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1 Introduction

With the proof assistant Isabelle/HOL [10] we can create canonical reference doc-
uments for logics and their metatheory. The formal language of Isabelle/HOL,
namely higher-order logic, is precise and unambiguous. This means every proof
can be mechanically checked. We consider here two (functionally complete) frag-
ments of propositional logic and various axiomatic systems for these fragments.
Table 1 gives an overview of the systems and fragments. Our focus is mostly
syntactic and we showcase the benefits of doing this work in Isabelle. We write
down both the syntax and semantics of our languages, with infix syntax and
abbreviations as desired. Furthermore we specify various inference systems by
their rules and axioms. The systems here are all axiomatic but the techniques
work for proof systems in general.

This sets the stage for our investigations. We can easily verify that the proof
systems are sound with respect to the semantics, with Isabelle doing almost all
the work. We can verify completeness by adapting a formalization for a similar
system or by finding derivations for the axioms of one system in the other one
(and similarly for the rules). Here, Isabelle helps out: instead of painstakingly
writing down each derivation, a sometimes daunting task in an axiomatic system,
we can let one of its sophisticated proof methods prove its existence for us. We
can even let Isabelle find the right proof method and a suitable collection of
needed axioms and previously derived formulas for us with its Sledgehammer
technology. With these tools at hand we can verify historical claims such as how
some axiom can be omitted because it follows from the others.

As an example we formalize �Lukasiewicz’s shortest axiom for implicational
propositional logic and provide, in full, his derivation of Wajsberg’s axioms, for
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Table 1. The formalized axiomatic systems. The first three are formalized in the
theory System-W and use ⊥,→ as primitive symbols. The last three are formalized in
the theory System-R and use ¬,∨ as primitives, with the abbreviation p → q ≡ ¬p∨

q.

System Source Page [3] Axioms

Axiomatics Wajsberg 1937 159 p → (q → p)
(p → q) → (q → r) → (p → r)
((p → q) → p) → p)
⊥ → p

FW Wajsberg 1939 163 p → (q → p)
(p → (q → r)) → (p → q) →
(p → r)
((p → ⊥) → ⊥) → p)

WL �Lukasiewicz 1948 159 ((p → q) → r) → ((r → p) →
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which we have formalized completeness. In this example we also show how to
seamlessly use his notation in Isabelle and have the proof assistant translate it
to the more familiar one. As another example we consider the exchangeability
of two axioms.

We reproduce parts of our formalizations in the paper. The full Isabelle/HOL
formalizations, 669 lines (535 sloc, source lines of code, not counting blank lines)
in file System_W.thy and 631 lines (510 sloc) in file System_R.thy, are available
here:

https://github.com/logic-tools/axiom

The paper strives to be self-contained so consulting the formalizations is
optional. However, the availability enables the reader to investigate the formal-
izations on their own and, if curious, to look up anything we have omitted for
reasons of space. The files can also be extended with other proof systems or
taken as inspiration for different fragments of propositional logic or expansions
to other logic. To verify properties of some new axiomatic system, it could be
shown equivalent to one formalized here, so that soundness and completeness
can be carried over. All of this with automation available to aid the process and
a trusted kernel that guarantees correctness.

https://github.com/logic-tools/axiom
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We modify our existing work [5] to formalize completeness of the axiomatic
systems we consider. The existing completeness proof uses Henkin’s synthetic
technique based on maximal consistent sets of formulas to build a model for
underivable formulas. We have adapted this proof to two representatives of the
fragments we consider in this paper (the two systems dubbed Axiomatics in
Table 1). A lot of this work involves showing that the proof system can derive
certain formulas that are used in the completeness proof. Similarly, to reuse the
completeness result for the other axiomatic systems for the same fragment, we
show that certain formulas can be derived using their axioms. In short, much of
this work is about proving that specific formulas can be derived. The classic book
by Church [3] has been an excellent source for relevant formulas and instead of
fiddling with instantiating the axioms ourselves and finding the right sequence
of rule applications, we call upon Isabelle’s tool Sledgehammer [2]. Often the
built-in provers meson and metis can assemble the pieces for us.

Unfortunately, we are not always lucky enough to find a proof in the first
attempt and Sledgehammer simply times out. We are then faced with a choice:
either make a manual attempt to derive the formula or take a guess that some
other formula should be derived first. We generally prefer the latter approach
since it lets the proof assistant do more of the menial work for us, while leaving
the more creative role of finding the right stepping stones to us.

In cases where we need to derive more than one formula to aid us, we typically
mark each one of them with sorry before trying to prove them. This fake proof
is accepted by Isabelle, so that Sledgehammer will pick up the lemma as usable
in further derivations, but provides no guarantee that the formula can actually
be derived. It saves time because we can make sure that the formulas marked
by sorry are actually useful for our derivation before we try to find derivations
for them in turn.

The paper is organized as follows. We continue with a discussion of the closest
related work (Sect. 2). We move on to formalize the first three systems (Sect. 3)
including the completeness of �Lukasiewicz’s single shortest axiom. We follow up
by formalizing the remaining three systems (Sect. 4) for our other fragment of
propositional logic and discuss historical concerns about the independence of
certain axioms. Finally we describe the main challenges and benefits of using
the proof assistant Isabelle/HOL (Sect. 5) and we conclude (Sect. 6) by placing
our work in the context of the IsaFoL (Isabelle Formalization of Logic) project.

2 Related Work

We see two main pieces of related work explained below: that of Michaelis and
Nipkow [9] and of Fitelson and Wos [4,13]. We distinguish ourselves by consid-
ering completeness of a number of systems based on different primitives using
the same approach.

– Michaelis and Nipkow [9] formalized a number of proof systems for proposi-
tional logic in Isabelle/HOL: resolution, natural deduction, sequent calculus
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and an axiomatic system. They used a much larger syntax with falsity, nega-
tion, conjunction, disjunction and implication. They both gave a syntactic
completeness proof for the sequent calculus and showed completeness of the
other systems by translations, but also showed completeness of the sequent
calculus and axiomatic system with a Henkin-style [5] proof akin to ours.
They only considered an axiomatic system similar to the Wajsberg axioms
from 1939, where we consider the range of systems in Table 1. Their larger
scope also means they go into fewer details than us, especially regarding the
role of Isabelle in deriving formulas.

– Fitelson and Wos [4,13] used the OTTER theorem prover to find axiomatic
proofs for a range of formulas, similar to our use of Isabelle. They start from
a clause with the disjunction of the negated Wajsberg 1937 axioms and a
clause consisting of the �Lukasiewicz 1948 axiom. Then they ask OTTER to
derive the empty clause, causing it to derive each of the Wajsberg axioms
along the way. We take a different approach and verify the correctness of the
inference steps given by �Lukasiewicz directly in Isabelle. Moreover, we show
how to use �Lukasiewicz’s notation directly, instead of translating it into the
clausal form of OTTER. Finally, Isabelle allows us to formalize semantics as
well as proof systems.

We have recently [5] presented the details of a direct Henkin-style complete-
ness proof for the Wajsberg axioms from 1939. In the present paper we elaborate
on our use of derivations and equivalences instead of describing the Henkin-style
completeness proof. We have used preliminary versions of our formalizations
in the files System_W.thy and System_R.thy in our course on automated rea-
soning in 2020 and 2021 with, respectively, 27 and 37 MSc computer science
students. The focus of the exercises was on our approach to formalization of
syntax, semantics and axiomatic systems using Isabelle/HOL. As an introduc-
tory example we included a very brief description of the approach in our paper
[6] about our main Isabelle/HOL tools for teaching logic, namely the Natural
Deduction Assistant (NaDeA) and the Sequent Calculus Verifier (SeCaV), both
much larger developments for first-order logic with functions.

3 Implication and Falsity

We start by considering Wajsberg’s axioms for the fragment of propositional
logic built from propositional symbols, implication and falsity.

3.1 Language

The following datatype form embeds our syntax into Isabelle:

datatype form = Falsity (〈⊥〉) | Pro nat | Imp form form (infix 〈→〉 0 )

Vertical bars separate the three constructors. The first one introduces ⊥ as a
primitive, the next one propositional symbols with natural numbers as identifiers
and the final one is implication between two formulas, with the infix symbol →.
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Besides these primitive connectives, Isabelle allows us to introduce abbrevi-
ations as we would do with pen and paper. Here for the trivially true formula
and for negation:

abbreviation Truth (〈�〉) where 〈� ≡ (⊥ → ⊥)〉

abbreviation (input) 〈Neg p ≡ (p → ⊥)〉

To give our syntax meaning, we write a primitive recursion function in higher-
order logic that uses an interpretation of the propositional symbols to map a
formula into a truth value:

primrec semantics (infix 〈|=〉 0 ) where
〈(I |= ⊥) = False〉 |
〈(I |= (Pro n)) = I n〉 |
〈(I |= (p → q)) = (if I |= p then I |= q else True)〉

We use Isabelle’s if-then-else to interpret implication but we could also use the
built-in higher-order logic implication (−→).

We can define what it means for a formula to be valid by quantifying over
all interpretations:

definition 〈valid p ≡ ∀ I . (I |= p)〉

3.2 Wajsberg 1937

Consider first Wajsberg’s proof system from 1937 [3, p. 159]:

inductive Axiomatics (〈�〉) where
〈� q〉 if 〈� p〉 and 〈� (p → q)〉 |
〈� (p → (q → p))〉 |
〈� ((p → q) → ((q → r) → (p → r)))〉 |
〈� (((p → q) → p) → p)〉 |
〈� (⊥ → p)〉

The � predicate holds for a given formula if it can be derived from the specified
rule and axioms. Notably, the axioms are schemas, where p and q can be instan-
tiated for any formula. The only rule, here and later, is modus ponens (MP).
The first axiom (Imp1 ) corresponds to the K combinator, the second (Tran)
expresses transitivity of implication and the third (Clas), Peirce’s law, implies
the law of the excluded middle. Finally we have the principle of explosion (Expl).

As an example, we can derive � from this last axiom:

theorem 〈� �〉 using Axiomatics.intros(5 ) .

Isabelle automatically instantiates the given axiom correctly.
Since we have specified the meaning of our formulas in Isabelle, we can verify

the soundness of the proof system:

theorem soundness: 〈� p =⇒ I |= p〉

by (induct rule: Axiomatics.induct) auto
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The proof works by induction over the proof system, an induction principle
that Isabelle automatically provides. The proof method auto discharges each
of the resulting proof obligations. Such checks are cheap and easy in Isabelle,
helping to prevent typos or other mistakes.

Completeness follows the synthetic recipe due to Henkin and, together with
soundness, results in the following theorem:

theorem main: 〈valid p = � p〉

proof
assume 〈valid p〉

with completeness show 〈� p〉

unfolding valid-def .
next
assume 〈� p〉

with soundness show 〈valid p〉

unfolding valid-def by (intro allI )
qed

The proof is shown in its entirety to showcase features of the Isabelle syntax.

3.3 Wajsberg 1939

Consider a later proof system by Wajsberg with different axioms [3, p. 163]:

inductive FW (〈��〉) where
〈�� q〉 if 〈�� p〉 and 〈�� (p → q)〉 |
〈�� (p → (q → p))〉 |
〈�� ((p → (q → r)) → ((p → q) → (p → r)))〉 |
〈�� (((p → ⊥) → ⊥) → p)〉

We still have the Imp1 axiom corresponding to the K combinator, but as
second axiom we now have a correspondence to the S combinator (both axioms
used by Frege). Finally, with the abbreviation for Neg, we see that this last axiom
eliminates a double negation.

We can now verify that the two systems prove the same formulas:

theorem Axiomatics-FW : 〈� p ←→ �� p〉

proof
have ∗: 〈�� ((p → q) → ((q → r) → (p → r)))〉 for p q r
by (metis FW .intros(1−3 ))

then have ∗∗: 〈�� (((p → q) → p) → p)〉 for p q
by (metis FW .intros(1−4 ))

show 〈� p〉 if 〈�� p〉

using that by induct (use Imp1 Imp2 Neg Axiomatics.intros in meson)+
show 〈�� p〉 if 〈� p〉

using that by induct (use ∗ ∗∗ FW .intros in meson)+
qed

As part of the proof we find derivations for the transitivity principle (Tran)
and Peirce’s law in the latter system.
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3.4 Shortest Axiom

Considering the fragment of classical logic with implication but without a symbol
for falsity, �Lukasiewicz found a shortest single axiom from which you can derive
the rest [12].

To obtain completeness for our fragment with a symbol for falsity, we also
need the principle of explosion [3, p. 159]:

inductive WL (〈>>〉) where
〈>> q〉 if 〈>> p〉 and 〈>> (p → q)〉 |
〈>> (((p → q) → r) → ((r → p) → (s → p)))〉 |
〈>> (⊥ → p)〉

�Lukasiewicz writes C p q for p → q. This prefix notation allows him to avoid
parentheses. We can use it in Isabelle via the following specification:

abbreviation (input) C :: 〈form ⇒ form ⇒ form〉 (〈C - -〉 [0 , 0 ] 1 ) where
〈(C p q) ≡ (p → q)〉

We set the symbol C up with the mixfix specification [0, 0], 1, giving the two
arguments higher precedence (0) than the full expression (1). This means that
e.g. C C p q r is parsed correctly into (p → q) → r. Since we specified the
abbreviation as input only, any Isabelle output will display the formulas in the
conventional →-notation.

�Lukasiewicz shows in 29 lines how to derive the Wajsberg axioms (Axiomatics
above). With our abbreviation we reproduce his derivations almost verbatim in
Figs. 1 and 2 on pages 14 and 15. The formalization follows the original faithfully:
each line is only derived from the specified lines and modus ponens as passed
to the meson prover. �Lukasiewicz carefully describes how to instantiate each
previous formula in order to arrive at the current formula but we leave this to
Isabelle to figure out. While �Lukasiewicz’s paper must be hand-checked to ensure
there are no errors, Isabelle instantly verifies the correctness of our formalization.
Given those derivations we can prove equivalence between this proof system and
the first Wajsberg axioms:

theorem equivalence: 〈>> p ←→ � p〉

proof
have ∗: 〈� (((p → q) → r) → ((r → p) → (s → p)))〉 for p q r s
using completeness by simp

show 〈� p〉 if 〈>> p〉

using that by induct (auto simp: ∗ intro: Axiomatics.intros)
show 〈>> p〉 if 〈� p〉

using that by induct (auto simp: l27 l28 l29 intro: WL.intros)
qed

We use the completeness of the Wajsberg axioms to show that �Lukasiewicz’s
formula can be derived. In the other direction we use the formulas in lines 27–29
of Fig. 2.
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lemma l1 : 〈>> (C C C p q r C C r p C s p)〉

using WL.intros(2 ) .

lemma l2 : 〈>> (C C C C r p C s p C p q C r C p q)〉

using l1 by (meson WL.intros(1 ))

lemma l3 : 〈>> (C C C r C p q C C r p C s p C t C C r p C s p)〉

using l1 l2 by (meson WL.intros(1 ))

lemma l4 : 〈>> (C C C p q p C s p)〉

using l3 l1 by (meson WL.intros(1 ))

lemma l5 : 〈>> (C C C s p C p q C r C p q)〉

using l1 l4 by (meson WL.intros(1 ))

lemma l6 : 〈>> (C C C r C p q C s p C t C s p)〉

using l1 l5 by (meson WL.intros(1 ))

lemma l7 : 〈>> (C C C t C s p C r C p q C u C r C p q)〉

using l1 l6 by (meson WL.intros(1 ))

lemma l8 : 〈>> (C C C s q p C q p)〉

using l7 l1 by (meson WL.intros(1 ))

lemma l9 : 〈>> (C r C C r p C s p)〉

using l8 l1 by (meson WL.intros(1 ))

lemma l10 : 〈>> (C C C C C r q p C s p r C t r)〉

using l1 l9 by (meson WL.intros(1 ))

lemma l11 : 〈>> (C C C t r C C C r q p C s p C u C C C r q p C s p)〉

using l1 l10 by (meson WL.intros(1 ))

lemma l12 : 〈>> (C C C u C C C r q p C s p C t r C v C t r)〉

using l1 l11 by (meson WL.intros(1 ))

lemma l13 : 〈>> (C C C v C t r C u C C C r q p C s p C w C u C C C r q p C s p)〉

using l1 l12 by (meson WL.intros(1 ))

lemma l14 : 〈>> (C C C t r C s p C C C r q p C s p)〉

using l13 l1 by (meson WL.intros(1 ))

lemma l15 : 〈>> (C C C r q C s p C C r p C s p)〉

using l14 l1 by (meson WL.intros(1 ))

Fig. 1. Lines 1–15 of �Lukasiewicz’s derivation.
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lemma l16 : 〈>> (C C r C s p C C C r q p C s p)〉

using l15 l9 by (meson WL.intros(1 ))

lemma l17 : 〈>> (C C C C C p q r t C s p C C r p C s p)〉

using l16 l1 by (meson WL.intros(1 ))

lemma l18 : 〈>> (C C C C r p C s p C C C p q r t C u C C C p q r t)〉

using l1 l17 by (meson WL.intros(1 ))

lemma l19 : 〈>> (C C C C s p q C r p C C C p q r C s p)〉

using l18 by (meson WL.intros(1 ))

lemma l20 : 〈>> (C C C C r p p C s p C C C p q r C s p)〉

using l14 l19 by (meson WL.intros(1 ))

lemma l21 : 〈>> (C C C C p r q q C C q r C p r)〉

using l20 l15 by (meson WL.intros(1 ))

lemma l22 : 〈>> (C p p)〉

using l5 l4 by (meson WL.intros(1 ))

lemma l23 : 〈>> (C C C p q r C C r p p)〉

using l20 l22 by (meson WL.intros(1 ))

lemma l24 : 〈>> (C r C C r p p)〉

using l8 l23 by (meson WL.intros(1 ))

lemma l25 : 〈>> (C C p q C C C p r q q)〉

using l15 l24 by (meson WL.intros(1 ))

lemma l26 : 〈>> (C C C C p q C C q r C p r C C C p r q q C C C p r q q)〉

using l25 by (meson WL.intros(1 ))

lemma l27 : 〈>> (C p C q p)〉

using l8 by (meson WL.intros(1 ))

lemma l28 : 〈>> (C C C p q p p)〉

using l25 l22 by (meson WL.intros(1 ))

lemma l29 : 〈>> (C C p q C C q r C p r)〉

using l21 l26 by (meson WL.intros(1 ))

Fig. 2. Lines 16–29 of �Lukasiewicz’s derivation.
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4 Disjunction and Negation

We now wipe the slate clean and consider Rasiowa’s axioms for a different frag-
ment of propositional logic built from propositional symbols, negation (¬) and
disjunction (

∨
).

4.1 Language

Again we specify the syntax as a datatype in Isabelle:

datatype form = Pro nat | Neg form | Dis form form (infix 〈
∨

〉 0 )

We regain implication through its classical interpretation:

abbreviation Imp (infix 〈→〉 0 ) where 〈(p → q) ≡ (Neg p
∨

q)〉

We again define the trivially true formula, this time more abstractly since
we no longer have ⊥ available (in Isabelle/HOL, by formulation, each type has
one designated value that is undefined but we do not know which value it is):

abbreviation Truth (〈�〉) where 〈� ≡ (undefined → undefined)〉

Given �, however, defining ⊥ becomes simple:

abbreviation Falsity (〈⊥〉) where 〈⊥ ≡ Neg �〉

We specify the semantics similarly to before:

primrec semantics (infix 〈|=〉 0 ) where
〈(I |= Pro n) = I n〉 |
〈(I |= Neg p) = (if I |= p then False else True)〉 |
〈(I |= (p

∨
q)) = (if I |= p then True else (I |= q))〉

4.2 Rasiowa 1949

Consider the following proof system by Rasiowa [3, p. 157]:

inductive Axiomatics (〈�〉) where
〈� q〉 if 〈� p〉 and 〈� (p → q)〉 |
〈� ((p

∨
p) → p)〉 |

〈� (p → (p
∨

q))〉 |
〈� ((p → q) → ((r

∨
p) → (q

∨
r)))〉

To aid readability we write the rules using the abbreviation for implication
introduced above (p → q ≡ Neg p

∨
q), but we recall that it is not a primitive.

If we expand the abbreviation for the modus ponens rule (MP), it infers � q
from � p and � ¬p ∨

q.
The first axiom (Idem) expresses idempotence of disjunction. The second

(AddR) builds a disjunction from a given formula by adding an arbitrary formula
on the right-hand side. Finally, the last axiom (Swap) does two things: it replaces
the formula on right-hand side of the disjunction with an implied formula and
then it swaps the two sides of the disjunction.

The principle of explosion is not a built-in axiom but Isabelle can quickly
find a derivation:
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theorem 〈� (⊥ → p)〉 using Axiomatics.intros by metis

We can just as quickly verify the soundness:

theorem soundness: 〈� p =⇒ I |= p〉

by (induct rule: Axiomatics.induct) auto

The axiom AddR forms a disjunction with the given formula on the left and
an arbitrary one on the right. We might wonder if this is essential or whether
we could add the arbitrary formula on the left instead (i.e. AddL). Isabelle can
help answer this question:

proposition alternative-axiom: 〈� (p → (p
∨

q))〉 if 〈
∧
p q . � (p → (q

∨
p))〉

by (metis MP Idem Swap that)

We see that AddR can be derived from AddL (in Isabelle given after if and
referred to as that) alongside the remaining proof system. Note that AddR is not
made available to metis.

Likewise, we can derive AddL from the full proof system:

lemma AddL: 〈� (p → (q
∨

p))〉

by (metis MP Idem Swap AddR)

Thus, we can quickly answer questions about different variants of the axioms.
A notable derivable formula is the following that substitutes a formula on

the right-hand side of a disjunction with an implied formula:

lemma SubR: 〈� ((p → q) → ((r
∨

p) → (r
∨

q)))〉

by (meson MP SwapCon Swap)

Again, we can prove the completeness of the system:

theorem main: 〈valid p = � p〉

(proof omitted)

4.3 Russell 1908 and Bernays 1926

Consider now another proof system over the same fragment [3, p. 157]:

inductive RB (〈��〉) where
〈�� q〉 if 〈�� p〉 and 〈�� (p → q)〉 |
〈�� ((p

∨
p) → p)〉 |

〈�� (p → (q
∨

p))〉 |
〈�� ((p

∨
q) → (q

∨
p))〉 |

〈�� ((p → q) → ((r
∨

p) → (r
∨

q)))〉

Here we have first Idem and AddL, then a permutation or commutativity
principle for disjunction (Perm) and finally SubR. We only need the derived
SubR to show equivalence:
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theorem Axiomatics-RB : 〈� p ←→ �� p〉

proof
show 〈� p〉 if 〈�� p〉

using that by induct (use SubR Axiomatics.intros in meson)+
show 〈�� p〉 if 〈� p〉

using that by induct (use RB .intros in meson)+
qed

4.4 Whitehead and Russell 1910

Consider next the system for propositional logic that appears in the first volume
of the three-volume Principia Mathematica (often abbreviated PM):

inductive PM (〈>>〉) where
〈>> q〉 if 〈>> p〉 and 〈>> (p → q)〉 |
〈>> ((p

∨
p) → p)〉 |

〈>> (p → (q
∨

p))〉 |
〈>> ((p

∨
q) → (q

∨
p))〉 |

〈>> ((p
∨

(q
∨

r)) → (q
∨

(p
∨

r)))〉 |
〈>> ((p → q) → ((r

∨
p) → (r

∨
q)))〉

Here we have Idem, AddL, Perm, a distributivity principle and SubR. We
can easily show that we can derive at least as many formulas when we have the
extra axiom:

proposition PM-extends-RB : 〈�� p =⇒ >> p〉

by (induct rule: RB .induct) (auto intro: PM .intros)

To show the equivalence in both directions, we use the completeness of RB
to prove the existence of a derivation for the extra axiom:

theorem equivalence: 〈>> p ←→ � p〉

proof
have ∗: 〈� ((p

∨
(q

∨
r)) → (q

∨
(p

∨
r)))〉 for p q r

using completeness by simp
show 〈� p〉 if 〈>> p〉

using that by induct (use ∗ SubR Axiomatics.intros in meson)+
show 〈>> p〉 if 〈� p〉

using that by induct (use PM .intros in meson)+
qed

5 Challenges and Benefits

Isabelle helped enormously in adapting the completeness proof to each of the two
fragments, since it is easy to define abbreviations for non-primitive connectives
and the proof assistant gives an error everywhere something needs to be changed.
What the proof assistant cannot tell us, is what sub-derivations are needed to
derive a key formula. This proved a particular challenge for the Rasiowa axioms
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for the fragment ¬,∨. Those axioms are concerned with these two operators
but we usually think in terms of implication, →, and want to derive formulas
like the Wajsberg 1937/1939 axioms (cf. Table 1). However, the starting point
does not give us much help. For instance, to derive the following transitivity of
implication, a useful lemma for further derivations, we must first derive several
other formulas:

lemma Tran: 〈� ((p → q) → ((q → r) → (p → r)))〉

One of the formulas we found useful is the following, somewhat unintuitive,
SwapAnte lemma:

lemma SwapAnte: 〈� (((p
∨

q) → r) → ((q
∨

p) → r))〉

Luckily, Isabelle makes it easy to quickly derive a range of formulas (or
pretend to derive them with sorry) and figure out which ones are useful after
the fact. As we have shown throughout the paper, this allows us to quickly
investigate connections between various proof systems, with Isabelle keeping
track of the details for us.

6 Conclusion

We have seen two languages and a range of axiomatic proof systems with various
derivations and equivalences. To our knowledge, most of the systems have been
formalized here for the first time with soundness and completeness proofs.

Our work is part of the IsaFoL (Isabelle Formalization of Logic) project [1]
which aims at developing formalizations in Isabelle/HOL of logics, proof systems,
and automatic/interactive provers. Other work in the same line includes com-
pleteness of epistemic [7] and hybrid [8] logic and an ordered resolution prover
for first-order logic [11]. The project collects formalizations such as ours that can
be used as reference documents to verify historical claims, in teaching logic, or to
aid in the formalization of other logics and potentially executable provers. Our
own formalization could serve as starting point for a student project to formalize
the completeness of some other axiomatic proof system.

A notable thing about our approach is that while we show that several for-
mulas are derivable in one system or another, we do not give the derivation itself.
Instead, we let an automated prover like metis or meson find it. This allows us to
move quickly and at a higher level than if we spelled out each step in full: faced
with a formula that is hard to derive we can experiment with simpler formulas
that the automation can handle and try to piece things together afterwards.
As mentioned, this was exactly how we worked to derive many of the formulas.
However, it also means that even if we prove that a formula can be derived,
we have no derivation to inspect; we must simply trust Isabelle that it exists.
Meanwhile, we argue that Isabelle is at least as trustworthy as a human author
whose work we might not check in the first place. If we do wish to spell out the
derivation, Isabelle can help us do so, by proving that derivations exist for our
stepping stones.
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The ability to introduce abbreviations can provide interesting perspectives
on formulas. Consider the usual axiom for disjunction elimination:

lemma DisE : 〈� ((p → r) → ((q → r) → ((p
∨

q) → r)))〉

We might think of it as “if both p and q imply r, then if we know either then
we know r.” In the language with disjunction and negation, the implication is
an abbreviation and expanding the inner ones gives us:

(¬p
∨

r) → (¬q
∨

r) → (p
∨

q) → r

This has another natural reading: “either p is false or r holds, and either q is
false or r holds, but either p or q is in fact true, so r must hold.” An interactive
system like Isabelle makes it simple to hide away details like the abbreviation
for implication but also to peek at them if we want to.

Acknowledgements. We thank Alexander Birch Jensen, Frederik Krogsdal Jacob-
sen, Osman Hasan and the anonymous reviewers for comments on drafts.
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