
A New Export of the Mizar Mathematical
Library

Colin Rothgang
1(B)

, Artur Korniłowicz
2

, and Florian Rabe
3

1
Mathematics, TU Berlin, Berlin, Germany

colin.rothgang@posteo.net
2

Institute of Computer Science, Bialystok, Poland

3
Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany

Abstract. The Mizar Mathematical Library (MML) is a prime target of library

exports, i.e., translations of proof assistant libraries that make the libraries avail-

able to knowledge management systems or other deduction systems. The MML

has been exported multiple times in the past, including our own export from Mizar

to OMDoc done in 2011. But the exporters tend to be very difficult and expensive

to maintain.

We present a complete reimplementation of our previous export. It incorpo-

rates many lessons learned and leverages improvements made both on the Mizar

and the OMDoc side.

1 Introduction

The interoperability of proof assistants and the integration of their libraries is a long-

standing goal in theorem proving. One of the biggest prizes here is the Mizar Mathemat-

ical Library (MML) [BBG+18]. It has been exported multiple times [Urb03,IKRU13]

and other efforts are ongoing [KP19]. Mizar stores all kernel data structures in exter-

nally readable XML files [Urb05] so that exports are reduced to interpreting the XML

files. However, Mizar generates about a dozen XML files per MML article, and these use

ad-hoc, under-documented, and evolving XML schemas that are as complex as Mizar’s

feature-rich language and contain many parts that are only needed internally.

This was a major difficulty in our first translation of the MML to OMDoc [IKRU13],

an XML-based representation format for mathematical knowledge and made the trans-

lation, while successful, prohibitively difficult to maintain. In the ten years since then,

two things have changed. The Mizar XML data structures have been heavily improved,

both for internal reasons and in response to the woes of translation developers. And we

have developed much better routines for prover library translations [KR20]. The present

system description redoes the export from scratch.

Like [IKRU13], we manually formalize the Mizar logic as a theory 𝑀 in a logical

framework of the LF family, which is realized in MMT [RK13]. Then we generate one

MMT theory relative to 𝑀 for every article in the MML. All these MMT theories are

stored in OMDOC format [Koh06] and are available online. During the export, we aim at

both preserving all Mizar features exactly as they are (as opposed to implementing log-

ically complex feature eliminations) and simplifying the language by reducing features

to the primitives provided by the MMT framework.

c© Springer Nature Switzerland AG 2021

F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 205–210, 2021.

https://doi.org/10.1007/978-3-030-81097-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_17&domain=pdf
https://orcid.org/0000-0001-9751-8989
https://orcid.org/0000-0002-4565-9082
https://orcid.org/0000-0003-3040-3655
https://doi.org/10.1007/978-3-030-81097-9_17


206 C. Rothgang et al.

Besides rejuvenating the export, we go beyond [IKRU13] in multiple ways: (i) We

implement the relevant parts of Mizar’s XML schema as a set of Scala data types, from

which the parser is automatically generated, thus massively simplifying the mainte-

nance of the translation. (ii) Our translation is almost entirely context-free (every file

can be exported without processing its dependencies), which is critical for scalability

of the export, and we identify the last remaining context-sensitivity issues in the XML

schemas. (iii) We represent Mizar’s rich set of declarations as MMT patterns in the sense

of [HR15] and Mizar’s structures (akin to record types) as an MMT structural feature in

the sense of [MRRK20]. (iv) We cover many recondite Mizar features that were not

handled well in [IKRU13] such as redefinitions.

2 Design

2.1 Formalizing the Mizar Logic

At the object-level, we formalize Mizar’s softly-typed set theory in a logical framework

in MMT. We omit technical details that are already part of [IKRU13] and only point out

that we use LF-style HOAS with {_}_ and [_]_ representing Π and 𝜆. At the declaration-

level, we represent Mizar’s many conservative extension principles such as definitions

and registrations as MMT patterns [HKR12] and structural features [MRRK20]. The

formalization is available at https://gl.mathhub.info/MMT/LATIN2/.

For example, Mizar’s direct partial predicate definitions are formalized as the MMT

pattern below. Its header takes natural numbers n (the arity of the new predicate pred)

and m (the number of cases in its definition), a list argTps of 𝑛 argument types (each

potentially depending on the other arguments), 𝑚 cases (each consisting of a condition

𝑐𝑎𝑠𝑒𝑠
𝑖

on the 𝑛 arguments and the resulting predicate caseRes
𝑖
), a default result defRes

if no case applies, and a proof cons that the results of cases agree when their conditions

overlap (we omit the definition of consDirectPredDef). These are the argument given in

Mizar and exported in the XML files. The body of the pattern contains the elaboration

performed by Mizar: the 𝑛-ary predicate pred and its defining axiom means. Typical for

all pattern is the heavy use of MMT’s support for flexary operators such as conjunction

and mapping over argument sequences.

pattern directPartPredDef(n ∶ NAT, m ∶ NAT, argTps ∶ (term
n → tp)n,

cases ∶ (term
n → prop)m, caseRes ∶ (term

n → prop)m, defRes ∶ term
n → prop

cons ∶ consDirectPredDef n argTps m cases caseRes) =
pred ∶ term

n → prop

consistency = cons

means ∶ {x ∶ term
n} ⟨ ⊢ x.i ⦂ (argTps.i) x | i ∶ n⟩ →

⊢ nary_and m ⟨ (cases.j) x ⇒ (pred x) ⇔ (caseRes.j) x | j ∶ m ⟩

∧ nary_and m ⟨ ¬ (cases.k) x | k ∶ m ⟩ ⇒ pred x ⇔ defRes x

2.2 Exporting the MML as XML

The Mizar verifier creates several XML files per source file that store information of the

various processing phases. The most important are Weakly Strict Mizar (WSM, .wsx

https://gl.mathhub.info/MMT/LATIN2/


A New Export of the Mizar Mathematical Library 207

files) [BA12,NP16], which contain the syntax trees of statically analyzed articles and

More Strict Mizar (MSM, .msx files), which extends WSM with the resolution of vari-

ables, constants, and labels. To additionally keep the original syntax, Even more Strict

Mizar (EMSM, .msx files) is being developed, which adds semantic information about

used constructors and Mizar patterns (which store the used format, constructor, argu-

ment types, and positions of visible arguments for a definition).

For example, the definition of subset below contains the formula x in Y, which results

in EMSM in the XML fragment underneath. Here the attribute spelling gives the original

syntax. The other blue-highlighted attributes are what we can use to form identifiers

in OMDOC for the three different kinds of references: the constant in defined in the

MML, and the kinds of bound variables Y (bound by the declaration) and x (bound by

a quantifier). The other attributes (nr, formatnr, etc.) represent internally used numbers

that we ignore. The decision which attributes to use/ignore requires a Mizar expert but

is now documented in our export.

definition let X,Y; pred X c= Y means for x being object holds x in X implies x in Y;
reflexivity; end;

<Relation−Formula nr="3" formatnr="6" patternnr="3" absolutepatternMMLId=

"HIDDEN:3" leftargscount="1" spelling="in" sort="Relation-Formula"

constrnr="2" absoluteconstrMMLId="HIDDEN:2" originalnr="0" position="72\47">
<Arguments>
<Simple−Term idnr="2" spelling="x" position="72\44" origin="BoundVar"

sort="BoundVar" serialnr="29" varnr="1"/>
<Simple−Term idnr="9" spelling="Y" position="72\49" origin="ReservedVar"

sort="Constant" serialnr="8" varnr="2"/></Arguments></Relation-Formula>

2.3 Reading the XML into Scala Classes

Contrary to other parser generators, which generate the source code of the classes and

the parser from a grammar, we directly implement the classes in Scala and then gen-

erate the parser. For example, the (heavily simplified) classes below are used to pick

out the relevant attributes from the Simple_−Term element visible above. Expression is

the abstract class of all Mizar expressions, and LocalConstAttr is an auxiliary class that

groups XML attributes that often occur together.

abstract class MizTerm extends Expression
case class Simple_Term(serialnr: Int, spelling:String, sort:String) extends MizTerm
case class Arguments(_children:List[MizTerm])

This is sufficient to generate the XML parser using Scala reflection. This has the

advantage that the Scala classes, which are what the translation developer interacts with

primarily in the next step, are much more easily maintainable, can be better documented

than generated code, and can be manually tweaked better to be practical.

These classes are available at https://github.com/UniFormal/MMT/ in the package

info.kwarc.mmt.mizar. Note that this XML parsing step is independent of MMT. Thus,

other developers can easily reuse these classes and our XML parser as a starting point

for translations into other target languages.

https://github.com/UniFormal/MMT/


208 C. Rothgang et al.

2.4 Translating the Scala Classes to MMT

The logical heart of the translation is now isolated in an inductive function that traverses

the Scala classes holding the MML XML and producing corresponding MMT classes.

This happens in memory, and MMT’s existing emitters for OMDoc and MMT source

syntax can be used out of the box. Critically, it requires handling all idiosyncrasies of

the Mizar language. The resulting export of the MML is available at https://gl.mathhub.

info/Mizar/MML.

We translate each Mizar article to an MMT theory (relative to those from Sect. 2.1)

that contains include declarations for all Mizar articles it depends on. Each theorems is

translated to a single MMT declaration whose type gives the claim and whose definiens

the proof. Each scheme, functor/predicate/mode, and attribute definitions as well as

synonyms/antonyms and registrations are translated into instances of the correspond-

ing patterns mentioned in Sect. 2.1. Where applicable, they are followed by declarations

stating and proving the specially treated properties such as reflexivity for binary predi-

cates. Redefinitions are translated into fresh constants with a new definition; if only the

type is changed and no new definiens is provided, we synthesize a definition by applying

the original constant to the corresponding arguments (this works, as the new types are

required to be subtypes). Structure definitions (record types) are translated using an

MMT structural feature in the style of [MRRK20] that reimplements in MMT Mizar’s

conservative extension principle for adding named record types. Mizar’s forgetful func-

tors between structures become record subtyping.

Proofs, which Mizar does not store entirely anyway, are translated only partially by

using a special constant for a proof oracle: it takes a claim and a number of references

to used theorems and returns a proof of the claim. This way proof dependencies are

preserved in the export.

Improving on [IKRU13], our translation covers correctness conditions and proper-

ties of definitions, all registrations ([IKRU13] covered only existential registrations),

forgetful-functors between structures, and partial proofs.

For example, consider the definition of the subset predicate from Sect. 2.2, which

uses 𝑛 = 2 arguments, whose types are just set and do not depend on other arguments,

𝑚 = 0 cases, and one default case for the actual definition. Its name R1R1 is build from

a character characterizing the kind of declaration (R) and the article-scoped counters

contained in the absolutepatternMMLId and absoluteconstrMMLId, which yields a unique

identifier within the article. It is translated to the following instance of the MMT pat-

tern directPartPredDef from Sect. 2.1 (the formula true ∧ true ⇒ _ is deliberately not

simplified, to emphasize how it is derived by elaborating the directPartPredDef pattern):

https://gl.mathhub.info/Mizar/MML
https://gl.mathhub.info/Mizar/MML


A New Export of the Mizar Mathematical Library 209

instance tarski:R1R1 ?MizarPatterns/directPartPredDef(2 0 ⟨([x ∶ term
2] set), ([x ∶ term

2] set)⟩
⟨⟩ ⟨⟩ ([x ∶ term

2] for term [x/BV/29 ∶ term] x/BV/29 in x.0 ⇒ x/BV/29 in x.1)
(proof omitted))

∕∕elaborates to

pred ∶ term
2 → prop

consistency = (proof omitted)
means ∶ {x ∶ term

2} ⊢ x.0 ⦂ set →⊢ x.1 ⦂ set →⊢ true ∧ true

⇒ (tarski:R1R1/pred x) ⇔ (for term [x/BV/29 ∶ term] x/BV/29 in x.0 ⇒ x/BV/29 in x.1)

The translation is context-free except for a few cases where the EMSM files do

not quite contain enough information yet—in those cases some static analysis of Mizar

must be reimplemented in MMT and therefore the depended-upon articles must have

been processed already:

– Some functor redefinitions and functorial registrations require type inference of the

return type

– The arity of the original declaration of a redefinition without definiens must be deter-

mined.

The Mizar developers plan to address this issue with a new set of files in a new extension

of EMSM.

3 Conclusion and Future Work

We have presented a thorough overhaul
Format Size Gen. time

MML 100 MB -

XML 4.7 GB 15 min

MMT (zipped OMDoc) 18 MB 2 h

MMT (text syntax) 200 MB 30 h

of the 10-year old export of the MML

into OMDOC, leveraging all lessons

learned and improvements made since

then. Our export covers the entire

MML with the only exception being

the partial translation of proofs. The

table on the right gives an overview of the sizes and generation times of the digital arti-

facts, all of which are available online as referenced throughout the paper. The export

has so far been run only on simple hardware, and we expect shorter times when paral-

lelizing on a server as soon as all issues of context-sensitivity have been removed. The

generation time of the Mizar XML is so short because it is parallelized and Mizar only

needs to resolve identifiers, which does not require verifying the proofs. The generation

time of the MMT text syntax is excessive due to a scalability issue in MMT that was

uncovered by the present export; it is unrelated to the Mizar export and will be fixed in

a future release. The sizes of the Mizar and the MMT text are not directly comparable:

the latter lacks full proofs, but includes some longer generated variable names, includes

instances with their elaborations, and uses a less optimized syntax for conciseness and

readability.

The XML produced by Mizar has much higher quality, the representation uses mod-

ern MMT feature for declaratively mimicking Mizars’s highly idiosyncratic language,

and the export implementation is substantially more maintainable, easier to use, and

scalable. This provides promising evidence that investments into proof assistant library



210 C. Rothgang et al.

export workflows (albeit costly ones at glacial pace) are putting library translations and

the thus-enabled system integrations ever more feasible.

References

BA12. Bylinski, C., Alama, J.: New developments in parsingMizar. In: Jeuring, J., Campbell,

J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012.

LNCS (LNAI), vol. 7362, pp. 427–431. Springer, Heidelberg (2012). https://doi.org/

10.1007/978-3-642-31374-5_30

BBG+18. Bancerek, G., et al.: The role of the Mizar Mathematical Library for interactive proof

development in Mizar. J. Autom. Reason. 61(1), 9–32 (2018). https://doi.org/10.1007/

s10817-017-9440-6

HKR12. Horozal, F., Kohlhase, M., Rabe, F.: Extending MKM formats at the statement level.

In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 65–80. Springer,

Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-5_5

HR15. Horozal, F., Rabe, F.: Formal logic definitions for interchange languages. In: Kerber,

M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI),

vol. 9150, pp. 171–186. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-

20615-8_11

IKRU13. Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar Mathematical Library in

OMDoc: translation and applications. J. Autom. Reason. 50(2), 191–202 (2013).

https://doi.org/10.1007/s10817-012-9271-4

Koh06. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [ver-

sion 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006). https://doi.org/10.

1007/11826095

KP19. Kaliszyk, C., Pak, K.: Semantics of Mizar as an Isabelle object logic. J. Autom. Rea-

son. 63(3), 557–595 (2019). https://doi.org/10.1007/s10817-018-9479-z

KR20. Kohlhase, M., Rabe, F.: Experiences from exporting major proof assistant libraries

(2020). see https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf

MRRK20. Müller, D., Rabe, F., Rothgang, C., Kohlhase, M.: Representing structural language

features in formal meta-languages. In: Benzmüller, C., Miller, B. (eds.) CICM 2020.

LNCS (LNAI), vol. 12236, pp. 206–221. Springer, Cham (2020). https://doi.org/10.

1007/978-3-030-53518-6_13

NP16. Naumowicz, A., Piliszek, R.: Accessing the Mizar library with a weakly strict Mizar

parser. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F. (eds.)

CICM 2016. LNCS (LNAI), vol. 9791, pp. 77–82. Springer, Cham (2016). https://

doi.org/10.1007/978-3-319-42547-4_6

RK13. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1), 1–54 (2013)

Urb03. Urban, J.: Translating Mizar for first order theorem provers. In: Asperti, A., Buch-

berger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–215.

Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36469-2_16

Urb05. Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML

easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360.

Springer, Heidelberg (2006). https://doi.org/10.1007/11618027_23

https://doi.org/10.1007/978-3-642-31374-5_30
https://doi.org/10.1007/978-3-642-31374-5_30
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/978-3-642-31374-5_5
https://doi.org/10.1007/978-3-319-20615-8_11
https://doi.org/10.1007/978-3-319-20615-8_11
https://doi.org/10.1007/s10817-012-9271-4
https://doi.org/10.1007/11826095
https://doi.org/10.1007/11826095
https://doi.org/10.1007/s10817-018-9479-z
https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf
https://doi.org/10.1007/978-3-030-53518-6_13
https://doi.org/10.1007/978-3-030-53518-6_13
https://doi.org/10.1007/978-3-319-42547-4_6
https://doi.org/10.1007/978-3-319-42547-4_6
https://doi.org/10.1007/3-540-36469-2_16
https://doi.org/10.1007/11618027_23

	A New Export of the Mizar Mathematical Library
	1 Introduction
	2 Design
	2.1 Formalizing the Mizar Logic
	2.2 Exporting the MML as XML
	2.3 Reading the XML into Scala Classes
	2.4 Translating the Scala Classes to MMT

	3 Conclusion and Future Work
	References




