l‘)

Check for
updates

A Heuristic Prover for Elementary
Analysis in Theorema

Tudor Jebelean®™)

RISC-Linz, JKU, Linz, Austria
Tudor.Jebelean@jku.at
https://www.risc.jku.at

Abstract. We present a plug-in to the Theorema system, which gener-
ates proofs similar to those produced by humans for theorems in elemen-
tary analysis and is based on heuristic techniques combining methods
from automated reasoning and computer algebra. The prover is able to
construct automatically natural-style proofs for various examples related
to convergence of sequences as well as to limits, continuity, and uniform
continuity of functions. Additionally to general inference rules for pred-
icate logic, the techniques used are: the S-decomposition method for
formulae with alternating quantifiers, use of Quantifier Elimination by
Cylindrical Algebraic Decomposition, analysis of terms behavior in zero,
bounding the e-bounds, semantic simplification of expressions involving
absolute value, polynomial arithmetic, usage of equal arguments to arbi-
trary functions, and automatic reordering of proof steps in order to check
the admissibility of solutions to the metavariables. The problem of prov-
ing such theorems directly without using refutation and clausification is
logically equivalent to the problem of satisfiability modulo the theory of
real numbers, thus these techniques are relevant for SMT solving also.

Keywords: Satisfiability checking - Natural-style proofs + Computer
algebra + Symbolic computation - Satisfiability Modulo Theories

1 Introduction

In this paper we present our results on a class of proof problems which arise in
elementary analysis, namely those involving formulae with alternating quanti-
fiers. We implement the following heuristic techniques, which extend our previous
work [5,6,9]: the S-decomposition method for formulae with alternating quanti-
fiers [8], use of Quantifier Elimination by Cylindrical Algebraic Decomposition
[4], analysis of terms behavior in zero, bounding the e-bounds, semantic simpli-
fication of expressions involving absolute value, polynomial arithmetic, usage of
equal arguments under unknown functions, and automatic reordering of proof
steps in order to check the admissibility of solutions to the metavariables.

Our prover, implemented in the frame of the Theorema system [3], aims
at producing natural-style proofs for simple theorems involving convergence of
© Springer Nature Switzerland AG 2021

F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 130-134, 2021.
https://doi.org/10.1007/978-3-030-81097-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-81097-9_10

A Prover for Elementary Analysis 131

sequences and of functions, continuity, uniform continuity, etc. The prover does
not need to access a large collection of formulae (expressing the properties of the
domains involved). Rather, the prover uses techniques from computer algebra
in order to discover relevant terms and to check necessary conditions, and only
needs as starting knowledge the definitions of the main notions involved. The
size of this short paper does not allow an overview of the relevant literature, so
we only mention [2], which in contrast to our prover is based mostly on rewriting
of logical terms and does not handle alternating quantifiers.

2 Application of Special Techniques

Ezxample: Product of Convergent Sequences. We illustrate the heuristics by the
proof of the theorem “The product of two convergent sequences is convergent”,
which is presented in detail together with other examples and explanations of
the techniques in [7]. The proof starts from the definitions of product of two
functions and of convergence of a function f: N — R:

3V F V |fln]-al<e

a€R eeR MeN neN

e>0 n>M
After introducing Skolem constants fi, fo for the arbitrary convergent
sequences and expansion of the goal and of the assumptions by the definitions
of convergence and of product of functions, the prover is left with two main
assumptions and one goal (instances of the formula above), which have parallel

alternating quantifiers.

The S-decomposition Method. The main structure of the proof (see [8]) is
as follows: the quantifiers are removed from the 3 statements in parallel, using a
combination of inference steps which decompose the proof into several branches.
When the 3 formulae are existential, first introduce the Skolem constants for the
assumptions, and then introduce a witness for the goal. The proof branches into:
a main branch with the new goal, and secondary branches for proving the sub-
goals stating that the type and the condition of the existential variable hold for
the witness. When the 3 formulae are universal, first introduce Skolem constants
for the goal, and then introduce the instantiation terms for the assumptions.
Similarly to above, separate secondary branches are created for the type and
condition checking of the instantiation terms.

Thus in this proof the prover produces, in order: Skolem constants a, ag, wit-
1, m] ; Skolem
constants My, Ma, witness Max [M7, Ms]; Skolem constant ng, instantiation term
ng. (The names are similar to the corresponding variables in the definition.)

At every iteration of the proof cycle one needs a witness for the existential
goal and an one or more instantiation terms for the universal assumptions: these
are the difficult steps in the proof, for which we use special proof techniques
based on computer algebra.

ness aj + as; Skolem constant eg, instantiation term Min

132 T. Jebelean

Reasoning About Terms Behavior in Zero: by polynomial arithmetic the
prover infers the value of the witness for a by equating all the expressions under
the absolute value to zero.

Use of Metavariables: the existential variable in the goal (or the universal
variable in an assumption) is replaced by a new symbol (metavariable), which is
a name for the term (solution of the metavariable) which we need to find. This
term is determined later in the proof, and the subgoals stating the type and the
condition are checked on the secondary branches. Also, one must ensure that
the solution to the metavariable does not contain Skolem constants which are
introduced later in the proof. If this condition is not fulfilled, the prover tries to
reorder the steps of the proof.

Quantifier Elimination is used in order to find the solution of the metavariable
in relatively simple situations — as for instance in this proof for Max[M;, Ms],
as described in [1].

Identification of Equal Terms Under Unknown Functions. This is used
for finding the instantiation term nyg.

Since f1 and f; are arbitrary, we do not know anything about their behaviour.
In the goal f1 and f; have argument ng, therefore the prover uses the same argu-
ment in the assumptions, otherwise it would be impossible us the assumptions
in the proof of the goal.

Algebraic Manipulations. The most challenging part in this proof is the auto-

matic generation of the instantiation term Min[which is per-

1, —80—0

? |az|+]ai]+1]’
formed by a heuristic combination of solving, substitution, and simplifying, as
well as rewriting of expressions under the absolute value function, and it is real-

ized at the end of the proof. The goal in this moment is:

| (f1[no] * f2[no]) — (a1 xaz2) | <eo (1)

and the main assumptions are:
[f1[no] —a1| <e (2)

|f2[no] —az| <e (3)

Internally the prover replaces fi[ng] and fa[ng] by x1 and xs, respectively,
both in the goal and in the assumptions. The argument of the absolute value in
the transformed goal is Fy = x1*x2 —aj*as and in the transformed assumptions
E1 =1 —ax and E2 = T2 — Q2.

First we use the following heuristic principle: transform the goal expression
FEy such that it uses as much as possible E; and E5, because about those we
know that they are small. In order to do this we take new variables y1,ys, we
solve the equations y; = F; and yo = F5 for 1, x2, we substitute the solutions
in Ey and the result simplifies to: a1 * y2 + ag * y1 + y1 * yo. This is the internal
representation of the absolute value argument in the goal (4).

la1 * (f2[no] — a2) + a2 * (filno] —a1) + (fi[no] — a1) * (f2[no] —a2)| <eo (4)

A Prover for Elementary Analysis 133

Note that the transformation from (1) to (4) is relatively challenging even
for a human prover.

lay = (fa[no] — az) + az * (filno] — a1) + (fi[no] — a1) * (fa[no] —a2)| (5)

< lax * (f2[no] — a2)| + laz * (fi[no] — a1)| + |(f1lno] — a1) * (f2[no] — a2)|

= |a1| * | fa[no] — az| + |az| x| filno] — a1| + | filno] — a1 * [f2[no] — a2

<lai|xe+|az| xe+exe <l|ai| *xe+|az| xe+e=ex*(Jar]| + |az| + 1)

€0

= Tl wlar 1 - el Hlazl w1 =c
The formula (5) is realized by rewriting of the absolute value expressions. Namely,
we apply certain rewrite rules to expressions of the form |E| and their combina-
tion, as well as to the metavariable e. Every rewrite rule transforms a (sub)term
into one which is not smaller, so we are sure to obtain a greater or equal term.
The final purpose of these transformations is to obtain a strictly positive ground
term ¢ multiplied by the target metavariable (here e). Since we need a value for
e which fullfils ¢ x e < eg, we can set e to eg/t. The rewrite rules come from the
elementary properties of the absolute value function: (e.g. |u + v| < |u| + |v]))
and from the principle of bounding the e-bounds: Since we are interested in the
behaviour of the expressions in the immediate vicinity of zero, the bound e can
be bound from above by any positive value. In the case of product (presented
here), we also use the rule: e x e < e, that is we bound e to 1. This is why the
final expression of e is the minimum between 1 and the term ¢ found as above.

Proving Simple Conditions. At certain places in the proof, the conditions
upon certain quantified variables have to be proven. The prover does not display
a proof of these simple statements, but just declares them to be consequences
of “elementary properties of R”. (Such elementary properties are also invoked
when developing formulae (4) and (5)). In the background, however, the prover
uses Mathematica functions in order to check that these statements are correct.
This happens for instance for the subgoal ;V(eo > 0 = e > 0) and will be treated
0

after the instatiation term for e is found, by using QE on this formula (where e
has the found value Min]...]), which returns True in Mathematica.

3 Conclusion and Further Work

When applied to problems over reals, Satisfiability Modulo Theories (SMT) solv-
ing combines techniques from automated reasoning and from computer algebra.
From the point of view of automated reasoning, proving unsatisfiability of a
set of clauses appears to be quite different from producing natural-style proofs.
Indeed the proof systems are different (resolution on clauses vs. some version
of sequent calculus), but they are essentially equivalent, relaying on equivalent
transformations of formulae. Moreover, the most important steps in first order
proving, namely the instantiations of universally quantified formulae (which in

134 T. Jebelean

natural-style proofs is also present as the equivalent operation of finding wit-
nesses for existentially quantified goals), are actually the same or very similar.

The full automation of proofs in elementary analysis constitutes a very inter-
esting application for the combination of logic and algebraic techniques, which is
essentially equivalent to SMT solving (combining satisfiability checking and sym-
bolic computation). Our experiments show that complete and efficient automa-
tion is possible by using certain heuristics in combination with complex algebraic
algorithms.

Further work includes a systematic treatment of various formulae which
appear in textbooks, and extension of the heuristics to more general types of
formulae. In this way we hope to address the class of problems which are usually
subject to SMT solving.

References

1. Abraham, E., Jebelean, T.: Adapting cylindrical algebraic decomposition for proof
specific tasks. In: Kusper, G. (ed.) ICAI 2017: 10th International Conference on
Applied Informatics (2017) (in print)

2. Bauer, A., Clarke, E., Zhao, X.: Analytica - an experiment in combining theorem
proving and symbolic computation. J. Autom. Reasoning 21(3), 295-325 (1998).
https://doi.org/10.1023/A:1006079212546

3. Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theorema
2.0: computer-assisted natural-style mathematics. JFR 9(1), 149-185 (2016)

4. Collins, G.E.: Quantier elimination for real closed fields by cylindrical algebraic
decomposition. In: Automata Theory and Formal Languages. LNCS, vol. 33, pp.
134-183. Springer (1975)

5. Jebelean, T.: Techniques for natural-style proofs in elementary analysis. ACM Com-
mun. Comput. Algebra 52(3), 92-95 (2019)

6. Jebelean, T.: Techniques for natural-style proofs in elementary analysis (extended
abstract). In: Bigatti, A.M., Brain, M. (eds.) Third International Workshop on Sat-
isfiability Checking and Symbolic Computation (2018)

7. Jebelean, T.: A heuristic prover for elementary analysis in Theorema. Tech. Rep.
21-07, Research Institute for Symbolic Computation (RISC), Johannes Kepler Uni-
versity Linz (2021)

8. Jebelean, T., Buchberger, B., Kutsia, T., Popov, N., Schreiner, W., Windsteiger,
W.: Automated reasoning. In: Buchberger, B., et al. (eds.) Hagenberg Research, pp.
63-101. Springer (2009). https://doi.org/10.1007/978-3-642-02127-5_2

9. Vajda, R., Jebelean, T., Buchberger, B.: Combining logical and algebraic techniques
for natural style proving in elementary analysis. Math. Comput. Simul. 79(8), 2310—
2316 (2009)

https://doi.org/10.1023/A:1006079212546
https://doi.org/10.1007/978-3-642-02127-5_2

	A Heuristic Prover for Elementary Analysis in Theorema
	1 Introduction
	2 Application of Special Techniques
	3 Conclusion and Further Work
	References

