffness of the elastic base.

Here, a perturbation method is adopted to derive a consistent reduced-order
nonlinear model of displacement field. Figure 3 shows the behavior of accumulated
kinetic energy, where it is observed that in the region 7 < ω < 9 represents 80% and
85% total kinetic energy of, respectively, the cosine series and sine series. Thus, the
seed solution for the perturbation method [6] is given by:

w0 =
∑

i=8,9

W
C

i,1 (τ ) cos (iθ) sin (qξ)+
∑

i=8,9

W
S

i,1 (τ ) sin (iθ) sin (qξ) (9)
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Fig. 2 Frequency spectrum of the cylindrical shell for different KnW values. (a) “Cosine mode”
and (b) “Sine mode”. — KnW = 0.003, — KnW = 0.015, — KnW = 0.03, — KnW = 0.06 and —
KnW = 0.12

Fig. 3 Accumulated energy in frequency domain for different KnW values. (a) “Cosine modes”
and (b) “Sine modes”. — KnW = 0.003, — KnW = 0.015, — KnW = 0.03, — KnW = 0.06 and —
KnW = 0.12

where q = mπ , ξ = x/L, with 0 ≤ ξ ≤ 1, m = 1 and coefficients WC, WS are related
with the cosine and sine modes, respectively. Using this seed solution, the modal
solution derived through the perturbation method can be written as
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w= ∑

β=1,3

∑

i=7,8,9,10,24,25,26,27

{[
WC
i,β (τ ) cos (iθ)+WS

i,β (τ ) sin (iθ)
]

sin (βqξ)
}

+ ∑

i=0,1,16,17,18

{[
WC
i,0 (τ ) cos (iθ)+WS

i,0 (τ ) sin (iθ)
] [

3
4− cos (2qξ)+ 1

4 cos (4qξ)
]}

(10)

where τ = tω0. This solution takes into account the modal couplings arising from
the quadratic and cubic nonlinear terms in Eq. (3).

To ensure convergence of the vibration amplitude up to twice the shell thickness
41 terms are used in Eq. (10). To obtain a consistent modal expansion for the u and
v displacements, the procedure proposed by Silva [7] and Gonçalves et al. [8] is
applied resulting in:

u = ∑

β=1,3,5,7

∑

i=7,8,9,10,24,25,26,27

{[
UC
i,β (τ ) cos (iθ)+ US

i,β (τ ) sin (iθ)
]

cos (βqξ)
}

+ ∑

β=2,6

∑

i=0,1,2,15,16,17,18,19,32,33,34,35,36

{[
UC
i,β (τ ) cos (iθ)+ US

i,β (τ ) sin (iθ)
]

×
[
sin (βqξ)− β

β+2 sin ((β + 2) qξ)
]}

(11)

v = ∑

β=1,3,5,7

∑

i=7,8,9,10,24,25,26,27

{[
V C
i,β (τ ) cos (iθ)+ V S

i,β (τ ) sin (iθ)
]

sin (βqξ)
}

+ ∑

β=0,4

∑

i=0,1,2,15,16,17,18,19,32,33,34,35,36

{[
V C
i,β (τ ) cos (iθ)+ V S

i,β (τ ) sin (iθ)
]

× [cos (βqξ)− cos ((β + 2) qξ)]}
(12)

These modal expansions satisfy the following boundary conditions for a simply
supported cylindrical shell:

u = 0 at x = L

2
; v,w = 0 at x = 0, L. (13)

Using the in-plane equilibrium equation in Eq. (3) together with the boundary
conditions given by Eq. (13), the amplitudes UC, US, VC

, and VS are determined as a
function of the transversal modal amplitude WC and WS through a standard Galerkin
procedure. Then the resulting expressions are used to discretize the equation of
motion in a transversal direction in Eq. (3), obtaining a system of second-order
nonlinear equations in the time variable τ written in terms of WC and WS only.
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4 Numerical Results

In this section, the physical and geometric parameters are the same defined in Sect.
3 and a non-dimensional value of the foundation stiffness KnW = 0.003 is adopted.

To obtain resonance curves, a viscous damping η1 = 0.001 (η2 = 0) and a lateral
harmonic pressure magnitude PL = 5000 N/m2 are adopted. The function Wθ , given
by:

Wθ = [P8C cos (8θ)+ P8S sin (8θ)+ P9C cos (9θ)+ P9S sin (9θ)] (14)

with terms P8C, P8S, P9C, and P9C varying in the interval 0–1 are used here to excite
the modes included in the initial (seed) expansion of the perturbation method. The
geometrical parameters are chosen such that at least two natural frequencies are
very close when considering a complete elastic base. These frequencies occur for
vibration modes (n,m) = (8,1) and (n,m) = (9,1) where the natural frequencies are,
respectively, 2985.62 rad/s and 3008.69 rad/s.

Figures 4 and 5 show the normalized maximum modal amplitude as a function of
normalized frequency parameter (ω1/ω0) for the four main modes present in the seed
solution of the perturbation method, considering two different driven modes. These
resonance curves were obtained through a brute force method and exhibit, mainly in
the resonance region, the excitation of all initial modes independent of the excited
circumferential mode where it is observed an unstable region with quasi-periodic
solution. Several bifurcation points, as Hopf, limit point, and torus, can be found in
these complex resonance curves.

It is possible to observe in Fig. 6 a competition between a quasi-periodic solution
(black phase portrait) and periodic solution (blue phase portrait) for a chosen
frequency parameter of each case of excitation of circumferential mode. Figure
6a is related with Fig. 4, exciting directly the cosine mode (8,1), while Fig. 6b is
related with Fig. 5, exciting directly the cosine mode (9,1). In these figures, Poincaré
sections are marked in red to demonstrate the quasi-periodic solution and in blue for
the periodic 1T solution. The chosen plane indicates a modal coupling between the
basic modes of the initial solution of the perturbation method.

Due to modal coupling caused by the quadratic and cubic nonlinearities present
into nonlinear equation motion of the FG cylindrical shell, a secondary resonance
region is observed near ω1/ω0 = 1.1, as shown in Fig. 7. This modal amplitude
WC

10,1 appears in the modal solution, Eq. (10), as a result of the modal coupling of
the seed solution and is excited in the main resonance region, creating this secondary
resonant peak in the resonance curve for both driven modes. This second resonance
peak can appear for other modal amplitudes as, for example, shown in zoomed
regions of Figs. 4 and 5.
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Fig. 4 Resonance curves for the modes (8,1) and (9,1) of the seed solution of transversal
displacement field (a) WC

8,1, (b) WC
9,1, (c) WS

8,1, (d) WS
9,1. (KnW = 0.003, P8C = 1, P8S = P9C

= P9S = 0)

5 Conclusions

In this work, the nonlinear dynamic behavior of a FG cylindrical shell with a
discontinuous elastic foundation in the circumferential direction is investigated.
Applying Donnell’s nonlinear shallow shell theory, the resultant nonlinear partial
differential equation of motion is discretized as a set of nonlinear differential
equations in time domain by the application of the standard Galerkin method. A
fast Fourier transform is applied to obtain the main vibration modes later used
as the seed solution of the perturbation method, which is used in turn to derive
a consistent reduced-order nonlinear discrete model that represent the behavior
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Fig. 5 Resonance curves for the modes (8,1) and (9,1) of the seed solution of transversal
displacement field (a) WC

8,1, (b) WC
9,1, (c) WS

8,1, (d) WS
9,1. (KnW = 0.003, P9C = 1, P8C = P8S

= P9S = 0)

of the FG cylindrical shells. This allows a detailed nonlinear bifurcation analysis
of the shell in the main resonance region. The results show the influence on the
nonlinear resonance curves of the presence of circumferential discontinuity in the
elastic foundation that leads to competition between periodic and quasi-periodic
solutions and local bifurcations in resonance curves. Also, a secondary resonance
region arises due to the discontinuity of the elastic foundation. It is associated with
the frequency of higher modes of shell that arise due to modal coupling present in
the displacement fields of the FG cylindrical shell.
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Fig. 6 Phase portraits with Poincaré map with KnW = 0.003, P8S=P9S = 0: (a) ω1/ ω0 = 1.0616
(P8C = 1, P9C = 0), (b) ω1/ω0 = 1.0576 (P8C = 0, P9C = 1)

Fig. 7 Resonance curves for (a) WC
10,1 (P8C = 1, P8S = P9C = P9S = 0), (b) WC

10,1 (P9C = 1, P8S
= P8C = P9S = 0). (KnW = 0.003)
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The Effect of Boundary Conditions
on Nonlinear Vibrations of Plates
on a Viscoelastic Base via the Fractional
Calculus Standard Linear Solid Model

Marina V. Shitikova and Anastasiya I. Krusser

1 Introduction

The dynamic response of plates on a viscoelastic foundation has been deeply
investigated in the last few decades. In order to describe the properties of the
foundation, different models of viscoelasticity are used [1]. Younesian et al. noted in
their thorough review [1] that “new foundation models can be developed considering
fractional nonlinearity and fractional damping”. Nowadays, the fractional calculus
plays an important role in solving problems of structural mechanics [2], thereby
the fractional derivative Winkler-type or Pasternak-type models of viscoelastic
foundations are becoming increasingly widespread. Thus, a fractional derivative
Kelvin-Voigt model of Winkler-type is proposed in [3] to examine the quasi-
static problem of a rectangular plate rested on a viscoelastic foundation, which is
subjected to uniformly distributed loads. The linear vibrations of elastic and vis-
coelastic Kirchhoff–Love plates on a fractional derivative Kelvin–Voigt foundation
of the Pasternak type have been analyzed in [4, 5], respectively. Zhang et al. [6]
applied the fractional derivative standard linear solid model to investigate the time-
dependent behavior of a simply supported linear elastic plate on the viscoelastic
Winkler-type foundation and compared numerical results with a classical model.
The interaction between the simply supported linear elastic plate and viscoelastic
Pasternak-type foundation described by the fractional Scott–Blair model has been
considered in [7] to study the deflections and bending moments varying with time.
Through theoretical and numerical results, the authors found that the fractional order
has a dramatic influence on the deflection and bending moment, especially when
the duration time is large. Praharaj et al. [8] studied the linear free vibration and
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the step-load-induced transient response of a thin plate on a fractional Kelvin–
Voigt foundation for different types of boundary conditions. The same problem
is solved for moving point load in [9]. The authors of [8, 9] have emphasized
that the classical integer-order foundation model overestimates the damping of
the foundation, thereby underestimates the dynamic deflection and the associated
stresses. Hosseinkhani et al. [10] studied the vibration of a linear elastic Kirchhoff–
Love plate based on the nonlinear foundation, the viscoelastic properties of which
are described by the fractional Kelvin–Voigt model of the Winkler-type taking into
account the nonlinear stiffness of foundation.

Reference to [3–10] clearly shows that all of the considered above papers are
devoted to the analysis of linear Kirchhoff–Love plate vibrations. However, in
the literature, there are reports on the research of the nonlinear vibrations of the
von Karman plate in the viscoelastic medium, the damping properties of which
are described by the Kelvin–Voigt model with fractional derivatives, accompanied
by the internal resonance 2:1 [11]. This approach was later generalized for free
vibrations of the plate in the viscoelastic medium for different types of the internal
resonance [12]. The force-driven vibrations of fractionally damped plates subjected
to primary and internal resonances were studied in [13]. The dynamic response of
a rectangular nonlinear plate resting on a viscoelastic Winkler-type foundation, the
damping features of which are described by the fractional derivative Kelvin-Voigt
model, for the first time was considered in [14]. The standard linear solid model with
fractional derivatives for defining the viscoelastic properties of the Winkler-type
foundation was applied in [15]. But in these two papers, the boundary conditions of
the plate are restricted to simply supported case, though there are known different
combinations of simple boundary conditions in the literature for rectangular plates
[16].

Thus, in the present paper, the influence of boundary conditions on the nonlinear
vibrations of the “plate-foundation” system is studied for the case, when the
properties of the foundation and of the surrounding medium are described by
the fractional derivative standard linear solid model and Kelvin–Voigt model,
respectively.

2 Problem Formulation

Let us consider nonlinear vibrations of a simply supported elastic plate in a
viscoelastic medium, based on a viscoelastic foundation (Fig. 1), the dynamic
response of which is described by the von Karman equation in terms of the plate’s
lateral deflection w = w(x, y, t) and the Airy’s stress function φ:

D∇4w + ρh
∂2w

∂t2
− ∂2w

∂x2

∂2φ

∂y2 −
∂2w

∂y2

∂2φ

∂x2 + 2
∂2w

∂x∂y

∂2φ

∂x∂y
= q − F1 − F2

(1)
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Fig. 1 Plate on a viscoelastic foundation modeled by the fractional derivative standard linear solid
model

∇4φ = Eh

[(
∂w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]

(2)

where ∇4 = ∂4/∂x4 + 2∂4/∂x2∂y2 + ∂4/∂y4 is the biharmonic operator, q is the
external load, D = Eh3/12(1 − ν2) is the plate’s cylindrical rigidity, E and ν are
the elastic modulus and Poisson’s ratio of the plate’s material, respectively, h and
ρ are its thickness and density, t is the time, F2 = λ̃w is the reaction force of the
viscoelastic foundation, F1 = æ1τ

γ1
1 D

γ1
0+w is the damping force of the viscoelastic

medium possessing the retardation time τ 1 and damping coefficient æ1, which
is modeled by the viscoelastic Kelvin–Voigt model with the Riemann–Liouville
derivative Dγ1

0+ of the fractional order γ 1 (0 < γ 1 ≤ 1) [17]:

D
γ

0+x(t) =
d

dt

∫ t

0

x
(
t − t ′

)
dt ′

Γ (1− γ ) t’γ
(0 < γ = γ1 ≤ 1) (3)

and $(1 − γ ) is the Gamma function.
Let us assume, following [18], that the compliance operator of a viscoelastic

foundation is described by the standard linear solid model with the Riemann–
Liouville fractional derivative Dγ

0+ (3) when γ = γ 2:

λ̃ = λ∞

[

1− æ2νε
1

1+ τ
γ2
2 D

γ2
0+

]

(4)

where λ∞ is the coefficient of instantaneous compliance of the foundation, νε =
�λλ−1∞ ,Δλ= λ∞ − λ0 is the defect of the compliance, i.e., the value characterizing
the decrease in the compliance operator from its non-relaxed value λ∞ to its relaxed
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Table 1 Plate mode shapes
for different B.Cs

B.Cs. Wminj (x, y)

SSSS sin πm1x
a

sin πn1y
b

CCCC
(

1− cos 2πm1x
a

) (
1− cos 2πn1y

b

)

CSCS
(

1− cos 2πm1x
a

)
sin πn1y

b

CCSC
(

cos 3πm1x
2a − cos πm1x

2a

) (
1− cos 2πn1y

b

)

value λ0, and τ 2 and æ2 are the retardation time and damping coefficient of the
viscoelastic foundation, respectively.

The following boundary conditions could be added to the set of Eqs. (1) and (2)
at each edge:

1. Simply supported edges (S)

at x = 0 and a, w = ∂2w

∂x2 = 0; at y = 0 and b, w = ∂2w

∂y2 = 0.

(5)

2. Clamped edges (C)

at x = 0 and a, w = ∂w

∂x
= 0; at y = 0 and b, w = ∂w

∂y
= 0.

(6)

The following four types of boundary conditions (B.Cs) of the plate will
be considered: all edges are simply supported (SSSS); all edges are clamped
(CCCC); two opposite edges are clamped and other two edges are simply supported
(CSCS), and one edge is simply supported and others are clamped (CCSC). In the
abbreviation of B.Cs the letter symbols are used, for example, CSCS means a plate
with edges x = 0 and x = a clamped (C), y = 0 and y = b simply supported (S).

In order to identify the possibility of the occurrence of the internal resonance
during nonlinear vibrations of a plate based on a viscoelastic foundation and to
carry out its subsequent analysis, suppose that only two natural modes of vibrations
with numbers m1n1 Ë m2n2 are excited. Then the deflection of the plate could be
represented in the following form:

w (x, y, t) = x1(t)Wm1n1 (x, y)+ x2(t)Wm2n2 (x, y) , (7)

where xi(t) (i= 1, 2) are generalized displacements, and Wmini (x, y) are the eigen
functions. The mode shape functions for various B.Cs are presented in Table 1 [19].

Substituting the proposed solution (7) in (2), taking into account the boundary
conditions to be considered for each specific case, and integrating with account for
the orthogonality conditions of eigen functions yield the stress function. Thus, for
the case of simply supported (SSSS) plate it has following form [15]:
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φ (x, y, t) = Eh
32ξ2

(
n2

1
m2

1
cos 2πm1x

a
+ ξ4 m

2
1

n2
1

cos 2πn1y
b

)
x1(t)

2

+ Eh
32ξ2

(
n2

2
m2

2
cos 2πm2x

a
+ ξ4 m

2
2

n2
2

cos 2πn2y
b

)
x2(t)

2

+ Eh
4

[(
B2 cos π(m1+m2)x

a
cos π(n1−n2)y

b

+ C2 cos π(m1−m2)x
a

cos π(n1+n2)y
b

)
β2

1

−
(
A2 cos π(m1+m2)x

a
cos π(n1+n2)y

b

+D2 cos π(m1−m2)x
a

cos π(n1−n2)y
b

)
β2

2

]
x1(t)x2(t),

(8)

where ξ = b/a, β1 = (m1n2 + m2n1), β2 = (m1n2 − m2n1), and coefficients A, B,
C, and D are presented in [15].

The expressions for the stress function for the CCCC, CSCS, and CCSC types of
B.Cs could be obtained in the same manner, but they are not presented here due to
the cumbersomeness of the formulas.

Substituting the assumed two-term expansion for the deflection function of the
plate (7) and the corresponding stress function in the equation of motion of the plate
(1) resting on the viscoelastic Winkler-type foundation (4) yields the following set
of nonlinear differential equations with respect to the generalized displacements:

ẍ1+Ω2
1x1+λ∞

ρh

[
1−æ2νε�∗γ

(
τ
γ2
2

)]
x1+α1x

3
1+α2x1x

2
2+

æ1τ
γ1
1

ρh
D
γ1
0+x1=P1(t),

(9)

ẍ2+Ω2
2x2+λ∞

ρh

[
1−æ2νε�∗γ

(
τ
γ2
2

)]
x2+α3x

3
2+α4x2x

2
1+

æ1τ
γ1
1

ρh
D
γ1
0+x2=P2(t),

(10)

where Pi(t) =
a∫

0

b∫

0
q(x,y,t)Wmini

(x,y)dxdy

ρh
a∫

0

b∫

0

[
Wmini

(x,y)
]2
dxdy

, αi are the coefficients depending both on the

vibration mode numbers and the type of B.Cs (which are not given here due to their
bulky expressions), �∗γ

(
τ
γ2
2

) = 1
1+τγ2

2 D
γ2
0+

is the Rabotnov dimensionless fractional

operator [20], and Ω2
i are the natural frequencies of the linear vibrations of the plate

defined as

1. SSSS plate

Ω2
i =

Eπ4h2

12ρ
(
1− ν2

)
b4

(
ξ2m2

i + n2
i

)2
, (11)
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2. CCCC plate

Ω2
i =

4Eπ4h2

27ρ
(
1−ν2

)
b4

(
3ξ4m4

i+2ξ2m2
i n

2
i+3n4

i

)
, (12)

3. CSCS plate

Ω2
i =

Eπ4h2

9ρ
(
1−ν2

)
b4

(
4ξ4m4

i+2ξ2m2
i n

2
i+0.75n4

i

)
, (13)

4. CCSC plate

Ω2
i =

Eπ4h2

18ρ
(
1−ν2

)
b4

(
3.85ξ4m4

i+5ξ2m2
i n

2
i+8n4

i

)
. (14)

Reference to Eqs. (11), (12), (13), and (14) shows that the fully clamped CCCC
rectangular elastic plate has the greatest values of natural frequencies compared to
other B.Cs, and after that in the descending order are the natural frequencies of
CCSC, CSCS, and SSSS plates, respectively.

3 Method of Solution and Numerical Results

The set of two nonlinear Eqs. (9) Ë (10) could be solved by the generalized method
of multiple time scales, which was proposed by Rossikhin and Shitikova [21, 22] in
1998 by involving the expansion of the fractional derivative in terms of different-
order time scales in the traditional procedure of this method.

Expanding the Rabotnov dimensionless fractional operator �∗γ
(
τ
γ2
2

)
in a Taylor

series also in terms of new time scales [2], assuming damping coefficients æi to
be small values æi = ε2μi, where μi are finite values, and applying the procedure
for eliminating the circular terms from the governing equations yield the solvability
conditions, whence it follows that the one-to-one internal resonance is possible in
the case when

ω1 = ω2, (15)

where ω1 and ω2 are vibration frequencies of the mechanical system “plate –
fractional derivative standard linear solid foundation”

ω2
i = Ω2

i +
λ∞
ρh

. (16)

Then the resolving nonlinear differential equations in the amplitudes ai = ai(T2)
and phases ϕi = ϕi(T2) of nonlinear vibrations have the following form:
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(
a2

1

)· + s1a
2
1 = −ω−1

1 α2a
2
1a

2
2 sin δ, (17)

(
a2

2

)· + s2a
2
2 = ω−1

2 α4a
2
1a

2
2 sin δ, (18)

ϕ̇1 = 1

2
λ1 + 3

2
α1ω

−1
1 a2

1 + α2ω
−1
1 a2

2 +
1

2
α2ω

−1
1 a2

2 cos δ, (19)

ϕ̇2 = 1

2
λ2 + 3

2
α3ω

−1
2 a2

2 + α4ω
−1
2 a2

1 +
1

2
α4ω

−1
2 a2

1 cos δ, (20)

where δ = 2(ϕ2 − ϕ1) is the phase difference, ψi = 1
2 πγ i (i = 1, 2) ,

si=μ1τ
γ1
1 ω

γ1−1
i

sinψ1+λ∞νεμ2ω
−1
i
R sinΦ, R=

√
1+2(τ2ωi)

γ2 cosψ2+(τ2ωi)
2γ2 ,

λi=μ1τ
γ1
1 ω

γ1−1
i

cosψ1−λ∞νεμ2ω
−1
i
R cosΦ, tanΦ= (τ2ωi)

γ2 sinψ2
1+(τ2ωi)

γ2 cosψ2
.

(21)

and μi = μi
ρh

(i = 1, 2).
The set of Eqs. (17), (18), (19) and (20) is the governing one for the amplitudes

and phases of nonlinear free vibrations of the elastic plate for the different B.Cs
on a viscoelastic Winkler-type foundation, damping features of which are defined
by the fractional derivative standard linear solid model (4), when vibrations occur
in a viscoelastic surrounding medium, properties of which are described by the
fractional derivative Kelvin–Voigt model. Vibration frequencies and coefficients
α1 − α4 in the expressions (17), (18), (19) and (20) depend on the type of boundary
conditions.

Equations (17), (18), (19) and (20) are solved numerically using the procedure
suggested in [13] for fractionally damped plates subjected to primary and internal
resonances. A quadratic plate was considered as an example. Figure 2 clearly shows
the energy exchange between interacting modes of undamped and damped vibration
of the plate on the elastic and viscoelastic foundation via the fractional calculus
standard linear solid model, respectively, at γ 2 = 0 (Fig. 2a) and γ 2 = 0.1 or
γ 2 = 0.25 (Fig. 2b). With appearing of the damping properties of the environment
γ 1 �= 0 (Fig. 2a), in which the plate vibrates, the damping of the vibrations increases
with the growth of the fractional parameter. Reference to Fig. 2b shows that the
increase in the fractional parameter of the viscoelastic foundation results in a
decrease in dimensionless amplitudes of nonlinear vibrations.

Reference to Fig. 3 shows the decrease in the dimensionless displacements
X1 and X2 of the SSSS plate with the increase in fractional parameters of the
surrounding viscoelastic medium and viscoelastic foundation.

Then knowing the generalized functions xi(t) and eigenmodes for the correspond-
ing boundary conditions Wmini (x, y) (see, Table 1), the final solution for the plate
displacement w(x, y, t) could be constructed via relationship (7).
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Fig. 2 The T2-dependence of the amplitudes of free vibrations for a simply supported rectangular
plate in the case of 1:1 internal resonance:a1 – dashed lines,a2 – solid lines
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Fig. 3 The T2-dependence of the dimensionless displacements of the plate on a visco-elastic
foundation described by the fractional derivative standard linear solid model

4 Conclusions

In the present paper, the influence of various boundary conditions on the free
nonlinear vibrations of a von Karman elastic plate based on a viscoelastic Winkler-
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type foundation is studied. The damping features of the viscoelastic foundation
are described by the fractional derivative standard linear solid model, while the
damping properties of the environment in which the vibrations occur are described
by the Kelvin–Voigt viscoelastic model with the Riemann–Liouville fractional
derivative. The governing equations of motion are presented in the general form with
coefficients at nonlinear terms corresponding to each type of boundary conditions.
The analysis of natural frequencies shows that the stiffer boundary conditions, the
greater value of the frequency of vibrations. The CCCC rectangular elastic plate has
the greatest value of natural frequency compared to other B.Cs.

The governing equations are obtained for determining nonlinear amplitudes and
phases in the case of free vibrations, when the natural frequencies of the two
dominant vibration modes are close to each other. The resulting set of equations
allows one to control the damping properties of the external environment and the
foundation by changing the fractional parameters from zero, what corresponds to
an elastic medium and/or elastic foundation, to unit, what is in the agreement of the
traditional standard linear solid model, resulting in the expansion of the range of
applicability of the solution obtained. The obtained set of equations has been solved
numerically for defining dimensionless amplitudes, as well as for calculating the
values of dimensionless displacements for different values of fractional parameters.
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Augmented Perpetual Manifolds,
a Corollary: Dynamics of Natural
Mechanical Systems with Eliminated
Internal Forces

Fotios Georgiades

1 Introduction

Perpetual points (PPs) of a dynamical system have been defined recently by Prasad
in [1]. They are the set of points that arise by setting the equations of accelerations
and jerks equal to zero for nonzero velocities. By setting the accelerations zero
then also the jerks are zero, but, at least for linear systems, the jerks are providing
the additional equations needed for defining all the generalized coordinates and
their velocities. The differential equations describing the motion of mechanical
systems are of second order, therefore for zero accelerations (zero jerks too) and
zero velocities, after writing the system in first order, lead to the fixed points of
the system. With that view, the following can be said: the PPs are ‘generalizing’
the equilibrium points of mechanical systems for zero acceleration vectors but
for nonzero velocities. The role of PPs in describing the dynamics of dynamical
systems is ongoing research. In [2], experimental verification of the PPs, in a tilted
pendulum, has been done. All the articles relative to PPs can be grouped in four
research directions. The first one is about theoretical mathematical and experimental
developments of PPs [1–4]. The second is to use PPs for identifications of hidden
and chaotic attractors in nonlinear dynamical systems [5–13]. In [1], stated the
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possibility that the PPs to be used for identification for dissipative systems which is
the third research direction [14–18]. In [19–21], the PPs of systems of differential
equations, describing the motion of mechanical systems, have been examined with
the view of mechanics which is the fourth group. In [19–20], with proved theorems
declared, that the PPs, for linear mechanical systems, are associated with rigid body
motions. The PPs corresponding to rigid body motions are not just a few points,
but they are forming the perpetual manifolds [20]. The manifolds approach of
PPs extended in [21], and new concepts have been defined, such as the perpetual
mechanical systems and, the augmented perpetual manifolds. In [21], in a proved
theorem, the conditions, that an N-degrees of freedom (dof) mechanical flexible
system, with the application of external forces, can move as a rigid body, were
defined. Otherwise stated, the system has a solution in the form of exact augmented
perpetual manifolds.

This article is the continuation of the work done in [21], by examining the internal
forces of the perpetual mechanical systems in augmented perpetual manifolds.
The definitions and the theorem, that are in [21], recalled in Sect. 2.1. Then, by
examining the internal forces of the perpetual mechanical systems, a corollary that
is following the theorem of [21], in Sect. 2.2 is proven. In Sect. 3 with examples,
the validity of the corollary, analytically in Sect. 3.1 and numerically in Sect. 3.2, is
shown.

2 Theoretical Analysis

2.1 Introduction to the Theory

In this section, some definitions and the theorem will be recalled from [21]. In [21],
the 2N dimensional exact perpetual manifolds of rigid body motions, which arise
by examining the perpetual points of N-dof mechanical systems, have been defined
as follows,

S = {
(qs, . . . , qs, q̇s , . . . , q̇s) , (qs, q̇s) ∈ R× R

∗} . (1)

The mechanical systems with sets of PPs that correspond to exact perpetual
manifolds are called perpetual mechanical systems [21].

In [21], addressing the question ‘Is it possible in a mechanical system all
accelerations to be equal but not necessarily zero’ the exact augmented perpetual
manifolds can be defined as follows,

The 2N+ 1 dimensional exact augmented perpetual manifolds, e.g. X of a N-dof
mechanical discrete system, with generalized coordinates qi, that admits solutions
of perpetual manifolds, arise when,

q̈i (t) = q̈a(t), for = 1, . . . , N, and q̈a(t) ∈ R, (2)
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and the solutions of the system in state space, define them, as,

X =
{
(t, qa(t), . . . , qa(t), q̇a(t), . . . , q̇a(t)) : (t, qa(t), q̇a(t))∈R3

}
. (3)

Using the definitions above the following theorem in [21] has been proven,
Any N(≥2)-degrees of freedom discrete mechanical system with generalized

coordinates qi(t) that can be written as a perpetual mechanical system with external
forcing that is described by the following system of differential equations,

[
Mi,j (t, ql(t), q̇m(t))

]× {q̈i (t)} +
[
Ci,j

]× {q̇i (t)} +
[
Ki,j

]× {qi(t)}

+
{
FNL
i (qn(t), q̇o(t))

}
={Fi

(
t, qp(t), q̇q(t)

)}
, for i=1, . . . , N, j=1, . . . , N,

l,m, n, o, p, q ∈ {1, 2, . . . , N} , and (qi(t), q̇i (t), q̈i (t)) ∈ R
3, (4)

and admits unique solutions for the following matrices,
[Mi,j] is a real N × N inertia matrix with elements that can be, nonsmooth,

nonlinear, time and state depended, functions but having at least one nonzero sum
of k-row for all time instants,

[Ki,j] and [Ci,j], are real N × N constant, stiffness and proportional to velocity
vector, matrices,{

FNL
i

}
is a N × 1 vector of nonlinear internal forces with elements state

depended nonlinear functions which can be nonsmooth but single-valued for rigid
body motions, and FNL

i (qs, 0) = 0 for qs ∈ R,
{Fi} is a real N × 1 vector of external forces with elements, time and state

dependent, maybe nonlinear and nonsmooth functions,
if the external forces (Fi) with the reference k-mass external force (Fk) are related

as follows,

Fi (t, qa(t), q̇a(t)) =
∑N

j=1 Mi,j (t, qa(t), q̇a(t)) · Fk (t, qa(t), q̇a(t))
∑N

j=1 Mk,j (t, qa(t), q̇a(t))
,

for i, k ∈ {1, 2, . . . , N} , and qa(t) = qi(t), q̇a(t) = q̇i (t), (5)

then, the solution of any of the following differential equations,

q̈a(t) = Fk (t, qa(t), q̇a(t))
∑N

j=1 Mk,j (t, qa(t), q̇a(t))
= G(t, qa(t), q̇a(t)) (6)
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with vector field G, for the following set of initial conditions at the time instant t0,

qi (t0) = qa (t0) , for i = 1, . . . , N, and qa (t0) ∈ R, (7a)

q̇i (t0) = q̇a (t0) , for i = 1, . . . , N, and q̇a (t0) ∈ R, (7b)

is defining the generalized coordinates-qi and their velocities in the exact augmented
perpetual manifold,

X =
{
(t, qa(t), . . . , qa(t), q̇a(t), . . . , q̇a(t)) , (t, qa(t), q̇a(t))∈R3

}
. (8)

The internal forces are comprised of all forces that can be in the left side of
Eq. (4), and they are fulfilling the theorem requirements. The definition of physical
boundaries of the perpetual mechanical system, whereas this is possible, can be done
through the elements that correspond to the internal forces. In case that the overall
system is not perpetual, the rest elements from the perpetual mechanical subsystem
are considered as external forces and must fulfill the theorem requirements.

2.2 Corollary

Based on the above theorem that is proved in [21], the following corollary arises.

Corollary
The internal forces, of a perpetual natural nonlinear mechanical system and the
underlying linear perpetual system, in the exact augmented perpetual manifolds are
zero.

Proof
The equations of motion of a natural mechanical system arise by (4) when the inertia
matrix is constant, and they are given by,

[
Mi,j

]× {q̈i (t)} +
[
Ci,j

]× {q̇i (t)} +
[
Ki,j

]× {qi(t)}

+
{
FNL
i (qn(t), q̇o(t))

}
= {Fi

(
t, qp(t), q̇q(t)

)}
, for i=1, . . . , N, j=1, . . . , N,

n, o, p, q ∈ {1, 2, . . . , N} , and (qi(t), q̇i (t), q̈i (t)) ∈ R
3. (9)

In augmented perpetual manifolds, Eq. (9) is taking the form,
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[
Mi,j

]× {q̈a(t)} +
[
Ci,j

]× {q̇a(t)} +
[
Ki,j

]× {qa(t)} +
{
FNL
i (qa(t), q̇a(t))

}

= {Fi (t, qa(t), q̇a(t))} , for i = 1, . . . , N, j = 1, . . . , N,

and (qa(t), q̇a(t), q̈a(t)) ∈ R
3. (10)

The external forces are given by Eq. (5) and for constant inertia coefficients is
taking the form,

Fi (t, qa(t), q̇a(t)) =
∑N

j=1 Mi,j · Fk (t, qa(t), q̇a(t))
∑N

j=1 Mk,j

, (11)

then, using Eq. (11) in Eq. (10) leads to,

[
Mi,j

]× {1} · q̈a(t)+
[
Ci,j

]× {q̇a(t)} +
[
Ki,j

]× {qa(t)}

+
{
FNL
i (qa(t), q̇a(t))

}
=
⎧
⎨

⎩

N∑

j=1

Mi,j

⎫
⎬

⎭
· Fk (t, qa(t), q̇a(t))∑N

j=1 Mk,j

, (12)

and, considering Eq. (6) in Eq. (12) then, the following is true,

⎧
⎨

⎩

N∑

j=1

Mi,j

⎫
⎬

⎭
· q̈a(t)+

[
Ci,j

]× {q̇a(t)} +
[
Ki,j

]× {qa(t)}

+
{
FNL
i (qa(t), q̇a(t))

}
=
⎧
⎨

⎩

N∑

j=1

Mi,j

⎫
⎬

⎭
· q̈a(t), (13)

that lead to,

[
Ci,j

]× {q̇a(t)} +
[
Ki,j

]× {qa(t)} +
{
FNL
i (qa(t), q̇a(t))

}
= {0} , (14)

which means that the sum of all internal forces is zero. Regarding the underlying
linear system Eqs. (10), (11), (12), (13), and (14) are still valid by omitting the
nonlinear terms._

Noting that, in a document that the proof of the theorem is included, the above
proof can be much more straightforward. The corollary is about the internal forces
when the exact augmented perpetual manifolds are a solution of the perpetual
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mechanical system. The augmented perpetual manifolds solution of a system admits
zero velocity vectors which is excluded by the definition of the PPs. So it is not
sufficient the requirement of the mechanical system to be only perpetual but, as
the corollary states, needs also the existence of a solution in augmented perpetual
manifolds that implies that for zero velocity vectors, as per theorem requirement,
the nonlinear internal force, which is having any positions and velocities depended
form, is zero. In case of zero velocities vector, the linear velocity-depended forces
are zero.

3 Examples

On this section, the theory, in a 2-dof mechanical system with a configuration shown
in Fig. 1, is applied. The analytical solutions, in the exact augmented perpetual
manifolds, are also considered.

The equations of motion are given by,

[
m1 0
0 m2

]
×
{
ẍ1

ẍ2

}
+
[

kl −kl
− kl kl

]
×
{
x1

x2

}
+
[

cl −cl
− cl cl

]
×
{
ẋ1

ẋ2

}

+
{
knl · (x1 − x2)

3 + cnl · tanh (b · (ẋ1 − ẋ2))+ g1 · (x1 − x2)
4 · (ẋ1 − ẋ2)

knl · (x2 − x1)
3 + cnl · tanh (b · (ẋ2 − ẋ1))+ g1 · (x2 − x1)

4 · (ẋ2 − ẋ1)

}

=
{
f1(t)

f2(t)

}
=
{

f1(t)

m2/m1 · f1(t)

}
. (15a)

The external forcing can be any function, and in this case the following form is
considered,

cl
cnl

klf1 f2
m1 m2

knl

Boundary limits of the Perpetual Mechanical System

Fig. 1 The configuration of the 2-dof mechanical system
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f1(t) = Aex · sin (ωex · t) , (15b)

and the internal forces are defined by,

{
Fint,i

} =
[

kl −kl
− kl kl

]
×
{
x1

x2

}
+
[

cl −cl
− cl cl

]
×
{
ẋ1

ẋ2

}
+
{
knl · (x1 − x2)

3

knl · (x2 − x1)
3

}

+
{
cnl · tanh (b · (ẋ1 − ẋ2))

cnl · tanh (b · (ẋ2 − ẋ1))

}
+
{
g1 · (x1 − x2)

4 · (ẋ1 − ẋ2)

g1 · (x2 − x1)
4 · (ẋ2 − ẋ1)

}
. (15c)

The first two terms are well-known linear forces, the third term is corresponding
to spring with cubic nonlinearity, the fourth term is smoothed dry friction force with
b a constant having very high values to approximate ‘sudden jump’ in the vector
field, and the fifth term is a generalized nonlinear force.

3.1 Analytical Solution

Neglecting the external forces in Eq. (15a) then the mechanical system can take the
form,

[
m1 0
0 m2

]

×
{
ẍ1
ẍ2

}

+
[

kl −kl
− kl kl

]

×
{
x1
x2

}

+
[

cl −cl
− cl cl

]

×
{
ẋ1
ẋ2

}

+
{
knl · (x1 − x2)

3

knl · (x2 − x1)
3

+cnl · tanh (b · (ẋ1 − ẋ2))+ g1 · (x1 − x2)
4 · (ẋ1 − ẋ2)

+ cnl · tanh (b · (ẋ2 − ẋ1))+ g1 · (x2 − x1)
4 · (ẋ2 − ẋ1)

}
=
{

0
0

}
. (16)

Replacing the following,

x1 = x2 = xa, (17a)

ẋ1 = ẋ2 = ẋa, (17b)

in Eq. (14) lead to,

[
m1 0
0 m2

]
×
{
ẍa

ÿa

}
=
{

0
0

}
�⇒

{
ẍa

ÿa

}
=
{

0
0

}
. (18)

Therefore, when a solution given by Eq. (3) is considered, which is defining the
exact rigid body motions, the accelerations are equal to zero.
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Taking time derivative in Eqs. (14) then the system of jerk’s equations arises as
follows,

[
m1 0
0 m2

]
×
{ ...
x 1...
x 2

}
+
[

kl −kl
− kl kl

]
×
{
ẋ1

ẋ2

}
+
[

cl −cl
− cl cl

]
×
{
ẍ1

ẍ2

}

+
{

3 · knl · (x1 − x2)
2 · (ẋ1 − ẋ2)+ b · cnl · sech2 (b · (ẋ1 − ẋ2)) · (ẍ1 − ẍ2)

3 · knl · (x2 − x1)
2 · (ẋ2 − ẋ1)+ b · cnl · sech2 (b · (ẋ2 − ẋ1)) · (ẍ2 − ẍ1)

}

+
{

4 · g1 · (x1 − x2)
3 · (ẋ1 − ẋ2)

2 + g1 · (x1 − x2)
4 · (ẍ1 − ẍ2)

− 4 · g1 · (x2 − x1)
3 · (ẋ2 − ẋ1)

2 + g1 · (x2 − x1)
4 · (ẍ1 − ẍ2)

}
=
{

0
0

}
.

(19)

In case, that the generalised coordinates and velocities are given by Eqs. (17a)
and (17b), and considering Eq. (18), then the system of equations of jerks (Eq. 19)
is taking the form,

[
m1 0
0 m2

]
×
{ ...
x a...
y a

}
=
{

0
0

}
�⇒

{ ...
x a...
y a

}
=
{

0
0

}
. (20)

Therefore, also the jerks are equal to zero, and the system of Eq. (16) accepts as
PPs the rigid body motions. The system of Eq. (16) corresponds to the mechanical
system configuration shown in Fig. 1 by neglecting all the external forces. Con-
sidering that the external forces are given by Eq. (15a), all the requirements of the
theorem are fulfilled, and the system has solutions in the exact augmented perpetual
manifolds for equal initial displacements and equal initial velocities. Neglecting the
nonlinearities in Eqs. (15) and (16) the associated linear system arises,

[
m1 0
0 m2

]
×
{
ẍL,1

ẍL,2

}
+
[

kl −kl
− kl kl

]
×
{
xL,1

xL,2

}
+
[

cl −cl
− cl cl

]
×
{
ẋL,1

ẋL,2

}

=
{
f1(t)

m2
/

m1
· f1(t)

}
, (21)

and, neglecting the external forces (equating right-hand side to zero), it is trivial to
show, with a similar way, that it is a perpetual mechanical system. In both systems
(linear and nonlinear systems) in the exact augmented perpetual manifolds, the
solution for both masses is given by the solution of the following equation,

ẍa = f1(t)

m1
. (22)
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The internal forces defined by the Eq. (15c) in the exact augmented perpetual
manifolds are given by,

{
Fint,a,i

} =
[

kl −kl
− kl kl

]
×
{
xa(t)

xa(t)

}
+
[

cl −cl
− cl cl

]
×
{
ẋa(t)

ẋa(t)

}

+
{
knl · (xa(t)− xa(t))

3

knl · (xa(t)− xa(t))
3

}
+
{
cnl · tanh (b · (ẋa(t)− ẋa(t)))

cnl · tanh (b · (ẋa(t)− ẋa(t)))

}

+
{
g1 · (xa(t)− xa(t))

4 · (ẋa(t)− ẋa(t))

g1 · (xa(t)− xa(t))
4 · (ẋa(t)− ẋa(t))

}
=
{

0
0

}
. (23a)

Therefore, the internal forces of the perpetual mechanical system in the exact
augmented perpetual manifolds are all zero. The internal forces, of the underlying
linear system, can be obtained by neglecting the nonlinear forces in Eq. (15c), and
in the augmented perpetual manifolds are given by,

{
Fint,L,a,i

} =
[

kl −kl
− kl kl

]
×
{
xL,a(t)

xL,a(t)

}
+
[

cl −cl
− cl cl

]
×
{
ẋL,a(t)

ẋL,a(t)

}
=
{

0
0

}
.

(23b)

Considering the explicit form of external forces given by Eq. (15b) in Eq. (22),
then, after direct integrations, the solution of the system in the exact augmented
perpetual manifold is given by,

ẋ1(t) = ẋL,1(t) = ẋ2(t) = ẋL,2(t) = ẋa(t)

= − Aex

m1 · ωex
· cos (ωex · t)+ Aex · cos (ωex · t0)

m1 · ωex
+ ẋa (t0) , (24a)

x1(t) = xL,1(t) = x2(t) = xL,2(t) = xa(t) = − Aex

m1 · ω2
ex
· sin (ωex · t)

+
(
Aex · cos (ωex · t0)

m1 · ωex
+ ẋa (t0)

)
· (t − t0)+ Aex · sin (ωex · t0)

m1 · ω2
ex

+ xa (t0) .

(24b)



198 F. Georgiades

In the next section, the analytical findings with the numerical simulations are
verified.

3.2 Numerical Solution

A car with mass m1 = 1500 kg, coupled with a van of mass m2 = 1000 kg are
considered. The linear stiffness of coupler is kl = 5 · 105 N/m and the nonlinear
stiffness is knl = 3 · 105 N/m3. The linear modal analysis of the unforced system
can be done by neglecting damping forces and setting as zero the right-hand side
of Eq. (21), and leads to the following natural frequencies (ωi); for the first mode
ω1 = 0 rad/s and ω2 = 28.87 rad/s for the second mode with period T2 = 0.2176 s.
The damping coefficient is cl = 346.41 N · s/m and, arises by considering 1%
damping ratio for the second mode. The nonlinear damping coefficient has the same
value cnl = 516.398 N with b = 106 s/m (significantly high to approximate dry
friction), and the generalized force coefficient is given by g1 = 5 · 105 N · s/m5.
The simulations time interval is 4 · T2 = 0.8706237 s. The excitation frequency
is equal to the second natural frequency (ω2) of the associated linear system.
During the first half-time the excitation amplitude is Aex, 1 = 5 · 106 N and for
the second half is Aex, 2 = − 4.3301269 · 106 N. The initial conditions are
x1(0)= xL, 1(0)= x2(0)= xL, 2(0)= 1 m and ẋ1(0) = ẋL,1(0) = ẋ2(0) = ẋL,2(0) =
100 m/s.

All the numerical simulations have been performed with Scilab 5.5.2 64-bit [22].
The solver is ‘Adams’ with time step dt= T2/1000= 2.176 · 10−4 s and, the relative
and absolute tolerance are both of 3 · 10−16.

In Fig. 2a, b, the transient responses (velocities) are depicted, which are obtained
from the numerical simulations of both nonlinear and linear systems, the analytical
solutions, given by Eqs. (24a, 24b), are also incorporated. It can be seen clearly that
all the masses are having the same displacements and the same velocities.

Fig. 2 (a) Displacements, (b) velocities
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Table 1 The maximum absolute differences of the time series describing the dynamics

i max|xi(t) − xa(t)| (m) max|xL, i(t) − xa(t)| (m) max |ẋi (t)− ẋa (t)|(m/s) max
∣∣ẋL,i (t)− ẋa(t)

∣∣(m/s)

1 4.765 × 10−11 1.450 × 10−12 1.269 × 10−10 4.868 × 10−12

2 4.763 × 10−11 1.506 × 10−12 1.269 × 10−10 3.752 × 10−12

Table 2 The maximum absolute value of internal forces of the nonlinear and linear systems

max|Fint, a, 1(t)| (N) max|Fint, L, a, 1(t)| (N) max|f1(t)| (N)

1.378 × 10−4 4.966 × 10−8 5.00 × 106

Moreover, in Table 1, the maximum absolute differences, of the responses and
the velocities with the analytical solution, are shown. Their maximums of the
maximums are of −10 order of magnitude, and considering that the actual values
are greater than 1, these differences can be definitely attributed to numerical errors.
This is further justified by the fact that these errors are much higher in the nonlinear
system.

Therefore, the motion of the mechanical system is described by the exact
augmented perpetual manifolds.

In Table 2 the maximum absolute values of the internal forces on the nonlinear
system are shown, with maximum being −4 order of magnitude whereas the
maximum of the excitation force is 10 orders of magnitude higher. The maximum
value of the internal forces, on the underlying linear system, is of −8 order of
magnitude. The nonzero values of the internal forces, since they are minimal with
respect to the values of the actual forces in the equations of motion, and considering
that they are much higher in the nonlinear system, can be attributed to numerical
errors. These minimal values of internal forces are certifying the corollary of this
article.

4 Discussion and Conclusions

In this article, a corollary is proved, stating that the perpetual natural mechanical
systems, in the exact augmented perpetual manifolds, are internal forces-free.
The corollary has been verified analytically and numerically in a 2-dof nonlinear
system and the associated underlying linear system. The validity of this corollary is
restricted only to natural mechanical systems, and the internal forces of unnatural
mechanical systems can be discussed elsewhere. Also, in cases that the overall
mechanical system is not perpetual, then the corollary is limited to the boundaries
that define the perpetual mechanical subsystem. This corollary is rather significant in
mechanics, since the internal forces of the mechanical systems are the main reason
for failures.
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Application of RFEM to Modelling
Dynamics of Lattice-boom Offshore
Cranes

Marek Metelski , Iwona Adamiec-Wójcik , Łukasz Drąg ,
and Stanisław Wojciech

1 Introduction

The development of offshore oil platforms and vessels, as well as offshore wind
farms, requires the design and manufacture of specialized equipment for their
maintenance. Cranes play an important role among such equipment, and those
designed for offshore operations have to meet special requirements due to the
sea environment in which they operate. Models used by offshore crane designers
have to take into account motions of the base (vessel or platform) on which the
crane is mounted, and complex conditions of lowering and lifting the loads such
as waves and strong winds. Lattice booms are often used in practice because
of two important characteristics: relatively light weight and high strength. The
design of lattice-boom offshore cranes requires not only statics and linear vibration
analysis, which can be performed using commercial software based on the finite
element method. In many cases, in particular, those relating to the simulation of the
overload protection systems such as AOPS (Active Overload Protection System),
optimization calculations are needed. Those calculations require complex models
of dynamics which take into consideration the base motion of the crane, wind
influence or movements of the loads caused by the movement of supply vessels.
These specialized dynamic calculations usually use authors’ models tailored to
specific needs and requirements of design companies.

In modelling crane dynamics some research does not take into account the
flexibility of booms [1] but more often the flexibility is considered [2–5]. The
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models created are based, among others, on the finite element method (FEM) [6,
7], the rigid finite element method (RFEM) [1, 2], and the modal method [8].

Authors’ own models of cranes with lattice booms are relatively rarely encoun-
tered. This is especially because the structure of the boom is complex and the
number of degrees of freedom describing deformations of the truss rods is very
large; thus computer simulation time is long.

This paper presents an application of the rigid finite element method [9, 10] to
modelling the flexibility of lattice booms in dynamics. Previous authors’ works were
concerned merely with statics [2]. The nodes at which the rods of the truss are
connected are chosen as generalized coordinates. Validation of the boom model is
carried out in the range of static analysis. Results of calculations concerning free
and forced vibrations of the cranes with lattice booms are also presented.

2 Crane Model

Figure 1 shows lattice boom cranes with two types of slewing mechanism: cylinder
and rope.

If the dynamics of the slewing mechanism are omitted, the two above cases can
be included in the model presented in Fig. 2.

The following notation is assumed:

{ } − inertial coordinate system with axes x, y, z

{ }∼ − coordinate system assigned to the base vessel with axes
∼
x,
∼
y,
∼
z

{ }– − coordinate system assigned to the rotary pedestal of the crane with axes
x, y, z.

{ }s – coordinate system assigned to the supply vessel.

Fig. 1 Lattice boom cranes with (a) cylinder and (b) rope slewing mechanism



Application of RFEM to Modelling Dynamics of Lattice-boom Offshore Cranes 203

Fig. 2 General scheme of the crane with slewing mechanism (a) cylinder, (b) rope

It is assumed that the motion of the base vessel is known in the form of the
following vector:

qb = qb(t) = [xb(t) yb(t) zb(t) ψb(t) θb(t) ϕb(t)] ,
T (1)

where functions xb(t), yb(t), zb(t) describe the position of a chosen point of the base
vessel and ψb(t), θb(t), ϕb(t) are ZYX Euler angles defining the orientation of the
base vessel with respect to the inertial coordinate system, namely orientation of axes
∼
x ,
∼
y,
∼
z of { }∼ in relation to axes x, y, z of { }.

Having used homogenous transformations, coordinates r∼ of system { }∼ can be
expressed in the inertial frame { } as follows:

r = Bbr∼, (2)

where r = [
x y z 1

]T
is the vector of coordinates in system { }, r∼ =

[ ∼
x
∼
y
∼
z 1

]T
is the vector of coordinates in system { }∼, Bb =

[
Rb rb
0 1

]
, rb =

[
xb yb xb

]T
, Rb is the rotation matrix.

Coordinates from system { }– (assigned to the rotary part of the crane) can be
transformed to the inertial coordinate system using the following formula:

r = B(p)r, (3)

where r is defined by (1), r is the vector of local coordinates in system { }–,
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Fig. 3 Beam model of a lattice-boom (a) boom segment, (b) node with rods

P =

⎡

⎢⎢
⎣

cθP 0
0 1

sθP 0
0 H

−sθP 0
0 0

cθP 0
0 1

⎤

⎥⎥
⎦ is the transformation matrix from system { }– to

system { }∼, B(p) = BbP, θP is the angle of platform rotation.
In the above formula and further in the paper the following notation is used:

sa = sin (a), ca = cos (a).
It is assumed that the main structure of the lattice-boom consists of boom sections

connected consecutively. The boom section in general can be treated as a spatial
truss (Fig. 3a) with a different number of members connecting the four main beams,
which can also differ in mass and geometric parameters.

The members of the lattice section are treated as beams, which means that they
undergo bending, shearing as well as longitudinal and torsional deformations. The
rods (members of the lattice section) are firmly connected in a node (Fig. 3b), which
means that the displacements of the rods p1, p2, p3 in node i (i= 1. . n) are the same.
The initial position of all nodes before deformation of the lattice-boom is known in
the following form

ri,0 =
[
xi,0 yi,0 zi,0

]T for i = 1, . . . , n. (4)

The coordinates of vectors (4) are defined in the reference system {}−. The
position and configuration of each rod of the boom (p = 1. . m) are defined by its
left wL[p] and right wR[p] nodes. The orientation of the rods is defined using ZYX
Euler angles and the geometry of the boom is described by means of homogenous
transformations. The vector of generalized coordinates describing the displacements
of the nodes consists of six components:

qi = [xi yi zi ψi θi ϕi]
T for i = 1, . . . , n. (5)
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Fig. 4 (a) Discretization of rod p, (b) forces and moments acting at sde p

where xi, yi, zi are translations in the x, y, z directions respectively in coordinate
system {}−, ψ i, θ i, ϕi are the respective ZYX Euler angles.

Axes x, y are in the plane of the boom. The deviation of the x-axis from
∼
x-axis

defines angle θp of platform rotation.
It is assumed that axes of the local coordinate system connected with i node are

parallel to the platform coordinate system { }–. When coordinate systems are chosen
in such a way, the transformation of coordinates from the local system of node {i}′
to the global system {} can be performed according to the formula

r = B(p)Air′, (6)

where Ai =

⎡

⎢
⎢
⎣

cψicθi cψisθisϕi − sψicϕi

sψicθi sψisθisϕi + sψicϕi

cψisθicϕi + sψisϕi xi

sψisθicϕi − sψisϕi yi

−sθi cθisϕi

0 0
cθicϕi zi

0 1

⎤

⎥
⎥
⎦,

B(p) is defined in (3).
Rod elements are discretized using the rigid finite element method [9], and

respective forces and moments transferred by spring damping elements (sdes)
(Fig. 4) of the rods are calculated.

Forces F′p =
[
F ′p,x F ′p,y F ′p,z

]T
and moments M′p =

[
M ′

p,x M
′
p,y M

′
p,z

]T

transferred by spring-damping elements are derived and introduced into the equilib-
rium equations by means of generalized forces [9] at the end nodes of rod p.

The equations of motion are derived from the Lagrange equations of the
second order. When calculating the kinetic energy, we consider masses and inertial
moments of rods, the halves of which are connected in the nodes (Fig. 3b). If we
assume that �p is the rotation matrix defining the position of rod p in system {}′
before deformation, then the kinetic energy of node i is defined by the following
expression:
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Ei =
ni∑

j=1

Ei,j = 1

2

ni∑

j=1

∫

mpij /2

tr
{

ṙi ṙTi
}
dm (7)

where ni is the number of rods’ halves meeting at node i, r = B(p)AiΛpi,j
r′pi,j ,

pi, j is the number of rod j in global numbering, r′pi,j are local coordinates of rod
pi, j,

Λpi,j =
[

Ωpi,j 0
0 1

]
.

Because matrices Ωpi,j and Λpi,j
after transformation from the system of the

rod to node system {i}′ have constant elements, the expression for the kinetic energy
can be presented in the form:

Ei = 1

2
tr
{

ḂiHiḂT
i

}
(8)

where Bi = B(p)Ai, Hi = ∑ni
j=1 Λpi,j Hpi,jΛ

T
pi,j

, Hpi,j is the pseudo-inertial matrix
of the halve of rod pi, j added to node i.

Having considered the load, winch and the rope system, the equations of motion
of the crane can be written as follows:

Mq̈ = f (9)

where M =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

M0 . . .
...

. . .

0 . . .
...

0 . . .
...

Mi . . .
...
. . .

0 M0r
...

...

0 0
...
...

0 Mir

...
...

0 0
...

...

0 . . .

MT
0r . . .

0 . . .

MT
ir . . .

0 . . .

0 . . .

0 . . .

0 . . .

Mn Mnr

MT
nr mr

0 0
0 0

0 0
0 0

ML 0
0 ID

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

rL =
{
xL yL zL

}T
are coordinates of the load, θp is the rotation angle of the

pedestal, ϕD is the rotation angle of the winch drum, qi is the coordinate vector of
node i of the lattice.

The dynamic model and the computer program are applied to the analysis
of a crane’s strength characteristics for the wind platforms produced by the
Protea company. The software elaborated is used by designers when selecting the
individual crane components (boom construction, swing and/or winch type). In
the first step, the static calculations are performed to confirm the correct selection
of materials and boom rod cross-sections for the assumed load capacity to meet
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Fig. 5 Scheme of the crane

Table 1 Deflection of the boom at point G

RFEM model ROBOT
Crane radius
[m] SWL [104 N] ux [m] uy [m] uz [m] u [m] ux [m] uy [m] uz [m] u [m] δ[%]

2.7 268 77.99 −10.12 −10.59 79.4 78.0 −9.2 −11.0 79.3 0.06
17 460 59.64 −43.30 −10.00 74.4 58.5 −41.8 −11.0 72.7 2.21
30 460 16.18 −70.67 −5.69 72.7 16.6 −69.7 −6.6 72.0 1.06

the requirements of the regulatory bodies. In addition, dynamic calculations are
performed in order to take into account the movement of the base vessel during
typical seagoing service operations (lifting and lowering cargo, rotation of the crane)
and emergency situations involving the activation of the overload system (AOPS),
for example, when attaching a hook to the side of the delivery vessel.

Figure 5 shows the scheme of the crane used for verification of the model and
computer programme. The authors’ own results concerned with statics are compared
with the results of simulations carried out using the software package ROBOT.

For calculations, it is assumed that forces Fx = 40 · 104N, Fy = − SWL,
Fz = − 40 · 104N act at point E2 of the boom end. The simulation results presented
in Table 1 show good agreements of the static deflections. The error is smaller than
3%. Other results concerned with forces and stresses in selected rods and the rope
are presented in [2].

The next section presents the results of the static and dynamic simulations for
a light-service crane used on wind platforms, where the change of elevation is
performed by means of a single cylinder.
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Fig. 6 Characteristic points of the service crane analysed

Table 2 Coordinates of the characteristic points of the crane

Point Coordinates

Attachment of the boom − point O1
(
xO1, yO1

)
[m] −0.19; 0.82

Connection of the cylinder with the pedestal − point A
(
xA, yA

)
[m] 0.345; 0.102

Connection of the cylinder with the boom − point B
(
x′B, y′B

)
[m] 0.683; −0.806

Calculation of loading, deflection − point G(x′G, y′G) [m] 8.3; −0.111

3 Simulation Results

Simulations are carried out for a 2 mT service crane. Notations of attachment
points for the boom and cylinder as well as the point for calculating deflections
are presented in Fig. 6. It is assumed that the boom is mounted at point O1, and
connections of the cylinder with the rotary pedestal and with the boom are denoted
by points A and B. Point G marks the position on the boom in which the load is
applied and deflections uy and uz of the boom are calculated (displacements of point
G along axes OY and OZ).

The boom is constructed of 36 rods made of material of the same strength
characteristics (Young modulus E = 207 GPa, Poisson number ν = 0.3, material
density ρ = 7850 kgm−3). The boom has four load-bearing beams connected by
means of the rods. The beams have a closed square cross-section of 0.1m × 0.1m
with thickness 0.0065 m; the rods have a circular cross section with diameters of
0.0051 m and 0.004 m wall thickness. The total mass of the boom is 961 kg and its
length is Lw = 8.23 m.

Table 2 presents the geometric data of the crane analysed, namely the coordinates
of the characteristic points.

The crane extension mechanism has only one hydraulic cylinder. Cylinder
geometry and its some other parameters are presented in Table 3.

At the beginning, horizontal static deflections of the boom and the lowest natural
frequencies in xy and xz planes were calculated. Calculations were performed
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Table 3 Cylinder parameters Parameter Value

Outer diameter of the cylinder DCout [m] 0.165
Inner diameter of the cylinder DCin [m] 0.14
Outer diameter of the rod d [m] 0.13
Minimal length of the boom Lmin [m] 0.36
Extension of the cylinder Lstroke [m] 1.03

Table 4 Vertical Uy and
horizontal Uz deflections of
the boom, first natural
frequencies ωxy and ωxz

Parameter Value

Vertical deflection of the boom Uy [m] −0.0203
Horizontal deflection of the boom Uz [m] 0.0065
First natural frequency in xy plane – ωxy [Hz] 76.58
First natural frequency in xz plane – ωxz [Hz] 40.74

Fig. 7 Courses of vertical velocity vy of the load and angular velocity θ̇P of crane pedestal rotation

assuming a load on the boom by means of these forces: vertical Fy = 20,000 N
and horizontal Fz = 2000 N; gravitational load was also considered. Flexibility of
the cylinder was taken into account. The calculation results including deflections of
the crane and first natural frequencies are presented in Table 4.

The vertical velocity of the load (Fig. 7a) increases from zero up to nominal value
vnom = 0.6 m/s over 2 s. This causes relatively small vibrations of the boom with
amplitude au, y = approx. 0.006 m (Fig. 8a). The overload coefficient is defined as
follows:

η = S/Snom (10)

where S – the force in the rope, Snom = mLg/ir, ir – transmission ratio of the rope
system, does not exceed 1.23 (Fig. 8b). When rotation is considered with velocity
increasing from zero to 34 deg/s (Fig. 7b), the deflections of the boom end and
overload coefficient are larger (au, y = 0.02 m, η = 1.35).

Courses of deflections uy and uz of the crane and overload coefficient η in the
rope obtained by simulating both tasks are presented in Figs. 8 and 9.
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Fig. 8 Courses of vertical deflection uy of the crane and overload coefficient η in the rope in the
task of load lifting

Fig. 9 Courses of vertical uy and horizontal uz deflections of the crane and overload coefficient η
in the rope in the task of the crane rotation

4 Final Remarks

The model of lattice crane dynamics based on the rigid finite element method allows
us to analyse the influence of base movements as well as winch and rotary drives
on the behaviour of the crane. The simulation results indicate the correctness of
the assumptions made and numerical effectiveness of the model presented. It is
important to note that after its validation the software is used by the designers
of Protea in everyday practice. The models developed are used in parallel with
commercial packages. By adapting the interface to the needs of designers they
are convenient for fast simulation of dynamics. Nor do they require as many input
parameters as commercial packages mentioned.

An important feature of RFEM is that it is easy to attach lumped masses to any
of the rods and/or nodes. Use of such rigid mass elements is a common practice
in crane design. On the other hand, calculations of stresses using this method are
subject to some errors, which is due to replacing flexible features of rods by SDEs
with constant stiffness coefficients.
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Dynamic Models of Cranes Applied
to Offshore Wind Farm Service

Marek Metelski , Łukasz Drąg , and Stanisław Wojciech

1 Introduction

Growing demand for energy from renewable sources caused a growth in the
number of wind platforms, particularly those which are situated remotely from
residential areas. Offshore platforms, built at sea, at a certain distance from the
shore, are also popular. In terms of service, the latter require specialist equipment,
including small cranes designed for offshore applications. The users of these cranes
expect their structure to be relatively simple, and their operating costs moderate.
The machines are also expected to guarantee the safety of works conducted
in difficult environmental conditions. In modelling these cranes, the movements
of the base they are founded on (the platforms) and the movements of supply
vessels, caused by sea waves, must be taken into account. Offshore service cranes
include very important Automatic Overload Protection Systems (AOPS). Their
design assumes the simulation of crane dynamics, considering the aforementioned
operating conditions involving the impact of the marine environment (wind waves,
sea currents, wind, etc.) and extraordinary events, such as the freezing of the lifted
load to the ground, or hooking the lifted load onto elements on the supply vessel.
Crane dynamic simulations should be carried out for the broadest scope of structural
and operational parameters possible. Hence the importance of the effectiveness of
the numeric model.

The models of statics and dynamics offshore cranes have been in use in offshore
industries for many years. Due to the fact that these types of cranes are mounted on
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Fig. 1 Cranes with (a) box and (b) lattice booms

floating objects (ships, drill platforms), they take into account the influence of sea
waves and wind conditions [1–3]. A number of research concern lifting operations
performed under real operating conditions are investigated [2, 4, 5]. The box-type
cranes were the subject of research in [1, 2, 4]. The statics of lattice boom cranes
were analysed in [5, 6].

This paper presents a procedure which could be applied in creating a numerically
effective substitute model for the crane. The proposed algorithm reflects the primary
characteristics of a real crane. The basic differences which occur among individual
crane types apply to the booms. The most popular boom types used in offshore
cranes are box and lattice (Fig. 1).

The formulation of a substitute model for a crane requires knowledge of the
design of a real crane, which could be used to calculate its mass parameters,
analyse its static deflections and calculate the natural frequency. Models used for
calculations in companies designing cranes applying commercial software (ROBOT,
Abaqus, FemUp, etc.) or own software can be used for this purpose. The parameters
that characterize the real objects are then input in the software which determines
the parameters of the substitute (virtual) model, applying dynamic optimization
methods. The substitute model, which is characterized by a relatively small number
of degrees of freedom compared to full models, is developed applying the rigid finite
element method (RFEM) [7].
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2 Substitute (Virtual) Crane Model

The substitute crane model was developed on the basis of models described in
detail in the paper [1]. However, certain simplifications were introduced to increase
the overall effectiveness of calculations, as mentioned above. Figure 2 presents the
adopted crane models.

The following notation is assumed:

{ } − global(inertial) coordinate system with axes x, y, z

{ }~ − coordinate system assigned to the base vessel with axes
∼
x,
∼
y,
∼
z

{ } − coordinate system assigned to the rotating part with axes x, y, z.
{ }s – coordinate system assigned to the supply vessel.

Fig. 2 General schemas of the crane with slewing mechanism (a) cylinder, (b) rope
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Fig. 3 Division of a boom into rfe and sde

It is assumed that the base vessel movement is known. The vector is therefore
known:

qb = qb(t) = [xb(t) yb(t) zb(t) ψb(t) θb(t) ϕb(t)]
T , (1)

where functions xb(t),yb(t),zb(t) determine the position of a selected point on
the base vessel, a ψb(t),θb(t),ϕb(t) are ZYX Euler angles which determine the

orientation of the base vessel relative to the base system, that is axes
∼
x,
∼
y,
∼
z in

{ }~ relative to axes x, y, z in { }.
It is assumed that the substitute boom is a straight beam with stepwise variable

rectangular cross-section, consisting of n segments. In the process of discretization,
it is replaced by an n + 1 system of rigid finite elements (rfe) reflecting the mass
(inertial) characteristics of the boom and n spring damping elements (sde) which
are massless non-dimensional and reflect the bending and torsional susceptibilities
of the boom (Fig. 3). Both rfe and sde are created through the division of segments.

Equations of motion were derived from second-order Lagrange equations,
applying, among others, transformations described in the paper [7]. Generalized
rfe i coordinates are therefore the vector components:

qi =
[

ri
φi

]
, (2)

where: ri =
⎡

⎣
xi

yi

zi

⎤

⎦ − coordinates of points Ai (translation coordinates),

φi =
⎡

⎣
ψi

θi

ϕi

⎤

⎦ − Euler angles (rotation coordinates).

The vector of generalized coordinates for the complete crane was defined in the
following form:

q =
[
q(s)0 . . . q(s)i . . . q(s)n θP rLϕD

]T
, (3)
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where: rL =
⎡

⎣
xL

yL

zL

⎤

⎦, ϕD − angle of rotation of the winch drum.

Equations of motion can be expressed in the following form:

Mq̈ = DR+ f, (4)

where:

M – mass matrix,
q – vector of generalized coordinates,
D – matrix of reaction coefficients,
R – vector of constraints reaction,
f = h − hg − hs − h(z) − h(L) + T, f – right side vector:
h – from kinetic energy,
hg – from gravity,
hs – from the boom’s sde spring forces and dissipation energy,
h(z) – from the luffing mechanism or the cylinder,
h(L) – from rope deformation,

T =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0
...

0
Mp

0
MD

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

−rfe 0
...

− rfe n
− θP

− L

− ϕD

, D =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

Dw

0
0
0

0
0
0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

− θP

− L

− ϕD

.

These equations were supplemented by constraint equations in the accelerator
form:

DT q̈ = G. (5)

The fourth order Runge-Kutta method with a constant integration step was
applied in the integration of equations of motion.

3 Optimization Task

The boom is modelled as a variable-section beam (Figs. 4 and 5).
Let us assume that the aforementioned commercial or own software can be used

to calculate the following values:

mref – boom mass,
Sxref– static moment of the boom in yz plane,
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xk Fy
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x

Fig. 4 Boom support

bi
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segment i
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y ′

z ′

t (i)
u

t (i)
w t (i)

w

t (i)
b x ′

Fig. 5 Cross section of segment i

Uyref, Uzref – deflections at the end of the boom loaded by forces Fy, ref, Fz, ref,
ω
xy

1ref – first natural frequency of the boom in xy plane,
ωxz1ref – first natural frequency of the boom in xz plane,

for boom support as presented in virtual models in Fig. 2, hence for a horizontal
boom.

After designating:

m – mass of the virtual boom,
Sx – static moment of the virtual boom,
Uy, Uz – deflections of the substitute boom when loaded by forces Fy, Fz,
ω
xy

1 – first natural frequency of the virtual boom in xy plane,
ωxz1 – first natural frequency of the virtual boom in xz plane,

then the optimization task is reduced to the selection of 4n parameters:

p1 = h1 p(i−1)+1 = hi p4n−3 = hn

p2 = b1 p(i−1)+2 = bi p4n−2 = bn

p3 = t
(1)
u = t

(1)
p p(i−1)+3 = t

(i)
u = t

(i)
p p4n−1 = t

(n)
u = t

(n)
p

p4 = t
(1)
w p(i−1)+4 = t

(i)
w p4n = t

(n)
w

...
...

(6)
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Fig. 6 Optimization algorithm based on table Uy(α)ref

and minimalizing the functional:

Ω (p1, . . . , p4n) =
[
m−mref
mref

]2 +
∣∣∣Sx−Sxref

Sxref

∣∣∣
2 +

[
Uy−Uyref
Uyref

]2

+
[
Uz−Uzref
Uzref

]2 +
[
ω
xy
1 −ωxy1ref
ω
xy
1ref

]2

+
[
ωxz1 −ωxz1ref
ωxz1ref

]2
,

(7)

which is the sum of squared relative deviation of reference and calculated values
according to the substitute model. Initial calculations have shown that the opti-
mization results are very sensitive to the selection of initial values. Therefore, a
verification module, the idea for which is presented in Fig. 6, was involved into the
optimization algorithm.

The purpose of the procedure is also to ensure the consistency of vertical
deflection of the boom end, calculated according to the full model and according to
the substitute model for various (defined) α, and not only for reference parameters
when α = 0o. The process was practically carried out using the parallel calculation
functionality offered by Delphi software.
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4 Algorithm Applications

The proposed procedural algorithm was used to develop a virtual model of a crane
manufactured by PROTEA. The crane is characterized by a high load capacity, and
its boom is of the box type (Fig. 7).

The hi, bi, t
(i)
u ,t (i)w , and ρ(i) values selected in the process of optimization for

the selected division of the boom into rfe and sde allow such selection of mass and
spring dumping parameters for each element that the virtual boom has managed
to model the real boom with the highest possible accuracy. Limiting conditions
specified in Table 1 were taken into account for the boom in the calculations.

Subsequent part of the paper presents the results of verification of the substitute
crane model. The values of reference parameters were selected for a division of the
boom into n= 3 elements. In calculating the reference values, the boom was loaded
with the following forces: vertical Fy=60,000g N, horizontal Fz=20,000g N, and a
gravitational load corresponding to gravity of g = 9.80655 ms−2.

The values presented in Table 2 indicate that the optimization process was
successfully completed. A very high level of compatibility of the reference value
modelling in the virtual model was obtained. What is noteworthy, these values are
determined for a horizontal boom configuration. Table 3 includes a comparison
of boom deflection values for different lift angles, obtained in the full and virtual
model.

Fig. 7 Box crane manufactured by Protea

Table 1 Limitation to hi, bi, t
(i)
u ,t (i)w , and ρ(i) values, applied in the optimization process

Parameter Values
Minimum Maximum

Height of the boom cross section hi [m] 0.1 3.5
Width of the boom cross section bi [m] 0.1 3.5
Up and down flange thickness t (i)u =t (i)b [m] 0.001 0.04
Web flange thickness t (i)w [m] 0.001 0.04
Material density ρ(i) [kgm−3] − constant 7850 7850
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Table 2 Values of reference parameters determined in the full model (F) and after optimization
process for the virtual model (V)

Parameter Full model (F) Virtual model (V)

Boom mass m [kg] 25941.46 25941.46
Static moment of the boom in the yz plane [kgm2] 382578.35 382578.35
Boom deflection in the xy plane [m] −0.1737 −0.1737
Boom deflection in the xz plane [m] 0.1319 0.1319
First natural frequency of the boom in the xy plane [Hz] 29.2464 29.2464
First natural frequency of the boom in the xz plane [Hz] 16.8296 16.8296

Table 3 Boom deflections Uy and Uz and their absolute ΔδA and relative ΔδR differences,
calculated between the full model (F) and the virtual model (V)

α[o] R[m] Load [mT] Uy, F [m] Uy, V [m] ΔδA [m] ΔδR [%]

5 30.88 20.143 −0.062939 −0.063677 0.000738 1.17
25 28.1 23.877 −0.119381 −0.119898 0.000517 0.43
45 21.92 35.533 −0.168689 −0.168914 0.000225 0.13
65 13.1 60 −0.166956 −0.166911 −0.000044 0.03
85 2.7 60 −0.016844 −0.016808 −0.000036 0.21

Fig. 8 Dynamic coefficient η of the rope system, trajectory of the load projected on plane xy

An analysis of the absoluteΔδA and relativeΔδR differences presented in Table 3
points to a conclusion that the boom parameters selected in the optimization process
are correct. The relative difference in deflections between the full models and the
virtual model does not exceed 1.2%.

Figure 8 presents the simulation results according to the full model, obtained for
a division of the boom into n = 10 rigid finite elements and for the virtual model,
for lifting a load from air using a winch at an initial speed of vy, L= 0 m/s increased
to vy, L = vnom.

The following assumptions were adopted in the calculations:

– the boom is inclined relative to the horizontal at: α = 30◦,
– a load of mL = 30,000 kg is connected to the end of the rope,
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Fig. 9 Courses of the rotation angle θP and the angular rotation speed θ̇P of the crane column

Fig. 10 Courses of the vertical Uy and horizontal Uz crane deflections

Fig. 11 Trajectory of the
load projected on plane xz

– initially, the load is situated under point G, at a distance 20 m, respectively,
– the nominal speed of the load vnom is 0.7 m/s.

In turn, Figs. 10 and 11 present the results of simulation of crane rotation
according to the function in Fig. 9.
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5 Conclusions

The paper presents models and procedural algorithms which, upon applying
optimization methods, can be used to develop a virtual crane model. Formulated
with the RFEM method, this model can be used towards the simulation of the
crane dynamics, and is particularly useful AUTO 97: Continuation and Bifurcation
Software for Ordinary Differential Equations for cranes designed for servicing wind
platforms. For the proposed algorithm to work, the static deflection and boom
vibrations must be determined with the use of their own models or commercially
available software. In turn, the substitute (virtual) model allows to simulate the crane
dynamic and emergency situations across changing conditions caused by waves and
the movements of the supply vessel.
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Axisymmetric Nonlinear Free Vibration
of a Conductive Annular Plate Under
Toroidal Magnetic Field

Xu Haoran and Hu Yuda

1 Introduction

Thin conductive annular plate structures have a broad range of applications in many
electromechanical devices such as superconducting electric machine motors, data
storage drives, and turbomachinery. In these devices, annular plate structures under
the action of non-uniform magnetic field may show complex dynamic behaviors
combined with the influence of geometric nonlinearity, which may change the
natural frequency of plates. Even if a little disturbance may lead to resonance and
instability of annular plates, which represents the necessity of investigation on the
magneto-elastic natural characteristics. The nonlinear vibration issue absorbed the
attention of many researchers. The calculation for the displacement of annular and
circular plate with different thicknesses and different internal and external diameter
ratios under impact load was carried out by Shirmohammadi and Bahrami [1] to
investigate the vibration by means of the spectral element method. Ma et al. [2, 3]
presented the nonlinear oscillation characteristics of stiffened plate with boundary
conditions by ANSYS analysis. Ansari et al. [4, 5] scrutinized the axisymmetric
bending, buckling, and free vibration of FGM circular plate and annular plate, and
discussed the influence of radius thickness ratio and material parameters on the
natural frequency of plate. The free vibration of graphene foam annular plate was
also presented, where natural frequencies of plate with different boundaries and
foam coefficients were achieved by Wang et al. [6] utilizing the Chebyshev-Ritz
method. Further, for plates with variable thickness, Z̈ur et al. [8–10] proposed an
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iterative method to study the free vibration of circular plates with variable thickness,
and obtained natural frequency of nonlinear free oscillation of circular plate. On the
other hand, many valuable results have been obtained in the study of magnetoelastic
problems of plate structures. Hu et al. [11] analyzed the magneto-elastic strong
nonlinear subharmonic resonance and bifurcation of a thin strip plate by means of
the improved multi-scale method, where the bifurcation diagram and the maximum
Lyapunov exponent spectrum with different control parameters were used to reveal
the complex dynamic behaviors. Arena et al. [12] showed the dynamic stability of a
rotating magnetic levitation ring under radial magnetic forces, which reveals that at
critical angular velocity, when critical mode becomes unstable, the loss of stability
depends on stiffness of the ring and the symmetry/asymmetry of cross section. Hu
and Li [13, 14] modeled the rotating circular plate and gave magneto-aeroelastic
forced oscillation governing equations, which illustrates bifurcation and chaotic
nonlinear dynamic behaviors of single mode and modal interaction characteristics.
Yun and Ding [15, 16] introduce the three-dimensional magneto-electro-elastic the-
ory to study magneto-electro-mechanics coupling mechanism of the axisymmetric
bending of functionally graded annular plates made of piezoelectric, magneto-
electro-elastic, and elastic material. Razavi et al. [17, 18] conducted nonlinear free
oscillation and buckling of electromagnetic elastic rectangular plates under simply
supported boundary condition, obtained analytical solutions and numerical results
of frequency.

At present, it is noted that there are more researches on the magnetoelasticity
of thin plates in the uniform magnetic field, researches on non-uniform ones are
relatively less. In view of fact that the magnetic field induced by a current-carrying
straight wire is a typically and widely existing and important non-uniform complex
one, the magnetoelastic nonlinear free vibration of annular plates is analyzed. The
expressions of natural frequency and electromagnetic force of plate are deduced
respectively, and the influence of different control parameters on the oscillation
characteristics of the system under non-uniform magnetic field environment is
expounded in details.

2 The Induced Magnetic Field and Electromagnetic Forces

Consider the system consisted of isotropic conductive annular plate and the long
straight current-carrying wire. The annular plate, whose located plane is perpen-
dicular to the wire, is placed with its geometric center and wire coincided. This
center is taken as the origin for the establishment of the cylindrical coordinates
for the mechanical system, where r, θ , and z represent radial, circumferential, and
transverse coordinate, respectively. The annular plate has outer radius Ra, internal
radius Rb and uniform thickness h, and the straight current-carrying wire current
intensity is I, as shown in Fig. 1.

Through the magnetoelastic theory, it can be obtained that the induced magnetic
field is a toroidal magnetic field, and when the length of wire is long enough, the
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Fig. 1 Mechanical model of
annular plate with long
straight current-carrying wire

I

x

r

z

y

0θB θO

magnetic induction intensity of a point with distance r from the wire is achieved
as [19]:

B0θ = μ0I

2πr
, B0r = 0, B0z = 0 (1)

where μ0 is the permeability of vacuum. B0θ , B0r, and B0z are the toroidal, radial,
and transverse components of the induced magnetic field vector, respectively.

For isotropic thin conductive annular plate in the non-uniform toroidal magnetic
field induced by a long straight current-carrying wire, according to the magnetoe-
lastic field theory, electrical conductors in the magnetic field are subjected to the
Lorentz force. The transverse electromagnetic force and electromagnetic torque of
the annular plate in the induced magnetic field are read as:

Fz =
∫ h

2

− h
2

fzdz = −σ0h

(
μ0I

2πr

)2
∂w

∂t
, mr =

∫ h
2

− h
2

fr · zdz = σ0h
3

12

(
μ0I

2πr

)2
∂2w

∂r∂t

(2)

where σ 0 is the conductivity, w and t represent the transverse deflection and time
variable, respectively.

3 Magnetoelastic Nonlinear Free Vibration

The nonlinear free vibration of annular plate in non-uniform toroidal magnetic field
is presented, and the kinetic energy expression is achieved as:

T = 1

2
ρ

∫ h
2

− h
2

∫ Ra

Rb

∫ 2π

0

[(
−z ∂

2w

∂r∂t

)2

+
(
∂w

∂t

)2
]

rdrdθdz (3)
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where ρ is the mass density.
According to Kirchoff plate theory, the bending deformation potential energy of

plate is approached as:

U1 = 1

2

∫ Ra

Rb

∫ 2π

0
(Mrκr +Mθκθ ) rdrdθ (4)

Considering the geometric nonlinearity, the strain potential energy U2 of the mid-
plane of plate is read as:

U2 = 1

2

∫ Ra

Rb

∫ 2π

0
(Nrεr +Nθεθ ) rdrdθ (5)

Here, Mr and Mθ represent bending moments, κr and κθ are the curvatures. Nr

and Nθ are inertial forces in mid-plane, εr and εθ are line strains in mid-plane.
Expression of virtual work of electromagnetic force is:

δWB = 1

2

∫ Ra

Rb

∫ 2π

0
(Fzδw −mrδur) rdrdθ (6)

where ur = ∂w/∂r is angular displacement.
According to the Hamiltonian variational principle, we can get:

∫ t2

t1

(δT − δU1 − δU2 + δWB) dt = 0 (7)

where t1 and t2 are fixed integral time domain.
Substituting Eqs. (3), (4), (5), and (6) into Eq. (7), perform the variational

operation on displacement component w, and the integral expressions for δw can
be obtained. Here, the axisymmetric transverse vibration is studied, to satisfy Eq.
(7), the coefficient terms of δw in z direction are zero. Then we obtain the equation:
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(
∂4w
∂r4 + 2

r
∂3w
∂r3 − 1

r2
∂2w
∂r2 + 1

r3
∂w
∂r

)
−DN

[
1
2r

(
∂w
∂r

)3 + 3
2

(
∂w
∂r

)2 ∂2w
∂r2

]
+

σ0h
(
μ0I
2πr

)2 · ∂w
∂t
− σ0h

3

12

(
μ0I
2πr

)2 ·
[
∂3w
∂r2∂t

− 1
r
∂2w
∂r∂t

]
+ ρhd

2w
dt2
−

ρh3

12
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dt2

(
∂2w
∂r2

)]
= 0

(8)

where DM = Eh3/12(1 − ν2) and DN = Eh/(1 − ν2) represent flexural rigidity and
tensile rigidity. E and ν represent Young’s modulus and Poisson ratio, respectively.

For the axisymmetric vibration issue, the displacement solution satisfying the
boundary conditions may be set in the following expansion form [7]:

w = T (t) ·W(r) (9)
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Then, the expression of mode function W(r) is determined. Substituting Eq. (9)
into Eq. (8), the Galerkin method is employed to derive the nonlinear free vibration
differential equation:

a01T
′′(t)+ a02T

′(t)+ a03T (t)+ a04T
3(t) = 0 (12)

where a01, a02, a03, and a04 represent the coefficient expressions.
The method of multiple scales is applied to resolve nonlinear differential Eq.

(12), and the frequency of natural vibration for the system is obtained [21]:

ω = ω0 + 3η

8ω0

1

Q2
− ζ 2

8ω0
− 15η2

256ω0
3

1

Q4
(13)

where Q =
√

3η/
(
8ω0

2
)+ Ceζt , ζ = a02/a01, ω0

2 = a03/a01, η = a04/a01, integral
constant C is determined by initial conditions.

4 Numerical Example and Analysis

This section performs the numerical calculation and discussion for system com-
posed of long straight current-carrying wire and aluminum conductive annular plate
in wire’s induced non-uniform magnetic field. The system is assumed with material
properties: conductivity σ 0 = 3.63 × 107(� · m)−1, Young’s modulus E = 71
GPa, mass density ρ = 2670 kg/m3, and Poisson’s ratio ν = 0.34 for plate. The
straight wire is taken as superconducting wire that can carry large current [20]. The
boundary S-C is analyzed.

4.1 Variation Law of Non-uniform Magnetic Field
and Electromagnetic Force

Consider a long straight superconducting wire with stable current, the three-
dimensional diagram of magnetic induction intensity B0θ varying with current
intensity I and radial position r is plotted as Fig. 2a. For Fig. 2a, take different
Irespectively and draw curves of B0θ − I, as Fig. 2b. Recalling Fig. 2 and Eq.
(1) indicates that the smaller distance from wire, the stronger magnetic induction
intensity. As distance from wire increases, B0θ shows the nonlinear decrease with
radial direction.

When Ra = 0.2 m, Rb = 0.1 m, h = 0.0035 m, initial amplitude a0 = 0.001 m
and I = 10 kA, Fig. 3 shows the three-dimensional diagram of electromagnetic
force Fz varying with radial position r and time t. Through method of multiple
scales, it is obtained that the analytical solution for T(t) of Eq. (12) shows a simple



230 X. Haoran and H. Yuda

Fig. 2 Change law of B0θ . (a) Diagram of B0θ − I − r (b) B0θ varying with rin different I

Fig. 3 Diagram of Fz − t − r

harmonic changing form. Since the current term exists in coefficient expression a02,
which means the induced magnetic field shows system. Recalling Eqs. (2), (9) and
(12), it is noted that Fz decays with t. In r direction, Fz increases from zero at inner
radius to global maximum at stagnation point r = 0.6680 Ra with increasing slower
rate, then it decreases with acceleration, until it reaches inflection point r = 0.8390
Ra, after which the decreasing trend is unobvious, then it decreases to zero at outer
radius edge. According to Fig. 3, Fig. 4 shows the three-dimensional diagram of mr

varying with t and r. Combining with Eq. (2), it is shown that mr decays with t. In
r direction, mr diminishes from global maximum at the inner radius to zero at point
r = 0.7265 Ra in an increasing unobvious trend, then grows inversely from zero to
local maximum at r = 0.8720 Ra with increasing slower rate, and finally drops to
zero at outer radius edge with acceleration.
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Fig. 4 Diagram of mr − t − r

4.2 Variation Law of Natural Frequency

Variation of natural frequency with I In Fig. 5a, Ra = 0.2 m, Rb = 0.1 m,
h = 0.0035 m and when t = 1 s. From Eq. (13) and curves of natural frequency
ω varying with current I at different initial amplitudes a0, it is noted that 1/M2,
1/M4 and −ζ 2/(8ω0) decrease with increasing I, thus ω decreases with I. When I
increases to a certain extent, ω tends to remain unchanged. Under the same I, for
Fig. 6a, increasing a0 causes the decrease of integral constant C, which increases
fractions, as η1 is positive, increasing a0 increases the product of fraction including
I, η and −η2. So the larger a0, the larger ω. It is noted that ω is affected by initial
value, which reflects typical nonlinear characteristics of system. However, when I
increases to a certain degree, effect of a0 becomes less obvious. AsRa = 0.2 m,
Rb = 0.1 m and a0 = 0.001 m and t = 1 s, Fig. 5b gives curves of ω varying with I
under different h, which presents that ω shows the same changing law as Fig. 5a and
increases significantly with h. In Fig. 5c, Rb = 0.1 m, h = 0.0035 m, a0 = 0.001
m and t = 1 s, which represents curves of ω varying with I under different outer
radiuses. Under the same current, the larger the outer radius, the smaller ω.

Variation of natural frequency with a0 In the case of Ra = 0.2 m, Rb = 0.1 m,
h= 0.0035 m and I = 10 kA, Fig. 6 gives three-dimensional diagram of ω varying
with a0 and t. Analyzing Fig. 6 and Eq. (13), we obtain that ω increases significantly
as a0 is larger. Thus, curves bend to the right namely the high-frequency side,
which means the system exhibits hard characteristics. In addition,ω shows nonlinear
characteristics due to the different initial values. In case of Ra = 0.2 m, Rb = 0.1 m,
h = 0.0035 m and t = 1 s, Fig. 7 shows three-dimensional diagram of ω − a0 − I.
It is found that the relationship between ω and a0 is similar to Fig. 6. As I increases,
bending trend of curves becomes less obvious, indicating that influence of a0 on ω
is weakened.
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Fig. 5 Curves of ω − I under different parameters. (a) Different a0 (b) Different h (c) Different
Ra

Fig. 6 Diagram of ω − a0 − t
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Fig. 7 Diagram of ω − a0 − I

Variation of natural frequency with t In the case of Ra = 0.2 m, Rb = 0.1 m,
h = 0.0035 m and a0 = 0.001 m, Fig. 8 shows the curves of ω − t in different
I. Considering Fig. 8a and Eq. (13), we obtain that, since t and I exist in the
exponential function of denominator of expression ω, if wire is not carrying current,
ω maintain a constant with t. Conversely, if wire carries current, ω declines with
increase of t. Moreover, ω will not change with t when time increases to a certain
extent. In addition, the curves of ω − t will converges fast and the value of ω will
decrease with the increase of I, which tallies with the variation of ω with I in above
figures.

In the case of Rb = 0.1 m, I = 10 kA, h = 0.0035 m and a0 = 0.001 m, Fig.
8b gives the ω − t in different outer radiuses. It is obtained that Fig. 8b has the same
change law as Fig. 8a. At the same time, ω decreases obviously when outer radius
becomes larger, which also tallies with Fig. 5c. In the case of Ra = 0.2 m, Rb = 0.1
m, I = 10 kA and h = 0.0035 m, Fig. 8c represents the curves of ω − tin different
a0. The natural frequency in Fig. 8c also shows the same varying law with time as
Fig. 5a. At the same time, it may increase as initial amplitude increases, which also
shows the same change law and the same hard characteristics consistent with Figs.
6 and 7.

5 Conclusions

In this article, the nonlinear free vibration of thin annular plates in non-uniform
toroidal magnetic field of long straight current-carrying wire is approached. The
expression of magnetic field and displacement function of plate under S-C boundary
are obtained, the nonlinear differential equation of plates is deduced, which was
solved through the method of multiple scales. The calculation examples present
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Fig. 8 Curves of ω − t under different parameters. (a) Different I (b) Different Ra (c) Different
a0

the natural frequency varying with different parameters. Results and discussions
indicate that:

1. Under the S-C boundary condition, natural frequency declines and then remains
constant with increasing current or time. In addition, natural frequency increases
with increasing plate inner radius and thickness, but declines with increasing
outer radius.

2. Natural frequency may be affected by the initial amplitude, which shows typical
nonlinearity of system and that the system exhibits hard characteristics.

3. Electromagnetic force and torque decay with time, and show different variation
in radial direction. In plane of plate, the induced non-uniform magnetic field
declines nonlinearly along the radial direction.
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Modelling and Analysis of Vibrations on
an Aerial Cable Car System with Moving
Mass

Cesar Augusto Fonseca, Guilherme Rodrigues Sampaio,
Geraldo F. de S. Rebouças, Marcelo Pereira, and Americo Cunha Jr.

1 Introduction

Transporting persons and items by aerial cable cars, as seen in Fig. 1, has been in
use over the last 100 years for many different applications. This type of transport
is present in thousands of installations; Switzerland alone has more than 130 in
operation. The study of cable car systems is an interesting subject in the modern
literature, with many different aspects of the system approached, but published
works on this topic are still only a few years old. Since it is a complex mechanical
system with many bodies, flexibility, and subject to environmental perturbations,
nonlinear phenomena may appear such as excitation of sub- and super-harmonics
on the cable causing vibration to the traction mechanism, which can damage the
machinery and endanger the operation.

The mechanical system studied consists of two cables, a supporting cable fixed in
both ends and a variable-length traction cable. The car is modelled as a concentrated
mass pulled by the traction cable and connected to the supporting cable through
a spring. In this chapter, we analyze the effect of vibrations in the traction cable
according to the speed of operation and position of the car. The coupling of the
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Fig. 1 Line art drawing of a typical aerial cable car system

two cables and a mass–spring system creates a very complex dynamic behaviour
that causes a nonlinear movement and can even show some chaotic characteristics.
Some references found in the literature such as the modelling of elevators show
resemblance to the present study.

The work of Brownjohn [1] investigates the cable car that connects the island of
Sentosa and Singapore’s main island through a vertical plane motion perspective.
The article presents mathematical simulations representing the normal operation of
the system, as well as free vibration, and the situation when the system is halted.
Accelerometer measurements in the real system are used to obtain real vibrations
for each operational condition. Investigation also includes a finite-element analysis
of the system followed by the results analysis.

Terumichi et al. [2] analyze the non-stationary lateral vibration of a time-varying
length string with a mass–spring system guided by rail, attached to the inferior end,
a system similar to an elevator. A sinusoidal horizontal displacement at its upper
end excites the string. An analysis of the influence of the string’s axial velocity
on the vibrations is performed as well as an experimental setup investigation. Data
generated by experiment and simulation are compared.

Bao et al. [3] analyze as well a vertical motion system similar to an elevator,
focusing on lateral vibrations of the string. In this Chapter, the lateral motion of
the mass, coming from imperfections on the rail guide, is the source of excitation.
The Hamilton principle is used to obtain the string’s equations of motion. In the
end, experimental test results are shown, and the results used validate the numerical
simulations.

Lastly, Kaczmarczyk and Iwankiewicz [4] present a stochastic approach to the
excitation of an elevator model. The stochastic parameters are the guide rail imper-
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fections that excite the elevator car laterally. In order to do so, the imperfections
are considered as a zero-mean stationary Gaussian process. Although the model
proposed in this chapter uses a strict deterministic approach, the knowledge on time-
scale separation shown is essential for solving the problem, as seen in another work
of the same author [5].

Those works show that despite the presented cable vibration theories, there are
still very few applications to aerial cable car systems, a common system around
the world, where a failure can endanger many lives. Cable car systems differ
significantly from elevators as the gravity acts transversely to the cable.

The main originality of this chapter is to develop a mechanical model of a cable
car system, to investigate the influence of its parameters using numerical methods,
and to explore some of its nonlinearities. This chapter is organized as follows: the
mechanical–mathematical model for the system of interest is presented in Sect. 2,
the numerical results and a brief discussion in Sect. 3, and finally the conclusions
are made in Sect. 4.

2 Mechanical–Mathematical Model

The proposed mechanical system is illustrated in Fig. 2, where a pair of overhung
cables has a constant value of tension and is fixed on both ends with density, circular
cross-section, and constant length. The purpose of this cable is to provide support
to the cable car and to serve as the rails, where the cable car slides on. Later, the rail
cables are simplified as a single spring K attached to the cable car represented by
the concentrated mass M . The car is pulled by another cable with a linear density
ρ, cross-section A, and tension T . However, the length of the traction cable varies
in time with constant velocity v, pulling the mass M to the origin, where the pulley
is located.

To find the equivalent stiffness of the pair of supporting cables, a simple
analytical approach is used. The car passing through the extent of the supporting
cables is to be simplified as a concentrated load F travelling with constant velocity;
then the solution of this problem is analytically solved and demonstrated in
Hagendorn [6]. In this case, the cable deflection is given by

w(x, t) = − 2FL0

ρAπ2(c2 − v2)

∞∑

j=1

1

j2

(
sin

jπvt

L0
− v

c
sin

jπct

L0

)
sin

jπx

L0
, (1)

where c = √
T/ρA is a constant having the dimension of speed and the product

ρA is the linear density of the cable. Then stiffness can be determined by taking the
inverse of the deflection of the supporting cables.

The analytical solution of Eq. (1) is illustrated in Fig. 4 for different time instants
using the mentioned parameters. It shows the deflection of the cable at different
instants, while the load moves with velocity v. The parameters used to generate
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Fig. 2 Schematic representation of the mechanical system used to emulate the aerial cable car
system: a variable-length cable coupled to a mass–spring oscillator

Table 1 Parameters used to model the rail cable and the traction cable

Supporting cables Traction cables

Parameter Value Unit Parameter Symbol Value Unit

Linear density 39.20 kg/m Linear density ρ 3.83 kg/m

Length 600 m Initial length L0 600 m

Load 32.8 kN Mass M 6550 kg

Mean Tension 10.0 kN Mean Tension T 250 kN

Velocity 6.0 m/s Stiffness K 13.4 kN/m

these results are shown in Table 1. The deflection of the rope reaches its maximum
value when the load is close to half of the length. Therefore, the rail cable equivalent
stiffness value is estimated as

K = F

w(L0/2, L0/2 v)
. (2)

The following analysis does only concern with the mass being pulled by the
cable. We begin by stating the kinetic T and the potential energy of the rope and the
mass. The total kinetic energy is

T = 1

2

∫ L(t)

0
ρ[v̇2 + (ẏ + v y′)2] dx + 1

2
M

[
v̇2 + (ẏ + v y′)2

]

x=L(t) , (3)

and the total potential energy U is

U = 1

2

∫ L(t)

0
T y′ 2 dx + 1

2
K y2

∣∣
x=L(t). (4)
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Here, y is the vertical displacement of the moving mass M attached to the pulling
cable with linear density ρ and constant traction T . The dot represents the derivation
in time and the ( )′ the spatial derivation.

For the traction cable, using the Hamilton principle with the adequate definition
of the boundaries conditions and considering the variation of the length give the
following initial-boundary value problem

ρ (ÿ + 2 v ẏ + v2 y′′) = T y′′, (5)

M (ÿ + 2 v ẏ + v2 y′)+K y = T y′ at x = L(t), (6)

y = 0 at x = 0. (7)

The first boundary condition, given by Eq. (6), is not homogeneous. This term
can be transferred to the differential equation of motion, Eq. (5), by considering the
car’s dynamic forces as a concentrated load at x = L(t), rendering a simpler and
more intuitive approach [7], given by

ρ (ÿ + 2 v ẏ + v2 y′′)+ 2 [M(ÿ + 2 v ẏ + v2 y′ + g)+K y] δ(x − L(t)) = Ty′′,
(8)

y = 0 at x = 0, (9)

T y′ = 0 at x = L(t), (10)

where ẏ is the time derivative of y, and y′ is the corresponding spatial derivative
with respect to x.

To promote a separation of time scales in the problem, a slow time variation
τ = ε t is introduced, in which ε = v/ω0 L0, being ω0 is the natural frequency of
the cable without mass and spring, and L0 the maximum extent of the cable, see
[8, 9] for details.

Knowing that L(t) = L0 + v t , so, v = L̇ = ∂τ
∂t

∂L
∂τ
= εν, where ν = ∂L

∂τ
.

Therefore, we seek solutions of the form

y(x, t) ≈
N∑

i=1

φi(x, τ ) qi(t), (11)

where φi(x, τ ) = sin(λiτ x) and qi(t) are mode shapes and modal coordinates
associated to the underlying eigenvalue problem, respectively. The term λiτ is a slow
variation in times of the natural frequency of the cable

λiτ =
1

2

(2 i − 1) π

Lτ
. (12)

Applying Eq. (11) into Eq. (8) multiplying by φj (x, τ ) and integrating between
0 and Lτ , it is possible to write the discrete dynamical equation of motion
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N∑

i=1

[
Mij q̈i (t)+ Gij q̇i (t)+Kij qi(t)

] = 0, (13)

where mass, gyroscopic, and stiffness operator components are, respectively,
defined by the following expressions:

Mij =
∫ Lτ

0
ρ φi φj dx +M φi(Lτ ) φj (Lτ )

Gij =
∫ Lτ

0
2 ρ ν ε φ

′
i φj dx + 2M ε ν φ

′
i (Lτ ) φj (Lτ )

Kij =
∫ Lτ

0

(
ρ ν2 ε2 − T

)
φ
′
i φ

′
j dx

+
(
M ν2 ε2 φ

′′
i (Lτ )+K φi(Lτ )

)
φj (Lτ ). (14)

To construct the mass, gyroscopic, and stiffness matrices, the following orthogo-
nality relationships are taken into account

∫ Lτ

0
φj φidx = 1

2
Lτ δij ,

∫ Lτ

0
φj φ

′′
i dx = −

1

2
λ2
i Lτ δij (15)

and that

∫ Lτ

0
φj φ

′
i dx = −2

(i − 1/2)(j − 1/2)

(i − 1/2)2 − (j − 1/2)2
, (16)

where δij is the Kronecker delta. As seen in Blevins [10], the result from Eq. (16)
exists only when the sum i+j is odd, otherwise it is zero. Also, one has φi =
sin ( 1

2
(2i−1)π

Lτ
x) and φj = sin ( 1

2
(2j−1)π

Lτ
x).

Thus, for a two-mode approximation (i = 1..2 and j = 1..2), one gets

(
1

2
ρ Lτ +M

)
q̈1(t)−M q̈2(t)+ 3

2
ρ ν ε q̇2(t)

+ 1

8L2
τ

[
−2π2 ε2ν2

(
1

2
ρ Lτ +M

)
+ Lτ π

2 T + 8K L2
τ

]
q1(t)

+ 1

4L2
τ

(
M ν2 π2ε2 − 4K L2

τ

)
q2(t) = 0, (17)

×
(

1

2
ρ Lτ +M

)
q̈2(t)−M q̈1(t)− 3

2
ρ ν ε q̇1(t)
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+ 1

4L2
τ

(
9M ν2 π2 ε2 − 4K L2

τ

)
q1(t)

+ 1

8L2
τ

[
−18π2 ε2 ν2

(
1

2
ρ Lτ +M

)
+ 9Lτ π

2 T + 8K L2
τ

]
q2(t) = 0,

(18)

which can be rewritten as

q̈1(t)− μτ q̈2(t)+ ατ q̇2(t)+
[
(−βτ − ητ + στ )+ ω2

τ

]
q1(t) +

(
ητ − ω2

τ

)
q2(t) = 0 (19)

q̈2(t)− μτ q̈1(t)− ατ q̇1(t)+
(

9 ητ − ω2
τ

)
q1(t) +

(
9 (−βτ − ητ + στ )+ ω2

τ

)
q2(t) = 0, (20)

where

mτ = 1

2
ρ Lτ +M, μτ = M

mτ

, ατ = 3

2

ρ ν

mτ

, βτ = π2ε2 ν2 ρ

8Lτ mτ

,

ητ = 1

4

π2ε2 ν2

L2
τ

μτ , στ = π2 T

8Lτ mτ

, and ω2
τ =

K

mτ

. (21)

The first term, mτ , is the modal mass of the cable along with the cable car mass,
which also brings the ratio μτ of the masses. The latter couples the system with
its acceleration terms. The parameter ατ represents the Coriolis, and βτ and ητ are
the centripetal forces of the cable and the mass, respectively. The traction can now
be written as στ and the natural frequency from the attached spring as ωτ . Each of
these terms varies in the slow time τ as the pulling cable varies its length.

3 Numerical Results and Discussion

By inspecting the terms in (21), as well as Eqs. (19) and (20), it is possible to observe
the overall dependency of the cable variation in the slow time τ . Moreover, some
of them are proportional to O(1/Lτ ) like ω2

τ and ητ ; others are proportional to
O(1/L2

τ ) like βτ and στ . It means that βτ and στ can become extremely high when
the cable length is getting closer to zero. Although the effect is rather small for η
and βτ , it is usually not for στ . It is worth pointing out that there is a set of values
in which στ surpasses the value of ω2

τ at a specific length of Lτ .
A numerical investigation is conducted, and a set of values are given for each of

parameters from Eq. (21). Then, a simulation of Eqs. (19) and (20) using a 4th and
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Fig. 3 Parameter variation of the first mode in relation to the length Lτ

a)
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Fig. 4 In (a) The specific length where the natural frequencies depend more on the cable (blue
and red) than on the rail stiffness (yellow). Travelling speed v = 6 m/s. In (b), variation of the
natural frequencies as a function of the cable length

5th Runge–Kutta solver is done from initial condition of a fully extended length of
cable to its almost entire retraction. The parameters used in the simulations match
the ones from a real cable car installation, meaning that their values are completely
feasible and the results may represent the behaviour of an actual situation (Fig. 3).

Figure 4 illustrates the variation of the parameters as the traction cable is being
retracted by a constant velocity. Three different velocities are tested. Figure 4 shows
that the parameters ητ , βτ , ατ have little influence on the overall dynamics, albeit
the increase of the travelling speed.

When comparing the parameters στ and ω2
τ , one observes in Fig. 4a that there

is a specific length of the cable that their values are equal, and as the cable car
approaches the end, στ becomes even higher that may be relevant to the dynamics.
This results in Fig. 4b where it shows the variation of the natural frequencies as a
function of the cable length.

To further investigate the proposed mechanical model, a harmonic force is added
to the equation presented in Sect. 2 applied to the concentrated mass M . The nature
of this force can be seen as an early approximation of the wind mean effect acting
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Fig. 5 Displacement for different velocities v of the cable car when the system is excited by a
harmonic force at F(t) = 300 sin (ωf t) [N] at x = Lτ

directly on the cable car. A Rayleigh model damping is also included to emulate the
energy dissipation, which also prevents numerical instabilities.

A constant value for the external force frequency is chosen to be ωf = 0.26 Hz,
because it has long period time compatible to the natural behaviour of the wind.
Note in Fig. 4b that this becomes the resonance of the system twice as the cable
retracts. The result can be seen in Fig. 5, which shows the cable car displacement
time series y(t). As expected, the cable car develops high amplitudes of oscillations
twice as the cable gets shorter, and the maximum value of the amplitude gets smaller
as the travelling velocity v is higher, due to the shorter period of time that the forcing
frequency matches with one of the natural frequencies.

The presence of high-amplitude oscillations shown by the numerical simulation
is in accordance with the real functioning cable car seen by the maintenance
crew as it approaches the terminal station. These vibrations are mitigated by the
breaking system changing the value of the travelling speed v. Also, the model
has its own limitations, since by shortening the cable means that the mass M is
reaching its boundary condition, which would lead to numerical instabilities or
misrepresentation of the real phenomena.

4 Conclusions and Future Perspectives

This chapter presented a mechanical–mathematical model for a cable car system.
First, the equations of motion are developed, and numerical analysis is conducted
with parameters inspired by a real case. This analysis shows the changes of each
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parameter as a function of the cable length, among them the increase of the stiffness
parameter related to the cable.

This chapter paves the way for a series of different analyses, which may include
the variation of the stiffness parameter related to the pair of supporting cables, the
investigation of the influence of a harmonic forcing at the origin, which would
represent the machinery responsible for actuating the whole system.

Results show that some points of the trajectory and some speeds present higher
amplitude vibrations than others; this is an important nonlinear phenomenon that
poses challenges to the operation of systems similar to the one modelled. The
understanding of those phenomena, as well as its numerical modelling, is of high
importance to the safe operation of aerial cable cars.

Another possibility is to include the presence of a random force concentrated at
the mass, representing the wind or passengers moving inside the car. Lastly, these
models can be compared to other numerical analyses with finite-element models or
even with experimental data. This research can also be adapted to other mechanical
equivalents found in installations such as in ski lifts.
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Influence of Model Nonlinearities
on the Dynamics of Ring-Type
Gyroscopes

Ibrahim F. Gebrel, Ligang Wang, and Samuel F. Asokanthan

1 Introduction

The linear and nonlinear dynamic response behavior of rotating rings has been
studied in several recent articles. The nonlinear equations of motion considering
only the in-plane vibrations of a ring were derived in [1]. The formulation of
nonlinear equations of motion of ring-type gyroscope using two vibration modes has
been performed employing Galerkin’s procedure in [2]. The influence of rotation
and flexible base on the natural frequencies and mode shapes have been investigated
in detail in [3]. The modal behavior as well as stability of rotating rings in 3D
under magnetic levitation has been studied via an analytical model and validated
employing Finite Element Analysis [4]. The Coriolis forces induced in the ring
gyroscope due to the ring’s rotation cause the resonant mode to shift vibration into
the next resonance mode, as described in [5].

The influences of extensional and shear deformation and inertia on natural
frequency differences have been performed in [6]. The plane wave motion to solve
the fixed deflection, natural frequency split, and mode contamination of the rotating
ring-shaped periodic structures have been analytically examined [7].

In the present paper, the nonlinear dynamic behavior of rotating flexible rings for
use in vibratory angular rate sensors has been studied via numerical simulations. A
homogenous, isotropic ring is chosen as the resonator. The investigation of dynamic
response analysis and the rotating macro ring gyroscope’s stability behavior has
been studied by [8] and Gebrel et al. [9] by considering the linearized model
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associated with the second flexural modes. In [9], a theoretical model for generating
nonlinear electromagnetic excitation forces is developed. The schematic of the
rotating ring geometry used in the present study has been described in detail in
[8, 9].

One of the most critical challenges in constructing ring-based vibratory gyro-
scopes is the requirement to operate at one of the highly resonant natural frequencies
in order to maximize device sensitivity. However, large resonant amplitudes tend
to bring out the undesirable nonlinear effects due to geometric as well actuator
nonlinearities. Consequently, the dynamic response of thin circular rings and
consideration of input nonlinear actuator dynamics is warranted to gain a complete
understanding of performance enhancements that can be achieved for this class of
gyroscopes.

In the present paper, a mathematical model that represents the nonlinear dynamic
behavior of a ring-type gyroscope is formulated. The nonlinear equations of motion
are simplified by considering only the highly resonant second flexural mode the
device utilizes and by ignoring the presence of extensional modes of vibration.
Due to gyroscopic coupling present in the system and angular input rate, the
natural frequency variations have been described in the prior study [9]. A suitable
electromagnetic actuator model has been developed for the purposes of examining
the nonlinear dynamic response.

2 Equation of Motion

In this study, the nonlinear equations of motion have been obtained by considering
that the circumferential strain in the mid-surface is zero, and the equations of motion
have been reduced to a suitable discrete form via Galerkin’s procedure and the
resulting equations permit the application of dynamic response analysis. The ring
used for the present study is assumed to possess isotropic and homogenous material
properties. Besides, under the Euler-Bernoulli theory, the transverse shear deforma-
tion influence is neglected since it is assumed that plane sections remain plane as
well stay normal to the neutral surfaces after deformation [10]. Figure 1a shows the
ring geometry and relevant parameters used in this paper. The stiffness components
kr and kθ , respectively, denote the radial and circumferential components, while
ur and uθ symbolize the transverse and circumferential displacements. The eight
support springs considered to represent the flexible mounting are assumed to possess
significantly low stiffness and are expected not to have an influence on the ring
dynamics. A body-fixed set of axes X, Y, Z has been assigned to represent the
angular motion of the ring with respect to an inertial frame R. In this formulation,
the curvilinear surface coordinates α1, α2, and α3 are used for locating the neutral
surface elements.

The second flexural mode shapes that possess identical natural frequencies for
the ring are known as degenerate modes shapes and are separated by 45 degrees as
shown in Fig. 1b. It may be noted that the presence of degenerate mode shapes is
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Fig. 1 (a) Ring geometry and parameters. (b) Degenerate second flexural mode shapes

due to the ring symmetry. The geometry and parameters used in the present paper
have been described in detail in the prior research [9].

In this paper, the nonlinear equations of motion in terms of the generalized
coordinates associated with the flexural coordinates An and Bn are developed to
investigate a ring gyroscope’s nonlinear dynamic behavior. As described in the
previous study [9], the nonlinear governing equations for the rotating ring-type
gyroscope with the consideration of in-extensional mid-surface when sinusoidal
external electromagnetic forces in the radial direction are considered take the form:
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EA
br2

(
u’
θ + ur

)
− EI

br4

(
u’’’
θ − u’’’’

r

)
+ ρh�2

(
2u’

θ − u’’
r

)

+ krur + ρh
(
ür − �̇uθ − 2�u̇θ

) = fNem (An, Bn, θi) cos (ωt) ,
(1)

where ˙( ) represents time derivative while the spatial derivatives are denoted by ( )
′
.

In Eq. (1), E represents the Young’s modulus, I indicates area moment of inertia
for ring cross-section, ρ is mass density, EI denotes flexural rigidity, A represents
the cross sectional area of ring, b is the axial thickness of ring, h indicates radial
thickness, r denotes the radius of the ring while ω is the excitation frequency.
The term fNem(An, Bn, θ i) represents sinusoidal nonlinear external electromagnetic
force magnitude, while input angular rate and angular acceleration are, respectively,
denoted by � and Ω̇ .

In this study, the partial differential Eq. (1) is reduced to nonlinear ordinary
differential equations by employing Galerkin’s method. The general radial and
circumferential displacements that satisfy the continuity conditions are employed in
this discretization process. Under these conditions, considering the periodic nature
of solutions, the deflection modes can be chosen as [2, 9].

ur = An cos (nθ)+ Bn sin (nθ)− nγ

4r

[
A2
n(t)+ B2

n(t)
]

(2)

uθ = − 1
n

[An sin (nθ)− Bn cos (nθ)]+ γ
8r

[
A2
n(t)+ B2

n(t)
]

sin (2nθ)
− γ

4r An(t)Bn(t) cos (2nθ) ,
(3)

where the mode functions are observed to be composed of time-dependent gener-
alized co-ordinates An and Bn, mode number n, ring radius r, and the nonlinear
parameter γ . As seen from Eqs. (2) and (3) this parameter has an influence on
both homogenous and the non-homogenous part of Eq. (1). Hence, the influence
of the parameter γ which results from the in-extensionality of the middle surface is
termed as system nonlinearity. In this paper, Eqs. (2) and (3) represent practically
any transverse or circumferential deflection where nonlinear additive terms are
incorporated in the mode function via the nonlinear term γ . In Eqs. (2) and (3), n
takes the value 2 since only the second flexural modes are considered to contribute
to the ring vibration. Galerkin’s method is applied by employing Eqs. (2) and (3)
in Eq. (1), multiplying by the appropriate weighting function associated with An(t)
and Bn(t) and integrating with respect to θ from 0 to 2π . The resulting discretized
set of nonlinear differential equations take the form:

[
ρhπ + 2ρhπ

(nγ
2r

)2
A2
n

]
Än + 2ρhπ

(nγ
2r

)2
AnBnB̈n + 2ζω0Ȧn +

[
EI
br4

(
n2 − 1

)
n2+

ρhΩ2
(
n2 − 2

)
+ kr

]
πAn +

[
EA
br2 + kr

]
(nγ /2r)2

[
A2
n + B2

n

]
πAn + 2ρhπ(nγ /2r)2

[
Ȧ2
n + Ḃ2

n

]
An − ρhπΩ̇ 1

nBn − 2ρhπΩ 1
n Ḃn = fNem (An, Bn, θi) cos (ωt)

(4)
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Bn + ρhπΩ̇ 1

nAn + 2ρhπΩ 1
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(5)

where the parameter ζ is the mechanical damping ratio, and n denotes the number
of modes which is taken to be 2 in this study. A nonlinear electromagnetic
force fNem(An, Bn, θ i) cos (ωt) is considered to provide external sinusoidal excitation
which is essential for the operation of the gyroscope where ω represents the
excitation frequency. The angular position of electrostatic forces on the system
is denoted by θ i, i = 1, 2, 3, 4. Various configurations for the electromagnetic
force are considered for the purposes of designing a ring gyroscope with effective
second flexural resonant mode participation. Also, a suitable theoretical formulation
of the electromagnetic force magnitude is developed considering the interactions
between the electromagnet (em) and permanent magnets (pm) as shown in Fig. 2.
The potential energy and force formulations are obtained from a dipole model by the
law of Biot and Savart [11]. The expressions for nonlinear electromagnetic forces
that affect the system from four positions are derived in the primary coordinate An

as

fNem (An, Bn, θi) = μ0

2π
kNiA MAVA

∑2

i=1

(
cos (nθi)− nγ

2r
An

)
∗

⎡

⎢⎢
⎣

3
{
d − An cos (nθi)− Bn sin (nθi)+ nγ

4R

[
A2
n + B2

n

}4

⎤

⎥⎥
⎦ (6)

where μ0 = 4π × 10−7H/m represents the magnetic permeability of free space,

A = π
∼
R

2
is the area of the loop, the number of coil turns is denoted by N while i,

∼
R , respectively, represent the coil current and radius of coil circular loop. Ma is

the magnetization, and Va represents the volume of the source magnet. In Eq. (6),
consideration for the use of an iron core has been included via a relative permeability
constant k. This equation has been employed for studying the effect of nonlinear
actuator dynamics employing the system of Eqs. (4) and (5). The distance between
electromagnetic (em) and the permanent magnet (pm) is designated as d as shown
in Fig. 2.
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Fig. 2 Schematic representation of ring dynamics and actuator configurations

3 Results and Discussion

The dynamic response of the system when subjected to an external nonlinear
actuator is examined via a numerical solution scheme in the present study. The
mathematical model presented in Eqs. (4), (5), and (6) is employed for this purpose.
Also, natural frequency variation due to rotation has been quantified and discussed
in detail [9]. The operation of ring-based vibratory gyroscopes relies on nonlinear
external excitation close to one of the resonant frequencies in order that device
sensitivity may be maximized. To this end, variation of the second flexural natural
frequency with the input angular rate is quantified using this model. It may be
noted that as described in the studies [8, 9], the experimentally predicted natural
frequencies agree with those predicted by the mathematical model presented in the
present paper.

Furthermore, a nonlinear model which includes complex nonlinear iner-
tia/stiffness terms, as well as a nonlinear electrometric force as depicted in Eqs. (4)
and (5), have been employed. Equations (4) and (5) have been solved numerically
to predict nonlinear response features of a ring gyroscope. At a nominal input
angular rate of 2π rad/sec, the natural frequencies used in the present study have
been evaluated as ω1= 58.6218 rad/sec, and ω2 = 64.8218 rad/sec. In the absence
of input angular rate of the ring, two identical natural frequencies are predicted
and they take the values ω1 = ω2 = 61rad/sec. The generalized coordinates
q1 = An/h, q2 = Bn/h have been used for the non-dimensional equations. The
following typical ring design parameters: radius of r = 92.5 × 10−3 m, thickness
of h = 0.1016 × 10−3 m, and a height of b = 150 × 10−3 m with Young’s modulus
of E = 2.068 × 1011 N/m2 and the density of ρ = 7833.41 kg/m3 have been chosen
in the present study. Besides, for all time as well as frequency response simulations,
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a damping ratio, ζ of 0.01 has been assumed for the system. For all numerical
simulations, a zero-velocity initial condition together with an initial displacement
amplitude of 5 × 10−3m is imposed.

3.1 Nonlinear Dynamic Response in the Driving and Sensing
Directions

The time history with long time records in the driving An and sensing Bn coordinates
of a ring gyroscope shown in Fig. 3a, b are obtained using Eqs. (4), (5), and (6) in
the presence of nonlinear term at an excitation frequency 60 rad/sec. The response

Fig. 3 Radial displacement
for � = 2 rad/sec in (a)
driving and (b) sensing
directions
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Fig. 4 Phase diagram in (a)
driving and (b) sensing
directions

of the ring in the driving and the sensing directions, respectively, are displayed in
Figs. 3a, b. This study concludes that due to the gyroscopic coupling present in the
system, a transfer of energy takes place between the two modes in the presence of
angular velocity input.

For the same system parameters and initial conditions, when the gyroscope is
given an input angular rate of 2π rad/sec, the phase-plane trajectory based on the
steady-state response in the driving and sensing directions, respectively, is shown in
Fig. 4a, b.

Moreover, effects of nonlinearity can be seen in the Poincare’ map plots in Fig.
5a, b and is indicated via multiple equilibrium points. Also, it can be observed
that the resulting Poincare’ map appears as a cloud of unorganized points due



Influence of Model Nonlinearities on the Dynamics of Ring-Type Gyroscopes 255

Fig. 5 Poincare’ map in (a)
driving and (b) sensing
directions
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to the influence of the nonlinear term associated with the system as well as the
electromagnetic force.

4 Conclusions

The nonlinear dynamic response of a macro ring-based gyroscope has been
investigated for the purpose of quantifying the effects of system as well as
actuator nonlinearities inherently present in such systems under operation. The
device exhibits high nonlinearity in the presence of nonlinear term in the model
which may be attributed to high vibration amplitudes. A suitable electromagnetic
actuator model has been developed for the purposes of examining the nonlinear
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dynamic response. The nonlinear dynamic response obtained via time-response,
Phase portraits, and Poincare’ maps indicates that the nonlinearity in the model and
actuation play an essential role in shaping the dynamic ring behavior. Comparison
with the linear model study [9], revealed that the inclusion of model nonlinearities
in the presence of high vibration amplitudes has a strong influence and hence greatly
demonstrates its significance.
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Gravitational Dampers for Unloading
Angular Momentum of Nanosatellites

Anton V. Doroshin

1 Introduction

As it is well known, the problem of spacecraft attitude control implies the
suppression of large values of the SC angular velocity after separation from the
last stage of the space-rocket or unloading saturated reaction/momentum wheels.
This assumes the large value of the angular momentum of the system (of the main
body spacecraft and/or rotors-wheels) and its discharging. Therefore, the task of
unloading the angular momentum is one of primary tasks of spacecraft attitude
dynamics.

The angular momentum of reaction/momentum wheels can be transferred to the
main spacecraft body using internal interaction [1, 2], and after this translation
the angular momentum value can be decreased with the help of interaction with
the external forces [3–13], e.g., central gravitational forces, which are acting on
spacecraft moving along the orbit.

Due to the big importance of modern space missions with nanosatellites apply-
ing, it is very important to develop the simplest constructional schemes to the
angular momentum unloading, which can be used basing on nanosatellites plat-
forms.

In this work, the scheme of the gravitational unloading is proposed. This scheme
(Fig. 1a) uses the internal body with different general inertia moments (Fig. 1c)
placed in the spherical shell floating in the spherical cavity with viscous liquid
(Fig. 1b). It is clear that at the motion along the orbit this internal body tries to
rotate and to place the gravity-oriented spatial position, due to the properties of
the gravitational stabilization principles. Therefore, the gravity forces initiate the
internal angular motion of the internal sphere relative the cavity with viscous liquid.
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At this internal rotation, the dissipative friction torques arise in the viscous fluid.
This friction torque dissipates the kinetic energy and it acts on the main body of
satellite and decelerates its angular motion. So, as the result, the angular momentum
of satellite will decrease. The suggested spherical damper scheme is similar with
the analogous construction of magnetic damper [3] interacting with geomagnetic
field, where the internal spherical shell with permanent magnets was placed in the
external sphere filled with bismuth: the internal sphere tries to rotate to coincide
with the forces lines of geomagnetic field, and, therefore, this rotation relative the
main body creates the dissipative torque due to the friction in bismuth.

This scheme allows to use this gravitational damper in cases of nanosatellites,
especially if the nanosatellite has a symmetrical construction with three units (Fig.
2), one of which (e.g., central unit) contains this spherical damper.

2 Mathematical Model of the Attitude Motion

So, let us consider the orbital motion of the nanosatellite along the circle orbit:
the system CXYZ is orbital coordinates frame (Figs. 1 and 2), where the axis Z

Fig. 1 A unit of a satellite with the internal spherical cavity (a) filled by a viscous fluid and the
internal floating sphere (b) with the mounted gravitational body-damper (c)

Fig. 2 The nanosatellite with
the central unit with the
gravitational damper and
corresponding coordinates
systems
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is directed from the gravity center to the orbital position of nanosatellite, axis Y is
orthogonal to the orbital plane, and X represents the third right axis. The coordinates
system Cxyz is the central frame connected to the main body of nanosatellite,
coinciding with its general axes of inertia; the system Cx1y1z1 is the central frame
connected to the general axes of the body-damper. In the case of nanosatellite
construction with central damper-body unit (Fig. 2) let us to consider that the orbital
system CXYZ and connected systems Cxyz and Cx1y1z1 are central, i.e., the origin
of all indicated systems is common, and it coincides with the center of mass of the
satellite C.

The attitude position of the coordinates systems can be described by the well-
known Euler’s angles. For the system Cxyz we will use three angles {θ1, θ2, θ3}
of subsequent rotations about the corresponding axes x → y → z starting from the
full coinciding with the system CXYZ. Then the following matrixes for subsequent
rotations take place:

Θ1 =
[

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

]

;Θ2 =
[

cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

]

;Θ3 =
[

cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

]

(1)

The complete matrix of transition from the orbital system CXYZ to the connected
system Cxyz has form:

Θ = Θ3 ·Θ2 ·Θ1 =
[

cos θ3 cos θ2 sin θ3 cos θ1 + cos θ3 sin θ2 sin θ1 sin θ3 sin θ1 − cos θ3 sin θ2 cos θ1

− sin θ3 cos θ2 cos θ3 cos θ1 − sin θ3 sin θ2 sin θ1 cos θ3 sin θ1 + sin θ3 sin θ2 cos θ1

sin θ2 − cos θ2 sin θ1 cos θ2 cos θ1

]

(2)

By the full analogy the system Cx1y1z1 can be translated from the orbital system
CXYZ to the concrete final attitude with the help of subsequent rotations by angles
{ψ1, ψ2, ψ3}:

Ψ = Ψ3 · Ψ2 · Ψ1 =
[

cosψ3 cosψ2 sinψ3 cosψ1 + cosψ3 sinψ2 sinψ1 sinψ3 sinψ1 − cosψ3 sinψ2 cosψ1
− sinψ3 cosψ2 cosψ3 cosψ1 − sinψ3 sinψ2 sinψ1 cosψ3 sinψ1 + sinψ3 sinψ2 cosψ1

sinψ2 − cosψ2 sinψ1 cosψ2 cosψ1

]

(3)

The kinematical equations for the angular velocity components of the main
body ω = [p, q, r]T and of the damper ω′ = [p′, q′, r′]T in projections onto its own
connected coordinates systems (xyz and x1y1z1, correspondently) have the shape:

⎧
⎨

⎩

p = θ̇1 cos θ2 cos θ3 + θ̇2 sin θ3 + ω0Θ12

q = −θ̇1 cos θ2 sin θ3 + θ̇2 cos θ3 + ω0Θ22

r = θ̇1 sin θ2 + θ̇3 + ω0Θ32

(4)
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⎧
⎨

⎩

p′ = ψ̇1 cosψ2 cosψ3 + ψ̇2 sinψ3 + ω0Ψ12

q ′ = −ψ̇1 cosψ2 sinψ3 + ψ̇2 cosψ3 + ω0Ψ22

r ′ = ψ̇1 sinψ2 + ψ̇3 + ω0Ψ32

(5)

where ω0 is the value of the orbital angular velocity.
Let us consider the case when the inertia tensor of the main body of the satellite

(without the damper) has in the connected system Cxyz the central general diagonal
form J = diag (A, B, C), and the inertia tensor of the damper-body also has the
central general diagonal form J′ = diag (A′, B′, C′) in its connected frame Cx1y1z1.

The dynamical equations of the attitude dynamics on the circle orbit can be
written for the satellite main body and for damper-body as follows [14]:

⎧
⎨

⎩

Aṗ + (C − B) qr = 3ω2
0 (C − B)Θ23Θ33 +Mx;

Bq̇ + (A− C)pr = 3ω2
0 (A− C)Θ33Θ13 +My;

Cṙ + (B − A)pq = 3ω2
0 (B − A)Θ13Θ23 +Mz

(6)

⎧
⎨

⎩

A′ṗ′ + (
C′ − B ′

)
q ′r ′ = 3ω2

0

(
C′ − B ′

)
Ψ23Ψ33 +M ′

x;
B ′q̇ ′ + (

A′ − C′
)
p′r ′ = 3ω2

0

(
A′ − C′

)
Ψ33Ψ13 +M ′

y;
C′ṙ ′ + (

B ′ − A′
)
p′q ′ = 3ω2

0

(
B ′ − A′

)
Ψ13Ψ23 +M ′

z

(7)

where {&13,&23,&33}, {'13,'23,'33}− are components of matrixes (2) and (3)
corresponding to the directional cosines of the gravitation direction (i.e., the orbital
axis Z) in the connected frames. The vector M = [Mx, My, Mz]T is the torque acting
on the main body from the side of the damper-body due to liquid friction between
the internal and internal spheres (Fig. 1). The vector M′ = [M′

x, M′
y, M′

z]T is the
analogues torque acting on the damper-body from the side of the main body due to
liquid friction.

The interaction of the bodies of the satellite due to liquid friction can be defined
by the relative angular velocity of the damper (relative the main body). Then in
projections onto the connected axes, the torques acting on the main body and on the
damper are equal to the following vectors components:

M =
⎡

⎣
Mx

My

Mz

⎤

⎦ = −ν
⎡

⎣

⎡

⎣
p

q

r

⎤

⎦−Θ · Ψ−1 ·
⎡

⎣
p′
q ′
r ′

⎤

⎦

⎤

⎦ ;

M′ =
⎡

⎣
M ′

x

M ′
y

M ′
z

⎤

⎦ = −ν
⎡

⎣

⎡

⎣
p′
q ′
r ′

⎤

⎦− Ψ ·Θ−1 ·
⎡

⎣
p

q

r

⎤

⎦

⎤

⎦ (8)

where ν is the damping factor.
It is useful to add the kinematical equations for angles {θ1, θ2, θ3} and {ψ1, ψ2,

ψ3} in form resolved relative the derivatives:
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⎧
⎪⎨

⎪⎩

θ̇1 = − 1
cos θ2

(q sin θ3 − p cos θ3 + cos θ3ω0Θ12 − sin θ3ω0Θ22) ;
θ̇2 = q cos θ3 + p sin θ3 − cos θ3ω0Θ22 − sin θ3ω0Θ12;
θ̇3 = r + tgθ2 (q sin θ3 − p cos θ3 + cos θ3ω0Θ12 − sin θ3ω0Θ22)− ω0Θ32

(9)

⎧
⎪⎨

⎪⎩

ψ̇1 = − 1
cosψ2

(
q ′ sinψ3 − p′ cosψ3 + cosψ3ω0Ψ12 − sinψ3ω0Ψ22

) ;
ψ̇2 = q ′ cosψ3 + p′ sinψ3 − cosψ3ω0Ψ22 − sinψ3ω0Ψ12;
ψ̇3 = r ′ + tgψ2

(
q ′ sinψ3 − p′ cosψ3 + cosψ3ω0Ψ12 − sinψ3ω0Ψ22

)− ω0Ψ32

(10)

So, the Eqs. (6), (7), (8), (9), and (10) form the complete systems to modeling
the angular motion of the satellite with the internal gravitational damper relative the
orbital coordinates frame.

3 Modeling Results

Let us present the results of numerical modeling for the satellite with the internal
gravitational damper with parameters indicated in Table 1.

As we see from the modeling results (Figs. 3, 4, 5, 6, 7, 8, and 9), the internal
damper-body can effectively unload the initial angular momentum of the satellite.
It follows from the fact that the equatorial angular velocity components (p, p′, r, r′)
take near-zero values after first 150,000 seconds (Figs. 3 and 5), and after we have
decreasing oscillations with near-zero small amplitudes. The absolute values of q
and q′ will be finally equal to orbital angular velocity (Fig. 4).

The attitude of bodies is evolutionarily coming near to a position along the axes
of the orbital frame, in full accordance with gravitational stabilization principle. The
initial rotational motion relative the orbital frame, as we can see, is stopped due to
the kinetic energy dissipation with the help liquid friction in the internal damper.

Table 1 The modeling parameters

Bodies parameters

Inertia tensor [kg*m2]
Initial angular velocity
[1/s] Initial attitude [rad]

Main body J = diag(0.0045,
0.0055, 0.0035)

ω(0) = [0.0012, 0.001,
−0.0025]

{θ i} = {0.015, 0.01,
0.02}

Damper-body J′ = diag(0.003, 0.004,
0.0015)

ω′(0) = [0.0022,
0.001, 0.0015]

{ψ i} = {0.015, 0.01,
0.02}

Orbital angular velocity ω0 [1/s] 0.0012
Damping factor ν [N*m*s] 0.00001
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Fig. 3 The time-evolution of the angular velocities components p (blue) and p′ (red) of the main
body and the damper-body

–ω 0

ω 0

0.001

–0.001

0.0005

–0.0005

0

0.0015

–0.0015

–0.002

[1/s]

20000 120000 14000040000 60000 80000 1000000
t [s]

Fig. 4 The time-evolution of the angular velocities components q (blue) and q′ (red) of the main
body and the damper-body
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Fig. 5 The time-evolution of
the angular velocities
components r (blue) and r′
(red) of the main body and
the damper-body
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Fig. 6 The time-evolution of
spatial angles θ1 (red), θ2
(blue), θ3 (gold) of the
attitude of the main body: the
gravitational orientation is
achieved (the main body is
placed along the orbital axes)
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4 Conclusions

The scheme of the satellite angular momentum unloading basing on the internal
gravitational damper in the spherical cavity with viscous liquid was proposed.
This scheme uses the external gravitational field to change the attitude of the
internal damper-body relative the main body of the satellite, and to create, therefore,
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Fig. 7 The time-evolution of angles θ1 (red) and ψ1 (blue) of the attitude of the main body and
the damper-body
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Fig. 8 The time-evolution of angles θ2 (red) and ψ2 (blue) of the attitude of the main body and
the damper-body

dissipative torque of bodies’ interaction due to the internal viscous friction, which
unloads the angular momentum of the system.

The mathematical model of the attitude motion of satellites relative the orbital
coordinates frame at the action of gravitational torques was constructed.

The numerical modeling was provided, that confirms the main suggested princi-
ple of the angular momentum unloading. As we can see from the modeling results,
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Fig. 9 The time-evolution of spatial angles θ3 (red) and ψ3 (blue) of the attitude of the main body
and the damper-body: the angles have identical dynamics; they will coincide to 150,000 s

the process of the initial angular momentum unloading took about 150,000 seconds
for parameters from Table 1.

Due to its simplicity, the studied scheme can be applied in cases of nanosatellites.
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Studies on the Liquid Sloshing
and Rigid-Liquid-Flexible Coupling
Dynamics of Spacecraft

Bole Ma, Baozeng Yue, Yong Tang, and Jiarui Yu

1 Introduction

Modern spacecraft typically carry a large amount of liquid fuel, and is also
equipped with large flexible structures (e.g., solar panels, communication antenna,
space manipulator). In the case of attitude and orbit motion, spacecraft are readily
disturbed by liquid sloshing and flexible appendages vibrations. These problems
have made critical the technologies of describing the rigid-liquid-flexible spacecraft
coupling dynamics.

In microgravity (or low-gravity or zero-gravity) environment, note that the sur-
face tension is dominant and the liquid volume takes an almost arbitrary orientation.
Therefore, liquid sloshing is a complex, non-linear phenomena which is a difficult
mathematical problem to solve analytically. At present, analytical solutions are
limited to regular geometric tank shapes, such as cylindrical and rectangular [1,
2]. Accordingly, the equivalent mechanical models (EMMs) and the computational
fluid dynamics (CFD) for predicting sloshing are developed, and good results have
obtained. From the view of EMMs, the constraint-surface model [3, 4] and the
moving pulsating ball model [5, 6] are gradually replacing spring–mass–damper
model [7, 8] and pendulum models [9], which will be effective in predicting the
behavior of liquid–spacecraft interaction. However, the combined EMMs-rigid-
body model, although more concise, has some drawbacks from a precision point
of view. On the other hand, CFD can be classified into three categories: Lagrangian
methods, Eulerian methods (e.g., VOF and LS), and arbitrary Lagrangian–Eulerian
(ALE) methods. ALE methods are intended to combine the respective advantages of
both Lagrangian and Eulerian methods. A comprehensive book on nonlinear large-
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amplitude sloshing dynamics was compiled by Yue Baozeng, which ALE methods
are described in detail [10]. This present work is based on a paper [11] that deals
with the problem of liquid sloshing dynamics used improved ALE methods.

Meanwhile, most studies on spacecraft systems are focused on the rigid–liquid
or rigid–flexible coupling dynamic. For example, Veldman [12] used the interface-
capturing methods (VOF) to describe the process of liquid sloshing, and obtained
the simulation results with rigid-liquid coupling system of liquid-filled spacecraft
under attitude motion, which are verified by the experimental results of sloshsat
Flevo satellite. Theureau [13] used CFD simulations (FLOW-3D) to predict the
sloshing dynamics, and a spacecraft attitude controller is designed. However, there
still exist large obstacle to the coupling system dynamics of spacecraft because of
not considering coupling dynamics between liquid sloshing and the vibrations of
flexible flexibles. Therefore, many methodologies have been developed to investi-
gate the rigid-liquid-flexible coupling system of the spacecraft. Liu [14] investigated
the slosh motion by a spherical pendulum, and a variable substitution method
is proposed to apparently uncoupled mathematical model of the rigid-flexible-
liquid spacecraft. Deng [15] represented large-scale liquid propellant motion by
the moving pulsating ball model (MPBM), and the spacecraft attitude transition
is carried out using a torqueum transfer technique. Gasbarri [16] investigated rigid-
liquid-flexible coupling system of the spacecraft by a multibody method using a
pendulum-like model for slosh and a beam-like model for flexibility. However, in
order to reveal the complex coupling mechanism between the liquid, the rigid body,
and the flexible appendages, it is still necessary to explore modeling and dynamics
coupling of a liquid-filled flexible spacecraft.

The paper is outlined as follows: first, Section 2 deals with the numerical model
of the rigid-liquid-flexible coupling system. The coupling effect is realized by
exerting inertia forces to the liquid and flexible, and sloshing forces and torques
to the rigid body. Once the model is presented, in Sect. 3 the calculation method is
shown. The staggered algorithm is adopted to solve the liquid-sloshing module, the
rigid body module, and the flexible appendages module in an iterative way. Section
4 presents the main analytical results dealing with the dynamics of the rigid-liquid-
flexible coupling system. The system is simulated for a case and compared to the
previous results, obtaining a reasonable match. Subsequently, the influences of the
liquid sloshing on the coupling system are explored; some concluding remarks are
drafted from the results obtained. Finally, concluding remarks are made in Sect. 5.

2 Dynamics Equation of a Liquid-Filled Flexible Spacecraft

As shown in Fig. 1, the spacecraft includes a rigid body, a partially filled spherical
tank, and a beam-like appendage. It is necessary to consider the motion of liquid
and flexible appendages in the dynamic reference system which is a rigid body fixed
reference Oxyz with its origin fixed at O. The effect of rigid body motion on liquid
and flexible appendages is expressed as inertial forces. The rigid body dynamic
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Fig. 1 Rigid-liquid-flexing system

equation considering the influences of liquid and flexible appendages is obtained. In
addition, based on the dynamic equations of liquid and flexible appendages under
reference frame of the main rigid, the forces and torques of liquid and flexible
appendages on the main rigid body of the spacecraft are derived.

As shown in Fig. 1, the dynamics equation of the rigid body is given by

mRv̇O + ω̇ ×mRrR + ω × (ω ×mRrR) = FF + FE + FB (1)

mRrR × v̇O + JR · ω̇ + ω × (JR · ω) = T F + T E + T B (2)

where mR is the mass of the rigid body; rR is the position vector of the rigid body
center of mass in Oxyz; JR is the inertia tensor of the rigid body to O; ω is the
angular velocity of the Oxyz; vO is the absolute velocities of O; FF , FE, and FB are
respectively the force produced by liquid slosh, other external (e.g., gravity, control)
and beam; TF , TE, and TB are respectively the torque produced by liquid slosh, other
external (e.g., gravity, control) and beam; The derivations of FF , FB, TF , and TB are
discussed separately in the following sections.

2.1 The Forces and Torques of Liquid

The force FF applied on the rigid body from the liquid can be expressed as

FF = −
∫

V

(−pI + τ) · ndS (3)

where p, τ , n, I, and V are the liquid pressure, the viscous stress tensor, the outer
normal direction of a boundary unit, the unit tensor, and liquid region, respectively.
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Based on the momentum equation of liquid and divergence theorem, the solution
of Eq. (3) can be written

FF =−mLv̇O − ω̇ ×mLrL − ω × (ω ×mLrL)−
∫

V

ρ

(
Du

Dt
+ 2ω × u− f tru

)
dV

(4)

where u denotes the velocity of the fluid relative to Oxyz, τ = μ(∇u+ (∇u)T ) is the
deviatoric stress tensor, t is the time, μ is fluid viscosity coefficient, and p and ρ are
the pressure and the fluid density, respectively. The first 3 terms are resulted from
inertial force, and the last term caused by the real body force.

Similarly, the torque TF applied on the rigid body from the liquid can be
expressed as

T F =−mLrL × v̇O − JL · ω̇L − ω × (JL · ω)−
∫

V

r

×
[
ρ

(
Du

Dt
+ 2ω × u− f tru

)]
dV

(5)

where JL is the inertial tensor of O.

2.2 The Forces and Torques of Beam

The flexible appendages are modeled as a Bernoulli–Euler beam with uniform
circular cross-section. Its axis is placed parallel to the x-axis. Bl and Br are the
left and right end of the beam, and are the position vector rOBl and rOBr in Oxyz,
respectively. There exists an elastic displacement wB. In Oxyz, rOBl=[xb yb zb]T ,
rOBr=[xb yb zb]T , wB = [0 wB

y wB
z ]T and there exist r = rOBl + rBlQ + wB . The

inertial force of the beam is obtained as follows

f = −
[
v̇O + ω̇ × r + ω × (ω × r)+ 2ω × ∂wB

∂t

]
(6)

The transverse elastic vibration equations of the beam are expressed as follows:

ρBAB

∂2wB
y

∂t2
= −EI ∂

4wB
y

∂x4
− ρBABcB

∂wB
y

∂t
+ ρBABfy (7)
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ρBAB

∂2wB
z

∂t2
= −EI ∂

4wB
z

∂x4 − ρBABcB
∂wB

z

∂t
+ ρBABfz (8)

where cB is the viscous damping coefficient of the beam structure; EB, AB, and
ρB are the modulus of elasticity, the cross-sectional area, and the density of the
beam, respectively; fy and fz are the components of the inertial force in the y- and
z-directions.

The mode superposition method is used to discretize and solve Eqs. (7) and (8).
The solution process of the rigid-flexible mode is omitted. Existing that wx

B = 0, so
the force Fb applied on the beam from the rigid body can be expressed as

Fb
x = pBABLB

[
v̇Ox −

(
ω2
y + ω2

z

)
xb +

(
ωxωy − ω̇z

)
yb

+ (
ωxωz + ω̇y

)
yb − 1

2pBABL
2
B

(
ω2
y + ω2

z

)

+ (
ωxωy − ω̇z

) NB∑

i=1
qyipBAB

∫ LB
0 ϕBidx

+ (
ωxωz + ω̇y

) NB∑

i=1
qyipBAB

∫ LB
0 ϕBidx

− 2ωz
NB∑

i=1

dqyi
dt pBAB

∫ LB
0 ϕBidx+ 2ωy

NB∑

i=1

dqyi
dt pBAB

∫ LB
0 ϕBidx

(9)

Fb
y = EBIB

∂3wB
y

∂x3

∣∣∣∣∣
x=0

= EBIB

NB∑

i=1

qyi
d3ϕBi

dx3

∣∣∣∣
x=0

= −2EBIB

NB∑

i=1

qyiCiζ
3
i

chζiLB + cos ζiLB
shζiLB + sin ζiLB

(10)

Fb
z = EBIB

∂3wB
z

∂x3

∣∣∣∣∣
x=0

= EBIB

NB∑

i=1

qzi
d3ϕBi

dx3

∣∣∣∣
x=0

= −2EBIB

NB∑

i=1

qziCiζ
3
i

chζiLB + cos ζiLB
shζiLB + sin ζiLB

(11)

where LB is the length of the beam; ϕBi(x)= ith transverse mode shape, i= 1,..., NB;
qyi (t) and qzi (t) are the corresponding modal coefficient of y and z, respectively; Ci

is a constant that can be obtained by normalization; ζ iLB ≈ (2i − 1) π /2, (i ≥ 5).
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The torque Tb are presented below

T bx =
NB∑

i=1
qyi

d2qzi
dt2

−
NB∑

i=1
qzi

d2qyi
dt2

+
[
v̇Oz +

(
ωxωz − ω̇y

)
(xb)+

(
ωyωz + ω̇x

)
(yb)−

(
ω2
x + ω2

z

)
(zb)

]

NB∑

i=1
qyiρBAB

∫ LB
0 ϕBixdx

−
[
v̇Oy +

(
ωxωy + ω̇z

)
(xb)−

(
ω2
x + ω2

z

)
(yb)+

(
ωyωz − ω̇x

)
(zb)

]

NB∑

i=1
qziρBAB

∫ LB
0 ϕBixdx +

(
ωyωz − ω̇x

) NB∑

i=1
qyiρBAB

∫ LB
0 ϕBixdx

− (
ωxωy + ω̇z

) NB∑

i=1
qziρBAB

∫ LB
0 ϕBixdx +

(
ωyωz + ω̇x

)

NB∑

i=1
q2
yi
− (

ωyωz − ω̇x
) NB∑

i=1
q2
zi
+
(
ω2
z − ω2

y

) NB∑

i=1
qyiqzi + 2ωx

(
NB∑

i=1
qyi

dqyi
dt +

NB∑

i=1
qzi

dqzi
dt

)

(12)

T b
y = EBIB

∂2wB
z

∂x2

∣∣
∣∣∣
x=0

= EBIB

NB∑

i=1

qzi
d2ϕBi

dx2

∣∣
∣∣
x=0

= 2EBIB

NB∑

i=1

Ciζ
2
i qzi

(13)

T b
z = −EBIB

∂2wB
y

∂x2

∣∣∣∣
∣
x=0

= −EBIB

NB∑

i=1

qyi
d2ϕBi

dx2

∣∣∣
∣
x=0

= −2EBIB

NB∑

i=1

Ciζ
2
i qyi

(14)

Finally, the force FB and torque TB applied on the rigid body from the beam can
be expressed as

FB = −Fb, T B = −T b − rOBl × Fb (15)

3 Method of Solution

Based on the interleave method, the numerical simulation of the rigid-liquid-flexible
coupling system of the spacecraft is established. This system has three modules,
namely the liquid module, the rigid body module, and the flexible module. The
iterative method is developed to solve the coupled model. Both the values of the
liquid sloshing force FF and torque TF are calculated by the ALE method [11].
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The absolute derivative term is written as the relative derivative in Oxyz.

v̇O = v̇O + ω × vO, ω̇ = ω̇ + ω × ω = ω̇ (16)

msv̇O + ω̇ ×msrs = A (17)

msrs × v̇O + Js · ω̇ = B (18)

⎡

⎢⎢⎢⎢⎢
⎣

ms 0 0 0 mSrSz −mSrSy

0 ms 0 −mSrSz 0 mSrSx

0 0 mS mSrSy −mSrSx 0
0

mSrSz

−mSrSy

−mSrSz

0
mSrSx

mSrSy

−mSrSx

0

JSxx

− JSxy

− JSxz

−JSxy
JSyy

− JSyz

−JSxz
− JSyz

JSzz

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

v̇Ox

v̇Oy

v̇Oz

ω̇x

ω̇y

ω̇z

⎤

⎥⎥⎥⎥⎥
⎦
=

⎡

⎢⎢⎢⎢⎢
⎣

Ax

Ay

Az

Bx

By

Bz

⎤

⎥⎥⎥⎥⎥
⎦

(19)

ẏ = M−1C = F
(
rs(t), Js(t), u(t), F

B(t), T B(t), y
)

(20)

Equation (20) can be solved numerically by the Runge-Kutta method.

4 Numerical Results

4.1 Response of Rigid-Flexible Coupled Spacecraft Under Step
Excitation

For liquid sloshing, the used improved ALE methods [11] have been verified by
published experimental. Therefore, to validate the method developed in the present
work, the results obtained for 3D spacecraft models with rigid-flexible coupling
system under step excitation are compared with previous results [17]. The tank is
considered to be empty in a rigid-flexible coupling system. The cantilever beam has
a length of LB = 1 m, an inertia moment of JRxx = JRyy = JRzz = 0.0448 kg·m2, a
cross-sectional area of AB = 0.01 m2, a density of ρB = 20.2 kg/m3, and a flexural
rigidity of EBI = 566.71 N·m2. The coordinates of fixed-end Bl points in the moving
reference system are rOBl = [0.1 0.0 0.0]Tm.

A step external moment about the z-axis is as follows (Fig. 2):

T E
z =

⎧
⎨

⎩

30.0N ·m
− 30.0N ·m

0

t ≤ 0.05s
0.1s ≤ t ≤ 0.15s

other
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The time evolution curves in Fig. 2 presents the different responses of the rigid-
flexible coupled spacecraft under step excitation; The curves (a), (b), and (c) in
Fig. 2 correspond respectively to the numerical results of the flexible beam free
end displacement wy

B, the spacecraft angular velocity ωz, and the rotation θ z of the
spacecraft around the z axis. For the flexible beam free end displacement, the results
are very close to the analytical results; the peak amplitudes of the numerical results
are a little smaller. The results of ωz and θ z are compared with previous results, and
a good agreement is found.

Fig. 2 Response of rigid-flexible coupled spacecraft: (a) wy
B; (b) ωz; (c) θ z
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Fig. 3 Response of the rigid-liquid-flexible coupled spacecraft under the orbital driving force: (a)
ω; (b) θ ; (c) v; (d) wave-high; (e) u; (f) w

4.2 Response of the Rigid-Liquid-Flexible Coupled Spacecraft
Under the Orbital Driving Force

The properties of spacecraft are given as follows:
Rigid part: mR = 400 kg, JRxx = JRyy = 600 kg·m2, JRzz = 800 kg·m2;
Liquid slug: The spherical tank radius R = 0.4 m, the liquid-filling ratios is

40%, the surface tension coefficient σ = 0.0725 N/m, the viscosity coefficient
μ = 3 × 10−6 Ns/m2, ρ = 1000 kg/m3, the contact angle θ0 = 5◦, and the center
coordinates of the container are [0.1 0.15 0.0]Tm;

Flexible beam: LB = 11.4 m, ρB = 177 kg/m3, AB = 0.01 m2, EBI = 407 N·m2,
cB = 0.005, rOBl = [1.428 0.0 0.0]Tm;

In micro-gravity environment, g = 0.09 m/s2. The orbital driving force about the
y-axis is as follows:

FE
y =

⎧
⎨

⎩

5.0N ·m
− 5.0N ·m

0

t ≤ 20s
40s ≤ t ≤ 60s

other
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Fig. 4 Comparison of beam-ends displacement between liquid sloshing and liquid rigidization:
(a) y-direction; (b) z-direction

Figure 3 presents the evolution over time of the different responses of the rigid-
liquid-flexible coupled spacecraft under the orbital driving force. The curves (a),
(b), and (c) in Fig. 3 correspond to numerical results with the angular velocity ω, the
rotation angle θ and the centroid absolute velocity v of the rigid body, respectively.
Although there is no driving force after 60s, the angular velocity ω still fluctuates.
The reason is the influence of liquid sloshing and flexible appendages vibration. The
curves (d), (e), and (f ) in Fig. 3 correspond to numerical results with wave-high,
flexible beam free end displacement u and velocity w, respectively.

Then we consider both cases with liquid sloshing and liquid rigidization. Liquid
rigidization is assumed not to allow liquid sloshing. Figure 4 shows the displacement
of beam end changes obviously in the form of vibration of amplitude and size under
liquid rigidization. From Fig. 4 we can observe that there exists a big difference in
the two results. The curves (a) in Fig. 4 show wB

y decreases sharply after 60s. The
curves (b) in Fig. 4 show wB

z changes from beat vibration to vibration with higher
harmonic components, and the descending of vibrating amplitude.

Figure 5 shows the angular velocity response of rigid body under liquid sloshing
and liquid rigidization. A local magnification of the 50 s~250 s period on the right
side of Fig. 5. We can observe that the fluid sloshing not only influences the shape
of vibration output, but also changes the vibrating frequency and the vibrating
amplitude of the angular velocity response of rigid body.
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Fig. 5 Angular velocity response of rigid body under liquid sloshing and liquid rigidization

Fig. 6 Angular velocity response of the rigid body under the vibrations of flexible and rigid
appendages

Fig. 6 shows the angular velocity response of the rigid body under the vibrations
of flexible and rigid appendages. The vibration of rigid appendages is assumed not
to allow deformation of appendages. A local magnification of the 50 s~250 s period
is shown on on the right of Fig.6. For rigid-liquid-flexible coupled spacecraft, the
liquid sloshing and the vibrations of flexible flexibles can affect the angular velocity
response of rigid body greatly.

It was found from Fig. 7 that the liquid wave-high amplitude and sloshing period
were dependent on the vibrations of flexible and rigid appendages. That is, the
maximum amplitude of the liquid wave-high was observed under the vibrations of
flexible appendages, and it has a longer sloshing period.
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Fig. 7 Liquid wave-high under the vibrations of flexible and rigid appendages

5 Conclusions

To demonstrate the method developed in the present work, the results obtained for
3D spacecraft model with rigid-flexible coupling system under step excitation are
compared with previous results, and a good agreement is found. The response of the
rigid-liquid-flexible coupling spacecraft under orbital driving forces is studied. The
influences of the liquid sloshing on the main rigid body and the flexible appendages
are studied. Meanwhile, the vibrations of flexible appendages will also cause the
main rigid body motion and liquid sloshing, respectively. Presented results show
that there exists complex coupling mechanism among liquid sloshing, rigid body
motion, and flexible appendages vibration.
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Direct Sensitivity Analysis of Dynamic
Responses for Nonlinear Structure

Zhifu Cao, Qingguo Fei, Dong Jiang, Rakesh K. Kapania, Hui Jin,
and Rui Zhu

1 Introduction

Different dynamic behaviors for nonlinear structures are affected by the varying
of the structural parameters [1], such as quasi-periodic and chaotic vibrations [2].
Structural nonlinearity can be classified into three categories: geometrical, material,
and contact nonlinearity [3, 4], are widespread in engineering structures and should
not be neglected in modern engineering design. Dynamic performance of the system
can be assessed by investigating how structural parameters affect the nonlinear
responses, and sensitivity analysis of nonlinear dynamic response is a critical issue.

Sensitivity analysis plays an important role in many research fields such as
optimization [5], model updating [6], and parameter identification [7]. The dynamic
sensitivities of the responses with respect to parameters can be calculated using
three methods: the perturbation method, adjoint variable method (AVM), and
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direct differentiation method (DDM). The perturbation method is dependent on
parameter perturbations to obtain the sensitivities, which can be using the real
and/or imaginary perturbation formulation [8–10]. The finite difference method
(FDM) is commonly used in sensitivity analysis, as it is easy to implement. Owing
to the re-analysis for each parameter in perturbated response computation, the
perturbation method suffers from the inefficiency of dynamic response sensitivity
analysis. Given a time-dependent load to structure, e.g. impact, shock, and seismic
loading, the vibration of structure often undesired. To optimize the performance of
the structural vibration, the sensitivity analysis is needed for the dynamic response
problems. In the AVM sensitivity analysis, independent adjoint terms are added to
the sensitivity equations of objective function, and the sensitivities are computed in a
manner analogous to the method of Lagrange multipliers [11]. The AVM, however,
suffered from computational disadvantage for nonlinear dynamic problems. The
AVM for nonlinear dynamic problems with initial conditions became a terminal-
value problem where terminal conditions were prescribed for the adjoint equations.
These equations must be integrated backward in time [11]. In this approach, the
response and adjoint sensitivity cannot be computed simultaneously, and the storage
costs can be large [12].

The DDM is an effective choice for forward time integration problem and can be
successfully applied to sensitivity analysis. Scott and Azad [13] applied the DDM
to a force-based element formulation with material and geometric nonlinearity
to compute the response sensitivities. Ding et al. [14] developed the DDM to
calculate the first and second derivatives of the dynamic response for non-viscously
damped system. Akinlar [15] presented a staggered method to compute the response
sensitivities for the Lorenz equations. The differentiation equation for normalized
sensitivity analysis to different typical chaotic systems is derived in [16]. The DDM-
based sensitivity analysis method is shown to be suitable for some systems with
well-conditions of the sensitivity equations. Few attempts have been conducted
on the problem of dynamic response sensitivity analysis for assembled structures,
which contain nonlinearities localized in the connections.

In this paper, a direct sensitivity analysis method for nonlinear dynamic
responses is proposed, in which the nonlinear dynamic response and corresponding
sensitivity are synchronously determined. The paper is organized as follows. In
Sect. 2, the direct sensitivity analysis method involving solutions of nonlinear
dynamic response and direct differentiation formula are presented. In Sect. 3, the
implementations of the nonlinear dynamic response sensitivity computation are
verified by a Duffing oscillator considering chaotic and periodic vibrations. Finally,
conclusions are presented in Sect. 4.
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2 Methodology

2.1 Nonlinear Dynamic Response

The equation of motion for a nonlinear structure can be represented as

Mẍ (t,p)+ Cẋ (t,p)+Kx (t,p)+ fnl (x (t,p) , ẋ (t,p) ,p) = f(t) (1)

where M, C, K∈RN × N are the mass, damping, and stiffness matrix, respectively.
f(t)∈RN × 1 represents the external excitation load. x(t), ẋ(t), ẍ(t)∈RN × 1 are the
displacement, velocity, and acceleration vector, respectively. fnl(x(t, p), ẋ(t, p),
p)∈RN × 1 is the nonlinear restoring force, in which p is the design parameters.

Dynamic responses can be computed from Eq. (1) using time integration method,
such as Newmark procedure [17] used in this paper. The equation of motion of
the system at time tn + 1 can be written as the following nonlinear matrix algebraic
equation in the unknowns ẍn + 1, ẋn + 1, and xn + 1

Ψ n+1 = fn+1 −Mẍn+1 − Cẋn+1 −Kxn+1 − fnl (xn+1, ẋn+1,p) (2)

where �n + 1 is the residual formula of the equation of motion. Using the Newmark-
β [18] method, the Eq. (2) is rewritten as follows. The solution of Eq. (3) can be
computed using Newton-Raphson algorithm.

Ψ n+1 = fn+1 +M
(

1
β(Δt)2

xn + 1
β(Δt)

ẋn −
(

1− 1
2β

)
ẍn
)

+ C
(

γ
β(Δt)

xn −
(

1− γ
β

)
ẋn − (Δt)

(
1− γ

2β

)
ẍn
)

−
(

1
β(Δt)2

Mxn+1 + γ
β(Δt)

Cxn+1 +Kxn+1 + fnl (xn+1, ẋn+1,p)
)

= 0

(3)

2.2 Direct Sensitivity Analysis

The direct differentiation method (DDM) [19] is implemented in this paper to the
computation of the nonlinear dynamic response sensitivity. Differentiating Eq. (1)
directly with respect to the design parameters pi (i = 1, 2, . . . , q), the derivatives of
the algebraic equations of the sensitivity can be obtained,

M ∂ ẍ(t,p)
∂pi

+ C ∂ ẋ(t,p)
∂pi

+K ∂x(t,p)
∂pi

= − dfnl(x(t,p),ẋ(t,p),p)
dpi

= −
(
∂fnl(x(t,p),ẋ(t,p),p)

∂x
∂x(t,p)
∂pi

+ ∂fnl(x(t,p),ẋ(t,p),p)
∂ ẋ

∂ ẋ(t,p)
∂pi

+ ∂fnl
∂pi

)

= −
(

Jx
∂x(t,p)
∂pi

+ Jẋ
∂ ẋ(t,p)
∂pi

+ ∂fnl
∂pi

)
(4)
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where the last term in the right-hand side of this expression represents an explicit
dependence on variable pi, and the first two terms show the implicit dependence
through dynamic responses x and ẋ. The symbols Jx and Jẋ are the Jacobian matrix
of the nonlinear restoring force fnl(x(t, p), ẋ(t, p), p) with respect to the displacement
and velocity coordinates

Jx =

⎡

⎢⎢
⎣

∂fnl1
∂x1

· · · ∂fnl1
∂xN

...
. . .

...
∂fnlN
∂x1

· · · ∂fnlN
∂xN

⎤

⎥⎥
⎦ , Jẋ =

⎡

⎢⎢
⎣

∂fnl1
∂ẋ1

· · · ∂fnl1
∂ẋN

...
. . .

...
∂fnlN
∂ẋ1

· · · ∂fnlN
∂ẋN

⎤

⎥⎥
⎦ (5)

Introducing the following symbolic representation,

si = ∂x (t,p)
∂pi

, ṡi = ∂ ẋ (t,p)
∂pi

, s̈i = ∂ ẍ (t,p)
∂pi

(6)

the compact formula of the second-order ordinary differential equation of sensitivity
can be rewritten as

Ms̈i + (C+ Jẋ) ṡi + (K+ Jx) si + ∂fnl (x (t,p) , ẋ (t,p) ,p)
∂pi

= 0 (7)

With x(t,p) and ẋ(t,p) obtained from Eq. (1), the solution of the design sen-
sitivities can be computed from Eq. (7) using again the Newmark method. The
equilibrium equation of the nonlinear dynamic response sensitivity at tn + 1 then
can be derived as Eq. (8).

Φn+1=M
(
− 1

β(Δt)2
si,n− 1

β(Δt)
ṡi,n+

(
1− 1

2β

)
s̈i,n

)

+ (C+Jẋ,n+1
) (− γ

β(Δt)
si,n+

(
1− γ

β

)
ṡi,n+ (Δt)

(
1− γ

2β

)
s̈i,n

)

+ ∂fnl(x(tn+1,p),ẋ(tn+1,p),p)
∂pi

+
(

1
β(Δt)2

M+ γ
β(Δt)

(
C+ Jẋ,n+1

)+ (K+Jx,n+1
))

si,n+1

= 0
(8)

The third term on the right-hand side of Eq. (8) represents thee partial derivative
of the restoring force vector, fnl(x(t, p), ẋ(t, p), p), with respect to interest parameter
pi under the condition that the responses at time tn + 1 are determined. The Jacobian
matrix Jx,n + 1 and Jẋ,n + 1 also should be determined using the responses at time
tn + 1. This equation can be solved for the vector of unknowns si,n + 1. The dynamic
response sensitivity with respect to other parameters can be determined using the
same procedure.

It also can be noted that once the numerical response of the structure at tn + 1
is known, the equilibrium equation of the nonlinear dynamic response sensitivity
has several same structural matrix as Eq. (3) and is linear [20]. The advantage of
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the DDM is that the response sensitivities can be synchronously computed with the
calculation of the nonlinear dynamic responses, i.e., the computational procedure
is more efficient compared with the FDM. Usually, the initial conditions of the
displacement and velocity are given firstly, which lead to the sensitivities of the
initial displacement and the velocity are zero. When the 2-norm of the residual
function ||�k

n + 1||2 satisfies the convergence criteria, the tolerance being set to
1.0× 10−6, the convergent nonlinear dynamic responses are applied to compute the
responses directly at current time.

3 Duffing Oscillator

In this section, the proposed method will be demonstrated to dynamic response
sensitivity analysis for nonlinear Duffing oscillator. The nondimensional Duffing
oscillator with external forcing studied in this paper has the form,

ẍ + cẋ + kx + knlx
3 = B cosΩt (9)

where c, k are the linear damping and stiffness coefficients, respectively; knl is the
cubic stiffness coefficient; B and � are the excitation amplitude and excitation
frequency, respectively. These parameters are chosen to investigate the dynamic
response and its sensitivity are listed in follows.

3.1 Effect of Secular Term

To verify the accuracy of the DDM-based sensitivity for the nonlinear dynamic
response, the asymptotically analytical solution, and the finite difference solution
of the dynamic response sensitivity for the free vibration of the undamped Duffing
oscillator are considered. In this study, the parameters of the undamped Duffing
oscillator with linear and cubic term are k = 1, knl = 0.1.

The Poincaré method (PCM) and Lindstedt-Poincaré method (LPM) [2], with
initial displacement x0 and zero velocity, are both applied to obtain the asymp-
totically analytical solution of the undamped Duffing oscillator. It is well known
that the secular term tsinω0t appears in the PCM solution, which leads to response
growing without bound as time increases. However, the effect of secular term can
be avoided when using the LPM solutions [2]. The forward difference formula for
the sensitivity of the response with respect to the nonlinear stiffness coefficient knl
is given by

s(t) = x (t, knl +Δknl)− x (t, knl)

Δknl
+ ε (10)



286 Z. Cao et al.

(a) (b) (c)

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0
 LPM vs. PCM
 LPM vs. FDM
 LPM vs. DDM

-1

0

1

-1.0

-0.5

0.0

0.5

1.0

-2.50 -1.25 0.00 1.25 2.50
-2.5

0.0

2.5
 LPM vs. PCM
 LPM vs. FDM
 LPM vs. DDM

-2.5

0.0

2.5

-2.5

0.0

2.5

-5.0 -2.5 0.0 2.5 5.0
-5.0

-2.5

0.0

2.5

5.0
 LPM vs. PCM
 LPM vs. FDM
 LPM vs. DDM

-5

0

5

-5.0

-2.5

0.0

2.5

5.0

∂x
/∂

k nl

∂x/∂knl

∂x
/∂

k nl

∂x/∂knl

∂x
/∂

k n
l

∂x/∂knl

Fig. 1 Comparison of nonlinear displacement sensitivities among the four methods (x: LPM, y:
PCM, FDM, DDM) with different time interval: (a) [0 20s]; (b) [0 50s]; (c) [0 100 s]

where ε =�knl/2|x ′′(knl+�knl)| is the truncation error, and (*)′′ means the second-
order derivative. The Δknl is the parameter perturbation in FDM-based sensitivity
analysis [10]. The initial conditions are set to x0 = 0.5 and ẋ0 = 0, and the
computation time spans are 0 < t ≤ 20s, 0 < t ≤ 50s, and 0 < t ≤ 100 s, respectively.
Response sensitivities calculated using the LPM are applied as the reference in
comparing the results obtained by the DDM, FDM, and PCM. For DDM- and FDM-
sensitivity analysis, the relative convergence criterion tol, the time-step �t, and the
parameter perturbation �knl are10−10, 10−3 s and 10−3knl, respectively.

Figure 1 illustrates the comparisons of nonlinear displacement sensitivities
among the four methods with different time spans. When these displacement
sensitivities match well, these points are located at the straight-line y= x. Otherwise,
these points will be scattered around the straight-line. As shown in Fig. 1a–c,
with the increase in the computational time, the differences between PCM and
LPM-based response sensitivities are more obvious. In contrast, the blue and
green straight lines show the consistency among the FDM, DDM, and LPM
displacement sensitivities. It can also be concluded that the nonlinear dynamic
responses computed using DDM procedure are not affected by the secular term,
and the sensitivities obtained by DDM have high accuracy for the short-term and
long-term sensitivity analyses when compared with the PCM procedure. The DDM
procedure can be implemented for obtaining the long-term nonlinear dynamic
response sensitivity.

3.2 Effect of Different Dynamic Behaviors

A special Duffing-type Ueda oscillator, which often exhibits periodic and chaotic
dynamical behavior, is considered in this case. The Runge-Kutta method (RKM)
[19], which can be implemented by MATLAB ODE solver (ode45), is compared for
the sensitivity analysis for different dynamic behaviors in this subsection. The initial
conditions of the Ueda oscillator for nonlinear dynamic response analysis are set to
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Table 1 Different parameter sets of the Ueda oscillator

Value
Parameters Set 1 Set 2 Set 3 Set 4

Damping coeff. c 0.05 0.05 0.1 0.1
Linear stiffness coeff. k 0 0 0 0
Cubic stiffness coeff. knl 1 1 1 1
Force amplitude B 1.4 7.5 12 14
Force frequency � 1 1 1 1
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Fig. 2 Displacement and phase portraits for different sets using DDM procedure: (a, b) set 1, (c,
d) set 2, (e, f) set 3, and (g, h) set 4

x0 = 0.5 and ẋ0 = 0, and the computation time span is 0 < t ≤ 100 s. For DDM-
and FDM-sensitivity analysis, the relative convergence criterion tol, the time-step
�t, and the parameter perturbation �knl are10−10, 10−3 s and 10−3knl, respectively.

Different physical states for quasi-periodic vibrations (Sets 1 and 4) and chaotic
vibrations (Sets 2 and 3) are considered in Table 1. These three sensitivity analysis
procedures are remarked as Method I (FDM-based procedure), Method II (DDM-
based procedure), and Method III (RKM-based procedure).

The displacement and its sensitivity calculated using DDM with respect to the
cubic stiffness coefficient are shown in Figs. 2 and 3, respectively. Figure 2 provides
the time history of the displacement and the phase portraits for the four different
parameter sets. The phase portraits of narrow band for Sets 1 and 4 in Fig. 2b,
h correspond to quasi-periodic vibrations. In contrast, Fig. 2d, f show the chaotic
attractor, which is extremely sensitive to the initial conditions. The ‘aperiodic long-
term behavior [2]’ in the chaotic vibration is shown in the time history of the
displacement in Fig. 2c, e.

The time history of the displacement sensitivity with respect to the cubic stiffness
coefficient is shown in Fig. 3a, c, e, g. Similar to the quasi-periodic vibration of
the displacement, the displacement sensitivities oscillate periodically with time.
The corresponding phase portraits (Fig. 3b, h) show that the sensitivities of the
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Fig. 3 Displacement response sensitivities with respect to cubic stiffness coefficient and its phase
plot for different sets,—Method I, -o- Method II,-·-Method III: (a, b) set 1, (c, d) set 2, (e, f) set 3
and (g, h) set 4

quasi-periodic vibration sets 1 and 4 are bounded and settles into a regular region.
By comparison, the response sensitivities of the chaotic vibration increase with an
increase of time. In the chaotic region, the nonlinear dynamic response sensitivities
are irregular.

As to the accuracy of the DDM-based long time response sensitivity com-
putation, the results are reported by the comparison of the time history of the
displacement sensitivities. As one could expect, for the quasi-periodic vibrations,
the three sensitivity solutions compare almost perfectly for the sensitivity computa-
tion. In contrast, for the chaotic vibrations, the three solutions match well only for
the short-term computation (Fig. 3c, e:0 ~ 20s). Compared with Method II and III
sensitivities, the obvious differences appear for the Method I sensitivities in a long-
term computation, as the FDM solutions are based on the parameter perturbation,
which has a high sensitivity to the chaotical responses. The results show that the
nonlinear dynamic response sensitivity solutions calculated by DDM are very close
to the Method III solutions, whereas the FDM provides inconsistent sensitivity
solutions for the long-term chaotic responses.

4 Conclusions

In this paper, a direct sensitivity analysis method for nonlinear dynamic responses
is proposed. In this method, the nonlinear dynamic response and corresponding
sensitivity are synchronously computed in the time integration scheme. The DDM
sensitivity analysis method avoids the errors caused by the secular term in com-
putation of long-term responses. For the special Duffing-type Ueda oscillator, the
proposed method works well for computing the quasi-periodic response sensitivity,
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which is bounded and settles into a regular region. For the chaotic vibration,
the proposed method gives a similar result compared to the Runge-Kutta-based
sensitivity solution.
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Perturbations for Non-Local Elastic
Vibration of Circular Arches

Ugurcan Eroglu and Giuseppe Ruta

1 Introduction

Describing slender bodies as structured one-dimensional continua, i.e., deformable
lines to which plane figures (cross-sections) following coarse kinematics are
attached, is usual in structural mechanics, from the pioneering works of Bernoulli
and Euler to the monographs by Love, Timoshenko, Antman (e.g., [1]). Modelling
arches as curved beams led to many works on their response, following the
evolution of the investigations on straight beams in several fields of applied
mechanics. Among the rest, the effects of different inner constraints, kinematics
of the cross-sections and constitutive prescriptions, plus multi-physical influences,
inhomogeneous geometry and materials, and damage were investigated.

An interesting contemporary subject of one-dimensional formulations is the
investigation of nano-sized structural members by continuum theories accounting
for material organization and describing spatial dispersion properties (e.g., [2]).
These non-classical theories may be classified as implicit/weak or explicit/strong,
following [3, 4]. With respect to the usual theory of elasticity, implicit/weak theories
add kinematical variables and work-conjugated stress measures; explicit/strong
theories use the same kinematical variables and account for long-range interactions
by integral or integral-differential operators; details are in [3, 5–7]. We use the well-
established Eringen’s model, initiated in [8] and enhanced in [9–12]: it suggests
that the stress equals the convolution of the strain field and a suitable attenuation
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function. The differential form in [13] is suitable only for infinite domains, since
otherwise it leads to paradoxical results [14]. On the other hand, the integral
form does not provide detectable solutions for problems of interest [15, 16], apart
from special loading and boundary conditions [17, 18]. A two-phase version of
Eringen’s model [9] softens this mathematical problem but still requires additional
boundary conditions, the physical interpretation of which is unavailable if solutions
of applicative interest are searched [19].

We consider the simplest nano-sized curved beams of interest for applications
in MEMS and NEMS, i.e., circular arches with rigid cross-sections. We suppose
them to be shallow to simplify calculations and still account for the membrane
actions. We use Eringen’s two-phase model to account for size effects; we examine
the influence of a non-linear static response and small geometric non-linearities on
small-amplitude vibration. We consider finite kinematics and balance in the actual
shape, pull them back to the reference one, and perturb them in terms of a scalar
shape evolution parameter. To abstract from the material and geometrical actual
values, suitable non-dimensional quantities yield a set of equations of real fields
of real variables only. If arches are slender enough, shearing strain is negligible;
experience and numerical results of the literature (among which our work [20])
suggest the relative orders of magnitude of the geometrical quantities involved,
helping to limit the formal power series expansion to a suitable order. Eringen’s two-
phase model leads to an integral-differential system that is, on its turn, perturbed in
terms of the fraction of non-local response [21]. This lets us find pattern solutions
for benchmark problems at least at the lowest orders of the perturbation, which are
thoroughly discussed and commented on.

2 Statics of Shallow Nano-Arches

The reference shape consists of a portion of circumference (the axis) and the copies
of a compact plane figure attached orthogonally to the axis (the transverse cross-
sections). Cartesian coordinates x, y have origin at the arch mid-span; a consistent
unitary orthogonal basis is e1, e2. If f,R are the height of the arch and the radius of
its axis, see Fig. 1, the position r0 of the axis is

r0 (x) = xe1 + y (x) e2, (y + R − f )2 = R2 − x2. (1)

The curvature k = 1/R is uniform; if the span has length 2l and the arch is shallow,
i.e., f/l < 0.1, easy calculations provide

l

R
≈ 2

f

l
, ds = |dr0 (x)| = 1√

1− k2x2
dx ≈ dx. (2)

By Eq. (2)2, the Cartesian coordinate x very well approximates the curvilinear
abscissa s; all fields defined on the arch may be thus expressed in terms of s ≈ x.
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Fig. 1 A slender, shallow hinged circular arch under a uniform “vertical, dead” load

If a prime denotes s ≈ x-derivation, the unit tangents l(s) to the arch axis and their
derivative, with magnitude 1/R and parallel to the axis normal m, are

l(s) = r′0(s),
m(s)

R
= l′(s). (3)

A new shape of the arch is given by the vector field d(s) = u(s)l(s)+ v(s)m(s),
the axis displacement, and the orthogonal tensor R(s), the cross-sections rotation,
with the sole component ϕ about the normal to the plane of the arch. Finite strain
measures pulled back to the reference shape are [22, 23]

u(s) = RT(s) [r0(s)+ d(s)]′ − l(s), U(s) = RT(s)R′(s). (4)

The vector u lists the axis elongation ε and the shearing γ between axis and cross-
sections; the sole component of the skew-symmetric tensor U is the axial curvature
variation χ . If we skip the dependence of all fields on the place along the axis for
simplicity of notation, the components of (4) are given by

γ = − sinϕ
(
u′ − kv + 1

)+ cosϕ
(
v′ + ku

)
,

ε = cosϕ
(
u′ − kv + 1

)+ sinϕ
(
v′ + ku

)− 1, χ = ϕ′. (5)

The external actions, along the axis and at its ends, are: vector-valued forces
b(s), f(−l), f(l) spending power on the incremental axis displacement; skew-
symmetric tensor-valued couples B(s),F(−l),F(l) spending power on the incre-
mental cross-sections rotation. The contact actions among parts of the arch consist
of a vector field t(s) and a skew-symmetric tensor field T(s), spending power on the
incremental strains; their pull-back to the referential shape follows:

b=Ra, B = RART, f = Rg, F = RGRT, t = Rs, T = RSRT. (6)

The virtual work principle and some algebra yield referential balance [22, 23]
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s′ + Us+ a = 0, S′ + US− SU+ u ∧ s+ A = 0 ∀x ∈ (−l, l)
s = g, S = G x = ±l, (7)

where ∧ is the external product of vectors, providing skew-symmetric tensors; we
introduce the decompositions s = N l+ Vm and S = Ml ∧m, where N,V are the
axial and shearing components of inner force and M is the bending couple.

Slender arches are almost shear-rigid; if we pose γ =0 [1], its work conjugate V
is constitutively unprescribed, given only by balance equations. Let the material
response be linear elastic, consisting of a local and a non-local part, following
Eringen’s two-phase model [9]. If A,B are the cross-sections axial and bending
stiffnesses, the laws for the constitutively prescribed inner actions N,M are

N = A [(1− ξ) ε + ξK ∗ ε] , M = B [(1− ξ) χ + ξK ∗ χ ] , (8)

where 0≤ ξ < 1 is the non-local fraction. Its contribution is the convolution of the
relevant strain measure with a kernel function K

K ∗ g =
∫ l

−l
K (|x −X|) g (X) dX. (9)

Following the literature, K is an exponential in terms of a material property κ

K (|x −X|) = 1

2κ
exp

( |x −X|
κ

)
(10)

and κ has the dimensions of a length, roughly providing the radius of non-local
action.

If a = al l+ amm, we introduce the non-dimensional quantities

k̄ = l

R
, α = f

l
, ū = u

l
, v̄ = v

l
, θ = ϕ, x̄ = x

l
≈ s

l
, κ̄ = κ

l

N̄ = Nl2

B
, V̄ = V l2

B
, M̄ = Ml

B
, λ =

√
Al2

B
, Θm,l = am,l l

3

B
(11)

to abstract from particular geometrical and physical values; however, for simplicity,
henceforth we omit overbars, implying that we deal only with the non-dimensional
ratios in (11), except when confusion may arise.

Consider a shallow slender arch with pinned ends, loaded by a “vertical”
uniform load; then, numerical (see, e.g., [20]) and experimental results suggest great
simplifications of the field equations, since it is possible to estimate that

k = O (α) , u = O
(
α2
)
, v = O (α) , θ = O (α) , λ−1 = O(α).

(12)
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On physical bases, we admit that the values of the cross-section rotation at any
place of the axis are influenced, though indirectly, by the shallowness ratio α. Thus,
we expand the trigonometric functions in (5) in series up to O(α2) and use (12).
Following Mettler [24], ε � 1 and the normal force N are almost uniform with
respect to x≈s. Then, the field equations are

(1− ξ) v′′′′ + ξ
(
K ∗ v′′)′′ − (

k + v′′
)
N −Θm = 0,

N=A [(1− ξ) ε + ξK ∗ ε] , ε=u′ − kv + θv′ − θ2

2
=u′ − kv + (v′)2

2
,

(13)
and the last equality in (13)3 derives from the constraint of vanishing shearing strain.
It turns then out that N shall be found imposing that the arch ends are fixed, yielding
an integral-differential condition, contrary to the local case.

Always on physical bases, we admit that all the fields of interest in this
problem regularly depend on the non-local fraction ξ . Any function g can then be
approximated by a formal ξ -power series expansion up to order m

g ≈
m∑

i=0

ξ i

i!
dig

(dξ)i

∣∣∣∣
ξ=0

=:
m∑

i=0

ξ i

i! gi, gi := dig

(dξ)i

∣∣∣∣
ξ=0

(14)

where the values at ξ = 0 are, for the physical meaning of ξ , those for a fully
local elastic material. To mimic displacement-controlled mechanical tests, where
the external load implicitly depends on the induced strain, we admit that also Θm

has a non-local part and can thus be formally expanded in ξ -power series.
Inserting Eq. (14) into Eq. (13) provides a hierarchy of equations; limiting the

expansion (14) to the first order, Eq. (13)1 yields

v0
′′′′ − (

k + v′′0
)
N0 −Θm0 = 0,

v′′′′1 − v′′′′0 + (
K ∗ v′′0

)′′ − (
k + v′′0

)
N1 − v′′1N0 −Θm1 = 0,

(15)

while Eq. (13)2,3 yields, admitting that u vanishes at the ends at each order,

N0 = λ2

2

∫ 1

−1

(
(v′0)2

2
− kv0

)

dx

N1 = λ2

2

∫ 1

−1

(
v′0v′1 − kv1

)
dx −

∫ 1

−1
(N0 −K ∗N0) dx.

(16)

The solution to Eq. (15)1 is obtained by Galërkin’s technique, using the same
comparison functions as in [20]; following the results therein, in order to avoid
static bifurcation we limit to αλ < π3/8 and get, c1 being an arbitrary constant,
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v0 = c1 cos
πx

2
, N0 = c1λ

2
(
π3c1 − 64α

)

16π
,

Θm0 = 4c1π
6 + c3

1π
6λ2 − 96c2

1π
3αλ2 + 2048c1α

2λ2

256π
.

(17)

Inserting the ξ -0th-order solutions (17) into the ξ -1st-order field equations (15)2,
(16)2 and using Galërkin’s technique again with the same trial function, we get

N1 = −c1e
−1/κκλ2

(
π3c1 − 64α

)
sinh (1/κ)

16π

Θm1 = −c1e
−1/κκ

256π

{
4π6

(
π4κ3 + 4π2κ + 32

)
cosh (1/κ)

(
π2κ2 + 4

)2 +

+ sinh (1/κ)

π2κ2 + 4

[(
π2κ2 + 4

)
λ2
(
π3c1 − 64α

) (
π3c1 − 32α

)
+ 4π8κ

]}

.

(18)

Remark that choosing the trial function (i.e., the field of axis deflection) at ξ -1st-
order identical to that of ξ -0th-order (i.e., that of the local case) is reasonable only
when the non-locality range is limited.

From Eq. (18)1, we see that the introduction of a small amount of non-locality
implies a reduction in the normal force, which is physically motivated because the
long-range action is somehow weaker than the local one (see also the constitutive
Eq. (8)). This softening effect also appears as a decrement in the value of the external
load (see Eq. (18)2) required to yield a given apex displacement.

Figure 2 shows: (a) the curves load vs. displacement of the apex for a non-local
shallow and slender arch, with a limited non-local fraction; (b) the decrement of the
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Fig. 2 (a) Equilibrium path for various non-local ratios κ; (b) Decrement in the distributed load
vs. the apex displacement and the slenderness ratio, α = 0.08, κ = 0.1
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external load required to maintain a given apex displacement. The softening effect
due to long-range interactions is apparent in Fig. 2a, while Fig. 2b suggests that the
same effect is more pronounced with the increase of the apex displacement and the
decrease of the slenderness ratio. The first aspect is physically motivated by the
fact that, all the rest left unchanged, the strain displacement of the apex increases
if the arch is less stiff, hence if the non-locality effect (bringing softening) is more
pronounced. The physical motivation of the second aspect is that, all the rest left
unchanged, the slenderness ratio diminishes with the length of the axis; then, the
physical domain is smaller and the non-locality, bringing a softening effect, affects
the behaviour more remarkably.

A key remark is that this limited non-local fraction lets us still use symmetric
trigonometric functions for the deformed shape. At higher ξ , the known boundary
effect, due to missing neighbor at the boundaries, may considerably change the
actual deformed shape and lead to early stage instability.

3 Small Vibration About Nonlinear Equilibria

If the mechanical fields regularly depend on a scalar evolution parameter, we may
linearize Eqs. (5), (7), (8) in terms of it, getting two sets of equations: the first
describes the reference configuration, the other provides small perturbations about
it, as we did in [25]. If the reference shape is loaded with a uniform “vertical” load
and deforms following the assumptions in the previous section, we obtain the non-
linear equilibrium path described therein. A small-amplitude motion superposed on
such equilibria obeys the equations

γ̂ = v̂′ − ϕ̂

ε̂ = û′ − (
k + v′′

)
v̂

χ̂ = ϕ̂′

N̂ ′ − (
k + v′′

)
V̂ − χ̂V + Θ̂l = 0

V̂ ′ + (
k + v′′

)
N̂ + χ̂N + Θ̂m = 0

M̂ ′ + V̂ + ε̂V = 0,
(19)

where functions with an overhat are non-dimensional first-order evolution incre-
ments (see Eq. (11)). The normal force may still be considered uniform, since
the deformed arch remains shallow, and shearing strain is still negligible. If the
only non-vanishing external distributed load is the transverse inertia of a harmonic
motion with non-dimensional natural angular frequency Ω , Eq. (19) becomes

(1− ξ) v̂′′′′ + ξ
(
K ∗ v̂′′)′′ − (

k + v′′
)
N̂ − v̂′′N + ε̂′v′′′ + ε̂v′′′′ −Ω2v̂ = 0

N̂ = λ2 {(1− ξ)
[
û′ − (

k + v′′
)
v̂
]+ ξK ∗ [û′ − (

k + v′′
)
v̂
]}
.

(20)
As for the static problem, we admit that all the fields regularly depend on the

non-local fraction ξ and the ξ -linearization of Eq. (20) yields
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v̂′′′′0 − (
k + v′′0

)
N̂0 − v̂′′0N0 + ε̂0v

′′′′
0 −Ω2

0 v̂0 = 0

N̂0 = −λ
2

2

∫ 1

−1

(
k + v′′0

)
v̂0dx,

v̂′′′′1 − v̂′′′′0 + (
K ∗ v̂′′0

)′′ − kN̂1 − v′′0 N̂1 − v′′1 N̂0 − v̂′′0N1 − v̂′′1N0+
+ε̂′0v′′′1 + ε̂′1v′′′0 + ε̂0v

′′′′
1 + ε̂1v

′′′′
0 −Ω2

0 v̂1 −Ω2
1 v̂0 = 0

ε̂0 = N̂0

λ2
, ε0 = N0

λ2
,

ε̂1 = N̂1

λ2
+ ε̂0 −K ∗ ε̂0, ε1 = N1

λ2
+ ε0 −K ∗ ε0

N̂1 = −λ
2

2

∫ 1

−1

[(
k + v′′0

)
v̂1 + v′′1 v̂0

]
dx − 1

2

∫ 1

−1
[N0 −K ∗N0] dx.

(21)

Remark that (21)1,2 coincides with those in [20], which was expected since the
arch therein is fully local elastic. The remaining Eq. (21) provides the contribution
of non-locality to the vibration of pre-loaded shallow arches, affecting both the
response in the initial static loading and the superposed small vibration.

We tackle (21) by Galërkin’s technique, using a symmetric trial function, as in
statics, of magnitude d1. Requiring that a non-trivial solution of (21)1,2 (i.e., for
d1 �= 0) exists, we get the first non-dimensional natural angular frequency

Ω2
0 =

4096α2λ2 + π6
(
6c2

1λ
2 + 8

)+ π8c2
1 −

(
384λ2 + 32π2

)
απ3c1

128π2 (22)

affected, as expected, by the amplitude c1 of the static response to the load Θ .
We may make considerations on the trial function similar to those for statics.

Then, a non-trivial solution of the remaining Eq. (21) gives

Ω2
1 = −

e−1/κκ

128π2

⎡

⎣ sinh

(
1

κ

)(
128π5αc1 + 8π10κ3 + 8π8κ

π4κ4 + 5π2κ2 + 4

+2λ2
(

2048α2 + 3π6c2
1 − 192π3αc1

))
− π10c2

1κ
2 + 4π8c2

1 − 32π7αc1κ
2

π4κ4 + 5π2κ2 + 4

+
8π6

(
π4κ3 + 4π2κ + 32

)
cosh

(
1
κ

)

(
π2κ2 + 4

)2

⎤

⎦ . (23)

If no initial load is present (i.e., Θ = 0, c1 = 0), the 0th (fully local response)
and 1st (little fraction of non-local response) order frequencies reduce to
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Fig. 3 Fundamental frequency vs. the non-local range ratio for undeformed (left) and deformed
(right) shallow arches

Ω2
0L =

8π6 + 4096α2λ2

128π2

Ω2
1L = −

e−2/κκ

16π2
(
π2κ2 + 4

)2

[
256α2

(
e2/κ − 1

) (
π2κ2 + 4

)2
λ2+

+π6
(
e2/κ

(
π4κ3 + 4π2κ + 16

)
+ 16

)]
(24)

and provide the non-dimensional small-amplitude vibration natural angular fre-
quency of symmetric mode shapes about the undeformed configuration.

Figure 3 shows the variation of the value of this frequency with the non-local
range ratio κ for undeformed (i.e., previously unloaded) and deformed (i.e., pre-
loaded by a uniform “vertical” load as in the previous section) arches. The softening
effect of non-local elasticity, represented by the non-dimensional length of long-
range interaction, is apparent in both cases and increases with the amount of the non-
local fraction ξ . This is in accord with experimental evidence, at least for a certain
class of nano-materials, and has a physical motivation that can be paraphrased by
what already commented in the section on statics.

Figure 4 shows the variations of the square of the natural frequency and static
apex displacement with the magnitude of the applied load; it is clearly seen, as we
also showed in [20], that a snap bifurcation is possible and the non-local ratio always
has a softening effect, once again as physically expected.

4 Conclusions

We examined small-amplitude vibration about non-linear equilibria of shallow
non-local arches. The finite field equations are perturbed in terms of: the scalar
evolution parameter of the detachment of the actual shape from the reference one
and the scalar material parameter of the fraction of non-local elastic response
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according to Eringen’s two-phase model. This two-term perturbation provides
hierarchies of equations describing the influence of: geometrical non-linearities
on kinematics and balance; and that of the long-range interaction on static and
dynamic response. The perturbation procedure does not require additional and
spurious boundary conditions, and the resulting equations are solved by Galërkin’s
technique, leading to original approximate solutions in closed form for the vibration
frequencies, which may serve for material identification and validation studies for
novel numerical/approximately exact solution techniques.
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Two-Scale Curved Beam Model for
Dynamic Analysis of Masonry Arches

Daniela Addessi, Paolo Di Re, Cristina Gatta, and Mariacarla Nocera

1 Introduction

Most of the historical masonry structures are based on arch systems. Hence, a large
number of experimental studies were devoted to deeply understand response of
masonry arches under static and dynamic loads [1–3]. Moreover, many numerical
models, typically referring to limit analysis, discrete element approach, and finite
element (FE) method, were proposed to predict structural behavior and safety
conditions of arches [4, 5] and, in general, masonry structures [6–8]. Among various
formulations, FE models result a flexible and effective tool for this purpose, as
these permit a suitable representation of the inertia effects and accurately describe
the evolution of degrading mechanisms and typical collapse modes of arches.
In particular, multiscale approaches include the detailed geometric/mechanical
modeling and, if properly formulated, can limit the computational efforts [9–11].

This chapter explores dynamic response of masonry arches built up with regular
arrangement of bricks and mortar joints, by adopting a Timoshenko force-based
curved beam FE. The model is an extension of the formulation presented in [5],
originally proposed for static analysis, to the case of dynamic loading conditions.
Proper cross-section displacement shape functions are derived to obtain a consistent
form of the element mass matrix. To this end, the procedure presented in [12–14],
based on the Unit Load Method, is applied to Timoshenko curved beam elements.
Relying on a two-scale approach, the constitutive law for masonry material is
derived via a homogenization procedure, linking the structural scale model to a
repetitive masonry Unit Cell (UC) modeled at microlevel [15].
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Numerical studies are performed to prove efficiency of the proposed model
in describing dynamic behavior of masonry arches. First, modal decomposition
analyses are conducted; then, response to earthquake excitation is investigated.

2 Force-Based Formulation for Dynamic Analysis

This section describes the curved beam FE used at the macroscopic scale. After
introducing the fundamental element equations, the derivation of the consistent mass
matrix to be used within the adopted force-based approach is presented.

2.1 Fundamental Element Equations and Flexibility Matrix

In the global reference system, six degrees of freedom (DOFs) govern the kine-
matics of the curved beam element, delimited by nodes I and J , corresponding
to two translations and one in-plane rotation at each node. These are listed in the

displacement vector U = (
UX,I UY,I ΘI UX,J UY,J ΘJ

)T
.

According to the equilibrated approach, the basic reference system in Fig. 1 is
introduced. This is obtained from the local system (X, Y ), with X the direction
going from I to J , through elimination of the element rigid body motions. In
the basic configuration, only three deformation displacements are considered, that
is the element elongation ŨJ and nodal rotations Θ̃I,J , collected in vector V =
(
ŨJ Θ̃I Θ̃J

)T
. The following kinematic relationship holds for V:

V = AgU = AvArU (1)

Fig. 1 Geometric parametrization in the basic reference system for the 2D element representing
the axis of (a) arbitrarily curved and (b) circular arches
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being Ag the element compatibility matrix. This depends on the initial undeformed
distance L between the abutments and the element orientation, by means of matrices
Av , removing the element rigid body motions, and Ar , rotating the DOFs from the
global to the local reference system. Quantities work-conjugate to V are contained
in the basic element force vector Q = (NJ MI MJ )

T , being NJ the force parallel
to X at J and MI/J the in-plane nodal moment at I/J .

According to the force-based formulation, equilibrium conditions are enforced
along the element axis. To this end, a parametric representation of the 2D curve
defining the beam axis L is adopted, that is L ≡ [X = f (S);Y = g(S)], being S

the arc-length abscissa, identifying the general element cross-section (Fig. 1a).
Considering the introduced parametric representation, the equilibrium condi-

tions, relating the generalized stress vector 
(S) to basic forces Q and stress
resultants 
q(S) due to distributed loads, are expressed as

⎛

⎝
N(S)

M(S)

T (S)

⎞

⎠

︸ ︷︷ ︸

(S)

=
⎡

⎢
⎣

cosΦ(S) − sinΦ(S)
L

− sinΦ(S)
L

Y (S)
X(S)
L
− 1 X(S)

L

− sinΦ(S) − cosΦ(S)
L

− cosΦ(S)
L

⎤

⎥
⎦

︸ ︷︷ ︸
B(S)

⎛

⎝
NJ

MI

MJ

⎞

⎠

︸ ︷︷ ︸
Q

+
⎛

⎝
Nq(S)

Mq(S)

Tq(S)

⎞

⎠

︸ ︷︷ ︸

q (S)

. (2)

In Eq. (2), the equilibrium matrix B(S) is written in terms of coordinatesX(S), Y (S)
and the angle Φ(S) that the unit vector T, tangent to the curve at S, forms with the
local axis X (Fig. 1a).

The generalized section strain vector E(S), collecting the axial elongation E(S),
curvature K(S), and shear strain Γ (S), is related to 
(S) by the section constitutive
equation, which assumes the following incremental form:

Ė(S) = ϒ(S)
̇(S) (3)

being ϒ(S) the cross-section tangent flexibility matrix.
By imposing the virtual work equivalence and making use of Eqs. (2) and (3), the

element tangent flexibility matrix F is derived as

F = ∂V
∂Q

=
∫ Ls

0
BT (S)ϒ(S)B(S) dS (4)

where Ls is the length of the element axis. Equation (4) evaluates the exact
flexibility matrix, as long as a closed solution of the integral can be evaluated.

In the special case of a circular arch with radius R, the arch-length abscissa S can
be expressed as a linear function of the angle Ψ between the cross-section plane and
the axis X (Fig. 1b), i.e., S = R(Ψ − Ψ0). Hence, by considering that dS = R dΨ

and that geometric variable Ψ ranges between the abutment angles Ψ0 and π − Ψ0,
the flexibility matrix in Eq. (4) is evaluated as
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F = R

∫ π−Ψ0

Ψ0

BT (Ψ )ϒ(Ψ )B(Ψ ) dΨ. (5)

Matrix B(Ψ ) in Eq. (5) can be easily determined from that in Eq. (2), considering
that cosΦ(Ψ ) = sinΨ and sinΦ(Ψ ) = cosΨ , while X(Ψ ) = R(cosΨ0 − cosΨ )
and Y (Ψ ) = R(sinΨ − sinΨ0).

2.2 Consistent Element Mass Matrix

To evaluate the element mass matrix consistent with the force-based formulation,
equivalent shape functions, interpolating the generalized cross-section displace-
ments Us(S) on the basis of the nodal displacements U, are required [12, 13].

The procedure introduces generalized unit loads Ps =
(
FX FY C

)T
, namely two

forces FX and FY and one couple C. Assuming loads Ps as virtual forces applied at
the general cross-section located at S, the virtual work equivalence is expressed as

δPTs Us(S) =
∫ Ls

0
δ
T (S, ξ)E(ξ)dξ (6)

where symbol δ denotes the virtual variation of the variable and the variable ξ is
introduced to evaluate the integral along the element axis. Hence, δ
(S, ξ) collects
the virtual section stresses at ξ due to the virtual unit loads applied at S. Considering
the exact solution of the element equilibrium equations referred to the basic simply
supported beam configuration, δ
(S, ξ) results as

(a) (b)

Fig. 2 Basic system with virtual forces applied at S: (a) element equilibrium, (b) section stresses
for the element portion delimited by node I and cross-section at ξ .
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δ
(S, ξ) = Br (ξ)δPr (S) = Br (ξ)

⎡

⎣
−1 0 0
−Y (S)

L
X(S)
L
− 1 1

L
Y(S)
L

−X(S)
L

− 1
L

⎤

⎦

︸ ︷︷ ︸
Brs (S)

δPs (7)

where matrix Brs(S) evaluates the nodal reactions δPr (S) =
(
δPX,I δPY,I δPY,J

)T

due to unit loads applied at S (Fig. 2a), whereas matrix Br (ξ) computes the section
stresses at ξ given δPr (S) (Fig. 2b). This assumes the following expression:

Br (ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢
⎣

− cosΦ(ξ) − sinΦ(ξ) 0

−Y (ξ) X(ξ) 0

sinΦ(ξ) − cosΦ(ξ) 0

⎤

⎥⎥
⎦ for ξ < S

⎡

⎢⎢
⎣

0 0 sinΦ(ξ)

0 0 L−X(ξ)

0 0 cosΦ(ξ)

⎤

⎥⎥
⎦ for ξ > S

(8)

Equation (7) can be introduced in Eq. (6) to obtain the relationship between
generalized cross-section displacements and strains as:

Us(S) = BT
rs(S)

∫ Ls

o
BT
r (ξ)E(ξ)dξ. (9)

By including Eqs. (1)–(4) in Eq. (9) and considering the contribution of the
element rigid body motions, the section displacements are expressed as a function
of nodal displacements, and the shape function matrix Ns(S) is obtained, i.e.,

Us(S) =
{

BT
rs(S)

[∫ Ls

o

BT
r (ξ)ϒ(ξ)B(ξ)dξ

]
F−1Ag + Nr (S)Ar

}

︸ ︷︷ ︸
Ns (S)

U (10)

where Nr (S) is the shape function matrix for element rigid body motions, which
assumes the following form for arbitrarily curved beams:

Nr (S) =
⎡

⎣
1 Y (S)

L
0 0 −Y (S)

L
0

0 1− X(S)
L

0 0 X(S)
L

0
0 − 1

L
0 0 1

L
0

⎤

⎦ (11)

The computation of the shape function matrix Ns(S) allows to derive the element
mass matrix M in the global reference system as
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M =
∫ Ls

0

Ns(S)
T ms(S)Ns(S) dS (12)

being ms(S) the cross-section mass matrix.
If the circular beam axis case is considered and the parametrization in Fig. 1b is

adopted, Eq. (10) becomes:

Us(Ψ ) =
{
R BT

rs(Ψ )

[∫ π−Ψ0

Ψ0

BT
r (Ψξ )ϒ(Ψξ )B(Ψξ )dΨξ

]
F−1Ag + Nr (Ψ )Ar

}

︸ ︷︷ ︸
Ns (Ψ )

U.

(13)
To be noted is that, all the integrals over the element axis are evaluated through

numerical integration procedures [5].

3 Two-Scale Model for Masonry Arches

The generalized constitutive law in Eq. (3), governing the response of the beam
cross-section at the macroscale, is derived via a homogenization technique. The
adopted procedure is detailed in [5, 15] and is briefly reviewed in the following.

Each quadrature cross-section located along the curved element axis is linked
to a masonry Unit Cell made of a single brick (b) and a mortar layer (m). The
UC is assumed as representative volume element and is modeled with a plane
straight Timoshenko beam model. Setting a Cartesian reference system (0, x, y)
for the UC, with x aligned with the tangent axis T of the structural beam, the
generalized cross-section displacement fields at microlevel, u(x), v(x), and θ(x),
are expressed as a function of the macroscopic deformations, E(S), K(S), and
Γ (S), and unknown periodic fluctuations, u∗(x), v∗(x), and θ∗(x), satisfying proper
periodicity conditions. Accordingly, microscale axial, ε0(x), bending, κ(x), and
shear, γ (x), strains are evaluated. The generalized stresses work-conjugate to ε0(x),
κ(x), and γ (x), that is nb/m(x), mb/m(x), and tb/m(x), are determined assuming
linear elastic constitutive law for bricks and a friction-damage model for mortar.
Denoting with Em and Gm the mortar Young’s and shear moduli, with A, I , and
As the area, inertia, and shear area of the beam cross-section, the following mortar
generalized stress–strain relationship is adopted:

nm(x) = Em Aε0(x)−
∫

A

Em πε(x, y) dA

mm(x) = Em I κ(x)+
∫

A

Em y πε(x, y) dA (14)

tm(x) = Gm Asγ (x)−
∫

As

Gm πγ (x, y) dA
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where πε(x, y) = D(x, y)H [ε(x, y)] ε(x, y) and πγ (x, y) = D(x, y) γp(x, y) are
the normal and shear inelastic strains at a point of the mortar cross-section. These are
expressed as a function of the normal strain, ε(x, y) = ε0(x)−y κ(x), the shear slip,
γp(x, y), and the damage variable D(x, y) ∈ [0−1]. The Heaviside function, H [•],
is introduced in the definition of πε(x, y) to model the stiffness recovery under
cyclic loads. An irreversible evolution law is given for the damage variable ruled by
an equivalent strain measure. This couples normal and shear strains, so accounting
for mode I and II failure mechanisms, and depends on the fracture energies, GcI and
GcII , the peak values of the normal, σ0, and shear, τ0, stresses. As for the flow of the
inelastic slip γp, the Coulomb law is adopted, depending on the friction parameter
μ. A detailed description is given in [5, 15].

Once the microscale quantities nb/m(x), mb/m(x) and tb/m(x) are evaluated,
the upscaling process from micro- to macroscale is performed by computing the
resultants N(S), M(S), and T (S) as average components along the UC axis.

4 Dynamic Response of a Segmental Arch

The dynamic response of the segmental masonry arch in Fig. 3 is analyzed. The
specimen consists of four rows of 39 brick units (100 × 75 × 50 mm3) arranged
with lime mortar joints, resulting in a nominal span of 1900 mm, a nominal rise
of 430 mm, and an out-of-plane width of 430 mm. The arch was experimentally
tested in [3] by performing modal testing in the undamaged configuration and
considering different damage scenarios. Here, results obtained in the virgin state
are compared with those evaluated with the proposed model adopting a mesh of
6 equally spaced FEs, required to properly account for inertia effects, and the
mechanical parameters contained in Table 1. Young’s moduli, Eb/m, Poisson ratios,
νb/m, and mass densities, ρb/m, are set according to [3].

Table 2 compares the experimental frequencies of the first four in-plane modes
with their numerical counterpart, evaluated considering the initial undamaged arch

Fig. 3 Geometry and beam
idealization of the analyzed
arch (dimensions in mm)

1900 

4
3
0
 

beam model
structural

7
5P

Table 1 Mechanical properties for bricks and mortar

ρ E ν σ0 τ0 GcI GcII μ

[kg/m3] [MPa] [−] [MPa] [MPa] [MPa] [MPa] [−]
Brick 1653.3 2500 0.2

Mortar 1750.0 500 0.2 0.04 0.2 1.92E-05 1.15E-03 0.5
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Fig. 4 Mode 1 deformed shape: (a) experimental [3], (b) 3D model [3], (c) 2D model, and (d)
proposed beam model

Fig. 5 Mode 2 deformed shape: (a) experimental [3], (b) 3D model [3], (c) 2D model, and (d)
proposed beam model

configuration. In addition, two other sets of values are considered: the solution
obtained with a 3D FE model reported in [3] and that obtained with a 2D plane stress
FE model [16]. Both the 3D and 2D models discretize mortar and bricks separately
resorting to a micro-modeling approach. From Table 2, it emerges that the beam
eigenfrequencies very well agree with those derived from the micromechanical
models and the experimental outcomes. Moreover, the first- and second-mode
shapes are satisfactorily matched, as shown in Figs. 4 and 5, respectively. Con-
versely, for all numerical models, positions of third- and fourth-mode shapes are
inverted with respect to the order resulting from the experimental test. This is
probably due to slight variations in joint thickness, typical of manually assembled
geometry, as also detected in [3].

Response of the arch to the WE acceleration history recorded during the 2009
L’Aquila earthquake is analyzed considering both linear elastic and nonlinear
material assumptions. A scale factor of 2 is applied to the natural ground motion,
attaining a peak ground acceleration of 6.47 m/s2. Rayleigh damping ratio is set
equal to 1% [3] on the basis of the first two elastic frequencies. Focusing on the
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Table 2 Experimental and numerical initial frequencies f [Hz] of the analyzed arch

Mode 1 Mode 2 Mode 3 Mode 4

Experimental [3] 37.03 63.56 100.76 125.06

3D model [3] 36.55 65.87 114.34 124.08

2D model 37.81 67.91 118.19 128.09

Beam model 37.41 67.37 119.32 128.72

0 102 4 6 820 104 6 8

beam model

2D model

0.2

0.1

-0.1

-0.2

0

t [s] t [s]

(a) (b)

U
XP

 [
m

m
]

Fig. 6 Time histories of the horizontal relative displacement of point P under scaled L’Aquila
earthquake: (a) linear elastic and (b) nonlinear responses

Average damage Dm [5]

Hinge locations

1.0

1.0

1.0

1.0

(a)

0.00.170.330.50.670.831.0

damage D

(b)

Fig. 7 Damage distribution at the end of the analyses for (a) beam and (b) 2D models

significant part of the response, Fig. 6a,b shows the time evolution of the horizontal
relative displacement of point P, located as indicated in Fig. 3. Red lines represent
the reference solution obtained with the 2D micromechanical model, whereas the
blue curves refer to those evaluated with the proposed multiscale beam. Both
models are based on the same constitutive assumptions (Table 1). Fracture energy
and nonlocal integral regularizations are employed for beam and 2D formulations,
respectively, to overcome pathological mesh dependency. In case of linear elastic
constitutive assumption (Fig. 6a), identical responses are obtained. Good agreement
also emerges in the nonlinear case (Fig. 6b), as both models predict displacement
amplification with respect to the elastic response. This is caused by formation
of damaged zones, typically constituting nonlinear hinges, which open and close
during the loading history. Damage distribution at the end of the analyses is shown in
Fig. 7 for both models, testifying similar hinge locations, although the beam model
gives a more severe damage concentration as a consequence of the higher response
amplification exhibited by the arch during the loading history (see Fig. 6b).
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5 Conclusions

This chapter presented the formulation of a two-scale curved beam FE for nonlinear
dynamic analysis of masonry arches. The model is defined according to the force-
based approach, and a proper definition of the consistent element mass matrix is
introduced. Numerical analysis of a segmental masonry arch showed the model
accuracy in predicting the arch eigenfrequencies and its nonlinear response under
earthquake excitation. Hence, the model represents an efficient computational tool
to analyze large scale structures with low computational cost.
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Enriched Vlasov Beam Model for
Nonlinear Dynamic Analysis of
Thin-Walled Structures

Paolo Di Re, Daniela Addessi, and Cristina Gatta

1 Introduction

Thin-walled elements are widely adopted in standard constructions and often
preferred to beams with compact cross-sections, as they are usually characterized
by higher strength-to-weight ratios. However, nonlinear dynamic simulation of
thin-walled structures is very challenging, as their behavior is strongly affected
by multi-axial stress interaction and cross-section warping. Structural models for
the analysis of large-scale structures are commonly made by beam finite elements
(FE), because of their computational efficiency, and many enhanced formulations
that include the effects of warping have been proposed in the last decades [1–3].
Extensive review of the literature is provided in [3, 4]. Additional research efforts
have been made in the past 40 years, mainly applied to rotorcraft analysis [5].
However, only in few cases these models were focused on the analysis of large
structures under dynamic loading conditions, e.g., [6].

This chapter proposes an enriched three-dimensional Vlasov beam FE model
that accounts for torsion and shear cross-section warping under dynamic loading
conditions. A displacement-based approach is adopted to define the element for-
mulation, where supplementary degrees of freedom (DOFs) are introduced at the
element nodes and used to describe the variation of the cross-section out-of-plane
deformations. Some of these DOFs are also used to independently interpolate the
cross-section shear strains along the beam axis, instead of the flexural rotations, so
that shear locking is prevented [7]. The element governing equations that include
inertia effects are derived from a Lagrangian functional, which also permits the
derivation of the consistent element mass matrix [8].
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Numerical tests on thin-walled structures are conducted to investigate the
effect of cross-section warping on the dynamic response. Modal and nonlinear
time-history analyses of a L frame are performed, and the influence of warping
transmission at the joint is studied. The results obtained with the proposed model
are compared with those provided by enhanced beam formulations, where richer
warping descriptions are adopted [8, 9], and higher order shell FE models.

2 Beam Finite Element Formulation

In the proposed 3D beam FE formulation, called Enhanced Vlasov Displacement-
based Element (EVDE), nine DOFs are introduced at each end node, i and j ,
that is the six standard translations and rotations, listed in vectors ui/j and θi/j ,
respectively, and three additional DOFs used to represent cross-section warping
(Fig. 1). These latter coincide with the end cross-section torsional curvature, χxi/j ,
and shear strains, γyi/j and γzi/j .

Hence, the nodal displacement vector results as

u = {
ui vi wi θxi θyi θzi uj vj wj θxj θyj θzj χxi γyi γzi χxj γyj γzj

}T
(1)

A reference basic configuration is introduced to remove the element rigid body
motions. Hence, only twelve basic displacements are used to define the element
behavior. These are listed in vector v that results as

v = {
uj θzi θzj θxj θyi θyj χxi γyi γzi χxj γyj γzj

}T = av u (2)

being av the kinematic operator that removes the rigid body motions [4].

2.1 Cross-Section Response and Warping Representation

To account for cross-section warping, the out-of-plane deformations are introduced,
yet assuming the cross-section as rigid in its plane. The displacements of the general
material point are defined as the sum of the rigid body motions, ur (x, y, z), and the
warping out-of-plane deformation displacement field, uw(x, y, z), i.e.,

Fig. 1 Nodal DOFs depicted
in the local reference system
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Fig. 2 Warping function shape for a S-shaped cross-section associated to (a) torsion, Mηx(y, z),
(b) shear along y-axis, Mηy(y, z), and (c) shear along z-axis, Mηz(y, z)

um(x, y, z) = ur (x, y, z)+ uw(x, y, z) =
⎧
⎨

⎩

ur(x, y, z)

vr(x, y, z)

wr(x, y, z)

⎫
⎬

⎭
+
⎧
⎨

⎩

uw(x, y, z)

0
0

⎫
⎬

⎭
(3)

Vlasov’s description of warping is assumed [10], properly enriched to include
warping related to shear [11, 12]. Hence, the only non-zero warping field,
uw(x, y, z), is written as the product of assumed warping functions, defined over
the cross-section area, and generalized cross-section parameters, defined along the
element axis, i.e.,

uw(x, y, z) = Mη(y, z)ηs(x) =
= Mηx(y, z) χx(x)+Mηy(y, z) γy(x)+Mηz(y, z) γz(x) (4)

Warping functions, listed in row vector Mη(y, z), refer to out-of-plane defor-
mations due to pure torsion and shear along y and z. The numerical procedure
proposed in [4] is used for their evaluation, and the orthogonality conditions
between ur (x, y, z) and uw(x, y, z) are satisfied. Figure 2 shows some examples
of warping functions for a S-shaped cross-section.

Warping generalized parameters, listed in vector ηs(x), provide the amplitude
of each component of uw(x, y, z) associated to each function Mη(y, z) and are
assumed to coincide with the cross-section torsional curvature, χx(x), and shear
strains, γy(x) and γz(x), respectively, according to Vlasov’s theory.

Rigid body displacement fields, ur (x, y, z), are related to the independent
generalized cross-section displacements. These are listed in vector us(x) and are
the three translations, u(x), v(x), and w(x), the torsional rotation θx(x), and the
two shear strains, γy(x) and γz(x), i.e.,

us(x) =
{
u(x) v(x) θx(x) w(x) γy(x) γz(x)

}T
(5)

Indeed, following the approach in [7], shear strains γy(x) and γz(x) are assumed
as independent cross-section kinematic quantities, instead of the rotations θz(x) and
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θy(x), to avoid shear locking. Hence, it results:

ur (x, y, z) = α(y, z) au(x)us(x) (6)

where α(y, z) and au(x) are the kinematic operators [4].
By enforcing the cross-section compatibility conditions, the generalized cross-

section strain vector, e(x), is introduced. This collects the axial strain, εG(x),
flexural curvatures, χz(x) and χy(x), torsional curvature, χx(x), shear strains,
γy(x) and γz(x), and additional warping strains, ζx(x) = χ ′x(x), ζy(x) = γ ′y(x),
ζz(x) = γ ′z(x), related to warping, i.e.,

e(x) = {
εG(x) χz(x) γy(x) χx(x) χy(x) γz(x) ζx(x) ζy(x) ζz(x)

}T
(7)

where the apex denotes the derivative with respect to x. Thus, by introducing the
compatibility differential operator D(x) [4], it results

e(x) = D(x)us(x) (8)

As null in-plane cross-section deformations are assumed, three strains are
considered at the material point, i.e., axial elongation εxx(x, y, z) and shear strains,
γxy(x, y, z) and γxz(x, y, z). These are collected in vector εm(x, y, z) and expressed
as the sum of rigid, εr (x, y, z), and warping strains, εw(x, y, z), as

εm(x, y, z) = εr (x, y, z)+ εw(x, y, z) = α̂(y, z) e(x) (9)

where α̂ indicates the cross-section compatibility operator [4].
Strains, εm(x, y, z), and stresses, σm(x, y, z), are related by the material con-

stitutive law, and by enforcing the virtual work principle, the generalized section
stresses, s(x), are defined. These result as

s(x) = {
N(x) Mz(x) T

p
y (x) M

p
x (x) My(x) T

p
z (x) Bx(x) By(x) Bz(x)

}T =

=
∫

A(x)

α̂
T
(y, z) σm(x, y, z) dA (10)

where A(x) is the cross-section area, N(x) is the axial stress, Mz(x) and My(x) are
the bending moments, and Mx(x) is the torsional moment. Bx(x), By(x), and Bz(x)
are the bi-moments, work-conjugate to ζx(x), ζy(x), ζz(x) [10, 12, 13], i.e.,

Bk(x) =
∫

A(x)

Mη k(y, z) σxx(x, y, z) dA , with k = x, y, z (11)

while quantities Mp
x (x), T

p
y (x), and T

p
z (x) are the primary torsional moment and

shear stresses.
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2.2 Displacement-Based Approach

Polynomial interpolation is performed to express the variation of the general-
ized cross-section displacements, us(x), along the element axis. Linear axial
displacement, u(x), and shear strains, γy(x) and γz(x), are assumed, while cubic
interpolation of transverse displacements, v(x) and w(x), and the torsional rotation,
θx(x), are defined. It results

us(x) = N(x) v (12)

being N(x) the shape function matrix containing the polynomial functions with
mentioned order [4]. By substituting Eq. (12) into Eq. (8), the relationship between
cross-section strains and nodal displacements is derived, resulting as

e(x) = D(x)N(x) v = a(x) v (13)

where a(x) = D(x)N(x) is the cross-section strain compatibility matrix.

2.3 Element Variational Formulation

The Lagrangian functional, L [um(x, y, z), u̇m(x, y, z)], is introduced to derive the
element governing equations. This depends on the displacements, um(x, y, z), and
velocities, u̇m(x, y, z), and results as the difference between the element kinetic,
T [u̇m(x, y, z)], and potential energy, Π [um(x, y, z)], that is

L [um(x, y, z), u̇m(x, y, z)] = T [u̇m(x, y, z)]−Π [um(x, y, z)] (14)

Accounting for Eqs. (2), (9), (12), and (13), the potential energy is written as

Π =
∫

L

eT (x) s(x) dx +Πext = uT aTv

∫

L

aT (x) s(x) dx +Πext (15)

being Πext the external load potential. When element rigid body motions are
included, Eq. (12) is extended and reads

us(x) = N(x) av u+ Nr (x)u (16)

where Nr (x) is the shape function matrix for rigid body displacements. Hence, by
considering the nodal contribution, uT p, and introducing vector qs(x), denoting the
distributed loads, the external load potential is expressed as
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Πext = −uT p− uT aTv

∫

L

NT (x)qs(x) dx − uT
∫

L

NT
r (x)qs(x) dx (17)

where the first integral corresponds to the element basic forces equivalent to
distributed loads, namely qq , while the second integral corresponds to −prq , this
vector collecting the basic reaction forces due to distributed loads. The potential
energy is finally written as

Π = uT
{

aTv

[∫

L

aT (x) s(x) dx − qq

]
− p+ prq

}
(18)

The kinetic energy depends on the material mass density, ρ(x, y, z), and velocity
fields and is written by assuming u̇m(x, y, z) as the sum of the orthogonal rigid and
warping velocities, u̇r (x, y, z) and u̇w(x, y, z), as for Eq. (3), i.e.,

T = 1

2

∫

V

ρ(x, y, z)
[
u̇Tr (x, y, z)u̇r (x, y, z)+ u̇Tw(x, y, z)u̇w(x, y, z)

]
dV (19)

being V the element volume.
Vector u̇r (x, y, z) is related to the cross-section generalized velocities, namely

u̇s(x), by expression similar to Eq. (6), while u̇w(x, y, z) contains as one non-
zero component the warping velocity field u̇w(x, y, z), which is assumed to depend
on the generalized warping velocities, η̇s(x), through the same warping functions
introduced in Eq. (4). Hence, the kinetic energy is expressed as

T = 1

2

∫

L

u̇Ts (x) aTu (x)mr
s (x) au(x) u̇s(x) dx + 1

2

∫

L

η̇Ts (x)mw
s (x) η̇s(x) dx (20)

where mr
s (x) and mw

s (x) are the cross-section rigid and warping mass matrices,
respectively, resulting as

mr
s (x) =

∫

A(x)

αT (y, z) ρ(x, y, z)α(y, z) dA (21)

mw
s (x) =

∫

A(x)

MT
η (y, z) ρ(x, y, z)Mη(y, z) dA (22)

By considering Eqs. (4) and (8), the generalized warping velocities are expressed in
terms of u̇s(x) as

η̇s(x) = aη(x) u̇s(x) , with aη(x) =
⎡

⎣
0 0 d

dx
0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎦ (23)
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Similarly to Eq. (16), u̇s(x) is related to the nodal velocities, u̇, as follows:

u̇s(x) = N(x) av u̇+ Nr (x) u̇ (24)

Hence, the element kinetic energy finally results as

T = 1

2
u̇T

(
mr +mw

)
u̇ = 1

2
u̇T m u̇ (25)

where element rigid and warping mass matrices, mr and mw, are defined as

mr =
∫

L

NT
u (x)mr

s (x)Nu(x) dx , mw =
∫

L

NT
η (x)mw

s (x)Nη(x) dx (26)

being:

Nu(x) = au(x)N(x) av + au(x)Nr (x) , Nη(x) = aη(x)N(x) av (27)

and m = mr +mw the total element consistent mass matrix.
Equations (18) and (25) permit to express L in terms of nodal quantities as

L (u̇,u) = 1

2
u̇T m u̇− uT

{
aTv

[∫

L

aT (x) s(x) dx − qq

]
− p+ prq

}
(28)

and derive the element governing equations from the following condition:

d

dt

∂L (u̇,u)
∂u̇

− ∂L (u̇,u)
∂u

= d

dt

∂T (u̇)
∂u̇

+ ∂Π (u)
∂u

= 0 (29)

This gives the element equilibrium equations in the form:

m ü+ aTv

[∫

L

aT (x) s(x) dx − qq

]
+ prq = p (30)

When inertia forces are neglected, the element equilibrium equations state that the
term in brackets must equal the basic nodal force vector, q, work-conjugate to v [4].
Hence, Eq. (30) assumes the following standard form:

m ü+ aTv q+ prq = p (31)

Notes and Comments Inertia terms associated to warping can produce spurious
natural modes with low frequencies that increase computational effort. When cross-
sections located at the element ends are free to wrap, this likely occurs. Hence, for
these cases, it is convenient to neglect term mw.
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3 Numerical Validation

The dynamic response of the L frame in Fig. 3a is reproduced. The same specimen is
analyzed in [13] under static loads. Rigid and warping displacements of ends A and
E and displacement along y of the joint C are prevented. Material Young’s modulus
Es and Poisson ratio νs are assumed as equal to 205000 MPa and 0.3, respectively.

A uniform mesh made of 10 and 14 proposed FEs for beam and column,
respectively, is used to model the frame. Moreover, the standard force-based
Timoshenko beam with rigid cross-section and the Enhanced Warping Mixed
formulation beam Element (EWME) in [8] are used for comparison, adopting same
mesh. For the latter, warping is assumed as parabolic along the element, parabolic
and cubic along web and flanges, respectively, and linear across the thickness, on
the basis of the findings reported in [3, 4, 8]. Same cross-section interpolation is
also used to compute warping functions Mη(y, z) for the proposed model. A FE
model made of 2268 4-node Discrete Kirchhoff Quadrilateral shell element is used
to compute the reference solution (see also Fig. 4).

Fig. 3 L portal frame: (a) specimen geometry, (b) circular frequency errors obtained with respect
to the shell solution (mode 1: 117.41 rad/s, mode 2: 167.57 rad/s, mode 3: 220.01 rad/s, mode 4:
288.53 rad/s, mode 5: 365.96 rad/s, mode 6: 389.73 rad/s)

Fig. 4 L portal frame: deformed shape for mode (a) 1, (b) 2, and (c) 4
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Figure 3b plots the errors obtained for the first 6 circular frequencies with the
beam models with respect to the shell reference solution. The proposed beam and
EWME give similar results. These perfectly agree with those obtained from the shell
model. By contrast, the standard model based on rigid cross-section assumption
provides correct solutions only for bending modes (1, 3, 5, and 6), while incorrect
frequencies are given for modes 2 and 4 that involve torsion. Indeed, due to
the particular orientation, end cross-sections of the members meeting at the joint
undergo equal warping profile. Hence, when column twists, warping of the top
cross-section produces warping in the beam, which twists as well. This effect is
shown in Fig. 4, where the deformed shapes of mode 1 (bending), 2, and 4 (torsional)
obtained with the shell model are depicted. In the proposed beam model, the
additional nodal warping DOFs and element connectivity ensure warping continuity
between column and beam [4, 8].

Nonlinear time-history analysis of the frame is performed under sinusoidal
couple applied at mid-height of the column, assumed to vary according to: M =
M̄ sin ω̄t , being M̄ = 1.0 kNm, ω̄ = 50 rad/s and t the time variable.

Elasto-plastic material response is assumed, which is described through J2
plasticity model with linear kinematic hardening. σy = 150 MPa and Hk = 0.01Es

are assumed as yielding stress and hardening modulus, respectively.
Figures 5 and 6 plot the time evolution of the torsional rotation, θx , of (a)

the mid-height cross-section of the column and (b) the mid-span cross-section
of the beam, for linear elastic and elasto-plastic material response, respectively.
Shell reference solution is represented with solid green curves. Dashed red and
blue curves refer to those obtained with the EWME and proposed model (EVDE),
respectively. Finally, dashed black curves indicate the response obtained with the
standard beam. This latter does not consider boundary warping restraints and, thus,
provides a significantly more flexible response. In addition, this does not account
for warping transmission at the joint and, thus, provides null rotations for the beam
(horizontal lines at zero in Figs. 5b and 6b). By contrast, EVDE correctly captures
the beam torsional deformation and its solution perfectly matches those of the shell
and EWME models.

Moreover, the standard beam model does not correctly simulate the evolution
of the plastic effects in the material when elasto-plastic behavior is considered
(Fig. 6). Due to warping constraints, torsion of the members induces significant
shear-lag effects. Hence, at the first loading cycle, axial stress exceeds material
yield stress, at both ends and mid-height of the column. Thus, plastic strains arise,
affecting the remaining part of the time-history response. As opposed to the beam
model formulations accounting for warping, the standard beam model does not
capture shear-lag and shows yielding of the material caused by severe torsional shear
stresses acting in the cross-section plane.
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Fig. 5 L portal frame: torsional rotation of (a) mid-height cross-section of the column (point B)
and (b) mid-span cross-section of the beam (point D) for linear elastic response

Fig. 6 L portal frame: torsional rotation of (a) mid-height cross-section of the column (point B)
and (b) mid-span cross-section of the beam (point D) for nonlinear response

4 Conclusions

This chapter presented the formulation of a three-dimensional beam FE with cross-
section warping for the analysis of thin-walled structures under dynamic loadings.
The model is defined according to a displacement-based approach and referring to
Vlasov’s theory, properly extended to include warping due to shear.

Numerical analysis of an L frame was presented. This showed that, as opposed to
standard beam formulations based on rigid cross-section assumption, the proposed
FE is highly accurate and is preferable to higher order shell or richer beam models
for the analysis of large-scale structures, due to the lower computational cost it
requires.
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Part III
Computational Nonlinear Dynamics



Nonlinear Modal Analysis Through the
Generalization of the Eigenvalue
Problem: Applications for Dissipative
Dynamics

Nidish Narayanaa Balaji and Matthew R. W. Brake

1 Introduction

The concept of nonlinear modal analysis (NMA) has become a very popular
analytical as well as computational tool in the study of nonlinear structural
systems. There have been several formulations of a computational procedure for
this [1, 2], including time-domain [3] and frequency-domain methods [4]. Quasi-
static approaches have also gained popularity in recent years, and this chapter
considers such a formulation that is based on earlier work in [5].

Recent efforts by the authors [5] have indicated that a generalization of the con-
strained minimization of Rayleigh quotients provides an interesting nonlinear modal
analysis approach (termed Rayleigh quotient-based NMA (RQNMA)) closely
related to some of the other methods above. This chapter considers improvements
to this formulation in three areas, namely: (1) modal analysis under dynamical
operation; (2) forced response synthesis; and (3) investigation of modal coupling.
A 1-dimensional (1D) finite element model of a bar with a frictional end will be
used for numerical demonstration.

The rest of this chapter is organized as follows: Sect. 2 provides an overview
of the methodologies including RQNMA and the chosen example; Sect. 3 presents
results for nonlinear modal analysis, forced response synthesis, and an investigation
of a case with modal coupling; and finally, Sect. 4 draws conclusions from the study.
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2 Methodology

The current section provides an overview of the computational procedures involved
in RQNMA and a description of the numerical benchmark that will be used for
demonstrations in the rest of this chapter.

2.1 Rayleigh Quotient-Based Nonlinear Modal Analysis

Consider a (discrete, multiple degree-of-freedom) nonlinear dynamic system gov-
erned by the equations of motion,

M ¨̄u+ C ˙̄u+Kū+ f̄nl(ū, ˙̄u, . . . ) = f̄ex(t)

M,C,K ∈ R
n×n (1)

t ∈ R+; ū, f̄ex : R+ → R
n; f̄nl : Rn × · · · → R

n.

Here, n denotes the number of degrees of freedom (DoFs) in the system, and the
solution, excitation, and nonlinearity are functions denoted above. The mass matrix
(M) is taken to be symmetric positive definite; the stiffness matrix (K), symmetric
positive semi-definite, and the damping matrix (C), symmetric.

The definition for the nonlinear modes of this system used in [5] was the
extremizing eigenpair of the corresponding eigenvector-dependent nonlinear eigen-
problem (NEPv). Mathematically, this can be expressed as an algebraic system
representing the first-order optimality conditions of the corresponding Rayleigh
quotient extremization problem (constrained potential energy minimization),1

Kū+ f̄nl − λMū = 0

ūT Kū− ūT f̄nl − λq2 = 0. (2)

In the above algebraic system of equations, parameterized by the modal amplitude
q, the multiplier λ was interpreted as the square of the natural frequency of the
nonlinear mode under consideration. This interpretation presents certain difficulties
in the applicability of the procedure for problems with even nonlinearities (non-
linear forces unsymmetric about the equilibrium). Furthermore, the relationship to
dynamic operation is not very clear, introducing difficulties in the incorporation
of nonlinear terms that are fundamentally dynamic such as rate-dependent friction
models, etc. Although some preliminary efforts were undertaken in [5, 6], these
aspects need to be investigated further.

1Equation (2) is a restatement of the optimality conditions in [5], with the second equation modified
to a form more suitable for numerical implementations.
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This chapter explores an alternative interpretation of the multipliers λ, assessing
its ramifications using a numerical example. Upon solving Eq. (2) for a range of
modal amplitudes q ∈ [−Q,Q], one obtains parameteric relationships ū(q) and
λ(q), denoting the deflection shape and multiplier (Rayleigh quotient), respectively.
Note that hysteretic nonlinearities, at this stage, are only evaluated quasi-statically
along the modal backbone.2 These are interpreted to describe the terms in the
equations of motion of the system at the modal level as

q̈(t)+ λ(q(t))q(t) = 0. (3)

This system, by construction, is conservative and does not possess any dissipative
characteristics, eventhough the original system may be dissipative. The interpre-
tation here is that this represents the conservative part of the complete system.
Since λ(q) is known from the above, this equation may be solved using any NMA
technique applicable to conservative systems. For example, using a single (cosine-)
harmonic expansion, an estimate of the modal natural frequency may be made.
Assuming q(t) = Q cos(ωn(Q)t) (with natural frequency (ωn(Q) depending on
the harmonic amplitude of the solution), one obtains

ωn(Q) =
√
F (c){λ(q(t))q(t)}

Q
, (4)

where F (c)(.) denotes the discrete Fourier cosine transform. ωn(Q) represents
the effective natural frequency of an oscillation of the system that extremizes the
nonlinear Rayleigh quotient at each instant of oscillation.

The effective mode shape of the nonlinear mode is taken to be the gradient of the
solution ū(q(t)) with respect to q averaged over a cycle. This can be computed as
the zeroth harmonic (denoted by F (0)(.)) of the gradient,

φ̄(Q) = F (0)
{
∂ū

∂q
(Q cos(ωnt))

}
. (5)

Here, ωn(Q) and φ̄(Q) denote the undamped natural frequency and the mode shape.
The dissipative characteristics of a mode can be estimated by obtaining an

effective coefficient describing the non-conservative forces from a time-domain
evaluation of the nonlinearities. Following the procedure above, assuming q(t) =
Q cos(ωnt) allows for the definition of q̇(t), which can then be used to evaluate the
nonlinear force in the modal domain (f (m)(t) below) as

˙̄u(q(t)) = ∂ū

∂t
(Q cos(ωnt))(−Qωn sin(ωnt)),

2Details on hysteretic evaluation are left out for brevity. The interested reader is directed to [5].
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f (m)(t) = φ̄T (Q)

(
Kū(q(t))+ C ˙̄u(q(t))+ f̄nl(ū, ˙̄u, . . . )

)
. (6)

Introducing a damping term in the modal level of the form

q̈(t)+ c(Q)q̇(t)+ ω2
n(Q)︸ ︷︷ ︸
λ(Q)

q(t) = 0 (7)

allows the estimation of the coefficient c(Q) through the sine harmonics of f (m) as

c(Q) = F (s){f (m)(t)}
−Qωn(Q) . (8)

This can also be used to estimate a “modal damping factor” given by ζ(Q) =
c(Q)/(2ωn(Q)), which is a quantity that is often used in system identification and
modal testing practice.

The natural frequency (ωn(Q)), mode shape (φ̄(Q)), and damping coefficient
(c(Q)) estimated above represent quantities that may be readily employed for
systems operating close to the nonlinear resonance corresponding to the considered
nonlinear mode. The forced response of the system can be synthesized in such
regimes using the so-called single-mode theory [7], which will briefly be presented
here for completeness. For a complex excitation of the form f̄exe

iΩt (with Ω and
f̄ex being the excitation frequency and some complex amplitude), the solution is
assumed to be of the form, u(t) = Qeiθ eiΩt , with θ representing the phase of
the response (assumed constant in time). Substituting this into the equations of
motion and conducting an inner product with φ̄(Q) will yield the complex algebraic
equation in terms of unknown amplitude Q and phase θ

(λ(Q)−Ω2)+ i(c(Q)Ω) = φ̄H (Q)F̄ex

Q
e−iθ . (9)

This can be solved analytically to yield,

Ω2 = (λ(Q)− c2(Q)

2
)±

√
c4(Q)

4
− λ(Q)c2(Q)+ |φ̄

H (Q)F̄ex |2
Q2

θ = Arg

(
φ̄T (Q)F̄ex

Q

)
− tan−1 c(Q)Ω

λ(Q)−Ω2 , (10)

provided Ω is real. Note that ()H indicates the Hermitian transpose in the above.
In the described approach, the requirement of solving a potentially large nonlin-

ear system is only for solving the RQNMA equations (Eq. (2)), and all of the other
steps only involve post-processing the RQNMA results through interpolation and
single-time function evaluations, which are typically several orders of magnitude
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faster than nonlinear equation solving. Further, the use of analytical gradients of the
solutions of Eq. (2) with respect to q enables one to employ Hermite interpolants,
improving accuracy of the post-processing steps.

In order to consider two modes concurrently, the following formulation is
proposed (functional dependence on (Q1,Q2) is dropped for brevity of notation):

[
1 m12

m12 1

]{
q̈1

q̈2

}
+
[
c11 c12

c12 c22

]{
q̇1

q̇2

}
+
[
k11 k12

k12 k22

]{
q1

q2

}
=
{
φ̄T1 f̄ex

φ̄T2 f̄ex

}
. (11)

Since nonlinear modes may not always be expected to be exactly orthogonal to
each other, an off-diagonal mass matrix term m12 is included in the above (diagonal
terms are 1 from definition). The terms kij (Q1,Q2) and cij (Q1,Q2) represent
the nonlinear damping and stiffness terms and are assumed to be functions of the
harmonic amplitudes of both the modes under consideration. The mode shapes
φ̄1(Q1) and φ̄2(Q2) are, however, assumed to only be dependent on the amplitudes
of their respective modes.

Given a pair of harmonic amplitudes (Q1,Q2), the solution ansatz u(t) =
2∑

i=1
Qiφ̄i(Qi) cos(ωn,i(Qi)t) will be used to evaluate the nonlinear forces in the

system. Since ωn,1/ωn,2 need not be a rational fraction, one cannot use a periodic
assumption here. Although multi-component Fourier techniques may be employed,
they are avoided here since the evaluation of frictional nonlinearities is not very
straightforward. Therefore, the nonlinear forces are generated over an arbitrarily
long period of time (covering several cycles of each mode), and the parameters
cij (Q1,Q2), kij (Q1,Q2) are estimated using linear regression (iterations not nec-
essary). Note that m12(Q1,Q2) = φ̄T1 (Q1)Mφ̄2(Q2) by definition.

2.2 Benchmark Model Description

The procedures described in Sect. 2.1 will be demonstrated using a nine-noded finite
element model of a linear bar with a frictional end as shown in Fig. 1. The governing
partial differential equations are

ρA
∂2u

∂t2
+
(
α
∂u

∂t
− β

∂3u

∂x2∂t

)
− EA

∂2u

∂x2 = fex(t)δ(x − +) x ∈ (0, +), (12)

where δ(x) denotes the dirac delta distribution indicating excitation at the end. This
is discretized using eight linear finite elements. The last node is connected to the
ground using an elastic dry friction element [8] parameterized by the stiffness kt
and slip force μN . Two cases are considered:

1. kt = 2.5 MN m−1; μN = 0.75 MN.
2. kt = 6 MN m−1; μN = 0.75 MN.
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Fig. 1 Bar model

The parameters of case 2 are set in such a way as to highlight mode-coupling effects,
whereas such effects are intentionally avoided in case 1.

3 Results

The current section presents the results of the application of the procedures
described in Sect. 2.1 to the 1D bar model described above. The nonlinear modal
analysis results are compared against frequency-domain references based on the
periodic motion concept [4] (EPMC). All frequency-domain computations are
conducted using the first five harmonics with harmonic balance.

3.1 Nonlinear Modal Analysis

Figure 2 presents the nonlinear modal characteristics for mode 1 of the system for
both the cases. Case 1 (Fig. 2a) is a scenario where a single mode responds in an
isolated manner around resonance, while case 2 (Fig. 2b) is a scenario where this
is not so. A “tongue-like” projection typical of modal coupling in periodic motion
backbones can be seen in the EPMC backbone in the boxed region in Fig. 2b. This
feature is not captured by the RQNM formulation due to its fundamentally single
modal definition.

Figure 3 depicts the frequency characteristics of the first mode and the 1/3rd
frequency characteristics of the second mode, indicating a 1:3 internal resonance.

3.2 Synthesis of Frequency Responses

Figure 4 plots the frequency responses for the two cases (simulated using single
harmonic forcing with different amplitudes solved using HBM), along with the
nonlinear modal backbones from EPMC and RQNM. It can be seen that both the
backbones follow the frequency response peaks closely.

The frequency response synthesis formulation in Eq. (10) can be traced back to
classical multiple-scale approaches [9] and is presently employed to determine the
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Fig. 2 The nonlinear frequency–amplitude and damping–amplitude relationship for (a) case 1 and
(b) case 2. Boxed region(s) in (b) indicates relics of modal-coupling effects
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Fig. 3 The EPMC frequency–amplitude plot of mode 1 along with the mode 3 backbone (with
frequency divided by 3) with an enlarged version



336 N. N. Balaji and M. R. W. Brake

7500 8000 8500 9000
0

0.5

1

1.5

2

2.5

8200 8350

0.1

0.6

(a)

7500 8000 8500 9000
0

0.5

1

1.5

2

2.5

8250 8650

0.1

0.3

(b)

Fig. 4 The frequency response of the system in terms of the RMS displacement amplitude of the
forcing node along with the modal backbones for (a) case 1, and (b) case 2
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Fig. 5 Synthesis of forced responses: (a) case 1 and (b) case 2. See Fig. 4 for forcing amplitudes

accuracy of the developed reduced equations at the modal level. The accuracy of the
synthesized responses can be taken to be indicative of the utility of the underlying
nonlinear modal characteristics.

Figure 5 depicts the frequency responses (amplitudes) synthesized using Eq. (10)
for the two cases under consideration. Although the synthesized responses follow
the references closely, small discrepancies may be seen, especially for case 2. This
is thought to be due to the internal resonance noted above.

3.3 Nonlinear Modal Modeling in the Presence of Modal
Coupling

The possibility of using a multi-modal nonlinear expansion is explored here. Using
harmonic amplitudes Q1 and Q2 for modes 1 and 2, respectively, the solution ansatz
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that will be used is

ū(t) = φ̄1(Q1)Q1 cos(ω1(Q)t)+ φ̄2(Q2)Q2 cos(ω2(Q)t). (13)

Note that both modes are assumed to have only a cosine harmonic for simplicity. The
next task will be to fit the parameters cij , kij to the internal forces of the system.
As already mentioned, ū(t) cannot be expected to be periodic for arbitrary Q1, Q2.
Therefore, a time series is generated with t ∈ (0, T ) with an arbitrarily large T.
Using this, the internal forces are evaluated and transformed to the modal domain
to yield modal forces as follows:

f (m,1)(t) = φ̄T1 (Q1)
(
Kū(t)+ C ˙̄u(t)+ f̄nl(t, ū, . . . )

) ;
f (m,2)(t) = φ̄T2 (Q2)

(
Kū(t)+ C ˙̄u(t)+ f̄nl(t, ū, . . . )

)
. (14)

This is fit to parameters cij , kij by solving the linear regression problem

⎡

⎢⎢⎢⎢
⎣

q1(t) q2(t) 0 q̇1(t) q̇2(t) 0
...

...
...

...
...

...

0 q1(t) q2(t) 0 q̇1(t) q̇2(t)
...

...
...

...
...

...

⎤

⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k11

k12

k22

c11

c12

c22

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢
⎣

f (m,1)(t)
...

f (m,2)(t)
...

⎤

⎥⎥⎥⎥
⎦
. (15)

Figure 6 depicts an example of the performance of such a fit (2D maps param-
eterized by Q1,Q2). Note that this approach (along with the cosine assumption in
Eq. (13)) is justified only for time-invariant nonlinearities. Some observations that
may be made from the parameter estimates are:

– The parameters have non-trivial relationships to the modal amplitudes.
– The non-diagonal modal stiffness terms k1,2 (which are zero in linear modal

analysis) seem to play an appreciable role in at least some regimes.
– The c2,2 damping term even takes negative values in the presence of small mode

2 and intermediate mode 1 amplitudes.

For frequency response synthesis, analytical approaches like in Eq. (10) are not
trivial for multi-mode expansions. Therefore, a HBM implementation is developed
that interpolates (using linear interpolants) the quantities kij (Q1,Q2), cij (Q1,Q2),
m12(Q1,Q2), and φ̄Ti (Qi)f̄ex to evaluate the internal forces. Since these quantities
are estimated from the above regression over a uniform grid of (Q1,Q2), the
interpolation can be carried out in a very fast manner.3

3NLvib [10], an open-source MATLAB nonlinear vibration/continuation package, was used for
the numerical continuation in this case.
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Fig. 6 (a) An example of the fitting procedure (case 1, (Q1,Q2) = (100, 100)). The dots depict
the reference forces, and the continuous lines depict the fitted forces. (b) Parameter fits as functions
of Q1, Q2 for case 2

Figure 7a, b plots the frequency response of the original system along with the
synthesized frequency responses from the single-mode and two-mode expansions,
and Fig. 7c, d shows the contributions of the individual modes in the response for
the two cases. The two-mode expansion performs much better than the single-
mode formulation in predicting the frequency responses, especially toward the
higher amplitude regimes. However, the modal interaction features in case 2 are
still not captured by this formulation. The reason is possibly due to the fact that
such features may not be explained using just a single harmonic formulation.
It will therefore be meaningful to explore multi-harmonic implementations of
the modal analysis procedure outlined in Sect. 2.1, starting with obtaining multi-
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Fig. 7 The reference frequency response of the system (blue solid lines), single-mode synthesis
(black dashed lines), and two-mode synthesis (red solid lines) for (a) case 1 and (b) case 2. Also
plotted are the harmonic modal amplitudes for mode 1 (green) and mode 2 (magenta) along with
the single-mode expansion (black dashed lines) for the two cases in (c), (d), respectively

harmonic mode shapes and/or natural frequency and damping estimates from a
multi-harmonic approximation of Eq. (3) (see [7, 11], for instance).

4 Conclusions

An improved formulation of the Rayleigh quotient-based nonlinear modal analysis
has been presented and its applicability demonstrated using a numerical benchmark.

Using a numerical multi-degree-of-freedom (MDoF) benchmark, response syn-
thesis using single-mode and two-mode expansions has been compared, showing
that the two-mode expansion offers superior overall accuracy. Both techniques,
however, fail to detect nonlinear modal interaction/internal resonance phenomena.
The results indicate that a multi-harmonic multi-modal expansion could yield better
results. Time- domain (transient response) synthesis will require the extension of
modal models of the form in Eq. (11), where the nonlinearities are dependent on the



340 N. N. Balaji and M. R. W. Brake

harmonic amplitude and not on the instantaneous amplitude. Results and techniques
from classical multiple time-scale approaches [9] are promising for such extensions.

The major advantage with the proposed approach comes from the fact that the
computational requirements for large problems are minimized. The only nonlinear
algebraic solution operations with sizes as large as the system are necessary in the
initial NEPv stage. Further, evaluations of the nonlinear functions (which could be
expensive in some cases) are only necessary for the modal model regression, which
does not involve any further large nonlinear solutions. Therefore, the construction as
well as utilization of the modal models is both relatively very cheap in comparison
to evaluation of the full-order model.
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Continuation-Based Design of
Self-Contacting Soft Robotic
Manipulators

Christopher Marry, Harry Dankowicz, and Girish Krishnan

1 Introduction

Soft robots show great potential in applications requiring unique dexterity due to
their ability to deform into complex shapes without the need for bulky and expensive
motors as would be required in rigid robots. Soft robots have a higher strength-
to-weight ratio than rigid robots of similar size and are also safer for applications
involving interactions with humans [1]. On the flip side, soft robots present difficult
design challenges: their actuation methods are coupled to their structures, and their
static and dynamic deformation behavior is frequently nonlinear. As a consequence,
the existing techniques for trajectory planning of rigid robots cannot be used directly
for soft robots.

A fiber-reinforced elastomeric enclosure (FREE) [2, 3] is a type of pneumatic
soft robotic manipulator that consists of an elastic tube wrapped with stiff fibers
that constrain the ways the tube deforms when inflated. Design techniques for
creating an initially straight single-segment FREE to match an arbitrary 2D curve
when pressurized were presented in [4]. The problem of designing a multisegment
FREE that can follow a desired 3D trajectory was considered in [5]. However, the
technique presented there allowed for only a restricted class of FREE segment types
and did not take gravitational effects into account. A more general technique for
designing multisegment FREEs to match arbitrary 3D shapes was considered in
Section 3.2 of [6]; their technique did account for gravity but did not consider
the intermediate shapes of the manipulator during pressurization. Based on this
technique, a design proposed for the task of forming a trefoil knot was found
unable to complete the knot without manual intervention because of self-contact
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that occurred at an intermediate configuration. A knotting actuator was also
designed in [7] using a different pneumatic manipulator morphology that unfurls
the manipulator as it is pressurized. However, if the manipulator was fully unfurled
before deforming, self-contacts again prevented knotting from being achieved.

The onset of self-contact in slender elastic objects deformed through variations
in boundary conditions is a well-known source of complex static equilibrium
bifurcations. In [8], numerical continuation was used as a tool to study the
equilibrium shapes of an elastic rod as its clamped ends were translated and rotated.
It is found that buckling can cause bifurcations in which the rod suddenly forms
planar loops. In [9], numerical continuation was used to show that a clamped elastic
rod could attain a stable overhand knot configuration without any points of self-
contact for narrow ranges of parameter values.

In this chapter, we use numerical continuation to overcome the lack of a
design approach for multisegment FREEs that considers intermediate shapes and
the potential onset of self-contact. Our approach allows the analysis to track
continuous families of shapes under variations in the actuation pressure and other
design parameters, while also accounting for the onset and persistence of self-
contact. With the help of this tool, we present a preliminary investigation of the
deformations of a six-segment manipulator in the presence of gravity under different
initial orientations at the clamped end. An intriguing finding of our analysis is the
possibility of several co-existing equilibrium configurations at the same actuation
pressure, possibly associated with imperfect buckling of the manipulator due to its
self-weight.

2 Design Principles

The basic building blocks of the soft robotic manipulators of interest here are
elastomeric tubes wrapped with two families of stiff fibers that constrain the possible
deformations of the tube during inflation, as represented schematically in Fig. 1a.
For example, for fiber angles α = −β, the tube extends or contracts with axial and
radial stretch ratios λ1 and λ2. In contrast, unequal fiber angles α �= β result in an
additional rotation about the tube axis by an angle δ, with λ1, λ2, and δ implicitly
parameterized by the fiber angles and inflation pressure [2]. By adding a straight
strain-limiting fiber along the length of the tube, the combined extension/contraction
and rotation is converted into a helical deformation, as illustrated in Fig. 1b. In this
case, κ = (λ1 − 1)/r(λ1 + 1) and τ = δ/ l describe the intrinsic curvature κ and
torsion τ of the tube in terms of the undeformed inner tube radius r and tube length
l. For a given design, κ and τ are uniquely parameterized by the inflation pressure.

End-to-end concatenation of several helical FREEs creates a polyhelical shape
under inflation. For a given number of segments, we may seek optimal choices of
fiber angles and segment lengths to achieve a close approximation (in the absence
of gravity) to a desired curve at some target pressure. To account for the influence
of gravity, the design methodology in [6] introduces an intermediate target curve for
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Fig. 1 (a) A FREE with α �= β in an undeformed state. (b) The FREE of (a) under pressurization,
which has deformed into a helix

Table 1 Construction parameters for the trefoil knot FREE

Segment 1 2 3 4 5 6

Length (mm) 77 67 82 80 59 69

κ (m−1) 5.0 42 17 27 37 9.6

τ (m−1) 0 −8.4 13 4.0 −2.4 56

α (deg) 58 74 71 72 74 86

β (deg) −58 −78 −57 −69 −75 −26

this parameter optimization. This target curve is in turn obtained by solving for an
equilibrium shape of an elastic Kirchhoff rod with intrinsic curvature and torsion
equal to those of the desired curve, clamped-free boundary conditions with one end
clamped to the position and orientation of the desired curve, and with elastic moduli
identical to those of the FREEs, under a distributed load equal in magnitude but
opposite in direction to gravity [10].

From [6], we obtain an example of such an analysis applied to a six-segment
manipulator design and resulting in the parameter values shown in Table 1. Here,
the desired curve in the presence of gravity is the trefoil knot with x(t) = 30 cos 4t ,
y(t) = 30 sin 3t , and z(t) = 10 sin 5t for t ∈ [π/2, 3π/2] (shown in black in
Fig. 2) translated, rotated, and shifted so that it starts at the origin, its initial tangent
vector points in the negative z direction, and its total arclength is 434 mm. Here,
the intermediate target curve, assuming gravity acting in the negative z direction,
is closely approximated by the polyhelical curve [11] shown in color in this figure.
Consistent with intuition, we see more pronounced deviations between the desired
and target curves at arclengths further from the clamped end of the elastic rod.

This analysis is notably ignorant of the intermediate configurations that will
result as gravity is successively introduced to the multisegment manipulator with
equilibrium shape (in the absence of gravity) given by the polyhelical approximation
to the natural curve. Indeed, from inspection of Fig. 2, it is clear that segment 6
must pass through segment 3 in order to achieve the desired shape, in violation of
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Fig. 2 The desired trefoil knot shape (black), its natural shape (dotted-line), and a 6-segment
polyhelix approximant of its natural shape

the physical construction of the manipulator. In fact, as will be shown in Sect. 4, a
self-contact also occurs between these segments during inflation from zero pressure
in the persistent presence of gravity.

3 Mathematical Formalism

To enable implementation in a parameter continuation context and allow for the
detection of self-contact, a multisegment FREE is here modeled as a segmented
Kirchoff rod [12] using an 18-dimensional nonlinear system of ODEs, with
arclength as the dependent variable, and suitable segment boundary conditions. On
each segment, the 18 states represent the projections of the centerline position vector
r , unit tangent vector t , unit normal vectors n1 and n2, internal force vector f , and
angular velocity vector u = κ1n1+ κ2n2+ τ t onto the axes of the inertial reference
frame, such that

r ′ = t, t ′ = κ2n1 − κ1n2, n′1 = −κ2t + τn2, n′2 = κ1t − τn1, (1)

where ′ denotes differentiation with respect to the arclength parameter.
Given the discussion in the previous section, we assume that each FREE

segment has a intrinsic curvature vector u0(p) := κ1,0(p)n + τ0(p)t , implicitly
parameterized by the inflation pressure p and such that u0(0) = 0. The actual
curvature vector u is distinct from the intrinsic curvature vector u0, as it also
depends on gravitational and other external forces. The deviation ũ := u − u0
induces internal bending moments m modeled here by the constitutive law
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m = EI (κ̃1n1 + κ2n2)+GJ τ̃ t, κ̃1 = κ1 − κ1,0(p), τ̃ = τ − τ0(p) (2)

in terms of the bending and shear material stiffnesses EI and GJ . Assuming
material homogeneity, we obtain

m′ = EI
(
κ ′1n1 + κ ′2n2

)+GJτ ′t + u×m. (3)

Static force and moment balance now yield

0 = f ′ + ρge3, 0 = m′ + r ′ × f = m′ + t × f , (4)

where g is the gravitational constant, ρ is the actuator density per unit length, and
e3 is the direction of gravity. It follows that

κ ′1 =
f • n2 − n1 • (u×m)

EI
, κ ′2 = −

f • n1 + n2 • (u×m)

EI
, (5)

and

τ ′ = − t • (u×m)

GJ
. (6)

Equations (1), (5), (6), and the first half of (4) govern the arclength dependence of
the state variables for equilibrium configurations actuated by an inflation pressure
and under the influence of gravity. Fast changes in the actuation pressure would
require consideration of inertial effects, which are outside the scope of this chapter.

For a single-segment rod of length L, we supplement the governing differential
equations with clamped-free boundary conditions, prescribing r(0), t(0), n1(0), and
n2(0), and letting κ1(L) = κ1,0(p), κ2(L) = 0, τ(L) = τ0(p), and f (L) = 0. For
a multisegment model and in the absence of self-contact, we assume continuity of
the position vector r , frame vectors t , n1, and n2, force vector f , and deviation ũ

across all internal boundaries.
In the presence of self-contact, we further segment our rod model so that the

contact points remain at internal boundaries between two segments. In this case, we
impose the additional boundary conditions

(
r i (si)− rj (sj )

) • ti (si) =
(
r i (si)− rj (sj )

) • tj (si) = 0, (7)

which ensures that the contact direction is perpendicular to the tangent direction
at both contact points, parameterized by the to-be-determined arclengths si and sj .
We continue to assume continuity of r , t , n1, n2, and ũ across such boundaries but
impose the jump conditions

fi(si+) = fi(si+)+ Δf

D

(
ri(si)− rj (sj )

)
, (8)
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fj (sj−) = fj (sj−)− Δf

D

(
ri(si)− rj (sj )

)
, (9)

where the + and − subscripts refer to arclengths immediately before and after
the self-contact. Here, D denotes the rod diameter and Δf is a to-be-determined
normal contact force that is solved for as part of the overall boundary-value problem.
Contact is maintained during the analysis as long as the force Δf remains positive.
When Δf becomes zero, the contacting points are no longer being pushed together,
and the force discontinuity and associated segmentation can be removed from the
formulation.

Detection of the onset of self-contact during continuation (for example, during
inflation) is handled through the monitoring of the relative positions of some
discretized set of points along the manipulator. Self-contact occurs whenever two
points on the ith and j th segments at overall arclengths si and sj satisfy the
condition

∣∣r i (si)− rj (sj )
∣∣−D = 0. Unfortunately, neither the segments i and j nor

the arclengths si and sj are known a priori. In practice, we thus choose to monitor
the minimum Euclidean distance between any two pairs of discretized points whose
difference in arclength is greater than D. Once this minimum distance reaches D,
approximate self-contact has been found, and the formulation required to handle
sustained self-contact may be imposed.

4 Results and Discussion

We proceed to implement the multisegment boundary-value problem described in
the previous section in the numerical continuation package COCO [13]. The differ-
ential equations are here discretized using orthogonal collocation with a uniform
arclength mesh on each segment and interpolation using continuous, piecewise-
polynomial interpolants. For the results reported below, we use 20 intervals per
segment and polynomials of degree 4. The material properties used for all segments
were E = 1.8 MPa, G = 0.6 MPa, and D = 12.7 mm.

4.1 Self-Contact

In the first example, illustrated in Fig. 3, continuation starts with the pressure set to
0, and the actuator hanging straight down, pointing in the direction of gravity. The
panels of the figure show the manipulator shape at various intermediate pressures, as
well as at the onset of the first and second self-contacts. As anticipated, the first self-
contact occurs between segments 3 and 6 at approximately p = 46.6 psi. Another
self-contact occurs between segments 1 and 4 at approximately p = 47.2 psi, at
which pressure we chose to terminate continuation. Notably, both self-contacting
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Fig. 3 Configuration of a FREE at various pressure values. The first self-contact occurs at
approximately 46.6 psi, and the second at 47.2 psi

configurations are unknotted; in other words, if the ends were to be pulled in
opposite directions, the manipulator would return to a straight configuration.

4.2 Buckling

The proposed methodology also allows for configurations to be tracked as other
parameters are varied. For instance, if the initial orientation of the same manipulator
as in Fig. 3 is quasi-statically inverted by rotation about the y-axis, followed by
the pressurization of the manipulator, followed by a quasi-static rotation about
the x-axis to a horizontal orientation, a qualitatively different configuration can be
reached, as shown in Fig. 4. Notably, in this case, the free end of the manipulator
has encircled its clamped base. No such encirclement occurred in Fig. 3. Here,
inverting the manipulator causes it to buckle, and drastically increasing its curvature
before pressurization is initiated. In this example, the buckling caused a positive
curvature to be induced in the manipulator. However, if the initial rotation about
the y-axis were to occur in the opposite direction, a negative curvature would have
been induced, and subsequent pressurization would have resulted in a different
configuration (remember that the FREE design induces a preferred helicity that
breaks the rotational symmetry).
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Fig. 4 A multi-step control sequence for a trefoil knot FREE. In (a), gradient from red to blue
shows rotation about the y-axis to an inverted orientation Then in (b), the gradient from blue to
green shows the FREE being pressurized from 0 to 50 psi. In (c), the green to cyan gradient shows
the rotation about the x-axis to 90◦, encountering a self-contact at 118◦ and again at 90◦. (d) shows
the configuration of the FREE at the onset of the second self-contact

4.3 Co-existing Solutions

Finally, we consider the possibility of qualitative changes to the static bifurcation
structure under variations in other design parameters. As an example, Fig. 5 shows
one-parameter families of manipulator shapes, represented by the total twist of the
curve, under variations in the inflation pressure and for different material densities
(all other parameters are equal to those in Table 1). As seen in the figure, multiple
equilibrium configurations co-exist in certain ranges of inflation pressures. Indeed,
as the density is increased, the range of pressure values for which multiple solutions
exist increases. Closer examination of the manipulator shape near these pressures
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Fig. 5 Variations in pressure and twist (the integral of torsion with respect to arclength) along
families of equilibrium shapes for different values of the density ρ. Geometric folds bound ranges
of pressures in which three equilibrium configurations coexist

shows the part of the rod is nearly vertical, suggesting that the fold bifurcations seen
here are examples of imperfect buckling bifurcations.

5 Concluding Discussion

This chapter presented a continuation-based design tool that allows for the computa-
tion of intermediate shapes of a multisegment fiber-reinforced elastomeric enclosure
during inflation. Unlike other design methodologies, this tool is able to address
the onset of self-contact and can continue to track configurational changes of the
manipulator under further variations in pressure with sustained self-contact until
such a time that contact is lost. The computational framework is generic enough
to be used for other soft robotic actuators whose deformation is characterized
by intrinsic curvatures that vary based on some actuated quantity. The tool also
allows for a configuration to be studied in different loading scenarios, such as
by reorienting the base. Indeed, by using both the actuation pressure and base
orientation, the design space is extended to configurations that cannot be reached
by solely controlling the pressure.

Among the results of particular interest is the existence of manipulator designs
that exhibit multiple co-existing equilibrium configurations over ranges of pressure
values bounded by geometric folds. At the extremes of these ranges, we anticipate
that small changes in actuation pressure may result in large changes in the
manipulator configuration. Designs that leverage such behavior could be utilized
to make actuators that can rapidly deform when a critical pressure is reached,
similar to those actuators studied in [14]. We anticipate that this bifurcation
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structure is associated with non-symmetric buckling phenomena along portions
of the manipulator. By analogy with other mechanical systems, we expect that
intermediate branches of equilibrium configurations are unstable to perturbations.
Future work will investigate the conditions for the existence of multiple solutions
to the manipulator configuration, as well as control strategies (e.g., inspired by the
control-based continuation paradigm) to attain such dynamically unstable shapes
that could not be reached through the standard strategy of monotonically increasing
the pressure.

The forward dynamics of FREE-based manipulator designs remains beyond
the scope of this work and the parameter continuation framework, except for
special choices of temporal boundary conditions, like periodic orbits. It is clear that
intermittency of self-contact in such problems allows for highly complex behaviors.
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Bayesian Local Surrogate Models
for the Control-Based Continuation of
Multiple-Timescale Systems

Mark Blyth, Lucia Marucci, and Ludovic Renson

1 Introduction

Numerical continuation is an algorithm for exploring the bifurcation structure of
a model. Numerical analysis allows one to learn about systems that would be
excessively challenging to investigate analytically. Nevertheless, continuation tools
are limited to cases where an easily evaluable model is available. Often, appropriate
models are not available, for example in the climate sciences, where model
evaluation is prohibitively slow; in agent-based modelling, where the dynamics
cannot easily be reduced to a set of differential equations; or in experimental
cases, where no model exists. Control-based continuation (CBC) is a method for
defining continuation problems without the need for a model [1, 2]. It allows the
experimenter to conduct a bifurcation analysis on black-box and physical systems
and to determine the stability of dynamical features [3].

CBC has been used successfully to track equilibria and limit cycles in a range
of physical systems, including a nonlinear energy harvester [4] and a multi-degree-
of-freedom system with harmonically coupled modes [5], as well as to track fold
bifurcations and backbone curves [6]. CBC is yet to be applied to problems such
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as multiple-timescale oscillators, where the dynamics are strongly nonlinear, or
chemical and biological systems, where measurements are subject to substantial
noise. Here, we describe how surrogate regression models can be used to assist
with the control-based continuation of such systems. We pay particular attention to
multiple-timescale systems, as they are difficult to handle with currently available
CBC methods.

Surrogate modelling is a technique whereby “real” data, such as experimental
observations or simulation results, are replaced with closed-form models that
approximate the data of interest. These surrogate models can be analysed in
place of the original data, allowing the experimenter to shift computation away
from an experiment and onto a computer. Uses of surrogates include the efficient
emulation of computationally costly models [7] and performing hypothesis tests
on physical systems [8, 9]. Surrogate modelling has seen some use in control-
based continuation. A discretisation is a surrogate model of a signal, which allows
the experimenter to perform calculations on finite-dimensional vectors instead of
continuous functions. Furthermore, there exists a CBC method whereby Gaussian
process regression is used to produce a local model of the bifurcation manifold of a
system [10]. Standard numerical continuation procedures are used on this model, to
numerically continue a fold bifurcation.

This chapter is structured as follows. Sections 1.1 and 1.2 introduce control-
based continuation and motivate the uses of surrogate models within CBC. Next,
Sect. 2 presents two different classes of surrogate models. Their performances are
compared on synthetic data in Sect. 3. Section 4 concludes the work.

1.1 Control-Based Continuation

CBC defines a zero problem suitable for continuation, without the need for a model.
It relies on finding and tracking noninvasive control targets—a control target that,
when paired with a suitable controller, stabilises the limit cycles and equilibria of
a system without changing their positions or existence. A continuation procedure
is applied to the noninvasive targets, to track dynamical features across parameter
values. CBC provides a method for finding noninvasive control, an algorithm for
continuing the noninvasive targets, and a guarantee that the results represent the
uncontrolled system dynamics.

The continuation scheme uses standard methods to solve for noninvasive control.
Numerical solvers are not applied directly to the periodic signals, as the control input
and system output are continuous functions. Instead, the signals are discretised.
Fourier discretisation is used in all existing CBC applications. Here, the periodic
signals are represented by the coefficients of their truncated Fourier series. Fourier
discretisation works well for the systems that have currently been studied with
CBC, as the output signals contain little noise or high-frequency energy. However, it
becomes challenging to apply to signals with slowly decaying Fourier coefficients,
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as the discretisation ceases to be noise-robust. We propose surrogate modelling as a
method to help overcome this loss of robustness.

1.2 The Need for Surrogate Modelling

Fourier basis functions have global support. For an arbitrarily long signal, they
will therefore average out any observation noise. In practice, signals are of
finite, often short time duration, and may not be perfectly periodic as a result
of stochastic effects. This greatly diminishes the noise-averaging capabilities of
Fourier series and is further exacerbated when the signal contains large amounts of
higher-frequency energy, as is typical with multiple-timescale systems. Numerical
experiments indicate that on such signals, small numbers of harmonics cannot model
the signal, and larger numbers will overfit the data, capturing both signal and noise.
An example of this is shown in Fig. 1, where a truncated Fourier series of 60
harmonics is fitted to a signal, with and without noise. 60 harmonics is chosen as
being the smallest number to provide a subjectively good fit; the noise-averaging
ability decreases with the addition of more harmonics, so it is desirable to keep this
number small. The Fourier model is seen to fit the noise-free signal to a reasonable
degree of accuracy, albeit with some error close to the spikes. Nevertheless, when
the signal becomes noise-corrupted, the Fourier model fails to average out the noise.

Simple low-pass filtering methods are undesirable for noise removal, as they do
not discriminate between noise and signal, and as a result will remove valuable
high-frequency information. This information is of great importance with slow–
fast systems, as it captures the sporadic, rapid changes in the output. We propose a
surrogate-based method, whereby recorded signals are replaced with a regression
model chosen to represent the underlying, noise-free signal. The models retain

Fig. 1 Truncated Fourier series fitted to a clean (top) and a noisy (bottom) signal, obtained from
the simulation of a Hodgkin–Huxley neuron. The Fourier series is observed as failing to properly
average out observation noise
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information about the high-frequency components of a signal whilst removing
noise. Surrogates are chosen for their ability to separate the latent signal from the
observation noise as accurately as possible, and therefore to faithfully reconstruct
the true noise-free system output. The surrogate can then be analysed in place of the
original data, to produce a more accurate discretisation of the signal.

A well-chosen surrogate gives a standalone, closed-form model that accurately
describes the signal of interest and can be analysed as if it were an explicit
system solution. Besides adaptive filtering, surrogates also allow one to correct
issues with the recorded data. Provided the regressors faithfully represent the
experimental recordings, they allow the resampling of measurements, which can
both facilitate efficient numerical algorithms and simplify the initialisation of
continuation methods. For example, when applying CBC to oscillatory systems
where the signal period is not known a priori, one may choose to either define a
phase-locked control target [11] or extract the period as an additional continuation
parameter. In the latter case, it is necessary to determine the period of the signals
used to initialise the continuation procedure. A typical estimation approach uses the
zeros of the signal autocorrelation function [12]. This relies on uniform sampling
intervals, which can be obtained by resampling from the surrogate model in cases
where data points are missing or unevenly distributed.

Instead of a regressor, one may choose to use a physics-based surrogate model,
the parameters of which are fitted during an experiment. This has the advantage
of allowing the experimenter to incorporate prior physical knowledge into the
continuation procedure. Nevertheless, accurate results would require the surrogate
to capture the main physics of the system, which becomes challenging when
studying non-trivial dynamics. In such cases, a regression-based surrogate or the
standard model-free approaches are preferable.

Note that while CBC does not necessarily require a model of the system
dynamics, it does require a model of the system output. This model defines the
signal discretisation and specifies how to convert from a discretisation into a control
target. Existing CBC methods use a truncated Fourier series; the Fourier series is
therefore a surrogate, as well as a discretisation. An implicit assumption of control-
based continuation is that the discretising model accurately represents the signal
in question; however, this assumption is not generally tested. The use of novel
surrogates offers a route for validating this assumption.

2 Surrogate Models for Multiple-Timescale Signals

Surrogate modelling follows a standard statistical regression procedure. Assume
there exists some function f (t), giving the “true” system output at time t . We only
have access to a discrete set of noise-corrupted samples (ti , xi) for i = {0, 1, . . . , n},
where xi = f (ti) + εi for some zero-mean i.i.d. nuisance variable εi . Given these
samples, we seek a surrogate to reconstruct the latent function f . We consider
Gaussian processes and Bayesian splines as candidate models.
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2.1 Gaussian Process Regression

Gaussian processes generalise the multivariate Gaussian distribution to cases where
the index set is of infinite dimension [13]. They can be interpreted as a distribution
over functions. Given suitable function-space priors, one can use Bayesian methods
to condition on observed data, to estimate the posterior value of the latent function
at any given location.

The prior encodes our beliefs about the structure of the data, primarily by deter-
mining how similar two function outputs are, given their inputs. The prior implicitly
represents a projection into a feature space of possibly infinite dimensionality; as
such, it is called the kernel and is the source of the predictive power of Gaussian
process regression. By definition, for a smooth function f , |f (ti) − f (tj )| will be
small if |ti − tj | is small; loosely stated, the function outputs will be similar if their
inputs are similar. The kernel specifies a prior belief over functions by encoding this
neighbourhood of similarity, as well as the variance of the function. Kernels can also
specify observation noise and long-term dependencies such as periodicity. One of
the most commonly used kernels is the square-exponential, or radial basis function
(RBF) kernel, defined for scalars as k(ti , tj ) = σ 2

f exp(−(ti − tj )
2/l2) [13]. The

hyperparameter l dictates the changeability of the function, by specifying how near
two inputs must be for their outputs to be similar. Small l means the function can
change rapidly over short intervals. σ 2

f specifies the variance of the function, loosely
interpreted as its amplitude. The Gaussian process model is fitted by selecting the
kernel hyperparameters that maximise the model log-likelihood.

The RBF kernel represents a distribution over the set of C∞-smooth functions
and generalises easily for multidimensional inputs. Other popular kernels include
the Matern 3/2 and Matern 5/2, which encode C1 and C2 smoothness, respectively
[13]. These kernels are stationary, meaning the statistical properties they encode
are assumed to remain constant over the range of the data. Kernels can be made
periodic by replacing their pointwise distance measure with an appropriate phase-
based metric. Here, we consider Gaussian process regression with RBF, Matern
3/2, and Matern 5/2 kernels—three commonly used kernels—in addition to periodic
RBF and periodic Matern 3/2 [13].

Gaussian process regression is an elegant approach to the statistical inference of
f . Latent values are computed as a linear combination of inputs, weighted according
to the kernel. Gaussian processes therefore act as a statistically optimal linear filter,
for a given set of priors. They remove noise from a signal, whilst retaining the signal
itself, making them an attractive method for surrogate modelling.

2.2 Bayesian Spline Regression

A spline curve is a composite curve made up of sections of polynomials. Each poly-
nomial section connects to its neighbours at a knot point. Polynomial coefficients
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are found by requiring each section to meet its neighbours smoothly at the knots and
by inposing some boundary conditions.

BSplines reformulate spline curves into a more familiar regression setup. Spline
curve basis functions, referred to as BSplines, are defined. Any spline can then
be constructed as a weighted sum of these basis functions. BSplines are a popular
method for regression and statistical smoothing [14].

The BSpline basis is constructed from a vector of scalar-valued knots, unlike
traditional splines that are defined from a set of vector-valued knot points. The scalar
knots must be placed in appropriate locations if the spline curve is to fit the data.
Choice of knots is therefore important, but non-trivial, with typical approaches being
optimisation—[15] or regularisation-based [14]. An alternative approach is to not
select any single set of knots but to maintain a probabilistic distribution over all
candidate knot sets. Such an approach is used in Bayesian free-knot splines [16,
17]. Here, a set of sensibly chosen priors are used to encode beliefs about form
of the spline model. Bayes’ rule is used to formulate a posterior distribution over
possible knot sets, given data. Reversible-jump Markov chain Monte Carlo [18] is
then employed to draw samples from the posterior distribution.

Free-knot splines provide a powerful, yet conceptually elegant method of
choosing the best knots for any given data. Furthermore, Paciorek and Schervish
found the method to outperform Gaussian process regression on a set of noisy
scalar-valued example data [19]. This makes free-knot splines a good candidate
for surrogate modelling. Here we use the Bayesian free-knot splines method of
DiMatteo et al. [17] as implemented in [20], with a custom python wrapper.

3 Comparison of Surrogate Models

The surrogate models introduced in this chapter are tested on synthetic data obtained
from the simulation of a van der Pol oscillator [21] and a Hodgkin–Huxley neuron
[22].

The van der Pol oscillator is a nonlinear relaxation oscillator. Relaxation
oscillators are able to model a wide variety of physical systems, making them
an interesting target for control-based continuation. Nevertheless, as a result of
their slow–fast dynamics, the system output shows abrupt, periodic changes. This
abruptness makes the oscillators difficult to analyse using existing CBC procedures,
which in turn means they are interesting as test models. Here we take the van der Pol
system as presented in [21], with ε = 5. The output signal is taken as the position-
or voltage-like variable x(t).

The Hodgkin–Huxley model is chosen for being another example of a system
producing abruptly changing outputs. The equations describe spiking dynamics in
neurons, whereby a voltage-like variable alternates periodically between a slow,
drifting change, and a sharp, rapid “spike”. To promote oscillatory behaviours, we
use standard parameter values and I = 1.75. The output signal is taken as the
voltage-like variable v(t).
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Fig. 2 Bayesian free-knot spline surrogate models, fitted to noisy signals from a simulated van
der Pol oscillator (top) and Hodgkin–Huxley neuron (bottom)

Figure 2 shows an example of a free-knot splines surrogate model, fitted to noise-
corrupted test data. The data are obtained by integrating the models; evaluating
the solution at 1000 evenly spaced time points covering approximately three to
five periods; noise corrupting the signal with i.i.d. Gaussian white noise; and then
fitting a surrogate to the noise-corrupted samples. Visually, free-knot splines are
seen to accurately reconstruct the true, noise-free signal. The surrogate is able to
filter off noise without imparting a phase shift on the signal and without distorting
it. Therefore, a Fourier discretisation obtained from the surrogate will be more
accurate than one obtained from the raw data. Note that an inset axis is shown on the
neuron signal. This shows the surrogate fit right at the end of a spike (100 extra data
points are placed here for ease of illustration). Such regions are difficult to model
accurately using surrogates, due to the rapid change in the statistical properties of the
signal. Nevertheless, the surrogate is seen to accurately reconstruct the true signal
even at this statistical change point, where one would typically expect the worst
performance to be.

The goodness-of-fit of the tested surrogates is evaluated by calculating the
mean-square error over a set of unseen test data. Solution data points are split
deterministically into 25% test and 75% training points. The training data are noise-
corrupted and then used to fit the surrogate. The surrogate predictions are compared
against the true solution value at each test point, to compute the mean-square error.
This is tested for various amounts of noise corruption and repeated 100 times to
average out any randomness. The results are shown in Tables 1 and 2. The amount
of noise is quantified both by the standard deviation σ of the noise and by the signal-
to-noise ratio (SNR), given as the ratio of the signal energy to the noise energy.

It is found that periodic kernels almost always outperform non-periodic kernels.
Any apparent exception to this likely arises as a result of difficulties in optimising
the kernel hyperparameters. Besides this, no single kernel outperforms the other.
Rather, the best kernel depends on the signal being studied. The tested Gaussian
process kernels are stationary. This means that statistical properties are assumed to
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remain constant across the entire signal. In particular, the kernels have a constant,
fixed lengthscale. Where the signal changes regimes, such as between slow and
fast dynamics, the lengthscale must be small to allow sufficient model flexibility
to accommodate the changes. As stationary kernels cannot encode any changes
in lengthscale, we are forced to choose the same small l across the whole signal.
This means that, while the model is flexible enough to accommodate any rapid
changes in the signal, it is also less able to discern between signal and noise. Noise
corruption also causes rapid changes in the signal, and the small lengthscales mean
the model is unable to filter out these perturbations accurately. Free-knot splines do
not suffer from any such issues and outperform Gaussian process regression when
both the stationarity assumption breaks down and the noise corruption is large.
Where additional model flexibility is required, such as around regime changes in
the signal, more knots are added. This allows the model more scope to adapt to
the data. Tables 1 and 2 demonstrate this by showing Bayesian free-knot splines
to outperform Gaussian process regression when the signals are more statistically
nonstationary, as with the Hodgkin–Huxley signals, and when the amount of noise
corruption is large.

Both Gaussian processes and free-knot splines are Bayesian methods. They
rely on updating prior beliefs after seeing evidence. The quality of the surrogate
prediction depends on both the amount of evidence available and the quality of
these prior beliefs. In general, free-knot splines are significantly easier to work

Table 1 Mean-square prediction error of various surrogate models, as computed from surrogates
fitted to a van der Pol signal with i.i.d. noise of standard deviation σ

σ = 0 σ = 0.05 σ = 0.1

SNR (dB) – 30.0 24.0

Bayesian splines 2.11× 10−4 1.20× 10−3 3.00× 10−3

GPR: Periodic Matern 3/2 6.40× 10−6 5.63× 10−4 1.48× 10−3

GPR: Periodic RBF 3.60× 10−7 8.43× 10−4 2.92× 10−3

GPR: Matern 3/2 5.75× 10−5 2.40× 10−3 5.46× 10−3

GPR: Matern 5/2 3.59× 10−5 2.08× 10−3 5.27× 10−3

GPR: RBF 3.53× 10−5 2.09× 10−3 6.96× 10−3

Table 2 Mean-square prediction error of various surrogate models, as computed from surrogates
fitted to a Hodgkin–Huxley signal with i.i.d. noise of standard deviation σ

σ = 0 σ = 1 σ = 2

SNR (dB) – 37.4 31.4

Bayesian splines 8.00× 10−2 0.185 0.597

GPR: Periodic Matern 3/2 1.80× 10−4 0.213 0.641

GPR: Periodic RBF 3.36× 10−2 0.406 0.806

GPR: Matern 3/2 3.24× 10−2 0.759 1.82

GPR: Matern 5/2 1.72× 10−2 0.915 1.91

GPR: RBF 5.61× 10−1 1.78 2.60
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with that Gaussian processes, as one can construct suitable splines priors much
more simply than suitable kernels. Splines priors specify our beliefs about the form
of the model, such as the number of knots, or the distribution of the noise. On
the other hand, Gaussian process priors must encode our beliefs about candidate
functions. While hyperparameter optimisation allows one to fit a kernel to data, it is
not always obvious which kernels will work well, or why. Experience suggests that
free-knot splines work out-of-the-box, whereas success with Gaussian processes
requires considerable attention to kernel choice and hyperparameter optimisation.
Nevertheless, free-knot splines require the implementation of a reversible-jump
Markov chain Monte Carlo engine; Gaussian process regression is much simpler
to implement, as it requires only linear algebra and a kernel function.

4 Conclusions

Control-based continuation is an experimental method for exploring the bifurcation
structure of physical and black-box systems. Discretisation is a key part of control-
based continuation. Existing CBC implementations use a truncated Fourier series
to both remove noise from an experimentally derived signal and to discretise it.
Numerical experiments indicate that Fourier series become less effective at filtering
noise when large numbers of harmonics are required. Here, we investigate how
Bayesian surrogate models can be used to remove noise from signals in such cases.

An adaptive filtering procedure is demonstrated using Bayesian surrogate mod-
els. These are shown to be effective at removing observation noise from synthetic
signals. The resulting noise-free surrogate model can then be used in place of the
recorded data, for discretising the system output.

Gaussian process regression is compared against Bayesian free-knot splines.
Gaussian processes produce more accurate surrogates when signals are weakly
nonlinear. Nevertheless, their predictive power is limited when stationary kernels are
used. This means that the tested Gaussian process regressors give poor results when
the amount of noise corruption and nonlinearity are large. In such cases, free-knot
splines provide a more accurate model fit. Furthermore, free-knot spline models are
easier to use than Gaussian processes, as their priors are simple and intuitive, and
can easily be tuned to the data in question. Gaussian process kernels require careful
hyperparameter optimisation to encode prior beliefs.
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Predicting the Type of Nonlinearity
of Shallow Spherical Shells: Comparison
of Direct Normal Form with Modal
Derivatives

Yichang Shen, Nassim Kesmia, Cyril Touzé, Alessandra Vizzaccaro,
Loïc Salles, and Olivier Thomas

1 Introduction

Reduced-order modelling (ROM) strategies dealing with geometrically nonlinear
structures attract attention for a long time, and a number of methods have been
proposed in the literature. In the recent years, a special emphasis has been put
toward applications to finite element (FE) based models in order to extend the range
of application to engineering structures with complex geometries. Also, numerous
developments take into account both the non-intrusive characteristic of the method,
that can be used with a standard (commercial) FE code without the need of entering
inside the programs at the elementary level, and also on simulation-free methods,
that can be used without the need of a priori, offline computations [1, 2].

The aim of this paper is to compare two different methods, namely the quadratic
manifold (QM) built from modal derivatives (MD) [3, 4] and the direct normal form
approach [5, 6], on a shell example. More particularly, the ability of the two methods
in the prediction of the type of nonlinearity (hardening/softening behaviour) is
investigated. In nonlinear vibrations, predicting the correct type of nonlinearity is
the first characteristics that needs to be correctly given by a ROM since being
a fundamental property of the nonlinear oscillations. The normal form approach,
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based on the invariant manifold theory, allows such a correct prediction [7]. On
the other hand, QM does not rely on invariance property, and it has been shown
recently that if a slow/fast assumption is not at hand, incorrect prediction can be
formulated [8]. This general result is here illustrated on the specific case of a shallow
spherical shell with increasing curvature. For that purpose, the von Kármán model,
assuming shallowness, neglecting in-plane and rotary inertia and using an Airy
stress function, is used [9].

In a second part, the validity of the von Kármán assumptions is verified by
comparing the type of nonlinearity computed from a FE model. For that purpose,
the direct normal form approach developed in [6] is used to get a direct access to the
hardening/softening behaviour from the FE mesh.

2 Modelling

2.1 Analytical von Kármán Model for Shallow Spherical Shell

A free-edge spherical shell, made of a homogeneous isotropic material of density
ρ, Poisson’s ratio ν and Young’s modulus E is considered, with the dimension
of thickness h, radius of curvature R and outer diameter 2a (see Fig. 1). Large
transverse deflections and moderate rotations are considered, so that the model is
a generalization of von Kármán’s theory for large deflection of plates. The shell is
assumed to be thin so that h/a � 1 and h/R � 1, and shallow: a/R � 1. Since
we are interested in predicting the type of nonlinearity, damping and forcing are not
considered. The equations of motion read [9]:

DΔΔw + 1

R
ΔF + ρhẅ = L(w,F ), (1a)

ΔΔF − Eh

R
Δw = −Eh

2
L(w,w), (1b)

Fig. 1 Geometry of the free-edge shallow spherical shell
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where w is the displacement, F the Airy stress function, Δ the Laplacian, L is a
quadratic bi-linear operator and D = Eh3/12(1 − v2) is the flexural rigidity, t
indicates the time variable and the double dot (•̈) the second derivative with respect

to time. The problem is made nondimensional by introducing r = ar̄ , t = a2
√

ρh
D
t̄ ,

w = hw̄, and F = Eh3F̄ . Thus, substituting the above definitions in equations of
motion, Eq. (1), and dropping the overbars in the results, one obtains:

ΔΔw + εqΔF + ẅ = εcL(w, F ), (2a)

ΔΔF −√κΔw = −1

2
L(w,w). (2b)

where the two nondimensional coefficients are εq = 12(1 − v2)
√
κ , and εc =

12(1− v2), making also appear the aspect ratio κ of the shell as κ = a4

R2h2 .
The complete linear analysis has been tackled in [9]. As an important result, the

behaviour of the eigenfrequencies with respect to the aspect ratio κ is shown in
Fig. 2. One can observe in particular that purely asymmetric modes (k, 0), with k

nodal diameters and no nodal circle, show a very slight dependence upon κ . On the
other hand, axisymmetric modes (0, n) without nodal diameters, as well as mixed
mode (k, n) with both k �= 0 and n �= 0, show a huge dependence on curvature.
These results are important in order to analyse the type of nonlinearity, depending
on the mode considered.

In order to predict the type of nonlinearity, Eqs. (2) are projected onto the natural
basis of the eigenmodes. After projection, the semi-discretized equations of motion
read [9]:

Ẍp + ω2
pXp +

+∞∑

i=1

+∞∑

j=1

g
p
ijXiXj +

+∞∑

i=1

+∞∑

j=1

+∞∑

k=1

h
p
ijkXiXjXk = 0, (3)

where Xp refers to the modal amplitude of the pth transverse mode, and ωp its
radian eigenfrequency. The nonlinear coupling coefficients write:

g
p
ij = −εq

∫∫

ϕ⊥
φpL(φi, ψj )dS − εq

2

+∞∑

b=1

1

ξ4
b

∫∫

ϕ⊥
L(φi, φj )ΥbdS

∫∫

ϕ⊥
φpΔΥbdS, (4a)

h
p
ijk = εc

+∞∑

b=1

1

ξ4
b

∫∫

ϕ⊥
L(φi, φj )ΥbdS

∫∫

ϕ⊥
φiL(φk, Υb)dS. (4b)

φi refers to transverse eigenmodes while ψj are obtained from the diagonalization
of the Airy stress function. ξn and eigenfunction Υn are zeros from the eigenprob-
lem, the interested reader can find their detailed expression in [9]. ϕ⊥ is the domain
defined by (r, θ) ∈ [0 1] × [0 2π ]. Equations (3) describe the dynamics of the shell,
and the trend of nonlinearity can be inferred from these equations.
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Fig. 2 Dimensionless natural frequencies ωkn of the shell as a function of the aspect ratio κ (figure
reprinted from [10]). κ = 0 corresponds to the flat plate case

2.2 Numerical Finite Element Model

In addition to the von Kármán model developed in the previous section, a FE
procedure is also undertaken in order to analyse the type of nonlinearity of shallow
spherical shells. For that purpose, the open source software code_aster [11] is
used, and free-edge shallow shells have been meshed with both 2D shell elements
and 3D brick elements. These meshes will be used in order to highlight the validity
of von Kármán’s assumption in order to predict hardening/softening behaviour.

For the geometrically nonlinear structures, the equations of motion stemming
from the FE discretization write:

MẌ+KX+G(X,X)+H(X,X,X) = 0, (5)
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where X is the vector of generalized displacements at the nodes, M is the mass
matrix, K is the tangent stiffness matrix, and finally, G(X,X) and H(X,X,X)
represent quadratic and cubic nonlinear couplings.

3 Analytical Prediction of the Type of Nonlinearity

3.1 Analytical Results from the Three Reduction Methods

We first compare the prediction of the type of nonlinearity using the semi-
analytical derivation obtained from von Kármán model. Three different predictions
are contrasted. The first one is given by the normal form approach and has already
been reported in [10]. As known from theoretical results [7], this prediction is
correct thanks to the invariance property of nonlinear normal modes (NNMs). Two
other solutions are compared to this reference solution, both obtained from the QM
approach developed in [3, 4], the first one using full MD, and the second one static
modal derivatives (SMD).

In each case, the dynamics is reduced to a single-degree of freedom equation
from which one can infer the hardening/softening behaviour. Let p be the master
mode of interest. Following [8], one can show that the reduced dynamics given by
the three methods writes:

R̈+ω2
pRp+C1R

2
p+C2

Ṙ2
p

ω2
p

+C3
R̈pRp

ω2
p

+C4R
3
p+C5

Ṙ2
pRp

ω2
p

+C6
R̈pR

2
p

ω2
p

= 0, (6)

where the expression of C1 to C6 is different depending on the method and are
recalled in Table 1.

A first-order perturbative development allows definition of the angular frequency
of free oscillations ωNL , connected to the natural frequency ωp, as ωNL = ωp(1+

Table 1 Table of coefficients of the reduced dynamics given by the three selected methods: MD
for modal derivatives, SMD for static modal derivatives and NF for normal form

C1 C2 C3 C4 C5 C6

MD g
p
pp 0 0 h

p
ppp −
∑n

s=1
s �=p

2(gspp)
2(ω2

s−2ω2
p)

(ω2
s−ω2

p)
2

∑n
s=1
s �=p

4(gspp)
2ω2

p

(ω2
s−ω2

p)
2

∑n
s=1
s �=p

4(gspp)
2ω2

p

(ω2
s−ω2

p)
2

SMD −2gppp −2gppp −4gppp h
p
ppp −∑n

s=1
2(gspp)

2

ω2
s

∑n
s=1

4(gspp)
2ω2

p

ω4
s

∑n
s=1

4(gspp)
2ω2

p

ω4
s

NF 0 0 0 h
p
ppp −
∑n

s=1
2(gspp)

2(ω2
s−2ω2

p)

ω2
s (ω

2
s−4ω2

p)
2

∑n
s=1

4(gspp)
2ω2

p

ω2
s (ω

2
s−4ω2

p)
2 0
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Tpa
2), where a is the amplitude of the response of the pth master coordinate and Tp

the coefficient governing the type of nonlinearity. Tp > 0 indicates the hardening
behaviour while Tp < 0 implies softening behaviour. The general expression for Tp
with all the Ci coefficients reads as:

Tp = − 1

24ω4
p

(10C2
1 + 10C1C2 + 4C2

2 − 7C2C3 + C2
3 − 11C1C3)

+ 1

8ω2
p

(3C4 + C5 − 3C6). (7)

As theoretically shown in [8], the MD and SMD method are awaited to give correct
results only if a slow/fast assumption between master and slave coordinates is at
hand. This slow/fast assumption has been quantified in [8]. Let ρ be the ratio
between the smallest eigenfrequency of the slave modes and that of the master one
labelled p. If ρ > 4, the slow/fast (S/F) assumption is fulfilled, while ρ < 3 means
that QM method will probably fail. In order to analyse the fulfilment of this S/F, let
us introduce ρp for spherical shells as:

ρp = min
n∈Es

(
ωn

ωp

)
, (8)

where Es is the set of all the slave modes, i.e. all the modes except the master
coordinate p.

3.2 Numerical Results for the Shallow Spherical Shell

The results are shown for 6 different master modes in Fig. 3. The first three cases
are purely asymmetric modes, (2,0), (3,0) and (4,0); then the first two axisymmetric
modes are considered, and finally a mixed mode (2,1) is selected. In the figures, the
reference solution is given by the normal form approach (NNM) in magenta. The
prediction given by QM MD is in red and QM SMD in yellow. The figures have
two y-axis allowing to also report the variations of ρp for the mode of interest, as
function of κ .

For mode (2,0), one can observe that MD and SMD methods fail to recover the
1:2 resonance leading to a change of behaviour of the type of nonlinearity. On the
other hand, when κ is larger than 20, then ρp increases and is close to 4, the S/F
assumption is retrieved and the three methods give the same results. Modes (3,0)
and (4,0) show another important feature, already noted in [8]: the MD method
has a divergence in the case of 1:1 resonance, which has no physical explanation
and is interpreted as a failure of the method. For purely asymmetric modes, since
they show a very slight dependence on curvature, this means that all the slave modes
have strongly increasing eigenfrequencies with κ . Consequently, for all these modes
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Fig. 3 Type of nonlinearity for 6 modes of the shell: modes (2,0), (3,0), (4,0), (0,1), (0,2), (2,1)

the S/F assumption is always finally retrieved, but sometimes at large values of
curvature.

Mode (0,1) has the particularity to be very well predicted by using a single
linear mode, as shown in [10]. Consequently the three methods behave correctly,
even though ρ is decreasing with κ so that S/F does not hold. As a matter of
fact, for all axisymmetric and mixed modes, the behaviour of their eigenfrequencies
shown in Fig. 2 underlines that S/F assumption will never be met. Consequently, the
prediction of the type of nonlinearity given by MD and SMD method completely
fails.
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4 FE Prediction on the Type of Nonlinearity

This section is devoted to compute the type of nonlinearity from FE models. For
that purpose, one has first to select a number of specific cases of curvature since
continuous increasing of κ is out of reach. Table 2 summarizes the selected case,
where a constant value of radius a = 0.15 m has been retained. Varying the radius
of curvature R and the thickness h gives rise to a number of κ values that can be
directly compared with the predictions obtained in the previous section.

In the FE model, the material properties of the shell are the following: ρ =
4400 kg/m3, E = 1.04e + 11 Pa, ν = 0.3. Two types of elements are used in the
analysis. In the first case, DKT shell/plate element is used, and a mesh composed
of 12,000 degrees of freedom (dofs) has been built, with three different thicknesses:
1, 3 and 5 mm. In the second case, quadratic 3D element is selected and a mesh
composed of approximately 50,000 dofs, with the thickness 3 mm, has been created.
A careful convergence study has underlined that the eigenfrequencies need to be
finely computed in order to obtain a reliable result for the type of nonlinearity.

4.1 Direct Normal Form Approach

In order to predict the hardening/softening behaviour for the FE shell models, the
direct normal form (DNF) introduced in [6] is used. The type of nonlinearity can be
computed from T̂p that reads in this case:

T̂p = 1

8ω̂2
p

[
3
(
Â
p
ppp + ĥ

p
ppp

)
+ ω̂2

pB̂
p
ppp

]
. (9)

In this equation, ĥpppp is the nonlinear cubic coefficient that can be directly computed
with a single STEP operation [1]. The other correcting terms Âp

ppp and B̂p
ppp can be

directly computed from the FE model thanks to the DNF approach, that allows to
go directly from the physical space (nodes of the FE mesh) to the invariant-based
span of the phase space, thanks to the nonlinear mapping given by the normal form
approach. The complete expressions for leading these computations are explicit
in [6], here we simply recall the values of the needed coefficients as given by:

Table 2 Dimensions of the selected shells for the FE analysis with the corresponding κ values

a(m) 0.15

R(m) 3.5 2.5 1.5 0.9 0.8 0.7 0.6 0.5 0.4 0.3

κ(h = 0.001 m) 41.3 81.0 225.0 625 791 1033.16 1406.25 2025 3164.06 5625

κ(h = 0.003 m) 4.59 9 25 69.44 87.89 114.80 156.25 225 351.56 625.00

κ(h = 0.005 m) 1.65 3.24 9 25 31.64 41.32 56.25 81 126.56 225.00
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Â
p
ppp = 2φTp G

(
φp, āpp

)
, B̂

p
ppp = 2φTp G

(
φp, b̄pp

)
, (10)

where the expression of āpp, b̄pp can be found in [6].
In order to draw out the comparison with the results obtained in the previous

sections (von Kármán model) where a nondimensionalization was carried out, the
relationship between the coefficient computed from FE model T̂p and dimensionless
Tp is explicit as: Tp = T̂ph

2v2, where v is the mode shape scaling factor, which
is chosen to obtain the same maximal amplitude for the analytical and FE mode
shapes, i.e. φ̂p = φpv, with φp normalized by

∫∫
ϕ⊥ φ

2
pdS = 1 in analytical von

Kármán model.

4.2 Results

Figure 4 compares the analytical result given by von Kármán model and normal
form onto the analytical coefficients, to those obtained from the direct computation
on the FE model, where again two different types of elements (DKT shell/plate
element and 3D elements) have been used. The same mode as in Fig. 3 is used.
A perfect matching is obtained between the two methods, underlining that the von
Kármán model, even though relying on numerous assumptions, is sufficient in order
to correctly predict the type of nonlinearity of shallow spherical shell. The results
also underline the efficiency of the DNF approach for computing accurate ROMs
for shell models.

5 Conclusions

The type of nonlinearity for free-edge shallow spherical shells has been studied
with a special emphasis on comparing different models and methods. Two methods
have been contrasted in their ability to correctly predict the type of nonlinearity:
the normal form approach and the QM method based on modal derivatives. In that
case, the von Kármán model has been used to illustrate how the two reduction
methods can give different predictions. The results underline that modal derivatives
approaches need a slow/fast assumption in order to yield a correct prediction. For
numerous modes of the shallow spherical shell, the S/F assumption is never met
so that both methods (using either MD or SMD) completely fail in predicting
correctly the hardening/softening behaviour, whereas the normal form always gives
the correct prediction. The second comparison is between the results given by von
Kármán model and a finite element procedure. For that purpose, the DNF approach
has been used, allowing to directly compute and predict the type of nonlinearity
from FE models. Both models have been found to give the same predictions,
underlining that the assumptions of the von Kármán model are well fulfilled so that
the predictions given are correct.
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Parametric Model Order Reduction for
Localized Nonlinear Feature Inclusion

Konstantinos Vlachas, Konstantinos Tatsis, Konstantinos Agathos,
Adam R. Brink, Dane Quinn, and Eleni Chatzi

1 Introduction

The ever increasing engineering and manufacturing demands require treatment of
intricate nonlinear dynamical systems. By breaking down the system and addressing
each component separately, the respective complexity can be reduced. This is
referred to as dynamic substructuring [1]. The historical background behind the
development of substructuring is discussed in detail in [2], where existing tech-
niques are summarized and classified based on the coupling domain’s characteristics
and nature.

When the substructural formulation of real-life systems is investigated within
a nonlinear context, additional treatment is required [3]. In tackling this, several
alternative methodologies have been proposed. In [4], for instance, a formulation
based on residual flexibility modes is employed to treat geometrically nonlinear
systems. Other notable contributions include polynomial [5] or similar expansion-
based approximations [6]. Representations augmented with modal derivatives have
also been utilized for geometrically nonlinear systems in [7].
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In this context, the dominant approach appears to be the adoption of a non-
linear normal modes strategy. The notion gained increasing attention after the
comprehensive formulation in [8], which describes a reduction framework able to
capture a system’s dynamics in a set of nonlinear modes. The approach’s accurate
performance has been demonstrated in several applications, including resonance
prediction [9] and frequency response approximation [10].

When aiming to build a digital twin, substructuring may simplify the process of
deriving accurate Reduced-Order Models (ROMs) by allowing individual reduction
of components. To achieve this, Gruber et al. [11] employed a dual Craig–
Bampton (CB) approach in a linear setting, whereas Lee [12] handles parametric
dependencies via CB component modes interpolation on a suitable subspace. Within
a nonlinear context, Joannin et al. [13] derived an accurate and efficient ROM via
coupling of the nonlinear normal modes strategy with modal synthesis proposing a
ROM scheme with more general applicability.

In the context of approximating nonlinear dynamical systems via a substruc-
tural ROM, this paper implements an alternative approach, aiming to remove
any dependency on the derivation of nonlinear normal modes and address the
parametric context of real-life systems. Further, the available literature in dynamic
substructuring is strongly dominated by applications on geometrically nonlinear
problems. A few additional contributions also exist in nonlinear damping [14] and
contact modeling [15]. This paper instead focuses on reduced-order modeling for
material nonlinearities in the form of plasticity.

Our approach derives a physics-based ROM through Proper Orthogonal Decom-
position (POD) applied to nonlinear response snapshots. POD forms a powerful
tool for approximating the reduced subspace spanning a component’s response,
thus assembling an accurate projection basis. It has already been applied in a
substructuring context in [16] but only implemented in linear case studies without
parametric dependencies. Similarly to our approach in some sense, Jin et al. [15]
coupled CMS with POD in a two-stage methodology to address a dual rotor-
bearing system with interface nonlinearities on the contact formulation. In this work,
we couple the (multi)parametric ROM framework described in [17, 18] with the
substructural formulation in [19, 20] to allow for separate reduction and treatment
of individual components in a single step. The approach in [20] decomposes the
response vector into a set of new coordinates, featuring an ideal and a deviatoric
sub-system. This representation allows the pROM to integrate generalized nonlinear
or damage features on interfaces or whole model entities and obtain response
information in two ways: in a global scale through the reduction modes of the ideal
system, namely the monolithic assembly without the presence of nonlinear features
and in a localized scale of the individual components. Thus, the derived pROM can
harvest information in a global structure level, contrary to CMS-based approaches
that rely solely on component modes. Additionally, performing POD reduction in
a component-wise manner produces deviatoric subspaces able to capture the local
nonlinear behavior, thus waiving the need for mode expansion performed in [15].
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2 Problem Statement

2.1 Substructuring for Nonlinear Feature Inclusion

We consider a dynamic structural system comprised of two linear components,
termed “exterior regions,” which are identified as C1 and C2 respectively, and an
internal component Cs , termed “isolated region.” While the components C1 and
C2 are assumed to behave linearly, the localized internal component Cs accounts
for nonlinearities represented by G ∈ R

ns . Additionally, the system depends on m
parameters, contained in the vector p = [p1, ..., pm]" ∈ Ω ⊂ R

m. Therefore, the
governing equations describing the dynamic response of the system are:

M(p)ü(t)+ C(p)u̇(t)+K(p)u(t)+G∗(p) = f(t,p), (1)

u = [u1 us u2]", G∗ = [0 G 0]", n = n1 + ns + n2, (2)

where u(t) ∈ R
n represents the displacement, M,C,K ∈ R

n×n denote the mass,
damping and stiffness matrices, and f(t,p) ∈ R

n the externally applied excitation.
The order of the high fidelity system is n.

The localized response of the interior region us is driven by the nonlinear nature
of the component. We assume herein that us = x + z, where x represents an
ideal system to be defined and z the deviatoric response, capturing the difference
between the ideal and the actual representation. This assumption implies that z is
dependent on the nonlinear terms G. We further decompose the overall response
ux = [u1, xα, xγ , xβ,u2]", where the subscripts α, β denote the boundary variables
between components C1, C2, and Cs , respectively, and γ represents the inner
variables of Cs . Thus, following Eq. (1):

⎡

⎢⎢⎢
⎢⎢
⎣

M11 M1α 0 0 0
M"

1α Mαα Mγα 0 0
0 M"

γα Mγ γ Mγβ 0
0 0 M"

γβ Mββ M2β

0 0 0 M"
2β M22

⎤

⎥⎥⎥
⎥⎥
⎦

︸ ︷︷ ︸
=M̃

⎡

⎢⎢⎢
⎢⎢
⎣

ü1

ẍα
ẍγ
ẍβ
ü2

⎤

⎥⎥⎥
⎥⎥
⎦
+ C̃u̇x + K̃ux = f+ R, (3)

where the matrices C̃ and K̃ are expressed similar to M̃, and R is defined as:

R = −[M1α z̈α +C1α żα +K1αzα 0 0 0 M"
2β z̈β +C"2β żβ +K"2βzβ ]" (4)

representing the deviatoric force terms on the exterior components that are driven
by the internal response. This implies that coordinate x describes the response under
the additional excitation terms arising from R. To complete the governing equations,
the deviatoric terms are determined by:
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⎡

⎢
⎣

Mαα Mγα 0
M"

γα Mγ γ Mγβ

0 M"
γβ Mββ

⎤

⎥
⎦

︸ ︷︷ ︸
=M̃s

⎡

⎣
z̈α
z̈γ
z̈β

⎤

⎦+ C̃s ż+ K̃sz =
⎡

⎣
−Gα(xα + zα, xγ + zγ )

−Gγ (x+ z)
−Gβ(xγ + zγ , xβ + zβ)

⎤

⎦ (5)

where C̃s and K̃s are expressed similar to M̃s . The negative sign on Eq. (5) appears
as the nonlinear terms G of Eq. (1) have been transferred to the r.h.s. This way, the
governing equations in Eq. (1) have been substituted by the mixed (ideal) system in
Eq. (3) together with a set of nonlinear equations given in Eq. (5) to account for the
deviatoric component z ∈ R

ns .

2.2 POD-Based ROM in a Substructural Formulation

To derive a reduced representation of the problem described by Eq. (1), the response
for a given operating parametric sample pj is assumed to span a low dimensional
subspace S ⊂ R

n. As such, the solution of Eq. (1) can be expressed in the form:

u(t) = V(pj)ur(t), (6)

where ur ∈ R
r , r << n defines the components of the solution in the subspace

S, represented by the projection basis V(pj). Thereafter, the system representation
is obtained by means of a Galerkin projection, leading to an equivalent, low-order
formulation of Eq. (1), where:

Mr(pj) = V(pj)
TM(pj)V(pj) Gr(pj) = V(pj)

TG
(
u(t),pj

)
. (7)

The damping and stiffness matrices are projected similar to Mr, whereas the force
vector similar to Gr. In this paper, we implement a POD-based approach that makes
use of the substructural formulation presented in Sect. 2.1. By applying POD to
collected time histories of the response, a solution manifold can be approximated
for every parametric sample of a family of training realizations.

Here, two separate low-order subspaces are defined. First, based on Eq. (3), a
projection basis is assembled from ux , responsible for approximating the solution
manifold for the ideal system. The nonlinear component is treated in an isolated
manner by deriving the respective subspace from the deviatoric component of
the response z, obtained through Eq. (5). The algorithmic procedure followed is
presented in detail in Table 1.

For a new configuration, a projection basis is estimated utilizing a k − NN

clustering scheme. As indicated by Table 1, for an evaluation realization pq, the
nearest training realizations are identified, and two local subspaces are assembled
based on the respective approximated manifolds Vx and Vz of the training set. The
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Table 1 Algorithmic process of the pROM

Notation:
Ns: Number of training samples, NT: Number of timesteps

n: Full-order dimension, r: Reduced-order dimension

Input:
Parameter vector of training realizations p = [

p1,p2, . . . ,pNs

]
,

Realization pq to be approximated

Output: Quantity of interest for realization pq estimated with pROM

Training phase
*for k=1,. . . ,Ns do

–Simulate high fidelity model for p = pk and obtain displacement time histories

Ux,k ∈ R
n×NT (Eq. (3)) and Zk ∈ R

ns×NT (Eq. (5))

–Perform POD to obtain local bases Vx,k ∈ R
n×rx and Vz,k ∈ R

ns×rz
Evaluation phase
*Identify neighboring training realizations on the parameter space

*Assemble neighboring local bases and perform POD to obtain Vx,q and Vz,q

*Formulate the reduced-order matrices based on Eq. (7) for both

Eqs. (3) and (5) employing Vx,q and Vz,q respectively

*Evaluate the pROM approximation for quantity of interest Qq

pROM is then evaluated, and the resulting approximation is projected back to the
original coordinates by Eq. (6).

3 Numerical Case Studies

In the following case studies, the parametric reduced-order model in a substructural
formulation is denoted by pROM. The full-order model is based on a finite element
analysis and is denoted as High Fidelity Model (HFM).

3.1 One-dimensional Rod

The finite discretization of a one-dimensional rod is considered first. We formulate
our system in a nondimensionalized manner, dependent on the nominal parameters
ρ, l, and EA representing the density, the overall length, and the axial rigidity of
the rod, respectively. The M finite elements are spaced equally along the length,
and variable ξ = position

l
∈ [0, 1] denotes the nondimensionalized spatial position.

We further assume an interior, nonlinear sub-region Cs , located in ξ ∈ (ξ1, ξ2) with
nonlinear interaction forces between all node pairs, formed as:
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g(w(t)) = r1 ∗ w(t)+ r2 ∗ w3(t)+ r3 ∗ ẇ(t)+ r4 ∗ ẇ3(t)+ h[w(t)], (8)

where w(t) denotes the relative displacement of the node pair and h[w(t)] the
forcing arising from hysteretic damping. This in turn is determined by:

ḣ(t) = (k1 − k2 sign(ẇ)h(t))ẇ. (9)

We would like to note here that any hysteretic damping representation could be
used in Eq. (9), including Bouc–Wen or Iwan models. A Bouc model is considered
here for simplicity. Assuming the forcing between nodes i, j is defined as gi,j , the
nonlinearities in the boundary nodes α, β of Cs are of the form Gα = gα+1,α,Gβ =
gβ,β−1, whereas Gγ = −gi,i−1 + gi+1,i with i = α + 1, ..., β − 1 corresponds to
the internal ones.

We assume ρ = 1, l = 1, EA = 1, r1 = r3 = 0.1M, r2 = r4 =
0.1M3, k1 = 0.5M , and (ξ1, ξ2) = (0.30, 0.40) for demonstration. We choose the
initial conditions to excite the first mode of the linearized structure. The dependency
pertains to parameter k2 of the hysteretic model and the amplitude A of the
excitation. This case study is similar to the one in [19]. To present our approach in a
step-wise manner, in this example, we only apply POD in the interior Cs component
(only assemble Vz based on Table 1). The linear exterior regions are reduced based
on modal decomposition, following the approach in [19]. For the evaluation phase,
a 3−NN scheme is employed.

To choose the reduction order of the projection basis Vz, an example parametric
domain is created with M = 120, k2 ∈ [4, 5] and A ∈ [0.90, 1.10]. The edge- and
center-point of the domain represent the training realizations, whereas the validation
set is chosen employing Latin hypercube sampling. Figure 1a depicts the average
norm error across all validation samples. A reduction order of r = 5 is chosen to
guarantee a robust and accurate performance. An example response approximation
is provided in Fig. 1b for reference.

We evaluate the performance of the substructural pROM in a wide parametric
domain as next. The k2 variable controlling the hysteretic forcing ranges in
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[2.0, 10.0], whereas the amplitude term A in [0.40, 2.00]. The pROM performance
is further compared to a global ROM, trained with all states of the training set,
and the modal ROM formulated in [19]. The latter only reduces the linear regions
employing modal decomposition. Thus, the accuracy is expected to be marginally
better compared to our formulation that performs an additional POD reduction on
the internal domain. The respective results are summarized in Fig. 2.

As depicted in Fig. 2a, the pROM delivers an accurate approximation across
the whole domain of operation. These results imply that the ROM can capture the
underlying dynamic phenomena in any region of the domain due to the local POD
bases. As a comparison, the global ROM fails to provide an approximation with
less than 20% error for any validation realization. The figure’s error pattern also
indicates that an adaptive sampling of the training set might optimize the respective
cost. Since large values of the A parameter lead to consistent higher errors, a refined
sampling rate in that region might lead to an even more accurate approximation. In
contrast, a coarser rate on the lower values might maintain accuracy while reducing
computational resources.

In Fig. 2b, the computational efficiency of the pROM is depicted, compared
against the savings from the modal ROM. The additional POD reduction of the
nonlinear component leads to considerably greater speed-up, especially as the
problem’s dimension increases. The trade-off remains acceptable, as the modal
ROM delivers a maximum 0.5% more accurate representation in any case.

3.2 3D Cantilever Beam

Next, we consider a three-dimensional cantilever beam featuring plasticity, follow-
ing a von Mises rule. The length l of the beam is 3000 mm; its height is 150 mm,
whereas its width 300 mm. The beam is discretized using tetrahedral elements and

assumes properties similar to steel: E = 210 GPa and ρ = 8.050 kg
m3 . The nonlinear

component spans between [600 mm, 1200 mm].
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A basis excitation is assumed. A low-pass filter is applied in a colored noise
signal, and the resulting signal is multiplied by an amplitude factor. The excitation
direction is assumed to be π/4. The colored noise includes components up to
200 Hz, spanning the case study’s first four eigenmodes. Thus, the model is
parameterized to the cut-off frequency φ, the amplitude term A, and the yield stress
σ . This dependency formulation draws from actual operating systems’ needs, where
uncertainty may pertain to both the system properties and the excitation.

In this case, the complete algorithmic procedure of Table 1 is followed. Perform-
ing a study similar to Fig. 1a, the order of Vx,Vz reducing the exterior and internal
components, is specified to be rx = 4 and rz = 20, respectively. The parametric
domain of operation spans [5.0, 100.0] for φ(Hz), [1.0, 2.0] for A, and [375, 425]
for σ(MPa). Sampling is performed in a similar manner as previously and a 3−NN
scheme is used for evaluation.

Figure 3 presents the quality of the pROM approximation on the nonlinear com-
ponent’s response. The respective time histories are almost identical, indicating an
accurate reduction framework. Figure 4 further visualizes the precise approximation
of the nonlinear terms of the case study, namely the stress state of the nonlinear
component. The results indicate that the implemented pROM can reproduce the
underlying response of the 3D beam accurately.

Table 2 summarizes the accuracy measures, indicating a robust pROM that
manages to maintain a precise approximation across the whole parametric domain.
Combined with the respective maximum threshold in estimating the nonlinear
component’s stress state, these findings suggest that the parametric dependencies
are successfully infused into the low-order representation.

Regarding computational speed-up, the speed-up in Table 2 is relatively small
compared to the computational toll reduction achieved for the 1D rod. This is
attributed to the substantially increased dimension of the numerical example, and
to the presence of nonlinearities in a constitutive level. These in turn create an
efficiency bottleneck regarding the full-order evaluation of the nonlinear terms and
require treatment with hyper-reduction techniques. Nonetheless, the focus of the
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Fig. 4 Stress approximation performance of the pROM (Error 10%). The effective von Misses
stress is visualized for the nonlinear component of the beam. (a) Stress visualization for the full
model. (b) Stress approximation of pROM

Table 2 Evaluation of the pROM performance. Statistical measures of the error across the domain
are presented along with the speed-up factor

Variable error norm Mean (St. Dev.) Maximum

Displacement—REu <1%(0.15%) <1%

Velocities—REv <1%(0.10%) 1.04%

Nonlinear component stresses—REσ 4.83%(3.75%) 14.75%

Speed-up factor of pROM evaluation tHFM

tROM
: 2.24

implemented substructural pROM formulation lies in providing a “proof of concept”
example, and this remark can serve as a guideline for future research.

4 Conclusions

A physics-based pROM is derived in this study, capable of treating nonlinear
components of complex systems separately. Contrary to CMS, the pROM couples
the global system dynamics to the deviatoric localized phenomena introduced by
the nonlinear features by manipulating the substructural formulation in [20]. The
implemented pROM yields sufficient precision in approximating the component’s
and system’s behavior across various parameters while substantially reducing the
computational time.

However, certain limitations ought to be acknowledged. Firstly, efficiency needs
to be further validated in larger-scale examples, where hyper-reduction techniques
might be necessary. Additionally, future work should potentially address true-scale
systems, comprising multiple components with nonlinearities of different natures,
to generalize the applicability of the pROM.
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Nonlinear Vibration of Functionally
Graded Shallow Shells Resting on Elastic
Foundations

Lidiya Kurpa, Tetyana Shmatko, and Jan Awrejcewicz

1 Introduction

Many elements of the modern constructions modelled by shallow shells resting
on elastic foundations are fabricated of functionally graded materials (FGM). It
is connected with essential advantages of the class composite materials such as
continuous and smooth variation in properties in one or several directions. In
addition, they are able to withstand high-temperature environments. The topic of
dynamic analysis of FG plates and shells resting on elastic foundations draws
continuously the attention of a lot of researchers [1–5]. There were developed
different deformation theories and methods to solve technical problems that occur
when behaviour of these plates and shells is studying [6–9]. Recent literature
reviews concerning investigations of behaviour of FGM plates and shells resting
on the elastic foundation are published in many works [2, 4, 10–13].

Despite a large number of the published papers and monographs devoted to this
problem [2–7, 14, 15], there are many unsolved or insufficiently studied issues in the
field of geometrically nonlinear vibrations. Among the problems, there is a problem
of geometrically nonlinear vibrations of FG shallow shells. This is especially true for
FG shells with a complex shape. In the present paper, we study the named problem.
A distinctive feature of the work is the use of the R-functions method (RFM) [16].
Recently in the works [17–20], this method has been developed for the solution
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of the problems on the vibrations of FG laminated plates and shallow shells in the
framework of the FSDT. In the work, the method is extended first time to shells
resting on an elastic foundation using the higher order shell theory.

2 Mathematical Formulation and Solution Method

Shallow shells and plates made of functionally graded materials (mixture of metal
and ceramics) resting on elastic foundations (Fig. 1) are considered. A planform of
the shell can be complex and fixed by different ways.

It is assumed that the temperature is varied only in the thickness direction.
Young’s modulus of ceramic and metal Ec, Em depend on temperature according
to law [13, 14]:

Pj (T ) = P0

(
P−1T

−1 + 1+ P1T + P2T
2 + P3T

3
)
, (1)

where P0, P−1, P1, P2, P3 are coefficients determined for each specific material.
A table of values of these coefficients for some materials is presented in [2, 4, 14].

The effective material properties of the FGMs are calculated by Voigt’s model
[13], provided that the Poisson’s ratio νis a constant [1, 9]. The Young modulus Ef

and density ρ of FG structure are defined as:

Ef (z, T ) = (Ec(T )− Em(T )) Vc + Em(T ), (2)

ρ(z) = (ρc − ρm) Vc + ρm, Vc =
(

2z+ h

2h

)p
. (3)

In formulas (1, 2) z is the distance between the current point and the shell
midsurface, the index p (0 ≤ p < ∞) denotes the volume fraction exponent of
ceramics Vc which is connected with volume fraction of metal Vm by relation
Vc + Vm = 1. So effective module Ef (2) depends on constituent component of

Fig. 1 FGM shallow shell on
elastic foundation
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temperature T and applicate z. We consider shells with the same temperatures on
the top and bottom of the object. By these assumptions, motion equations of plates
and shells based on higher order shear deformation shell theory (HSDT) worked out
by Reddy [21] and Reddy and Liu [22] can be written in the following form:

N11,x +N12,y − k1Q1 = I1u,tt + I2ψx,tt − c1I4w,xtt ,

N12,x +N22,y − k2Q2 = I1v,tt + I2ψy,tt − c1I4w,ytt ,

Q1,x +Q2,y +
(
N11w,x +N12w,y

)
,x +

(
N12w,x +N22w,y

)
,y

+ c1
(
P11,xx + 2P12,xy + P22,yy

)− c2
(
R1,x + R2,y

)−KWw +KP∇2w =
= I1w,tt − c2

1I7
(
w,xx + w,yy

)
,tt + c1I4

(
u,x + v,y

)
,tt + c1I5

(
ψx,x + ψy,y

)
,tt

M11,x+M12,y−Q1+c2R1−c1
(
P11,x + P12,y

)=I2u,tt+I3ψx,tt−c1I5w,xtt ,

M12,x+M22,y−Q2+c2R2−c1
(
P12,x+P22,y

)=I2v,tt+I3ψy,tt−c1I5w,ytt ,

where KW and KP are the Winkler and Pasternak parameters for elastic foundation,
N = {N11, N22, N12} are the resultant forces in plane, M = {M11, M22, M12} are the
bending and twisting moments, P = {P11, P22, P12} and R = {R1, R2} are the higher
order stress resultants, Q = {Q1, Q2} are the resultant forces out of plane. These
values are defined as

⎡

⎣
N

M

P

⎤

⎦ =
⎡

⎣
A B E

B D F

E F H

⎤

⎦

⎡

⎣
ε0

k0

k(2)

⎤

⎦ ,

[
Q

R

]
=
[
A D

D F

] [
ε0

k(2)

]

where Aij, Bij, etc. are the shell stiffness, defined by

(
Aij , BijDij , EijFij ,Hij

) =
+h/2∫

−h/2

Qij (z, T )
(

1, z, z2, z3, z4, z6
)
dz, i, j = 1, 2, 3

(
Aij ,Dij , Fij

) =
+h/2∫

−h/2

Qij (z, T )
(

1, z2, z4
)
dz, i, j = 4, 5

{
ε0
}
=
{
ε0

11, ε
0
22, ε

0
12

}
=
{
u,x−k1w+1

2
w,2x; v,y−k2w+1

2
w,2y; u,y+v,x+w,xw,y

}
,

ε0
13=ψy+w,y, ε0

23=ψx+wx,
{
k0
}
=
{
k0

11, k
0
22, k

0
12

}
= {ψx,x;ψy,y;ψx,y+ψy,x

}
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{
k(2)

}
=
{
k
(2)
11 , k

(2)
22 , k

(2)
12

}
=− c1

{
(ψx,x+w,xx) ;

(
ψy,y+w,yy

) ; (ψx,y+ψy,x+2w,xy
)}
,

k
(2)
13 = −c2

(
ψy + w,y

)
, k

(2)
23 = −c2 (ψx + w,x) , c1 = 4

3h2
; c2 = 3c1

where k1 = 1/Rx, k2 = 1/Ry are the principal curvatures of the shell along the
coordinates x and y, respectively.

(I1, I2, I3, I4, I5, I7) =
+h/2∫

−h/2

ρ(z)
(

1, z, z2, z3, z4, z6
)
dz,

Q11 = Q22 = Ef (z, T )

1− ν2
f

, Q12 = νfQ11, Q13=Q23 = 0;

Q33 = Q44 = Q55 = Ef (z, T )

2
(
1+ νf

) .

If c1 = 0, c2 = 0 then we have motion equations corresponding to the first-
order shear deformation theory (FSDT). Influence of the foundation is taken into
account through relation [8] p0 = KWw − KP∇2w.

3 Solution Method

Proposed method consists of three steps. Linear vibration problem is solved at the
first step. To solve this problem the R-functions theory combined with variational
Ritz’s method (RFM) is used. The main advantage of the R-functions theory is a
possibility to build admissible functions in analytical form practically for an arbi-
trary domain. Application of Ritz’s method allows to use the admissible functions
which satisfy the essential boundary conditions. Eigen values and eigen functions
w
(e)
1 (x, y), u(e)1 (x, y), v(e)1 (x, y), ψ(e)

x1 (x, y), ψ(e)
y1 (x, y) found and presented in

analytical form are applied in the second step. Auxiliary inhomogeneous task of
elasticity problem type is solved by RFM also. Solution of this auxiliary problem
allows to reduce the initial system of the differential equations to the following
second-order nonlinear differential equation:

ÿ(t)+ ω2
Ly1(t)+ y2

1(t)β + y3
1(t)γ = 0. (4)

Solution of Eq. (4) is carried out in the third step. Process of the proposed
algorithm is the same to approach described in detail in works [17–19]. It should
be mentioned that values for coefficients of Eq. (4) have been obtained in analytical
form. They are expressed through the double integrals along the given domain [17].
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Solution of Eq. (4) was found numerically using the classical 4-th order Runge-
Kutta method.

4 Numerical Results

4.1 Test Problem. Shells with Rectangular Shape of Plan

Test 1 First, we validate the proposed approach on the problem about linear
vibration of FG simply supported cylindrical panel with square planform made of
Al/Al2O3. The material properties are:

Em=70GPa, ρm=2702 kg/m3, Ec=380GPa, ρc=3800 kg/m3, νm = νc=0.3.

Comparison of the dimensionless frequencies Λ = ωL h
√
ρc/Ec calculated by

the RFM with results obtained with the help of another methods [4, 23, 24] for
different values of the gradient index p, curvatures a/Rx and thickness a/h is shown
in Table 1.

Here we can see a good agreement of results obtained by the proposed approach
with compared ones.

Test 2 As a second test example, we consider nonlinear vibration of FG simply
supported cylindrical panel resting on elastic foundations with square planform.
Geometrical parameters of the shallow shell are: a/b = 1; 2b/R = 0.8; 2b/h = 20;
h= 1 mm. FG materials (ZrO2/Ti− 6Al− 4V) is fabricated of metal Ti− 6Al− 4V
and ceramics Zirconia (ZrO2). Poisson’s ratio is assumed to be constant and put
as 0.3. Young’s modulus and density at the room temperature (T0 = 300 K) are
respectively:

Em = 105.6981GPA, ρm = 4427 Kg/m3, Ec = 168.0629 GPA,

ρc = 3000Kg/m3.

Table 1 Comparison of the dimensionless frequencies for FGM cylindrical panel

a/h a/Rx Method p = 0 p = 0.5 p = 1 p = 4 p = 10

5 0.5 RFM(HSDT) 0.2141 0.1804 0.1607 0.1404 0.1329
[4] 0.2169 0.1799 0.1589 0.1301 0.1204
[23] 0.2153 0.1855 0.1678 0.1413 0.1328
[24] 0.2113 0.1814 0.1639 0.1367 0.1271

5 1 RFM(HSDT) 0.2271 0.1945 0.1758 0.1476 0.1385
[4] 0.2329 0.1944 0.1732 0.1402 0.1286
[23] 0.2239 0.1945 0.1769 0.1483 0.1380
[24] 0.2164 0.1879 0.1676 0.1394 0.1286
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Table 2 Comparison of the present results for dimensionless frequency parameter of the
cylindrical simply supported shells with corresponding results in [4]

(k1, kg) Tt/Tb Method p = 0 p = 0.5 p = 2 p = 5

kw = 100 kg = 0 Tt = 400Tb = 400 RFM (FSDT) 18.24 16.31 14.77 14.10
RFM (HSDT) 18.45 16.50 14.93 14.28
[4] 17.19 15.83 14.72 14.23

kw = 100 kg = 10 Tt = 400Tb = 400 RFM (FSDT) 24.67 22.42 20.66 19.89
RFM (HSDT) 24.82 22.57 20.78 20.02
[4] 24.20 22.38 20.90 20.26

Table 3 Comparison of nonlinear to linear ratio ωNL/ωL with corresponding results in [4]

W max /h
(kw, kg) p Method 1 0.2 0.4 0.6 0.8 1

(100,0) 2 [4] 14.72 1.0040 1.0160 1.0356 1.0625 1.0961
RFM 14.89 1.0023 1.0099 1.0240 1.0459 1.0765

(100,10) 0 [4] 24.20 1.0025 1.0101 1.0227 1.0399 1.0618
RFM 24.47 1.0018 1.0073 1.0170 1.0313 1.0505

0.5 [4] 22.38 1.0023 1.0091 1.0203 1.0358 1.0554
RFM 22.42 1.0016 1.0068 1.0157 1.0289 1.0464

2 [4] 20.905 1.0020 1.0080 1.0178 1.0315 1.0488
RFM 20.747 1.0015 1.0062 1.0144 1.0262 1.0419

5 [4] 20.26 1.0019 1.0074 1.0166 1.0294 1.0455
RFM 20.03 1.0014 1.0059 1.0136 1.0248 1.0395

Earlier this problem was solved in article [4] by H-S Shen and H. Wang. Results
obtained in the work for dimensionless frequency parameter Λ = Ω b2√ρ0/E0/h

by both the theories (HSDT and FSDT) are compared with the results given in work
[4] in Table 2. Note that E0 and ρ0 become Em and ρm at the room temperature
T0 = 300 K. Values k1w, k2G are defined as:

kw = K1w(2b)
4/
(
Emh

3
)
, kg = K2G(2b)

2/
(
Emh

3
)
.

Comparison of the ratio nonlinear frequency to linear ωNL/ωL for the cylindrical
panel at the temperature Tb = Tt = 400 K is shown in Table 3.

Test 2 demonstrates the results from the present method are in good agreement
with the existing results.
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4.2 Shells with a Complex Planform Resting on Elastic
Foundation

New results for shallow shells with a complex planform were obtained. Let us
consider the shallow shell resting on an elasticity foundation with planform shown
in Fig. 2.

Suppose that shell is clamped completely including the cut-out. We will analyse
two kinds of FGM: Si3N4/SUS304 and ZrO2/Ti − 6Al − 4V. Geometrical dimen-
sions are as follows:

Tb = Tt = 300 K; k1 = 0.2; k2 = 0; 0.2; h/2a = 0.1; a1/a = 0.2; a1 = b1;
r/2a = 0.25.

Solution structure [16–20] for shells with complete clamped boundary can be
taken as:

w = ωΦ1, u = ωΦ2, v = ωΦ3, ψx = ωΦ4, ψy = ωΦ5 (5)

where Φi, i = 1, 5 are indefinite components of structure [16] presented as an
expansion in a series of some complete system (power polynomials, trigonometric
polynomials, splines, etc.). Function ω(x, y) is constructed by the R-functions theory
and vanished on whole boundary. In the given case this function has the following
form:

ω (x, y) = ((f1∧0f2) ∧ ((f3∧0f4) ∧ (f5∧0f6)))∧0 (f7∨0f8) ,

where symbols ∧0, ∨0 denote the R-operations [16]. Functions fi, i = 1, 8 are
defined as:

Fig. 2 Complex planform of
FGM shallow shell
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Table 4 Natural frequency parameter of the FGM (Si3N4/SUS304) clamped cylindrical shells
(top) and spherical shells (bottom) resting on elastic foundation

p (kw, kg) (0,0) (kw, kg) (100,0) (kw, kg) (100,10) (kw, kg) (100,100)

Cylinder (k1 = 0.2; k2 = 0)
0 75.301 77.512 91.098 166.912
0.5 52.148 53.901 64.548 117.595
1 45.610 47.245 57.099 102.590
2 40.680 42.228 51.475 90.837
5 36.676 38.162 46.951 81.226
10 34.930 36.400 45.052 77.371

Sphere (k1 = 0.2; k2 = 0.2)
0 75.497 77.702 91.261 167.025
0.5 52.282 54.031 64.656 117.569
1 45.726 47.356 57.189 102.564
2 40.781 42.325 51.553 90.816
5 36.766 38.249 47.021 81.211
10 35.018 36.484 45.119 77.359

f1 =
(
a2 − x2

)
/2a ≥ 0, f2 =

(
b2 − y2

)
/2b ≥ 0,

f3,4 =
(
(x ∓ a)2 + (y − b)2 − r2

)
/2r ≥ 0, f5,6 =

(
(x ± a)2 + (y + b)2 − r2

)
/2r ≥ 0,

f7 =
(
x2 − a2

1

)
/2a1 ≥ 0, f8 =

(
y2 − b2

1

)
/2b1 ≥ 0

Indefinite components Φi, i = 1, 5 of structures (5) were expanded in power
series with account of problem symmetry [17–20]. To approximate indefinite
component 21 it was taken twenty-eight terms of the polynomials series and other
indefinite components were approximated by fifteen terms. Variation of the natural
frequency parameter for FGM (Si3N4/SUS304) cylindrical and spherical shells
resting on elastic foundation with respect to volume fraction p and parameters of
the foundation kw, kg is presented in Table 4.

As follows from Table 4 influence of curvatures is not essential for complete
clamped shallow shells. More effect occurs with an increase of gradient index. The
natural frequencies decrease while the gradient index increases as for cylindrical so
for spherical shells. The results confirm that fundamental frequencies become higher
when shallow shells are resting on elastic foundation. Effect of Winkler foundation
stiffness on natural frequency is essentially lower than the influence of the shearing
layer stiffness of the foundation.

In Fig. 3 behaviour of the backbone curves for clamped cylindrical shells made
of (FGM Si3N4/SUS304) for fixed gradient index p = 0.5 and p = 2 and different
values of the characteristics of the elastic foundations is shown.

As follows from Fig. 3 influence of characteristics of elastic foundation is more
essential than value of the gradient index.
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Fig. 3 Nonlinear to linear frequency ratio ωNL/ωL for (Si3N4/SUS304) clamped cylindrical shell
resting on elastic foundation (Tb = Tt = 300 K, k1 = 0.5; k2 = 0; h/2a= 0.1; a/b= 1; a1 = b1;
a1/a = 0.2; p = 0.5; p = 2)

5 Conclusions

In this work, the R-functions method is used for the first time to study the free linear
and geometrically nonlinear vibrations of functionally graded shallow shells with
complex shape in plan resting on two-parameter elastic foundation. The material
properties of FGMs are assumed to be temperature independent. Voight’s model is
applied to calculate the effective material properties of FGMs. Mathematical model
of the problem is carried out in the framework of two theories: FSDT and HSDT.
Considered test problems confirm the validation of the proposed approach and
developed software. New results for shells with a complex planform are presented
and can be used by engineers in the design of the thin-walled elements of the modern
constructions.
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High-Order Approximation of Global
Connections in Planar Systems with the
Nonlinear Time Transformation Method

Bo-Wei Qin, Kwok-Wai Chung, Antonio Algaba,
and Alejandro J. Rodríguez-Luis

1 Introduction

Global connections (homoclinic and heteroclinic orbits) are important organizing
centers in the dynamics of nonlinear systems. As it is very difficult to find exact
connecting orbits (see, for instance, [1]), the Melnikov method is the most employed
technique to guarantee their existence in planar systems [2, 3]. Several perturbation
methods to approximate these bifurcations are frequently used [4–7]. Also for
this task, the nonlinear time transformation (NTT) method, using trigonometric
functions, was introduced in [8] and was successfully used in [9, 10].

The presence of global connections is guaranteed when a Takens–Bogdanov
(double-zero eigenvalue with geometric multiplicity one) or a Hopf-zero bifurcation
of equilibria appears [11, 12]. A very rich bifurcation scenario is expected in both
cases (see, for instance, [13–20] for the Takens–Bogdanov and [21–26] for the Hopf-
zero bifurcations, and the references therein).
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The main purpose of this paper is the study, using the NTT method, of a
homoclinic connection in a family of Rayleigh–Duffing oscillators (see Sect. 2.1).
We also review its very recent application for obtaining a perturbation solution of
a global connection up to any wanted order (both in the parameter space and in
the phase plane). We illustrate that the NTT method is an efficient alternative to
Melnikov method in the computation of the high-order coefficients of the Poincaré
application near the global connection (because this calculation is impracticable
due to the complicate integrals that appear in Melnikov method). Thus, important
advancements have been made in approximating global bifurcations in the normal
forms of the Takens–Bogdanov and Hopf-zero bifurcations [27–31]. Moreover, the
NTT method is useful in the study of the canard explosion that occurs in singularly
perturbed systems [32–34].

The rest of this work is organized as follows. We explain the application of the
NTT method to perturbed Hamiltonian systems in Sect. 2. The case of perturbed
non-Hamiltonian integrable systems and the study of the canard explosion are
summarized in Sect. 3. Finally, some conclusions are provided.

2 Perturbing Hamiltonian Systems

In this section, we introduce the NTT method for obtaining the approximation of
global connections, up to any desired order, in planar vector fields written as a
perturbation of a Hamiltonian system (see details in [27–30]). Thus, we consider

ẋ = y, ẏ = g(x)+ ε [f (x, y)+ μh(x, y)] , (1)

where g(x), f (x, y), and h(x, y) are smooth functions, |ε| � 1 is a perturbation
parameter, and μ is the control parameter. We assume that the unperturbed system
possesses a global connection (a homoclinic orbit to a saddle equilibrium or a
heteroclinic orbit connecting two saddles). Note that the well-known family of
Liénard equations can be written in the form (1) with adequate scalings.

We introduce the nonlinear time transformation ϕ(t, ε) of the form

dϕ

dt
= Φ(ϕ, ε), Φ(ϕ + 2π, ε) = Φ(ϕ, ε). (2)

The function Φ(ϕ, ε) provides the relationship between the old time variable t

and the new one ϕ. It will be considered as one unknown when the problem is
solved. Throughout the scheme of the NTT method, its power series solution will
be computed in an explicit manner. Moreover, we impose that Φ be periodic in ϕ in
such a way that the global connection, which in the original time t evolves over an
infinite interval, exists in a periodic interval. If ϕ(t, ε) → ϕ± as t → ±∞ for the
global connection, then we have to impose that Φ(ϕ±, ε) = 0 for all ε, because this
orbit has unbounded period. Then, system (1) is transformed into
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x′Φ = y, y′Φ = g(x)+ ε[f (x, y)+ μh(x, y)], (3)

where the primes mean differentiation with respect to ϕ.
While system (1) has two unknowns, x(t) and y(t), the new system (3) has

three, x(ϕ, ε), y(ϕ, ε), and Φ(ϕ, ε). Nevertheless, we can choose a smooth function
x(ϕ, ε) that satisfies the conditions of the connecting orbit. In this manner, by
means of a perturbation scheme, we can compute y(ϕ, ε) and Φ(ϕ, ε) from (3)
and, at the same time, we can find an approximation of the value of μ for which
the global bifurcation occurs. Three comments are relevant at this time. First, since
it is a change of independent variable, choosing an appropriate function x(ϕ, ε)

is essential for the NTT method to allow us to obtain the approximations we are
looking for. Unfortunately, we do not know of any general criteria to select x(ϕ, ε)
(its usefulness is seen a posteriori, depending on the result obtained with it; see
below several examples). Second, the bifurcation value of μ found with the NTT
method is independent of the function x(ϕ, ε) chosen. This is because the existence
and uniqueness of that value are guaranteed by Melnikov method and, at first-order,
the NTT method coincides with Melnikov’s [8]. Third, trigonometric functions can
be used for x(ϕ, ε) because of the 2π -periodicity.

Once the function x(ϕ, ε) is adequately chosen, we apply the perturbation
method to approximate the global connection. We assume that the analytical
solution can be expressed in terms of power series

y(ϕ, ε) =
∞∑

i=0

εiyi(ϕ), Φ(ϕ, ε) =
∞∑

i=0

εiΦi(ϕ), μ(ε) =
∞∑

i=0

εiμi, (4)

where μi ∈ R and yi(ϕ) and Φi(ϕ) are 2π -periodic functions in ϕ. Now we
substitute the function x(ϕ, ε) and (4) into (3), we expand the functions g(x),
f (x, y) and h(x, y) in the Taylor series about ε = 0, and we match the coefficients
of like powers of ε. Thus, we first find the zero-order solution and, later, the ith-
order solution with an iterative procedure. The smoothness of the functions found
along this scheme, yi(ϕ) and Φi(ϕ), can be proved in each case [27–30].

In the rest of this section, we show the results obtained with the NTT method,
first in a Rayleigh–Duffing oscillator; later we review them in several important
unfoldings of the Takens–Bogdanov bifurcation.

2.1 Rayleigh–Duffing Oscillator

We consider the family of Rayleigh–Duffing mechanical oscillators

ẍ + α1ẋ + α2x + x3 + ẋ3 = 0.
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This model appears, for instance, in the field of planar flow-induced oscillations of
slender rod-like continuous structures, after a discretization by one mode Galerkin
approximation [35–37]. It is also present in the study of oscillations of pipes in
heat exchangers [38]. This equation can be written in the form of the Z2-symmetric
system (invariant under the change (x, y)→ (−x,−y))

ẋ = y, ẏ = −α2x − α1y − x3 − y3, (5)

whose equilibria are placed at (0, 0) and (±√−α2, 0). The origin exhibits a
degenerate Takens–Bogdanov bifurcation. The principal feature of its bifurcation set
appears because of the different stability between the supercritical Hopf bifurcations
of the origin and the nontrivial equilibria and the repulsive homoclinic connection
[39, 40]. This fact leads to the existence of a pair of saddle-node bifurcation curves
of periodic orbits with hysteresis effect.

Our goal is to find the analytical approximation of the homoclinic bifurcation
curve up to any desired order in the (α1, α2)-parameter plane, improving the existing
first-order results [39]. Using the blow-up transformation

x = ε
1
3X, y = ε

2
3 Y, τ = ε

1
3 t, α1 = −ε 4

3μ, α2 = −ε 2
3 , (6)

system (5) can be written as the perturbation of a Hamiltonian system

ẋ = y, ẏ = x − x3 + ε(μ− y2)y. (7)

For appropriateness in the notation, we have substituted (X(τ), y(τ ), τ ) with
(x(t), y(t), t) in (7). Then, using the nonlinear time transformation (2), we obtain

x′Φ = y, y′Φ = x − x3 + ε(μ− y2)y. (8)

Then, the following expression can be used to find the pair of Z2-symmetric
homoclinic orbits to the origin:

x(ϕ, ε) = a(ε) sinϕ =
∞∑

i=0

εixi(ϕ) = sinϕ
∞∑

i=0

εiai(ε). (9)

It describes the right homoclinic orbit (i.e. the orbit in the half plane x > 0) in a
clockwise direction for ϕ ∈ [0, π ] and the left one in a counter-clockwise direction
for ϕ ∈ [π, 2π ]. Given this, it is enough to consider in our study ϕ ∈ [0, π ].

Substituting (9) and (4) into (8) and comparing the coefficient at each order of
approximation, we obtain the following solution for the homoclinic orbit (for brevity
we only show the first few terms; note also that we do not write the expression of
y(ϕ, ε) since it can be found from y = x′Φ)



High-Order Approximation of Global Connections 399

x(ϕ, ε) = √2 sinϕ

(
1− 19

2450
ε2 + 1,616,767

1,260,525,000
ε4
)
+O(ε6),

Φ(ϕ, ε) = sinϕ +
(

1

70
sin(2ϕ)+ 1

28
sin(4ϕ)

)
ε +

(
− 361

19,600
sinϕ

− 29

39,200
sin(3ϕ)+ 33

7840
sin(5ϕ)+ 1

490
sin(7ϕ)

)
ε2 +O(ε3)

μ(ε) = 12

35
− 266,744

16,506,875
ε2 + 79,870,390,898,976

32,689,445,616,953,125
ε4 +O(ε6). (10)

Thus, in the (α1, α2)-parameter plane the homoclinic curve is approximated by

α1 = − 12

35
α2

2 +
266,744

16,506,875
α5

2 −
79,870,390,898,976

32,689,445,616,953,125
α8

2 +O(α11
2 ).

(11)

In Fig. 1 we compare the analytical results with the numerical ones obtained with
AUTO and MatCont. In the case of the curve of homoclinic orbits in the parameter
plane, the agreement is excellent in the interval α1 ∈ [−0.7, 0].

In the following we will try to improve the accuracy by rewriting α1,Φ(ϕ, ε), and
a(ε) in continued fraction. In this way, we assume (as we observe that Φi contains
odd (even, resp.) sine terms when i is even (odd, resp.), this suggests that in the Φ
expression we may group the odd-order terms to form a continued fraction and the
even-order terms to form another)
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Fig. 1 For system (5), comparison between numerical continuation (solid) and analytical
approximations (1st-order: star; 10th-order: empty circle) given in (10)–(11) for: (left) the curve of
homoclinic connections; (right) homoclinic orbit for α2 = −1



400 B.-W. Qin et al.

-5 -4 -3 -2 -1 0
α

1

-6

-5

-4

-3

-2

-1

0
α

2

0 0.5 1 1.5 2

x

-1.5

-1

-0.5

0

0.5

1

1.5

y

Fig. 2 For system (5), comparison between numerical continuation (solid) and analytical approx-
imations (1st-order: star; 10th-order: empty circle) given in (12)–(14) for: (left) the curve of
homoclinic connections; (right) homoclinic orbit for α2 = −2

α1 = − α2
2

b1

1+ b2α
3
2

1+ b3α
3
2

1+ · · ·

, a = a0

1+ a2ε
2

1+ a4ε
2

1+ · · ·

(12)

Φ = Ψ0

1+ Ψ2ε
2

1+ Ψ4ε
2

1+ · · ·

+ Ψ1

1+ Ψ3ε
2

1+ Ψ5ε
2

1+ · · ·

, (13)

and obtain up to any wanted order (for brevity we only show the first few
expressions)

b1 = 12

35
, b2 = − 66,686

1,414,875
, b3 = − 20,614,872,646,814

198,092,767,747,875
, a0 =

√
2,

a2 = 19

2450
, a4 = 81,103

514,500
, Ψ0 = sin(ϕ), Ψ1 = 1

70
sin(2ϕ)+ 1

28
sin(4ϕ).

(14)

In Fig. 2 we can see the improvement achieved with these new approximations: A
remarkable accordance is obtained in the interval α1 ∈ [−3, 0].

2.2 Quadratic Takens–Bogdanov Bifurcation

In the study with the NTT method of the homoclinic bifurcation curve in the
unfolding of the generic Takens–Bogdanov bifurcation [11, 12]
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ẋ = y, ẏ = η1 + η2y + x2 + xy, (15)

we assume x(ϕ, ε) = p(ε) cos(2ϕ)+ q(ε) and then, we are able to approximate the
homoclinic curve in the parameter plane up to any desired order (see [27] for all the
details). The first few terms are

η1 =− 49

25
η2

2 +
144

625
η3

2 −
345,168

8,421,875
η4

2 +
7,223,269,392

1,475,301,953,125
η5

2 +O(η6
2).

(16)

2.3 Cubic Takens–Bogdanov Bifurcation

In the two-parameter unfolding of the Takens–Bogdanov normal form with cubic
terms [11, 12]

ẋ = y, ẏ = η1x + η2y + σx3 − x2y, (17)

a pair of symmetric heteroclinic orbits exists when σ = +1 and of homoclinic
connections when σ = −1. To apply the NTT method (see [28] for all the details),
in the heteroclinic case we choose x(ϕ, ε) = p(ε) cosϕ, p(ε) < 0, and obtain the
following approximation for the bifurcation curve:

η2 = − 1

5
η1 + 16

13,125
η2

1 +
5536

103,359,375
η3

1 +
26,032,288

8,953,505,859,375
η4

1 +O(η5
1).

(18)

In the homoclinic case, it is adequate to use the expression of x(ϕ, ε) given in (9).
The approximation obtained for the bifurcation curve is

η2 = 4

5
η1 + 184

13,125
η2

1 −
21,664

103,359,375
η3

1 −
15,742,432

994,833,984,375
η4

1 +O(η5
1).

(19)

2.4 Cuspidal Loop

In the unfolding

ẋ = y, ẏ = η1 + η2y + η3x
2 + η4xy − x3 + x2y, (20)

a cuspidal loop (a homoclinic orbit to a non-hyperbolic saddle undergoing a Takens–
Bogdanov bifurcation [41]) to the origin occurs when η1 = η2 = 0. If we assume
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that x(ϕ, ε) = (cos(2ϕ)− 1)p(ε), the application of the NTT method (see [29] for
all the details) provides a perturbation solution of the cuspidal loop up to any wanted
order (both in the parameter space and in the phase plane). The curve of cuspidal
loops in the four-parameter space, in a neighborhood of the origin, is approximated
by η1 = η2 = 0 together with (for brevity we only show the first few terms)

η4 = − 14

15
η3 − 152

84,375
η3

3 +
4,398,092

209,302,734,375
η5

3 +O
(
η7

3

)
. (21)

2.5 Takens–Bogdanov in Reversible Systems

The application of the NTT method to the study of global bifurcations in a
codimension-three Takens–Bogdanov singularity in reversible systems is carried out
in [30]. Specifically the system considered is [3]

ẋ = y, ẏ = ε1x + ε2x
3 + ε3xy + x3y + σx5, (22)

with σ = ±1. This system has up to five equilibria and exhibits a very rich
bifurcation scenario for both values of σ . Several homoclinic and heteroclinic
codimension-one and -two bifurcations are satisfactorily studied.

3 Other Applications of the NTT Method

3.1 Perturbing Non-Hamiltonian Integrable Systems

Recently, the NTT method has also been successfully applied to perturbations of
non-Hamiltonian integrable systems of the form (see [31] for all the details)

ẋ = f (x, y)+ ε [h1(x, y)+ μh2(x, y)], ẏ = g(x, y)+ ε [h3(x, y)+ μh4(x, y)],
(23)

where functions g(x, y), f (x, y), and hi(x, y), i = 1, 2, 3, 4, are smooth, |ε|�
1 and μ are perturbation and control parameters, respectively. Additionally, we
assume that there exists a nonzero integrating factor u(x, y) such that (uf )x +
(ug)y = 0 (where the subscripts denote the partial derivatives with respect to the
corresponding variables). Then the unperturbed system of (23) is integrable with
the first integral I (x, y) satisfying Iy = −uf and Ix = ug. The heteroclinic
connections that appear in the normal forms of the Hopf-zero and of the double-
Hopf bifurcations can be successfully studied with the NTT method. In the case of
the cubic parametric normal form for the Hopf-zero singularity [11, Sect. 7.4]

ṙ = μ1r + arz, ż = μ2 − r2 − z2 + sz3, (a > 0, s �= 0), (24)
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the heteroclinic curve in the parameter space is approximated as (for the sake of
brevity we only show the first two nonzero terms)

μ1 = − 3a2s

2(3a + 2)
μ2 − 9a3s3(360a4 + 1134a3 + 1341a2 + 712a + 144)

4(2a + 1)(5a + 2)(3a + 2)4
μ2

2 +O(μ3
2).

In the case of a two-parametric unfolding of normal form system related to the
non-resonant double-Hopf singularity (also valid for the Hopf-pitchfork bifurcation)
in the case VIa [11, Sect. 7.5]

ṙ1 = r1(μ1 + r2
1 + br2

2 ), ṙ2 = r2(μ2 + cr2
1 − r2

2 )+ kr5
2 , (25)

with c < 0 < b, A = −1− bc > 0 and k < 0, the heteroclinic curve is given by

μ2 =
(
c − 1

1+ b

)
μ1 − bk(c − 1)2(1− b + 2bc)

(1+ b)3(c − b + 2bc)
μ2

1 +O(μ3
1).

3.2 Canard Explosion

The canard explosion is a remarkable phenomenon that occurs in singularly
perturbed systems [42]. It is an extremely fast transition from a periodic orbit with
small amplitude (usually emerged in a Hopf bifurcation) to another one with large
amplitude (relaxation oscillation). When the Melnikov method is applied, after a
suitable rescaling [43], a perturbation of the non-Hamiltonian integrable system
ẋ = y−x2, ẏ = −x, appears. This system is integrable (with the integrating factor

u(x, y) = e−2y) and the first integral is given by H(x, y) = e−2y
[
x2 −

(
y + 1

2

)]
.

The parabola y = x2 − 1/2 is an orbit of the integrable unperturbed system that
corresponds to a homoclinic orbit, connecting a critical point at infinity on the
Poincaré sphere. Thus, the application of the NTT method provides an excellent
approximation to the canard explosion (all the details can be found in [32–34]).

4 Conclusions

In this work, we study homoclinic connections in a family of Rayleigh–Duffing
mechanical oscillators [35–38]. The use of the NTT method provides high-order
approximations (up to any desired order) for the locus in the parameter space
where this global connection exists and, additionally, for the homoclinic orbit in
the phase plane. This clearly ameliorates previous results [39]. It is remarkable
that the introduction of continued fractions improves even more the agreement with
the numerical results. Moreover, we survey the recent new results obtained by the
NTT method in the study of homoclinic and heteroclinic connections, in planar
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systems that are perturbations of Hamiltonian and of non-Hamiltonian integrable
systems [27–34]. The formulas obtained in terms of several nonzero symbolic
constant coefficients of the Takens–Bogdanov and Hopf-zero normal forms can be
very useful in many bifurcation control engineering applications [20, 26]. The NTT
method is a very effective alternative to Melnikov method in the computation of the
high-order coefficients of the Poincaré application near the global connection (due
to the intricate integrals that appear).
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Analytic Methods for Estimating the
Effects of Stochastic Intermittent
Loading on Fatigue-Crack Nucleation

Stephen Guth and Themistoklis Sapsis

1 Introduction

For many classes of structures, fatigue loads have a stochastic character with tran-
sient features that cannot be captured through a statistically stationary consideration.
Examples include loads in wind turbines due to control and wind gusts, transitions
between chaotic and regular responses in oil risers, and slamming loads in ship
motions [1–3]. For such applications, traditional frequency domain approaches
have difficulty predicting the fatigue effects of intermittent loading, as those are
inherently connected to time-ordering and therefore cannot be captured by the
spectral content of the load.

An alternative approach for the prediction of fatigue-crack nucleation relies on
hysteretic cohesive-law models [4, 5]. This class of model has the advantage of
applicability to arbitrary loading conditions, including random load cycling with
transient spikes, but the disadvantage of requiring simulation of a large number
of time histories, at enormous computational cost. Alternative approaches include
statistical linearization [6–8], hierarchical modeling [9, 10], structured sampling
methods [11], and optimal experimental design [12–16].

In this work, we first develop an efficient time-marching scheme for the fatigue
model developed by Serebrinksy and Ortiz [4, 5] taking into account the time-
ordering effects. Based on this model, we then derive analytical approximations for
the probability mass function (pmf) of failure time in terms of the load probability
density function (pdf) and the cohesive envelope [17].
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2 The Serebrinsky–Ortiz (SO) Model

In this work, we will consider a single material element with one dimensional
loading, where the applied load is a random process given by σ(t). The constitutive
relation between σ(t) and the corresponding displacement, δ(t), is given by the
simple phenomenological model [4, 5]

σ̇ =
{
K−δ̇, if δ̇ < 0,

K+δ̇, if δ̇ > 0,
(1)

where K− and K+ are the material stiffnesses associated with unloading and
loading, respectively.

We assume fixed K− (determined by the ray toward the origin), but evolve K+
with the relation

K̇+ =
{
(K+ −K−) δ̇

δa
, if δ̇ < 0,

−K+ δ̇
δa
, if δ̇ > 0.

(2)

Finally, we describe the cohesive envelope in the (δ, σ ) plane, representing the
maximum allowed strain deformation. When the curve (δ(t), σ (t)) intersects the
descending leg of the coherent envelope, crack initiation begins. A sample coherent
envelope is given by

σ = F(δ) � eσc
δ

δc
e
− δ

δc , (3)

where δc, σc, and δa are constants that characterize the material. We note that this
model is designed for predictions on fatigue in elastic materials (metals) below the
yield stress (approximately, σc from the cohesive envelope).

2.1 Time-Discretization of the SO Model

First, we assume that the loading function σ(t) is a continuous random function with
positive values. Second, we will replace the true continuous load with the piece-wise
linear approximation

σ̇ (t) = Δσ−n
Δt−n

, t ∈ [τn−1, τn−1 +Δt−n ]

σ̇ (t) = Δσ+n
Δt+n

, t ∈ [τn−1 +Δt−n , τn−1 +Δt−n +Δt+n ],
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Fig. 1 (a) Schematic of the hysteretic cohesive-law and corresponding definition of fatigue-crack
nucleation. The solid lines show loading and the dashed lines represent unloading. (b) Piece-wise
linear approximation of the loading function σ(t)

where n is the number of cycle, Δσ−n (Δσ+n ) is the negative (positive) increment of
the cycle, i.e. Δσ−n < 0 (Δσ+n > 0), and Δt−n (Δt+n ) is the corresponding duration
(Fig. 1b). This piece-wise linear approximation allows us to integrate equations 1
and 2 with the following steps:

K−n =
σn−1

δn−1
(4)

K+n,u = K−n − exp

(
Δσ−n
δaK

−
n

)
(K−n −K+n−1) (5)

δn − δ−n = −δa log

(
1− Δσ+n

δaK
+
n,u

)
. (6)

If at any cycle, the point (δn, σn) lies above the cohesive envelope, one of two
events will take place. First, if the stress–strain curve intersected the ascending leg,
the strain δn may jump discontinuously to the ascending leg to fix the intersection.
Otherwise, a crack will form. Crack nucleation at cycle Nf is thus associated with
the condition

σ+Nf
≥ eσc

δ+Nf

δc
e
−

δ
+
Nf
δc and δ+Nf

> δc. (7)

A graphical summary of the described scheme is given in 1, and a sample
evolution of K+ is shown in Fig. 2. We observe that the evolution is typically linear
except for certain discrete jumps. These jumps are associated with crossings of the
ascending part of the coherent envelope due to intermittent loading events.
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Fig. 2 Two loading scenarios shown in terms of the coherent envelope up-crossings and the
stiffness in terms of the number of loading cycles

2.2 Simulation of a Loading Time Series Using the
Probabilistic Decomposition-Synthesis Method

Here we formulate an approximation scheme for the failure time under arbitrary
loading time series. We first decompose the loading signal into segments associated
with extreme events and regular loading events. For segments of the loading time
series where there is no up-crossing of the coherent envelope, we will show that the
evolution of K+ can be linearly approximated:

K+n −K+n−1 ≈ ΔK, (8)

where ΔK has a constant value that we will estimate later.
The remaining segments of the loading time series are associated with the

discontinuous jumps in Fig. 2, corresponding to the intersections of the (σ, δ) curve
with the ascending part of the coherent envelope. This breakdown of an intermittent
process into a linear region and an extreme region parallels the probabilistic
decomposition-synthesis framework developed in [18, 19].

Let the sequence {σ+n } be the discretization of σ(t) such that σ+n is the nth local
maxima of σ(t), and let σ̂ be a fixed threshold. This sequence may be broken into
two sets:

– SQ = {n : σ+n ≤ σ̂ }—the linear (quiescent) region
– SI = {n : σ+n > σ̂ }—intermittent spikes

For points in the set SQ, we will use the simplified update Eq. (8). For points in
the set SI , we will use the full SO update step as described in the previous section,
regardless of whether the (σ, δ) curve actually crosses the coherent envelope.
Finally, for technical reasons we will remove the first few peaks (n ≤ Ninit ≈ 5)
from SQ and add them to SI . This helps to initialize the algorithm for the case when
there are otherwise few or no early spikes in the set SI .
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Estimation of the Slope K We can directly estimate the slopeΔK in (8) from the
SO model and the input signal statistics. From the piece-wise linear approximation,
we have

ΔK+n =
(

1− exp

(
Δσ−n
δaK

−
n

))
(K−n −K+n−1)−

Δσ+n
δa

. (9)

We will assume that the quantity Δσ−n
δaK

−
n

is very small, due to inverse dependence

on δa , which will allow us to Taylor expand the exponential term. Additionally, we

will also assume that the quantity

(
K+n−1

K−n
− 1

)
is small. When these approximations

are made, we may relate the increments of K+ to the increments of σ using the
following expression:

ΔK+n = −
Δσ+n
δa

. (10)

For this problem, we will assume a known statistical distribution of the loading
sufficient to compute E

[
ΔK+

]
. We will give one such calculation, based on the

joint pdf of the load f (σ, σ̇ ) and the Rice Formula.
Suppose that σ(t) is narrow-banded but not necessarily Gaussian. If the process

is zero-mean, then we can rely on the amplitude of the positive peaks as a proxy for
the amplitude of the jumps. The pdf of the peaks can be found as (for instance, as in
[20]),

fσ+(a) = −1

v+σ (0)
dv+σ (a)
da

, a ≥ 0, (11)

where v+σ (a) is the a-up-crossing rate, given by the Rice formula:

v+σ (a) = lim
Δt→0

1

Δt
E[N+(a,Δt)] =

∫ ∞

0
σ̇ fσ σ̇ (a, σ̇ )dσ̇ (12)

3 Analytical Approximation of the Failure Time pmf

If not for intersections between the (δ(t), σ (t)) curve and the coherent envelope, the
functional Nf (σ) would be approximated by the linear relationship (see Eq. (8))

Nf = K+0
ΔK

, (13)
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where K+0 is the initial stiffness and ΔK is the expected change in K+ over a
typical cycle corresponding to the load distribution. However, the cohesive envelope
changes things, by adding three effects: extreme terminal loads, intersections with
the ascending part of the envelope, and intersection with the descending part of the
envelope.

3.1 Setup

Cohesive Envelope We will write the cohesive envelope, introduced in Sect. 2, in
the generic form σ = F(δ), which has both a monotonic ascending and monotonic
descending branch and two corresponding inverses: F−1

asc(σ ) and F−1
des(σ ).

Additionally, for what follows we define the functions:

κ(σ ) � σ

F−1
asc(σ )

and η(σ ) � σ

F−1
des(σ )

(14)

which are assumed to be monotonic. These functions express the stiffness induced
by an up-crossing with the ascending/descending part of the envelope and will
be essential for our analysis. The monotonicity requirement is satisfied by typical
cohesive envelopes (e.g. Eq. (3)).

Load Statistics We will assume that in the absence of envelope up-crossings the
material stiffness, K+n , evolves linearly with the number of cycles and with its
gradient given by the mean value (see Eq. (10)). This is a valid assumption as long
as the spread of values of Δσ+n is not systematically large. If this is not the case, one
can adopt a more complex model for the case of no envelope up-crossing using e.g.
the Palmgren–Miner rule.

Further, we assume known pdf of local load maxima, σ+n , as well as a known
cumulative distribution Fσ+(σ ).

Finally, we will assume the independent spike hypothesis: that the amplitude
of local maxima is uncorrelated. This is not true in general for narrow-banded
processes, but it is approximately true for “large enough” maxima, which is what is
needed for our analysis. This will be a key assumption in determining the probability
distribution for several intermediate quantities below.

3.2 Failure Time Distribution

Damage due to Terminal Loads Larger Than σc The maximum value of F(δ)
is given by σc, and is the maximum load the material can sustain. When the load on
the material exceeds σc, it will fail no matter the fatigue history. We call these loads
terminal. The failure cycle for this terminal mechanism is given by
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nx = arg min
i>0

{σ+i > σc}. (15)

This is the expression for the first crossing time for the threshold σc. Following the
independent spike hypothesis, the probability of seeing an extreme load above a
given threshold may be modeled by sequential Bernoulli trials. In this case the pmf
of the first cycle nx when we have a spike of critical magnitude follows a geometric
distribution

pNx (n) = (1− pc)
n−1pc, n = 1, 2, ... (16)

pc = P [σi > σc] =
∫ ∞

σc

fσ+(s)ds. (17)

Damage due to Up-crossings of the Ascending Part of the Envelope In general,
the graph of (δn, σn) may have multiple intersections with the ascending part,
leading to multiple discontinuous jumps in K+n (Fig. 2). However, the total fatigue
lifetime effect depends only on the cycle and magnitude of the last such intersection
with the ascending part of the envelope, an intermediate result we can demonstrate
geometrically by referring to Fig. 2.

We will use this idea to quantify this damage by defining the damage quotient
φ(σ, n),

φ(σ, n) �
K+0 − κ(σ )

ΔK
− n, (18)

which is meaningful only when it is positive, i.e. only when we have an up-crossing
of the envelope. The damage quotient essentially measures the magnitude of each
jump on the material stiffness, expressed in a number of cycles lost due to this jump,
every time we have an up-crossing. For a generic loading sequence with peaks
σ+n , n = 1, 2, ... the number of lost cycles due to up-crossing with the ascending
part of the envelope will be given by the maximum of this quantity:

na

({
σ+i

}∞
i=1

)
= arg max

0≤n<∞
φ(σ+n , n) = arg max

0≤n<∞

(
K+0 − κ(σ+n )

ΔK
− n

)

, (19)

with the condition that this maximum is a positive number, i.e. we have at least one
up-crossing with the ascending part of the envelope. If no up-crossing occurs, then
na = 0.

To quantify the pmf for na , we will begin by using the pdf of the load peaks,
fσ+(a), and the monotonicity of function κ(σ ) to obtain the pdf for κ(σ+):

fκ(a) = fσ+(κ
−1(a))

|κ ′(κ−1(a))| . (20)
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Based on this pdf, we now obtain the pdf and cdf for the damage quotient
φ(σ+n , n):

fφn(a) = ΔKfκ(K
+
0 − nΔK − aΔK) (21)

Fφn(a) = 1− Fκ(K
+
0 − nΔK − aΔK). (22)

We can derive the probability distribution of the maximum argument of some set
of random variables with a total probability argument (see [21]), which applied to
our problem gives

pna (n) =
∫ ∞

−∞
Qκ(xΔK)

ΔKfκ(K
+
0 − nΔK − xΔK)

1− Fκ(K
+
0 − nΔK − xΔK)

dx, n = 1, ..., (23)

where Qκ is a function that is independent of n (i.e. it has to be computed once) and
can be computed using an exponent-of-log manipulation, as well as the approximate
limit ΔK → 0 to make a sum-to-integral substitution:

Qκ(y) = lim
n→∞

n∏

j=1

(
1− Fκ(K

+
0 − jΔK − y)

)
(24)

= exp

(
1

ΔK

∫ ∞

y

log
(
1− Fκ(K

+
0 − z)

)
dz

)
. (25)

Substituting the above into (23) results in the pmf of the cycles until the last
up-crossing of the ascending part of the envelope:

pna (na) =
∫ ∞

−∞
Qκ(xΔK)Wκ(naΔK + xΔK)ΔKdx, na = 1, ...,

Wκ(y) �
fκ(K

+
0 − y)

1− Fκ(K
+
0 − y)

.

(26)

Damage due to Up-crossings of the Descending Part of the Envelope Any
intersection with the descending part of the coherent envelope will immediately
cause material failure. As such, there can only be one such intersection. In order to
quantify the statistics of this event, we define the anticipation function ψ :

ψ(σn, n) � η(σn)−K+n ,

K+n = K+na − (n− na)ΔK,
(27)

where η(σ ) = σ

F−1
des (σ )

, K+n is the material stiffness coefficient before cycle n, and

K+na = κ(σna ). The material stiffness can be expressed in terms of the damage
quotient (Eq. (18)) and its maximum value as follows:
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K+n = K+0 − (φna + n)ΔK, (28)

where the pdf for φna is given by Eq. (21). The material failure time is given by the
first zero up-crossing of the anticipation function:

Nf = min{n : ψ(σn, n) = η(σn)−K+0 + (φna + n)ΔK > 0}. (29)

We first compute the pdf for η. This will be given by:

fη(a) = fσ+(η
−1(a))

|η′(η−1(a))| . (30)

Therefore, conditioning on ξ = φnaΔK , which expresses the maximum lost
stiffness of the material due to an up-crossing with the ascending part of the
envelope, and na , the cycle when this up-crossing occurs, we will have

Fψn(a|ξ, na) = 1− Fη(a +K+0 − ξ − naΔK). (31)

To this end, the probability of having a material failure at Nf cycles is

pNf
(n|ξ, na) =

(
1− Fη(K

+
0 − ξ − nΔK)

) n−1∏

m=na+1

Fη(K
+
0 − ξ −mΔK),

n = na + 1, na + 2, ... (32)

where ξ follows the cdf Q(ξ) (Eq. (25)), while na follows the pmf in Eq. (23). We
will make the same logarithm substitution as before in Eq. (25) to give

pNf
(n|ξ, na) =

(
1− Fη(K

+
0 − ξ − nΔK)

)
Vη(naΔK + ξ, nΔK + ξ),

n = na + 1, na + 2, . . .

Vη(u, v) = exp

(
1

ΔK

∫ v

u

log
(
Fη(K

+
0 − s)

)
ds

)
.

(33)

Using Eq. (23) and assuming that probable n is much larger than the probable
values of na (so we do not have to formally condition on n > na), as well as a small
ΔK , we have
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pNf
(n|ξ) =

∞∑

na=1

pNf
(n|ξ, na)p(na)

= 1

ΔK

(
1− Fη(K

+
0 − ξ − nΔK)

)

×
∫ ∞

−∞

∫ ∞

0
Qκ(y)Vη(ζ + ξ, nΔK + ξ)Wκ(ζ + y)dζdy.

Finally, we integrate over the variable ξ after we multiply with the corresponding
pdf Q′κ(ξ) to give the compact form:

pNf
(n) = 1

ΔK

∫ ∞

−∞

∫ ∞

0

(
1− Fη(K

+
0 − ξ − nΔK)

)

× Vη(ζ + ξ, nΔK + ξ)Q′κ(ξ)Sκ(ζ )dζdξ (34)

Sκ(ζ ) �
∫ ∞

−∞
Qκ(y)Wκ(ζ + y)dy. (35)

Expression (34) together with the functions Vη (Eq. (33)), Qκ (Eq. (25)), Wκ

(Eq. (26)), and Sκ (Eq. (35)) consist of a full approximation of the cycles until
material failure. These functions are given in terms of the coherent envelope shape
and load peak statistics.

Combined Failure Time From Eqs. (17) and (34), we have expressions for the
distribution ofNx andNf , the failure times for the terminal-load case and quiescent-
with-extremes-load pathways, respectively. To find the combined failure time, we
simply check which comes first:

Ntot = min{Nx,Nf } (36)

pNtot (n) = pNf
(n)(1− FNx (n))+ pNx (n)(1− FNf

(n)), (37)

where FNx (n) and FNf
(n) are the cumulative probabilities corresponding to pNx (n)

and pNf
(n) (from Eqs. (17) and (34), respectively). In general, the terminal-load

pathway may only contribute to the far left of the distribution (extremely early
failure times), while the quiescent-with-extremes-load pathway controls the rest of
the shape. However, in realistic applications it is very rare for a material to fail due
to the terminal pathway as this mechanism can be easily accounted for in the design
phase.
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Fig. 3 Comparison of important distributions between the analytic framework and Monte Carlo
simulation for pb = 1/20,000. (a) The load peak (σ+) pdf used for the independent spike model.
(b) The pmf for the time of the last up-crossing, Na , of the ascending branch of the coherent
envelope. (c) The pmf for the time of fatigue-crack nucleation, Nf
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Fig. 4 Comparison of failure time pmf for different values of pb in the independent spike model
(a) Load peak (σ+) probability density functions for different pb. (b) Failure time distributions for
different pb. Analytical pmf is shown with solid curves and Monte Carlo simulations with dashed
curves

3.3 Comparison of Analytic pmf with Monte Carlo Simulations

In order to compare the probabilistic framework developed in Sect. 3 to direct
integration of the SO model, we employ the coherent envelope shape in Eq. (3)
with scale parameters σc = δc = 1 and δa = 300. We consider realizations of a
stochastic signal consisting of a zero-mean stochastic process superimposed with
intermittent events.

Specifically, for each peak we first run a Bernoulli trial with success probability
pb. If this trial fails, then we have a non-extreme or quiescent peak, in which case
we draw a sample from an absolute normal distribution with mean, μq = 0.03,
and standard deviation, ρq = 0.03. Note that for any broad-band stochastic process
the peaks follow a Gaussian distribution [22]. If the Bernoulli trial succeeds, we
instead draw an extreme sample from a Rayleigh distribution with scale parameter,
r = 0.42. This results a probability density function for the load peak (σ+) having
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a sharp peak near σ+ = 0.03 (i.e., much less than σc), but a long right tail with a
small but finite probability mass corresponding to values of σ > σc (Fig. 3a).

In Fig. 3b we present the comparison of the pmf for the cycle number associated
with the last up-crossing of the ascending part of the envelope, pNa , while in Fig. 3c
we compare the failure time distribution between the analytic framework and Monte
Carlo simulations, based both on the fast decomposition-synthesis approximation
and the full SO integration. Additionally, the predictions of the Palmgren–Miner
rule are shown for reference. It is clear that the Palmgren-Miner rule underestimates
the variance in failure time and cannot capture the heavy left tail.

To examine the effect of pb (i.e., the density of intermittent loads) on the distribu-
tion of failure times, we repeat this experiment for three different values of pb, given
by [1/2000, 1/20,000, 1/200,000]. For the presented experiment, we use 1.2×106,
1.9 × 106, and 3.2 × 106 Monte Carlo realizations for increasingly small value of
pb. The corresponding load distributions, as well as failure time distributions, are
displayed in Fig. 4. We emphasize the favorable agreement between the analytical
approximation of the pmf and the direct Monte Carlo simulations. As extreme
events become less likely, reduced left tail mass drives the distribution closer to
the Palmgren–Miner rule.

4 Conclusions and Further Work

In this work, we developed both a time-marching integration and an approximate
analytical solution for fatigue failure time in the SO model. We have shown how the
SO model captures time-ordering effects discarded by other fatigue models, such as
the Palmgren–Miner rule, and we showed how this model predicts a long left tail of
early failure times under intermittent loading.

So far, we have limited ourselves to single element structures, with uniaxial
loading. Real structures are much more complicated, with spatially distributed
elements and loading. Application to real engineering problem will require interface
with a structural model, such as a Finite Element Model (FEM), that can calculate
the stresses across the entire structure. The attraction underlying such a combination
would be the ability to locate specific structural elements at risk under intermittent
loading, and to predict what sort of loads lead to heightened risk of early failure.
At the same time, however, FEM integration will require a choice of mechanism
to handle multi-axial loading (such as the von-Mises yield stress). Additionally,
combining SO fatigue with FEM computations will require choices about the
coupling between accumulated fatigue and changing material stiffness.
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Data-Driven Method for Real-Time
Prediction of Fatigue Failure Under
Stochastic Loading

Maor Farid

1 Introduction

Fatigue failure refers to the malfunctioning of a mechanical component due to
the weakening of its material due to oscillatory loading below its ultimate tensile
strength. The failure results in localized and progressive mechanical damage and
cracks growth. Fatigue damage is cumulative over time, and even though it can be
assessed by non-destructive tests (NDT) [1], it still can take place in unexpected
timing, leading to hazardous consequences. Fatigue failure is one of the main
reasons for mechanical failure in aerospace, offshore, and machine components.
Hence, the accurate estimation of the current measure of cumulative damage and
prediction of the time to failure of a given system is of major importance. Fatigue
damage under an oscillatory loading is usually estimated by either time or frequency
domain approaches. The most widely used time domain approach is based on the
rainflow counting method for decomposing the stochastic signal to its underlying
amplitudes and the corresponding number of cycles, followed by applying Miner’s
rule to assess the resulting cumulative damage. Frequency domain methods, such
as those introduced by Dirlik [2] and Petrucci and Zuccarello [3], use probability
density functions with parameters which are tuned with respect to the rainflow
counting and Miner’s method [4, 5]. Hence, and due to multiple observatory studies,
rainflow counting and Miner’s rule are considered as more reliable and accurate
in comparison to the frequency domain methods. However, also time domain
approaches are considered as inaccurate and limited in their ability to capture the
underlying failure mechanisms. For example, it is well known that sudden changes
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in the loading amplitude lead to extensive cumulative damage, which is overlooked
by Miner’s rule. Thus, disagreements between theoretical and experimental results
were broadly reported in literature [6], especially when dealing with broad-band
stochastic loading. Machine learning (ML) algorithms and artificial neural networks
(ANNs) in particular were proven to have a good ability to capture the underlying
patterns and correlations in measured data, even when the underlying physical
rules governing the system’s behavior are obscure or unknown. Applying machine
learning approaches for fatigue failure prediction based on measured data obtained
from experiments, numerical simulations, or analytical analysis, is therefore a
promising strategy for cumulative damage estimation. However, very limited results
were reported in the literature about utilizing ML algorithms and ANNs for damage
estimation [7–11]. Moreover, no study was done about predicting the time to failure
(TTF) of a given mechanical component under stochastic loading.

The current paper presents an ANN-based approach for TTF prediction of
a given mechanical component under statistically stationary stochastic loading.
The method considers a wide range of possible material properties and loading
characteristics. In other terms, the well-known generalization properties of an ANN
are utilized for giving accurate predictions for a wide range of materials and loading
characteristics. Moreover, the suggested method provides a quantified uncertainty
measure, describing the confidence interval in which the true TTF value is most
likely to be.

2 Theoretical Background

Miner’s linear cumulative damage rule is given by the following equation:

D(t) =
Nk∑

i=1

ni(t)

Nf,i

(1)

Here D is the damage fraction which quantifies the cumulative damage and the
closeness to fatigue failure, which corresponds to D = 1. Hence, the failure time
τ fulfills the following relation: D(τ) = 1. The values ni(t) represent the number
of cycles of the ith amplitude, i.e. Sa,i , that took place during the stochastic loading
by time instance t , as obtained by the rainflow counting method. Parameter Nk is a
user-defined hyper-parameter that represents the number of amplitudes considered
in the rainflow counting method. Nf,i is the number of loading cycles that will
lead to a fatigue failure due to forcing with a single amplitude of Sa,i . The relation
between Nf,i , Sa,i , the mean forcing amplitude Sm, and the mechanical properties
of the component, is given by the following expression:

Nf,i =
(
Sa,i

Aα

) 1
b

, α = 1− Sm

σuts
(2)
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Here A and b are the fatigue strength and fatigue exponent, respectively.
Those are material properties which are obtained from literature of preliminary
experiments. Parameter α is the Goodman’s correction factor for non-zero mean
stress, and σuts is the ultimate tensile strength of the material. It is noteworthy that
the failure time and the dynamical response of a component subjected to oscillatory
loading are heavily governed by its material properties. As one can see in Eq. (2),
fatigue failure is not a time-dependent phenomenon, i.e. it is not dictated by the
frequency content of the loading signal, but only by the amplitudes of its Fourier
components. However, previous works pointed out that phenomena associated with
rapid changes such as sudden gradients in the excitation amplitude, have a non-
negligible effect on the cumulative damage, which is not captured by any time
domain method. The loading signal is generated from a given power spectral density
(PSD) function G(f ) that describes the frequency content of the possible stochastic
loadings. A stochastic loading signal is generated from a given PSDG(f ) according
to the following expression:

S(t) = Sm +
Nf∑

i=1

√
2G(fi)Δf cos(2πfit + φi) (3)

Here, the phase angles, mean forcing amplitudes, and forcing frequencies
are randomly drawn from uniform distributions above the following ranges:
φi ∼ U [0, 2π ], Sm ∼ U [0, 250]MPa, and fi ∼ U [100, 200]Hz, respectively.
The frequency resolution of the PSD is taken as Δf = 0.1 Hz. The sampling
rate is taken as ten times the Nyquist frequency is chosen as fs = 2000 Hz. The
number of frequencies composing the loading signal is chosen as Nf = 20, and
the number of amplitudes considered in the rainflow counting method is chosen as
Nk = 100. The simulations were computed up to time tf = 120 s with time step of
Δt = 1/fs = 0.0005 s. The chosen PSD function G(f ) is given by the following
equation:

G(f ) = AG exp− (f − μG)
2

2σ 2
G

(4)

Here the parameters of the PSD are chosen as μG = 150 Hz, σG = 175 Hz,
and AG = 2500 MPa2/Hz. The magnitude of the PSD function AG was chosen
such that the maximal amplitude of the loading signal will not exceed 85% of the
ultimate tensile strength of the material σuts in order to avoid ultra-low cycle fatigue
failure. Then, a data-set of N = 2000 loading signals were generated according
to Eqs. (3)–(4), and their corresponding failure time τ was computed numerically
using the rainflow counting method and Miner’s rule in Eqs. (1)–(2). The data-set
was divided into two parts with ratio of 75 : 25. The former, i.e. the training set,
is used for optimizing the parameters of the predictive model during the learning
process. The second portion, i.e. the test-set, is used for evaluating the accuracy of
the predictions obtained by the model and its generalization abilities.
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3 The Learning Problem

Artificial neural network (ANN) is a mathematical model that can fit a complex
nonlinear function (called hypothesis function) to a given set of numerical examples
called training set. The term learning refers to the process of optimization of
the model’s inner parameters in an iterative fashion. The problem of predicting a
numerical value based on a given set of other numerical values is referred to as a
regression problem.

In the current work, an ANN with three hidden layers is used as a predictive
model. In order to reduce the dimensionality of the model’s input, the loading
signal is represented by the mean loading amplitude Sm and another characteristic
amplitude, denoted by Sp. The latter is chosen as the p-percentile amplitude of
the signal, which serves as an alternative to the maximal amplitude Sa suggested
in literature for constant-amplitude loading. Preliminary analysis was conducted in
order to estimate the correlation between the TTF τ , the mean amplitude Sm, and the
percentile amplitude p for various values of parameter p. It was shown that for p
values which are significantly larger or smaller than 90%, this correlation becomes
more obscure (Fig. 1a–b), while for p = 90% the relation is sharper (Fig. 1c). The
intuitive explanation to this fact is that in stochastic signals, the maximal amplitude
Sa might be significantly larger than the rest of the peaks, which means that it is
not a representative value of the entire signal. On the other hand, a parameter value
which is too small might overlook multiple peaks which consist a significant portion
of the signal’s energy. Hence, p = 90% serves as a trade-off between both limiting
cases.

Thus, the chosen input features vector x consists of three material properties:
fatigue strength A, fatigue exponent b, and ultimate tensile strength σuts , and two
characteristic amplitudes: the mean value of the loading signal Sm, and the 90th
percentile Sp amplitude.

τpred(x|θ) = NNθ (x), x = {A, b, σuts , Sm, Sp} (5)

Here, the output of the ANN is the predicted TTF τpred , which is a function of
the features vector x and the vector of the model’s inner parameters, θ .

3.1 Creating the Training Set

Each mechanical component in the data-set corresponds to a vector in the features
space, which includes the components shown in Eq. (5). The TTF that corresponds
to the vector serves as its label or target variable, and denoted by τ(z). The properties
vector that describes each example in the data-set is often referred to as a data-
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Fig. 1 The correlation between the failure time τ , the mean loading amplitude Sm, and the
percentile amplitude Sp , for (a) p = 100% (Sp = Sa), (b) p = 99.5%, (c) p = 90%

point. Each data-point is randomly generated based on the following distributions:
Sm ∼ U [0, 250]MPa, σuts ∼ U [500, 1000]MPa, A ∼ U [1200, 1500]MPa,
b ∼ U [−0.2,−0.15]. The forcing signals are then generated using Eqs. (3)–(4) for
Nf = 20 frequencies which are randomly drawn from the following uniform
distribution: fi ∼ U [100, 200]Hz. The resulting percentile amplitude is calculated
numerically from the signal that was generated for p = 90%. Finally, the TTF
is estimated numerically for each feature vector z using Eqs. (1)–(2). The data-set
includes
N = 1500 data points.

It is noteworthy that neither the choice of Gaussian distribution nor using a
particular fatigue simulation method leads to loss of generality. This is because
the ANN can be trained on any given data-set and capture the underlying mapping
between the system parameters and the resulting TTF. Generally, the data-set should
include as many examples as possible, considering a vast range of possible system
parameters and loading signals.
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3.2 The Learning Model

After an iterative process of architecture optimization, we chose a fully connected
artificial neural network (FC-ANN) as our learning model. We conduct an iterative
architecture design by gradually increasing the complexity of the ANN, i.e. the
number of its inner parameters, in order to minimize the chances for over-fitting
by an overly complex learning model. The final architecture was chosen to contain
three layers of five neurons in the input layer, twelve neurons in the hidden layer, and
a single neuron in the output layer. We use a rectified linear unit (ReLU) activation
function between the input and the hidden layer, and a linear activation function
between the hidden to the output layer. This is a classical choice for regression
problems with an unbounded output value. The values of the ANN parameters are
initiated randomly. The model is trained for 10,000 iterations without mini-batches
using the Adam optimizer with a learning rate of 0.01.

4 Offline Prediction

After the training process is completed, the ANN performances are validated on
a test-set. The accuracy of the predictions is demonstrated by plotting each pair of
predicted and GT TTF values on a single plane, i.e. τpred−τGT plane. The closeness
of the resulting point-cloud to the line of perfect prediction, i.e. τpred = τGT , serves
as an accuracy measure for our predictive model, as shown in Fig. 2. As one can
see, in Fig. 2, the points are tightly distributed around the line of perfect prediction
τGT = τpred , indicating on a very good agreement between the predicted and the
GT values. In order to quantify the quality of performances, the R-squared score is
calculated, showing a very strong linear correlation between the predicted and GT
values, i.e. (R2 = 0.986).

Now, the trained predictive can generate further predictions for unseen feature
vectors. However, in addition to a predicted TTF value, we are interested in having
a corresponding confidence interval that quantifies the level of uncertainty of the
model prediction τpred .

5 Uncertainty Quantification

In various engineering systems, immediate cessation might lead to severe implica-
tions in terms of both functionality and safety, such as emergency landing of an
airplane in the midst of a commercial or operational military flight due to predicted
fatigue failure in one of its critical components. Uncertainty quantification (UQ)
is the scientific field of quantitative characterization of uncertainty. In the case of
predicting TTF of critical components in real-time, UQ is of major importance for
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decision making regarding taking immediate proper safety measures or operational
actions.

In the current work, we introduce a methodology for quantifying the level of
uncertainty in a given prediction using the results obtained by the trained predictive
model on the test-set. The uncertainty of each TTF prediction is quantified using a
time-variant probability density function (PDF), whose expected value and variance
represent the estimated TTF and the corresponding confidence level, respectively.

P(t |τpred(x, θ),Xtest ) = g(τpred(x, θ)|Xtest ) (6)

The interval of values in which the TTF is estimated to be in a given statistical
significance α is referred as confidence interval, and it is calculated according to the
following expression:

τ+pred , τ
−
pred(τpred(x)|Xtest , θ) = τpred(x|θ)± γ

√
E[(T − τpred)2]

T ∼ P(t |τpred(x, θ),Xtest )

(7)

Here γ is the number of standard deviations from the mean taken in the
confidence interval. Selection of function g(τpred) should embody the variance of
point on the τpred − τGT plane with respect to the line of perfect prediction. In the
following sections, two alternative functions are discussed.

Fig. 2 GT vs. predicted TTF values obtained by the predictive model on the test-set (red dots) and
the line of perfect prediction τGT = τpred (blue line)
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5.1 Bi-variate Normal Distribution

The first attempt to model the distribution of points on the τpred−τGT plane is using
a bi-variate normal (BVN) PDF, given by the expression in Eq. (8). We use this PDF
because it is simple and convenient to apply. For example, for each predicted TTF
τ̃pred , the BVN PDF generates a univariate normal distribution which is defined as
the intersection between the BVN PDF and plane τpred = τ̃pred .

Φ(z) =
exp

(
− 1

2 (z− μ)T Σ−1(z− μ)
)

2π
√
β

μ =
(
μx

μy

)
, Σ =

(
σ 2
x σxy

σxy σ 2
x

)
, β = det (Σ)

(8)

Here, z = {τpred , τGT } is a vector τpred − τGT plane, μ is the vector of means,
and Σ is the covariance matrix of the PDF. In Eq. (6), the PDF obtained for a given
TTF prediction τ̃pred corresponds to the intersection between the BVN PDF and
plane τpred = τ̃pred :

P(t |τ̃pred) = Φ(τpred = τ̃pred , τGT |μ(Xtest ),Σ(Xtest )) (9)

The confidence level α is associated with an elliptic iso-density locus on the PDF,
which corresponds to Φ(z) = κ . Parameter κ is bounded to the following range:
κ ∈ (0, κmax) where κmax = 1/2π

√
β. The level of confidence associated with a

given ellipse is defined as the volume between the PDF and the area bounded by
the ellipse, denoted by S: ellipse of intersection between the PDF and a horizontal
plane, i.e. iso-density locus Φ(z) = κ . The area in the τpred − τGT plane which
is bounded by the resulting ellipse is denoted by S . The area between surface
Φ(z) and region S is considered as the confidence level α which related to height
κ: α(κ) = ∫∫

S Φ(z|Xtest , θ), where S is the area bounded by ellipse C : Φ(z) = κ .
Hence, α is in fact the limit value of points bounded by the corresponding ellipse,
assuming that the points are indeed normally distributed. In the absence of a
close form solution of the integral in Eq. (8), the relation between the statistical
significance α and parameter κ is evaluated numerically. The confidence boundaries
are given explicitly according to the following expression:

τ+
pred

, τ−
pred

(τpred (x)|Xtest , θ) = σxy

σ 2
x

τpred ± 1

σx

√(
σ 2
xy − σ 2

x σ
2
y

)
τ2
pred

+ ρβσ 2
x (10)

The bounding ellipse which is associated with α = 95% is shown in Fig. 3a.
As one can see, in contradiction to intuition, for predicted value which richer in
points, i.e. near the mean of the PDF, the variance of the PDF is the largest, which it
should be smaller due to greater amount of data points and hence greater confidence.
Moreover, for extreme values where naturally there is smaller number of points, the
variance of the PDF is very small. For some extreme values, no confidence interval
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Fig. 3 Prediction of the trained model on the test-set Xtest (red points), regression curve (blue
line), confidence region (blue shade), and confidence boundaries (black lines) for statistical
significance of α = 0.95; (a) multivariate normal distribution, κ = 1.3225E − 4, (b) GPR with
γ = 1.96 standard deviations

is defined. In conclusion, we are interested in a bi-variate PDF that allocates high
variance for predicted TTFs for which there are fewer examples in the test-set and
vice versa, and defines a confidence interval for any predicted TTF.

5.2 Gaussian Process Regression

Gaussian process regression (GPR) models are nonparametric kernel-based proba-
bilistic models that fit the data with a set of possible curves that create a multivariate
PDF. The resulting PDF has a larger variance for feature values with fewer
examples, i.e. in ranges that lack in uncertainty. GPR models are considered as
very flexible, and it was proven that the squared exponential covariance function
corresponds to a Bayesian linear regression model with an infinite basis functions
number of basis function. Moreover, it can be shown that GPR is equivalent to an
FC-ANN with infinite number of neurons in its hidden layer [12]. As one can see in
Fig. 3b, the bi-variate PDF generated by GPR maps predicted TTF values to narrow
confidence intervals in ranges that contain an extensive amount of points, where that
uncertainty level is low and vice versa.

6 Real-time Prediction

After the learning model was trained on the data-set, its prediction abilities of
the ANN can be tested in real-time. The three material coefficients are known in
advance, for example by a dedicated experiment, and the forcing-related features,
i.e. Sm and Sp, are calculated in a desired rate. Then, the features vectors z is fed
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Fig. 4 Demonstration of real-time TTF prediction, in three consecutive instances, (a) t = 5s, (b)
t = 25s, (c) t = 45s. The measured loading signal (blue), GT TTF τGT (dashed blue), predicted
TTF τpred (dashed red), and confidence interval corresponding to statistical significance of
γ = 75% (purple shade)

to the pre-trained model to obtain the corresponding predicted TTF. This recursive
process ensures that the predicted TTF is suitable for all the data that was read by the
sensors. It is worth noting that all features in features vector z have to match in their
format and units to the features used in the training process. The corresponding
confidence interval is obtained in accordance to Eq. (6) and using the GPR-based
approach shown in the previous section.

As one can see in Fig. 4, the GT TTF (dashed-blue line) falls within the
uncertainty gap obtained by the predictive model. Thus, under the assumption of
statistically stationary stochastic loading, the TTF can be predicted in real-time
during loading and obtain proper safety instructions before failure occurrence.

7 Concluding Remarks

In the current work, an FC-ANN-based approach was suggested for both offline and
real-time failure time prediction. The prediction obtained by the machine learning
model is based on the material properties of the mechanical component considered,
the mean amplitude, and the percentile amplitude of the measured loading signal.
The selection of those features is based on the assumption of statistically stationary
loading. In addition to the predicted failure time, an uncertainty measure is
obtained based on the tested performances of the model. The suggested method
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paves the way toward a commercial predictive system, which is based on real-
time measurements taken from motion sensors placed in informative locations on
the mechanical component. Methodology for identification of most informative
locations is suggested by Farid in another work. This method can give valuable
safety instructions and operational suggestions, and serve as a life-saving predictive
system.

Funding M.F. has been supported by the Fulbright Program, the ISEF Foundation,
and the Israel Academy of Sciences and Humanities.
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An Improved Formulation for Structural
Optimization of Nonlinear Dynamic
Response

Suguang Dou

1 Introduction

Nonlinear dynamics has been widely exploited in a wide range of applications
concerning nonlinear micro-mechanical resonators [1]. Their applications include
atomic force microscopy [2], micro-mass sensors [3, 4], micro-gyroscope [5],
gravimeter [6], frequency division [7], and vibration energy harvester [8].

In recent years, there has been growing interest in the intentional design of
nonlinearity for the purpose of tailoring the dynamic response. Many studies
have investigated the applications of the shaped finger for comb drives. A few
studies have applied the structural optimization techniques to tailor the mechanical
nonlinearity, see e.g. [9–13]. In these studies, numerical optimization techniques
were applied to tailor different aspects of the nonlinear dynamic responses, for
example, the frequency–amplitude dependence or frequency–energy dependence
[9, 10], the nonlinear forced resonances [11], and the internal resonances [12, 13].

In our previous study in [14], we proposed an efficient finite element based
methodology for structural optimization of nonlinear micro-mechanical resonators
with geometric nonlinearity described by Green stain. Later, the optimized designs
were validated by using dynamic tests [15]. The fast optimization is achieved by
using a direct finite element calculation of the nonlinear modal coupling coefficients
[14, 16]. These nonlinear modal coupling coefficients can also be computed by
using non-intrusive approaches [17]. When the structural geometry changes, these
nonlinear modal coupling coefficients change accordingly, which further determine
the change of the nonlinear dynamic response. The aim of this paper is to present an
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improved formulation for the optimization of nonlinear dynamic response through
the nonlinear modal coupling coefficients.

2 Methods

The original methodology was proposed in [14] for the single-mode resonators
and the multi-mode resonators with internal resonances. The methodology consists
of nonlinear finite element modeling, eigenvalue analysis, direct finite element
calculation of nonlinear modal coupling coefficients, and solving an optimization
problem.

For brevity, the following description of the methodology is restricted to a single-
mode beam resonator and its fundamental flexural mode whose eigen-frequency and
eigenmode are denoted as ω and �, respectively.

2.1 Finite Element Model and Design Variables

The beam structure is discretized into a number of Euler–Bernoulli beam elements.
In the optimization, the distribution of the in-plane width h of the beam is
manipulated to tailor the nonlinear dynamic response, see Fig. 1. In order to ensure
the effectiveness of the Euler–Bernoulli beam element, it is assumed that the
distribution of the in-plane width varies continuously without drastic change. For
the purpose of optimization, a large number of elements are used to enable a fine
representation of the varying in-plane width. In order to ensure manufacturability
and mechanical strength, it is reasonable to impose a lower bound hmin on the in-
plane width. On the other hand, an upper bound hmax is also imposed on the in-plane
width to suit the applicability of the beam theory. With the lower and upper bounds
of the in-plane width, the design variables are defined as

he = hmin + ρe(hmax − hmin) (1)

where e = 1, . . . , Ne with Ne denoting the number of the beam elements.

Fig. 1 Illustration of the varying in-plane width, the beam elements, and the direction of the in-
plane vibration
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2.2 Reduced-Order Model and Frequency–Amplitude Relation

Assume that the flexural vibration of the beam in its fundamental mode can be
approximated by u = x� with u denoting the full-order displacement vector.
The reduced-order model of the beam in its fundamental mode is described by the
standard Duffing equation as follows:

ẍ + 2 ξ ω ẋ + ω2x + α x3 = f cos(Ω t) (2)

where ξ is the modal damping ratio, ω is the eigen-frequency of the vibration mode,
α is the coefficient of the cubic nonlinear stiffness term (Duffing nonlinearity), f
and Ω are the amplitude and frequency of the external force, respectively.

The eigen-frequency ω is obtained by solving an eigenvalue problem

K� = ω2M� (3)

where M and K are the mass matrix and the stiffness matrix in the finite element
model. Further, the eigenmode is normalized with respect to the mass matrix, i.e.

�T M� = 1 (4)

In the reduced-order model in Eq. (2), the coefficient of the cubic nonlinearity is
directly calculated in the finite element model as [14]

α = 4
Ne∑

e=1

EA(ρe)

8L

(
we(ρ)

TKgwe(ρ)
)2

(5)

where we denotes an element-wise vector taken from the vibration mode �

corresponding to the deflection of the beam element e. The matrix Kg is given as
[18]

Kg = 1

30 l

⎡

⎢⎢
⎢
⎣

36 3l −36 3l

3l 4l2 −3l −l2
−36 −3l 36 −3l

3l −l2 −3l 4l2

⎤

⎥⎥
⎥
⎦

(6)

where l is the length of the beam element e.
Note that Eq. (5) is derived for beam element with the nonlinearity arising from

the mid-plane stretching effect existing in clamped–clamped beam and similar beam
structures. This mid-plane stretching effect is not suitable to cantilever beam whose
length can be seen as non-extensible. Alternatively, Eq. (5) can also be derived for
the solid element with Green strain [14] which has a wider applicability.
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The frequency of the resonance peak increases as the amplitude of the resonance
peak increases, which is described as

ωp = ω
(

1+ γA2
p

)
(7)

where ωp and Ap denote the frequency and amplitude of the nonlinear forced
resonance peak, respectively. The effective coefficient γ is given as

γ = 3

8

α

ω2
(8)

It is emphasized that the above derivation of γ cannot fully reflect the
change of the magnitude of the vibration mode �, and thus may to some extent
bias the optimized design in the optimization as shown later in the numerical
results.

In order to account for the change of the magnitude of the vibration mode, let
|�| denote the magnitude of the vibration mode, and introduce a new coordinate
y = x |�|. The change of the coordinate from x to y corresponds to a change of the
reduction basis from � to �

|�| . The reduced-order model in Eq. (2) can be re-written
as

ÿ + 2ξωẏ + ω2y + βy3 = g cosωt (9)

where

y = x |�|, β = α

|�|2 , g = f |�| (10)

For the fundamental vibration mode of the clamped–clamped beam, its magnitude
can be captured by the deflection at the midspan as

|�| = max(�) = |LT�| (11)

where L is a vector with all zeros but one non-zero component. The value of the
non-zero component is one. Its index corresponds to the degree of freedom of the
maximum deflection at the midspan of the beam.

From the reduced-order model in Eq. (9), the frequency–amplitude relation can
be re-written as

ωp = ω
(

1+ Γ B2
p

)
(12)

where Bp is the amplitude of the resonance peak in the coordinate of y, and the
effective coefficient Γ is given as
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Γ = 3

8

β

ω2 =
3

8

α

ω2 |�|2 =
γ

|�|2 (13)

The effective coefficient in Eq. (13) is derived in the coordinate of y and the
reduction basis �

|�| . Since the new reduction basis is normalized with its magnitude,
the resulting effective coefficient Γ provides a fair comparison of the optimized
designs in the numerical computation. This also implies that an alternative way to
account for the change of the magnitude of the eigenmode is to use the eigenmode
that is normalized with its magnitude. Specifically, one can replace Eq. (4) with

|�i | = 1 (14)

In the following formulation and the numerical results, the normalization of the
eigenmode with respect to the mass matrix in Eq. (4) is used, and the two effective
coefficients in Eqs. (13) and (8) are compared in the context of optimization.

2.3 Optimization Problems and Sensitivities

First, the original formulation of the optimization problem to maximize the harden-
ing behavior of a clamped–clamped beam resonator is

max
ρ

γ = α

ω2

subject to: (K− ω2M)� = 0,

�T M� = 1,

V (ρ)/V ∗ ≤ 0.5,

0 ≤ ρ ≤ 1

(Pold )

where the new objective function is defined in terms of γ in Eq. (8), and the constant
factor 3

8 is omitted in the objective function.
Based on the above formulation, the improved formulation of the same optimiza-

tion problem is written as

max
ρ

Γ = α

ω2 |�|2 (Pnew)

where the objective function is defined in terms of Γ in Eq. (13), and the constraints
are the same as those in the problem Pnew and therefore are omitted.

The two optimization problems are solved by using a gradient-based optimizer
called the Method of Moving Asymptotes (MMA) [19], which is efficient and robust
for solving structural optimization problems. The design sensitivities (i.e. gradients)
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of the objective functions with respect to the design variables are calculated by using
the adjoint method [20] as described in the following subsection.

2.4 Design Sensitivity Analysis Using the Adjoint Method

The derivation of the design sensitivity analysis is demonstrated by using the new
objective function Γ in Pnew.

First, two adjoint variables, λ and η, are introduced in order to apply the adjoint
method in the design sensitivity analysis. The objective function is re-written as

Γ = Γ + λT
(

K− ω2M
)

�+ η
(
�T M�− 1

)
(15)

The gradients of the augmented objective function are derived as

dΓ

dρe
= ∂Γ

∂ω

dω

dρe
+ ∂Γ

∂α

(
∂α

∂ρe
+ ∂α

∂�

d�

dρe

)
+ ∂Γ

∂|�|
∂|�|
∂�

d�

dρe

+ λT
[(

∂K
∂ρe

− ω2 ∂M
∂ρe

)
�− 2ωM�

dω

dρe
+
(

K− ω2M
) d�

dρe

]

+ η

(
�T ∂M

∂ρe
�+ 2 �T M

d�

dρe

)

(16)

Collecting the terms of d�
dρe

and dω
dρe

, we have

dΓ

dρe
= ∂Γ

∂α

∂α

∂ρe
+ λT

(
∂K
∂ρe

− ω2 ∂M
∂ρe

)
�+ η�T ∂M

∂ρe
�

+
(
∂Γ

∂α

∂α

∂�
+ ∂Γ

∂|�|
∂|�|
∂�

+ λT
(

K− ω2M
)
+ 2 η�T M

)
d�

dρe

+
(
∂Γ

∂ω
+ λT (−2ωM�)

)
dω

dρe

(17)

The values of the two adjoint variables can be chosen so that the two terms of d�
dρe

and dω
dρe

vanish in the above equation, leading to a set of adjoint equations as

∂Γ

∂α

∂α

∂�
+ ∂Γ

∂|�|
∂|�|
∂�

+ λT
(

K− ω2M
)
+ 2 η�T M = 0

∂Γ

∂ω
+ λT (−2ωM�) = 0

(18)
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The adjoint equations can be re-formulated into matrix form as

[
K− ω2M 2 �T M

2 �T M 0

][
λ

η

]

=
⎡

⎣
− ∂Γ

∂α
∂α
∂�
− ∂Γ

∂|�|
∂|�|
∂�

1
ω
∂Γ
∂ω

⎤

⎦ (19)

After solving the adjoint equations (19), the adjoint variables λ and η are deter-
mined. Then the sensitivities of the objective function are calculated as

dΓ

dρe
= ∂Γ

∂α

∂α

∂ρe
+ λT

(
∂K
∂ρe

− ω2 ∂M
∂ρe

)
�+ η�T ∂M

∂ρe
� (20)

When the values of the adjoint variables λ and η are given, the right-hand side of
Eq. (20) is cheap to compute for all design variables.

In each optimization iteration, the adjoint equations in Eq. (19) only need to be
solved once and then the resulting values of the adjoint variables λ and η can be
used in Eq. (20) to compute the sensitivities of the objective function with respect to
all the design variables ρe with e = 1, . . . , Ne.

The adjoint method is more efficient than the direct differentiation method and
the numerical finite difference approximation of the sensitivities, and thus allows a
large number of design variables to be used in the optimization.

For the optimization problem Pold , the adjoint equations and the sensitivities of
the objective function are given as

[
K− ω2M 2 �T M

2 �T M 0

][
λ

η

]

=
[− ∂γ

∂α
∂α
∂�

1
ω
∂Γ
∂ω

]

(21)

dγ

dρe
= ∂γ

∂α

∂α

∂ρe
+ λT

(
∂K
∂ρe

− ω2 ∂M
∂ρe

)
�+ η�T ∂M

∂ρe
� (22)

3 Results

The improved optimization is applied to a micro-mechanical clamped–clamped
beam in [14]. The evolution of the design is displayed in Fig. 2. The vibration mode
of the final design is displayed in Fig. 3. For comparison, the old design and its
fundamental flexural mode are displayed in Fig. 4.

Figure 2 shows that in the first 10 iterations, the optimizer distributes more
material at two locations where the nonlinear strain energy is high [11]. In the
following iterations, the optimizer begins to put more material at the midspan of
the beam, yielding a central mass. The central mass was not shown in the design
by using the original approach [14] and therefore is attributed to the improved
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Fig. 2 The optimized design for maximizing the hardening behavior of the fundamental vibration
mode of a clamped–clamped beam resonator. The objective function is normalized with its value
of the initial design

Fig. 3 The fundamental flexural mode of the new design for maximizing the hardening behavior
of a clamped–clamped beam. The color denotes the total displacement. The mode shape is obtained
by using COMSOL Multiphysics 5.4 with 2D solid element

Fig. 4 The fundamental flexural mode of the design in [14] for maximizing the hardening behavior
of a clamped–clamped beam. The color denotes the total displacement. The mode shape is obtained
by using COMSOL Multiphysics 5.4 with 2D solid element. The image is re-used from [14]

optimization. Its occurrence is attributed to the improvement in the methodology,
i.e. the change of the magnitude of the vibration mode is taken into account. The
occurrence of central mass coincides with the fact that a central mass is used in
ultra-wide bandwidth piezoelectric energy harvesting devices [8] and another result
in topology optimization [21].

Further study is required to examine the applicability of the improved formula-
tion of the optimization problem in a wider range of applications.

Table 1 shows a comparison of the two designs obtained by using the original
objective function in Pold and the improved objective function in Pnew. Note that
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Table 1 Comparison of the two designs obtained by using the original objective function in Pold
and the improved objective function in Pnew

Pold Pnew ratio
γ
γ0

13.35 10.11 0.757
Γ
Γ0

7.56 8.05 1.064

γ0 and Γ0 are the corresponding values of the same initial design, while γ and Γ

are the corresponding values of the two final designs. According to Γ
Γ0

, the new
design obtained by using Pnew has a larger value of Γ than the old design obtained
by using Pold . However, when using the old objective function based on γ , this
new design is a sub-optimal design because of the bias of the objective function. As
discussed in Sect. 2 concerning the reduced-order models and frequency–amplitude
relation, Γ provides a fair comparison of the optimized designs. This new design
has a larger value of Γ . Consequently, this new design has a larger frequency shift
for a given amplitude of the resonant peak than the old design. The improvement
obtained by using the improved formulation in this example is 6.4%. In future work,
the two optimized designs will be compared by using nonlinear frequency response
and ring-down response.

4 Conclusions

This paper presents an improved formulation of the optimization problem for tuning
the nonlinear dynamic response through the nonlinear modal coupling coefficients.
For the hardening behavior of a clamped–clamped beam, the design obtained by
using the improved formulation has a larger effective coefficient Γ than the design
obtained by using the original formulation.

Further studies are required to extend this improved formulation of the opti-
mization problem to multi-mode micro-mechanical resonators [14], topology opti-
mization [21, 22], and optimization problems of micro-mechanical resonators with
electrostatic actuation [23]. Additional studies are needed to examine the potential
extension of the optimization frame to micro-mechanical cantilever-based structures
with nonlinear inertial effects and nano-mechanical resonators where the non-local
elastic effects prevail in the nonlinearity [24].
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An Improved Tensorial Implementation
of the Incremental Harmonic Balance
Method for Frequency-Domain Stability
Analysis

Suguang Dou

1 Introduction

In recent years, there has been a renewed academic interest in the frequency-domain
stability analysis of the time-periodic response of the dynamical systems [1–4]. The
frequency-domain stability analysis is based on the Hill method, which combines
the Floquet theory and the Fourier series expansion. One problem in frequency-
domain stability analysis is related to spurious eigenvalues. In [1], Lazarus and
Thomas proposed a criterion to sort the most converged eigenvalues, and validated
it in a framework where the harmonic balance method (HBM) is combined with
the asymptotic numerical method (ANM) for path-following or continuation of
the response. However, even with a proper sorting criterion, Soykov and Ribeiro
reported in [2] that an accurate frequency-domain stability analysis can require
more harmonics than an accurate response analysis. This unaddressed problem has
motivated the study in this work.

This study is performed in the framework of a tensorial implementation of
the incremental harmonic balance (IHB) method. The original implementation
was applied to structural optimization problems for tailoring the nonlinear reso-
nances [5]. In a later study, the tensorial implementation of the IHB method is
combined with the alternating frequency/time-domain method to study structural
optimization problems for tuning the frequency–amplitude dependence of nonlinear
normal modes in the context of frame structures [6]. Based on the existing
tensorial implementation of the IHB method, the work in this paper investigates
the frequency-domain stability analysis and suggests an important improvement in
the implementation.
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2 Methodology

2.1 Time-Domain Equations of Motion

Consider a mechanical system with geometric nonlinearity. By using the nonlinear
finite element models, the time-domain equations of motion can be written as

M
d2u
dt2

+ C
du
dt
+ g(u) = f(ωt) (1)

where M is the mass matrix, C is the damping matrix, g is a vector of the nonlinear
internal forces which are nonlinear functions of u, f is a vector of the time-periodic
external forces, t is the time, and ω = 2π/T is the circular frequency with T

denoting the time period. Since the linear stiffness term is treated as a part of the
nonlinear internal force g, it is not explicitly shown in the above equation.

In the incremental harmonic balance method, a new scale of time is introduced
as τ = ωt = 2π(t/T ). By using the new time scale τ , the time-domain equations
of motion in Eq. (1) become

ω2 M
d2u
dτ 2 + ωC

du
dτ
+ g(u) = f(τ ) (2)

2.2 Frequency-Domain Equations of Motion

The incremental harmonic balance method is applied to Eq. (2) through a few steps.
First, a Fourier basis is introduced to project the time-domain response into the
frequency domain as

u(τ ) = s(τ )q (3)

where s(τ ) is a row vector of Fourier basis consisting of the sine and cosine
functions, and q is a column vector of Fourier coefficients which represent the
frequency-domain response.

Substituting Eq. (3) into Eq. (2) and applying the Galerkin method, a system of
nonlinear equations are obtained as [5]

(
ω2 M+ ωC

)
q+ g (q ) = f (4)

where M, C, g, and f denote the frequency-domain counterpart of the mass
matrix, the damping matrix, the internal force, and external force, respectively. For
the convenience of communication, we refer to Eq. (4) as the frequency-domain
governing equation. Equation (4) can also be written in a more general form as



Improved Incremental Harmonic Balance Method for Stability Analysis 445

r(q, ω) = 0 (5)

where

r(q, ω) =
(
ω2 M+ ωC

)
q+ g (q )− f (6)

2.3 Response Analysis

Since the frequency-domain governing equation is nonlinear, Newton–Raphson
method is applied in the incremental harmonic balance method to solve the
frequency-domain response. Consider a known solution represented by q0 and ω0.
An unknown solution in the neighborhood of q0 and ω0 can be expressed as

q = q0 +Δq, ω = ω0 +Δω (7)

where Δq and Δω are the increments of response and frequency, respectively.
Substituting Eq. (7) into Eq. (5), we have

r(q0 +Δq, ω0 +Δω) = 0 (8)

Expanding Eq. (8) at q0 and ω0 and retaining the first-order approximation, an
incremental form of the frequency-domain governing equation is obtained as

Kq Δq+KωΔω = −r(q0, ω0) (9)

where

Kq = ∂r(q, ω)
∂q

∣∣∣∣
q=q0, ω=ω0,

(10a)

Kω = ∂ r(q, ω)
∂ ω

∣∣∣
∣
q=q0, ω=ω0.

(10b)

Substituting Eq. (6) into Eqs. (11a) and (11b), we have

Kq = ω2
0 M+ ω0 C+Kt (q0 ) (11a)

Kω = 2ω0 M+ C (11b)



446 S. Dou

where

Kt (q0 ) = ∂g(q)
∂q

∣
∣∣∣
q=q0

(12)

Eq. (9) can be solved with the quantities in Eqs. (11a)–(12), and a continuation
approach such as the arc-length method [5].

2.4 Stability Analysis

The local stability of the obtained time-periodic response u0 is studied by adding a
small disturbance δ:

u = u0 + δ (13)

Substituting Eq. (13) into Eq. (2) and retaining the first-order approximation, the
following equation is obtained as

ω2
0 M

d2δ

dτ 2
+ ω0 C

dδ

dτ
+Kt (q0) δ = 0 (14)

In order to study the frequency-domain stability, the disturbance δ is assumed as

δ = eλτ s p (15)

where λ and p denote the Floquet exponent and vector, respectively.
The first- and second-order derivatives of δ are

dδ

dτ
= λ eλτ s p+ eλτ

ds
dτ

p (16a)

d2δ

dτ 2 = λ2eλτ s p+ 2λeλτ
ds
dτ

p+ eλτ
d2s
dτ 2 p (16b)

Substituting Eqs. (15)–(16b) into Eq. (14) and applying the Galerkin method, a
quadratic eigenvalue problem is obtained as

(
J2λ

2 + J1λ+ J0

)
p = 0 (17)

where

J0 = Kq(q0, ω0), (18a)

J1 = 2ω2
0 M⊗ h(1) + ω0 C⊗ h(2), (18b)
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J2 = ω2
0 M⊗ h(2) (18c)

Here the quantities of h(1) and h(2) are given in the following section. The quadratic
eigenvalue problem in Eq. (17) can be directly solved. Alternatively, it can be re-
written into a linear eigenvalue problem [2].

3 Tensorial Implementation

Let NH denote the highest-order of the retained harmonics. The quantities h(0), h(1),
and h(2) are defined as

h(0) = −1

2

⎡

⎢
⎣

0 0 0
0 Î 0
0 0 Î

⎤

⎥
⎦ , Î =

⎡

⎢
⎣

1
. . .

N2
H

⎤

⎥
⎦

NH×NH

(19a)

h(1) = 1

2

⎡

⎢
⎣

0 0 0

0 0 I

0 −I 0

⎤

⎥
⎦ , I =

⎡

⎢
⎣

1
. . .

NH

⎤

⎥
⎦

NH×NH

(19b)

h(2) = 1

2

⎡

⎢
⎣

2 0 0

0 I 0

0 0 I

⎤

⎥
⎦ , I =

⎡

⎢
⎣

1
. . .

1

⎤

⎥
⎦

NH×NH

(19c)

The frequency-domain counterparts of the mass and damping matrices, and the
internal and external forces are computed as

M = M⊗ h(0), (20a)

C = C⊗ h(1), (20b)

g =

⎡

⎢⎢
⎣

h(2) G1
...

h(2) G
Ndof

⎤

⎥⎥
⎦ , (20c)

f =

⎡

⎢⎢
⎣

h(2) F1
...

h(2) F
Ndof

⎤

⎥⎥
⎦ (20d)
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where ⊗ stands for Kronecker product, Gi and Fi denote the Fourier coefficients of
the internal and external forces for the ith degree of freedom.

The frequency-domain counterpart of the tangent stiffness matrix Kt is obtained
with the assistance of a three-dimensional tensor h(3) and the operation of tensor
contraction as

Kt =

⎡

⎢
⎢⎢⎢⎢
⎣

h(3) : K1,1 . . . h(3) : K1,Ndof

...
. . .

...

h(3) : K
Ndof ,1

. . . h(3) : K
Ndof ,Ndof

⎤

⎥
⎥⎥⎥⎥
⎦

(21)

where the symbol “ : ” denotes the tensor contraction operation, and Ki,j denotes a
vector of Fourier coefficients corresponding to the component at the position (i, j )
of Kt (u(τ )).

In Eq. (21), h(3) is a three-dimension tensor. Two specific forms of h(3) are given
in the fallowing section for both the original and improved implementations. The
tensor contraction operation of this three-dimension tensor h(3) and a vector of
Fourier coefficients Ki,j leads to a two-dimensional matrix of the size (2NH + 1)×
(2NH + 1).

4 Numerical Implementation and Results

4.1 Three-Dimension Tensor

In the original numerical implementation [5], this three-dimension tensor is defined
as

h(3)(i, j, k) = 1

2π

∫ 2π

0
Si (τ )Sj (τ )Sk(τ ) dτ (22)

where Si (τ ) denote the ith function in a vector S of cosine and sine functions sorted
as

S = [1 cos(τ ) . . . cos(NHτ) sin(τ ) . . . sin(NHτ)] (23)

and the indices i, j , k are given as

i, j, k = 1, . . . , 2NH + 1 (24)

In the improved numerical implementation, this three-dimension tensor is
defined as
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h(3)(i, j, k) = 1

2π

∫ 2π

0
Si (τ )Sj (τ )Ŝk(τ ) dτ (25)

where Ŝ is given as

Ŝ = [1 cos(τ ) . . . cos(2NHτ) sin(τ ) . . . sin(2NHτ)] (26)

and the indices i, j , k are given as

i, j = 1, . . . , 2NH + 1, k = 1, . . . , 4NH + 1 (27)

Note that the size of the three-dimension tensor in Eq. (22) is (2NH+1)×(2NH+
1) × (2NH + 1), whereas the three-dimension tensor in Eq. (25) is (2NH + 1) ×
(2NH + 1)× (4NH + 1).

One way to visualize the three-dimension tensor h(3) is to project it into two-
dimension plane, see Fig. 1. The harmonics in the first two dimensions are more
thoroughly coupled in the improved tensor in Eq. (25) than in the original tensor in
Eq. (22).

The operation of tensor contraction and a similar definition of the three-
dimension tensor were also used in a recent study of the Galerkin averaging-
incremental harmonic balance method [7].

The importance of this improvement can be seen from both theoretical and
numerical points of view. From theoretical point of view, this improvement enables
to accurately compute the frequency counterpart of the tangent stiffness matrix Kt

Fig. 1 Visualization of the original and the improved three-dimension tensor h(3) in a two-
dimension plane. NH = 6. Left: the original tensor. Right: the improved tensor. A circle or a
cross indicates there is a non-zero value along the third dimension. The size of the circle or cross
is proportional to the magnitude of the value in the tensor. Cn and Sn denote the nth order cosine
and sine function, respectively
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for polynomial nonlinearity up to cubic order. For the cubic nonlinearity, its tangent
stiffness is in quadratic form. When the harmonics of the response is up to the
order of NH , the harmonics of the tangent stiffness of the cubic nonlinearity is
up to the order of 2NH . In the original implementation, the 2NH harmonics in
the tangent stiffness is truncated to the order of NH . In the new implementation
with the improvement, the 2NH harmonics of the tangent stiffness are fully used
in the computation without truncation. From numerical point of view, this reduces
the number of harmonics required to achieve a converged and accurate analysis
of response and stability. Without this improvement, the original implementation
requires a large value of NH , which is larger than the highest order of the significant
harmonics in the response, to ensure the convergence and accuracy of the results.
For the nonlinear finite element example shown later in the numerical results, the
significant harmonic in the response is the fundamental harmonic. The original
implementation without the improvement cannot converge with NH = 1 around
the resonance peak. However, the new implementation with the improvement can
converge smoothly and efficiently with NH = 1.

4.2 Stability Analysis

The improved implementation is applied to a finite element model of a clamped–
clamped beam with geometric nonlinearity [5]. The beam is discretized into 20
Euler–Bernoulli beam elements. The quadratic and cubic nonlinearity is included
to account for the midplane stretching effect [8]. The material properties are given
as: Young’s modulus E = 205 Gpa, and mass density ρ = 7800 Kg/m3. The
cross section is a solid square with 0.01 m× 0.01 m, and the beam length is
L = 150

√
I/A, where A and I denote the area and the second moment of area,

respectively. The damping matrix is proportional to the mass matrix, i.e. C = αM,
where α = 15.58, leading to a modal damping ratio of 1% for the fundamental
flexural mode. The load is applied at the three nodes around the midspan with a
magnitude of 10.12 N.

In the stability analysis, a set of 4Ndof Floquet exponents with the imaginary
parts of the smallest magnitudes are selected. The choice of using 4Ndof Floquet
exponents instead of 2Ndof Floquet exponents is to ensure a full set of 2Ndof

fundamental Floquet exponents are completely included. When the reliable Floquet
exponents are determined, they are used to estimate the stability of the time-periodic
response. A time-periodic response is unstable when there is at least one selected
Floquet exponent whose real part is positive

Re(λi) > 0 (28)
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Fig. 2 Nonlinear frequency response of a nonlinear FE model of a clamped–clamped beam. Left:
The resonance response at the lowest eigenfrequency. Right: Zoom of the resonance peaks. The
solid and the dashed line indicate the stable and unstable response, respectively. The circles indicate
the locations of bifurcations. The text hn indicates the number of harmonics

Figure 2 shows the response and stability computed by using the improved
tensorial implementation. It can be seen that a small number of harmonics (NH ≥ 2)
is sufficient to realize an accurate stability analysis. This efficiency is attributed to
the proposed improvement in the tensorial implementation.

5 Conclusions

This paper presents an improved tensorial implementation of the incremental
harmonic balance method in [5, 6]. The improvement enables an efficient and
accurate frequency-domain stability analysis with a small number of harmonics.
The proposed implementation is demonstrated by using a finite element model of a
clamped–clamped beam with geometric nonlinearity.

The insight gained in this study may be used in other variants of the harmonic
balance method. The essence of the proposed improvement is to account for
the higher-order (≥NH ) harmonics in the Jacobian matrix that may be truncated
in the implementation. These higher-order harmonics are more important for
the frequency-domain stability analysis than for the frequency-domain response
analysis.

Further study is required to reduce the computational cost of the frequency-
domain stability analysis by using advanced model order reduction techniques.
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Statistical Analysis of an Iterative
Algorithm Class for Dynamical Systems

Carlos Argáez, Peter Giesl, and Sigurdur Freyr Hafstein

1 Introduction

Dynamical systems are of fundamental importance in science and engineering
because they offer a compact language to describe physical and other phenomena. In
recent years, novel algorithms to construct complete Lyapunov functions describing
the qualitative behaviour of dynamical systems have been introduced and improved
[1–5]. The importance of Lyapunov functions lies in their ability to locate the
systems’ basins of attraction. They were introduced in 1893 by Lyapunov [6] to
study the stability of equilibria of dynamical systems.

Let us consider

ẋ = f(x), (1)

where x ∈ R
n, n ∈ N. A Lyapunov function for the system (1) is an auxiliary scalar-

valued function, whose domain is a subset of the state-space and which is strictly
decreasing along all solution trajectories in a neighbourhood of an attractor, such as
an equilibrium or a periodic orbit.

A Lyapunov function is only defined in the neighbourhood of one attractor.
A natural extension is a function defined on the whole state-space, a complete
Lyapunov function (CLF), see [7–11]. A CLF allows for dividing the state-space into
two disjoint areas: The area of gradient-like flow, where the solution trajectories flow
through, and the chain-recurrent set, where infinitesimal perturbations can make the
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system recurrent. On these two areas, the system behaves in fundamentally different
ways. On the gradient-like part, a CLF V is strictly decreasing along solutions,
whereas it is constant on the chain-recurrent set. For a sufficiently smooth CLF the
orbital derivative V ′(x) = ∇V (x) · f(x), i.e. the derivative along solutions, in these
two areas is strictly negative or zero, respectively.

Although it is very difficult to construct Lyapunov functions for non-linear
dynamical systems, there has been considerable progress in the last decades, see
the review [12]. While there are several different approaches to computationally
study dynamical systems, c.f. [13–16], in this paper we are mainly concerned with
the methods from [1–5]. They allow for the computation of a (complete) Lyapunov
function for any system described by an autonomous ordinary differential equation
of the form (1).

Inspired by a method to compute classical Lyapunov functions for one stable
equilibrium using Radial Basis Functions (RBFs), c.f. [5], the authors of this paper
have developed a computationally efficient method to describe dynamical systems
through the construction of a CLF and the subsequent localisation of the chain-
recurrent set. The general idea is to find a CLF with v′(x) ≤ 0 by approximating
a “solution” to the ill-posed problem V ′(x) = −1, where V ′(x) = ∇V (x) · f(x) is
the derivative along solutions of the ODE, i.e. the orbital derivative. A function v is
computed using RBFs, a mesh-free collocation technique, such that v′(x) = −1 is
fulfilled at all points x in a finite set X of collocation points.

The discretised problem of computing v is well-posed and possesses a unique
solution. However, the computed function v cannot fulfil the PDE v′(x) = −1
at all points of the chain-recurrent set, such as an equilibrium or a periodic orbit.
This is the key component of our general algorithms to locate the chain-recurrent
sets; to determine the chain-recurrent set, we use the area where v′(x) ≈ 0,
c.f. [1–3].

In Sect. 2, we give more details about the algorithm to construct a CLF and to
determine the chain-recurrent set, including an iterative method. Section 3 applies
the method to an example and performs a detailed analysis with respect to two
different evaluation grids used in the literature: We analyse the distribution of values
in the evaluation grid and compare them using the median and the average in the
iteration. We conclude in Sect. 4.

2 Description of the Algorithm

We will present the methodology introduced in [3], which is included in the freely
distributed software LyapXool, see [4]. We first substitute the dynamical system (1)
by
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ẋ = f̂(x), where f̂(x) = f(x)
√
δ2 + ‖f(x)‖2

, (2)

with a small parameter δ > 0 and where ‖ · ‖ denotes the Euclidean norm. Systems
(1) and (2) have the same trajectories, but the speed of the solutions to (2) is nearly
uniform. This was shown to deliver superior results, see [3].

2.1 Mesh-free Collocation

Mesh-free collocation methods, in particular with RBFs [5], are a powerful method-
ology for solving generalised interpolation problems. RBFs are certain real-valued
functions, whose evaluation depends only on the distance from the origin; Gaus-
sians, multiquadrics, and Wendland functions are examples of such functions.

Mesh-free collocation enables us to locally use a high resolution of collocation
points to solve PDEs. In our work we use the compactly supported Wendland
functions ψl,k as RBFs, see [17]. They are positive definite functions that are
polynomials on their compact support. We consider the RBF ψ(x) := ψl,k(‖x‖),
where k ∈ N is a smoothness parameter and l is fixed as l = &n2 ' + k + 1. Our code
uses the C++ tool from [18] to compute the Wendland functions. The Reproducing
Kernel Hilbert Space (RKHS) corresponding to ψ contains the same functions as
the Sobolev space Wk+(n+1)/2

2 (Rn) and the spaces are norm equivalent.
Mesh-free collocation uses a finite set of collocation points X = {x1, . . . , xN } ⊂

R
n, where the PDE is satisfied. We choose X as a subset of the following hexagonal

grid with fineness-parameter αHexa-basis ∈ R
+:

{

αHexa-basis

n∑

k=1

ikωk : ik ∈ Z

}

, (3)

where ω1 = (2ε1, 0, 0, . . . , 0), ω2 = (ε1, 3ε2, 0, . . . , 0),

. . . , ωn = (ε1, ε2, ε3, . . . , (n+ 1)εn) and εk =
√

1

2k(k + 1)
, k ∈ N.

This grid has been shown to optimally balance the opposing aims of a small fill
distance, i.e. good error estimates, and a large separation distance of collocation
points, i.e. small condition numbers of the collocation matrices, see [19]. All
equilibria, i.e. points x with f(x) = 0, need to be removed from the set of the
collocation points X, since otherwise the collocation matrix would be singular.

The approximated v is the norm-minimal function in the corresponding RKHS
that satisfies the PDE v′(x) = −1 at all collocation points. Practically, we find v

by solving a system of N linear equations, where N is the number of collocation
points.
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Fig. 1 Circular evaluation grid points around a collocation point (black) according to (4) and the
directional evaluation grid points (5) around another collocation point (black)

To evaluate the computed CLF, several different evaluation grids have been
proposed; in this paper we will focus on two different choices, see Fig. 1. The first
one distributes points homogeneously in two circumferences of radius r > 0 and
r/2, see [3].

Yxj = {xj + rαHexa-basis(cos(θ), sin(θ))} ∪ {xj + r
2αHexa-basis(cos(θ), sin(θ))}

where θ ∈ {π/16, 2π/16, 3π/16, . . . , 2π}. (4)

The grid (4) can be generalised to higher dimensions. However, the growth of the
evaluation points cardinality is exponential in the dimension. To avoid that, we
use evaluation points that are aligned along the flow of the ODE system at the
collocation point in [2], see (5). Here, r ∈ (0, 1) determines how far the evaluation
points will be placed, and m ∈ N denotes the number of points on each side of the
collocation points.

Yxj =
{

xj ± r · k · αHexa-basis · f̂(xj )
m

: k ∈ {1, . . . , m}
}

. (5)

2.2 Algorithm

Since the PDE V ′(x) = −1 does not have a solution for all x in the chain-recurrent
set, we use an iterative algorithm to update the right-hand side in each step, using
the results of the previous approximation; note that we only need to prescribe the
value V ′(xj ) at each collocation point xj . Our general algorithm to compute CLFs,
given a set of collocation points X, is:

1. Compute the approximate solution v0 to V ′(x) = −1; set i = 0
2. To approximate the chain-recurrent set by X0, for each collocation point xj ,

compute v′i (y) for all y ∈ Yxj , see (4) or (5). If v′i (y) > γ for an y ∈ Yxj , then
xj ∈ X0, else xj ∈ X−, where γ ≤ 0 is a chosen critical value
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3. Define r̃j =
(

1
|Yxj |

∑
y∈Yxj

v′i (y)
)

−
, where x− = x for x ≤ 0 and x− = 0 for

x > 0
4. Define rj = N∑N

l=1 |r̃l |
r̃j

5. Compute the approximate solution vi+1 to V ′(xj ) = rj
6. Set i → i + 1 and repeat Steps 2–5 until some predefined criterion is reached

The aim of this paper is to investigate two aspects of the algorithm. Firstly, we
investigate if using the average or the median in 3 is more appropriate for reiterating.
Secondly, we compare the results using the circular or the directional evaluation
grid. To enable a fair comparison, we use the same number of evaluation points in
both grids.

3 Results

Let us consider system (1) with the right-hand side

f(x, y) =
(−x(x2 + y2 − 1/4)(x2 + y2 − 1)− y

−y(x2 + y2 − 1/4)(x2 + y2 − 1)+ x

)
. (6)

This system has an asymptotically stable equilibrium at the origin and two periodic
circular orbits: an asymptotically stable periodic orbit at Ω1 = {(x, y) ∈ R

2 |
x2+ y2 = 1} and a repelling periodic orbit at Ω2 = {(x, y) ∈ R

2 | x2+ y2 = 1/4}.
The Wendland function used for computing a CLF to system (6) is ψ5,3 with

c = 1. The collocation points were set in the region [−1.5, 1.5]× [−1.5, 1.5] ⊂ R
2

and we used a hexagonal grid (3) with αHexa-basis = 0.09164. We used both the
circular grid with 10 different angles for two concentric circumferences and the
directional grid (5) with parameters m = 10 and r = 0.5, resulting in 20 evaluation
points per collocation point in both cases. We used δ2 = 10−8, see (2), and the
critical value γ = −0.25 in Step 2 of the Algorithm. For a plot of this CLF see [1].

3.1 Average and Median

For the average and the median, we use the classical definitions. The average is
defined and used in the algorithm in Sect. 2.2. When using the median, the algorithm
in Sect. 2.2 is modified accordingly. The median of numbers, assembled in a vector

R in ascending order is defined as median(R) = 1

2

(
R& (#R+1)

2 ' + R) (#R+1)
2 *

)
. The

median thus takes into account only the middle number(s).
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3.2 Distribution

Let us consider the distribution of the values of the CLF’s orbital derivative for some
random collocation points in iteration 0, using a circular evaluation grid, see Fig. 2.
As none of these is Gaussian, the average value of the orbital derivative in Step 3 is
not necessarily the optimal choice for a new value on the right-hand side in Step 5
in the algorithm for the next iteration.

We will now compare the distributions of the orbital derivatives when using cir-
cular and directional evaluation grids. In contrast to Fig. 2, we will now display the
precise spatial distribution. We have chosen one random point in the chain-recurrent
set (first two figures), and one random point, where the flow is gradient-like (last two
figures), see Fig. 3.

For the chain-recurrent point with the circular grid (first figure), the values are
random and vary between −1.3 and −0.1; the values for the gradient-like point
(third figure) are negative between −1.5 and −1. For the same collocation points,
the results using the directional evaluation grid are very different. For the chain-
recurrent point (second figure), the orbital derivative is clearly forced down to −1
at the collocation point, while being positive far away with maximum at 0.4. The
values have a distinct pattern with minimum at the collocation point with value −1.
Since the integral of the orbital derivative over the whole periodic orbit must be zero
and we force it to be negative on some points, it has to be positive elsewhere. For the
gradient-like point (fourth figure), the orbital derivative is between −1.1 and −0.7.

While for points where the flow is gradient-like the difference between the
circular and directional evaluation grids is not significant, it becomes clear that
for points in the chain-recurrent set, the directional grid contains much more
relevant information. The circular grid diffuses the information by considering
many evaluation points out of the chain-recurrent set. The directional grid, however,
only contains points which are of the same type as the collocation point (chain-
recurrent/gradient-flow) and thus amplifies and clarifies the information: for points
with gradient-like flow, the orbital derivative is close to −1 under the directional
grid, while for points in the chain-recurrent set it displays a characteristic shape
with a minimum at−1 and maxima at 0.4 for those points away from the collocation
point.

Fig. 2 Orbital derivative distribution around collocation points: circular evaluation grid. The
points were chosen randomly. None of the distributions is Gaussian
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Fig. 3 Distribution of the orbital derivative around two collocation points in iteration 0. First:
collocation point in chain-recurrent set, circular grid, second: collocation point in chain-recurrent
set, directional grid, third: collocation point in gradient-like flow, circular grid, fourth: collocation
point in gradient-like flow, directional grid

3.3 Iterations

Now we consider iterations: The goal of these iterations is to determine the right-
hand side of the PDE used to construct the CLF. In particular, the right-hand side
should become 0 for points in the chain-recurrent set, while it should stay strictly
negative in the gradient-like flow. We use either the circular or the directional
evaluation grids combined with either the average or the median. The results for
iteration 4 are shown in Fig. 4 for the circular (upper row) and the directional
(bottom row) evaluation grids.

Let us first consider a point in the chain-recurrent set (first column). While the
circular evaluation grid (up) displays a large variation of values between −1.3 and
−0.2 for the average values (column 1), and between−0.7 and−0.1 for the median
values (column 2), the directional grid has a constant orbital derivative close to 0 for
both average and median (bottom, columns 1 and 2) with values between 0 and 0.02
in both cases. The directional grid is thus better than the circular one; compared to
iteration 0, the iterations have succeeded in identifying the correct right-hand side
for the directional grid. When using the circular evaluation grid, the median gives
better results than the average, as it has values closer to 0.

Let us now consider a point with gradient-like flow (columns 3 and 4). Again,
the circular evaluation grid displays a larger variation of values, namely between
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Fig. 4 Orbital derivative distribution around collocation points in iteration 4. Top row: circular,
bottom row: directional evaluation grids. Column 1: chain-recurrent point, average, column 2:
chain-recurrent point, median, column 3: gradient-like point, average, column 4: gradient-like
point, median

−1.3 and −1 for the average values (up, column 3), and between −1.4 and −0.6
for the median value (up, column 4). The directional grid has a nearly constant
orbital derivative at −1.4 for the average (bottom, column 3) and −1.1 for the
median (bottom, column 4). The directional grid is again superior to the circular
one; in this case the median results in a value closer to the original derivative at −1.
For the circular evaluation grid, the average gives better results than the median as
there is less variation; however, also the median delivers only negative values, i.e.
classifying the collocation point correctly as gradient-like flow.

3.4 Determination of the Chain-Recurrent Set

Let us now investigate how the different methods manage to identify the chain-
recurrent set after iterations 4 and 49. Figure 5 displays the approximation to the
chain-recurrent set by plotting the collocation points xj ∈ X0 (see Step 2 of the
algorithm), i.e. xj where at least one point in corresponding evaluation grid Yxj
satisfies v′(x) > γ .

The results in Fig. 5 use the circular grid in the upper row. The figures in column
1 and 2 display the approximation to the chain-recurrent set in iterations 4 and
49, respectively, using a circular evaluation grid and the average. The two periodic
orbits and the equilibrium at the origin are clear and completely displayed. However,
they are over-approximated. In contrast, the figures in columns 3 and 4 showing the
approximation to the chain-recurrent set in iterations 4 and 49, respectively, for the
median and a circular grid, display gaps in the periodic orbits in iteration 49.

We continue with the directional grid in the bottom row. The figures in column 1
and 2, bottom row, display the approximation to the chain-recurrent set in iterations
4 and 49, respectively, using a directional evaluation grid and the average. The
two periodic orbits and the equilibrium at the origin are clearly and completely
displayed; however, they are slightly over-approximated in iteration 49. The figures
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Fig. 5 Comparison of the chain-recurrent set in iterations 4 and 49. Top row: circular, bottom
row: directional evaluation grids. Column 1: iteration 4, average, column 2: iteration 49, average,
column 3: iteration 4, median, column 4: iteration 49, median

in columns 3 and 4, using a directional evaluation grid and the median, show a very
similar picture with slightly less over-approximation.

3.5 Values on the Chain-Recurrent Set

Let us analyse the values of the orbital derivative on the circular periodic orbit with
radius 1. In particular, we study their dependence on the circular and directional
grids as well as using the average or the median for the iterations, see Fig. 6. The
top figure shows the orbital derivative after iteration 0 on the orbit. It is plotted
as a function of the angle on the positive x-axis, i.e. θ corresponds to the point
(cos θ, sin θ) on the orbit. After iteration 0 neither the evaluation grid nor the
selection of average or median, matters. The values oscillate heavily between −1
and 0.7.

The remaining four figures show the orbital derivative after iteration 49 on the
orbit. In the left column, we used the circular evaluation grid and in the right
column the directional evaluation grid. In both cases, we iterated using the average
in the middle row and using the median in the bottom row. In all cases, we would
like to achieve values of the orbital derivative close to zero. We clearly see that
iterating using the average (middle row) is better as the orbital derivative is closer to
zero. Further, the values oscillate much more if we use the circular evaluation grid.
Indeed, if we use the directional evaluation grid and the average for iterations most
of the values are between −0.02 and 0, the only exceptions being two small spikes
close to the angles 0 and π .

When using the circular evaluation grid and the median, we observe that the
values oscillate considerably, and there are large areas, where the orbital derivative
is entirely negative and below the threshold γ ; hence, they do not appear as failing
in Fig. 5. Let us discuss why this can develop over the iterations: The circular grid
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Fig. 6 Orbital derivative on the circular periodic orbit with radius 1. Top figure: iteration 0. All
other figures: iteration 49. Left column: circular, right column: directional evaluation grid. Middle
row: average, bottom row: median

takes adjacent points in the gradient-flow into account, which have negative orbital
derivative, while the points of the directional evaluation grid lie on the periodic orbit
with derivatives close to 0. While the average over the circular evaluation grid takes
some positive values on the periodic orbit into account, the median just considers
the middle number(s).

4 Conclusions

We have investigated the differences between using a circular or directional
evaluation grid as well as those between employing the median or the average to
the iterative process. We have found that the values of the orbital derivative around
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a collocation point have no clear distribution; in particular, they are not Gaussian.
Nevertheless, using the average provides better results in the iteration process for
both types of evaluation grids. Further, the directional evaluation grid proved to be
superior. This is presumably because the directional evaluation grid only considers
points along the flow, which are of the same type as the collocation point; if the
collocation point is on (or very close to) the chain-recurrent set, then so are the
evaluation points. This improves the determination of the chain-recurrent set.

Summarising, using the directional evaluation grid with the average for iterations
delivers the best results in localising the chain-recurrent set. For collocation points
far from the chain-recurrent set, the graph is quite flat and its curvature will be (close
to) zero, while it is non-zero for collocation points close to the chain-recurrent set.
We anticipate that this criterion might perform better than the current one, namely
that the orbital derivative is above a critical value.
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WendlandXool: Simplified C++ Code to
Compute Wendland Functions

Carlos Argáez, Peter Giesl, and Sigurdur Freyr Hafstein

1 Introduction

Wendland functions are compactly supported Radial Basis Functions (RBFs)
widely used in (generalised) interpolation problems, including solving linear Partial
Differential Equations (PDEs).

Let N points x1, . . . , xN ∈ R
n (collocation points), xi �= xj if i �= j , and

associated values f1, . . . , fN ∈ R be given. A classical interpolation problem
consists of finding a function f : Rn → R satisfying f (xj ) = fj for all j =
1, . . . , N . In a generalised interpolation problem, one prescribes the values of
linear functionals applied to the function f . By prescribing the values of a linear
differential operator, generalised interpolation problems can be used to numerically
solve linear PDEs.

RBFs as kernels for Reproducing Kernel Hilbert Spaces (RKHS) provide a
mighty machinery for solving interpolation and generalised interpolation problems
in arbitrary dimensions [1–3]. Further, the error between the numerically computed
interpolants and the true solution can be bounded above in terms of the fill distance,
which is the proper measure of the density of the collocation points.

Another advantage of using RBFs and generalised interpolation problems for
solving PDEs is that the collocation points do not have to be evenly distributed
and no triangulation of the phase-space is needed. Such methods have been used
in numerous different settings in areas as different as geography, image processing,
various engineering applications, numerical integration [4], machine learning and
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neural networks, cf. e.g. [4, 5]. The authors are mainly interested in RBFs methods
for numerically solving PDEs [6], in particular in solving Zubov-like PDEs for the
computation of (complete) Lyapunov functions in dynamical systems [7–10].

A (generalised) interpolation problem aims to select a function in a given
function space, typically a RKHS, that optimally fulfils certain conditions. The
Wendland functions are polynomials on their compact support and are well suited
as kernels for RKHS. The structure of a particular Wendland function depends on
two parameters and they can be defined in a recursive manner.

In this paper, we present a major revision of our first open-source code to
compute Wendland functions [11] and give a new simplified algorithm implemented
in C++ to explicitly compute any Wendland function. We have mentioned before
in [11] the existence of different code, written in MAPLE [12, 13] as well as the
C++ libraries libMesh [14] and FOAM-FSI [15] that can be used to evaluate and
provide Wendland functions. Further, there is a code written in R that can be used to
evaluate Wendland functions for given radial values [16]. However, these tools are
limited to a predefined selection of Wendland functions or to the use of commercial
computational packages. In [17] a program written in Python was presented, that
generates C++ header files and code for Wendland functions, that can be included
in C++ projects. In our code the use is somewhat simpler using classes and the
evaluation of the Wendland functions and their auxiliary functions use the factorised
form, that was shown in [18] to give much more exact results than when they are
not factorised.

We present a C++ code that includes all necessary operations to compute any
Wendland function and uses the Armadillo C++ library for linear algebra and
scientific computing [19, 20], which is also distributed free of charge.

Further, as a new tool, our code produces a LATEX report in which all the oper-
ations to construct a Wendland function and auxiliary functions are summarised.
This tool was introduced because the computation of Wendland functions and their
auxiliaries requires the repeated application of several operations, that can be error
prone in practice:

– Polynomial integration,
– Polynomial derivation,
– Polynomial factorisation.

Such a report provides a useful debugging tool and delivers the constructed
Wendland functions and auxiliary functions in LATEX format, both factorised and
expanded.

The new algorithm provides the coefficients of the polynomials of the Wendland
functions as integers, which is the form in which Wendland functions are usually
presented [7]. When Wendland functions are used to solve generalised interpolation
problems, they appear linearly on both sides of linear equations and therefore they
are essentially only defined up to a non-zero multiplicative constant. If the integer
coefficients cannot be represented by built in integer types, then the program reports
this. In fact, for practical computations Wendland functions are commonly used for
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quite low parameters l, k, because otherwise the condition number of the collocation
matrix is often very large.

2 Generalised Interpolation Using Wendland Functions

In this section, we sum up the most important aspects of generalised interpolation
using Wendland functions. Consider a Hilbert space H ⊂ C(Rn,R) of continuous
functions f : Rn → R and its dual H ∗, i.e. the set of all linear and continuous
functionals λ : H → R. In a RKHS the point evaluation functional δx0(f ) = f (x0),
evaluating the function at a point x0 ∈ R

n, is in H ∗. Given more regularity of
the functions in H , differential operators evaluated at a point, e.g., λ = δx0 ◦ ∂

∂xj
,

j ∈ {1, . . . , n}, are also in H ∗.

Definition 1 (Generalised Interpolation Problem) Given N linearly independent
functionals λ1, . . . , λN ∈ H ∗ and corresponding values f1, . . . , fN ∈ R, a
generalised interpolant f ∈ H satisfies λj (f ) = fj for all j = 1, . . . , N .

Note that the classical interpolation problem is a special case with λj = δxj .
A norm-minimal generalised interpolant is an interpolant that is minimal in the

norm of the Hilbert space H , i.e.

arg min
f∈H

{‖f ‖H : λj (f ) = fj , 1 ≤ j ≤ N}.

The norm-minimal interpolant is unique and can be written as a linear combina-
tion of the Riesz representers vj ∈ H of the functionals, cf. e.g. [5], and if H is a
RKHS the Riesz representers have a simple formula.

Recall that a RKHS is a Hilbert space H with a reproducing kernel Φ : Rn ×
R
n → R such that

1. Φ(·, x) ∈ H for all x ∈ R
n

2. g(x) = 〈g,Φ(·, x)〉H for all g ∈ H and x ∈ R
n

Here 〈·, ·〉H is the inner product of H .
The Riesz representer of λj ∈ H ∗ has the formula vj = λ

y
jΦ(·, y), i.e. λj applied

to x → Φ(x, y) ∈ H . Thus we can write the norm-minimal interpolant as f (x) =∑N
j=1 βjλ

y
jΦ(x, y), where the interpolation conditions λj (f ) = fj , 1 ≤ j ≤ N ,

are used to fix the coefficients βj .
RBF kernels are such that Φ(x, y) := Ψ (‖x− y‖) for a function Ψ : [0,∞)→

[0,∞). There are numerous RBFs that can serve as kernels for RKHS and different
RBFs will lead to different RKHSs.

The so-called Wendland functions [12, 21–24] have a compact support and are
polynomials on their support. The corresponding RKHSs are norm-equivalent to
Sobolev spaces, which together with the simple form of the Wendland functions
make them well suited as kernels to solve linear PDEs.



468 C. Argáez et al.

The Wendland functions �0
l,k , where l ∈ N and k ∈ N0, can be defined

recursively as follows, cf. [23].

Definition 2 (Wendland Function) The Wendland function �0
l,k , where l ∈ N and

k ∈ N0, is defined recursively by

�0
l,0 (r) = (1− r)l+

�0
l,j+1(r) =

∫ 1

r

t�0
l,j (t) dtforj = 0, 1, . . . , k − 1, (1)

where x+ = max{x, 0} and xl+ := (x+)l .

Hence

�0
l,k(r) =

∫ 1

r

tk

∫ 1

tk

tk−1 · · ·
∫ 1

t2︸ ︷︷ ︸
k integrations

t1�
0
l,0 (t1)

k differentials
︷ ︸︸ ︷
dt1 · · · dtk . (2)

Note that the support of the Wendland function �0
l,k(r) is the interval [0, 1] and

thus, for a constant c > 0 the support of the function x ,→ �0
l,k(c‖x− x0‖) is a ball

of radius c−1, centred at x0. In applications for dynamical systems, we deal with
certain differential operators that require the following auxiliary functions, derived
from the Wendland functions. They are also the reason, why it is advantageous to
include a constant c > 0 in the definition of a Wendland function, i.e. consider the
function r ,→ �0

l,k(cr) rather than �0
l,k(r).

Definition 3 (Auxiliary Functions �1
l,k and �2

l,k) For a fixed c > 0 and a given

Wendland function r ,→ �0
l,k(cr), the auxiliary functions r ,→ �1

l,k (cr) and r ,→
�2
l,k (cr) are defined as follows for r > 0:

�1
l,k (cr) = r−1 d

dr
�0
l,k (cr) and �2

l,k(cr) = r−1 d

dr
�1
l,k (cr).

Remark 1 Auxiliary functions of higher order can be defined equivalently. The
presented code can easily be adapted to compute them as well.

Remark 2 In case �
j
l,k (cr) can be continuously extended to r = 0, this is done and

the function is also defined for r = 0.
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3 Algorithm

As seen in (1), the parameters that define the polynomial’s degree are k and l,
where l denotes the degree of the initial polynomial and k is the number of iterative
integrations.

An outline of the algorithm is as follows:

1. Compute the binomial expansion of (1− t1)l . We do this by computing Pascal’s
triangle and expand the polynomial accordingly. The coefficients are stored in
an array, starting with the coefficient for t01 := 1 (left), then the coefficient for
t11 , etc.

2. After this, the iterative procedure starts. Remember that, according to (2), k is
the number of integrations that will be performed. The operations performed
by the algorithm are to multiply a polynomial with the free variable and to
integrate, cf. (1). Both correspond to simple manipulations on the vector of
coefficients of the polynomial.

(a) Multiplying with the free variable corresponds to shifting all elements to the
right and put zero in the first position. After multiplying by tj an integration
is performed.

(b) Integration: We compute the following integral, with f as the polynomial
from the last step, cf. (2).

∫ 1

tj+1

f (tj )dtj = F(1)− F(tj+1). (3)

Again this corresponds to shifting all elements to the right, but now the
coefficient as of t sj+1 in F(tj+1) is multiplied with 1/s. The first position,

the coefficient for t0j+1 := 1, becomes the sum of the other coefficients.
All other coefficients must then be multiplied by −1, corresponding to
F(1) − F(tj+1). Notice that the new coefficients will in general not be
integer numbers.

3. Once the for-loop ends at k, the remaining step is to compute the factor
to convert all coefficients to integers. For this the algorithm keeps track of
the least common denominator lcd and the greatest common factor hcf of
the coefficients of the polynomials. If no overflow occurs the coefficients are
multiplied by the factor round(lcd/hcf), which makes all coefficients
integers. If there is an overflow the execution is stopped and the user is warned.

4. The final polynomial �0
l,k(cr) is of order l + 1 + 2 · k in x = cr and is used

to compute the auxiliary functions Ψ 1
l,k(cr) and Ψ 2

l,k(cr) as in Definition 3. For
the efficient implementation, it is of use to note that in general for j > 0 the
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function Ψ j
l,k(cr)/c

2j can be written as a rational function of x = cr , with the
polynomial xu, u ∈ N0, in the denominator. That is

Ψ
j
l,k(cr) =

v∑

i=−u
ai(cr)

ic2j = (cr)−uc2j
v+u∑

i=0

ai(cr)
i

and the transformation from Ψ
j
l,k(cr) to Ψ

j+1
l,k (cr) is, once again, essentially

just a simple manipulation of a vector of coefficients.
5. Finally, Ψ j

l,k(cr), j = 0, 1, 2, are factorised in the form

�
j
l,k(cr) = c2j (1− cr)s

ft (cr)

(cr)u
,

where ft (cr) = ∑t
i=0 bi(cr)

i is a polynomial in x = cr of maximal degree.
For this we use the fact that the coefficients in the polynomial, or polynomial
numerator, of �

j
l,k have integer coefficients and thus, iterated polynomial

synthetic division gives exact results and the polynomial ft (cr) also has integer
coefficients.

6. Along the process the report in LATEX is written.

Remark 3 Recall that when Wendland functions are used in generalised interpola-
tion, they can be multiplied with a non-zero constant because they appear on both
sides of linear equation. Therefore, they are most commonly presented with integer
coefficients as in [7].

3.1 Evaluation

To evaluate the functions we use Horner’s scheme. A few comments are in order:
The evaluation routine is the same for all the functions, the Wendland function and
all its auxiliary functions. In general we evaluate for u, v ∈ N0 and for x = cr ,
0 < x < 1, the expression

Ψ
j
l,k(x) =

v∑

k=−u
ak(x)

kc2j = c2j (1− x)s
ft (x)

xu
= c2j (1− x)sx−u

t∑

i=0

bix
i
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using Horner’s scheme for the polynomial term
t∑

i=0

bix
i . For x ≥ 1 the routine

returns zero as expected. If u = 0 the function can be continuously extended to
x = 0 and is evaluated as above, cf. e.g. Proposition 3.5 in [7].

4 How to Use/EXAMPLES

The program is found in https://github.com/LyapXool/WendlandXool-V2 and con-
sists of the files wendland.cpp and wendland.hpp.

Further, the file WendlandExample.cpp included, contains an example of
its use. The class WendRBF delivers the interface to the Wendland functions to
the user. To construct the Wendland function �0

l,k(cr), for some constants l ∈ N,

k ∈ N0, and c > 0, together with its auxiliaries �1
l,k(cr) and �2

l,k(cr), the user can
simply make it as an object using the constructor with the corresponding parameters:

WendRBF(int l, int k, double c, bool printreport)

If printreport=true then a detailed LATEX compilable report on the
construction of the Wendland function and its auxiliaries is written in
wendlandreport.tex. The default value is false and no report is written.
After its initialisation/creation, the user can evaluate �0

l,k(cr) at any r ≥ 0 using

double WendRBF::operator()(double r)

Note that the argument should be r , not x = cr . To evaluate �1
l,k(cr) at r

one uses the member function double WendRBF::aux1(double r) and
to evaluate �2

l,k(cr) the member function double WendRBF::aux2(double
r). The routines that do the actual computations are in namespace wendland.
An excerpt from the report when WendRBF psi31(3,1,1.0,true) is called
follows:

https://github.com/LyapXool/WendlandXool-V2
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Construction and all steps for the construction of the Wendland function.
Wendland function Ψ 0

3,1

First binomial (1− t1)
3

t01 − 3t11 + 3t21 − t31
Multiplying by t1:
0t01 + t11 − 3t21 + 3t31 − t41
Computing integration: 1
Integrating from r to 1:
5× 10−2r0 + 0r1 − 5× 10−1r2 + r3 − 7.5× 10−1r4 + 2× 10−1r5

Using the factor 20 the Wendland function becomes for 0 ≤ cr ≤ 1:
Ψ 0

3,1 (cr) = 1+ 0c1r1 − 10c2r2 + 20c3r3 − 15c4r4 + 4c5r5

Construction and all steps for the construction of the auxiliary function.
Order: 1 Wendland function derivative Ψ 1

3,1.

Derive Ψ 0
3,1 (cr) by r and divide the result by r:

Ψ 1
3,1 (cr) = −20c2 + 60c3r1 − 60c4r2 + 20c5r3

For 0 < cr ≤ 1.
Construction and all steps for the construction of the auxiliary function.
Order: 2 Wendland function derivative Ψ 2

3,1.

Derive Ψ 1
3,1 (cr) by r and divide the result by r:

Ψ 2
3,1 (cr) = 60c3r−1 − 120c4r0 + 60c5r1

For 0 < cr ≤ 1.
Functions presented in a factorised form.
Next, we present the factorised version of the Wendland function.
Ψ 0

3,1 (cr) = (1− cr)4+
(
1+ 4c1r1

)

Ψ 1
3,1 (cr) = (1− cr)3+ c2 (−20)

Ψ 2
3,1 (cr) = (1− cr)2+ c3

(
60r−1

)

A graphical presentation of the function Ψ 0
3,1(cr), c = 1, and its two auxiliary

functions Ψ 1
3,1(cr) and Ψ 2

3,1(cr) can be seen in Fig. 1. For a table with the
coefficients of the polynomials see Table 1.

5 Conclusions

We have upgraded our previous contribution [11] to compute Wendland’s compactly
supported Radial Basis Functions. The new code is more user-friendly and is
presented in a clearer format through a class. Additionally, the evaluation of
the Wendland functions and their auxiliaries has been optimised for numerical
accuracy and, optionally, a detailed LATEX compilable report on the generation of
the Wendland functions and their auxiliaries can be generated.
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Fig. 1 Upper left: Wendland function Ψ 0
3,1(‖(x, y)‖). Upper right: Auxiliary function 1. Lower:

Auxiliary function 2

Table 1 Arrays presenting the results and their storage

Wendland function Ψ 0
3,1(cr) Function Ψ 1

3,1(r) Function Ψ 2
3,1(r)

Exponent k of rk 0 1 2 3 4 5 0 1 2 3 −1 0 1

Coefficient ak of akrk 1 0 −10 20 −15 4 −20 60 −60 20 60 −120 60
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Analytical Techniques



Resonances of a Forced van der Pol
Equation with Parametric Damping

Fatemeh Afzali, Ehsan Kharazmi, and Brian F. Feeny

1 Introduction

In this paper, we study the responses of an oscillator with van der Pol terms,
parametric damping, and direct excitation. A potential application of this system is a
vertical-axis wind-turbine blade, which can endure direct excitation and parametric
damping [1, 2], as well as aeroelastic self-excitation, the mechanism of which can be
loosely modeled with van der Pol-type nonlinearity [3, 4]. Here, the general behavior
of this system is studied, rather than the specific responses of a specific model of an
application system. As both parametric excitation and van der Pol nonlinearity can
induce instabilities and oscillations, we seek to understand the combined effect of
such terms in this system.

Parametric damping has been shown to generate instabilities [2, 5], similar to
those of the Mathieu equation [3, 4], with period-1 or period-2 oscillation, and to
decay with quasiperiodic dynamics when stable [2]. The study [2] used the Floquet
solution combined with harmonic balance [6, 7].

Szabelski and Warminski [8] performed an analytical examinations on the system
with three sources of vibration, parametric, self-excited, and inertial. Warminski
[9] studied the nonlinear dynamics of a self, parametric, and externally excited
oscillator with time delay analytically applying the method of multiple scales.
Warminski also discussed the similarities and differences between the van der Pol
and Rayleigh for regular, periodic, quasiperiodic, and chaotic oscillations.
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Parametric excitation has also been studied in the context of wind-turbine blades
[10–13]. Luongo and Zulli [14] studied a self-excited tower under turbulent wind
flow. The tower was assumed to be a nonlinear system where the stationary wind
imposed the self-excitation, and the turbulent flow drove both parametric and
external excitation. Combining parametric damping with self-excitation of nonlinear
damping as in a van der Pol equation, with a particular choice of scaling and
excitation frequencies, results in an equation given as

ẍ + ε(c0 + c1 cosωt + x2)ẋ + ωn
2x = f0 + f1 sin(ωt), (1)

where ε � 1. The variables c0 and c1 are the mean damping and amplitude of
the parametric damping, respectively, and f0 and f1 are mean and cyclic direct
excitation amplitudes. The excitation frequency is ω and the natural frequency is ωn.
We will refer to this as the parametrically damped van der Pol (PDVDP) equation
with external excitation.

In this work, we apply the first-order method of multiple scales [3, 15] to study
an unforced and externally forced van der Pol equation with parametric damping
at frequency ω. We study the sub-harmonic resonance of order 1/2 as well as the
nonresonant dynamics.

2 Perturbation Analysis: Method of Multiple Scales

The core of this study is the approximation of the solution to Eq. (1) based on the
method of multiple scale (MMS) [3, 4]. Therefore, we expand the displacement as

x(T0, T1, · · · ) = x0(T0, T1, · · · )+ εx1(T0, T1, · · · )+ ε2x2(T0, T1, · · · )+ · · · ,
(2)

where the time scales are Ti = εi t , and ε � 1. By using the chain rule, we obtain the
derivatives for n ∈ N as dn

dtn
(·) = (D0 + εD1 + ε2D2 + · · · )n(·) , where Di = ∂

∂Ti
.

Here, we carry out the analysis up to the first order by considering the two time
scales, T0 = t and T1 = εt , and therefore expand the displacement as

x(T0, T1) ≈ x0(T0, T1)+ εx1(T0, T1). (3)

By substituting the expansion (3) in Eq. (1) and using the derivatives, coefficients of
similar powers of ε equate as

ε0 : D0
2x0 + wn

2x0 = f0 + f1 sin(ωt), (4)

ε1 : D0
2x1 + wn

2x1 = −2D0D1x0 − (c0 + c1 cosωT0 + x0
2)(D0x0). (5)

The relationship between the excitation and the natural frequencies specifies
different cases of resonance:
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1. Nonresonant: no specific relationship between ω and ωn
2. Primary resonance: ω ≈ ωn
3. Super-harmonic resonance: ω ≈ ωn/m (m ∈ N)
4. Sub-harmonic resonance: ω ≈ mωn (m ∈ N)

In the next sections, we elaborate on this perturbation analysis for specific cases
with and without external excitation, and apply other tools, to examine the dynamics
with emphasis on secondary resonances.

3 Parametric Excitation Without External Excitation

We start with the case where there is no external forcing, i.e. f0 = f1 = 0. As
a survey of the possible dynamics, Fig. 1 shows a frequency sweep from ω = 0
to beyond ω = 2ωn, when ωn = 1, ε = 0.1, c0 = −1, and c1 = 1 (these
parameters are dimensionless). The sweep, as a bifurcation diagram, is a plot of
samples of the x variable of the nonwandering set in a Poincaré section [16] for
various values of the frequency parameter. A Runge–Kutta method (Matlab ode45)
is used to obtain numerical solutions of several periods to achieve steady-state. As
the responses are typically quasiperiodic, the plots are generated by recording at
each excitation frequency, 50 values of x at the downward ẋ = 0 crossing in the
phase space.

We appeal to perturbation analysis to explain these responses. The solution to the
leading-order Eq. (4) is

x0(T0, T1) = A(T1)e
iωnT0 + c.c., (6)

where c.c. stands for the corresponding complex conjugate terms. We obtain the
solvability conditions by substituting Eq. (6) into the right-hand-side of Eq. (5) and
eliminating the “secular terms.” In MMS, the secular terms are defined as the terms
that make the solution to grow without bound in time, and thus should be eliminated.
By plugging Eq. (6) into Eq. (5), we obtain

D0
2x1 + wn

2x1 = (−2iωnA
′ − ic0ωnA− iωnA

2Ā)eiωnT0 (7)

−c1

2

(
iωnĀe

i(ω−ωn)T0
)
+ N.S.T.,

where N.S.T stands for non-secular terms and A′ = D1A. The homogeneous
solution of Eq. (7) is of the form eiωnT0 and therefore any right-hand-side term that
is of the same form will become secular and cause x1 to grow without bound. We
seek the resonance cases that lead to additional secular terms. The right-hand-side of
Eq. (7) merely shows the sub-harmonic resonance case. However, as shown in Fig. 1
as well as Eq. (7), the system has significant oscillatory behavior at the nonresonant
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Fig. 1 PDVDP with parametric excitation only. The response amplitude versus the excitation
frequency when f0 = f1 = 0, ωn = 1, ε = 0.1, c0 = −1, and c1 = 1. The embedded sub-
plot zooms in on the strong sub-harmonic resonance window. The circles are amplitudes predicted
by the perturbation analysis

case, that is when there is no specific relationship between the excitation frequency
ω and the natural frequency ωn.

3.1 Nonresonant Case

We first consider the nonresonant case, where the solvability condition takes the
form 2A′ + c0A+ A2Ā = 0. We recall that A is a complex function of T1. Writing
it as A(T1) = 1

2a(T1)e
iβ(T1), the solvability condition becomes

a′ + iaβ ′ + 1

2
c0a + 1

8
a3 = 0. (8)

By separating the real and imaginary parts, we obtain

a′ + 1

2
c0a + 1

8
a3 = 0, aβ ′ = 0. (9)

The response amplitude has steady-state values that depend on the parameter c0 and
are obtained by setting a′ = 0. When c0 < 0, there is a stable steady-state amplitude
of a = 2

√|c0|. This amplitude and the solvability condition that leads to it are the
same as in the regular van der Pol equation when c0 = −1.
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3.2 Sub-harmonic Resonance of Order 1/2

Here, we focus on the sub-harmonic resonance case, where the excitation frequency
is tuned to be close to the double natural frequency, i.e. ω = 2ωn + εσ . In this
setting, the solvability condition is comprised of more terms and is given as 2A′ +
c0A+ A2Ā− c1

2 Āe
iσT1 = 0. By letting A(T1) = 1

2a(T1)e
iβ(T1), we obtain

a′ + iaβ ′ + 1

2
c0a + 1

8
a3 − 1

4
c1ae

i(σT1−2β) = 0. (10)

We separate the real and imaginary parts and then make the system autonomous via
the change of variables γ = σT1 − 2β to obtain the following governing equations
of amplitude a and phase γ as

a′ + 1

2
c0a + 1

8
a3 − 1

4
c1a cos(γ ) = 0, aγ ′ + 1

2
c1a sin(γ )− σa = 0. (11)

The response amplitude has steady-state values that depend on the parameters
c0 and c1 and are obtained by setting a′ = γ ′ = 0. By using the trigonometric
identities, we remove γ and finally obtain the response amplitude as

a = 0, or a2 = −4c0 ± 4

√
c2

1

4
− σ 2. (12)

If
c2

1
4 − σ 2 > 0, then Eq. (12) indicates that there are both zero and nonzero real-

valued response amplitudes. Otherwise, the only steady-state amplitude is zero.
Stability of these solutions is determined from the Jacobian of Eqs. (11).

Figure 2 shows the steady-state amplitude versus the excitation frequency ω =
2ωn + εσ for different values of c0 and c1 where ε = 0.1 and ωn = 1. By slightly
sweeping the detuning parameter σ , we keep the excitation frequency ω close to
2ωn. We observe the emergence of a limit cycle at ω ≈ 1.95, whose amplitude
grows and then disappears at ω ≈ 2.05. When c0 = −1, a larger amplitude of
parametric damping c1 leads to a larger response amplitude; see the left panel in
Fig. 2 where the inner and outer ellipses are associated with c1 = 0.2 and c1 =
1, respectively. An increase in the mean value of damping c0, however, decreases
the response amplitude by moving down the ellipse till the horizontal axis a = 0,
beyond which the lower branch of ellipse disappears; see the right panel in Fig. 2.

4 Parametric and External Excitation

In this case, the external forcing terms f0 and f1 are nonzero. Similar to the previous
case, as a survey of the possible dynamics, Fig. 3 shows a frequency sweep fromω =
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Fig. 2 PDVDP with parametric excitation only: nonzero steady-state response amplitude versus
the excitation frequency in the case of sub-harmonic resonance. Left: c0 = −1 and c1 =
{0.2, 0.4, 0.6, 0.8, 1}. Right: c1 = 1 and c0 = {−1,−0.7,−0.4,−0.1, 0.2}. Solid and dotted
curves are stable and unstable branches

Fig. 3 PDVDP with parametric and external excitation. The response amplitude versus the
excitation frequency ω where f0 = 0.2, f1 = 1, ωn = 1, ε = 0.1, c0 = −1, and c1 = 1

0 to beyond ω = 3ωn, with parameters ωn = 1, c0 = −1, c1 = 1, f0 = 0.2, and
f1 = 1. The sweep is based on numerical simulations, and the steady-state response
amplitudes are plotted. The plot shows that significant quasiperiodic dynamics occur
for a large range of excitation frequencies with periodic windows around ω ≈ ωn,
ω ≈ 2ωn, and ω ≈ 3ωn. The largest responses occur near the primary resonance
range and then for sub-harmonic ones. Super-harmonic resonances are not apparent.

In this case, the particular solution to the leading order Eq. (4) is
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x0(T0, T1) = Γ + iΛ eiωT0 + A(T1)e
iωnT0 − iΛ e−iωT0 + Ā(T1)e

−iωnT0 , (13)

where Γ = f0
ω2
n

and Λ = f1
2(ω2−ω2

n)
. By plugging Eq. (13) in Eq. (5), we obtain

D0
2x1 + wn

2x1 =
(
−2iωnA

′ − ic0ωnA− iωnΓ
2A− iωnA

2Ā− 2iωnΛ
2A
)
eiωnT0

+
(
c0ωΛ+ ωΓ 2Λ+ ωΛ3 + 2ωAĀΛ

)
eiωT0

+
( c1

2
ωΛ+ 2iωΓΛ2

)
e2iωT0

−ωΛ3 e3iωT0 +
(
i
c1

2
ωnĀ− 2ωnΛΓ Ā+ 2ωΛΓ Ā

)
ei(ω−ωn)T0

+i(2ω − ωn)Λ
2 Āei(2ω−ωn)T0 + (ω − 2ωn)ΛĀ

2ei(ω−2ωn)T0

+c.c.+ N.S.T. (14)

The right-hand-side of Eq. (14) shows different cases of resonance; each can
produce different secular terms. The cases are nonresonant, sub-harmonic resonance
of orders 1/2 and 1/3, and super-harmonic resonance of order 2. Here we study the
first two cases. The third case (super-harmonic of order 1/3) does not involve the
parametric term, and others turn out to be of minimal significance. For the first two
cases, we obtain the following solvability conditions:

• Nonresonant:

2A′ + c0A+ Γ 2A+ A2Ā+ 2Λ2A = 0 (15)

• Sub-harmonic Resonance of Order 1/2 (ω ≈ 2ωn):

2A′ + c0A+ Γ 2A+ A2Ā+ 2Λ2A−
(
c1

2
− 2iΛΓ

(
ω

ωn
− 1

))
ĀeiσT1 = 0. (16)

Although Fig. 3 indicates the primary resonance as a prominent case when
ω ≈ ωn, the coefficient Λ becomes singular and would contradict the multiple-
scales bookkeeping strategy. The analysis of primary resonance case requires weak
excitation, as well as a second-order perturbation analysis to capture the parametric
term, as in [17]. This will be analyzed in a separate study.

4.1 Nonresonant Case

The solvability condition in Eq. (15) is not affected by the parametric damping term,
and hence the behavior is similar to the forced van der Pol equation [3, 4]. In this
case, the phase equation becomes β ′ = 0, and hence the phase β is constant and does
not influence the oscillation frequency. The amplitude equation yields the following
steady-state solutions:
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a = 0, a = 2
√
−c0 − Γ 2 − 2Λ2, (17)

where the zero solution is unstable and the nonzero solution exists and is stable
when Γ 2 + 2Λ2 < −c0. Since Γ 2 + 2Λ2 > 0, a negative value of c0 is necessary
(but not sufficient) for nonzero a. If the above condition is not satisfied, then the
trivial solution a = 0 is stable.

Since the leading-order solution has the form

x0 = Γ − 2Λ sinωT0 + a cos(ωnT0 + β) (18)

when the condition Γ 2 + 2Λ2 < −c0 is satisfied, a �= 0 and the response becomes
quasiperiodic. Otherwise, with sufficient increase in the excitation (Λ and Γ ), a is
suppressed and the response becomes periodic; known as quenching [3, 4].

The parametric terms affect the first-order correction, x1, in the approximate
solution x(t) = x0(t0, T1)+ εx1(T0, T1). In eliminating the secular terms, there are
several contributions of different frequency components, including 2ω,ω−ωn, ω+
ωn, from parametric excitation and van der Pol terms, and 2ωn, 3ωn, 3ω, 2ω −
ωn, 2ω + ωn, ω − 2ωn, and ω + 2ωn, from the van der Pol terms. Thus the first-
order solution can contribute two-frequency quasiperiodic effects, as the content of
the total response has a linear combination of two frequencies.

4.2 Sub-harmonic Resonance of Order 1/2

In this case, the excitation and natural frequency form the relation ω = 2ωn + εσ .
We see from the solvability condition in Eq. (16) that in addition to the nonresonant
secular terms in Eq. (15), the parametric damping and forcing appear. We substitute
A(T1) = 1

2a(T1)e
iβ(T1) into the equation and let γ = σT1 − 2β. Then, the

autonomous coupled system of governing equations of the amplitude a and phase γ
becomes

a′ + 1

8
a3 +

(
c0

2
+ ωnΓ

2

2
+Λ2 − c1

4
cos γ + ΓΛ

(
1− ω

ωn

)
sin γ

)
a = 0,

aγ ′ − aσ + c1

2
a sin γ + 2aΓΛ

(
1− ω

ωn

)
cos γ = 0.

(19)

The fixed points of Eq. (19) are obtained in the steady-state case when a′ = γ ′ = 0,
which admits a = 0 and a nontrivial solution. The equations for the nontrivial
solution take the form A1 sin γ + B1 cos γ = C1 and A2 sin γ + B2 cos γ = C2
where the coefficients A1, A2, B1, B2, C1, and C2 are functions of the parameters
and the amplitude a. By solving for sin γ and cos γ , and using the trigonometric
identities, we remove the variable γ and form a parametric algebraic equation to
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Fig. 4 PDVDP with parametric and external excitation in the case of sub-harmonic resonance
where c0 = −1 and f1 = 1. The three plotted curves correspond to c1 = {0.2, 0.5, 1}, and the
panels are for f0 = {0.2, 0.4, 0.6}. Solid and dotted curves are stable and unstable branches

obtain the steady-state amplitude a as,

a4 + 8a2(c0 + 2Λ2 + Γ 2)+ 4
(

4c0
2 + 16c0Λ

2 − c1
2 + 16Λ4 + 4σ 2

)
(20)

+16Γ 2
(

2c0 − 4Λ2 ω

ωn
(
ω

ωn
− 2)+ Γ 2

)
= 0.

Solving for a2 yields the steady-state response amplitude, which is valid if the
square root in the quadratic-equation solution is real, and if a2 ≥ 0. The first
criterion reduces to 4σ 2 < c2

1 + 16Γ 2Λ2, when using ω − ωn ≈ ωn. Thus the
frequency range of fixed amplitude solutions increases with c1, f0, and f1. For the
case in which a and γ are fixed and stable, based on Eq. (13) and the definition of
γ , the leading order solution takes the form

x0 = Γ − 2Λ sin(ωT0)+ a cos
(ω

2
T0 − γ

2

)
, (21)

which is a periodic (phase locked) response of fundamental frequency ω/2. When
a steady-state solution a does not exist, the response is in phase drift, and is
quasiperiodic.

Figure 4 shows the steady-state response amplitude versus the excitation fre-
quency for small value of detuning parameter, when ε = 0.1 and −0.5 < σ < 0.5.
Note that these figures show the amplitude a of one term in Eq. (21). The phase
γ would affect peak-to-peak amplitudes. The mean damping and periodic forcing
are set to be constant, c0 = −1 and f1 = 1, while different values of c1 =
{0.2, 0.5, 1} are showing the ellipses. The larger values of c1 are associated with
the larger ellipses. We see that as the constant forcing term f0 is varying between
{0.2, 0.4, 0.6}, the ellipses are distorted and the limit cycle amplitude is increased.
The sub-harmonic behavior of the parametric plus direct excitation is thus similar
to that of the parametric excitation only, except that the solutions for the steady
amplitudes are complicated and distorted by the direct excitation terms f0 and f1.
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5 Summary and Conclusions

In this paper, we studied the resonance of a forced and unforced van der Pol
equation with parametric damping. Applications can include vertical-axis wind-
turbine blade vibration, which can have parametric damping and van-der-Pol type
terms in simplified models. The first-order method of multiple scales and numerical
solutions were used.

The parametric damping with no external excitation demonstrated nonreso-
nant and sub-harmonic resonance cases, where the system shows an oscillatory
quasiperiodic behavior in the former case. In the latter resonance case, we found
the steady-state amplitude versus the excitation frequency for different damping
parameters. When c0 = −1 (negative linear damping as with the van der Pol
oscillator), the resonant response amplitude increases with the parametric damping
c1. An increase in the mean value of damping c0, however, decreases the response
amplitude.

We then studied van der Pol with parametric and direct excitation. In the
nonresonant case the parametric damping term does not contribute in the solvability
condition and therefore it showed the same behavior as the forced van der Pol. The
nonresonant system can exhibit the quenching phenomenon when the excitation
through the direct forcing is sufficiently large.

Our numerical studies showed the primary resonance as a dominant forced
response case. The analysis of this case requires further investigation that will be
done as a subsequent study with weak excitation. Based on previous studies on the
cases with forcing and cyclic stiffness [17], we expect that a second-order multiple-
scales analysis should be considered to correctly pull out the contribution of the
parametric damping to the different resonance cases.
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Analysis of General Piecewise-Linear
Non-Smooth Systems Using a Hybrid
Analytical-Numeric Computational
Method

Meng-Hsuan Tien and Kiran D’Souza

1 Introduction

The prediction and analysis of the dynamics of piecewise-linear (PWL) nonlinear
systems, or bilinear systems in particular, are of importance in many fields including
structural health monitoring of mechanical or aerospace systems [1–3], nonlinear
circuit analysis for electrical systems [4, 5], and modeling gene regulatory networks
in biological systems [6, 7]. The computation of the dynamic response of these
systems is usually expensive since efficient linear techniques [8, 9] are not effective
for analyzing these nonlinear dynamical systems or PWL nonlinear systems in
particular. Moreover, the techniques that have been developed for nonlinear systems
are usually much more computationally expensive than these traditional linear
methods. Thus, developing efficient computational tools to predict the dynamics
of bilinear systems has been drawing attention of researchers and engineers.

PWL nonlinearities are usually caused by discrete events in dynamical systems.
For instance, the intermittent contact phenomenon in structural systems that result
from cracks [10, 11], delamination [12–14], or interface among components [15]
often creates PWL nonlinearity. Moreover, PWL nonlinearity is also observed in
many electrical circuits when voltage- or current-dependent elements are employed
to realize particular properties [4]. In order to accurately model the dynamics of
these systems, a computational tool that can capture the nonlinearity is required.
PWL nonlinear systems usually consist of multiple subsystems that can be modeled
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using linear techniques. However, traditional linear methods such as modal decom-
position [16] are not able to predict the dynamics of the entire system since these
systems can still exhibit strong nonlinear features [5, 17]. Numerical integration
(NI) is the most common tool used to analyze nonlinear dynamical systems in a
broad array of fields. However, NI requires a very small step size to capture the non-
smooth evolution of state variables in PWL nonlinear systems. Thus, NI is usually
computationally expensive for analyzing these systems. Another set of methods
based on the harmonic balance (HB) method has also been widely used to predict the
vibrational response of PWL nonlinear systems [18–20]. These methods compute
the steady-state response of PWL nonlinear systems by approximating their periodic
solutions using a truncated Fourier series. Numerical methods are then employed
to solve for the unknown parameters in the assumed Fourier series. Although the
HB-based methods are able to obtain the steady-state solution by skipping the
time-consuming time marching process required by using NI, numerous harmonic
terms are usually required to obtain an accurate solution, which still incurs a
considerable computational cost. There has also been recent work in efficiently
computing the transient and chaotic response of systems undergoing periodic
excitation [21, 22]. This hybrid symbolic numeric computational (HSNC) method
has been demonstrated to be more efficient than NI, but is not necessarily as efficient
as HB-based methods in conducting parametric sweeps for systems that do reach
a steady-state response. However, it should be noted that HSNC does work for
responses that do not reach a steady state (i.e., transient, chaotic, non-stationary).
This HSNC method works by using the analytical response of the system when
it is in each linear regime and stitching the responses of the system together as it
transitions from one regime to the next.

Recently, a new technique referred to as the bilinear amplitude approximation
(BAA) method [23, 24] has been developed to compute the steady-state vibrational
response of a subset of PWL nonlinear systems whose dynamic behavior can be
approximated and modeled using bilinear oscillators. The BAA method is based on
the idea that the vibrational cycle of a bilinear system can be obtained by combining
the linear responses of the system in the distinct regions where the system behaves
linearly. The method employs the analytical approach to determine these linear
responses and incorporates a nonlinear optimization solver to numerically solve
for the unknowns when coupling these PWL responses to obtain the nonlinear
vibrational cycle. The computational cost of the BAA method can be reduced
significantly since efficient linear techniques are used in the computation. However,
the BAA method is only applicable to structural systems that are proportionally
damped and hence limits its capability for analyzing general systems.

The goal of this paper is to extend the BAA method to general bilinear systems
modeled using state-space representations. In the extended method, an analytical
technique is used to express the responses of these systems in each of their linear
regimes. Then a numerical tool is employed to solve for the parameters in the
analytical expressions by applying appropriate compatibility conditions. Steady-
state vibrational motion can then be obtained by combining the responses solved
in each linear regime. The proposed hybrid method combines the analytical and
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numerical approach to provide an efficient computational framework for capturing
the vibrational response of nonlinear systems with bilinear elements. The remainder
of the paper is organized as follows. First, the proposed method is introduced.
Next, the results of applying the method for an electrical circuit with a voltage-
dependent capacitor and a spring-mass mechanical oscillator are presented. Finally,
conclusions are discussed.

2 Methodology

In this section, the BAA method [23, 24] developed for proportionally damped
structural systems is extended to general bilinear systems modeled using state-
space representations. In general the state-space model of physical systems can be
represented as the following form:

u̇ = A(u)u(t)+ B(u)q(t), (1)

where A(u) represents the state matrix and has the size of n×n, B(u) represents
the input matrix and has the size of n×p, u(t)∈Rn represents the state vector, and
q(t)∈Rp represents the input vector. In this paper, we consider a system where the
system’s behavior can be modeled using two distinct linear states

A(u) =
{

A1 if un ≥ 0

A2 if un < 0
,

(2)
B(u) =

{
B1 if un ≥ 0

B2 if un < 0
,

where un represents the nonlinear state variable in the system, A1 and B1 represent
the state matrix and the input matrix when the system is in the first linear state,
and A2 and B2 represent the state matrix and the input matrix when the system is
in the second linear state. Note that A1, A2, B1, and B2 are all constant matrices.
In order to obtain the analytical solutions of the system in each of its linear states,
eigendecompositions of A1 and A2 are required. Since the state matrices A1 and A2
are generally non-symmetric, the eigenvalues of these matrices are not guaranteed
to be real and the eigenvalues associated with A and AT are not the same. The
eigenvalue problem associated with the matrices A’s can be expressed as

Ax = λx. (3)

The solution of Eq. (3) consists of eigenvalues λj and the right eigenvectors xj ,
where j = 1, . . . , n. Note that if λj is a complex eigenvalue, then the complex
conjugate λj is also an eigenvalue. Moreover, the eigenvector xj associated with λj
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is also complex and eigenvector xj associated with λj is the complex conjugate of
xj . Next, the eigenvalue problem associated with the transposed matrices AT can be
expressed as

AT y = λy. (4)

Note that AT and A share the same eigenvalues, and xj ’s are known as the right
eigenvectors and the adjoint eigenvectors yj ’s are known as the left eigenvectors.
These eigenvectors satisfy the following biorthogonality:

yTr Axj = 0, if λj �=λr . (5)

The eigenvectors can then be normalized by enforcing

yTr xj = δjr , (6)

where δjr is the Kronecker delta. This yields

YT AX = �, (7)

where Y = [y1, . . . , yn] is the matrix including all the left eigenvectors,
X = [x1, . . . , xn] is the matrix including all the right eigenvectors, and
� = diag[λ1, . . . , λn] is the eigenvalue matrix. Next, by premultiplying Eq. (7)
by X and postmultiplying by YT , Eq. (7) can be reformulated as

A = X�YT . (8)

Equation (8) represents the modal decomposition of the matrix A.
Next, by applying the state-space expansion theorem [16], the solution to Eq. (1)

can be represented as a linear combination of the right eigenvectors

u(t) = Xξ(t), (9)

where ξ(t) are the modal coordinates. Then, inserting Eq. (9) into Eq. (1) and
premultiplying by YT , the following equation is obtained:

YT Xξ̇(t) = YT AXξ(t)+ YT Bq(t), (10)

By using the orthogonormality relations from Eqs. (7) and (10) can be simplified to

ξ̇(t) = �ξ(t)+ n(t), (11)

where n(t) = YT Bq(t). Note that Eq. (11) is a set of independent modal equations
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ξ̇j (t) = λj ξj (t)+ nj (t), (12)

where j = 1, . . . , n and nj (t) = yTj Bq(t).
Next, the BAA method is modified to estimate the nonlinear forced response

of the bilinear system. Assuming that the system is driven by harmonic excitation
q(t) = q0e

iαt , the modal response of the system in its linear states can be expressed
as combinations of the linear transient response and the linear steady-state response:

ξj,1(t) = cj,1e
λj,1t + yTj,1B1q0

iα − λj,1
ei(αt+ψ),

(13)

ξr,2(t) = cr,2e
λr,2t + yTr,2B2q0

iα − λr,2
ei(αt+ψ),

where ξj,1(t) and ξr,2(t) (j = 1, . . . , n and r = 1, . . . , n) represent the modal
coordinate of the system in the first and second linear states, respectively; cj,1, cr,2
∈ C are scalar complex coefficients of the linear transient response; α∈R is the
excitation frequency; ψ∈R reflects the phase difference between the excitation and
the linear steady-state responses. Note that the additional phase angle ψ is included
in the expressions to represent the phase shift caused by the nonlinearity [23].
Furthermore, if ξj is a complex coordinate associated with the right eigenvector
xj , then the conjugate ξj is also a coordinate associated with the eigenvector
xj . Similarly, complex coefficients (cj , cj ) exist in conjugate pairs. The physical
coordinates can be obtained by applying the coordinate transformation u1(t) =
X1ξ1(t) and u2(t) = X2ξ2(t), where X1 represents the right eigenvector matrix
of the system in the first linear state and X2 represents the right eigenvector matrix
of the system in the second linear state.

The response of one steady-state vibrational cycle for the nonlinear state variable
is schematically shown in Fig. 1. When un ≥ 0, the system’s behavior is governed by
the first linear state; when un < 0, the system’s behavior is governed by the second
linear state. The time which the system spends in the first linear state is referred to
as T1; the time which the system spends in the second linear state is referred to as
T2. The key idea of the proposed method is that the response of an entire nonlinear
vibrational cycle can be obtained by combining the responses of the system in its
two linear states. To this end, a set of compatibility conditions is enforced to solve
for the unknowns cj,1, cr,2, and ψ in Eq. (13). These compatibility conditions are
summarized as follows:

u1(T1) = u2(T1),

u1(0) = u2(T ),

(14)un,1(0) = 0,

un,1(T1) = 0.
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Fig. 1 One steady-state vibration cycle for the nonlinear state variable

The first and second equation in Eq. (14) represent the continuity condition that the
state variables must satisfy at the moment when the system switches from one linear
state to the other. The third and fourth equations represent the threshold value that
the nonlinear state variable passes through when the system switches its linear state.
Note that T is the period of the vibration cycle which can be calculated by T = 2π

α

and T1 is an additional unknown that needs to be solved. Equation (14) can then be
expressed in terms of modal coordinates as:

X1ξ1(T1)− X2ξ2(T1) = 0,

X1ξ1(0)− X2ξ2(T ) = 0,

(15)X1,nξ1(0) = 0,

X1,nξ1(T1) = 0,

where X1,n is the portion of the mode shapes corresponding to the nonlinear state
variable un,1. The unknowns (cj,1, cr,2, ψ , T1) in Eq. (15) can then be solved by
employing a nonlinear optimization solver. In this work, the function “lsqnonlin” in
MATLAB was used to find these parameters by minimizing the residual in Eq. (15).
Once these parameters are obtained, a nonlinear vibrational cycle can be constructed
by coupling the linear responses of each linear states.

The proposed method is developed for analyzing the steady-state dynamics of
PWL systems, and is particularly beneficial when a parameter sweep is required.
In the sweep process, the nonlinear optimization solver is given multiple random
initial guesses at a starting parameter value. Since multiple local solutions might
exist, only the one that has the minimum residual is chosen as the starting point
for the parameter sweep. The parameter sweep can then be conducted efficiently
by using the solution from the previous parameter value as the initial condition for
computing the response at the next parameter point.
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3 Results

Results of applying the methodology to a three degree-of-freedom (DOF) mechan-
ical oscillator with contacting masses and a nonlinear analog circuit are discussed
next.

3.1 Mechanical Oscillator with Contacting Elements

The proposed method is applied to analyze the nonlinear response of a three
DOF mechanical oscillator with contacting masses as shown in Fig. 2a, where
m1 = m2 = 2.0 kg, m3 = 10 kg, k1 = 1.20 N/m, k2 = 1.68 N/m, k3 = 8.00 N/m,
c1 = 0.060 kg/s, c2 = 0.0168 kg/s, c3 = 0.400 kg/s, and the initial gap g = 0 m.
Note that the damping matrix is not proportional to the mass and stiffness matrices in
this case study. The mass m3 is excited by a harmonic force F(t) = f0cos(ωt) with
amplitude f0 = 0.01 N and frequency ω. In order to analyze the intermittent contact
behavior between m1 and m2, the system’s dynamic behavior is modeled using
two linear subsystems. The first sub-system represents the system’s first linear state
when the gap is open, which is shown in Fig. 2b; the second sub-system represents
the system’s second linear state when the gap is closed, which is shown in Fig. 2c.
Note that a set of contact stiffness k∗ and contact damping c∗ is used to minimize
the penetration between the contacting masses when the gap is in the closed state.
The contact stiffness and damping are set to k∗ = 1000 N/m and c∗ = 50 kg/s in
this work. The equations of motion of the system for its two linear states can be
expressed as

M1ẍ1 + C1ẋ1 +K1x1 = F(t) if x1 − x2 < 0,

(16)
M2ẍ2 + C2ẋ2 +K2x2 = F(t) if x1 − x2 ≥ 0,

where the subscript 1 represents the first linear state when the gap is open, and the
subscript 2 represents the second linear state when the gap is closed. The matrices
can be expressed as

M1 = M2 =
⎡

⎣
m1 0 0
0 m2 0
0 0 m3

⎤

⎦ ,

C1=
⎡

⎣
c1 0 −c1

0 c2 −c2

−c1 −c2 c1 + c2 + c3

⎤

⎦,C2=
⎡

⎣
c1 + c∗ −c∗ −c1

−c∗ c2 + c∗ −c2

−c1 −c2 c1 + c2 + c3

⎤

⎦, (17)



496 M.-H. Tien and K. D’Souza

1, 13, 3

(t)
1(t) 2(t)

3(t)

1 2

3

2, 2

g

(a)

1, 13, 3

(t)
1(t) 2(t)

3(t)

1 2

3

2, 2

(b)

∗, ∗

1, 13, 3

1(t) 2(t)

3(t)

1 2

3

2, 2

(t)

(c)

Fig. 2 (a) Three DOF mechanical oscillator with contacting masses. (b) The system in the open
state. (c) The system in the closed state

K1 =
⎡

⎣
k1 0 −k1

0 k2 −k2

−k1 −k2 k1 + k2 + k3

⎤

⎦ ,K2 =
⎡

⎣
k1 + k∗ −k∗ −k1

−k∗ k2 + k∗ −k2

−k1 −k2 k1 + k2 + k3

⎤

⎦ .

The coordinate x = [x1, x2, x3]T represents the displacements of m1, m2,
and m3, respectively. Since the system is not proportionally damped, the state-
space model is used to model its dynamics by expanding the coordinate system to
u = [x1, x2, x3, ẋ1, ẋ2, ẋ3], where ẋ1, ẋ2, and ẋ3 represent the velocity of the three
masses. The state matrix and the input matrix of the state-space model can then be
expressed as

A1 =
[

0 I
−M1

−1K1 −M1
−1C1

]
,

A2 =
[

0 I
−M2

−1K2 −M2
−1C2

]
,

(18)
B1 =

[
0

M1
−1

]
,
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B2 =
[

0
M2

−1

]
,

where I represents the identity matrix.
Next, the proposed method is employed to compute the nonlinear response of

the system. Note that the nonlinear state variable of this system is un = x1 − x2
since the system switches its state when x1 − x2 = 0. Furthermore only the
real part in Eq. (15) is retained for the computation since the system is driven by
f0 cosωt . The forced response obtained using the proposed method is compared
with the one computed using numerical integration. The explicit Runge–Kutta
method [25] and the event function in MATLAB [26] are used for performing
numerical integration in this work. The comparison is shown in Fig. 3 with the
solutions computed using the proposed method and numerical integration being in
good agreement over the plotted frequency range. Furthermore, the average CPU
time required by the proposed method to compute the forced response for a specific
frequency using a Dell XPS 15 laptop (2.60 GHz) is 0.039 s. By contrast, numerical
integration requires 2.557 s to obtain a steady-state response. The proposed method
only requires 1.53% of the CPU time of numerical integration. The new method is
expected to improve its computational performance with respect to NI as the system
becomes more and more complex in the same way as BAA [27, 28].

0.08 0.1 0.12 0.14 0.16 0.18 0.2
Excitation frequency [Hz]

0

0.01

0.02

0.03

0.04

0.05

0.06

D
is

pl
ac

em
en

t a
m

pl
itu

de
 [m

]

0.18 0.185 0.19 0.195
5

10

10-3

Fig. 3 Forced response of the three DOF mechanical oscillator. (−) represents the response of m1
computed using the proposed method; (−−) represents the response of m2 computed using the
proposed method; (· · ·) represents the response of m3 computed using the proposed method; (�)
represents the response of m1 computed using numerical integration; (©) represents the response
of m2 computed using numerical integration; (.) represents the response of m3 computed using
numerical integration
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Fig. 4 A PWL nonlinear
circuit with
voltage-dependent resistance
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3.2 Nonlinear Analog Circuit with a Voltage-Dependent
Resistance

The proposed method is applied to analyze the dynamic response of a simple
nonlinear circuit with a voltage-dependent resistance as shown in Fig. 4. This circuit
is composed of several components including an inductor (L), a capacitor (C),
a diode, and several resistors (R, R1, R2). Note that the diode allows current to
flow in only one direction and hence induces the PWL nonlinearity in the system.
Furthermore, the system is driven by an AC voltage with amplitude f0 and frequency
ω. The state-space model of this circuit can be expressed as

u̇ = A(v)u(t)+ B cos(ωt), (19)

where u(t) = [v(t), i(t)]T . Note that v represents the voltage across the capacitor
C and i represents the current across the resistor R and the inductor L. The state
matrix and the input matrix of this system can be expressed as

A(v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[ −R1R2
C(R1+R2)

1
C

−1
L

−R
L

]

if v≥0

[ −1
CR1

1
C

−1
L

−R
L

]

if v < 0

,

(20)

B =
[

0
f0
L

]
.

The steady-state response of the system for a particular parameter set is computed
using the proposed technique. The parameter values used in this case study are
R = 120 �, L = 1.8×10−2 mH, C = 10−8 nF, R1 = 100 �, R2 = 10 �, and
f0 = 1 V. Again, only the real part in Eq. (15) is retained for the computation since
the system is driven by f0 cosωt . The phase plots of the system for ω = 500 Hz
computed using the proposed method and numerical integration are compared
in Fig. 5a. Figure 5a shows that the proposed method is able to compute the
system’s response accurately. Next, the proposed method is used to perform a
frequency sweep to validate its ability to capture the dynamics in a wide parameter
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Fig. 5 (a) Phase plot of voltage and current computed using the proposed method (�) and NI (−).
(b) Peak-to-peak amplitude of voltage computed using the proposed method (−) and NI (◦). (c)
Peak-to-peak amplitude of current computed using the proposed method (−) and NI (◦)

range. The peak-to-peak voltage and peak-to-peak current of the system for the
excitation frequency range [100 Hz, 10,000 Hz] are shown in Fig. 5b,c, respectively.
The response computed using the proposed method is compared with numerical
integration in these plots. The forced response computed using the proposed method
agrees well with the numerical integration solution in the plotted frequency range.
The average CPU time required by the proposed method to analyze the steady-state
response for a specific frequency is 0.08 s. By contrast, time integration requires
3.01 s to integrate to a steady-state response at each frequency. The proposed method
only requires 2.7% of the CPU time of the numerical integration method. The speed-
up of the proposed method will provide an efficient analysis tool for designing PWL
circuits especially when the circuit is complex. Again, the new method is expected
to improve its computational performance with respect to NI as the system becomes
more and more complex in the same way as BAA [27, 28].

A key benefit of this new approach is that it enables a more thorough analysis
of simple and complex nonlinear PWL systems. Next, the method will be used to
conduct a multi-variable parametric study to investigate the dynamic properties of
the circuit shown in Fig. 4. The excitation frequency and the resistance R are chosen
as the control parameters in this parametric study. The peak-to-peak amplitude of
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Fig. 6 (a) Global analysis of voltage using the proposed method. (b) Global analysis of current
using the proposed method

voltage and current for the frequency range [100 Hz, 10000 Hz] and resistance range
[25�, 300�] are efficiently computed and plotted in Fig. 6a,b, respectively. Figure 6
shows that the system exhibits the highest voltage and current when the frequency
and resistance R are both small. This new method enables the accurate and efficient
investigation of the global dynamic properties of PWL systems.

4 Conclusions

An efficient methodology for computing the steady-state vibration response of
bilinear systems in general fields is introduced. The method extends the previous
method referred to as the bilinear amplitude approximation method, which is
developed for analyzing proportionally damped structural systems, to more general
systems modeled using state-space representations. The new method utilizes the
linear features of a state-space model in distinct linear regions to obtain the
analytical solution for each linear sub-system. The nonlinear vibration response
is then computed by applying appropriate compatibility conditions to couple the
analytical solutions. The method uses the hybrid analytical-numeric approach to
achieve efficient computation of the nonlinear dynamics.

The method is demonstrated on a three degree-of-freedom mechanical oscillator
with contacting masses and an electrical circuit with voltage-dependent elements to
show its broad application areas. The proposed method is validated by traditional
numerical integration. Furthermore, the new method shows the capability of
capturing the nonlinear response for a wide parameter range and is an efficient tool
for conducting parametric studies for bilinear systems in a broad array of application
areas.
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Analytical Approximation of Forced
Oscillations of Nonlinear Helmholtz
Resonator by Homotopy Analysis Method

Emmanuel Gourdon, Alireza Ture Savadkoohi, and Claude-Henri Lamarque

1 Introduction

Nonlinear acoustic HR can provide wide possibilities of practical applications, for
example targeted nonlinear energy transfer in acoustics [1]. Nonlinear character
of restoring characteristic and damping part can lead to substantial improvement
of this element. So it becomes important to be able to describe and to predict the
nonlinear amplitude-frequency response analytically to be able to optimize and to
design the HR for practical applications. However, this kind of nonlinear resonator
involves quadratic and cubic terms in their nonlinear restoring force which lead
to different regimes (softening or hardening behavior) in function of amplitude
of excitation. Those behaviors can be well predicted as shown in [2], but the
methods usually require the use of a small parameter. So the problem is often
solved as a weakly nonlinear system involving only small finite amplitudes or as
strongly nonlinear system involving strong amplitudes. That is why we propose in
the present study to use HAM to obtain the whole frequency response curves for
various values of parameters. Indeed, HAM was introduced by Liao [3–8], and it is
a nonperturbative analytical technique (a continuation method) for solving nonlinear
differential equations. This method (more details about the HAM can be found
in [9–11]) does not need to define and use a small (or large) parameter so it is
well adapted to predict small as well as large amplitude oscillations of nonlinear
systems. It has been applied recently with success in various domains to obtain
approximate solutions to highly nonlinear problems [12–19]. We also have to take
into account the mean of motion which cannot be disregarded because the damped
system involves quadratic and cubic nonlinearities. This last point can be performed
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following the work developed in [19]. In [19] authors proposed an example of
application of HAM to a forced nonlinear vibratory system with quadratic and cubic
nonlinearities in a nonlinear beam model.

The present paper is organized as follows. In the second section of this paper,
we present governing equation of the considered system. Then, in section three we
present the Homotopy Analysis Method and we apply the method with an example
in section four.

2 Governing Equation of Helmholtz Resonator

We consider a classical HR [20] with a neck connected to a cavity. The walls are
taken impervious. The air into the neck is considered as an uncompressible mass
(usual hypotheses when the Helmholtz number is small compared to one) and
the air inside the cavity is supposed to be compressible. Classical hypotheses are
taken: adiabatic transformations inside the acoustic resonator and the neck length
is considered much smaller than cavity length. We have to take into account the
restoring force due to the compression of the air in the cavity and the damping due
to friction (air at high velocity) [21, 22]. We also take into account nonlinear terms
for restoring and damping forces [22]. If we consider a displacement U of the air in
the neck, it will induce a change of pressure Δp [22, 23]:

Δp = −ρLω2
0

(

U − (γ + 1) S

2V0
U2 + (γ + 1) (γ + 2) S2

6V 2
0

U3

)

(1)

where ρ is the air density, L is the effective length of the neck as mentioned in [22],
S is the cross section of the neck, V0 is the volume in the cavity, γ is the specific
heat ratio, and ω0 is the linear resonance frequency of the resonator.

In the present paper, we take into account the cubic term of the restoring force
function as it has been done in [1, 2]. This term can be taken into account when
the vortex shedding is attenuated. We have also to introduce nonlinear damping (jet
phenomenon [21, 24]). By considering the momentum equation, the conservation
of mass, by combining the nonlinear restoring force, linear damping, the effective
length, nonlinear damping, and the external pressure excitation pe, the equation of
motion with respect to time t reads as:

d2U

dt2
+ ξ

2L

dU

dt

∣∣∣∣
dU

dt

∣∣∣∣+ 2δ
dU

dt
+ω2

0U

(

1− α
SU

V0
+ β

(
SU

V0

)2
)

= − pe

ρL
(2)

where δ =
(

S
2ρL

)
/ (Zin + Zvis), (where / stands for the real part of the complex

number), α = (γ + 1)

2
, β = (γ + 1) (γ + 2)

6
and ξ is the total hydraulic-resistance
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coefficient of the neck. Zin is the acoustic impedance at inlet of HR, Zvis is the
friction acoustic impedance. We introduce dimensionless variables, t∗ = ω0t ,

x = SU

V0
, c = 2δ

ω0
, σ =

(
ξ

2

)(
V0

LS

)
and we obtain:

d2x

dt∗2
+ σ

dx

dt∗

∣
∣∣∣
dx

dt∗

∣
∣∣∣+ c

dx

dt∗
+
(
x − αx2 + βx3

)
= −pe (3)

The external excitation can be considered as a plane wave excitation with the form:
pe = −f cos(ωt∗ − φ). Here a phase φ has been introduced just for convenience
and this phase has to be determined. We suppose that the excitation frequency is
close to the natural frequency of the system (so close to one here, see Eq. (3)).

Moreover, because of the quadratic nonlinearity in Eq. (3), the mean of motion

M = 1

T

∫ T

0
x(t∗)dt∗ can be nonzero, so after introducing a change of variables in

time τ = ωt∗ we have to introduce a new variable z(τ ) such as (as it has been done
in [19]):

x(t∗) = M + z(τ ) (4)

Then, we consider initial conditions (also by convenience) such as:

dx

dt∗
(0) = 0, x(0) = M + A (5)

where A = z(τ = 0) being unknown.
Finally, we normalize variables by introducing y(τ) such as z(τ ) = Ay(τ). Thus,

initial conditions for y(τ) are:

dy

dτ
(0) = 0, y(0) = 1 (6)

So the Eq. (3) becomes:

ω2A
d2y

dτ 2 + ω2σA|A|dy
dτ

∣∣∣∣
dy

dτ

∣∣∣∣+ cωA
dy

dτ
+ (M + Ay(τ))− α (M + Ay(τ))2

+β (M + Ay(τ))3 = f cos(τ − φ)

(7)
The three unknown to be determined are y(τ), A, and M .



506 E. Gourdon et al.

3 Application of Homotopy Analysis Method

The HAM refers to transform the nonlinear differential equation into an infinite
number of linear differential equations and derive a family of solution series owing
to a parameter ranging from zero to one. We have to define a linear operator
L[Y (τ, p)] and a nonlinear operator N [Y (τ, p),D(p), μ(p)] with the following
zeroth-order equation (we have chosen the nonzero auxiliary function equals to 1 as
done in lot of publications using HAM):

(1− p)L[Y (τ, p)− y0(τ )] = phN [Y (τ, p),D(p), μ(p)] (8)

where p ∈ [0, 1] is the embedding parameter, y0(t) is the initial guess, and h

is the convergence-control parameter (more details can be found in [19] where
explanations have been given regarding the choice of this parameter; the method-
ology described in [19] is applied and used here for the governing equation of
the present paper). It should be underlined that the analytical solution will be
described with this unknown parameter h, and the solution will be expressed
in series with a certain number of terms. However, in this paper we will just
perform a first-order computation. This task does not require discussion about
the convergence of the formal series since we are just interested (in this paper)
in plotting amplitude-frequency response which is not dependent on h. The final
solution will be dependent on h and it will be necessary to identify the value of h
optimally. For p = 0 and p = 1 we obtain:

Y (τ, 0) = y0(τ ) Y (τ, 1) = y(τ)

D(0) = A0 D(1) = A

μ(0) = M0 μ(1) = M

(9)

The principle is that Y (τ, p) varies from the initial guess y0(τ ) to the desired
solution as p varies from 0 to 1. Because the periodic solutions of Eq. (7) can be
expressed in series of cosinus and sinus, we choose the following linear operator:

L[Y (τ, p)] = ω2
(
∂2Y (τ, p)

∂τ 2 + Y (τ, p)

)
(10)

Then we can define the nonlinear operator (owing to Eq. (7)):

N [Y (τ, p),D(p), μ(p)] (11)

= ω2D(p)
∂2Y (τ, p)

∂τ 2
+ σω2D(p)|D(p)|∂Y (τ, p)

∂τ

∣∣
∣∣
∂Y (τ, p)

∂τ

∣∣
∣∣

+cωD(p)∂Y (τ, p)
∂τ

+ (μ(p)+D(p)Y (τ, p))− α (μ(p)+D(p)Y (τ, p))2
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+β (μ(p)+D(p)Y (τ, p))3 − f1 cos(τ )− f2 sin(τ )

with:

f 2
1 + f 2

2 = f 2 φ = arctan
f1

f2
(12)

We use the Taylor expansions with respect to p:

Y (τ, p) = y0(τ )+
+∞∑

k=1

(
1

k!
∂kY (τ, p)

∂pk

∣
∣
∣∣
p=0

)

︸ ︷︷ ︸
yk(τ )

pk

D(p) = A0 +
+∞∑

k=1

(
1

k!
∂kD(p)

∂pk

∣∣
∣∣
p=0

)

︸ ︷︷ ︸
Ak

pk, μ(p) = M0 +
+∞∑

k=1

(
1

k!
∂kμ(p)

∂pk

∣∣
∣∣
p=0

)

︸ ︷︷ ︸
Mk

pk

(13)

If the convergence-control parameter h is well chosen, then (13) converges when
p = 1, such that:

y(τ) = y0(τ )+
+∞∑

k=1

yk(τ ), A = A0 +
+∞∑

k=1

Ak, M = M0 +
+∞∑

k=1

Mk (14)

As initial guess, we can choose y0(τ ) = cos(τ ) which ensures that the initial
conditions (6) are satisfied. Then, the methodology of HAM is the following: first,
we differentiate Equation (8) k times with respect to p, secondly we divide it by k!
and finally we set p = 0 to obtain the k-th order equation:

L[yk(τ )− Xkyk−1(τ )] = hFk

(
y
k−1

, Ak−1,Mk−1

)
(15)

with zero initial conditions yk(0) = ∂yk(0)

∂τ
= 0 where:

Xk = 0 if k ≤ 1 and 1 if k > 1,
y
k−1

= [yo(τ ), y1(τ ), . . . , yk−1(τ )], Ak−1 = [A0, A1, . . . , Ak−1],
Mk−1 = [M0,M1, . . . ,Mk−1]

(16)

and
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Fk

(
y
k−1

, Ak−1,Mk−1

)
= 1

(k − 1)!
dk−1N [Y (τ, p),D(p), μ(p)]

dpk−1

∣
∣∣
∣
p=0

= ω2Ak−1
∂2yk−1

∂τ 2 + σω2Ak−1|Ak−1| ∂yk−1

∂τ

∣∣
∣
∣
∂yk−1

∂τ

∣∣
∣
∣+ cωAk−1

∂yk−1

∂τ

+ (Mk−1 + Ak−1yk−1)− α

k−1∑

l=0

(Ml + Alyl)(Mk−1−l + Ak−1−lyk−1−l )

+β
k−1∑

l=0

(
l∑

m=0

(Mm + Amym)(Ml−m + Al−myl−m

)

. (Mk−1−l + Ak−1−lyk−1−l )

−(1− Xk)(f1 cos(τ )+ f2 sin(τ ))

= ak,0 +
N(k)∑

j=1

ak,j (yk−1
, Ak−1,Mk−1) cos(jτ )+ bk,j (yk−1

, Ak−1,Mk−1) sin(jτ )

(17)

It should be noticed here that ak,1 and bk,1 have to be equal to zero otherwise secular
terms (in τ cos(τ ) and τ sin(τ )) will appear in the solution which is impossible with
the property of the linear operator. We can also conclude that ak,0 has to be taken
equal to zero otherwise a constant term will appear in the solution. The solution to
Eq. (15) is:

yk(τ ) = Xkyk−1(τ )+ h

ω2

N(k)∑

j=2

ak,j cos(jτ )+ bk,j sin(jτ )

1− j2 + E1 cos(τ )+ E2 sin(τ )

(18)
where E1 and E2 are determined by zero initial conditions.

In the present paper, we are first interested to obtain steady-state solutions so
as to obtain steady-state solutions of the mean motion M0, the amplitude A0,
and the phase φ. It has been seen in different papers, especially in [19] that low-
order approximations by HAM agree well with numerical simulations and it can be
sufficient to consider the first-order approximation. That is why we present just the
calculation of the first-order approximation in the following. So we obtain:

F1

(
y

0
, A0,M0

)
= −ω2A0 cos(τ )− σω2A0|A0| sin(τ )| sin(τ )| − cωA0 sin(τ )

+(M0 + A0 cos(τ ))− α(M0 + A0 cos(τ ))2 + β(M0 + A0 cos(τ ))3

−f1 cos(τ )− f2 sin(τ )
(19)

The nonlinear damping due to the jet phenomenon, expressed by the coefficient
σ can usually be neglected for low level of sound pressure, but on high levels, σ
must be present and is proportional to the ratio of cavity volume to that of the neck
[22]. As done in [1, 2, 22], we can use the expansion in Fourier series of this term
and keep just the first term because we can consider that those nonlinear terms have
an order of magnitude smaller than the other terms. We have:



Analytical Approximation of Oscillations of Nonlinear HR by HAM 509

sin(τ )| sin(τ )| =
+∞∑

n=1

1

πn(1− n2

n4 )
(1− (−1)n) sin(nτ)

= 8

3π
sin(τ )− 8

15π
sin(3τ)+ . . .

(20)

So, we obtain:

F1

(
y

0
, A0,M0

)
= (1+ 3

2
βA2

0)M0 − αM2
0 + βM3

0 − α
A2

0

2

+
(
(1− ω2)A0 + 3βM2

0A0 + 3β

4
A3

0 − 2αM0A0 − f1

)
cos(τ )

−
(
cωA0 + f2 + σω2A0|A0| 8

3π

)
sin(τ )+

(
3

2
βA2

0M0 − α
A2

0

2

)

cos(2τ)

+β
4
A3

0 cos(3τ)

(21)
The three unknownM0,A0, and the phase φ can be obtained by imposing that the

constant term and the coefficients of cos(τ ) and sin(τ ) be equal to zero as mentioned
previously, so after some calculations, we get:

M0 = G1 − G2

G1
+ α

3β
(22)

where:

G1 =
( √

G3

63/2β2 +
3αA2

0

12β
− (3βA2

0 + 2)α

12β2 + α3

27β3

)1/3

G2 =
(

3βA2
0 + 2

6β
− α2

9β2

)

G3 = (27A4
0β

2 + 54A2
0β + 36− 18A2

0α
2)A2

0β
2 + (8− 24A2

0α
2)β + 4A2

0α
4 − 2α2

(23)

and

(
(1− ω2)A0 + 3βM2

0A0 + 3β

4
A3

0 − 2αM0A0

)2

+
(
−cωA0 − σω2A0|A0| 8

3π

)2

= f 2

φ = arctan
cω + σω2|A0| 8

3π

ω2 − 1− 3βM2
0 − 3β

4 A
2
0 − 2αM0

(24)

The previous equations are sufficient to plot the amplitude-frequency (A0, ω/ω0)
curve (by solving the implicit function F(A0, ω/ω0) = 0 where F is a nonlinear
function directly obtained by Eq. (24)) but it is also possible to obtain the general
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solution by solving the first-order equation (according to Eq. (18) and by determin-
ing the two constants E1 and E2 with the zero initial conditions):

y1(τ ) = h

ω2

N(1)=2∑

j=2

ak,j cos(jτ )

1− j2
+ E1 cos(τ )+ E2 sin(τ )

= h

ω2

((
1

2
βM0 − α

6

)
A2

0 (cos(τ )− cos(2τ))+ β

32
A3

0 (cos(τ )− cos(3τ))

)

(25)
Finally, we obtain the desired solution:

x(t∗) = M + Ay(τ) ≈ M0 + A0 (y0(τ )+ y1(τ ))

≈ M0 + h

ω2

((
ω2

h
A0 +

(
1

2
βM0 − α

6

)
A3

0 +
β

32
A4

0

)
cos(ωt∗)

+
(
α

6
A3

0 −
1

2
βM0A

3
0

)
cos(2ωt∗)− β

32
A4

0 cos(3ωt∗)
)

(26)

As already underlined, this approximation is only the first order and more terms
are necessary to obtain a better approximation with determination of optimal
h. In this paper, we are just interested in plotting amplitude-frequency response
(A0, ω/ω0) which is not dependent on h (see Eq. (24)). The final solution x(t∗)
will be dependent on h, and it will be necessary to identify the value of h

optimally. The way to do it is the same as described in [19]. The optimal choice
is obtained by minimizing the square residual of the governing equation for a
given order of the approximation. For this, we have to consider the N th-order
approximations of Eqs. (13). Then by inserting those N th-order approximations into
Eq. (11) with p = 1, we can define the square residual error for the N th-order

approximation as EN(h) =
∫ 1

0
(N [yN(τ), AN,MN ])2 dτ . The solution series is

convergent when EN(h)→ 0 as N →∞. The optimal value of h for a given order

N of approximation is obtained by the solution of the equation
dEN

dh
= 0. As in

[19] the results (they will be shown and analyzed in future works) show that low-
order approximations agree well with numerical solutions and increasing orders of
iterations increases the accuracy.

4 Simulation with an Example

In this section, we implement the previous calculations on an example, especially
the steady-state solutions to obtain amplitude-frequency curve of the resonator. With
classical multiple scales approach, we have to express all parameters in function
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Fig. 1 Example of a nonlinear amplitude-frequency response obtained analytically by HAM
showing softening and hardening behavior

of a small parameter (or a large one), and it is often not possible to obtain the
amplitude-frequency curve of the resonator for intermediate values and without
making hypotheses on the level of amplitudes (low or high amplitudes).

In the present paper, we can directly calculate the amplitude frequency-curve
with no hypothesis on the parameters. To illustrate this point, we can choose
an example with intermediate values showing softening and hardening behavior
simultaneously (which was not possible to see with classical multiple scale approach
as shown in [2]) with the following values for parameters:

c = 0.1; ω0 = 10.5; α = 14.4; β = 1.2; f = 10 and we obtain the
amplitude-frequency curve of Fig. 1 (the curves are not dependent on h). To obtain
those classical amplitude-frequency curves (A0, ω/ω0), which are the plot of A0
in function of ω/ω0, we use the formula (24) and solve the implicit equation
F(A0, ω/ω0) = 0 where F is a nonlinear function directly obtained by Eq. (24).
Direct numerical integration of the initial governing equation has been done using
a Runge–Kutta Scheme of order four to validate some analytical calculations
for the amplitude A. Stationary solutions have been numerically computed and
amplitude has been taken after a long time (numerical simulations have been
computed from 0 to 200 s with a step of 0.01 s and the maximum xmax and minimum
xmin values of x have been taken between 190 s and 200 s to obtain numerically
A = (xmax − xmin)/2 by increasing and decreasing ω/ω0 by continuation). The
figure shows a good agreement. Moreover, this figure shows that for this given

set of parameters the resonator exhibits softening behavior (
ω

ω0
< 1) for certain

amplitudes and hardening (
ω

ω0
> 1) behavior for higher amplitudes.
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5 Conclusions

Applying Homotopy Analysis Method to the forced nonlinear Helmholtz Resonator
has allowed to obtain nonlinear amplitude-frequency responses for the whole system
taking into account nonlinear restoring force and nonlinear damping. Quadratic
and cubic terms have been taken into account. Owing to the Homotopy Analysis
Method which does not need to use a small or large parameter, it was possible to
obtain different regimes (softening or hardening behavior) in one calculation and for
intermediate oscillations. This was not possible with the classical multiple scales
approach [25] where two regimes (low and high level) were calculated. We have
also taken into account the mean of motion which cannot be disregarded because
the damped system involves quadratic and cubic nonlinearities. The analytical
approximations have been compared with a classical Runge–Kutta method on an
example and the accuracy is good. It remains to study higher-orders to better study
the influence of each parameter.
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Nonlinear Aspects of One-dimensional
Supersymmetry

Eric Howard , Iftekher S. Chowdhury, and Ian Nagle

1 Introduction

Supersymmetry (SUSY) is an extension of the Standard Model and a conjectured
fundamental symmetry between Bose and Fermi statistics, on the basis of Z2-
graded superalgebras, providing a natural mechanism for unification of gravity
with electromagnetic, strong, and weak interactions, waiting for experimental
confirmation. Supersymmetric models played a central role in many advances in
theoretical physics since their discovery.

Supersymmetric quantum mechanics has been applied for solving challenging
problems in theoretical and mathematical physics, providing a non-perturbative
method to explore new iso-spectral quantum systems, study the supersymmetry
breaking mechanism, discover new emergent hidden dynamical symmetries, and
find exactly or quasi-exactly solvable problems in quantum mechanics. The inti-
mate relationship between nonlinear supersymmetric systems and quasi-exactly
solvability was initially discovered for one-dimensional quantum systems [1].
Supersymmetric Quantum Mechanics provide the algebraic form of complete or
partial transformations associated with the spectral equivalence between dynamical
systems with specific controllable energy spectra. Its development led to field
and string theories with exceptional properties, such as superstring theory and
supergravity, exceptional groups, and higher structures.

The Standard Model is a Poincaré-invariant gauge theory, with the gauge and
fermion theory being constrained by internal symmetry principles, while the new
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physics beyond the Standard Model needs to find more relaxed features associated
with new symmetries whose transformations do not commute with Poincaré trans-
formations. Such task leads to a picture of supersymmetry as a possible solution
to existing problems, such as gauge coupling unification, compactification, and
the low-energy limit of string theories or the existence of dark matter. Various
applications of supersymmetric quantum mechanics can be found in the dynamics of
D-branes and black holes, M-theory and matrix models, or the theory of integrable
systems and fluid mechanics. An interesting property of supersymmetry is that it
manifests as a nonlinear symmetry of a bosonic system without fermion degrees of
freedom. By employing generalized statistics [2], nonlinear supersymmetry can be
developed without fermions, as a general case of linear supersymmetry [3].

Supersymmetric quantum mechanics admits several formulations in terms of
bosonic degrees of freedom. A bosonized supersymmetry provides a good jus-
tification for several observed properties of the periodic quantum problem in
many physical systems. Supersymmetric algebra was initially developed in field
theories in terms of bosonic and fermionic fields, with the potential to apply to
realizing a Grand-Unified Theory (GUT) for all four fundamental forces (strong,
weak, electromagnetic, and gravitational). At the same time, supersymmetry and
generalized statistics are intimately related in systems of parabosons with a non-
linear superalgebra. The hidden nature of these supersymmetries is an important
characteristic of the conserved operators. Nonlinear supersymmetry (polynomial, n-
fold) is associated to several systems such as the parabosonic [2] and parafermionic
[4] oscillator models, the P, T -invariant models of planar fermions [5], Chern–
Simons fields, or the symmetry of the fermion-monopoles [6].

Generalized statistics and supersymmetric systems find a common denominator
in the hidden non-standard supersymmetric nature of pure parabosonic systems,
exhibiting nonlinear properties. Parabosonic nonlinear supersymmetry can be gener-
ated by nontrivial corrections of the supersymmetric quantum mechanics. However,
the quantization of nonlinear supersymmetry encounters the challenging problem
of quantum anomalies. Our study is motivated by the existence of nonlinear
supersymmetry in parabosonic systems, the hidden symmetries associated with
their super-Hamiltonians, and the emergence of global quantum anomalies in
supersymmetric quantum theories that break such symmetries.

In pure parabosonic systems with n-supersymmetry, the Hamiltonian and the
associated supercharges have a nonlocal character. Consequently, the associated
supercharges are nonlocal operators as infinite series in the operator. The nonlocal
supercharges anticommute for a function of the Hamiltonian as a second order
differential operator. The nonlinear supersymmetry algebra is quite similar to the
finite W -algebras where the commutator of algebra generators is always propor-
tional to an integrable (or finite order) polynomial. The symmetry generators are
split into “even” (“bosonic”) and “odd” (“fermionic”) subsets, with “bosonic” and
“fermionic” eigenstates of the Hamiltonian respectively.

In systems with supersymmetry, there are operators Q that together with the
Hamiltonian form an algebra that is defined by both of the commutation and anti-
commutation relations, or a superalgebra. The nonlinear supersymmetry algebraic
structure is described by the superalgebra [7]
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[Q±,H ] = 0, (Q±)2 = 0, {Q+,Q−} = Pn(H), (1.1)

where Pn() is a polynomial of the n-th degree. The + represent the states with even
parity, while the − describe states with odd parity.

The linear superalgebra (1.1) corresponds to n = 1 case and reduces to the
supersymmetric quantum mechanics of Witten; however, the quantization of such
nonlinear supersymmetry will generate a quantum anomaly [8]. Supersymmetric
quantum mechanics were initially introduced by Witten as a natural toy model
for studying the supersymmetry breaking mechanism as a solution to the hier-
archy problem in particle physics. However, the “integrability conditions” and
the existing nontrivial universal properties given by the Dolan–Grady relations
[9] led to the development of holomorphic nonlinear supersymmetry algebra
and extended versions of the superalgebra (1.1), containing several anomaly-free
quantum mechanical systems, similar to the well-known exactly and quasi-exactly
solvable systems [10–14]. In the present paper, we employ nonlinear supersymmetry
algebra to analyze quantum anomalies naturally arising in supersymmetric one-
dimensional systems.

2 Quantum Anomalies and Nonlinear Supersymmetry

Anomalies of symmetries play a significant role in quantum field theory and
supersymmetry. A quantum anomaly occurs when a symmetry that is present in the
classical theory is naturally broken in the corresponding quantum theory. A quantum
anomaly that arises from the failure of a symmetry of the action in the classical
theory is also a symmetry of any regularization of the full quantum theory. If a global
symmetry exhibits anomalous properties, classical forbidden processes may occur
as the selection rules in the classical theory are not respected any longer. This leads
to quantum corrections during the quantization of classical nonlinear supersymmet-
ric systems, connecting nonlinear supersymmetry to quasi-exactly solvable systems.
The differences between linear and nonlinear supersymmetry mainly appear during
the full quantization of the system. The existence of quantum anomalies led to
natural generalizations of the linear and higher-derivative supersymmetry models
such as the nonlinear holomorphic supersymmetry that quantizes classical one-
dimensional systems with nonlinear supersymmetry of arbitrary order.

The quantum anomaly is present in linear quantum mechanical systems, taking
a holomorphic form of the supersymmetric quantum mechanics and generat-
ing anomaly-free holomorphic operators. However, for some superpotentials, the
integrals of motion admit quantum corrections that preserve the nonlinear super-
symmetry at quantum level and avoid quantum anomalies.

Witten’s supersymmetric model [15] assumes the Hamiltonian of a quantum
system as represented by a pair of Hamiltonians, where the energy eigenvalues are
degenerate, in a graded Lie algebra with m charge operators and a Hamiltonian.
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Witten’s supersymmetric quantum mechanics is given by the Hamiltonian

H = p2 +W 2 +W ′m, (2.1)

with the superpotential m = θ+θ− − θ−θ+, W = W(x) and where x and p

are even canonical variables, while {x, p} = 1, and θ+, θ− = (θ+)∗ are the
Grassmann variables. The supersymmetry with two Grassmann variables can be
used to implement the Dirac canonical quantization method. The Hamiltonian has
integrals of motion that are even m, and odd Q+ = (W + ip)θ+ and Q− = (Q+)∗,
with a N = 2 Poincaré supersymmetry algebra

{Q+,Q−} = −iH , {H,Q±} = 0 , {m,H} = 0 , {m,Q±} = ±2iQ± .
(2.2)

If for any n integer, W ′m is replaced with nW ′m, the system has nonlinear
supersymmetry of order n generated by the integrals of order n in momentum p

S+ = (W + ip)nθ+ and S− = (S+)∗ as supercharges. In this case, the Hamiltonian
is

H = p2 +W2 + nW ′m . (2.3)

Here, the Poisson bracket {S+, S−} = −i(H)n has the order n. The case n = 1
is linear, while for n = 2, 3, . . ., the canonical quantization of 2.6 leads to a
quantum anomaly. The quantum analog of the integrals S± does not commute with
the quantum analog of 2.6, for any n = 2, 3, . . . and any superpotential.

If the superpotentials with the form W(x) have the supercharge S+ polynomial in
z = W + ip, the quantized system will be anomaly-free leading to a quasi-exactly
solvable system. An n-supersymmetric system given by the superpotential W(x)

is strongly connected to quasi-exactly solvability. A nonlinear n-supersymmetric
harmonic oscillator with holomorphic supercharges andW(x) = x will be described
by the classical superalgebra {Q+n ,Q−n } = Hn is replaced with {Q+n ,Q−n } =
H(H − h̄)(H − 2h̄) . . . (H − h̄(n − 1)). When W(x) �= ax + b, the quantum
analog of the oscillator and the Hamiltonian do not commute, [Q±n ,Hn] �= 0 and
a quantum anomaly will appear. The canonical quantization of the system leads to
a supersymmetric quantum system for any superpotential with associated quantum
supercharges and Hamiltonian corresponding to a N = 2 superalgebra where the
quantum analog of m is a Z2-grading operator Γ = σ3 of the Lie superalgebra.
The n-supersymmetric system will be anomaly-free in the corresponding quantized
version of the system.

We consider the Lagrangian formalism for the construction of one-dimensional
supersymmetric quantum mechanics systems with two Grassmann variables N = 2
and holomorphic supersymmetric systems with supercharges as differential opera-
tors of order n. A supercharge with a polynomial form of order n behaves like an
operator associated to a harmonic oscillator R± such as
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Q± = (R∓)nθ± +
n−1∑

k=0

qn−k(R∓)kθ±, (2.4)

with qk fixed real parameters.
For any classical system with the Lagrangian

L = 1

2
(ẋ2 −W 2(x))− gW ′(x)θ+θ− + iθ+θ̇−, (2.5)

where θ±, (θ+)∗ = θ− are the Grassmann variables, W(x) is the superpotential,
and g is the boson–fermion coupling constant, Witten supersymmetric quantum
mechanics arises at |g| = 1 and can be associated to a Lie superalgebra of the
integrals of motion. However, for |g| = n, n = 2, 3, ..., the system has nonlinear
supersymmetry. In the linear supersymmetric case, the Witten supersymmetric
quantum mechanics is given by the classical Lie superalgebra of the Hamiltonian
and supercharges.

For both fermion and boson particles, a symmetry is a transformation under
which the Hamiltonian remains invariant and is consequently generated by an
operator usually referred to as generator. The system possesses a symmetry if the
Hamiltonian commutes with the generator of the symmetry transformation. Non-
polynomial cases can also be developed via a limiting procedure applied to a
polynomial supersymmetric algebra where the supercharges are pseudo-differential
operators or by introducing complex-valued supercharges.

In higher-derivative (polynomial) supersymmetric algebra, for any integer values
of the coupling constant g = n, the Lagrangian (2.5) is equivalent to the
Hamiltonian

H = 1

2
(p2 +W 2(x))+ nW ′(x)θ+θ−, n ∈ Z, (2.6)

with the Poisson–Dirac brackets {x, p} = 1, {θ+, θ−} = −i in canonical approach
and it is invariant under the transformations g→−g, W(x)→−W(x).

The case of nonlinear supersymmetry brings an algebra that is quite differ-
ent from a polynomial with nontrivial symmetry operators. The odd differential
operators are exchanged with the associated non-polynomial functions of the
Super-Hamiltonian in the Hilbert space spanned on its eigenfunctions. The Super-
Hamiltonian can have nonlinear supersymmetric algebras of both polynomial and
non-polynomial forms.

The Hamiltonian (2.6) has the odd integrals of motion

Q+ = znθ+, Q− = (Q+)∗ = z̄nθ− (2.7)

and can be translated into complex variables

z = W(x)+ ip, z̄ = z∗ (2.8)
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taking the form

H = 1

2

(
zz̄+ in{z, z̄}θ+θ−) , (2.9)

where

{Q+,Q−} = −iHn, {Q+,Q+} = {Q−,Q−} = 0, {Q±,H } = 0. (2.10)

.
The Hamiltonian has the form

H = zz∗ − C

W2 + 4W ′m+ c , (2.11)

and the supercharges with a polynomial dependence on the momentum variable p
are

S+ =
(
z2 + C

W2

)
θ+ , S− = (S+)∗ (2.12)

with the real constants a and C and satisfying the relation

{S+, S−} = −i
(
(H− c)2 + C

)
. (2.13)

For any superpotential, the supersymmetry of (2.11), (2.12), and (2.13) is also
preserved at quantum level if

Ĥ− c = −h̄2 d2

dx2 +W2 − 2h̄σ3W ′ − C

W2 +Δ(W) , (2.14)

Ŝ+ = ŝ+σ+ , ŝ+ =
(
h̄
d

dx
+W

)2

+ C

W2 −Δ(W) , (2.15)

Δ(W) = 1

2
h̄2

(
W ′′

W − 1

2

(W ′

W

)2
)

= h̄2 1√
W

(√
W
)′′

, (2.16)

with σ+ = 1
2 (σ1 + iσ2) and Δ(W) a Schwarzian, Δ = − 1

2 h̄
2S(ω(x)), S(ω(x)) =

(ω′′/ω′)′ − 1
2 (ω

′′/ω′)2, of ω(x) = ∫ x
dy/W(y).

The projections of bosonic oscillator frequencies on the Grassmann algebra unit
are z (z̄), while the fermionic oscillator projections will be θ+ (θ−). For z and θ+,
these projections are equal to−W ′(x) and nW ′(x), respectively. For n = 0, the odd
integrals of motion satisfy Q± = θ±, while the case n = 1 naturally leads to a
linear supersymmetric behavior.
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For polynomial orders n ≥ 2, the Poisson superalgebra of the integrals of motion,
the system has nonlinear supersymmetry.

When the system is quantized, for σ+ = 1
2 (σ1 + iσ2), the Hamiltonian can be

written as

Ĥ = 1

2

(
−h̄2 d2

dx2
+W 2(x)+ nh̄W ′(x)σ3

)
, (2.17)

while the direct quantum supercharges become

Q̂+ = (Q̂−)† = ẑnθ̂+ with ẑ = W(x)+ h̄
d

dx
, θ̂+ = √h̄σ+,

(2.18)
For any superpotential W(x) and n = 1, the integrals of motion, [Q̂±, Ĥ ] =

0 are equal to the quantum supercharges (2.18), leading to a quantum analog
superalgebra for (2.10) with n = 1. If n = 2, 3, ..., any operator (2.18) will commute
with the Hamiltonian (2.17) for any quadratic superpotential

W(x) = w2x
2 + w1x + w0, (2.19)

therefore for polynomials with the form Pn−1(Ĥ ) of order n − 1, the nonlinear
superalgebra (2.10) becomes [Q̂+, Q̂−]+ = Ĥ n + Pn−1(Ĥ ), The polynomials
Pn−1(Ĥ ) have the coefficients w2

1 − 4w0w2 and w2
2, and vanish for h̄→ 0 [16].

If the supercharge Q̂+ has a holomorphic form that does not depend on ˆ̄z) but
depends on ẑ, the supercharge will conserve if

n(n2 − 1)h̄
d

dx
(h̄2W ′′ − ω2W) = 0, (2.20)

with ω2 a constant. For any superpotential [Q̂±, Ĥ ] �= 0, a quantum anomaly will
be present but can be removed by introducing a quantum analog of the supercharges
(2.7). In this case, the conservation is consistent with the quantum Hamiltonian
(2.17) and therefore no anomaly is present. The Eq. (2.20) has a class of solutions

W(x) = w+eωx + w−e−ωx + w0, (2.21)

for ω �= 0, and a complementary solution (2.19) for ω = 0, respectively. For
different ω, ω±, and ω0 a full class of exactly and quasi-exactly solvable quantum
mechanical systems is present.

Nonlinear supersymmetric systems of order n assume zero mode subspaces
of the supercharges corresponding to the n-dimensional representations of the
SL(2, R) algebra. Nonlinear supersymmetric systems associated to (2.19) quadratic
superpotentials correspond to quasi-exactly solvable systems with quartic potentials
in PT-symmetric quantum mechanics.

The holomorphic quantum supercharges in classical n-supersymmetry are
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Q± = (A∓)nθ±, where A± = ∓ h̄
d

dx
+W(x). (2.22)

The corresponding holomorphic supercharges of the superpotentials admit a more

general form if [ẑ, ˆ̄z] = 2h̄W ′(x) and [ẑ, ˆ̄z]+ = 2(W 2(x) − h̄2 d2

dx2 ). The operators

ẑ and ˆ̄z from Eq. (2.18) also admit a general form corresponding to the mutually
conjugate operators Z and Z̄ = Z†.

The Hamiltonian and conservation condition for the supercharge will take the
form

Hn = 1

4

([Z, Z̄]+ + n[Z, Z̄]σ3
)
, (2.23)

[Z, [Z, [Z, Z̄]]] = ω2[Z, Z̄], [Z̄, [Z̄, [Z, Z̄]]] = ω̄2[Z, Z̄], (2.24)

with ω̄ = ω∗ equivalent to Dolan–Grady relations in spin integrable systems as
a condition for an anomaly-free quantization of classical nonlinear holomorphic
supersymmetric systems.

Anomaly-free quantization for systems with supersymmetry of order which is
higher than two is less trivial and is not discussed here. The integrals of motion of
the Hamiltonian (2.23) exist if

Q+n =
n−1∏

k=0

(
Z +

(
k − n− 1

2

)
ω

)
· σ+, Q−n = (Q+)†, (2.25)

.

3 Discussion

Quasi-exactly solvable Hamiltonians assume a finite number of eigenstates and
eigenvalues that correspond to a superalgebra. Indeed, such eigenstates span a finite-
dimensional subspace with a representation of SL(2, R) algebra. The dimension
of the finite-dimensional representation is given by the Hamiltonian. Quantum
analogues of classical systems exhibiting nonlinear supersymmetry have to account
for the presence of quantum anomalies. A quantum anomaly is essentially the failure
of a symmetry to be preserved at quantum level. Quantum anomalies exhibit a
number of interesting features: an exact symmetry in the classical version of the
theory, a divergence that appears in the quantum version of the theory, and a weak
violation of the original symmetry that emerges in a regularized version of the
quantum theory.

Such formalism can be a useful tool to engineer new collective properties of
light–matter interaction, including novel nonlinear quantum mechanical systems,
such as spin–orbit couplings and coherent excitation in Rydberg atom arrays as



Nonlinear Supersymmetry 523

well as understanding of the nonlinear evolution of soliton solutions in quantum
optics and condensed matter physics, where supersymmetric Hamiltonians are
becoming relevant. Additionally, this tool is a new avenue for quantum simulations
of SUSY field theories, for better engineering and control of light–atom interactions.
The quantization of systems that exhibit nonlinear supersymmetry properties is a
nontrivial task due to the presence of quantum anomalies. The emergence of hidden
symmetries is a natural property of supersymmetric algebra, closely related to the
central charge. Supersymmetric quantum mechanics contains classes of potentials
in super-Hamiltonians with hidden symmetries, associated with nonlinear momenta
integrals of motion, where coordinates and momenta variables are mixed in the
phase space, generating nonlinear W-type algebras. Nonlinear supersymmetry is
mainly characterized by supercharges of higher order in bosonic momenta, and
therefore it has the nature of a hidden symmetry.

4 Conclusions

We considered nonlinear supersymmetry of one-dimensional systems containing
hidden symmetries generated by supercharges of higher order in momentum and
study the quantum anomalies present in these systems. We investigated different
aspects of one-dimensional systems with canonical form and nonlinear supersym-
metry as well as their quantization and the presence of anomaly-free quantum
systems with nonlinear supersymmetry.
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Global Stability Analysis of An
Unemployment Model with Two
Distributed Time Delays

Loredana Flavia Vesa, Eva Kaslik, and Mihaela Neamţu

1 Introduction

For the past tens of years, unemployment is one of the most challenging situation
for any government to deal with. The root cause relies on the mismatch between
the increase of the population with respect to the economy’s ability to create
new vacancies. This phenomena generate several unwanted side effects among
which we can highlight the uncontrollable migration on one hand and on the other
hand negative effect on mental state and behavior of the people. A long term
unemployment usually leads to the depreciation of the professional skills and ability
to perform according to the job requirements.

The government of a country plays one of the most important role in controlling
and acting to improve the unemployment situation in order to have a healthy
economy based on sustainable growth.

As a consequence, the unemployment requires attention and measures based on
specific analysis of the diverse mathematical models.

The concepts used by Nikolopoulus and Tzanetis [1] for the housing allocation of
homeless families due to the Athens 1999 earthquake, were developed later for the
controllability of unemployment. Lately, [2] using some concepts from [1] took the
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next step for controlling the unemployment in developing countries. Furthermore,
Pathan and Bhathawala [3] investigated the influence of the time delay on the
action of the government and the private sector. Mirsa et al. [4] introduced an
additional variable to account for the skill development programs, highlighting the
link between the upgrade of workers’ skills and unemployment reduction. Neamţu
and Harding [5] further improved the mathematical model by introducing both the
effect of migration and a distributed time delay. It is also important to mention that
optimal control has been previously investigated in [6, 7].

The main motivation of this paper relies on the existing mathematical models
which allow for the development of models of higher complexity, which takes into
account two distributed time delays to reflect the past history of the investigated
variables, extending previous results [8] which are concerned with a similar
mathematical model with only one distributed time delay. Our main goal is to study
and interpret the interaction between the unemployed and employed persons and
vacancies which are newly created by both the government and the private sector, in
terms of the qualitative theory of delay differential equations.

The paper is organized as follows. In Sect. 2, the mathematical model with two
distributed time delays is described. The non-dimensional model, the existence
of the equilibrium point, and the positivity and boundedness of solutions are
presented in Sect. 3. Section 4 is concerned with the local stability analysis of the
positive equilibrium. The global stability analysis is presented in Sect. 5. Numerical
simulations are carried out and interpreted in Sect. 6 and finally the conclusions are
drawn.

2 Mathematical Model

We consider the following variables: the number of unemployed persons which is
denoted by U(t), the number of employed persons denoted by E(t), and the number
of newly available vacancies V (t), which are created by both the government and
the private sector. We note that the new vacancies are made available by taking into
consideration past unemployment levels, and therefore, distributed time delays are
considered in the mathematical model.

The mathematical model with two distributed delays is written as follows:

⎧
⎨

⎩

U̇ (t) = A− [a1
∫∞

0 k1(s)V (t − s)ds + a2]U(t)+ a3E(t)− b1U(t)

Ė(t) = [a1
∫∞

0 k1(s)V (t − s)ds + a2]U(t)− a3E(t)− b2E(t)

V̇ (t) = a4
∫∞

0 k2(s)U(t − s)ds − b3V (t)

(1)

where A is the constant growth rate of unemployed persons entering the labor
market; a1, a2, and a3 are positive constants of proportionality expressing the
transfer rates between compartments, as described below: unemployed to employed
with respect to new vacancies, unemployed to employed with respect to existing
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jobs, and employed to unemployed, respectively; b1 represents the death and
migration rate of unemployed persons; b2 is the death, retirement, and migration rate
of employed persons; a4 is the rate of appearance of new vacancies that are made
available by the government and public sectors with respect to past unemployment
levels; b3 is the diminution rate of new vacancies.

The delay kernels k1, k2 : [0,∞) → [0,∞) are bounded and piecewise
continuous probability density functions, such that:

∫ ∞

0
k1(s)ds = 1 , τ1 =

∫ ∞

0
sk1(s)ds <∞. (2)

∫ ∞

0
k2(s)ds = 1 , τ2 =

∫ ∞

0
sk2(s)ds <∞. (3)

Here, τ1 is the average time delay for an unemployed person to get a previously
created job, and τ2 is the average time delay which is necessary for the creation of
new vacancies based on unemployment levels from the past.

3 Construction of the Non-dimensional Model

With the aim of reducing the number of parameters from system (1), the following
substitutions are considered:

x(t) = a1a4

a2
3

U

(
t

a3

)
, y(t) = a1a4

a2
3

E

(
t

a3

)
, z(t) = a1

a3
V

(
t

a3

)
(4)

leading to the equivalent non-dimensional mathematical model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = γ −
[ ∞∫

0
k̂1(s)z(t − s)ds + α

]
x(t)+ y(t)− β1x(t),

ẏ(t) =
[ ∞∫

0
k̂1(s)z(t − s)ds + α

]
x(t)− y(t)− β2y(t),

ż(t) =
∞∫

0
k̂2(s)x(t − s)ds − β3z(t),

(5)

where the coefficients are expressed as

γ = a1a4A

a3
3

, α = a2

a3
, β1 = b1

a3
, β2 = b2

a3
, β3 = b3

a3

and the delay kernels k̂1(s) = 1
a3
k1(

s
a3
), k̂2(s) = 1

a3
k2(

s
a3
) are probability density

functions with the mean values τ̂1 = a3τ1 and τ̂2 = a3τ2, respectively.
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Initial conditions which are taken into account for system (5) are

x(θ) = ϕ(θ), y(θ) = ψ(θ), z(θ) = ξ(θ), ∀ θ ∈ (−∞, 0],

with functions ϕ,ψ, ξ belonging to the Banach space C0,μ(R−,R) (where μ >

0) of continuous real valued functions on (−∞, 0] verifying lim
t→−∞ eμtϕ(t) = 0,

endowed with the norm:

‖ϕ‖∞,μ = sup
t∈(−∞,0]

eμt |ϕ(t)|.

We refer to [9] for existence and uniqueness results for the solutions of initial value
problems associated to systems of delay differential equations with distributed time
delays such as (5), as well as the properties of continuous dependence of solutions
of such systems on initial conditions.

The only positive equilibrium state for system (5) is:

S+ := (x0, y0, z0) =
(
β3z0,

β3z0(z0 + α)

β2 + 1
, z0

)
.

For the positivity and boundedness of the solutions of the non-dimensional model
(5), we refer to the following result which can be proved as in [5, 8]:

Theorem 1 The open positive octant of R3 is invariant to the flow of system (5) and
the set

Ω =
{
(x, y, z) : x ≥ 0, y ≥ 0, x + y ≤ γ

βm
, 0 ≤ z ≤ γ

βmβ3

}
,

where βm = min(β1, β2) is a region of attraction for system (5), attracting all
solutions initiating in the interior of the positive octant of R3.

4 Local Stability Analysis

We linearize the system (5) about the equilibrium [10] to study the local stability of
the positive equilibrium S+ = (x0, y0, z0), by analyzing the distribution of the roots
of the associated characteristic equation:

det

⎡

⎣
−z0 − α − β1 − λ 1 −β3z0K1(λ)

z0 + α −1− β2 − λ β3z0K1(λ)

K2(λ) 0 −β3 − λ

⎤

⎦ = 0,

where K1(λ), K2(λ) are the Laplace transforms of the delay kernels k̂1(s), k̂2(s).
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We obtain the following characteristic equation:

β3z0K1(λ)K2(λ)(λ+ β2)+ P(λ) = 0, (6)

where the polynomial P(λ) is given by

P(λ) = (λ+ β3) [(λ+ β1)(λ+ β2 + 1)+ (z0 + α)(λ+ β2)] .

Using the Routh–Hurwitz criterion in the absence of time delays, we obtain:

Theorem 2 If no time delays are present in system (5), the positive equilibrium
state S+ is locally asymptotically stable.

Considering two arbitrary delay kernels k̂1(s) and k̂2(s) in system (5), we obtain
the following result:

Theorem 3 The positive equilibrium state S+ of system (5) is locally asymptoti-
cally stable for any delay kernels k̂1(s) and k̂2(s).

Proof Presuming the contrary, i.e. that the characteristic Eq. (6) has a root with
positive real part /(λ) ≥ 0, Eq. (6) can be written as:

β3z0

λ+ β3
K1(λ)K2(λ) = −(λ+ β1)

(
1+ 1

λ+ β2

)
− (z0 + α). (7)

Considering

Q(λ) = (λ+ β1)

(
1+ 1

λ+ β2

)
,

we observe that

/[Q(λ)] = /(λ)+ β1 + |λ|
2 + (β1 + β2)/(λ)+ β1β2

|λ+ β2|2 > 0.

In Eq. (7) applying the absolute value we have

β3z0

|λ+ β3| |K1(λ)||K2(λ)| = |Q(λ)+ z0 + α|. (8)

As k̂1(s) and k̂2(s) are probability density functions and K1, K2 are their Laplace
transforms, it follows that |K1(λ)| ≤ 1 and |K2(λ)| ≤ 1 for any λ ∈ C such that
/(λ) ≥ 0. Moreover, as /(λ) ≥ 0 and β3 > 0, we have |λ + β3| > β3. Hence, for
the expression appearing in the left side of (8) we deduce:

β3z0

|λ+ β3| |K1(λ)||K2(λ)| ≤ β3z0

β3
= z0.
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Moreover, as /[Q(λ)] ≥ 0, for the expression from the right side of (8) we have:

|Q(λ)+ z0 + α| ≥ z0 + α.

Therefore, the contradiction α ≤ 0 is obtained. Thus, all roots of (6) have strictly
negative real part, and we finally deduce that S+ is locally asymptotically stable,
regardless of the delay kernels k̂1(s) and k̂2(s). 01

5 Global Stability Analysis

With the aim of analyzing the global asymptotic stability properties of the positive
equilibrium state of system (5), a special type of Lyapunov function technique is
utilized, based on a technique which has been successfully used in previous works
such as [11–14].

Theorem 4 The positive equilibrium S+ of system (5) is globally asymptotically
stable, for any choice of the delay kernels k̂1(s) and k̂2(s), if the following inequality
is satisfied:

z0 ≤ min{β1, αβ2}. (9)

Proof Using the substitution u(t) = z(t)+α in system (5), we obtain the equivalent
system:

⎧
⎨

⎩

ẋ = γ −D[u]x + y − β1x

ẏ = D[u]x − (1+ β2)y

u̇ = D[x] − β3u+ αβ3,

(10)

where D[u](t) =
∞∫

0
k̂1(s)u(t − s)ds and D[x](t)x =

∞∫

0
k̂2(s)x(t − s)ds

Considering the positive function H(x) = x−1− ln(x), the following positively
definite Lyapunov function is constructed:

L(t) = L1(t)+ L2(t)+ L3(t) (11)

with

L1(t) = x0H

(
x(t)

x0

)
+ α

u0
y0H

(
y(t)

y0

)
+ z0u0H

(
u(t)

u0

)

L2(t) = x0z0

∫ ∞

0

(
k̂2(s)

∫ t

t−s
H

(
x(r)

x0

)
dr

)
ds
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L3(t) = x0u0

∫ ∞

0

(
k̂1(s)

∫ t

t−s
H

(
u(r)

u0

)
dr

)
ds,

where u0 = z0 + α.
In what follows, the derivatives of L1(t), L2(t), and L3(t) are computed.

L′1(t) = ẋ
(

1− x0

x

)
+ α

u0
ẏ

(
1− y0

y

)
+ z0u̇

(
1− u0

u

)

= (γ −D[u]x + y − β1x)
(

1− x0

x

)
+ α

u0
(D[u]x − (1+ β2)y)

(
1− y0

y

)

+ z0(D[x] − β3u+ αβ3)
(

1− u0

u

)
.

At this stage, as (x0, y0, u0) is the equilibrium of (10), we replace γ = u0x0− y0+
β1x0, 1 + β2 = u0x0

y0
, and αβ3 = β3u0 − x0 and by direct coefficient identification

we obtain:

L′1(t) = −x0(β1 − z0)

(
x

x0
+ x0

x
− 2

)

− (αx0 − y0)

(
x0

x
+ u0

u
+ y

y0
+ D[u]xy0

u0x0y
− ln

D[u]
u

− 4

)

− x0z0

(
2
x0

x
+ u0D[x]

ux0
+ D[u]x

u0x0
− ln

D[u]
u

− ln
D[x]
x

− 4

)

− y0

(
x0y

xy0
+ D[u]xy0

u0x0y
+ u0

u
− ln

D[u]
u

− 3

)

− x0z0 ln
D[x]
x

− x0u0 ln
D[u]
u

+ x0(D[u] − u)+ z0(D[x] − x).

Inequality z0 ≤ min{β1, αβ2} implies αx0 − y0 = β3z0(αβ2−z0)
1+β2

> 0, and employing
the inequality of means, the first four terms (denoted by N(t) in what follows) in
L′1(t) are negative, leading to:

L′1(t) = N(t)− x0z0 ln
D[x]
x

− x0u0 ln
D[u]
u

+ x0(D[u] − u)+ z0(D[x] − x).

Moreover, we obtain

L′2(t) = x0z0

∫ ∞

0
k̂(s)

(
H

(
x(t)

x0

)
−H

(
x(t − s)

x0

))
ds

= z0(x −D[x])+ x0z0

∫ ∞

0
k̂2(s) ln

x(t − s)

x(t)
ds,
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and

L′3(t) = x0u0

∫ ∞

0
k̂(s)

(
H

(
u(t)

u0

)
−H

(
u(t − s)

u0

))
ds

= x0(u−D[u])+ x0u0

∫ ∞

0
k̂1(s) ln

u(t − s)

u(t)
ds.

Then we have

L′(t) = L′1(t)+ L′2(t)+ L′3(t)

= N(t)− x0z0 ln
D[x]
x

− x0u0 ln
D[u]
u

+ x0z0

∫ ∞

0
k̂2(s) ln

x(t − s)

x(t)
ds

+ x0u0

∫ ∞

0
k̂1(s) ln

u(t − s)

u(s)
ds

= N(t)− x0z0

[
lnD[x] −

∫ ∞

0
k̂1(s) ln(x(t − s))ds

]

− x0u0

[
lnD[u] −

∫ ∞

0
k̂2(s) ln(u(t − s))ds

]
.

Using Jensen’s inequality for probability density functions, as the logarithmic
function is concave we obtain:

ln
∫ ∞

0
k̂1(s)u(t − s)ds ≥

∫ ∞

0
k̂1(s) ln(u(t − s))ds.

Similarly,

ln
∫ ∞

0
k̂2(s)x(t − s)ds ≥

∫ ∞

0
k̂2(s) ln(x(t − s))ds.

In conclusion:

L′(t) ≤ 0 , ∀ t ≥ 0.

As {(x0, y0, u0)} is the largest invariant set of {(x, y, u)|L′(t) = 0}, employing
the LaSalle invariance principle [15, 16], we deduce that the equilibrium (x0, y0, u0)

is globally asymptotically stable, and hence, the equilibrium S+ of system (5) is also
globally asymptotically stable. 01
Remark 1 Based on the previous theorem and inequality (9), the following realistic
upper bound for the growth rate of unemployed persons entering the labor market is
obtained:



Mathematical Model for Unemployment 533

A ≤ b3

a1a4
min

{
a2b2(a2b2 + a3b1)

a2
3

, b2
1 +

b1b2(b1 + a2)

a3 + b2

}

, (12)

which ensures the global stability of the positive equilibrium.

6 Numerical Simulations

The values of the system parameters considered for the numerical simulations are:
A = 5000, a1 = 0.00002, a2 = 0.4, a3 = 0.01, a4 = 0.007, b1 = 0.04, b2 =
0.05, b3 = 0.05. In this case, we emphasize that inequality (12) is satisfied, and
hence, from Theorem 4 and Remark 1, we deduce that the positive equilibrium
(U+, E+, V +) = (12427.6, 90057.9, 1739.86) is globally asymptotically stable,
for any choice of the delay kernels k1(s) and k2(s) considered in system (1).

Figure 1 shows the evolution of U(t), E(t), and V (t), considering the initial
condition (U0, E0, V0) = (14913.1, 99063.7, 1565.87), and several values for the
two discrete delays k1(s) = δ(s − τ1)and k2(s) = δ(s − τ2), where δ denotes
the Dirac function. Indeed, when τ1 = 40 is fixed, we notice that for positive
values of the delay τ2, in the first phase, the unemployment levels drop below the
equilibrium value U+. We notice that when the time delay τ2 takes larger values, the
unemployment levelU(t) reaches lower minimum values in the first phase, followed
by the convergence to U+. At the same time, the employment level E(t) first drops
to a plateau level, followed by a further decrease to the equilibrium value E+ in the
second phase. Furthermore, the number of vacancies increases in the first phase to
a maximum value larger than V + and then, decreases to V + in the second phase.
Again, when τ2 is larger, a slower convergence to the equilibrium values is observed.

On the other hand, when τ2 = 40 is fixed, for positive values of the delay
τ1, in the first phase, the unemployment levels drop to a plateau level above the
equilibrium value U+, followed by a decrease below the equilibrium value U+
and later, converge to U+. Meanwhile, the employment level E(t) first drops to
a minimum level above the equilibrium value E+, followed by a small increase and
then, convergence to E+. At the same time, the number of vacancies increases in
the first phase to a maximum value larger than V + and then, in the second phase,
it drops to the equilibrium value V +. Larger lags τ1 imply a slower convergence to
the equilibrium state.

In Fig. 2, the influence of the choice of initial conditions on the time evolution
of state variables is visualized, with fixed values τ1 = 30 and τ2 = 40 of the time
delays, showing the converge to the globally asymptotically stable equilibrium.
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Fig. 1 Evolution of state variables U(t), E(t), and V (t) of system (1) with discrete time delays
considering τ1 = 40 fixed and τ2 = τ ∈ {0, 10, .., 90} (left) and τ2 = 40 fixed and τ1 = τ ∈
{0, 10, ..., 90} (right) and the initial condition (U0, E0, V0) = (14913.1, 99063.7, 1565.87)
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Fig. 2 Evolution of state variables U(t), E(t), and V (t) of system (1) with discrete time delays
considering τ1 = 30 and τ2 = 40, with different initial conditions
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7 Conclusions

In this paper, we have carried out a local and global stability investigation for
a mathematical model incorporating two distributed time delays illustrating the
labor market. Our main result is the proof of global asymptotic stability properties
of the unique positive equilibrium of the investigated system, guaranteed by a
realistic upper bound for the growth rate of unemployed persons entering the labor
market. Numerical simulations are presented to enhance the theoretical findings,
also discussing the influence of the magnitude of the considered time delays on the
behavior of the state variables.
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Estimating Generic Canard Explosions
via Efficient Symbolic Computation

Bo-Wei Qin, Kwok-Wai Chung, Antonio Algaba,
and Alejandro J. Rodríguez-Luis

1 Introduction

In a large number of planar slow–fast systems, i.e., the systems with distinct time
scales, a periodic orbit arising at the Hopf bifurcation can experience an extremely
swift evolution in its amplitude and period. This rapid transition is usually named as
canard explosion referring to the appearance of involving orbit in phase plane [1].
Over past several decades, many works have been devoted to study this phenomenon
focusing on its existence and asymptotic behavior, see [2–5] and references therein.
Besides, predicting the value of control parameter for its occurrence is also one of
the significant issues that attracts lots of attentions.

It is time-consuming to locate a canard explosion with high accuracy via
numerical tools, such as AUTO and MatCont, since it takes place through an
exponentially small range of control parameters and cannot be identified and
marked automatically. For this reason, an analytical estimation is crucial, and
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several methods have been developed to do so, among which the classical iterative
method [6] and the nonlinear time transformation (NTT) method [7] are two major
approaches. Although it has been proved that the two methods can be applied to
find high-order estimations, they still have limitations. If the system is relatively
complicated, it may not be easy to find the exact value (even for the first term)
using the classical iterative method. For instance, only the numeric value is provided
in [8], and a quadratic fitting function is used to find the first term in [9] that is
not straightforward. The NTT method is proved to be an effective approach for
several systems [10, 11]. Nevertheless, its full generality has not been confirmed
yet, and trigonometric functions are involved, which may lead to time-consuming
computations. The aim of this chapter is to demonstrate a ready-to-use algorithm
that can be applied to estimate the critical value for any system satisfying generic
conditions. As we will see later, only polynomials are used to develop such an
algorithm. It is therefore very efficient to compute the critical value, compared with
aforementioned approaches. Let us first introduce the system in which a generic
canard can occur.

In this chapter, we consider the system

εẋ = f (x, y, μ, ε), ẏ = g(x, y, μ, ε), (1)

where f and g are sufficiently smooth functions, μ is a control parameter, and
0 < ε � 1 is the ratio of different time scales. By appropriate coordinate
transformations, we can assume that the origin is an equilibrium of system (1)
when μ = ε = 0, that is, f (0) = g(0) = 0, where 0 represents the point
(x, y, μ, ε) = (0, 0, 0, 0). The genericity of the canard explosion can be classified
by the type of the turning point of the slow manifold. In this chapter, we consider
only the generic canard, that is, the slow manifold given by f (x, y, μ, ε) = 0
possesses a non-degenerate turning point at the origin. We therefore follow the
hypothesis provided in [5, Theorem 4]. For convenience, they are rewritten below.

Hypothesis 1 System (1) satisfies the following conditions:

(H1.1) fy(0) · gx(0) < 0.

(H1.2) fxx(0) �= 0.

(H1.3) gx

∣∣∣
∣
fy fμ

fxy fxμ

∣∣∣
∣− fxx

∣∣∣
∣
fy fμ

gy gμ

∣∣∣
∣ �= 0 at 0.

Here, subscripts stand for partial differentiation with respect to the corresponding
variable. We remark that hypothesis (H1.1) immediately implies fy(0) �= 0 and
gx(0) �= 0, which corresponds to two conditions that are not repeated here. With the
above settings, according to Theorem 4 given in [5], the existence and uniqueness
of formal power series for the canard explosion can be assured.

The rest of this chapter is organized as follows. We first demonstrate our approach
for the generic canard and its theoretical ground in Sect. 2. Its implementation in
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symbolic software will then be discussed in Sect. 3. In Sect. 4, two examples will be
considered to reveal the advantages of our approach. Finally, some conclusions are
provided in Sect. 5.

2 A General Procedure

We are now going to demonstrate our approach for computing the power series
solutions to system (1). First, we define k1 = fy(0), k2 = fxx(0)/2, and k3 = gx(0),
which are non-zero constants according to Hypothesis 1. Introducing

x = √εX, y = εY, μ = εν, t = √ετ, (2)

we obtain the system in new variables as

dX

dτ
= δ−2f (δX, δ2Y, δ2ν, δ2),

dY

dτ
= δ−1g(δX, δ2Y, δ2ν, δ2), (3)

where δ = √ε. Expanding system (3) in the Taylor series about δ = 0 leads to

dX

dτ
= k1Y+cν+d+k2X

2+ δ
(
a0X+a1Xν+a2XY+a3X

3
)
+
∞∑

i=2

δi f̄i(X, Y, ν),

dY

dτ
= k3X + δ

(
b0 + b1ν + b2Y + b3X

2
)
+

∞∑

i=2

δi ḡi(X, Y, ν), (4)

where f̄i and ḡi are polynomials of X, Y, ν, and other coefficients are given by

a0 = fxε(0), a1 = fxμ(0), a2 = fxy(0), a3 = 1
6fxxx(0), c = fμ(0),

b0 = gε(0), b1 = gμ(0), b2 = gy(0), b3 = 1
2gxx(0), d = fε(0).

System (4) can be further simplified by introducing a new variable as Z = k1Y +
cν + d. We then have

dX

dτ
= Z+k2X

2+ δ
[(
a0− da2

k1

)
X+

(
a1− ca2

k1

)
Xν+ a2

k1
XZ+a3X

3
]
+O(δ2)

:= P(X,Z, ν, δ),

dZ

dτ
= k1k3X + δ

[
k1b0 − b2d + (k1b1 − cb2)ν + b2Z + k1b3X

2
]
+O(δ2)

:=Q(X,Z, ν, δ). (5)
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System (5) is now a summation of an integrable system (when δ = 0) together with
perturbation terms. Then, we look for a solution as

Z =
∞∑

i=0

δiZi(X) and ν =
∞∑

i=0

δiνi . (6)

When δ = 0, the system admits an integrating factor U = exp(−AZ0), where A =
2k2/(k1k3) �= 0, and the first integral can be computed as I (X,Z0) = exp(−AZ0) ·(
Z0 + k2X

2 + A−1
)
. For a constant C in a certain interval, the level curves given by

I = C form a family of periodic orbits, whose limit is a homoclinic orbit connecting
a point at infinity. This limiting curve is the zero-order solution of the slow manifold
in blow-up coordinates, which is given by

Z0(X) = −k2X
2 − A−1. (7)

To solve the high-order solution, we eliminate time variable in (5) and obtain

Z′(X)P (X,Z, ν, δ)−Q(X,Z, ν, δ) = 0, (8)

where prime denotes the differentiation with respect to X. Inserting (6) and (7) into
(8) and extracting the coefficients of like powers of δ, one can obtain the equation
for each order O(δi) as

− A−1Z′i (X)− 2k2XZi(X)+ νi−1(p1 + p2X
2) = Ri(X,Zj , νk)(X), (9)

whereRi(X) consists of remaining terms of each equation, which are already solved
in previous orders, and p1 = cb2−k1b1, p2 = 2k2(ca2−k1a1)/k1. We point out that
an equation like (9) is usually solved by introducing an integrating factor, see, for
instance, Ref. [7]. Here, we will use a different approach that can be implemented in
a symbolic software more easily. For this purpose, we need the following theorem.

Theorem 1 ∀i ∈ N0, Zi(X) can be uniquely determined as a polynomial.

Proof We prove it by mathematical induction. By (7), the statement is obviously
true when i = 0. We assume that it holds for i = 1, 2, · · · ,m−1 and will show that
Zm(X) can be uniquely solved from (9) as a polynomial. Denote by n the degree of
Rm(X). Then, we try the following ansatz:

Zm(X) =
j∑

k=0

ζkX
k with j =

{
1, if 0 ≤ n ≤ 2,

n− 1, if n ≥ 3.
(10)

Now, we need to show that the coefficients ζk can be uniquely determined.
Substituting (10) into (9) and equating the coefficient of like powers of X yield
a system of linear equations. We first consider the case when n ≥ 3, for which the
system is given by
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M ζ = R with M =
(

M1 M2

M3 M4

)
∈ R

(n+1)×(n+1), (11)

where R is a column vector, whose first element and kth element are,
respectively, the constant and coefficient of Xk−1 in Rm(X), the column
vector ζ = (ζ0, ζ1, · · · , ζn−1, νm−1)

" includes all the unknowns, M1 =
(0,−A−1, 0, 0, · · · , 0), M2 = p1, M4 = (0, p2, 0, 0, · · · , 0)". For M3, all
the elements on the diagonal are −2k2, the element in the j th row and (j + 2)th
column is −(j + 1)A−1 for all j = 1, 2, · · · , n− 2, and all remaining elements are
zero. Then, the determinant of M can be computed as

det(M) = (−2k2)
n−1 [c(2b2k2 − a2k3)− k1(2b1k2 − a1k3)] . (12)

It follows from Hypothesis (H1.2) and (H1.3) that det(M) �= 0, which implies that
(11) has one and only one solution. If 0 ≤ n ≤ 2, the system of linear equations
turns out to be

⎛

⎝
0 −A−1 p1

−2k2 0 0
0 −2k2 p2

⎞

⎠

⎛

⎝
ζ0

ζ1

νm−1

⎞

⎠ = R, (13)

where R has the same definition as in (11). Analogously, (13) possesses one and
only one solution since the determinant of the 3× 3 matrix is non-zero. 01
The proof of Theorem 1 immediately yields the following corollary.

Corollary 1 ∀i ∈ N0, νi can be uniquely solved.

3 Implementation in Symbolic Software

In Sect. 2 we have demonstrated the theoretical ground of our approach, by
which the existence and uniqueness of the solution can be assured. For practical
application, in each order, once the vector R and the square matrix in the system
of linear equations (11) or (13) are found, the unknowns Zi(X) and νi−1 can be
easily solved. Such a procedure can be easily implemented iteratively in a symbolic
computational software. For instance, in this chapter, we use Maple to perform the
computation. Once the system is in the form of (1) and satisfies the assumptions
mentioned in Sect. 1, all subsequent manipulations can be executed with simple
Maple codes. The pseudo-algorithm together with some Maple codes is given in
Algorithm 1. Additionally, we find that the first-order solution for the critical value
can be expressed in terms of the coefficients in (4) as
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ν0 = 1

w

[
dα2 − k1α0 + 1

2A

(
α2 + 2a2 + k1α3 − 2k1a3

k2

)]
, (14)

where

w = k1α1 − cα2 and αi = Ak1bi − ai, i = 0, 1, 2, 3.

To validate the proposed approach, we first consider the canard explosion in the
van der Pol system [7] and an aircraft model [10, 12]. Recently, an algorithm based
on the NTT method has been proposed to solve both problems. Our computation
shows that the results obtained by the present method are the same as those in the
literature. Compared with the NTT method, by which one needs to use trigonometric
functions, it takes us much less time to apply Algorithm 1 (see Table 1). The reason
is that only polynomials and matrices are involved here. In addition, the square
matrices are known in advance.

Algorithm 1 Computing the power series of canard explosion in system (1)
Require: Functions f and g in system (1) and desired order m
Ensure: Z0(X), Zi(X) and νi−1 for i = 1, 2, · · · ,m
1: Compute the constants: c, ki , ai and bi , i = 1, 2, 3
2: Apply the transformation x := δ ∗X, y := δ2 ∗ Y and μ := δ2 ∗N #N represents ν
3: P :=Taylor series of f/δ2 up to O(δm); Q :=Taylor series of g/δ up to O(δm)
4: Apply substitution Y := (Z − c ∗N)/k1 and update Q := k1 ∗Q
5: EQ := dZ ∗ P −Q #Here, dZ represents Z′(X)
6: Define Z :=∑m

i=0 δ
iz[i]; dZ :=∑m

i=0 δ
idz[i]; N :=∑m

i=0 δ
iν[i]

7: for i from 1 to m do
8: eq[i] := coefficient of δi in EQ #Use code coeff(·, ·, ·) to collect the coefficients
9: R[i] := −eq[i] with dz[i] = z[i] = ν[i − 1] = 0

10: end for
11: Assign the zero-order solution to z[0] and compute dz[0]
12: for i from 1 to m do
13: n := degree of R[i]
14: if n ≥ 3 then
15: Define the (n+ 1)× (n+ 1) matrix M given in (11) as M
16: Collect the coefficient of R[i] and define them as a vector named by CR

#Use code CR:=CoefficientVector(R[i],X)
17: else
18: Define the square matrix and the column vector R in (13) as M and CR, respectively
19: end if
20: Solve the system of linear equations and define the vector of solution as ζ
21: ν[i − 1] := ζ [n+ 1]
22: Assign z[i] as a polynomial whose coefficients are stored in ζ in ascending order and

compute dz[i] #Use code dz[i]:=diff(z[i],X)
23: end for
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Table 1 Computation time (in seconds) for the power series up to different orders

Case van der Pol Aircraft

nth-order 5 10 20 30 40 50 5 10 15 20

NTT 0.422 1.094 3.859 10.625 26.078 60.360 0.531 2.765 10.109 28.656

Present 0.031 0.094 0.172 0.328 0.640 1.109 0.125 0.203 0.328 0.704

4 Comparisons with the Classical Method

Besides the efficiency of the present approach, another advantage is that one is able
to find the power series up to any desired order, even if the functions f and g in (1)
are complicated. We know that, if f and g are simple, the classical iterative method
is also an efficient alternative to compute the high-order solution. Nevertheless, it is
not a favorable method in some cases. This is because the classical iterative method
is used under the original coordinates. To start with, one needs to obtain a zero-
order solution of the slow manifold when ε = 0, which is sometimes not an easy
task if function f is too complex. We provide below two examples that are already
considered by the classical method and compare the results with the ones obtained
by the present approach.

4.1 Templator Model

The first one is the templator model that is analyzed in [8], and it reads as

Ẋ = r − kuX
2 − kT X

2T , Ṫ = kuX
2 + kT X

2T − qT /(K + T ), (15)

where X and T are phase variables and all other symbols represent system
parameters. Applying the same transformation given in [8], that is, K = ε � 1,
r = q + εc, Q = T − X, and P = T + X, and introducing a new time variable as
t = ετ , we obtain the system in new variables as1

ε
dQ

dτ
= (P −Q)2

4
[2ku + kT (P +Q)] − cε − 2q(ε + P +Q)

2ε + P +Q
:= f̄ (Q, P, c, ε),

dP

dτ
=
(
c + 2q

2ε + P +Q

)
:= ḡ(Q, P, c, ε). (16)

We next find the equilibrium that is located at the local extremum of the slow
manifold by solving f̄ (Q0, P0, c0, 0) = ḡ(Q0, P0, c0, 0) = f̄Q(Q0, P0, c0, 0) = 0,
which results in

1We remark that there are two typos in (15a) of Ref. [8].
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Table 2 Comparisons between numerical result and analytical estimations up to ci

r∗ (num.) i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

0.96755828 0.96773988 0.96758462 0.96756115 0.96755865 0.96755833 0.96755829

Fig. 1 Comparisons between analytical estimations and numerical results for the templator
model. (a) Period versus r diagram (black) when K = 0.02 together with analytical predictions
(red). (b) Critical value at different values of K

Q0 = (1− 2kuβ)/(kT β), P0 = (2kuβ − 3)/(kT β), c0 = qkT β, (17)

where β = 22/3/[22/3ku − (qk2
T )

1/3]. Then, we move the equilibrium and the
parameter c to the origin so that the new system is in the form of (1) with x = Q,
y = P , and μ = c. Following the procedure given in Algorithm 1, the power series
of the critical value can be easily obtained. Note that, in [8], using the classical
iterative method, only the numeric value of the approximation is provided. On
the contrary, with the present approach, the values of system parameters are not
necessarily known a priori. The solution can be expressed in terms of symbolic
parameters. Converting the parameter into original coordinates, the critical value
r∗ can be finally written as r∗ = q +∑∞

i=0 K
i+1ci , where ci (i = 1, 2, 3, 4) are

given in Appendix. To validate our result, we follow the system parameters used in
[8], i.e., q = kT = 1, ku = 0.01, and K = 0.02. In Table 2, our estimations are
compared with numerical result2 that shows an excellent agreement. Besides, we
show the associated bifurcation diagram in Fig. 1 (left panel), and in the right panel,
comparisons for other values of K are also depicted.

2We also remark that the numerical result provided in Ref. [8] is inaccurate for higher significant
digits.
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4.2 Reduced Hodgkin–Huxley Model

As a second example, we consider now a more complex case, the reduced Hodgkin–
Huxley (HH) model, whose equilibrium can only be computed numerically [9],

CV̇ = I − ḡNa[αm(V )]3[αm(V )+ βm(V )]−3(0.8− n)(V − VNa)

− ḡKn
4(V − VK)− gL(V − VL),

ṅ = αn(V )(1− n)− βn(V )n, (18)

where

αm(V ) = 0.1(V + 40)

1− exp[−(V + 40)/10] , βm(V ) = 4 exp[−(V + 65)/18],

αn(V ) = 0.01(V + 55)

1− exp[−(V + 55)/10] , βn(V ) = 0.125 exp[−(V + 65)/80].

We take the same parameter values given in [9], namely ḡNa = 120, ḡK = 36,
gL = 0.3, VNa = 50, VK = −77, and VL = −54.4. When the classical method
is applied to this problem, the computation is not straightforward. The author used
a quadratic fitting function with Mathematica to find the first-order approximation.
Here, we apply our algorithm to this problem.

Again, we first find the location of the equilibrium and the critical value I0,
at which the equilibrium is located at the local extremum of the slow manifold.
We solve the three algebraic equations (two for the equilibrium and one for the
local extremum) numerically. The results are V0 = −61.122882, n0 = 0.378388,
and I0 = 6.522827. We next move the equilibrium and parameter I to the origin
and regard C as the perturbation parameter (i.e., ε in (1)). Now, the new system
is in the form of (1) with x = V , y = n, and ε = C. We then follow the
aforementioned procedure to find the critical value. It is worth pointing out that,
after Taylor expanding the two equations (see line 3 in Algorithm 1), the coefficients
of each term are numerical values. But, the subsequent procedure still works when
we implement it in Maple using the same code as before, and it takes only 1.519 s
to solve the equation up to 20th order. The estimation for the critical value is finally
provided as I ∗ =∑∞

i=0 C
iIi, with

I0 = 6.522827, I1 = −0.214573, I2 = −0.0696026, I3 = 0.0837185,

I4 = 0.0859035, I5 = 0.0133826, I6 = −0.0748461, I7 = −0.0910075,

I8 = 0.0459785, I9 = 0.271554, I10 = 0.189686, I11 = −0.755829.

The approximation agrees well with numerical results, see Table 3 and Fig. 2.
Different from the classical method, with which even the first-order approximation
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Table 3 Comparison between numerical results and analytical estimations up to Ii

C I∗ (num.) i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

0.2 6.477935 6.479913 6.477129 6.477799 6.477936 6.477940 6.477935 6.477934 6.477934 6.477935

0.1 6.500767 6.501370 6.500674 6.500758 6.500766 6.500767 6.500767 6.500767 6.500767 6.500767

Fig. 2 Canard explosion in reduced HH model. (a) Period versus I diagram (black) when C = 0.2
together with analytical predictions (red) for canard explosion. (b) The evolution of periodic orbit
from canard cycle to relaxation oscillation

cannot be solved easily, the present approach is able to obtain extremely high-order
estimation.

5 Conclusions

In this chapter, we consider the canard explosion in a two-dimensional slow–fast
system in which the slow manifold possesses a generic turning point. An efficient
procedure for estimating the critical value for the canard explosion is demonstrated.
Besides theoretical ground including existence and uniqueness of the solution, a
pseudo-algorithm is also provided, whereby the present approach can be readily
implemented in symbolic software Maple. To show the efficiency and efficacy of the
present method, we apply it to several examples. Especially, for canard explosion
in the templator model and reduced HH model, the existing approximations of the
critical value are greatly improved with our approach. In addition to the examples
considered here, the present method can be applied to any other system, as long as
it satisfies the generic conditions.
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Appendix: Coefficients ci for the Templator Model

c1 = qkT β, c2 = −1

9
qk2

T β
2(9+ 3ω − 3ω2 + 4ω3),

c3 =− 1

972
qk3

T β
3(972+ 864ω − 972ω2 + 1637ω3 + 976ω4 − 336ω5 + 1728ω6),

c4 =− 1

26244
qk4

T β
4(26244+ 42444ω − 50544ω2 + 106299ω3 + 153426ω4

− 21682ω5 + 383148ω6 + 213216ω7 + 149760ω8 + 364032ω9),

where ω = kuβ − 1.
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A Study of the Self-Oscillating Regime
in the Problem of an Atomic Force
Microscope in the Contact Mode

Pavel Udalov, Ivan Popov, and Alexey Lukin

1 Introduction

The atomic force microscope (AFM) uses a cantilever beam to measure the
parameter of the surface (the distance between the tip and the sample). In the
classical formulation of the AFM problem [6], the studied object is forced by a
harmonic signal at the resonant frequency of the cantilever. Further, depending on
which parameter is used to restore the parameter δ, two main AFM operation modes
are distinguished – frequency and amplitude modulation [4]. In the first case, the
surface topography is restored by changing the vibration frequency of the sample; on
the other hand, the same is done according to the values of the amplitude of the AFM
vibrations. The first version of the experiment is more attractive than the second one
in that it exhibits smaller errors and inaccuracies in data acquisition [5, 6]. The
only and most important problem of the experiment is that the resulting frequency
response of this system is nonlinear [4], which makes it difficult to unambiguously
determine the surface parameter of the object under study.

In this paper, we propose to consider the case of generalized nonlinear excitation,
which depends on the generalized coordinates of a given system and to establish the
possibility of the presence of a limit cycle and self-oscillations in a given system for
a certain, given excitation force.
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2 Mathematical Model

We study the motion of the contact-mode AFM shown in Fig. 1, where the probe is
excited in flexural vibrations by a nonlinear motion of the sample in the z-direction.
The probe is modelled as a linear cantilever beam [1] and the interaction between
the tip and the sample is modelled as a pair of a nonlinear spring and a linear damper
placed at the right end of the cantilever.

Unlike the classical AFM solution in the contact mode [3–5], in our formulation,
the exciting force is not harmonic in the general case. And our goal is to select
the law of excitation force which will take the expression for the limit cycles [5,
6]. Further, according to the characteristics of the limit cycle, it will be possible to
receive surface information of the studied object.

2.1 Problem Formulation

We write the equation of motion of the Bernoulli-Euler beam [1] and boundary
conditions governing the probe deflection as

EY
∂4wd

∂x4
= −ρY ∂

2wd

∂t2
, (1a)

wd |x=0 = 0, (1b)

∂wd

∂x

∣
∣∣∣
x=0

= 0, (1c)

∂2wd

∂x2

∣
∣∣∣
x=l

= 0, (1d)

Fig. 1 Schematic view of the AFM
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EY
∂3wd

∂x3

∣∣∣
∣x=l =

[
μ
∂wd

∂t
+ FH + f

(
wd,

∂wd

∂t

)]∣∣∣
∣
x=l

, (1e)

where E and ρ are Young’s modulus and beam density, Y and A are the moment of
inertia and cross-sectional area, wd is the tip deviation near the equilibrium position,
μ is the linear friction coefficient of the sample surface, FH is the restoring force that
occurs when the tip moves at the equilibrium position on the surface of the sample,

f
(
wd,

∂wd

∂t

)
is excitation force transmitted from the sample to the tip.

FH = α1

(wd

δ

)
− α2

(wd

δ

)2 − α3

(wd

δ

)3
,

α1 = 2E∗
√
Rδ3, α2 = α1

4
, α3 = α1

24
,

where δ is the static indentation of the tip into the surface, R is the radius of the tip,
E∗ is the reduced elastic modulus defined as

1

E∗
= 1− νt

2

Et

+ 1− νs
2

Es

,

and Et, νt, Es, νs are Young’s modulus and Poisson’s ratio of the tip and sample,
accordingly.

We will characterize the function f
(
wd,

∂wd

∂t

)
as a by non-linearity of the Van

der Pol type. This nonlinear term is responsible for energy pumping in a classical
oscillator with nonlinear damping [5]:

f = f

(
wd,

∂wd

∂t

)
= −μf

(wd

δ

)2 ∂wd

∂t
.

We introduce the nondimensional quantities:

x̂ = x

l
, ŵ = wd

δ
, α̂1 = αil

3

EIδ
, t̂ = t

√
EI

ρAl4
,

μ̂ = μ

√
l2

ρAEI
, μ̂f = μf

√
l2

ρAEI
,

and rewrite Eq. (1) in nondimensional form as [3]

ŵ′′′′ + ¨̂w = 0, (2a)
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ŵ
∣∣
x̂=0 = 0, (2b)

ŵ′
∣∣
x̂=0 = 0, (2c)

ŵ′′
∣∣
x̂=1 = 0, (2d)

(
ŵ′′′ − α̂1ŵ

) ∣∣∣x̂=1 =
(
μ̂ ˙̂w − μ̂f ŵ

2 ˙̂w − α̂2ŵ
2 − α̂3ŵ

3
)∣∣∣
x̂=1

, (2e)

where the prime indicates the derivative with respect to x̂ and the overdot indicates
the derivative with respects to t̂ .

3 Perturbation Solution

We use the method of multiple scales [2] to find a uniformly valid second-order
approximate solution of Eq. (2) and equation of the limit cycle in the form:

ŵ = εŵ1

(
x̂, T̂0, T̂1, T̂2

)
+ ε2ŵ2

(
x̂, T̂0, T̂1, T̂2

)
+ ε3ŵ3

(
x̂, T̂0, T̂1, T̂2

)
, (3)

where ε is small nondimensional bookkeeping parameter; T̂0 = t̂ , T̂1 = εt̂ , T̂2 =
ε2 t̂ . We rescale effects of the damping as μ→ εμ. Substituting Eq. (3) into Eq. (2)
and balancing coefficients of like powers of ε, we obtain

order ε

ŵ′′′′1 +D0
2ŵ1 = 0, (4a)

ŵ1
∣∣
x̂=0 = 0, (4b)

ŵ′1
∣∣
x̂=0 = 0, (4c)

ŵ′′1
∣∣
x̂=1 = 0, (4d)

ŵ′′′1 − α̂1ŵ1
∣∣
x=1 = 0. (4e)
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order ε2

ŵ′′′′2 +D0
2ŵ2 = −2D0D1ŵ1, (5a)

ŵ2
∣∣
x̂=0 = 0, (5b)

ŵ′2
∣∣
x̂=0 = 0, (5c)

ŵ′′2
∣∣
x̂=1 = 0, (5d)

ŵ′′′2 − α̂1ŵ2

∣∣∣x̂=1 = −α̂2ŵ
2
1

∣∣∣
x̂=1

. (5e)

order ε3

ŵ′′′′3 +D0
2ŵ3 = −

[
2D0D1ŵ2 +

(
D1

2 + 2D0D2

)
ŵ1

]
, (6a)

ŵ3
∣
∣
x̂=0 = 0, (6b)

ŵ′3
∣
∣
x̂=0 = 0, (6c)

ŵ′′3
∣
∣
x̂=1 = 0, (6d)

(
ŵ’’’

3 − α̂1ŵ3

)∣∣∣
x̂=1

=
= [

μ̂D0ŵ1 − 2α̂2ŵ1ŵ2 −
(
α̂3 + μ̂f D0

)
ŵ3

1

]∣∣
x̂=1

(6e)

The first-order problem given by Eq. (4) is a linear eigenvalue problem. We
express ŵ1 [3] as

ŵ1 = Cn

(
T̂1, T̂2

)
Xn

(
x̂
)
eiω̂nt̂ + c.c, (7)

where Cn

(
T̂1, T̂2

)
is a complex-value function which depends on parameters

T̂1, T̂2, Xn

(
x̂
)

is the n th natural mode shape determined by parameter ω̂n – n
th nondimensional eigenfrequency and c. c denotes the complex conjugate of the
preceding terms.
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Fig. 2 The depends of quantities on the parameter α̂1 the first, the second and the third natural
frequency of the system (a) and the ratio of natural frequencies (b) ω̂2/ω̂1 (red line) and ω̂3/ω̂2
(black line)

Accordingly, we express Xn

(
x̂
)

and ω̂n [3] as

Xn

(
x̂
) = − sinh(bn)+sin(bn)

cosh(bn)+cos(bn)

(
cos h

(
bnx̂

)− cos
(
bnx̂

))+
+ (

sin
(
bnx̂

)− sinh
(
bnx̂

))
,

(8)

and the natural frequencies ω̂n = b2
n are solution of the characteristic equation

L (bn) = α̂1 (cos hbn sin bn − sinhbn cos bn)+
+ bn

3 (1+ cos bn cos hbn) = 0.
(9)

Figure 2a shows the first, the second and the third ω̂1, ω̂2, ω̂3 natural frequencies
of the system as a function of linear stiffness α̂1. When α̂1 takes on value 121,
ω̂3 ≈ 2ω̂2. In this case, we can see the internal resonance between the second and
the third modes [3].

Figure 2b shows the ratio of natural frequencies and it can be seen that in this
case there is no internal resonance between first and second modes.

Substituting Eq. (7) into Eq. (5a), we obtain

ŵ′′′′2 +D0
2ŵ2 = −2D0D1

[
Xn

(
x̂
)
C
(
T̂1, T̂2

)
eiωnT̂0 + c.c

]
, (10)

and the solvability condition [5] for Eq. (10) demands that

D1C
(
T̂1, T̂2

)
= 0. (11)

Substituting Eq. (11) into Eq. (5) and solving for ŵ2 yields
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ŵ2 = C2
∼
Xn

(
x̂
)
e2iωT̂0 + BCC

(
x̂3 − 3x̂2

)
+ c.c, (12)

where

∼
Xn

(
x̂
) = C3K3

(√
2bnx̂

)
+ C4K4

(√
2bnx̂

)
, B = − α̂2Xn

2(1)

6+ 2α̂1
, (13)

C3 =
α̂2Xn

2(1)K2

(√
2bn

)

L
(√

2bn
) and C4 =

−α̂2Xn
2(1)K1

(√
2bn

)

L
(√

2bn
) . (14)

Substituting Eqs. (7), (12) into (6) and obtain solvability condition [5], we obtain

iC′ =
[
2α̂2

(
X̃n(1)−2B

)
+3α̂3Xn

2(1)
]
Xn(1)

2Δωn
C2C−

− iμ̂Xn(1)
2Δ C + i

3μ̂f Xn
3(1)

2Δωn
C2C,

(15)

where

Δ =
1∫

0

Xn
2 (x̂

)
dx̂. (16)

The prime indicates the derivate with respect to T̂2 in Eqs. (15), (18), (19), (20),
and (21).

When Xn(1) =0, then

C = Const.

It means that in this case the tip becomes a node and there is no transfer of energy
that occurs from the sample to the probe through the tip [3].

Substituting the Cartesian form [5]

C = a + iγ, (17)

into Eq. (15) and separating the results into real and imaginary parts yields

a′ = − μ̂Xn(1)
2Δ a+

+
([

2α̂2

(
X̃n(1)−2B

)
+3α̂3Xn

2(1)
]
Xn(1)

2Δωn
γ + 3μ̂f Xn

3(1)
2Δωn

a

)

×
× (

a2 + γ 2
)
,

(18)
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γ ′ = − μ̂Xn(1)
2Δ γ+

+
(

3μ̂f Xn
3(1)

2Δωn
γ −

[
2α̂2

(
X̃n(1)−2B

)
+3α̂3Xn

2(1)
]
Xn(1)

2Δωn
a

)

×
× (

a2 + γ 2
)
.

(19)

where a and γ are imaginary and real part of C.
To investigate the existence of a limit cycle we rewrite Eqs. (18) and (19) in polar

coordinates (a, γ )→ (ρ, θ )

ρ′ = 2ρ2

(
3μ̂f Xn

3(1)

2Δωn
ρ − μ̂Xn(1)

2Δ

)

= Xn(1)

Δ
ρ2

(
3μ̂f Xn

2(1)

ωn
ρ − μ̂

)

(20)

θ ′ = −

[
2α̂2

(∼
Xn(1)− 2B

)
+ 3α̂3Xn

2(1)

]
Xn(1)

2Δωn
ρ, (21)

The Eqs. (20), (21) for the radius ρ do not contain the variable θ . Therefore, the
roots of the right side of the Eq. (20) will indicate the equilibrium in the system

ρ = 0, ρ = μ̂ωn

3μ̂f Xn
2(1)

. (22)

First point ρ = 0 denotes an unstable zero equilibrium and the second one
denotes the amplitude of the stable limit cycle. To confirm these, we depict the
phase plane in the Cartesian coordinates a and γ

Figure 3 shows that the limit cycle is stable because the phase curves on (a) and
(b) are attracted from inside and outside to this equilibrium position of the system.
Further, we show that in this system with a stable limit cycle, it is possible to perform
amplitude and frequency modulation. For the first case, the implicit dependence of
the amplitude of the limit cycle ρ in polar coordinates (ρ, θ ) on the parameter α̂1 is
represented by the nontrivial case of the Eq. (22).

It was previously postulated that the system (18), (19) has an unstable equilib-
rium (0, 0). As a mathematical justification we know, that the stability of the fixed
point (a0, γ 0) is determined by examining the eigenvalues of the Jacobian matrix of
Eqs. (18) and (19), evaluated at the corresponding fixed point.

The linear part of (18)–(19) represents

a′ = − μ̂Xn(1)

2Δ
a, (23)
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Fig. 3 System motion to self-oscillations under initial conditions (a) close to (0, 0), (b) with
sufficiently large initial conditions at μ̂ = 0.02, μ̂f = 0.2

γ ′ = − μ̂Xn(1)

2Δ
γ, (24)

The expression for eigenvalues is

λ1,2 = − μ̂Xn(1)

2Δ
. (25)
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Fig. 4 The dependence of
the polar radius ρ on the
parameter α̂1 when
μ̂ = 0.015,
μ̂f = 0.01, 0.015, 0.03
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The eigenvalues of the Jacobian matrix (23), (24) depend explicitly on the form
of free oscillations of the linear problem (2), in the case of the first mode X1(1) will
be negative. Thus, the values in the equilibrium position (0, 0) are positive, which
gives rise to an unstable motion.

Figure 4 shows the dependence of the polar radius ρ on the parameter α̂1,
which characterizes the topography of the object. When the control parameter μ̂f
increases, the polar radius ρ takes on large values. This is due to the fact that it is this
parameter that is responsible for the amplitude of the effect, which directly relates
to the AFM response.

Figure 5 shows the dependence of the eigenvalues λ of the linear system (23),
(24) on the parameter α̂1 for various values of the control factor μ̂f , (a) depicts
this dependence upon excitation of the first natural mode, (b) shows the excitation
of the second natural mode. Depending on the sign of Xn

(
x̂
)

at the right end of
the AFM, a stable and unstable zero position of the linear system (23)–(24) will be
determined. The zero-equilibrium position will be stable for all even forms, when
the transition to the limit cycle will be observed with odd ones.

Substituting nontrivial part of Eq. (22) into Eq. (21) yields

θ ′ = −

[
2α̂2

(∼
Xn(1)− 2B

)
+ 3α̂3Xn

2(1)

]

6ΔXn(1)

μ̂

μ̂f
. (26)

We integrate the Eq. (26) within θ ∈ [0, 2π ] and t ∈ [0, T]

T = − 12πΔXn(1)[
2α̂2

(∼
Xn(1)− 2B

)
+ 3α̂3Xn

2(1)

]
μ̂f

μ̂
, (27)

where T – period of self-oscillations. And frequency of self-oscillation defines as
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Fig. 5 The dependence of the eigenvalues λ on the parameter α̂1 in the case of the excitation of
the first (a) and second (b) modes when μ̂ = 0.015, μ̂f = 0.1, 0.2, 0.3

ν = 2π

T
= −1

6

μ̂

μ̂f

[
2α̂2

(∼
Xn(1)− 2B

)
+ 3α̂3Xn

2(1)

]

ΔXn(1)
. (28)

It is interesting to obtain an explicit dependence of the polar radius ρ on the
period of the limit cycle T. Substituting the nontrivial part of Eq. (22) into Eq. (27)
yields

Tρ = − 4πΔωn[
2α̂2

(∼
Xn(1)− 2B

)
+ 3α̂3Xn

2(1)

]
Xn(1)

. (29)

Figure 6 shows the dependence of period T (a) and frequency ν (b) of self-
oscillations on the surface parameter α̂1. These dependencies can be used for
frequency modulation, which is quite accurate and promising in terms of minimizing
interference and inaccuracies in taking time characteristics.

Figure 7 shows the relationship between the period T and the radius ρ of the
limit cycle. This relationship may be useful for estimating noise with amplitude
modulation.

The last step in this study will be to set the parameter μ̂f at which the frequency
of the limit cycle will be equal to the natural frequency of the AFM. This is
important because of depending on the frequency setting of the limit cycle, the zero
position will be stable or unstable, that is, without an unstable zero equilibrium
position, the limit cycle will not be observed.

For this we equate the Eq. (28) with natural frequency ωn
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ν = ωn ⇐⇒ −1

6

μ̂

μ̂f

[
2α̂2

(∼
Xn(1)− 2B

)
+ 3α̂3Xn

2(1)

]

ΔXn(1)
= ωn, (30)

where do we find the value of the parameter μ̂f

μ̂f = −1

6

μ̂

ωn

[
2α̂2

(∼
Xn(1)− 2B

)
+ 3α̂3Xn

2(1)

]

ΔXn(1)
. (31)
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Fig. 8 The dependence of the control parameter μ̂f on the surface parameter α̂1 in the case of
the frequency of the limit cycle equal to (a) the first natural frequency and (b) the third natural
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Figure 8 shows the dependence of the control parameter μ̂f on the surface
parameter α̂1 in the case of the frequency of the limit cycle equal to the first and third
eigenfrequencies of the AFM oscillation. Thus, it is possible to retrieve information
about the surface of the object by the feedback signal of the parameter μ̂f , which is
adjusted to match the frequency of self-oscillations under the natural frequency of
the AFM oscillations.

4 Conclusions

In this work, we study the dynamics of AFM in contact mode. In contrast to the
standard harmonic excitation force acting on the sample, the generalized function
of the degrees of freedom and time was considered. With a certain choice of this
function, it is possible to organize a limit cycle in this system and use it to remove
information about the object under study, which can take interest in the applied plan.

In addition, of special interest is the organization of a self-oscillating regime by
acting on the tip of the AFM function which depends on generalized coordinates.
Further, it becomes possible to explore the surface topography by changing the
parameters of the limit cycle, which is more promising and more effective than the
case of frequency modulation – because in the latter, as will be seen, the resonance
curve is ambiguous, which makes it difficult to determine the amplitude maximum.
Thus, the result of this work will be the construction of a solution for the case of the
limit cycle and its qualitative study, and most importantly, comparison with other
types of modulation in terms of speed and efficiency of data acquisition.
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Non-Rectification of Heat in Graded
Si-Ge Alloys

S. Carillo, M. G. Naso, E. Vuk, and F. Zullo

1 Introduction

The thermal phenomenon that allows heat to be transferred in a suitable direction
in a given material, while the flow is impeded in the opposite direction, is called
thermal rectification [1, 2]. This is the analogue of the current rectification of the
electronic diodes, and for this reason any device showing some thermal rectifying
feature is called thermal diode. A homogeneous material possessing a constant
thermal conductivity is known to possess no rectifying property [3]: the heat flows,
under the same thermal gradient applied, equally in all possible directions. It follows
that, if a material possesses a rectifying effect, then the thermal conductivity λ is a
non-homogeneous function of the temperature. With non-homogeneous, we mean
that the thermal conductivity also depends on the space variable x. Despite to be
necessary, this condition is however far from being sufficient: indeed, it has been
shown [3] that, if the thermal conductivity is a separable function, i.e., if there exist
two functions f and g such that λ(T , x) = f (T )g(x), then no rectifying effect can
be observed in the material.

A practicable process to obtain non-homogeneous values of macroscopic prop-
erties, such as the thermal conductivity, is the manufacturing of functionally graded
materials, i.e., materials with a specific gradation in the composition in order to
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achieve particular performances or functions [4]. One of the most common examples
of graded materials is binary alloysAcB1−c, whereA andB are two different atomic
species and c is the content of the species A (so that c ∈ (0, 1)). In this chapter we
present a detailed analysis of the possibility to get a thermal diode with graded Si-
Ge alloys. The investigation is mainly based on the results given in [1], where a
systematic approach is introduced to find the optimal gradation of the species in
order to maximize the efficiency of the fin. Our main assumptions are the following:

– The device is a wire of variable diameter D; hence, the problem can be
considered one-dimensional.

– The Fourier law describes accurately enough the temperature distribution within
the device.

– The anharmonic, alloy, and boundary scattering of the phonons all give
contributions to the value of the thermal conductivity.

– The concentration c and the diameter D are unknown variables and must be
determined in order to optimize the rectifying effect.

This chapter is organized as follows: in Sect. 2 we introduce the main equations
and the rectification coefficient R. Also, for the sake of clearness and completeness,
we briefly describe the approach given in [1] to maximize this coefficient. In
Sect. 3, we apply the formulae to a Si-Ge graded wire with variable diameter. An
analytical formula for the thermal conductivity, mainly based on [5] (see also [6–8]),
is presented and discussed. An example of evolutionary solution is also provided,
and perspective developments in this direction are mentioned. In Sect. 4, we apply
the results given in Sect. 2 to the obtained formula for the thermal conductivity.
Finally, in the conclusions, the main aspects of this chapter are emphasized, under
a constructive point of view. Indeed, even if it is true that our analysis seems to
preclude the possibility to get significant values of the rectification coefficient,
different perspectives that may indicate the methodology to achieve applicable
results.

2 The Rectification Coefficient and Its Maximization

This section is mostly based on a work of Peyrard [2] and on a previous work of
some of the co-authors [1] and introduces the main findings described in Sect. 3. In
[2] it is shown that it is possible to get a rectifying effect from a device composed
of two materials when at least one of them is characterized by a temperature-
dependent thermal conductivity. When the temperature range considered is large,
almost every metallic or semiconductor material has a temperature-dependent
thermal conductivity. Furthermore, for graded materials, the thermal conductivity
may also be a function of the gradation in composition: for example, for binary
alloys AcB1−c, λ is a function of T and of the species content c (see, e.g., [9]). If
the species content c is variable inside the material, i.e., c = c(x), then the thermal
conductivity becomes dependent on T and x, λ = λ(T , c(x)). In [1], a systematic
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way to choose the spatial distribution of the composition c(x) and the geometry
of the device presenting the more interesting rectification performances has been
introduced. Here, we recall the main findings for completeness and for the sake of
readability of Sect. 3. By assuming that the Fourier law holds, the evolution of the
temperature inside the device is governed by the following equation:

ρ(c(x))C(T , c(x))
∂T

∂t
= ∂

∂x

(
λ(T , c(x))

∂T

∂x

)
, (1)

where the density ρ can depend on the content c that may be a variable in x, and
the specific heat capacity C in general depends on both T and c. The steady-state
distribution of the temperature is described by the solution of the following equation:

dT

dx
= − q

λ(T , c(x))
. (2)

In a steady-state situation, like the one we are considering, the heat flux q across the
device is a constant (since it solves ∇ · q = 0). Then, the implicit solution of Eq. (2)
is given by

T (x) = T (0)− q

∫ x

0

1

λ (T (y), ν(y))
dy, (3)

giving

q = − T (L)− T (0)
∫ L

0

1

λ (T (y), ν(y))
dy

. (4)

The efficiency of a thermal rectifier can be evaluated through the rectification
coefficient, defined by the ratio of the heat flux in two opposite configurations, the
“direct” and the “inverse”. To fix ideas, we take the two boundaries of the device at
x = 0 and x = L at the temperatures TH and TL, where TH > TL. In the direct
configuration, the end x = 0 is at the temperature TL and the end x = L at the
higher temperature TH . In the reverse configuration, the boundary x = 0 is at the
higher temperature TH , whereas the end at x = L is at the lower temperature TL.
From Eq. (3), if qd and qr are, respectively, the direct and reverse heat fluxes, the
rectification coefficient R is defined as

R = |qd |
|qr | =

∫ L

0

1

λ (τr(y), c(y))
dy

∫ L

0

1

λ (τd(y), c(y))
dy

, (5)
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where τr and τd are the solutions of the steady Fourier equation (2) in the reverse and
direct configurations, respectively, [1]. From (5), it is clear that if λ was a constant,
the rectification constant would be equal to 1, i.e., the heat fluxes in the direct and
inverse configurations are equal and no rectifying effect is observed. Notice that,
if λ is constant, then the distribution of the temperatures in the two configurations
is represented by the distributions of the temperatures Td and Tr in the direct and
reverse configurations, given, respectively, by

Td = TL + (TH − TL)
x

L
, Tr = TH − (TH − TL)

x

L
. (6)

If we look at the plane (x, T ), these temperatures lie exactly on the diagonals of
the rectangle with vertices in (0, TL), (0, TH ), (L, TL), and (L, TH ). According to
[1], if λ is a regular continuous function of T and x, at steady state, the temperature
profiles roughly will follow the same diagonals. Then, if the value that the thermal
conductivity assumes on one of these diagonals is much greater than the value it
assumes on the other diagonal, a considerable rectifying effect should be observed.
Based on this reasoning, in [1], the following methodology is proposed to maximize
the rectification coefficient (5):

1. Among the various possible geometries and distributions c(x), look for the
particular geometry and distribution c0(x) giving a saddle point to the function
λ(T , x) in the middle of the domain of interest. In the plane (x, T ), the saddle
must present a maximum on one diagonal and a minimum on the other diagonal.

2. Among the various possible geometries and distributions c(x), look for the
particular geometry and the particular distribution c0(x) that maximizes the
difference between the values that λ(T , x) assumes on the vertices of the
rectangle whose diagonals are given by (6). More precisely, if TA(x) denotes the
values on one of the two diagonals and TB(x) the values on the other, maximize
the differences λ(TA(0), 0)− λ(TB(0), 0) and λ(TA(L), L)− λ(TB(L), L).

In the next section, in order to apply the above line of reasoning to graded Si-Ge
devices, we describe the dependence of the thermal conductivity on the temperature,
gradation, and dimension of the section of the wire.

3 Si-Ge Alloys with Variable Section

The thermal conductivity of silicon-germanium alloys is in general lower than the
corresponding thermal conductivities of the bulk materials. From a microscopic
point of view, this is due to an additional scattering mechanism of the phonons
inside the material, the so-called alloy scattering. The geometry of the material
may also play a role in the determination of the thermal conductivity. Indeed, if
the dimensions are small enough, the scattering of the phonons with the boundaries
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of the material may become strong enough and contribute to a further lowering
of the thermal conductivity. The properties of the Si-Ge alloys can be computed via
first-principles approaches, like the density-functional perturbation theory (see, e.g.,
[10] for bulk materials with diffusive boundary conditions or [11] for disordered
silicon-germanium alloys). As for the case of porous silicon, we need an analytical
formulation of the thermal conductivity accurate enough and simple enough to be
manipulated. In [5], the authors presented a theoretical, phenomenological formu-
lation of the thermal conductivity of Si1−cGec nanowire alloys, wherein the section
of the wire is explicitly taken into account. This formulation is compared with
experimental results: between a temperature range of (100, 400)K, the agreement
seems to be good enough in order to be utilized here [5–7]. The thermal conductivity
of a Si1−cGec nanowire is then given by Wang and Mingo [5]

λ = k4
BT

3

2π2vh̄3

∫ h̄wc/kBT

0

y4ey

(ey − 1)2
1

τ−1 dy, (7)

where kB and h̄ are the Boltzmann’s and reduced Planck’s constants, the inverse
scattering rate τ−1 is given, by the Matthiessen’s rule, by the sum of three terms,
i.e.,

τ−1 = τ−1
u + τ−1

a + τ−1
b ,

where τ−1
u , τ−1

a , and τ−1
b are, respectively, the contributions due to anharmonic,

alloy, and boundary scattering. The anharmonic contribution is described by the
weighted average between the Si and Ge terms, τ−1

u = (1−c)τ−1
Si +cτ−1

Ge , with τ−1
Si

proportional tow2T e−CSi/T and τ−1
Ge proportional tow2T e−CGe/T (CSi andCGe are

the constants and w is the frequency of the phonons). The alloy scattering term is
approximated by a quadratic function of c, required to be zero for c = 0 and c = 1,
giving τ−1

a ∼ c(1 − c)w4 (see also [8] for the proportionality to the w4 term). The
boundary term is taken in [5] to be equal to τ−1

b = v/D, where D is the diameter
of the wire and v is the average speed of sound, given by v−2 = (1− c)v−2

Si + cv−2
Ge

(vSi and vGe are the average speeds of sound in silicon and germanium). The overall
cutoff frequency wc is given by wc = wcutv/vSi , where wcut ∼ 38.8 THz [5].

Combining all together and taking the constants of proportionality from [5], we
get

λ = λ̂0T
3β (8)

×
∫ Θc/βT

0

y4ey(ey − 1)−2

(1− c)y2T 3e−CSi/T + q1cy2T 3e−CGe/T + q2c(1− c)T 4y4 + q3/(βD)
dy,

where λ̂0 = 2.43Wm−1K−1, β = √
1521+ 2575c, Θc = 1.1568 · 104K, CSi =

139.8K, and CGe = 69.34K. The three constants qi are given by q1 = 1.93, q2 =
3.41K−1, q3 = 96.6K3m.
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To get the evolution equation for the temperature (1), the values of the density and
of the specific heat capacity are needed. In the case of Si1−cGec alloys, the following
formula that gives ρ as a function of c is given in [9] (the units are Kg/m3):

ρ(c) = 2329+ 3493c − 499c2. (9)

The specific heat capacity, according to the well-known Debye formula, is

C = C0T
3
∫ Θc/βT

0

y4ey

(ey − 1)2
dy, (10)

where C0 is assumed to be C0 = (1 + c) · 8.567 · 10−5 J/K4 Kg. Note that the
value of C0 is chosen to fit the values of the specific heat capacity of the pure silicon
(corresponding to c = 0), given by 710 J/Kg K at 300 K, and the value of the specific
heat capacity of the germanium (corresponding to c = 1), given by 330 J/Kg K at
300 K.

The corresponding nonlinear, integro-differential equation describing the evolu-
tion of the temperature is given by

ρC
∂T

∂t
= ∂

∂x

(
λ
∂T

∂x

)
, (11)

where ρ is given by Eq. (9), C by Eq. (10), and λ by (8). Note that, for graded
materials, the species content c appearing in the formulae for λ, C, and ρ is a
function of the space variable x, since it can vary along the wire. In general, the
diameter D, in λ, may also depend on x.

Let us consider as a particular case (but interesting also under an applicative
point of view) a material with constant values of the species content c and of the
diameter of the wire D. In this case, both the heat capacity C (10) and the thermal
conductivity (8) depend only on the temperature T (x, t) for any fixed value of c and
D. Equation (11) then becomes

ρC(T )
∂T

∂t
= dλ(T )

dT

(
∂T

∂x

)2

+ λ(T )
∂2T

∂x2
. (12)

Now, assume that the temperature T (x, t) is a solution of the following implicit
equation:

A1x + A2t + A3 +
∫ T (x,t)

0
f (y)dy = 0, (13)

where A1, A2, and A3 are the three arbitrary constants and f (y) is an unknown
function to be determined. We also assume that f (y) is always different from zero.
The partial derivatives of the temperature can be expressed in terms of the function
f and its derivative. Indeed, by differentiating equation (13), we get
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∂T

∂t
= − A2

f (T )
,

∂T

∂x
= − A1

f (T )
,

∂2T

∂x2 = −
A2

1

f (T )2

df (T )

dT
. (14)

Substitution of the previous expression in (12) gives a differential equation in the
unknown function f (T ):

ρC(T )A2f (T )
2 + dλ(T )

dT
A2

1f (T )− λ(T )A2
1
df (T )

dT
= 0 (15)

that is a Bernoulli differential equation for f . It is known that the Bernoulli
differential equation is linearizable through a change of the dependent variable.
Indeed, if we set f (T ) = (w(T ))−1, one has for w(T ):

ρC(T )A2 + dλ(T )

dT
A2

1w(T )+ λ(T )A2
1
dw(T )

dT
= 0 (16)

and the further change of variables w(T ) = w̃(T )

λ(T )
produces:

ρC(T )A2 + A2
1
dw̃(T )

dT
= 0, (17)

which gives

w̃(T ) = −ρA2

A2
1

∫ T

0
C(y)dy + A4, (18)

where A4 is a fourth arbitrary constant. Combining all together, we see that a
particular family of solutions of Eq. (12), possessing four arbitrary constants, is
given by the solution of the following implicit equation:

A1x + A2t + A3 +
∫ T (x,t)

0
f (y)dy = 0, f (y) = λ(y)

A4 − ρ A2
A2

1

∫ y
0 C(z)dz

.

(19)
We remember that the functions λ(T ) and C(T ) in (19) are the thermal conductivity
and the heat capacity of the device.

Some remarks on the previous solution follow. The boundary conditions,
assigned at x = 0 and x = L, are time-dependent. However, such solution may be
unphysical, since, for suitable heat capacities and thermal conductivities, it may be
unbounded as t goes to infinity. When a Taylor series approximation is adopted to
express both heat capacity as well as the thermal conductivity, explicit integration
of Eq. (19) is possible by a partial fraction decomposition. In this case also, it may
be possible that the solution is unphysical. On the other hand, note that if the species
content c and the diameter of the wire D are variable in space, Eq. (19) does not
represent anymore the solution of Eq. (11), but still, if the coefficients A1, A2, and
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A3 are suitably chosen variable in space, it is possible to get particular solutions for
some special cases. In general, Eq. (11) is baffling, and it needs ad hoc strategies to
be fully understood. We are developing a difference scheme in order to describe the
evolution of the temperature inside the device corresponding to “ad hoc” initial and
boundary conditions: this will be fully developed in a work in progress. In addition,
a perturbative approach is currently under investigation to check whether on the
introduction of ρ and λ as power series expansions in terms of small parameters
that represent the difference of the current value with respect to its mean value (i.e.,
ρ = ρ0 + ερ1(x) and λ = λ0 + ελ1(T , x)) may produce physically meaningful
results.

According to the methodology given in [1] and described in Sect. 2, it is sufficient
here to describe the asymptotic (steady) solution of Eq. (11) in order to obtain the
necessary information on the rectification coefficient (5). Actually, as stated by the
items (1) and (2) at the end of Sect. 2, the function λ(T , c) plays a fundamental role.

In Fig. 1, the plots of the value of the thermal conductivity for T = 300 K
and for different values of D are reported. In the next subsection, we apply our
methodology to the thermal conductivity (8): as we will see, in this case we find that
it is not possible to obtain high values of the rectification coefficient (5) following
our approach.

Bulk
D = 1000nm
D = 400nm
D = 150nm

T = 300K

100

50

10

5

100

50

10

5

0 1c

λ
(W

m
–1

 K
–1

)

Fig. 1 The values of the thermal conductivity obtained from formula (8) with T = 300 K for
D = ∞ (corresponding to a bulk alloy), D = 1000 nm, D = 400 nm, and D = 150 nm. A log
scale has been used on the vertical axis
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4 Analysis of the Thermal Conductivity (8) and the
Corresponding Rectification Coefficient

This section is devoted to some remarks on the model under investigation aiming
to stress are the main difficulties underlying the problem itself. According to
the approach summarized in Sect. 2, if we are interested in obtaining sufficiently
large values of the rectification coefficient, we need to require large values for
the differences λ(TA(0), 0) − λ(TB(0), 0) and λ(TA(L), L) − λ(TB(L), L), where
TA(x) defines the values of the temperatures on one of the two diagonals and TB
the values on the other. Indeed, such a choice is crucial, to follow both steps (1)
and (2). However, to satisfy such conditions on λ(TA(0), 0) − λ(TB(0), 0) and
λ(TA(L), L) − λ(TB(L), L), the function λ(T , x = 0), when we consider it
dependence on T in the domain (TL, TH ), is required to be increasing at least
in some interval of the domain, whereas the function λ(T , x = L) is required
to be decreasing at least in some interval of the same domain. Since in formula
(8) both the concentration c as well as the diameter D are assumed to depend
on x, when x = 0 and x = L, these functions assume the values, say, c(0),
c(L), D(0), and D(L). If, in some region of the variables c and D, the function
λ(T , c,D), as a function of T , is increasing and decreasing in some other regions,
then suitably tuning the dependence of c and D on x, it would be possible to
construct a thermal conductivity that exhibits an interesting rectification coefficient.
However, in the range of temperatures (100, 400)K, the function λ(T , c,D) does
not satisfy the requested properties. Indeed, in the region c = (0.05, 0.95) λ is
almost flat for all values of T and for all the reasonable values of D, i.e., from
10 nm to 2 · 104 nm. In such a range of c, the values of λ are bounded in the interval
(1 − 25)Wm−1K−1, as shown in Fig. 2, whereas in the full range of variation of
c (i.e., c ∈ (0, 1)), the values of λ can reach values as large as 500 Wm−1K−1.
This behaviour suggests to choose values of c that correspond to almost pure silicon
(c ∈ (0, 0.05)) or almost pure germanium (c ∈ (0.95, 1)). Nevertheless, in these
ranges of variability, the thermal conductivity is always a decreasing function of the
temperature, independently on the value of the concentration. The only exception
is a very flat maxima, which correspond to fixed and small values of D (see the
plots Fig. 3 for the dilute zones). This seems to preclude the possibility to tune
the dependence of c and D on x in such a way to get an interesting value of the
rectification coefficient. The above result can provide an explanation of the small
values of R available in the literature for Si1−cGec devices (see, e.g., [12]).

5 Conclusions

In this chapter, we systematically analysed the possibility to obtain a thermal
diode for functionally graded Si-Ge alloys. We tried to get the particular spatial
distribution of the species content c and the geometry of the wire giving reasonably
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Fig. 2 The values of the thermal conductivity for c ∈ (0.05, 0.95) for different values of the
temperature
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Fig. 3 The values of the thermal conductivity as a function of the temperature in the two dilute
zones given by c ∈ (0, 0.05) and c ∈ (0.95, 1) for some values of c
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high values of the rectification coefficient. This same methodology is applied to
porous silicon materials in [1] showing the possibility to obtain a rectification
coefficient equal to 3.15. The same approach applied to Si-Ge materials shows that
a thermal diode with the characteristics here described has instead few chances
to become a good heat rectifier. Clearly, this negative result only implies the
impracticability to get a thermal diode with the above characteristics. The model
here presented, although to be physical consistent and accurate, can be regarded as
a first approximation to more complex approaches, and if new variables or different
heat transfer laws are embedded in the model here considered, more satisfactory
results can be achieved.
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Expansion of Evolution Matrix and
Lyapunov Exponents with Respect to
Parameters

Anton O. Belyakov and Alexander P. Seyranian

1 Introduction

Computation of Lyapunov exponents (LEs) has been a topic for incentive study, see
[1–5] and references therein. In this chapter, we analyze how approximate methods,
such as method of averaging, can be implemented to facilitate the calculation of LE
spectra.

This chapter is organized as follows. In the second section, we define LEs. In
Sect. 3, we introduce approximate analytic calculation of evolution matrix with the
use of averaging scheme that can yield analytical approximations of any order. In
the end of the third section, we provide expression for the first-order expansion of
LEs. Section 4 contains implementation of averaging to numeric computation of
LEs with periodic QR factorization.

2 Definition of LEs

Let us consider the following linearization of a nonlinear system about its solution

ṗ(t) = J(t) p(t),
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where p(t) ∈ R
n is the vector of state variable perturbations and J(t) is the

piecewise continuous, integrable Jacobian matrix of the original nonlinear system.
Solution of the matrix differential equation with the initial identity matrix

Ṗ(t) = J(t) · P(t), P(0) = I (1)

yields evolution matrix P(t). LEs are defined as logarithms of eigenvalues of matrix

� = lim
t→∞

(
P′(t) · P(t)) 1

2t ,

where P′ is the transposed matrix P, and we assume that the finite limit exists
(system is regular).

QR factorization of

P(t) = Q(t) · R̄(t) (2)

yields orthogonal matrix Q(t), upper triangular matrix R̄(t) with positive diagonal
elements, and expression for i-th LE as

λ(i) = lim
t→∞

1

t
log |R̄(i,i)(t)|, (3)

where i = 1, . . . , n and (i,i) denotes the i-th diagonal element.

3 Approximate Calculation of Evolution Matrix

We solve problem (1) approximately by the averaging method [6] in [7] assuming
that the Jacobian matrix J(t) can be expanded into the series

J(t) = J0(t)+ J1(t)+ J2(t)+ . . . , (4)

with the lower index denoting the order of smallness,1 and that we know solution
P0(t) of the matrix initial value problem

Ṗ0(t) = J0(t) · P0(t), P0(t) = I. (5)

Then, the change of variable

P(t) = P0(t) · Y(t) (6)

1If J(t) differs from J0(t) due to small change in the vector of parameters Δp, then J1(t) =
O(||Δp||), J2(t) = O(||Δp||2), and so on.
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converts (15) into the standard form:

Ẏ(t) = H(t) · Y(t), Y(0) = I, (7)

where matrix H(t) := P−1
0 (t) · (J(t)− J0(t)) · P0(t) is small and can be written as

H(t) = H1(t)+H2(t)+ . . . (8)

with Hj (t) := P−1
0 (t) · Jj (t) · P0(t) for all j ≥ 1.

3.1 Averaging Scheme

Approximate solution of (7) can be found with averaging method in the form

Y(t) = (I+ U1(t)+ U2(t)+ . . .) · exp ((A1 + A2 + . . .) t) , (9)

where Uj (t) are the matrix functions, such that Uj (0) = 0, lim
t→∞

Uj (t)

t
= 0.

Matrices Aj and Uj can be found one by one with the scheme described, e.g., in
[7]. The scheme includes substitution of (8) and (9) into (7), grouping terms of the
same order of smallness, and solving resulting equations separately for each order.
For the first-order approximation, we have U̇1(t)+A1 = H1(t) and we calculate A1

as the average of H1(t), taking into account that U1(0) = 0 and lim
t→∞

U1(t)

t
= 0:

A1 = lim
T→∞

1

T

∫ T

0
H1(t) dt = lim

T→∞
1

T

∫ T

0
P−1

0 (t) · J1(t) · P0(t) dt. (10)

For the second-order approximation, we have to calculate U1(t) from U̇1(t)+A1 =
H1(t), taking into account that U1(0) = 0:

U1(t) =
∫ t

0
(H1(τ )− A1) dτ, (11)

and then from the equation for the second order U̇2(t)+A2+U1(t) ·A1 = H2(t)+
H1(t) · U1(t), taking into account that U2(0) = 0 and lim

t→∞
U2(t)

t
= 0, we get

A2 = lim
T→∞

1

T

∫ T

0
(H2(t)+H1(t) · U1(t)− U1(t) · A1) dt,

with the use of matrix A1 already obtained in (23). Similarly for the n+ 1-th-order
approximation, one can derive that
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Un(t) =
∫ t

0
(Hn(τ )− An

+Hn−1(τ ) · U1(τ )− U1(τ ) · An−1

· · ·
+H1(τ ) · Un−1(τ )− Un−1(τ ) · A1) dτ, (12)

An+1 = lim
T→∞

1

T

∫ T

0
(Hn+1(t)

+Hn(t) · U1(t)− U1(t) · An

· · ·
+H1(t) · Un(t)− Un(t) · A1) dt. (13)

3.2 Expansion of Evolution Matrix

In the first-order approximation, we have from (9)

Y(t) ≈ I+ U1(t)+ A1t = I+
∫ t

0
H1(τ ) dτ,

where we took into account expression (11). From (6) and H1(t) = P−1
0 (t) · J1(t) ·

P0(t), we have the expansion of the evolution matrix till the first-order term for a
short time scale

P(t) ≈ P0(t) ·
(

I+
∫ t

0
P−1

0 (τ ) · J1(τ ) · P0(τ ) dτ

)
,

which could also be valid for all t ∈ [0,∞) under additional conditions not assumed
here, see, e.g., [6].

3.3 Expansion of LEs

Let us define symmetric matrix M(t) := P′(t) · P(t). Then, we have its expansion
M(t) = M0(t)+M1(t)+ . . ., where

M0(t) = P′0(t) · P0(t),

M1(t) =
(∫ t

0
P−1

0 (τ ) · J1(τ ) · P0(τ ) dτ

)′
·M0(t)
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+M0(t) ·
(∫ t

0
P−1

0 (τ ) · J1(τ ) · P0(τ ) dτ

)
.

First two terms of LE expansion λ(i) = λ
(i)
0 + λ

(i)
1 + . . . are

λ
(i)
0 = lim

t→∞
log(μi(t))

2t

and

λ
(i)
1 = lim

t→∞
1

2t

v′i (t) ·M1(t) · vi (t)
μi(t)

(
v′i (t) · vi (t)

) ,

where vi (t) and μi(t) are the i-th eigenvector and the i-th eigenvalue of matrix
M0(t) so that

M0(t) · vi (t) = vi (t) μi(t).

Expression for λ(i)1 can be derived with the use of the derivative of LEs in [5], where
J1 would be the derivative of J w.r.t. a parameter.2

Notes and Comments The novelty here is in applying the averaging scheme that
automatically removes in M1(k) higher order terms that may appear in Taylor
expansions [5, 8].

4 Calculation of LEs with Periodic QR Factorization

When the largest LE is positive, column vectors in matrix P(t) undergo exponential
growth and become numerically linearly dependent as t → ∞. That is why QR
factorization is done periodically, as in [1], by the Gram–Schmidt algorithm, so that

2When parameters in matrix M are perturbed M0 → M, then its eigenvalue μ → ν and
corresponding eigenvector v → u are also changed, where (M0 − Iμ) · v = 0 and (M− I ν) ·u =
0. We can write v′ (M0 − Iμ) · v = 0 and v′ · (M− I ν) · u = 0. Due to smooth dependence of u
on parameters, we have vector v ≈ u and scalar v′ · (M− I ν) · v ≈ v′ · (M− I ν) · u = 0. Hence,
v′ · (M− I ν) · v ≈ 0 yields

ν ≈ v′ ·M · v
v′ · v = v′ · (M0 +M1 + . . .) · v

v′ · v = μ+ v′ ·M1 · v
v′ · v + . . . ,

log ν ≈ log

(
μ+ v′ ·M1 · v

v′ · v
)
= logμ+ log

(
1+ v′ ·M1 · v

μ v′ · v
)
≈ logμ+ v′ ·M1 · v

μ v′ · v .
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P(t) = X(t) ·Q′(k − 1) · P(k − 1), t ∈ (k − 1, k], k = 1, 2, 3, . . . (14)

with X(t) being the solution of the following matrix initial value problem:

Ẋ(t) = J(t) · X(t), lim
t↓k−1

X(t) = Q(k − 1), (15)

where Q(0) = P(0) = I, while Q(k) is the result of Gram–Schmidt orthonormal-
ization of column vectors in matrix X(k)

X(k) = Q(k) · R(k), (16)

and it is the next initial value (right-sided limit as t ↓ k meaning t → k + 0) of
matrix function X. From substitution (16) in (14), we have P(k) = Q(k) · R(k) ·
Q′(k − 1) · P(k − 1) recursion of which yields

P(k) = Q(k) · R(k) · R(k − 1) · . . . · R(2) · R(1) = Q(k) ·
1∏

j=k
R(j).

It follows from (2) that R̄(k) = ∏1
j=k R(j). Because R(k) is upper triangular, we

have LE in (3) as

λ(i) = lim
K→∞

1

K

K∑

k=1

log R(i,i)(k). (17)

4.1 Approximate Calculations of X(k)

We solve problem (15) approximately by the averaging method [6] in [7] assuming
that the Jacobian matrix J(t) can be expanded into the series (4) and that we know
solution X0(t) of the matrix initial value problem for t ∈ (k − 1, k] with k =
1, 2, 3, . . .

Ẋ0(t) = J0(t) · X0(t), lim
t↓k−1

X0(t) = Q0(k − 1), (18)

where Q0(0) = I. Then the change of variable

X(t) = X0(t) · Y(t) (19)

converts (15) into the standard form:

Ẏ(t) = H(t) · Y(t), lim
t↓k−1

Y(t) = I, (20)
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where matrix H(t) := X−1
0 (t) · (J(t)− J0(t)) · X0(t) is small and can be written as

H(t) = H1(t)+H2(t)+ . . . (21)

with Hj (t) := X−1
0 (t) · Jj (t) · X0(t) for all j ≥ 1.

4.2 Averaging Scheme

Approximate solution of (20) for t ∈ (k−1, k] can be found with averaging method
in the form

Y(t) = (I+ U1(t)+ U2(t)+ . . .) · exp ((A1(k)+ A2(k)+ . . .) (t − k + 1)) ,
(22)

where Uj (t) are the matrix functions, such that Uj (k) = lim
t↓k−1

Uj (t) = 0. Matrices

Aj and Uj can be found one by one with the scheme described, e.g., in [7]. The
scheme includes substitution of (21) and (22) into (20), grouping terms of the same
order of smallness, and solving resulting equations separately for each order. For
the first-order approximation, we have U̇1(t)+A1(k) = H1(t), and we calculate A1
as the average of H1(t), taking into account that U1(k) = lim

t↓k−1
U1(t) = 0:

A1(k) =
∫ k

k−1
H1(t) dt =

∫ k

k−1
X−1

0 (t) · J1(t) · X0(t) dt. (23)

For the second-order approximation, we have to calculate U1(t) from U̇1(t) +
A1(k) = H1(t), taking into account that lim

t↓k−1
U1(t) = 0:

U1(t) =
∫ t

k−1
(H1(τ )− A1(k)) dτ,

and then from the equation for the second order U̇2(t) + A2(k) + U1(t) · A1(k) =
H2(t)+H1(t) · U1(t), taking into account that U2(k) = lim

t↓k−1
U2(t) = 0, we get

A2(k) =
∫ k

k−1
(H2(t)+H1(t) · U1(t)− U1(t) · A1(k)) dt,

with the use of matrix A1 obtained in (23). Similarly for the n + 1-th-order
approximation, one can derive that
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Un(t) =
t∫

k−1

(Hn(τ )− An(k)

+Hn−1(τ ) · U1(τ )− U1(τ ) · An−1(k)

· · ·
+H1(τ ) · Un−1(τ )− Un−1(τ ) · A1(k)) dτ, (24)

An+1 =
k∫

k−1

(Hn+1(t)

+Hn(t) · U1(t)− U1(t) · An(k)

· · ·
+H1(t) · Un(t)− Un(t) · A1(k)) dt. (25)

Thus, (19) and (22) yield X(k) = X0(k) · exp (A1(k)+ A2(k)+ . . .).

4.3 Calculations of LEs

We expand the matrix-valued exponential function as follows:

X(k) = X0(k) · (I+ A1(k))

+ X0(k) ·
(

A2(k)+ 1

2
(A1(k))

2
)

+ X0(k) ·
(

A3(k)+ 1

2
(A1(k)A2(k)+ A2(k)A1(k))+ 1

6
(A1(k))

3
)

+ . . .

up to the required order of smallness. For example, the first-order approximation
with the use of (23) takes the form

X(k) ≈ X0(k) ·
(

I+
∫ k

k−1
X−1

0 (τ ) · J1(τ ) · X0(τ ) dτ

)
. (26)

Then, we make QR factorizations in (16) and calculate LEs via (17). Such
approximate calculation could be numerically more robust than direct numerical
solutions of (15), especially when J1(τ ) is not smooth in time.
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Notes and Comments In this section, we propose integration (26) based on known
X0 instead of direct solution of matrix differential equation (15), since the latter can
involve numerical issues.

5 Conclusions

We show the ways in which the method of averaging can be implemented for the
calculation of LEs. The method of averaging gives analytic expansions of LEs
w.r.t. parameters, and it can be useful in analysis of system dynamics facilitating
numerical calculations. For investigation of the effectiveness of such approach,
thorough numerical experiments are to be carried out.
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Classification of a Family of Lorenz
Knots with Reducible Symbolic
Sequences

P. Gomes, N. Franco, and L. Silva

1 Introduction

Lorenz knots are the closed (periodic) orbits of the famous system of ODEs studied
by E. N. Lorenz in [1]. Lorenz links are finite collections of (possibly linked) Lorenz
knots.

In [2], Williams introduced a geometric model for the dynamics of the Lorenz
system, which, together with Birman, he used to investigate Lorenz knots and links
in [3]. The model, known as the Lorenz template, is a branched 2-manifold with an
expanding semi-flow (Fig. 1). Tucker proved in [4] that Lorenz links are equivalent
to links on the Lorenz template.

A torus knot is a closed curve on the surface of an unknotted torus T 2. It is
denoted by T (p, q) where p and q are the number of times that it crosses a meridian
and a longitude, respectively. Birman and Williams proved in [3] that all torus knots
are Lorenz knots.
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Fig. 1 The Lorenz template
with a Lorenz knot

A satellite knot is built by taking two nontrivial knots P (the pattern), contained
in a solid unknotted torus T and not contained in a 3-ball in T , and C (the
companion). The satellite knot is the image of P under an homeomorphism that
takes the core of T onto C.

A knot is hyperbolic if its complement in S3 is a hyperbolic 3-manifold.
Thurston, in [5, 6], proved that a knot is hyperbolic iff it is neither a satellite knot
nor a torus knot. In [7], Birman and Kofman observed that more than half of the
hyperbolic knots whose complements can be constructed from seven or fewer ideal
tetrahedra are Lorenz knots. However, Lorenz knots are rather scarce in tables of
knots indexed by crossings (from the 1701936 prime knots having projections with
less than 17 crossings, only 20 are Lorenz).

One of the goals of the study of Lorenz knots is their classification as hyperbolic
or non-hyperbolic, possibly further distinguishing torus knots from satellites.

In [8], Dehornoy presents the following conjecture attributed to Morton:

Conjecture 1 (Morton) Every Lorenz satellite knot is a cable on a Lorenz knot,
where a cable means a satellite where the pattern is a torus knot.

For our purposes, it is enough to assume a weaker form of this conjecture:

Conjecture 2 Every Lorenz satellite knot is a satellite of a Lorenz knot.

Birman and Williams showed in [3] that the satellites obtained as certain cables of
Lorenz knots are also Lorenz knots. This was extended by El-Rifai,[9], who showed
that the only way in which a Lorenz knot can be presented as the satellite of a Lorenz
knot is if it is a cable on a Lorenz knot, possibly with additional twisting.

In [10], we derived an algorithm, based on [9], to obtain Lorenz satellite braids
and their corresponding sequences from symbolic dynamics. This was a question
raised by Birman in [11].

The horizontal solid line in Fig. 1 is designated as the branch line of the Lorenz
template. Mapping the branch line onto [−1, 1], the semi-flow’s first return map f
is a one-dimensional map from [−1, 1] \ {0} onto [−1, 1], with one discontinuity at
0 and strictly increasing and surjective in [−1, 0[ and ]0, 1]. This map is called the
Lorenz map.

Symbolic dynamics of the Lorenz map codify Lorenz knots, since the closed
orbits in the semi-flow correspond to periodic orbits of the map. In [12], we
introduced a geometric operation on Lorenz knots corresponding to the ∗-product
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defined in [12]. From [3, 13], we deduce that irreducible sequences with respect to
the ∗-product correspond to torus knots, so this geometric operation is a natural way
of generating non-torus Lorenz knots.

In this chapter, we study an infinite family of Lorenz knots generated through
∗-products that contains some of the hyperbolic Lorenz knots listed by Birman and
Kofman in [7]. We prove that all these knots are not torus knots and that if the
weaker form of Morton’s conjecture is true then they are not satellites either. We
conclude that if the weaker form of Morton’s conjecture is true then all the knots
from this family are hyperbolic.

2 Symbolic Dynamics

To each point x ∈ [−1, 1], we associate its symbolic address, ad(x) = L, 0, R
accordingly, respectively, when x < 0, x = 0, or x > 0. Let f j = f ◦f j−1 be the j -
th iterate of the Lorenz map f . The itinerary of a point x under f is the sequence of
symbolic addresses (if (x))j = ad(x), ad(f (x)), ad(f 2(x)), . . . ad(f n(x)), where
n ≤ +∞ is the minimum index such that f n(x) = 0. The length |X| of X =
X0 . . . Xn−10 is n. Fixing L < 0 < R, we induce the lexicographic order in the
set Σ of sequences X0 . . . Xn such that Xk ∈ {L,R} for all k < n and Xn = 0 if
n < +∞.

Consider the shift map s : Σ \ {0} → Σ .

Definition 1 A sequence X ∈ Σ is L-maximal if X0 = L and for k > 0, Xk =
L⇒ sk(X) ≤ X, and R-minimal if X0 = R and for k > 0, Xk = R ⇒ X ≤ sk(X).

It is straightforward to prove that a periodic word (X0 . . . Xn−1)
∞ with least

period n is L-maximal (resp. R-minimal) if and only if X0 . . . Xn−10 is L-maximal
(resp. R-minimal). So there is a bijective correspondence between the L-maximal
(resp. R-minimal) finite words and the cyclic permutation classes of periodic words.

Generalized Lorenz maps are boundary anchored maps, g : [−1, 1] \ {0} →
[−1, 1], with one single discontinuity at 0, increasing in [−1, 0[ and in ]0, 1], not
necessarily onto. These maps generate sub-Lorenz templates, see [14, 15], where
all knots are Lorenz knots. The combinatorics of a generalized Lorenz map g are
determined by the pair (X, Y ), where X = Lig(g(0−)) and Y = Rig(g(0+)) are
the critical itineraries.

For a pair of finite critical itineraries (X, Y ) ∈ Σ ×Σ and a word S ∈ Σ , define
the ∗-product (X, Y ) ∗ S = S0 . . . S|S|−10, where Sj = X0 . . . X|X|−1 if Sj = L and
Sj = Y0 . . . Y|Y |−1 if Sj = R.

The words (X, Y )∗S are the itineraries of points in the renormalization intervals
of renormalizable Lorenz maps, and in [12], we studied the structure of their
Lorenz knots as a geometric construction. From [3, 13], torus knots correspond
to irreducible words with respect to the ∗-product. Consequently, the hyperbolic
and satellite Lorenz knots are generated by the ∗-product through this geometric
construction.
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3 Lorenz Braids

Every knot and link on the Lorenz template is the closure of a Lorenz braid, obtained
by cutting the template along the dotted lines in Fig. 1. A Lorenz braid has n = p+q
strings, where the p left strings cross over at least one of the q right strings, with no
crossings between strings in each subset.

Each Lorenz braid has an associated permutation π that has k cycles iff the
closure is a link with k components. Consequently, the braid’s closure is a knot
iff π has only one cycle.

For a finite sequence W , nL(W) and nR(W) denote, respectively, the number of
symbols L and symbols R in W . If W = (W0 . . .Wn−1)

∞ has least period n, then
nL(W) = nL(W0 . . .Wn−1) and nR(W) = nR(W0 . . .Wn−1).

Given any periodic sequence W with least period n, we construct a Lorenz braid,
whose closure is a Lorenz knot, on the following way, see Fig. 2: order the sequences
s(W), s2(W), . . . , sn(W) = W and associate them to startpoints, on the upper line,
and endpoints, on the lower line, with points corresponding to words starting with L
lying on the left half and points corresponding to words starting with R on the right
half of each line. Now each string in the braid connects the startpoint corresponding
to sk(W) to the endpoint corresponding to sk+1(W), such that all crossings are
positive (the strings with startpoint on the left cross over the others).

We identify a periodic sequence W = (W0 . . .Wn−1)
∞, by W = W0 . . .Wn−1.

The crossing number of a knot K is the smallest number of crossings in any
diagram of K . The braid index of a knot K is the smallest number of strings among
braids whose closure is K . The genus of a link L, g(L), is the minimal genus over
all orientable surfaces S such that ∂S = L, where ∂S is the oriented boundary.

A syllable of a sequence is a subsequence of type LaRb with maximal length.
The trip number, t , of a periodic sequence W with least period n is the smallest

number of syllables of all its subsequences with length n.

LRLRL

LRLRL

LRRLR

LRRLR

RLRLR

RLRLR

RLRRL

RLRRL

RRLRL

RRLRL

Fig. 2 Lorenz braid corresponding to X = (LRRLR)∞
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Theorem 1 (Franks and Williams [16]) Let K be a Lorenz knot with periodic
word W ; then the braid index of K is equal to the trip number of W .

The linking number l(X, Y ) of the link associated to (X, Y ) is the number of
crossings between strings from the braids corresponding to X and to Y .

Let X, Y be the two finite words corresponding to Lorenz knots and (X, Y ) to a
Lorenz link. Denote the Lorenz braid associated to X (Y ) by βX (βY ). Identifying X
and Y with the corresponding periodic words, for Z ∈ {X, Y }, define LZ = {si(Z) :
0 ≤ i < |Z|andZi = L} and RZ = {si(Z) : 0 ≤ i < |Z|andZi = R}.

Let the images of these sets under the shift operator, ordered lexicographically,
be, respectively, s(LZ) and s(RZ). Let 1 ≤ i ≤ nL(X) (1 ≤ j ≤ nL(Y )) be
the position of each sequence in s(LX) (s(LY )). Finally, consider the ordered sets
s(LX)∪ s(RY ) and s(LY )∪ s(RX). Let ni, i = 1, . . . , nL(X) be the position of the
ith element of s(LX) in s(LX) ∪ s(RY ) and mj , j = 1, . . . , nL(Y ) the position of
the j th element of s(LY ) in s(LY ) ∪ s(RX).
Lemma 1 The linking number l(X, Y ) of the Lorenz link (X, Y ) is given by
l(X, Y ) = ∑nL(X)

i=1 (ni − i) +∑nL(Y )
j=1 (mj − j), where ni and mj are defined as

above.

Proof The ith L string from βX crosses over all the R strings from βY that have
endpoints in the range 1, . . . , ni − 1. Since i − 1 L strings from X are also in
this range, the ith L string from X crosses exactly ni − i R strings from Y . The
total number of crossings between L strings of X and R strings of Y is therefore∑nL(X)

i=1 (ni − i). The same argument applies to the crossings between L strings of
Y and R strings of X, so that the total number of crossings between these strings
is
∑nL(Y )

j=1 (mj − j). The linking number l(X, Y ) is therefore
∑nL(X)

i=1 (ni − i) +
∑nL(Y )

j=1 (mj − j).

4 A Family of Lorenz Knots Defined by a ∗-product

We will now classify the Lorenz knots corresponding to sequences of type

(
LRLk0, RLk+2(RLk+1)n0

)
∗ LRLm0, k, n > 0, m ≥ 0.

This family contains the knots k43, k44, k55, k514, k65, k611, k614, k617, k727,
k730, k734, k737, and k763 from the list elaborated by Birman and Kofman in [7].
From now on, we will refer to these family of knots as Family 0.

Theorem 2 Lorenz knots from Family 0 are not torus knots.

Proof We compute the trip number and genus for the knots of Family 0 and show
that there is no torus knot with the same pair of invariants.

From Prop. 5 of [12], with X = LRLk0, Y = RLk+2(RLk+1)n0, S = LRLm0,
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t ((X, Y ) ∗ S) = nL(S)t (X)+nR(S)t (Y ) = (m+1)+(n+1) = n+m+2. (1)

The genus g is computed from 2g = c − n + 1 [3], where n is the string index
and c is the number of crossings of a braid representative given by Lemma 2 of [12]

c ((X, Y ) ∗ S) = c(X)nL(S)
2 + c(Y )nR(S)

2 + l(X, Y )nL(S)nR(S)− c(S).

Since the knots associated to X and S are trivial and Y is a torus knot,

c(X) = nL(X)nR(X) = k + 1

c(Y ) = nL(Y )nR(Y ) = (k + 2+ n(k + 1)) (n+ 1)

c(S) = nL(S)nR(S) = m+ 1.

To compute l(X, Y ), we use Lemma 1 above. We start by determining the number
of crossings between the L strings of βX and the R strings of βY :

s(LX) =
{
LkRL, Lk−1RL2, . . . , LRLk,RLk+1

}

s(RY ) =
{
Lk+2(RLk+1)nR,Lk+1(RLk+1)n−1RLk+2R, . . . ,

Lk+1(RLk+1)RLk+2(RLk+1)n−2R, Lk+1RLk+2(RLk+1)n−1R
}
.

All words in s(RY ) precede all words in s(LX); therefore, ni − i = nR(Y ) =
n+ 1, i = 1, . . . , k + 1, and

∑nL(X)
i=1 (ni − i) = (k + 1)(n+ 1).

The crossings between the L strings of βY and the R strings of βX are given by

s(LY ) = {Lk+1(RLk+1)nRL,Lk(RLk+1)nRL2, . . . ,

L(RLk+1)nRLk+1, (RLk+1)nRLk+2,

Lk(RLk+1)n−1RLk+2RL, . . . , L(RLk+1)n−1RLk+2RLk,

(RLk+1)n−1RLk+2RLk+1, . . . ,

LkRLk+1RLk+2(RLk+1)n−2RL, . . . , LRLk+1RLk+2(RLk+1)n−2RLk,

RLk+1RLk+2(RLk+1)n−1,

LkRLk+2(RLk+1)n−1RL, . . . , LRLk+2(RLk+1)n−1RLk,

RLk+2(RLk+1)n−1RLk}
s(RX) = {Lk+1R}.
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The single word Lk+1R in s(RX) precedes all the words in s(LY ) except the first,
since Lk+1(RLk+1)nRL < Lk+1R. We thus have m1 = 1, mj = j + 1, forj =
2, . . . , nL(Y ) = (k + 1)(n+ 1)+ 1 and

∑nL(Y )
j=1 (mj − j) = (k + 1)(n+ 1).

The linking number is therefore given by

l
(
LRLk,RLk+2(RLk+1)n

)
= 2(k + 1)(n+ 1)

, and the number of crossings of the Lorenz braids corresponding to the knots in
Family 0 is

c ((X, Y ) ∗ S) = (k + 1)(m+ 1)2 + (n+ 1) ((k + 1)(n+ 1)+ 1)+
+ 2(k + 1)(n+ 1)(m+ 1)− (m+ 1)

= (k + 1)(m+ n+ 2)2 + n−m.

(2)

The string index is n ((X, Y ) ∗ S) = (m+ 1)(k + 2)+ (n+ 1)(k + 2)+ 1, and
therefore, finally, the genus is given by

2g = (k + 1)(m+ n+ 2)2 + n−m− (k + 2)(m+ n+ 2)

= (k + 1)(m+ n+ 2)(m+ n+ 1)− 2(m+ 1)
. (3)

The braid index (trip number) and genus of a torus knot T (p, q), 1 < p < q,
p, q relatively prime, are given by t = p, 2g = (p − 1)(q − 1). So, if there is a
torus knot with the same trip number and genus as a knot in this family, then

p = m+n+2and(p−1)(q−1) = (k+1)(m+n+2)(m+n+1)−2(m+1). (4)

We will now show that there are no integers k > 0, n > 0,m ≥ 0, and p, q satisfying
the conditions above. Given k, n > 0, m ≥ 0, assume there are p, q relatively
prime, 1 < p < q satisfying 4. Then, (p−1)(q−1) = (k+1)p(p−1)−2(m+1),
so (p− 1) (p(k + 1)− (q − 1)) = 2(m+ 1) and (p− 1) = m+ n+ 1 must divide
2(m + 1). Since (p − 1) > 0, 2(m + 1) > 0, and m + n > 1, this means that
there is an integer α > 0 such that 2(m+ 1) = α(m+ n+ 1). This is equivalent to
(2 − α)(m + 1) = α(n + 1) − 2. Since for n > 0 the second member is positive,
α < 2, so α = 1 and 2(m+ 1) = m+ n+ 1, that is, n = m+ 1.

From Eq. (4), p = 2m+ 3 so (p − 1)(q − 1) = (k + 1)p(p − 1)− (p − 1) and
q = (k + 1)p, so p, q would not be relatively prime. Since there is no torus knot
with the same braid index and genus as in Family 0, the proof is concluded.

El-Rifai, [9, 17], generalized a result from Birman and Williams, [3], obtaining
the following theorem.
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Fig. 3 Lorenz satellite knot

Theorem 3 (El-Rifai [17]) The only way in which a Lorenz knot can be presented
as a satellite of a Lorenz knot is when the pattern is a generalized k-twisted Lorenz
knot, where k is the number of crossings in the Lorenz braid of the companion knot.

Figure 1 shows the (torus) knot corresponding to the symbolic word LRRLR

on the Lorenz template. In Fig. 3, we exemplify El-Rifai’s construction of a satellite
knot taking as companion the knot in Fig. 1.

In [10], we derived an algorithm, based on the work of El-Rifai, to obtain Lorenz
satellite braids and their corresponding words. Using this algorithm, presented
below, and Conjecture 2, we provide a criterion to decide whether a Lorenz knot
is a satellite knot.

Definition 2 Let β be a Lorenz n-braid that closes to a knot and W the sym-
bolic word associated to β. Consider the nL(W) L-started words in the orbit
s(W), . . . , sn(W) = W of W , labeled as l1, . . . , lnL(W), and the nR(W) words
starting with R labeled as r1, . . . , rnR(W), so that, under lexicographic order, l1 <

· · · < lnL(W) < r1 < · · · < rnR(W). The L-permutation associated to β, πβL , is

defined on the L-points of β by π
β
L(i) = j if lj is the first L-started word in the

orbit s(li), . . . , sn(li), for i = 1, . . . , nL(W). The R-permutation π
β
R on the R-

points is likewise defined by πβR(i) = j if rj is the first R-started word in the orbit
s(ri), . . . , s

n(ri), for i = 1, . . . , nR(W).

Maps πβL and π
β
R are the first return maps of the shift map to the sets of L-started

and R-started words, respectively.
Given three Lorenz braids α, β, and γ , all of them closing to knots, let παR be the

R-permutation of α and π
β
L be the L-permutation of β as in Definition 2. Let Wα

Wβ and Wγ be symbolic words corresponding, respectively, to braids α, β, and γ .
Let li and ri be the words defined in Definition 2.

For Wβ , define mR(i) as the number of R symbols between the first and second
L in li , and mR(i) = 0 whenever there are two consecutive L symbols, for i =
1, . . . , k. Likewise, for Wα , mL(i) will be the number of L symbols between the
first and second R symbols in ri , and mL(i) = 0 if the first R is immediately
followed by another R, for i = 1, . . . , k. To simplify the notation, we will write πR
for παR and πL for πβL .
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Definition 3 Given a periodic word W = (W0 . . .Wn−1)
∞ with minimal period n,

we say that M is the maximal position if sM(W) is L-maximal and m is the minimal
position if sm(W) is R-minimal.

The following algorithm returns the word Wδ corresponding to the satellite braid δ
constructed from α, β, and γ through the procedure presented in [10]:

Algorithm 1

Input: Three periodic words Wα , Wβ , Wγ with nR(Wα) = nL(Wβ) = k.

1. For i = 1, . . . , k, Wi = Wγ .
2. j1 = k; insert RmR(j1) in W 1 immediately after its maximal position.

j2 = πL(j1); insert LmL(j2) in W 1 immediately after its minimal position.
3. For i = 2, . . . , k:

j2i−1 = πR(j2i−2); insert RmR(j2i−1) in Wi immediately after its maximal
position.

j2i = πL(j2i−1); insert LmL(j2i ) in Wi immediately after its minimal position.

4. Wδ = W 1W 2 . . .Wk

Output: The word Wδ , in L-maximal form, associated to the braid δ of the
satellite knot generated through El-Rifai’s construction with companion γ ,
left pattern α, and right pattern β, see [10].

Proposition 1 If the satellite braid constructed as above from Lorenz braids α,
β, and γ represents a knot, then its aperiodic word is obtained by the preceding
algorithm.

Theorem 4 If Conjecture 2 is true, then Lorenz knots from Family 0 are not
satellites.

Proof Assuming Conjecture 1 or its weaker version 2 is true, if the knots associated
to the words in the family were satellites, then they would have to be generated by
Algorithm 1. The words in the family have the form

(
LRLk0, RLk+2(RLk+1)n0

)
∗ LRLm0 = LRLkRLk+2(RLk+1)n(LRLk)m0

(5)
with trip number t = m+ n+ 2. If a word W in this family could be generated by
the algorithm above, there would be at least one pair of positive integers 1 < u, v <

m + n + 2 such that t = uv and W = W 1 . . .Wv where the trip number of each
subword is t (W i) = u, i = 1, . . . , v. Because each syllable in W (and each of the
Wi) has only one R symbol, the satellite construction would have to be done with
only two words and their corresponding Lorenz braids: a word WC corresponding to
the companion with trip number u, and a wordWA with v R symbols, corresponding
to the left α braid. Notice that, under these conditions, the effect of the algorithm is
to possibly add L symbols to a single syllable of each Wi (containing the minimal
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position). Each Wi would thus differ from WC only in the number of L symbols
after the minimal position.

First take u = 2 (assumingm+n even). Then, from Eq. (5) and the considerations
above, we conclude that the first subword W 1 must have the form W 1 =
LRLkRLk+1, while the last subword Wv (v = m+n

2 + 1 > 1) must have one
of the forms Wv = LRLk+1RLk+1 (m = 0) or Wv = LRLk+2RLk (m = 1)
or Wv = LRLk+1RLk (m > 1). It is impossible to generate W 1 and any of
the versions of Wv from the same 2-syllable word W by adding L symbols to a
single syllable; therefore, no word of this family can be generated by the satellite
construction algorithm starting from a 2-syllable word.

Suppose u > 2. Then, the first subword must have the form W 1 =
LRLkRLk+2R . . . , and the last subword must have one of the forms
Wv = LRLk+1RLk+1R . . . or Wv = LRLk+1RLk+2R . . . or Wv =
LRLk+2RLk+1R . . . .

Again, W 1 and Wv cannot be generated from the same u-syllable word (u > 3).
Therefore, the words in family 0 cannot be generated by the satellite construction

algorithm, and, assuming Conjecture 2 to be true, the knots associated to these words
are not satellites.

Theorem 5 If Conjecture 2 is true, then Lorenz knots from Family 0 are hyperbolic.

Proof The knots in the family are not torus knots, by Theorem 2, and not satellite
knots by Theorem 4. Thurston’s theorem [5] implies that they are hyperbolic.
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An Algorithm to Determine the Exact
Solution to Polynomial Semi-Definite
Problems: Application to Structural
Optimization
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1 Introduction

Polynomial models are ubiquitous in several applications such as: game theory
[1], control systems [2], robotics [3], coding theory [4], optimization [5], system
biology [6], and machine learning [7]. As an example in structural optimization, in
[8], it has been shown that the optimum truss design problem involving constraints
on the global stability and/or on the free vibration frequencies can be solved by
determining the solution to a polynomial semi-definite problem.

The objective of this chapter is to show that the joint use of optimization
techniques and algebraic geometry allows one to find closed-form solutions to
this class of optimization problems. In particular, semi-definite problems are first
recast in a classical polynomial form by exploiting conditions on the principal
minors of the involved matrices. Second, algebraic geometry methods are used to
determine the set of all the generalized critical points of the polynomial problem,
which contains the infimum of the original problem. The main innovation of the
procedure given herein with respect to other methods available in the literature (see,
e.g., [9, 10]) is that it uses exact computations, thus allowing one to determine a
closed-form expression for the optimal values of the problem.

L. Menini · A. Tornambe
Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma “Tor Vergata”,
Roma, Italy
e-mail: laura.menini@uniroma2.it; tornambe@disp.uniroma2.it

C. Possieri (�)
Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, Consiglio Nazionale delle Ricerche,
Roma, Italy
e-mail: corrado.possieri@iasi.cnr.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Lacarbonara et al. (eds.), Advances in Nonlinear Dynamics, NODYCON
Conference Proceedings Series, https://doi.org/10.1007/978-3-030-81162-4_52

597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81162-4_52&domain=pdf
mailto:laura.menini@uniroma2.it
mailto:tornambe@disp.uniroma2.it
mailto:corrado.possieri@iasi.cnr.it
https://doi.org/10.1007/978-3-030-81162-4_52


598 L. Menini et al.

Organization of this Chapter Sections 2 and 3 contain an elaboration of material
already present in the technical literature, whereas Sects. 4 and 5 contain original
contributions. In particular, in Sect. 2, some algebraic geometry notions are reviewed
following the exposition in [11]. In Sect. 3, a technique that allows one to determine
candidate solutions to polynomial optimization problems in closed form is reviewed.
In Sect. 4, it is shown how to recast a semi-definite optimization problem with
polynomial matrices as a polynomial optimization problem. In Sect. 5, it is shown
how to solve two classes of truss design problems using the methods reviewed in
the previous sections. Finally, in Sect. 6, a discussion about the results given in this
chapter is reported.

2 Notions and Results from Algebraic Geometry

Let C, R, Q, and Z, Q, R be the sets of complex, real, rational, and integer numbers,
respectively. Let K be any field, Q ⊆ K, and let x = [ x1 . . . xn ]" be a vector of
variables. A product of the form xα = x

α1
1 · . . . ·xαnn , where the αi’s are non-negative

integers (α is referred to as multi-index), is a monomial. A polynomial is a finite
linear combination of monomials. Let K[x] denote the ring of all the polynomials
in x with coefficients in K, and let K(x) be the field of all the rational functions in
x. A field K is algebraically closed if every non-constant polynomial in K[x] has at
least one root in K. The algebraic closure of a field K, denoted as K, is the smallest
algebraic extension of K that is algebraically closed (e.g., C is the algebraic closure
of R). Given p1, . . . , ps ∈ K[x], the set

〈p1, . . . , ps〉 := {∑s
i=1qipi, qi ∈ K[x], i = 1, . . . , s}

is the ideal generated by p1, . . . , ps , whereas the set

VHn(p1, . . . , ps) := {x ∈ H
n : pi(x) = 0, i = 1, . . . , s}

is the affine variety (briefly, the variety) in H
n generated by p1, . . . , ps . An ideal that

can be generated by a single polynomial is principal; if z is a single variable, each
ideal in K[z] is principal. Given ideals I1 = 〈p1, . . . , ps〉 and I2 = 〈q1, . . . , qr 〉,
the sum of I1 and I2 is the ideal I1 + I2 = 〈p1, . . . , ps, q1, . . . , qr 〉.

A monomial order in K[x], denoted as >, is an ordering relation on the
monomials such that: (i) either xα > xβ , xα < xβ , or xα = xβ ; (ii) if xα > xβ , then
xα+δ > xβ+δ for any multi-index δ; (iii) every non-empty set of monomials has a
smallest element under >. Given j ∈ {1, . . . , n−1}, a monomial order > eliminates

x1, . . . , xj if xα1
1 · . . . · xαjj > x

β1
1 · . . . · xβjj implies xα1

1 · . . . · xαjj · xαj+1
j+1 · . . . · xαnn >

x
β1
1 ·. . .·x

βj
j ·x

βj+1
j+1 ·. . .·xβnn , for all non-negative integers αj+1, . . . , αn, βj+1, . . . , βn.

The Lex monomial order (see [11] for its formal definition) eliminates x1, . . . , xj ,
j ∈ {1, . . . , n− 1}.
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Letting a monomial order > be fixed, any p ∈ K[x], p �= 0, can be rewritten
as p = c1xα1 + c2xα2 + . . ., with c1, c2, . . . ∈ K, c1 �= 0, and xα1 > xα2 > . . .;
the leading term LT(p) of p is c1xα1 . Given an ideal I in K[x], a finite set GI =
{p1, . . . , ps} in K[x] is a Gröbner basis of I if 〈LT(p1), . . . ,LT(ps)〉 = 〈LT(I)〉,
where LT(I) := {cxα : ∃p ∈ I such that cxα = LT(p)}. By Cox et al. [11,
Ch. 2], each ideal in K[x] has a Gröbner basis. Given an ideal I in K[x], the set
Ij := I ∩K[xj+1, . . . , xn] is the j -th elimination ideal of I, j = 1, . . . , n− 1.

Theorem 1 (Elimination Theorem [11]) Let j ∈ {1, . . . , n − 1} and > be a
monomial order that eliminates x1, . . . , xj . Let I be an ideal in K[x], and let GI be
a Gröbner basis of I. Then, GI ∩K[xj+1, . . . , xn] is a Gröbner basis of Ij .

By Theorem 1, a basis of the j -th elimination ideal Ij , j ∈ {1, . . . , n − 1}, can
be determined by computing a Gröbner basis of I with respect to an elimination
order that eliminates x1, . . . , xj . A consequence of the elimination Theorem 1 is
that eliminating the variables x1, . . . , xj from I corresponds to project the variety
VHn(I), where either H = K or H = K, onto a lower-dimensional space.

Let I be an ideal in K[x]. The polynomials p1 and p2 in K[x] are congruent
modulo I, denoted by p1 = p2 mod I, if p1 − p2 ∈ I. Congruence modulo I is an
equivalence relation on K[x]. Thus, given an ideal I and p in K[x], the equivalence
class of p modulo I is �p�I := {q ∈ K[x] : p = q mod I}, whereas the quotient of
K[x]modulo I is K[x]/I := {�p�I , p ∈ K[x]}. The multivariate division algorithm
given in [11, Thm. 3, § 3, Ch. 2] can be used to find a standard representative for
each class �p�I . Namely, letting a monomial order > be fixed and letting GI be a
Gröbner basis of I, the remainder of the division of p by GI , denoted by p%GI ,
is a standard representative of �p�I . Therefore, the set A := K[x]/I is an algebra
over K.

Theorem 2 (Finiteness Theorem [11]) Let a monomial order > be fixed, and let
GI be a Gröbner basis of the ideal I in K[x]. Consider the following conditions:

(i) The algebra A = K[x]/I is finite-dimensional over K.
(ii) ∃mi ∈ Z, mi � 1, and gi ∈ GI such that xmi

i = LT(gi), i = 1, . . . , n.
(iii) The variety VKn(I) is a finite set.

Conditions (i)–(ii) are equivalent and imply (iii). Furthermore, if K is algebraically
closed, then (i)–(iii) are all equivalent.

If an ideal I satisfies either condition (i) or (ii) of Theorem 2, then it is zero-
dimensional. Given q ∈ K[x] and an ideal I in K[x], let mAq : A → A,

mAq (�p�I) := �q�I�p�I = �q p�I ∈ A. If I is zero-dimensional, then mAq can

be represented via a matrix MAq . By using the matrices MAq , q ∈ {x1, . . . , xn},
and combining the methods given in [14, Thm. 2.6] and [12], the computational
Algorithms 2 and 4 have been given in [13] to determine, if any, a solution to a
system of polynomial equalities and inequalities.
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3 Solution to Polynomial Optimization Problems

Consider the following minimization problem (briefly, MP):

∣∣∣∣
∣∣

minimize f (x),
with gi(x) � 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , p,
(1)

where f, g1, . . . , gr , h1, . . . , hp ∈ R[x]. Note that the Ωp set of problem (1) a
semi-algebraic set,

Ωp := {x ∈ R
n : g(x) � 0, h(x) = 0}, (2)

where g = [g1 . . . gr ]" ∈ R
r [x] and h = [h1 . . . hp ]" ∈ R

p[x], and the relations
in (2) have to be understood component-wise. Let O◦p be the set of all the solutions
x◦ to the MP (1), if any, and let O◦v = f (O◦p) be the optimal value.

Example 1 Consider the MP (1), with f (x1, x2) = x2
1x

2
2 + x2

1 − 2x1x2 + 1 in
R[x1, x2] and Ωp = R

2. A critical point for this problem is any pair (x�1, x
�
2) such

that ∂f
∂xi

∣∣∣
(x1,x2)=(x�1 ,x�2)

= 0, i = 1, 2. The value attained by f at a critical point x�,

f � = f (x�1, x
�
2), is a critical value. The set of all critical values of the MP (1) can be

determined using the elimination Theorem 1. In particular, define I = 〈 ∂f
∂x1

,
∂f
∂x2

, z−
f 〉, where z is an additional variable. Since z is a single variable, the elimination
ideal I∩R[z] is principal. Therefore, there exists q ∈ R[z] such that I∩R[z] = 〈q〉.
Hence, the critical values, if any, are among the real roots of q(z), and if the MP (1)
admits a minimum value f ◦, then q(f ◦) = 0. The Gröbner basis of I, with respect
to the Lex monomial order with x1 > x2 > z, is {z − 1, x2, x1}. Therefore, since
q(z) = z − 1, one has that z�1 = 1 is the only critical value and (x�1, x

�
2) = (0, 0) is

the corresponding critical point. Now, the objective is to determine whether z�1 = 1
is the minimum value of f . Since f (x1, x2) = x2

1 + (1 − x1x2)
2, it results that

f (x) � 0 for all x ∈ R
2. Moreover, considering the sequence (x+1, x

+
2) =

(
1
+
, +
)

,

one has f (x+1, x
+
2) = 1

+2 , lim+→+∞ f (x+1, x
+
2) = 0. Thus, the greatest lower bound

of f is f � = 0, which shows that z�1 = 1 is actually not the minimum value of f
over R2: f does not attain a minimum over R2 but only a finite infimum value. �

The following definition is taken from [15], where it has been shown that the
critical values are candidates to be minima, whereas the generalized critical values
are the candidates to be infima.

Definition 1 Consider the MP (1), with Ωp = R
n. Thus:

(i) f � is a critical value of the MP (1) if there exists a critical point x� ∈ R
n

such that f � = f (x�) and ∂f
∂x

∣
∣∣
x=x�

= 0.
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(ii) f �� is a generalized critical value of the MP (1) if there exists a sequence
x+ ∈ R

n such that lim+→+∞ f (x+) = f ��, lim+→+∞ ‖x+‖ = +∞ and

lim+→+∞ ‖x+‖ · ‖ ∂f
∂x

∣∣
∣
x=x+

‖ = 0.

(iii) Let C�p and be the sets of all critical points x�.
(iv) Let C�v be the set of all the critical values f �, and let C��v be the set of all

generalized critical values.
(v) The union E∗v = C�v ∪ C��v is referred to as the set of all generalized

extremal values; elements of E∗v are represented by the superscript ∗. ◦
The interested reader is referred to [15–17] for some polynomials admitting both

critical values and generalized critical values in R
n. By Jelonek and Kurdyka [18],

sets containing C�v and E∗v can be determined via algebraic geometry. As for C�v ,
define the ideal I in R[x, z], I = 〈 ∂f (x)

∂x , z − f (x)〉, where z is an additional single
variable. Since the elimination ideal I∩R[z] is principal, there exists q ∈ R[z] such
that

I ∩ R[z] = 〈q〉. (3)

Letting Ωp = R
n, the critical values of the MP (1) are real roots of q(z) (i.e.,

C�v ⊆ VR(q)), although there may exist real root of q(z) that are not critical values
of the MP (1). In fact, it may result that the corresponding critical point is non-real
(i.e., the sets C�v and VR(q) need not coincide). The points in CC�v := VR(q) are
referred to as candidate critical values and CC�v ⊇ C�v .

In order to determine the generalized extremal values, define the ideal

I = 〈 ∂f (x)
∂x1

− F1, . . .
∂f (x)
∂xn

− Fn, x1
∂f (x)
∂x1

−G1,1, . . . ,

x1
∂f (x)
∂xn

−G1,n, . . . , xn
∂f (x)
∂xn

−Gn,n, z− f (x)〉;

in R[x1, . . . , xn, F1, . . . , Fn,G1,1, . . . ,Gn,n, z], where, Fi , Gi,j , and z are the

auxiliary variables that denote the values attained by ∂f (x)
∂xi

, xi
∂f (x)
∂xj

, and f (x),
respectively, i = 1, . . . , n, j = 1, . . . , n, as x varies in R

n. Thus, compute

Ia = I ∩ R[F1, . . . , Fn,G1,1, . . . ,Gn,n, z], (4a)

Ib = Ia + 〈F1, . . . , Fn,G1,1, . . . ,Gn,n〉,
Ic = Ib ∩ R[z]. (4b)

By Cox et al. [11], the variety V
Cn2+n+1(Ia) is the projection onto C

n2+n+1 of

the values attained by ∂f (x)
∂xi

, xi
∂f (x)
∂xj

, and f (x) as x varies in C
n, whereas the

variety V
Cn2+n+1(Ib) is the intersection of such a projection with

⋂n
i=1 VCn2+n+1(Fi)⋂n

i=1 VCn2+n+1(Gi,j ). Thus, the variety VC(Ic) is the projection of this intersection
onto C. Note that Ic need not coincide with Ia ∩ R[z]. Since Ic is principal, there
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exists qc ∈ R[z] such that Ic = 〈qc〉. Letting Ωp = R
n, the generalized extremal

values of the MP (1) are real roots of qc(z) (i.e., E∗v ⊆ VR(qc)); the points in
VR(qc) =: CE∗v are referred to as candidate generalized extremal values, which
include the critical values and the generalized critical values, i.e., CE∗v ⊇ E∗v .

Consider the MP (1), (2), with Ωp given by (2). Letting

Θ := {∅, {1}, . . . , {r}, {1, 2}, . . . , {1, . . . , r}}, (5)

be the set of all the subsets of {1, . . . , r}, for each θ ∈ Θ , define

fθ = f +
p∑

j=1

γjhj +
∑

k∈θ
λkgk, (6)

where γ = [γ1 . . . γp ]" and λ = [λ1 . . . λr ]" are the Karush–Kuhn–Tucker
(briefly, KKT) multipliers [19, 20]; as in the unconstrained case, the ideal Iθ,c =
〈qθ,c(z)〉 is such that the roots of its generator qθ,c(z) are candidate generalized
extremal values of the extended MP

∣
∣∣∣
minimize fθ (x,λ, γ ),

with (x,λ, γ ) ∈ Ωp × R
r × R

p,

which is analogous to the MP (1) in the variables x,λ, γ . Let qd(z) ∈ R[z] be the
least common multiple of qθ,c(z), θ ∈ Θ . Thus,

⋂

θ∈Θ
Iθ,c = 〈qd(z)〉. (7)

Thus, for all θ ∈ Θ , let f̃θ :=∑p

j=1 γjhj +
∑

k∈θ λkgk and define

Na,θ := 〈 ∂f̃θ (x,λ,γ )∂x1
− F1, . . . ,

∂f̃θ (x,λ,γ )
∂γr

− Fn+r+p, x1
∂f̃θ (x,λ,γ )

∂x1
−G1,1, . . . ,

γr
∂f̃θ (x,λ,γ )

∂γr
−Gn+r+p,n+r+p,

∑p

j=1 γ
2
j +

∑
k∈θ λ2

k − 1, z− f (x)〉,

where F1, . . . , Fn+r+p,G1,1, . . . ,Gn+r+p,n+r+p, z are the auxiliary variables,
whose role is the same as of the ones employed in (4b). Thus, let Nb,θ = Na,θ ∩
R[F1, . . . , Fn+r+p,G1,1, . . . ,Gn+r+p,n+r+p, z], Nc,θ = Nb,θ+〈F1, . . . , Fn+r+p,
G1,1, . . . ,Gn+r+p,n+r+p〉, and Nd,θ = Nb,θ ∩ R[z], for all θ ∈ Θ . Therefore,
since the ideal Nd,θ is principal, for each θ ∈ Θ , let q̃θ,c(z) ∈ R[z] be such that
Nd,θ = 〈q̃θ,c〉 and let q̃d be the least common multiple of q̃θ,c(z), θ ∈ Θ . One has
the next lemma [21].

Lemma 1 Using the construction given above, it results that, for the MP (1), (2),
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O◦v ⊆ CE∗v = VR(qd) ∪ VR(q̃d).

By Lemma 1, if the MP (1), (2), admits a minimum value f ◦, then f ◦ belongs to
the finite set CE∗v . Therefore, let

CE∗v = {f ∗1 , f ∗2 , . . . , f ∗σ },

where f ∗1 < f ∗2 < . . . < f ∗σ , and the f ∗i ’s are the candidate generalized extremal
values. Let f ∗0 = −∞ and f ∗σ+1 = +∞.

The proof of the following theorem follows from [21].

Theorem 3 Take σ + 1 arbitrary numbers F1, . . . , Fσ+1 ∈ R ordered as follows:
f ∗0 < F1 < f ∗1 < F2 < . . . < f ∗σ < Fσ+1 < f ∗σ+1. Then, apply Algorithm 4 of
[13] to the system of equalities and inequalities

f = F, g � 0, h = 0, (8)

for each F ∈ {F1, f
∗
1 , F2, f

∗
2 , . . . , Fσ+1}.

(3.1) If system (8) admits at least a solution for F = Fj , for some j ∈ {1, . . . , σ },
then it admits at least a solution for each F ∈ (f ∗j−1, f

∗
j ).

(3.2) If system (8) admits at least a solution for F = F1, then f is unbounded from
below over Ωp.

(3.3) Let j ∈ {1, . . . , σ } be such that system (8) does not admit a solution for
F = Fj and system (8) admits at least a solution for F = Fj+1. Then, f ∗j
is the greatest lower bound of f over Ωp; in addition, if system (8) admits at
least a solution for F = f ∗j , then f ◦ = f ∗j is the minimum value of f over
Ωp.

(3.4) Let f �i be the smallest critical value (not necessarily the smallest candidate
critical value). Letting ε be a sufficiently small positive number such that there
is no generalized critical value in [f �i − ε, f �

i ], if system (8) does not admit a
solution for F = f �

i −ε, then f ◦ = f �
i is the minimum value of f ; otherwise,

there does not exist a minimum.

Example 2 Consider the following MP:

∣∣∣∣
∣∣

minimize x2
1 + x2x3 − x3

3
with x1 + x2 + x3 = 0,

5− x3 ≤ 0, x1 ≤ 0.

Let Θ = {∅, {1}, {2}, {1, 2}}, and, for each θ ∈ Θ , define fθ as follows:

f∅ = x2
1 + x2x3 − x3

3 + γ1(x1 + x2 + x3), f{1} = f∅ + λ1(5− x3),

f{2} = f∅ + λ2(x1), f{1,2} = f{1} + λ2(x1).

Hence, one can compute:
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I∅,c = 〈z〉, I{1},c = 〈225+ 4z〉, I{2},c = 〈z〉, I{1,2},c = 〈50+ z〉.

The least common multiple of the generators of I∅,c, I{1},c, I{2},c, and I{1,2},c is
qd(z) = z(z+ 50)(4z+ 225). Thus, if the MP has a minimum value f ◦, then

f ◦ ∈ CE∗v = {− 225
4 ,−50, 0}.

Letting F1 = −60 < f ∗1 and using Algorithm 4 of [13], one obtains that (8) admits
one solution for F = F1, and then f is unbounded from below over Ωp. �

4 Converting Semi-Definite Problems into Polynomial
Optimization Problems

Consider the following semi-definite problem (briefly, SDP):

∣∣
∣∣∣∣

minimize f (x),
with Mi(x) 9 0, i = 1, . . . , s,

hj (x) = 0, j = 1, . . . , p,
(9)

where f ∈ R[x], M1(x), . . . ,Ms(x) are the polynomial mappings from R
n to

the space of symmetric mi × mi-dimensional matrices and h1(x), . . . , hp(x) are
the given scalar polynomial functions. By classical semi-definite results [22], the
matrix Mi(x) is positive semi-definite if and only if all its principal minors are non-
negative. Therefore, letting ℘1(x), . . . ℘r(x) be all the principal minors of matrices
M1(x), . . . ,Ms(x), which are in R[x] due to the properties of minors, determining
a solution to the SDP (9) is equivalent to solve the MP

∣∣∣∣∣
∣

minimize f (x),
with −℘i(x) ≤ 0, i = 1, . . . , q,

hj (x) = 0, j = 1, . . . , p,
(10)

that is in the form of (1). Therefore, the techniques given in Sect. 3 can be used to
determine the solution to the SDP (9).

5 Application to Truss Optimization

In this section, the results given in Sects. 3 and 4 are used to solve truss optimization
problems. The setting of this section is the same as in [8]. A truss is understood as
an assemblage of pin-jointed uniform straight bars. The bars can only carry axial
tension and compression when the truss is loaded at the joints. A truss is determined
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by positions of nodes and volumes of bars, i.e., by vectors y ∈ R
m and x ∈ R

n.
The response of the truss to the vector of nodal forces u ∈ R

m is measured by the
vector of nodal displacements d ∈ R

n. The global stiffness and geometry matrices
of the truss are denoted by A(x) and G(x,d), respectively (see [8] for their formal
definition). Given the vector of nodal positions y, these matrices can be computed
in symbolic form by interfacing the MATLAB package fminsdp [23] with the
MATLAB Symbolic Toolbox.

5.1 Truss Design with Global Stability Constraints

Following the construction in [8], the truss design problem with global stability
constraints reduces to determine a solution to the following SDP:

∣∣∣
∣∣∣∣∣∣
∣∣

minimize
∑n

i=1 xi ,
with A(x)+G(x,d) 9 0,[

c u"
u A(x)

]
9 0,

xi ≥ 0, i = 1, . . . , n,

(11)

with d = A−1(x)u. This problem has the form (9), and hence, it can be solved by
using the techniques given in Sects. 3 and 4 as shown in the following example.

Example 3 Consider the truss depicted in Fig. 1a.
Assuming unitary values of the mechanical parameters, it results that

A(x) =
[
x2
4 + x4 + 16x5

25
x2
4 − 8x5

25
x2
4 − 8x5

25
x2
4 + 4x5

25

]
,

G(x,d) =
[
− 54x2x5

125x2x4+80x5x4+180x2x5
− 18x2x5

125x2x4+80x5x4+180x2x5

− 18x2x5
125x2x4+80x5x4+180x2x5

−125x2x4−80x5x4−126x2x5
125x2x4+80x5x4+180x2x5

]

.

u

(a)

u

(b)

u

(c)

Fig. 1 The considered truss and solutions to the optimal truss design problem with constraints
on the global stability and on the free vibration frequencies. (a) A truss. (b) Solution to (11). (c)
Solution to (12)
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Hence, letting c = 0.5, the SDP (11) has been first converted into an MDP of
the form (1) as shown in Sect. 4, and the algebraic geometry technique given in
Sect. 3 has been used to determine the set of all the candidate optimal values, which
is constituted by 45 real values whose explicit expression has been omitted for
brevity. Letting F̄ be the third smallest real root of the polynomial 573696z8 +
147845760z7 − 10923471088z6 + 251692143168z5 − 1376295300920z4 −
9707873025112z3+25572262462105z2+101605679900136z−28107941625776,
since for F ≤ F̄ there does not exist any solution of (8), whereas for
F = F̄ such a problem admits a solution, whose numerical expression is
x◦ = [ 0 1.97442 0 0.40004 1.73649 ]", the optimal value of (11) is f ◦ = F̄ ,
and x◦ is the corresponding optimal solution; see Fig. 1(b). It is worth noticing that
the numerical evaluation of the exact solution given above matches with the output
of the solver fmindsp to four decimal places. �

5.2 Truss Design with Constraints on the Free Vibration
Frequencies

The technique outlined in Sect. 5.1 can be easily adapted to deal with the opti-
mization of trusses with constraints on the free vibration frequencies. In particular,
following [8], the compliance constraint such that the lowest eigenfrequency is
bigger than or equal to the value σ̄ can be rewritten as

∣∣∣∣∣∣
∣∣∣∣∣

minimize
∑n

i=1 xi ,
with A(x)− σ̄M(x) 9 0,[

c u"
u A(x)

]
9 0,

xi ≥ 0, i = 1, . . . , n,

(12)

where M(x) = M0 + Ms(x) is the mass matrix of the truss: M0 is the part
corresponding to nonstructural mass, whereas the (lumped) structural mass matrix
Ms(x) is defined as Ms(x) = ∑n

i=1 xiMi , where Mi = 5
2 I , I denotes the identity

matrix of suitable dimensions, and 5 is the material density. The SDP (12) can be
solved as in the previous section, as shown in the following example.

Example 4 Consider again the truss of Example 3. Letting c = 0.5, σ̄ = 1, and
5 = 1, the SDP (12) has been first converted into an MDP of the form (1) as shown
in Sect. 4 and the algebraic geometry technique given in Sect. 3 has been used to
determine the set of all the candidate optimal values, which is constituted by 27 real
values whose explicit expression has been omitted for brevity. Letting F̄ = 1

16 (79+
7
√

74), since for F < F̄ there does not exist any solution of (8), whereas for F = F̄

such a problem admits the solution x◦ = [ 0 7.96035 0 0.0987429 0.641925 ]", the
optimal value of (11) is f ◦ = F̄ , and x◦ is the corresponding optimal solution; see
Fig. 1c.
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6 Results and Discussion

The main contribution of this chapter is twofold. First, it is shown how to recast
a polynomial SDP into a polynomial optimization problem that can be solved by
using classical techniques. Second, it is shown how algebraic geometry methods
can be used to determine a closed-form expression for the solution to the polynomial
problem. The main innovation of the procedure given herein with respect to other
methods available in the literature is that it uses exact computations, thus allowing
one to determine a closed-form expression for the optimal values.

The proposed technique has validated and corroborated via application to some
structural optimization problems involving constraints on the global stability of the
structure and on the free vibration frequencies.
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Semi-Analytical Approaches for Solving
Duffing Oscillator with Multi-Frequency
Excitation

Aalokeparno Dhar and I. R. Praveen Krishna

1 Introduction

A large domain of physical systems in the world can be modeled as a second-order
dynamical system, and this explains the need for its study [1]. There are many
second-order dynamical systems that exhibit different steady-state phase portraits
depending on the value of their nonlinear parameters. Duffing oscillator is one
such mostly studied oscillator [2]. Till date, there are more than two thousand
papers discussing the dynamics of the Duffing oscillator. This is because, in many
engineering fields, the nonlinear governing differential equations can be reduced to
the form of Duffing equation [3]. The Duffing equation consists of the cubic term
in the stiffness, which causes quasi-periodicity and chaotic behavior in the response
to a simple harmonic or biharmonic excitation. This equation is further modified by
introducing higher-order terms in stiffness (such as quintic Duffing oscillator [4]) or
nonlinearities even in the viscous damping term. Furthermore, analysis of Duffing
equation is extended with other nonlinear systems superimposed in it, such as
Rayleigh–Duffing oscillator [5], Helmholtz–Duffing oscillator [6], Duffing–van der
Pol oscillator [7, 8].

The response of dynamical systems is often explained through their steady-state
phase portraits. Finding a steady-state solution to obtain phase portraits for these
nonlinear dynamical systems is an interesting and challenging topic. Numerical
integration is an easy but very time-consuming process to reach a steady-state
solution. So different methods are developed to solve these types of nonlinear
differential equations. One of these methods is the Harmonic Balance Method
(HBM) [9, 10]. It is a frequency-domain method where the response is approximated
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by a truncated Fourier series. But simple HBM cannot predict quasi-periodicity as
in quasi-periodicity the solution consists of frequencies that are not a direct integer
multiple of each other. Multi-Harmonic Balance Method (MHBM) [11, 12] is an
extension of HBM where the approximated solution consists of more than one
frequency corresponding to the multiple independent time series for the system.
Guskov and Thouverez [13] discussed the evolution of HBM and MHBM for
solving quasi-periodic solutions. They applied MHBM and adjusted HBM (AHBM)
to solve the Duffing equation. In adjusted HBM, the multi-harmonic excitation is
approximated to the mono-dimensional case. It concludes that both methods end up
in the same solution, where MHBM is more time efficient in it.

Another method that is recently introduced by Rook [14] is Time Variational
Method (TVM). Unlike the HBM approach where the system is solved in the
frequency domain, TVM solves it in the time domain itself. The reason is that
in HBM, the solution is expressed in the form of Fourier functions, but in TVM
it is expressed in the form of periodic basis functions that are distributed in the
time domain. This reduces the effort and computation of the AFT (Alternate Time
Frequency) process in each iteration. In Rook’s paper, the convergence of the
solution with different basis functions is analyzed. It finds better compactness and
convergence of cubic spline function than other basis functions for solving a variety
of nonlinear models. Also, its comparison with other methods available in the
literature (HBM, shooting method) is also shown. Krishna and Padmanabhan [10]
extended this method to solve for reduced-order nonlinear systems with multi-DOF.
Prabith and Krishna [15] used the TVM method (with cubic spline basis function)
in a multiple-frequency excited system by approximating it in a single time scale.
So far, this method is not extended to multiple time scale formulations like MHBM.

In this chapter, an MHBM equivalent multi-frequency time variational technique
(MTVM) is formulated. MTVM (using cubic spline as the basis function) along
with MHBM is used for obtaining phase portrait of quasi-periodically excited single
DOF Duffing oscillator. MTVM is found to be more time efficient than MHBM for
solving this system. A continuation algorithm is applied to both of the methods, and
the response is observed by varying excitation amplitude of one of the excitation
frequencies. All the results are compared with numerically integrated solutions.

2 Methodology

2.1 MHBM Formulation

General single DOF equation of motion can be expressed as

mẍ + cẋ + kx + fnl(x, ẋ) = f (t), (1)



MHBM and MTVM on Duffing Oscillator 611

where m is the mass, c is the stiffness, and k is the stiffness of the system. In this
chapter, f (t) is assumed to have two independent time scales, i.e., the excitation
frequency is having a maximum of two independent fundamental frequencies
(f (t) = f1 sin(ω1t + ψ1)+ f2 sin(ω2t + ψ2)).

For now in this formulation, the equation is scaled in two time domains, τ1 =
ω1t , τ2 = ω2t . (Some cases require to take τ1 = ω1t

I
, where I is an integer if

sub-harmonics are present in the response). Then, the time derivatives of x can be
expressed as

ẋ = ω1
∂x

∂τ1
+ ω2

∂x

∂τ2

ẍ = ω1
2 ∂

2x

∂τ1
2 + 2ω1ω2

∂2x

∂τ1∂τ2
+ ω2

2 ∂
2x

∂τ2
2

.
The solution of x is approximated as a truncated second-order Fourier series

x̂ = A1 +
Nh∑

i=1

(Ai cos(ki, τ )+ Bi sin(ki, τ )) (2)

(ki, τ ) = (ki,ω)t = k1iτ1 + k2iτ2

.
Here, ω is the vector containing two frequency bases, τ is the vector containing

time scales. ki contains k1i and k2i , which are harmonic indexes corresponding to
ω1 and ω2. (a, b) denotes the dot product between any two vectors a and b of equal
size. Here for a given number of harmonics N , the truncation of Fourier terms is
considered from the paper by Sun, et al. [12], leading to

x̂ = A0+
N∑

j=1

(A0j cos(jτ2)+B0j sin(jτ2))+
N∑

i=1

N∑

j=−N
(Aij cos(iτ1+ jτ2)+Bij sin(iτ1+ jτ2))

.

So correspondingly Nh mentioned in Eq. (2) will become

Nh = (2N + 1)2 + 1

2

This precisely denotes that N harmonics in two independent frequency basis
systems consists of total Nh numbers of different dependent or independent
frequencies where ith frequency is denoted by (ki,ω).

Now x̂ can be substituted into Eq. (1), and it leads to
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r = nT (Jx + f nl − f ex). (3)

Where n is the vector containing the Fourier functions, x is the vector containing
the Fourier coefficients. J can be interpreted as the linear part of the Jacobian
matrix. The right-hand side need not be zero as x̂ is only an approximation.

J =
⎡

⎣
k 0 0
0 k −m(ki,ω)

2 c(ki,ω)

0 −c(ki,ω) k − c(ki,ω)
2

⎤

⎦

x =
⎧
⎨

⎩

A0

Ai

Bi

⎫
⎬

⎭

n =
⎧
⎨

⎩

1
cos(ki, τ )

sin(ki, τ )

⎫
⎬

⎭

fnl is the Fourier coefficient of the nonlinear term. Applying Galerkin’s weighted
residual approach, it leads to

r1 = 1

4π2

∫ 2π

τ2=0

∫ 2π

τ1=0
nT (J1x1 + fnl − fex)ndτ1dτ2.

Due to the orthogonality property of the Fourier shape functions, it reduces to

r = Jx + fnl − fex, (4)

which is a nonlinear algebraic system of equations and can be solved using iterative
methods such as Newton–Raphson method

xn+1 = xn − ∂r

∂x

−1

xn

rxn .

The Jacobian

∂r

∂x
= J + ∂fnl

∂x
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∂fnl

∂x
= 1

4π2

∂

∂x

∫ 2π

0

∫ 2π

0
fnlndτ1dτ2 = 1

4π2

∫ 2π

0

∫ 2π

0

∂fnl

∂x
ndτ1dτ2. (5)

As ∂fnl
∂x

is a nonlinear function of x, ẋ, this can be evaluated using AFT
(Alternating Frequency Time) method [16]. But the accuracy of this process depends
on the number of sampling points considered in the time domain [17]. More the
number of points is computationally expensive, but less points introduce aliasing
error.

2.2 MTVM Formulation

Here also the same single-DOF equation of motion (Eq. (1)) is considered, and the
time scaling τ1 and τ2 is applied.

If a time-varying function is approximated in terms of basis functions corre-
sponding to one time scale, then the solution is approximated as

x(τ) = n(τ )T x =
Np∑

i=1

ni(τ )xi

.
Here, n vector contains wavelet functions or finite element shape functions

evaluated in the discrete time points distributed in the fundamental time period.
Similar way, if a time-varying function is approximated in terms of basis functions
corresponding to two time scale, then it would be

x(τ1, τ2) = n(τ1)
TXn(τ2) =

Np∑

i=1

Np∑

j=1

ni(τ1)nj (τ2)xij . (6)

Applying this approximation to the governing equation leads to

r = m[ω1
2n′′(τ1)

TXn(τ2)+ 2ω1ω2n
′(τ1)

TXn′(τ2)+ ω2
2n(τ1)

TXn′′(τ2)]
+c[ω1n

′(τ1)
TXn(τ2)+ ω2n(τ1)

TXn′(τ2)] + kn(τ1)
TXn(τ2)

+n(τ1)
TFnln(τ2)− n(τ1)

TFexn(τ2).

Now Galerkin’s weighted residual method is applied by multiplying the equation
with nl(τ1) and nm(τ2)

T and doing double cyclic integration with respect to τ1 and
τ2, respectively. This results in

R = m[ω1
2D(2)XD(0) + 2ω1ω2D

(1)XD(1) + ω2
2D(0)XD(2)] (7)

+c[ω1D
(1)XD(0) + ω2D

(0)XD(1)] + kD(0)XD(0)
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+D(0)FnlD
(0) −D(0)FexD(0),

where D(0) = 〈nT n〉, D(1) = 〈n′T n〉, D(2) = 〈n′′T n〉, and 〈aT b〉 = 1
2π

∫ 2π
0 aT bdτ .

These matrices are known as differentiation matrices [15]. Differentiation matrices
contain all the information of the basis functions used in the formulation. For
example, if one considers n to be Fourier functions instead of basis functions
distributed around discrete time points, then D(0) will become a diagonal matrix
due to the orthogonality of Fourier functions, and this formulation will transform
into an MHBM formulation (though the calculation of the nonlinear functions will
not be the same for both methods as explained at the end of this section).

Equation (7) is a 2-dimensional matrix equation, and it is required to transform
into a vector form to solve the system of equations. Now the vector form can be
obtained using the Kronecker product by the rule vec(AXB) = (

B" ⊗ A
)

vec(X).
This leads to

r =
[
m(ω1

2D(2)T ⊗D(0) + 2ω1ω2D
(1)T ⊗D(1) + ω2

2D(0)T ⊗D(2))

+c(ω1D
(1)T ⊗D(0) + ω2D

(0)T ⊗D(1))+ kD(0)T ⊗D(0)
]

vec(X)

+D(0)T ⊗D(0) vec(Fnl)−D(0)T ⊗D(0) vec(Fex).

r is the residual vector, absolute of which should be minimized by finding the X

that is going to be the solution. Same as MHBM, here also the residual can be
solved using iterative methods. The convergence rate depends on the choice of basis
function that forms the differentiation matrix of the residual system. Now both TVM
and MTVM use the same differentiation matrices D(0), D(1), and D(2), and only
difference is that MTVM uses the product of their combinations. So the nature of
convergence is going to depend on the basis functions in the same way it depends
for TVM.

For using gradient-based iterative methods like Newton–Raphson method, one

needs to find the Jacobian. So again there is a requirement to find Fnl and
∂Fnl

∂X
from X in each iteration. The nonlinear coefficient can be approximated as the
function of x same as that of the original nonlinear function, i.e., ith term of
vec(Fnl) is calculated as fnl of ith term of vec(X) and vec(Ẋ). (From X, Ẋ can

be directly found as Ẋ = D(0)−1[ω1D
(1)XD(0) + ω2D

(0)XD(1)]D(0)−1
.) This

is the advantage of TVM over the AFT (Alternating Time Frequency) methods
because in AFT methods the solution from each iteration needs to be transformed
from frequency domain to time domain and vice versa. Figures 1 and 2 show the
comparison between two methods.
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x x(τ1, τ2), ẋ(τ1, τ2) fnl(τ1, τ2) fnl

∂fnl

∂x
(τ1, τ2),

∂fnl

∂ẋ
(τ1, τ2)

∂fnl

∂x
(τ1, τ2)

∂fnl

∂x

IFFT fnl(x, ẋ) FFT

∂x
∂x , ∂ẋ

∂x FFT

Fig. 1 Obtaining nonlinear function in HBM–AFT method

X

Ẋ

Fnl

∂Fnl

∂x

fnl(x, ẋ)

∂fnl
∂x

(x, ẋ)

Fig. 2 Obtaining nonlinear function in TVM method

Fig. 3 Duffing oscillator under quasi-periodic excitation: α = 1.0286, ζ = .005, ω1 =
0.572, ω2 = 1, F1 = 0.385, F2 = 0.1. (a) Response obtained from MHBM. (b) Response
obtained from MTVM. (c) 3d plot showing the response with time progress. (d) Frequency-domain
plot

3 Results

In this chapter, the MTVM method is applied to the nonlinear systems consists
of cubic spline basis function. The choice of this basis function is made from the
result and analysis in the paper written by Rook [14], which concludes that for
TVM, cubic spline has a good convergence rate compared to other basis functions
like hat, sinc, or linear spline functions. It also requires a fewer number of time
points to approximate the response, which makes the residual and Jacobian matrix
smaller and the system computationally less expensive. The response of a quasi-
periodically excited Duffing oscillator is shown in Fig. 3. The computation time to
obtain this kind of system by MTVM is found to be lesser than MHBM. The number
of iterations is more in MTVM than MHBM, but the computation time per iteration
is less for MTVM, which makes the overall elapsed time lesser.
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Fig. 4 Duffing oscillator under quasi-periodic excitation: α = 1, ζ = 0.15, ω1 = π, ω2 =
1.2, F1 = 0.05, F2 = 0.28. (a) Response obtained from MHBM. (b) Response obtained from
MTVM. (c) 3d plot showing the response with time progress. (d) Frequency-domain plot

The frequency response (Fig. 3d) shows a good number of principle peaks
corresponding to the harmonics of the excitation frequencies ω1 = 0.572 rad/s and
ω2 = 1 rad/s. Although the major two peaks correspond to the harmonics [1,0], and
[0,1], there exist other super-harmonic combinations like [1,-2], [2,-1], [2,1], [3,0],
etc. marked in Fig. 3d, where harmonic [i, j ] corresponds to the response frequency
iω1+jω2 of the system that gets excited. Similar harmonic components are found in
the second example as well, shown in Fig. 5. In Fig. 4, the sub-harmonic components
are also found along with the super-harmonic components. To obtain this response,
the time scaling in both the formulation is done as τ1 = ω1t, τ2 = ω2t/2. This
enables the system to find the resonance of the second sub-harmonic of the second
fundamental frequency ω2, its multiples, and combinations with other frequencies
in the system. Harmonic combinations like [0,1/2], [1,3/2], [1,-7/2] have significant
amplitudes in frequency-domain plot (Fig. 4d). Also, in the phase portrait, one can
find the offset of the response from the (0,0) point.

The case shown in Fig. 5 is again investigated by varying one of the excitation
amplitudes, shown in Fig. 6. It is found that the region of response covers the non-
overlapping part of two circles, each with radius 2(F1+F2) and offset between their
center is 2F1 along the x axis. Though, this trend breaks down after certain value of
F2 (F2 > .4).

After F2 nearby 0.4, the solution amplitude jumps suddenly. For a linear system,
the solution amplitude is supposed to vary linearly with F2. To identify the nonlinear
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Fig. 5 Duffing oscillator under quasi-periodic excitation: α = 1, ζ = 0.005, ω1 = 0.1, ω2 =√
2, F1 = 0.1, F2 = 0.3. (a) Response obtained from MHBM. (b) Response obtained from

MTVM. (c) 3d plot showing the response with time progress. (d) Frequency-domain plot

Fig. 6 Duffing oscillator under quasi-periodic excitation: α = 1, ζ = .005, ω1 = .1, ω2 =√
2, F1 = .1; phase portrait comparison with varying F2. (a) F2 = .1. (b) F2 = .2. (c) F2 = .3.

(d) F2 = .4

Fig. 7 Duffing oscillator under quasi-periodic excitation: α = 1, ζ = 0.005, ω2 =
√

2, F1 =
0.1; continuation plot with F2 varying and for four different values of ω1. (a) ω1 = 0.01. (b)
ω1 = 0.5. (c) ω1 = 2

phenomena, a continuation method is applied with F2 as the varying parameter.
Hypersphere algorithm [10] is used for this purpose.

Figure 7 shows that in the range for F2 between 0 and 0.4, the system shows
at least three solutions, and after that only one solution is possible for each F2.
Figure 8 shows an example of three different responses for the same parameter
values. The phase portrait shown in Fig. 6 corresponds to the lowest branch of
the 3-solution region. The continuation curve remains more or less the same for
ω1 > 0.35. Figure 7b,c are examples of such curve. In fact, this trend is the
same for the periodically excited Duffing oscillator if the response amplitude is
plotted against excitation amplitude. But when ω1 is at the vicinity of ω2, the
continuation curve shows a different trend, shown in Fig. 9. At ω1 = 1.5 rad/s
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Fig. 8 Three different solutions obtained from Fig. 7b at F2 = 0.25, marked as A, B, and C. (a).
Phase portrait of A. (b) Phase portrait of B (unstable). (c) Phase portrait of C. (d) Frequency plot
of A. (e) Stable solution of B using RK4. (f) Frequency plot of C

which is nearby ω2 =
√

2, it is capable of showing more than 10 different solutions
at the same input parameters and forcing functions. The continuation curve also
cuts F2 = 0 at three different amplitudes. F2 = 0 indicates a periodic excitation
with frequency ω1 = 1.5 rad/s. The frequency response of Duffing oscillator under
periodic excitation shows 3-solutions in a fixed region of frequency, and in the rest of
the frequency domain, it has a single-phase portrait solution [18]. Figure 9 shows
that the system has multiple solutions when periodically excited with frequency
1.5 rad/s.

Change in system behavior by changing excitation frequency can be better
analyzed by observing response by frequency continuation method. Similar to the
force continuation algorithm, one can apply continuation in one excitation frequency
keeping the other frequency constant. For MHBM, it can cause some problems
if the varying frequency tries to cross the constant frequency. This is because, if
both of the excitation frequencies are the same, one cannot any more assume that
the system consists of two independent time scales. Moreover, if one can obtain
the complete frequency response in a ω1 × ω2 domain that covers the resonance
region common to both excitation frequencies, one can find that the cross-section of
that surface cut through one of the frequency axes contains multiple non-connected
branches. So continuation in one frequency will not give the full picture of the
system response. Instead, one can use continuation in both ω1 and ω2 and keeping
their ratios constant. Now for different ratios, different continuation curves can be
obtained; combining all of them, one can obtain the frequency response in the 2D
frequency domain.
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obtained from MHBM (F1 = 0.1, F2 = 0.3). (a) ω2

ω1
= 0.5095. (b) ω2

ω1
= 3.7321

In Fig. 10, two such continuation plots are shown. If the continuation plots
are analyzed by changing tan−1 ω2

ω1
from 0◦ to 90◦, one can find that initially,

two major peaks will be converging to each other. They will join and become a
single peak when the ratio ω2

ω1
becomes 1, which is expected as it will become

a periodically excited system. Again if the angle is increased, it will divide into
two peaks and move away from each other. These two peaks correspond to the
resonance of the system with each of the excitation frequencies, respectively.
During this whole process, both of the peaks will have their peak values constant,
which are approximately 5.717 (for the larger peak) and 3.247 (for the shorter
peak), and these values depend on the amplitudes of the excitation frequencies,
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respectively. But when they join together at the frequency ratio of unity, the peak
value jumps to approximately 6.609. Other than these two major peaks, one can
find some more peaks with much smaller amplitude. In Fig. 10a where frequency
ratio ω2

ω1
= 0.5095, there exist three such peaks at the excitation frequency

(ω1, ω2)=(0.5512,0.2808), (0.7327,0.3733), and (0.7446,0.3794) respectively, all in
rad/s. These peaks correspond to resonance in the harmonic components [1,2],
[0,3], and [2,-1], respectively. The frequency-domain response at these small peak
points is observed, which revealed these harmonic components with maximum
response amplitudes. In Fig. 10b, also one can find peaks with similar kinds of
resonances.

4 Conclusions

The proposed MTVM method is found to be a useful tool for obtaining quasi-
periodic responses of nonlinear dynamical systems. Both super-harmonic and
sub-harmonic combinations were found in the response of the Duffing oscillator.
The response obtained from the proposed MTVM approach shows a good match
with that of MHBM and numerical integration. MTVM effectively captures the
quasi-periodic responses in this study identified by MHBM and numerical inte-
gration. In comparison with MHBM, MTVM is found to be more time efficient
and computationally less rigorous in the stepwise calculation for Duffing kind of
systems. In the force continuation, there exist some regions in the solution where
MTVM was not able to continue and restarting of the calculation was required
to obtain different segments of the continuation curve, whereas MHBM did not
have such problems. Using force and frequency continuation, a good idea of the
nonlinear behavior of the Duffing oscillator is obtained, and migration of their
behavior is observed with changing the parameters of excitation. To conclude about
the proposed method, MTVM can be considered as a good extension of TVM to the
multi-frequency domain. Although the rigorous study is still required with different
nonlinear models to analyze its overall performance, one can expect same kind of
behavior of MTVM as that of TVM in the case of convergence and accuracy. So
same kind of relationship one can establish between MTVM and MHBM similar to
the existing relationship between TVM and HBM.
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Part V
Bifurcation and Dynamic Instability



Bifurcation and Triggers of Coupled
Singularities in the Dynamics
of Generalized Rolling Pendulums

Katica R. (Stevanović) Hedrih

1 Introduction

Let’s start with the definition of what a trigger of coupled singularities is. If in a
phase portrait, which shows the nonlinear dynamics of a system with one-degree-of-
freedom movement, there are three singular points, two types of stable centers, and
one type of unstable saddle, which are surrounded by a homoclinic orbit-separatrix
phase trajectory in the form of number “eight”, if it intersects at an unstable point of
the saddle type, then the set of these elements represents the trigger of the coupled
singularities (see References [1, 2–6]). One look at the contents of articles on the
rolling of bodies along surface and lines in real space Rn3 written by other authors
give as following: The problem of qualitative analysis of rolling motion without
slipping of a homogeneous ball and homogeneous disk on a horizontal plane was
studied by S.A. Chaplygin (1903, 1911), D.Korteweg (1900), and P.Appel (1900)
(see References [7, 8]). In his dictatorial dissertation [9] from 1923, Demmcenko
V. studied rolling, without sliding, the ball in which the gyroscope was placed.
From the numerous literatures on rolling without sliding heavy bodies on planes, on
surfaces of various shapes, as well as on straight or curvilinear paths, we will point
out only some of the latest ones, in which real systems are studied. In this paper,
for brief illustrations, we cite the following References [10–12]. Rolling without
sliding heavy bodies on planes, on surfaces of different shapes, as well as on straight
or curved paths are systems with one-sided constraints. Theoretical analyzes and
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results can be found in a series of works by Kozlov and co-authors, and among
them we cite references [13] explicate talk about it.

In a series of author’s published articles, between them and papers [6, 14–
16], some partially obtained particular results of studying the dynamics of rolling
pendulums along curvilinear paths in stationary or rotating vertical planes around a
vertical axis at a constant angular velocity, with corresponding phase portraits, are
presented. A series of phase portraits with different structures of singular points
and phase trajectories, especially those of separatrix, are presented. In the last
manuscript [2], special attention is paid to the occurrence of bifurcation of stable
equilibrium positions and the existence of triggers of coupled singularities.

2 Trigger of Coupled Singularities in the Dynamics
of Generalized Rolling Pendula Along Curvilinear Route
in the Stationary Vertical Plane

In the series of References [4, 14, 15] of the authors of this paper, the results of
research nonlinear dynamics of special cases of generalized rolling pendulums on
stationary curvilinear trace in the vertical plane and a series of phase portraits in
phase planes (independent generalized coordinate and its derivative) are presented.
Each of these phase portraits contains at least one trigger of coupled singularities,
consisting of an unstable saddle type singular point, and two stable center type
singular points, surrounded by a single (separatrix) phase trajectory in the form
of number “eight”, which intersects at an unstable saddle-type singular point. In
such a system there is no bifurcation phenomenon [7, 8], because the trigger of
coupled singularities is a property of nonlinear dynamics of such systems and in
such a system there is no parameter with whose change such a trigger of coupled
singularities would disappear, which is caused by the properties of the curvilinear
line extremums in a set of one maximum and two minimums of the curvilinear
trajectory in the vertical plane.

By analyzing the shape of the paths along which the body of a generalized rolling
pendulum rolls, without slipping, and also structures of different phase trajectory
portraits of different particular examples it is possible to formulate the following a
general definition and theorem on the stationary trigger of coupled singularities:

Definition Suppose that a curvilinear route is given by a pair function of a shape
y = f (x), for which it holds f (x) = f (−x), and which has at the points for extreme
values: the minimums Cs(xs, ys = f (xs)) for f

′
(xs) = 0, f′′(xs) > 0, and the maxima

Ss(xs, ys = f (xs)) for f
′
(xs) = 0, f′′(xs) < 0. The number of maxima of a function

defined in this way is odd, if one of the maxima is at zero coordinate, and the number
of minima is even, if it is not the only one with zero coordinates, so the total number
of extremes of such a function is always odd.
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Theorem 1 In the phase portrait of the dynamics of a generalized rolling pendulum,
whose heavy body rolls along a curvilinear trajectory in the stationary vertical plane
and in the Earth’s gravitational field, each maximum of the rolling path corresponds
to one singular point of the unstable saddle type, while for each minimum of the
curvilinear trajectory, one singular point of the stable center type corresponds to the
stable position of the pendulum equilibrium on the trajectory. As the curvilinear path
is defined by a pair function, and if the number of maxima is one and the number
of minima is two, then one trigger of coupled singularities is present in the phase
portrait. This trigger consists of three coupled singular points and one homoclinic
separatrix (a phase trajectory) in the form of the number “eight”, which intersects
at a singular point corresponding to the maximum of the curvilinear trajectory. If
the number of maxima is odd, and the number of minima of the curvilinear path is
even, then in the phase portrait there are coupled triggers of coupled singularities
and separatrix in the form of a multiple multiplied number “eight”.

3 Bifurcation and Trigger of Coupled Singularities in the
Dynamics of Generalized Rolling Pendula Along
the Curvilinear Route in a Rotating Vertical Plane
at a Constant Angular Velocity About a Vertical Axis

In a series of References [2, 6, 16] the results of research of nonlinear dynamics
of special cases of generalized rolling pendulums on curvilinear line in a rotating
vertical plane, at a constant angular velocity� around the vertical axis are presented,
and a given series of phase trajectory portraits in phase planes. Each of these
phase portraits contains at least one trigger of coupled singularities, consisting of
a singular point of the unstable saddle type, and two singular points of the stable
center type, surrounded by a single-separator phase trajectory in the form of number
“eight”, which intersects at a singular point of the unstable saddle type. The angular
velocity � of rotation of the vertical plane around the vertical axis appears as a
bifurcation parameter, whose change can achieve the disappearance of the trigger
of coupled singularities, or the appearance of that trigger in the phase portrait, or
the appearance of bifurcation [7, 8] of a stable type singular position, and two new
singular points of the stable center type appear around it, and in the phase portrait a
separatrix phase trajectory in the form of a number of “eight” that surrounds them
and self-intersect at a singular point which has lost stability and bifurcated into
unstable saddle-type singular point. In such a system, there is now a phenomenon
of a bifurcation [1, 2, 6–8, 16], because the trigger of coupled singularities is
now in results caused by the property of nonlinearity in the form of bifurcation
and nonlinear dynamics of such a system. And with the existence of a bifurcation
parameter with the change of which the trigger of coupled singularities appears or
disappears.
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Fig. 1 Graphic representation of the transformation, by changing the bifurcation parameter λ, of
the separatrix phase trajectories of the phase portrait

For example, the ordinary nonlinear differential equation of non-linear rolling
dynamics, non-slip, heavy homogeneous thin disk, radius r, in a circle, radius R,
in a rotating vertical plane at a constant angular velocity � about the vertical

Central axis, is: ϕ̈ + Ω2

κ
(λ− cosϕ) sinϕ = 0, which ϕ is generalized independent

coordinate, κ = 1 + i2c
r2 is the coefficient of disk rolling and λ = g

(R−r)Ω2 is the
bifurcation parameter (see References [1, 6, 7, 16] for details).

In Fig. 1, a*and b*, it is shown graphic representation of the transformations,
by changing the bifurcation parameter λ, of the separatrix phase trajectories of the
phase portrait of the non-linear rolling dynamics of a heavy homogeneous thin disk,
radius r, in a circle, radius R, in a rotating vertical plane at a constant angular veloc-
ity� around the vertical Central axis. These graphs are also presentation continuous
process of bifurcations followed by the change of bifurcation parameter λ.

3.1 Main Results – Existence of Bifurcations and Triggers
of Coupled Singular Points and Characteristic Equation
of Nonlinear Dynamics of a Generalized Rolling Pendulum
Along Trajectory in the Rotating Vertical Plane
at a Constant Angular Velocity About Vertical Axis

In this paper, main attention is paid to a more detailed analysis of the characteristic
equation of dynamics of the generalized rolling pendulum, along trajectory in the
rotate vertical plane at a constant angular velocity about vertical axis, which was
performed in [2] in the form:
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f ′(x)

⎧
⎨

⎩
1− r

f ′′(x)
[
1+ [f ′(x)]2] 3

2

⎫
⎬

⎭

− 2κ

3g
Ω2

〈

x − rf ′(x)
√

1+ [f ′(x)]2

〉 〈

1− rf ′′(x)
[
1+ [f ′(x)]2]

√
1+ [f ′(x)]2

〉

= 0

(1)

and in which: y = f (x) in general, or in particular cases y = f (x) = kx2(x2 − a2)2

or y = f (x) = kx2(x2 − a2)2(x2 − b2) is equation of the curvilinear path, where a,

b, and k are known constants, and with the following relation a < b, κ , κ = 1 i2c
r2 the

rolling coefficient, r the radius of the circle of the body of the pendulum by which
the pendulum rolls along curvilinear paths, � the angular velocity of rotation of
the vertical plane about the vertical axis, and in which the curvilinear rolling route
of the generalized rolling pendulum. A series of graphs of characteristic Eq. (1)
was made, which shows the existence of triggers of coupled singularities, as well
as a set of different separatrix – separating phase trajectories. An analysis of the
stability of singular points is given, as well as the relative equilibrium positions of
the generalized rolling pendulum on the rotate curvilinear path. The different types
of periodic rolling of the generalized rolling pendulum along the rotate curvilinear
path, as well as the dependence of the period of periodic rolling on the initial
conditions of the dynamics of the generalized rolling pendulum, are evident.

The singular point center type, which corresponds to stable equilibrium position
and point of the minimum at curvilinear route, loses stability and turns into an
unstable singular point of the saddle type, and two new singular points of the type of
stable centers appear around it. Triggers of coupled three singular points also appear
in the phase portrait, and with that to the existence of separatrix – phase trajectory,
in the shape of the number “eight”, which are not present in the dynamics when that
vertical plane is at rest.

It is pointed out that there is a mathematical and qualitative analogy of the
properties of the dynamics of a generalized rolling pendulum with the movement
of a heavy material point along a smooth curvilinear path in a rotating vertical plane
around a vertical axis at a constant angular velocity �.

In Figs. 2 and 3, graphics of the curvilinear route, as well as the frequency
characteristic functions (1) of the nonlinear rolling dynamics of a rigid heavy
thin disk, in a rotating vertical plane with a constant angular velocity around
the vertical axis defined by the equation y = f (x) = kx2(x2 − a2) and
y = f (x) = kx2(x2 − a2)2(x2 − b2) respectively, are presented.

In Fig. 2, a detail of the graph of the frequency characteristic function (1) of
nonlinear rolling dynamics of a rigid heavy thin disk, along a curvilinear path in
a rotating vertical plane with a constant angular velocity around the vertical axis,
defined by the equation y = f (x) = kx2(x2 − a2): detail shows the phenomenon
of bifurcation of a stable singular point center type into unstable saddle-type and
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Fig. 2 Graphs of the curvilinear route, as well as the frequency characteristic functions (1) of the
nonlinear rolling dynamics of a rigid heavy thin disk, in a rotating vertical plane with a constant
angular velocity around the vertical axis defined by the equation y = f (x) = kx2(x2 − a2)

Fig. 3 Graphs of the curvilinear route, as well as the frequency functions of the nonlinear rolling
dynamics of a rigid heavy thin disk, in a rotating vertical plane with a constant angular velocity
around the vertical axis defined by the equation y = f (x) = kx2(x2 − a2)2(x2 − b2)

appearance of two new stable singular points center type around - appearance of a
trigger of coupled singularities, are visible.

In Fig. 4, a detail of the graph of the frequency characteristic function (1) of
nonlinear rolling dynamics of a rigid heavy thin disk, along a curvilinear path in
a rotating vertical plane with constant angular velocity around the vertical axis,
defined by the equation y = f (x) = kx2(x2 − a2)2(x2 − b2): detail shows the
phenomenon of bifurcation of a stable singular point center type into unstable
saddle-type point and appearance of two new stable singular points center type
around - appearance of a trigger of coupled singularities are visible.

By analyzing the shape of the paths along which the body of the generalized
rolling pendulum rolls, without slipping, as well as by analyzing a series of phase
portraits and the structure of singular points in them, as well as structural stability
and sensitivity to changes in the system’s bifurcation parameters, bused on series
published author’s References [4, 14, 15], as well as a large number of numerical
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Fig. 4 Detail of the graph of the frequency function of nonlinear rolling dynamics of a rigid heavy
thin disk, along a curvilinear path in a rotating vertical plane with constant angular velocity around
the vertical axis, defined by the equation y = f (x) = kx2(x2 − a2)2(x2 − b2): detail shows the
phenomenon of bifurcation of a stable singular point center type into unstable saddle-type brush
and basket of two new stable singular points center type around – appearance of a trigger of coupled
singularities

experiments and obtained different graphs of nonlinear phenomena in nonlinear
dynamics of generalized rolling pendulum, a new theorem of bifurcation and of
trigger of coupled singularities can be defined in the following formulation:

Theorem on bifurcation and on the trigger of coupled singularities in the
dynamics of generalized rolling pendulums along curvilinear routes in a rotating
vertical plane around a vertical axis at a constant angular velocity: Let the curved
line, given with y = f (x), for which it is valid f (x) = f (−x), and which has at
the points for extreme values EXs(xs, ys = f (xs)) ÊÃ f

′
(xs) = 0, the minimums

Cs(xs, ys = f (xs)) for f
′
(xs) = 0, f′′(xs) > 0, and the maxima Ss(xs, ys = f (xs)) for

f
′
(xs) = 0, f′′(xs) < 0, the curvilinear route, along which rolls, without slipping,

a heavy homogeneous thin disk, of radius r > 0, and let it located in the Earth’s
gravitational field, and in the vertical plane, which rotates around the vertical axis,
at a constant angular velocity � > 0. The characteristic equation for determining
the singular points, as well as the position of the relative equilibrium of the disk
on the curvilinear path, in the vertical rotating plane around the vertical axis at a
constant angular velocity � > 0, is of the form:

K(x) = f ′(x)

⎧
⎨

⎩
1− r

f ′′(x)
[
1+ [f ′(x)]2] 3

2

⎫
⎬

⎭

− 2κ

3g
Ω2

〈

x − rf ′(x)
√

1+ [f ′(x)]2

〉 〈

1− rf ′′(x)
[
1+ [f ′(x)]2]

√
1+ [f ′(x)]2

〉

= 0

(2)
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or in the form

K(x) =
⎧
⎨

⎩
1− r

f ′′(x)
[
1+ [f ′(x)]2] 3

2

⎫
⎬

⎭

⎧
⎨

⎩
f ′(x)− 2κ

3g
Ω2

〈

x − rf ′(x)
√

1+ [f ′(x)]2

〉⎫⎬

⎭
= 0

(3)

in which it is κ = Jp
Mr2 = i2

p

r2 = i2
c

r2 + 1 = κ , that is κ 3
2 , the rolling coefficient

of the disk, because is JCz = σ r4

4 π = M r2

4 and JP = Jc +Mr2 = 3
2Mr2, and

g the acceleration of the Earth gravity. Around each extremum of the curvilinear
trajectory, which is the minimum defined by Cs(xs, ys = f (xs)) for f

′
(xs) = 0,

f′′(xs) > 0, in the dynamics of thin dick rolling, bifurcation and trigger of conjoined
singularities appear, and around each extremum, which is maximum defined with
Ss(xs, ys = f (xs)) for f

′
(xs) = 0, f′′(xs) < 0, there is no bifurcation and trigger of

coupled singularities (see Figs. 2, 3, and 4).

Proof In order to prove the claims from the previous theorem on bifurcation and
on triggers of coupled singularities, in addition to the approach to graphical paths
through graphs of characteristic algebra nonlinear equation K(x) = 0, we can
also do it analytically. To prove by the analytical method, it is first necessary to
determine the minima Cs(xs, ys = f (xs)) for f

′
(xs) = 0, f′′(xs) > 0, and the maxima

Ss(xs, ys = f (xs)) for f
′
(xs) = 0, f′′(xs) < 0, of the curvilinear route of generalized

pendulum rolling, by which we analytically defined the curvilinear trajectory. We
will then develop a characteristic function (2), in the neighborhood around each
local extremum, the minimum Cs(xs, ys = f (xs)) for f

′
(xs) = 0, f′′(xs) > 0, or the

maximum Ss(xs, ys = f (xs)) for f
′
(xs) = 0, f′′(xs) < 0, the curvilinear path, in

Taylor’s series, and examine the conditions under which there are three real roots
in the local neighborhood of the same. The absence of three zeros in the local
neighborhood of the maximum Ss(xs, ys = f (xs)) for f

′
(xs) = 0, f′′(xs) > 0 of

the curvilinear path gives a conclusion about the non-existence of bifurcation and
triggers of coupled singularities, and the existence of three real zeros in the local
environment of the minimum of the curvilinear path gives a conclusion about the
occurrence of bifurcation and the existence of triggers of coupled singularities.

In order to develop the function of the characteristic Eq. (2) in the local
environment of the singular point Cs(xs, ys = f (xs)) for f

′
(xs) = 0, f′′(xs) > 0, the

minimum Cs(xs, ys = f (xs)) for f
′
(xs) = 0, f′′(xs) > 0 of this function y = f (x),

we will use the shift xs → xs + x on the basis of which we wrote the following
approximation:

K(xs)xs→xs+x ≈ K (xs)+ 1
1!K

′ (xs) x+ 1
2! K

′′ (xs) x2+ 1
3! K

′′′ (xs) x3+ . . . in
the form cubic polynomial and we add the terms to the cube, so that we get the cube
equation, whose roots need to be examined.

Then it is necessary to solve the first three derivatives K(xs), K
′
(xs), K′′(xs),

K′′′(xs) of the characteristic function K(x) at the extreme value points – of any
singular point that corresponds to the minimum of the function y = f (x) which
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defines the curvilinear path of rolling. These K(xs), K
′
(xs), K′′(xs), K′′′(xs) would

be the coefficients of the cubic equation of approximation of the characteristic
equation K(x) = 0 (2) of the nonlinear dynamics of the rolling pendulum along
that path in a rotating vertical plane around the vertical axis at a constant angular
velocity.

Then, for each analytical approximation of the characteristic equation K(x) = 0
of nonlinear dynamics of the rolling pendulum in the vicinity of the extremum,
the conditions for the existence of three real roots and the conditions when they
occur, as well as the intervals of system parameters in which they occur or disappear.
Such parameters are bifurcation parameters and occurrence intervals of triggered
singularity triggers.

4 Concluding Remarks

The paper presents an analogy of the nonlinear dynamics of a heavy material point
along curvilinear paths in a vertical stationary, as well as, in a rotating vertical plane,
at a constant angular velocity, around a vertical axis and the nonlinear dynamics
of a generalized rolling pendulum along the same curvilinear paths in both these
cases. Two theorems are defined. One is about the existence of triggers of coupled
singularities as a consequence of the existence of the extremums-minimums of
the curvilinear rolling routes in the stationary vertical plane. The second theorem
describes the process of bifurcation and occurrence and disappearance of triggers
of coupled singularities in the local environment of the minimum of curvilinear
paths in rotating vertical planes, at a constant angular velocity around the vertical
axis, caused by the angular velocity of rotation of the vertical plane in which the
curvilinear path is. This angular velocity is a bifurcation parameter. Based on a
numerical experiment with various curvilinear rolling routes, a large number of
graphs of the characteristic function of nonlinear dynamics of generalized rolling
pendulum, were obtained, such as phase trajectory portraits of nonlinear dynamics
of a generalized rolling pendulum along curvilinear paths in a rotating vertical
plane at different values of constant angular velocity about a vertical axis, based on
when the theorem of occurrence of triggers of coupled singularities, its properties,
and disappearance, in the nonlinear dynamics of generalized rolling pendulums
was formulated. From a large number of obtained graphics, the most characteristic
examples were selected and presented in the paper. The results of previous published
author’s references for particular examples of the shape of curvilinear paths along
which the body of a generalized rolling pendulum rolls were also used. The
analytical method of proving the definition of the theorem is also presented.

We can conclude that, in the observed case of characteristic function presented in
Fig. 3, in the phase trajectory portrait, three types of separatist phase trajectories –
homoclinic orbits in the shape of the number “eight” are observed: the first type
of separatrix phase trajectories surrounds only three coupled singular points; the
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second type of separatrix phase trajectories surrounds two triggers of coupled
singularities and only intersects at one singular point of the unstable saddle type
between them; the third type of third-order homoclinic orbits surrounds one second-
order homoclinic orbit, as well as two first-order homoclinic orbits.
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15. K.R. Hedrih (Stevanović), Rolling heavy ball over the sphere in real Rn3 space. Nonlinear
Dyn., 97, 63–82 (2019). https://doi.org/10.1007/s11071-019-04947-1.
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Parametric Instability and Bifurcation
of Thin-Walled Axially Compressed Long
FRP Columns

Julio C. Coaquira, Daniel C. T. Cardoso , Paulo B. Gonçalves ,
and Diego Orlando

1 Introduction

There is a growing interest in the application of thin-walled beams of composite
materials in several engineering fields. Their advantages have been corroborated by
numerous researches and by applications in real structures. Among the composite
materials used in engineering structures, there is a growing interest in those obtained
by combining fibers immersed in a polymeric matrix, especially those produced by
the pultrusion process (fiber-reinforced polymers – FRP) [1, 2]. Examples of the use
of FRPs in civil construction are found worldwide, from components in buildings,
pedestrian walkways, or bridges for vehicles with limited spans, railways, and other
civil engineering infrastructure works, to geotechnical applications [1, 2].

As practical applications show, most FRP structural elements are thin-walled.
Thus, FRP structural elements are generally light and slender, have a low damping
coefficient [3] and Young’s modulus. In this scenario, failures generally occur due to
buckling instead of material strength limitations. Therefore, slender FRP structural
elements may exhibit instability under static and dynamic loads, in addition to
excessive vibrations.

The instability analysis of open section profiles has traditionally been investi-
gated using the theory proposed by Vlasov [4] and, since then, various nonlinear
formulations have been proposed, derived from Vlasov’s hypotheses. Here, the
geometrically nonlinear formulation proposed by Mohri et al. [5] for the analysis
of the global behavior of open section beams is adopted. This formulation has been
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successfully used in [6, 7] to study the static stability and natural frequencies of steel
profiles.

Since the critical load that leads to failure in thin-walled structures is generally
determined by their stability, the loss of stability of thin-walled structures subjected
to static loads has been widely investigated in the technical literature. However, their
instability under dynamic axial loads is largely unknown. The straight configuration
of a column can become unstable under dynamic axial load magnitudes much
lower than the static critical load. For a column under harmonic axial excitation,
this occurs if there are certain relationships between the frequency of the applied
load and the natural frequencies of the column in the transversal direction. In this
case, the so-called parametric resonance can occur and even infinitesimal lateral
disturbances can lead to large amplitude lateral vibrations.

The dynamic instability of thin-walled axially loaded metal columns under
harmonic and pulse loads has been the subject of a series of works in the past [8].
However, most contributions, even in recent years, are restricted to the determination
of critical excitation frequencies/loads by the Bolotin method [9], which allows
the derivation of the parametric instability boundaries through a linear formulation.
Only a few contributions investigate the nonlinear behavior of these structures. In
this context, the local parametric instability of FRP short columns has been recently
studied by Coaquira et al. [10] and a detailed analysis of the local and global
behavior of FRP columns under axial load is presented in [11].

This article analyzes the parametric instability of an FRP column with a channel
section under axial harmonic forcing. Using a global formulation, the regions of
parametric instability are obtained as a function of the frequency and magnitude of
the harmonic excitation. Bifurcation diagrams are obtained using continuation tech-
niques and the brute force method and the stability of the solutions is subsequently
investigated using the Floquet theory. The bifurcation analysis allows identification
of the bifurcations associated with the parametric instability boundaries in the force
control space, as well as the existence of coexisting solutions. Then, the evolution
of the basins of attraction of the coexisting solutions is investigated as a function of
the forcing magnitude, in order to assess the dynamic integrity of the desired stable
solution (trivial solution). The present numerical approach based on the nonlinear
equations does not depend on the assumption of small excitation magnitude, non-
linearity, and damping frequently used in the literature, when solving through
perturbation methods and the Mathieu-Hill’s equations [12, 13].

2 Formulation and Results

Figure 1 shows the channel section geometry, displacement field, and global
coordinate system. This geometry has low torsional stiffness, and flexural-torsional
coupling is one of the main concerns in their design. The nonlinear equations of
motion of the thin-walled column are here derived in terms of the two flexural
displacements and the torsion angle [5]. Consider a simply supported beam with
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warping unconstrained at the ends. Using as interpolation functions the flexural
and torsional free vibration modes and applying the Galerkin method, a system
of coupled nonlinear ordinary differential equations of motion is obtained. For
each number of axial half-wave n there are three eigenvalues. The lowest natural
frequencies and bifurcation loads are associated with one half-wave in the axial
direction. Adopting n = 1, the following system is obtained [11]:
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where ν and w are the transversal displacements in the Y and Z directions,
respectively, θx is the torsion angle, as illustrated in Fig. 1, P(t) is the axial load,
m = ρA is the mass per unit length, E is the longitudinal Young’s modulus, G is the
shear modulus, Iz is the moment of inertia in relation to the Z axis, Iy is the moment
of inertia in relation to the Y axis, J is the Saint Venant torsion constant, and yc

and zc are the shear center (SC) coordinates of the section. In addition, ξ is the
dimensionless viscous damping coefficient and ωo is the lowest natural frequency.
These coupled nonlinear equations with time-dependent (periodic) coefficients can
be solved using numerical methods or by perturbation techniques.

The linearization of Eqs. (1, 2, and 3) forms a system of Mathieu-Hill equations
[12, 13]. The linearized system presents a stable trivial solution for forcing
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Fig. 1 Channel section
geometry, displacement field,
and global coordinate system.
SC shear center, CG center of
gravity

Table 1 Material properties of the orthotropic and isotropic materials

Properties M1 M2 M3 M4 M5 ISO

E1 (kN/mm2) 20.0 20.0 28.0 20.1 15.89 28.0
E2 (kN/mm2) 10.0 5.0 19.3 8.62 7.75 28.0
G12 (kN/mm2) 5.0 2.2 2.6 2.47 3.13 11.38
ν12 0.23 0.23 0.23 0.23 0.32 0.23
ν21 0.115 0.0575 0.1585 0.098 0.0735 0.23

values lower than the dynamic critical load, which becomes unstable giving rise
to oscillatory solutions whose amplitude grows exponentially. For the nonlinear
system, the solution can be trivial or periodic for load levels lower than the critical
load and periodic or aperiodic of various types above the critical value, as shown
subsequently.

Here, the nonlinear oscillations and parametric instability of a harmonically
excited long FRP simply supported column with a channel section with dimensions
bf = 10cm, bw = 20cm, tf = tw = 5mm is adopted. The shear center (SC)
coordinates of the monosymmetric section are: yc = − 60.8mm and zc = 0.0. For
the following parametric analysis, five orthotropic materials (M1 to M5) and one
isotropic material (ISO), used as a reference, are adopted. The relevant constants of
these materials, based on values obtained from catalogs and experimental values,
are shown in Table 1 [11]. In Eqs. (1, 2, and 3) E = E1 and G = G12. The mass
density, based on the average experimental value, is ρ = 1850 kg/m3 [11].

Table 2 shows the three lowest natural frequencies and static bifurcation loads
for the six analyzed materials, considering a column with length L = 4.0m, where
F designates the flexural natural frequency and bifurcation load (around the minor
axis) and FT the two flexural-torsional frequencies and loads. For this length, the
lowest natural frequency and the lowest static bifurcation load (static critical load)
is related to a flexural-torsional mode for all materials. It is also observed that the
third natural frequency and bifurcation load are much higher than the first two [11].
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Table 2 Static bifurcation loads and natural frequencies of the unloaded beam as a function of the
material properties for L = 4.0m [11]

Mode ➔ FT F FT

Material P (kN) ω0 (rad/s) P (kN) ω0 (rad/s) P (kN) ω0 (rad/s)

M1 20.967 59.876 23.865 63.881 241.412 203.299
M2 17.071 54.027 23.865 63.881 239.149 202.218
M3 23.222 63.015 33.412 75.585 334.377 239.114
M4 17.520 54.734 23.985 64.041 240.578 202.821
M5 15.494 51.472 18.961 56.940 191.261 180.842
ISO 33.412 75.785 35.301 77.692 342.561 242.022

One axial half wave

The results confirm the strong influence of the material properties on both the static
critical load and fundamental frequency.

In the study of the dynamic stability of the column, an axial load of the form
P(t)= Pd sin (�f t) is considered, where �f is the excitation frequency and Pd is the
magnitude of the harmonic excitation. Dividing the applied load by the static critical
load, Pcr, and considering a non-dimensional time parameter τ = ω01t, where ω01
is the lowest natural frequency, the non-dimensional axial excitation takes the form:

Q(τ) = Qdsin (δτ ) (4)

where Qd = Pd/Pcr is the load ratio and δ = �f /ωo1 is the frequency ratio.
Figure 2a shows the parametric instability boundaries (transition boundaries from

stable to unstable trivial solution) for the six materials under analysis, considering
L = 4.0m and ξ = 1.45%. These instability boundaries are obtained by the
continuation method in conjunction with Floquet theory. The longitudinal Young’s
modulus, E1 (Table 1) has a strong influence on the instability boundaries. As
E1 decreases the fundamental frequency also decreases, shifting the transition
boundaries to the left. The parametric stability boundaries associated with the same
longitudinal modulus, E1, are superimposed (see Table 1). For example, M3 and
ISO materials have the same stability boundary, as do M1, M2, and M4 materials.

Figure 2b shows the nondimensional parametric instability boundaries obtained
by dividing the excitation frequency by the lowest natural frequency (fundamental
frequency) of each material, δ = �f /ωo1, and the magnitude of excitation by the
respective static critical load (Table 2), Qd = Pd/Pcr. The lowest dynamic critical
load, around �f = 2ω01, for the six materials is practically the same, decreasing
slightly with E1. The effect of E1 increases in the following regions to the left.
For the isotropic material (ISO) the instability regions (tongues) emanate from the
points δ = �f /ωo = 2/n with n = 1, 2, 3 . . . . Thus, the main parametric resonance
region occurs in the vicinity of δ = 2.0 and the fundamental resonance region
in the vicinity of δ = 1.0, which are the most relevant in structural dynamics,
where the dynamic critical load is much lower than the static critical load (straight
dashed black horizontal line). For example, in the case of the isotropic material
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Fig. 2 Parametric instability boundaries for different materials, L = 4.0m and ξ = 1.45%. (a)
without normalization; (b) excitation frequency normalized as a function of the fundamental
frequency; (c) excitation frequency normalized as a function of the lowest flexural frequency

for ξ = 1.45%, the dynamic critical load is only 6% of the static critical load. In
the case of orthotropic materials (M1 to M5), the instability regions emanate from
different values of δ. As the natural frequency decreases, they move to the right due
to the adopted normalization of the excitation frequency. On the other hand, if the
frequency associated with the bending mode, which is the second lowest frequency,
is used as a reference in the adimensionalization process (δ = Ωd/ω02), all curves
overlap as shown in Fig. 2c. This shows that the parametric instability boundary
is associated with the excitation of the flexural vibration mode associated with the
minimum moment of inertia.
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Fig. 3 Normalized stability boundaries for two-column lengths. Material M1 and ξ = 1.45%

In addition to the parametric instability boundary, in certain structures under
a harmonic axial load, there can be for each excitation frequency parameter, δ,
a maximum load, Qe, where the displacements increase indefinitely and the time
response goes to infinity, known as escape boundary [14]. The escape and para-
metric instability boundaries for material M1 and different values of column length
are shown in Fig. 3. In addition to the static critical load, the two lowest natural
frequencies and their double are also shown as a reference (vertical dashed lines).
The escape boundary is always superimposed on or above the parametric instability
boundary. When the escape (red) and parametric instability (blue) boundaries are
superimposed it means that the parametric instability load, Qd, and the escape load,
Qe, have the same value, indicating the presence of an unstable bifurcation. On the
other hand, when the escape boundary is above the parametric instability boundary,
the column undergoes a stable bifurcation, with the ensuing non-trivial periodic
solution remaining stable up to escape. In the main parametric resonance region,
around �f = 2ω02, the escape loads are much lower than the static critical load.
Thus special care must be taken in design to prevent the collapse of the structure.
The minimum values in each instability tongue are associated with the flexural
frequency while the escape load is due to the excitation of the flexural-torsional
mode.

To illustrate the bifurcations connected to the parametric and escape boundaries,
bifurcation diagrams are shown in Figs. 4 and 5. They are here obtained using
both continuation and brute force techniques. The continuous lines represent stable
solutions and the dashed lines represent unstable solutions. Figure 4 shows the
bifurcation diagrams, having as a control parameter the forcing magnitude Qd,
for L = 4.0m and δ = 2.08 (close to the lowest dynamic critical load). The
trivial solution becomes unstable by means of a supercritical flip bifurcation (FSP),
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Fig. 4 Bifurcation diagrams for L = 4.0m and δ = 2.08. Material M1. ξ = 1.45%

giving rise to a stable 2T periodic solution, which becomes unstable through a
supercritical pitchfork bifurcation (PSP) and immediately afterward the escape
occurs. As observed here, the displacements w and θx, associated with the flexural-
torsional mode are excited and start to increase just after the supercritical flip
bifurcation, indicating that the escape is triggered by the excitation of the flexural-
torsional mode.

Figure 5 shows four bifurcation diagrams for selected values of the frequency
parameter δ in the two main resonance regions. For δ = 1.00 the trivial solution
becomes unstable due to a supercritical pitchfork bifurcation, giving rise to two
stable solutions of period 1 T. Each of these solutions becomes unstable due to a new
supercritical pitchfork bifurcation and, shortly after, escape occurs. For δ = 1.10 the
trivial solution becomes unstable due to a subcritical pitchfork bifurcation (PSB),
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(a) d = 1.00 (a) d = 1.10

(a) d = 2.00 (a) d = 2.30

Fig. 5 Bifurcation diagrams for L = 4.0m and selected values of δ. Material M1. ξ = 1.45%

giving rise to two unstable solutions of period 1T. Each of these solutions becomes
stable due to a saddle-node bifurcation (SN), giving rise to a region where different
stable solutions coexist for load levels lower than the dynamic buckling load. For
finite disturbances after the SN bifurcation, the steady-state solution is a function
of the initial conditions. These solutions become unstable through a supercritical
pitchfork bifurcation (PSP), after which only the stable trivial solution remains
up to the critical value. For δ = 2.00 the structure becomes unstable due to a
supercritical flip bifurcation (FSP), giving rise to a stable 2 T periodic solution,
which becomes unstable due to a supercritical flip bifurcation after which escape
occurs. For δ = 2.30 the trivial solution becomes unstable due to a subcritical flip
bifurcation (FSB), giving rise to an unstable 2 T period solution that becomes stable
due to a saddle-node bifurcation. To illustrate the sensitivity to initial conditions and
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Fig. 6 Basins of attraction for L = 4.0m and δ = 1.10. Material M1. ξ = 1.45%

the influence of coexisting solutions, including escape, Fig. 6 shows the evolution
of the basins of attraction (plane v vs. dv/dτ ) for δ = 1.10. The black region
corresponds to the trivial solution, the blue and red regions to the two 1 T periodic
solutions, while the white region corresponds to the initial conditions that lead to
the escape (flexural-torsional excitation). The results show that, for high load levels,
although the trivial solution is still mathematically stable (eigenvalues within the
unit circle), small disturbances may lead to escape due to the erosion of the safe
basin. This highlights the importance of analyzing the evolution and erosion of the
basins of attraction in nonlinear dynamical systems with coexisting attractors [15].

3 Conclusions

The results highlight the influence of the orthotropy of the FRP material on the
static buckling loads and natural frequencies, leading to a substantial decrease in
static critical load and fundamental frequency when compared with the isotropic
material. This decrease is due to the FRP’s low resistance in the transversal direction
and low shear modulus. In addition, the parametric instability load and the escape
load are much lower than the static critical load in the main resonance regions even
at high damping ratios. The parametric instability is triggered by the excitation of
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the flexural mode while escape by the excitation of the flexural-torsional mode. The
nonlinearity leads to a qualitatively rich dynamics with coexisting solutions, leading
to basins of attraction with a complex topology. The parametric instability of the
pultruded column is of design concern as it causes the stable vertical equilibrium
position to bifurcate into large-amplitude solutions and initiates a process that may
lead the failure and the loss of its load-carrying capacity.
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Analysis of Nonlinear Behaviors in Active
Magnetic Bearing-Rotor System

Xiaoshen Zhang, Zhe Sun, Wolfgang Seemann, Lei Zhao, Zhao Jingjing,
and Zhengang Shi

1 Introduction

The active magnetic bearing (AMB)-rotor system is inherently nonlinear. During
operation, most components may show nonlinear characteristics, such as the
nonlinearity of electromagnetic force (the nonlinear relationship of electromagnetic
force with respect to rotor displacement and currents) [1, 2], saturation nonlinearities
[3], hysteresis [4], and rotor nonlinearities including the internal friction [5] and
rotor crack [6]. If the operating condition is harsh, some of nonlinear factors will be
prominent and exert influences on the systems.

Nonlinear factors can lead to unexpected behaviors. For example, the nonlin-
earity of electromagnetic force could cause jump phenomenon, period doubling,
quasi-periodic motion, and chaos. The nonlinearity of electromagnetic force is
common in the AMB-rotor system. Its effects have been discussed in [2, 7, 8].
Other nonlinear factors can also lead to complicated behaviors. Refs. [9, 10]
considered both current saturation and nonlinearity of electromagnetic force and
found supercritical pitchfork bifurcation in an AMB-rotor system. Generally, these
nonlinear behaviors have negative influences. It is necessary to investigate them and
thereby propose effective measures to prevent them.

The approximate analytical methods are effective and common in nonlinear
analyses of AMB-rotor systems. Ref. [2] utilized the method of multiple scales to
obtain analytical solutions describing dynamic characteristics in main resonance
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region. The jump phenomenon was found. The harmonic balance method can
also be used to analyze nonlinear behaviors in main and harmonic resonance
regions [11]. These analytical analyses of AMB-rotor systems usually focused
on the vibration characteristics. The approximate solutions obtained only contain
the vibration amplitude and phase. There were some limitations. The suspension
characteristics that are also important to the system were not mentioned.

During operation of the AMB-rotor system, the rotor suspends without contact
with the stator. This brings some advantages, such as no mechanical wear and low
maintenance cost. But it also means that mechanical clearance between the rotor and
stator is much larger than those of mechanical bearings, and the rotor can move in a
relatively large physical space. The rotor may suspend steadily in different positions
for different conditions. The steady suspension position of the rotor is called static
equilibrium. Due to large mechanical clearance of AMBs, the static equilibrium
can make contributions to the rotor displacement that is defined with respect to the
reference position. In the AMB-rotor system, the rotor displacement depends on
both vibration amplitude and static equilibrium. Therefore, the researches that only
focused on the rotor vibration amplitude and phase [2, 7, 8, 11] cannot obtain the
comprehensive dynamic characteristics. However, the effects of static equilibrium
on system performance and stability were only discussed in a few researches [12],
which needs to be explored further.

In this research background, this chapter analyzed both effects of rotor vibration
and static equilibrium analytically. Compared with the method of multiple scales
adopted in [12] that can only get static equilibrium and vibration amplitude but
no vibration phase, the harmonic balance method adopted in this chapter can obtain
approximate solutions including all of them. Nonlinear behaviors of the system were
further investigated based on the solutions.

2 Mathematical Model

As Fig. 1 shows, an AMB-rotor system consists of the sensor, controller, power
amplifier, electromagnets, and rotor. During operation, once the rotor deviates
from the reference position, its displacement is measured by the sensor, and the
measurement signal is transmitted to the controller. The controller gives the control
command based on its control law. Thereby, the power amplifier outputs currents,
which generate electromagnetic forces in the actuator to act on the rotor and return
it to the reference position. By this way, AMBs can support the rotor without contact
force.

However, some nonlinear factors exist in the system. The current output from
the power amplifier has extreme limits. The electromagnetic force generated in
the electromagnet is inherently nonlinear. The AMB-rotor system with current
saturation and nonlinear electromagnetic force has been introduced in [9, 12]. The
same model is adopted in this chapter.
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Fig. 1 System diagram of AMB-rotor system

This chapter only focuses on the direction where unexpected behaviors happen,
and the high-order actual controller is simplified into a PD controller equivalently.
By considering the nonlinearity of electromagnetic force and current saturation, a
single degree-of-freedom model can be obtained. To facilitate subsequent analysis,
the model has been transformed into a non-dimensional one.

Under the action of PD controller, the control current can be expressed as

i = Kpy +Kdẏ, (1)

where y is the rotor displacement, ẏ is its first derivative with respect to time, and
Kp, Kd are proportional and differential gains of PD controller, respectively.

The electromagnetic force is generated by control current i and bias current i0
together. But limited by output capacity of power amplifier, system currents i± in
opposite electromagnets have extremum values, which are formulated in

i± = med (0, i0 ± i, 1) , (2)

where “med” means taking the median value among three values in the bracket and
the bias current is i0 = 0.5.

According to [1], the electromagnetic force F can be formulated as

F = KF

((
i+

1+ y

)2

−
(

i−
1− y

)2
)

, (3)

where KF is the force coefficient determined by the system structure, whose value
is 0.0097.

Under the action of unbalance excitation, the motion differential equation is

ÿ = −F + f cos (�t) , (4)
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where f is the amplitude of unbalance excitation, while � is the excitation
frequency, namely the rotor speed.

Equations (1)–(4) make up the nonlinear model. However, the fraction expression
of electromagnetic force (3) brings challenges to subsequent analysis. In order to get
analytical solutions, the approximation of electromagnetic force is obtained in the
possible operating region of the system. A polynomial fitting of the electromagnetic
force Ff with respect to i and y is performed. The fitting model is obtained as
follows:

ÿ = −Ff + f cos (�t) . (5)

In this equation, the fitting electromagnetic force can be expressed as

Ff =
∑

1≤m+n≤11

km,ny
mẏn, (6)

where km,n = 0 if m+ n is even number; otherwise, km,n are relational expressions
about controller parameters Kp, Kd . The nonlinearity of electromagnetic force
and current saturation are approximated by fitting electromagnetic force to this
polynomial. Subsequent analysis is conducted based on polynomial model (5).

3 Analytical Analysis

The harmonic balance method is a common one of approximate analytical methods
to do dynamic analyses of nonlinear systems. In this chapter, it is used to study both
effects of rotor vibration and static equilibrium on dynamic characteristics of the
AMB-rotor system. The solving procedure is as follows.

This chapter only focuses on the first-order approximate solution. The solution
of polynomial model (5) is set as

y = C + a cos (�t + φ) , (7)

where a and φ are the vibration amplitude and phase, respectively, while C

represents the static equilibrium. All of them need to be determined.
Substitution of (7) into (5) leads to a polynomial equation withC, a, and φ, which

contains a constant term, a first-order harmonic term, and high-order harmonic
terms. By neglecting high-order harmonic terms and collecting the similar terms
according to constant term, cos (�t) and sin (�t), respectively, we can obtain three
algebraic equations,

G1 (a, φ, C) = 0, (8)

G2 (a, φ, C) = 0, (9)
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G3 (a, φ, C) = 0, (10)

where G1 (a, φ, C), G2 (a, φ, C), and G3 (a, φ, C) are the polynomial expressions
whose coefficients depend on system parameters including Kp, Kd , and �.

Solving algebraic equations (8), (9), and (10), the static equilibrium C, vibration
amplitude a, and vibration phase φ can be obtained. Then, the periodic solution y

shown in (7) is determined.
The stability of periodic solutions can be analyzed by the Floquet theory.
Introduce state variables x1 = ẏ, x2 = y, and x3 = �t , and transform

polynomial model (5) into an autonomous one,

ẋ =
⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =
⎡

⎣
−Ff (x1, x2)+ f cos (x3)

x1

�.

⎤

⎦ = G (x) . (11)

Equation (11) is a periodic function whose period is T = 2π
�

. According to [13],
its monodromy matrix can be calculated by

dM (t)

dt
= ∂G (x)

∂x

∣∣
x0

M (t) ,

M (0) = I,
(12)

where x0 is the corresponding periodic solution of (11). Integrate (12) in a period T
and obtain monodromy matrix M (T ). Then, the stability of each periodic solution
can be determined by eigenvalues of the monodromy matrix.

4 Results and Discussions

4.1 Supercritical Pitchfork Bifurcation

In this chapter, the system parameters are chosen as Kp = 1.904, Kd = 4.801, and
� = 1. The approximate solutions and their stability can be obtained through above
analysis procedure. It is found that the number and stability of solutions may change
for different excitations. The coexistence of multiple solutions leads to nonlinear
behaviors.

In the AMB-rotor system, the rotor displacement can intuitively show effects
of nonlinear factors and indicate the system performance. Under the influences of
nonlinearity of electromagnetic force and current saturation, the rotor displacement
exhibits complicated behaviors, as shown in Fig. 2. There are three different
solutions that are represented by y1, y2, and y3, respectively. It is the extremum
values of rotor displacement that affect system performance and stability. Therefore,
the maximum and minimum values are marked. During operation, the rotor can



654 X. Zhang et al.

0.05 0.1 0.15 0.2 0.25
-1

-0.5

0

0.5

1

Mechanical limit

Fig. 2 Rotor displacement with respect to excitation amplitude: black line—mechanical limit,
red line—y1, blue line—y2, green line—y3, solid line—stable solution, dashed line—unstable
solution, dotted line—range of motion of rotor

move in the range of motion limited by maximum and minimum displacements.
The dotted line represents the range of motion.

It can be seen that there is only one periodic solution y1 for small f . The
maximum and minimum displacements y1max, y1min are symmetric around the
reference position, namely the zero displacement point in Fig. 2. As f increases
in a certain range, y1 increases nearly linearly (see y1max). No unexpected behaviors
occur. However, as f increases to a critical value, namely f = 0.156, nonlinear
factors become prominent and complicated behaviors occur. The trivial solution
y1 still exists, but its stability changes. Namely, the trivial solution y1 becomes
unstable. In addition, two other solutions y2 and y3 appear. In this situation, three
solutions coexist, but only one of the stable solutions, namely y2 or y3, can be
exhibited in actual system. This is a bifurcation of rotor displacement with respect
to excitation amplitude. After bifurcation, the absolute values of y2max and y3min are
much larger than y1max.

The bifurcation of rotor displacement will affect the system performance and
stability. There are auxiliary bearings in the system, which can avoid damage
to the rotor and stator during a touchdown process. But auxiliary bearings also
create mechanical limits for the rotor, which are defined as the relative positions
of auxiliary bearings from the reference position and marked in Fig. 2. If the rotor
displacement exceeds mechanical limits, it will collide with auxiliary bearings that
will lead to instability. Before bifurcation, maximum and minimum displacements
y1max, y1min are acceptable. However, after bifurcation, difference values of y2max or
y3min to mechanical limits become much smaller. The rotor approaches the auxiliary
bearings much closer. This will weaken the capacity of resisting to a disturbance.
Under the effect of disturbance, the possibility of collision between rotor and stator
increases. The system performance deteriorates. As f is further increased to 0.195,
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Fig. 3 Static equilibrium with respect to excitation amplitude: solid line—stable solution, dashed
line—unstable solution

y2max and y3min will exceed the mechanical limits and the system cannot keep stable
even if there is no disturbance.

It should also be noted that unexpected behaviors appearing in the system are
not only about the dynamic characteristics of vibration. After bifurcation, for y2 and
y3 that can be exhibited during operation, the range of motion of the rotor is not
symmetric around the reference position. It means that the static equilibrium does
not coincide with the reference position all the time.

It can also be known from analytical results that all of C, a, and φ in solution (7)
have multiple values. The static equilibrium C, vibration amplitude a, and phase φ
are illustrated, respectively, to explain their effects on rotor displacement.

Figure 3 shows the relationship between the static equilibrium C and f . The
stability of static equilibrium can be determined as follows: the static equilibria
in stable periodic solutions are thought to be stable, and that in unstable periodic
solution is thought to be unstable. The static equilibrium exhibits complicated
characteristics. As f is small, there is only one static equilibrium, namely the
stable trivial equilibrium. It coincides with the reference position. However, as f is
increased to 0.156, where the bifurcation of rotor displacement occurs, both number
and stability of static equilibrium change. The trivial equilibrium loses its stability.
And two stable nontrivial equilibria appear. The nontrivial equilibria are symmetric
around the reference position and increase gradually with the further increase of f .
The relatively large mechanical clearance makes existence of nontrivial equilibria
physically possible. The phenomenon is called pitchfork bifurcation. The branch
solution and unstable trivial solution locate in the same side of the critical point.
Therefore, the bifurcation is a supercritical one.

To make clear the role of rotor vibrations in nonlinear behaviors of the AMB-
rotor system, the vibration amplitude a and phase φ are obtained and shown in
Fig. 4. There is a one-to-one correspondence between a and φ. For small f , there is
one solution for vibration amplitude and phase. However, after bifurcation point of
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Fig. 4 Vibration amplitude and phase with respect to excitation amplitude: solid line—stable
solution, dashed line—unstable solution

the rotor displacement, there are two solutions for vibration amplitude and phase,
while there are three solutions for rotor displacement and static equilibrium. And a1,
φ1 are the vibration amplitudes in solution y1. The vibration amplitude and phase in
solution y2 and y3 are the same, and they are a2 and φ2. It can be seen that values
of a1 and a2, φ1 and φ2 have slight differences. They hardly have influences on the
rotor displacement.

It can be concluded that the complicated behaviors reflected in the rotor
displacement are caused by the bifurcation of static equilibrium. The dynamic
characteristics of vibration are not complicated. Under influences of the nonlinearity
of electromagnetic force and current saturation, the number and stability of static
equilibrium will be different for different conditions. The relatively large mechan-
ical clearance creates physical conditions for the existence of nontrivial equilibria.
As a result, the supercritical pitchfork bifurcation of static equilibrium occurs in the
AMB-rotor system.

Looking back to Fig. 2, as f is small, the bifurcation of static equilibrium
has not appeared and the rotor vibrates around the trivial equilibrium. With the
gradual increase of f , the static equilibrium remains zero. The maximum rotor
displacement increases because the vibration amplitude increases. At this stage,
the maximum rotor displacement is exactly the vibration amplitude. However, after
bifurcation of static equilibrium, the trivial equilibrium loses its stability. The rotor
deviates from the reference position and starts to vibrate around one of nontrivial
equilibria. The maximum rotor displacement is the sum of vibration amplitude
and absolute value of the static equilibrium. The supercritical pitchfork bifurcation
of static equilibrium results in the fact that the maximum rotor displacement
increases dramatically. Although the bifurcation of static equilibrium does not cause
instability in mathematics, it can make system performance deteriorate and even lose
stability during actual operation.
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Fig. 5 Comparison of numerical and analytical results: solid line—stable analytical solution,
dashed line—unstable analytical solution, circle—numerical solution, note: the same color rep-
resents same solution

4.2 Numerical Validation

The analysis results obtained through harmonic balance method are validated
numerically in this section.

The bifurcation of static equilibrium is also obtained through numerical method.
The numerical integration can obtain the stable equilibria but no unstable equilibria.
The comparison of analytical and numerical results is shown in Fig. 5. It can be seen
that the analytical and numerical results are generally in agreement.

To illustrate the bifurcation, the time-domain responses before and after bifurca-
tion are shown in Fig. 6a,b, respectively. For f = 0.1, the rotor vibrates slightly
around the trivial equilibrium. There is only one stable analytical solution. The
numerical results and analytical solution are highly consistent. For f = 0.2, the
nonlinear characteristics of the AMB-rotor system become prominent and multiple
solutions coexist. There is one unstable solution and two stable solutions. In the
numerical simulation, the stable solution can be exhibited, while the unstable
cannot. Two time-domain responses are obtained for two different initial conditions
and are consistent with two stable analytical solutions after entering the steady state.
There is no numerical solution corresponding to the unstable solution.

The analytical solutions obtained through harmonic balance method and their
stability results are proved to be correct and accurate.

5 Conclusions

The dynamic characteristics of the AMB-rotor system were analyzed by considering
the nonlinearity of electromagnetic force and current saturation. The analytical
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Fig. 6 Time-domain responses: solid line—stable analytical solution, dashed line—unstable
analytical solution, circle—numerical solution, note: the same color represents the same solution.
(a) f = 0.1. (b) f = 0.2.

solutions containing both information of rotor vibration and suspension were
obtained through the harmonic balance method, and nonlinear dynamic analysis was
performed based on the solutions. It was found there might be multiple solutions
for the rotor displacement. During actual operation, the rotor may vibrate around a
position deviating from the reference position. The system performance deteriorates
and even instability may happen. Through further analysis, it is found that the
unexpected behaviors are mainly caused by a supercritical pitchfork bifurcation of
the static equilibrium. In other words, the effects of nonlinear are reflected in the
static equilibrium rather than vibration amplitude and phase. At last, the accuracy
and stability of the solutions were validated.
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Characterizing Fundamental,
Superharmonic, and Subharmonic
Resonances Using Phase Resonance
Nonlinear Modes

Martin Volvert and Gaëtan Kerschen

1 Introduction

Modal analysis has been, and continues to be, the dominant dynamical method used
in structural design. The goal of modal analysis is to find the vibration modes,
resonance frequencies, and damping ratios of the considered system [1]. One key
assumption of modal analysis is linearity, which, however, real-world structures
violate because they may feature advanced materials, friction, and contact [2].
The theory of nonlinear normal modes (NNMs) was developed to generalize the
concept of a vibration mode to nonlinear systems [3]. In direct analogy to a linear
mode, Rosenberg defined a NNM as a synchronous vibration of the undamped,
unforced system for which all points reach their extreme values or pass through
zero simultaneously [4, 5]. This definition is only valid for multi-point, multi-
harmonic forcing, which is not always used in practice. The focus of this chapter
is on phase resonances for fundamental resonances of harmonically forced, damped
systems as well as for superharmonic and subharmonic resonances. For these latter
resonances, the phase lag between the harmonic of interest of the displacement and
the forcing may not necessarily be equal to π/2, unlike fundamental resonances. In
this context, we propose herein a generalization of phase resonance of nonlinear
systems for which the corresponding structural deformation is termed a phase
resonance nonlinear mode (PRNM). These PRNMs are applied to the well-known
Duffing oscillator.
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2 Resonances of the Duffing Oscillator

The Duffing oscillator comprises a mass attached to linear and cubic springs and a
linear damper. The governing equation of motion of the harmonically forced Duffing
oscillator is

ẍ(t)+ 0.01ẋ(t)+ x(t)+ x3(t) = f sinωt, (1)

where f is the forcing amplitude, whereas ω is the excitation frequency.
Considering the Fourier decomposition of the displacement, where the positive

integer ν takes into account the subharmonics of the excitation frequency ω,

x(t) = c0√
2
+

∞∑

k=1

(
sk sin

(
k
ω

ν
t
)
+ ck cos

(
k
ω

ν
t
))

(2)

shows that many resonances exist in this simple system. Specifically, each harmonic
component of the displacement can trigger a resonance as long as the relation k

ν
ω

corresponds to the frequency of the fundamental resonance of the system. When
the ratio k

ν
is lower (greater) than 1, the resonance is said to be subharmonic

(superharmonic) and is located after (before) the fundamental resonance. In this
chapter, the resonances are divided into four categories, namely:

– Fundamental resonance (k = 1, ν = 1)
– Superharmonic resonance k:ν (k > ν, ν = 1)
– Subharmonic resonance k:ν (ν > k, k = 1)
– Other superharmonic and subharmonic resonances k:ν (k > 1, ν > 1)

Superharmonic and subharmonic resonances can further be divided into subcate-
gories depending on the parity of k and ν.

The goal of this section is to analyze carefully the resonant response of the
Duffing oscillator, as previously achieved in [6]. To this end, the system is analyzed
considering four different forcing amplitudes f , i.e., 0.01N, 0.25N, 1N, and 3N.
The nonlinear frequency response curves (NFRCs) are depicted in Fig. 1. For a
forcing amplitude of 0.01N in Fig. 1a, the only nonlinear effect appearing in the
NFRC is the hardening of the fundamental resonance. At 0.25N in Fig. 1b, 3:1
superharmonic and 1:3 subharmonic resonance branches appear before and after
the fundamental resonance, respectively. It should be noted that the subharmonic
resonance is isolated from the main curve. Additional branches corresponding to
2:1, 4:1, 5:1, and 7:1 superharmonic and 1:2 subharmonic resonances arise in Fig. 1c
at 1N. Finally, as the forcing continues to increase, new resonances, for which both k
and ν can be different from 1, start to appear, first as isolated singular point solutions
and then as growing isolated branches. When the forcing amplitude is 3N, some of
these resonances, such as the 7:3, 3:2, 4:3, 7:2, 2:3, 3:4, 5:7, and 3:5 resonances, can
be observed in Fig. 1d. A close-up on these specific superharmonic and subharmonic
resonances is made in Fig. 1e,f, respectively. The main resonances are examined
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Fig. 1 NFRCs of the Duffing oscillator: (a) f = 0.01N, (b) f = 0.25N, (c) f = 1N, and
(d) f = 3N, (e) close-up on the superharmonic resonances, (f) close-up on the subharmonic
resonances

in greater detail hereafter. Particular attention is devoted to the phase difference
between the dominant harmonic component of the displacement and the harmonic
excitation.
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(a) (b)

Fig. 2 NFRCs of the fundamental resonance of the Duffing oscillator for f = 0.001N ( ),
f = 0.005N ( ), and f = 0.01N ( ): (a) amplitude and (b) phase lag of the first harmonic
component. The red dots correspond to phase resonance

2.1 Fundamental Resonance

The amplitude and phase lag of the first harmonic component of the displacement
in the neighborhood of the fundamental resonance are displayed in Fig. 2a,b,
respectively. The phase lag varies between 0 and π and passes through π/2 at
resonance.

2.2 Superharmonic Resonances (k > ν, ν = 1)

In the case of superharmonic resonances, the ratio k
ν

is greater than one, and the
resonance peaks are located before the fundamental resonance. The phase lags of
the 3/1 and 2/1 harmonic components of the 3 : 1 and 2 : 1 resonances are depicted
in Fig. 3a,b, respectively.

2.2.1 Odd Superharmonic Resonances (k is Odd)

The phase lag of the 3/1 harmonic component of the 3:1 resonance is comprised
between 0 and π and, as for the fundamental resonance, passes through π/2 at
resonance. The same observation holds for the 5 : 1 and 7 : 1 superharmonic
resonances. These results suggest that phase quadrature between the forcing and the
dominant harmonic component exists at resonance for odd superharmonic branches.
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(a) (b)

Fig. 3 Phase lags of the 3:1 and 2:1 superharmonic resonances for 4 forcing amplitudes: (a) 3:1
and (b) 2:1. The points where the phase lag is equal to π/2 are marked by red dots

2.2.2 Even Superharmonic Resonances (k is Even)

The phase lag of the 2/1 harmonic component of the 2:1 resonance is comprised
between π/2 and π and passes through 3π/4 at resonance. The same observation
holds for the 4:1, 6:1, and 8:1 resonances. It can be noted that these resonances
bifurcate out of the main NFRC.

2.3 Subharmonic Resonances (ν > k, k = 1)

The ratio k
ν

is lower than one, and the resonance branches are located beyond the
fundamental resonance. The phase lags of the 1/3 and 1/2 harmonic components
for the 1 : 3 and 1 : 2 resonances are depicted in Fig. 4a,b, respectively.

2.3.1 Odd Subharmonic Resonances (ν is Odd)

The corresponding phase lag for the 1/3 harmonic component is bounded by π/3
and 2π/3. Since the branch is isolated, the phase lag is twice equal to π/2, which
happens at the extremities of the isolated branch. For higher-order 1 : ν subharmonic
resonances, the phase lag of the 1/νth harmonic component is located within the
interval [π/2± π/2ν].

2.3.2 Even Subharmonic Resonances (ν is Even)

As for even superharmonic resonances, the phase lag of even subharmonic res-
onances is not centered around π/2. Specifically, for the 1:2 resonance, it is
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(a) (b)

Fig. 4 Phase lags of the 1:3 and 1:2 subharmonic resonances for 3 forcing amplitudes: (a) 1:3 and
(b) 1:2

Table 1 Phase lag of the k/ν
harmonic component of the
k : ν resonance

k & ν are odd k or ν is even

Phase lag at resonance π/2 3π/4ν

Phase lag interval π/ν π/2ν

centered around 3π/8 and comprised between π/4 and π/2. For higher-order 1 : ν
resonances, the phase lag interval is π/2ν and centered around 3π/4ν.

2.4 Other Superharmonic and Subharmonic Resonances
(k > 1, ν > 1)

Resonances for which neither k nor ν is equal to 1 (see Fig. 1e,f) can also be studied
based on the parity of k and ν. Specifically, for the k : ν resonance, if either k or
ν is even, the phase lag of the k/ν harmonic component at resonance is 3π/4ν as
for even superharmonic and subharmonic resonances, and π/2 when both k and ν

are odd as for odd superharmonic and subharmonic resonances. These results are
summarized in Table 1.

3 Phase Resonance Nonlinear Modes

For linear systems, phase resonance takes place when the single-point harmonic
forcing and the displacement at the forcing location are in quadrature, i.e., the phase
is locked at π/2 [7]. As illustrated in Fig. 2, this linear definition extends to the
fundamental resonances of nonlinear systems.
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The results in the previous section allow us to generalize the concept of phase
resonance to superharmonic and subharmonic resonances of nonlinear systems.
Indeed, they demonstrate that the phase lag can still be used as a robust criterion to
track the locus of their resonance peaks, as carried out for fundamental resonances
in [8]. The key finding is that phase quadrature between k/ν harmonic component
of the k : ν branch and the forcing is no longer necessarily achieved for such
resonances, but depends on the parity of k and ν as indicated in Table 1.

3.1 A New Nonlinear Mode Definition

Considering the unforced linear oscillator

mẍ(t)+ cẋ(t)+ kx(t) = 0, (3)

velocity feedback can be considered to drive the system into resonance [9, 10]:

mẍ(t)+ cẋ(t)+ kx(t)− μẋ(t) = 0, (4)

where the feedback term μẋ(t) plays the role of virtual forcing. Because this virtual
forcing and the velocity are collinear, phase quadrature with the displacement x(t),
and, hence, phase resonance, is naturally enforced when μ = c.

Phase resonance nonlinear modes (PRNMs) further extend Eq. (4) and take into
account superharmonic and subharmonic resonances of nonlinear systems:
The PRNMs of the k : ν resonance correspond to the periodic responses obtained
by feeding back the T -periodic velocity of the harmonic component k/ν shifted by
the delay να/kω into the autonomous system.

Mathematically, the following equation is to be solved for the Duffing oscillator:

mẍ(t)+ cẋ(t)+ kx(t)+ knlx
3(t)− μẋ k

ν
,T

(
t − ν

k

α

ω

)
= 0, (5)

where ω is the frequency at which the PRNMs are to be calculated, and T is the
corresponding period. α = π/2 − δ where δ is the phase lag at resonance given in
Table 1. For instance, α = 0 for all resonances for which k and ν are odd. The ratio
ν
k

in the delay accounts for the fact that the period of the fundamental harmonic
component is k/ν times that of the k/ν harmonic component.

Considering the 1:2 subharmonic resonance (k = 1, ν = 2) as an illustrative
example, Fig. 5 shows the three steps to calculate the velocity feedback from the
original velocity ẋ(t) shown in Fig. 5a:

1. Filtering out all the harmonic components of ẋ(t) that are different from k/ν to
obtain the ν

k
T -periodic signal: ẋ k

ν
, ν
k
T
(t) (Fig. 5b)

2. Transforming ẋ k
ν
, ν
k
T
(t) into a T -periodic signal: ẋ k

ν
,T
(t) (Fig. 5c)
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(a) (b)

(c) (d)

Fig. 5 Calculation of the velocity feedback: (a) original velocity, (b) after step 1 (filtering), (c)
after step 2 (T -periodic), and (d) after step 3 (delay)

3. Delaying ẋ k
ν
,T
(t) by the angle ν

k
α, i.e., π/4 for the 1:2 resonance: ẋ k

ν
,T
(t− ν

k
α
ω
)

(Fig. 5d)

For multi-degree-of-freedom systems, the velocity feedback is applied at the
degree of freedom where the external forcing is located.

3.2 PRNMs of the Duffing Oscillator

3.2.1 Fundamental Resonance

The PRNM backbone of the fundamental resonance is superposed to the NFRCs of
the Duffing oscillator in Fig. 6. As anticipated, the backbone goes exactly through
the π/2 phase lag points in Fig. 6b and traces very closely the locus of the resonance
peaks of the different NFRCs in Fig. 6a.
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(a) (b)

Fig. 6 NFRCs and PRNMs of the fundamental resonance of the Duffing oscillator: (a) amplitude
and (b) phase lag. Black: NFRC; blue: PRNM

3.2.2 Superharmonic Resonances

For odd and even superharmonic resonances, the phase lags are π/2 and 3π/4,
respectively. The PRNM backbones corresponding to 3:1 and 2:1 resonances are
shown in Fig. 7a,b, respectively. These figures confirm the relevance of the PRNMs
for the characterization of superharmonic resonances.

3.2.3 Subharmonic Resonances

The PRNMs of the 1:3 and 1:2 subharmonic resonances are represented in Fig. 8,
where the phase lags at resonance are π/2 and 3π/8, respectively. An important
remark is that a critical forcing amplitude is required to activate these resonances.
Below this forcing, the isolated resonance branch, and, hence, the PRNM, does not
exist.

3.2.4 Other Superharmonic and Subharmonic Resonances

The PRNMs of the remaining superharmonic and subharmonic resonances can also
be computed based on the results from Table 1.
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(a) (b)

Fig. 7 NFRCs and PRNMs of the 3:1 and 2:1 superharmonic resonances for 4 forcing amplitudes:
(a) 3:1 and (b) 2:1. Black: NFRC; blue: PRNM

(a) (b)

Fig. 8 NFRCs and PRNMs of the 1:3 and 1:2 subharmonic resonances for 3 forcing amplitudes:
(a) 1:3 and (b) 1:2. Black: NFRC; blue: PRNM

4 Conclusions

The objective of this chapter was to carry out a detailed study of the phase
lags associated with superharmonic and subharmonic resonances of the Duffing
oscillator. The study has revealed that phase quadrature still holds for k : ν

resonances when k and ν are both odd. Otherwise, resonance occurs for a phase
lag equal to 3π/4ν. Based on these results, the PRNMs of the k : ν resonance
correspond to the periodic responses obtained by feeding back the delayed velocity
of the harmonic component k/ν into the autonomous system at the point where the
external forcing is located.



Phase Resonance Nonlinear Modes 671

References

1. D.J Ewins, Modal Testing: Theory, Practice, and Application, 2nd edn. (Research Studies
Press, Philadelphia, 2000)

2. G. Kerschen, K. Worden, A.F. Vakakis, J.-C. Golinval, Past, present and future of nonlinear
system identification in structural dynamics. Mech. Syst. Sig. Process. 20(3), 505–592 (2006)

3. A.F. Vakakis, L.I. Manevitch, Y.V. Mikhlin, V.N. Pilipchuk, A.A. Zevin, Normal Modes and
Localization in Nonlinear Systems (Wiley, New York, 1996)

4. R.M. Rosenberg, Normal modes of nonlinear dual-mode systems. J. Appl. Mech. 27(2), 263–
268 (1960)

5. R.M. Rosenberg, The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech.
29(1), 7–14 (1962)

6. U. Parlitz, W. Lauterborn, Superstructure in the bifurcation set of the Duffing equation. Phys.
Lett. 107A, 351–355 (1985)

7. F. De Veubeke, A Variational Approach to Pure Mode Excitation using Characteristic Phase
Lag Theory. Technical report (1956)

8. L. Renson, A. Gonzalez-Buelga, D.A.W. Barton, S.A. Neild, Robust identification of backbone
curves using control-based continuation. J. Sound Vib. 367, 145–158 (2016)

9. M. Krack, Nonlinear modal analysis of nonconservative systems: Extension of the periodic
motion concept. Comput. Struct. 154, 59–71 (2015)

10. I. Sokolov, V. Babitsky, Phase control of self-sustained vibration. J. Sound Vib. 248, 725–744
(2001)



An Adaptive Sub-Cells Interpolation
Method to Enhance Computational
Efficiency for Global Attractors of
Nonlinear Dynamical Systems

Xi Wang, Jun Jiang, and Ling Hong

1 Introduction

There are a plenty of nonlinear problems in a variety of disciplines. These problems
are hard to be described by linear dynamical systems. It is seldom to solve these
nonlinear dynamical systems analytically; therefore, several numerical methods are
widely utilized in system dynamics.

The cell mapping method is prominent for global analysis of nonlinear dynamical
systems. The first version of cell mapping methods called the simple cell mapping
method (SCM) is presented by Hsu in 1980s [1]. The SCM method was applied
to study long-term system responses such as equilibrium states, periodic motions,
and domains of attraction [2]. Some methods are developed to reduce this flaw,
such as the point mapping under cell reference method [3–5]. The generalized
cell mapping method (GCM) was later presented by Hsu [6]. The GCM with the
subdomain-to-subdomain method was applied for global transient analysis by Hsu
in 1992 [7]. The GCM was widely applied to deal with crisis bifurcation [8–11] and
hyperchaotic crisis [12]. Moreover, Hong et al. presented the fuzzy generalized cell
mapping (FGCM) method for the global analysis of fuzzy dynamical system [13–
15]. However, when the GCM method is applied in high-dimensional systems, the
computational cost immediately soars to a prohibitive magnitude.

One extension of cell mapping methods is the set-oriented method with the sub-
division technique to reduce the computational cost [16]. An adaptive subdivision
algorithm was developed for the existence of multiple different cell sizes [17].

The interpolation cell mapping (ICM) method based on the SCM method was
developed by Tongue and Gu [18]. The ICM method is more accurate than the SCM
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method, while they both have nearly the same amount of computational cost [19,
20]. The error of linear interpolation in the ICM method is of order O(h2), while
the error of the SCM method is of order O(h), where h is the cell size [21]. Another
application of interpolation in cell mapping is the generalized cell mapping with
sampling-adaptive interpolation (GCMSAI). The GCMSAI method based on the
GCM method is proposed by Liu et al. [22]. The GCMSAI method could be applied
in the observations of boundary metamorphoses [23]. The subdivision technique is
incorporated with an interpolation sampling method, which can further enhance the
efficiency over the set-oriented method for global analysis of nonlinear dynamical
systems [24].

In this chapter, a previous adaptive interpolation sampling method for enhancing
the subdivision technique is further improved in both efficiency and adaptability.
The performance of the second-order interpolation with a given error criterion is
applied to measure the complexity of the dynamic behavior within a cell, and more
objective criteria are set up in order to choose the number of sub-cells to be divided
in a cell that does not meet the error criterion. The second-order interpolation lattice
based on Taylor expansion is applied to each of the sub-cells so as to minimize the
sampling computational cost in the cell, and thus the overall computational cost. A
three-dimensional system is taken as an example to illustrate the performance of the
proposed method.

This chapter is organized as follows. In Sect. 2, the main content of the previous
method in [24] is recalled and an index of computational efficiency is defined. In
Sect. 3, the performance of interpolation can be used to measure the complexity
of dynamic behavior. In Sect. 4, an adaptive sub-cells interpolation method is
presented to enhance computational efficiency for global attractors of nonlinear
dynamical systems. In Sect. 5, a three-dimensional system is taken as examples to
demonstrate the adaptive sub-cells interpolation method. Finally, the conclusion will
be presented within the last section.

2 Recall of the Previous Method

The method presented in [24] is an efficient one for finding global attractor of
nonlinear dynamical systems. For the convenience of comparison, this method is
first briefly reviewed.

2.1 Process of the Previous Method

The main algorithm steps of the previous method are as follows:
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Algorithm 1 The subdivision algorithm
Require: Iteration times maxiter , refinement partition sub, sampling numbers Ns cell space

partition N , underlying dynamics F
Ensure: Invariant cell set Sinv
iter ← 0
Sc ← N

G ← mapping creation (Sr ,F, Ns)

while iter < maxiter do
Sr ← refine (Sc,N, sub)
Improve cell space resolution N ← N × sub

G ← mapping creation (Sr ,F, Ns)

Sc ← backward searching (Sr ,G)
iter ← iter + 1

end while

2.2 Second-Order Interpolation Lattice with Error Estimation

In the process of constructing one-step mappings, a second-order interpolation
lattice with error estimation is adopted separately in cells to enhance the compu-
tational efficiency. With the application of interpolation, a plenty of calculations
of numerical integration could be replaced by calculation of interpolation, and a
considerable cost of computation could be saved.

In an N-dimensional system, this interpolation lattice based on the second-order
Taylor expansion is shown as follows:

x(T ) =xc(T )+
N∑

l=1

∂x(T )
∂xl

∣∣
∣∣
x=xc

(xl − xcl )+

1

2!
N∑

l=1

N∑

m=1

∂2x(T )
∂xl∂xm

∣∣∣∣
x=xc

(xl − xcl )(xm − xcm)+O(||Δx||32),
(1)

where x = [x1, . . . , xn] is a sampling point in a cell z, x(T ) is the image point of
x, xc = [xc1, . . . , xcn] is the center point of this cell z, and besides, the first partial

derivatives ∂x(T )
∂xl

∣∣∣∣
x=xc

(xl − xcl ) and second partial derivatives ∂2x(T )
∂xl∂xm

∣∣∣∣
x=xc

(xl − xcl )

can be estimated by several interpolation nodes in this cell z. There are 3N

interpolation nodes selected at an equal interval in a cell.
Since the true error is one order smaller than the order of the Taylor expansion,

the error between interpolation and numerical integration can be estimated roughly
by the second-order term. Let the remainder term R(x) = [r1, . . . , rn] equal the
second-order term:
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R(x) = 1

2!
N∑

l=1

N∑

m=1

∂2x(T )
∂xl∂xm

∣∣∣
∣
x=xc

(xl − xcl )(xm − xcm). (2)

In order not to influence the subsequent analysis, the error bound is fixed as a half
of the cell size H = [H1, . . . , Hn], the corresponding criterion is given as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∀rl ≤ Hl

2
, interpolation is permitted.

∃rl > Hl

2
, direct numerical integration instead,

(3)

where l = 1, . . . , n. If the criterion is satisfied, the image point x(T ) could be
obtained by interpolation Eq. (2), otherwise, by numerical integration instead.

It should be noted that since the interpolation method is applied to the cell
mapping method, the interpolation result of each sampling point does not need to be
very close to the integration result. The error criterion can ensure that the image cell
set obtained by interpolation is close to the image cell set obtained by integration,
thereby ensuring that the following process will not deviate too much.

2.3 The Interpolation Accuracy and the Computational
Efficiency

In an iteration process, the number of remaining cells that cover the global attractor
is assumed to be Nc. The number of sampling points in each cell is assumed to
be Ns , and the number of interpolation nodes in each cell is assumed to be Ni

where Ni = 3N in the second-order interpolation lattice. The time of a process
of numerical integration completed by the fourth-order Runge–Kutta method is
assumed to be TRK . The time of a process of interpolation is assumed to be TIp.
Besides, let η denote the proportion of integration samples to the total number of
samples:

η = integration samples

total samples
, (4)

where η = 100% for the worst situation while η = 0% for the best situation. When
η is small, it means most of the interpolation errors satisfy the error criterion, which
also means the interpolation results are pretty accurate. Thus, η could be used as an
index to measure the interpolation accuracy.

The computational cost in an iteration process could be shown as follows:

T = η ×Nc ×Ns × TRK + (1− η)×Nc ×Ns × TIp +Nc ×Ni × TRK. (5)
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The computational cost of TRK is several hundred times of that of TIp; therefore,
the computational cost of interpolation could be ignored. Let ζ = η +NI/Ns ; then
Eq. (5) could be rewritten as

T = ζ ×Nc ×Ns × TRK. (6)

3 The Interpolation Adaptability ι

To further enhance the computational efficiency in this circumstance, the perfor-
mance of the second-order interpolation with the given error criterion is adopted to
measure the complexity of the dynamic behavior within a cell. The interpolation
shape of the cell is only related to the derivatives of each order. Besides, the
performance of the second-order interpolation with the given error criterion is only
related to the second-order derivatives. Each second-order partial derivative could be
regarded as a geometric feature; then the remainder term in Eq. (2) can be rewritten
as

⎧
⎪⎪⎨

⎪⎪⎩

r1(x, y, z) =d1
11x

2 + d1
22y

2 + d1
33z

2 + d1
12xy + d1

13xz+ d1
23yz

r2(x, y, z) =d2
11x

2 + d2
22y

2 + d2
33z

2 + d2
12xy + d2

13xz+ d2
23yz

r3(x, y, z) =d3
11x

2 + d3
22y

2 + d3
33z

2 + d3
12xy + d3

13xz+ d3
23yz,

(7)

where dkii = ∂2xk(T )

2∂x2
i

∣∣∣
∣
x=xc

, dkij = ∂2xk(T )
∂xi∂xj

∣∣∣
∣
x=xc

, x = (x1 − xc1), y = (x2 − xc2),

z = (x3 − xc3).
We can further analyze the criterion satisfaction in each cell from the perspective

of probability theory. Introduce random variablesX, Y ,Z to represent the projection
of the distance between the sample point x and the center point xc in three
dimensions. In addition, introduce a random variable [R1, R2, R3] to represent the
projection of the remainder term R(x) = [r1, r2, r3] in three dimensions. Then, the
distribution of the remainder term can be expressed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

R1 =d1
11X

2 + d1
22Y

2 + d1
33Z

2 + d1
12XY + d1

13XZ + d1
23YZ

R2 =d2
11X

2 + d2
22Y

2 + d2
33Z

2 + d2
12XY + d2

13XZ + d2
23YZ

R3 =d3
11X

2 + d3
22Y

2 + d3
33Z

2 + d3
12XY + d3

13XZ + d3
23YZ,

(8)

whereX,Y ,Z satisfy the uniform distribution ofU(−H1/2,H1/2),U(−H2/2,H2/2),
U(−H3/2,H3/2), respectively. Next, the random variable W is introduced to
indicate the status where the points in the cell satisfy the criterion of Eq. (3), which
can be expressed as follows:
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W = max{|R1/H1|, |R2/H2|, |R3/H3|}. (9)

Then, the probability of satisfying the criterion of the cell can be expressed as:

P {W < 0.5}. (10)

Let ι = 1−P {W < 0.5}. ι is a parameter related to each second-order derivative,
which means it is also a geometric feature. Obviously, if the dynamic behavior of
this region is very complicated, the error of the interpolation result is more difficult
to satisfy the criterion. Therefore, ι would become very high in this cell. Thus, ι
could be applied to measure the complexity of the dynamic behavior within a cell.

All cells can fall into three types according to their ι: excellent cells, good cells,
bad cells. The ι of excellent cells is less than 10%, the ι of good cells is between
10% and 40%, and the ι of bad cells is greater than 40%.

4 Adaptive Sub-Cells Interpolation Method

For the third-order interpolation lattice, it is difficult to propose a corresponding
error criterion. However, it provides an idea to improve the simulated shape by
appropriately increasing the density of interpolation nodes. Increasing the density of
interpolation nodes can divide the cell into several smaller sub-cells. Based on the
idea of piecewise interpolation, a new sub-cells interpolation lattice is presented.

For each cell, mN interpolation nodes are selected at equal intervals. Let h =
[h1, . . . , hN ] = H/(m − 1) denote the interval of interpolation nodes. In a case
N = 3, the distribution of interpolation nodes can be shown as follows:

x(i,j,k)IP = x(0,0,0)IP + i × [h1, 0, 0]T + j × [0, h2, 0]T + k × [0, 0, h3]T , (11)

where i, j, k = −(m − 1)/2,−(m − 3)/2, . . . , 0, . . . , (m − 3)/2, (m − 1)/2
and x(0,0,0)IP denotes the center point of the cell. These interpolation nodes are
located inside the cell or on the cell boundary. It could be calculated that there
are (m− 2)N interpolation nodes located inside the cell and they are represented by
x(i,j,k)IP , i, j, k = −(m− 3)/2, . . . , 0, . . . , (m− 3)/2. Other interpolation nodes are
located on the cell boundary.

For any sampling point x in this cell, the nearest interpolation node located in
the cell is chosen as the expansion point of the Taylor expansion. If x(i,j,k)IP is the
expansion point for this sampling point x, its image point x(T ) could be calculated
as follows:

x(T ) = T0(x)+ T1(x)+ T2(x)+O(||Δx||32), (12)
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where T0(x),T1(x), and T2(x) represent the constant term, the first-order term, and
the second-order term in the Taylor expansion, respectively. And the criterion is the
same as Eqs. (3)–(4).

For any sampling point x in this cell, the nearest interpolation node located in the
cell is chosen as the expansion point of the Taylor expansion. There are (m − 2)N

interpolation nodes located inside the cell. Naturally, all sampling points are divided
into (m − 2)N mutually exclusive subsets according to their different expansion
points. Therefore, the cell is divided into (m − 2)N sub-cells. According to the
Taylor expansion in Eq. (2), the approximate estimate of the error of interpolation
can be reduced from O(H 3) to O(H/(m−2)N) = O(H 3)/(m−2)N , which means
the accuracy has been greatly improved.

Due to the self-similarity of strange attractors, the geometric features of each sub-
cell are similar to the geometric features of the cell. The simulated shape of sub-cells
interpolation lattice is actually a combination of several similar small shapes like a
jigsaw. Besides, the second-order interpolation lattice in Sect. 2 is actually a special
case of sub-cells interpolation at m = 3.

In Sect. 3, the cells of the global attractor can fall into three kinds according
to their complexity of dynamic behavior ι. However, for each cell, it is difficult
to quickly obtain ι of this cell by Eqs. (9)–(10). Some numerical methods such as
Monte Carlo method can be applied to obtain ι of this cell. Different interpolation
lattices can be applied according to the ι of the cell, as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ι < 10%,m = 3

10% <= ι <= 40%,m = 5

ι > 40%,m = 7.

(13)

The error of interpolation would be particularly large when the resolution of the
global attractor is not high, thus, in the first k iterations, numerical integration is
applied, and the interpolation is started to be used in the later iteration process.

5 Examples of Applications

We consider a problem in three-dimensional Lorenz system that can be written as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = σ(x2 − x1)

ẋ2 = γ x1 − x2 − x1x3

ẋ3 = x1x2 − bx3.

(14)

The system parameters are σ = 10, γ = 18, b = 8
3 . The domain of interest in

the state space is D = [−21, 21] × [−21, 21] × [−6, 30]. The integration time to
compute one-step mappings is π . 15 × 15 × 15 points are sampled in each cell. In
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Fig. 1 The global attractor of the Lorenz system made up of cells with three sub-cells interpolation
lattices. Yellow denotes cells applied by the sub-cells interpolation lattice with m = 3. Cyan
denotes cells applied by the sub-cells interpolation lattice with m = 5. Magenta denotes cells
applied by the sub-cells interpolation lattice with m = 7. (a) Iteration=19. (b) Iteration=22. (c)
Iteration=25. (d) Iteration=28

the first 18 iterations of subdivision, numerical integration is used for calculating
the one-step mappings from all the sampling points.

Figure 1 shows the global attractor in different resolutions obtained by the present
method. It could be found that the structure of the invariant sets is fractal that two
parallel stripes gradually split into four stripes as the resolution of cell state space
increases.

Figure 2 illustrates the total computational cost of the present method in
comparison with the set-oriented method and the previous method.

6 Conclusions

In [24], the subdivision is incorporated with an interpolation sampling method,
which can further enhance the efficiency over the set-oriented method. In this
chapter, it is further improved in both efficiency and adaptability. In this way,
a cell is actually divided into smaller sub-cells with smaller interpolation area,
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Fig. 2 The computational cost of the Lorenz system in different iterations. Since the set-oriented
method consumes too much time to finish after 25 iterations, the time taken by the set-oriented
method after 25 iterations is given in a predictive broken line

which is similar to piecewise interpolation lattice and thus with higher accuracy
of interpolation. So the overall computational cost will be significantly reduced. A
familiar three-dimensional dynamical system is taken as an example to illustrate the
effectiveness of the proposed method.

As can be seen, each cell could still be processed independently in the present
adaptive interpolation method. Thus, it is promising to incorporate the present
method with GPU parallel computing in order to substantially further enhance the
computational efficiency in the global analysis of nonlinear dynamical systems. In
addition, it is interesting to note that the interpolation performance has a closer
relationship with the complexity of the local dynamics in cells, and therefore, this
can be further explored in the future work.
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Birth of the Neimark–Sacker Bifurcation
for the Passive Compass-Gait Walker

Essia Added and Hassène Gritli

1 Introduction

To properly analyze the walking phenomenon, it is necessary to use a biped robot
which seems like to the human being. The compass-gait biped robot is proposed
to be the simplest possible model that can imitate the human walking [1–6]. It is a
biped model without knees, without ankles, and with punctual ground contact. It has
been known so far that it is characterized by a passive dynamic walking, which is
modeled by an impulsive hybrid nonlinear system [5, 7, 8]. Passive dynamic walking
is a series of cyclical and symmetrical movements with the alternation of the impact
of the feet on the walking surface and the oscillations by descending a slightly deep
inclined surface without any force as an active controller. It is characterized by the
step length, the step period, the stride, the pace of walking, the speed of movement,
and the initial conditions just after or before the walk step.

Many researches have been done on the development of walking bipeds based on
the principle of passive dynamic walking [7, 8]. The pioneer Tad McGeer proposed
in [9] that the simplest passive walker could serve as an alternate point of departure
for the synthesis of passive bipedal walking. It has been shown in [5], using mainly
the Poincaré map and the bifurcation diagrams, that the passive motion of the
compass robot exhibits for the first time a cascade of period-doubling bifurcations
(PDB) as a route to chaos, which explored the passive bipedal walking using mainly
bifurcation diagrams with reference to some variation in its geometrical and inertial
parameters. After that, several authors have studied chaos and bifurcations of the
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passive motion of the compass-gait biped model and other related models [7, 10–
14]. Authors in [15, 16] showed the appearance of the cyclic-fold bifurcation (CFB)
in the passive behavior of the compass-gait model. Moreover, it was shown the
appearance of the Neimark–Sacker bifurcation (NSB) in the controlled compass-
gait walker [17] and another more complicated biped robot under control [18, 19].
Several other complex phenomena were also reported in [20, 21] for the compass
robot under the OGY-based state-feedback control. These research works are
primarily an analysis of the properties of the passive walk of biped robots like
stability, limit cycles, periodicity, and so on.

The objective of this work is to present a further investigation of the passive
motion of the compass-gait biped walker as it goes down an inclined surface and by
varying some parameter, which was not considered in previous works. Using mainly
the bifurcation diagrams, we will show the exhibition of the PDB and its route to
chaos. We will show also, and for the first time, the birth of the NSB, and hence the
generation of quasi-periodic passive gaits. Furthermore, the goal of this work is to
demonstrate that the passive dynamic models such as the compass-gait biped walker
has the ability to model the chaotic behavior of the human locomotion with certain
modifications.

The remaining of this work is organized as follows: The compass-like biped
passive dynamic walker and its impulsive hybrid nonlinear dynamics are presented
in Sect. 2. The Poincaré map approach and stability analysis of the fixed point
are presented in Sect. 3. Analysis of and discussion about the results of numerical
simulation of the biped robot’s properties in order to reveal its behaviors by varying
its parameters are reported in Sect. 4. The conclusion and future works are finally
given in Sect. 5.

2 The Passive-Dynamics Biped Walker

Wabot-1 is the first biped robot walker. It was created by Waseda University (Japan)
in 1973. The Wabot-1 comes from the laboratory of Professor Takanishi [22]. The
compass-like biped is the simplest model of walkers that imitate humans [5]. It is
easy to model it and analyze its walking results and then its control.

2.1 Model Description

As shown in Fig. 1, the model of the passive-dynamics compass-gait biped robot
is modeled as a two-link mechanism. The point mass mh at the hip represents the
upper body, while ms and mns stand for the masses of the stance leg and the swing
leg, respectively. The length of the stance leg is equal to the length of the swinging
one with l = a + b, where a (resp. b) designates the distance from the tip of the leg
(resp. the hip) to the center-of-mass of the leg. The configuration variables of the
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Fig. 1 The model of the compass-like passive-dynamics biped robot on the walking surface of
slope ϕ

biped robot are mainly described by the two angles θs and θns , respectively, of the
stance leg and the swing leg. Note that the positive angles of these two variables θs
and θns are computed counterclockwise with respect to the associated vertical lines.

For the simulation of the compass-gait biped walker, we will take the values of
the different inertial parameters: a = 0.5 [m], b = 0.5 [m], l = 1 [m], m = 5 [Kg],
and mh = 10 [Kg]. Moreover the gravitational constant is g = 9.8 [ms−2].
Remark 1 The compass-gait walker is known to possess passive gaits that are
almost similar to the human walking [1, 2]. Far from the analysis of human
locomotion, the compass-gait walker was used also for investigating the animal
locomotion. The compass model might reasonably provide a template for analyzing
the motions in the sagittal plane of the center-of-mass of some diverse species,
namely the six-legged trotters (such as cockroaches), the four-legged trotters
(such as dogs), the two-legged runners (such as birds), and the hoppers (such as
kangaroos) [23]. Other examples of animals are the palaeognathae, the running
crab, the trotting dogs, and the bouncing kangaroo rats [24]. Successful walkers and
runners have bird-like legs and were called in [25] as bipedal birds. By varying the
position of the center-of-mass of the two legs, the compass-gait walker approaches
some kinds of running birds as the palaeognathae.
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2.2 Model of the Walking Dynamics

The motion model of the compass-gait robot contains a swing phase described by
a continuous-time nonlinear ordinary differential equation, and a collision stage
described by a discrete-time algebraic equation [26, 27]. One step of the motion
cycle starts from the swing phase and ends when the collision of the swing leg with
the ground occurs, and then ends with the collision phase.

The motion during the swing phase can be formulated typically using the Euler–
Lagrange formulation, by the following expression:

J (q)q̈ + C(q, q̇)q̇ +G(q) = Bu (1)

where J (q) is the inertia matrix, C(q, q̇) is the centrifugal forces’ matrix, G(q) is
the vector of gravitational torques, B is the control matrix, and u is the control input.
Expressions of the previous matrices can be found, for example, in [28].

There are some standard assumptions for the impact event: (1) it is perfectly
inelastic, (2) it is instantaneous, and (3) there is no slip on the ground. Then, the
impact results in an instantaneous jump in speeds, while the position variables
continue throughout the impact [26, 28, 29].

The angular momentum is usually denoted as Q(q)q̇. At the impact, there is a
conservation of the angular momentum as follows [5]:

Q(q)+q̇+ = Q(q)−q̇− (2)

The superscripts − and + indicate situations just before and after the impact,
respectively. Expression of the two matrices Q(q)+ and Q(q)− can be found in
[28].

The impact phase occurs when the swing leg of the biped robot touches the
ground. Under the previous assumptions, the impact happens when the following
condition is satisfied:

θns + θs + 2ϕ = 0 (3)

where here, and as indicated in Fig. 1, ϕ is the slope angle.

Posing x = [
qT q̇T

]T
as the state vector. Using the previous expressions (1), (2),

and (3), the complete dynamics of the compass robot is expressed by the following
impulsive hybrid nonlinear system:

ẋ = f (x)+ g(x)u if x /∈ Γ (4a)

x+ = h(x−) if x ∈ Γ (4b)
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where f (x) =
[

q̇

−J (q)−1 (H(q, q̇)q̇ +G(q))

]
, g(x) =

[
0

J (q)−1B

]
, h(x) =

[
Rq

S (q) q̇

]
, where the two matrices R and S are defined respectively as: R =

[
0 1
1 0

]
and S (q) = Q(q)−1+ Q(q)−. In addition, the control input u in (4a) is

considered to be zero in this work, i.e. the compass-type bipedal robot is completely
uncontrolled (u = 0) while walking down the inclined surface. Moreover, the set Γ
in the system (4) is expressed as follows:

Γ = {
x ∈ R

4 : Cx + 2ϕ = 0
}

(5)

where C = [
1 1 0 0

]
.

3 Poincaré Map, Fixed Point, and Stability Analysis

The Poincaré map is a classic technique for the discretization of a continuous-time
dynamic system. It is useful for reducing the order of the system and bridging the
gap between continuous and discrete systems [16, 28, 30]. In general, a K-periodic
limit cycle must return to the initial state x0 after K intersections. Successive
intersection states of the flow φ with the Poincaré section define the following
Poincaré map:

xk+1 = P(xk) = φ(τr(xk), xk) (6)

where τr (xk) is the return time to the Poincaré section and φ(t, x) stands for the
flow of the hybrid system (4).

For our case of the compass-gait biped robot, the Poincaré section is chosen to
be the set Γ defined by expression (5). Moreover, for a passive walk, we take u = 0
in the hybrid system (4).

To study the stability of the passive compass-gait biped robot, we must first
find the fixed point of the Poincaré map (6), which presents the initial condition
of departure for the passive locomotion. For this task, we have chosen to use the
Poincaré map method and the Shooting method [31, 32] to find the period-K fixed
point x�, by numerically solving the following equation:

φ(τr(x�), x�)− x� = 0 (7)

For further details, we refer our reader to [32]. The stability of the period-K fixed
point is evaluated via the eigenvalues of the following Jacobian matrix DP(x�) of
the Poincaré map (6):
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DP(x�) =
(
In − f (x�)C

Cf (x�)

)
Φ(τr(x�), x�) (8)

where In is the (n× n)-identity matrix and Φ(τr(x�), x�) is the monodromy matrix
[32].

If all the eigenvalues of the Jacobian matrix DP(x�) are inside the unit circle,
then the K-periodic fixed point x� is stable. Otherwise, it is unstable.

4 Numerical Simulation

In this section, we will analyze the passive motion of the compass robot under the
variation of the parameter “a,” which is the length of the lower segment of a leg. Via
bifurcation diagrams and through the tendency of the eigenvalues of the Jacobian
matrix of the Poincaré map, we will reveal the exhibition of the NSB. It is important
to note that this choice of the parameter a as the bifurcation parameter was not
considered in the literature. In [5], the length ratio was defined as β = b

a
. In the

literature and for the compass-gait robot, only the period-doubling route to chaos
was reported. In the sequel, only the parameter a will be varied, while all the other
parameters are kept constant.

4.1 Limit Cycle Computation

A limit cycle is the attractor of a periodic behavior. It is a closed trajectory
φ(τr (x0) , x0), where x0 is the initiation condition belonging to some selected
Poincaré section. Each fixed point x� of the Poincaré map corresponds to a point
(a state) of the limit cycle of the continuous-time dynamic system. A limit cycle
corresponds to a fixed point on the Poincaré section. Thus, the computation of a
K-periodic limit cycle returns to the determination of the K-periodic fixed point x�
of the Poincaré map.

By solving the nonlinear function (7) and by selecting the periodicity number
K , the numerical results of the Poincaré map are organized in Table 1 for different
values of the parameter a. The adopted slope angle of the walking surface is ϕ =
5.1◦. In this table, x� is the fixed point of the Poincaré map, τr (x�) is the return time
or is the step period of the bipedal walking, and K is the periodicity number of the
fixed point x�. It is worth to note that we have only presented in Table 1 the stable
fixed points of period K .
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Table 1 Some numerical results of the Poincaré map obtained for the slope angle ϕ = 5.1◦

a xT
� τr (x�) K

0.9 [9.4973699 −19.69737 −462.83168 −112.02359] 0.35187130 1

0.7 [12.467649 −22.667649 −197.24258 −106.05712] 0.57792570 1

0.58 [13.539178 −23.739178 −142.88053 −105.7622] 0.67951066 2

[58.000000 12.869681 −23.069681 −160.98869] 0.69980887

0.56 [14.070625 −24.270625 −122.33799 −106.24581] 0.67830010 2

[12.431829 −22.631829 −166.86743 −103.73518] 0.73153079

0.54 [14.359646 −24.559646 −108.61565 −106.33997] 0.68285110 2

[12.22787 −22.427870 −166.97703 −103.18352] 0.75700318

0.51 [14.513951 −24.713951 −104.72653 −106.43770] 0.70993425 4

[11.846687 −22.046687 −1.65.16622 −101.98528] 0.79155306

[14.642066 −24.842066 −85.655845 −105.92070] 0.68219092

[12.437935 −22.637935 −160.78174 −103.60024] 0.78831673

0.5071 [14.451018 −24.651018 −108.23360 −106.41090] 0.71800684 8

[11.876948 −22.076948 −163.63368 −101.97145] 0.79293892

[14.664376 −24.864376 −85.429475 −105.95284] 0.68497855

[12.360433 −22.560433 −161.12870 −103.39413] 0.79219593

[14.579353 −24.779353 −101.21745 −106.44476] 0.70805590

[11.786268 −21.986268 −165.70061 −101.86121] 0.79601784

[14.645779 −24.845779 −82.818192 −105.78372] 0.68073782

[12.575223 −22.775223 −158.85084 −103.91522] 0.78981806

4.2 Period-Doubling Route to Chaos and Birth of the NSB

As noted previously, we choose the length of the lower leg segment a as the
bifurcation parameter. The angle of the slope of the walking surface was kept
constant to ϕ = 5.1◦ (where ϕ is the angle between the horizontal walking surface
and the inclined walking surface). Then, by varying the parameter a, we obtained the
bifurcation diagrams in Fig. 2. Figure 2a presents the classical scenario of successive
period-doubling bifurcations as a route to chaos, revealing then the behavior of
the bipedal robot while varying the value of a and then as a decreases. Figure
2b presents a pattern which will be repeated until reaching chaos, which is more
evident in Fig. 2c. Figure 2b shows very well the first PDB from which the 1-
periodic behavior becomes 2-periodic. In Fig. 2c, we see a second and a third
PDB from a 2-periodic gait to a 4-periodic one and then to a 8-periodic gait. The
period doubling continues until reaching the chaotic regime represented in Fig. 2d.
A further decrease of the parameter a leads to the sudden fall of the compass robot.

In order to better observe the cascade of period-doubling bifurcations and their
route to chaos more precisely and then to resolve attractors existing in quite different
ranges, we have modified the scale of the two axes. Let á be the rescaled bifurcation
parameter a, and let τ́ be the rescaled step period. Then, in order to have a period-
doubling route to chaos more evident and then the approximate self-similarity
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Fig. 2 Bifurcation diagram plotted for the slope angle ϕ = 5.1◦ and by varying the parameter a,
showing the first PDB (a), the second PDB (b), the third PDB (c), and chaos (d). The portrait in (e)
shows a rescaled bifurcation diagram of that in (a) according to the two rescaling functions in (9)
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Fig. 3 Variation of the characteristic multipliers for ϕ = 5.1◦ and as a varies. (a) shows variation
of the real part of the characteristic multipliers and reveals occurrence of the PDB (intersection
with −1). (b) depicts variation of the module of the characteristic multipliers revealing occurrence
of the NSB (intersection with +1)

becomes more apparent, we have minimized the window of the period-1 motions
and then enlarged the window of such road to chaos by adopting the following two
rescaling functions:

á = e−a×30 τ́ = eτ×10 (9)

where here τ is the step period of the bipedal walking. By allying then these
rescaling functions in (9) on the bifurcation diagram in Fig. 2a, we obtained hence
the bifurcation diagram represented in Fig. 2e. The transition from period-1 gaits to
chaotic ones via successive PDBs is now very clear.

Figure 3 shows variation of the eigenvalues, the characteristic multipliers, and
of the Jacobian matrix DP(x�) of the Poincaré map, which is present in Eq. (8),
by varying the bifurcation parameter a. Figure 3a reveals the real part of the
characteristic multipliers, whereas Fig. 3a shows their module. Each intersection of
these characteristic multipliers with the horizontal lines ±1 presents a bifurcation.
The results in Fig. 3b demonstrate the occurrence of the PDB at the value a =
0.5830. Notice that in Fig. 3a, we have four curves for the eigenvalues. However,
in Fig. 3b and as a increases, we have three eigenvalues. This happens because we
have two complex-conjugate eigenvalues and that become real and different as a
increases, as shown at the right part of Fig. 3b. This phenomenon reveals then the
existence of the NSB, which occurs at the value a ≈ 0.98414. Such phenomenon
appears for the first time, and in this work, for the passive dynamic walking of the
compass robot.

Actually, the NSB is present in the bifurcation diagram of Fig. 2, but it is not
clear there. Figure 4b is the result of zooming in of the region encircled by the red
circle in Fig. 4a. This figure shows two new behaviors. The first one is the 1-periodic
unstable limit cycle (p1-ULC), which continues to appear even after the robot falls
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Fig. 4 Bifurcation diagram for ϕ = 5.1◦ showing the birth of the NSB (a), which is more evident
in (b). Here (b) is an enlargement of (a)
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Fig. 5 Loci of the characteristic multipliers as varying a and for ϕ = 5.1◦

down. The second behavior is the birth of the NSB, which has just appeared for
values of the parameter a very close to 1 (a ≈ 0.98414). By increasing a further,
such new behavior ends up at the value a = 0.984157 and then causing the fall of
the compass robot.

Figure 5 shows the variation of the characteristic multipliers in the unit circle
by varying the bifurcation parameter a around the region of values that shows the
NSB. It is clear that two complex-conjugate eigenvalues, presented by green and
cyan colors, leave the unit circle as a varies. This behavior reveals and confirms
therefore the birth of the NSB.
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Fig. 6 (a) shows a bifurcation diagram obtained for a = 0.9841 and by varying ϕ, and Poincaré
section (b) generated for ϕ = 5.1◦ and a = 0.984155

As noted before, the Neimark–Sacker Bifurcation (NSB) occurs for ϕ = 5.1◦
at a = 0.98414. Then, to more understand this phenomenon, we have analyzed
the behavior of the compass-type bipedal robot by setting the value of a to 0.9841
and we have varied the slope ϕ of the walking surface as illustrated in Fig. 6a. We
observed that the period-doubling sequence disappears and only the change from a
1-periodic behavior to a quasi-periodic behavior remains, and which reflects hence
the exhibition of the NSB.

By simulating the intersection of the trajectory of the hybrid system (4) with
the Poincaré section Γ defined in (5), we obtained the portrait in Fig. 6b, which
illustrates the quasi-periodic behavior of the bipedal robot for a = 0.984155, that is
for a value of a just after the NSB.

It is worth noting that the quasi-periodic motion of a general nonlinear system
is represented in the Poincaré section by a closed invariant circle. We obtained
an almost similar form represented in Fig. 6b. Note that this distribution of points
around the closed circle in Fig. 6b occurs because the selected parameter (a in Fig. 4
or ϕ in Fig. 6a) for which we have a quasi-periodic behavior is very close to the
NSB.

Remark 2 Notice that just after the NSB, the quasi-periodic behavior appears in a
very small interval either of the bifurcation parameter a in Fig. 4 or of the bifurcation
parameter ϕ in Fig. 6a. Therefore, just after this interval, the biped robot suddenly
falls down. Hence, we have not observed the transition phenomenon from quasi-
periodic motions to chaos in the passive gaits of the compass-gait walker by varying
the parameter a and also by varying the parameter ϕ. However, Gritli and Belghith
have observed chaos after the quasi-periodic motions in the compass-gait model
under the OGY-based state-feedback control [17], and also in the dynamic walking
of the torso-driven biped robot under also this same controller [18, 19]. In all these
previous references, the interval of the bifurcation parameter within which the quasi-
periodic motions and their subsequent chaotic motions occur, is considerably large.
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In contrast, in this paper, and for the compass-gait walker (without control), we
observed and for the first time the NSB and the quasi-periodic motions, which are
found to be displayed in a very small interval of the adopted bifurcation parameters.

Remark 3 Generally, in nonlinear systems, and after the occurrence of the NSB, one
would expect to observe a quasi-periodic motion, which eventually becomes chaotic
as some bifurcation parameter varies. It is worth to note that such transition in the
behavior of the dynamical system can be observed in general systems that have no
constraint on their validity and saying on their simulation/execution. Thus, we can
execute the nonlinear system and hence observe its outputs by varying (increasing
or decreasing) the bifurcation parameter as needed while there is no condition that
stops its execution.

However, the compass-gait walker, as a nonlinear dynamical system, is not the
case. The biped robot can walk down/on the ground and can also fall down. In this
second situation, we cannot talk about a system and then its execution is not valid.
Then, when the biped robot falls down, the execution of the program for simulating
its walking, which is defined by the impulsive hybrid nonlinear system (4), is
stopped. Therefore, by varying the bifurcation parameter, and when simulating such
system (4), we monitor the falling condition of the compass-gait walker. If this
condition is fulfilled, then we stop the simulation, and a further increase/decrease of
the bifurcation parameter will not show other valid motions, since from any initial
condition, the biped robot will fall down and no limit set (attractor) exists.

Moreover, recall that for the passive compass-gait walker, the conventional
phenomenon displayed in its motion by varying some bifurcation parameter, is the
period-doubling route to chaos. See for example [5, 15, 16] and the review paper
[7]. Gritli and his co-workers showed in [15] that the compass-gait robot reveals the
cyclic-fold bifurcation, and in [16] that such bifurcation leads to the appearance of
the double-boundary crisis, that causes in consequence the abrupt destruction of the
chaotic motion and hence no other motion exists and only unstable solutions exist.
Such crisis occurs at the slope ϕ = 5.21◦, and just after this value, the biped robot
falls down from any initial conditions. Hence, there is no steady gait generated in
the bipedal walking of the compass-gait walker and then no attractor was observed
in the bifurcation diagram for ϕ > 5.21◦.

Note that the bifurcation diagram and its period-doubling route to chaos observed
for the compass-gait biped walker in [5, 15, 16] are almost similar to that in Fig. 2.
Just after the chaotic regime, the biped robot falls down and then we cannot execute
the impulsive hybrid nonlinear dynamics (4) and then its simulation is stopped.
Thus, in this Fig. 2 and also in the other bifurcation diagrams, the blue attractor
means that the biped robot walks indefinitely (without falling down) and then the
nonlinear system (4) is here simulated for t −→ +∞. However, the white regions
at the right and at the left of the bifurcation diagram mean that no steady gait exists
and hence the biped robot falls down after some steps and then after some defined
instant t < +∞, depending on the selected initial condition. Thus, in Fig. 2 (or
Fig. 4), by decreasing the bifurcation parameter a, we observed the period-doubling
route to chaos. The chaotic phase was terminated at the parameter a = 0.49073.
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Then, just after, that is for a = 0.49074, the compass robot falls down and no
further simulation of the nonlinear system (4) was achieved.

For the NSB, the problem is the same. Indeed, in Fig. 2 or Fig. 4, by increasing
the bifurcation parameter a, we observe the period-1 motion and then the transition
to the quasi-periodic behavior via the NSB. As noted previously in Remark 2, the
quasi-periodic motions were found to exist in a very small interval of the bifurcation
parameter a in Fig. 4 and the bifurcation parameter ϕ in Fig. 6a. Then, at some value
of this bifurcation parameter near the NSB, the compass biped walker falls down
and hence no steady solution/gait was observed. As explained before, the numerical
simulation of the hybrid nonlinear system (4) was completely stopped.

5 Conclusions and Future Works

In this work, we investigated the passive gait of the planar biped robot with a
compass-like motion. We presented some numerical results with respect to the
bifurcation parameter a, which is the length of the lower segment of the leg. We
showed also by means of bifurcation diagrams that the value of a can change the
whole behavior of our bipedal robot, and therefore its stability. We revealed the
appearance of the classical period-doubling route to chaos as a decreases. Moreover,
we showed the birth, and for the first time, of the Neimark–Sacker bifurcation as a
increases.

As a future work, we aim at analyzing the passive motion of the compass-gait
walker using the explicit analytical expressions of the Poincaré map [28, 30] and
in order to prove existence of the NSB. Our idea is to determine, via the center
manifold theorem, the analytical expression of the Lyapunov coefficients and at
least of the first one. This approach will lead to characterize the type of the NSB to
be either subcritical or supercritical, and then to judge whether the quasi-periodic
motion is initially stable or unstable.
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A Degenerate Takens–Bogdanov
Bifurcation in a Normal form of Lorenz’s
Equations

Antonio Algaba, M. Cinta Domínguez-Moreno, Manuel Merino,
and Alejandro J. Rodríguez-Luis

1 Introduction

In the world of dynamical systems, the first known and most famous chaotic one is
the Lorenz system [1]

ẋ = σ(y − x), ẏ = ρx − y − xz, ż = −bz+ xy, σ, ρ, b ∈ R. (1)

The study of its riveting and intricate dynamical behavior has been carried out in
multitude of works (see the recent papers [2–15] and references therein).

One way to obtain important information on the organizing centers of the
dynamics in system (1) is by means of the study of local bifurcations of equilibria.
Whereas the Hopf and Takens–Bogdanov bifurcations have been fully studied
in Lorenz system [9, 10], the Hopf-pitchfork bifurcation (a pair of imaginary
eigenvalues and the third one zero; it occurs when σ = −1, b = 0, ρ > 1) and the
triple-zero bifurcation (a triple-zero eigenvalue; it arises if σ = −1, b = 0, ρ = 1)
cannot be analyzed by the standard procedures because non-isolated equilibria
appear when b = 0.

To avoid this problem, in this paper we consider a three-parameter unfolding,
that is close to the normal form of the triple-zero bifurcation exhibited by Lorenz
system, given by Algaba et al. [16]
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ẋ = y, ẏ = ε1x + ε2y + Axz+ Byz, ż = ε3z+ Cx2 +Dz2, (2)

where ε1, ε2, ε3 ≈ 0 and A,B,C,D are real parameters. System (2) exhibits a
triple-zero bifurcation when ε1 = ε2 = ε3 = 0. These equations are also invariant
under the change (x, y, z)→ (−x,−y, z). We remark that several systems studied
in the literature appear as particular cases of (2) for certain parameter choices [17–
22]. Without loss of generality [16], we can take A = −1, C = 1

ẋ = y, ẏ = ε1x + ε2y − xz+ Byz, ż = ε3z+ x2 +Dz2. (3)

System (3) can have up to four equilibria, namely E1 = (0, 0, 0), E2 =
(0, 0,−ε3/D) if D �= 0 and E3,4 = (±√−ε1(ε3 +Dε1), 0, ε1) if ε1(ε3 +Dε1) <

0. Note that E1 and E2 are placed on the z-axis, which is an invariant set.
The characteristic polynomial of the Jacobian matrix of system (3) at the origin

E1 is given by P(λ) = λ3 + p1λ
2 + p2λ + p3, where p1 = −(ε2 + ε3), p2 =

ε2ε3 − ε1, p3 = ε1ε3. Therefore, the origin exhibits the following bifurcations:

(a) A pitchfork bifurcation when ε1 = 0, ε2 �= 0, ε3 �= 0. The nontrivial equilibria
E3 and E4 appear when −ε1(ε3 +Dε1) > 0.

(b) A transcritical bifurcation (involving also E2) when ε3 = 0, ε1 �= 0, ε2 �= 0,
D �= 0.

(c) A Hopf bifurcation when ε1 < 0, ε2 = 0, ε3 �= 0.
(d) A Takens–Bogdanov bifurcation (nondiagonalizable double-zero eigenvalue)

when ε1 = 0, ε2 = 0, ε3 �= 0. It is of homoclinic-type when ε3 < 0 and of
heteroclinic-type if ε3 > 0.

(e) A Hopf-zero bifurcation when ε2 = 0, ε3 = 0, ε1 < 0.
(f) A double-zero bifurcation (a diagonalizable double-zero eigenvalue) when ε1 =

0, ε3 = 0, ε2 �= 0 (see [16]).
(g) A triple-zero bifurcation when ε1 = ε2 = ε3 = 0.

We show now that all the information on the equilibrium E2 can be obtained
from the analysis of E1. To study E2 we translate it to the origin by means of the
change x = x̃, y = ỹ, z = z̃− ε3/D, that transforms system (3) into

˙̃x = ỹ, ˙̃y = (ε1+ 1

D
ε3)x̃+(ε2−B

D
ε3)ỹ−x̃z̃+Bỹz̃, ˙̃z = −ε3z̃+x̃2+Dz̃2, (4)

with ε3,D �= 0.
Since system (3) is symmetric to the change

(x, y, z, t, ε1, ε2, ε3, B,D)→
(
x, y, z − ε3

D
, t, ε1 + ε3

D
, ε2 − B ε3

D
,−ε3, B,D

)
,

(5)
it is direct to obtain the stability and bifurcations of E2 from the stability and
bifurcations of E1. Thus, it is enough to study the bifurcations exhibited by E1.
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2 Takens–Bogdanov Bifurcations of the Origin

The Takens–Bogdanov bifurcation of E1 occurs when p2 = p3 = 0, p1 �= 0,
that is, when ε1 = ε2 = 0, ε3 �= 0. For these values, the Jacobian matrix has a
nondiagonalizable double-zero and a nonzero eigenvalue. Thus, system (3) reads

ẋ = y, ẏ = −xz+ Byz, ż = ε3z+ x2 +Dz2. (6)

By means of the second-order approximation to the center manifold, we obtain
the third-order reduced system and compute its normal form

ẋ = y, ẏ = a3x
3 + b3x

2y, with a3 = 1/ε3, b3 = (2− ε3B)/ε
2
3. (7)

Its unfolding is given by

ẋ = y, ẏ = ε1x + ε2y + a3x
3 + b3x

2y. (8)

By means of the rescaling

x → |ε3|√|ε3|
2− Bε3

x̄, y → ε2
3

√|ε3|
(2+ Bε2

3)
ȳ, t → 2− Bε3

|ε3| τ, (9)

system (8) is transformed into

˙̄x = ȳ, ˙̄y = ε1(2− Bε3)
2

ε2
3

x̄ + ε2(2− Bε3)

|ε3| ȳ + sgn(ε3)x̄
3 − x̄2ȳ. (10)

Thus, the Takens–Bogdanov bifurcation is of heteroclinic case when ε3 > 0
and of homoclinic case if ε3 < 0. Note that if ε3 = 0 a triple-zero bifurcation
is present. Moreover, when (ε1, ε2, ε3) = (0, 0, 2/B), with B �= 0, a degenerate
Takens–Bogdanov bifurcation occurs. This case will be analyzed below.

In the homoclinic case, when ε3 < 0, the equilibria of system (10) are (0, 0)
and (±(2 − Bε3)

√
ε1/ε3, 0), ε3 �= 2/B, ε1 > 0. From the Takens–Bogdanov

singularity, the curves corresponding to the following bifurcations emerge [23–25]:
(a) A pitchfork bifurcation of the origin is present when ε1 = 0. (b) A subcritical
Hopf bifurcation of the origin if ε2 = 0, ε1 < 0. (c) A supercritical Hopf bifurcation
of the nontrivial equilibria when ε2 ≈ (2−Bε3)ε1/ε3, for ε1 > 0. (d) A homoclinic
connection to the origin for ε2 ≈ 4(2− Bε3)ε1/(5ε3), with ε1 > 0. Since the third
eigenvalue (ε3 < 0) determines the behavior outside the center manifold, these
homoclinic connections are attractive. (e) A saddle-node bifurcation of symmetric
periodic orbits when ε2 ≈ c ε1(2− Bε3)/ε3, where ε1 > 0, c ≈ 0.752.

In the heteroclinic case, when ε3 > 0, the equilibria of system (10) are (0, 0)
and (±(2−Bε3)

√−ε1/ε3, 0), ε3 �= 2/B, ε1 < 0. The following curves are present
[23–25]: (a) A pitchfork bifurcation of the origin for ε1 = 0. (b) A subcritical
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Hopf bifurcation of the origin for ε2 = 0, ε1 < 0. (c) A heteroclinic connection to
nontrivial equilibria if ε2 ≈ (2 − Bε3)ε1/(5ε3), ε1 < 0. As the third eigenvalue
(ε3 > 0) determines the behavior outside the center manifold, these heteroclinic
connections are repulsive.

2.1 Codimension-Three Takens–Bogdanov

The normal form coefficient b3, given in (7), vanishes when ε3 = 2/B, B �= 0.
Thus, considering the fourth-order approximation to the center manifold we

obtain the fifth-order reduced system on the center manifold

ẋ = y, ẏ = a3x
3 + a5x

5 + b5x
4y. (11)

Multiplying system (11) by (1− (a5/a3)x
2), the x5-term can be eliminated

ẋ = y + −a5

a3
x2y, ẏ = a3x

3 + b5x
4y, with a3 = 1

ε3
, b5 = −B4

8
(5B + 3D).

(12)
An unfolding is given by

ẋ = y, ẏ = μ1x + μ2y + a3x
3 + μ3x

2y + b5x
4y, (13)

with μ1 = ε1, μ2 = ε2, μ3 = (2− Bε3)/ε
2
3.

To analyze this Takens–Bogdanov, we use the rescaling

x → 6

√
|a3|
b2

5

u, y → b5
6

√
|a3|5
b10

5

v, t → 3

√
b5

|a3|2 τ,

and then system (13) is transformed into

u̇ = v, ẏ = μ̃1u+ μ̃2v + sgn(a3)u
3 + μ̃3u

2v + u4v, (14)

where

μ̃1=ε1

4
3
√
ε4

3B
8(5B + 3D)2, μ̃2=−ε2

2
3
√
−B4ε2

3(5B + 3D), μ̃3=−2(2− Bε3) 3
√
ε3

3
√
B4(5B + 3D)

.

The analysis of this three-parameter family can be found in [26, 27]. In the
parameter space several codimension-two bifurcation curves emerge from the point
(0, 0, 2/B).

In the homoclinic case (sgn(a3) < 0, i.e., ε3 < 0):
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– A nondegenerate Takens–Bogdanov for μ̃1 = μ̃2 = 0, μ̃3 �= 0, i.e., ε1 = ε2 =
0, ε3 �= 2/B.

– A degenerate Hopf bifurcation of the origin for μ̃2 = μ̃3 = 0, μ̃1 < 0, i.e.,
ε2 = 0, ε3 = 2

B
, ε1 < 0.

– A degenerate Hopf bifurcation of the nontrivial equilibria when μ̃2 = −μ̃2
1,

μ̃3 = 0, i.e., ε3 = 2
B

, ε2 = −1
2 ε2

1B
2(5B + 3D), ε1 > 0.

– A degenerate (zero-trace) homoclinic connection to the origin when μ̃2 = 0,
μ̃3 = −8μ̃1

7 , μ̃1 > 0, i.e., ε2 = 0, ε1 = 7(2−Bε3)

B4ε3(5B+3D)
> 0.

– A cusp of saddle-node bifurcations of periodic orbits when μ̃2 = c3μ̃
2
1, μ̃3 =

c4μ̃1, μ̃1 > 0, with c3 ≈ 1.5713, c4 ≈ −3.3484. That is, for ε2 = 2c3(2−Bε3)
2

c2
4B

2(5B+3D)
,

ε1 = −8(2−Bε3)

c4ε3B
4(5B+3D)

> 0.

In the heteroclinic case (sgn(a3) > 0, i.e., ε3 > 0):

– A nondegenerate Takens–Bogdanov bifurcation when μ̃1 = μ̃2 = 0, μ̃3 �= 0,
i.e., ε1 = ε2 = 0, ε3 �= 2/B.

– A degenerate Hopf bifurcation of the origin for μ̃2 = μ̃3 = 0, μ̃1 < 0, i.e.,
ε2 = 0, ε3 = 2/B, ε1 < 0.

– A degenerate (zero-trace) heteroclinic connection when μ̃2 = 0, μ̃3 ≈ 3
7 μ̃1,

μ̃1 < 0, i.e., ε2 = 0, ε1 ≈ − 7
3 (2− Bε3)

3.

We end this section with two useful comments for Sect. 3. On the one hand,
the information on the Takens–Bogdanov bifurcation exhibited by E2 can be easily
obtained from the above results by using the symmetry (5): it is of homoclinic-
type if ε3 > 0 and of heteroclinic-type when ε3 < 0. On the other hand, the
(diagonalizable) double-zero bifurcation exhibited by the origin has been analyzed
in [16]. There, the following expression is obtained for the curve of heteroclinic
connections between E1 and E2 (in the nondegenerate case B �= 2Δ−Δ3ε1)

ε1 ≈ − 1

2D
ε3 + a2(−2Δ+ B)

4D(3a + 2)(−Δ2ε1 + 1)
ε2

3, where Δ = 1

ε2
, a = Δ3ε1 −Δ

D
> 0.

3 Numerical Study

With the information provided in Sect. 2, we are going to perform a numerical
study of system (3) with the continuation software AUTO [28]. Specifically, we
will draw bifurcation sets in the (ε1, ε3)-parameter plane, in a neighborhood of the
degeneracies DZ (diagonalizable double-zero) and TB (Takens–Bogdanov). We will
fix ε2 = −1, B = −0.1 < 0, and D = 0.01 > 0 according to the values used in
[22].
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First we draw, in Fig. 1a,b, partial bifurcation sets with the bifurcation curves
related to the degeneracies DZ (of the origin) and TB (of E2) in the fourth and
second quadrants, respectively. We can observe the curves h (Hopf bifurcation
of the equilibria E3,4) and He (heteroclinic cycle between the equilibria E1 and
E2). Both curves emerge from the point where the double-zero degeneracy of the
origin occurs, DZ = (0, 0) in the (ε1, ε3)-parameter plane. Moreover, three straight
lines intersect at the double-zero point DZ, namely P1 (pitchfork bifurcation of the
origin, ε1 = 0), P2 (pitchfork bifurcation of E2, ε3 = −0.01ε1) and T (transcritical
bifurcation between E1 and E2, ε3 = 0). Note that in these pitchfork bifurcations
the equilibria E3,4 emerge. Fixed a value of ε3 in a neighborhood of the point DZ,
the periodic orbit emerged from h is atractive and, increasing the value of ε1, it
disappears in a heteroclinic cycle He.

This cycle He is formed by two heteroclinic connections, one is structurally
stable (since it goes from E1 to E2 on the invariant z-axis) and the other one is
more relevant (because it is placed outside the z-axis). To show the differences
that exist between the heteroclinic cycles of Fig. 1a,b we draw their projections
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Fig. 1 For ε2 = −1, B = −0.1,D = 0.01 partial bifurcation set in a neighborhood of the
point DZ: (a) in the fourth quadrant; (b) in the second quadrant. (c) Projection onto the (x, z)-
plane of the heteroclinic cycle He of panel (a) that exists when (ε1, ε3) ≈ (0.2,−0.0043175).
(d) Projection onto the (x, z)-plane of the heteroclinic cycle He of panel (b) that exists when
(ε1, ε3) ≈ (−0.2, 0.0037414)
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onto the (x, z)-plane in Fig. 1c,d, respectively. Remark that throughout this work,
with the aim of simplifying the notation, we will label the heteroclinic cycle (in
fact, due to the symmetry, a pair of heteroclinic cycles exist) and the heteroclinic
bifurcation with the same symbol, although they are two different objects. Also,
when necessary, we will use superscripts to indicate the equilibria that are involved
in a certain bifurcation or in its degeneration.

Such heteroclinic cycles are attractive when they emerge from DZ since the
saddle quantities in the fourth quadrant δE1 = |max(λ1, λ3)/λ2| and δE2 =

∣∣λ∗2/λ∗3
∣∣

satisfy δE1δE2 > 1. Here we denote the eigenvalues of the Jacobian matrix at the

origin E1 as λ3 = ε3, λ2,1 = [ε2 ±
√
ε2

2 + 4ε1 ]/2, and the eigenvalues of the

Jacobian matrix at E2 = (0, 0,−100 ε3) as λ∗3 = −ε3, λ∗2,1 = [ε2 − B
D
ε3 ±√(

ε2 − B
D
ε3
)2 + 4

(
ε1 + ε3

D

) ]/2.
As seen in Fig. 1a,b, on each of the curves He, there is a point DHe where the

heteroclinic cycle is degenerate. In fact, when ε1 > 0, the equilibrium E1 is always
a real saddle along the curve He but E2, that is also a real saddle when it arises from
DZ, becomes a saddle-focus from the point DHe2 ≈ (0.2328879,−0.0050898).
In the case of the branch located in the second quadrant, when ε1 < 0, the
equilibrium E2 is always a real saddle along the curve He, whereas the equilibrium
E1, that emerges from DZ as a real saddle, becomes a saddle-focus from DHe1 ≈
(−0.25, 0.004611).

The change in the configuration of E1 (resp. E2) on the curve of the heteroclinic
connections He in the second (resp. fourth) quadrant implies the appearance of
an infinity of bifurcation curves, which arise from the aforementioned point DHe1

(resp. DHe2) on the He curve.
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Specifically, in Fig. 2a,b, we can see the curve H (of homoclinic connections
to the equilibrium E2) that emerges from the point DHe1. In a vicinity of
DHe1, a saddle periodic orbit emerges from H (since δE2 < 1 at the points of
such a neighborhood). A degenerate point DH appears on H when (ε1, ε3) ≈
(−8.5339606, 0.0855365) because δE2 = 1. The curve H ends at the point
TB = (−10, 0.1) where E2 undergoes a Takens–Bogdanov bifurcation. This is in
agreement with the theoretical results of Sect. 2 that guarantee, for these parameter
values, that the Takens–Bogdanov bifurcation of E2 is of homoclinic-type.

In the second quadrant, the Hopf bifurcation h of the nontrivial equilibria
E3,4 is always supercritical and this curve connects the points DZ and TB (see
Fig. 1b). In addition to the homoclinic connection curve H, other curves emerge
from TB, namely a curve h2 of Hopf bifurcation of E2 (ε3 = 0.1 when ε1 <

−10) and a curve SN1 of saddle-node bifurcation of periodic orbits. The Hopf
bifurcation h2 is subcritical when it emerges from TB and it becomes supercritical
because a degeneracy occurs at Dh2 ≈ (−10.2487498, 0.1) as the first Lyapunov
coefficient vanishes. A new curve SN2 of saddle-node bifurcations of symmetric
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Fig. 3 For ε2 = −1, B = −0.1, D = 0.01: (a) partial bifurcation set in the second quadrant.
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periodic orbits emerges from Dh2. A cusp bifurcation of periodic orbits CU ≈
(−9.7715876, 0.0977398) occurs when SN1 and SN2 collapse (see lower panel of
Fig. 2b). The cusp CU is the first one of an infinite sequence of cusps that accumulate
to the point DH [24].

Close to the degeneracy DH, other bifurcation curves can be seen in Fig. 3a,b.
Specifically from the point TPp ≈ (−8.3738877, 0.0841835) (where a T-point
heteroclinic loop between E2 and E3,4 exists and whose projection in the (x, z)-
plane can be seen in Fig. 3c) three curves of global connections arise, namely He34

(heteroclinic connection between E3 and E4), H3 (homoclinic connection to E3,4),
and a curve of homoclinic connections to E2 (not included in Fig. 3) that ends at
DHe1 (see Fig. 2a,b) [6, 29–31]. The curve H3 ends in a secondary T-point between
E2 and E3,4 for TPs ≈ (−8.4159326, 0.0850368) whose projection on the (x, z)-
plane appears in Fig. 3d.

The presence in the second quadrant of the degenerations analyzed (and the
bifurcation curves that arise from them) determines the existence of regions where
chaotic attractors exist (see Fig. 4a,b). We note that these attractors, obtained for
ε3 = 0.085, are structurally stable when the value of ε1 is varied. Moreover, as
observed in these figures, their size increases when ε1 augments along the interval
[−8,−6.3].

Fig. 4 For ε2 = −1, ε3 = 0.085, B = −0.1,D = 0.01 chaotic attractor when: (a) ε1 = −8, with
initial conditions (x0, y0, z0) = (0, 0.1,−8). (b) ε1 = −6.3, with initial conditions (x0, y0, z0) =
(0, 0.1,−7)
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4 Conclusions

In this work we consider an unfolding of a normal form of the Lorenz system near
a triple-zero singularity. The combination of analytical and numerical tools allows
to obtain partial interesting information on the complicated dynamics exhibited by
system (3) related to a Takens–Bogdanov bifurcation and a diagonalizable double-
zero degeneracy. Specifically, a degenerate heteroclinic connection, among other
global connections, gives rise to infinite homoclinic orbits that will lead to the
existence of chaos. Completing in the future the analysis of system (3) will shed
new light on the behavior of the Lorenz system near its triple-zero singularity.
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Numerical Studies on the Nonlinear
Dynamics of the Ziegler Column under
Pulsating Follower Force

Guilherme Rosa Franzini and Carlos Eduardo Nigro Mazilli

1 Introduction

The response of the Ziegler column subjected to a follower force is a classical
problem that has received studies in the last seven decades (see, for example,
[1–3]). Despite its apparent simplicity, it reveals a number of intricate aspects,
including dynamic instability (flutter) and possible mode localization [4]. Recently,
[5] and [6] investigated the dynamic response of the Ziegler’s column considering
the piezoelectric effects for both control of vibration and energy harvesting,
respectively.

An interesting (sometimes referred to a “paradox”) regarding the response of the
Ziegler’s column is the decrease in the critical value of the follower force when
damping is included in the mathematical model. In [7], the author discusses the
effects of nonlinearities associated with the torsional springs of the column and
addresses non-periodic post-critical responses for the undamped column.

Reference [8] focuses on the effects of the nonlinear damping according to a van
der Pol model on the post-critical response of the Ziegler’s column under follower
force. Among other findings, the authors highlight that the Hopf bifurcation can be
either supercritical or subcritical, which had already been anticipated in [9].

In [10], the authors readdress the influence of the linear damping on the dynamics
of the Ziegler’s column under follower force. By using the multiple scale method
and numerical integration of the mathematical model, they discuss, among other
aspects, the post-critical responses.

If the follower force is further harmonically varying with time, parametric
excitation also appears. Yet, it is remarkable that the interaction of the two instability
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mechanisms has not been previously addressed in the literature, as far as the authors
are aware of. Therefore, they believe this is a novel aspect of the ongoing research
herein reported. In this paper, focus is placed on the stability maps obtained in the
plane of parameters that define the parametric excitation and on examples of post-
critical time-histories.

The paper is organized as follows. Section 2 presents the mathematical models.
The analysis methodology is detailed in Sect. 3. Section 4 brings the results and the
corresponding discussions. The conclusions are addressed in Sect. 5.

2 Mathematical Model

The model studied here is composed of two identical massless rigid bars of lengthL,
connected by means of two torsional visco-elastic springs of stiffness k and damping
constant c. Lumped masses 2 m andm are included at mid-span and tip, respectively.
A pulsating compressive follower force P(t) = P̄ + ΔP sinΩt is applied to the
tip of the column. The angular coordinates q1 and q2 are measured with respect
to the line that characterizes the straight column, and no gravitational effects are
considered. Figure 1 illustrates the investigated problem.

The equations of motion are obtained using the Euler–Lagrange’s equation. For
the sake of conciseness, the intermediate steps are not herein detailed and the final
mathematical model is given, in its dimensional form, by Eqs. (1) and (2).

mL2(3q̈1 + cos(q1 − q2)q̈2 + sin(q1 − q2)q̇
2
2 )+ c(2q̇1 − q̇2)+ k(2q1 − q2) =

= (P̄ +Δp sin(Ωt))L sin(q1 − q2) (1)

Fig. 1 Ziegler’s column
under pulsating follower
force
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mL2(cos(q1 − q2)q̈1 + q̈2 − sin(q1 − q2)q̇
2
1 )+ c(−q̇1 + q̇2)+ k(−q1 + q2) = 0

(2)

Aiming at generalizing the discussion, the mathematical model is rewritten in

dimensionless form. For this, consider the reference frequency ω =
√

k
mL2 and the

dimensionless quantities defined in Eq. (3).

p̄ = P̄L

k
,Δp = ΔPL

k
, n = Ω

ω
, ζ = c

2mL2ω
, τ = tω (3)

Defining ( )′ = d
dτ
( ), the governing dimensionless system of differential

equations reads:

3q ′′1 + cos(q1 − q2)q
′′
2 + 4ζq ′1 − 2ζq ′2 + sin(q1 − q2)(q

′
2)

2 + 2q1 − q2+
= (p̄ +Δp sin(nτ)) sin(q1 − q2) (4)

cos(q1 − q2)q
′′
1 + q ′′2 − 2ζq ′1 + 2ζq ′2 − sin(q1 − q2)(q

′
1)

2 − q1 + q2 = 0 (5)

3 Analysis Methodology

The equations of motion are numerically integrated using DifferentialEquations.jl
package programmed in Julia, version 1.5.1. This package is able to choose the
proper numerical solver. A standard notebook (i7–10th gen processor, 8 Gb RAM)
has been employed for the numerical integrations using a single core.

Analyses with both the linearized (around q1 = q2 = 0) and the nonlinear
models are carried out. Firstly, the linearized and autonomous form of the math-
ematical model is used for the modal analyses. The linearized model is also useful
for studying the stability of the straight configuration of the column under pulsating
follower force. Similarly to what has been done in [11] for a chain of articulated
rigid pipes ejecting fluid under support excitation, the stability analysis is presented
in the form of colormaps showing the maximum absolute value of the Floquet’s
multipliers (ρ∗) as function of the amplitude and frequency of the parametric
excitation (Δp and n, respectively) for different values of averaged follower force
p̄ and structural damping ratio ζ . The reader interested in details regarding the
Floquet’s theory is referred to [12].

The analyses with the nonlinear model are developed as follows. The mathemat-
ical model is integrated using initial conditions q1(0) = q ′1(0) = q ′2(0) = 0 and
q2(0) = 0.05 during 1500 parametric excitation periods τ̄ = 2π/n. Then, time-
histories q1(τ ) and q2(τ ) are presented with the corresponding amplitude spectra.
In the amplitude spectra, ω∗ is the frequency normalized with respect to ω.
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4 Results and Discussions

For the sake of organization, the results are discussed in two subsections. The
natural modes and the stability maps are addressed in Sect. 4.1. Time-histories and
maps of post-critical responses obtained with the nonlinear equations of motion are
presented in Sect. 4.2.

4.1 Results from the Linearized Model

Modal analysis with the undamped Ziegler’s column (ζ = 0) with p̄ = 2, which
is slightly smaller than the critical load p̄cr = 2.09 for the column with the non-
pulsating follower force [9], results in λ1 = i0.707, λ2 = λ∗1, λ3 = i and λ4 = λ∗3
as eigenvalues, ( )∗ representing the complex conjugate and i the imaginary unit.
Hence, the natural frequencies are ω1 = 0.707 and ω2 = 1. The corresponding
mode shapes are illustrated in Fig. 2. It is worth noting that the second mode is
localized.

Figure 3 brings the stability maps obtained at p̄ = 2. These maps plot, in a
color scale, the variation of ρ∗ (the maximum modulus of the Floquet’s multipliers)
with the amplitude and frequency of parametric excitation (Δp and n, respectively).
Each map is generated using a 2000 × 2000 grid in approximately half hour. The
regions of stability are those characterized by ρ∗(n;Δp) ≤ 1. On the other hand,
unbounded solutions appear if ρ∗(n;Δp) > 1.

Figure 3a illustrates the stability map obtained for the undamped column. This
map reveals two vertices of the instability region (i.e., the region shaded in red)
arising at n ≈ 1.4 and n ≈ 2, corresponding to twice the undamped natural
frequencies of the column and, consequently, to the principal parametric instabilities
of the vibration modes. Besides the region associated with the principal parametric
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Fig. 2 Modal analysis—ζ = 0 and p̄ = 2. (a) Mode 1—ω1 = 0.707. (b) Mode 2—ω2 = 1
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instability, Fig. 3a also shows the existence of another region of the plane of control
parameters (n;Δp) associated with unbounded solutions. This secondary region of
parametric instability is observed for low values of parametric excitation frequency
n, with a vertex at n ≈ 0.29, possible “unfavorable” combination resonance
(ω2−ω1). Instability here would denote the system leaving the basin of attraction of
the trivial equilibrium configuration, due to the closeness to the unstable subcritical
Hopf bifurcation of the classical constant follower force problem. Notice that with
the increasing of the damping, Fig. 3b–f, p̄ = 2 becomes supercritical and the
trivial equilibrium configuration becomes unstable, thus explaining the growing of
the response amplitudes.

As seen in Fig. 3b, a slight increase in the structural damping to ζ = 0.005
decreases the size of the region of stability. The same figure reveals the appearance
of a well defined region of stability at n ≈ 1.7 (possible “favorable” combination
resonance (ω2 + ω1)) and 0.03 ≤ Δp ≤ 0.18 (see the region shaded in light blue).
Notice that the increase of damping leads to p̄ = 2 being supercritical with respect
to the follower force problem, but the stable supercritical Hopf bifurcation indicates
the possibility of a stable periodic attractor, which has been captured here. Further
increase in the values of ζ enlarges the region of parametric instability, shifting the
isolated region of bounded responses (see the region shaded in blue) to larger values
of parametric excitation amplitude Δp; see Fig. 3d–f.

From the qualitative point of view, the enlargement of the region of the plane
of control parameters (n;Δp) associated with unbounded responses (parametric
instability) indicates that the presence of structural damping plays a destabilizing
role on the parametric excitation of the Ziegler’s column under pulsating follower
force. This result goes in line with the “counter-intuitive” and well-known fact that
the presence of structural damping decreases the critical load for the stability of the
trivial equilibrium configuration of the column (see, for example, [10]). At least to
the best of the authors’ knowledge, the stability of the straight configuration of the
Ziegler’s column under pulsating follower force has not been previously addressed
in the literature and consists a novelty feature of the present study.

4.2 Results from the Nonlinear Model

Firstly, we discuss the time-histories q1(τ ) and q2(τ ) and the corresponding
amplitude spectra obtained at n = 2, p̄ = 2, three values of parametric excitation
amplitude (Δp = 0, Δp = 0.10, and Δp = 0.30) and two values of dimensionless
damping, namely ζ = 0 and ζ = 0.05. Notice that n = 2 is a favorable scenario for
the parametric instability of the column with respect to the second mode, provided
the natural frequency of the localized mode of the undamped column is ω2 = 1. For
the sake of brevity, the results from the case with n = 2ω1 =

√
2 are not shown

here.
Figure 4 presents the time-histories obtained for the undamped column. The

illustrated responses reveal that the responses q2(τ ) oscillate with much larger
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Stability maps p̄ = 2. (a) ζ = 0.00. (b) ζ = 0.005. (c) ζ = 0.01. (d) ζ = 0.02. (e)
ζ = 0.04. (f) ζ = 0.05

amplitude if compared to q1(τ ). This indicates that the parametric resonance with
the second undamped mode, in spite of the nonlinear modal coupling, still keeps
essentially the character of a localized forced response.

As seen in Fig. 4a,b, the response of the autonomous problem (i.e., the one with
Δp = 0) is characterized by narrow-banded amplitude spectra, with well defined
peaks at the undamped natural frequencies ω1 and ω2.
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Fig. 4 Time-histories and amplitude spectra for ζ = 0, n = 2, and p̄ = 2. (a) q1(τ ), Δp = 0.
(b) q2(τ ), Δp = 0. (c) q1(τ ), Δp = 0.10. (d) q2(τ ), Δp = 0.10. (e) q1(τ ), Δp = 0.30. (f) q2(τ ),
Δp = 0.30
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When the amplitude of the dynamic component of the follower force is Δp =
0.10, Fig. 4c,d indicate the presence of amplitude-modulated responses, basically
because of lack of damping that is essential for reaching a possible steady state.
Particularly, the amplitude spectrum presented in Fig. 4c reveals the presence of
the frequency components around ω1, ω2, and 3ω2, the latter a subharmonic of
the second natural frequency. Finally, Fig. 4e,f show irregular responses of the
undamped column when Δp = 0.30. The amplitude spectra present larger bands
than those for Δp = 0.10 (Fig. 4c,d).

Time-histories q1(τ ) and q2(τ ) and their amplitude spectra obtained with ζ =
0.05 are shown in Fig. 5. When compared to the undamped case, the presence
of structural damping decreases the amplitude modulations and increases the
maximum responses. Notice, also, that the characteristic oscillation amplitudes of
q1(τ ) and q2(τ ) have the same order of magnitude, indicating that the presence of
damping breaks down the localized vibrations.

Despite the parametric excitation being a favorable scenario for oscillations
in the second mode, all the amplitude spectra illustrated in Fig. 5 have a well
defined dominant frequency around ω∗ = 0.707, corresponding to the first
undamped vibration mode. Also counter-intuitive is the fact that the increase in
the parametric excitation amplitude Δp leads to a decrease in the characteristic
oscillation amplitudes of q1(τ ) and q2(τ ). On the other hand, as expected, the
presence of damping leads to smaller amplitude modulations in the response the
Ziegler’s column.

Aiming at improving the understanding of the response, Fig. 6 plots some of the
trajectories already discussed in Figs. 4 and 5 in the form of colored 3D curves, the
color being associated with the value of q̇2. The projections of the trajectories onto
the phase-planes q1(τ )× q2(τ ), q1(τ )× q̇1(τ ), and q2(τ )× q̇1(τ ) are also depicted.

While the trajectories obtained for the undamped case exhibit irregular behaviors,
those from the simulations with ζ = 0.05 offer useful insights into the dynamics of
the Ziegler’s column. ForΔp = 0, Fig. 6b indicates a closed curve, corresponding to
a periodic attractor (as foreseen by the stable supercritical Hopf bifurcation). When
the parametric excitation amplitude is increased, this curve becomes “broader,”
which might perhaps be interpreted as a quasi-periodic attactor (see Fig. 6d,f).

A multiple-scales analysis has been performed, but its detailing is avoided here
for brevity. It revealed that, for the case n = 2, any added damping, however small,
completely erases the second (localized) mode in spite that it is parametrically
excited, fact that is confirmed by the numerical results of Fig. 5, while the fully
undamped system does show an important second mode contribution, the lack of
dissipation leading to a sort of “beating” pattern in both modes. This result is
further illustrated by the Poincare’s section of Fig. 7, using the stroboscopic period
τsb = 2π/n and Δp = 0.30.

Hence, besides providing the well-known decrease in the critical follower force,
damping also wipes out the localized mode. It is also to be noticed that other
harmonic contributions arise, as shown in Figs. 5 and 6, due to the particular
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Fig. 5 Time-histories and amplitude spectra for ζ = 0.05, n = 2, and p̄ = 2. (a) q1(τ ), Δp = 0.
(b) q2(τ ), Δp = 0. (c) q1(τ ), Δp = 0.10. (d) q2(τ ), Δp = 0.10. (e) q1(τ ), Δp = 0.30. (f) q2(τ ),
Δp = 0.30
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Projections of phase trajectories. (a) ζ = 0, Δp = 0. (b) ζ = 0.05, Δp = 0. (c) ζ = 0,
Δp = 0.10. (d) ζ = 0.05, Δp = 0.10. (e) ζ = 0, Δp = 0.30. (f) ζ = 0.05, Δp = 0.30

solutions associated with non-secular terms. Other scenarios, such as those of
n = 2ω1 =

√
2 (principal parametric excitation of the first mode) or n = ω1+ω2 =√

2/2+ 1 (combination resonance of modes 1 and 2) could be further explored but
were not included here due to lack of space.
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Fig. 7 Points in the
Poincaré’s section.
Δp = 0.30, n = 2, and ζ = 0

5 Conclusions

In this paper, the authors addressed the Ziegler column problem, yet with a
pulsating follower force, which constitutes a novelty, to the best of their knowledge.
The interplay between two instability phenomena, namely, flutter and parametric
resonance, plus the destabilizing effect of damping and the response localization
are also discussed in this essentially numerical investigation.

The stability maps revealed that the presence of damping decreased the region
of the plane of parameters that govern the parametric excitation associated with
bounded solutions. Additionally, examples of post-critical time-histories exhibited
amplitude modulations associated with the pulsating follower force. Other studies
focusing on the nonlinear response of the parametrically excited Ziegler column
will be addressed in the near future. Hence, it is reckoned that further analysis is
still needed to fully explore the system complex dynamics.

Acknowledgments The authors acknowledge the support of the Brazilian Scientific Research
Council (CNPq), under the projects 305945/2020-3 and 301050/2018-0. São Paulo Research
Foundation (FAPESP) is acknowledged for the grant 2019/27855-2.

References

1. H. Ziegler, Die Stabilitätskriterien der Elastomechanik. Ing.-Arch 20, 49–56 (1952)
2. H. Herrmann, I.C. Jong, On nonconservative stability problems of elastic systems with slight

damping. J. Appl. Mech. 33, 125–133 (1966)
3. P. Hagedorn, On the destabilizing effect of non-linear damping in non-conservative systems

with follower forces. Int. J. Non-Lin. Mech. 5(2), 341–358 (1970)
4. S. Lenci, C.E.N. Mazzilli, Asynchronous free oscillations of linear mechanical systems: a

general appraisal and a digression on a column with a follower force. Int. J. Non-Lin. Mech.
94, 223–234 (2017)



722 G. R. Franzini and C. E. N. Mazzilli

5. F. D’Annibale, F. Rosi, A. Luongo, Controlling the limit-cycle of the Ziegler column via a
tuned piezoelectric damper. Math Prob. in Eng. 2015, 1–9 (2015)

6. C.E.N. Mazzilli, G.R. Franzini, Parametric excitation of an asynchronous Ziegler’s column
with a piezoelectric element, in Proceedings of the 10th European Nonlinear Dynamics
Conference—ENOC2020+1 (2021)

7. A.N. Kounadis, On the paradox of the destabilizing effect of damping in non-conservative
systems. Int. J. Non-Lin. Mech. 27(4), 597–609 (1992)

8. A. Luongo, F. D’Annibale, M. Ferretti, Hard loss of stability of Ziegler’s column with nonlinear
damping. Meccanica 51, 2647–2663 (2016)

9. C.E.N. Mazzilli, Nonlinear dynamics and stability: a formulation for systems subjected
to support excitation and non-conservative loading, in Habilitation Thesis (in Portuguese)
(University of São Paulo, São Paulo, 1988)

10. F. D’Annibale, M. Ferretti, On the effects of linear damping on the nonlinear Ziegler’s column.
Nonlinear Dyn. 103(4), 3149–3164 (2020)

11. I.M. Lourenço, R.M.M. Orsino, G.R. Franzini, Dynamics of an articulated chain of rigid pipes
discharging fluid under concomitant support excitation: a numerical analysis. J. Braz. Soc.
Mech. Sci. Eng. 42(581), 1–15 (2020)

12. A. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics—Analytical, Computational and
Experimental Methods (Wiley, New York, 1995)



Hidden Regularity of Stability
Boundaries in Two-step Hill’s Equations

Emilio Freire, Manuel Ordóñez, and Enrique Ponce

1 Introduction

Following [1], even there were preliminary studies, after the work on the motion
of the lunar perigee by G. W. Hill in 1877, the term “Hill’s equation” is associated
with a class of homogeneous, linear, second-order differential equations with real,
periodic coefficients. Such equations have a lot of applications in engineering and
physics, including problems in mechanics, astronomy, and the theory of electric
circuits, just to mention a few. The Hill’s equation has the general form

ẍ(t)+ V (t)x(t) = 0, (1)

where the potential V is a T -periodic function. The specific case V (t) = a0 +
a1 cos t is usually called Mathieu’s equation, see [2] for a general overview, while
the case of piecewise constant periodic potential is named Meissner’s equation,
firstly studied by E. Meissner in 1918 and later by H. Hochstadt in the 1960s, see
Chapter 8 in [1]. Recently, the nonlinear version of Meissner’s equation with the
stiffness term of the form V (t) sin x(t) has been considered in [3, 4] for the study of
pendulum systems.

We are interested in the analysis of Hill’s equation with a two-step piecewise
constant function as T -periodic potential; our motivation comes from the original
model established by R. de L. Kronig and W. G. Penney in 1931 for the study of
electrons in crystal lattices [5], where the width of the two steps is not equal, namely
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ẍ(t)+ V (t)x(t) = 0, V (t) =
{
a, 0 ≤ t ≤ τ,

b, τ ≤ t ≤ T .
(2)

There are few recent works in the subject; excepting the one by S. Gan and M.
Zhang [6], based on the study of rotation numbers, other papers studying Eq. (2), as
in [7, 8] and very recently in [9], assume for the potential V to be a square wave,
that is, T = 2τ . Here, we study the general situation by analyzing first the elliptic–
elliptic case (a, b > 0) in a three-parameter setting; the remaining cases will be
addressed elsewhere.

Obviously, after setting y = ẋ, we can write Eq. (2) as

(
ẋ

ẏ

)
=
(

0 1
−V (t) 0

)(
x

y

)
= A(t)

(
x

y

)
, (3)

where A(t) is T-periodic. Notice that the matrix A(t) can be written as

A(t) = J

(
V (t) 0

0 1

)
, J =

(
0 1
−1 0

)
, (4)

a feature of general linear periodic Hamiltonian problems, which can be written in
the form

ẋ = JS(t)x, x ∈ R
2, (5)

where J is as given before, and S(t) is a 2× 2 symmetric T -periodic matrix.
We recall that for a linear system with periodic coefficients,

ẋ = A(t)x(t), (6)

with A(t + T ) = A(t), for all t ∈ R, T > 0, and x ∈ R
n, if X(t) is a fundamental

matrix of solutions with X(0) = I, then X(t + T ) is also a fundamental matrix and
there exists a non-singular matrix C such that X(t +T ) = X(t)C for all t. This fact
implies that

X(t + T ) = X(t)X(T ). (7)

From (7) we obtain

X(nT ) = X(T )n. (8)

Thus, the so-called monodromy matrix X(T ) contains all the information to
characterize the whole dynamics, i.e., the stability of the null solution, the existence
of periodic solutions and so on. The eigenvalues of X(T ) are the characteristic
multipliers or Floquet multipliers.
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Clearly, if μ ∈ R and v ∈ R
n are such that X(T )v = μv, then the solution

ψ(t) = X(t)v, with ψ(0) = v, verifies

ψ(t + T ) = X(t + T )v = X(t)X(T )v = X(t)μv = μψ(t),

so that the existence of T-periodic solutions is associated with the existence of a
multiplier μ = 1 because if X(T )v = v, then ψ(t) = X(t)v is T-periodic. On the
other hand, if μ = −1 is an eigenvalue of X(T ) and v is an associated eigenvector,
then we have that the solution ψ(t) = X(t)v, with ψ(0) = v is 2T -periodic.
Obviously, from the linear and homogeneous character, any periodic solution is not
isolated, since it belongs to a linear one-dimensional manifold of periodic solutions.

In practice, although the system is linear and homogeneous, it turns out difficult
to compute the fundamental matrix X(t). From Liouville’s formula

detX(T ) = exp

(∫ T

0
traceA(s)ds

)
,

it can be concluded that
∏n

i=1 μi > 0, where μi ∈ C are the Floquet multipliers
of X(T ). In our bi-dimensional case, we have that trace(A) = 0, for all t , and so
the determinant of the monodromy matrix is equal to 1. This entails that for the two
characteristic multipliers, say μ1, μ2, we have μ1, μ2 = 1, so that they are the roots
of the quadratic

μ2 − traceX(T )μ+ 1 = 0.

Consequently, when −2 < traceX(T ) < 2 both multipliers are complex numbers,
forming a conjugate pair on the unit circle of the complex plane. Therefore, the
stability of all the solutions is guaranteed in such a case. On the other hand, when
| traceX(T )| > 2, it is easy to conclude that both multipliers are real but one of
them with modulus greater than one, so that there are unbounded solutions and the
system becomes unstable. Thus, our goal is to describe for Eq. (2) the parametric
stability boundaries given by the surfaces traceX(T ) = ±2.

2 The Elliptic–Elliptic Case (a > 0, b > 0)

We only consider in this work the elliptic–elliptic case where a > 0 and b > 0,
while the remaining cases will be studied elsewhere. Thus, we can take ωa > 0 and
ωb > 0 such that a = ω2

a and b = ω2
b, so that

V (t) =
{
ω2
a, t ∈ [0, τ ]

ω2
b, t ∈ [τ, T ]

(9)
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where T , the period of V (t), is given. Here, it is not difficult to compute the
monodromy matrixM = X(T ), which depends on the three parameters (ωa, ωb, τ ),
namely

M(ωa, ωb, τ ) = exp

(
0 T − τ

−(T − τ)ω2
b 0

)
· exp

(
0 τ

−τω2
a 0

)
. (10)

The following symmetry result is natural, since it says that the order of the two
steps in the periodic interval is not essentially relevant. Its proof is straightforward
by observing that the change (ωa, ωb, τ )←→ (ωb, ωa, T − τ) makes to appear in
M(ωb, ωa, T − τ) the product of the same exponential matrices in reverse order.

Lemma 1 The monodromy matrix M(ωb, ωa, T − τ) is similar to the monodromy
matrix M(ωa, ωb, τ ).

Using the explicit computations

exp

(
0 τ

−τω2
a 0

)
= cos(ωaτ)I + sin(ωaτ)

ωa

(
0 1
−ω2

a 0

)
(11)

and

exp

(
0 T − τ

−(T − τ)ω2
b 0

)
= cos(ωb(T − τ))I + sin(ωb(T − τ))

ωb

(
0 1
−ω2

b 0

)
,

(12)
where I stands for the identity matrix, a straightforward algebraic manipulation
leads to the expression

traceM = 2 cos(ωaτ) cos(ωb(T − τ))− ω2
a + ω2

b

ωaωb
sin(ωaτ) sin(ωb(T − τ)).

The above expression was already reported by Meissner in 1918, and we look for a
deeper insight into the parameter regions corresponding to the stability boundaries
traceM = 2 and traceM = −2, which determine the complicated known structure
of resonance pockets.

In what follows, we substitute the interval length parameter τ by the ratio r ∈
(0, 1), where τ = rT , assuming also without loss of generality that T = 2π . Thus,
we can start our analysis by studying the parametric surfaces

cos(2πrωa) cos(2π(1− r)ωb)− ω2
a + ω2

b

2ωaωb
sin(2πrωa) sin(2π(1− r)ωb) = ±1,

(13)
corresponding to the stability boundaries traceM = 2 (for the + sign) and
traceM = −2 (for the − sign), which determine the bifurcation set of the problem.
Effectively, if by moving parameters one crosses some of the above parametric
surfaces, the system passes from being stable to unstable or vice versa.
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Clearly, when ωa = ωb = ω Eq. (13) reduces to cos(2πω) = ±1, so that the
stability boundaries contain the lines

Σn =
{
(ωa, ωb, r) : ωa = ωb = n

2
, r ∈ (0, 1)

}
, (14)

for any natural number n. The situation for ωa �= ωb is much more involved.
Before considering the problem in its generality, it is very interesting to look for

the special cases M = I (all the solutions are T -periodic) and M = −I (all the
solutions are 2T -periodic). For instance, to study the case when M = I , it suffices
to impose for the matrices in (11)–(12) to be inverse one of each other, getting the
conditions

cos(2πrωa) = cos(2π(1− r)ωb),

sin(2πrωa)

ωa
= − sin(2π(1− r)ωb)

ωb
,

ωa sin(2πrωa) = −ωb sin(2π(1− r)ωb).

(15)

Two cases arise. First, if the sides of the last two equations do not vanish, then after
dividing such two equations we get the trivial case ωa = ωb, for which we get the
reduced conditions

cos(2πrωa) = cos(2π(1− r)ωa),

sin(2πrωa) = − sin(2π(1− r)ωa),
(16)

that is, 2πrωa + 2π(1 − r)ωa = 2πωa = 2kπ , for some k ∈ N. In short, we have
that when ωa = ωb = k for some k ∈ N, then M = I . Second, when the sides of
the last two equations vanish, we have 2πrωa = kπ and 2π(1 − r)ωb = mπ for
some natural numbers k and m; to fulfill the first condition we need k and m to be
of the same parity.

A parallel argument applies for the case M = −I , and so we can state our
first main result, which gives the structure of the skeleton for the bifurcation set of
Eq. (2).

Proposition 1 Consider Eq. (2) with a = ω2
a , b = ω2

b, T = 2π , and τ = rT for
(ωa, ωb, r) ∈ R

+ × R
+ × (0, 1). For the parameter values corresponding to the

points belonging to the lines Σn given in (14) and to the denumerable family of
curves

Γk,m =
{
(ωa, ωb, r) : ωa = k

2r
, ωb = m

2(1− r)
, r ∈ (0, 1)

}
, (17)

the monodromy matrix of Eq. (2) satisfies M = I when k + m or n are even, while
M = −I if k +m or n are odd.
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Fig. 1 The first lines corresponding to M = I (blue) and M = −I (red). Observe the vertical
segments Σ1 to Σ5, all contained in the plane ωa = ωb which are alternatively associated with
M = −I and M = I , and some Γ -curves intersecting Σn for n ≥ 2

Any point Pk,m of Γk,m with (k + m)r = k belongs to the parametric plane
ωa = ωb, so that it is also in Σn for n = k + m, and constitutes one of the highest
co-dimension points of the bifurcation set, see Fig. 1.

Note that if we project the Γk,m curves in (17) on the plane (ωa, ωb) by
eliminating r , after some standard manipulations, we get the first quadrant branches
of the family of hyperbolas (2ωa − k) (2ωb −m) = km, with parallel asymptotes
to the axes, namely ωa = k/2 and ωb = m/2.

Starting from expression (13), we can try to visualize (typically, by implicit
plotting in 3D) the surfaces that organized by the lines given in Proposition 1 in
the parameter set (ωa, ωb, r) ∈ R

+×R
+× (0, 1), determine the full bifurcation set

of our problem. For instance, for 0 < ωa, ωb < 3 you obtain the configuration of
Fig. 2. We observe how both surfaces traceM = 2 and traceM = −2 are organized
in pairs of leaves that intersect each other along the lines of Proposition 1. The points
Pk,m of Proposition 1, namely

Pk,m =
(
k +m

2
,
k +m

2
,

k

k +m

)
,

turn out to be the highest co-dimension points (co-dimension 3) of the bifurcation
set, and their local study deserves further consideration.
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To fully understand the observed structure, in the next section we introduce new
parameters that not only simplify very much the analysis but also provide a deeper
insight into the bifurcation set.

3 Discovering the Hidden Regularity of the Bifurcation Set

In order to get a better knowledge of the intricate structure of stability boundaries
in Fig. 2, we consider the mean frequency ω, the global discrepancy between
frequencies δ, and their relative discrepancy 5, namely

ω = rωa + (1− r)ωb, δ = rωa − (1− r)ωb, 5 = ωa − ωb

ωa + ωb
. (18)

Note that, by definition, these parameters satisfy ω > 0, δ ∈ (−ω,ω), and
5 ∈ (−1, 1). Straightforward computations give the inverse relations to recover
the original parameters, namely

ωa = ω − δ5

1− 5
, ωb = ω − δ5

1+ 5
, r = (ω + δ)(1− 5)

2(ω − δ5)
, (19)

and if one computes the Jacobian of the transformation, one gets

∣∣
∣∣
∂(ωa, ωb, r)

∂(ω, δ, 5)

∣∣
∣∣ =

1

1− 52
,

so that the change is regular in its whole domain.
A first virtue of this parameter transformation is that they straighten the lines

where M = ±I , now becoming orthogonal, because we have

Fig. 2 The first surfaces corresponding to traceM = 2 (light blue), traceM = −2 (light red), and
all of them. We observe 3D pockets where Eq. (2) becomes unstable along with intricate parameter
regions between surfaces where the equation is stable
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Fig. 3 The first lines
corresponding to M = I

(blue) and M = −I (red) in
the new parameter set
(ω, δ, 5). Observe that the
segments Σ1 to Σ5 are now
contained in the plane 5 = 0.
They become orthogonal to
the Γ -lines, which appear as
bounded vertical segments

Σn =
{
(ω, δ, 5) : ω = n

2
, δ ∈

(
−n

2
,
n

2

)
, 5 = 0

}
, (20)

and

Γk,m =
{
(ω, δ, 5) : ω = k +m

2
, δ = k −m

2
, 5 ∈ (−1, 1)

}
, (21)

which now are finite segments, see Fig. 3.
The convenience of introducing these new parameters is natural after observing

that in (13) the product of cosines (respectively, sines) can be written as

1

2
[cos(2π(rωa ± (1− r)ωb))± cos(2π(rωa ∓ (1− r)ωb))] .

Therefore, Eq. (13) becomes

1

2
[cos(2πω)+ cos(2πδ)]− ω2

a + ω2
b

4ωaωb
[cos(2πδ)− cos(2πω)] = ±1,

or equivalently, (ωa +ωb)
2 cos(2πω)− (ωa −ωb)

2 cos(2πδ) = ±4ωaωb. If in this
last expression with the plus sign (the minus sign) we make use of the trigonometric
identity cos(2θ) = 1 − 2 sin2 θ (the identity cos(2θ) = 2 cos2 θ − 1, respectively)
and we introduce our third new parameter 5, then it is immediate to state our final
main result, as follows.
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Theorem 1 In terms of the new parameters (ω, δ, 5) given in (18), the analytical
expressions for the parametric surfaces traceM = 2 and traceM = −2 (the
stability boundaries) are given by

sin2(πω)− 52 sin2(πδ) = 0,

and

cos2(πω)− 52 cos2(πδ) = 0,

respectively, where the set of admissible parameter values is

{(ω, δ, 5) : ω > 0, δ ∈ (−ω,ω), 5 ∈ (−1, 1)}.

The advantages of the new expressions for the stability boundaries are rather
obvious. Apart from its simplicity, we realize that in addition to the symmetry stated
in Lemma 1, which translates now to the invariance of the stability boundaries in the
parameter space (ω, δ, 5) under the change

(ω, δ, 5)←→ (ω,−δ,−5),

there appear the new elementary symmetries

(ω, δ, 5)←→ (ω,−δ, 5),

and

(ω, δ, 5)←→ (ω, δ,−5),

and so we can restrict our attention to the parametric regions with non-negative
values of δ and 5, as done in Fig. 4. Furthermore, we can take advantage of the
1-periodicity of the surfaces both with respect to parameters ω and δ.

We also note that the expressions for the stability boundaries provided by
Theorem 1 admit the trivial factorizations

[sin(πω)+ 5 sin(πδ)] · [sin(πω)− 5 sin(πδ)] = 0

and

[cos(πω)+ 5 cos(πδ)] · [cos(πω)− 5 cos(πδ)] = 0,

which explain the interleaving property of the family, organized in pairs of
oscillating surfaces that define the resonance regions. Moreover, these factorizations
allow to determine in a rigorous way the shape and size of such regions; the details
of such analysis will appear elsewhere.
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Fig. 4 The new first surfaces associated with traceM = 2 (light blue), traceM = −2 (light red),
and the ensemble of them. Thanks to its symmetry, we only need to plot the part corresponding to
non-negative values of δ and 5

δ δ

ω ω ω

δ
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2.0

1.5
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0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
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1.5

1.0

0.5

0.0

Fig. 5 From left to the right, sections for positive δ of the bifurcation set of Fig. 4 when 5 = 0.1,
5 = 0.5, and 5 = 0.9. The resonance pockets become greater and greater as 5 approaches 1.
The shape and size of these pockets can be completely justified thanks to Theorem 1, by using the
trivial factorizations of the analytical expressions for the surfaces traceM = ±2

Thus, thanks to Theorem 1, we have achieved to discover the hidden regularity of
the bifurcation set, see Figs. 4 and 5. The resonance regions, when we take different
sections with a fixed value of 5, appear organized in pockets around the lines ω =
(2k − 1)/2 and ω = k, and there appear 2k − 1 and 2k of them, respectively. They
become wider and wider as |5| aproaches the unity and degenerate into segments
without area when 5 = 0. Thus, this relative discrepancy 5 between frequencies
seems to play the most important role regarding the magnitude of resonance pockets.

4 Concluding Remarks

In this work, the study of Hill’s equations with two-step potentials has been
revisited, and a new approach based upon a suitable choice of new parameters has
been shown to be very powerful, not only gaining in simplicity of the analysis,
but also providing a deeper insight into the bifurcation set. The hidden regularity
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of such a set has been unveiled, exhibiting new symmetries and periodicities. The
local study of the highest co-dimension bifurcation points is now a simple task, to
be done in a future work, where the remaining cases, namely the elliptic–parabolic
configuration (a > 0, b = 0), and the elliptic–hyperbolic one (a > 0, b < 0) will
also be addressed.
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Bifurcation Studies of a Nonlinear
Mechanical System Subjected to
Multi-Frequency-Quasi-Periodic
Excitations

K. Prabith and I. R. Praveen Krishna

1 Introduction

The engineering systems such as electronic circuits, vehicle suspensions, gears,
and multi-spool gas turbines are often subjected to multi-frequency-quasi-periodic
excitations during their operation period. The presence of nonlinearities in the sys-
tem adds complexity to the analysis and makes the system response unpredictable
sometimes. It requires an extensive nonlinear dynamic analysis of such systems to
prevent their unwanted failure during the worse operating conditions. Generally,
the numerical integration schemes are employed to solve the nonlinear differential
equations representing the system [1]. However, it is very time-consuming for
the multi-degree of freedom (DOF) models since all the transients need to die
out for obtaining a steady-state response. Some researchers [2–4] have used the
multi-harmonic balance method (MHBM) to acquire the frequency responses which
is found to be very effective compared to numerical integrations. An alternating
frequency-time (AFT) scheme [5] is incorporated with the MHBM for the efficient
calculation of the Jacobian matrix. In addition to the calculation of periodic
responses, the MHBM-AFT can be used for the tracking of quasi-periodic branches
as well [6].

The response curves and their associated bifurcations can provide a clear picture
of the system dynamics. Bifurcations can be identified by performing the stability
analysis and then, checking the values of the Floquet exponents. The detection
of bifurcation points is very important since it can cause dramatic changes in the
response. For example, a limit point (LP) bifurcation can lead to a sudden jump
in the response as the parameter is varied. The influence of parameters on the
overall dynamics of the system is very significant, and it can result in different kinds

K. Prabith · I. R. Praveen Krishna (�)
Indian Institute of Space Science and Technology, Thiruvananthapuram, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Lacarbonara et al. (eds.), Advances in Nonlinear Dynamics, NODYCON
Conference Proceedings Series, https://doi.org/10.1007/978-3-030-81162-4_63

735

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81162-4_63&domain=pdf
https://doi.org/10.1007/978-3-030-81162-4_63


736 K. Prabith and I. R. Praveen Krishna

of bifurcations. As a result, the designer has to be very cautious in selecting the
system parameters. Establishing a bifurcation map for determining the boundaries
of the dynamic regimes may assist the designers in the appropriate selection of
parameters. It can be achieved by performing the parametric analysis and collecting
all the detected bifurcations to plot the bifurcation map. Using the harmonic balance
method (HBM), some authors [7–10] have performed the bifurcation tracking for
single-frequency excitation problems. However, bifurcation studies for the multi-
frequency-quasi-periodic excitation problems are rare in the literature.

Generally, the multi-frequency-quasi-periodic excitation problems are solved
using numerical integration schemes. But, they are very time-consuming when the
model is of large DOF. Later, the MHBM-AFT technique has been introduced;
however, it has some limitations when more than two-frequency excitations come
into the picture. In such cases, the AFT procedure becomes cumbersome and its
programming becomes complex. The time variational method (TVM) does not
have such problems since it operates in the time domain only. However, it cannot
solve the quasi-periodic problems directly, since the formulation of TVM is based
on periodicity. As a result, it is extended to more than two-frequency excitation
problems by expressing the governing equations in terms of a frequency that is
the common divisor of the approximated frequency components [11]. Now, the
problem becomes periodic and it can be solved using the TVM. Hence, in this paper,
the TVM is employed for performing bifurcation studies of a mechanical system
undergoing multi-frequency-quasi-periodic excitations.

2 Methodology Formulation

The governing differential equation of an N DOF, nonlinear mechanical system
undergoing multi-frequency-quasi-periodic excitation can be expressed as,

M ẍ+ C ẋ+K x+ fn(x, t) = fext (ω1, ω2, ..., ωn, t) (1)

where M, C, and K are the mass, damping, and stiffness matrices respectively, of
order N×N . fext and fn are the external and nonlinear force vectors respectively, of
order N × 1. ẋ and ẍ are the first and second derivatives of x with respect to time t .
ω1, .., ωn are the excitation frequencies that may be the irrational multiples of each
other. As a result, the system response will include the linear combinations of all
these frequencies and it will be quasi-periodic in nature. For analyzing such quasi-
periodic systems, the periodic solution methodologies such as the harmonic balance
method (HBM) and time variational method (TVM) cannot be useful. However,
it can be made periodic by expressing the excitation frequencies in terms of their
common divisor as given below,
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ω0 = ω̃j

pj
, j = 1, 2, ..., n pj ∈ N (2)

where ω̃j is the approximated value of ωj obtained by approximating the irrational
frequency ratios to rational. As a result, the response will be approximate and its
accuracy is highly dependent on how close the approximated ratios are with the
actual ones. By using the transformation τ = ω0t , Eq. (1) is modified as,

ω2
0 M x′′ + ω0 C x′ +K x+ fn(x, τ ) = fext (τ ) (3)

where x′ and x′′ are the first and second derivatives of x with respect to τ . Now,
Eq. (3) can be solved using the TVM by expressing the response, nonlinear function,
and external force as,

x(τ ) = X̂ . χ(τ ) fn (τ ) = F̂n . χ(τ) fext (τ ) = F̂ext . χ(τ ) (4)

where χ(τ) is the basis function that may be a wavelet scaling function or a finite
element shape function. X̂, F̂n, and F̂ext are the displacement, nonlinear force, and
external force matrices, respectively, of order N×Np, where Np is the discrete-time
points taken for the analysis [11]. By substituting Eq. (4) in Eq. (3) and following
the Galerkin procedure, the resulting weak form residual is expressed as,

R(x̂) = [
ω2

0

(
M⊗ D(2))+ ω0

(
C⊗ D(1))+ (

K⊗ D(0))]x̂

+ (
I⊗ D(0))(f̂n(x̂)− f̂ext ) = 0

(5)

where x̂ = vec (X̂), f̂n = vec (F̂n), and f̂ext = vec (F̂ext ). vec ( ) is a function
which stacks the columns of the matrix operated upon. ⊗ is the Kronecker product
and D(m) are the differentiation matrices of order m = 0, 1, 2. The differentiation
matrices are derived from the basis function and its expressions are given in Ref.
[12]. The Newton–Raphson method is used to solve Eq. (5), and an arc-length
continuation method is also incorporated to obtain the periodic unstable branches.

2.1 Stability Analysis

In this paper, the local stability of the solution points is determined using the Floquet
theory [12]. For performing the analysis, the system is perturbed periodically from
its equilibrium point and the resulting variational equation is converted into a
quadratic eigenvalue problem by using the relation,

ε(τ ) = eλτφ(τ) (6)
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where ε(τ ) is the periodic perturbation function. λ and φ(τ) are the eigenvalues
and eigenfunctions of the perturbed system, respectively. Now, by using the relation
φ(τ) = Φ̂ . χ(τ ), the quadratic eigenvalue problem is expressed in the discrete-
time domain and is solved for λ. Even though the solution process provides 2NNp

eigenvalues, the first 2N eigenvalues with the smallest imaginary parts in modulus
will be useful for the stability analysis. The system is asymptotically stable when
the real parts of those eigenvalues are negative and is unstable when at least one of
them is positive.

3 Mathematical Model

In order to perform the nonlinear analysis, a Duffing oscillator undergoing multi-
frequency excitation is utilized. The parameters of the model are listed in Table 1.
Mainly two cases of external excitations are applied at the mass center: The first
one is a two-frequency excitation and the latter is a three-frequency excitation. The
excitation frequency ratios for the given model are expressed below,

ω1

ω2
= √2 for case 1

ω1

ω2
= √2,

ω1

ω3
= 0.625 for case 2

(7)

Table 1 System parameters of the Duffing oscillator

Properties Value

Mass (Kg) m = 10

Damping (Ns/m) c = 20

Stiffness (N/m) k = 4000

Nonlinear function

f n = αx3 α = 0 to 20000

Excitation force

f ext = f1cos(ω1t)+ f2cos(ω2t) f1 = 1000, f2 = 1000,

f ext = f1cos(ω1t)+ f2cos(ω2t)+ f3cos(ω3t) f1 = 1000, f2 = 1000, f3 = 1000
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4 Results and Discussions

4.1 Case 1: Two-frequency Excitation

In order to employ the TVM, the irrational frequency ratio is approximated and the
common divisor is calculated as given below,

ω̃1

ω̃2
= 10

7
= 1.429 ≈ √2 ω0 = ω̃1

10
= ω̃2

7
(8)

The number of time points, Np is taken as 1000 for the analysis. Figure 1 shows the
stability diagram of the Duffing oscillator when nonlinear stiffness α = 10000.
In Fig. 1, the stable response is indicated by a solid line whereas the unstable
part is shown by the dashed line. The stable part of the responses is validated
using numerical integration (NI) and a good agreement is obtained, as shown in
Fig. 1. Limit point (LP) and Neimark–Sacker (NS) bifurcations are observed in the
system response, and they are represented using the circle and triangle markers,
respectively.

The response is stable until ω = 25.76 rad/s and then it undergoes NS bifurcation
at ω = 25.76 rad/s. It is identified by checking the Floquet exponents as shown in
Fig. 2a. An NS bifurcation is detected when a pair of Floquet exponents crosses the
imaginary axis as a pair of complex conjugates [7, 8]. Generally, an NS bifurcation
indicates a transition from periodic to the quasi-periodic regime. However, in the
case of quasi-periodic excitation problems, the response is already quasi-periodic.
Hence, the NS bifurcation represents a transition from quasi-periodic to another
quasi-periodic regime. It can be understood from Fig. 3, in which the motions
before and after the NS bifurcation are obtained using numerical integration and are

Fig. 1 Stability diagram of
the Duffing oscillator
subjected to two-frequency
excitations when α = 10000
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(a) (b)

Fig. 2 Floquet exponents in the vicinity of NS and LP bifurcations. (a) NS at ω = 25.76 rad/s. (b)
LP at ω = 39.77 rad/s

compared. Since the Poincaré maps of both motions are closed curves, the motions
are said to be quasi-periodic in nature. Now, the fast Fourier transform (FFT) of
the responses are analyzed to determine the frequency contents. It is found that
the motion before the NS bifurcation contains the frequency components that are
the linear combinations of the excitation frequencies. Hence, this kind of motion
is predictable using the current solution method. However, the motion after the NS
bifurcation includes certain frequency components that are not known before the
methodology formulation. Hence, the determination of such a quasi-periodic branch
is difficult using the proposed method, since the frequency components are a priori
unknown.

Beyond the NS bifurcation point, the response is unstable until ω = 32.36 rad/s.
When the frequency is increased again, the response becomes stable in the range of
32.36 < ω < 39.77 rad/s. Later, a sudden jump is observed at ω = 39.77 rad/s that
indicates the occurrence of LP bifurcation. It is confirmed by checking the Floquet
exponents as shown in Fig. 2b, where one of the Floquet exponents crossed the
imaginary axis along the real axis. Similar to the first peak, NS and LP bifurcations
are observed for the second peak as well.

In order to find the bifurcation map of NS bifurcations, a parametric analysis is
conducted. Figure 4 shows the NS bifurcation tracking for the variation of nonlinear
stiffness. Mainly, two NS boundaries are noticed and they are shown in Fig. 5. They
represent the bifurcation map of NS bifurcations, inside which a new quasi-periodic
regime exists. From Fig. 5, it is observed that the NS1 bifurcation disappears below
α = 5670 whereas the NS2 bifurcation continues to exist till α = 1115. In addition,
the co-existence of different quasi-periodic responses is also noticed in Fig. 5. The
bifurcation map of LP bifurcations is not included in this paper.
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(a) (b)

Fig. 3 Poincaré map and FFT of the responses, (a) before NS bifurcation, (b) after NS bifurcation

4.2 Case 2: Three-Frequency Excitation

The approximated frequency ratios and the common divisor of the three-frequency
excitation problem can be obtained as,

ω̃1

ω̃2
= 10

7
= 1.429 ≈ √2

ω̃1

ω̃3
= 10

16
= 0.625 ω0 = ω̃1

10
= ω̃2

7
= ω̃3

16
(9)

The number of time points required to solve the problem is taken as 3000.
An increase in the time points leads to an increase in the computation time as
well. However, it is very less compared to the numerical integration schemes. In
addition, the TVM does not require an alternate transformation between the time and
frequency domains during the calculation of the Jacobian matrix as compared to the
HBM. The Jacobian matrix can be directly obtained by taking the partial derivatives
of the nonlinear function with respect to the state variables and calculating them at
the time points. It makes the programming very simple even though the computation
time is inferior to the HBM.
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Fig. 4 NS bifurcation tracking for the variation of nonlinear stiffness

Fig. 5 Bifurcation map of NS bifurcation for the variation of nonlinear stiffness
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Fig. 6 Stability diagram of the Duffing oscillator subjected to three-frequency excitations when
f1 =1000, f2 =1000, f3 =1000, and α = 5000

The stability diagram of the three-frequency excitation problem is shown in
Fig. 6. The system response contains the linear combinations of excitation frequen-
cies which is generally expressed as iω1 + jω2 + kω3. For simplicity, it can be
denoted using (i, j, k), where i, j , and k are integers. In Fig. 6, three principal
resonance peaks are noticed corresponding to the three excitation frequencies. They
are denoted as (1,0,0), (0,1,0), and (0,0,1), respectively. In addition, a small peak is
also observed which corresponds to the combination (-1,1,1).

As observed earlier, LP and NS bifurcations are seen in the response at different
frequencies. In order to determine the boundaries of NS bifurcation with respect
to the excitation force, a parametric analysis is conducted and a bifurcation map is
plotted as shown in Fig. 7. Mainly, three NS boundaries are noticed and its width
is increasing as the magnitude of excitation force is increasing. The co-existence of
different dynamic regimes is also possible at higher values of the excitation force.

5 Conclusions

In this paper, the bifurcation studies of a nonlinear mechanical system subjected to
multi-frequency-quasi-periodic excitation are performed using the TVM. A Duffing
oscillator undergoing two and three-frequency excitations is used for the analysis.
An arc-length continuation method is incorporated with the TVM to track the
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Fig. 7 Bifurcation map of NS bifurcation for the variation of excitation force

unstable periodic branches. The local stability of the solution points is determined
using the Floquet theory, and the associated bifurcation points are detected using the
Floquet exponents. From the analysis, it is observed that two bifurcations, namely
LP and NS bifurcations are seen in the frequency response. The onset points of
these bifurcations are mainly dependent on the values of the system parameters
such as nonlinear stiffness and excitation force. In order to find the boundaries of
NS bifurcations, a parametric analysis is conducted and detected the locations of NS
bifurcation for different values of the system parameters. Then, a bifurcation map
is plotted connecting all the detected NS bifurcation points. The bifurcation map
represents the boundary where a transition from one motion to another happens. It
will be useful for designers while selecting the parameters of the system. However,
conducting the parametric analysis to determine the bifurcation map is very time-
consuming. An efficient method will be performing the parametric continuation to
track the path of bifurcation which is suggested as future work.
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A Novel Balancing Method of the Rotor
System Using Load Identification
and FIR Filter-Based Force Estimation
Technique

Shibo Zhao, Xingmin Ren, Kuan Lu, Yongfeng Yang, Lihui Li, and Chao Fu

1 Introduction

Excessive vibration of the rotor system must be solved in the process of aero-
engine development. The rotor operated with stable condition is an important
guarantee to reduce the vibration and improve the safety, reliability, and service
life of aero-engine. A series of works have focused on the evaluations of the
dynamic characteristics of rotor system [1–3]. Identifying the unbalance of rotor
system is a key factor for balancing rotating machinery. Modal Balancing Method
(MBM) [4] and Influence Coefficient Method (ICM) [5] are two classical methods
used in rotor balancing field along with identification of unbalanced parameters
with steady-state responses under the circumstances of a series of selected rotating
speeds. Meanwhile, transient balancing methods [6, 7] during acceleration are also
mentioned by some research with the condition of several test runs with trail
weights. However, the balancing effect of MBM and ICM are easily affected by the
factors that influence the condition of the rotational speed which cannot be ignored,
such as rotational speed fluctuation and low-frequency noise in actual operation
process. Meanwhile, the above two balancing methods require the rotor system to
operate with constant rotational speed. There is no doubt that balancing without
considering the condition of rotational speeds would make sense in field balancing.

Another disadvantage of conventional techniques of balancing is the requirement
of a number of test runs, which is always not convenient for large rotating machines.
The dynamic balancing method requires test run without trial weights [8, 9] is put
forward and the central idea is to estimate the rotor unbalance without adding trail
weights, which will omit the process of test run with trial weights, avoid problems
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that trail weights may lead to, e.g., excessive vibration response of the structure,
and make the balancing process more convenient and safe. The best approach of
balancing without trial weights is identifying unbalance by optimized balancing
technology [10].

In this chapter, we identify the unbalance of the rotor system by deducing
the relationship between the unbalance excitation force and vibration response,
which is the other effective way of balancing without trial weights [11]. As a
matter of fact, some deterministic-stochastic techniques have been introduced to
rotating dynamics for unknown input force estimation [12, 13]. An FIR filter-based
force estimation technique is proposed in this chapter to eliminate the errors of
the preliminary excitation forces calculated by the load identification technique,
and then the unbalance parameters are identified by analyzing the amplitudes and
phases of the excitation forces estimated by FIR filter. The proposed method does
not require test runs with trail weights and succeeds in identifying the unbalance
parameters without the limitation of the rotational speed conditions. The balancing
results of double discs rotor system demonstrate the accuracy and the effectiveness
of the proposed method.

TMM is introduced in Sect. 2, which is used to obtain the dynamical equations
of rotor system, and then the balancing process of the proposed method is
demonstrated in detail. The balancing procedure of double-disc rotor system is
introduced in Sect. 3 to verify the accuracy of the proposed method with the
conditions whatever variable rotational speeds or constant rotational speeds. The
results of the whole balancing procedures are discussed in Sect. 4.

2 Modeling and Balancing Method

2.1 The TMM

The TMM is vastly utilized to derive the general equations of motion of the
rotor machines because of its high precision in calculation and convenience to
programming. As shown in Fig. 1, the TMM requires the shaft of the rotor system
to be divided by the distribution of discs, and the rotor system with N discs is
divided into N + 1 segments. Each segment consists of several sub-structures and
different sub-structures corresponding to certain pattern of transfer matrices. When
the physical parameters are given, these transfer matrices are determined.

By considering the boundary conditions at both ends of the shaft, the general
motion equation of the rotor system can be obtained using the TMM as follows:

MÜ(t)+ CU̇(t)+KU(t) = F(t) (1)

where M, C, and K are the mass matrix, damping matrix, and stiffness matrix
of rotor system which are equivalent to the matrices of 4N × 4N, respectively.
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Fig. 1 Academic model of the rotor system with N discs

U(t), U̇(t), Ü(t) are the displacement, velocity, and acceleration vectors, and each
owns 4N elements, respectively. F(t) denotes the excitation forces corresponding to
the mass unbalance on the discs, which owns 4N elements as well.

2.2 The Balancing Process of the Proposed Method

2.2.1 The Load Identification Technique

The unbalance excitation force is considered as the external input of the rotor
system which is required to be calculated in the balancing procedure. The unbalance
response of the rotor system is considered as the output that is produced by the
external input and can be obtained by analyzing the general equation of motion of
the rotor system. In the meantime, the Frequency Response Function (FRF) of the
rotor system consists of the critical speed and modal parameters of the rotor system
which can be obtained through the homogeneous solution of differential equation
of rotor system whenϕ̇ = ϕ̇c, ϕ̇c is the angular velocity corresponding to the critical
rotational speed. In this way, the process of the load identification technique is to
preliminarily calculate the unbalance excitation force of the rotor system by the
unbalance response and the FRF of the rotor system.

The relationship between the input and output of the general system can be
expressed as follows:

U (ω) = H (ω)F (ω) (2)

where [U(ω)]L × 1 is the dynamic response vector, L represents the total number of
measurement points of the dynamic response, [F(ω)]P × 1 is the unbalance excitation
force vector, P represents the total number of the unbalance excitation force while
L ≥ P in general, and [H(ω)]L × P is the FRF of the system.

The relationship between modal FRF matrix and FRF matrix is as follows:

H (ω) = ΦHq (ω)Φ
T
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where Hq(ω) = diag[H1(ω), H2(ω), ···, Hr(ω), ···, HN(ω)], Hr(ω) is the rth modal
FRF of the system which can be expressed as:

Hr (ω) = 1

Mr

(
ω2
r − ω2 + 2jωωrξr

) , (r = 1, 2, · · · , N)

where Mr, ωr, and ξ r are the rth modal mass, modal frequency, and modal damping
ratio of the system, respectively. ω is time-varying frequency.

For non-proportional damping system, the unbalance excitation force can be
expressed as:

F (ω)=
({

Φ∗
} {

Φ∗
}T
)−1 {

Φ∗
}

Mr

(
ωr

2−ω2+2jωωrξr

) ({
ΦT

}
{Φ}

)−1 {
ΦT

}
U (ω) (3)

where Mr, ωr, and ξr are the diagonal matrix composed of modal mass, modal fre-
quency, and modal damping ratio, respectively. ω is the diagonal matrix composed
of the time-varying frequency, {�} = {[φ]1, [φ]2, ···, [φ]r, ···, [φ]N}, [�*]= {[φ*]1,
[φ*]2, ···, [φ*]r, ···, [φ*]N}, (r = 1, 2, ···, N) are the complex modal matrices of the
rotor system, and [φ]r, [φ*]r are the complex modal vectors.

2.2.2 The FIR Filter-Based Force Estimation Technique

In the work discussed in this chapter, the FIR filter-based input estimation technique
is used for the estimation of unbalance excitation force of a rotating machinery. The
theory, algorithm, and implementation of the FIR filter system are systematically
introduced by Hu [14]. The process of the FIR filter system is that the calculated
force F passes through the FIR filter system p, so that the output F′ no longer
contains the frequency component of |f | > |fc|, but the component of |f | ≤ |fc|
remains lossless, where fc is the cutoff frequency of filter. In the meantime, the
finite length of p and the input do not contain the feedback from the output to the
input, making the FIR filter system always stable. The relationship between the input
and output of FIR filter system in frequency domain while z = ejω is expressed as,
F′(ejω) = P(ejω)F(ejω), where F′(ejω), F(ejω), and P(ejω) are the Fourier transform
of F′(n), F(n), and p(n), respectively. It is important to note that F(ejω) is equivalent
to the unbalance excitation force F(ω) calculated by Eq. 3.

2.2.3 The Unbalance Parameters Identification Procedure

The excitation force vectors consist of the unbalance excitation forces of the discs
in time domain which are expressed as follows:

{
[Fx(t)]N×1 = [Fx1(t), Fx2(t), · · · , Fxi(t), · · · , FxN(t)][
Fy(t)

]
N×1 =

[
Fy1(t), Fy2(t), · · · , Fyi(t), · · · , FyN(t)

]
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where N is the number of discs. The elements of the excitation force vectors can be
rewritten as follows:

{
Fxi(t) = mieiA(t) cos [Bx(t)+ ϕei]
Fyi(t) = mieiA(t) sin

[
By(t)+ ϕei

] (4)

where mieiA(t) is the term of amplitude, mi, ei represent the mass and eccentricity
of ith disc, A = √

ϕ̇4(t)+ α2, and ϕ̇(t), α are the angular velocity and acceleration
of the disc. ϕ̇(t) = ϕ̇ (t0) + αt , ϕ̇ (t0) is the initial angular velocity. Bx(t) and By(t)
are the terms of phases; Bx(t) = ϕ(t) + ψx(t), By(t) = ϕ(t) + ψy(t), and ϕ(t) are

the rotational angles of the disc; and ϕ(t) = ϕ (t0)+ ϕ̇(t)t + 1
/

2 αt
2 ϕ(t0) are the

initial angles of the disc. Generally, we assume that ϕ(t0) = 0, ψx(t) and ψy(t) can
be expressed as follows:

{
ψx(t) = arctan− α

ϕ̇2(t)
ψx(t) ∈

(−π
2 , 0

)

ψy(t) = arctan− α
ϕ̇2(t)

ψy(t) ∈
(−π

2 , 0
) (5)

With regard to the rotor system operating with constant rotational speed, ϕ̇ (t0)is
a fixed value, α = 0, ϕ(t) = ϕ̇ (t0) t , ψx(t) = ψy(t) = 0. Because the rotor system
operates with variable rotational speeds, we assume ϕ̇ (t0) = 0, α is a fixed value.

The corresponding amplitudes, phases, and time points of each data of the
unbalance force estimated by FIR filter are given in Eqs. 4 and 5, and the unbalance
parameters (eccentricities and azimuths) of the discs can be calculated by Eqs. 4
and 5.

Therefore, the whole balancing procedure is present as follows: the unbalance
excitation forces of the discs are preliminarily obtained by Eq. 3. After that, the
ultimate unbalance forces are estimated by FIR filter while the frequency component
of |f | ≤ |ϕ̇(t)/2π | remains lossless. The corresponding amplitudes, phases, and
time points of the estimated unbalance forces are introduced in Eq. 4, and the
unbalance parameters (eccentricities and azimuths) of the discs can be obtained by
the amplitudes and phases of the corresponding unbalance forces estimated by FIR
filter.

3 Simulation Balancing of the Double-Disc Rotor System

In this section, we will investigate the balancing effect and accuracy of the proposed
method on double-disc rotor system. The unbalance parameters will be identified
in the situation of constant rotational speed and variable rotational speeds. The
displacements and the modal parameters of the model will be calculated first and
will be regarded as the known quantities of the system. It should be noted that the
displacements can be directly measured by displacement sensors in experiment. The
modal parameters of the system can be obtained by finite element analysis [15]
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Fig. 2 Academic model of the rotor system with double discs

Table 1 Value of physical parameters of the double-disc rotor system

Unit Parameter and value

Shaft l1 = l5 = 0.01 m, l2 = 0.16 m, l3 = 0.2 m, l4 = 0.18 m,
Diameter of shaft: d = 0.01 m

Disc Mass: m1 = 4 kg, m2 = 2.5 kg, diameter: h1 = 0.15 m,
h2 = 0.12 m, Damping: c1 = c2 = 20 N·s/m

Unbalance parameters: e1 � ϕ1 = 4 × 10−5 m� 210◦,
e2 � ϕ2 = 6 × 10−5 m� 180◦

Young’s modulus of elasticity E = 2.1 × 1011 Pa
Stiffness of support k1 = 5.5 × 105 N/m, k2 = 5.0 × 105 N/m

while the model can be established by analytic method. Liu et al. [16] obtained
the modal parameters of the rotor system by software Samcef Rotor. For complex
model, the combination of analytical and experimental modal analysis is an effective
way to obtain modal parameters. After that, the validity of calculating the unbalance
force and the estimation of the unbalance force by FIR filter will be analyzed. The
unbalance parameters are identified through the estimated unbalance force. The
results of the whole balancing procedures are discussed afterward.

The model of the isotropic double-disc rotor system is shown in Fig. 2 and the
physical parameters of the rotor system are given in Table 1.

3.1 Calculating Transient Response and Modal Parameters
by the TMM

In this section, the TMM is used to calculate the transient unbalance response and
modal parameters of the double-disc rotor system.

For the double-disc rotor system shown in Fig. 2, M, C, K in Eq. 1 are equivalent
to the matrices of 8 × 8, U(t), U̇(t), Ü(t),F(t) are the column vectors each owns
8 elements. It should be noted that U(t) = [x1,β1, y1, γ 1, x2,β2, y2, γ 2], where x1,
β1, y1, γ 1 and x2, β2, y2, γ 2 are the displacement and slope angle of the respective
cross-section within the XOZ plane and YOZ plane of each disc, respectively.
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Table 2 The modal parameters of the double-disc rotor system

Modal shape Critical speed (r/min) Modal frequency (rad/s) Modal mass

φ1 φ11 = 1 φ2 φ12 = 1 1st 809.59 1st 84.78 1st 6.64

φ21 = 1.03 φ22 = −1.57 2nd 2832.32 2nd 296.60 2nd 10.16

Through multi modal analysis of the rotor system as shown in Eq. 1, the
eigenvalues-based algorithms are introduced to obtain the eigenvalues and the
eigenvectors, which are the modal frequency and the modal shapes of the rotor
system, respectively. The modal frequency ω = [ω1, ω2]T, the modal shapes
�r = [φ1r φ2r]T, (r = 1, 2), and the modal mass matrix Mr = diag[M1, M2]
of double-disc rotor system are tabulated in Table 2. Meanwhile, the first critical
speed is 809.59 r/min and the second critical speed is 2832.32 r/min. With regard
to the isotropic double-discs rotor system, the modal shapes are the function of the
displacements of x-axis of discs. Meanwhile, the modal shapes correspond to each
order modal frequency.

3.2 The Balancing of the Rotor System with Constant
Rotational Speed

The rotor system that operates at a speed of 600 r/min, 810 r/min, 1800 r/min, and
2832 r/min are analyzed to investigate and verify the balancing effect and accuracy
of the proposed method. The balancing process of the constant rotational speed of
1800 r/min is selected as an example, the calculated forces of x-axis of the discs
are preliminarily obtained by the steady-state displacements of x-axis of the discs
and the modal parameters shown in Table 2. The unbalance forces estimated by
FIR filter are shown in Fig. 3.The exact forces used to analyze the accuracy of the
calculated forces of the discs are shown in in Fig. 3.

Figure 3 shows that the main frequency of the calculated forces and the exact
excitation forces are basically in agreement while the rotor system operates at
1800 r/min. Further, the amplitude of the calculated results are slightly less than the
exact results; the relative errors of the amplitude between the exact and calculated
forces of disc 1 and disc 2 in frequency domain are 1.07% and 6.32%, as shown in
Fig. 3, respectively.

The unbalance parameters identified by the estimated steady-state forces and
Eq. 4 are given in Table 3. By adding counterweight 3.85 × 10−5 m� 33.00◦ and
5.39 × 10−5 m� 0.11◦ to the corresponding discs of the rotor system, the x-axis
displacements of each disc are greatly reduced at an operating speed of 1800 r/min
as shown in Fig. 4. The results obtained and the balancing effect of the proposed
method at rotor speeds of 600 r/min, 810 r/min, and 2832 r/min are given in Table 3.

It should be noted that the balancing effect at an operating speed of 810 r/min
is worse than that at other rotational speeds. The preliminary conclusion of the
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Fig. 3 Comparison of exact and calculated forces of x-axis in frequency domain

Table 3 The balancing results of the double discs rotor system

Identified unbalance
parameters Identified error Amplitude (m)

Rotational
speed (r/min) Disc Eccentricity/Azimuth Eccentricity/Azimuth Before/After balancing

Amplitude
decrease

600 1 3.97 × 10−5 m/200.21◦ 0.75%/−9.79 6.40 × 10−5/9.00 × 10−6 85.94%

2 6.22 × 10−5 m/174.11◦ 3.67%/−5.89 6.70 × 10−5/1.00 × 10−5 85.07%

810 1 2.75 × 10−5 m/173.14◦ 31.25%/−36.86 4.35 × 10−4/2.18 × 10−4 49.89%

2 5.85 × 10−5 m/159.25◦ 2.5%/−20.75 4.49 × 10−4/2.25 × 10−4 49.89%

1800 1 3.85 × 10−5 m/213.00◦ 3.75%/3.00◦ 5.90 × 10−5/6.00 × 10−6 89.83%

2 5.39 × 10−5 m/180.11◦ 10.17%/0.11◦ 5.05 × 10−5/3.00 × 10−6 94.06%

2832 1 3.89 × 10−5 m/206.35◦ 2.75%/−3.65◦ 2.31 × 10−4/2.30 × 10−5 90.04%

2 5.88 × 10−5 m/174.66◦ 2.00%/−5.34 4.68 × 10−4/4.60 × 10−5 90.17%

Fig. 4 X-axis displacements of the discs before and after balancing with the rotational speed of
1800 r/min

above phenomenon is that the calculated results of the excitation force while the
rotor operating at 810r/min are not in line with the exact excitation force, while
810r/min is near the first critical speed. However, the balancing effect of operating
at 600 r/min and 1800 r/min is better than that at 810 r/min. Therefore, the balancing
rotational speed before and after the first critical speed should be selected for the
secondary steady-stated balancing of the rotor system if the balancing accuracy near
the first order fails to reach the required balancing standard.
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3.3 The Balancing of the Rotor System with Variable
Rotational Speeds

With regard to the variable rotational speeds with constant angular acceleration of
20 rad/s2, the x-axis calculated forces of the discs are preliminarily obtained by the
x-axis transient displacements of the discs and the modal parameters. The unbalance
forces estimated by FIR filter are shown in Fig. 5. The exact excitation forces used
for analyzing the accuracy of the calculated forces of the discs are shown in Fig. 5.

The unbalance parameters derived by Eq. 4 and the unbalance forces esti-
mated by FIR filter are tabulated in Table 4. The identified errors of the eccen-
tricities are within 10% and the unbalance azimuths errors are much lower,
which show a high precision in unbalance identification. By adding counterweight
3.85 × 10−5 m� 31.40◦ and 5.61 × 10−5 m� 0.03◦ to the corresponding discs, the
deflections of each disc are greatly reduced in the whole operation as shown in
Fig. 6. The transient response data before and after balancing are shown in Table 4.

The balancing results given in Tables 3 and 4 verify the effectiveness of the
proposed method in balancing field of rotor system. The vibration responses of
each disc are greatly reduced in the balancing procedures of different constant
speeds, which show that the identifications of unbalance parameters are robust with
respect to the constant rotational speed. However, Table 4 shows that the maximum
amplitudes of the double discs rotor system decrease by more than 90% in general
while balancing based on variable rotational speeds.

Fig. 5 Comparison of exact and calculated forces of x-axis in frequency domain

Table 4 The balancing results of the double discs rotor system

1st order 2nd order

Identified unbalance
parameters/Identified
error

Maximum
deflection (m)

Maximum
deflection (m)

Disc Eccentricity Azimuth
Before/After
balancing

Maximum
deflection
decrease

Before/After
balancing

Maximum
deflection
decrease

1 3.85 × 10−5 m/3.75% 211.40◦/1.40◦ 5.06 × 10−4/2.88 × 10−5 94.31% 3.86 × 10−4/2.73 × 10−5 92.93%

2 5.61 × 10−5 m/6.50% 180.03◦/0.03◦ 5.23 × 10−4/2.95 × 10−5 94.36% 7.22 × 10−4/4.60 × 10−5 93.63%
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Fig. 6 Deflections of the discs before and after balancing

It can also be concluded from the balancing results that errors existed in the
unbalance parameters identification. It is deduced that the main reason for the above
errors is the difference in details between the excitation forces estimated by FIR
filter and exact forces (Figs. 3 and 5). Specifically, the amplitudes of calculated
forces are slightly smaller than that of exact forces. The reason for the above
phenomena could be the calculation errors caused by the finite register length
effects in the FIR filter process. However, using more memory units to reduce the
calculation errors will undoubtedly increase the cost of hardware design, which
is not cost-effective for the balancing process because of high precision of the
proposed method before improvement.

4 Conclusions

In this chapter, we present a novel technique in the balancing field of rotating
machinery. The proposed method is divided into two steps. The unbalance force
is preliminarily calculated based on load identification technique and unbalance
force is then estimated based on the FIR filter. Further, we identify the unbalance
parameters (eccentricity and azimuth) by the unbalance force estimated by FIR filter.
The numerical simulations have been carried out for a double-disc rotor system,
while the unbalance parameters are identified based on both constant rotational
speed and variable rotational speeds. The balancing results proves that the dynamic
balancing process is robust with respect to the rotational speed.

The work discussed in this chapter is a part of an ongoing research on model-
based techniques for unbalance identification, and this approach can be easily
extended for unbalance identification of other rotor-disk-coupling bearing systems.
A general approach for dynamic balancing with experimental verification remains
as a future work.
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Post-Resonance Backward Whirl
Analysis of Accelerating Cracked
Overhung Rotor System Using Fatigue
Crack Model

Tariq Alzarooni and Mohammad A. AL-Shudeifat

1 Introduction

Overhung rotor systems (OH) cover a wide range of engineering applications
including heavy-duty aerospace and industrial systems such as aircraft engines,
helicopter shafts, turbines, compressors, pumps, and so forth. Therefore, the
development of early fault detection methodologies to avoid catastrophic and
costly breakdowns have captured interests of many researchers these days. The
propagation of transversal breathing cracks in OH is one of the major causes of
damages in rotordynamic systems. Accordingly, studying the dynamic behavior of
cracked OH in presence of isotropic and anisotropic bearings forms the focal point
of the subject paper.

Breathing crack has been studied by many researchers since 1980s. Many
of those early researchers have mathematically modulated the breathing crack
mechanism by simulating stiffness variation via using simple cosine function [1–
19]. Alternatively, other researchers have employed Fourier series expansion to
simulate breathing crack mechanism by varying moment of inertia for the cracked
element [20–22]. Thus, an accurate time-varying stiffness matrix of the cracked
element is simulated.

Whirl orbit analysis were also exploited for significant vibration characteristics
that implies presence of breathing crack phenomena [2, 14, 15, 21–26]. In [2]
the offset in pre-resonance synchronous forward whirl (FW) and backward whirl
(BW) frequencies was reviewed in accounting for multiple transverse cracks. It was
reported that their relevant frequencies and critical speeds decrease with increasing
cracks depth. In [22] the quantity and shape of loops were reviewed against pre-
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resonance BW and FW frequencies. Pairs of subcritical peaks were noticed at 1/2lf ,
1/3rd, and 1/4th of the fundamental critical zone. FW was observed to occur before
BW at each subcritical peak. Whirl orbit shape has been deeply studied in [15]
using numerical analysis followed by experimental verification. It was reported
that pre-resonance backward whirl frequency precedes forward whirl frequency
within subcritical speed range which is in line with the vast majority of published
literature. Nevertheless, this contradicts finding reported in [22] where subcritical
FW speed was inferred to precede subcritical BW speed. More details regarding
shaft’s whirl shifts, using breathing crack model, at near critical speed range is
studied in [24]. It was reported that an interim whirl reversal from FW to BW
precession occurs at near resonance speed which was mainly attributed to crack
propagation. In [27], finite element program was employed to calculate complex
eigenvalues of an overhung rotor having asymmetrical bearing support. It was
reported that bearings asymmetry has resulted in two pre-resonance BW excitations
corresponding to two BW critical speeds. The result of which was mainly attributed
to unbalance excitations forces. By comparison, the second pre-resonance critical
BW was not reported in isotropic bearings conditions. An extensive review was
made in [28] to investigate the existence of the simultaneous pre-resonance FW
and BW zones by employing complex modal analysis for JC rotor supported
on anisotropic bearings with two disks. A parametric analysis was conducted by
incorporating various unbalance force magnitude on two disks, their relative angular
positions, bearings damping, and disk locations. It was reported that the capturing
of simultaneous pre-resonance BW and FW motions is strongly affected by the
aforementioned parameters. It was also reported that whirl transitions are followed
by the sharp reduction in whirl amplitude. Similar studies have also been performed
in [29] considering imbalanced OH rotor supported by flexible anisotropic bearings.
The unbalance mass and shaft bow were simulated at different sections of the
rotor which has resulted in simultaneous pre-resonance BW and FW precessions.
Such phenomena were reported to be influenced by damping, bearing anisotropy,
forcing functions magnitudes, and most importantly their angular orientations. The
influence of gravity, friction, rotor-stator rub was studied on OH rotor in [30,
31] using 2-DOF lumped mass method. In [30], it was reported that the gravity
factor influences Rotor Stiffening which results in a complete rubbing effect that
induces shift in pre-resonance BW and FW frequencies. In [31] it was reported
that pre-resonance BW zones expand with increased eccentricity and coefficient
of friction. It was further instigated that frequency contents of pre-resonance BW
zones increases due to increased stiffness as a result of high friction contact. The
impact of snubbing effect on Pr-BW and Po-BW precessions that is associated with
isotropic and anisotropic bearings conditions has been studied in [32] for transient
rotor system. It was reported that Po-BW zones are more intensified and recurrent
for active snubbing cases. Further, an important finding was also reported that BW
frequency contents tend to be the same for all cases including Pr-BW and Po-BW
although their excitations are reported at various rotary speeds. A few parametric
studies have been performed recently in [33–36] by considering single- and double-
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disk systems with an open crack model. An interesting findings were made in [36]
on Pr-BW and Po-BW excitation zones using different angular acceleration rates
backed up by experimental analysis.

In the present work, the novelty is pursued by analyzing BW and FW precession
on cracked overhung rotor using breathing crack function and undergoing the
transient operation. The overarching goal is to study the impact of conducting such
parametric analysis on asymmetric rotor configuration such as OH rotor in view
of directional whirl analysis particularly on Pr-BW and Po-BW precessions. The
breathing crack model of [21, 22] is employed in the analysis considering the
most realistic approach for resembling crack behavior. Finite Element Model is
used to develop Linear-Time-Variant (LTV) equations of motions of the cracked
rotor systems along with considering different bearings condition scenarios for
accelerated overhung rotor system. The same will also be established on an intact-
rotor system in order to map dynamical variation on the behavior of Pr-BW and
Po-BW phenomena. In addition, the full spectrum analysis (FSA) is also employed
to verify the existence of these BW zones.

2 Rotor Overhung System Modelling with Breathing Crack

The breathing crack model, proposed in [21, 22], is considered here where the
transverse crack of depth h is normalized by the radius of the shaft R, which
results in the non-dimensional representation of the crack depth μ = h/R. The
orientation of the unbalance force vector is located at angle β with respect to the
crack opening direction assuming that the crack opening direction is initially in
the negative y-axis. Detailed information of breathing crack functions can be found
in [21, 22]. In the context of mathematical modeling using the FE approach, the
element containing the breathing crack will undergo variation in stiffness based on
centroidal and neutral axis changes during rotation, whereas the remaining elements
shall be treated as intact shaft elements based on Euler-Bernoulli beam with circular
cross-section. The following schematic plot shown in Fig. 1 represents the FE model
of the considered overhung rotor. The crack is introduced into the second element
and the transverse displacements is measured near to the second node from the right
side of the shaft.

Fig. 1 Schematic diagrams
of the finite element
disk-shaft-bearing-rotor
system
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The rotor of mass M and length L is divided into finite N-elements with N + 1
nodes and the finite element equation of motion is described as follows:

M
−→̈
q + Ĉ

−→̇
q +K (t)−→q = −→F u (t)+−→F g (1)

where M, Ĉ and K are 4(N + 1) × 4(N + 1) global mass, damping and gyroscopic,
and stiffness matrices, respectively. M resembles the addition of rotor’s classical
mass and inertial matrices. Ĉ resembles the rotor’s total gyroscopic and proportional
damping matrices as Ĉ = Ω (t)G+C, where �(t) is rotor’s angular speed and C is
a proportional damping matrix obtained via C = γM + ζK where γ = 0.0005 s−1

and ε = 0.00005 s. More details regarding mass, stiffness, and gyroscopic matrices
formulation can be found in [37, 38]. The overall system unbalance force vector−→
F u (t) has a size of 4(N + 1) × 1. For the shaft angular displacement and velocity
θ (t) = αt2/2 and �(t) = αt, respectively, the unbalance force vector will have
two components at the i-th node, where they are added according to the following
relations:

fi =
[
f ui f v

i 0 0
]

(2)

f ui (t) = meα2t2 cos
(
αt2/2+ β

)
+meα sin

(
αt2/2+ β

)
(3)

f vi (t) = meα2t2 sin
(
αt2/2+ β

)
−meα cos

(
αt2/2+ β

)
(4)

where the product me represents the unbalance (m is the unbalance mass, e
unbalance mass eccentricity), and β is the orientation angle of the unbalance force
vector with respect to the transversal crack direction. Therefore, the elements of
Fu(t) at the node corresponding to the disc location are given in Eqs. (3 and 4),
while other nodal unbalance forces are set equal to zero. The gravity force vector
is also included in Fg. Bearings were included in the model through the addition of
stiffness and damping at the corresponding nodes.

The cracked element stiffness matrix of the cracked element with a breathing
crack model is obtained as in [35] as:

k(t) = E

l3

⎡

⎢⎢
⎢
⎢⎢
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The cross-sectional moments of area IX(t), IY (t) and IXY (t) are calculated using
the breathing functions given in [21, 22].

The rotordynamic transient whirl response is obtained by the numerical simula-
tion based on a constant angular acceleration rate. The resultant whirl amplitude is
calculated from z = √

u2 + v2 at the second node in the FE model where u and
v represent the horizontal and vertical vibration whirl amplitudes, respectively. In
addition, both isotropic and anisotropic bearing stiffness conditions are considered
in the analysis. The ratio of the vertical stiffness kyy to the horizontal stiffness kxx in
the bearings is expressed asρ = kyy/kxx.

3 Simulation Results and Discussion

Bearing anisotropy and gyroscopic factors are well established in the literature to
have impact on Pre-resonance Backward Whirl (Pr-BW) of any typical rotor system.
The influence of the same on the recently discovered Post-Resonance Backward
Whirl (Po-BW) in [33] for accelerated single and double disk rotor system is yet to
be demonstrated in accelerated overhung rotor system along with using breathing
crack function. Therefore, the influence of bearings anisotropy, gravity force, and
the gyroscopic effect on the Po-BW is first studied here for the crack-free (intact)
overhung rotor system. In Fig. 2, VCP approach is used to capture these Po-BW
zones at various angular acceleration rates of intact overhung rotor. The description
of full system in Fig. 2a is associated with incorporation of the gyroscopic, gravity,
and bearings anisotropy effects. It is clear that there are substantial changes in the
Po-BW zones for the gyroscopic-free system in Fig. 2b and the gravity-free and
gyroscopic-free system in Fig. 2c if compared with full system. However, there are
hardly any changes on Po-BW zones for gyroscopic-free in Fig. 2b, and gyroscopic
and gravity-free in Fig. 2c plots. Therefore, it can be concluded that the Po-BW for
the intact overhung rotor system is most likely affected by the bearing anisotropy,
gyroscopic effect, and the angular acceleration rate rather than the gravity effect.

Nevertheless, it is observed that Pr-BW precession does not appear in crack-
free simulation for all range of rotor’s angular acceleration rates. The influence of
breathing crack propagation at α = 25 rad/s2 on the Po-BW excitation for isotropic
and anisotropic bearings conditions is addressed in Fig. 3a and Fig. 3b, respectively.
The gyroscopic effect is also incorporated in the model considering its evident
impact on crack-free rotor as highlighted in the previous context. It is interesting to
point out that for the case of isotropic supports (ρ = 1), the appearance of breathing
cracks excites both Pr-BW and Po-BW zones where their recurrence and extent are
strongly affected at higher crack depths. A nearly similar findings have been reached
for anisotropic bearings case (ρ = 7) in terms of intensity and recurrence of Pr-BW
and Po-BW zones at high crack depth ratio; however, more Po-BW recurrence is
captured at low crack depth ratio range. An important insight is that this special
characteristic of Po-BW zones can be utilized to distinguish between the impact of
bearing anisotropy, and crack propagation in the rotor system.
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Fig. 2 Po-BW zones of rotational speeds at varying angular acceleration rate of overhung intact
rotor system with anisotropic bearings including gravity and gyroscopic effects in (a); gyroscopic-
free system including gravity effect in (b); and gravity-free and gyroscopic-free system in (c)

Fig. 3 BW zones of rotational speeds at α = 25 rad/s2 of the cracked overhung rotor system with
isotropic bearings in (a) and anisotropic bearings in (b)

Analysis of rotor behavior at higher angular acceleration rate of α = 50 rad/s2

for isotropic and anisotropic bearing conditions is shown in Fig. 4a and Fig. 4b,
respectively, where the gravity and gyroscopic effects are still incorporated. It is
observed that more or less similar profile of Pr-BW is captured, however with
slightly more intensity for anisotropic bearings case (ρ = 7). Nevertheless, for Po-
BW it is observed that more recurrence is captured which can be solely attributed to
increased rotor acceleration rate.

One important finding, which is common for all cases, is that the transition from
Pr-BW to Po-BW is swept through the fundamental FW resonance curve as shown
in Fig. 3 and Fig. 4. The zones of Po-BW are further investigated using FSA plots
for anisotropic bearings conditions chosen at μ = 0.69 from Fig. 3 and Fig. 4.
Accordingly, the FSA plots for the whirl response accurately captures and verifies
the Po-BW zones in the whirl response for a cracked overhung rotor as illustrated
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Fig. 4 BW zones of rotational speeds at α = 50 rad/s2 of the cracked overhung rotor system with
isotropic bearings in (a) and anisotropic bearings in (b)

Fig. 5 FSA plot for cracked OH rotor at α = 25rad/s2 (a), and at α = 50rad/s2 (b)

in Fig. 5. For instance, in the case of α = 25 rad/s2, Po-BW frequency zones are
observed to be in the range of 55–8.5 Hz according to Fig. 5a of FSA plot. This
confirms findings obtained via whirl response plot for Po-BW zones of Fig. 5b at
μ = 0.69 circa. Similarly, Po-BW frequencies are observed to be in the range of
56–63 Hz for α = 50 rad/s2 according to the FSA plot in Fig. 5b. This confirms
findings obtained via whirl plot of Fig. 4b at roughly similar crack depth ratio.

4 Conclusions

The BW phenomenon is studied here in accelerated intact and cracked overhung
rotor systems using a breathing crack model. The study is purely based on numerical
simulation using FEM equations of motion for startup rotor operation. The time-
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varying stiffness matrix of the cracked element was superimposed in the FE model
to simulate the breathing behavior of the crack. The obtained linear-time-varying
EOMs were numerically integrated to compute the whirl response of the cracked
rotor system during startup operation. Whirl behavior is analyzed in the range of the
critical FW speed zones using VCP and FSA plots. For the intact rotor system with
anisotropic bearings, it was found that Po-BW precession is substantially affected by
gyroscopic effect. However, it was also found that the whirl behavior is independent
of gravity. For the cracked overhung rotor system with breathing crack model, a new
type of BW, which has been named as Po-BW in recent literature, was captured at
supercritical speed zone that is centered about the minima of critical FW resonance
and subsequent local peaks. These zones are found to be affected by bearing
anisotropy, rotor angular acceleration rate, and crack depth. The effectiveness of
FSA in capturing these Po-BW zones were also demonstrated. This brings about
the high potentiality of using FSA as a tool for capturing these phenomena that
could certainly help advance vibration health monitoring regime for accelerated
rotor system.
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Stochastic Resonances
and Antiresonances in Rotating
Mechanisms

Eugen Kremer

1 Introduction

The effect of high-frequency stochastic excitation of dynamic systems on their low-
frequency behaviour is well-known. A special manifestation of this effect is so-
called stochastic resonance—a resonance-like response of a system to the level of
a random excitation. This effect was originally discovered in climatology and later
applied in many fields of natural sciences and engineering [1].

In earlier works, stochastic resonance was considered as a pure stochastic
phenomenon and only for the systems with two-well potential. Further development
made it clear that this effect is relevant for a wider class of dynamical systems and
that it can be effectively considered within the frame of the concept of vibrational
mechanics, which was originally proposed by I. I. Blekhman [2]. The main idea of
this concept consists in the replacement of the original equations for fast motions
by equations for the averaged, slow motion. These averaged equations content some
additional slow, so-called vibrational forces. Within the framework of vibrational
mechanics, it was possible not only to give an effective and compact description
of numerous amazing effects [2] but also to provide engineers with a calculation
methodology and tools which allowed the development of essential new solutions
in vibration technology and to improve a number of processes and machines [3–5].

Application of this approach to the systems with high-frequency stochastic
excitation was developed in [6, 7].

In this study, the basic method of the concept of vibrational mechanics—
the method of direct separation of motion—is applied with some modifications
to obtaining averaged equations of a rotating mechanism with high-frequency
stochastic component in the rotation speed of the carrier disc. This problem is of
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interest for many engineering applications where stochastic excitation from impact
vapours in gearboxes, processed material, etc. takes place and where the frequency
characteristics of the mechanism are important (for example in vibration absorbers
and regulators).

2 Averaged Equations of the Rotating Mechanisms
with Stochastic Excitation

2.1 Formulation of Problem

A rotating multi-body mechanism with one degree of freedom is described. The
mechanism consists of n kinematically coupled solids performing a flat motion
relative to the rotating disc. The disc rotates with an angular velocity

Ω = Ω0 (1+ ξ(t)) , (1)

oscillating near its average value �0 where ξ(t) is some stochastic process described
by its canonical expansion [5, 6]:

ξ =
∫ ∞

ω0

(ξs (ω) sinωt + ξc (ω) cosωt) dω. (2)

Here, ξ s(ω) and ξ c(ω) are mutually independent and stochastically orthogonal
random functions. It is assumed that the spectrum of the random process ξ does not
contain frequencies lower than ω0, and q = ω0

Ω0
� 1. Therefore, any realisation

of this random process can be considered subsequently as a function of only a fast
time θ = ω0t. Probabilistic characteristics of the functions ξ s(ω) and ξ c(ω) have the
following properties:

E (ξs (ω)) = E (ξc (ω)) = 0, E (ξs (ω) ξc (ω)) = 0,

E
(
ξs (ωi) ξs

(
ωj
)) = E

(
ξc (ωi) ξc

(
ωj
)) = S (ωi) δ

(
ωi − ωj

)
. (3)

Here, E denotes the mathematical expectation, δ(ω) is the δ-function, and S(ω)
is the spectral density of the process.

The considered kinematics are presented in Fig. 1. Here, one of the bodies of the
mechanism with number j is depicted in two positions: the initial (ψ = 0) and the
current with the generalised coordinate ψ.

The kinetic energy of the system is calculated as

T = 1

2
Aψ̇2 + Bψ̇Ω + 1

2
CΩ2. (4)



Stochastic Resonances and Antiresonances in Rotating Mechanisms 773

γ j(ψ) − γ j(0)

ϕj(ψ) − ϕ j(0)
γj(ψ)

γ j(0)

Fig. 1 The kinematics of the rotating mechanism

Here, the dot means differentiation by time, and the values A, B and C are
functions of the generalised coordinate ψ and are calculated as

A =
n∑

j=1

(
mj

(
r ′2j + ϕ′2j r2

j

)
+ Jjγ

′2
j

)
, (5)

B =
n∑

j=1

(
mjϕ

′
j rj

2 + Jjγ
′
j

)
, (6)

C =
n∑

j=1

(
mjrj

2 + Jj

)
, (7)

where the prime denotes differentiation by the generalised coordinate ψ , mj and Jj

are masses and central moments of inertia, rj (ψ) and ϕj (ψ) are polar coordinates
of the gravity centres of the bodies in the rotating reference system, and γ j (ψ) is
the rotation angle of the bodies relative to the rotating disc. Potential energy 7(ψ)

as a function of the generalised coordinate ψ and the dissipative function Φ
(
ψ̇
)

are

assumed to be predetermined.
Unlike the usual definition assumed in vibrational mechanics, we use the

averaging definition introduced in the paper [6]. The averaging, generalised to
stochastic systems, is also denoted by 〈 . . . 〉, but it is understood that it means the
successive application of the usual averaging over the fast time θ = ω0t on a period
equal to 2π and calculating the mathematical expectation. Thus, for some function
f we consider the operation

〈f 〉 = 1

2π
E

(∫ 2π

0
f d (tω0)

)
= 1

2π

∫ 2π

0
E(f )d (tω0) . (8)

In accordance with this definition, 〈ξ 〉 = 0.
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The aim of the study is obtaining the equation for the averaged variable

'(t) = 〈ψ〉 . (9)

2.2 Equation of the Fast Motions

Next, the complete motion of the system is described by the following Lagrange
equation:

Aψ̈ + 1

2
A′ψ̇2 + BΩ0ξ̇ − 1

2
C′Ω2

0 (1+ ξ)2 +7′ (ψ)− ∂φ

∂ψ̇
= 0. (10)

The aim of the further consideration is the reduction of this equation to the
equation for a slow motion.

2.3 Equation of the Slow Motions

Following the concept of vibrational mechanics, we consider the generalised
coordinate ψ as depending on slow time τ = �0t and fast time θ = qτ . Further,
it can be presented as ψ(τ , θ ) = Ψ (τ ) + ζ (τ , θ ), where ' is the result of averaging
ψ introduced by Eq. (9), and 〈ζ 〉 = 0. In dimensionless variables, we have

' (τ) = E

(
1

2π

∫ 2π

0
ψ (τ, θ) dθ

)
, (11)

〈ζ 〉 = E

(
1

2π

∫ 2π

0
ς (τ, θ) dθ

)
= 0. (12)

Using Expression (1) for �, we bring Eq. (4) to the standard form used in [5]:

ψ̈ = F
(
ψ, ψ̇

)+ B1
(
ψ, ψ̇

)
ξ1 + B2

(
ψ, ψ̇

)
ξ2 + B3

(
ψ, ψ̇

)
ξ3 (13)

with

F = 1

A

(
−1

2
A′ψ̇2 + 1

2
C′Ω2

0

(
1+

〈
ξ2
〉)
−7′ (ψ)+ ∂φ

∂ψ̇

)
,

ξ1 = ξ̇ , ξ2 = ξ, ξ3 = ξ2 −
〈
ξ2
〉
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B1 = −BΩ0

A
,B2 = Ω2

0C
′

A
,B3 = Ω2

0C
′

2A
. (14)

It should be noted that although the dimensionless time τ = �0t is considered to
be a slow time, differentiation by it, still denoted by a dot, implies full differentiation
taking into account the dependence of the generalised coordinate on both slow and
fast time by the rule

ψ̇ = ∂ψ

∂τ
+ q

∂ψ

∂θ
, ψ̈ = ∂2ψ

∂τ 2 + 2q
∂2ψ

∂τ∂θ
+ q2 ∂

2ψ

∂θ2 . (15)

In accordance with the concept of the vibrational mechanics [1], the equation for
the slow motion can be presented in the form

'̈ = F
(
', '̇

)+ V
(
', '̇

)
(16)

with an additional slow term V which is known as the vibrational force. The method
of direct separation of motions in the interpretation of the paper [6] provides the
general expression of the vibrational force for the equation of the type (13) with an
error of the order of 1

q2 for arbitrary dependences of F, B1, B2 and B3 on ψ and ψ . In
the considered case of the dependence of B1, B2 and B3 only on ψ , this expression
has the form

V = 1

2

(
∂2F

∂ψ̇2

(
κ1B

2
1 + κ2B

2
2 + κ3B

2
3

)
−
(
κ1B

2
1 + κ2B

2
2 + κ3B

2
3

)′)
. (17)

Here, the values κ j (j = 1,2,3) are integral characteristics of the stochastic
processes ξ1, ξ2, ξ3 which are calculated from their spectral density Sj as.

κj =
∫ ∞

ω0

Sj (k)k
−2dk. (18)

Substituting the functions F, B1, B2 and B3 from (7) in (10), we obtain the
following specification of Eq. (9) for the slow motion:

'̈ = 1

A

(
−1

2
A′'̇2 + 1

2
C′Ω2

0

(
1+

〈
ξ2
〉)
−7(')+ ∂φ

∂'̇

)
+ V (19)

with

V = Ω2
0

2A

(
H
∂3φ

∂'̇3
− (AH)′

)
, (20)

H = 1

A2

(
κ1B

2 +Ω2
0 (κ2 + κ3/4) C′2

)
. (21)
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Since q � 1, it is possible to limit the expression (21) to the first member with
sufficient precision:

H ≈ κ1B
2

A2 .

The averaged Eqs. (19, 20, and 21) can also be presented in the form

A'̈ + 1

2
A′'̇2 − 1

2
C′effΩ2

0 +7′ − ∂φeff

∂ψ̇
= 0 (22)

with

Ceff = C
(

1+
〈
ξ2
〉)
− AH,2eff = 2+ 1

2
�2

0
d22

d'̇2
H, (23)

Equation (22) with the averaged coordinate ' is similar to the Lagrange Eq. (10)
with ξ = 0, i.e. without stochastic excitation. It differs from Eq. (10) by replacing
the oscillating angular velocity � with its mean value �0, and by introducing the
values ´eff and 2eff instead of C and 2. The effective characteristics of the slow
dynamics´eff and Φeff are calculated with formulas (23) and differ from the inertial
coefficient C and the dissipative function 2 by the terms which consider the effect
of high-frequency excitation on the slow motion.

This difference determines in general the dependence of the equilibrium posi-
tions, eigenfrequency, and dissipation on the intensity of high-frequency excitation.

The problem of the transformation of low-frequency characteristics under the
action of high-frequency stochastic excitation is of special interest for mechanisms
whose operating performance is sensitive to misalignment in their eigenfrequency.
To these mechanisms belong, for example, different vibration absorbers with
self-adjustment to rotation speed, such as centrifugal pendulum absorbers [8–
10]. Focusing on this class of applications, we will further restrict ourselves to
considering the case of the pure inertial rotating mechanism (7

′ ≡ 0) without
dissipation (2 = 0).

3 Low-Frequency Behaviour Near the Equilibrium Position

3.1 Equilibrium Position of the Slow Motion

The position of the relative equilibrium in the absence of the high-frequency
excitation is assumed to correspond to ψ = 0. This can always be provided by the
corresponding definition of this generalised coordinate. From Eq. (10), it follows
from 7

′ ≡ 0 and ξ = 0 that.
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C′(0) = 0. (24)

The position of the relative equilibrium for the slow motion ' = '0 is defined
from Eq. (22):

C′eff ('0) = 0 (25)

and can differ in general from 0. The value of '0 for small relative amplitude of the
angular velocity λ can be obtained approximately as

'0 = κ1
2B(0)B ′(0)A(0)− B2(0)A′(0)

(
1+ 〈

ξ2
〉)
C′′(0)A2(0)

. (26)

This expression is obtained from Eq. (25) after its linearisation by '0 and
considering Eq. (23).

This vibro-mechanical modification of the equilibrium position due to the high-
frequency stochastic excitation needs some asymmetry of the system relative to the
point ψ = 0. In other words, it needs that B

′
(0) �= 0 or A

′
(0) �= 0.

3.2 Eigenfrequency of the Slow Motion

Another vibro-mechanical effect is the shift of the eigenfrequency. This effect also
takes place for the symmetric systems, for which'0 = 0, because for them B

′
(0)= 0

and A
′
(0) = 0. We will consider this case, since it is of most interest for the practice

and by the same token gives a more transparent and compact expression as a non-
symmetrical case.

The eigenfrequency ω is obtained from Eq. (22), which, after its linearisation,
has the form

'̈ + ω2' = 0 (27)

with

ω = ω0

√
C′′eff (0)
C′′(0)

= ω0
√

1− η. (28)

Here, ω0 is the eigenfrequency of the original system without high-frequency
excitation, which is calculated as

ω0 = Ω0

√

−C
′′(0)

2A(0)
, (29)
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and the coefficient η is the dimensionless parameter, which determines the effect
of high-frequency excitation on the eigenfrequency of the slow motion and is
calculated as

η = (
A′′(0)H(0)+H ′′(0)A(0)

)
/C′′(0)−

〈
ξ2
〉
. (30)

The expression (30) can be transformed with Eq. (21) to the form

η = κ1B(0)

2Q2
0A

3(0)

(
A′′(0)B(0)− 2B ′′(0)A(0)

)+ 4Q2
0Ω

2
0 (κ2 + κ3/4)−

〈
ξ2
〉
.

(31)

3.3 Application Example: Centrifugal Pendulum Absorber

This result can be applied to the centrifugal pendulum absorber which is described,
for example, in Den Hartog’s classic textbook [8]. This absorber has been used
effectively since the 1930s, first in aircraft and in recent years in the automotive
industry [9, 10]. This type of absorber allows us to provide its eigenfrequency
proportional to the rotational speed and thus to keep it equal to the frequency of
the torque irregularity of a reciprocating engine, whose frequency also increases
linearly with engine speed. Due to a special design of this hanging, rather complex
kinematics can be achieved even for a one-mass pendulum.

Although this device has found wide application and has been the subject of
many studies, the effects associated with additional stochastic influences, as far as
we know, have not yet been considered.

Here, we will consider only the simplest principle kinematics presented in Fig. 2.
Here, a pendulum with mass m and central moments of inertia J is pivotally

mounted at the point P located at a distance L from the centre of rotation O of the

L

ψ = γ

φ

Ω = Ω0 (1 + ξ(t)) + Ω1sin(Ω0 Qt)1

m, J

0

Fig. 2 Vibrational mechanics transformation of the rotating mechanism with stochastic excitation



Stochastic Resonances and Antiresonances in Rotating Mechanisms 779

carrier disc with moments of inertia JD. The distance between the pivot and the
centre of gravity of the pendulum is l. The angular velocity � of the carrying disc
oscillates in accordance with the equation

Ω = Ω0 (1+ ξ(t))+Ωs(t), (32)

where the last term represents the forced low-frequency oscillation of the disc. This
vibration of the angular velocity is caused by a low-frequency oscillating torque
Ms = Mm sin (�0Qt) with amplitude Mm and so-called excitation order Q acting
on the disc. The additional equation for this slow motion can be obtained as the
averaged Lagrange equation for the rotation angle of the disc, for which the variable
� is the generalised velocity. This equation in the linearised approximation is

C(0)Ω̇s + B(0)'̈ = Mmsin (Ω0Qt) . (33)

Considering the low-frequency oscillation of � leads also to some modification
of Eq. (27), which now takes the form

'̈ + ω2' + B(0)

A(0)
Ω̇s = 0. (34)

We will look for a solution of Eqs. (33) and (34) in the form.

Ωs = Ωmcos (Ω0Qt) ,' = 'msin (Ω0Qt) (35)

Thus, the amplitudes �m and Ψ m are obtained from the algebraic equations

−C(0)Ω0QΩm − B(0)(Ω0Q)
2'm = Mm, (36)

−B(0)
A(0)

Ω0QΩm +
(
−(Ω0Q)

2 + ω2
)
'm = 0. (37)

The solution of Eqs. (36) and (37) is

'm = − λ
(−Q2 +Q2

0 (1− η)+ λ
)

Mm

B(0)(Ω0Q)
2 ,

Ωm = − −Q2 +Q2
0 (1− η)

(−Q2 +Q2
0 (1− η)+ λ

)
Mm

C(0)Ω0Q

(38)

with

λ = B2(0)Q2

A(0)C(0)
,Q2

0 =
ω2

Q2
0

= −C
′′(0)

2A(0)
. (39)
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Fig. 3 Amplitude
development with changing
the intensity of stochastic
excitation

Now, we will specify these expressions for the case of the simple pendulum
presented in Fig. 2, taking the rotation angle γ as the generalised coordinate ψ

and considering the following geometrical relationships for the polar coordinates r
and ϕ of the the pendulum centre of gravity:

r =
√
L2 + l2 + 2Llcosψ, tanϕ = lsinψ

L+ lcosψ
(40)

Thus, the values A, B, C, A
′ ′
(0), B

′ ′
(0) and Q2

0take the form

A(0) = ml2 + J, B(0) = ml (l + L)+ J,C(0)

= m(l + L)2 + J + JD,A
′′(0) = 0, B ′′(0) = −ml,Q2

0 =
mlL

ml2 + J
L. (41)

Then, the amplitude of the angular velocity of the disc Ωm can be obtained from

Eq. (38) in the form Ωm = − 1−(Q/Q0)
2−η(

1−(Q/Q0 )2−η+λ/Q2
0

) Mm

C(0)Ω0Q
.

The correction factor η to the eigenfrequency in the approximation of Eq. (22)

has an especially simple form, η = κ1/k with k =
(
ml2+J )

(ml(l+L)+J ) . So, the expression
(42) can be transformed as

Ωm = −Ω∗ κ1A − κ1

κ1R − κ1
(42)

with Ω∗ = Mm

C(0)Ω0Q
, κ1A = k (1− ν), κ1R = k

(
1− ν + νB2(0)

A(0)C(0)

)
, ν =

(
Q
Q0

)2
.

The expression (42) shows: increasing the intensity of stochastic excitation leads
first to decreasing of the disc velocity amplitude |�m| to 0 (stochastic antiresonance)
and then to resonance-like increasing this amplitude to very big values (stochastic
antiresonance). This scenario always takes place if ν < 1 (excitation order is
smaller than the nominal absorber order). The corresponding curve of amplitude
development with changing the intensity of stochastic excitation κ1 is presented
in Fig. 3 for one example of rather realistic values of parameters: κ1A = 0.01 and
κ1A = 0.02.
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4 Conclusions

The main results of the work are as follows:

• For the first time, the general equation for the averaged equation of a rotating
multi-mass mechanism with one degree of freedom is obtained in the presence
of high-frequency stochastic oscillations of the carrier. This equation is similar
to the initial equation in the absence of excitation with a modified inertial
coefficient and dissipative function, which depend on the intensity of the
random process.

• The general expressions for the position of the equilibrium point and for
eigenfrequency of the slow motions near this point are obtained.

• As an example, a standard centrifugal pendulum absorber with a simplest kine-
matics was considered. It is shown that changing the intensity of the stochastic
excitation manifests itself first in the fall of the disc velocity amplitude to 0
(stochastic antiresonance) and then to resonance-like increasing this amplitude
to very big values (stochastic antiresonance). This takes places if the excitation
order is smaller than the nominal absorber order.
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Internal Resonances of a Rotating
Pre-deformed Blade Under a Harmonic
Gas Pressure

Bo Zhang, Hu Ding, and Li-Qun Chen

1 Introduction

The rotating blade plays a key role in the turbomachine. The research works on the
dynamics of beam rotating about a fixed axis are pioneered in the late 1940s by
Sutherland [1]. Engineers design the turbine blades properly to make them operate
away from their natural frequencies. However, the blades’ vibration failure is still
a dominant type in turbine failure [2]. Hence, researchers should investigate the
further resonance mechanisms of such a structure. The central axis of the blades
could be deformed by the huge thermal gradient inside the turbine machine. Further,
from the view of the equation of motion of the blade, the quadratic nonlinearities
are produced by the pre-deformation. From Nayfeh’s monograph, one can found
that if some of the natural frequencies of the blade are commensurable, energy can
exchange among these modes. This phenomenon is often called internal resonance.

Pesheck, Pierre, and Shaw [3] presented a reduced-order model for rotating
beams and obtained the nonlinear normal modes of the rotating beam. In 2012,
Lacarbonara et al. [4] calculated the critical rotating speeds for the 1:1, 2:1,
3:1, and 3:2 internal resonances for a rotating blade. After that, more and more
researchers [5–14] reported the different types of resonances based on various
nonlinear models of rotating blade. Zhang and Li [15] built the nonlinear dynamic
model for a pre-deformed blade considering the effects of the thermal gradient
environment. Based on this dynamic model of pre-deformed rotating blade, there

B. Zhang
School of Mechanics and Engineering Science, Shanghai University, Shanghai, China

School of Science, Chang’an University, Shaanxi, China

H. Ding · L.-Q. Chen (�)
School of Mechanics and Engineering Science, Shanghai University, Shanghai, China
e-mail: lqchen@shu.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Lacarbonara et al. (eds.), Advances in Nonlinear Dynamics, NODYCON
Conference Proceedings Series, https://doi.org/10.1007/978-3-030-81162-4_67

783

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81162-4_67&domain=pdf
mailto:lqchen@shu.edu.cn
https://doi.org/10.1007/978-3-030-81162-4_67


784 B. Zhang et al.

exist several research papers investigating the nonlinear dynamic behavior for the
different resonances, such as primary resonance [16, 17] and harmonic resonance
[18, 19], separately. However, the systematic comparisons and discussions on
different internal resonances of the blade model are rare in the literature. This is
the motivation here. In the present study, ten different types of resonance of the
blade are identified together with the method of multiple scales (MMS). Similarities
and differences of the stabilities and response curves are discussed.

2 Mathematic Model and Theoretical Analysis

Considering a rotating blade under harmonic gas pressure Pgas under a thermal
gradient environment gy and gz, as shown in Fig. 1. The symbol γ denotes the
nondimensional rotating speed of the disk. The symbols θ and Ψ denote the
pre-twisted angle and the setting angle, respectively. The nondimensional viscous
damping coefficient is assumed as cd.

After the derivation process of formulas in the studies [15, 16], the equations of
motion in the modal space could be obtained as follows:

¨̃qi + cd ˙̃qi + ωi
2q̃i = f̃i cos (ωt)+

n2+n3∑

j=1

n2+n3∑

k=1

ηijkq̃j q̃k

+
n2+n3∑

j=1

n2+n3∑

k=1

n2+n3∑

l=1

ξijkl q̃j q̃kq̃l (i = 1, .., n2 + n3) (1)

where q̃i , f̃i are the displacement vector and the excitation vector in the modal
space, ω is the excitation frequency, ηijk, ξ ijkl are the quadratic nonlinear coefficients
and the cubic nonlinear coefficients, respectively. n2 and n3 are the number of
trial functions assumed in chordwise and the flapwise displacement, respectively.
A nondimensional small parameter ε is defined to describe the weakness of system
response. Hence, the modal displacements are scaled as q̃i ↔ εq̃i . In the following
subsection, compared with the order of modal displacement, three different cases

Disk

Blade

Gas Pressure  Pgas
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zty
z
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ypzp
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P
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y

γ

Z

X

Y

Fig. 1 The sketch of the rotating blade model
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of the modal force order will be discussed: strong, medium, weak. To solve the
nonlinear dynamic equation of the rotating blade via MMS, three time-scales T0 = t,
T1 = εt, and T2 = ε2t are introduced. The modal displacements are assumed to take
the following form:

q̃i (t) = q̃i0 (T0, T1, T2)+ εq̃i1 (T0, T1, T2)+ ε2q̃i2 (T0, T1, T2)+O
(
ε3
)

(2)

As it is demonstrated in the reference [16], in 2:1 internal resonance, the
analytical results have good accuracy with only the first two time-scales T0 and
T1, and ξ ijkl have little effects on the dynamic response. From the reference [17], it
can be found that the steady-state response is only dependent on the time-scales T0
and T2 in 3:1 internal resonance.

2.1 Strong Forced Vibration: f̃i Is of the Same Order as q̃i

In this case, the following rescale [18, 19] is used:

cd ↔ εcd, f̃i ↔ εf̃i (3)

The equation of motion is cast into

¨̃qi + ωi
2 ˙̃qi = f̃i cos (ωt)+ ε

⎛

⎝−cd ˙̃qi +
n2+n3∑

j=1

n2+n3∑

k=1

ηijkq̃j q̃k

⎞

⎠+O
(
ε2, ε3 · · ·

)

(4)

Substitute the first-order approximate solution into Eq. (4) and compare the
coefficients of ε0 and ε1. One can obtain the zero-order and the first-order equation
as

D2
0q̃i0 + ω2

i q̃i0 = f̃i cos (ωT0) (5)

D2
0q̃i1 + ω2

i q̃i1 = −2D0D1q̃i0 − cdD0q̃i0 +
n2+n3∑

j=1

n2+n3∑

k=1

ηijkq̃j0q̃k0 (6)

The general solution form of the zero-order Eq. (5) could be written as

q̃i0 = Ai (T1) exp (iωiT0)+ Bi exp (iωT0)+ cc (7)

Substitute Eq. (7) into Eq. (6). One can obtain the following first-order equation
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D2
0q̃i1 + ω2

i q̃i1 = −iωi (2D1Ai + cdAi) exp (iωiT0)− iωcdBi exp (iωT0)

+
n2+n3∑

j=1

n2+n3∑

k=1
ηijk ·

{
AjAk exp

(
i
(
ωj + ωk

)
T0
) + AjBk exp

(
i
(
ωj + ω

)
T0
)

+ BjAk exp (i (ωk + ω) T0)+ BjBk exp (2iωT0)+ AjAk exp
(
i
(
ωj − ωk

)
T0
)

+ AjBk exp
(
i
(
ω − ωj

)
T0
) +BjAk exp (i (ω − ωk) T0)

}+ cc
(8)

From the analysis of the potential secular terms, we could find a series of
resonance types in 2:1 internal resonance.

1. When 2ω ≈ ω1, the term BjBk exp (2iωT0) acts as the secular terms of the first
mode. This corresponds to the super-harmonic resonance of first mode and is
recorded as Resonance I in the present paper for short.

2. When , the term BjBk exp (2iωT0) acts as the secular terms of the second
mode. This corresponds to the super-harmonic resonance of second mode and
is recorded as Resonance II in the present paper for short.

3. When ω ≈ 2ω1, the term AjBk exp
(
i
(
ω − ωj

)
T0
)

acts as the secular terms of
the first mode. This corresponds to the sub-harmonic resonance of first mode and
is recorded as Resonance III in the present paper for short.

4. When ω ≈ 2ω2, the term AjBk exp
(
i
(
ω − ωj

)
T0
)

acts as the secular terms of
the second mode. This corresponds to the sub-harmonic resonance of second
mode and is recorded as Resonance IV in the present paper for short.

5. When ω ≈ ω1 + ω2, the term AjBk exp
(
i
(
ω − ωj

)
T0
)

acts as the secular terms
of the first mode and the secular terms of the second mode in the same time. This
corresponds to the combination resonance of summed type and is recorded as
Resonance V in the present paper for short.

6. When ω ≈ ω2 − ω1, the term AjBk exp (i(ωj + ω)T0) acts as the secular terms of
the second mode. This corresponds to the combination resonance of difference
type and is recorded as Resonance VI in the present paper for short.

2.2 Medium Forced Vibration: f̃i Is of One Order Higher than
q̃i

In this case, the following rescale [15, 16] is used: cd ↔ εcd, f̃i ↔ ε2f̃i . After the
similar derivation process of Sect. 2.1, the first-order equation could be obtained as
follows:

D2
0q̃i1 + ω2

i q̃i1 = f̃i
2 exp (iωT0)− iωi (2D1Ai + cdAi) exp (iωiT0)+

n2+n3∑

j=1

n2+n3∑

k=1
ηijk

[
AjAk exp

(
i
(
ωj + ωk

)
T0
)+ AjAk exp

(
i
(
ωj − ωk

)
T0
)]+ cc

(9)
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From the analysis of the potential secular terms, we find the following resonance
possibilities in 2:1 internal resonance.

7. When ω ≈ ω1, the term f̃i exp (iωT0) /2 acts as the secular terms of the first
mode. This corresponds to the primary resonance of first mode and is recorded
as Resonance VII in the present paper for short.

8. When ω ≈ ω2, the term f̃i exp (iωT0) /2 acts as the secular terms of the second
mode. This corresponds to the primary resonance of second mode and is recorded
as Resonance VIII in the present paper for short.

2.3 Weak Forced Vibration: f̃i Is of Two Order Higher than q̃i

In this case, the order of the damping coefficient must be turn up to balance the effect
of the excitation. Hence, the following rescale [17] is used: cd ↔ ε2cd, f̃i ↔ ε3f̃i .
After the similar derivation process of Sect. 2.1, the second-order equation could be
obtained as Eq. (10)

D2
0q̃i2 + ω2

i q̃i2 = −iωi (2D2Ai + cdAi) exp (iωiT0)+ f̃i
2 exp (iωT0)

+ 2
n2+n3∑

j=1

n2+n3∑

k=1

n2+n3∑

m=1

n2+n3∑

n=1
ηijkηkmn ·

[
AmAnAj

ωk
2−(ωm+ωn)2 exp

(
i
(
ωj + ωm + ωn

)
T0
)

+ AmAnAj

ωk
2−(ωm−ωn)2 exp

(
i
(
ωj + ωm − ωn

)
T0
)

+ AmAnAj

ωk
2−(ωm+ωn)2 exp

(
i
(−ωj + ωm + ωn

)
T0
) + AmAnAj

ωk
2−(ωn−ωm)2 exp

(
i
(
ωj − ωm + ωn

)
T0
)
]

+
n2+n3∑

j=1

n2+n3∑

k=1

n2+n3∑

l=1
ξijkl

[
AjAkAl exp

(
i
(
ωj + ωk + ωl

)
T0
) + AjAkAl exp

(
i
(
ωj + ωk − ωl

)
T0
)

+ AjAkAl exp
(
i
(
ωj − ωk + ωl

)
T0
) +AjAkAl exp

(
i
(−ωj + ωk + ωl

)
T0
)]+ cc

(10)

From the analysis of the potential secular terms, we find the following resonance
possibilities in 3:1 internal resonance.

9. When ω ≈ ω1, the term f̃i exp (iωT0) /2 acts as the secular terms of the first
mode. This corresponds to the primary resonance of first mode and is recorded
as Resonance IX in the present paper for short.

10. When ω ≈ ω2, the term f̃i exp (iωT0) /2 acts as the secular terms of the
second mode. This corresponds to the primary resonance of second mode and
is recorded as Resonance X in the present paper for short.

For the sake of consistency, the symbol σ 1, the internal detuning parameter, is
defined to measure the nearness to the complete 2:1 or 3:1 internal resonance. For
the first 8 cases of 2:1 internal resonance, ω2 = 2ω1 + εσ 1. For the last 2 cases of
3:1 internal resonance, ω2 = 3ω1 + ε2σ 1. The symbol σ 2, the external detuning
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parameter, is defined to measure the nearness between the excitation frequency ω

and the certain critical value for different resonance types.
For the 10 different resonance types above, eliminating the corresponding secular

terms will lead to the corresponding solvability conditions, respectively. After that,
the different averaged equations can be obtained for the different resonance types.
Due to limited space, the averaged equations will not be recorded here. Solving the
equilibrium point of average equation can reveal the steady-state response in the
corresponding resonance. The response stabilities can be determined by calculating
the eigenvalues of the Jacobian matrix of the average equation.

3 Results and Discussion

A series of numerical examples are presented and the dynamic responses of the
rotating blade in different resonance cases are compared. The blade parameters are
set as the reference [16]. The setting angle Ψ = 10◦, the total pre-twisted angle
Θ = 10◦, the ratio between the two principle moment of inertia for the blade section
κ = 0.25, the ratio of the disk radius to the blade length δ = 0, the thermal gradient
gy = 0 and gz = 0.032, the slenderness ratio η = 200. The variations of the first
three natural frequencies and their multiples are displayed in Fig. 2 of the reference
[17]. The figure demonstrates the possibilities of the 2:1 internal resonance and
the 3:1 internal resonance at rotating speed γ = 6.5798 and 19.7026, respectively.
To verify the accuracy of the analytical results obtained via MMS, the dynamic
system obtained after rescaling is integrated numerically with the aid of Runge-
Kutta method. The frequency responses obtained by the two methods are compared
for different resonance cases in Fig. 2. In the figure, the lines denote the results
obtained from theoretical analysis, and the markers represent those obtained from
the numerical integration. As shown in Fig. 2, the analytical results are in accordance
with those obtained from the numerical integrations.

Figure 3 shows the variation of the frequency response curves with the thermal
gradient for the 10 different types of resonance cases. The multi-valued phenomenon
exists in all resonance cases. Thermal gradient has different effects on the dynamic
behavior (concluding the response peaks and the unstable region size) for different
resonance types. For all the 2:1 internal resonance, the blade experiences double
jumping under excitation sweeps. This phenomenon indicates that the system
experiences an evolution from softening to hardening behavior when the blade
passes through the 2:1 internal resonance, and the frequency responses of primary
resonance of the first mode in the case of 3:1 internal resonance bend to the right
similar to the case without internal resonance [12]. For some resonance cases, the
frequency response curves are quite similar to each other. For example, in 2:1
internal resonance, the frequency response curves of the primary resonance of the
first mode are similar to those of super-harmonic resonance of the first mode. The
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Fig. 2 The comparison of frequency responses obtained by the theoretical analysis and the
numerical integrations for different resonance cases: (a) ~ (j) denote the case of Resonance I to
Resonance X, respectively

frequency response curves of the sub-harmonic resonance of the first mode are
similar to those of the primary resonance of the second mode. For the resonance
cases shown in Fig. 3b–e, h, j, there exist single-mode solutions for the steady-state
response.

Figure 4 shows the effects of σ 1 and σ 2 on the force response curves for different
resonance cases. The hysteresis phenomenon can be found in the primary resonance
of the first mode in both cases of 2:1 internal resonance and 3:1 internal resonance.
Two limit points exist on the force response curves for both resonance cases. The
effects of the external detuning parameter σ 2 on both resonance cases are similar.
The first limit points [15] are delayed remarkably by σ 2. In contrast, the second
limit points change slightly with the variation of σ 2. Hence the unstable region
is enlarged by σ 2. The effects of the internal detuning parameter σ 1 seem to be
different on the two resonance cases. The first limit points change remarkably with
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Fig. 3 The effects of thermal gradient on the frequency response curves for different resonance
cases: (a) ~ (j) denote the case of Resonance I to Resonance X, respectively

the variation of σ 1. Figure 5 demonstrates the saturation phenomenon [9, 16] exists
both in the primary resonance of second mode and sub-harmonic resonance of
second mode in the case of 2:1 internal resonance. Figure 6 illustrates the quasi-
saturation phenomenon found in the combination resonance cases in 2:1 internal
resonance. The saturation or quasi-saturation phenomenon cannot be found in 3:1
internal resonance.

As shown in Fig. 7, the coupled-mode solutions are detected in both 2:1 internal
resonances and 3:1 internal resonances. The unstable regions are always surrounded
by stable regions in both cases. The coupled-mode solution exists in the whole
excitation plane in both cases of 2:1 internal resonance, while the coupled-mode
solution is invalid in region E in the 3:1 internal resonance. The single-mode
solution always exists with at least one stable solution for the 3:1 internal resonance.
The stable regions in excitation parameters plane of super-harmonic resonance of
the second mode are similar to those of the primary resonance of the second mode
in the case of 2:1 internal resonance. In contrast, the stable regions of 3:1 internal
resonances are quite different.
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Fig. 4 The effects of internal detuning parameter σ 1 and external detuning parameter σ 2 on the
force response curves for different resonance cases: (a, b) Resonance VII, (c, d) Resonance IX

Fig. 5 The saturation phenomenon in some resonance cases: (a) Resonance VIII, (b) Resonance
IV

Fig. 6 The quasi-saturation phenomenon in some resonance cases: (a) Resonance V, (b) Reso-
nance VI

Fig. 7 The stability ranges of different solutions in the excitation plane (σ 2 – Pgas) (a) Resonance
VIII, (a) Resonance VIII, (b) Resonance II, (c) Resonance X, (d) the explanatory legend
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4 Conclusions

The possibilities of 10 different types of resonances of a rotating blade are
determined with the aid of MMS. The dynamic responses of the rotating blade are
compared for 10 different resonance cases. The following conclusion can be drawn.

1. Strong and medium excitations lead to 2:1 internal resonance, and week excita-
tion leads to 3:1 internal resonance.

2. The double jumping and the saturation/quasi-saturation exist only in the 2:1
internal resonances, while multi-valuedness exists in all resonances.

3. Both coupled- and single-mode solutions exist unconditionally in 2:1 internal
resonances, but only single-mode solutions exist unconditionally in 3:1 internal
resonances. Single-mode solutions are unconditionally stable in 3:1 internal
resonance, while stable coupled- and single-mode solutions may coexist in both
resonances.

4. The 2:1 internal resonances depend only on quadratic terms, while the 3:1
internal resonances depend on both cubic and quadratic terms.

5. The thermal gradient affects differently on response peaks and unstable regions
of different types of resonance.
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Investigation of Quasi-Periodic Solutions
in Nonlinear Oscillators Featuring
Internal Resonance

Giorgio Gobat, Attilio Frangi, Cyril Touzé, Louis Guillot, and Bruno Cochelin

1 Motivation

Nonlinear dynamical phenomena in coupled oscillators are connected with the
emergence of complex features that have no counterpart in linear theory. In
this context, one can cite for example jump phenomena, hysteretic behaviours,
quasi-periodic solutions, and chaotic vibrations [1–3]. In recent years, a number
of investigations highlighting the occurrence of the so-called frequency combs
(FCs) in the observed dynamical solutions have been reported in the literature
on Micro-Electro Mechanical Systems (MEMS). These dynamical behaviours are
characterized by the appearance of numerous frequency peaks in the Fourier
transform of the vibration data, organized with repeating patterns and constant
interspace between the spectral peaks (see Fig. 1). For instance, FCs have important
applications in optics and can be used for measurement purposes, see, e.g., [4, 5].

In MEMS devices, FCs have been experimentally reported, e.g, in [6, 7], where
a resonator with strong nonlinear coupling between bending and torsional modes is
addressed. Other examples are provided in [8], where a tunable FC is considered, or
in [9] where a 1:2 internal resonance in a MEMS arch resonator is investigated.
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Fig. 1 Schematic representation of a frequency comb induced by a Neimark–Sacker bifurcation.
The bifurcation introduces in the system response a new incommensurate frequency ωNS such that
the Fourier transform of the system shows peaks at the forced frequency Ω multiples and at each
combination mΩ ± nωNS with m and n integers. This corresponds to a motion of the orbits on a
torus in the phase space (qualitative representation in the top-right corner).

Another option to achieve FC is through contact phenomena inducing period-
doubling bifurcations, as in [10].

Through the analysis of the experiments available in the literature, a direct
relationship between a FC and a quasi-periodic (QP) regime can be argued. When a
FC is established, the response is characterized by an amplitude modulation in time,
and an incommensurate frequency ωNS appears along with the driving frequency
Ω . Due to nonlinearities, ωNS and Ω combine according to the rule mΩ ± nωNS
with m and n integers, and each combination corresponds to a peak in the Fourier
transform, see Fig. 1.

This chapter focuses on nonlinear oscillators featuring 1:2 and 1:3 internal
resonances (IR) and on the appearance of QP solutions as the consequence of
Neimark–Sacker bifurcations. In this case, the emergence of QP regimes and
FCs can be easily predicted if the locus of Neimark–Sacker bifurcation points
is available [11, 12]. Numerical evaluation of the boundary curves of specific
bifurcation points, as parameters are varied, is currently an active research topic
in the literature. For example, numerical continuation methods can be adapted with
few additional constraints to follow the locus of a specific bifurcation point in the
parameter space, see, e.g., [13] for recent examples in nonlinear oscillations.

Even though NS bifurcation points have been identified in these systems for a
long time, see, e.g., [14, 15] and references therein, new results are reported in
this document. An analytical expression of the Neimark–Sacker boundary curve
is provided for the 1:2 IR case, and a numerical continuation method is developed
for the systematic computation of the NS boundary curve. The latter method is also
applied to the case of a 1:3 IR.

This chapter is organized as follows. Section 2 presents the reference nonlinear
systems considered in the investigation, while Sect. 3 derives the analytical expres-
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sion of the Neimark–Sacker boundary for the case of the 1:2 IR. Then in Sect. 4,
the comparison between the analytical and numerical solutions in the systems
considered is discussed. Finally, in Sect. 5, we summarize the outcomes of the work.

2 Reference Systems

This chapter considers a system of two coupled nonlinear oscillators featuring 1:2
and 1:3 IR. The former one is described through its second-order normal form [1],
while the latter considers a simplified system. The equations of motion of the former
system read

q̈1 + ω2
1q1 + 2μ1q̇1 + α

(1)
12 q1q2 = F cos (Ωt) , (1a)

q̈2 + ω2
2q2 + 2μ2q̇2 + α

(2)
11 q

2
1 = 0, (1b)

in which qi, (i = 1, 2) is the displacement of the i-th oscillator and ωi are the
two eigenfrequencies, hereafter assumed to fulfil the relation ω2 ≈ 2ω1. Two
quadratic coefficients α(1)12 and α(2)11 are introduced. In the mechanical context with

conservative loads, one has α(2)11 = α
(1)
12 /2. The linear damping coefficients are μi ,

i = 1, 2, and an external harmonic forcing with angular frequency Ω and amplitude
F is applied to the first oscillator.

For the 1:3 IR, the focus in this contribution is put on a system that is simplified
as compared to the complete normal form for a 1:3 internal resonance, following
the example selected and analysed in [6, 7]. The equations of motion read

q̈1 + ω2
1q1 + μ1q̇1 + β

(1)
111q

3
1 + β

(1)
112q

2
1q2 = F cos (Ωt) , (2a)

q̈2 + ω2
2q2 + μ2q̇2 + β

(2)
111q

3
1 = 0. (2b)

In this system, β(j)ik are the nonlinear coupling coefficients. Since we are interested
in the 1:3 IR, the eigenfrequencies are such that ω2 ≈ 3ω1. The monomial terms
that are not herein considered as compared to the normal form of the system are the
following: q1q

2
2 on the first oscillator; q3

2 and q2q
2
1 on the second oscillator. Also

in this case, if we consider a mechanical context with conservative loads, one has
β
(2)
111 = β

(1)
112/3.

3 Neimark–Sacker Analytical Boundary for 1:2 Resonance

This section investigates the frequency response functions (FRF) of the oscillators
described by Eq. (1). The appearance of QP solutions was documented, e.g., in
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[14, 16], although the expression of the Neimark–Sacker boundary curve was not
detailed. Following the multiple scales (MS) method [17, 18], we introduce two
different time scales T0 = t and T1 = εt , with ε a small bookkeeping parameter.
A linear expansion of the system response as qi = qi0 + εqi1 is assumed, while
the damping is modelled as μi = εξi , the forcing term as F = εf , and finally the
nonlinear coefficients as α(1)12 = εᾱ

(1)
12 , α(2)11 = εᾱ

(2)
11 . Under these assumptions, we

rewrite (1) as

q̈1 + ω2
1q1 = ε[−2ξ1q̇1 − ᾱ

(1)
12 q1q2 + f cos (Ωt)], (3a)

q̈2 + ω2
2q2 = ε[−2ξ2q̇2 − ᾱ

(2)
11 q

2
1 ]. (3b)

The forcing frequency Ω is close to the first eigenfrequency ω1 (ω2 ≈ 2ω1), and
detuning parameters σ1 and σ2 are introduced to quantify the mismatches as ω2 =
2ω1 + εσ1 and Ω = ω1 + εσ2. Following a classical path, the solution of the first-
order system can be expressed in the form qi0 = Ai(T1) exp(iωiT0) + c.c., with
Ai(T1) = ai(T1)/2 exp(iθi(T1)). When qi0 is inserted in the second-order system,
secular terms arise. Forcing them to vanish (solvability conditions), a set of four
differential equations are obtained. The resulting system is made autonomous by
introducing the angular variables:

γ1 = θ1 − σ2T1, γ2 = 2θ1 − θ2 − σ1T1. (4)

The dynamics of the first-order solution ai and γi with respect to slow time scale T1
is governed by

a′1 =
a1

(
ᾱ
(1)
12 a2 sin (γ2)− 4ξ1ω1

)
− 2f sin (γ1)

4ω1
, (5a)

γ ′1 =
ᾱ
(1)
12 a1a2 cos (γ2)− 2f cos (γ1)

4a1ω1
− σ2, (5b)

a′2 = −
ᾱ
(2)
11 a

2
1 sin (γ2)+ 4ξ2a2ω2

4ω2
, (5c)

γ ′2 = −
f cos (γ1)

a1ω1
− σ1 + 1

2
cos (γ2)

(
ᾱ
(1)
12 a2

ω1
− ᾱ

(2)
11 a

2
1

2a2ω2

)

. (5d)

The fixed point solutions, associated to forced oscillations of constant amplitudes,
can be expressed as a function of a1 and a2 only. The amplitude equations,
employing the physical parameters of Eq. (2), finally read:
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a3
2 +

8ω1Γ

α
(1)
12

((Ω − ω1)(ω2 − 2Ω)+ μ1μ2)a
2
2 +

16ω2
1

α
(1)2
12

((Ω − ω1)
2 + μ2

1)a2

− Γ α
(2)
11 F

2

α
(1)2
12 ω2

= 0, a1 =
√

4ω2a2

α
(2)
11 Γ

,

(6)
where Γ =

√
1

μ2
2+(ω2−2Ω)2

.

We now focus on the definition of the Neimark–Sacker (NS) boundary curve.
The stability of the solutions depends on the eigenvalues λ of the Jacobian matrix
of system (5). The NS bifurcation requires that a pair of complex conjugate
eigenvalues crosses the imaginary axis. Furthermore, the same eigenvalues must
satisfy transversality and nondegerancy conditions [19]. Imposing these constraints
in the characteristic polynomial of Eqs. (5), one can express the NS boundary as a
polynomial in a2:

b1a
4
2 + b2a

3
2 + b3a

2
2 + b4a2 + b5 = 0, (7)

where the expression of each coefficient is reported in Appendix A. For fixed values
of the system parameters μ1, μ2, α(1)12 , ω2, ω1 and spanning the values of Ω , one
gets the boundary curve for the NS bifurcation as a function a2(Ω).

4 Neimark–Sacker Boundary Curve: Numerical Results

In this section, the NS boundaries associated with the system of Eqs. (1) and (2)
are investigated numerically and, in the former case, compared to the analytical
prediction developed in the previous section.

The numerical continuation procedure has been implemented in the software
MANLAB [20, 21]. The procedure is based on the standard augmented system
method here briefly introduced, using the general dynamical system notations used
in [22]. Let x(t) be a n-dimensional vector and f the nonlinear smooth mapping
defining the dynamical system

ẋ = f(x(t),α), (8)

where α is the parameter vector of the system. Let us assume that, for a given value
of α, a period-1 limit cycle emerges from a NS bifurcation, such that x(0) = x(1)
(phase condition).

The goal is to follow the locus of NS bifurcation points as α is varied. To this
purpose, we parametrize the critical multipliers λ1,2 by means of a scalar variable θ
as: λ1,2 = e±iθ . Let us introduce a complex eigenfunction w(t) of system (8). The
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Fig. 2 q1 as a function of the excitation frequency Ω for system (1) with 1:2 IR. Selected
parameters are: α(1)12 = 2 · 10−3, α(2)11 = 1 · 10−3, μ1 = μ2 = 1 · 10−4, F = 5 · 10−4, and σ1 = 0.
In (a), black lines represent the FRF of the multiple scale system from Eq. (6) (a continuous line
denotes a stable branch, dashed unstable, dash dotted marks the quasi-periodic regime). The red
continuous line represents the FRF of the system Eq. (1) computed through numerical continuation
in MANLAB (10 harmonics). The red dot dashed line is the NS boundary obtained with numerical
continuation methods (10 harmonics). The dark green dashed line is the analytical NS boundary.
The light blue filled region highlights where a QP regime is expected. The blue circle markers
represent the RK4 direct time-marching solution (Poincaré sections). A cloud of points arises from
the QP regime. Two enlarged views close to the peak and to the NS region allow appreciating the
small differences between the solutions. In (b) and (c), results for the value Ω = 1 are reported.
(b) is the Fourier transform of the time history represented in (c). The frequency comb and the
amplitude modulation are clearly visible

system that allows the continuation of NS boundary consists of Eqs. (8) along with
the phase condition [22]:

ẇ− fx(x(t),α)w(t) = 0, (9a)

w(1)− eiθw(0) = 0, (9b)
∫ 1

0
wT (t)w0(t)dt − 1 = 0, (9c)

where w0(t) is a complex-valued reference eigenfunction at a nearby point on
the solution branch and fx is the Jacobian of Eq. (8). Equation (9) is solved with
MANLAB that implements the Harmonic Balance Method for the computation of
periodic solutions and applies Hill’s method to evaluate the stability of the system
(see [23]). This approach was demonstrated to be extremely efficient and reliable
for the analysis of nonlinear systems. To this aim, the augmented system (9) must
be converted in the frequency domain using a Floquet–Hill formulation.
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Fig. 3 q1 as a function of the excitation frequencyΩ for system (2) obtained with the continuation
method (10 harmonics). Selected parameters: β(1)111 = 1 ·10−2, β(1)112 = 2 ·10−2, β(2)111 = 6.66 ·10−3,
μ1 = μ2 = 1·10−4, F = 1·10−3, and ω2 = 3ω1. (a) Complete FRF, (b) enlarged view close to the
NS bifurcations. The red lines represent the FRF of the system. The red dash dotted lines are the
NS boundaries achieved with numerical continuation methods. The light blue colouring highlights
the regions in the parameter space enveloped in the NS boundary. The blue circle markers represent
the RK4 direct time-marching solution (Poincaré sections). A cloud of points arises from the QP
regime.
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Figure 2 shows the results obtained in the case of the 1:2 IR, where the analytical
prediction given by Eq. (6) and Eq. (7) is compared to the numerical one obtained
by continuation of Eq. (1) with MANLAB and direct time-marching Runge–Kutta
4 (RK4) method. The three approaches provide the same result in the periodic
regions, and only small differences can be observed close to the resonance peaks
between the analytical and continuation approaches. The NS boundary encloses a
connected domain centred on the resonance frequency ω1. Here, the time-marching
approach reveals the quasi-periodic regime and the FC. A nearly perfect match
between analytical and numerical NS boundaries is found, thus validating the overall
procedure.

For the 1:3 IR case, only the numerical solution of Eqs. (2) is reported in Fig. 3.
One can observe a more complex pattern with two different tongues of instability
regions. More specifically, the NS boundary crosses the frequency response function
in two different portions, thus creating two narrow regions with QP solutions, one
centred on ω1, the other being shifted to higher frequencies. The local existence
of two different regions is a noteworthy difference with respect to the 1:2 IR
case. Moreover, it is worth stressing that capturing the narrow and close instability
tongues is quite difficult with standard continuation methods. In the proposed
example, we also show results obtained with a RK4 direct integration close to the
unstable regions. The two results have a perfect agreement in the periodic regions,
and as expected, the RK4 integration detects the QP regime within the NS boundary.

5 Conclusions

In this chapter, we have obtained an analytical expression of the Neimark–Sacker
boundary for a system of two coupled oscillators with 1:2 internal resonance.
The analytical formula has been validated with an ad hoc developed numerical
continuation of bifurcation points. The numerical method has also been used to
compute the NS boundaries for two oscillators featuring 1:3 internal resonance
showing that two distinct instability regions exist. These regions have the shape
of narrow tongues and are difficult to detect only with direct integration schemes
and other standard numerical tools.
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Appendix A: Coefficient of NS Boundary Polynomial
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Theoretical Investigations on an
Internally Resonant Piezoelectric Energy
Harvester

Aravindan Muralidharan and Shaikh Faruque Ali

1 Introduction

Vibration energy harvesting has become the need of the hour for realizing
autonomous systems in fields such as structural health monitoring without relying
much on the hazardous and exhaustible batteries. Among all the mechanisms
available for harnessing vibration from the environment, piezoelectric energy
harvesting is the most sought after one, which is mainly due to its higher power
densities [1]. Harvesters based on linear resonance work efficiently only when the
excitation frequency is in close proximity to the natural frequency. This makes the
linear harvester susceptible to the uncertain variations in the ambient environment.
Introducing deliberate nonlinearities into the harvesting system as a means to
harvest power over a broadband of frequencies has garnered more attention in
the recent times as it aids in overcoming the major shortcoming of the linear
harvester [2].

Harvesters with intentional nonlinearities have been reported to display improved
bandwidth of power in comparison to the linear harvesters under both deterministic
and random excitation (Litak [3] and Friswell [4]). Also, several works in the
literature demonstrate the potential of exciting multiple modes of piezoelastic
system for broadband performance [5]. Internal resonance can occur in multi-modal
nonlinear harvesters when the natural frequencies of the system are commensu-
rable [6]. Energy transfer occurs between the modes under internal resonance, and
this phenomenon can be made use of to harvest electrical power over a broad band
of frequencies.
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Geometrically, nonlinear beams are commonly idealized as cubic oscillators with
symmetric potential wells. For such oscillators, significant energy transfer between
the modes is found to occur when their corresponding natural frequencies are tuned
to the ratio of 1:3 [6]. The dynamics of such systems boast modulated responses
in the vicinity of the primary resonances [7]. The experimental work carried out
by Guillot et al. [8] on a piezoelectric system with 1:3 internal resonance under
harmonic excitation demonstrated the possibility of using internal resonance toward
broadband energy harvesting.

The motivation of carrying out this work comes from the prospect of utilizing
large responses of 1:3 resonant systems near the fundamental resonance for
wideband power extraction. To this end, studies are carried out in the present work to
characterize the performance of a piezoelectric harvester with 1:3 internal resonance
under harmonic excitation.

2 Harvester Model

The schematic representation of the harvester is shown in Fig. 1. An inverted can-
tilever beam of length Lb constitutes the harvester system. The material properties,
namely the density and the modulus of elasticity of the beam, are represented by
ρb and Eb, respectively. The width and thickness of the beam are correspondingly
taken to be bb and db. A concentrated mass Mt with a corresponding mass moment
of inertia It is lumped at a distance Lt from the fixed end of the beam. Piezoelectric
patches of length Lp, width bp, and thickness dp are attached onto both faces of the
beam. The cross-sectional area as well as the second moment area of the beam
and piezoelectric patch are denoted as [Ab, Ap] and [Ib, Ip], respectively. The
geometrical and electrical properties of the piezoelectric patches considered in the
study are taken from [9]. The damping ratios of the first two modes are represented
by ξ1 and ξ2, respectively. The harvester system is set to steady-state motion by a
harmonic base displacement of the form z = z0cos(Ωt).

Let up and vp be the vertical and horizontal displacements of any given point
P at a distance s from the fixed end along the neutral axis of the beam as shown
in Fig. 1. In addition to these displacements, the cross-section of the beam also
undergoes rotation at point P that is denoted by φp the corresponding curvature
of which is represented as κp. Assuming the beam to be inextensible, φp, κp, and
up can be expressed in terms of vp as given in [4]. This chapter employs Galerkin
discretization to obtain an approximate solution for the horizontal displacement at
any point, vp along the beam that is given by

vp(s, t) =
N∑

h=1

qh(t)

[
Φc
h(s)Hc(s)+Φb

h(s)Hb(s)

]
, (1)
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Fig. 1 Schematic representation of the harvesting system

where Φc
h(s) and Φb

h(s) are the cantilever beam modes of the piezoelectric and
non-piezoelectric domains of the harvester, respectively. N corresponds to the
total number of modes considered for the analysis. qh(t) denotes the generalized
coordinate of the hth mode. Hc(s) and Hb(s) correspond to the piezoelectric and
non-piezoelectric regions.

Using the expressions given in [4] for the kinetic as well as potential energies and
the work done by harvester in extracting electrical power, the following governing
mechanical equation can be obtained.

αhhq̈h + chq̇h + γhhqh +
N∑

i,j,k,l=1

βhjkl

(
qkql q̈l + qj q̇k q̇l

)
+
(
λijhlqiql + λhjklqkql

)
qj

−Θ1,hV − 1

2

N∑

i,j,k=1

(
Θ2,hjkqj qk + 2Θ2,ijhqiqj

)
V = Ψhz̈ h = 1, 2, ..., N, (2)

where

αhj = ρcAcΔ
c
hj + ρbAbΔ

b
hj +Mtψhj + ItNhj (3a)

γhj = EbIcμ
c
hj + EbIbμ

b
hj − ρcAcgΓ

c
hj − ρbAbgΓ

b
hj −Mtgχhj (3b)

βhjkl = ρcAcΛ
c
hjkl + ρbAbΛ

b
hjkl +Mtσhjkl + ItΞhjkl (3c)

λhjkl = EbIcη
c
hjkl + EbIbη

b
hjkl (3d)

Ψh = −(ρcAcυ
c
h + ρbAbυ

b
h +Mtτh). (3e)
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The constants in Eq. (3) are functions of the mode shapes integrated from 0 to Lb.
For the definition of constants in Eq. (3), the reader can refer to [10]. The harvester
takes the monostable configuration if Mt < Mtb and bistable configuration if Mt >

Mtb where Mtb is the buckling mass. In this chapter, studies are carried out to probe
the behavior of monostable harvester in the presence of internal resonance.

Similarly, the governing differential equation of the electrical front of the
harvester is obtained to be

CpV̇ + V

RL
+

N∑

i=1

Θ1,i q̇i + 1

2

N∑

i,j,k=1

Θ2,ijk

(
2qi q̇j qk + q̇iqj qk

)
= 0, (4)

where Θ1 and Θ2 are the electromechanical coupling coefficients obtained as a
function of the mode shape of the piezoelectric patch. RL is the load resistance.

3 Approximate Solutions Using Perturbation Approach

In order to understand the performance of the harvester near its fundamental
resonance, the system Eqs. (2) and (4) with weak nonlinearities (βhjkl → εβhjkl ,
λhjkl → ελhjkl) and damping (ch → εch) under soft excitation (z → εz) is
analyzed where ε is a perturbation constant that is very small.

Solutions for q and V are assumed to be of the following asymptotic form [6]:

qh(t; ε) = qh0(T0, T1)+ εqh1(T0, T1)+O(ε2) (5a)

V (t; ε) = V0(T0, T1)+ εV1(T0, T1)+O(ε2), (5b)

where T0 = t , T1 = εt are the time scales used in the present work. The temporal
derivatives in the governing equations can be written in terms of T0 and T1 as

d

dt
= D0 + εD1 +O(ε2); d2

dt2
= D2

0 + 2εD0D1 +O(ε2), (6)

where D0 = ∂
∂T0
; D1 = ∂

∂T1
.

The zeroth-order solution of qh is given by

qh0 = Ch(T1)e
iωhT0 + Ch

∗(T1)e
−iωhT0 . (7)

The two terms in the above solution represent the complex conjugate pair, where
Ch is the complex amplitude to be found out and its complex conjugate term is
represented by (∗) in the superscript. Using qh0 , the zeroth-order solution of the
generated voltage, V0, can be obtained as
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V0 = Ṽ0 + Ṽ ∗0 . (8)

The term Ṽ0 in Eq. (8) is obtained to be

Ṽ0 =
N∑

i=1

RiΘ1,iCie
iωiT0 , (9)

where Ri = −αii

(
ω2
i CpR

2
L+iωiRL

)

1+ω2
i C

2
pR

2
L

.

This chapter only considers the first two primary modes commensurable with a
ratio of 1:3. To denote the proximity of ω2 to 3ω1 and Ω to ω1, the following terms
are defined.

ω2 = 3ω1 + εσ0, Ω = ω1 + εσ1, (10)

where σ0 and σ1 are the internal detuning parameters. Making use of the above
relation, the O(ε) term of the excitation force is given by

O(ε) : ψhz̈ = −ω2
hz0ψh cos(ω1T0 + σ1T1). (11)

Eliminating the secular terms of O(ε) to zero and setting the temporal derivatives
with respect to T1 to zero, the following stationary equations for amplitudes and
phases when Ω ≈ ω1 are obtained.

8ω1a1(σ1)+ 4Re(Z1)a1 +
[
Re(W12) cos η1 − Im(W12) sin η1

]
a2

1a2 + a1

2∑

i=1

Re(Wii)a
2
i

= −4ψ1ω
2
1z0 cos η2 (12)

4Im(Z1)a1 +
[
Im(W12) cos η1 + Re(W12) sin η1

]
a2

1a2 + a1

2∑

i=1

Im(Wii)a
2
i

= 4ψ1ω
2
1z0 sin η2 (13)

8ω2a2
(
3σ1 − σ0

)+ 4Re(Z2)a2 +
[
Re(P21) cos η1 + Im(P21) sin η1

]
a3

1

+ a2

2∑

i=1

Re(Pii)a
2
i = 0 (14)
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4Im(Z2)a2 +
[
Im(P21) cos η1 − Re(P21) sin η1

]
a3

1 + a2

2∑

i=1

Im(Pii)a
2
i = 0,

(15)

where a1 and a2 are the modal amplitudes. η1 = ϕ2+σ0T1−3ϕ1 and η2 = σ1T1−ϕ1
are the phase shifts of the second modal response and excitation frequency with
respect to the first modal response, respectively.

To obtain the steady-state solutions of the amplitudes and phases, the terms ȧi
and ϕ̇i are set to be equal to 0 in Eqs. (12)–(15).

The harvested power, P , is given by

P = |V0|2
RL

, (16)

where the expression for V0 is given in Eq. (8).

4 Results and Discussion

Table 1 provides the values of the parameters for which the numerical simulations
are carried out in this work. The value of ε is taken to be 0.01 in this chapter.
The lumped mass, Mt , is varied to realize 1:3 internal resonance in the harvesting
system. The critical value of lumped mass (Mcr=19.1 g) corresponds to the value
at which commensurability of the natural frequencies is realized. The first two
natural frequencies pertaining to Mcr are 16.51 rad/s and 49.52 rad/s, respectively.
The internal detuning parameter, σ0, is negative for Mt > Mcr and positive for
Mt < Mcr . Stable and unstable branches of the stationary solutions are represented
by solid and dashed lines, respectively. Solid dot markers and black colored asterisk
in the responses represent the Hopf (HP) and Saddle-Node (SN) points, respectively.

The frequency responses of first two modal amplitudes (a1, a2) and harvested
power, P , for σ0 = 0 under different excitation amplitudes are shown in Fig. 2.
Despite a2 taking a non-zero value, the frequency response of a1 resembles a
single-mode response for an excitation amplitude (z0) of 2 mm. Loops emerge

Table 1 Description of
parameters used in the model

Parameter Value Parameter Value

ρb 7800 kg/m3 ρp 5440 kg/m3

Ab 4 mm2 Ap 3 mm2

db 0.25 mm dp 0.3 mm

Lb 300 mm Lp 35 mm

Lt 100 mm Lc 28 mm

Eb 210 GPa Ep 15.857 GPa

ξ1,2 0.02 Cp 15.11 nF
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Fig. 2 Frequency response curves of modal amplitudes and harvested power when Ω ≈ ω1, σ0 =
0, RL = 1 MΩ . Violet and green lines correspond to z0 = 2 mm and 15 mm, respectively
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Fig. 3 Frequency spectra and time histories of generated voltage, V , for z0 = 15 mm, RL = 1
MΩ , σ0 = 0. Black and blue lines denote responses at σ1 = 1.8 and σ1 = 2.5, respectively

in the frequency response of a2 indicating the existence of internal resonance in
the system [6]. The amplitude of the loop-like branch increases considerably with
increase in z0, which can be observed from Fig. 2b. This gives rise to an additional
coexistent stable branch in the power curve (2.4 ≤ σ1 ≤ 3.2 for z0 = 15 mm).
The influence of higher mode response on the harvested power can be perceived
from the observation that the magnitude of harvested power due to loop-like branch
(P ≈ 2.5 mW) is of the same order as that of the primary hardening branch
(P ≈ 5 mW) in the range of σ1 considered for this chapter as can be seen from
Fig. 2c.

For z0 = 15 mm, the time histories and frequency spectra obtained using fast
Fourier transform (FFT) plots of voltage corresponding to σ0 = 0, RL = 1 MΩ at
two different values of σ1 (1.8, 2.5) are shown in Fig. 3. Two frequencies dominate
the responses, and expectedly, those frequencies pertain to first (f1 = 2π/ω1) and
second (f2 = 3f1 = 2π/ω2) natural frequencies of the system. The predominant
contribution to the voltage from the first modal response, a1, is clearly evident for
the case of σ1 = 2.5, which could be observed from the FFT plot given in Fig. 3a.
The significant energy transfer between the modes can be observed when σ1 = 2.5
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Fig. 4 Variation of the harvested power with σ0 when for RL = 1 MΩ and z0 = 15 mm. Gray
and orange lines denote the responses for σ0 = −10 and σ0 = −20, respectively

where the voltage generation due to loop-like branch surpasses that of a1 although
Ω ≈ ω1 as can be observed from the time history in Fig. 3b.

The variation of harvested power with detuning parameter, σ0, is shown in Fig. 4.
For σ0 = −10, the frequency response of P boasts a loop-like branch existing over a
broader frequency range (0.45 ≤ σ1 ≤ 4.1) with an appreciable magnitude of power
as compared to other coexisting stable branches. The magnitude of power decreases
tremendously when σ0 is not very close to 0. This inference is well supported by the
observation of the absence of loop-like branches when σ0 = −20. Thus, the stable
branch yielding higher power output can be realized by the appropriate tuning of
internal detuning parameter (σ0).

To understand the feasibility of activating higher power yielding branches, basins
of attraction are studied when σ0 = −10 and z0 = 15 mm, which are presented
in Fig. 5. The power outputs of 2.35 mW,1.12 mW, and 32 μW are represented by
yellow, cyan, and violet basins, respectively, as shown in Fig. 5a. Similarly, violet
and yellow basins in Fig. 5b denote the power outputs of 20 μW and 4.28 mW,
respectively. The complex loop response is realized at σ1 = 3 only if the initial
values of a2 are significantly large for values of a1 belonging to the range 3.6e-
3≤ a1 ≤ 7.7e-3. Yellow basin is preferred for a small set of initial conditions
when σ1 = 6 where a1 is markedly larger than a2. Figure 5b demonstrates that the
magnitude of power is significantly low for low values of a1. Hence, the harvesting
efficiency in the required frequency band can be improved by operating the harvester
with externally perturbed initial conditions.

The role of excitation amplitude on influencing the energy transfer between the
modes, and consequently, the harvested power is shown in Fig. 6 when σ1 = 1.8. A
monotonic increase in the magnitude of harvested power is observed when σ0 = 0
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Fig. 6 Effect of excitation amplitude on harvested power at σ1 = 1.8. Green and gray lines
correspond to the responses when σ0 = 0 and σ0 = −10

with an increase in z0. In contrast to the above, three stable branches coexist in
the range 6.4 ≤ z0 ≤ 19.5 when σ0 = −10. The magnitude of power harvested
can be increased notably by activating higher stable branch in the above specified
amplitude range through suitable initial conditions. Saturation in the magnitude of
power can be observed beyond a particular value of z0 as seen in Fig. 6.
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5 Conclusions

This chapter studies the role of 1:3 internal resonance toward broadband piezo-
electric energy harvesting. The method of multiple scales is employed to obtain the
asymptotic solutions of the governing equations in the neighborhood of fundamental
resonance. Results presented in this chapter show that the higher mode positively
influences the magnitude and bandwidth of power generation near the fundamental
resonance. The work also reports the effect of suitable tuning of the lumped mass
in amplifying the energy transfer between the modes that in turn enhances the
power output. The outcomes of the present study demonstrate that the performance
of piezoelectric harvester can be significantly improved by realizing 1:3 internal
resonance between the first two modes.
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On Learning the Impact Dynamics
of a Physical Beam Structure Coupled
to a Multi-Stable Continuum

Ioannis T. Georgiou

1 A Bottom-Up Synthesis of a Class of Complex Flexible
Structures for Irreversible Energy Flow

In this article we report preliminary results in regard to an effort to discover, by
means of pure data-driven exploration of paradigmatic physical models, mechanical
structural systems exhibiting nonlinear phenomena underlined by the irreversible
flow of mechanical energy among its parts. Augmenting a flexible structure by
embedding within it a flexible continuum with multiple static equilibria is a quite
promising way to discover such systems [1–3]. Established nonlinear dynamics
knowledge [4] and revised-updated classical mechanics [5] to include bifurcations
and chaos as fundamental knowledge motivates research efforts aimed at exploring
the use and design of nonlinearities for technology innovations. Herein presented
is a bottom-up design of a class of complex mechanical structural systems to
form a dynamics environment for the occurrence of processes (vibrations, waves)
underlined by irreversible mechanical energy flow. Term complexity refers to
both the geometry features of the system domain and the possible mathematical
complexity (bifurcations, chaos) of the hosted dynamical processes. Current state-
of-the-art sensor and data acquisition technologies render handling, in terms of
acquiring high-quality data, this two-fold system complexity much more effective
by means of an actual, physical model rather than by a mathematical one, the usual
approach. Figure 1 depicts a physical continuum modified by embedding within
it a multi-stable continuum to trigger interactions among slow invariant manifolds
of waves-vibrations and the broad spectrum of manifolds of fast vibrations-waves
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Fig. 1 Lab set-up of a two-beam coupled structure composed of a steel beam (core) and
imbedded thin steel beam possessing at least three static equilibria (continuum level nonlinearity).
Eight evenly distributed accelerometers sample simultaneously the transverse component of the
acceleration vector field

(transversal fast fibers) supported by the continuum nature of the coupled system
[3]. Slow-fast dynamics interactions in the presence of coexisting multiple static
equilibria may infer irreversible energy flow between the two beams.

An interesting paradigmatic system is that synthesized by attaching at the free
tip of a cantilevered elastic beam a planar rigid pendulum [6]: observed (for the first
time) was the drain of vibration energy from the flexible continuum to the embedded
multi-equilibria nonlinear oscillator. This phenomenon was attributed to bifurcation
interactions of the slow invariant manifold of motions, contributed by the pendulum
oscillator, with the transverse fast motions contributed by the flexible continuum.
This interaction appears as an internal resonance between slow and fast oscillations
at critical energy levels. It approaches the well-known internal 1:2 resonance occur-
ring when the fast dynamics have evolved into the slow dynamics [7]. Replacing
the nonlinear oscillator with a multi-stable flexible continuum opens promising
directions to discover potential exploitable nonlinear phenomena. A related limiting
slow-fast continuum system was analyzed in work [1, 2]. Therein emphasized is
the role of the bifurcation of the slow invariant manifold and its interaction with
fast vibrations [2]. The slow invariant manifold of a system is an equilibrium for
all its fast time scales. Various known and unknown bifurcations may occur, thus
enabling interactions with possible irreversible energy flow characteristics. The
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Fig. 2 A lab multi-stable flexible continuum of high-strength steel material. In previous work [20]
16 sensors were used to sample its motions at the bending acceleration level

challenge of discovering this interesting class of complex mechanical systems can
be potentially met by means of synthesis of actual physical models. The physical
model is attractive given the sensory data-and-machine learning potentiality. To
this end, the physical dynamics of the two-beam system are sampled by a set of
sensors detecting the transversal acceleration field in local time-and-space varying
coordinates [8], in line with the modern considerations of geometric mechanics
where natural coordinates are used to derive the equations of motions [9–11]. The
advanced proper orthogonal decomposition (POD) transform [12–16] reduces the
physical data cloud, the dataset geometric object, of the typical motion into essential
low-dimensional modal dynamics (principal signals). The geometry of the physical
data is the natural playground where correlations in simultaneous measurements
shall form with indirect reference to the system complexity. The data cloud implicit
topology is the bridge connecting mechanics available in raw datasets to the actual
physics in the complex system. The role of the physical data cloud as a means to
capture correlations in distributed sensing is emphasized along with the axiom that
advanced POD computes its intrinsic geometric properties.

1.1 The Nature of the Embedded Multi-stable Flexible
Continuum

Figure 2 depicts a thin beam continuum with a multitude of coexisting static
equilibria induced-controlled by boundary conditions in the axial direction. It is
a continuum level kind of geometric nonlinearity inferring strong coupling of three
fields of motion: main bending without shearing, stretching without shearing, and
minor lateral bending with significant shearing. The number of static equilibria can
be increased by controlling the amount of axial displacement [9]. It allows ultra-
fast dissipation of initially stored in bending strain energy [3, 20, 21]. This occurs
because of the bifurcations-interactions of the slow dynamics with a sequence
of fast coupled vibrations. In Fig. 1, this multi-stable continuum is embedded
within in a larger-scale structure to explore: (1) whether it can absorb strain
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energy initially stored in the latter; and (2) whether it can function as a vibration
absorbing shield for the core structure in the sense energy stored initially in does
not leak into the core continuum. We are searching for the existence of nonlinear
phenomena characterized by irreversible energy flow from the core structure into
the embedded multi-stable continuum. We shall potentially discover them, if they
exist, by understanding its impact-induced response on the basis of sensory vibration
data. The complexity of the structure domain enters the picture in the sense of how
to distribute the sensors. It has been discovered that nonlinear mechanical structural
systems with coexisting multiple static equilibria may admit dynamical processes
with irreversible energy flow [6, 20–22]. A large volume of works is limited to
very elementary two coupled oscillator systems [22]. Definitely, a continuum lever
mechanics approach takes into account various complexity factors that can occur
in an actual physical system. Flexible continua with multiple static equilibria offer
an unexplored topic to search for nonlinear phenomena underlined by irreversible
energy flow [21].

Experimental Procedure The two-beam structure, Fig. 1, is excited by means of
a modal hammer to induce elastic wave propagation motions that eventually settle
down to stationary waves or natural free vibrations. The dynamics developed in the
complex structure domain are sampled at eight points by ultralight accelerometers.
Motions are induced by controlled impact at sites over the multi-stable continuum
as well as at sites over the core support continuum. The sensors provide the local
coordinate resolution of the transverse acceleration field. This is a geometrically
consistent measurement along natural local coordinates [8]. Modern geometric
mechanics are formulated in coordinates which are consistent with shape and
deformation [9–11] and thus geometry consistent sensing is a natural choice. So
datasets collected by geometry consistent sensors need to be processed appropriately
to detect redundant information and thus extract the essential dynamics. The data
cloud plays an important role here. It allows comparing motions on the basis of only
datasets [23]. Figure 3 presents the projection of the physical data cloud, embedded
into an eight-dimensional Euclidean space, into a natural three-dimensional space
that accommodates any triad of sensors. The complexity of the geometry of the data
cloud is turned into analytic low-dimensional essential information by the advanced
proper orthogonal decomposition transform.

Data quality The acquired digital data of acceleration are of high quality. The
sensors are state-of-the-art ultra-light piezoelectric accelerometers with sensitivity
near 1 mV/m/sˆ2. The sampling rate is high at 48000 Hz accompanied by AD
conversion resolution at 18 bits with a small discretization error at 10/2ˆ18. The
signal/noise ratio is quite high, in the order of 500.
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Fig. 3 Viewing the multi-channel simultaneous measurement as a collection of data points, the
physical data cloud, in the appropriate Euclidean space is pivotal since hidden correlations give rise
to implicit characteristic directions running through the data cloud. Shown above is the projection
of an eight-dimensional data cloud into a three-dimensional space. The implicit characteristic
directions, not easily discerned, govern the whole dataset

2 Physical Data Cloud Reduction Analysis

In this work, we emphasize the importance of the geometric structure of a multi-
channel simultaneous measurement by sensors covering the whole structure. We
have installed five sensors in the core structure and three in the multi-stable con-
tinuum. The typical multi-channel simultaneous measurement of the acceleration
vector is viewed as a time sequence of snapshot points in the eight-dimensional
Euclidean space. Important now is the multi-directional features of the data cloud,
such as stationary directions about which the data are concentrated, Fig. 3. Passing
from differential geometry [24] to functional analysis mathematical physics [25],
these directions are necessarily normal to each other and they are identified
by proper orthogonal decomposition (POD) transform computations [8, 16]. In
machine learning classical POD [17–20] is known as PCA. Here we are using the
advanced POD transform for dimension reduction computations since it is related
to linear modal analysis philosophy aimed to characterize the physics of nonlinear
processes in a reduced order, modal-like framework. The geometry of the data cloud
is formed accordingly to the inherent relations among the sensor observers. To show
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Fig. 4 Advanced POD-based
computation of the ICDs size
spectrum curve, identified
with the POD energy
spectrum curve, of three free
motions, system in Fig. 1, at
different energy levels.
Motions excited by impacting
the embedded multi-stable
continuum

in the results that the multi-stable continuum is embedded in the core structure, we
augment the eight-channel dataset to nine channels, where the added column is a
copy of the data steam from sensor no. 3. This augmentation does not affect the
implicit properties of the data cloud.

2.1 Results

This complex structure, Fig. 1, both in physical geometry and dynamics features,
possesses a complicated wave function: free response to point-localized initial
conditions. Just as in linear systems, prediction of the wave function is a central issue
in nonlinear structural dynamics. It is a challenge for physical complex structures.
To sample the unknown wave function, free motions were induced by impacting the
two-beam structure at several points, located at the core and the embedded multi-
stable continuum. In particular, for a specified point of excitation and when the
structure was at one of the stable equilibria, families of motions were exited and
parameterized by the impact magnitude: local and global waves-vibrations were
excited.

Using advanced POD transform computation tools, a set of sensory data clouds
were fussed, decomposed, and projected into their intrinsic characteristic directions
(ICDs). The fusion operation amounts to the collapse of the data cloud into the
spectrum sequence of auto-correlation energies (eigenvalues). Figure 4 reveals that
three such motions, with distant energy levels, have very similar energy spectrum
curves. Figure 5 reveals that the dominant ICDs are realized as localized shapes
over the nonlinear continuum. Certainly, these are remarkable results given the
complexity of the structure and the exactly extracted reduced one-dimensional, thus
modal-like, dynamics.

Are the localized data cloud modal shapes over the embedded nonlinear
continuum vibration properties of the complex structure? To explore this issue,
free motions are induced by impacting the core structure in a region close to the
attached continuum nonlinearity. Figure 6 reveals that the sensory data cloud forms
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Fig. 5 Data cloud modal reduction of typical motion excited by impacting the embedded multi-
stable continuum: Computed modal shapes of the dominant ICDs (first three data points, Fig. 4),
localized over the nonlinear continuum domain (points: 4–6), core structure domain (points 1–3,
and 7–9)

Fig. 6 Data cloud modal reduction of typical motion excited by impacting the embedded multi-
stable continuum: Computed modal shapes of the dominant ICDs (first three data points, Fig. 4),
localized over the nonlinear continuum domain (points: 4–6), core structure domain (points 1–3,
and 7–9)

dominant directions localized as POD modal shapes over the multi-stable continuum
domain. They are quite similar to the ones characterizing motions induced over the
multi-stable continuum. It seems that the localization is insensitive to the location
of the impact keeping in mind that impact dynamics of colliding bodies is not
trivial mechanics [26]. This indicates that sensory data cloud implicit characteristic
directions capture correlations due to localization and thus point directly to the
existence of localized over the nonlinear continuum modal motions. But these data
modal motions have very complicated waveforms as furnished by the principal
signals frequency content: a range of slow vibrations interacting with a range of
fast vibrations.
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Fig. 7 The modal shapes of the dominant ICDs of two physical data clouds of the transverse
acceleration field developed in the core cantilevered beam, Fig. 8. Identical ICDs accompanied by
a common principal signal, which is a single frequency vibration at 1.64795 Hz

Verification of physics interpretation-the pivotal role of the cantilevered beam
structure. The physical data cloud modal analysis method is verified by a reference,
or benchmark, experiment where the physical data cloud geometry is related
to modal properties of vibrations in a continuum whose modes are computed
analytically by a reduced model. We remove the nonlinear continuum and we are
left with the core structure, a cantilevered beam with two concentrated masses, Fig.
8. Two free motions are excited by separate impacts at nearby points. The collected
physical data clouds are restricted over settled free vibrations, or standing waves, to
avoid uncertainties due to interactions of propagating waves and anomalies in the
structure. Figure 7 reveals that the two sensory data clouds share the same single
dominant intrinsic characteristic direction. It is identified with the shape of the
lowest or fundamental, normal mode of vibration of a cantilevered linear elastic
beam with two concentrated masses. Here we have used the concept of intersections
of variations of data clouds [23]. This reference experiment establishes the merit
of the physical data cloud approach and its natural decomposition and physics
interpretation by the advanced POD transforms. The reduced model is the Euler
Bernoulli beam.

The Euler Bernoulli reduced model of a uniform cross-section beam structure
is the bridge connecting the projection of the physical data cloud onto its implicit
characteristic directions (ICD) to actual normal mode vibration physics. Admitting
axiomatically a thorough decomposition by POD, the data cloud geometry is the
needed generic feature allowing us to step into the generic nonlinear regime, the
trade-off being the challenging issue of a physics interpretation of the data cloud
ICDs and the companion principal signals. As presented here, this issue is addressed
in first steps by determining whether the physical data clouds of a properly generated
family of motions are intersected as geometric objects [23]. On one hand, strong
intersection of physical data clouds seems to extract vibration modal physics, Fig.
7. On the other hand, weak intersection, extracts wave and vibration modal physics
surrounded by a cloud of uncertainty [23].
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Fig. 8 The core cantilevered beam without the embedded multi-stable continuum. The slow
dynamics should be governed by the classical Euler Bernoulli beam model, considered as reduced
model of three-dimensional elasticity, modified by two masses. Sharp intersection of at least two
physical data clouds over ICDs verifies this fact, Fig. 7

3 Discussion and Conclusions

We have learned some remarkable properties of the impact-induced free dynamics
of a two-beam flexible structure explored as an interesting modification of a core
cantilevered bean by embedding within it a multi-stable flexible beam. Previous
experimental works [3, 20, 21] reveal that, when uncoupled, the specific multi-
stable continuum exhibits ultra-fast decay of free vibrations. It is conjectured that
this is due to the fact that the slow invariant manifold-initially dominated by bending
slow motions-slaves, when multiple equilibria are present, the stretching motions,
and the lateral bending with considerable shearing. Nonlinear coupling extends the
slow invariant manifold to cover axial and lateral vibration motions. Slow invariant
manifold bifurcation mechanisms precipitate interactions between slow and fast
vibrations accompanied by ultra-fast decay.

When the multi-stable nonlinear continuum is attached to a specific flexible
continuum, the core substructure, we are discovering several remarkable facts,
thanks to the physical data cloud approach: learn the essential behavior of a complex
system only from sensory datasets. The data cloud analysis reveals the following.
Whenever a free motion is initiated by impact at a point on the embedded multi-
stable continuum, the physical data cloud is dominated by three ICDs, POD data
modes, with physical shapes localized strongly over the embedded multi-stable
continuum. They contain more than 96% of the motion auto-correlation energy. A
tiny amount of energy does leak into the core structure. The rest of the POD modes
are localized over the core structure. For free motions initiated by impact at points
on the core continuum, the physical data cloud is dominated by three ICDs which
are very similar to the ones present in data clouds of motions excited by impact on
the multi-stable continuum. The POD modes are properties of the geometry of the
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physical data cloud and cannot be connected directly to normal modes of vibration.
However, since they express the intrinsic characteristic directions of the data cloud
geometry – formed naturally as a result of modal physics correlations in a continuum
structure, we conjecture that the localized POD modal shapes indicate directly the
presence of localized normal modes of vibration of the complex structure. We have
the following consequence: The fact that vibration data localization occurs over
the domain of the multi-stable continuum indicates that mechanical energy initially
stored in the core structure eventually shall flow irreversibly into the embedded
multi-stable continuum to naturally form localized motions.

The main issue considered was to learn how an impact-induced motion evolves
from an elastic wave, excited locally, into settled free vibrations in the presence of
multiple static equilibria in a complex structure. The geometric complexity of the
structures along with the global multiple static equilibria presents an environment
that renders this dynamical process a challenge to understand on the basis of
pure sensor-based datasets. The impact-induced free motions carry a wealth of
information: the genesis of an elastic wave, its interactions with anomalies, and its
final attraction or transformation into free-standing waves, the eigenstates, or normal
modes of vibration. Our experimental observations as analyzed by POD-based
reduction indicate that, after the irreversible energy flow from the core structure
into the multi-stable continuum, slow invariant manifold bifurcations (unexplored)
push further irreversibly captured mechanical energy from multiple slow time scales
into multiple fast time scales, and thus expediting the natural irreversible flow,
dissipation, of mechanical energy into heat.
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Vibration Analysis of a Multi-DOF
Impact Oscillator with Multiple Motion
Constraints

Wei Dai and Jian Yang

1 Introduction

Impact oscillator models are widely used for studying the vibro-impact behaviour
of many engineering dynamic systems such as tooling machineries [1, 2], drilling
systems [3, 4], rotary machines [5] and robot joints [6]. Those systems usually
consist of a main linear system and a single constraint or multiple constraints.
When the displacement of the main system exceeds the constraint clearance, the
main system may be engaged with the constraint. The inclusion of rigid or elastic
constraint in a system can bring in non-smooth stiffness nonlinearities, resulting in
complex nonlinear behaviour in the dynamic response including bifurcations and
chaotic motions [7]. The elastic constraint may also alter the vibration transmission
characteristics between sub-structures of the integrated system [8]. While much
research has been conducted focusing on the dynamics of the single-degree-of-
freedom (SDOF) impact oscillator with a single elastic or rigid constraint [9–11],
there have been very limited studies on the dynamics of multi-degree-of-freedom
(MDOF) impact oscillator systems with multiple motion constraints [12]. Such a
study can then enable the investigation of the vibration transmission mechanisms
and power flow characteristics, which can benefit the designs of vibration attenua-
tion systems to obtain an improved performance [8, 12–20].

In this paper, the dynamics and vibration behaviour of a 3DOF impact oscillator
with multiple linear motion constraints is studied. The mathematical model is firstly
presented. Both the frequency-domain approximation method and the time-domain
numerical method are then employed to determine the steady-state response of the
system. The influence of the stiffness of the linear constraints on the response of the
impact oscillator system is examined.
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Fig. 1 Schematic of the 3DOF impact oscillator system with multiple constraints

2 Impact Oscillator Modelling with Multiple Constraints

Figure 1 shows the MDOF impact oscillator system model. Three masses are
coupled via springs and dampers to form a chain oscillator, the motion of which
is restrained by three springs as motion constraints. The SDOF subsystem one
(S1) on the left is subjected to a harmonic force excitation with the amplitude of
f0 and frequency of ω. The static equilibrium positions of the three masses, where
x1 = x2 = x3 = 0 and the springs k1, k2, k3, k4 are un-stretched, are set as a reference.
Three linear constraints C 1, C 2 and C 3 with identical stiffness ks are for the masses
m1, m2 and m3, respectively. When the springs in three constraints are un-stretched
and the masses are in equilibrium, i.e. x1 = x2 = x3 = 0, the left-hand-side terminals
of the three linear constraints are placed at a distance of d to the right of masses m1,
m2 and m3, respectively.

Based on Newton’s 2nd law, the governing equations of the impact oscillator can
be obtained and presented in a matrix form as

⎡

⎣
m1 0 0
0 m2 0
0 0 m3

⎤

⎦

⎧
⎨

⎩

ẍ1

ẍ2

ẍ3

⎫
⎬

⎭
+
⎡

⎣
c1 + c2 −c2 0
− c2 c2 + c3 −c3

0 −c3 c4 + c3

⎤

⎦

⎧
⎨

⎩

ẋ1

ẋ2

ẋ3

⎫
⎬

⎭

+
⎡

⎣
k1 + k2 −k2 0
− k2 k2 + k3 −k3

0 −k3 k4 + k3

⎤

⎦

⎧
⎨

⎩

x1

x2

x3

⎫
⎬

⎭
+
⎧
⎨

⎩

fC1

fC2

fC3

⎫
⎬

⎭
=
⎧
⎨

⎩

f0e
iωt

0
0

⎫
⎬

⎭
, (1)

where fC1 = ks(x1 − d)U(x1 − d), fC2 = ks(x2 − d)U(x2 − d) and
fC3 = ks(x3 − d)U(x3 − d) are the nonlinear forces applied by the constraints C1,
C2 and C3 to the mass m1, m2 and m3, respectively, and U(δ) in those expressions
represents the Heaviside step function of a displacement variable δ defined by

U (δ) =
{

0,when δ ≤ 0,
1,when δ > 0.

(2)
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For the later parametric study, the following parameters can be introduced as

ω1 =
√
k1

m1
, ω2 =

√
k4

m3
, ζ1 = c1

2m1ω1
, ζ2 = c4

2m3ω2
, l0 = m1g

k1
,

X1 = x1

l0
, X2 = x2

l0
, X3 = x3

l0
, λ = ks

k1
, γ = ω2

ω1
, μ = m2

m1
, ρ = m3

m1
,

κ = k2

k1
, α = c2

c1
, ε = k3

k1
, β = c3

c1
, F0 = f0

l0k1
,Ω = ω

ω1
, τ = ω1t, η = d

l0
,

where ω1 and ω2 denote the natural frequencies of the linear oscillator in subsystem-
1 (S1) and subsystem-3 (S3) without the constraints, respectively, ζ 1 and ζ 2
represent the damping ratios of the individual oscillators in S1 and S3, respectively,
l0 is the characteristic length, X1, X2 and X3 are the dimensionless response
displacements for mass m1, m2 and m3, respectively, λ is the stiffness ratio of the
linear constraint, γ is the undamped natural frequency ratio between the oscillators
in S1 and S3, μ and ρ are the mass ratios, κ and α are the non-dimensional
stiffness and damping ratios for the interfacial spring and damper between m1 and
m2, respectively, ε and β are the non-dimensional stiffness and damping ratios for
the spring and damper between m1 and m3, respectively, F0 and � are the non-
dimensional excitation amplitude and frequency, respectively, τ is the dimensionless
time and η is the gap width ratio. By using these parameters, the governing equation
of Eq. (1) can be transformed into a non-dimensional form as

⎡

⎣
1 0 0
0 μ 0
0 0 ρ

⎤

⎦

⎧
⎨

⎩

X′′1
X′′2
X′′3

⎫
⎬

⎭
+
⎡

⎣
2ζ1 (1+ α) −2ζ1α 0
− 2ζ1α 2ζ1 (α + β) −2ζ1β

0 −2ζ1β 2 (ρζ2γ + ζ1β)

⎤

⎦

⎧
⎨

⎩

X′1
X′2
X′3

⎫
⎬

⎭

+
⎡

⎣
1+ κ −κ 0
− κ κ + ε −ε
0 −ε ργ 2 + ε

⎤

⎦

⎧
⎨

⎩

X1

X2

X3

⎫
⎬

⎭
+
⎧
⎨

⎩

FC1

FC2

FC3

⎫
⎬

⎭
=
⎧
⎨

⎩

F0e
iΩτ

0
0

⎫
⎬

⎭
, (3)

where FC1 = λ(X1 − η)U(X1 − η), FC2 = λ(X2 − η)U(X2 − η) and
FC3 = λ(X3 − η)U(X3 − η) are the dimensionless nonlinear forces applied by the
constraints C1, C2 and C3, respectively. To obtain the steady-state response of the
system, numerical integration method with time discretization, i.e. the Runge-Kutta
Dormand-Prince (RKDP) method with adaptive time-step size, and the harmonic
balance method with alternating-frequency-time scheme (HB-AFT) are used to
solve the Eq. (3). To implement HB-AFT for the current system, the steady-state
dimensionless displacement responses of the masses are firstly approximated by
a truncated N-order Fourier series with the fundamental frequency of �, and
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the corresponding velocity and acceleration response can be obtained by the
differentiation of the displacement response. The time histories of the dimensionless
constraints forces FC1, FC2 and FC3, can then be obtained and Fourier transformed
to find the Fourier coefficients of the constraints forces. By substituting those
expressions into Eq. (3) and balancing the corresponding harmonic terms, a total
number of (6 N +3) nonlinear algebraic equations can be obtained. A combination
use of Newton-Raphson method and numerical arc-length continuation method can
be used to determine the roots for those equations [21–23].

3 Results and Discussions

Here the effects of the stiffness ratio λ of the linear motion constraints on the steady-
state maximum displacement X1 _ max of the mass m1, X2 _ max of the mass m2 and
X3 _ max of the mass m3 are investigated and shown in Figs. 2, 3 and 4, respectively.
Four different values of stiffness ratio λ are considered with λ = 0, 0.5, 1 and 1.5,
of which the case with λ = 0 is the un-constrained system used for comparison
purpose. The system parameters are set as ζ 1 = ζ 2 = 0.01, γ = 1, μ = 1, ρ = 1,
κ = 1, ε = 1, α = 1, β = 1, η = 0.1 and F0 = 0.1. The results obtained by the 7th

order HB-AFT method are plotted in different lines while those obtained by RKDP
method are denoted by symbols.

Figure 2 shows that three main peaks are observed in each steady-state frequency
response curve of the mass m1. By conducting modal analysis on the corresponding
un-constrained linear system with λ = 0, it is found that at the first peak near
� = 0.75, the motions of the three masses are in-phase, i.e. the relative phase angle
between the responses of three masses is zero. When the system is excited at the
second peak near � = 1.4, the displacement responses of the mass m1 and the mass
m3 are out of phase, i.e. the relative phase angle is π , while the response amplitude

Fig. 2 Effects of stiffness
ratio λ of the constraints on
the steady-state maximum
displacement X1 _ max of the
mass m1. The solid line and
circles, dashed line and
triangles, dotted line and
squares, dash-dot line and
rhombuses are for λ= 0, 0.5,
1.0 and 1.5, respectively
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Fig. 3 Effects of stiffness
ratio λ of the constraints on
the steady-state maximum
displacement X2 _ max of the
mass m2. The solid line and
circles, dashed line and
triangles, dotted line and
squares, dash-dot line and
rhombuses are for λ= 0, 0.5,
1.0 and 1.5, respectively
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Fig. 4 Effects of stiffness
ratio λ of the constraints on
the steady-state maximum
displacement X3 _ max of the
mass m3. The solid line and
circles, dashed line and
triangles, dotted line and
squares, dash-dot line and
rhombuses are for λ= 0, 0.5,
1.0 and 1.5, respectively
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of the mass m2 is relatively small. As for � ≈ 1.85, the motions of the mass m2
and mass m3 are in-phase but the response of the mass m1 has a phase difference
of π /2 to that of the mass m2 as well as the mass m3. Figure 2 also shows that
with the introduction of linear constraints, all three peaks of the X1 _ max curves
bend to the high-frequency range. Multiple solutions can be found near the resonant
frequencies. The reason is that the response displacement magnitude of the mass m1
exceeds the gap width η between the constraint and the mass, therefore the mass m1
is engaged with the constraint C1 near the peak frequencies. The linear constraint
can increase the system stiffness during the intermittent contact with the mass and
lead to a hardening effect on the response of the mass m1. It was also found that
there is a local maximum point in the X1 _ max curve when � ≈ 0.7. This is due to
the super-harmonic response component of the mass m1, to be shown later. When
the constraint stiffness ratio λ increasing from 0 to 0.5, to 1 and to 2, the three peaks
in the X1 _ max curves bend more to the right. Moreover, the first peak value shows
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little variation while there are slight increases in the second peak and the third peak
values with the increasing λ.

Figure 3 shows that for the un-constrained system with λ = 0, there are only two
peaks in the frequency response curve of the mass m2. An extra peak can be found
near � = 1.4 when the linear constraint is considered. It also shows that with the
increase of the constraint stiffness ratio λ from 0 to 0.5, then to 1.0 and finally to
1.5, the first peak and the third peak of X2 _ max are bending to the right with only
minor differences in the first peak but a slight increase in the third peak value. The
second peak also shows a bending to the right with a substantial growth on the peak
value. However, it is noticed that there are relatively large discrepancies between the
HB-AFT result and the numerical integration results near the second and the third
peak frequency when the stiffness ratio λ of the constraints are relatively high, i.e.
λ = 1 and 1.5. This phenomenon will be further explored later.

Figure 4 shows that by a comparison between the un-constrained case with
stiffness ratio λ = 0 and the linear constraint cases, all three peaks of the steady-
state response curves X3 _ max of the mass m3 extend to the high frequencies due to
the interaction between the masses and the corresponding linear constraints. With
the increase of λ from 0 to 0.5, to 1.0 and to 1.5, more bending on all three peaks
to the high frequency range can be observed. Slight increase can be found on the
second and third peak of the X3 _ max curve. In contrast, there is a small reduction on
the first peak value. Figure 4 also shows a difference between HB-AFT result and
numerical integration result in the case of λ = 1.5 when the system is excited near
the third peak. This phenomenon is further discussed in later content.

Figure 5 presents the frequency spectra of the response of the mass in S1 in the
case of λ= 1.5 when excited at �= 0.7. It shows that there exists a super-harmonic
response component at �r = 2�, which is corresponding to the local maximum
point in the frequency response of the mass m1 in S1 near � = 0.7 shown in Fig. 2.

Figure 6 further explores the reasons for the differences between HB-AFT
approximation results and numerical integration results observed in Figs. 2, 3

Fig. 5 Frequency spectra of
the displacement response of
the mass m1 in S1 at the
excitation frequency of
� = 0.7.
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Fig. 6 Bifurcation diagrams with a low-to-high frequency sweep for (a) xs1 of the mass m1, (b)
xs2 of the mass m2 and (c) xs3 of the mass m3.

and 4 by studying the system with parameters set as λ = 1.5, ζ 1 = ζ 2 = 0.01,
γ = 1, μ = 1, ρ = 1, κ = 1, ε = 1, α = 1, β = 1, η = 0.1 and F0 = 0.1.
Figure 6a–c shows the bifurcation diagrams for each mass by using a low-to-high
frequency sweep, respectively. The steady-state time histories of the dimensionless



838 W. Dai and J. Yang

displacement of each mass obtained by RKDP method are sampled using a sampling
period of T = 2π /�. The samplings of the dimensionless displacement xs1 of m1,
xs2 of m2 and xs3 of m3 from a starting time of 256 T and to 356 T at each
pre-described excitation frequency in the range of 0.5 ≤ � ≤ 2 are recorded and
plotted, respectively. It shows that the bifurcations occur on the boundaries of the
frequency ranges of 0.5 < � < 0.6, 1.3 < � < 1.45 and 1.55 < � < 1.65 as well
as 1.75 < � < 1.9. Non-periodic responses can be observed at particular frequency
bands of 1.3 < � < 1.45 and 1.75 < � < 1.85. This behaviour suggests that in these
frequency ranges, even little variations in the parameter values of the system can
lead to significant changes in the response of the masses. The HB method based on
the assumption of periodic responses cannot capture the non-periodic responses that
occurred in these frequency bands, resulting in the discrepancies between the HB-
AFT results and numerical integration results. It may be summarized that a large
stiffness ratio of the linear constraints may lead to bifurcations when the excitation
frequency is in the vicinity of the three resonant frequencies. This phenomenon
is related to the stronger stiffness nonlinearities introduced by the constraints into
the oscillating system when increasing the stiffness λ of the linear constraints.
For the systems with a smaller value of λ, there is weaker stiffness nonlinearity
introduced by the constraints into the oscillating system and hence a reduced
nonlinear effect. With the responses of the systems obtained, further analysis on
vibration transmission in terms of force transmissibility and vibration power flow
can be conducted to reveal the effects of motion constraints on vibration suppression
performance.

4 Conclusions

This paper studied the dynamic responses of an MDOF impact oscillator with
multiple linear spring constraints. The equations of motion of the impact oscillator
system subjected to harmonic force excitation were firstly obtained and solved by
HB-AFT approximation and time-marching method. The influence of the stiffness
ratio of the linear constraints on the response behaviour of the oscillator system was
studied. The results show that the inclusion of the linear constraints can lead to rich
nonlinear phenomena including super-harmonic responses and multiple solution
branches. The resonance peaks in the curves of the steady-state displacement
response of the masses bend to the high-frequencies and an extra peak may appear
in the frequency response curve of the second mass in the middle. An increase of the
stiffness ratio of the linear constraints may introduce a stronger hardening nonlinear
effect on the system such that all the peaks in the frequency response curves twist
further to the right. Bifurcations can occur near the resonance peaks of the response
of each mass when the stiffness of the constraints is high.

Acknowledgments This work was supported by the National Natural Science Foundation of
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Design of NARX Model for Dry Friction
System of the Three-Piece Bogie

Dali Lyu, Qichang Zhang, and Shuying Hao

1 Introduction

Dry friction occurs in all actual mechanical systems, in which surfaces are in
contact with each other and can slide freely between each other [1]. The char-
acteristic of the dry friction plays a significant role in the dynamic system. In
some scenarios, friction plays advantageous effects, such as the application of
automobile tires, clutches, brake pads, bogie wedges, and various dampers. Friction
also has disadvantageous effects, such as abnormal vibration and noise caused by
friction. Therefore, the study of friction dynamics has very important theoretical and
practical significance. The dynamic behavior of dry friction belongs to the category
of non-smooth dynamics. The research of non-smooth dynamic systems involves
many fields such as machinery, aerospace, control, power, and neural networks [2].
The first mathematical friction model was proposed by Coulomb, which depends
on the relative velocity direction. The magnitude of the friction force is constantly
proportional to the normal contact force, as shown in Fig. 1. Stribeck effect [3]
ensures that the friction force changes during a continuous function of the velocity,
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Fig. 1 Representation of
Coulomb friction

Fig. 2 Representation of the
Stribeck curve

Fig. 3 The physical
interpretation of LuGre model

as shown in Fig. 2. The LuGre model [4] was considered as a derivation from the
Dahl model. The model containing Stribeck and static friction effects describes the
friction as the result of the interaction of surface bristles and establishes the average
bristle deflection, as shown in Fig. 3. But so far, friction is a complex phenomenon
depending on many physical parameters and working conditions, and none of the
available models can claim general validity.

The three-piece bogies were first developed by the USA and the Soviet Union in
the 1930s, comprised of one bolster, two sideframes, and two wheelsets. As shown
in Fig. 4, the bolster is seated in the sideframes through a set of springs and wedge
friction dampers. The characteristic of dry friction plays a significant role in the
dynamic system. The modeling of the friction force in the system depends on several
environmental factors including sliding speed, temperature, and normal load. The
suspension system is highly complex and time-consuming due to the dry friction.

The neural network has a good ability to approximate any function, with the
advantages of self-learning, generalization, and robustness. Therefore, it has been
widely used in all areas. A time-delay recurrent neural network (TDRNN) was
employed and trained to predict the pitch angle of the system, where two types
of structural nonlinearity were studied, cubic-spring, and friction [5]. Taqvi used a
NARX model to detect the internal and external faults in a distillation column, this
model was adequate for the representation of system behavior by using the sensor
noise and zero mean normal distributed noise for training [6]. NARX was used to
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Fig. 4 Bogie structure
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model the helicopter flight dynamics system, which has complexity and interaction
between various subsystems. Previous research has proven that the NARX method
is a feasible way to establish the dynamic model of a system. However, the basis
for the selection of NARX model parameters is not stated, and it is impossible
to determine the parameters with a unified standard. The literature [7] tested 101
various criteria to determine the number of hidden neurons in the Neural Networks
model. The number of hidden neurons obtained is very different according to the
101 criteria. The common method for determining the number of input parameters
is based on trial and error. It was observed that overfitting was avoided for a network
having 6 neurons in a single processing layer. Swarm intelligence has been proved
as a technique that can solve non-deterministic polynomial-time computational
problems. It is gaining popularity in solving different optimization problems. As
of 2018, the most commonly used algorithm particle swarm optimization (PSO)
was used in almost 47% of cases in the literature [8]. PSO algorithm takes up
less memory and learns faster, compared with genetic algorithm (GA) and imperial
competition algorithm (ICA). The purpose of this paper is to study the parameter
setting method of the NARX model based on the PSO method for railway freight
car bogies with dry friction model.

2 Methodology

2.1 NARX Method

NARX model defined in the literature [9] is:

f (t)=h (y (t−1) , y (t−2) , . . . , y (t−q) , f (t−1) , f (t−2) , . . . , f (t−q)) ,
(1)

some nonlinear mapping h : R2q →R exists whereby the present value of the output
f (t) is uniquely defined in terms of its past values f (t − 1), f (t − 2), . . . , f (t − q)
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and its past values of the input y(t − 1), y(t − 2), . . . , y(t − q). q is the number of
the delay units of output and input.

For the case of the Coulomb friction with discontinuous features, an AVD
(acceleration, velocity, and displacement) model is proposed to simulate [10].

f (t) = h
(
y (t − 1) , y (t − 2) , . . . , y (t − qd) , ẏ (t − 1) , ẏ (t − 2) , . . . , ẏ (t − qv) ,

ÿ (t − 1) , ÿ (t − 2) , . . . , ÿ (t − qa) , f (t − 1) , f (t − 2) , . . . , f
(
t − qf

) ) ,

(2)

ẏ(t),ÿ(t) are the sampled velocity and acceleration signals which are usually
obtained from the measured displacement by a numerical differentiation method.
qd,qv,qaare the numbers of the delay units of displacement, velocity, and accelera-
tion respectively.

A general single-degree-of-freedom nonlinear system was established, and the
relationship between input and output was obtained by the finite difference method
[10].

f (t) = bÿ(t)+ a1ÿ (t − 1)+ a2ÿ (t − 2)

+ a3
[
3y2 (t − 1) ÿ (t − 1)+ 6y (t − 1) ẏ2 (t − 1)

]− 2f (t − 1)+ f (t − 2) ,
(3)

where a1, a2, a3, bare the coefficients of the input. As shown in Eq. (3), the
displacement and velocity data must be used with acceleration data to obtain
the correct nonlinear term. It is necessary to include the present value in the
input information because the NARX network architecture is consistent with the
theoretical model to better describe physical phenomena. The current value must
be included in the input information, because the NARX network architecture is
consistent with the theoretical model and can better describe physical phenomena.

Based on the Eqs. (1) and (2) of the NARX model, the NARX model used in this
paper is:

f (t) = h
{

[y(t), ẏ(t), ÿ(t)] , [y (t − 1) , ẏ (t − 1) , ÿ (t − 1)] , . . . ,

[y (t − q) , ẏ (t − q) , ÿ (t − q)] , f (t − 1) , . . . , f (t − q)
}
,

(4)

Equation (4) is simplified to eq. (5) as:

f (t) = h (Y (t), Y (t − 1) , . . . , Y (t − q) , f (t − 1) , . . . , f (t − q)) , (5)

where Y (t) = {y(t), ẏ(t), ÿ(t)}.
The NARX learns to predict one-time series given past values of the same

time series and the external or exogenous time series. The NARX consists of
input, hidden, and output layers. The input consists of the time delays data of the
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Fig. 5 NARX network displacement prediction model with the secondary suspension system

input signal and output signal transmitted through the hidden layer, this output is
transmitted through the last connection multiplies the weight. The structure of the
NARX is shown in Fig. 5.

The mean square error (MSE) of the training data is used to evaluate the
performance of the NARX model, which is defined as:

MSE = 1

N

N∑

t=1

(
f̂ (t)− f (t)

)2
, (6)

where f̂ (t) is the estimated value of the NARX, f (t) is the real value of the
friction system, which is obtained from the friction experiment. N is the number
of calculated data values.

2.2 PSO-NARX Method

In order to find the optimal network structure, particle swarm searches for the best
suitable global position (gbest) and best personal position (pbest). In the particle
swarm optimization modeling process, the particles will move to find the best
position (also known as gbest and pbest) in each iteration of the system. At this
time, the speed and position of all particles can be attained as follows:
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Fig. 6 PSO-NARX learning process

V k+1
d = ωV k

d + c1r1
(
P k
id −Xk

d

)+ c2r2

(
P k
gd −Xk

d

)

Xk+1
d = Xk

d + V k+1
d

, (7)

whereXk
dand Xk+1

d represent the current and next position of the particle. V k
d and

V k+1
d represent the current and next speed of the particle, respectively. P k

id and
P k
gd are the most suitable global position and best personal position, respectively.

Usually, two positive acceleration constants c1and c2are selected from the operator
to optimize the network output. r1 and r2are both random numbers in the form
of values (0,1). The determined acceleration factors (c1andc2) are 2. ω is called
inertia weight in the range [0.9,1.2]. ω is a linear decreasing variable from an initial
value (ωmax) to a final value (ωmin) for improving the performance as the iteration
according to the following equation:

ω(t) = ωmax − ωmax − ωmin

Tmax
t, (8)

where t is the number of the current iteration of the PSO algorithm and Tmax is the
maximum number of iterations [11].

Figure 6 demonstrates the training process of networks in the hybrid PSO-NARX
model. The initial values of the number of the delay units (q) and the hidden layer
neurons (p) are randomly set. In the next step, having the initial step of particles,
the PSO-NARX model network will be trained. The next step is to check the
convergence of the trained network based on the MSE between the predicted and
actual values. Reduce the error by changing the position of the particles to obtain the
lowest error or reach the set maximum number of iterations. This process continues
until one of the stopping criteria is met.
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3 Results and Discussion

3.1 Experiment Set-up

The friction damping performance of the three-piece bogie is mainly produced by
the main friction surface between the wedge and the side frame, and the pressure on
the friction surface is exerted by the weight of the car body through the bolster. In
order to obtain the friction characteristics of the main friction pair, an experimental
device for the main friction pair was established. The structure size and material
of the friction pair adopt the actual structure of the bogie friction pair, and the side
pressure is loaded by the hydraulic device to simulate the side pressure of the friction
pair. Figure 7 shows a schematic and test photo of the dry friction test system. The
objective is to measure the dynamic friction force in the sliding interface between
the fixed block and the moving block. The instrument can be roughly divided into
two parts: the loading part containing components vertical actuator, displacement
sensor, force sensor, and hydraulic device, the friction part containing components
fixed block, and moving block.

The displacement load is applied to the bottom of the moving block as the system
excitation, and the force signal collected on the top of the fixed block is used as the
system response. The input of the experimental data consists of a quasi-periodic
signal displacement filtered with a 100 Hz cut-off, while the output is composed of
the time series of the friction force, the sampling frequency is at 1000 Hz.

Force Sensor

Hydraulic 

Device

Support Frame

Fixed Block

Vertical 

Actuator

Displacement 

Sensor 

Moving 

Block

Friction Pair

Fig. 7 The dry friction test system: (a) test photo; (b) schematic diagram
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Fig. 8 Experimental time series of load force of output and displacement of input vs time

3.2 Testing Data and Results

The experiment was conducted over three excitation frequencies to simulate the
changes in the frequency components of the excitation energy at different vehicle
speeds. This is done to determine a model that can work well under different
operating conditions. Therefore, there are three data sets: low-frequency (1 Hz) data,
medium-frequency (5 Hz) data, and high-frequency (10 Hz) data. The objective is
to predict the pulling force based on the information of the excitation displacement,
velocity, and acceleration. Figure 8 shows the experimentally measured time series
of load force of the output and displacement of the input used for modeling in the
high-frequency data sections. The velocity and acceleration data are generated by
the differentiation of displacement.

Initially, the datasets were used to perform NARX training. In this analysis,
approximately 70% of datasets are selected for training, 15% for validation, and
15% are left for testing of NARX neural network. The validation phase was
performed during the training procedure for weights and bias adjustment while the
test datasets were used for final validation. The maximum value of the number of the
delay units (q) and hidden layer neurons (p) is set to 20. The p and q in the NARX
model are set to maximum. The hidden units use the tangent-sigmoid activation
function while the output unit uses the linear activation function. Subsequently, the
prediction method based on PSO-NARx model is further used to perform the system
identification of the dry friction system. The network architecture PSO-NARX is
the same as the conventional NARX, except that the number of the delay units and
hidden layer neurons is determined by the PSO method. The p and q in the PSO-
NARX model are set to any integer between 1 and 20. The process continues until
the stopping condition is that the maximum number of iterations is 50 times.

The model prediction output of the NARX and PSO-NARX models is shown in
Fig. 9. Table 1 shows the ensemble model performance for the different excitation
frequencies. The prediction accuracy of the PSO-NARX model is approximately 10
times higher than the NARX method. The fitting accuracy of the NARX architecture
is not the best when the delay units (q = 20) and hidden layer neurons (p = 20) are
set the maximum value. It is necessary and feasible to use the PSO method to select
the number of delay units and hidden layer neurons to improve the fitting accuracy.
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Fig. 9 Comparison between the measured and estimated output of the validation set for high-
frequency excitations

Table 1 Predicted results
using PSO-NARX and
traditional NARX

NARX PSO-NARX
Training data sets MSE q p MSE

Low-frequency 0.863 15 20 0.0346
Medium-frequency 0.555 9 18 0.0541
High-frequency 0.534 9 18 0.0369

(a) (b) 

Fig. 10 The MSE value of NARX is calculated using the exhaustive method. (a) High-frequency.
(b) Low-frequency

The PSO method can get the optimal solution, but it may also fall into the local
optimal and cannot reach the global optimal. Therefore, the exhaustive method is
used to obtain the error conditions of the NARX model for the number of delay
units and neurons.

As shown in Fig. 10, the exhaustive method is used under high-frequency and
low-frequency. The numbers of delay units and neurons are respectively set as 9
and 18, 15 and 20. The error values are 0.0369 and 0.0346 respectively, which is
expressed as 1/MSE. Compared with the PSO-NARX calculation results in Table 1,
it is found that the error values are the same, and the number of delay units and
neurons are also consistent. It shows that the PSO-NARX method is feasible and
the optimal solution of the system can be obtained.
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Table 2 Predicted results
using PSO-NARX and
traditional NARX without the
present unit of input Y(t)

NARX PSO-NARX
Training data sets MSE q p MSE

Low-frequency 0.069 9 20 0.053
Medium-frequency 1.094 17 17 0.1216
High-frequency 2.321 8 18 0.0425

The NARX and PSO-NARX models are used to calculate the error MSE of the
prediction result excluding the present unit of input Y(t). From the comparison of
NARX and PSO-NARX in Table 2, it can be seen from Table 2 that the q and p will
change when the fitting accuracy MSE is the highest. The fitting accuracy of PSO-
NARX is higher than NARX, the prediction accuracy of the PSO-NARX model is
approximately 10 times higher than the NARX method. By comparing the data in
Table 1 and Table 2, the PSO-NARX model improves the fitting accuracy more than
20% when the external input delay term Y(t) is added. This shows that it is necessary
to increase the external input Y(t).

4 Conclusions

A new element type based on nonlinear autoregressive with exogenous input
(NARX) is proposed to establish the bogie suspension with dry friction system.
The number of delay units and the hidden layer neurons in NARX cannot be
calculated by a fixed expression. However, the PSO method can be used to obtain
more accurate recognition accuracy. An experimental model for bogie dry friction is
designed. The displacement, velocity, acceleration, and load obtained from the test
are used as the input and output data of the NARX. The results show that the PSO-
NARX can be well established as the dynamic model of the dry friction system.
The prediction accuracy of the PSO-NARX is approximately 10 times higher than
the NARX. Adding the present unit of the input of the NARX and the PSO-NARX
improves the fitting accuracy more than 20%. Therefore, the prediction results of
experimental data with different characteristics prove that the PSO-NARX neural
network has good generalization performance for dry friction dynamic systems. The
PSO-NARX can accurately predict the dynamic behavior of the system. The present
unit of input data should be added in the establishment of PSO-NARX. The PSO-
NARX established in this paper can be used to model the dry friction system and
provide a new method for vehicle state monitoring.
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A Generalized Solution Scheme Using an
Implicit Time Integrator for Piecewise
Linear and Nonlinear Systems

Huimin Zhang, Runsen Zhang, Andrea Zanoni, and Pierangelo Masarati

1 Introduction

Piecewise linear and nonlinear systems, such as gap-activated springs in vibrating
machines [1, 2], gear backlashes [3], structures with damage or clearance [4], and
drag torques [5], are commonly used in civil engineering, aerospace, mechanical
engineering, and infrastructures. Because of the piecewise linear or nonlinear
characteristics, these systems exhibit very complex and diverse dynamic behavior.
However, this kind of nonlinearity brings difficulties to the accurate prediction
of dynamic responses. For single-degree-of-freedom (SDOF) systems, some tradi-
tional methods, including the averaging method [6], the perturbation method [7],
and the harmonic balance method [8], can be employed to look for analytical
solutions, but the application range of these analytical methods is very limited, and
they become tedious and time-consuming when the number of degrees of freedom
increases. Therefore, for such problems, numerical integration is a more general
choice and sometimes the only one to simulate their dynamic response.

Time integration methods for semi-discrete motion equations have been well
developed in the field of structural dynamics and are simply reviewed. These
methods can be divided into two categories: explicit and implicit. Explicit methods,
such as the central difference method, the explicit generalized-α method [9], and
the Noh–Bathe method [10], are easy to implement, but they are all conditionally
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stable, which means that their time step sizes are limited by the highest frequency
of the system to be solved. As a result, explicit methods are more commonly used
in wave propagation and impact problems, where the time step size required by
the stability limit is of the same order of that needed to capture the physics of the
problem. Implicit methods, including the Newmark method [11], the generalized-
α method [12], the Bathe method [13], and many others, can be designed to be
unconditionally stable at least for linear problems, so that their time step size only
depends on the desired solution accuracy, at the cost of greater computational effort.
When applied to linear systems, implicit methods require the factorization of the
effective stiffness matrix; for nonlinear systems, an iterative solution approach is
inevitable. A comprehensive review about time integration methods can be found in
[14].

Focusing on piecewise linear and nonlinear systems, some attempts have been
made to provide solution approaches using time integration methods. Yu [15]
and Fadaee et al. [16] transformed the piecewise linear problem in an equivalent
linear complementarity problem (LCP) [17], which can be solved using the Lemke
algorithm, and adopted the Bozzak–Newmark method [18] to integrate the dynamic
equations. A similar concept was also employed by He et al. [19], based on the
precise integration method (PIM) [20] and the Lemke algorithm. These methods,
referred to as the LCP-based schemes in that context, are applicable when the
piecewise linear characteristic is the only nonlinearity in the dynamics equations.
They have been successfully applied to simulate the dynamic response of multi-
degree-of-freedom (MDOF) systems [4, 21, 22]. Another approach is to adopt an
explicit integrator [3, 23], which first updates the displacement at the current step
by the known state variables and guarantees that the piecewise linear or nonlinear
characteristic is taken into account. However, as mentioned above, the drawback of
explicit methods is their conditional stability, which limits their step size and can
make the results unreliable for nonlinear systems.

From the above review, the existing LCP-based schemes can handle piecewise
linear problems, whereas only explicit integrators can be employed if other non-
linearities are present. As a further attempt, this chapter aims at providing a more
elegant and versatile formulation of piecewise linear and nonlinear systems by using
projection functions, and at presenting a generalized solution procedure based on
the generalized-α method [12] and the semi-smooth Newton iteration [24]. The
projection function [25, 26] has been used to deal with discontinuities caused by
impacts and frictions. It is also introduced here to model the piecewise linear and
nonlinear characteristics. Compared with the LCP-based schemes, the advantages
of the proposed scheme are that it can be directly extended to general piecewise
nonlinear systems, since the dynamic equations involving the projection function
can be solved by the semi-smooth Newton iteration. Meanwhile, the proposed
scheme shows obvious efficiency advantages for systems with a large number
of piecewise features, due to the fast convergence rate of the Newton iteration.
Several numerical examples are simulated to show the numerical performance of
the proposed scheme.
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This chapter is organized as follows. In Sect. 2, the dynamics equations for
piecewise linear and nonlinear systems are presented using the projection functions.
The computational procedures are provided in Sect. 3, based on the generalized-
α method and the semi-smooth Newton iteration. Numerical experiments are
implemented in Sect. 4, and finally, conclusions are drawn in Sect. 5.

2 Formulation

For illustrative purposes, the piecewise linear SDOF system shown in Fig. 1 is
discussed first. Its elastic restoring force can be formulated as

K(x) =
{
k1x, x ≤ �

k1x + k2(x −�), x > �,
(1)

where K(x) is the elastic force, x is the displacement of the cart, � is the initial
clearance, and k1 and k2 are the stiffness values. With this simple piecewise linear
model, the basic idea of previous LCP-based schemes is reviewed here. From
Eq. (1), the complementarity relationship is established by introducing two auxiliary
variables g and y, as

g = y − x +�, y ≥ 0, g ≥ 0, y · g = 0. (2)

Using the variable y, Eq. (1) can be equivalently transformed into

K(x) = k1x + k2y. (3)

After applying the time integration schemes, the numerical displacement xk at time
tk satisfies

k∗xk + k2yk = r∗k , (4)

where k∗ is the effective stiffness value, which is a constant for linear systems; r∗k is
the effective external load, which needs to be updated per step. Combining Eqs. (2)
and (4), one obtains

yk = (k∗+k2)
−1k∗gk+(k∗+k2)

−1(r∗k −k∗�), yk ≥ 0, gk ≥ 0, yk ·gk = 0. (5)

At each step, yk can be obtained by solving the LCP in Eq. (5) via the Lemke
algorithm. Then, xk is computed as gk = yk − xk + �, and other state variables
are updated according to the time integration scheme. The above procedure can
be easily extended to solve MDOF systems. However, the LCP-based schemes are
designed only for piecewise linear systems, due to the lack of an efficient solver
for nonlinear complementarity problems. To our knowledge, so far no numerical
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Fig. 1 Piecewise linear
SODF system

solution scheme is available in the literature using implicit integrators for piecewise
nonlinear systems.

To fill this gap, this chapter employs the projection function to formulate
more general forms of piecewise linear and nonlinear characteristics. From convex
analysis, the projection of a point w in a convex set C is the closest point in C to w,
defined as

projC(w) = arg min
z∈C |w − z|. (6)

It follows that if w ∈ C, projC(w) = w, and otherwise, projC(w) is the nearest
boundary point of C to w. Using the projection function, Eq. (1) can be transformed
into

K(x) = k1x + k2proj
R
+
0
(x −�). (7)

It can be seen that the projection function in Eq. (7) can play the role of the auxiliary
variable y of the LCP-based schemes in Eq. (3). For general multi-stage piecewise
linear systems, as

K(x) =

⎧
⎪⎪⎨

⎪⎪⎩

k1x + z1, x ≤ x1

k2x + z2, x1 < x ≤ x2

· · ·
knx + zn, x > xn−1

(8)

where K(x) should be continuous at x1, x2, · · · ,xn−1 by setting proper constants z1,
z2, · · · ,zn, the equivalent form using the projection function can be written as

K(x) = k1x + z1 +
n∑

i=2

(ki − ki−1)proj
R
+
0
(x − xi−1). (9)

When extended to piecewise nonlinear systems, such as

K(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑p1
j=1 k1,j x

m1,j + z1, x ≤ x1∑p2
j=1 k2,j x

m2,j + z2, x1 < x ≤ x2

· · ·∑pn
j=1 kn,j x

mn,j + zn, x > xn−1,

(10)
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where p1, p2, · · · , and pn are the positive integers, and the equivalent form using
the projection function is

K(x) =
p1∑

j=1

k1,j x
m1,j + z1

+
n∑

i=2

⎛

⎝
pi∑

j=1

ki,j

(
proj

mi,j

[xi−1,+∞)(x)− x
mi,j

i−1

)

−
pi−1∑

j=1

ki−1,j

(
proj

mi−1,j

[xi−1,+∞)(x)− x
mi−1,j
i−1

)
⎞

⎠ . (11)

As can be seen, the projection function provides a more elegant, versatile, and
flexible manner to express the piecewise linear and nonlinear characteristics. Its
solution can be included in the solution program of nonlinear systems, without
additional computational procedures, as discussed in more detail in the next
section. Since polynomial stiffness functions can cover most situations in structural
dynamics, other possible forms, which can also be expressed using the projection
functions by selecting proper projected functions and convex sets, are not discussed
here one by one.

To present a general formulation of piecewise linear and nonlinear MDOF
systems, an auxiliary variable y ∈ R

q×1 is introduced as

y = P (x) =

⎡

⎢
⎢⎢
⎣

projC1
(w1(x))

projC2
(w2(x))

· · ·
projCq (wq(x)),

⎤

⎥
⎥⎥
⎦

(12)

where x ∈ R
s×1 is the displacement vector, and w(x) = [w1(x), w2(x), · · · ,

wq(x)]T are defined as functions of x. Then, the general form of the dynamics
equations can be expressed as

Mẍ + Cẋ +K(x, y, t) = R(t), (13)

where M ∈ R
s×s and C ∈ R

s×s are the mass and damping matrices, assumed
constant for simplicity, the over dots indicate derivation with respect to time t ,
K(x, y, t) ∈ R

s×1 is the elastic force vector, and R(t) ∈ R
s×1 is the external

load vector. Equations (12–13) constitute the dynamics equations that need to be
solved.
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3 Computational Procedure

In representation of methods of the same class, the generalized-α method [12]
is employed to illustrate the step-by-step computational procedure. Its improved
scheme [27], which holds second-order accuracy for displacement, velocity, and
acceleration, is adopted. It introduces an acceleration-like variable a as

(1− α)ak+1 + αak = (1− δ)ẍk+1 + δẍk, a0 = ẍ0, (14)

where the subscript k denotes the state variables of step k, and α and δ are the
parameters of the algorithm. Using the acceleration-like variable a, the displacement
and velocity of step k + 1 are updated according to

xk+1 = xk + hẋk + h2

2
((1− 2β)ak + 2βak+1) (15)

ẋk+1 = ẋk + h ((1− γ )ak + γ ak+1) ,

where h is the time step size, and β and γ are the additional parameters of
the algorithm. The generalized-α method embraces some well-known single-step
schemes. For instance, when α = δ = 0, it reduces to the Newmark method [11];
when α = δ = 0, γ = 1/2, β = 1/4, it reduces to the trapezoidal rule (TR). From
linear spectral analysis, a set of optimal parameters, controlled by the spectral radius
ρ∞ at the high-frequency limit, is

α = 2ρ∞ − 1

ρ∞ + 1
, δ = ρ∞

ρ∞ + 1
, β = 1

(ρ∞ + 1)2
, γ = 3− ρ∞

2(ρ∞ + 1)
, ρ∞ ∈ [0, 1].

(16)
A smaller ρ∞ denotes worse accuracy and stronger numerical damping. To avoid
excessive loss of accuracy, ρ∞ ≥ 0.6 is recommended for general purpose
integration, and for stiff problems and large finite element systems, a smaller ρ∞
can be used to filter out the inaccurate high-frequency modes.

At each step, the stage variables need to satisfy the discrete dynamic equations,
as

g(xk+1) =Mẍk+1 + Cẋk+1 +K(xk+1, yk+1, tk+1)−Rk+1, (17)

where yk+1 = P (xk+1), ẋk+1, and ẍk+1 can be expressed as functions of xk+1
using Eqs. (14) and (15), as

ẍk+1 = 1− α

(1− δ)βh2 (xk+1 − xk)− 1− α

(1− δ)βh
ẋk − δ

1− δ
ẍk − 1− α − 2β

2β(1− δ)
ak

(18)
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ẋk+1 = γ

βh
(xk+1 − xk)− γ − β

β
ẋk − γ − 2β

2β
hak

ak+1 = 1− δ

1− α
ẍk+1 + δ

1− α
ẍk − α

1− α
ak.

The Jacobi matrix of g(xk+1) with respect to xk+1 can be expressed as

G(xk+1) = 1− α

(1− δ)βh2
M + γ

βh
C +Kx(xk+1, yk+1, tk+1)

+Ky(xk+1, yk+1, tk+1)Λ(xk+1)W (xk+1), (19)

where

Kx(x, y, t) = ∂K(x, y, t)

∂xT ,Ky(x, y, t) = ∂K(x, y, t)

∂yT ,W (x) = dw(x)

dxT (20)

and

Λ(x) = diag(λCi (wi(x))), λC(w) =
⎧
⎨

⎩

0, if w /∈ C
1/2, if w ∈ ∂C
1, else.

(21)

The iterative scheme is

xl+1
k+1 = xlk+1 −

(
G(xlk+1

)−1
g(xlk+1). (22)

Until the convergence condition is satisfied, the state variables of step k + 1 are
obtained. Other implicit integrators can also be employed in a similar manner. The
LCP-based schemes have not yet been applied to solve the piecewise nonlinear
problems, which cannot be translated to equivalent LCPs. Therefore, the available
solution scheme of implicit integrators for such problems is first developed in this
chapter. Its numerical performance is checked by some numerical examples in
Sect. 4.

4 Numerical Examples

Two illustrative examples, including a MDOF case and a piecewise nonlinear case,
are simulated in this section. The linear case is employed to show the computational
efficiency, and the nonlinear case is used to demonstrate the effectiveness for
piecewise nonlinear systems. The simulations were run on an Intel i5-8265U CPU
@ 1.60 GHz with 8.00 GB RAM.
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4.1 MDOF Case

First, the MDOF cases, as

M =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎣

m

m

m

.. .

m

⎤

⎥
⎥⎥
⎥
⎥⎥
⎦

,Kx =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

2k1 −k1

−k1 2k1 −k1

−k1
. . .

. . .

. . . 2k1 −k1

−k1 k1

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, (23)

Ky =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

k2

k2

k2

. . .

k2

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, y = P (x) =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

proj
R
+
0
(x1)

proj
R
+
0
(x2)

proj
R
+
0
(x3)

.

.

.

proj
R
+
0
(xs)

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

,R(t) =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

A0 + A sin(2πf t)
A0 + A sin(2πf t)
A0 + A sin(2πf t)
.
.
.

A0 + A sin(2πf t)

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

,

C = 0.1M + 0.01Kx,K(x, y, t) = Kxx +Kyy

with a different number of DOFs, are simulated. The number of piecewise character-
istics is set as the same as the number of DOFs. The system parameters are assumed
as m = 1 kg, k1 = 1000 N/m, k2 = 2000 N/m, f = 100 Hz, A0 = 1 N, A = 10 N.
The initial displacements satisfy static equilibrium.

Since the accuracy of numerical solutions depends on the time integrator, the
proposed scheme and the LCP-based scheme will give the same results if they
employ the same integrator and step size. For this reason, only the computational
efficiency of these two schemes is compared. Based on the TR with h = 0.001 s,
the transient response within [0, 1 s] is tracked, and the required CPU time for
these two schemes is listed in Table 1. It follows that as the number of piecewise
characteristics increases, the new method gradually exhibits a significant efficiency
advantage. During the numerical experiments, the Newton iteration can always
reach convergence in no more than 5 iterations, but the number of pivoting
required by the Lemke algorithm increases rapidly with the number of piecewise
characteristics. In the worst case, the Lemke method needs exponential complexity,
which means that it requires up to 2q pivot steps to reach the final result. Therefore,
the proposed scheme is more efficient for systems with a large number of piecewise
features.

4.2 Piecewise Nonlinear Time-Varying Oscillator

In this case, the piecewise nonlinear time-varying oscillator investigated in Ref. [28]
is simulated. The motion equation in dimensionless form is
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Table 1 Required CPU time (s) of the proposed scheme and the LCP-based scheme

Number of piecewise characteristics TR/Newton iteration TR/Lemke’s algorithm

10 0.1834 0.1024

50 1.0867 1.0722

100 4.0558 6.5924

1000 654.6712 22489.3308

ẍ + 2ξ ẋ + r(t)k(x) = f (t), (24)

where ξ = 0.05, f (t) = 0.5, and

r(t) = 1+ 0.3 sinωt + 0.15 sin 2ωt + 0.1 sin 3ωt (25)

k(x) =
⎧
⎨

⎩

(x − 1)+ 0.1(x − 1)2 + 0.2(x − 1)3, x > 1
0,−1 ≤ x ≤ 1
(x + 1)− 0.1(x + 1)2 + 0.2(x + 1)3, x < −1.

(26)

Using the projection function, k(x) can be equivalently converted into

k(x, y) = (x − y)+ 0.1y(x − y)2 + 0.2y2(x − y)3, y = proj[−1,1](x). (27)

According to the results in Ref. [28], different stable solutions may exist for a certain
ω. When a stable solution satisfies |x| > 1, it is called no-impact (NI) motion; when
xmax > 1 and −1 < xmin < 1 (xmin < −1 and −1 < xmax < 1), it is called single-
side impact (SSI) motion; when xmax > 1 and xmin < −1, it is called double-side
impact (DSI) motion.

Three values of ω, 0.4, 0.8, and 1.2, are assumed, and the corresponding phase
diagrams of steady-state response in [900T , 1000T ] (T = 2π/ω) are computed
using TR with h = T/210, as shown in Fig. 2. By trying different initial conditions,
all possible stable solutions for a certain ω are presented. They are consistent with
the analytical solutions [28] from the harmonic balance method. For example, when
ω = 0.8, three stable motions, NI, SSI, and DSI, are all possible. Therefore,
the implicit integration schemes proposed here can be used to study the impact
dynamics behaviors and more complex nonlinear systems.

5 Conclusions

This chapter provides a general solution scheme using implicit integrators for
simulating the dynamic response of piecewise linear and nonlinear systems. The
developed scheme employs the projection function to express the piecewise char-
acteristics, instead of converting them into equivalent LCPs. Compared with the
existing LCP-based schemes, the newly developed scheme possesses two benefits. It
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Fig. 2 Phase diagrams of steady-state responses: (a) ω = 0.4; (b) ω = 0.8; (c) ω = 1.2

can be easily extended to general piecewise nonlinear systems, because the discrete
nonlinear equations containing the projection functions can be solved uniformly
by the semi-smooth Newton method. Moreover, due to the fast convergence rate
of the Newton iteration, the proposed scheme is more efficient than LCP-based
schemes for systems with a large number of piecewise features. The computational
procedure is presented, based on the generalized-α method and the semi-smooth
Newton iteration. Other implicit integrators can also be utilized in a similar manner.
Numerical experiments demonstrate that the Newton iteration is more efficient than
the Lemke algorithm, especially when the system has a lot of piecewise features.
When applied to piecewise nonlinear problems, the numerical solutions present a
high consistency with the analytical ones.
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Dynamics of Discontinuous Nonlinear
Oscillators with Compliant Contacts
Subjected to Combined Harmonic and
Random Loadings

Pankaj Kumar, S. Narayanan, and Sayan Gupta

1 Introduction

Vibro-impact systems, with piecewise smooth (PWS) characteristics, can math-
ematically model a range of physical systems that involve moving components
with amplitude constraint motion [1, 2]. In many cases, bodies that collide have
some compliance, and hence, impact is not perfectly rigid. Soft impacting systems
are modeled using continuous functions of force-deformation relations during
contacts[3]. The strong non-smooth nonlinearities generated at the discontinuity
induce complex response behavior that is specific to non-smooth systems [2, 4]. One
of the foremost challenges in investigating PWS systems is in developing algorithms
that include prediction of time and location of non-smooth events as accurately
as possible [5]. This has led to the development of various event-driven and time
stepping methods to locate the switching points. However, most of available event
detection routines are specific to deterministic systems [5].

The largest Lyapunov exponent (LLE) is usually the most important metric to
interpret bifurcation and stability characteristics. However due to the difficulty in
evaluation of Jacobian matrix at discontinuities, the classical methods developed
for smooth dynamical systems cannot be directly applied. Müller [6] has extended
Wolf’s algorithm [7] for the calculation of LEs for non-smooth dynamical systems
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with discontinuity. An alternative approach to stochastic bifurcation analysis is to
use the joint probability density function (jpdf) of state variables for P-bifurcation
analysis. Estimating the response pdf of a discontinuous system can be obtained by
solving the corresponding Fokker–Planck (FP) equation. Numerical solution of the
FP equation is possible [8] but the presence of discontinuity creates challenges.

This chapter focuses on the development of a methodology for the response
analyses of a stochastically excited non-smooth oscillator with soft impacts. An
adaptive time stepping scheme is implemented for the path-wise solution of discon-
tinuous stochastic differential equations (SDEs) to precisely locate the discontinuity
event. In order to ensure that the correct Brownian path is traversed, Brownian tree
structure [9] is used for adopting the new Brownian increments, conditioned on
the previous increments. The proposed method is used for bifurcation analysis of
a noisy Duffing–van der Pol (DVDP) oscillator having one- and two-sided impact
barriers.

2 Problem Statement

Consider an elastic impact oscillator subjected to combined harmonic and Gaussian
white noise excitations; see Fig. 1a. The governing equation of motion can be written
in the general form as

Ẍ + f (X, Ẋ)+ g(q, q̇) = σW(t)+ F sin(ωt), (1)

where f (X, Ẋ) is a general nonlinear function, g(q, q̇) represents the impact force,
Ẍ, Ẋ, and X are, respectively, the acceleration, velocity, and displacement of the
mass, q and q̇ represent the relative penetration (indention) and velocity between
the colliding bodies, F and ω are, respectively, the amplitude and frequency of
harmonic excitation, W(t) is a stationary, zero-mean Gaussian white noise, and σ

represents its intensity. In this chapter, the contact force is modeled following [10–
12] and is given by

g(q, q̇) = khq
n(1+ chq̇), (2)

where kh is the contact stiffness, ch is the damping coefficient, and n is a power
exponent that depends on materials under impact.

3 Piecewise Smooth System Dynamics

Due to the presence of bilateral barriers on both sides of the equilibrium position,
two different regimes of oscillations occur—(a) when the oscillator is in contact with
the barrier and (b) when it is not. Hence, the phase space of the system dynamics is
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Fig. 1 (a) Schematic of a vibro- impact oscillator with discontinuous support (b) subspaces of the
linear impact model (c) constitutive relationship for inelastic impact

divided into three possible subspaces; see Fig. 1b. Hence, Eq. (1) actually represents
three different governing equations depending on whether the mass is without
contact with any barrier or with contact with the right or the left barrier:

Ẍ + f (X, Ẋ) = σW(t)+ F sin(ωt); [X, Ẋ] ∈ R0, (3)

Ẍ+f (X, Ẋ)+kh(X−Δ2)
n(1+chẊ) = σW(t)+F sin(ωt); [X, Ẋ] ∈ R+1, (4)

Ẍ+f (X, Ẋ)+kh(X+Δ1)
n(1+chẊ) = σW(t)+F sin(ωt); [X, Ẋ] ∈ R−1. (5)

Numerical investigations of piecewise smooth SDE system, such as given in
Eqs. (3)–(5), are faced with a challenging task in determining the exact time
instances at which the oscillating mass hits the barriers. Hence, the first step is to
define the switches where the transition from Ri to Rj occurs. Proper definition of
switches in the case of inelastic impacts is complicated due to the different loading
and unloading paths as shown in Fig. 1c. For example, when X > 0, Ẋ > 0, the
contact between the moving mass and the right barrier occurs if X = Δ2. However
during unloading, the mass will lose the contact with the barrier when the contact
force vanishes. Therefore, two different algebraic indicator functions given by

I1(X, Ẋ) = X −Δ2 = 0,

I2(X, Ẋ) = g(X −Δ2, Ẋ) = 0, (6)

are used to define the loading and unloading phases. Hence, the discontinuity
boundaries between R0 and R+1 are defined by Σ1 and Σ2 as

R0 → R+1 ≡ Σ1 = {I1(X(t
∗)) = 0, I2(X(t

∗), Ẋ(t∗)) ≥ 0} : loading,

R+1 → R0 ≡ Σ2 = {I1(X(t
∗)) ≥ 0, I2(X(t

∗), Ẋ(t∗)) = 0} : unloading, (7)
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where t∗ is the time at which the discontinuity surface is reached. Similarly, the
indicator functions between R0 and R−1, during loading and unloading, are defined
as

I3(X, Ẋ) = X +Δ1 = 0,

I4(X, Ẋ) = g(X +Δ1, Ẋ) = 0. (8)

The switches between the discontinuity boundaries between R0 and R−1 are defined
by Σ3 and Σ4 as

R0 → R−1 ≡ Σ3 = {I3(X(t
∗)) = 0, I4(X(t

∗), Ẋ(t∗)) ≤ 0} : loading,

R−1 → R0 ≡ Σ4 = {I3(X(t
∗)) ≤ 0, I4(X(t

∗), Ẋ(t∗)) = 0} : unloading. (9)

4 Response Statistics Using Fokker–Planck Equation

Assuming Gaussian white noise excitation, the state-space vector X = [
X1, X2

]
for

the impact oscillator can be assumed to be approximately Markovian. Consequently,
the evolution of the jpdf of the state variables is governed by the FP equation.
However, the discontinuity at X = Δ1, Δ2, poses challenges in formulating the FP
equation. To incorporate Eqs. (3)–(5) due to two-sided barrier into a single equation,
the auxiliary functions

H1 = H(X −Δ2), H2 = H(X +Δ1), (10)

are defined, where H(X) is the Heaviside unit step function. This enables rewriting
Eqs. (3)–(5) as a single equation of the form

Ẍ+ f (X, Ẋ)+H1kh(X−Δ2)
n(1+ chẊ)+H2kh(X+Δ1)

n(1+ chẊ) = σW(t).

(11)
Moreover, the FE solution of the corresponding FP equation requires that the
activation function to be differentiable in order to comply with the C0 continuity
condition [8]. This difficulty can be circumvented by approximating the Heaviside
unit step function asH(X−Δ) ≈ 1

1+e−θ(X−Δ) , where the parameter θ can be suitably
adjusted [2].

The corresponding FP equation for the pdf p(X; t) is given by

∂p

∂t
= −X2

∂p

∂X1
− ∂

∂X2
{−f (X1, X2)+ ψ(X1, X2)}p + σ 2

2

∂2p

∂X2
2

, (12)

where ψ(X1, X2) = − 1
1+e−θ(X1−Δ2)

kh(X1−Δ2)
n(1+chX2)− 1

1+e−θ(X1+Δ1)
kh(X1+

Δ1)
n(1 + chX2) and p is the jpdf of the state variables X. Numerical solution
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Fig. 2 (a) Bisection scheme, (b) Brownian tree, (c) sample of Brownian tree

for the FP equation is obtained using a finite-element (FE)-based method [8]. Due
to the presence of the discontinuity, a differential meshing is adopted whose size
varies from 0.01 to 0.001. It is observed that the FE grid with element size smaller
than 0.0075 gives solution with reasonable accuracy when benchmarked in terms
of the Kullback–Leibler entropy measure [8]. Any further refinement in mesh size
increases the computational time with no significant increase in the accuracy.

5 Adaptive Time Stepping Procedure

Path-wise solution of the noisy discontinuous oscillator demands precise location
of time and position of discontinuity. Hence in order to accurately locate the
discontinuity event t∗, the bisection technique is adopted in numerical integra-
tion. Here, once the solver detects the sign change in indicator function, i.e.,
I(X(ti), ti )I(X(ti+1), ti+1) < 0, bisection scheme is used to find the discontinuity
point t i and is given by (Fig. 2a)

t i = t i−1 + sgn(I (X, ti )I (X, t i−1)
dt

2i
. (13)

The bound for the number of iterations is taken as |I(X(tN), tN )| < ε, where ε is a
predefined number close to zero. The discontinuity point t∗ = tN is approximated
after a sufficient number of iterations.

An important prerequisite while implementing adaptive step-size scheme for
path-wise solution of the SDEs is that when a point of discontinuity is detected
and the original time step is discarded, the numerical solution should continue on the
original Brownian path, so that the correct statistics of the numerical solution should
be maintained. Hence, for implementing the bisection algorithm during numerical
simulation, one should not reject the Wiener increments for the previous time steps
dBj , and compute new dBj proportional to the reduced time step. This would
lead to a poor approximation or even a biased numerical solution. To ensure that
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Fig. 3 Phase plane and its Poincare section for different offset positions. (a) Δ1 = −0.475,Δ2 =
0.475, (b) Δ1 = −0.55,Δ2 = 0.55, and (c) Δ1 = −0.65,Δ2 = 0.65

numerical solution is directed along the correct Brownian path trajectory, during the
recursive generation of reduced time steps, the Wiener increments for a level (say
m+ 1) conditioned on the previous level m can be obtained by using the concept of
Brownian tree [9] and given by

dB2l−1,m+1 = 1

2
dBl,m + φl,m, dB2l,m+1 = 1

2
dBl,m − φl,m, (14)

where φl,m are normally distributed random variables with mean zero and variance
2−m, m = 1, 2, ... number of rows and l = 1, 2, .., 2m−1 denotes the number
of nodes. More precisely, a tree structure will be generated with each node
having two downstream branches (Fig. 2b), which pass through each intermediate
points generated through variable time integration (Fig. 2c). Proposed adaptive time
stepping procedure (ATSP) is also used for the computation of the LLE using the
Wolf’s algorithm [7] in combination with Müller’s procedure [6].

6 Numerical Results

A DVDP oscillator with f (x, ẋ) = −αx − cẋ + β0x
3 − β1x

2Ẋ + β2x
4Ẋ (Fig. 1a)

is considered. Here, α and c denote the linear stiffness and damping terms, and
{βi(t)}2i=0 define the nonlinear stiffness and damping. The following parameters are
fixed at β0 = 0.5, β1 = β2 = 1, n = 3/2.

The influence of the control parameter Δ on the non-smooth dynamics is
considered for c = −0.1, F = 0.42, ω = 1, σ = 0. The phase plane plots
and the associated Poincare maps (red points) for three different values of offset
positions are presented in Fig. 3, which show period-3, period-5, and multi-periodic
responses, respectively. For barrier position Δ1 = −0.475,Δ2 = 0.475, the
effect of noise (σ = 0.01) on system response is presented in Fig. 4a. Notice
that noise causes perturbations in the system dynamics and the period-3 orbit loses
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Fig. 4 (a) Phase plane and its Poincare section, (b) time series of displacement, (c) time series of
velocity, (ATPS (solid line), constant time step (dashed line))

its periodic behavior. The time histories of displacement as well as velocity, for
Δ1 = −0.475,Δ2 = 0.475, σ = 0.01, as obtained using the Milstein method
in combination with the proposed ATSP, are shown in Fig. 4b, c. For comparison,
the time histories obtained through the Milstein method but using fixed time step
dt = 0.0025 are also presented; significant deviation between the two time histories
is observed. A comparison of system dynamics with and without elastic barriers is
presented in Fig. 5 assuming c = −0.1, F = 0.42, ω = 1, σ = 0.0025. Note
that without impact, the system response is of chaotic nature (Fig. 5a), while there
is a period-3 orbit with impact (Fig. 5b). Figure 5c presents the LLE variation as
a function of α. Figure 6 presents the bifurcation diagrams for smooth as well as
non-smooth systems, respectively. Results depict a considerable region with chaotic
behavior in case of smooth system, while for non-smooth system LLE is negative
for the given range of linear stiffnesses α. Hence, we conclude that elastic impact
suppresses chaos.

In order to obtain further insights, on the combined influence of dry friction
and impacts on the dynamics of the system, parametric investigations are carried
out, which are summarized in Fig. 7. Figure 7a depicts that without elastic impact,
but with dry friction having friction coefficients fs = 0.02, system dynamics is
of period-1 orbit about one of the fixed points of the oscillator. System response
with impact, but without friction. results in a period-3 orbit (Fig. 7b). However, the
combined effect of impact and friction leads to chaotic orbits (Fig. 7c).

Next, solving the FP equation, the effect of position of elastic-damped barrier
is investigated. Figure 8 shows the jpdf, with different positions of elastic-damping
barrier with Δ1 = 0, −0.4, −0.8 and Δ2 = ∞. It is observed that for Δ1 = 0, the
joint pdf is unimodal indicating that the trajectories are in the vicinity of the attractor
at the origin. However, as the barrier distance is increased, limit cycle oscillation
(LCO) attractor gains strength, and the attractor changes from unimodal character
to bistable character. For Δ1 = −0.8, the attractor at the origin vanishes completely,
and only one stable attractor corresponding to the LCO persists.

Next the system dynamics using various compliant contact force models such
as Hunt and Crossley [10] Kqn

[
1 + 3(1−e)

2
q̇

q̇−
]
, Lee and Wang [11] (Kqn

[
1 +
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Fig. 5 (a) Phase plane and its Poincare section without barrier, (b) with barrier, and (c) the LLE
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Fig. 6 Bifurcation diagram for (a) smooth and (b) non-smooth oscillators

Fig. 7 Phase plane and its Poincare section (a) without impact but with friction, (b) with impact
but without friction, (c) with impact and friction, c = −0.1, F = 0.21, ω = 0.3, σ = 0.0025



Discontinuous Nonlinear Oscillators 873

Fig. 8 Stationary joint pdf of pX1X2 (x1, x2) for (a) Δ1 = 0, (b) Δ1 = −0.4, (c) Δ1 = −0.8 and
Δ2 = ∞, c = −0.09, kh = 1, ch = 0.075
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Fig. 9 Marginal pdf of displacement for different contact models (a) e = 0.98. (b) e = 0.8. (c)
Effect of e

3(1−e)
4

q̇

q̇−
]
), Gonthier et al. [12] (Kqn

[
1 + (1−e2)

e
q̇

q̇−
]
) etc. is presented in Fig. 9

with c = −0.1, kh = 0.95, σ = 0.1. For high values of the kinetic coefficient of
restitution, such as e = 0.98, all the compliant contact force models result in close
agreement as in Hertzian elastic contact force model (Fig. 9a). This is expected as
for e ≈ 1 energy dissipation is negligible. However, for a moderately lower value
of e, such as e = 0.8, significant differences are observed; see Fig. 9b. Furthermore,
Lee and Wang’s [11] model is observed to dissipate least amount of energy, while
Gonthier et al.’s model [12] dissipates maximum energy during the contact process.
The effect of e using Gonthier et al.’s model [12] is presented in Fig. 9c, which
indicates damping increases with decrease in e due to energy loss on contact.

The effect of initial indentation impact velocity q̇− using Gonthier et al.’s model
[12] is investigated next. The variation of the contact force with time is shown in
Fig. 10a. It is seen that higher initial impact velocity yields a shorter impact duration
but higher magnitude of impact force. The marginal pdf of displacement for a
different initial indentation impact velocity q̇− is shown in Fig. 10b, which indicates
less energy is dissipated as the initial indentation impact velocity increases.
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Fig. 10 Effect of initial impact velocity q̇−. (a) Variation of contact force. (b) Marginal pdf of
displacement

7 Conclusions

The stochastic bifurcation analysis of a stochastic non-smooth system with discon-
tinuous support is numerically investigated. The interaction force of the impact
is described by Hertzian as well as by various compliant contact force models
that also accommodate energy dissipation in the form of internal damping. An
adaptive variable time step numerical integration scheme in combination with the
bisection technique is developed to precisely locate the point of discontinuity
during numerical simulation advanced by the Milstein scheme. The jpdf of the state
variables obtained by the solution of the FP equation and the LLE obtained by the
Muller discontinuity mapping is used for the analysis of stochastic bifurcations. The
nonlinear dynamical characteristics are studied using the time histories, Poincare
section, phase plane plots, joint pdf, and the LLE. The numerical results demon-
strate the accuracy and efficiency of the proposed adaptive variable time stepping
scheme in investigating the stochastic bifurcations of noisy nonlinear systems with
discontinuities.
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Response Analysis of Coupled
Non-Smooth Nonlinear Aeroelastic
System Subjected to Stochastic Input
Fluctuations

Dheeraj Tripathi, Sai Vishal, Chandan Bose, and J. Venkatramani

1 Introduction

Aeroelastic systems exhibit complex dynamical signatures due to the presence of
nonlinearities arising from the structure or flow or a combination of both. Beyond
a critical airspeed, there is a continuous energy transfer into the system from
the oncoming flow, which results in self-sustained oscillations called limit cycle
oscillations (LCO) [1, 2]. Classical binary flutter results from the coalescence of
pitch and plunge modes where the aerodynamic damping of the critical mode
becomes zero. However, in high angle of attack (AoA) applications like wind turbine
blades, helicopter blades, turbomachinery blades etc., nonlinearity originates due
to flow separation and gives rise to pitch-dominated stall flutter [1]. Such bending
and torsional oscillations give rise to multi-axial cyclic stresses that impose serious
threat to structural fatigue life. Flutter prediction and fatigue damage analysis are
thus very crucial in such aeroelastic systems.

Recent studies suggest that a coupling of aerodynamic and structural nonlineari-
ties can lead to completely different response dynamics that are largely unexplored
[3]. Structural nonlinearities can be modelled either as a continuous function or as
a non-smooth function. The ageing parts, lose or worn hinges, can be modelled
as freeplay nonlinearity. The presence of freeplay nonlinearity in structure alters
response dynamics of the system even before the linear flutter boundary. Liu
et al. [4] identified period doubling bifurcation and chaos below the classical
flutter boundary. Freeplay nonlinearity can be modelled as smooth or non-smooth

D. Tripathi (�) · S. Vishal · J. Venkatramani
Department of Mechanical Engineering, Shiv Nadar University, Greater Noida, India
e-mail: dt989@snu.edu.in; vishal.gali@snu.edu.in; j.venkatramani@snu.edu.in

C. Bose
Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
e-mail: chandan.bose@uliege.be

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Lacarbonara et al. (eds.), Advances in Nonlinear Dynamics, NODYCON
Conference Proceedings Series, https://doi.org/10.1007/978-3-030-81162-4_75

877

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81162-4_75&domain=pdf
mailto:dt989@snu.edu.in
mailto:vishal.gali@snu.edu.in
mailto:j.venkatramani@snu.edu.in
mailto:chandan.bose@uliege.be
https://doi.org/10.1007/978-3-030-81162-4_75


878 D. Tripathi et al.

functions. Vasconcellos et al. [5] analysed control surface freeplay nonlinearity
through a discontinuous and a continuous representation and concluded that only
a non-smooth representation of freeplay can explain the complex dynamics. On
the other hand, modelling of aerodynamic nonlinearity is computationally tedious
due to the non-smoothness arising from the flow separation. Nevertheless, semi-
empirical models based on curve fitting of experimental data from wind tunnel
tests like Leishman–Beddoes dynamic stall model [6] give good approximation of
aerodynamic nonlinearity. So far, most of the literature investigate the individual
effect of nonlinearities either from structural part or from aerodynamics, but the
effect of coupling of such nonlinearities is largely unexplored.

Examining the dynamics of coupled non-smooth nonlinear aeroelastic systems
is perhaps incomplete if the random nature of input flow fluctuations is ignored.
In field conditions, flow is always fluctuating in nature. Recent studies suggest
that flutter boundary is preponed and qualitative different dynamical aspects like
intermittency [7] are present in pre-flutter regime in the presence of fluctuating
inflow. In hitherto literature, the effect of flow fluctuation on system response
under non-smooth nonlinearities has rarely been investigated. Devathi and Sarkar
[8] studied the effect of random gust on stall flutter of one-dimensional airfoil
and reported the dynamics such as stochastic fixed point, stochastic LCO, and
intermittency. Recently, Bethi et al. [3] used a canonical sinusoidal gust model
and showed the intermittent switching of dynamics between periodic and chaotic
states due to wind fluctuation on a pitch–plunge airfoil. The authors showed
noise-induced transitions and represented the same using the concept of stochastic
phenomenological (P-type) bifurcations.

A concern that arises in the analysis of stochastic nonlinear aeroelastic systems is
the susceptibility to large fatigue damage. Fatigue damage is much more prevalent
in aeroelastic structures due to periodic and aperiodic oscillations present due to
various nonlinearities [9]. Additionally, random fluctuations in wind give rise to NII
as well as reduce the flutter margin that may affect the fatigue life of the structure
severely [10]. Fatigue calculations in aeroelastic systems are a daunting task as it
involves a combination of torsional and bending modes. Additionally, due to the
presence of randomness in dynamic responses of bending and torsion modes, the
cyclic stresses are also time varying in nature. To extract the fatigue damage-related
information from such random stress data, cycle counting is crucial to estimate the
number of load cycles. Rain-flow cycle counting (RFC) is one of the most efficient
cycle counting method for most of the relevant engineering applications [11]. To the
best of the authors’ knowledge, damage analysis of coupled non-smooth nonlinear
aeroelastic structures under stochastic inflow has not received much attention in the
existing literature.

This chapter takes up this analysis under randomly fluctuating inflow. To that
end, a pitch–plunge aeroelastic system with freeplay nonlinearity in pitch degree
of freedom is subjected to a stochastic flow under dynamic stall condition. Pitch
stiffness is modelled as a bilinear function, and aerodynamical states are modelled
using Leishman–Beddoes (LB) model. Stochastic bifurcation analysis of the system
is carried out with mean flow speed as the bifurcation parameter. Finally, fatigue
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damage analysis of the system is carried out using RFC algorithm to quantify the
structural safety.

The rest of this chapter is organized as follows. Mathematical modelling of the
aeroelastic model is presented in Sect. 2. Methodology for fatigue damage analysis
is presented in Sect. 3. Next, we present the salient findings in terms of time
response, stochastic bifurcation analysis, and fatigue damage in Sect. 4 along with
the related discussions. Finally, the salient conclusions that emerge from the study
are summarized in Sect. 5.

2 Mathematical Modelling

For a two-dimensional pitch–plunge aerofoil, the equations of motion are given as
[2]

ξ ′′ + xαα
′′ + 2ζξ

ω̄

U
ξ ′ +

(
ω̄

U

)2

ξ = − 1

πμ
CL(τ), (1)

xα

rα2 ξ
′′ + α′′ + 2ζα

1

U
α′ +

(
1

U

)2

M(α) = 2

πμrα2CM(τ). (2)

Here, ξ is the non-dimensional plunge displacement, ω̄ is the natural frequency ratio
of the uncoupled plunge to pitch mode, U is the non-dimensional flow velocity,
τ is the non-dimensional time, and ζα and ζξ are the non-dimensional damping
coefficients in pitch and plunge, respectively. CL(τ) and CM(τ) are the coefficients
of lift and moment, respectively. The details of the non-dimensionalized parameters
and lift and drag coefficients are not mentioned here for the sake of brevity and can
be found in Bethi et al. [3].

The pitch stiffness of airfoil (M(α)) is modelled as a bilinear function to
incorporate freeplay nonlinearity in the pitch degree of freedom

M(α) =

⎧
⎪⎪⎨

⎪⎪⎩

α + δ, if α < −δ,
0, if −δ ≤ α ≤ δ,

α − δ, if α > δ,

(3)

where 2δ represents the freeplay or zero stiffness region.
Aerodynamic loads are formulated using the Leishman–Beddoes dynamic stall

model [6], in which, out of the total twelve aerodynamic states, first eight states (x1
to x8) capture attached flow and are given in terms of pitch angle and pitch rate.
State x9 represents the vortex shedding and reattachment, x10 and x12 represent
separation point corresponding to trailing edge, and state x11 represents vortex-
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induced airloads. More details of the twelve states can be found in Bethi et al. [3]
and are not repeated here for the sake of brevity.

A canonical model for the input flow fluctuation is considered of the form [3]

U(τ) = Umean + f (τ). (4)

Here, f (τ) = σUmean sin(τωr(τ )), Umean is the non-dimensional mean wind
speed, σ is the intensity of fluctuations, and ωr is the frequency of sinusoid,
randomly varying with time. Moving average filter is used to generate long-time-
scale flow fluctuations [3].

3 Fatigue Damage Calculation

For calculating the fatigue damage, three stresses need to be estimated: (i) Shear
stresses due to torsion, (ii) Normal stresses due to bending, and (iii) von Mises
stresses. Venkatesh et al. [10] showed that normal stresses produced are negligible
as compared to torsional stresses and von Mises stresses are numerically almost the
same as shear stresses. Due to non-circular section, stresses are defined in terms of
Prandtl stress function φ.

σxz = ∂φ

∂y
, σyz = −∂φ

∂x
. (5)

such that

∂2φ

∂y2
+ ∂2φ

∂x2
= −2Gθ. (6)

Here, x and y are the coordinates of airfoil along the chord length and along the
thickness, respectively, and z-axis is perpendicular to the cross-section of airfoil.
Aluminium alloy AI-6082 T-6 is chosen for analysis. Three different points were
taken on NACA0012 airfoil: P1(0.244 m, 0.0366 m) is the point at maximum
thickness, P2(0.610 m, 0.0007 m) is the point at the trailing edge, and P3(0.061 m,
0.061 m) is an arbitrary point on airfoil surface. WAFO toolbox [12] was utilized
for analysing RFC, and the corresponding fatigue damage is calculated using
Palmgren–Miner linear damage accumulation theory [10].

4 Results and Discussions

Two different cases have been taken up in this chapter: one with linear structure
and other with structural freeplay nonlinearity. Aerodynamics is governed by LB
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Fig. 1 (a) Variation of flow speed with time about Umean = 1, and (b) simulated autocorrelation
function (acf) of Umean vs. lag time (τlag)

model in both the cases. Governing state equations are solved using fourth-order
explicit Runge–Kutta time integration with adaptive time stepping. However, time
integration of current system deals with non-smoothness in both the structural and
aerodynamic models, which needs a special attention. Previous studies suggest
a very low tolerance value while dealing with discontinuous structural [4] and
aerodynamic [3] models. Hence, a tolerance value of O(10−12) is adopted in the
present analysis. The structural parameters are adopted from [4]. Initial conditions
for pitch mode are taken as 15◦, and a freeplay gap of 2δ = 1◦ is considered
throughout the study. The non-dimensional correlation time of the considered
fluctuating inflow is computed to be of O(104), which is much higher than the
non-dimensional system time scale of O(101). This attributes to long-time-scale
fluctuations (Fig. 1a). Figure 1b shows autocorrelation of input noise as a function
of delay or lag time (τlag).

4.1 Validation of the Aerodynamic Model

The present LB model is validated for a pitching airfoil case under dynamic stall
with kinematics: α(τ) = 12 + 10sin(κτ), where κ is the reduced frequency.
Coefficients of pitching moment (Cm) vs. pitch angle (α) hysteresis curves were
plotted for the current LB model with fluctuating inflow and compared with the
original LB model [6] in Fig. 2. It can be seen that the pitching moment, captured
by the current stochastic model, shows a close agreement with that obtained from the
original LB model at low angle of attack but has higher negative pitching moment
at higher angles due to random flow fluctuation.

4.2 Pitch Response Dynamics

Pitch responses of linear airfoil structure at different mean speeds are shown in
Fig. 3. It can be seen that at lower velocities (Umean = 3.4), an interplay between
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Fig. 2 Variation of coefficient of moment (Cm) vs. pitch angle (α) for kinematics: α(τ) = 12 +
10sin(κτ) at κ = 0.0976 and Mach number 0.3

aperiodic and periodic oscillations is observed, which is the characteristic of noise-
induced intermittency (Fig. 3a, c). Phase portraits of x9 − x10 at Umean = 3.4
(Fig. 3e) show that the flow is fully attached and the response dynamics can be
attributed to the sole effect of random flow fluctuation. At Umean = 5.8, the dynam-
ics changes into large-amplitude random LCO (Fig. 3b, d). The corresponding phase
portraits of x9 − x10 at Umean = 5.8 (Fig. 3f) show that the flow is fully separated
that marks the presence of deep dynamic stall.

Next, the nonlinear structure was taken under consideration, and the correspond-
ing time responses are shown in Fig. 4. At Umean = 3.4, intermittent oscillations
change into random period-2 signatures when freeplay nonlinearity is taken into
account (Fig. 4a, c) with peak-to-peak amplitude approximately 3◦. From x9 − x10
phase portrait (Fig. 4e), we can see that the flow is fully attached and thus these
responses are due to the coupling of flow fluctuations and structural nonlinearity.
At flow velocity Umean = 5.8, period-2 signatures transform into high-amplitude
random period-1 LCO (Fig. 4b, d). The corresponding x9-x10 phase portrait (Fig. 4f)
shows fully separated flow, representative of large vortex shedding.

4.3 Stochastic Bifurcation Analysis

Next, phenomenological (P-type) stochastic bifurcation analysis of aeroelastic
system is carried out to capture the qualitative change in the probabilistic response
dynamics. Joint probability density function of pitch and pitch rate is plotted for
both linear and nonlinear structure (Fig. 5). For linear aerofoil, various peaks are
observed at Umean = 3.4 (Fig. 5a), which correspond to intermittent switching
between different attractors. At Umean = 5.8, peaks disappear and a crater-like
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Fig. 3 (a) At Umean = 3.4, the pitch time response shows intermittent oscillations, (b) the pitch
time response at Umean = 5.8 shows large-amplitude LCO, (c) phase portrait of pitch–pitch rate at
Umean = 3.4, (d) phase portrait of pitch–pitch rate at Umean = 5.8 shows random LCO, (e) phase
portrait of x9-x10 at Umean = 3.4 shows attached flow condition, and (f) phase portrait of x9-x10 at
Umean = 5.8 shows deep dynamic stall conditions with a large amount of vortex shedding

structure appears that implies the presence of LCO with time-varying amplitude
(Fig. 5b).

For nonlinear structure, two distinct peaks can be seen at Umean = 3.4, which
is a characteristic of a random period-2 attractor (Fig. 5c). At Umean = 5.8, both
peaks merge in a crater-like structure implying the presence of random LCO in pitch
response (Fig. 5d). Visual inspection on topological changes in j-pdf of pitch–pitch
rate confirms the presence of a P-bifurcation for both linear and nonlinear structure,
as the parameter Umean varies.

4.4 Fatigue Damage Estimation

Fatigue damage analysis is shown for pitch motion only as bending stresses due to
plunge motion are much smaller as compared to torsional stresses [10]. Torsional
stresses σxz and σyz are obtained using WAFO toolbox. It was observed that shear
stress σyz is much lesser (O(102) times) as compared to σxz, and thus maximum

shear stress, Smax =
√
σ 2
xz + σ 2

yz, is almost the same as σxz. Time histories for
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Fig. 4 (a) At Umean = 3.4, pitch time response shows random LCO, (b) at Umean = 5.8,
large-amplitude LCO in pitch time response is observed, (c) phase portrait of pitch–pitch rate at
Umean = 3.4 shows two additional loops near freeplay limits, (d) phase portrait of pitch–pitch rate
at Umean = 5.8 shows random LCO, (e) phase portrait of x9-x10 at Umean = 3.4 shows attached
flow, and (f) phase portrait of x9-x10 at Umean = 5.8 shows flow is fully separated and large vortex
shedding

Fig. 5 Joint probability density function of pitch–pitch rate. (a) Linear structure at Umean = 3.4
shows the number of intermittent peaks, (b) for linear structure at Umean = 5.8, peaks merge in a
crater-like structure, (c) for nonlinear structure at Umean = 3.4, two different attractors are present,
and (d) for nonlinear structure at Umean = 5.8, topology changes into a crater-like structure
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Table 1 Accumulated damage values

Umean Damage Damage Damage

(steady flow) (fluctuating flow/ (fluctuating flow/

linear structure) freeplay nonlinearity)

3.4 ≈0 7.67× 10−12 5.21× 10−10

5.8 7.14× 10−07 2.87× 10−07 2.60× 10+2

Fig. 6 Stress time histories at Umean = 5.8, under (a) deterministic inflow, (b) stochastic inflow
for linear airfoil, and (c) stochastic inflow for airfoil with freeplay nonlinearity, show highest cyclic
stresses in the presence of freeplay nonlinearity under fluctuating inflow

shear stress σxz are estimated at different flow speeds for a linear structure with
steady inflow, linear structure with stochastic inflow, and nonlinear structure with
stochastic inflow, and the corresponding damage values are summarized in Table 1.
Figure 6 shows the comparison of stress cycles for these three cases. Order of
stresses in coupled non-smooth nonlinear system is found to be highest as compared
to other two cases. It is also observed that magnitude of the shear stresses is highest
at maximum thickness (point P1). Comparing the stresses, it can be concluded that
stochastic inflow gives rise to higher amplitude cyclic stresses. Due to coupling of
aerodynamic and structural nonlinearities, very high cyclic stresses are produced
and their estimated damage values are much higher as compared to other two cases.

5 Conclusions

Response analysis of a coupled non-smooth nonlinear aeroelastic system under
stochastic inflow is carried out in this chapter. Recently, another study on the effects
of the coupling in aerodynamic and structural nonlinearities was conducted by Bethi
et al. [3]. However, the study was largely focused on dynamical changes in pitch
and plunge responses due to coupling, but its effect on structural safety was not
discussed. Another demarcation from [3] is the non-smooth modelling of structure
in the current study.
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Dynamic stall-dominated aerodynamics is modelled using LB model, and struc-
tural non-smoothness attributing to freeplay nonlinearity is modelled by piece-wise
linear stiffness in the pitch degree of freedom. For linear structure under stochastic
inflow, it is seen that the onset of stall flutter is presaged by NII. However, NII
is not present when the structure is nonlinear. Due to coupling of fluctuating flow
and aerodynamic and structural nonlinearities, large-amplitude random LCOs are
observed at flutter onset. Pitch–pitching moment hysteresis curve shows that high-
negative pitching moment is present at large pitch angles due to flow fluctuation. At
higher velocities, almost 90% of flow is separated, and consequently, a large amount
of vortex are shed giving rise to very high-negative pitching moments. To analyse
the qualitative changes in the response dynamics, stochastic bifurcation analysis has
been carried out. Topological changes in j-pdf of pitch–pitch rate are observed as the
mean speed is increased marking the presence of P-bifurcations for linear as well
as nonlinear structures. Next, we have estimated the cyclic stresses developed in
the structure in pre- and post-flutter regime and have calculated the fatigue damage.
The fatigue damage analysis shows very high damage values due to the coupling of
structural and aerodynamic nonlinearities in the presence of fluctuating inflow that
demands a more detailed and in-depth analysis.
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Stability Analysis for a Class of
Non-Stationary Impulsive Switched
Systems

Alexey Platonov

1 Introduction

The theory of switched and impulsive systems has been actively developed over
the past decades. Such systems have many important practical applications (see, for
instance, [1–5]). Switching usually involves changing the structure of the considered
system while maintaining the continuity of its solutions. Impulsive effects lead
to an instantaneous jump of the solutions. Switching and impulsive effects can
be caused by external influences. They can also be a part of a control design.
One of the most important problems associated with impulsive switched systems
is the stability problem. The combination of the direct Lyapunov method with
the theory of differential inequalities is the basis for most studies on the stability
of hybrid systems. However, most of the studies involved only linear differential
inequalities for Lyapunov functions, which were used to establish conditions for
exponential stability. Meanwhile, many practical processes can be modeled by
systems with essentially nonlinear dynamic behaviors, and exponential stability
may not be inherent to such systems. The presence of non-stationary parameters
in the considered system can lead to fundamentally new effects in comparison
with autonomous systems. Continuous changes of parameters in the impulsive
switched system are superimposed on discrete changes of operating modes and
impulse actions, and, as a result, many characteristics, for example, the value of
dwell time, can get a non-stationary (changeable) character. It is worth noting
that systems with discontinuous non-stationary coefficients are quite typical for
many practical processes. Such systems can also be considered as switched systems
with, generally, infinite numbers of operating modes. Often, the behavior of non-
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stationary parameters changes significantly, and as a result, different estimates for
used Lyapunov functions are constructed at different time intervals. In addition,
Lyapunov functions also usually depend on the system parameters. Therefore, the
discontinuity of these parameters leads to the need to use discontinuous (multiple)
Lyapunov functions. As a rule, researchers try to limit non-stationary parameters by
some constants in order to deal with autonomous estimates. However, this approach
does not work if the coefficients change their sign, are unbounded, or, on the
contrary, tend to zero. The problem also arises of evaluating certain non-stationary
expressions to obtain the required differential inequalities for Lyapunov functions.

In this chapter, we assume that a multiple Lyapunov function satisfying some
non-stationary differential inequality with hybrid degrees is constructed. The change
of degrees in the differential inequality can be caused either by a change of
operating modes or by a change in the behavior of non-stationary coefficients in
the considered system. We use both linear and nonlinear differential inequalities,
i.e., we suppose that the system can describe both linear and nonlinear dynamics
at different time intervals. The main purpose of this chapter is to find asymptotic
stability conditions for solutions of the investigated impulsive switched system.
Also, we consider some special classes of systems for which the obtained results
are applicable. So, the stability problem for non-stationary complex system is
studied. We assume that among the interacting subsystems there are both linear and
nonlinear. Also, nonlinear mechanical system under the influence of non-stationary
switched dissipative and potential forces is considered.

This chapter is a development of the results obtained in [6–8]. The following
notations will be used throughout this chapter: Rn is the Euclidean space of
dimension n, and ‖ · ‖ is the Euclidean norm of a vector.

2 Statement of the Problem

Consider the switched system

ẋ = fσ (t, x). (1)

Here, t ≥ 0, x ∈ Rn is the state vector; σ = σ(t) ∈ Q is a piecewise constant
function defining switching law; Q is a finite or countable set of possible values of
operating modes of the system.

Let τ̃l , l = 1, 2, . . ., be the switching times, 0 < τ̃1 < τ̃2 < . . ., and τ̃0 = 0.
Assume that the function σ(t) is right-continuous (σ(t) = σ(τ̃l) for t ∈ [τ̃l , τ̃l+1),
l = 0, 1, . . .).

Suppose that the sequence τ̂j , j = 1, 2, . . ., where 0 < τ̂1 < τ̂2 < . . ., defines
moments of impulse action on the considered system, and

x(τ̂+j ) = gτ̂j (x(τ̂
−
j )), j = 1, 2, . . . . (2)
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Here, x(τ̂+j ), x(τ̂−j ) are the values of the right-hand and left-hand limits at the point
τ̂j for a solution of system (1), j = 1, 2, . . .. Next, we consider solutions of hybrid
system (1), (2) as right-continuous functions (x(τ̂j ) = x(τ̂+j ), j = 1, 2, . . .).

Without loss of generality, we consider the only case where the interval (0,+∞)

contains the infinite number of switching and impulsive instants. Also, we exclude
Zeno behavior for the sequences {τ̃l}l=0,1,... and {τ̂j }j=1,2,....

Let fσ(t)(t, 0) = 0 for t ≥ 0, and gτ̂j (0) = 0 for j = 1, 2, . . .. So, the impulsive
switched system (1), (2) has the trivial solution x ≡ 0. We will look for conditions
under which this solution is asymptotically stable.

Combine the sequences {τ̃l}l=0,1,... and {τ̂j }j=1,2,... into one new sequence
{τi}i=0,1,..., 0 = τ0 < τ1 < τ2 < . . .. Thus, for any i, one can choose l or/and
j such that τi = τ̃l or/and τi = τ̂j , i.e., the sequence {τi}i=0,1,... is the common
set of switching and impulsive instants. One can suppose that σ(τ−p ) = σ(τ+p ),
if τp �∈ {τ̃l}l=0,1,..., and x(τ+p ) = gτp (x(τ

−
p )) = x(τ−p ), if τp �∈ {τ̂j }j=1,2,...;

p = 1, 2, . . .. Assume that function fσ(t)(t, x) is continuous for t ∈ [τi, τi+1),
x ∈ Rn; i = 0, 1, . . ..

As it was already noted in Introduction, the main approach to analysis of
impulsive switched systems is a combination of direct Lyapunov method with the
theory of differential inequalities. One can choose a single or multiple Lyapunov
function for the considered system and construct some differential inequality for it.
Then under certain assumptions, it is possible to find sufficient stability conditions.
However, the problem becomes more complicated if the system’s specifics imply
the use of nonlinear and non-stationary differential inequalities.

Let some multiple Lyapunov function Vσ(t)(t, x) be constructed for system (1),
(2). In this chapter, we suppose that function Vσ(t)(t, x) is defined for t ≥ 0, x ∈
Rn, continuously differentiable for t ∈ (τi, τi+1), x ∈ Rn (i = 0, 1, . . .), and the
following estimates:

Vσ(τp)(τp, x) ≤ ωpVσ(τp−1)(τp, x), p = 1, 2, . . . , (3)

Vσ(τp)(τp, gτp (x)) ≤ βpVσ(τp)(τp, x), p = 1, 2, . . . , (4)

λ1(t) a1
(‖x‖) ≤ Vσ(t)(t, x) ≤ λ2(t) a2

(‖x‖) for t ≥ 0, (5)

V̇σ (t)
∣
∣
(1) ≤ q(t)V

1+θi
σ (t) (t, x) for t ∈ (τi, τi+1), i = 0, 1, . . . , (6)

are valid, if ‖x‖ < H (0 < H ≤ +∞). Here, ωp > 0, βp > 0, θi ≥ 0, p =
1, 2, . . ., i = 0, 1, . . .; λ1(t), λ2(t), q(t) are piecewise continuous functions, and
λ1(t), λ2(t) are positive for t ≥ 0; a1(z) and a2(z) are continuous, positive, and
strictly increasing functions for z > 0, a1(0) = a2(0) = 0. Additionally, we assume
that q(t) ≤ 0 for t ∈ (τi, τi+1), if θi > 0; i = 0, 1, . . .. If θi = 0, then we do
not impose restrictions on the sign of the function q(t) on the interval (τi, τi+1),
i = 0, 1, . . ..
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It should be noted that one can set ωp = 1, if τp �∈ {τ̃l}l=0,1,..., and βp = 1, if
τp �∈ {τ̂j }j=1,2,...; p = 1, 2, . . ..

3 Stability Conditions

For t ∈ [τi, τi+1), let us denote

q̄(t) =
{
q(t), if θi = 0,

0, if θi > 0,
q̂(t) =

{
0, if θi = 0,

q(t), if θi > 0,

J̄ (a, b) =
∫ b

a

q̄(t) dt, Ĵ (a, b) =
∫ b

a

q̂(t) dt, i = 0, 1, . . . .

Here, a, b are positive constants.
Choose some constant ξ > 0. Assume

ρi =
{

1, if θi = 0,
ξ/θi, if θi > 0,

γi = min{1; 2ρi−1}, dp = (βpωp)
−ξ , i = 0, 1, . . . , p = 1, 2, . . . .

Set t0 and t , t > t0 ≥ 0. Find nonnegative integers m and k such that t0 ∈
[τm, τm+1) and t ∈ [τm+k, τm+k+1). So, we consider m = m(t0) and k = k(t0, t) as
piecewise constant functions. In particular, the value of k determines the number of
switching or/and impulsive instants on the interval (t0, t].

Construct auxiliary functions ψ(t0, t) and ϕ(t0, t) by the following formulas:

ψ(t0, t) = γme
−ξ J̄ (t0,t)

(
−θmĴ (t0, t)

)ρm
, ϕ(t0, t) = γm,

if k = 0, and

ψ(t0, t) = (γm . . . γm+k) (dm+1 . . . dm+k) e−ξ J̄ (t0,t)
(
−θmĴ (t0, τm+1)

)ρm

+
k−1∑

s=1

(γm+s . . .γm+k)(dm+s+1. . .dm+k) e−ξ J̄ (τm+s ,t)
(
−θm+s Ĵ (τm+s , τm+s+1)

)ρm+s

+γm+ke−ξ J̄ (τm+k,t)
(
−θm+kĴ (τm+k, t)

)ρm+k
,

ϕ(t0, t) = (γm . . . γm+k) (dm+1 . . . dm+k) ,
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if k > 0. Here, we suppose that
k−1∑

s=1
(·) = 0 for k = 1.

Choose any x0 ∈ Rn, ‖x0‖ < H . Consider the solution x(t) of system (1), (2)
starting at time moment t0 from the point x0. Integrating differential inequality (6),
it is easy to show that if the solution x(t) remains in the region ‖x‖ < H on the
interval [t0, t], then the estimate

V
−ξ
σ (t)(t, x(t)) ≥ ϕ(t0, t)e

−ξ J̄ (t0,t)V −ξσ (t0)
(t0, x0)+ ψ(t0, t) (7)

holds.
Using estimates (5) and (7), we get the following theorem.

Theorem 1 Let a multiple Lyapunov function Vσ(t)(t, x) satisfying estimates (3)–
(6) be constructed. Then, the zero solution of system (1), (2) is asymptotically stable,
if at least one of the following conditions:

(i) ϕ(t0, t) e
−ξ J̄ (t0,t)λξ1(t)→+∞ as t →+∞

(ii) λ
ξ
1(t)ψ(t0, t)→+∞ as t →+∞

is valid for any value of t0 ≥ 0.

Note that if condition (i) or (ii) of Theorem 1 is valid for some value of t0, then
it is also valid for any t0 ≥ 0. Therefore, it is sufficient to check conditions of
Theorem 1 for t0 = 0. Also, it should be noted that if H = +∞, then under
the fulfillment of conditions of Theorem 1, the zero solution of system (1), (2) is
globally asymptotically stable.

Remark 1 Assume that the set of values of θi , i = 0, 1, . . ., is bounded at above.
For instance, such situation takes place, if the set of possible operating modes for
system (1) is finite. In this case, one can choose ξ = max

i=0,1,...
θi . Then, one gets

γi = 1, i = 0, 1, . . ., and formulas for functions ϕ(t0, t), ψ(t0, t) will take more
simple form.

In the following sections, we consider some examples of classes of systems for
which estimates of the form (3)–(6) occur naturally.

4 Stability Analysis for Some Non-Stationary Complex
System

Let system (1) be of the form

{
ẋ1 = Pσ (t)x1 +Gσ (t, x),

ẋ2 = Fσ (t, x2)+ Dσ (t, x).
(8)
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Here, x = (xT1 , xT2 )
T , x1 ∈ Rn1 , x2 ∈ Rn2 , n1 + n2 = n; σ = σ(t) = [0,+∞)→

Q = {1, . . . , N} (i.e., now we consider the finite number of operating modes for the
system). Let matrices Ps(t) and functions Fs(t, x2), Gs(t, x), Ds(t, x) be continuous
for t ≥ 0, x ∈ Rn; s = 1, . . . , N .

System (8) can be considered as a complex system describing the interaction
between two subsystems

ẋ1 = Pσ (t)x1 (9)

and

ẋ2 = Fσ (t, x2). (10)

Assume that functions Fs(t, x2) are homogeneous of the order μ > 1 with
respect to variable x2, s = 1, . . . , N .

Functions Gσ (t, x) and Dσ (t, x) set connections between subsystems (9), (10).
Let the inequalities

‖Gs(t, x)‖ ≤ us(t)‖x1‖η1‖x2‖η2 , ‖Ds(t, x)‖ ≤ rs(t)‖x1‖ν1‖x2‖ν2

hold for t ≥ 0, ‖x‖ < H , (0 < H ≤ +∞), where η1 ≥ 0, η2 > 0, ν1 > 0, and
ν2 ≥ 0 are constants, and us(t) and rs(t) are nonnegative and continuous for t ≥ 0
functions, s = 1, . . . , N .

System (8) has the zero solution. Let us investigate the stability problem for this
solution.

We will search for Lyapunov functions for subsystems (9), (10) as a quadratic
form v1(t, x1) = xT1 A(t)x1, where symmetric matrix A(t) is continuously differen-
tiable for t ≥ 0 and its eigenvalues are positive for any t ≥ 0, and a continuously
differentiable for x2 ∈ Rn2 positive definite homogeneous function v2(x2) of order
κ > 1, correspondingly. Using the properties of homogeneous functions [9], we
have for t ≥ 0, x ∈ Rn the estimates

g1(t)‖x1‖2 ≤ v1(t, x1) ≤ g2(t)‖x1‖2, b1‖x2‖κ ≤ v2(x2) ≤ b2‖x2‖κ ,
∥∥∥∥
∂v1(t, x1)

∂x1

∥∥∥∥ ≤ g3(t)‖x1‖,
∥∥∥∥
∂v2(x2)

∂x2

∥∥∥∥ ≤ b3‖x2‖κ−1,

xT1
(
Ȧ(t)+ Ps(t)A(t)+ A(t)Ps(t)

)
x1 ≤ g4s(t)‖x1‖2, s = 1, . . . , N,

(
∂v2(x2)

∂x2

)T
Fs(t, x2) ≤ b4s(t)‖x2‖κ−1+μ, s = 1, . . . , N.
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Here, b1, b2, b3 are positive constants; functions g1(t), g2(t), g3(t) are positive and
continuous for t ≥ 0; g4s(t) and b4s(t) are some continuous for t ≥ 0 functions,
s = 1, . . . , N .

Let us assume that there is at least one value s̄ ∈ Q such that g4s̄ (t) <

0 and b4s̄ (t) < 0 for t ≥ 0. It should be noted that there are no general
methods of constructing appropriate Lyapunov functions for non-stationary linear
and homogeneous systems. But in a wide class of special cases, this can be
done (see, for instance, [9–12]).

We construct a Lyapunov function for complex system (8) in the form

V (t, x) = v
ζ
1 (t, x1)+ v2(x2),

where ζ = const ≥ 1. Then for t ≥ 0, ‖x‖ < H , we have

V̇
∣∣
(8), σ=s ≤ Ws(t, x).

Here,

Ws(t, x) = c1s(t)‖x1‖2ζ + c2s(t)‖x2‖κ−1+μ

+c3s(t)‖x1‖2ζ−1+η1‖x2‖η2 + c4s(t)‖x1‖ν1‖x2‖κ−1+ν2 ,

and

c1s(t) = ζg
ζ−1
2 (t)g4s(t), c2s(t) = b4s(t),

c3s(t) = ζg
ζ−1
2 (t)g3(t)us(t), c4s(t) = b3rs(t).

Note that c1s̄ (t) < 0, c2s̄ (t) < 0 for t ≥ 0.

Lemma 1 Let the following conditions be fulfilled:

(i) The inequalities

2ζ − 1+ η1

2ζ
+ η2

κ − 1+ μ
> 1,

ν1

2ζ
+ κ − 1+ ν2

κ − 1+ μ
> 1 (11)

are valid.
(ii) There are constants ε1 and ε2 satisfying the inequalities

max{0; η2 − κ + 1− μ} ≤ ε1 ≤ min
{
η2; η2 − (1−η1)(κ−1+μ)

2ζ

}
,

max{0; ν1 − 2ζ } ≤ ε2 ≤ min
{
ν1; ν1 − 2ζ(μ−ν2)

κ−1+μ
}
,

(12)
such that functions
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c3s̄ (t)

|c1s̄ (t)|
(
c1s̄ (t)

c2s̄ (t)

) η2−ε1
κ−1+μ

,
c4s̄ (t)

|c2s̄ (t)|
(
c2s̄ (t)

c1s̄ (t)

) ν1−ε2
2ζ

are bounded for t ≥ 0.

Then for any M ∈ (0, 1), one can choose H1 ∈ (0,H ] so that the estimate

Ws̄(t, x) ≤ M
(
c1s̄ (t)‖x1‖2ζ + c2s̄ (t)‖x2‖κ−1+μ)

holds for t ≥ 0, ‖x‖ < H1.

Since parameters ζ and κ can be chosen arbitrarily, then to fulfill inequalities
(11) it is sufficient to require that the inequality

max {0; (1− η1)/η2}max {0; (μ− ν2)/ν1} < 1 (13)

holds. Under (13), inequalities (12) are also consistent.
If function c1s̄ (t)/c2s̄ (t) is bounded at above for t ≥ 0, then it is sufficient to

check the condition ii) of Lemma 1 for ε1 = max{0; η2 − κ + 1 − μ} and ε2 =
min{ν1; ν1 − (μ − ν2)(2ζ )/(κ − 1 + μ)}. If c1s̄ (t)/c2s̄ (t) ≥ m = const > 0
for t ≥ 0, then it is sufficient to check the condition ii) of Lemma 1 for ε1 =
min{η2; η2 − (1− η1)(κ − 1+ μ)/(2ζ )} and ε2 = max{0; ν1 − 2ζ }.

Next, we assume that conditions of Lemma 1 are fulfilled. Then for t ≥ 0, ‖x‖ <
H2 (0 < H2 ≤ H1), we have the estimates

λ1(t)
(
‖x1‖2ζ + ‖x2‖κ

)
≤ V (t, x) ≤ λ2(t)

(
‖x1‖2ζ + ‖x2‖κ

)
,

V̇
∣∣
(8), σ=s̄ ≤ q1(t)V

1+θ (t, x), V̇
∣∣
(8), σ �=s̄ ≤ q2(t)V (t, x).

Here, θ = (μ− 1)/κ ,

λ1(t) = min{gζ1 (t); b1}, λ2(t) = max{gζ2 (t); b2},

q1(t) = M1 max{c1s̄ (t)/g
ζ
2 (t); c2s̄ (t)},

q2(t) = M2 max{c1s(t)/g
ζ
1 (t); c2s(t); c3s(t)/g

ζ+(η1−1)/2
1 (t); c4s(t)/g

ν1/2
1 (t)},

where M1 and M2 are some positive constants.
Since we use a single Lyapunov function Vσ(t)(t, x) = V (t, x) for t ≥ 0, then,

in (3), we have ωp = 1, p = 1, 2, . . . .
Let impulse action (2) be of the form

x1(τ̂
+
j ) = K(1)

τ̂j
x1(τ̂

−
j ), x2(τ̂

+
j ) = K(2)

τ̂j
x2(τ̂

−
j ), j = 1, 2, . . . ,
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where K(1)
τ̂j

, K(2)
τ̂j

, j = 1, 2, . . . , are the constant matrices. Then, in (4) for τp = τ̂j ,

we have

βp = λ2(τ̂j )

λ1(τ̂j )
max{‖K(1)

τ̂j
‖2ζ ; ‖K(2)

τ̂j
‖κ }, p, j = 1, 2, . . . .

Now, one can apply condition ii) of Theorem 1.

5 Stability Analysis for Some Classes of Non-Stationary
Mechanical Systems

Let us consider the mechanical system

q̈+ a(t)
∂Fσ (q̇)
∂q̇

+ b(t)
∂Πσ (q)
∂q

= 0. (14)

Here, q ∈ Rn and q̇ ∈ Rn are the vectors of generalized coordinates and generalized
velocities, respectively; σ = σ(t) : [0,+∞) → {1, . . . , N}; dissipative
functions Fs(q̇) are continuously differentiable for q̇ ∈ Rn, positive definite, and
homogeneous of degree νs + 1, νs > 1; potential functions Πs(q) are positive
definite quadratic forms; s = 1, . . . , N ; non-stationary coefficients a(t), b(t) are
positive and piecewise continuous for t ≥ 0. Without loss of generality, one can
suppose that the break points of functions a(t) and b(t) coincide with the switching
instants τ̃l , l = 0, 1, . . .. Additionally, we assume that function b(t) is continuously
differentiable and monotonously decreasing on intervals (τ̃l , τ̃l+1), l = 0, 1, . . ..

System (14) has the equilibrium position q = q̇ = 0.
Construct a Lyapunov function in the form:

Vσ (t,q, q̇) = b(t)Πσ (q)+ 1

2
q̇T q̇+ γ c(t)‖q‖νσ−1qT q̇.

Here, γ = const > 0, c(t) is a positive and continuously differentiable for t ∈
(τ̃l , τ̃l+1), l = 0, 1, . . ., function. Then, we have

V̇σ
∣∣
(14) = −2γ c(t)b(t)‖q‖νσ−1Πσ (q)− a(t)(νσ + 1)Fσ (q̇)+ ḃ(t)Πσ (q)

+γ c(t)q̇T ∂
(‖q‖νσ−1q

)

∂q
q̇− γ c(t)a(t)‖q‖νσ−1qT

∂Fσ (q̇)
∂q̇

+ γ ċ(t)‖q‖νσ−1qT q̇

for t ∈ (τ̃l , τ̃l+1), l = 0, 1, . . ., q, q̇ ∈ Rn.
As in Lemma 1, it is easy to show that if function c(t) can be chosen so that

functions
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c(t)min
{
b−1/2(t); b−min{νσ ; 2}/2(t)

}
,

c(t)b−(νσ−1)/2(t)a−1(t),

c(t)min
{
(a(t)/b(t))1/νσ ; (a(t)/b(t))νσ } ,

|ċ(t)| c−νσ /(νσ+1)(t)b−νσ /(νσ+1)(t)a−1/(νσ+1)(t)

(15)

are bounded for t ∈ (τ̃l , τ̃l+1) uniformly with respect to l = 0, 1, . . ., then estimates

M1

(
b(t)‖q‖2 + ‖q̇‖2

)
≤ Vσ (t,q, q̇) ≤ M2

(
b(t)‖q‖2 + ‖q̇‖2

)
, (16)

V̇σ
∣∣
(14) ≤ −M3

(
γ c(t)b(t)‖q‖νσ+1 + a(t)‖q̇‖νσ+1

)
(17)

hold for t ∈ (τ̃l , τ̃l+1), l = 0, 1, . . ., ‖(qT , q̇T )T ‖ < H , if constant γ is sufficiently
small. Here, M1, M2, M3, H are some positive constants.

To obtain more concrete conditions of stability, one can look for the function c(t),
for instance, in the form c(t) = bκσ (t), where κ1, . . . , κN are constants. Assume
that |ḃ(t)| ≤ Mbrσ (t) for t ∈ (τ̃l , τ̃l+1), l = 0, 1, . . ., where M , r1, . . . , rN are
constants, M ≥ 0.

Let functions b(t) and b(t)/a(t) be bounded at above for t ≥ 0. Choose some
values of κ1, . . . , κN , satisfying the condition

κσ ≥ (νσ + 1)max{1/2; 2− rσ }.

We obtain that, if function bκσ−1/νσ (t)a1/νσ (t) is bounded for t ≥ 0, then functions
(15) are bounded for t ∈ (τ̃l , τ̃l+1) uniformly with respect to l = 0, 1, . . ., and
estimates (16), (17) hold.

In a similar manner, the cases where functions 1/b(t) and a(t)/b(t), or functions
b(t) and a(t)/b(t), or functions 1/b(t) and b(t)/a(t) are bounded at above for t ≥ 0,
can be considered.

Next, we suppose that estimates (16), (17) hold. Thus, we have

λ1(t)‖(qT , q̇T )T ‖2 ≤ Vσ (t,q, q̇) ≤ λ2(t)‖(qT , q̇T )T ‖2, for t ≥ 0

V̇σ
∣∣
(14) ≤ q(t)V 1+θσ

σ (t,q, q̇) for t ∈ (τ̃l , τ̃l+1), l = 0, 1, . . . ,

if ‖(qT , q̇T )T ‖ < H . Here, θσ = (νσ − 1)/2,

λ1(t) = M1 min{b(t); 1}, λ2(t) = M2 max{b(t); 1},

q(t) = −M4 min{γ c(t)b(1−νσ )/2(t); a(t)},

and M4 is some positive constant.
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Constants ωp, βp, p = 1, 2, . . ., for the corresponding conditions (3) and (4) can
be easily evaluated with the aid of estimate (16). So, one can apply condition ii) of
Theorem 1.

The proposed approach can be extended to the case where the function b(t) is
piecewise monotone on intervals (τ̃l , τ̃l+1), l = 0, 1, . . .. In this case, points of
the change of monotonicity of the function b(t) can be considered as additional
switching instants. On intervals of monotonous increasing of the function b(t), one
can use a Lyapunov function of the form Vσ (t,q, q̇)/b(t).

6 Conclusions

In this chapter, the influence of the combination of such factors as nonlinearity,
non-stationarity, switching, and impulsive actions on the stability of solutions for a
class of dynamical systems was studied. Multiple Lyapunov functions satisfying
differential inequalities with hybrid degrees were used. It should be noted that
the presence of non-stationary coefficients in the system can lead to a significant
complication of the dynamics of solutions. To investigate the stability problem in
such cases, some non-standard approaches are often used. For instance, the problem
of estimating for polynomial expressions with non-stationary coefficients is actual
for the constructing appropriate Lyapunov functions. The obtained results were
applied to some concrete classes of hybrid systems that often occur under analyzing
various real processes.
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State-Dependent Switching Law for
Stabilization to a Switched Time-Delay
System with Two Unstable Subsystems

Yusheng Zhou and Zaihua Wang

1 Introduction

A switched system is composed of a family of subsystems with a rule governing
switching between the subsystems. It has been widely used to model real-world sys-
tems, such as networked control system [1], intelligent robot system [2], spacecraft
control system [3], and so on. For a practical switched system, the fault of subsystem
actuator or sensor is usually inevitable and it might make the whole system unstable.
In this case, fault detection and fault-tolerant control design are necessary [4, 5]. For
the fault-tolerant flight control system [6], when some subsystems become unstable
due to the actuator or sensor faults, the full system can be asymptotically stable by
adopting an appropriate switching mechanism, thereby ensuring the safety of the
flying aircraft. Roughly speaking, a switched system with fully unstable (or stable)
subsystems can be either stabilized or destabilized by a proper switching rule [7].
However, the design and analysis of switching laws remain challenging due to the
coupling between nonlinearity and switching mechanism, especially in the study of
the switched time-delay systems with fully unstable subsystems.

Lots of methods are available in the literature for design and analysis of switched
systems with unstable modes, most of the research works focused on systems with at
least one stable subsystem [8]. The main idea used in studying this kind of switched
systems is to activate the stable subsystems sufficiently long time to absorb the state
divergence caused by unstable subsystems [9]. Meanwhile, the most frequently used
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switching laws are time-dependent, based on the average dwell time [10] or the
model-dependent average dwell time [11]. When all subsystems are unstable due
to uncontrollable or failure controllers, maximum average dwell time switching
is a good choice if each unstable subsystem has at least one characteristic root
with negative real part [12]. However, if each subsystem is unstable and does not
have characteristic roots with negative real parts, the method of average dwell time
switching does not work. In this case, state-dependent switching laws are generally
adopted to stabilize the switched systems. As done in [13], a state-dependent
switching law is designed on the basis of the maximum interval function strategy
as well as the technique of linear matrix inequality, but the results depending on
inequality estimation might be conservative. In order to reduce the conservativeness
of stability conditions, the combination of time-dependent and state-dependent
switching laws can be adopted, such as in [14] where the current maximum dwell
time of subsystems is calculated by means of the system state of the last switching.

In control engineering applications, time delays are usually inevitable especially
when digital controllers or digital filters are used, and in many cases, time
delays significantly change the dynamics behavior and control performance of
switched systems [15]. The available results mainly focus on the stability and
stabilization of switched linear delayed systems with stable and unstable subsystems
[16]. Lyapunov–Krasovskii functional and dwell time technique are two major
methods for stability of such systems [17]. Besides, a class of switched nonlinear
systems with input delays were studied by the combination of Lyapunov–Krasovskii
functionals, free-weighting matrices, and average dwell time technique, and input-
to-state stability conditions were derived in terms of the linear matrix inequality
method [18]. In [19], a family of Lyapunov–Krasovskii functionals were proposed
to analyze nonlinear time-varying switched systems with time delays, and less
conservative stability conditions were obtained. In addition, the stability of switched
systems is in the sense of asymptotic stability, but in some cases, it takes a very
long time before the system is stabilized. It is highly demanded to design proper
switching laws to have less conservative results and faster decaying ratio of the
solution to a steady state of the switched delay system.

In this chapter, a state-dependent switching law is designed for a class of
switched delay systems with two unstable subsystems. The design is based on
two approximated delay-free subsystems that are all unstable, unlike the available
works that require at least one stable subsystem or subsystems having at least one
characteristic root with negative real part. With the designed switching law, the
original switched delay system is stabilized to the unique equilibrium or periodic
solutions. The rest of this chapter is organized as follows. Section 2 is the problem
statement. In Sect. 3, a method for designing the switching curves is presented. In
Sect. 4, two examples are provided to illustrate how the switched delay systems with
two unstable subsystems are stabilized or periodic. This chapter ends in Sect. 5 with
some concluding remarks.
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2 Problem Description

Let us study a switched nonlinear system with two unstable delayed subsystems

{
ẋ1 = fi(x1, x2),

ẋ2 = gi(x1, x2, x1(t − τi)), (i = 1, 2),
(1)

under a pure state-dependent switching law given by

ψ(x1(t), x2(t)) =
{

1, (x2 − φ1(x1))(x2 − φ2(x1)) ≥ 0,

2, (x2 − φ1(x1))(x2 − φ2(x1)) < 0,
(2)

where x(t) = [x1, x2]T ∈ R
2 is the state vector, τi ≥ 0 is the time delay, fi, gi

are smooth nonlinear functions, and fi(x1, x2) is monotonous with respect to x2.
In control applications, x1(t − τi) appears linearly in Eq. (1). In Fig. 1, Ai denotes
the ith subsystem and the two subsystems share a common unstable equilibrium
point (0, 0)T. System (1) can be formulated as an epidemic model or biological
population competition model with switching controllers [20]. In particular, when
fi(x1, x2) = x2, system (1) can be represented as a switching model of a second-
order mechanical system with two different switching controllers [21].

The objective of this chapter is two aspects. One is to design two switching
curves such that the common unstable equilibrium point can be stabilized as fast
as possible. The other is to obtain periodic solutions after a stability loss of the
common equilibrium point as the delay increases.

Fig. 1 Schematic diagram of
the state-dependent switching
mechanism
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3 Design of Optimal Switched Curves of the Approximated
Subsystems

Equation (1) can be converted into an equation similar to one used for describing a
vibration system of single degree of freedom, by using an invertible transformation

{
y1 = x1,

y2 = fi(x1, x2).
(3)

Taking differentiation on both sides of Eq. (3) with respect to t , Eq. (1) becomes

{
ẏ1 = y2,

ẏ2 = ∂fi
∂x1

fi(x1, x2)+ ∂fi
∂x2

gi(x1, x2, x1(t − τi)).
(4)

The time delays are assumed short, and then the delay term x1(t − τi) = y1(t − τi)

can be approximated by the second-order Taylor expansion as

y1(t − τi) ≈ y1(t)− τi ẏ1(t)+ 1

2
τ 2
i ÿ1(t). (5)

Thus, a single delay term y1(t − τi) changes not only the stability of the subsystems
but also their vibration frequencies. When fi(x1, x2) is monotonous and continuous
with respect to x2 as assumed in Sect. 2, the inverse transformation of Eq. (3) is
governed and can be expressed by

{
x1 = y1,

x2 = ϕi(y1, y2),
(6)

where x2 = ϕi(y1, y2) is the inverse function of y2 = fi(x1, x2) with fixed x1.
Substituting Eqs. (5)–(6) into Eq. (4) and separating the stiffness term with

respect to y1 from the right-hand function of the second equation, one has

{
ẏ1 = y2,

ẏ2 = Pi(τi, y1)+Qi(τi, y1, y2).
(7)

Thus, when the delays are short, Eq. (7) in a form of vibration system of single
degree of freedom can be regarded as a reasonable approximation of Eq. (1).

As a second-order mechanical system, (7) defines its energy function Vi as the
sum of kinetic energy and potential energy, given by

Vi = 1

2
my2

2 −mP̄i(τi, y1) > 0,
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where P̄i(τi , y1) =
∫ y1

0 Pi(τi, s)ds, m is the mass, and let m = 1 without loss of
generality. According to Eq. (3), one has

Vi = 1

2
f 2
i (x1, x2)− P̄i(τi , x1). (8)

A switching between subsystems A1 and A2 can be regarded as a switching
between their energy functions V1 and V2. Thus, it is reasonable to define

F (x1, x2) = V1

V2
> 0

and a performance index functional along a switching curve x2 = φ(x1) as follows:

I (φ(·)) =
∫ x1f

0
F (x1, φ(x1))dx1, (9)

where x1f > 0 is an arbitrary terminal coordinate component. The functional
I (φ(·)) represents the accumulation of energy ratio of the two subsystems on the
switching curve x2 = φ(x1), x1 ∈ (0, x1f ).

When I (φ(·)) takes the maximum (or minimum) value on x2 = φ1(x1), the
relative energy difference from V1 to V2 (or V2 to V1) is the largest. Then, when
the system switches from A1 to A2 or A2 to A1 via x2 = φ1(x1) or x2 = φ2(x1),
as indicated in Fig. 1, the reduced energy is the largest. Thus, in a switching loop
A1 → A2 → A1 → A2 → A1, the approximate switched system (7) has a
largest energy loss. In this sense, the above two switching curves are approximately
optimal when the time delay is small enough. During the switching loops, if the
potential energy reduced by switching is greater than the energy increased by the
equivalent negative damping, the trajectory of the switched system goes inward
to the origin; if the potential energy reduced by switching is less than the energy
increased by the equivalent negative damping, the trajectory goes outward away
from the origin; if the potential energy reduced by switching is equal to the energy
increased by the equivalent negative damping, the trajectory is a closed curve.
That is, the equilibrium (0, 0)T of system (1) is stable, or unstable, or periodic,
respectively. As a consequence, in order to guarantee the stability, the equivalent
stiffness difference between the two subsystems must be large enough to generate a
large enough potential energy difference at switching.

The functional I (φ(·)) takes its extreme value when Euler equation

Fx2 −
d

dt
Fx′2 = 0 (10)

is satisfied, where Fx2 = ∂F (x1,x2)
∂x2

and Fx′2 =
∂F (x1,x2)

∂x′2
with x′2 = dx2

dx1
. Since

F (x1, x2) does not contain x′2, Eq. (10) is degenerated to Fx2 = 0, namely
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f1(x1, x2)
∂f1

∂x2

[
1

2
f 2

2 (x1, x2)− P̄2(τ2, x1)

]

− f2(x1, x2)
∂f2

∂x2

[
1

2
f 2

1 (x1, x2)− P̄1(τ1, x1)

]
= 0.

(11)

Usually, no closed-form solutions x2 = φ1(x1) and x2 = φ2(x1), but approximate
solutions in polynomial form, can be obtained from solving Eq. (11).

For example, when f1 = x1 − 10x2, f2 = x1 − 100x2, g1 = x2
1 + 10x1 + x2 +

x1(t − τ), g2 = x2
1 + x1 + x2 + x1(t − τ), and τ = 0.1, Eq. (11) is simplified to

x2
2 − 0.6561x2

1x2 − 11.7071x1x2 + 0.0021x3
1 + 0.1036x2

1 = 0.

With α = 0.3280x1 + 5.8536, β = 0.1076x2
1 + 3.8383x1 + 34.161, solving the

above equation gives the two switching curves

x2 = φ1(x1) = (α −√
β)x1, x2 = φ2(x1) = (α +√

β)x1.

Although the system states of the two subsystems diverge to infinity very quickly,
as seen in Fig. 2, but under the designed switching law and as shown in Fig. 3,
the equilibrium (x1, x2)

T = (0, 0)T of the switched system is stable at a very fast
speed, where the initial conditions are (x1(0), x2(0))T = (2, 1)T and x1(t) = 2 (t ∈
[−0.1, 0]).

(a) (b)

Fig. 2 Time histories of the subsystems with the initial condition (x1(0), x2(0))T = (0.05, 0.05)T

and x1(t) = 0.05, t ∈ [−0.1, 0]. (a) Time histories of subsystem A1. (b) Time histories of
subsystem A2
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(a) (b)

Fig. 3 State of the switched delay system with the designed switching curves. (a) Time histories.
(b) Phase trajectory

4 Design of State-Dependent Switching Laws

Stability analysis and stabilization are two major concerns in the study of a switched
system. As mentioned before, if there is at least one stable subsystem or each
subsystem has at least one characteristic root with negative real part, then some
existing methods, say the dwell time method, work well for the stabilization of
the switched systems, but the above proposed design method works worse than the
dwell time method. On the contrary, for the cases discussed in this chapter, the
proposed method works effectively, but the available methods do not work.

4.1 Switching Between Two Different Unstable Delay
Subsystems

Let us study system (1), where subsystems A1 and A2 are defined as

{
ẋ1 = x1 − 4x2,

ẋ2 = 4x1 + x2 + x1(t − τ),

{
ẋ1 = x1 − 16x2,

ẋ2 = x1 + x2 + 0.25x1(t − τ),
(12)

respectively. For the subsystem A1, the characteristic equation is p1(λ) = 0, where
the characteristic function p1(λ) is

p1(λ) = det

(
λ− 1 4

−4− e−λτ λ− 1

)
= λ2 − 2λ+ 17+ 4e−λτ .

When τ = 0, p1(λ) = λ2 − 2λ + 21 has a pair of conjugate complex roots with
positive real part. As τ increases from 0, the instability can be changed only if there
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(a) (b)

Fig. 4 State of the switched system with τ = 0.1. (a) Time histories. (b) Phase trajectory

(a) (b)

Fig. 5 Phase trajectories of the switched system with different time delays. (a) τ = 0.5. (b)
[τ = 0.8]

is a τ > 0 such that p1(λ) has a pair of pure imaginary roots λ = ±iω. It is
necessary to have |(iω)2 − 2iω + 17|2 − 42 = 0, namely ω4 − 30ω2 + 273 = 0,
which has no real roots. This means that the real part of the rightmost characteristic
root of subsystem A1 is kept positive for all τ ≥ 0. Thus, subsystem A1 is unstable
for arbitrary τ ≥ 0. The same result holds for the subsystem A2.

With τ = 0.1, solving Eq. (11) gives the equations of two switching curves

x2 = φ1(x1) = 6.6959x1, x2 = φ2(x1) = 0.0504x1. (13)

With the initial conditions (x1(0), x2(0))T = (1, 1)T and x1(t) = 1 (t ∈ [−0.1, 0]),
as shown in Fig. 4, the trajectory approaches to (0, 0)T in a spiral-like way rapidly
by using the switching curves (13).
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(a) τ = 0.4080 (b) τ = 0.6260

Fig. 6 Periodic solutions of the switched system with different delay values. (a) τ = 0.4080. (b)
τ = 0.6260

Now, let τ be a parameter in the region of τ ∈ [0.1, 0.8]. Although the time
delay is no longer small, we can also study the stability of the switched system
(1) with unstable subsystems (12) and two fixed switching lines (13). As shown
in Fig. 5, when the time delay increases to τ = 0.5, the switched system (12)
becomes unstable, and stable again at τ = 0.8. It tells that the switched system
(1) should exhibit two times of stability switch from stable to unstable and again
to stable. Thus, it is expected to have periodic solutions in [0.1, 0.5] and [0.5, 0.8],
respectively, where the potential energy reduced by switching equals to the energy
increased by the equivalent negative damping. The delay values that make the
solution of the switched system periodic can be found numerically by using the
bisection method in [0.1, 0.5] and [0.5, 0.8], respectively. By using the bisection
method, both endpoints of the closed intervals at each step admit opposite stability
(stable or unstable), resulting in a series of nest closed intervals. At τ = 0.4063 or
τ = 0.6301, each as the limit of the nest closed intervals, the switched system (1) is
periodic, as shown in Fig. 6.

4.2 Switching of Two Delay Values in an Unstable Delayed
System

Consider a time-delay system described by

{
ẋ1 = 0.1x1 − 10x2,

ẋ2 = 0.1x1 + 0.1x2 + 10x1(t − τ).
(14)

The characteristic equation of Eq. (14) is p(λ) := λ2−0.2λ+1.01+100e−λτ = 0.
When τ = 0, p(λ) = 0 has a pair of conjugate complex roots with positive real part.
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When τ > 0, assume that p(λ) = 0 has a pair of pure imaginary roots λ = ±iω,
then F(ω) = (ω2 − 1.01)2 + 0.04ω2 − 1002 = 0, which has exactly one positive
real root ω = 10.049. With sin(ωτ) and cos(ωτ) solved from the real and imaginary
parts of p(λ) = 0, one can find numerically the infinite number of critical delay
values {τj }j=0,1,2,···. Moreover, at each critical point (λ, τ ) = (ωi, τj ), the crossing
direction of the characteristic root is from the left-half complex plan to the right-half

one, because /
(

dλ
dτ

) ∣∣∣
(λ,τ )=(ωi,τj )

> 0. Thus the equilibrium of (14) is unstable for

all τ ≥ 0. With any τ = τ1 or τ = τ2, the equilibrium of Eq. (14) alone is unstable,
but under a properly chosen switching law between two appropriate delay values, it
becomes stable.

Actually, when the delays are short, Eq. (14) is approximated to be

⎧
⎨

⎩

ẏ1 = y2,

ẏ2 = − 101.01
50τ 2

i +1
y1 + 100τi+0.2

50τ 2
i +1

y2, (i = 1, 2).

Approximately, the equivalent stiffness coefficient is 101.01
50τ 2

i +1
> 0, and the equivalent

damping coefficient is − 100τi+0.2
50τ 2

i +1
< 0. In order to stabilize the switched system

by the state-dependent switching law only, the difference between the equivalent
stiffness coefficient of the two subsystems with different delay values must be large
enough. Now, define two unstable subsystems with different delay values τ1 and τ2,
respectively, where a large difference between the equivalent stiffness coefficients
may be governed. Equation (11) is simplified to (x2−0.1x1)x

2
1(τ

2
1 −τ 2

2 ) = 0. Then,
for a pair of arbitrary parameter combinations (τ1, τ2), the two switching curves are
found to be x2 = 0.1x1 and x1 = 0, where x1 = 0 stands for the x2-axis. When the
switching law is designed as

τ =
{
τ1 = 0.01, (x2 − 0.1x1)x1 ≤ 0,

τ2 = 1, (x2 − 0.1x1)x1 > 0,
(15)

the delay system (14) switched between τ = 0.01 and τ = 1 is stable, where the
initial conditions are (x1(0), x2(0))T = (1, 1)T and x1(t) = 1 (t < 0), as depicted
in Fig. 7. Figure 8a further shows that the system state occurs in high-frequency
switching on the switching line x2 = 0.1x1, a phenomenon named chatter. Under the
same switching law (15), however, when τ2 is decreased to 0.6, the system energy
loss via switching is not large enough due to the insufficient stiffness coefficient
difference. In this case, the system (14) switched between τ1 = 0.01 and τ2 = 0.6
is not stable, as seen in Fig. 8b.

When −k x1(t − τ) is regarded as a delayed feedback, one can prove as done at
the beginning of this subsection that the equilibrium (x1, x2) = (0, 0) of
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(a) (b)

Fig. 7 Stable state under the time-delay switching law (15). (a) The time history of x1. (b) The
time history of x2

(a) (b)

Fig. 8 Phase trajectories under different time-delay switching laws. (a) τ1 = 0.01, τ2 = 1. (b)
τ1 = 0.01, τ2 = 0.6

{
ẋ1 = 0.1x1 − 10x2,

ẋ2 = 0.1x1 + 0.2x2 + k x1(t − τ),
(16)

is unstable for any combination of k and τ . Actually, from the critical stability
condition, it is necessary to have F(ω) := ω4 − 1.95ω2 + 1.0404 − 100k2 = 0.
F(ω) has no real roots if |k| < 0.02996, two pairs of real roots ±ω1 and ±ω2
if 0.02996 < |k| < 0.1020, and one pair of real roots ±ω1 if |k| > 0.1020.
Because the delay system (16) is unstable when τ = 0, it is unstable for all
τ ≥ 0 when |k| < 0.02996 or |k| > 0.1020. For a delayed negative feedback with
0.02996 < k < 0.1020, say, k = 0.08, F(ω) has two real roots: ω1 = 1.3103 and
ω2 = 0.4829, and the corresponding minimal critical delay values are τ1,0 = 4.4034
and τ2,0 = 6.1281, respectively. Straightforward calculation shows that the crossing
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direction at τ1,0 (or τ2,0) is from the left-half (or right-half) complex plane to the
right-half (or left-half) complex plan. As τ increases from 0 to +∞, it first passes
through τ1,0 (where the characteristic equation increases two unstable roots), then
τ2,0 (where the characteristic equation decreases two unstable roots), and so on. As
a result, the delayed system (16) is unstable for all τ ≥ 0. Similar results can be
obtained for other k in 0.02996 < k < 0.1020. Therefore, a system that cannot
be stabilized by using a delayed negative feedback can be stabilized by using a
switched law between two chosen delay values.

5 Conclusions

The design of switching law is based on the energy changes of the approximate
subsystems in the form of second-order mechanical systems. The approximated
subsystems do not have characteristic roots with negative real parts, unlike in
the literature where at least one subsystem is assumed stable or each subsystem
is assumed to have at least one characteristic root with negative real part. The
switching curves are obtained by solving the Euler equation according to the
variational principle; thus they are optimal to the approximated subsystems. The
simulation analysis shows that even though the two subsystems are unstable for
all delay values, stable equilibrium and periodic solutions of the switched systems
under a simple switching law designed in this way can be easily achieved. As a
result, the stabilization of the unstable equilibrium and the existence of periodic
solutions can be understood from the viewpoint of energy changes of the two
approximated subsystems. In addition, a delay-independent unstable system can be
stabilized by switching between two properly chosen delay values. The proposed
method extends the design theory of switched systems, and it is expected to be used
to solve other switching problems.
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A
ABAQUS® FEM software, 170
Abdominal aortic aneurysm (AAA), wall shear

stress
boundary conditions, 29–30
geometry, 29–30
limitations, 27
MRI, 27, 28
non-Newtonian blood flow simulation,

30–31
pressure distributions, 33–34
velocity distribution at late systole, 32–33
wall shear stress, 34–35

Active overload protection system (AOPS),
201, 213

Adaptive sub-cells interpolation method,
678–679

Adaptive time stepping procedure (ATSP),
869–870

Adimensionalization process, 642
Aerial cable car system

cable deflection, 239
external force frequency, 245
Hamilton principle, 238
Kronecker delta, 242
line art drawing, 238
mass, gyroscopic, and stiffness operator,

242
mass–spring system, 238
mechanical–mathematical model, 239–243
numerical investigation, 243
numerical simulation, 245
proposed mechanical model, 244
Runge–Kutta solver, 244
schematic representation, 240

stochastic approach, 238
total kinetic energy, 240
traction cable, 241
vertical plane motion, 238

Aero-elastic flutter oscillations, 49, 50, 54–56,
59, 61, 62

Aeroelastic system under stochastic inflow
canonical sinusoidal gust model, 878
fatigue damage, 878–880, 883, 885
freeplay nonlinearity, 877–878
input flow fluctuation, 880
pitch–plunge aerofoil, 879
pitch response dynamics, 881–882
pitch stiffness of airfoil, 879
simulated autocorrelation function, 881
stochastic bifurcation analysis, 882–884
stress cycles, 885
validation of aerodynamic model, 881
variation of flow speed with time, 881

Affine variety, 598
Aircraft model, 542
Airy’s stress function, 180
Algebraic geometry, 598–599
Alternating Frequency Time method, 610, 613,

735
AMB-rotor system, 649, 651–653
Amplitude equation, 800
Angiography, 40, 41
Angular frequency, 799
Angular momentum, 686
Angular velocity, 633, 779
Anisotropic bearings, 768
ANSYS® analysis, 41, 42, 225
Aortic aneurysm, see Abdominal aortic

aneurysm (AAA), wall shear stress
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Arbitrary Lagrangian–Eulerian (ALE)
methods, 267–268

Armfield wind tunnel, 23
Arrhenius model, 75
Artificial neural networks (ANNs), 422, 424
Asymptotic numerical method (ANM), 443
Atomic force microscope (AFM), 549

dynamics of, 561
mathematical model, 550

problem formulation, 550–552
perturbation solution, 552–561
self-oscillating regime, 561

Autodesk® InventorLT™, 40
AUTO software, 149
Auxiliary

bearings, 654
functions, 890–891
variables, 602

Averaging method, 576, 577, 580, 581, 853
dynamical systems, iterative algorithm

class for, 457
Lyapunov exponents, 577–578, 581–582

AVM sensitivity analysis, 282
Axial displacement, 819
Axial harmonic forcing, 638

B
Backward whirl (BW) frequencies, 761
Balancing method

conventional techniques of, 749
of double-disc rotor system, 750

with constant rotational speed, 755–756
transient response and modal

parameters, 754–755
with variable rotational speeds, 757–758

FIR filter-based force estimation technique,
750, 752

load identification technique, 751–752
and TMM, 750–751
transient balancing methods, 749
unbalance parameters identification

procedure, 752–753
Bayesian Spline regression, 355–356
Bending acceleration level, 819
Bernoulli differential equation, 569
Bernoulli–Euler beam, 550
Bernoulli–Euler’s cantilever model, 120
Bifurcation diagrams, 638, 683, 837
Bilinear amplitude approximation (BAA)

method, 497
Bisection technique, 869
Bi-variate normal (BVN) distribution, 428–429
Blood viscosity, 39, 40, 44–46

Bolotin method, 638
Boundary conditions, viscoelastic base

Airy’s stress function, 180
CCSC, 182–184
CSCS, 182–184
Kelvin–Voigt model, 179–181, 185, 187
one-to-one internal resonance, 184
plate mode shapes for different B.Cs, 182
plate’s lateral deflection, 180
Riemann–Liouville derivative, 181, 187
SSSS, 182–184
T2-dependence of amplitudes of free

vibrations, 186
T2-dependence of dimensionless

displacements of plate, 186
Bozzak–Newmark method, 854
Breathing crack model

Euler-Bernoulli beam, 763
finite element disk-shaft-bearing-rotor

system, 763
gravity force vector, 768
horizontal and vertical vibration whirl

amplitudes, 765
non-dimensional representation, 763
rotordynamic transient whirl response,

768
Brownian motion, 43
Brownian tree, 869, 870
Burton’s method, 155–159, 162–164, 173, 271,

609, 639

C
Canard explosion, 403
Cantilevered aspirating pipes

aspiration of fluid, 112–113
axisymmetric velocity profile, 114
constraint enforcement strategy, 111–112
hydrodynamic force coefficients, 110
Lagrangian of system, 109
MMM, 108, 111, 112
motion constraints of system, 110
non-dimensional arc-length coordinate,

108
non-dimensional parameters of model in

numerical analyses, 113
non-dimensional vortex shedding

frequency, 110
relaxed model, 111–112
root-loci diagram, 114
schematic representation, 108
stability analysis, 113–114
structural damping effects, 109
virtual displacements, 109
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VIV response analysis
in-line and cross-wise amplitudes of

oscillations, 115
steady-state trajectories, 115, 116

Cardiovascular diseases, 27, 39
CARMA(2,1)-process, 98
Cauchy principle value, 68
C++ Code, to compute Wendland functions,

465–467
algorithm, 469–471
arrays, 473
Use/EXAMPLES, 471–472
Wendland functions, generalised

interpolation using, 467–468
Chain-recurrent set

determination of, 460–461
values on, 461–462

Chebyshev-Ritz method, 225
Clamped–clamped beam resonator, 437
Cohesive envelope, 412
Compass-gait walker, 685
Complete Lyapunov function (CLF), 453, 454
Computational efficiency, 676–677
Computational fluid dynamics (CFD), 28, 39,

267
Continuation plots, 619
Control-based continuation (CBC), 50–52

Bayesian Spline regression, 355–356
comparsion of, 356–359
continuation scheme, 352
Gaussian process regression, 355
Hodgkin–Huxley neuron, 356, 358
signal-to-noise ratio (SNR), 357
surrogate regression models, 354–356
truncated Fourier series, 354
van der Pol signal, 358

Convergence-control parameter, 507
Coronary artery diseases, 28
Craig–Bampton (CB) approach, 374
Crank–Nicolson scheme, 82
Critical value, 600
Cross-flow HE tube conveying fluid

dimensionless governing equation of
motion, 6

dynamic transverse distributed force, 5
equation of motion, 4
FEI, 3, 4, 9–12
flutter amplitude, bifurcations diagram, 7
governing equation of motion, 5, 6
internal and external fluid, 7
internal pulsatile flow on dynamics

cross-flow velocity at different pulsatile,
9

in-phase and out-of-phase components,
12

parametric instability regions, 12
pulsatile flow excitation frequency, 10
steady-state responses, 11

internal steady flow on dynamics, 8
oscillation of HE tube steady flow, 8
parametric resonant amplitude, 7
schematic diagram, 4, 5

Cubic nonlinearity case
approximation for small damping, 159–162
Burton’s method, 157–158
Burton’s solution for Duffing oscillator,

159
finding approximate solutions, 158–159

Cubic-quintic oscillator with viscous damping,
163–164

Cubic Takens–Bogdanov bifurcation, 401
Cunningham correction factor, 43
Cuspidal loop, 401–402
Cyclic-fold bifurcation (CFB), 684
Cylindrical shells, elastic foundation

discontinuous foundation in circumferential
direction, 168

geometry, 168
harmonic lateral pressure, 168
linear vibrations, 167
membrane and flexural stress, 169
modal coupling, 173
nonlinear equations of motion, 169
nonlinear vibrations, 167
phase portraits with Poincaré map, 176
quasi-periodic solution and periodic

solution, 173
reduced-order model

accumulated kinetic energy, 170, 171
boundary conditions, 172
cosine and sine modes of the Fourier

series, 170, 171
perturbation method, 170–174
transversal modal amplitude, 172

resonance curves, 173–176

D
Damped backbone curves

cubic nonlinearity case
approximation for small damping,

159–162
Burton’s method, 157–158
Burton’s solution for Duffing oscillator,

159
finding approximate solutions, 158–159
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Damped backbone curves (cont.)
definition, 155
SDOF with polynomial nonlinearities

cubic–quintic oscillator with viscous
damping, 163–164

general form, 162
Damped nonlinear normal mode, 157
Damped nonlinear oscillator, 156, 164
Data cloud analysis, 825
Data quality, 820–821
Deep water waves, 96
Degree-of-freedom (DOF) mechanical

oscillator, 495
Different continuation curves, 618
Dimensionless pump displacement, 135
Direct-acting relief valve

dynamic model, 132
fluid-structure coupling system, 131
Hopf bifurcation, 131
0.4 MPa inlet pressure, 137–139
0.8 MPa inlet pressure, 135–137
nondimensionalization of dynamic model,

133–135
physical model, 132, 133
system parameters, 134
vibration conditions, 137, 138

Direct differentiation method (DDM), 282–285
cubic stiffness coefficient, 288
direct sensitivity analysis method, 283–285
displacement and phase portraits, 287
Duffing oscillator (see Duffing oscillator)
long time response sensitivity, 288
nonlinear dynamic response, 283

Direct normal form (DNF), 368–369
Direct sensitivity analysis method

direct differentiation method (DDM),
283–285

Duffing oscillator (see Duffing oscillator)
nonlinear dynamic response, 283

Discontinuous nonlinear oscillators
adaptive time stepping procedure, 869–870
bifurcation diagram, 872
bisection technique, 869
Brownian tree, 869, 870
equation of motion, 866
Fokker-Planck equation, 868–869
initial indentation impact velocity, 873, 880
marginal pdf of displacement for different

contact models, 873
phase plane and Poincare section, 870–872
piecewise smooth system dynamics,

866–868
stationary joint pdf, 873

Dominant dynamical method, 661

Donnell shallow theory, 169
Double-side impact (DSI) motion, 861
Drag coefficient, 90–92, 100
Dry friction

advantageous effects, 841
characteristic of, 842
dynamic behavior of, 841
experiment set-up, 847–848
LuGre model, 842
NARX model, 842, 843
particle swarm optimization (PSO), 843
physical parameters and working

conditions, 842
representation of Coulomb friction, 842
representation of Stribeck curve, 842
Stribeck effect, 841
swarm intelligence, 843
testing data and results, 847–848
time-delay recurrent neural network

(TDRNN), 842
Duffing oscillator, 70, 73, 609, 615–617, 662,

663, 743
effect of dynamic behaviors, 286–288
effect of secular term, 285–286

Duffing–van der Pol (DVDP) oscillator, 866,
870

Dynamical systems, iterative algorithm class
for, 453–454

algorithm, 456–457
average and median, 457
chain-recurrent set

determination of, 460–461
values on, 461–462

distribution, 458–459
iterations, 459–460
Mesh-free collocation methods, 455–456

Dynamical viscosity, 76, 83
Dynamic axial loads, 638
Dynamic response of segmental arch, 309–311

E
Efficient symbolic computation, generic canard

explosions via, 537–539
classical method, 543

reduced Hodgkin–Huxley model,
545–546

templator model, 543–544, 547
procedure, 539–541
symbolic software, implementation in,

541–543
Eigenvalues of the Jacobian matrix, 558
Electromagnetic force, 650, 652
Electromechanical coupling coefficients, 810
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Elliptic–parabolic configuration, 733
Energy transfer, 807
Enhanced Vlasov Displacement-based Element

(EVDE)
cross-section warping, 316–318
displacement-based approach, 319
element variational formulation, 319–321
L portal frame, 322–324
warping representation, 316–318

Equation of motion, 791
Equivalent mechanical models (EMMs), 267
Eringen’s model, 291, 292
Euclidean distances, 57
Euclidean space, 820, 821, 888
Euler–Bernoulli beam, 111, 763

elastic beam, 108
elements, 434, 450
reduced model, 824
theory, 4, 11, 89

Euler equations, 96–97, 903
Euler–Lagrange formulation, 686
Euler–Lagrange’s equation, 712
Evolution matrix

of Lyapunov exponents, 576–577
averaging scheme, 577–578
expansion of, 578
expansion of LEs, 578–579

Exact augmented perpetual manifolds, 190,
192–194, 196, 197, 199

Experimental procedure, 820–821

F
Failure time distribution, 412–417
Failure time pmf, analytical approximation of,

411
analytic pmf with Monte Carlo simulations,

417–418
failure time distribution, 412–417
setup, 412

Fast Fourier transform (FFT), 740, 741, 813
Fatigue-crack nucleation, stochastic

intermittent loading on, 407
failure time pmf, analytical approximation

of, 417
analytic pmf with Monte Carlo

simulations, 417–418
failure time distribution, 412–417
setup, 412

Serebrinsky–Ortiz (SO) model, 408
probabilistic decomposition-synthesis

method, 410–411
time-discretization of, 408–409

Fatigue damage, 878–880, 883, 885

Fatigue failure, 421–422
Goodman’s correction factor, 423
learning problem, 424

learning model, 426
training set, creating, 424–425

Miner’s linear cumulative damage rule, 422
offline prediction, 426
real-time prediction, 429–430
uncertainty quantification, 426–427

bi-variate normal distribution, 428–429
Gaussian process regression, 429

FGM shallow shell
complex planform, 391
cylindrical panel, 389
on elastic foundation, 386

Fiber-reinforced elastomeric enclosure (FREE)
buckling, 347–348
co-existing solutions, 348–349
construction parameters, 343
design principles, 342–344
mathematical formulation, 344–346
under pressurization, 343
self-contact, 346–347
single-segment rod, 345
slender elastic objects, 342
static force and moment balance, 345
undeformed state, 343

Fiber-reinforced polymers (FRP), 637
Finite difference method (FDM), 282
Finite element analysis, 247
Finite Element Model (FEM), 418, 434
Fitting electromagnetic force, 652
Flat ribbon vibrations in wind

advantage, 24
airflow interaction forces, 19–20
angle of attack, 16
average tensile strength, 23, 24
centre of mass motion in phase plane, 21,

22
centre of mass motion in vertical plane, 22
differential equations of motion, 18
2DOF, 16
forces and moments in interaction with air

flow, 18
forces in elastic elements, 20–21
geometrical parameters, 17
numerical modelling, 18
rotational motion, 15, 16
total tensile strength, 22
wind tunnel, 23

Flexural-torsional mode, 647
Floquet exponents, 739
Floquet multipliers, 724
Floquet theory, 443, 638, 641, 744
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Flow-induced vibration (FIV), 3, 4
FLUENT (ANSYS Academic Research

2020R1), 31
Fluid boundary conditions, 41
Fluidelastic instability (FEI), 3, 4, 9–12
Fluidelastic-stiffness-type mechanism, 3
Fluid strain rate, 40, 42
Fluid-structure interaction (FSI) techniques,

39–41, 45
Fluid viscosity, 75–77, 80–84
Flutter oscillations

aero-elastic flutter, 54–56
CBC, 50–52
data-driven models

cost function, 57, 58
saddle-node bifurcation, 56
structure, 53–54
transformation between coordinate

system, 57
hybrid differential equation/machine-learnt

model, 59
normal-form-based model, 58
phase portraits of hybrid model, 58, 60
PINNs, 49
PP-CBC, 50–56
time series of two LCOs, 58, 61

Fokker–Planck (FP) equation, 866, 868, 869,
871, 880

Force-based formulation
element mass matrix consistent, 306–308
flexibility matrix, 304–306
fundamental element equations, 304–306

Forced oscillations of nonlinear Helmholtz
resonator, 503–504

governing equation of, 504–505
homotopy analysis method, application of,

506–510
simulation, 510–511

Forcing frequency, 800
Forward whirl (FW), 761
Fourier series expansion, 443
Fractional calculus standard linear solid model,

179, 185
Free-edge shallow spherical shell

analytical result, 369, 370
analytical von Kármán model, 362–364,

370
direct normal form (DNF), 368–369
numerical finite element model, 364–365
numerical results, 366–368
three reduction methods, 365–366
type of nonlinearity modes, 370

Freeplay nonlinearity, 877
Free-surface Biot number, 78

Free vibration frequencies, 597
Frequency–amplitude dependence, 433
Frequency-amplitude relation, 435–437
Frequency combs (FCs), 797
Frequency-domain

approximation method, 831
equations of motion, 444–445
methods, 421, 609
response, 620

Frequency-domain stability analysis, IHB
method, 443

methodology
frequency-domain equations of motion,

444–445
response analysis, 445–446
stability analysis, 446–447
time-domain equations of motion, 444

numerical implementation
stability analysis, 450–451
three-dimension tensor, 448–450

tensorial implementation, 447–448
Frequency–energy dependence, 433
Frequency response

curves, 790
synthesis, 334–337

Frequency response functions (FRF), 799–801
Fully connected artificial neural network

(FC-ANN), 426
Functionally graded materials (FGM), 385
Fundamental resonance, 664
Fuzzy generalized cell mapping (FGCM)

method, 673

G
Galerkin

method, 6, 16, 639
procedure, 172, 737
projection, 124

Gamma function, 181
Gaussian distribution, 425
Gaussian process regression (GPR),

429
Gaussian white noise, 866, 868
Generalized-α method, 853, 854, 858, 862
Generalized cell mapping method (GCM),

673
Generalized cell mapping with sampling-

adaptive interpolation (GCMSAI),
674

Generalized extremal values, 601, 602
Generalized rolling pendulums

in rotating vertical plane, 627–633
in stationary vertical plane, 626–627
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Generic canard explosions, via efficient
symbolic computation, 537–539

classical method, 543
reduced Hodgkin–Huxley model,

545–546
templator model, 543–544, 547

procedure, 539–541
symbolic software, implementation in,

541–543
Genetic algorithm (GA), 843
Ginzburg–Landau equation, 81
Global connections, high-order approximation

of, 395–396
NTT method, applications of

canard explosion, 403
perturbing non-Hamiltonian integrable

systems, 402–403
perturbing Hamiltonian systems, 396–397

cubic Takens–Bogdanov bifurcation,
401

cuspidal loop, 401–402
quadratic Takens–Bogdanov

bifurcation, 400–401
Rayleigh–Duffing mechanical

oscillators, 397–400
Takens–Bogdanov, in reversible

systems, 402
Goodman’s correction factor, 423
Graded Si-Ge alloys, non-rectification of heat,

563–564
rectification coefficient and maximization,

564–566
thermal conductivity and corresponding

rectification coefficient, 571
with variable section, 566–570

Grand-Unified Theory (GUT), 5
Grassmann variables, 518, 520
Gravitational unloading

damping factor, 261
dynamical equations, 261
Euler’s angles, 260
general inertia moments, 258
mathematical model, 258–261
modeling parameters, 261
spherical damper scheme, 259
time-evolution of angular velocities,

262–263
time-evolution of spatial angles, 263, 265

H
Hamilton’s principle, 120
Harmonic balance method (HBM), 443, 490,

609, 658, 736, 802

Harmonic balance method with alternating-
frequency-time scheme (HB-AFT),
833, 838

Heart attack, 39
Heat, non-rectification of, 563–564

rectification coefficient and maximization,
564–566

thermal conductivity and corresponding
rectification coefficient, 571

with variable section, 566–570
Hertzian elastic contact force model, 873
Heteroclinic cycles, 705
Hilbert transform, 68, 126, 128
Hill method, 443
Hill’s equation, T -periodic potential, 723, 724
Hodgkin–Huxley neuron, 353, 356, 358
Holomorphic quantum supercharges, 521
Homotopy analysis method (HAM), 503, 512

application of, 506–510
Hooke’s law, 168
Hopf bifurcation, 49, 50, 53, 56–58, 131, 398,

402, 403, 700, 706, 711
Hopf-pitchfork bifurcation, 699
Horner’s scheme, 470
Horn-Schunk optical flow method, 41
Hybrid symbolic numeric computational

(HSNC), 490
Hydrodynamic damping of elastic vibrations

computational domain configuration,
89

dimensionless local oscillation amplitude,
87

dimensionless vibration frequency, 87
drag coefficient, 90–92
drag force, 90, 92
gap-to-width ratio, 88
inline force, 90
mass coefficient, 90–92
mass force, 90, 92
motion of beam in fluid, 89
Navier-Stokes equations, 87, 88
oscillation profile, 89
quasi-two-dimensional model, 87, 88, 90,

93
two-dimensional modeling, 91

Hydrodynamic force coefficients, 110
Hydrodynamic forces

irregular sea surface, 102–103
random wind influence, 101–102
velocity potential

on cylindrical pile, 100–101
Euler equations, 96–97
initial condition choice, 99
random wind modeling, 98
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Hyperbolic knots, 586
Hysteresis phenomenon, 789

I
Impact-induced motion, 832
Impact oscillator models

Fourier coefficients, 834
frequency-domain approximation method,

831
Newton’s second law, 832
parameters, 833
time-domain numerical method, 831
vibro-impact behaviour, 831

Imperial competition algorithm (ICA), 843
Impulse action, 887, 888, 894
Impulsive hybrid nonlinear system, 683, 686
Impulsive systems, 887–890, 897
Incremental harmonic balance (IHB) method,

443
methodology

frequency-domain equations of motion,
444–445

response analysis, 445–446
stability analysis, 446–447
time-domain equations of motion, 444

numerical implementation
stability analysis, 450–451
three-dimension tensor, 448–450

tensorial implementation, 447–448
Independent spike hypothesis, 412
Infimum value, 600
Influence coefficient method (ICM), 749
Interfacial instability, 76
Internal detuning parameters, 791, 811
Internal resonances (IR), 783, 798, 807

medium forced vibration, 786–787
strong forced vibration, 791–786
weak forced vibration, 787–788

Interpolation accuracy, 676–677
Interpolation cell mapping (ICM) method, 673
Intraluminal thrombus (ILT) accumulation, 28,

33, 35
Intrinsic mode function (IMF), 119–120, 126,

128
Invasive angiography, 40, 41
Irrational frequency ratios, 737, 739
Irregular sea surface, 102–103

J
Jacobian matrix, 556, 576, 688, 700, 705, 801,

859
Jensen’s inequality, 532

Joint probability density function (jpdf), 866,
868, 871, 880

Jump phenomenon, 650

K
Karman constant, 98
Karush–Kuhn–Tucker multipliers, 602
Kelvin-Voigt model, 132, 179–181, 185, 187
Kirchhoff–Love plates, 179, 180
Kirchoff plate theory, 228
Kronecker delta, 111

L
Lagrangian

drift, 102
equation, 774
formalism, 518
variables, 147

Lamé parameters, 144
Laplace transforms, 528
Largest Lyapunov exponent (LLE), 865,

870–872, 880
Lattice-boom offshore cranes

beam model, 204
characteristic points, 208
courses of deflections, 209
cylinder parameters, 209
dynamic model, 206
homogenous transformations, 203
lattice boom cranes, 202
longitudinal and torsional deformations,

204
pseudo-inertial matrix, 206
rod discretization, 205
scheme of crane, 207
simulations, 208–210
slewing mechanism, 202, 203
spring-damping elements, 205
vertical velocity, 209

Learning model, 426
Left circumflex coronary artery, 40, 41, 45
Legendre polynomial, 143, 147
Leishman–Beddoes (LB) model, 878–882, 886
Lemke algorithm, 854, 855, 860, 862
Limit cycle oscillations (LCOs), 57–59, 70
Limit point (LP), 735, 739
Linear complementarity problem (LCP),

854–856, 859–862
Linear damping coefficients, 799
Linear free vibration, 179
Linearized model, 713
Linear stability analysis, 66, 76, 79
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Linear structure oscillator, 69–70
Linear superalgebra, 517
Linear-Time-Variant (LTV) equations of

motions, 763
Liouville’s formula, 725
Load statistics, 412
Long-wave expansion method, 75
Lorenz

braids, 588–589
knots, 585–587
map, 586
system, 680, 681, 708
template, 585

Lorenz knots, 585–587
family of, 589–594
Lorenz braids, 588–589
symbolic dynamics, 587

Low-density-lipoproteins (LDL) transport
computational approach

discrete phase model approach, 42
fluid viscosity, 42
Fourier series coefficients for inlet

velocity and outlet pressures, 42
Horn-Schunk optical flow method, 41
particle inlet velocity, 43
Rosin-Rammler diameter distribution,

43
spherical particles, 42–43
transient displacement boundary

conditions, 41, 42
TAWSS, 44
transient wall shear stress and LDL mass

concentration, 43, 45
in vivo-based model, 40–41
von Mises stress, 44, 46
WSS and LDL concentration at end systole

cycle, 44, 46, 47
WSS distribution, 43, 44

Low-frequency behaviour
centrifugal pendulum absorber, 778–780
Eigenfrequency of slow motion, 777–778
equilibrium position of slow motion, 777

Lyapunov exponents (LEs), 575
definition of, 575–576
evolution matrix, approximate calculation

of, 576–577
averaging scheme, 577–578
expansion of, 578–579

periodic QR factorization, 579–580
approximate calculations of X(k),

580–581
averaging scheme, 581–582
calculations of, 582–583

Lyapunov functions, 453, 530, 887, 888, 892,
893, 897

Lyapunov–Krasovskii functionals, 900

M
Machine learning (ML) algorithms, 422
Magnetoelastic theory, 226
MANLAB, 801
Maple software, 156
Marangoni number, 78
Mass coefficient, 90–92
Mass density, 76, 110, 146, 228, 229, 250, 320,

450
Mathematical model, 713, 738
Mathieu-Hill equations, 639
MATLAB, 6, 40, 41, 68, 497
Meissner’s equation, 723
Melnikov method, 395, 396
Mesh-free collocation methods, 455–456
Method of Moving Asymptotes (MMA), 437
Method of multiple scale (MMS), 478–479,

784
Method of reduction of order, see Wentzel,

Kramers and Brillouin (WKB)
transformation

Micro-Electro Mechanical Systems (MEMS),
797

Miner’s linear cumulative damage rule,
422

Miner’s rule, 421
Modal Balancing Method (MBM), 749
Modal coupling, 336–339
Modal displacements, 791
Modular Modeling Methodology (MMM),

108, 111, 112
Monodromy matrix, 724, 726
Monomial order, 598, 599
Mooney-Rivlin model, 41
Morison expansion, 90
Moving pulsating ball model (MPBM), 268
0.4 MPa inlet pressure, 137–139
0.8 MPa inlet pressure, 135–137
Müller’s procedure, 870
Multi-degree-of-freedom (MDOF) oscillators,

155, 164, 735, 831, 832, 838, 854,
855, 857, 859, 860

Multi-frequency time variational technique
(MTVM)

differentiation matrices, 614
Galerkin’s weighted residual method,

613
gradient-based iterative methods, 614
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Multi-harmonic balance method (MHBM),
610, 735

Fourier shape functions, 612
Galerkin’s weighted residual approach, 612
independent time scales, 611
Newton–Raphson method, 612
truncated second-order Fourier series, 611

Multiple scales (MS) method, 800
Multi-stenosis left circumflex coronary artery,

39–47

N
Nabla operator, 97
NARX model, 843–845
Navier–Stokes equations, 31, 87, 88, 95
Nayfeh’s monograph, 783
Neimark–Sacker bifurcation (NSB), 684,

740–742, 798
bifurcation diagram of, 691, 692
quasi-periodic behavior, 693
quasi-periodic motions, 694

Neimark–Sacker (NS) boundary curve, 800,
801

coefficient of, 805
direct time-marching Runge–Kutta 4 (RK4)

method, 804
Floquet–Hill formulation, 802
MANLAB, 804
time-marching approach, 804

Newmark method, 853
Newton iteration, 854, 862
Newton–Raphson method, 612, 614, 737, 834
Noh–Bathe method, 853
No-impact (NI) motion, 861
Non-destructive tests (NDT), 421
Non-dimensional model, 526

construction of, 527–528
parametric instability boundaries, 641
viscous damping coefficient, 784

Nonlinear beams, 808
Nonlinear coupling, 799, 825
Nonlinear damping, 508, 551
Nonlinear differential equations, 735
Nonlinear dynamical phenomena, 797
Nonlinear dynamic analysis, 658
Nonlinear dynamic response, structural

optimization of, 433–434
methods, 434

adjoint method, design sensitivity
analysis using, 438–439

finite element model and design
variables, 434

optimization problems and sensitivities,
437–438

reduced-order model and frequency–
amplitude relation, 435–437

optimization, 439, 440
original objective function, 441

Non-linear equilibrium
shallow nano-arches, 292–297
small-amplitude motion, 297–300

Nonlinear frequency response curves (NFRCs),
662

Nonlinear Helmholtz resonator, forced
oscillations of, 503–504

governing equation of, 504–505
homotopy analysis method, application of,

506–510
simulation, 510–511

Nonlinear modal analysis (NMA)
benchmark model, 333–334
EPMC backbone, 334
frequency characteristics, 334
frequency responses, 334–336
modal coupling, 336–339
Rayleigh quotient-based NMA (RQNMA),

329–333
Nonlinear modal coupling coefficients, 433
Nonlinear normal modes (NNMs), 661
Nonlinear supersymmetry, 515–522

algebra, 516
quantum anomalies and nonlinear

supersymmetry, 517–522
Nonlinear time transformation (NTT) method,

395, 396, 538
canard explosion, 403
perturbing non-Hamiltonian integrable

systems, 402–403
Non-Newtonian blood flow simulation, 30–31
Non-smooth systems, PWL, 489–491

mechanical oscillator with contacting
elements, 495–498

methodology, 491–494
voltage-dependent resistance, nonlinear

analog circuit with, 498–500
Non-stationary complex system, 891–895
Non-stationary impulsive switched systems

dwell time, 887
stability analysis

non-stationary complex, 891–895
non-stationary mechanical systems,

895–897
stability conditions, 890–891

Non-stationary mechanical systems, 895–897
N -order Fourier series, 833
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Normalized stability boundaries, 643
Novozhilov’s nonlinear shell theory, 144–146
Numerical arc-length continuation method,

834
Numerical integration, 490, 609, 657, 836
Numerical simulations

limit cycle computation, 688–689
unemployment model, stability analysis of,

533–534

O
ODE system, 149
Offshore cranes

AOPS, 213
boom deflection, 220
box and lattice booms, 214
optimization algorithm, 219
optimization task, 217–219
Protea, 220
simulation results, 221
statics and dynamic models, 213
substitute crane model, 215–217
values of reference parameters, 219
vertical and horizontal courses, 222

OGY-based state-feedback control, 684, 693
One-dimensional supersymmetry, nonlinear

aspects of, 515–517
quantum anomalies and nonlinear

supersymmetry, 517–522
OpenFOAM package, 90
Orr–Sommerfeld equation, 75
Orthotropic stiffened flexible cantilevered

cylinder
Bernoulli–Euler’s cantilever model, 120
electric energy, 122
electric power, 127, 129
empirical mode decomposition, 126
Hilbert transform, 126, 128
hydrodynamic forces, 123
IMF, 119–120, 126, 128
in-line and cross-wise amplitudes, 119, 120
kinetic energy, 121
linear-elastic and piezoelectric behavior,

121
non-conservative forces, 123
nonlinear partial differential equations, 123
potential energy, 121
reduced-order model, 124
simulation parameters, 126
Strouhal number, 125
system model, 121
torsional moment of inertia, 122
transverse amplitudes, 127

twisting–bending coupling, 127
van der Pol equation, 124

Oscillatory shear index (OSI), 44
Overhung rotor systems (OH)

breathing crack, 761
finite element program, 762
2-DOF lumped mass method, 762
whirl orbit analysis, 761

P
Palmgren–Miner rule, 418
Parameter transformation, 729
Parametrically damped van der Pol (PDVDP)

equation, 478
parametric and external excitation, 481–483

nonresonant case, 483–484
sub-harmonic resonance of order 1/2,

484–485
parametric excitation without external

excitation, 479–480
nonresonant case, 480
sub-harmonic resonance of order 1/2,

481
perturbation analysis, 478–479

Parametric damping, 477–478
Parametric instability, 641, 643, 646, 715
Parametric reduced-order models (pROMs)

accuracy performance, 379
algorithmic process, 377
Bouc model, 378
CMS-based approach, 374
Craig–Bampton (CB) approach, 374
dominant approach, 374
evaluation of, 381
High Fidelity Model, 377, 380
nonlinear feature inclusion, 375–376
one-dimensional rod, 377–379
stress approximation performance, 381
substructural formulation, 376–377
3D cantilever beam, 379–381

Parametric resonance, 638
Parseval theorem, 170
Particle swarm optimization (PSO), 843
Passive-dynamics biped walker

model description, 684–685
walking dynamics, model of, 686–687

Passive dynamic walking, 683
Pasternak-type model, 179
P-bifurcation analysis, 866, 883, 886
Period-doubling bifurcations (PDB), 683
Periodic interval, 726
Period-K fixed point, 687
Peripheral artery diseases, 28
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Perpetual mechanical systems
analytical solution, 195–198
constant inertia coefficients, 193
differential equations, 191
equations of motion, 194
exact augmented perpetual manifolds, 190,

192–194, 196, 197
external force, 194
generalized coordinates and velocities, 192
inertia matrix, 192
internal forces, 195, 197
N-dof mechanical systems, 190
numerical solution

damping coefficient, 198
displacements, 198
excitation amplitude, 198
maximum absolute differences of time

series, 199
maximum absolute value of internal

forces of nonlinear and linear
systems, 199

velocities, 198
reference k-mass external force, 191
2-dof mechanical system, 194
zero velocity vectors, 194

Perpetual points (PPs)
definition, 189
N-degrees of freedom, 190
role in dynamical system, 189

Perturbation approach, 810–812
Perturbation method, 170–174, 281, 282, 638,

853
Perturbing Hamiltonian systems, 396–397

cubic Takens–Bogdanov bifurcation, 401
cuspidal loop, 401–402
quadratic Takens–Bogdanov bifurcation,

400–401
Rayleigh–Duffing mechanical oscillators,

397–400
Takens–Bogdanov, in reversible systems,

402
Perturbing non-Hamiltonian integrable

systems, 402–403
Phase-locking value (PLV), 68
Phase-plane CBC (PP-CBC), 50–56
Phase resonance nonlinear mode (PRNM),

661, 666–670
Physical data cloud reduction analysis

Euler Bernoulli beam, 824
intrinsic characteristic directions (ICDs),

822, 823
machine learning classical POD, 821
physical data cloud geometry, 824

physical geometry and dynamics features,
822

Physics-informed neural networks (PINNs), 49
Piecewise linear and nonlinear systems

auxiliary variable, 857
computational procedure, 858–859
convex analysis, 856
dynamics equations, 857
effective stiffness value, 855
elastic restoring force, 855
MDOF cases, 860
nonlinear time-varying oscillator, 860–861
phase diagrams of steady-state responses,

862
projection function, 856, 857
required CPU time (s) of proposed scheme,

861
SDOF system, 856

Piecewise-linear (PWL) non-smooth systems,
489–491

mechanical oscillator with contacting
elements, 495–498

methodology, 491–494
voltage-dependent resistance, nonlinear

analog circuit with, 498–500
Piecewise smooth system dynamics, 866–868
Pierson–Moskowitz spectrum, 99
Pitchfork bifurcations, 655, 704
Pitch response dynamics, 881–882
Planar slow–fast systems, 537
Plane boundary, 88, 91–93
Poincaré-invariant gauge theory, 515–516
Poincaré map, 683, 687, 688, 691
Poisson–Dirac brackets, 519
Poisson’s ratio, 146, 181, 229, 362, 386, 389,

551
Polynomial, 598

equalities, 599
inequalities, 599
models, 597
nonlinearities, 162–164
optimization problems, 600–604

Post-Resonance Backward Whirl (Po-BW),
765–768

Power law non-Newtonian model, 42
Prandtl number, 78
Prandtl stress function, 89
Pre-resonance Backward Whirl (Pr-BW), 765,

776
PRNM, duffing oscillator

fundamental resonance, 668–669
subharmonic resonances, 669
superharmonic resonances, 669
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Probability density function (PDF), 427
Prony shear relaxation, 41
Proper orthogonal decomposition (POD), 374,

819
PSO-NARX method, 845–846
Pulsatile blood flow velocity, 30

Q
Quadratic manifold (QM), 361
Quadratic nonlinear coefficients, 784
Quadratic Takens–Bogdanov bifurcation,

400–401
Quantum analog of the supercharges, 521
Quantum anomalies, 517–522
Quasi-exactly solvable Hamiltonians, 522
Quasi-periodic (QP) regime, 798
Quasi-saturation phenomenon, 791
Quemada model, 31

R
RADAU5, 150
Radial Basis Functions (RBFs), 454, 471
Rain-flow cycle counting (RFC), 878–880
Random variables, 677
Random wind, 98, 101–102
Rayleigh–Duffing oscillators, 396–400
Rayleigh model damping, 245
Rayleigh quotient-based NMA (RQNMA),

329–333
Rayleigh-Ritz method, 147
Rectification coefficient, 571
Rectified linear unit (ReLU) activation, 426
Reduced Hodgkin–Huxley (HH) model,

545–546
Reduced-order model, 435–437
Reduced-order modelling (ROM) strategy, see

Shallow spherical shell
Reproducing Kernel Hilbert Space (RKHS),

455
Resonance mechanisms, 783
Response analysis, IHB method, 445–446
Reversible systems takens–Bogdanov, 402
Reynolds number, 7, 66, 78, 80, 81
R-functions method (RFM)

FGM shallow shell on elastic foundation,
386

first-order shear deformation theory
(FSDT), 388

higher order shear deformation shell theory
(HSDT), 387

mathematical formulation, 386–388
shell stiffness, 387

shells with complex planform, 391–393
shells with rectangular shape of plan,

389–390
solution method, 388–389
values of natural frequency parameter, 392
Winkler and Pasternak parameters, 387

Riemann integral, 99
Riemann–Liouville derivative, 181, 187
Rigid-liquid-flexible coupling system

angular velocity response, 277, 344
dynamic equations, 268–269
flexible and rigid appendages, 277
forces and torques of beam, 270–272
forces and torques of liquid, 269–270
liquid sloshing and liquid rigidization, 277
methods of solution, 272–273
mode superposition method, 271
orbital driving force, 275–277
response of, 275–278
under step excitation, 273–275
transverse elastic vibration, 270
viscous damping coefficient, 271

Ring-type gyroscopes
actuator configurations, 252
Coriolis forces, 247
flexural mode shapes, 249
Galerkin’s procedure, 247, 250
magnetic permeability, 251
mechanical damping ratio, 251
nonlinear dynamic response, 248
nonlinear electrometric force, 251, 252
nonlinear equations of motion, 248–252
phase diagram, 254
Poincare’ map, 254
radial displacement, 253

Rosin-Rammler diameter distribution, 43
Rotating blade model, 784
Runge-Kutta Dormand-Prince (RKDP)

method, 833, 838
Runge-Kutta method, 6, 12, 217, 497, 511, 788
Rydberg atom arrays, 522–523

S
Saddle-node bifurcation (SN), 56, 645
Satellite knot, 586
Saturation phenomenon, 790, 791
Scott–Blair model, 179
Sea surface, 95, 99, 101–104
Second-order dynamical systems, 609
Second-order interpolation, 677–678

with error estimation, 675–676
Second-order normal form, 799
Second-order Taylor expansion, 901
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Self-contact during continuation, 346
Self-oscillation, 558, 560, 561
Semi-definite problem, 604
Serebrinsky–Ortiz (SO) model, 408

probabilistic decomposition-synthesis
method, simulation of loading time
series using, 410–411

time-discretization of, 408–409
Shallow nano-arches

Cartesian coordinates, 292
displacement-controlled mechanical tests,

295
Eringen’s two-phase model, 294
Galërkin’s technique, 295, 296
orthogonal tensor, 293
softening effect, 296

Shallow spherical shell, 362, 364, 366–367
Shear center (SC), 640
Simple cell mapping method (SCM), 673
Single-degree-of-freedom (SDOF) oscillators,

155, 156, 162–164, 831
Single-side impact (SSI) motion, 861
Slow-fast dynamics interactions, 818
Small-amplitude motion, 297–299
Soft robotic manipulators, 341–350
Spherical caps

axisymmetric vibration, 143, 144
displacement fields expansion

clamped boundary conditions, 147
dofs of discretized system, 147
eigenfunctions, 146
generic mode of vibration, 146
hydrostatic external pressure, 148
Lagrange’s equations, 148
Lagrangian variables, 147
Rayleigh-Ritz method, 147
secular equation, 147, 148

harmonic pressure
amplitude-frequency diagrams, 150
dimensions and material properties of

structure, 149
displacement fields, 150
Fourier spectrum, 151, 152
period doubling bifurcations, 150, 151
Poincaré map, 151, 152
time history, 151, 152

Novozhilov’s nonlinear shell theory,
144–146

Novozhilov theory, 143
Stability analysis, 737–738

incremental harmonic balance (IHB)
method, 446–447, 450–451

Standard Model, 515–516
STAR-CCM, 113

State-dependent switching laws
switching between two different unstable

delay subsystems, 905–907
switching of two delay values in unstable

delayed subsystems, 907–910
State-space model, 500
Static equilibrium, 655, 657, 658, 819
Step-load-induced transient response, 180
Stochastic bifurcation analysis, 882–884
Stochastic differential equations (SDEs), 866,

869
Stochastic process, 98, 417, 775
Stochastic resonance

dynamical systems, 771
rotating mechanisms

equation of fast motions, 774
equation of slow motions, 774–776
formulation of problem, 772–774

vibrational forces, 775
Stokes-Cunningham drag law, 42
Stribeck effect, 841
Strouhal number, 65, 125
Structural optimization, of nonlinear dynamic

response, 433–434
adjoint method, design sensitivity analysis

using, 438–439
finite element model and design variables,

434
optimization, 439, 440
optimization problems and sensitivities,

437–438
original objective function, 441
reduced-order model and frequency–

amplitude relation, 435–437
Subdivision algorithm, 675
Subharmonic components, 616
Subharmonic resonances, 662

even subharmonic resonances, 665–666
odd subharmonic resonances, 665

Supercritical pitchfork bifurcation (PSP), 644
Superharmonic components, 616
Superharmonic resonances, 662

even superharmonic resonances, 665
odd superharmonic resonances, 664–665

Supersymmetric quantum mechanics, 515, 516
Surface tension, 75, 76, 83
Switched delay system with two unstable

subsystems
optimal switched curves design

Euler equation, 903
inverse transformation, 902
kinetic energy and potential energy, 902
performance index, 903
second-order Taylor expansion, 902
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state of the switched delay system, 905
time histories with initial condition, 904

state-dependent switching laws (see
State-dependent switching laws)

state-dependent switching mechanism, 901
Switched system, 887–890
Symbolic dynamics, 586, 587

T
Takens–Bogdanov bifurcation, 398, 700

in heteroclinic case, 701
in homoclinic case, 701
Jacobian matrix, 701

Takens–Bogdanov, reversible systems, 402
Taylor expansions, 507
Taylor series, 80, 184, 397, 539, 542, 632
Term complexity, 817
Thermal conductivity, 75, 76, 571, 572
Thermal gradient, 788
Thin conductive annular plate

ANSYS analysis, 225
dynamic stability, 226
electromagnetic forces, 226–227
induced magnetic field, 226–227
for isotropic, 227
Lyapunov exponent spectrum, 226
magnetoelastic nonlinear free vibration,

227–229
variation law

electromagnetic forces, 229–231
of natural frequency, 231–233
non-uniform magnetic field, 229–231

Thin liquid film flow, 75
Three-dimensional Lorenz system, 679
Three-dimensional Vlasov beam FE model

enhanced Vlasov displacement-based
element (EVDE)

cross-section warping, 316–318
displacement-based approach, 319
element variational formulation,

319–321
warping representation, 316–318

L portal frame, 322–324
numerical validation, 322–324

3D reduced-order model
aspirating pipes (see Cantilevered

aspirating pipes)
cantilevered piezoelectric harvester (see

Orthotropic stiffened flexible
cantilevered cylinder)

Three-frequency excitation, 741–743
Time-averaged wall shear stress (TAWSS), 44
Time-consuming process, 609

Time-delay recurrent neural network
(TDRNN), 842

Time-delay system, 899, 907, 909
Time-domain

equations of motion, 444
numerical method, 831
responses, 658

Time integration methods, 6, 283, 853, 854
Time-marching method, 838
Time to failure (TTF), 422
Time variational method (TVM), 610, 736

three-frequency excitation, 741–743
two-frequency excitation, 739–741

Timoshenko force-based curved beam, 303
Transient balancing methods, 749
Trapezoidal rule (TR), 858
Trivial equilibrium, 656
Truncated Fourier series, 353
Truss optimization

free vibration frequencies, 606
global stability constraints, 605–606

Two-DOF mathematical model, 131, 133, 138,
194, 199

Two-frequency excitation, 739–741
Two-scale curved beam FE

dynamic response, 309–311
element mass matrix consistent, 306–308
flexibility matrix, 304–306
fundamental element equations, 304–306
masonry arches, 303, 308–309

Type of nonlinearity, FE models, 368–369

U
Ueda oscillator, 288
Unemployment model, stability analysis of,

525–526
global stability analysis, 530–533
local stability analysis, 528–530
mathematical model, 526–527
non-dimensional model, construction of,

527–528
numerical simulations, 533–534

Unforced linear oscillator, 667
Unit Load method, 303

V
van der Pol equation, with parametric damping,

477–478
parametric and external excitation, 481–483

nonresonant case, 483–484
sub-harmonic resonance of order 1/2,

484–485
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van der Pol equation, with parametric damping,
477–478 (cont.)

parametric excitation without external
excitation, 479–480

nonresonant case, 480
sub-harmonic resonance of order 1/2,

481
perturbation analysis, 478–479

van der Pol system, 542
Variation law

electromagnetic forces, 229–231
of natural frequency, 231–233
non-uniform magnetic field, 229–231

Variation law of natural frequency
variation of natural frequency with a0,

231–233
variation of natural frequency with I, 231,

232
variation of natural frequency with t, 233,

234
Velocity coupling, 67, 69
Vibrational mechanics, 771, 778
Vibro-impact oscillator with discontinuous

support, 867
Viscoelastic effects, 41
Viscoelastic Winkler-type foundation, 180,

183, 185–187
Viscosity with variable fluid properties

boundary conditions, 78
critical Reynolds number, 80
flow configuration, 77
Ginzburg–Landau equation for filtered

waves, 81
governing equations, 77–78
infinitesimal perturbation, 79
long-wave expansion, 78–79
maximum amplitude, 82, 84
minimum amplitude, 83, 84
stability criteria, 81
time scale, 77
viscous-gravity length scale, 77

Viscous-gravity length scale, 77
Viscous scales, 76
Vlasov’s hypotheses, 637
von Karman equation, 180
von Mises stress, 44
Vortex-induced vibration (VIV), 132

applications, 65
aspirating pipes (see Cantilevered

aspirating pipes)
orthotropic bending stiffness (see

Orthotropic stiffened flexible
cantilevered cylinder)

synchronization and lock-in, 66
wake oscillator model (see Wake oscillator

model, VIV)
Vortex-Induced Vibration Aquatic Clean

Energy (VIVACE), 119
Vortex-shedding frequency, 65

W
WAFO toolbox, 880, 883
Wake oscillator model, VIV

linear structure oscillator, 69–70
non-linear structure oscillator

amplitude response to reduced flow
velocity, 71

bifurcation diagrams of peak,
71

overlapped time series, 72
peaks of structural oscillations,

73
structural displacement and wake

parameter, 67
structure, 67
synchronization measures, 68

Weber number, 78
Wendland functions, generalised interpolation

using, 467–468
WendlandXool, 465–467

algorithm, 469–471
arrays, 473
Use/EXAMPLES, 471–472
Wendland functions, generalised

interpolation using, 467–468
Wentzel, Kramers and Brillouin (WKB)

transformation, 156
Whirl orbit analysis, 761
Wind-induced pressure, 96, 97
Winkler model, 169, 179
Witten’s supersymmetric model, 517–518
Wolf’s algorithm, 865, 870

Y
Young’s modulus, 146, 551

Z
Ziegler’s column, nonlinear dynamics of

amplitude modulations in, 718
piezoelectric effects, 711
pulsating follower force, 712, 715
van der Pol model, 711

Zoelly’s critical buckling pressure, 149
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