
Fairouz Kamareddine
Claudio Sacerdoti Coen (Eds.)

 123

LN
AI

 1
28

33

14th International Conference, CICM 2021
Timisoara, Romania, July 26–31, 2021
Proceedings

Intelligent Computer
Mathematics

Lecture Notes in Artificial Intelligence 12833

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this subseries at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Fairouz Kamareddine • Claudio Sacerdoti Coen (Eds.)

Intelligent Computer
Mathematics
14th International Conference, CICM 2021
Timisoara, Romania, July 26–31, 2021
Proceedings

123

Editors
Fairouz Kamareddine
Heriot-Watt University
Edinburgh, UK

Claudio Sacerdoti Coen
University of Bologna
Bologna, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-81096-2 ISBN 978-3-030-81097-9 (eBook)
https://doi.org/10.1007/978-3-030-81097-9

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4360-6016
https://doi.org/10.1007/978-3-030-81097-9

Preface

With the continuing, rapid progress of digital methods in communications, knowledge
representation, processing, and discovery, the unique character and needs of mathe-
matical information require unique approaches. Its specialized representations and
capacity for creation and proof, both automatically and formally as well as manually,
set mathematical knowledge apart.

The Conference on Intelligent Computer Mathematics (CICM) was initially formed
in 2008 as a joint meeting of communities involved in computer algebra systems,
automated theorem provers, and mathematical knowledge management, as well as
those involved in a variety of aspects of scientific document archives. It has offered a
venue for discussing, developing, and integrating the diverse, sometimes eclectic,
approaches and research. Since 2008, CICM has been held annually: Birmingham (UK,
2008), Grand Bend (Canada, 2009), Paris (France, 2010), Bertinoro (Italy, 2011),
Bremen (Germany, 2012), Bath (UK, 2013), Coimbra (Portugal, 2014),
Washington D. C. (USA, 2015), Bialystok (Poland, 202016), Edinburgh (UK, 2017),
Linz (Austria, 2018), Prague (Czech Republic, 2019) and Bertinoro (Italy, 2020). This
latter edition, which was originally scheduled to be held in Bertinoro, Italy, was hosted
online due to the COVID-19 pandemic. This year’s meeting was supposed to be held in
Timisoara, Romania, but again due to the pandemic, it was held online (July 26–31,
2021).

This year’s meeting exposed advances in formalizations, automatic theorem prov-
ing, applications of machine learning to mathematical documents and proof search,
search and classifications of mathematical documents, teaching and geometric rea-
soning, and logic and systems, among other topics. This volume contains the contri-
butions to this conference. From 38 formal submissions, the Program Committee
(PC) accepted 20 papers including 12 full research papers, 7 shorter papers describing
software systems or datasets and 1 paper highlighting development of systems and
tools in the last year. All papers were reviewed by at least three PC members or
external reviewers. The reviews were single-blind and included a response period in
which the authors could respond and clarify points raised by the reviewers. In addition
to the main sessions, the conference included a doctoral program, chaired by Yasmine
Sharoda, which provided a forum for PhD students to present their research and get
advice from senior members of the community. Additionally, the following workshops
were scheduled:

– The 31st OpenMath Workshop, organized by James Davenport and Michael
Kohlhase.

– The 2nd Workshop on Natural Formal Mathematics (NatFoM 2021), organized
by Peter Koepke and Dennis Müller.

– The 5th Workshop on Formal Mathematics for Mathematicians (FMM 2021),
organized by Jasmine Blanchette and Adam Naumowicz.

– The 2nd Workshop on Formal Verification of Physical Systems (FVPS 2021),
organized by Sofiene Tahar, Osman Hasan and Adnan Rashid.

– The 13th Workshop on Mathematical User Interaction (MathUI 2021), organized by
Andrea Kohlhase.

Finally, the conference included four invited talks:

– Alessandro Cimatti (Fondazione Bruno Kessler, Italy): “Logic at work, and some
research challenges for computer mathematics”.

– Michael Kohlhase (FAU Erlangen-Nürnberg, Germany): “Referential Semantics – a
Concept for Bridging between Representations of mathematical/technical Docu-
ments and Knowledge”.

– Laura Kovacs (TU Vienna, Austria): “Induction in Saturation-Based Reasoning”.
– Angus McIntyre (Emeritus Professor, Queen Mary University of London, UK):

“Doing classical number theory in weak axiomatic systems”.

A successful conference is due to the efforts of many people. We thank Madalina
Erascu and her colleagues at the West University of Timisoara, Romania, for the
difficult task of organizing a conference with the expectation of it being held face to
face but with the dynamics of COVID-19 making it difficult to accommodate in person
meetings. We are grateful to Serge Autexier for his publicity work. We also thank the
authors of submitted papers, the PC for their reviews, and the organizers of the
workshops, as well as the invited speakers and the participants of the conference.

June 2021 F. Kamareddine
C. Sacerdoti Coen

vi Preface

Organization

Program Committee Chairs

Fairouz Kamareddine Heriot-Watt University, UK
Claudio Sacerdoti Coen University of Bologna, Italy

Program Committee

Akiko Aizawa National Institute of Informatics, Japan
Mauricio Ayala-Rincón Universidade de Brasilía, Brasil
Frédéric Blanqui Inria, France
Jacques Carette McMaster University, Canada
Howard Cohl NIST, USA
James H. Davenport University of Bath, UK
Catherine Dubois ENSIIE-Samovar, France
Jacques Fleuriot The University of Edinburgh, UK
Osman Hasan National University of Sciences and Technology,

Pakistan
Jan Jakubuv Czech Technical University, Czech Republic
Mateja Jamnik University of Cambridge, UK
Moa Johansson Chalmers University of Technology, Sweden
Cezary Kaliszyk University of Innsbruck, Austria
Manfred Kerber University of Birmingham, UK
Andrea Kohlhase University of Applied Sciences Neu-Ulm, Germany
Adam Naumowicz Institute of Informatics, University of Bialystok, Poland
Olga Nevzorova Kazan Federal University, Russia
Markus N. Rabe Google, USA
Florian Rabe FAU Erlangen-Nürnberg, Germany
Moritz Schubotz Universität Konstanz, Germany
Stephan Schulz DHBW Stuttgart, Germany
Volker Sorge University of Birmingham, UK
Olaf Teschke FIZ Karlsruhe, Germany
Joe Wells Heriot-Watt University, UK
Makarius Wenzel sketis.net, Germany
Wolfgang Windsteiger RISC Institute, Austria
Richard Zanibbi Rochester Institute of Technology, USA

Additional Reviewers

Thaynara Arielly de Lima
Ciaran Dunne
André Greiner-Petter
Alexander Kirillovich
Artur Korniłowicz
Dennis Müller
Miroslav Olšák
Stanisław Purgał

Adnan Rashid
Max Rapp
Colin Rothgang
Philipp Scharpf
Jonas Schopf
Philipp Smola
René Thiemann
Josef Urban

viii Organization

Invited Talks

Logics at Work, and Some Challenges
for Computer Mathematics

Alessandro Cimatti

Fondazione Bruno Kessler
cimatti@fbk.eu

Formal verification aims at the exhaustive analysis of the behaviours of a system, to
ensure that the expected properties are universally met. Formal verification has been
applied in many sectors including control software, relay interlocking, space, avionics,
hardware circuits, and production plants. We informally distinguish systems in discrete
systems and hybrid systems.

Symbolic Verification of Transition Systems. In case of discrete systems, a behaviour
can be seen as a sequence of valuations to a set of state variables. We focus on
symbolic verification, where logical methods are used to represent and explore the
system model. In the case of transition systems, a state is represented as an assignment
to a set of logical variables V. Logical formulae are used to represent sets of states, so
that I(V) represents the (initial) states satisfying I, and TðV ;V 0Þ represents sets of
transitions, with V 0 being the next state variables. In the finite-state case, V is a vector
of Boolean variables. Symbolic algorithms for automated verification [8], originally
based on Binary Decision Diagrams [7], have progressively been replaced by verifi-
cation based on satisfiability checking (SAT) [5]. SAT-based model checking tech-
niques include Bounded Model Checking [4], induction [19], interpolation [17] and
IC3 [6].

In case of infinite-state transition systems, the state variables may have infinite
range, and I and T are generally expressed as formulae in first-order logic, in the
framework of Satisfiability Modulo Theories (SMT) [3]. SMT extends the proposi-
tional case by allowing for functions and relations between individual variables, with
interpretations over relevant theories. These include linear and non-linear real and
integer arithmetic (LRA, NRA, LIA, NIA). The algorithms for the analysis of
infinite-state transition systems, also referred to as Verification Modulo Theories [11],
are not only obtained by replacing SAT solvers with SMT solvers in SAT-based
verification approaches [2, 14]. A fundamental role is played by abstractions, most
notably predicate abstraction [16]. Abstractions are dynamically refined based on the
analysis of abstract counterexamples [13], and can be either computed explicitly, or
implicitly [20], in tight integration with verification algorithms such as IC3 [10].Par-
ticularly relevant for non-linear theories is the case of incremental linearization [9],
where the abstract space is built by treating non-linearities as uninterpreted functions
with piecewise-linear bounds.

https://orcid.org/0000-0002-1315-6990

Verification of Hybrid Systems. In the case of continuous time, the situation is
significantly more complex. In fact, hybrid systems are composed of interacting dis-
crete and continuous subsystems. Within the reference modeling framework of Hybrid
Automata [1], two kinds of transitions exist: discrete transitions, where the system
instantaneously switches from a discrete mode to the next, and continuous transitions,
where time elapses while in one mode, with continuous variables evolve according to
the specified laws. With respect to the case of transition systems, the semantics of
hybrid automata comes with an implicit elapse of time, during which continuous
variables evolve according to specific laws defined by differential equations, subject to
invariants that must hold throughout the continuous transitions. The traditional
approaches are based on an explicit enumeration of the modes and the analysis of the
differential equations in the various modes. We focus on symbolic, logic-based
approaches [12, 15, 18], where deductive methods are used to analyze the continuous
dynamics.

In this setting, we can identify several interesting challenges.

Satisfiability Modulo Theories. At the level of SMT engines, a key problem is to
provide efficient and effective theory solvers for non-linear theories, to be integrated
within the standard online SMT search schema [3]. In addition to incrementality and
the ability to construct theory lemmas, a fundamental requirement could be referred to
as “non-constructive satisfiability”, i.e. the ability to prove the satisfiability of a set of
constraints without actually having to produce a model. Algorithms for incomplete
theory reasoning, providing efficiently sufficient conditions for satisfiability or for
unsatisfiability, would also be very useful.

Verification Modulo Theories. At the level of verification of transition systems over
non-linear and transcendental theories, most techniques are oriented to prove universal
properties, whereas existential properties have been devoted less attention.
Non-constructive satisfiability would be an important tool in abstraction refinement, to
prove the existence of infinite behaviours. In fact, traces can not be finitely presented in
lasso-shape form as for the finite-state case.

Hybrid Automata. A key challenge is to integrate within the existing symbolic
algorithms the large body of work on characterizing, checking, and finding differential
invariants that has been developed in the setting of dynamical systems. Depending on
the nature of the system (e.g. linear, non-linear polynomial, or featuring transcendental
functions), different invariants could be found (e.g. polynomial equalities and
inequalities).

In some cases, hybrid automata can be reduced to the analysis of infinite-state
transition systems, so that the SMT-based approaches can be leveraged. Such precise
encodings rely on the existence of a closed-form exact solution. Even in such subcases,
an important challenge is to improve the quantifier-free encoding of invariant condi-
tions [12].

Finally, it would be interesting to support the direct reasoning at the level of
differential equations in the verification algorithm, in the style of [15], but to more
advanced algorithms such as IC3. The requirement is to identify procedures for the
checks of induction (and relative induction) under the differential equations.

xii A. Cimatti

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: an algorithmic
approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode,
A., Ravn, A.P., Rischel, H. (eds.) HS 1992, HS 1991. LNCS, vol. 736, pp. 209–229.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6_30

2. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.E.: Verifying industrial hybrid
systems with MathSAT. Electron. Notes Theor. Comput. Sci. 119(2), 17–32 (2005)

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In:
Handbook of Satisfiability, vol. 185. Frontiers in AI and Applications, pp. 825–885. IOS
Press (2009)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (eds.) TACAS 1999. LNCS. Vol. 1579, pp. 193–207. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, vol. 185.
Frontiers in AI and Applications. IOS Press (2009)

6. Bradley, A.R.: SAT-Based model checking without unrolling. In: Jhala, R., Schmidt, D.
(eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-18275-4_7

7. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comput. 35(8), 677–691 (1986)

8. Burch, J., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking:
10ˆ20 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

9. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental linearization for
satisfiability and verification modulo nonlinear arithmetic and transcendental functions.
ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018)

10. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking with IC3
and predicate abstraction. Formal Methods Syst. Des. 49(3), 190–218 (2016). https://doi.org/
10.1007/s10703-016-0257-4

11. Cimatti, A., Griggio, A., Tonetta, S. Verification modulo theories: language, benchmarks
and tools (2011). http://vmt-lib.fbk.eu/

12. Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. Quantifier-free encoding of
invariants for hybrid systems. Formal Methods Syst. Des. 45(2), 165–188, 2014.

13. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.. Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM, 50(5), 752–794 (2003)

14. de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking over
infinite domains. In: Voronkov, A. (eds.) CADE 2002. LNCS, vol. 2392, pp. 438–455.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1_35

15. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct SAT approach to hybrid
systems. In: Cha, S.., Choi, J.Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008.
LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-88387-6_14

16. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (eds.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63166-6_10

17. McMillan, K.L.: Interpolation and model checking. In: Clarke, E., Henzinger, T., Veith, H.,
Bloem, R. (eds.) Handbook of Model Checking, pp. 421–446. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8_14

Logics at Work, and Some Challenges for Computer Mathematics xiii

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/s10703-016-0257-4
https://doi.org/10.1007/s10703-016-0257-4
http://vmt-lib.fbk.eu/
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-319-10575-8_14

18. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-63588-0

19. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a
SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 108–
125. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40922-X_8

20. Tonetta, S.: Abstract Model checking without computing the abstraction. In: Cavalcanti, A.,
Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 89–105. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3_7

xiv A. Cimatti

https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-3-642-05089-3_7

Induction in Saturation-Based Reasoning

Laura Kovács

TU Wien, Austria
laura.kovacs@tuwien.ac.at

Keywords: Automated reasoning � Theorem proving � Induction

Extended Abstract

Seminal works on automating induction mainly focus on inductive theorem proving
[1, 2]: deciding when induction should be applied and what induction axiom should be
used. Further restrictions are made on the logical expressiveness, for example induction
over only universal properties [1, 13] and without uninterpreted symbols [10], or only
over term algebras [5, 8]. Inductive proofs usually rely on auxiliary lemmas to help
proving an inductive property. In [3] heuristics for finding such lemmas are introduced,
for example by randomly generating equational formulas over random inputs and using
these formulas if they hold reasonably often. Recent advances related to automating
inductive reasoning, such as first-order reasoning with inductively defined data types
[9], inductive strengthening of SMT properties [12], structural induction in superpo-
sition [4, 5, 6, 8, 11], open up new possibilities for automating induction. In this talk,
we describe our extensions to first-order theorem proving in support of automating
inductive reasoning.

It is common in inductive theorem proving, that given a formula/goal F, try to
prove a more general goal instead [1, 2]. Such an approach however does not apply in
the context of saturation-based first-order theorem proving, which is not based on a
goal-subgoal architecture. In our work we therefore integrate induction directly into
saturation-based proof search. We do so by turning applications of induction into
inference rules of the saturation process and adding instances of appropriate induction
schemata. To this extent, we pick up a formula F in the search space and add to the
search space new induction axioms, that is instances of induction schemata, aiming at
proving :F, or sometimes even a more general formula than :F. Our recent works
[6, 7] investigated such an approach, introducing new inference rules for induction in
saturation-based first-order theorem proving.

Our inference rules for induction in saturation capture the application of induction
to inductive formulas to be proved. However, this is insufficient for efficient theorem
proving. Modern saturation-based theorem provers are very powerful not just because
of the logical calculi they are based on, such as superposition. What makes them
powerful and efficient are (i) redundancy criteria and pruning search space, (ii) strate-
gies for directing proof search, mainly by clause and inference selection, and recent
results on (iii) theory-specific reasoning, for example with inductive data types. We

https://orcid.org/0000-0002-8299-2714

overview our results in mechanizing mathematical induction in saturation-based
first-order theorem proving in an efficient way. In particular we describe induction in
saturation by generalizing inductive formulas [6] with/without recursive functions and
integers [7].

Acknowledgements. The results described in this talk are based on joint works with Márton
Hajdú, Petra Hozzvá, Johannes Schoisswohl and Andrei Voronkov. We acknowledge funding
from the ERC CoG ARTIST 101002685, the ERC StG 2014 SYMCAR 639270, the EPSRC
grant EP/P03408X/1 and the Austrian FWF research project LogiCS W1255-N23.

References

1. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, Perspectives in Computing,
vol. 23. Academic Press (1979)

2. Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., Smaill, A.: Rippling: a heuristic for
guiding inductive proofs. Artif. Intell. 62(2), 185–253 (1993)

3. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: HipSpec: automating inductive
proofs of program properties. In: Proceedings of the ATx/WinG, pp. 16–25 (2012)

4. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M., (eds.) FroCoS
2017. LNCS, vol. 10483, pp. 172-188. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-66167-4_10

5. Echenheim, M., Peltier, N.: Combining induction and saturation-based theorem proving.
J. Autom. Reason. 64, 253–294 (2020). https://doi.org/10.1007/s10817-019-09519-x

6. Hajdú M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with gener-
alization in superposition reasoning. In: Benzmüller, C., Miller, B. (eds.) CICM 2020.
LNCS, vol 12236, pp. 123–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53518-6_8

7. Hozzová, P., Kovács, L., Voronkov, A.: Integer induction in saturation. In: Proceedings
of the CADE (2021, to appear)

8. Kersani, A., Peltier, N.: Combining superposition and induction: a practical realization. In:
Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 7–22.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_2

9. Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning. In:
Proceedings of the POPL. pp. 260–270 (2017)

10. Passmore, G., et al.: The Imandra automated reasoning system (system description). In:
Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS, vol. 12167, pp. 464–471.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_30

11. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: Fontaine, P., (eds.)
CADE 2019. LNCS, vol. 11716, pp. 477–494. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-29436-6_28

12. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A., Larsen, K.G.
(eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46081-8_5

13. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: an automated prover for properties of
recursive data structures. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 407–421. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_28

xvi L. Kovács

https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1007/s10817-019-09519-x
https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.1007/978-3-642-40885-4_2
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1007/978-3-030-29436-6_28
https://doi.org/10.1007/978-3-030-29436-6_28
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-642-28756-5_28

Doing Number Theory in Weak Systems
of Arithmetic

Angus Macintyre

University of Edinburgh
a.macintyre@qmul.ac.uk

Abstract. Although Godel's Theorem shows that even ZFC is incomplete for
unsolvability of diophantine equations, nothing explicit of any real interest to
number theorists has ever been shown to be unprovable. I will consider various
important statements about solvability modulo all prime powers, and exhibit a
wide class which get decided by PA (first order Peano Arithmetic) using serious
algebraic geometry inside nonstandard models of PA. So although PA is often
misrepresented as very weak, it is rather strong for basic results of 20th century
number theory.

Keywords: Number theory � Weak arithmetic

Contents

Formalizations

A Modular First Formalisation of Combinatorial Design Theory 3
Chelsea Edmonds and Lawrence C. Paulson

Beautiful Formalizations in Isabelle/Naproche. 19
Adrian De Lon, Peter Koepke, Anton Lorenzen, Adrian Marti,
Marcel Schütz, and Erik Sturzenhecker

Formalizing Axiomatic Systems for Propositional Logic in Isabelle/HOL 32
Asta Halkjær From, Agnes Moesgård Eschen, and Jørgen Villadsen

Formalization of RBD-Based Cause Consequence Analysis in HOL 47
Mohamed Abdelghany and Sofiène Tahar

Automatic Theorem Proving and Machine Learning

Online Machine Learning Techniques for Coq: A Comparison 67
Liao Zhang, Lasse Blaauwbroek, Bartosz Piotrowski, Prokop Černỳ,
Cezary Kaliszyk, and Josef Urban

Improving Stateful Premise Selection with Transformers 84
Krsto Proroković, Michael Wand, and Jürgen Schmidhuber

Towards Math Terms Disambiguation Using Machine Learning 90
Ruocheng Shan and Abdou Youssef

Heterogeneous Heuristic Optimisation and Scheduling for First-Order
Theorem Proving . 107

Edvard K. Holden and Konstantin Korovin

Inductive Benchmarks for Automated Reasoning. 124
Márton Hajdu, Petra Hozzová, Laura Kovács, Johannes Schoisswohl,
and Andrei Voronkov

A Heuristic Prover for Elementary Analysis in Theorema. 130
Tudor Jebelean

Search and Classification

Searching for Mathematical Formulas Based on Graph
Representation Learning. 137

Yujin Song and Xiaoyu Chen

10 Years Later: The Mathematics Subject Classification
and Linked Open Data. 153

Susanne Arndt, Patrick Ion, Mila Runnwerth, Moritz Schubotz,
and Olaf Teschke

WebMIaS on Docker: Deploying Math-Aware Search in a Single Line
of Code . 159

Dávid Lupták, Vít Novotný, Michal Štefánik, and Petr Sojka

Teaching and Geometric Reasoning

Learning to Solve Geometric Construction Problems from Images. 167
Jaroslav Macke, Jiri Sedlar, Miroslav Olsak, Josef Urban,
and Josef Sivic

Automated Generation of Exam Sheets for Automated Deduction 185
Petra Hozzová, Laura Kovács, and Jakob Rath

Gauss-Lintel, an Algorithm Suite for Exploring Chord Diagrams 197
Abdullah Khan, Alexei Lisitsa, and Alexei Vernitski

Logic and Systems

A New Export of the Mizar Mathematical Library. 205
Colin Rothgang, Artur Korniłowicz, and Florian Rabe

A Language with Type-Dependent Equality . 211
Florian Rabe

Generating Custom Set Theories with Non-set Structured Objects 228
Ciarán Dunne, J. B. Wells, and Fairouz Kamareddine

CICM’21 Systems Entries . 245
Martin Líška, Dávid Lupták, Vít Novotný, Michal Růžička,
Boris Shminke, Petr Sojka, Michal Štefánik, and Makarius Wenzel

Author Index . 249

xx Contents

Formalizations

A Modular First Formalisation
of Combinatorial Design Theory

Chelsea Edmonds(B) and Lawrence C. Paulson

Department of Computer Science and Technology, University of Cambridge,
Cambridge, UK

{cle47,lp15}@cam.ac.uk

Abstract. Combinatorial design theory studies set systems with cer-
tain balance and symmetry properties and has applications to computer
science and elsewhere. This paper presents a modular approach to for-
malising designs for the first time using Isabelle and assesses the usability
of a locale-centric approach to formalisations of mathematical structures.
We demonstrate how locales can be used to specify numerous types of
designs and their hierarchy. The resulting library, which is concise and
adaptable, includes formal definitions and proofs for many key properties,
operations, and theorems on the construction and existence of designs.

Keywords: Isabelle/HOL · Combinatorics · Formalisation ·
Interactive proof assistants · Combinatorial design theory · Block
designs · Locales

1 Introduction

The formalisation of mathematics is an area of increasing interest, with bene-
fits including verifying correctness, deeper insights into proofs, and automation.
This has lead to substantial development of formal mathematical libraries across
several different proof assistants covering a notable portion of undergraduate
mathematics. However, one area of mathematics that remains underrepresented
is combinatorics. In particular, the field of combinatorial design theory has not
previously been formalised in any system.

Combinatorial design theory is the study of systems of finite sets which meet
certain balance and symmetry properties. Many results in design theory have
been driven by applications to fields such as communications and security, where
formal verification is of increasing interest. This paper presents a general formal
library for design theory using a modular approach in Isabelle/HOL.

Locales are Isabelle’s module system, and are well suited to the problem
of managing the complex hierarchy of design classes. While locales have been

The first author is supported by a Cambridge Australia Scholarship and a Cambridge
Department of Technology Qualcomm Premium Research Scholarship. The work is also
supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178).

c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 3–18, 2021.
https://doi.org/10.1007/978-3-030-81097-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_1&domain=pdf
http://orcid.org/0000-0002-8559-9133
http://orcid.org/0000-0003-0288-4279
https://doi.org/10.1007/978-3-030-81097-9_1

4 C. Edmonds and L. C. Paulson

available in the current form since the early 2000s, they typically have been used
sparingly in mathematical contexts, or alongside other tools such as type classes
and records. This project presented the opportunity to explore a locale-centric
approach to formalising mathematical structures, building on Ballarin’s prior
work in algebra [3], and using ideas from Noschinski’s graph theory library [13].

We focus on balanced and block designs to define BIBDs, the most extensively
studied class of designs, but also explore how easy it is to extend the formali-
sation to other design classes and graph theory. Our library includes the formal
definitions for many key properties and operations on designs generally. It also
explores the formal proof process for theorems on the construction and existence
of designs with certain parameters, two basic questions in design theory.

This paper begins with (2) the necessary background on design theory and
locales, then presents (3) the formalisation of fundamental concepts on designs,
followed by (4) the development of the BIBD locale hierarchy and (5) extending
the formalisation beyond BIBDs. We conclude (6) with a discussion on the locale-
centric approach to formalising mathematical structures.

2 Background

2.1 Mathematical Background

Designs are one of many different combinatorial structures which have emerged
in the last century. Formally, a design is defined as follows [16]:

Definition 1 (Design). A design is a pair (V,B) where V is a (finite) set of
points and B is a (finite) collection of non-empty subsets of V called blocks.

Designs are also referred to as incidence structures [5] and more specifically,
incidence set systems. There are four sets defined on key set system properties
which can be restricted to impose structural conditions on a design [8].

i) The set K of all block sizes in the design.
ii) The set R of replication numbers for points in the design, where the point

replication number rx is the number of blocks the point x occurs in.
iii) The set Λt of t-indices for t ≥ 0 the design. For any t subset of points, the

t points index is the number of blocks that subset occurs in.
iv) The set I of intersection numbers. For two blocks in a design, the intersection

number is the number of points the blocks intersect on.

Using different structural restrictions results in numerous classes of designs.
The designs of most interest mathematically usually involve the combination of
several restrictions, such as balanced incomplete block designs (BIBD).

Definition 2 (BIBD). Let v, k, and λ, be positive integers such that 2 ≤ k <
v. A (v, k, λ)-design is a design with v points where every block has k elements
and where every pair of points occurs in exactly λ blocks.

A Modular First Formalisation of Combinatorial Design Theory 5

The balance and uniformity properties of a BIBD, as well as properties like
resolvability and symmetry, lead to further design variations such as group divis-
ible designs (GDDs), pairwise balanced designs (PBDs), triple systems, and
resolvable designs [8].

Most open questions in design theory concern either the existence of a design
with certain parameters or the construction of certain designs for which existence
is already known [16]. Numerous operations have been defined to reason on the
construction of designs, several of which this paper explores. Proofs in design
theory often draw on other fields of mathematics, and combinatorial counting
techniques, which present interesting formalisation challenges.

Set systems are the underlying construct of a design, and are the basis for
numerous other structures such as hypergraphs, matrices, geometries, codes, and
graphs [8]. As such, designs have close links to these fields, and they are often
used in proofs on designs. For example, it can be seen that an undirected simple
graph is a design, where the vertices are points and edges are 2-blocks. The
design of a graph is normally not interesting from a design theoretic standpoint,
as it often lacks the structure of many design classes. However, a r-regular graph
can be thought of as a design with replication number r. Graphs are also useful
for representing other design properties such as resolvability [6].

2.2 Isabelle and Locales

Isabelle/HOL is an interactive proof assistant built on higher order logic [14]. It
has extensive libraries of formalised mathematics, including the largest number
of results related to combinatorics from a survey of several proof assistants. These
libraries, combined with powerful built-in tools such as the Isar proof language
and Sledgehammar, make Isabelle an ideal choice for this formalisation work.

Locales are an important extension of the Isar proof language. They act as a
module system within Isabelle, providing persistent contexts which can be used
across numerous theories drawing on similar structures [1]. In the simplest form,
a locale declaration introduces parameters and assumptions. Each parameter has
a specified type and can even have associated syntax. Once defined, a locale can
be extended with definitions, notation and theorems within its context.

Locale expressions were designed to support multiple inheritance and thus
offer extensive flexibility. Existing locales can be combined to create a new locale
and extended by adding new parameters and assumptions [1]. The locale hier-
archy can be transformed using the sublocale command, which is used to show
indirect inheritance between two separately specified locales. It is also possible to
instantiate locale parameters and instances through locale expressions and inter-
pretations. A full tutorial introduction on locales is available with Isabelle [2].

3 The Basic Design Formalisation

Formalising design theory presents a number of initial challenges. Of particu-
lar note is (i) notation and definition inconsistencies in the literature, (ii) the

6 C. Edmonds and L. C. Paulson

significant number of definitions and properties, and (iii) the complex relations
between different classes of designs, as well as other combinatorial structures.

To narrow the focus of the formalisation, addressing (ii), initial formalisation
efforts focussed on defining BIBDs and operations commonly found in computa-
tional libraries for designs such as GAP [15]. Proofs focused on enabling reason-
ing on common design properties, constructions, and existence requirements.

To address (i), key decisions were made early in the formalisation process
covered below and in Sect. 4. For consistency, the Handbook of Combinatorial
Designs was the primary reference for definitions, with publications from well
known researchers such as Stinson [16] serving as alternatives when needed.
Challenge (iii) is the motivation for our locale-centric approach to formalising
fundamental definitions and operations for general designs, discussed below.

3.1 Pre-designs

First, a locale representing a general incidence system is defined, which intro-
duces the core components of a design: a block collection formalised using mul-
tisets, a point set, and a well-formed assumption:

locale incidence-system =
fixes point-set :: ′a set (V)and block-collection :: ′a set multiset (B)
assumes wellformed: b ∈# B =⇒ b ⊆ V

Definition 1 (see Sect. 2.1) states designs are finite, which is added as an
assumption in the finite-incidence-system locale. Lastly, a design often has the
additional condition that blocks must be non-empty [16]:

locale design = finite-incidence-system +
assumes blocks-nempty: bl ∈# B =⇒ bl �= {}

Some design definitions further impose the condition that a design must
be non-empty [15]. This is important for some classes of designs, but constrains
others unnecessarily, and hence is defined separately in the locale proper-designs.

3.2 Basic Design Properties

The four key properties on elements of a set system are block size, intersection
numbers, point indices, and replication numbers. These are defined outside of a
locale context, as they are properties on components of the set system, rather
than the entire structure. The definition of the points index property is below:

definition points-index :: ′a set multiset ⇒ ′a set ⇒ nat where
points-index B ps ≡ size {#b ∈# B . ps ⊆ b#}
Numerous lemmas for reasoning on these properties can be defined in the

context of incidence systems and designs. Using these properties, the four key

A Modular First Formalisation of Combinatorial Design Theory 7

sets outlined in (2) can be defined within the general incidence system locale.
The definition of the point indices set is given below:

definition point-indices :: int ⇒ int set where
point-indices t ≡ { points-index B ps | ps. int (card ps) = t ∧ ps ⊆ V}
Lastly, the basic design locale includes a number of abbreviations to mirror

terminology in the literature: design supports, multiplicity of blocks, incomplete
blocks, design order v (number of points), and design size b (number of blocks).
The multiplicity and design support abbreviations are used to establish a new
locale for simple-designs, where block multiplicity is at most 1.

3.3 Basic Design Operations

Designs are often constructed by building on pre-existing designs through oper-
ations. The three main operations considered for the formalisation are design
complements, multiples, and combinations. The complement of a design (V,B)
is the design (V, {V − bl.bl ∈ B}), where V − bl is the block complement of the
block bl. A multiple of a design multiplies the block multiset by some constant
n ≥ 0, and combining designs is simply the union of the point set and addition
of the block multisets. The formal definitions for these operations are defined
within the incidence system locale, such as the complement operation below,
along with a number of relevant lemmas.

definition complement-blocks :: ′a set multiset where
complement-blocks ≡ {# block-complement bl . bl ∈# B #}

Numerous basic lemmas are shown for all three operations. In particular,
multiple and combine are shown to be closed under the design conditions, and
complement will result in a design if the original blocks are incomplete. We
additionally formalised a number of simple computational operations, such as
addition and deletion of points, which are useful when constructing new designs.

4 The Block Design Hierarchy

By Definition 2, a BIBD could be easily defined in a single locale with param-
eters for block size, index, and replication number, as well as assumptions on
balance, constant replication, and uniformity conditions. However, this approach
would have significant limitations. Although a replication number is widely used
in proofs of a BIBD, its value is implied by the other parameters, hence the
assumption is unnecessary. Additionally, this could result in a significant amount
of rework if more general designs than BIBDs need to be formalised.

The approach taken in this formalisation uses the idea of little and tiny the-
ories [7,9], discussed in Sect. 6. Each locale definition adds a single concept, and
lemmas on properties and operations are introduced in the most general locale
possible. This section explores the process of building up the locale hierarchy to
BIBDs through the gradual specification of more general locales.

8 C. Edmonds and L. C. Paulson

4.1 Restricting Block Size

The first new parameter in a BIBD is k, the uniform size of a design’s blocks.
Formally, it is introduced through the block design locale:

locale block-design = proper-design +
fixes u-block-size :: int (k)
assumes uniform [simp]: bl ∈# B =⇒ block-size bl = k

A key design decision was to let uniform parameters such as block size be
integers. While these are clearly positive and could be natural numbers, proofs
often require manipulating algebraic expressions involving subtraction on the
parameters, which is notably simpler to do using integers in Isabelle.

A number of lemmas are defined within the block design locale. Recurring
themes on proofs throughout the formalisation include proving inequality rela-
tionships on parameters, such as k ≤ v, and that the three main operations
defined in (3.3) result in another type of this design given certain conditions.
For a block design, multiple and combine are clearly closed, whereas comple-
ment requires an additional assumption. Two main proof strategies are used for
these lemmas: a direct proof using introduction rules, and the more expressive
interpret proof structure, discussed in Sect. 6.4.

A K-design is a generalisation of a k-design which limits the size of blocks
to a finite set of positive integers. An important specialisation of a block design
is an incomplete design where all blocks are incomplete, i.e. k < v.

4.2 Balanced Designs

The balance property and its variations are widely used across different design
classes. The most general balanced design is a t-wise balanced design or tBD,
where for some 1 ≤ t ≤ v, the points index of a t-sized subset of points equals λt.

locale twise-balance = proper-design +
fixes grouping :: int (t) and index :: int (Λt)
assumes t-non-zero: t ≥ 1 and t-lt-order: t ≤ v
and balanced [simp]: ps ⊆ V =⇒ card ps = t =⇒ points-index B ps = Λt

Note that as λ is reserved in Isabelle, Λ is used in its place. Also, as the
parameters t and λt and their assumptions are linked, there is no sensible way
to further break down the locale. Within the locale context it can easily be shown
that combining two designs with the same point set, or applying the multiple
operation, results in another tBD. A t-wise balanced design can include a set
K of valid block sizes, which is formalised by combining the tBD and K block
design locales.

BIBDs are interested in pairwise balance, where t = 2. A PBD is a clear
specialisation of a tBD which can be defined formally using the for command in
a locale definition to instantiate one parameter and simplify syntax.

locale pairwise-balance = t-wise-balance V B 2 Λ
for point-set (V) and block-collection (B) and index (Λ)

A Modular First Formalisation of Combinatorial Design Theory 9

There are several variations on PBDs in the literature depending on block
size properties and the value of λ, which are easy to specify by combining locales
and the use of the sublocale declaration, following the functor proof pattern [3].

4.3 T-Designs

An important generalisation of BIBDs are t-designs. Given the modular structure
of the existing locale declarations, they can be easily specified by combining
locales on incomplete block designs and t-wise balanced designs. Additionally,
an extra assumption is required on the relationship of the parameters t and k.

locale tdesign = incomplete-design + t-wise-balance +
assumes block-size-t: t ≤ k

In addition to t-designs, the related concepts of t-covering and t-packing
designs are also formalised, where λt has a slightly different meaning, a typical
example of design notation inconsistencies. A t-covering design is a relaxed ver-
sion of a tBD where, for all point subsets of size t, λt is a lower bound on the
points index. A t-packing design mirrors this with an upper bound. Given the
different meaning of the parameter λt, these designs build only on block designs.
If a design is incomplete, t-packing and t-covering, then it is a t-design.

Additionally, a locale is declared for Steiner systems: t-designs where λt = 1.
Then it can be proven that all blocks in a Steiner system have a multiplicity of 1.
Hence it can be shown that Steiner systems are simple designs using sublocales.

4.4 Uniform Replication Number

When every point in a design has the same replication number, r is known as
the replication number of the design.

locale constant-rep-design = proper-design +
fixes design-rep-number :: int (r)
assumes rep-number [simp]: x ∈ V =⇒ B rep x = r

As with the other locales, we can prove that r > 0, and that the complement,
multiple, and combination operators result in another constant replication design
under certain conditions within the locale’s context.

4.5 BIBDs and Proofs

The final BIBD locale declaration builds on the t-design locale and is now simple
to define using the for command to instantiate t = 2, as with PBDs.

locale bibd = t-design V B k 2 Λ for point-set (V) and block-collection (B)
and u-block-size (k) and index (Λ)

Figure 1 gives an overview of the final locale hierarchy for BIBDs, with sublo-
cale relationships represented by a dotted line. Using this structure, we used

10 C. Edmonds and L. C. Paulson

Fig. 1. The BIBD locale hierarchy

BIBDs as case study for doing more involved proofs on both existence and con-
struction. Many of these proofs required formalising a counting proof, the full
details of which are out of scope of this paper.

There are two necessary conditions on BIBD existence, which therefore must
hold in the locale context. These define important relationships between param-
eters: r(k − 1) = λ(v − 1) and vr = bk. Notably, this uses the design replication
number, which is not yet defined in the BIBD context. However, the first condi-
tion can still be shown to hold for each point’s replication number rx, which in
turn proves r is constant. This results in the following sublocale declaration.

sublocale bibd ⊆ constant-rep-design V B (Λ ∗ (v − 1) div (k − 1))
using r-constant-2 by (unfold-locales) simp-all

These necessary conditions enable proofs of useful lemmas on inequalities
between parameters, and set up the formalisation for further construction proofs.

As with previous locales, it is simple to prove the combination and multiple
operations result in another BIBD with simply defined parameters assuming
equal point sets. The complement of a (v, k, λ)-design is a (v, v − k, b + λ − 2r)-
design. These parameters are more complicated and so are their proofs. The final
proof for the main complement-bibd lemma is a good example of how constructive
design proofs can be presented with little effort using interpretation and the Isar
proof language (see Sect. 6).

4.6 BIBD Extensions

Symmetric BIBDs are an extension of BIBDs where b = v, as shown in Fig. 1.
An important theorem on symmetric designs is the intersection property : the
intersection number of any two blocks in the design is equal to the design index
λ. We have formalised its delicate counting proof, making use of the necessary
conditions on a BIBD.

The BIBD locale also includes definitions and lemmas on residual and derived
designs, which are common constructions specific to BIBDs. The formal defini-
tions of these operations resolve some ambiguities in the literature which use

A Modular First Formalisation of Combinatorial Design Theory 11

set comprehensions and notation to describe operations on multisets. Using the
intersection property, it is possible to prove that the derived and residual designs
of a symmetric BIBD are also BIBDs. The intersection property and sublocale
command can also be used to show that symmetric designs are simple.

5 Extending the Formalisation

This section investigates the ease of extending the formalisation to a number of
other structures in design theory and graph theory.

5.1 Resolvable Designs

A resolution class of a design is a partition of the point set using blocks. A par-
tition of the blocks into resolution classes is known as a resolution, and a design
with a resolution is resolvable. While set partitions are well covered in Isabelle,
we had to formalise multiset partitions. The concepts of a resolution class and
resolution were then easily defined within incidence-system. A resolvable design
is represented by a new locale building on designs:

locale resolvable-design = design +
fixes partition :: ′a set multiset multiset (P)
assumes resolvable: resolution P

Further classes of resolvable designs were defined by combining this locale
with block designs and BIBDs. The resolvable specification enables us to prove
a number of new relations between the parameters of these designs, such as k|v in
a resolvable block design. A proof was also completed for an alternate statement
of Bose’s inequality on resolvable BIBDs based on Stinson’s approach [16].

5.2 Group Divisible Designs

GDDs are closely related to PBDs and are often studied simultaneously. As such,
they were an ideal case study for extending the BIBD hierarchy. A GDD is a
design which has a non-empty group G which partitions the point set, and a
points index of λ or 0 for each pair depending on if points occurs together in G.

Continuing with the little theories approach, the definition is split into two
locales. Firstly, a group-design locale is declared, which introduces the parameter
G and the partition assumption. Within this locale a number of properties of the
group in GDDs are defined. sThis includes the concept of group types, which
represent a GDDs structure by the size of the sets in G. A GDD locale then
introduces the index parameter and assumptions:

locale GDD = group-design + fixes index :: int (Λ)
assumes index-ge-1 : Λ ≥ 1
assumes index-together: [[G ∈ G; x ∈ G; y ∈ G; x �= y]] =⇒ points-index
B {x, y} = 0 and index-distinct: [[G1 ∈ G; G2 ∈ G; G1 �= G2; x ∈ G1;
y ∈ G2]] =⇒ points-index B {x, y} = Λ

12 C. Edmonds and L. C. Paulson

As with PBDs, GDDs are defined in different ways, commonly combined
with K block designs, or certain instantiated parameters, which can easily be
formalised using locales. Operations such as adding and deleting points, or com-
bining the group sets and blocks are common on both PBDs and GDDs. For
example, combining the group of a K-GDD with its blocks results in a PBD
with the same point set, a block collection containing both groups and blocks
of the original GDD, and a size set K. Authors often use these constructions
without proofs and lacking necessary assumptions.

5.3 Design Isomorphisms

Two designs (V,B) and (V ′, B′) are isomorphic if there exists a bijection π such
that V ′ = π(V) and B′ = {π(bl).bl ∈ B′}. There are two obvious ways of formal-
ising this relation: through a number of definitions, or through another locale.
The second approach enables direct and concise reasoning on an isomorphism
relation by using two labelled instances of the same locale:

locale incidence-system-isomorphism = source: incidence-system V B + target:
incidence-system V ′ B′ for V and B and V ′ and B′ + fixes bij-map (π)
assumes bij: bij-betw π V V ′ and block-img: image-mset ((‘) π) B = B′

Within the locale, it is easy to show how elements in (V,B) map to (V ′, B′),
and that π−1 also defines an isomorphic relation. Furthermore, by extending the
locale to design instances, the four key properties on set systems are proven to
be identical for isomorphic designs. Even with a locale approach, it is still easy
to work with isomorphisms outside of the locale if required: below, we define the
concept of isomorphic designs on set systems using the locale definition.

definition isomorphic-designs (infixl ∼=D 50) where D ∼=D D′ ←→
(∃ π . design-isomorphism (points D) (blocks D) (points D′) (blocks D′) π)

5.4 Graph Theory

Graph theory proves an interesting case study when looking at extending the
design hierarchy. As discussed in Sect. 2, simple graphs are designs. Can we link
the design locale hierarchy to an existing formalisation, such as the general graph
theory library in the AFP? This appears to present a number of challenges: (i)
the graph theory library was developed in 2013 by a different author, (ii) the
library includes digraphs, which are not designs, and (iii) the locale approach
for graph theory uses records, which are not used for designs.

Despite these challenges, the flexibility of locales made it straightforward to
prove that a simple graph is a design, as well as a number of other properties.
Figure 2 shows the resulting links made between the design theory and graph
theory locale developments, using sublocales.

A Modular First Formalisation of Combinatorial Design Theory 13

Fig. 2. Interaction between graph and design locales

To show that a graph is a design, we must convert the ordered edge repre-
sentation to an unordered block. The arcs-blocks definition manages the trans-
formation within the graph locale, which defines a simple graph by declaring the
edge set to be symmetric without multiples or loops. A few lemmas ensure the
translation is valid, from which it follows that a graph is a sublocale of a design.

sublocale graph ⊆ design verts G arcs-blocks

Clearly, a non-empty graph is also a block design with k = 2, which is
represented by another sublocale relationship. Additionally, we extended the
existing graph theory library to define the concept of a regular-digraph and
regular graph, which are of particular interest in design theory. In particular,
a non-empty regular graph is a sublocale of a constant representation number
design.

sublocale non-empty-reg-graph⊆constant-rep-design verts G arcs-blocks r

6 The Modular Approach

This paper has thus far demonstrated how locales can be used to build up an
extensive hierarchy to formally reason on designs. This section discusses the ben-
efits and limitations of the approach taken and recurring reasoning techniques.

6.1 The Formal Design Hierarchy

This paper presents seemingly the first formalisation of design theory. As
such, initial investigations focused on examining the approach taken by similar
libraries on mathematical structures. There does exist a formalisation of Latin
squares [4] in Isabelle. While these are a very specific type of design, their formal-
isation does not reflect this and is not extendable to designs generally. Rather,
it highlights the need for flexibility when defining different design classes.

Type classes [10] were briefly considered, however the constraints on parame-
ters meant they didn’t offer the same flexibility as locales. The “record + locale”

14 C. Edmonds and L. C. Paulson

approach first considered in (3.1) is based on Noschinski’s graph theory library
and the HOL-Algebra library. This approach uses a record to define structural
elements and definitions, and locales for supporting concise syntax by parameter
annotation [3]. It was originally designed when definitions could not be declared
within a locale and is still widely used. Changes to locales in 2009 [11] how-
ever, enabled local theory specification, so definitions are now possible within
a local context while still globally accessible. As such, structures can now be
defined over a number of parameters within a locale without any noticeable lim-
itations. This reduces the need for records and the required workarounds, while
also simplifying notation and definitions for the structure.

The small AFP development on matroids, another combinatorial structure,
uses this more locale-centric approach [12], but more interesting is Ballarin’s
take to formalising algebra [3]. He uses locales to define structures as well as
operations and relationships on multiple instances of a locale, similar to the
design isomorphism definition.

The final locale hierarchy of the design library can be seen in Fig. 3, with some
minor omissions. Figure 3 presents the numerous types of designs available in
the formalisation and the complex inheritance network. The final formalisation
defines 36 purely design related locales, as well as five new locales on graph
theory. The larger graph theory library used only 21 locales.

6.2 The Little Theories Approach

Using the little theories approach, and drawing on ideas from the more radical
tiny theories approach where suitable, each new locale declaration in the design
library does some of three things: (i) combines multiple pre-existing locales, (ii)
adds new parameters and assumptions related to a single new concept, or (iii)
instantiates one or more parameters to a concrete value.

This approach drew inspiration from both Noschinski and Ballarin [3,13],
and yielded a number of benefits, preventing unnecessary duplication when new

Fig. 3. Design theory locale development

A Modular First Formalisation of Combinatorial Design Theory 15

designs were introduced. More importantly, it increased the flexibility and exten-
sibility of the library. As can be seen from the case studies in Sect. 5 where the
formalisation was extended, it was easy to integrate locales from the original
hierarchy with new concepts. The sublocale command proved particularly use-
ful in manipulating the hierarchy. Additionally, each extension took significantly
less time than the original development due to the inherited material.

6.3 Notational Benefits

One of the key benefits that Ballarin discussed when comparing the locale-centric
algebra approach with the existing library was notation, and its readability in
comparison to a textbook [3]. The locale-centric approach yields similar results
for design theory. For example, in mathematical literature, a t-design is referred
to as a t-(v, k, λt)-design. In Isabelle, it would be represented by t-design V B k
Λt, where v can still be used to refer to the cardinality of V .

In fact, all the usual single letter parameters are available with a design
context, and definitions were done in locales where possible, thus the majority
are simple and readable as is. The for command further increased readability
by removing unnecessary parameters from specialisations. Overall, this results
in concise notation both within a locale context and on instances of a locale,
which should be readable for anyone familiar with design theory. Such nota-
tion also simplifies lemma statements, avoiding repeated assumptions, as well
as proof goals. We expect that further extensions to different structures such as
hypergraphs could benefit from locale notation features such as rewrites.

6.4 Reasoning on Locales

The flexibility of locales offers many benefits for reasoning. However, it is worth
noting a number of proof patterns specific to working with locale definitions.

Locales come with two proof tactics: unfold-locales, which unfolds all the
assumptions in the current context hierarchy, and intro-locales, which unfolds to
the axiomatic definitions of each locale in the current hierarchy. The intro-locales
tactic was often used on proofs on the combine and multiple operations, which
avoided the need to unfold all axioms for each proof.

Interpretations are likely the most powerful proof tool for locales, and can
decrease the complexity of proofs by providing an instance of a locale to refer
to. The complement-bibd lemma described in (4.5) is an example.

16 C. Edmonds and L. C. Paulson

lemma complement-bibd:
assumes k ≤ v − 2
shows bibd V (complement-blocks) (v − k) (b + Λ − 2 ∗ r)

proof −
interpret des: incomplete-design V (complement-blocks) (v − k)
using assms complement-incomplete by blast
show ?thesis proof (unfold-locales, simp-all)
show 2 ≤ des.v using assms block-size-t by linarith
show

∧
ps. ps ⊆ V =⇒ card ps = 2 =⇒

points-index (complement-blocks) ps = b + Λ −
2 ∗ (Λ ∗ (des.v − 1) div (k − 1)) using complement-bibd-index by simp
show 2 ≤ des.v − k using assms block-size-t by linarith

qed

The interpret command yields an instance of an incomplete design with the
complement parameters. To prove the conclusion, after applying unfold locales
and simplification, we get three sub-goals instead of the 10 unfold locales gives
without interpretation. This is both easy to approach and read.

Another useful pattern that assists automation is defining custom introduc-
tion rules, particularly around reverse sublocale relationships. For example, an
introduction rule can be proven stating that parameters which satisfy the axioms
of t-covering and t-packing designs also satisfy the t-design axioms. Ballarin’s
functor pattern [3], which connects two linear locale hierarchies related by a
functor using a series of sublocale declarations, is also used in the formalisation.
An example of this can be seen from the GDD variations in Fig. 3.

Lastly, we also note the ease of reasoning on multiple labelled instances of
a locale, within another locale. The prime example of this is in the design-
isomorphism theory. This is a technique that could be explored further for other
operations and relationships, such as the concept of sub-designs.

6.5 Limitations

A few limitations of the locale-centric approach to mathematics are worth noting.
First, locale specifications were not designed to be used extensively outside of
the locale. However, the approach requires this, which particularly causes issues
with sublocales. A sublocale proof does not generate any additional facts, and
as such cannot be referenced; to reference this relationship for reasoning outside
of the locale, one must define a separate lemma with a nearly identical proof.

While the interpret command within proofs is incredibly useful, it would be
beneficial to see extensions to locale proof tactics to aid automation and proof
structure. Many interpret declarations are trivial consequences of known facts,
but they must be written out in full.

Lastly, the little theories approach can cause locale hierarchies to become
complex. We need ways to keep track of relationships between locales dur-
ing development. In particular, sublocale relationships must be maintained and
added carefully when frequently combining locales at different levels in the hier-
archy.

A Modular First Formalisation of Combinatorial Design Theory 17

7 Conclusion and Future Work

Through the use of locales, this paper demonstrates how the complex hierarchy of
design theoretic structures can be formalised in a proof assistant, presenting the
first such formalisation for this field. It is intended that this library will be used to
further explore some of the unique challenges combinatorial proofs currently pose
to formalisation. The locale-centric modular approach discussed has proven to be
an effective method of concisely and accurately defining numerous fundamental
properties and classes of designs, and reasoning on key theorems and inheritance
relationships. Additionally, the case studies presented in Sect. 5 demonstrates the
formalisation’s flexibility and extensibility for future work on design theory and
other related combinatorial structures, fulfilling the aim of establishing a general
adaptable library for designs. This library will be made available in full through
the Isabelle Archive of Formal Proofs. Beyond the obvious potential to continue
formalising new classes of designs, other future work includes further exploring
locale-centric proof techniques and improvements, experimenting with links to
hypergraphs, and investigating the formalisation of theorems on designs which
involve more advanced and varied proof techniques.

References

1. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo,
M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 34–50. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-24849-1 3

2. Ballarin, C.: Tutorial to locales and locale interpretation. In: Contribuciones
Cient́ıficas en Honor de Mirian Andrés Gómez, pp. 123–140. University of Rioja
(2010). https://dialnet.unirioja.es/servlet/articulo?codigo=3216664

3. Ballarin, C.: Exploring the structure of an algebra text with locales. J. Autom.
Reason. 64(6), 1093–1121 (2020)

4. Bentkamp, A.: Latin square. Isabelle Archive of Formal Proofs (Dec 2015). http://
isa-afp.org/entries/Latin Square.html

5. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, Encyclopedia of Mathematics
and Its Applications, vol. 1, 2nd edn. Cambridge University Press, Cambridge
(1999)

6. Cameron, P.J., van Lint, J.H.: Designs, Graphs, Codes and Their Links, London
Mathematical Society Student Texts. vol. 22. Cambridge University Press, Cam-
bridge (1996)

7. Carette, J., Farmer, W.M., Jeremic, F., Maccio, V., O’Connor, R., Tran, Q.M.:
The MathScheme Library: Some Preliminary Experiments. arXiv:1106.1862 (Jun
2011)

8. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs, 2nd edn. Chap-
man & Hall/CRC, Boca Raton (2007)

9. Farmer, W.M., Guttman, J.D., Javier Thayer, F.: Little theories. In: Kapur, D.
(ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55602-8 192

10. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch,
T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74464-1 11

https://doi.org/10.1007/978-3-540-24849-1_3
https://dialnet.unirioja.es/servlet/articulo?codigo=3216664
http://isa-afp.org/entries/Latin_Square.html
http://isa-afp.org/entries/Latin_Square.html
http://arxiv.org/abs/1106.1862
https://doi.org/10.1007/3-540-55602-8_192
https://doi.org/10.1007/978-3-540-74464-1_11

18 C. Edmonds and L. C. Paulson

11. Haftmann, F., Wenzel, M.: Local theory specifications in Isabelle/Isar. In: Berardi,
S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 153–168.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02444-3 10

12. Keinholz, J.: Matroids. Isabelle Archive of Formal Proofs (Nov 2018). https://
www.isa-afp.org/entries/Matroids.html

13. Noschinski, L.: A graph library for Isabelle. Math. Comput. Sci. 9(1), 23–39 (2015)
14. Paulson, L.C.: Computational logic: its origins and applications. Proc. R. Soc. A

474(2210), 20170872 (2018)
15. Soicher, L.H.: Designs, groups and computing. In: Detinko, A., Flannery, D.,

O’Brien, E. (eds.) Probabilistic Group Theory, Combinatorics, and Computing.
Lecture Notes in Mathematics, vol. 2070, pp. 83–107. Springer, London (2013).
https://doi.org/10.1007/978-1-4471-4814-2 3

16. Stinson, D.: Combinatorial Designs: Constructions and Analysis. Springer, New
York (2004). https://doi.org/10.1007/b97564

https://doi.org/10.1007/978-3-642-02444-3_10
https://www.isa-afp.org/entries/Matroids.html
https://www.isa-afp.org/entries/Matroids.html
https://doi.org/10.1007/978-1-4471-4814-2_3
https://doi.org/10.1007/b97564

Beautiful Formalizations
in Isabelle/Naproche

Adrian De Lon(B) , Peter Koepke , Anton Lorenzen , Adrian Marti ,
Marcel Schütz , and Erik Sturzenhecker

University of Bonn, Bonn, Germany
adelon@uni-bonn.de, koepke@math.uni-bonn.de

https://www.math.uni-bonn.de/ag/logik/

Abstract. We present short example formalizations of basic theorems
from number theory, set theory, and lattice theory which ship with the
new Naproche component in Isabelle 2021. The natural proof assistant
Naproche accepts input texts in the mathematical controlled natural
language ForTheL. Some ForTheL texts that proof-check in Naproche
come close to ordinary mathematical writing. The formalization exam-
ples demonstrate the potential to write mathematics in a natural yet
completely formal language and to delegate tedious organisatorial details
and obvious proof steps to strong automated theorem proving so that
mathematical ideas and the “beauty” of proofs become visible.

1 Introduction

In informal mathematical discourse one frequently encounters appraisals of the-
orems and proofs as “intuitive”, “elegant”, “interesting”, “simple”, or indeed
“beautiful”. Following Paul Erdős, perfect proofs by these criteria would be
entered in God’s BOOK of proofs [12]. Although mathematicians often agree
about the beauty of particular proofs, mathematical beauty in principle appears
as elusive as the concept of beauty in general. Discussions of beauty by eminent
mathematicians exhibit a spectrum of ad hoc theories and personal opinions (see,
e.g., [18,22]). A popular view that fits the perspective of this paper is expressed
in [13, p. 22], (but observe [6]):

Mathematicians have customarily regarded a proof as beautiful if it con-
formed to the classical ideals of brevity and simplicity.

This explains that completely formal proofs as studied in formal mathematics
are widely viewed as being the opposite of “beautiful”. Reuben Hersh [5, p. 52],
writes:

We prefer a beautiful proof with a serious gap over a boring hyper-correct
one.

Formal mathematicians themselves acknowledge difficulties with their proofs.
Lawrence Paulson writes:
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 19–31, 2021.
https://doi.org/10.1007/978-3-030-81097-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_2&domain=pdf
http://orcid.org/0000-0002-2697-7253
http://orcid.org/0000-0002-2266-134X
http://orcid.org/0000-0003-3538-9688
http://orcid.org/0000-0001-8932-8843
http://orcid.org/0000-0002-5386-5134
https://doi.org/10.1007/978-3-030-81097-9_2

20 A. De Lon et al.

However, existing theorem provers are unsuitable for mathematics. Their
formal proofs are unreadable. [17]

A closer look, however, reveals that informal proofs usually contain a con-
siderable amount of formality, and that current proof assistants are moving
towards proof languages and proof presentations that are at least “readable”
by human experts. The natural proof assistant Naproche attempts to close the
gap between informal and formal mathematics. Some texts which are proof-
checked by Naproche come close to ordinary mathematical writing. This is fur-
ther emphasized by a new LATEX dialect of the Naproche input language ForTheL
which allows immediate mathematical typesetting of input files. The Naproche
project aims at providing comfortable editing of natural mathematical texts with
integrated automated proof checking.

Naproche is included as a bundled component in the latest edition of the
Isabelle prover platform. ForTheL texts in the classic .ftl format or the new
.ftl.tex format can be edited in Isabelle/jEdit and are automatically checked
by Naproche. In this paper we present some formalization examples which are
included in Isabelle 2021. These short texts demonstrate the potential for writing
mathematics in a natural yet completely formal language and to delegate tedious
detail to strong automated theorem proving. The examples present proofs that
can be considered “beautiful”. Some of them follow proofs in THE BOOK [12].

The examples are contained in the folder contrib/naproche-*/examples
within the Isabelle 2021 folder. They cover

– Cantor’s diagonal argument (cantor.ftl.tex, Sect. 3);
– König’s Theorem from cardinal arithmetic (koenig.ftl.tex, Sect. 4);
– the infinitude of primes according to Euclid (euclid.ftl.tex, Sect. 5)
– ... and according to Furstenberg (fuerstenberg.ftl.tex, Sect. 6);
– the Knaster–Tarski fixpoint theorem (tarski.ftl.tex, 7).

Some of these formalizations go back to example texts that Andrei Paskevich
included with his original SAD system ([15] and [16]). The files can be opened
in Isabelle, and PDF-versions are provided for immediate reading. Note that
we have made a few superficial typographic changes to the examples in this
paper to increase legibility. There is always room for further improvements to
the typesetting of texts.

In conclusion: we are certain that natural proof assistants will facilitate the
eventual acceptance of formal mathematics in the wider mathematical commu-
nity. Ideally, proofs should be beautiful and formally correct.

2 Naproche, ForTheL, and LATEX

The Naproche proof assistant stems from two long-term efforts aiming towards
naturalness: the Evidence Algorithm (EA)/System for Automated Deduction
(SAD) projects at the universities of Kiev and Paris [15,16,20,21], and the
Naproche project at Bonn [1,3,9,11]. In Naproche, the ForTheL input language

Beautiful Formalizations in Isabelle/Naproche 21

of SAD has been extended and embedded in LATEX, allowing mathematical type-
setting; the original proof-checking mechanisms have been made more efficient
and varied.

The mathematical controlled language ForTheL has been developed over sev-
eral decades in the Evidence Algorithm (EA)/System for Automated Deduction
(SAD) project. It is carefully designed to approximate the weakly typed natural
language of mathematics whilst being efficiently translatable to the language of
first-order logic. In ForTheL, standard mathematical types are called notions,
and these are internally represented as predicates with one distinguished vari-
able, whilst the other variables are considered as parameters (“types as depen-
dent predicates”). Compared to most type systems of proof assistants, this yields
a more flexible dependent type system where number systems can be cumulative
(N ⊆ Q ⊆ R), and notions can depend on parameters (subsets of N, divisors of
n).

Technically, Naproche shares several features with the Mizar system. Mizar
has a soft type system and pretyping of variables. It is, however, difficult to read
and understand Mizar texts due to Mizar’s unnatural input language and the
need to include small proof details that in Naproche are found automatically.
As an example one might compare our proof of Cantor’s Theorem in the next
section to the Mizar article http://www.mizar.org/JFM/Vol1/card 1.miz.html,
Theorem 29.

In Naproche, first-order languages of notions, constants, relations, and func-
tions can be introduced and extended by signature and definition commands.
The formalization of Euclid’s theorem to be discussed later, sets out like:

Signature. A natural number is a small object.
Let . . .m, n . . . denote natural numbers.
Signature. 0 is a natural number.
...
Signature. m + n is a natural number.

We require natural numbers to be small objects, so that we can later form
sets of natural numbers. This is due to the present ontology of Naproche where
elements of sets have to be small. Future versions will provide a choice between
several standard ontologies.

We have extended Naproche to support a .ftl.tex format, in addition to the
original .ftl format. Files in .ftl.tex format can be processed by Naproche
for logical checking and by LATEX for typesetting.

The LATEX tokenizer ignores everything except what is inside ForTheL envi-
ronments of the form

\begin{forthel}
% Insert what you want Naproche to process here

\end{forthel}

Inside a ForTheL environment, standard LATEX syntax can be used for declaring
text environments for theorems and definitions.

http://www.mizar.org/JFM/Vol1/card_1.miz.html

22 A. De Lon et al.

In Naproche, users can define their own operators and phrases through
patterns of words and symbols. This mechanism has been adapted to allow
LATEX constructs in patterns. In the Euclid example we shall use the pattern
\Set{p}{1}{r} for the finite set {p1, . . . , pr}. By also defining \Set as a LATEX
macro we can arrange that the ForTheL pattern will be printed out in familiar
set notation:

\newcommand{\Set}[3]{\{#1_{#2},\dots,#1_{#3}\}}

There are some primitive concepts in Naproche, such as the logical operators
∨, ∧, ∃ that are directly recognized in the LATEX source and expanded to corre-
sponding internal tokens.

3 Example: Cantor’s Theorem

In this section we prove Cantor’s famous theorem, by which the powerset of a set
has strictly greater cardinality than the given set. The proof rests on Cantor’s
beautiful diagonal argument which is also used in THE BOOK [12] to show that
the set of real numbers is not countable.

Our formalization is so short, that we can include it in its entirety and use it to
remark on further features of Naproche and ForTheL. More information can be
found in a short tutorial introduction to Naproche in the file TUTORIAL.ftl.tex
in the examples folder.

[synonym subset/-s] [synonym surject/-s]

Let M denote a set. Let f denote a function.

Axiom 1. M is setsized.

Axiom 2. Let x be an element of M . Then x is setsized.

Let the value of f at x stand for f(x). Let f is defined on M stand for
Dom(f) = M . Let the domain of f stand for Dom(f).

Axiom 3. The value of f at any element of the domain of f is a set.

Definition 1 (Subset). A subset of M is a set N such that every element of
N is an element of M .

Definition 2. The powerset of M is the class of subsets of M .

Axiom 4. The powerset of M is a set.

Definition 3. f surjects onto M iff every element of M is equal to the value of
f at some element of the domain of f .

Theorem 1 (Cantor). No function that is defined on M surjects onto the
powerset of M .

Beautiful Formalizations in Isabelle/Naproche 23

Proof. Proof by contradiction. Assume the contrary. Take a function f that is
defined on M and surjects onto the powerset of M . Define

N = {x P M | x R f(x)}.

Take an element z of M such that f(z) = N . Then

z P N ↔ z R f(z) = N.

Contradiction. �

Remarks:

1. This formalization, like the subsequent examples, is a self-contained natural
language representation of a collection of first-order assumptions and con-
sequences. Except for some built-in notions and axioms the whole logical
scenario has to be set up explicitly. Future versions of Naproche will contain
libraries of foundational theories which can be imported into formalizations.

2. The simple grammar of Naproche and ForTheL is directed towards the
identification of first-order logical content. Writing grammatically correct
English is possible (and encouraged) but not enforced by the system. [syn-
onym subset/-s] is a parser command that identifies the token “subsets”
with the token “subset”. This allows to choose the correct grammatical
number in statements. One might increase the “beauty” of texts by print-
ing parser commands as footnotes. Note that Naproche does not have a
predefined English vocabulary but works with arbitrary alphabetic tokens.
Future versions may use standard linguistic algorithms for plural formation
or other grammatical modifications.

3. The notions of “set” and “function” are already coded into Naproche. Vari-
ables like M or f can be pretyped with those notions by, e.g., “Let M denote
a set.”

4. A rudimentary set- and class-theory is built into Naproche. Since classes
can only contain “setsized” elements, we stipulate that every set is setsized
by the axiom: “M is setsized.” Also elements of sets are setsized by Axiom
2.

5. Naturalness requires to have alternative phrases available for the same log-
ical entity, so that one may speak of the “value of f at x” instead of f(x).
Such alternatives are introduced by “Let ... stand for ...” commands.

6. Definitions 1 and 2 define new notions dependent on the pre-typed variable
M for a set.

7. Axiom 4 is the well-known powerset axiom.
8. The short proof of Cantor’s theorem uses the same language as undergradu-

ate texts on basic set theory. A mathematical context is created by “Assume
...”, “Take ...”, or “Define ...” statements. At proof time Naproche checks
that all terms and statements are type-correct: the term f(x), e.g., spawns
the obvious prover task derived from the assumptions in the definition of
f(x); namely that x P Dom(f). This task is given to the background ATP
eprover which is able to prove it within the local proof context.

24 A. De Lon et al.

9. Abstraction terms {. . . } are already built into the syntactic mechanisms of
Naproche.

10. Naproche supports familiar proof methods like proofs by cases, by induc-
tion, or, in this case, by contradiction. Internally, these methods influence
the construction of proof tasks.

11. Mathematical typesetting is an important ingredient of the “beauty” of
mathematical texts. Naproche mostly treats LATEX commands as irrelevant
to the logical content of a text and ignores them during parsing. This allows
common layout features like prominently displaying the definition of N or
the final equivalence by \[... \] commands.

4 Example: König’s Theorem

The next example presents an important set-theoretical result about the arith-
metic of cardinals which was proved by Julius König in 1905 [10] The global
proof structure is again a Cantorean diagonal argument.

Mathematical notation greatly contributes to the brevity and aesthetics of
mathematical texts. The “big operator” notation for multiple sums (

∑
) or prod-

ucts (
∏

) with their 2-dimensional arrangement of arguments represents typical
mathematical symbolism.

These terms can be typeset by LATEX macros which by the generous pattern
mechanisms of ForTheL simultaneously stand for first-order functions. The sum
macro is defined by:

\newcommand{\Sum}[2]{\sum_{i \in #2} \val{{#1}_{i}}{}}

\Sum{_}{_} is simultaneously used as a ForTheL pattern for an internal binary
function. The instance \Sum{\kappa}{D} of the pattern typesets as

∑
iPD κi .

The LATEX interpretation of certain ForTheL patterns and the orthogonality
of most LATEX commands to the logical interpretation allow many typographical
effects, according to taste and style.

Theorem. Let κ, λ be sequences of cardinals on D. Assume that for every ele-
ment i of D κi < λi. Then ∑

iPD
κi <

∏

iPD
λi .

Proof. Proof by contradiction. Assume the contrary. Then
∏

iPD
λi ď

∑

iPD
κi .

Take a function G such that
⋃̇

iPDκi is the domain of G and is the
image of G. Indeed has an element.

Define

Δ(i) = {G((n, i))(i) | n is an element of κi} for i in D.

Beautiful Formalizations in Isabelle/Naproche 25

For every element f of for every element i of D f(i) is an element
of λi. For every element i of D λi is a set. For every element i of D for every
element d of Δ(i) we have d P λi. For every element i of D Δ(i) is a set.

(1) For every element i of D |Δ(i)| < λi.
Proof. Let i be an element of D. Define

F (n) = G((n, i))(i) for n in κi.

Then F [κ(i)] = Δ(i). qed.
Define

f(i) = choose an element v of λi \ Δ(i) in v for i in D.

Then f is an element of Take an element j of D and an element m of
κj such that G((m, j)) = f . G((m, j))(j) is an element of Δ(j) and f(j) is not
an element of Δ(j). Contradiction. �

5 Example: Euclid’s Theorem

We formalize the very first proof in THE BOOK [12], Euclid’s theorem that
there are infinitely many prime numbers. Before the proof the example sets up
the axiomatic background: a language and axioms for natural numbers, arith-
metic, divisibility and prime numbers, some set theory, and finite sets, sequences
and products. Here we only present the concluding proof, juxtaposing the BOOK
proof (left) and the Naproche proof (right) in order to demonstrate their simi-
larity:

Euclid’s Proof.
For any finite set {p1, . . . , pr} of
primes,

consider the number n = p1p2 · · · pr+1.
This n has a prime divisor p.
But p is not one of the pi:

otherwise

Signature. P is the class of prime
natural numbers.

Theorem (Euclid). P is infinite.

Proof.
Assume that r is a natural number and
p is a sequence of length r and
{p1, . . . , pr} is a subclass of .
(1) pi is a nonzero natural number for
every i such that 1 ď i ď r.
Consider n = p1 · · · pr + 1.
Take a prime divisor q of n.
Let us show that q �= pi for all i such
that 1 ď i ď r.
Proof by contradiction. Assume that
q = pi for some natural number i such
that 1 ď i ď r.

26 A. De Lon et al.

p would be a divisor of n and of the
product p1p2 · · · pr,
and thus also of the difference
n − p1p2 · · · pr = 1,
which is impossible.
So a finite set {p1, . . . , pr} cannot be
the collection of all prime numbers. �

q is a divisor of n and q is a divisor of
p1 · · · pr (by factor property, 1).
Thus q divides 1.

Contradiction. qed.
Hence {p1, . . . , pr} is not the class of
prime natural numbers. �

6 Example: Furstenberg’s Topological Proof

In 1955 Hillel Furstenberg published another proof of the infinitude of primes
using the language of topology [4]. Paskevich provided a version of this proof as
a ForTheL example in SAD [14] which we translated to ForTheL’s LATEX dialect
in the course of the release of Isabelle 2021 [7]. Here is the concluding theorem
and proof, taken directly from the example file in Isabelle 2021.

Theorem. (Fuerstenberg). Let S = {rZ + 0 | r is a prime}. S is infinite.

Proof. Proof by contradiction. S is a family of integer sets.

We have
⋃

S = {1,−1}.
Proof. Let us show that for any integer n n belongs to

⋃
S iff n has a prime

divisor. Let n be an integer.

If n has a prime divisor then n belongs to
⋃

S.
Proof. Assume n has a prime divisor. Take a prime divisor p of n. pZ + 0 is
setsized. pZ + 0 P S. n P pZ + 0. Qed.

If n belongs to
⋃

S then n has a prime divisor.
Proof. Assume n belongs to

⋃
S. Take a prime r such that n P rZ + 0. Then r

is a prime divisor of n. Qed. End. Qed.

Assume that S is finite. Then
⋃

S is closed and
⋃

S is open.

Take p such that pZ + 1 ⊆ ⋃
S.

pZ + 1 has an element x such that neither x = 1 nor x = −1.
Proof. 1 + p and 1 − p are integers. 1 + p and 1 − p belong to pZ + 1. Indeed
1 + p = 1 (mod p) and 1 − p = 1 (mod p). 1 + p �= 1 ∧ 1 − p �= 1. 1 + p �=
−1 ∨ 1 − p �= −1. Qed.

We have a contradiction. �

In 2020 Manuel Eberl published an Isar version of Furstenberg’s proof in the
Archive of Formal Proofs [2]. In this section we will discuss the formalization in
ForTheL’s LATEX dialect and compare it with Eberl’s Isar version.

Let us start with the statement.

Theorem. There are infinitely many primes.

Beautiful Formalizations in Isabelle/Naproche 27

Despite its apparent simplicity, it is not as easy as it seems to formalize it.
Even the natural formal language ForTheL cannot capture it. The problem is
the quantification “there are infinitely many“. We reformulate the statement in
terms of the cardinality of the set of primes as in the Isar formalization:

Theorem. infinite {p::nat. prime p}
Here we have a unary predicate infinite with an argument {p::nat. prime p}.

In ForTheL however we cannot pass class terms as parameters to predicates,
hence we cannot adopt the Isar statement literally to ForTheL. So what we have
to state instead is the following:

Theorem. Let S = {r | r is a prime}. S is infinite.

In fact, Paskevich’s formalization of Furstenberg’s proof does not provide a
full axiomatization of integers or even a general notion of infinity, and rather
proves the infinitude of the set {pZ | p is a prime}. The ForTheL theorem thus
reads:

Theorem. Let S = {rZ + 0 | r is a prime}. S is infinite.

Note that we cannot write rZ instead of rZ+ 0. For our formalization intro-
duces the pattern qZ + a for arbitrary integers a, q (where q is supposed to
be non-zero). If we would additionally define the pattern qZ as qZ + 0 then
Naproche could not figure out the meaning of qZ+0. It could either refer to the
pattern (xZ+ y)[q/x, 0/y] or to the pattern (x + y)[qZ/x, 0/y], where [t/x, t′/y]
denotes substitution of x by t and of y by t′. Future versions of Naproche shall
have mechanisms to disambiguate such overloadings.

Let us continue our comparison of the Isar version of Furstenberg’s proof
with the ForTheL version. The Isar proof begins with the following statements:

assume fin: finite {p::nat. prime p}
define A where A = (

⋃
p P {p::nat. prime p}.arith-prog-fb 0 p)

have closed A
...
hence open (−A)

Here arith-prof-fb 0 p denotes the set pZ+0 and −A denotes the complement
of A in Z. In ForTheL we can directly write pZ + 0 which allows for a better
intuitive understanding of the proof text:

Let S = {rZ + 0 | r is a prime}.
...
Assume that S is finite. Then

⋃
S is closed and

⋃
S is open.

Up to now both proof texts are quite similar (if we “‘identify” a prime p
with the set pZ+ 0), except that ForTheL uses natural language constructs like

28 A. De Lon et al.

subject-predicate-object sentences. The central part of Furstenberg’s proof is to
show that ⋃

{pZ + 0 | p is prime} = Z \ {1,−1}
(as in the Isar version) or, equivalently, that

⋃
{rZ + 0 | r is a prime} = {n P Z | n has a prime divisor}

(as in the ForTheL version). Let us first have a look at how the statement
Z \ {1,−1} ⊆ ⋃{pZ + 0 | p is prime} is proven in the Isar text.

fix x::int assume x : x P −{1,−1}
...
show x P (

⋃
p P {p::nat. prime p}. arith-prog 0 p)

...
obtain p where p : prime p p dvd x
using prime-divisor-exists[of x] and 〈|x| �= 1〉 by auto
hence x P arith-prog 0 (nat p) using prime-gt-0-int[of p]
by (auto simp: arith-prog-def cong-0-iff)
thus ?thesis using p
by (auto simp: A-def intro!: exI [of - nat p])

On the other hand the proof of the statement {n P Z | n has a prime divisor} ⊆⋃{pZ + 0 | p is prime} looks like the following in ForTheL.

Let n be an integer.
...
If n has a prime divisor then n belongs to

⋃
S.

Proof. Assume n has a prime divisor. Take a prime divisor p of n. n P pZ+0.
Qed.

Note that in both versions we silently assumed that x �= 0 and n �= 0,
respectively.

In principle, both proofs are similar. But whereas Isabelle uses proof tactics
to search for proofs, Naproche relies on an external ATP. Users of Isabelle can
steer proof search efficiently by commands like

by (auto simp: A-def intro!: exI [of - nat p])

On the other hand one would not want to see such technicalities in a natural or
even “beautiful” proof à la Naproche. As a future project we shall investigate
whether Naproche can reach a similar prover efficiency by using sledgehammer
methods to steer external ATPs.

Finally, let us compare the statement discussed above to its original formu-
lation in THE BOOK [12]:

Since any number n �= 1,−1 has a prime divisor p, and hence is contained
in N0,p, we conclude

Z \ {1,−1} =
⋃

pPP
N0,p.

Beautiful Formalizations in Isabelle/Naproche 29

Here P denote the set of prime numbers and N0,p the set pZ+ 0. Obviously,
this is a very elegant formulation compared to Isar and ForTheL, paying the price
of a quite complicated sentence structure as a combination of three statements
with internal dependencies:

Since ϕ, and hence ψ, we conclude χ.

Moreover, there are hidden variables, e.g. n occurs in ψ without being explicitly
mentioned, and implicit variable bindings, e.g. p is not free in ψ as it might seem
if we consider ψ being independent from ϕ. Parsing such sentences is beyond the
possibilities of the current Naproche, and it will have to be discussed if one
would even want this level of grammatical complication in an efficient controlled
natural language for mathematics.

7 Example: The Knaster–Tarski Theorem

We conclude with an example from lattice theory about fixed points of monotone
functions. Bronis�law Knaster and Alfred Tarski established it in 1928 for the
special case of power set lattices [8]. The more general result was stated by
Tarski in 1955 [19]. It states that the set of fixpoints of a monotone function
on a complete lattice is also a complete lattice. In particular, we can take the
supremum or the infimum of the empty set in order to get the biggest or the
smallest fixpoint.

The full formalization starts by defining a complete lattice, a monotone func-
tion and a fixpoint. The formalized proof relies on automation to achieve a nat-
ural brevity.

Theorem. (Knaster–Tarski). Let U be a complete lattice and f be a mono-
tone function on U . Let S be the class of fixed points of f . Then S is a complete
lattice.

Proof. Let T be a subset of S.
Let us show that T has a supremum in S.
Define

P = {x P U | f(x) ď x and x is an upper bound of T in U}.

Take an infimum p of P in U . f(p) is a lower bound of P in U and an upper
bound of T in U . Hence p is a fixed point of f and a supremum of T in S.
End.
Let us show that T has an infimum in S.
Define

Q = {x P U | f(x) ď x and x is an lower bound of T in U}.

Take a supremum q of Q in U . f(q) is an upper bound of Q in U and a lower
bound of T in U . Hence q is a fixed point of f and an infimum of T in S.
End. �

30 A. De Lon et al.

8 Outlook

The Naproche project will continue to expand the methods presented in this
paper. We shall enlarge our grammar to capture more natural language phrases.
Recurrent notions and notations will be predefined in library files. Tuning the
background ATP for the demands of Naproche checking will allow to make
further proof steps implicit and make it easier to follow existing natural texts.

This approach will have to prove its value by further, more comprehensive
formalizations and by interlinked libraries of natural formalizations.

References

1. Cramer, M.: Proof-checking mathematical texts in controlled natural language.
PhD thesis, University of Bonn (2013)

2. Eberl, M.: Furstenberg’s topology and his proof of the infinitude of primes. Archive
of Formal Proofs (March 2020). https://isa-afp.org/entries/Furstenberg Topology.
html

3. Frerix, S., Koepke, P.: Automatic proof-checking of ordinary mathematical texts.
In: Proceedings of the Workshop Formal Mathematics for Mathematicians (2018)

4. Furstenberg, H.: On the infinitude of primes. Am. Math. Monthly 62(5), 353 (1955)
5. Hersh, R.: What is Mathematics, Really?. Oxford University Press, Oxford (1997)
6. Inglis, M., Aberdein, A.: Beauty is not simplicity: an analysis of mathematicians’

proof appraisals. Philosophia Math. 23, 87–109 (2014)
7. Isabelle contributors. The Isabelle 2021 release (February 2021)
8. Knaster, B., Tarski, A.: Un théorème sur les fonctions d’ensembles. Annales de la

Société Polonaise de Mathématique 6, 133–134 (1928)
9. Koepke, P.: Textbook mathematics in the Naproche-SAD system. In: Joint Pro-

ceedings of the FMM and LML Workshops (2019)
10. König, J.: Mathematische Annalen. Zum Kontinuumsproblem 60, 177–180 (1905)
11. Kühlwein, D., Cramer, M., Koepke, P., Schröder, B.: The Naproche system (2009)
12. Ziegler, G.M., Aigner, M.: Proofs from THE BOOK. 4th edition, Springer, Berlin

(2009)
13. McAllister, J.W.: Mathematical beauty and the evolution of the standards of math-

ematical proof. In: Emmer, M. (ed) The Visual Mind II, pp. 15–34. MIT Press,
Cambridge (2005)

14. Paskevich, A.: Furstenberg’s proof in SAD (2008). http://nevidal.org/cgi-bin/sad.
cgi?ty=txt&ln=en&link=fuerst.ftl

15. Paskevich, A.: Méthodes de formalisation des connaissances et des raisonnements
mathématiques: aspects appliqués et théoriques. PhD thesis, Université Paris (12,
2007)

16. Paskevich, A.: The syntax and semantics of the ForTheL language (2007)
17. Paulson, L.C.: Alexandria: Large-scale formal proof for the working mathematician

(2018)
18. Rota, G.-C.: The phenomenology of mathematical beauty. Synthese 111(2), 171–

182 (1997)
19. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.

5(2), 285–309 (1955)

https://isa-afp.org/entries/Furstenberg_Topology.html
https://isa-afp.org/entries/Furstenberg_Topology.html
http://nevidal.org/cgi-bin/sad.cgi?ty=txt&ln=en&link=fuerst.ftl
http://nevidal.org/cgi-bin/sad.cgi?ty=txt&ln=en&link=fuerst.ftl

Beautiful Formalizations in Isabelle/Naproche 31

20. Verchinine, K., Lyaletski, A., Paskevich, A.: System for automated deduction
(SAD): a tool for proof verification. In: Pfenning, F. (ed.) CADE 2007. LNCS
(LNAI), vol. 4603, pp. 398–403. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73595-3 29

21. Verchinine, K., Lyaletski, A., Paskevich, A., Anisimov, A.: On correctness of math-
ematical texts from a logical and practical point of view. In: Autexier, S., Campbell,
J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) CICM 2008. LNCS (LNAI),
vol. 5144, pp. 583–598. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85110-3 47

22. Wells, D.: Are these the most beautiful? Math. Intell. 12, 37–41 (1990)

https://doi.org/10.1007/978-3-540-73595-3_29
https://doi.org/10.1007/978-3-540-73595-3_29
https://doi.org/10.1007/978-3-540-85110-3_47
https://doi.org/10.1007/978-3-540-85110-3_47

Formalizing Axiomatic Systems
for Propositional Logic in Isabelle/HOL

Asta Halkjær From(B) , Agnes Moesg̊ard Eschen, and Jørgen Villadsen

DTU Compute - Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

{ahfrom,jovi}@dtu.dk, s151952@student.dtu.dk

Abstract. We formalize soundness and completeness proofs for a num-
ber of axiomatic systems for propositional logic in the proof assistant
Isabelle/HOL.

Keywords: Propositional logic · Axiomatic systems · Isabelle/HOL ·
Completeness · Soundness

1 Introduction

With the proof assistant Isabelle/HOL [10] we can create canonical reference doc-
uments for logics and their metatheory. The formal language of Isabelle/HOL,
namely higher-order logic, is precise and unambiguous. This means every proof
can be mechanically checked. We consider here two (functionally complete) frag-
ments of propositional logic and various axiomatic systems for these fragments.
Table 1 gives an overview of the systems and fragments. Our focus is mostly
syntactic and we showcase the benefits of doing this work in Isabelle. We write
down both the syntax and semantics of our languages, with infix syntax and
abbreviations as desired. Furthermore we specify various inference systems by
their rules and axioms. The systems here are all axiomatic but the techniques
work for proof systems in general.

This sets the stage for our investigations. We can easily verify that the proof
systems are sound with respect to the semantics, with Isabelle doing almost all
the work. We can verify completeness by adapting a formalization for a similar
system or by finding derivations for the axioms of one system in the other one
(and similarly for the rules). Here, Isabelle helps out: instead of painstakingly
writing down each derivation, a sometimes daunting task in an axiomatic system,
we can let one of its sophisticated proof methods prove its existence for us. We
can even let Isabelle find the right proof method and a suitable collection of
needed axioms and previously derived formulas for us with its Sledgehammer
technology. With these tools at hand we can verify historical claims such as how
some axiom can be omitted because it follows from the others.

As an example we formalize �Lukasiewicz’s shortest axiom for implicational
propositional logic and provide, in full, his derivation of Wajsberg’s axioms, for
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 32–46, 2021.
https://doi.org/10.1007/978-3-030-81097-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_3&domain=pdf
http://orcid.org/0000-0002-3601-0804
http://orcid.org/0000-0003-3624-1159
https://doi.org/10.1007/978-3-030-81097-9_3

Formalizing Axiomatic Systems 33

Table 1. The formalized axiomatic systems. The first three are formalized in the
theory System-W and use ⊥,→ as primitive symbols. The last three are formalized in
the theory System-R and use ¬,∨ as primitives, with the abbreviation p → q ≡ ¬p∨

q.

System Source Page [3] Axioms

Axiomatics Wajsberg 1937 159 p → (q → p)
(p → q) → (q → r) → (p → r)
((p → q) → p) → p)
⊥ → p

FW Wajsberg 1939 163 p → (q → p)
(p → (q → r)) → (p → q) →
(p → r)
((p → ⊥) → ⊥) → p)

WL �Lukasiewicz 1948 159 ((p → q) → r) → ((r → p) →
(s → p))
⊥ → p

Axiomatics Rasiowa 1949 157 p
∨

p → p
p → p

∨
q

(p → q) → (r
∨

p) → (q
∨

r)

RB Russell 1908,
Bernays 1926

157 p
∨

p → p
p → p

∨
q

p
∨

q → q
∨

p
(p → q) → (r

∨
p) → (q

∨
r)

PM Whitehead & Russell 1910 – p
∨

p → p
p → q

∨
p

p
∨

q → q
∨

p
(p

∨
(q

∨
r)) → (q

∨
(p

∨
r))

(p → q) → (r
∨

p) → (q
∨

r)

which we have formalized completeness. In this example we also show how to
seamlessly use his notation in Isabelle and have the proof assistant translate it
to the more familiar one. As another example we consider the exchangeability
of two axioms.

We reproduce parts of our formalizations in the paper. The full Isabelle/HOL
formalizations, 669 lines (535 sloc, source lines of code, not counting blank lines)
in file System_W.thy and 631 lines (510 sloc) in file System_R.thy, are available
here:

https://github.com/logic-tools/axiom

The paper strives to be self-contained so consulting the formalizations is
optional. However, the availability enables the reader to investigate the formal-
izations on their own and, if curious, to look up anything we have omitted for
reasons of space. The files can also be extended with other proof systems or
taken as inspiration for different fragments of propositional logic or expansions
to other logic. To verify properties of some new axiomatic system, it could be
shown equivalent to one formalized here, so that soundness and completeness
can be carried over. All of this with automation available to aid the process and
a trusted kernel that guarantees correctness.

https://github.com/logic-tools/axiom

34 A. H. From et al.

We modify our existing work [5] to formalize completeness of the axiomatic
systems we consider. The existing completeness proof uses Henkin’s synthetic
technique based on maximal consistent sets of formulas to build a model for
underivable formulas. We have adapted this proof to two representatives of the
fragments we consider in this paper (the two systems dubbed Axiomatics in
Table 1). A lot of this work involves showing that the proof system can derive
certain formulas that are used in the completeness proof. Similarly, to reuse the
completeness result for the other axiomatic systems for the same fragment, we
show that certain formulas can be derived using their axioms. In short, much of
this work is about proving that specific formulas can be derived. The classic book
by Church [3] has been an excellent source for relevant formulas and instead of
fiddling with instantiating the axioms ourselves and finding the right sequence
of rule applications, we call upon Isabelle’s tool Sledgehammer [2]. Often the
built-in provers meson and metis can assemble the pieces for us.

Unfortunately, we are not always lucky enough to find a proof in the first
attempt and Sledgehammer simply times out. We are then faced with a choice:
either make a manual attempt to derive the formula or take a guess that some
other formula should be derived first. We generally prefer the latter approach
since it lets the proof assistant do more of the menial work for us, while leaving
the more creative role of finding the right stepping stones to us.

In cases where we need to derive more than one formula to aid us, we typically
mark each one of them with sorry before trying to prove them. This fake proof
is accepted by Isabelle, so that Sledgehammer will pick up the lemma as usable
in further derivations, but provides no guarantee that the formula can actually
be derived. It saves time because we can make sure that the formulas marked
by sorry are actually useful for our derivation before we try to find derivations
for them in turn.

The paper is organized as follows. We continue with a discussion of the closest
related work (Sect. 2). We move on to formalize the first three systems (Sect. 3)
including the completeness of �Lukasiewicz’s single shortest axiom. We follow up
by formalizing the remaining three systems (Sect. 4) for our other fragment of
propositional logic and discuss historical concerns about the independence of
certain axioms. Finally we describe the main challenges and benefits of using
the proof assistant Isabelle/HOL (Sect. 5) and we conclude (Sect. 6) by placing
our work in the context of the IsaFoL (Isabelle Formalization of Logic) project.

2 Related Work

We see two main pieces of related work explained below: that of Michaelis and
Nipkow [9] and of Fitelson and Wos [4,13]. We distinguish ourselves by consid-
ering completeness of a number of systems based on different primitives using
the same approach.

– Michaelis and Nipkow [9] formalized a number of proof systems for proposi-
tional logic in Isabelle/HOL: resolution, natural deduction, sequent calculus

Formalizing Axiomatic Systems 35

and an axiomatic system. They used a much larger syntax with falsity, nega-
tion, conjunction, disjunction and implication. They both gave a syntactic
completeness proof for the sequent calculus and showed completeness of the
other systems by translations, but also showed completeness of the sequent
calculus and axiomatic system with a Henkin-style [5] proof akin to ours.
They only considered an axiomatic system similar to the Wajsberg axioms
from 1939, where we consider the range of systems in Table 1. Their larger
scope also means they go into fewer details than us, especially regarding the
role of Isabelle in deriving formulas.

– Fitelson and Wos [4,13] used the OTTER theorem prover to find axiomatic
proofs for a range of formulas, similar to our use of Isabelle. They start from
a clause with the disjunction of the negated Wajsberg 1937 axioms and a
clause consisting of the �Lukasiewicz 1948 axiom. Then they ask OTTER to
derive the empty clause, causing it to derive each of the Wajsberg axioms
along the way. We take a different approach and verify the correctness of the
inference steps given by �Lukasiewicz directly in Isabelle. Moreover, we show
how to use �Lukasiewicz’s notation directly, instead of translating it into the
clausal form of OTTER. Finally, Isabelle allows us to formalize semantics as
well as proof systems.

We have recently [5] presented the details of a direct Henkin-style complete-
ness proof for the Wajsberg axioms from 1939. In the present paper we elaborate
on our use of derivations and equivalences instead of describing the Henkin-style
completeness proof. We have used preliminary versions of our formalizations
in the files System_W.thy and System_R.thy in our course on automated rea-
soning in 2020 and 2021 with, respectively, 27 and 37 MSc computer science
students. The focus of the exercises was on our approach to formalization of
syntax, semantics and axiomatic systems using Isabelle/HOL. As an introduc-
tory example we included a very brief description of the approach in our paper
[6] about our main Isabelle/HOL tools for teaching logic, namely the Natural
Deduction Assistant (NaDeA) and the Sequent Calculus Verifier (SeCaV), both
much larger developments for first-order logic with functions.

3 Implication and Falsity

We start by considering Wajsberg’s axioms for the fragment of propositional
logic built from propositional symbols, implication and falsity.

3.1 Language

The following datatype form embeds our syntax into Isabelle:

datatype form = Falsity (〈⊥〉) | Pro nat | Imp form form (infix 〈→〉 0)

Vertical bars separate the three constructors. The first one introduces ⊥ as a
primitive, the next one propositional symbols with natural numbers as identifiers
and the final one is implication between two formulas, with the infix symbol →.

36 A. H. From et al.

Besides these primitive connectives, Isabelle allows us to introduce abbrevi-
ations as we would do with pen and paper. Here for the trivially true formula
and for negation:

abbreviation Truth (〈�〉) where 〈� ≡ (⊥ → ⊥)〉

abbreviation (input) 〈Neg p ≡ (p → ⊥)〉

To give our syntax meaning, we write a primitive recursion function in higher-
order logic that uses an interpretation of the propositional symbols to map a
formula into a truth value:

primrec semantics (infix 〈|=〉 0) where
〈(I |= ⊥) = False〉 |
〈(I |= (Pro n)) = I n〉 |
〈(I |= (p → q)) = (if I |= p then I |= q else True)〉

We use Isabelle’s if-then-else to interpret implication but we could also use the
built-in higher-order logic implication (−→).

We can define what it means for a formula to be valid by quantifying over
all interpretations:

definition 〈valid p ≡ ∀ I . (I |= p)〉

3.2 Wajsberg 1937

Consider first Wajsberg’s proof system from 1937 [3, p. 159]:

inductive Axiomatics (〈�〉) where
〈� q〉 if 〈� p〉 and 〈� (p → q)〉 |
〈� (p → (q → p))〉 |
〈� ((p → q) → ((q → r) → (p → r)))〉 |
〈� (((p → q) → p) → p)〉 |
〈� (⊥ → p)〉

The � predicate holds for a given formula if it can be derived from the specified
rule and axioms. Notably, the axioms are schemas, where p and q can be instan-
tiated for any formula. The only rule, here and later, is modus ponens (MP).
The first axiom (Imp1) corresponds to the K combinator, the second (Tran)
expresses transitivity of implication and the third (Clas), Peirce’s law, implies
the law of the excluded middle. Finally we have the principle of explosion (Expl).

As an example, we can derive � from this last axiom:

theorem 〈� �〉 using Axiomatics.intros(5) .

Isabelle automatically instantiates the given axiom correctly.
Since we have specified the meaning of our formulas in Isabelle, we can verify

the soundness of the proof system:

theorem soundness: 〈� p =⇒ I |= p〉

by (induct rule: Axiomatics.induct) auto

Formalizing Axiomatic Systems 37

The proof works by induction over the proof system, an induction principle
that Isabelle automatically provides. The proof method auto discharges each
of the resulting proof obligations. Such checks are cheap and easy in Isabelle,
helping to prevent typos or other mistakes.

Completeness follows the synthetic recipe due to Henkin and, together with
soundness, results in the following theorem:

theorem main: 〈valid p = � p〉

proof
assume 〈valid p〉

with completeness show 〈� p〉

unfolding valid-def .
next
assume 〈� p〉

with soundness show 〈valid p〉

unfolding valid-def by (intro allI)
qed

The proof is shown in its entirety to showcase features of the Isabelle syntax.

3.3 Wajsberg 1939

Consider a later proof system by Wajsberg with different axioms [3, p. 163]:

inductive FW (〈��〉) where
〈�� q〉 if 〈�� p〉 and 〈�� (p → q)〉 |
〈�� (p → (q → p))〉 |
〈�� ((p → (q → r)) → ((p → q) → (p → r)))〉 |
〈�� (((p → ⊥) → ⊥) → p)〉

We still have the Imp1 axiom corresponding to the K combinator, but as
second axiom we now have a correspondence to the S combinator (both axioms
used by Frege). Finally, with the abbreviation for Neg, we see that this last axiom
eliminates a double negation.

We can now verify that the two systems prove the same formulas:

theorem Axiomatics-FW : 〈� p ←→ �� p〉

proof
have ∗: 〈�� ((p → q) → ((q → r) → (p → r)))〉 for p q r
by (metis FW .intros(1−3))

then have ∗∗: 〈�� (((p → q) → p) → p)〉 for p q
by (metis FW .intros(1−4))

show 〈� p〉 if 〈�� p〉

using that by induct (use Imp1 Imp2 Neg Axiomatics.intros in meson)+
show 〈�� p〉 if 〈� p〉

using that by induct (use ∗ ∗∗ FW .intros in meson)+
qed

As part of the proof we find derivations for the transitivity principle (Tran)
and Peirce’s law in the latter system.

38 A. H. From et al.

3.4 Shortest Axiom

Considering the fragment of classical logic with implication but without a symbol
for falsity, �Lukasiewicz found a shortest single axiom from which you can derive
the rest [12].

To obtain completeness for our fragment with a symbol for falsity, we also
need the principle of explosion [3, p. 159]:

inductive WL (〈>>〉) where
〈>> q〉 if 〈>> p〉 and 〈>> (p → q)〉 |
〈>> (((p → q) → r) → ((r → p) → (s → p)))〉 |
〈>> (⊥ → p)〉

�Lukasiewicz writes C p q for p → q. This prefix notation allows him to avoid
parentheses. We can use it in Isabelle via the following specification:

abbreviation (input) C :: 〈form ⇒ form ⇒ form〉 (〈C - -〉 [0 , 0] 1) where
〈(C p q) ≡ (p → q)〉

We set the symbol C up with the mixfix specification [0, 0], 1, giving the two
arguments higher precedence (0) than the full expression (1). This means that
e.g. C C p q r is parsed correctly into (p → q) → r. Since we specified the
abbreviation as input only, any Isabelle output will display the formulas in the
conventional →-notation.

�Lukasiewicz shows in 29 lines how to derive the Wajsberg axioms (Axiomatics
above). With our abbreviation we reproduce his derivations almost verbatim in
Figs. 1 and 2 on pages 14 and 15. The formalization follows the original faithfully:
each line is only derived from the specified lines and modus ponens as passed
to the meson prover. �Lukasiewicz carefully describes how to instantiate each
previous formula in order to arrive at the current formula but we leave this to
Isabelle to figure out. While �Lukasiewicz’s paper must be hand-checked to ensure
there are no errors, Isabelle instantly verifies the correctness of our formalization.
Given those derivations we can prove equivalence between this proof system and
the first Wajsberg axioms:

theorem equivalence: 〈>> p ←→ � p〉

proof
have ∗: 〈� (((p → q) → r) → ((r → p) → (s → p)))〉 for p q r s
using completeness by simp

show 〈� p〉 if 〈>> p〉

using that by induct (auto simp: ∗ intro: Axiomatics.intros)
show 〈>> p〉 if 〈� p〉

using that by induct (auto simp: l27 l28 l29 intro: WL.intros)
qed

We use the completeness of the Wajsberg axioms to show that �Lukasiewicz’s
formula can be derived. In the other direction we use the formulas in lines 27–29
of Fig. 2.

Formalizing Axiomatic Systems 39

lemma l1 : 〈>> (C C C p q r C C r p C s p)〉

using WL.intros(2) .

lemma l2 : 〈>> (C C C C r p C s p C p q C r C p q)〉

using l1 by (meson WL.intros(1))

lemma l3 : 〈>> (C C C r C p q C C r p C s p C t C C r p C s p)〉

using l1 l2 by (meson WL.intros(1))

lemma l4 : 〈>> (C C C p q p C s p)〉

using l3 l1 by (meson WL.intros(1))

lemma l5 : 〈>> (C C C s p C p q C r C p q)〉

using l1 l4 by (meson WL.intros(1))

lemma l6 : 〈>> (C C C r C p q C s p C t C s p)〉

using l1 l5 by (meson WL.intros(1))

lemma l7 : 〈>> (C C C t C s p C r C p q C u C r C p q)〉

using l1 l6 by (meson WL.intros(1))

lemma l8 : 〈>> (C C C s q p C q p)〉

using l7 l1 by (meson WL.intros(1))

lemma l9 : 〈>> (C r C C r p C s p)〉

using l8 l1 by (meson WL.intros(1))

lemma l10 : 〈>> (C C C C C r q p C s p r C t r)〉

using l1 l9 by (meson WL.intros(1))

lemma l11 : 〈>> (C C C t r C C C r q p C s p C u C C C r q p C s p)〉

using l1 l10 by (meson WL.intros(1))

lemma l12 : 〈>> (C C C u C C C r q p C s p C t r C v C t r)〉

using l1 l11 by (meson WL.intros(1))

lemma l13 : 〈>> (C C C v C t r C u C C C r q p C s p C w C u C C C r q p C s p)〉

using l1 l12 by (meson WL.intros(1))

lemma l14 : 〈>> (C C C t r C s p C C C r q p C s p)〉

using l13 l1 by (meson WL.intros(1))

lemma l15 : 〈>> (C C C r q C s p C C r p C s p)〉

using l14 l1 by (meson WL.intros(1))

Fig. 1. Lines 1–15 of �Lukasiewicz’s derivation.

40 A. H. From et al.

lemma l16 : 〈>> (C C r C s p C C C r q p C s p)〉

using l15 l9 by (meson WL.intros(1))

lemma l17 : 〈>> (C C C C C p q r t C s p C C r p C s p)〉

using l16 l1 by (meson WL.intros(1))

lemma l18 : 〈>> (C C C C r p C s p C C C p q r t C u C C C p q r t)〉

using l1 l17 by (meson WL.intros(1))

lemma l19 : 〈>> (C C C C s p q C r p C C C p q r C s p)〉

using l18 by (meson WL.intros(1))

lemma l20 : 〈>> (C C C C r p p C s p C C C p q r C s p)〉

using l14 l19 by (meson WL.intros(1))

lemma l21 : 〈>> (C C C C p r q q C C q r C p r)〉

using l20 l15 by (meson WL.intros(1))

lemma l22 : 〈>> (C p p)〉

using l5 l4 by (meson WL.intros(1))

lemma l23 : 〈>> (C C C p q r C C r p p)〉

using l20 l22 by (meson WL.intros(1))

lemma l24 : 〈>> (C r C C r p p)〉

using l8 l23 by (meson WL.intros(1))

lemma l25 : 〈>> (C C p q C C C p r q q)〉

using l15 l24 by (meson WL.intros(1))

lemma l26 : 〈>> (C C C C p q C C q r C p r C C C p r q q C C C p r q q)〉

using l25 by (meson WL.intros(1))

lemma l27 : 〈>> (C p C q p)〉

using l8 by (meson WL.intros(1))

lemma l28 : 〈>> (C C C p q p p)〉

using l25 l22 by (meson WL.intros(1))

lemma l29 : 〈>> (C C p q C C q r C p r)〉

using l21 l26 by (meson WL.intros(1))

Fig. 2. Lines 16–29 of �Lukasiewicz’s derivation.

Formalizing Axiomatic Systems 41

4 Disjunction and Negation

We now wipe the slate clean and consider Rasiowa’s axioms for a different frag-
ment of propositional logic built from propositional symbols, negation (¬) and
disjunction (

∨
).

4.1 Language

Again we specify the syntax as a datatype in Isabelle:

datatype form = Pro nat | Neg form | Dis form form (infix 〈
∨

〉 0)

We regain implication through its classical interpretation:

abbreviation Imp (infix 〈→〉 0) where 〈(p → q) ≡ (Neg p
∨

q)〉

We again define the trivially true formula, this time more abstractly since
we no longer have ⊥ available (in Isabelle/HOL, by formulation, each type has
one designated value that is undefined but we do not know which value it is):

abbreviation Truth (〈�〉) where 〈� ≡ (undefined → undefined)〉

Given �, however, defining ⊥ becomes simple:

abbreviation Falsity (〈⊥〉) where 〈⊥ ≡ Neg �〉

We specify the semantics similarly to before:

primrec semantics (infix 〈|=〉 0) where
〈(I |= Pro n) = I n〉 |
〈(I |= Neg p) = (if I |= p then False else True)〉 |
〈(I |= (p

∨
q)) = (if I |= p then True else (I |= q))〉

4.2 Rasiowa 1949

Consider the following proof system by Rasiowa [3, p. 157]:

inductive Axiomatics (〈�〉) where
〈� q〉 if 〈� p〉 and 〈� (p → q)〉 |
〈� ((p

∨
p) → p)〉 |

〈� (p → (p
∨

q))〉 |
〈� ((p → q) → ((r

∨
p) → (q

∨
r)))〉

To aid readability we write the rules using the abbreviation for implication
introduced above (p → q ≡ Neg p

∨
q), but we recall that it is not a primitive.

If we expand the abbreviation for the modus ponens rule (MP), it infers � q
from � p and � ¬p ∨

q.
The first axiom (Idem) expresses idempotence of disjunction. The second

(AddR) builds a disjunction from a given formula by adding an arbitrary formula
on the right-hand side. Finally, the last axiom (Swap) does two things: it replaces
the formula on right-hand side of the disjunction with an implied formula and
then it swaps the two sides of the disjunction.

The principle of explosion is not a built-in axiom but Isabelle can quickly
find a derivation:

42 A. H. From et al.

theorem 〈� (⊥ → p)〉 using Axiomatics.intros by metis

We can just as quickly verify the soundness:

theorem soundness: 〈� p =⇒ I |= p〉

by (induct rule: Axiomatics.induct) auto

The axiom AddR forms a disjunction with the given formula on the left and
an arbitrary one on the right. We might wonder if this is essential or whether
we could add the arbitrary formula on the left instead (i.e. AddL). Isabelle can
help answer this question:

proposition alternative-axiom: 〈� (p → (p
∨

q))〉 if 〈
∧
p q . � (p → (q

∨
p))〉

by (metis MP Idem Swap that)

We see that AddR can be derived from AddL (in Isabelle given after if and
referred to as that) alongside the remaining proof system. Note that AddR is not
made available to metis.

Likewise, we can derive AddL from the full proof system:

lemma AddL: 〈� (p → (q
∨

p))〉

by (metis MP Idem Swap AddR)

Thus, we can quickly answer questions about different variants of the axioms.
A notable derivable formula is the following that substitutes a formula on

the right-hand side of a disjunction with an implied formula:

lemma SubR: 〈� ((p → q) → ((r
∨

p) → (r
∨

q)))〉

by (meson MP SwapCon Swap)

Again, we can prove the completeness of the system:

theorem main: 〈valid p = � p〉

(proof omitted)

4.3 Russell 1908 and Bernays 1926

Consider now another proof system over the same fragment [3, p. 157]:

inductive RB (〈��〉) where
〈�� q〉 if 〈�� p〉 and 〈�� (p → q)〉 |
〈�� ((p

∨
p) → p)〉 |

〈�� (p → (q
∨

p))〉 |
〈�� ((p

∨
q) → (q

∨
p))〉 |

〈�� ((p → q) → ((r
∨

p) → (r
∨

q)))〉

Here we have first Idem and AddL, then a permutation or commutativity
principle for disjunction (Perm) and finally SubR. We only need the derived
SubR to show equivalence:

Formalizing Axiomatic Systems 43

theorem Axiomatics-RB : 〈� p ←→ �� p〉

proof
show 〈� p〉 if 〈�� p〉

using that by induct (use SubR Axiomatics.intros in meson)+
show 〈�� p〉 if 〈� p〉

using that by induct (use RB .intros in meson)+
qed

4.4 Whitehead and Russell 1910

Consider next the system for propositional logic that appears in the first volume
of the three-volume Principia Mathematica (often abbreviated PM):

inductive PM (〈>>〉) where
〈>> q〉 if 〈>> p〉 and 〈>> (p → q)〉 |
〈>> ((p

∨
p) → p)〉 |

〈>> (p → (q
∨

p))〉 |
〈>> ((p

∨
q) → (q

∨
p))〉 |

〈>> ((p
∨

(q
∨

r)) → (q
∨

(p
∨

r)))〉 |
〈>> ((p → q) → ((r

∨
p) → (r

∨
q)))〉

Here we have Idem, AddL, Perm, a distributivity principle and SubR. We
can easily show that we can derive at least as many formulas when we have the
extra axiom:

proposition PM-extends-RB : 〈�� p =⇒ >> p〉

by (induct rule: RB .induct) (auto intro: PM .intros)

To show the equivalence in both directions, we use the completeness of RB
to prove the existence of a derivation for the extra axiom:

theorem equivalence: 〈>> p ←→ � p〉

proof
have ∗: 〈� ((p

∨
(q

∨
r)) → (q

∨
(p

∨
r)))〉 for p q r

using completeness by simp
show 〈� p〉 if 〈>> p〉

using that by induct (use ∗ SubR Axiomatics.intros in meson)+
show 〈>> p〉 if 〈� p〉

using that by induct (use PM .intros in meson)+
qed

5 Challenges and Benefits

Isabelle helped enormously in adapting the completeness proof to each of the two
fragments, since it is easy to define abbreviations for non-primitive connectives
and the proof assistant gives an error everywhere something needs to be changed.
What the proof assistant cannot tell us, is what sub-derivations are needed to
derive a key formula. This proved a particular challenge for the Rasiowa axioms

44 A. H. From et al.

for the fragment ¬,∨. Those axioms are concerned with these two operators
but we usually think in terms of implication, →, and want to derive formulas
like the Wajsberg 1937/1939 axioms (cf. Table 1). However, the starting point
does not give us much help. For instance, to derive the following transitivity of
implication, a useful lemma for further derivations, we must first derive several
other formulas:

lemma Tran: 〈� ((p → q) → ((q → r) → (p → r)))〉

One of the formulas we found useful is the following, somewhat unintuitive,
SwapAnte lemma:

lemma SwapAnte: 〈� (((p
∨

q) → r) → ((q
∨

p) → r))〉

Luckily, Isabelle makes it easy to quickly derive a range of formulas (or
pretend to derive them with sorry) and figure out which ones are useful after
the fact. As we have shown throughout the paper, this allows us to quickly
investigate connections between various proof systems, with Isabelle keeping
track of the details for us.

6 Conclusion

We have seen two languages and a range of axiomatic proof systems with various
derivations and equivalences. To our knowledge, most of the systems have been
formalized here for the first time with soundness and completeness proofs.

Our work is part of the IsaFoL (Isabelle Formalization of Logic) project [1]
which aims at developing formalizations in Isabelle/HOL of logics, proof systems,
and automatic/interactive provers. Other work in the same line includes com-
pleteness of epistemic [7] and hybrid [8] logic and an ordered resolution prover
for first-order logic [11]. The project collects formalizations such as ours that can
be used as reference documents to verify historical claims, in teaching logic, or to
aid in the formalization of other logics and potentially executable provers. Our
own formalization could serve as starting point for a student project to formalize
the completeness of some other axiomatic proof system.

A notable thing about our approach is that while we show that several for-
mulas are derivable in one system or another, we do not give the derivation itself.
Instead, we let an automated prover like metis or meson find it. This allows us to
move quickly and at a higher level than if we spelled out each step in full: faced
with a formula that is hard to derive we can experiment with simpler formulas
that the automation can handle and try to piece things together afterwards.
As mentioned, this was exactly how we worked to derive many of the formulas.
However, it also means that even if we prove that a formula can be derived,
we have no derivation to inspect; we must simply trust Isabelle that it exists.
Meanwhile, we argue that Isabelle is at least as trustworthy as a human author
whose work we might not check in the first place. If we do wish to spell out the
derivation, Isabelle can help us do so, by proving that derivations exist for our
stepping stones.

Formalizing Axiomatic Systems 45

The ability to introduce abbreviations can provide interesting perspectives
on formulas. Consider the usual axiom for disjunction elimination:

lemma DisE : 〈� ((p → r) → ((q → r) → ((p
∨

q) → r)))〉

We might think of it as “if both p and q imply r, then if we know either then
we know r.” In the language with disjunction and negation, the implication is
an abbreviation and expanding the inner ones gives us:

(¬p
∨

r) → (¬q
∨

r) → (p
∨

q) → r

This has another natural reading: “either p is false or r holds, and either q is
false or r holds, but either p or q is in fact true, so r must hold.” An interactive
system like Isabelle makes it simple to hide away details like the abbreviation
for implication but also to peek at them if we want to.

Acknowledgements. We thank Alexander Birch Jensen, Frederik Krogsdal Jacob-
sen, Osman Hasan and the anonymous reviewers for comments on drafts.

References

1. Blanchette, J.C.: Formalizing the metatheory of logical calculi and automatic
provers in Isabelle/HOL (invited talk). In: Mahboubi, A., Myreen, M.O. (eds.)
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2019, 14–15 January 2019, Cascais, Portugal, pp. 1–13.
ACM (2019)

2. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT
solvers. J. Autom. Reason. 51(1), 109–128 (2013). https://doi.org/10.1007/s10817-
013-9278-5

3. Church, A.: Introduction to Mathematical Logic. Princeton University Press,
Princeton (1956)

4. Fitelson, B., Wos, L.: Finding missing proofs with automated reasoning. Studia
Logica 68(3), 329–356 (2001). https://doi.org/10.1023/A:1012486904520

5. From, A.H.: Formalizing Henkin-style completeness of an axiomatic system for
propositional logic. In: Proceedings of the Web Summer School in Logic, Lan-
guage and Information (WeSSLLII) and the European Summer School in Logic,
Language and Information (ESSLLI) Virtual Student Session (2020), pp. 1–12,
preliminary paper. https://www.brandeis.edu/nasslli2020/pdfs/student-session-
proceedings-compressed.pdf#page=8. Accepted for Springer post-proceedings

6. From, A.H., Villadsen, J., Blackburn, P.: Isabelle/HOL as a meta-language for
teaching logic. In: Quaresma, P., Neuper, W., Marcos, J. (eds.) Proceedings 9th
International Workshop on Theorem Proving Components for Educational Soft-
ware, ThEdu@IJCAR 2020, 29th June 2020, Paris, France. EPTCS, vol. 328, pp.
18–34 (2020). https://doi.org/10.4204/EPTCS.328.2

7. From, A.H.: Epistemic logic: completeness of modal logics. Archive of Formal
Proofs, October 2018. https://devel.isa-afp.org/entries/Epistemic Logic.html, For-
mal proof development

https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1023/A:1012486904520
https://www.brandeis.edu/nasslli2020/pdfs/student-session-proceedings-compressed.pdf#page=8
https://www.brandeis.edu/nasslli2020/pdfs/student-session-proceedings-compressed.pdf#page=8
https://doi.org/10.4204/EPTCS.328.2
https://devel.isa-afp.org/entries/Epistemic_Logic.html

46 A. H. From et al.

8. From, A.H.: Formalizing a Seligman-style tableau system for hybrid logic. Archive
of Formal Proofs, December 2019. https://isa-afp.org/entries/Hybrid Logic.html,
Formal proof development

9. Michaelis, J., Nipkow, T.: Formalized proof systems for propositional logic. In:
Abel, A., Forsberg, F.N., Kaposi, A. (eds.) 23rd International Conference on Types
for Proofs and Programs, TYPES 2017, 29 May–1 June 2017, Budapest, Hungary.
LIPIcs, vol. 104, pp. 5:1–5:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017)

10. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

11. Schlichtkrull, A., Blanchette, J., Traytel, D., Waldmann, U.: Formalizing Bachmair
and Ganzinger’s ordered resolution prover. J. Autom. Reason. 64(7), 1169–1195
(2020)

12. �Lukasiewicz, J.: The shortest axiom of the implicational calculus of propositions.
Proc. Royal Irish Acad. Sect. A: Math. Phys. Sci. 52, 25–33 (1948)

13. Wos, L., Pieper, G.W.: Automated Reasoning and the Discovery of Missing and
Elegant Proofs. Rinton Press, Princeton (2003)

https://isa-afp.org/entries/Hybrid_Logic.html
https://doi.org/10.1007/3-540-45949-9

Formalization of RBD-Based Cause
Consequence Analysis in HOL

Mohamed Abdelghany(B) and Sofiène Tahar(B)

Department of Electrical and Computer Engineering,
Concordia University, Montreal, QC, Canada

{m eldes,tahar}@ece.concordia.ca

Abstract. Cause consequence analysis is a safety assessment technique
that is traditionally used to model the causes of subsystem failures
in a critical system and their potential consequences using Fault Tree
and Event Tree (ET) dependability modeling techniques, combined in a
graphical Cause-Consequence Diagram (CCD). In this paper, we propose
a novel idea of using Reliability Block Diagrams (RBD) for CCD analysis
based on formal methods. Unlike Fault Trees, RBDs allow to model the
success relationships of subsystem components to keep the entire subsys-
tem reliable. To this end, we formalize in higher-order logic new mathe-
matical formulations of CCD functions for the RBD modeling of generic
n-subsystems using HOL4. This formalization enables universal n-level
CCD analysis, based on RBDs and ETs, by determining the probabili-
ties of multi-state safety classes, i.e., complete/partial failure and success,
that can occur in the entire complex systems at the subsystem level.

Keywords: Cause-Consequence Diagram · Reliability Block
Diagram · Event Tree · Higher-order logic · Theorem proving

1 Introduction

Since the late 60’s, various types of dependability modeling techniques have been
developed to determine the safety assessment of safety-critical systems, such
as smart grids and automotive industry. These include predominantly graph
theory based approaches such as Fault Trees (FT) [18], Reliability Block Dia-
grams (RBD) [7] and Event Trees (ET) [14]. FTs mainly provide a graphical
model for analyzing the factors causing a complete system failure upon their
occurrences. On the other hand, RBDs provide a schematic structure for analyz-
ing the success relationships of system components that keep the entire system
reliable. In contrast to FTs and RBDs, ETs provide a tree model for all possible
complete/partial failure and success scenarios at the system-level so that one of
these possible scenarios can occur [14]. More recently, an approach has been pro-
posed to conduct ET analysis in conjunction with FTs to identify all subsystem
failure events in a critical system and their cascading dependencies on the entire
system [16]. This analysis method is known as cause-consequence analysis, using
a combined hierarchical structure of Cause-Consequence Diagrams (CCD) [16].
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 47–64, 2021.
https://doi.org/10.1007/978-3-030-81097-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-81097-9_4

48 M. Abdelghany and S. Tahar

Traditionally, CCD analysis based on FTs and ETs is carried out by using
paper-and-pencil approaches (e.g., [5]) or computer simulation tools (e.g., [20]).
The major limitations of the manual analysis approach are its human-error
proneness and scalability to handle large complex systems [19]. On the other
hand, simulation-based analysis approaches, such as MATLAB Monte-Carlo
Simulation (MCS), can be used for CCD analysis for faster computation. They,
however, lack the rigor of detailed proof steps and absolute accuracy (i.e., results
approximation) due to an explosion of the test cases [20]. A more practical
way to remedy the shortcomings of informal reasoning approaches of cause-
consequence analysis is to use formal generic mathematical formulations that can
analyze large-scale CCD graphs. Only a few works have previously considered
using formal methods for cause-consequence analysis. For instance, Ortmeier
et al. in [13] developed a formal framework for Deductive Cause-Consequence
Analysis (DCCA) using the SMV model checker to formally verify probabilistic
properties for CCD analysis. However, according to the authors of [9], there is a
scalability problem of showing the completeness of DCCA due to the exponen-
tial growth of the number of proof obligations with large complex CCD graphs.
For that reason, to overcome the above-mentioned limitations, we endeavor to
solve the scalability problem of CCDs by using theorem proving, in particular
the HOL4 proof assistant [10], which provides the ability of verifying generic
expressions constructed in higher-order logic (HOL).

Prior to this work, there were three notable projects for building formal
infrastructures in HOL to formally model and analyze FTs, RBDs and ETs.
For instance, Ahmad [4] used the HOL4 theorem prover to formalize ordinary
(static) FT and RBD structures. Elderhalli [8] had formalized dynamic versions
of FTs and RBDs in HOL4. These formalizations have been used for the reli-
ability analysis of several engineering systems. However, they formally analyze
either a critical system static/dynamic failure or static/dynamic success only.
Therefore, in [2], we developed a HOL4 theory to reason about ETs consider-
ing all failure and success events of system-level components simultaneously. We
proposed a new datatype EVENT TREE consisting of ET basic constructors that
can build large scale ET diagrams and provides us with the ability to obtain a
verified system-level failure/operating expression. Moreover, in [3], we proposed
a formal approach for state-of-the-art CCD analysis using the above static FT
and ET formalizations, which enables safety analysts to perform formal failure
analysis for n-level subsystems of a complex system and obtain all possible com-
plete/partial failure and success consequences events that can occur in HOL4.
However, in order to identify potential areas of poor reliability, safety analysts
often require a reliability model that is close to the hierarchical structure of
the subsystem components. For that reason, we propose in this paper a novel
approach to conduct a CCD analysis based on RBDs rather than FTs. In par-
ticular, we develop new formulations of CCDs based on RBD and ET theories,
and provide their formalization using HOL theorem proving.

Unlike FT-based CCD analysis, RBDs allow to model all success relationships
of n-subsystems to keep them reliable and obtain multi-state consequence safety

Formalization of RBD-Based Cause Consequence Analysis in HOL 49

classes, i.e., complete/partial failure and complete/partial success, that can occur
in the entire critical system at the subsystem level. To the best of our knowledge,
the idea of using RBD modeling in conjunction with the graph theory of CCDs
has not been proposed before. We propose new mathematical formulations that
can analyze scalable CCDs associated with different RBD configurations to n-
subsystems. In order to check the correctness of the newly-proposed equations,
we verified them within the sound environment of the HOL4 theorem prover.
To this end, we formalize in HOL4 cause-consequence functions for the formal
modeling of the graph theory of RBDs corresponding to generic n-subsystems.
Also, our proposed formalization enables the formal probabilistic assessment of
large scale n-level CCD structures based on any probabilistic distribution, which
makes our work the first of its kind.

The rest of the paper is organized as follows: In Sect. 2, we describe some pre-
liminaries of RBDs and ETs to facilitate understanding of the rest of the paper.
Section 3 presents the proposed formalization of CCDs based on RBDs and ETs,
including the newly introduced probabilistic formulations and their verification
in the HOL4 theorem prover. Lastly, Sect. 4 concludes the paper.

2 Preliminaries

In this section, we summarize the fundamentals of existing RBD and ET formal-
izations in HOL4 to facilitate the reader’s understanding of the rest of the paper.

2.1 RBD Formalization

Reliability Block Diagram [7] (RBD) analysis is one of the commonly used safety
assessment techniques for critical systems. It mainly provides a schematic dia-
gram for analyzing the success relationships of subsystem components that keep
the entire subsystem reliable. An RBD structure consists of blocks that represent
the subsystem components and connectors that indicate the connections between
these components. An RBD has two main types of configuration patterns series
and parallel. The reliability of a subsystem when its components are connected
in series configuration is considered to be reliable at time t only if all of the
components are functioning reliably at time t, then the overall reliability R of
the subsystem can be mathematically expressed as [7]:

Rseries(t) = Pr

(
N⋂
i=1

Xi(t)

)
=

N∏
i=1

Ri(t) (1)

Similarly, the reliability of a subsystem where its components connected in par-
allel will continue functioning at a specific time t as long as at least one of its
components remains functional, which can be mathematically expressed as [7]:

Rparallel(t) = Pr

(
N⋃
i=1

Xi(t)

)
= 1 −

N∏
i=1

(1 − Ri(t)) (2)

50 M. Abdelghany and S. Tahar

Ahmad et al. in [4] presented the RBD formalization by defining a new
datatype rbd, in HOL4 as:

Hol datatype rbd = series of (rbd list) | parallel of (rbd list) |

atomic of (event)

The RBD constructors series and parallel are recursive functions on rbd-
typed lists, while the RBD constructor atomic operates on an rbd-type vari-
able. A semantic function is then defined over the rbd datatype that can yield
mathematically the corresponding RBD diagram as:

Definition 1
� rbd struct p (atomic X) = X ∧

rbd struct p (series[]) = p space p ∧ rbd struct p (parallel[]) = {} ∧
rbd struct p (series (X::XN)) =

rbd struct p X ∩ rbd struct p (series XN) ∧
rbd struct p (parallel (X::XN)) =

rbd struct p X ∪ rbd struct p (parallel XN)

The function rbd struct takes a single event X, identified by a basic type con-
structor atomic, and returns the given event X. If the function rbd struct takes
an arbitrary list of type rbd, identified by a type constructor series, then it
performs the intersection of all elements after applying the function rbd struct
on each element of the given list. Similarly, if the function rbd struct takes
an arbitrary list of type rbd, identified by a type constructor parallel, then
it returns the union of all elements after applying the function rbd struct on
each element of the list XN . The formal verification in HOL4 for the reliabil-
ity series and parallel probabilistic expressions Eq. 1 and Eq. 2, respectively, is
presented in Table 1 [4]. These mathematical expressions (Theorems 1–2) are
verified under the constraints that (a) all associated events in the given list XN

are drawn from the events space p (XN ∈ events p); (b) p is a valid proba-
bility space (prob space p); and lastly (c) the events in the given list XN are
independent (MUTUAL INDEP p XN). The function PROB LIST takes an arbitrary
list [Z1, Z2, Z3, . . . , ZN] and returns a list of probabilities associated with the

Table 1. RBD probabilistic theorems [4]

Formalization of RBD-Based Cause Consequence Analysis in HOL 51

elements of the list [prob p Z1, prob p Z2, prob p Z3, . . . , prob p ZN], while
the function COMPL LIST takes a list [X1,X2,X3, . . . , XN] and returns the com-
plement of all elements in the list [(1 − X1), (1 − X2), (1 − X3), . . . , (1 − XN)].
The function

∏
takes a list [Y1, Y2, Y3, . . . , YN] and returns the product of the

list elements Y1 × Y2 × Y3 × · · · × YN .

2.2 ET Formalization

Event Tree [14] (ET) is a widely used dependability modeling technique that can
model all possible system-level components failure and success states and their
cascading dependencies on the entire system in the form of a tree structure. An
ET diagram starts by an Initiating Node from which all possible consequence
scenarios of a sudden event that can occur in the system are drawn as Branches
connected to Proceeding Nodes so that only one of these scenarios can occur, i.e.,
all possible ET consequence paths are disjoint (mutually exclusive) and distinct.
These ET constructors were formally modeled using a new recursive datatype
EVENT TREE, in HOL4 as [2]:

Hol datatype EVENT TREE = ATOMIC of (event) | NODE of (EVENT TREE list) |

BRANCH of (event) (EVENT TREE)

The type constructors NODE and BRANCH are recursive functions on EVENT TREE-
typed. A semantic function is then defined over the EVENT TREE datatype that
can yield a corresponding ET diagram as:

Definition 2
� ETREE (ATOMIC Y) = Y ∧ ETREE (NODE []) = {} ∧

ETREE (NODE (X::XN)) = ETREE X ∪ (ETREE (NODE XN)) ∧
ETREE (BRANCH Y Z) = Y ∩ ETREE Z

The function ETREE takes a success/fail event Y, identified by an ET type con-
structor ATOMIC and returns the event Y. If the function ETREE takes a list XN of
type EVENT TREE, identified by a type constructor NODE, then it returns the union
of all elements after applying the function ETREE on each element of the given
list. Similarly, if the function ETREE takes a success/fail event X and a proceeding
ET Z, identified by a type constructor of EVENT TREE type, then it performs the
intersection of the event X with the ET Z after applying the function ETREE.
For the formal probabilistic assessment of each path occurrence in the ET dia-
gram, HOL4 probabilistic properties for NODE and BRANCH ET constructors are
presented in Table 2 [2]. These expressions are formally verified under the same
RBD constraints, i.e., XN ∈ events p, prob space p, MUTUAL INDEP p XN , as
well as the ET constraints defined by Papazoglou [14] (distinct, disjoint, finite),
i.e., ALL DISTINCT XN and disjoint XN to ensure that each pair of elements
in a given list XN is distinct and mutually exclusive, respectively. The elements
in a list are intrinsically finite and thus all ET constraint requirements are sat-
isfied. The function

∑
takes a list [X1,X2,X3, . . . , XN] and returns the sum of

the list elements X1 + X2 + X3 + · · · + XN .

52 M. Abdelghany and S. Tahar

Table 2. ET probabilistic theorems [2]

3 Cause-Consequence Diagram Formalization

The graph theory of CCDs [21] uses three basic constructors Decision box, Con-
sequence path and Consequence box [6]. The detailed description of the CCD con-
structors is illustrated in Table 3. To present a clear understanding of these con-
cepts, the traditional FT/ET-based CCD analysis for n-subsystems is described
in Fig. 1a. As shown in Fig. 1a, FT logic-gates, such as AND (models the com-
plete failure of the subsystem if all of the input failure events occur at the same
time) and OR (models the complete failure of the subsystem if any of the input
failure events occurs alone), are associated with all decision boxes to model the
failure of generic n-subsystems. It can be noticed from Fig. 1a that the output of
each NO BOX for all decision boxes is equal to the subsystem FT model (FTX),
while the YES BOX is the complement of the FT model (FTX). Analogously to

Table 3. CCD symbols and functions [3]

Formalization of RBD-Based Cause Consequence Analysis in HOL 53

Fig. 1. Cause consequence analysis models

Fig. 2. Overview of RBD-based CCD analysis [3]

Fig. 1a, Fig. 1b illustrates the proposed RBD/ET-based CCD analysis, where
different RBD configurations, such as series (models the complete success of the
subsystem if all of the input success events occur at the same time) and parallel
(models the complete success of the subsystem if any of the input success events
occurs alone), are associated with all CCD decision boxes to model the reliability
of generic n-subsystems. As shown in Fig. 1b, the output of each YES BOX for all
decision boxes is equal to the RBD outcome (RBDX), while the NO BOX is the
complement of the RBD model (RBDX).

Figure 2 depicts the overview of the developed four steps of cause-
consequence safety analysis for complex systems [5]: (1) Subsystems reliabil-
ity events: identify the success events for all subsystems using RBD models
that keep the subsystems reliable in a complex system; (2) Construction of
a complete CCD : build a full CCD diagram using its basic constructors (see
Table 3) considering that the order of components should follow the temporal
action of the system; (3) CCD model reduction: remove the unnecessary deci-
sion boxes in the system to obtain its minimal CCD model representing the
actual functional behavior of the complex system and reduce the number of test
cases; and (4) CCD probabilistic analysis: determine the probabilities of all CCD

54 M. Abdelghany and S. Tahar

consequence paths, which represent the likelihood of specific sequence scenarios
that are possible to occur in a system so that only one scenario can occur [19].
This implies that all consequences in a CCD are mutually exclusive [6]. As
an example, consider a Wind Turbine system [15] consisting of two main sub-
systems: Induction Generator (IG) and Power Converter (PC), as shown in
Fig. 3a [11]. An IG consists of three components Stator, Rotor and Brushes [12],
while a PC consists of four components Rotor Side AC/DC Converter (RSC),
DC Filter, Grid Side DC/AC Converter (GSC) and Control Unit (CU) [17].
The four main steps of the above-mentioned RBD/ET-based cause-consequence
analysis for the wind turbine system can be done as follows:

1. Components reliability events: Assign an RBD series configuration to each
subsystem in the wind turbine, i.e., RIG, RPC, as shown in Fig. 3b [11], which
can be expressed mathematically as:

RIG = Rstator × Rrotor × Rbrushes (3)

RPC = RRSC × Rfilter × RGSC × RCU (4)

2. Construction of a complete CCD : Draw a complete CCD model of the wind
turbine system, as shown in Fig. 4a. For instance, if the condition of the IG
decision box is either YES or NO, then the next subsystem PC is taken into
consideration. Each consequence path in the CCD analysis ends with either
a wind turbine success (WTS) or a wind turbine failure (WTF).

3. CCD model reduction: Apply the reduction operation on the constructed com-
plete CCD model. For instance, if the condition of the IG decision box (IG
functions correctly) is not satisfied, i.e., NO box, then the wind turbine fails
regardless of the status of PC. Figure 4b represents the minimal RBD/ET-
based cause consequence analysis of the wind turbine operation.

4. CCD probabilistic analysis: The probabilistic assessment of the two conse-
quence boxes WTS and WTF in Fig. 4b can be expressed mathematically as:

P(Consequence BoxWTS
) = P(IGYES) × P(PCYES) (5)

P(Consequence BoxWTF
) = P(IGYES) × P(PCNO) + P(IGNO) (6)

where P(XYES) is the reliability function outgoing from a subsystem deci-
sion box, i.e., RX model, and P(XNO) is the unreliability function or the
probability of failure, i.e., the complement of the RX model (RX).

Gearbox

PC

AC

DC

Grid

IG

v
v

v
v
v

v
v v v v

Stator

Rotor
Blade

Brushes DC Filter

 DC

AC

 CU

(a) WT Structure

 Stator Rotor Brushes
RIG

 GSC DC Filter CU
RPC

 RSC

RBDseries

RBDseries

(b) RBD Models of WT Subsystems

Fig. 3. Wind turbine system [11]

Formalization of RBD-Based Cause Consequence Analysis in HOL 55

Induction Generator
Functions Correctly

YES NO

Power Converter
Functions Correctly

YES NO

RIG

Power Converter
Functions Correctly

YES NO

RIG

RIG

RPC RPC

WTS WTF WTF WTF

(a) WT Complete CCD Model

Induction Generator
Functions Correctly

YES NO

Power Converter
Functions Correctly

YES NO

RIG

RIG

RPC

WTS WTF

WTF

(b) WT Reduced CCD Model

Fig. 4. Wind turbine cause consequence analysis

3.1 Formal CCD Modeling

The CCD basic constructors Decision box, Consequence path and Conse-
quence box, as described in Table 3, were formally developed, in HOL4, respec-
tively, as [3]:

Definition 3
� DECISION BOX p X Y = if X = 1 then FST Y else if X = 0 then SND Y

else p space p

where Y is an ordered pair (FST Y, SND Y) representing the reliability and unreli-
ability functions in a decision box, respectively. The condition X = 1 represents
the YES Box while X = 0 represents the NO Box. If X is neither 1 nor 0, for
instance, X = 2, then this represents the irrelevance of the decision box, which
returns the probability space p to be used in the CCD reduction process.

Secondly, the CCD Consequence path is defined by recursively applying the
BRANCH ET basic constructor (see Sect. 2.2) on a given n-list of decision boxes
(DECISION BOXN) using the HOL4 recursive list function FOLDL as:

Definition 4
� CONSEQ PATH p (DECISION BOX1::DECISION BOXN)

= FOLDL (λa b. ETREE (BRANCH a (ATOMIC b))) DECISION BOX1 DECISION BOXN

Finally, the CCD Consequence box is defined by mapping the function
CONSEQ PATH on a given two-dimensional list of consequence paths LM using
the HOL4 mapping function MAP, then apply the NODE ET constructor:

Definition 5
� CONSEQ BOX p LM = ETREE (NODE (MAP (λa. CONSEQ PATH p a) LM))

Using the above-mentioned CCD generic definitions, we can formally construct
a complete CCD model (Step 2 in Fig. 2) for the wind turbine shown in Fig. 4a,
in HOL4 as:

56 M. Abdelghany and S. Tahar

� Wind Turbine Complete CCD RIG RPC =

CONSEQ BOX p

[[DECISION BOX p 1 (RIG,RIG); DECISION BOX p 1 (RPC,RPC)];

[DECISION BOX p 1 (RIG,RIG); DECISION BOX p 0 (RPC,RPC)];

[DECISION BOX p 0 (RIG,RIG); DECISION BOX p 1 (RPC,RPC)];

[DECISION BOX p 0 (RIG,RIG); DECISION BOX p 0 (RPC,RPC)]]

In cause-consequence safety analysis [19], Step 3 in Fig. 2 is to minimize the
complete CCD model in the sense that the unnecessary decision boxes should be
eliminated to decrease the number of test cases and model the accurate functional
behavior of systems. Upon this, the reduced CCD model that actually represents
the wind turbine system, as shown in Fig. 4b, can be constructed formally by
assigning X with neither 1 nor 0 options, for instance, X = 2, which represents
the irrelevance of the decision box, in HOL4 as:

� Wind Turbine Reduced CCD RIG RPC =

CONSEQ BOX p

[[DECISION BOX p 1 (RIG,RIG); DECISION BOX p 1 (RPC,RPC)];

[DECISION BOX p 1 (RIG,RIG); DECISION BOX p 0 (RPC,RPC)];

[DECISION BOX p 0 (RIG,RIG); DECISION BOX p 2 (RPC,RPC)]]

Also, we can formally verify the above minimal CCD model of the wind turbine
system after reduction, in HOL4 as:

� Wind Turbine Reduced CCD RIG RPC =

CONSEQ BOX p

[[DECISION BOX p 1 (RIG,RIG); DECISION BOX p 1 (RPC,RPC)];

[DECISION BOX p 1 (RIG,RIG); DECISION BOX p 0 (RPC,RPC)];

[DECISION BOX p 0 (RIG,RIG)]]

3.2 Formal CCD Analysis

The last step in the cause-consequence analysis is to evaluate the probability of
each path occurrence in the CCD model [6]. For that purpose, we propose the fol-
lowing novel CCD probabilistic mathematical formulations, based on RBD and
ET modeling techniques, which have the capability to determine the probability
of n-level CCD paths corresponding to n-subsystems in a critical system, where
each subsystem consists of an arbitrary list of RBD events. Then, we provide
the formalization of the proposed new formulas in HOL4.

One Decision Box: Figure 5 depicts a single CCD decision box associated with
either a series or a parallel RBD pattern. It can be observed that the YES BOX of
the former CCD diagram with a series RBD model is the outcome of Eq. 1 and
its NO BOX is the complement of Eq. 1. Similarly, the YES BOX of the later CCD
diagram with a parallel RBD model is the outcome of Eq. 2 and its NO BOX is
the complement of Eq. 2. The probability of a consequence path for each CCD
decision box assigned with a generic RBD model consisting of n-events, i.e.,
series or parallel, as shown in Fig. 5, is verified under the constraints described
in Table 1 (Sect. 2.1), respectively, in HOL4 as:

Formalization of RBD-Based Cause Consequence Analysis in HOL 57

Theorem 5
� let RBDseries = rbd struct p (series XN)

in prob space p ∧ XN ∈ events p ∧ MUTUAL INDEP p XN ⇒
prob p (CONSEQ PATH p [DECISION BOX p J (RBDseries,COMPL p (RBDseries))])

= if J = 1 then
∏

(PROB LIST p XN)

else if J = 0 then 1 -
∏

(PROB LIST p XN) else 1

Theorem 6
� let RBDparallel = rbd struct p (parallel YM)

in prob space p ∧ YM ∈ events p ∧ MUTUAL INDEP p YM ⇒
prob p(CONSEQ PATH p [DECISION BOX p K (RBDparallel,COMPL p(RBDparallel))])

= if K = 1 then 1 -
∏

(PROB LIST p (COMPL LIST p YM))

else if K = 0 then
∏

(PROB LIST p (COMPL LIST p YM)) else 1

where the function COMPL is defined to take a set X, which is the output of
the RBD function rbd struct, and returns the complement of the set X in the
probability space p. For a complex graph of CCDs consisting of n-level decision
boxes, where each decision box is associated with a series/parallel RBD model
consisting of an arbitrary list of success events, we define three types A, B and
C with all possible CCD consequence scenarios that can occur.

N Decision Boxes (Type A): The probability of n-level decision boxes assigned to
a consequence path corresponding to n-subsystems of a complex system, where
each decision box is associated with a generic RBD model consisting of an arbi-
trary list of k-events in a series connection, can be expressed mathematically
for three cases as:

X
XNX1 X2

XX

Subsystem K
Functions Correctly

YES NO

YY

Y1

Y2

YM

Y

Subsystem J
Functions Correctly

YES NO

Fig. 5. CCD decision boxes with RBD connections

(A1) All outcomes of n decisions boxes are YES

RA1(t) =
n∏

i=1

k∏
j=1

Rij(t) (7)

(A2) All outcomes of n decisions boxes are NO

RA2(t) =
n∏

i=1

(1 −
k∏

j=1

Rij(t)) (8)

58 M. Abdelghany and S. Tahar

(A3) Some outcomes of m decisions boxes are YES and the rest outcomes of p
decisions boxes are NO, as shown in Fig. 6a, respectively, as follows:

RA3(t) =

(
m∏
i=1

k∏
j=1

Rij(t)

)
×

(
p∏

i=1

(1 −
k∏

j=1

Rij(t))

)
(9)

To formalize the above-proposed new cause-consequence mathematical for-
mulations in HOL4, we formally define two generic functions SSY ES

series and
SSNO

series that can recursively generate the outcomes YES and NO of the RBD
function rbd struct, identified by the RBD basic constructor series, for a
given arbitrary list of subsystems (SS) events, respectively as:

Definition 6
� SSY ES

series p (SS1::SSN) =

rbd struct p (series (rbd list SS1))::SSY ES
series p SSN

Definition 7
� SSNO

series p (SS::SSN) =

COMPL p (rbd struct p (series (rbd list SS1)))::SSNO
series p SSN

Using the above defined functions, we can verify two-dimensional and scalable
CCD probabilistic properties corresponding to the proposed formulas Eq. 7, Eq. 8
and Eq. 9, respectively, in HOL4 as:

Theorem 7
� prob space p ∧ MUTUAL INDEP p SSN ∧ ∀y. y ∈ SSN ⇒ y ∈ events p ∧ ⇒

prob p (CONSEQ PATH p (SSY ES
series p SSN)) =∏

(MAP (λ a.
∏

(PROB LIST p a)) SSN)

Theorem 8
� prob space p ∧ MUTUAL INDEP p SSN ∧ ∀y. y ∈ SSN ⇒ y ∈ events p ∧ ⇒

prob p (CONSEQ PATH p (SSNO
series p SSN)) =∏

(MAP (λ b. (1 -
∏

(PROB LIST p b))) SSN)

Theorem 9
� prob space p ∧ MUTUAL INDEP p (SSM ++ SSP) ∧

∀y. y ∈ (SSM ++ SSP) ⇒ y ∈ events p ∧ ⇒
prob p (CONSEQ PATH p [CONSEQ PATH p (SSY ES

series p SSM);

CONSEQ PATH p (SSNO
series p SSP)]) =∏

(MAP (λ a.
∏

(PROB LIST p a)) SSM) ×∏
(MAP (λ b. (1 -

∏
(PROB LIST p b))) SSP)

where the assumptions of Theorems 7–9 are similar to the ones used in Theorems
1–4 (see Sect. 2).

Formalization of RBD-Based Cause Consequence Analysis in HOL 59

Fig. 6. Proposed N-level decision boxes for CCD analysis

N Decision Boxes (Type B): Similarly, the probabilistic assessment of n-level
decision boxes assigned to a CCD consequence path, where each decision box
is associated with a generic RBD model consisting of k-events connected in
parallel, can be expressed mathematically for three cases: (B1) All outcomes of
n decisions boxes are YES; (B2) All outcomes of n decisions boxes are NO; and
(B3) Some outcomes of m decisions boxes are YES and some outcomes of p
decisions boxes are NO, as shown in Fig. 6b, respectively, as follows:

RB1(t) =
n∏

i=1

(1 −
k∏

j=1

(1 − Rij(t))) (10)

RB2(t) =
n∏

i=1

k∏
j=1

(1 − Rij(t)) (11)

RB3(t) =

(
m∏
i=1

(1 −
k∏

j=1

(1 − Rij(t)))

)
×

(
p∏

i=1

k∏
j=1

(1 − Rij(t))

)
(12)

To verify the correctness of the above-proposed new CCD mathematical for-
mulas in HOL4, we define two generic functions SSY ES

parallel and SSNO
parallel to

recursively generate the outcomes YES and NO of the function rbd struct, iden-
tified by the RBD constructor parallel, for a given list of subsystems events.

Definition 8
� SSY ES

parallel p (SS1::SSN) =

rbd struct p (parallel (rbd list SS1))::SSY ES
parallel p SSN

60 M. Abdelghany and S. Tahar

Definition 9
� SSNO

parallel p (SS::SSN) =

COMPL p (rbd struct p (parallel (rbd list SS1)))::SSNO
parallel p SSN

Using above defined functions, we can formally verify three scalable properties
corresponding to Eq. 10, Eq. 11, and Eq. 12, respectively, in HOL4 as:

Theorem 10
� prob space p ∧ MUTUAL INDEP p SSN ∧ ∀y. y ∈ SSN ⇒ y ∈ events p ∧ ⇒

prob p (CONSEQ PATH p (SSY ES
parallel p SSN)) =∏

(MAP (λ a. (1 -
∏

(PROB LIST p (compl list p a)))) SSN)

Theorem 11
� prob space p ∧ MUTUAL INDEP p SSN ∧ ∀y. y ∈ SSN ⇒ y ∈ events p ∧ ⇒

prob p (CONSEQ PATH p (SSNO
parallel p SSN)) =∏

(MAP (λ b.
∏

(PROB LIST p (compl list p b))) SSN)

Theorem 12
� prob space p ∧ MUTUAL INDEP p (SSM ++ SSP) ∧

∀y. y ∈ (SSM ++ SSP) ⇒ y ∈ events p ∧ ⇒
prob p (CONSEQ PATH p [CONSEQ PATH p (SSY ES

parallel p SSM);

CONSEQ PATH p (SSNO
parallel p SSP)]) =∏

(MAP (λ a. (1 -
∏

(PROB LIST p (compl list p a)))) SSM) ×∏
(MAP (λ b.

∏
(PROB LIST p (compl list p b))) SSP)

N Decision Boxes (Type C): The probabilistic assessment of n-level decision
boxes assigned to a consequence path for a very complex system, where some m
decision boxes are associated with generic RBD models consisting of k-events
connected in series, while other p decision boxes are associated with generic RBD
models consisting of z-events connected in parallel, as shown in Fig. 1b, can be
expressed mathematically for nine cases as:
(C1) All outcomes of m and p decisions boxes are YES.

RC1(t) =

(
m∏
i=1

k∏
j=1

Rij(t)

)
×

(
p∏

i=1

(1 −
z∏

j=1

(1 − Rij(t)))

)
(13)

(C2) All outcomes of m and p decisions boxes are NO.

RC2(t) =

(
m∏
i=1

(1 −
k∏

j=1

Rij(t))

)
×

(
p∏

i=1

z∏
j=1

(1 − Rij(t))

)
(14)

(C3) All outcomes of m decisions boxes are YES and all outcomes of p decisions
boxes are NO.

RC3(t) =

(
m∏
i=1

k∏
j=1

Rij(t)

)
×

(
p∏

i=1

z∏
j=1

(1 − Rij(t))

)
(15)

Formalization of RBD-Based Cause Consequence Analysis in HOL 61

(C4) All outcomes of m decisions boxes are NO and all outcomes of p decisions
boxes are YES.

RC4(t) =

(
m∏
i=1

(1 −
k∏

j=1

Rij(t))

)
×

(
p∏

i=1

(1 −
z∏

j=1

(1 − Rij(t)))

)
(16)

(C5) Some outcomes of s out of m decisions boxes are YES, some outcomes of u
out of m decisions boxes are NO and all outcomes of p decisions boxes are YES.

RC5(t) =

(
s∏

i=1

k∏
j=1

Rij(t)

)
×

(
u∏

i=1

(1−
k∏

j=1

Rij(t))

)
×

(
p∏

i=1

(1−
z∏

j=1

(1−Rij(t)))

)

(17)
(C6) Some outcomes of s out of m decisions boxes are YES, some outcomes of u
out of m decisions boxes are NO and all outcomes of p decisions boxes are NO.

RC6(t) =

(
s∏

i=1

k∏
j=1

Rij(t)

)
×

(
u∏

i=1

(1 −
k∏

j=1

Rij(t))

)
×

(
p∏

i=1

z∏
j=1

(1 − Rij(t))

)

(18)
(C7) Some outcomes of s out of p decisions boxes are YES, some outcomes of u
out of p decisions boxes are NO and all outcomes of m decisions boxes are YES.

RC7(t) =

(
m∏
i=1

k∏
j=1

Rij(t)

)
×

(
u∏

i=1

z∏
j=1

(1−Rij(t))

)
×

(
s∏

i=1

(1−
z∏

j=1

(1−Rij(t)))

)

(19)
(C8) Some outcomes of s out of p decisions boxes are YES, some outcomes of u
out of p decisions boxes are NO and all outcomes of m decisions boxes are NO.

RC8(t) =

(
m∏
i=1

(1 −
k∏

j=1

Rij(t))

)
×

(
u∏

i=1

z∏
j=1

(1 − Rij(t))

)

×
(

s∏
i=1

(1 −
z∏

j=1

(1 − Rij(t)))

) (20)

Using Theorems 5–12, we formally verify in HOL4 all the above-newly pro-
posed formulas from Eq. 13 to Eq. 20 for RBD/ET-based cause consequence
safety analysis (see Theorems 13–20, respectively, in [1]), which is evidence for
the correctness of the proposed mathematical formulations.

(C9) Some outcomes of s out of m decisions boxes are YES, some outcomes
of u out of m decisions boxes are NO, some outcomes of v out of p decisions
boxes are YES and some outcomes of w out of p decisions boxes are NO.

62 M. Abdelghany and S. Tahar

RC9(t) =

(
s∏

i=1

k∏
j=1

Rij(t)

)
×

(
u∏

i=1

(1 −
k∏

j=1

Rij(t))

)

×
(

v∏
i=1

(1 −
z∏

j=1

(1 − Rij(t)))

)
×

(
w∏
i=1

z∏
j=1

(1 − Rij(t))

) (21)

Theorem 21
� prob p (CONSEQ PATH p [CONSEQ PATH p (SSY ES

series p SSs);

CONSEQ PATH p (SSNO
series p SSu);

CONSEQ PATH p (SSY ES
parallel p SSv);

CONSEQ PATH p (SSNO
parallel p SSw)]) =∏

(MAP (λ a.
∏

(PROB LIST p a)) SSs) ×∏
(MAP (λ b. 1 -

∏
(PROB LIST p b)) SSu) ×∏

(MAP (λ c. (1 -
∏

(PROB LIST p (compl list p c)))) SSv) ×∏
(MAP (λ d.

∏
(PROB LIST p (compl list p d))) SSw)

A Consequence Box: Lastly, we verify a generic probabilistic formulation of a
CCD CONSEQ BOX for a certain event occurrence in the given system as the sum
of all individual probabilities of all M CCD paths ending with that event:

Theorem 22
� Let PATHS LM = MAP (λa. CONSEQ PATH p a) LM)

in prob space p ∧ MUTUAL INDEP p LM ∧ disjoint (PATHS LM) ∧
ALL DISTINCT (PATHS LM) ⇒
prob p (CONSEQ BOX p LM) =

∑
(PROB LIST p (PATHS LM))

where the assumptions of the above-theorem are quite similar to those used in
Theorems 3 and 4 (see Sect. 2.2). The verification of all the above-mentioned
theorems was a bit challenging as we are dealing with all four types of different
RBD configurations, i.e., series, the complement of series, parallel, and the com-
plement of parallel, where each type is consisting of generic n-decision boxes and
each decision box is associated with generic m-events, simultaneously in HOL4.
The proof-script of the formalization work presented in this section amounts to
about 5,500 lines of HOL4 code and can be downloaded from [1].

4 Conclusion

In this paper, we proposed novel formulations of cause-consequence analysis,
based on RBDs and ETs dependability modeling techniques, for the safety assess-
ment of large systems. We provided a HOL4 formalization for the proposed equa-
tions that enables the formal probabilistic assessment of scalable CCD models
associated with different RBD configurations and based on any probabilistic
distribution and failure rates. Moreover, the proposed RBD/ET-based CCD for-
malization in HOL4 solves the scalability problem of n-level CCD analysis. Our
proposed new formulations provide the first mechanical computation of complex
n-level cause-consequence probabilistic analysis ever, augmented with the rigor

Formalization of RBD-Based Cause Consequence Analysis in HOL 63

of the HOL4 theorem prover. As future work, we plan to use the proposed CCD
formalization in performing the formal RBD/ET-based cause consequence anal-
ysis of real-world complex systems, such as a smart grid or a nuclear power plant
system, to verify their probabilistic expressions for all possible safety classes of
consequence events at the subsystem level.

References

1. RBD/ET based Cause-Consequence Formalization in HOL4 (2021). https://
github.com/hvg-concordia/CCD RBD

2. Abdelghany, M., Ahmad, W., Tahar, S.: Event tree reliability analysis of safety
critical systems using theorem proving. IEEE Syst. J. (2021). https://doi.org/10.
1109/JSYST.2021.3077558

3. Abdelghany, M., Tahar, S.: Cause-consequence diagram reliability analysis using
formal techniques with application to electrical power networks. IEEE Access 9,
23929–23943 (2021)

4. Ahmad, W.: Formal dependability analysis using higher-order-logic theorem prov-
ing. Ph.D. thesis, National University of Sciences & Technology, Pakistan (2017)

5. Andrews, J., Ridley, M.: Reliability of sequential systems using the cause conse-
quence diagram method. Part E J. Process Mech. Eng. 215(3), 207–220 (2001)

6. Andrews, J., Ridley, M.: Application of the cause-consequence diagram method to
static systems. Reliab. Eng. Syst. Saf. 75(1), 47–58 (2002)

7. Brall, A., Hagen, W., Tran, H.: Reliability block diagram modeling-comparisons
of three software packages. In: Reliability and Maintainability Symposium, pp.
119–124 (2007)

8. Elderhalli, Y.: Dynamic dependability analysis using HOL theorem proving with
application in multiprocessor systems. Ph.D. thesis, Concordia University, Canada
(2019)

9. Güdemann, M., Ortmeier, F., Reif, W.: Using deductive cause-consequence analysis
(DCCA) with SCADE. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS,
vol. 4680, pp. 465–478. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75101-4 44

10. HOL Theorem Prover (2021). https://hol-theorem-prover.org
11. Jaiswal, S., Pahuja, G.: Effect of reliability of power converters in productivity of

wind turbine. In: Conference on Power Electronics, pp. 1–6. IEEE (2014)
12. Muller, S., Deicke, M., De Doncker, R.: Doubly fed induction generator systems

for wind turbines. Ind. Appl. Mag. 8(3), 26–33 (2002)
13. Ortmeier, F., Reif, W., Schellhorn, G.: Deductive cause-consequence analysis. IFAC

Proc. Vol. 38(1), 62–67 (2005)
14. Papazoglou, I.A.: Mathematical foundations of event trees. Reliab. Eng. Syst. Saf.

61(3), 169–183 (1998)
15. Porté-Agel, F., Bastankhah, M., Shamsoddin, S.: Wind-turbine and wind-farm

flows: a review. Bound.-Layer Meteorol. 174(1), 1–59 (2020)
16. Ridley, M.: Dependency modelling using fault-tree and cause-consequence analysis.

Ph.D. thesis, Loughborough University, UK (2000)
17. Shepherd, W., Zhang, L.: Power Converter Circuits. CRC Press, Boca Raton (2004)
18. Towhidnejad, M., Wallace, D.R., Gallo, A.M.: Fault tree analysis for software

design. In: NASA Goddard Software Engineering Workshop, pp. 24–29 (2002)

https://github.com/hvg-concordia/CCD_RBD
https://github.com/hvg-concordia/CCD_RBD
https://doi.org/10.1109/JSYST.2021.3077558
https://doi.org/10.1109/JSYST.2021.3077558
https://doi.org/10.1007/978-3-540-75101-4_44
https://doi.org/10.1007/978-3-540-75101-4_44
https://hol-theorem-prover.org

64 M. Abdelghany and S. Tahar

19. Vyzaite, G., Dunnett, S., Andrews, J.: Cause-consequence analysis of non-
repairable phased missions. Reliab. Eng. Syst. Saf. 91(4), 398–406 (2006)

20. Wadi, M., Baysal, M., Shobole, A., Tur, R.: Reliability evaluation in smart grids via
modified Monte Carlo simulation method. In: International Conference on Renew-
able Energy Research and Applications, pp. 841–845. IEEE (2018)

21. Xin, B., Wan, L., Yu, J., Dang, W.: Basic event probability determination and risk
assessment based on cause-consequence analysis method. J. Phys. 1549, 052094
(2020)

Automatic Theorem Proving
and Machine Learning

Online Machine Learning Techniques
for Coq: A Comparison

Liao Zhang1,3(B), Lasse Blaauwbroek1,2, Bartosz Piotrowski1,4,
Prokop Černỳ1, Cezary Kaliszyk3,4, and Josef Urban1

1 Czech Technical University, Prague, Czech Republic
2 Radboud University, Nijmegen, The Netherlands

3 University of Innsbruck, Innsbruck, Austria
4 University of Warsaw, Warsaw, Poland

Abstract. We present a comparison of several online machine learn-
ing techniques for tactical learning and proving in the Coq proof assis-
tant. This work builds on top of Tactician, a plugin for Coq that learns
from proofs written by the user to synthesize new proofs. Learning hap-
pens in an online manner, meaning that Tactician’s machine learning
model is updated immediately every time the user performs a step in an
interactive proof. This has important advantages compared to the more
studied offline learning systems: (1) it provides the user with a seam-
less, interactive experience with Tactician and, (2) it takes advantage
of locality of proof similarity, which means that proofs similar to the
current proof are likely to be found close by. We implement two online
methods, namely approximate k-nearest neighbors based on locality sen-
sitive hashing forests and random decision forests. Additionally, we con-
duct experiments with gradient boosted trees in an offline setting using
XGBoost. We compare the relative performance of Tactician using these
three learning methods on Coq’s standard library.

Keywords: Interactive theorem proving · Coq · Machine learning ·
Online learning · Gradient boosted trees · Random forest

1 Introduction

The users of interactive theorem proving systems are in dire need of a digital
sidekick, which helps them reduce the time spent proving the mundane parts
of their theories, cutting down on the man-hours needed to turn an informal
theory into a formal one. The obvious way of creating such a digital assistant is
using machine learning. However, creating a practically usable assistant comes

This work was supported by the ERC grant no. 714034 SMART, by the Euro-
pean Regional Development Fund under the project AI&Reasoning (reg. no.
CZ.02.1.01/0.0/0.0/15 003/0000466), and by the Ministry of Education, Youth and
Sports within the dedicated program ERC CZ under the project POSTMAN
no. LL1902.

c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 67–83, 2021.
https://doi.org/10.1007/978-3-030-81097-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-81097-9_5

68 L. Zhang et al.

with some requirements that are not necessarily conducive to the most trendy
machine learning techniques, such as deep learning.

The environment provided by ITPs is highly dynamic, as it maintains an
ever-changing global context of definitions, lemmas, and custom tactics. Hence,
proving lemmas within such environments requires intimate knowledge of all the
defined objects within the global context. This is contrasted by—for example—
the game of chess; even though the search space is enormous, the pieces always
move according to the same rules, and no new kinds of pieces can be added.
Additionally, the interactive nature of ITPs demands that machine learning
techniques do not need absurd amounts of time and resources to train (unless a
pre-trained model is highly generic and widely applicable across domains; some-
thing that has not been achieved yet). In this paper, we are interested in online
learning techniques that quickly learn from user input and immediately utilize
this information. We do this in the context of the Coq proof assistant [26] and
specifically Tactician [5]—a plugin for Coq that is designed to learn from the
proofs written by a user and apply that knowledge to prove new lemmas.

Tactician performs a number of functions, such as proof recording, tactic
prediction, proof search, and proof reconstruction. In this paper, we focus on
tactic prediction. For this, we need a machine learning technique that accepts as
input a database of proofs, represented as pairs containing a proof state and the
tactic that was used to advance the proof. From this database, a machine learning
model is built. The machine learning task is to predict an appropriate tactic
when given a proof state. Because the model needs to operate in an interactive
environment, we pose four requirements the learning technique needs to satisfy:

1. The model (datastructure) needs to support dynamic updates. That is, the
addition of a new pair of a proof state and tactic to the current model needs
to be done in (near) constant time.

2. The model should limit its memory usage to fit in a consumer laptop. We
have used the arbitrary limit of 4 GB.

3. The model should support querying in (near) constant time.
4. The model should be persistent (in the functional programming sense [11]).

This enables the model to be synchronized with the interactive Coq document,
in which the user can navigate back and forth.

1.1 Contributions

In this work, we have implemented two online learning models. An improved ver-
sion of the locality sensitive hashing scheme for k-nearest neighbors is described
in detail in Sect. 3.1. An implementation of random forest is described in
Sect. 3.2. In Sect. 4, we evaluate both models, comparing the number of lem-
mas of Coq’s standard library they can prove in a chronological setting (i.e.,
emulating the growing library).

In addition to the online models, as a proof of concept, we also experiment in
an offline fashion with boosted trees, specifically XGBoost [8] in Sect. 3.3. Even
though the model learned by XGBoost cannot be used directly in the online
setting described above, boosted trees are today among the strongest learning

Online Machine Learning Techniques for Coq: A Comparison 69

methods. Online algorithms for boosted trees do exist [27], and we intend to
implement them in the future.

The techniques described here require representing proof states as feature
vectors. Tactician already supported proof state representation using simple
hand-rolled features [4]. In addition, Sect. 2 describes our addition of more
advanced features of the proof states, which are shown to improve Tactician’s
performance in Sect. 4.

2 Tactic and Proof State Representation

To build a learning model, we need to characterize proof states and the tactics
applied to them. To represent tactics, we first perform basic decompositions and
simplifications and denote the resulting atomic tactics by their hashes [4].

Tactician’s original proof state features [4] consist merely of identifiers and
adjacent identifier pairs in the abstract syntax tree (AST). Various other, more
advanced features have been considered for automated reasoning systems built
over large formal mathematical knowledge bases [9,14,20]. To enhance the per-
formance of Tactician, we modify the old feature set and define new features as
follows.

Top-Down Oriented AST Walks. We add top-down oriented walks in the
AST of length up to 3 with syntax placeholders. For instance, the unit clause
f(g(x)) will contain the features:

f:AppFun , g:AppFun , x:AppArg , f:AppFun(g:AppFun),
g:AppFun(x:AppArg), f:AppFun(g:AppFun(x:AppArg))

The feature g:AppFun indicates that g is able to act as a function in the term
tree, and x:AppArg means that x is only an argument of a function.

Vertical Abstracted Walks. We add vertical walks in the term tree from the
root to atoms in which nonatomic nodes are substituted by their syntax roles. For
the term f1(f2(f3(a))), we can convert each function symbol to AppFun whereas
the atom a is transformed to a:AppArg as above. Subsequently, we can export
this as the feature AppFun(AppFun(AppFun(a:AppArg))). Such abstracted fea-
tures are designed to better capture the overall abstract structure of the AST.

Top-Level Structures. We add top-level patterns by replacing the atomic
nodes and substructures deeper than level 2 with a single symbol X. Addition-
ally, to separate the function body and arguments, we append the arity of the
function to the corresponding converted symbol. As an example, consider the
term f(g(b, c), a) consisting of atoms a, b, c, f, g. We first replace a, f, g with X
because they are atomic. We further transform f and g to X2 according to the
number of their arguments. However, b and c break the depth constraint and
should be merged to a single X. Finally, the concrete term is converted to an
abstract structure X2(X2(X),X). Abstracting a term to its top-level structure
is useful for determining whether a “logical” tactic should be applied. As an
illustration, the presence of X ∧ X in the goal often indicates that we should
perform case analysis by the split tactic. Since we typically do not need all the

70 L. Zhang et al.

nodes of a term to decide such structural information, and we want to balance
the generalization with specificity, we use the maximum depth 2.

Premise and Goal Separation. Because local hypotheses typically play a
very different role than the conclusion of a proof state, we separate their fea-
ture spaces. This can be done by serially numbering the features and adding a
sufficiently large constant to the goal features.

Adding Occurrence Counts. In the first version of Tactician, we have used
only a simple boolean version of the features. We try to improve on this by
adding the number of occurrences of each feature in the proof state.

3 Prediction Models

3.1 Locality Sensitive Hashing Forests for Online k-NN

One of the simplest methods to find correlations between proof states is to define
a metric or similarity function d(x, y) on the proof states. One can then extract
an ordered list of length k from a database of proof states that are as similar
as possible to the reference proof state according to d. Assuming that d does a
good job identifying similar proof states, one can then use tactics known to be
useful in a known proof state for an unseen proof state. In this paper, we refer
to this technique as the k-nearest neighbor (k-NN) method (even though this
terminology is somewhat overloaded in the literature).

Our distance function is based on the features described in Sect. 2. We com-
pare these features using the Jaccard index J(f1, f2). Optionally, features can
be weighted using the TfIdf statistic [18], in which case the generalized index
Jw(f1, f2) is used.

J(f1, f2) =
|f1 ∩ f2|
|f1 ∪ f2|

tfidf(x) = log
N

|x|N
Jw(f1, f2) =

∑
x∈f1∩f2

tfidf(x)
∑

x∈f1∪f2
tfidf(x)

Here N is the database size, and |x|N is the number of times feature x occurs
in the database. In previous work, we have made a more detailed comparison of
similarity functions [4].

A naive implementation of the k-NN method is not very useful in the online
setting because the time complexity for a query grows linearly with the size of
the database. Indexing methods, such as k-d trees, exist to speed up queries [3].
However, these methods do not scale well when the dimensionality of the data
increases [17]. In this work, we instead implement an approximate version of
the k-NN method based on Locality Sensitive Hashing (LSH) [16]. This is an
upgrade of our previous LSH implementation that was not persistent and was
slower. We also describe our functional implementation of the method in detail
for the first time here.

The essential idea of this technique is to hash feature vectors into buckets
using a family of hash functions that guarantee that similar vectors hash to the
same bucket with high probability (according to the given similarity function).

Online Machine Learning Techniques for Coq: A Comparison 71

To find a k-NN approximation, one can simply return the contents of the bucket
corresponding to the current proof state. For the Jaccard index, the appropriate
family of hash functions are the MinHash functions [7].

The downside of the naive LSH method is that its parameters are difficult to
tune. The probability that the vectors that hash to the same bucket are similar
can be increased by associating more than one hash function to the bucket. All
values of the hash functions then need to pair-wise agree for the items in the
bucket. However, this will naturally decrease the size of the bucket, lowering
the number of examples k (of k-NN) that can be retrieved. The parameter k
can be increased again by simply maintaining multiple independent bucketing
datastructures. Tuning these parameters is critically dependent on the size of
the database, the length of the feature vectors, and the desired value of k. To
overcome this, we implement a highly efficient, persistent, functional variant of
Locality Sensitive Hashing Forest [2] (LSHF), which is able to tune these param-
eters automatically, leaving (almost) no parameters to be tuned manually. Below
we give a high-level overview of the algorithm as it is modified for a functional
setting. For a more in-depth discussion on the correctness of the algorithm, we
refer to the previous reference.

LSHFs consist of a forest (collection) of tries T1 . . . Tn. Every trie has an
associated hash function hi that is a member of a (near) universal hashing family
mapping a feature down to a single bit (a hash function mapping to an integer
can be used by taking the result modulus two). To add a new example to this
model, it is inserted into each trie according to a path (sequence) of bits. Every
bit of this path can be shown to be locally sensitive for the Jaccard index [2].
The path of an example is calculated using the set of features that represents
the proof state in the example.

pathi(f) = sort({hi(x) | x ∈ f})

For a given trie T , the subtrie starting at a given path b1 . . . bm can be seen as the
bucket to which examples that agree on the hashes b1 . . . bm are assigned. Longer
paths point to smaller buckets containing less similar examples, while shorter
paths point to larger buckets containing increasingly similar examples. Hence,
to retrieve the neighbors of a proof state with features f , one should start by
finding examples that share the entire path of f . To retrieve more examples, one
starts collecting the subtrees starting at smaller and smaller prefixes of pathi(f).
To increase the accuracy and number of examples retrieved, this procedure can
be performed on multiple tries simultaneously, as outlined in Algorithm 1.

Tuning the LSHF model consists mainly of choosing the appropriate number
of tries that maximizes the speed versus accuracy trade-off. Experiments show
that 11 trees is the optimal value. Additionally, for efficiency reasons, it is a good
idea to set a limit on the depth of the tries to prevent highly similar examples
from creating a deep trie. For our dataset, a maximum depth of 20 is sufficient.

3.2 Online Random Forest

Random forests are a popular machine learning method combining many ran-
domized decision trees into one ensemble, which produces predictions via

72 L. Zhang et al.

Algorithm 1. Querying the Locality Sensitive Hashing Forest
1: function QueryLSHF(F , f) � F a forest, f a feature set
2: P ← 〈pathi(f) : i ∈ [1..|F|]〉
3: neighbors ← FilterDuplicates(SimultaneousDescend(F , P)
4: Optionally re-sort neighbors according to real Jaccard index

5: function SimultaneousDescend(F , P)
6: Frel ← 〈 if head(P) then left(T) else right(T) : T ∈ F when not leaf(T) 〉
7: Firrel ← 〈 if leaf(T) then T elseif head(P) then right(T) else left(T) : T ∈ F 〉
8: if Frel is empty then
9: neighbors ← empty list

10: else
11: P ′ ← 〈tail(Pi) : i ∈ [1..n]〉
12: neighbors ← SimultaneousDescend(Frel, P ′)

13: if |neighbors| ≥ k then
14: return neighbors
15: else
16: return Append(neighbors, Concatenate(〈 Collect(T : T ∈ Firrel〉)))

voting [6]. Even though the decision trees are not strong learners on their
own, because they are intentionally decorrelated, the voting procedure greatly
improves on top of their individual predictive performance. The decision trees
consist of internal nodes labeled by decision rules and leaves labeled by examples.
In our case, these are tactics to be applied in the proofs.

Random forests are a versatile method that requires little tuning of its hyper-
parameters. Their architecture is also relatively simple, which makes it easy
to provide a custom OCaml implementation easily integrable with Tactician,
adhering to its requirement of avoiding mutable data structures. Direct usage of
existing random forest implementations is impossible due to challenges in Tac-
tician’s learning setting. These challenges are: (1) numerous sparse features, (2)
the necessity of online learning, as detailed in the next two paragraphs.

The decision rules in nodes of the decision trees are based on the features of
the training examples. These rules are chosen to maximize the information gain,
i.e., to minimize the impurity of the set of labels in the node.1 There are more
than 37, 000 binary and sparse features in Tactician. Since the learner integrated
with Tactician needs to be fast, one needs to be careful when optimizing the splits
in the tree nodes.

Random forests are typically trained in an offline manner where the whole
training data is available at the beginning of the training. In Tactician this would
be quite suboptimal. To take advantage of the locality of proof similarity and
to be able to use data coming from new proofs written by a user, we want to
immediately update the machine learning model after each proof.

There are approaches to turn random forests into online learners [10,25]
which inspired our implementation. The authors of [10] propose a methodology

1 If we have labels {a, a, b, b, b}, ideally, we would like to produce a split which passes
all the examples with label a to one side and the examples with b to the other side.

Online Machine Learning Techniques for Coq: A Comparison 73

Algorithm 2. Adding training a example e to a decision tree T
1: function AddExampleToTree(T , e)
2: match T with
3: Node(R, Tl, Tr): � R – binary rule, Tl, Tr – left and right subtrees
4: match R(e) with
5: Left: return Node(R, AddExampleToTree(Tl, e), Tr)

6: Right: return Node(R, Tl, AddExampleToTree(Tr, e))

7: Leaf(l, E): � l – label/tactic, E – examples
8: E ← Append(E , e)
9: if SplitCondition(E) then

10: R ← GenerateSplitRule(E)
11: E l, Er ← Split(R, E)
12: ll ← label of random example from El

13: lr ← label of random example from Er

14: return Node(R, Leaf(ll, El), Leaf(lr, Er))
15: else
16: return Leaf(l, E)

where new training examples are passed to the leaves of the decision trees, and
under certain statistical conditions, the leaf is split and converted to a new deci-
sion node followed by two new leaves. We take a similar approach, but deciding
a split in our implementation is simpler and computationally cheaper.

The pseudocode describing our implementation is presented below. Algo-
rithm 2 shows how the training examples are added to the decision trees. A new
training example is passed down the tree to one of its leaves. The trajectory
of this pass is governed by binary decision rules in the nodes of the tree. Each
rule checks whether a given feature is present in the example. Once the exam-
ple reaches a leaf, it is saved there, and a decision is made whether to extend
the tree (using function SplitCondition). This happens only when the Gini
Impurity measure [21] on the set of examples in the leaves is greater than a
given impurity threshold i (a hyperparameter of the model). When the split is
done, the leaf becomes an internal node with a new split rule, and the collected
examples from the leaf are passed down to the two new leaves. The new rule
(an output from GenerateSplitRule) is produced in the following way. N
features are selected from the features of the examples, where N is the square
root of the number of examples. The selection of the features is randomized and
made in such a way that features that are distinguishing between the examples
have higher probability: First, we randomly select two examples from the leaf,
and then we randomly select a feature from the difference of sets of features of
the two examples. Among such selected features, the one maximizing the infor-
mation gain [21] of the split rule based on it is selected. The two new leaves get
labels randomly selected from the examples belonging to the given leaf.

When adding an example to a random forest (Algorithm 3), first, a decision
is made whether a new tree (in the form of a single leaf) should be added to
the forest. It happens with probability 1

n , where n is the number of trees in the
forest under the condition that n is lower than a given threshold.

74 L. Zhang et al.

Algorithm 3. Adding a training example e to a random forest F
1: function AddExampleToForest(F , e, nmax) � nmax – max number of trees
2: n ← number of trees in F
3: m ← random number from {1, . . . n}
4: Fupdated ← empty list
5: if n < nmax and m = 1 then
6: T ← leaf labeled by tactic used in e
7: Fupdated ← Append(Fupdated, T)

8: for all T ∈ F do
9: T ← AddExampleToTree(T , e)

10: Fupdated ← Append(Fupdated, T)

11: return Fupdated

Algorithm 4. Predicting labels for unlabeled e in the random forest F
1: function PredictForest(F , e)
2: P ← empty list � P – predictions
3: for all T ∈ F do
4: t ← PredictTree(e)
5: append t to P
6: R ← Vote(P) � R – ranking of tactics
7: return R
8: function PredictTree(T , e)
9: match T with

10: Node(R, T l, T r):
11: match R(e) with
12: Left: return PredictTree(T l, e)

13: Right: return PredictTree(T r, e)

14: Leaf(l, E): return l

Predicting a tactic for a given example with a random forest (Algorithm 4)
is done in two steps. First, the example is passed to the leaves of all the trees
and the labels (tactics) in the leaves are saved. Then the ranking of the tactics
is made based on their frequencies.

Tuning Hyperparameters. There are two hyperparameters in our implemen-
tation of random forests: (1) the maximal number of trees in the forest and (2)
the impurity threshold for performing the node splits. To determine the influ-
ence of these parameters on the predictive power, we perform a grid search. For
this, we randomly split the data that is not held out for testing (see Sect. 4.1)
into a training and validation part. The results of the grid search are shown
in Fig. 1. The best numbers of trees are 160 (for top-1 accuracy) and 320 (for
top-10 accuracy). We used these two values for the rest of the experiments. For
the impurity threshold, it is difficult to see a visible trend in performance; thus
we selected 0.5 as our default.

Online Machine Learning Techniques for Coq: A Comparison 75

10 20 40 80 160 320 640

0.1

0.2

0.3

Number of trees

A
cc
ur
ac
y

0.1 0.3 0.5 0.7 0.9
0.1

0.15

0.2

0.25

Impurity threshold

Fig. 1. Results of hyperparameter tuning for random forests. The blue circle corre-
sponds to top-10 accuracy (how often the correct tactic was present in the first 10
predictions) whereas the red square corresponds to top-1 accuracy. (Color figure online)

3.3 Boosted Trees

Gradient boosted decision trees are a state-of-the-art machine learning algorithm
that transforms weak base learners, decision trees, into a method with stronger
predictive power by appropriate combinations of the base models. One efficient
and powerful implementation is the XGBoost library. Here, we perform some
initial experiments in an offline setting for tactic prediction. Although XGBoost
can at the moment not be directly integrated with Tactician, this gives us a useful
baseline based on existing state-of-the-art technology. Below, we illustrate a
procedure of developing our XGBoost model based on binary logistic regression.

The input to XGBoost is a sparse matrix containing rows with the format of
(φP , φT) where φP includes the features of a proof state, and φT characterizes
a tactic related to the proof state. We transform each proof state to a sparse
feature vector φP containing the features’ occurrence counts. Since there may
be a large number of features in a given Coq development environment, which
may hinder the efficiency of training and prediction, it is reasonable to decrease
the dimension of the vectors. We hash the features to 20, 000 buckets by using
the modulo of the feature’s index. As above, we also remap the tactic hashes to
a 20, 000-dimensional space separated from the state features.

The training examples get labels 1 or 0 based on the tactics being useful or
not for the proof state. A tactic for a certain proof state is labeled as positive if it
is exactly the one applied to this state in the library. In contrast, negative tactics
are elements in the tactic space that differ from the positive instance. We obtain
negative data by two approaches: strong negatives and random negatives. Strong
negative instances are obtained by arbitrarily selecting a subset from the best-
100 k-NN predictions for this state. In the other approach, negative instances
are arbitrarily chosen from the entire tactic space.

With a trained gradient boosted trees model, we can predict the scores of
the tactics for an unseen proof state P . First, the top-100 k-NN predictions are
preselected. Then, for each tactic, we input (φP , φT) to the model to obtain the
score of T . The tactics are then sorted according to their scores.

76 L. Zhang et al.

1 2 4 8 16 32

0.1

0.2

0.3

Negative ratios

A
cc
ur
ac
y

1 8 64 512 4096

0.1

0.2

0.3

Number of trees

0.01 0.04 0.16 0.64

0.1

0.2

0.3

Eta parameters

A
cc
ur
ac
y

1 2 4 8 16
0

0.1

0.2

0.3

Max depth of trees

Fig. 2. Results of hyperparameter tuning for gradient boosted trees. In consistence
with Fig. 1, the blue circle (red square) corresponds to top-10 (top-1) accuracy, respec-
tively. The graph of negative ratios contains two additional curves of random negative
examples. The brown circle relates to top-10 accuracy, whereas the black star presents
the results of top-1 accuracy. (Color figure online)

Tuning Hyperparameters. Similarly as for the random forest model
(Sect. 3.2), we optimize the most important hyperparameters of the XGBoost
training algorithm on the data coming from the non-sink nodes in the depen-
dency graph of Coq’s standard library (see Sect. 4.1). One essential parameter
is the ratio of negative examples. Ratio n indicates that we generate n negative
instances for each recorded proof state. Other influential parameters that we
tune are: eta (learning-rate), number of trees, and max depth. Due to the limita-
tions of computing resources, we assume a set of default parameters: ratio = 8,
eta = 0.2, number of trees = 500, max depth = 10, and then separately modify
each of these parameters to observe the influence caused by the change, which is
depicted in Fig. 2. Both strong and random negatives are evaluated. Obviously,
strong negatives perform better than random negatives, and increasing the nega-
tive ratios will certainly lead to higher success rates. The figure also shows that a
higher number of trees results in better performance. Learning rates are between
0.08 and 0.64 give good results. It is also apparent that deeper trees (at least 8)
increase the accuracy.

Online Machine Learning Techniques for Coq: A Comparison 77

Table 1. Performance of the three tested machine learning models in two types of
evaluation: using a split of the dataset and a chronological evaluation through the
dataset. top-n refers to the frequency of the correct tactic being present in the first n
predictions from a machine learning model.

Machine learning system

k-NN Random Forest XGBoost

Evaluation type top-1 top-10 top-1 top-10 top-1 top-10

Split 18.8% 34.2% 32.1% 41.2% 18.2% 38.2%

Chronological 17.3% 43.7% 29.9% 58.9% 18.2% 43.4%

Experimental Setup. The XGBoost model is evaluated on the task of tac-
tic prediction both in the split setting and the chronological setting (illus-
trated in Sect. 4). We use the strong negative examples and determine the final
parameters—ratio = 16, eta = 0.2, number of trees = 1024, max depth = 10—
for generating a model from non-sink nodes and use that to predict for sink
nodes.

Since the entire dataset contains approximately 250, 000 proof states, and it
is time-consuming to generate a unique XGBoost model for each test case, we
propose several ways to speed up the chronological evaluation. Instead of train-
ing on the data from all preceding states, we merely provide 1, 000 instances
occurring previously as the training data. According to the results of param-
eter tuning depicted in Fig. 2, we decide on the hyperparameters—ratio = 4,
eta = 0.2, number of trees = 256, max depth = 10—to balance the accuracy and
efficiency.

4 Experimental Evaluation

To compare the performance of the described machine learning models, we per-
form three kinds of experiments: split evaluation, chronological evaluation, and
evaluation in Tactician. Achieving good performance in the last type of evalua-
tion is the main goal. All three machine learning models are evaluated in the first
two kinds of experiments, while in Tactician we only evaluate k-NN and online
random forest. This is because the XGBoost system, while being potentially the
strongest machine learner among tested, may not be easily turned into an online
learner and integrated into Tactician. We adopt the original features—term and
term pairs—for evaluation outside Tactician, whereas both the original features
and the new are tested on Tactician’s benchmark. To determine the relative
importance of the feature classes described in Sect. 2, we benchmark the addi-
tion of each class separately in Tactician. All evaluations are performed on data
extracted from the standard library of Coq 8.11.

78 L. Zhang et al.

4.1 Split Evaluation

In the directed acyclic graph of dependencies of the Coq modules, there are 545
nodes. 104 of them are sink nodes, i.e., these are the modules that do not appear
among dependencies of any other module. We used these modules as final testing
data for evaluation outside Tactician. The rest of the data was randomly split
into training and validation parts and was used for parameter tuning of random
forest and gradient boosted trees. The models with tuned hyperparameters were
evaluated on the testing data. The results of the evaluation of the three tested
models are shown in the first row of Table 1.

4.2 Chronological Evaluation

Although the split evaluation from the previous experiment is interesting, it
does not correspond entirely to the Tactician’s internal mode of operation. To
simulate the real-world scenario in an offline setting, we create an individual
model for each proof state by learning from all the previous states—data from
dependent files and preceding lines in the local file. The second row of Table 1
presents the results of the evaluation in chronological order.

4.3 Evaluation in Tactician

Table 2 shows the results of the evaluation of two online learners—the k-NN and
the random forest—within Tactician. The hyperparameters of the random forest
model were chosen based on the grid search in Sect. 3.2. We run the proof search
for every lemma in the library with a 40-s time limit on both the original and
the improved features.

The random forest performed marginally better than k-NN on both kinds of
features. With old features the k-NN proved 3831 lemmas (being 33.7% out of
all 11370), whereas the random forest proved 4011 lemmas (35.3% of all). With
the new features, both models performed better, and again, the random forest
proved more lemmas (4117, 36.2% of all) than k-NN (3945, 34.7% of all).

It is somewhat surprising that the random forest, which performed much
better than k-NN on the split in the offline evaluation, is only better by a small
margin in Tactician. This may be related to the time and memory consumption
of random forest, which may be higher than for k-NN on certain kinds of data.2

It is worth noting that k-NN and random forest resulted in quite different sets
of proofs. The columns marked as union show that the size of the union of proofs
constructed by the two models is significantly larger than the number of proofs
found by each model separately. In total, both models resulted in 4503 (39.6%)
proofs using old features and 4597 (40.4%) proofs using the new features.

2 Doing the splits in the leaves has quadratic time complexity with respect to the
number of examples stored in the leaf; sometimes it happens, that leaves of the trees
store large number of examples.

Online Machine Learning Techniques for Coq: A Comparison 79

Table 2. Proving performance of two online learners integrated with Tactician, k-
NN and random forest, in the Coq Standard Library. The percentages in the table
correspond to the fraction of lemmas proved in a given Coq module. The columns
union show what fraction of the lemmas was proved by at least one of the learners.
RF is an abbreviation of random forest.

Coq module #Lemmas Features type

Original New

k-NN RF union k-NN RF union

All 1137 33.7% 35.3% 39.6% 34.7% 36.2% 40.4%

Arith 293 52% 59% 65% 56% 59% 66%

Bool 130 93% 87% 93% 92% 88% 92%

Classes 191 80% 76% 81% 79% 79% 83%

FSets 1137 32% 34% 37% 32% 35% 39%

Floats 5 20% 20% 20% 40% 19% 40%

Init 164 73% 51% 73% 73% 56% 73%

Lists 388 38% 43% 47% 38% 44% 49%

Logic 341 31% 27% 34% 32% 31% 35%

MSets 830 38% 40% 43% 36% 40% 43%

NArith 288 37% 43% 44% 35% 42% 47%

Numbers 2198 23% 22% 27% 24% 23% 27%

PArith 280 31% 40% 44% 35% 39% 45%

Program 28 75% 64% 75% 78% 66% 78%

QArith 295 33% 40% 43% 31% 39% 45%

Reals 1756 19% 23% 25% 21% 24% 26%

Relations 37 29% 24% 40% 27% 26% 29%

Setoids 4 1.00 1.00 1.00 1.00 97% 1.00

Sets 222 43% 42% 49% 49% 47% 53%

Sorting 136 26% 29% 33% 25% 30% 33%

Strings 74 22% 22% 27% 17% 14% 20%

Structures 390 45% 49% 54% 51% 51% 56%

Vectors 37 37% 29% 40% 21% 23% 27%

Wellfounded 36 19% 05% 19% 16% 13% 16%

ZArith 953 41% 46% 49% 40% 43% 46%

btauto 44 11% 20% 20% 20% 17% 22%

funind 4 75% 50% 75% 50% 73% 75%

micromega 339 21% 27% 29% 27% 25% 30%

nsatz 27 33% 33% 37% 40% 26% 40%

omega 37 40% 67% 67% 48% 63% 64%

rtauto 33 30% 39% 48% 33% 44% 51%

setoid ring 362 21% 23% 26% 27% 27% 30%

ssr 311 68% 55% 69% 70% 57% 71%

4.4 Feature Evaluation

Table 3 depicts the influence of adding the new classes of features described in
Sect. 2 to the previous baseline.3 All of the newly produced features improve
the success rates. However, the top-down oriented AST walks contribute little,
probably due to Tactician having already included term tree walks up to length 2.
3 The results here are not directly comparable to those in Table 2 mainly due to the

usage of a non-indexed version of k-NN in contrast to the algorithm presented in 1.

80 L. Zhang et al.

Table 3. Proving performance of each feature modification. O, W, V, T , S, C denote
original features, top-down oriented AST walks, vertical abstract walks, top-level struc-
tures, premise and goal separation, and adding feature occurrence, respectively. The
symbol ⊕ denotes that we combine the original features and a new modification during
the experiments.

Features O O ⊕ W O ⊕ V O ⊕ T O ⊕ S O ⊕ C
Success rates (%) 32.75 32.82 34.16 33.65 34.42 34.97

Every other modification obtains a reasonable improvement, which confirms the
intuitions described in Sect. 2.

5 Related Work

Random forests were first used in the context of theorem proving by Färber [12],
where multi-path querying of a random forest would improve on k-NN results
for premise selection. Nagashima and He [22] proposed a proof method recom-
mendation system for Isabelle/HOL based on decision trees on top of precisely
engineered features. A small number of trees and features allowed for explain-
able recommendations. Frameworks based on random boosted trees (XGBoost,
LightGBM) have also been used in automated reasoning, in the context of guid-
ing tableaux connection proof search [19] and the superposition calculus proof
search [9], as well as for handling negative examples in premise selection [24].

Machine learning to predict tactics was first considered by Gauthier et al. [14]
in the context of the HOL4 theorem prover. His later improvements [15] added
Monte-Carlo tree search, tactic orthogonalization, and integration of both Metis
and a hammer [13]. A similar system for HOL Light was developed by Bansal
et al. [1]. Nagashima and Kumar developed the proof search component [23] of
such a system for Isabelle/HOL. This work builds upon Tactician [4,5], adapt-
ing and improving these works for dependent type theory and the Coq proof
assistant.

6 Conclusion

We have implemented several new methods for learning tactical guidance of
Coq proofs in the Tactician system. This includes better proof state features
and an improved version of approximate k-nearest neighbor based on locality
sensitive hashing forests. A completely new addition is our online implementation
of random forest in Coq, which can now be used instead of or together with the
k-nearest neighbor. We have also started to experiment with strong state-of-the-
art learners based on gradient boosted trees, so far in an offline setting using
binary learning with negative examples.

Online Machine Learning Techniques for Coq: A Comparison 81

Our random forest improves very significantly on the k-nearest neighbor in
an offline accuracy-based evaluation. In an online theorem-proving evaluation,
the improvement is not as big, possibly due to the speed of the two methods
and the importance of backtracking during the proof search. The methods are,
however, quite complementary and running both of them in parallel increases
the overall performance of Tactician from 33.7% (k-NN with the old features)
to 40.4% in 40s. Our best new method (RF with the new features) now solves
36.2% of the problems in 40s.

The offline experiments with gradient boosted trees are so far inconclusive.
They outperform k-nearest neighbor in top-10 accuracy, but the difference is
small, and the random forest performs much better in this metric. Since the
random forest learns only from positive examples, this likely shows that learning
in the binary setting with negative examples is challenging on our Tactician
data. In particular, we likely need good semantic feature characterizations of the
tactics, obtained e.g., by computing the difference between the features of the
proof states before and after the tactic application. The experiments, however,
already confirm the importance of choosing good negative data to learn from in
the binary setting.

References

1. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: an environ-
ment for machine learning of higher order logic theorem proving. In: Chaudhuri,
K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019.
Proceedings of Machine Learning Research, vol. 97, pp. 454–463. PMLR (2019)

2. Bawa, M., Condie, T., Ganesan, P.: LSH forest: Self-tuning indexes for similarity
search. In: Ellis, A., Hagino, T. (eds.) Proceedings of the 14th International Con-
ference on World Wide Web, WWW 2005, Chiba, Japan, 10–14 May 2005, pp.
651–660. ACM (2005)

3. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

4. Blaauwbroek, L., Urban, J., Geuvers, H.: Tactic learning and proving for the Coq
proof assistant. In: Albert, E., Kovács, L. (eds.) Proceedings of the 23rd Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning,
LPAR 2020. EPiC Series in Computing, vol. 73, pp. 138–150. EasyChair (2020)

5. Blaauwbroek, L., Urban, J., Geuvers, H.: The tactician. In: Benzmüller, C., Miller,
B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 271–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53518-6 17

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Broder, A.Z.: On the resemblance and containment of documents. In: Carpentieri,

B., Santis, A.D., Vaccaro, U., Storer, J.A. (eds.) Compression and Complexity of
SEQUENCES 1997, Positano, Amalfitan Coast, Salerno, Italy, 11–13 June 1997,
Proceedings, pp. 21–29. IEEE (1997)

8. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794 (2016)

https://doi.org/10.1007/978-3-030-53518-6_17

82 L. Zhang et al.

9. Chvalovský, K., Jakub̊uv, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E. In: Fontaine, P. (ed.) CADE 2019.
LNCS (LNAI), vol. 11716, pp. 197–215. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29436-6 12

10. Domingos, P.M., Hulten, G.: Mining high-speed data streams. In: Ramakrishnan,
R., Stolfo, S.J., Bayardo, R.J., Parsa, I. (eds.) Proceedings of the sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
71–80. ACM (2000)

11. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)

12. Färber, M., Kaliszyk, C.: Random forests for premise selection. In: Lutz, C., Ranise,
S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 325–340. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24246-0 20

13. Gauthier, T., Kaliszyk, C.: Premise selection and external provers for HOL4. In:
Leroy, X., Tiu, A. (eds.) Proceedings of the 4th Conference on Certified Programs
and Proofs (CPP 2015), pp. 49–57. ACM (2015)

14. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4
tactics. In: Eiter, T., Sands, D. (eds.) Proceedings of the 21st International Confer-
ence on Logic for Programming, Artificial Intelligence and Reasoning, LPAR-21.
EPiC Series in Computing, vol. 46, pp. 125–143. EasyChair (2017)

15. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: TacticToe: learning
to prove with tactics. J. Autom. Reason. 65(2), 257–286 (2021)

16. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Atkinson, M.P., Orlowska, M.E., Valduriez, P., Zdonik, S.B., Brodie, M.L.
(eds.) Proceedings of 25th International Conference on Very Large Data Bases,
VLDB 1999, Edinburgh, Scotland, UK, 7–10 September 1999, pp. 518–529. Mor-
gan Kaufmann (1999)

17. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbor: towards
removing the curse of dimensionality. Theory Comput. 8(1), 321–350 (2012)

18. Jones, K.S.: A statistical interpretation of term specificity and its application in
retrieval. J. Documentation 60(5), 493–502 (2004)

19. Kaliszyk, C., Urban, J., Michalewski, H., Oľsák, M.: Reinforcement learning of
theorem proving. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems
31, pp. 8836–8847. Curran Associates, Inc. (2018)

20. Kaliszyk, C., Urban, J., Vyskočil, J.: Efficient semantic features for automated
reasoning over large theories. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of
the 24th International Joint Conference on Artificial Intelligence, (IJCAI 2015),
pp. 3084–3090. AAAI Press (2015)

21. Mitchell, T.M.: Machine Learning, International Edition. McGraw-Hill Series in
Computer Science. McGraw-Hill (1997)

22. Nagashima, Y., He, Y.: PaMpeR: proof method recommendation system for
Isabelle/HOL. In: Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, 3–7 September 2018, pp. 362–372. ACM (2018)

23. Nagashima, Y., Kumar, R.: A proof strategy language and proof script generation
for Isabelle/HOL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp.
528–545. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 32

https://doi.org/10.1007/978-3-030-29436-6_12
https://doi.org/10.1007/978-3-030-29436-6_12
https://doi.org/10.1007/978-3-319-24246-0_20
https://doi.org/10.1007/978-3-319-63046-5_32

Online Machine Learning Techniques for Coq: A Comparison 83

24. Piotrowski, B., Urban, J.: ATPboost: learning premise selection in binary setting
with ATP feedback. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018.
LNCS (LNAI), vol. 10900, pp. 566–574. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94205-6 37

25. Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line random
forests. In: 12th IEEE International Conference on Computer Vision Workshops,
ICCV Workshops 2009, Kyoto, Japan, 27 September–4 October 2009, pp. 1393–
1400. IEEE Computer Society (2009)

26. The Coq Development Team: The Coq proof assistant, version 8.11.0, October
2019

27. Zhang, C., Zhang, Y., Shi, X., Almpanidis, G., Fan, G., Shen, X.: On incremental
learning for gradient boosting decision trees. Neural Process. Lett. 50(1), 957–987
(2019)

https://doi.org/10.1007/978-3-319-94205-6_37
https://doi.org/10.1007/978-3-319-94205-6_37

Improving Stateful Premise Selection
with Transformers

Krsto Proroković(B), Michael Wand, and Jürgen Schmidhuber

Instituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), USI & SUPSI,
Lugano, Switzerland

{krsto,michael,juergen}@idsia.ch

Abstract. Premise selection is a fundamental task for automated
reasoning in large theories. A recently proposed approach formulates
premise selection as a sequence-to-sequence problem, called stateful
premise selection. Given a theorem statement, the goal of a stateful
premise selection method is to predict the set of premises that would
be useful in proving it. In this work we use the Transformer architecture
for learning the stateful premise selection method. We outperform the
existing recurrent neural network baseline and improve upon the state
of the art on a recently proposed dataset.

Keywords: Premise selection · Machine learning · Neural networks

1 Introduction

When proving new theorems we usually rely on already proven facts as inter-
mediate steps. The task of choosing useful facts is called premise selection. The
input to the premise selection method is the statement of the theorem we are
trying to prove (in some computer-friendly format [6]) and the output is a list
of premises that should be useful in proving it. Early work on premise selection
includes handcrafted methods such as SiNe [4] and MePo [14]. Lately, different
machine learning algorithms have been used to learn a premise selection medth-
ods; these include: näıve Bayes [27], kernel methods [26], k-nearest neighbors
[7,8], gradient boosted trees [18], and neural networks [5,11]. Recently, [19] used
the fact that premises are not independent between themselves and formulated
premise selection as a sequence-to-sequence problem [25], called stateful premise
selection. They used recurrent neural networks (RNNs) to map a theorem state-
ment to a set of premises. RNNs process the input sequence in a sequential
order (i.e. symbol by symbol), encode it into a real-valued vector, then decode
from it the output sequence. The Transformer architecture [28], unlike RNNs,
relies on the attention mechanism to process the entire input sequence in parallel.

This work was supported by the ERC Advanced grant no. 742870. We would like
to thank Kazuki Irie for constructive feedback on the manuscript as well as Róbert
Csordás and Dieuwke Hupkes for useful advice about the Transformer architecture.

c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 84–89, 2021.
https://doi.org/10.1007/978-3-030-81097-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-81097-9_6

Improving Stateful Premise Selection with Transformers 85

Given the success of Transformers on sequence tasks such as machine translation
and language modeling, it is natural to ask whether the same holds for auto-
mated theorem proving. In [20] Transformer was used for theorem proving in the
Metamath environment [13]. In this work, we study the performance of different
sequence-to-sequence models such as Long-Short Term Memory (LSTM) neu-
ral networks [3] and Transformers for stateful premise selection. We show that
Transformer models perform substantially better, making them more suitable
for this task. While here we use quadratic Transformers, we remark that linear
Transformers have been shown to be equivalent [21] to fast weight programmers
- feedforward neural networks where one network programs the changes of the
fast weights of another network [22].

2 Data

We use the corpus introduced in [19]. The data is taken from the Mizar Mathe-
matical Library [2] translated into the TPTP language [24]. More precisely, the
MPTP2078 benchmark consisting of 2078 Mizar theorems is used. From those
2078 theorems, 1469 are proved using ATPBoost [18] (using XGBoost [1] and
the E theorem prover [23]) yielding 24087 different proofs (between 1 and 265
per theorem, 16.4 on average). This corpus is split into the train set containing
18361 proofs of 1100 theorems and the test set containing 298 different theorems.

As in [19], we consider two ways of representing the theorem statements. The
first, called standard is just tokenized statements in standard TPTP syntax. The
length of theorems in this format ranges between 6 and 536, 81.23 on average.
The other is using prefix (also called Polish) notation. The length of theorems
in this format ranges between 5 and 224, 34.03 on average. For an example, see
Table 1.

Table 1. An example of theorem statement in different formats.

Format Statement

Mizar for A being set st A is empty holds A is finite

TPTP ![A] : (v1 xboole 0(A) => v1 finset 1(A))

Standard ! [A] : (v1 xboole 0 (A) => v1 finset 1 (A))

Prefix ! A => v1 xboole 0 A v1 finset 1 A

3 Experiments

In this section we experiment with several different neural network architectures.
To perform model selection, we take 98 theorems from the training set together
with their proofs and use them as a validation set. We make sure that every

86 K. Proroković et al.

premise that appears in the validation set also appears in the training set. Fol-
lowing [19], to evaluate the performance of our models we use Jaccard index and
coverage defined as:

Jaccard(A,B) =
|A ∩ B|
|A ∪ B| Coverage(A,B) =

|A ∩ B|
|B| .

For every theorem in the dataset, we take the union of premises over all of its
available proofs. Using the above defined metrics, we compare that set (B in
equations above) to the union of premises taken from the output of the beam
search with our models (A in the equations above). In other words, every hypoth-
esis in a beam corresponds to a set of premises to be used in a possible proof of
a theorem. Here, we use beam search with a beam of width 10.

For training LSTM based encoder-decoder attention models, we use the
OpenNMT tookit [9]. We vary the number of layers, hidden units, and training
steps and use a batch size of 64. We use Luong attention variant [12] and observe
that removing it dramatically reduces the performance. The top-performing
architecture is a 2-layer, 500 units LSTM encoder and decoder trained with
100K steps. This happens to be the same architecture used in [19]. For train-
ing Transformers we use our own implementation in PyTorch [17]. Similarly, we
vary the number of layers, hidden units, and the number of training epochs and
use a batch size of 128. We observe that removing the positional encoding from
the premise embeddings slightly improves the performance. The best perform-
ing model is a 3-layer Transformer with state size of 512, 8 attention heads, and
feedforward dimension of 2048, trained for 500 epochs.

After finishing the model selection we train the best performing architectures
on the entire training set and evaluate on the test set. On the test set we also
evaluate the predictions of our models using the E theorem prover [23] and count
the number of theorems proved. The results are displayed in Table 2.

Table 2. Performance of neural models on the test set.

Format

Standard Prefix

Model Jaccard Coverage Proved Jaccard Coverage Proved

LSTM 0.22 0.46 0.29 0.22 0.43 0.27

Transformer 0.27 0.56 0.42 0.29 0.60 0.45

We see that Transformer model substantially outperforms LSTMs, both in
set-theoretic metrics and the amount of theorems proved.

We continue by augmenting the training dataset with subproofs. We do this
by taking the statements of intermediate lemmas and the premises from the
corresponding proofs. This yields additional 46094 lemma-premises pairs. Again,
we train the best performing models on the augmented training set and evaluate
on the test set as before. The results are displayed in Table 3.

Improving Stateful Premise Selection with Transformers 87

Table 3. Performance of neural models on the test set after training on augmented
dataset.

Model Jaccard Coverage Proved

LSTM 0.27 0.51 0.40

Transformer 0.27 0.58 0.48

It is interesting to see that the value of the Jaccard index and the coverage for
the Transformer model is lower compared to the training on the non-augmented
dataset. However, the number of theorems proved is higher, again substantially
outperforming LSTMs and improving upon the state of the art for this dataset1.

4 Conclusion and Future Work

In this paper we investigated the performance of LSTM and Transformer models
for stateful premise selection and have shown that the Transformer architecture
works better than the existing recurrent neural network baseline. Depending on
the theorem prover used, the output of the model might need to be a set (and
not a sequence) of premises. Therefore, it would be worthwhile to investigate
whether incorporating permutation invariance in the models helps. This might
be achieved, for instance, using the Hungarian matching algorithm [10]. Another
possibility is using reinforcement learning to improve the performance of the
model by interacting with the theorem prover. This could be useful even when
the proofs of the theorems are not available. Also, all the methods presented here
are syntactic; the premises are just tokens and the models and have to learn their
semantics. Integrating the meaning of premises might further improve the results
and seems as a promising future direction [15,16].

References

1. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794 (2016)

2. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formaliz.
Reason. 3(2), 153–245 (2010)

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

4. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–
314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6 23

1 The code for reproducing the results displayed here is available at
https://github.com/krstopro/stateful-premise-selection-with-transformers.

https://doi.org/10.1007/978-3-642-22438-6_23
https://github.com/krstopro/stateful-premise-selection-with-transformers

88 K. Proroković et al.

5. Irving, G., Szegedy, C., Alemi, A.A., Een, N., Chollet, F., Urban, J.: Deepmath -
deep sequence models for premise selection. In: Lee, D., Sugiyama, M., Luxburg,
U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems, vol. 29. Curran Associates, Inc. (2016). https://proceedings.neurips.cc/
paper/2016/file/f197002b9a0853eca5e046d9ca4663d5-Paper.pdf

6. Kaliszyk, C., Rabe, F.: A survey of languages for formalizing mathematics. In:
Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 138–
156. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6 9

7. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reason. 53(2), 173–213 (2014)

8. Kaliszyk, C., Urban, J.: Mizar 40 for Mizar 40. J. Autom. Reason. 55(3), 245–256
(2015)

9. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: OpenNMT: open-source
toolkit for neural machine translation. In: Proceedings of ACL 2017, System
Demonstrations, pp. 67–72. Association for Computational Linguistics, Vancou-
ver, Canada (Jul 2017). https://www.aclweb.org/anthology/P17-4012

10. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res.
Logist. Q. 2(1–2), 83–97 (1955)

11. Loos, S., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: LPAR-21, 21st International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, pp. 85–105 (2017). http://arxiv.org/pdf/1701.06972.
pdf. ISSN 2398–7340

12. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1412–1421 (2015)

13. Megill, N., Wheeler, D.A.: Metamath: A Computer Language for Mathematical
Proofs (2019). http://us.metamath.org/downloads/metamath.pdf

14. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-
olution problems. J. Appl. Log. 7(1), 41–57 (2009)

15. Olsák, M., Kaliszyk, C., Urban, J.: Property invariant embedding for automated
reasoning. In: Giacomo, G.D., et al. (eds.) ECAI 2020–24th European Confer-
ence on Artificial Intelligence, 29 Aug – 8 Sept 2020, Santiago de Compostela,
Spain, Aug 29 – Sept 8, 2020 - Including 10th Conference on Prestigious Applica-
tions of Artificial Intelligence (PAIS 2020). Frontiers in Artificial Intelligence and
Applications, vol. 325, pp. 1395–1402. IOS Press (2020). https://doi.org/10.3233/
FAIA200244

16. Paliwal, A., Loos, S., Rabe, M., Bansal, K., Szegedy, C.: Graph representations for
higher-order logic and theorem proving. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, pp. 2967–2974 (2020)

17. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

18. Piotrowski, B., Urban, J.: ATPboost: learning premise selection in binary setting
with ATP feedback. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018.
LNCS (LNAI), vol. 10900, pp. 566–574. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94205-6 37

https://proceedings.neurips.cc/paper/2016/file/f197002b9a0853eca5e046d9ca4663d5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/f197002b9a0853eca5e046d9ca4663d5-Paper.pdf
https://doi.org/10.1007/978-3-030-53518-6_9
https://www.aclweb.org/anthology/P17-4012
http://arxiv.org/pdf/1701.06972.pdf
http://arxiv.org/pdf/1701.06972.pdf
http://us.metamath.org/downloads/metamath.pdf
https://doi.org/10.3233/FAIA200244
https://doi.org/10.3233/FAIA200244
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-3-319-94205-6_37
https://doi.org/10.1007/978-3-319-94205-6_37

Improving Stateful Premise Selection with Transformers 89

19. Piotrowski, B., Urban, J.: Stateful premise selection by recurrent neural networks.
In: Albert, E., Kovacs, L. (eds.) LPAR23, LPAR-23: 23rd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series in
Computing, vol. 73, pp. 409–422. EasyChair (2020). 0). https://doi.org/10.29007/
j5hd. https://easychair.org/publications/paper/g38n

20. Polu, S., Sutskever, I.: Generative language modeling for automated theorem prov-
ing. CoRR abs/2009.03393 (2020). https://arxiv.org/abs/2009.03393

21. Schlag, I., Irie, K., Schmidhuber, J.: Linear transformers are secretly fast weight
memory systems. CoRR abs/2102.11174 (2021). https://arxiv.org/abs/2102.11174

22. Schmidhuber, J.: Reducing the ratio between learning complexity and number
of time varying variables in fully recurrent nets. In: Gielen, S., Kappen, B. (eds.)
ICANN 1993, pp. 460–463. Springer, London (1993). https://doi.org/10.1007/978-
1-4471-2063-6 110

23. Fermüller, C.G., Voronkov, A. (eds.): LPAR 2010. LNCS, vol. 6397. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-16242-8

24. Sutcliffe, G.: The TPTP world – infrastructure for automated reasoning. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 1–12. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4 1

25. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. Adv. Neural Inf. Process. Syst. 27, 3104–3112 (2014)

26. Tsivtsivadze, E., Urban, J., Geuvers, H., Heskes, T.: Semantic graph kernels for
automated reasoning. In: Proceedings of the 2011 SIAM International Conference
on Data Mining, pp. 795–803. SIAM (2011)

27. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reason. 37(1–2), 21–43 (2006)

28. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30,
5998–6008 (2017)

https://doi.org/10.29007/j5hd
https://doi.org/10.29007/j5hd
https://easychair.org/publications/paper/g38n
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2102.11174
https://doi.org/10.1007/978-1-4471-2063-6_110
https://doi.org/10.1007/978-1-4471-2063-6_110
https://doi.org/10.1007/978-3-642-16242-8
https://doi.org/10.1007/978-3-642-17511-4_1

Towards Math Terms Disambiguation
Using Machine Learning

Ruocheng Shan(B) and Abdou Youssef

The George Washington University, Washington, DC, USA
{shanruocheng,ayoussef}@gwu.edu

Abstract. Word disambiguation has been an important task in natu-
ral language processing. However, the problem of disambiguation is still
less explored in mathematical text. Similar to natural languages, some
math terms are not assigned a unique interpretation. As math text is
an important part of the scientific literature, an accurate and efficient
way of performing disambiguation of math terms will be a significant
contribution. In this paper, we present some investigations on math-
term disambiguation using machine learning. All experimental data are
selected from the DLMF dataset. Our experiments consist of 3 steps:
(1) create a labeled dataset of math equations (from the DLMF) where
the instances are (math token, token meaning) pairs, grouped by equa-
tion; (2) build machine learning models and train them using our labeled
dataset, and (3) evaluate and compare the performance of our models
using different evaluation metrics. Our results show that machine learn-
ing is an effective approach to math-term disambiguation. The accuracy
of our models ranges from 70% to 85%. There is potential for consider-
able improvements once we have much larger labeled datasets with more
balanced classes.

Keywords: Math-term · LATEX · Disambiguation · Mathematical
equations · Machine Learning

1 Introduction

In natural languages, a specific word can have different meanings depending
on the context in which it appears. Identifying the proper sense of the word is
crucial in many NLP tasks. The task of Word Sense Disambiguation (WSD) is to
determine the intended sense of an ambiguous word based on the context. This
is a basic problem in NLP and has a variety of solutions [1]. Machine Learning
(ML) and Natural Language Processing (NLP) have started to be applied to
math language processing and math knowledge discovery. In this research, we
study the ambiguities of math terms in the context of math equations, where
we mark terms that have different meanings in different equations and assign a
sense to the term using machine learning models. Table 1 shows, as an example,
two possible meanings of the math term “prime” (′).
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 90–106, 2021.
https://doi.org/10.1007/978-3-030-81097-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-81097-9_7

Towards Math Terms Disambiguation Using Machine Learning 91

Table 1. Examples of ambiguities of “prime”

Explanation Example equation

Derivative f ′(z) = df
dz

= limh→0
f(z+h)−f(z)

h

Part of symbol name a′ = −a +
∑n

j=1 bj

While most of the “prime” tokens used in equations in many math
manuscripts (e.g., the DLMF [2]) represent the derivative of a function, primes
can have different meanings. For example, it can signify complementation (in
logic, Boolean algebra, and set theory), or it can be an integral part (a glyph)
of a symbol name. Table 2 shows other forms of possible ambiguities that were
identified by Youssef and Miller [3].

Table 2. Examples of ambiguities of math terms, identified in [3]

Ambiguity Explanation

Superscript Can indicate a power, an index, the
order of differentiation, a postfix
unary operator, etc.

Prime Can denote the derivative of y, or the
logical complement of y, or a
morphological glyph

Juxtaposition Can signify multiplication,
concatenation, or function application

Scope Typically occurring when delimiters
are omitted. E.g., “sin 2πx + 5” is
likely intended to mean “sin(2πx) + 5”

Data type Necessary to completely resolve
semantics; conversely, can help
disambiguate other ambiguities, e.g.,
Superscript

Math content processing presents some of the same challenges faced in
natural language processing (NLP), such as math disambiguation and math
semantics determination. These challenges must be surmounted to enable more
effective math knowledge management, math knowledge discovery, automated
presentation-to-computation (P2C) conversion, and automated math reason-
ing [4].

While purely linguistic approaches can work well for disambiguation in cer-
tain contexts, we believe that machine learning approaches (e.g., classifiers),
alone or combined with linguistic approaches, have much more potential for
more accurate disambiguation, especially for math terms where often the set of
possible senses of a term is not fully known a priori.

92 R. Shan and A. Youssef

In this paper, we carry out some investigations of math term disambiguation
using machine learning. The ultimate goal is to build a (nearly) universal math-
term disambiguator, that is, a model that can determine the intended sense of
(nearly) every math term in (nearly) every input STEM manuscript. However,
such a lofty goal is inachievable at this time for two reasons. First, it requires
considerably large, labeled math datasets, which are still sorely lacking, and sec-
ond, the task of building such a disambiguator is a multi-year incremental effort.
Therefore, in this paper, we aim for a scaled-down realistic goal of disambiguat-
ing a small subset of math terms, using the relatively small DLMF dataset1,
to test and evaluate the promise of machine learning in math disambiguation,
and to learn lessons for bigger-scope disambiguation and for creating bigger and
better-labeled math datasets for the disambiguation task.

To that end, we limit our disambiguation investigation to three items/groups
in the DLMF [2]: (1) the Gamma (Γ) symbol in its several variants, (2) the
prime (′), and (3) superscripts. To train and test machine learning models for
this limited disambiguation task, we looked into the labeled DLMF dataset that
was recently developed by Youssef and Miller [5]. Although the labeling in that
dataset is fairly rich and multi-faceted, it was not adequate for our task. There-
fore, we had to manually create new labels targeted to our three disambiguation
groups, for a small subset of the DLMF (due to the lack of time and resources).
Afterwards, we trained and tested classical machine learning models as well as
one deep learning (DL) model. Our experiments show that the classical ML
models perform quite well on our scaled-down disambiguation task, boding well
for much broader disambiguation of math terms. Our results also show that
our deep learning model under-performed the classical ones, which was not too
surprising because deep learning models require much larger datasets than cur-
rently available. This paper will present our studies and experiments, draw some
conclusions and lessons learned, and identify directions for future work in this
important area of math language processing.

2 Related Works

2.1 The DLMF Dataset

Much of the mathematical literature is mostly in LATEX. In this study, we utilized
the Digital Library of Mathematical Functions (DLMF) of NIST. The dataset
is structured and labeled in a specific way. For each math equation and expres-
sion in the DLMF, there is a record that provides annotation and contextual
elements. The whole dataset has 20,040 sentences; 25,930 math elements; and
8,494 numbered equations [5].

We extracted equations from the DLMF and divided them into smaller groups
by identifying whether an equation contains the terms that need to be disam-
biguated.

1 https://github.com/abdouyoussef/math-dlmf-dataset/.

https://github.com/abdouyoussef/math-dlmf-dataset/

Towards Math Terms Disambiguation Using Machine Learning 93

2.2 Part-of-Math Tagger

In preparation for labeling the math terms, we use the Part-of-Math (POM)
Tagger provided by Youssef to tokenize equations [4].

The tagger takes as input a math equation or expression, and tags each math
term and some sub-expressions with two kinds of tags. The first kind consists
of definite tags (such as operation, relation, numerator, etc.) that the tagger is
certain of. The second kind consists of alternative, tentative features (including
alternative roles and meanings) drawn from a knowledge base that was developed
for the POM tagger. Using the tagger and some manual post-processing and
labeling, we created the labeled a set of equations that have one or more of our
target list of ambiguous math terms.

2.3 Word Sense Disambiguation in NLP

Word Sense Disambiguation is a technique to find the exact sense of an ambigu-
ous word in a particular context [6–8]. WSD typically involves two main tasks:
(1) determining the different possible senses (or meanings) of each word, and (2)
tagging each word of a text with its most likely intended sense in context.

For the former task, in NLP, the precise definition of a sense is still under
discussion and remains an open problem. At the moment, the most used Sense
Repository is WordNet [9]. However, when it comes to Math-Terms, no such
agreed-upon resource exists, and often the list of possible senses of a math
term varies from area to area within mathematics, making the problem domain-
specific. Furthermore, the intended sense of a math term can be totally new
(specified by the authors) and defined somewhere within the manuscript; in such
cases, the problem shifts to that of definition harvesting, which is an entirely dif-
ferent task than the one under consideration in this paper.

The second task has mainly two approaches: knowledge-based and corpus-
based methods. The knowledge-based method in WSD depends on external
knowledge sources, such as Machine Readable Dictionaries, which exist prior
to the disambiguation process. In the corpus-based methods, the information is
gathered from contexts of previously annotated examples of a word. These meth-
ods extract the knowledge from examples by applying Statistical or Machine
Learning Methods.

Disambiguation of word sense and disambiguation of math terms share much
in common: (1) the sources are all in text format, and should be processed within
a context that is a sequence of tokens; (2) they both have a set of classes or labels
for each element (word senses and math term definitions); and (3) the corpus-
based approaches are identical in terms of computation.

However, the lack of pre-existing semantic relations between math terms
makes it impossible to apply some knowledge-based algorithms that proved so
effective in WSD.

94 R. Shan and A. Youssef

2.4 Machine Learning Models

WSD, as well as math-term disambiguation, can be viewed as a classification
task: math definitions are the classes, and an automatic classification method
(i.e., a classifier) is used to assign each occurrence of a math term to one of
the classes based on the evidence from the context and from external knowledge
sources.

Machine learning models/classifiers have proved effective in WSD. In 2014,
Singh et al. achieved 71.75% accuracy in Manipuri language with 400 test words
and 1600 training words [10]. In 2018, Faisal, Nurifan and Sarno used Support
Vector Machine with TF-IDF as feature extraction method and achieved 87.7%
accuracy in Bahasa Indonesia language [11].

Deep learning has been applied on NLP tasks, including WSD, with consider-
able success. With enough training data and computing resources, deep learning
can be effective because: (1) it uses sequence processing and considers the word
order; (2) neural networks do not require any previous hand crafted feature
engineering. In 2017 Raganato et al. used DL with SemCor 3.0 [12] as training
corpus and tested on SemEval2007 [13]. Their Bi-LSTM model reached 83.1%
F-score while another Seq2Seq model of theirs reached 82.3% F-score. In 2019,
Nithyanandan and C.Raseek used Bi-LSTM and achieved 93% accuracy [1] on
the One-Million Sense Tagged Corpus(OMSTC) [14].

Compared with Deep Learning, which is now the state-of-the-art approach
to perform WSD, classical machine learning models can provide relatively good
results using only small training datasets. Given that our dataset is quite small,
we decided to investigate the possibilities of performing math-term disambigua-
tion using primarily classical machine learning model.

However, to get some sense of how well deep learning can do in math-term
disambiguation using only a small dataset, we examine in this paper one deep
learning model. The Sequence-to-Sequence approach in deep learning is espe-
cially suitable for math disambiguation. Besides the benefits of deep learning
we discussed before, a Sequence-to-Sequence model can produce a sequence of
classes corresponding to the input tokens of an equation. In this paper, we train
and test a sequence-to-sequence model using Long Short Term Memory (LSTM)
neural network [15], and compare its performance with those of classical machine
learning models.

2.5 Math Language Processing

While machine learning and natural language processing are being applied to
math language processing (MLP) and math knowledge discovery, many related
studies are carried out to solve certain MLP tasks.

In 2018, Youssef and Miller applied different deep learning models to math
semantics extraction and processing and conducted comparative performance
evaluations of the models [3]. They also presented exploratory investigations
of math embedding by testing it on MLP tasks, such as math-term similarity,
analogy, math search and so on [16]. In 2018, Schubotz, et al. introduced a Gold

Towards Math Terms Disambiguation Using Machine Learning 95

Standard MathMLben to facilitate the conversion between different mathemati-
cal formats such as LaTeX variations and Computer Algebra Systems (CAS) [17].
In 2021, Scharpf, Schubotz and Gipp presented an approach to structure and
speed up the annotation and linking process between mathematical formulae
and semantic concepts [18].

3 The Dataset

As indicated earlier, we had to carve out a subset of the DLMF dataset, and
label it manually for the Gamma symbols, the prime, and superscripts. In this
section, we describe the dataset and provide some statistics about it.

Tabel 3 shows an example of a labeled equation:

a′ = −a +
∑n

j=1
bj .

The LATEX format of this equation is:

a\^{\prime}=-a+\sum_{j=1}\xhat{n}b_{j}

Table 3. A labeled equation as tokens and labels. The equation is: a′ = −a+
∑n

j=1 bj .
The label “O” means that a token belongs to no class

Token a superscript { prime } = - a +
∑ { j

Label O part of name O part of name O O O O O O O O O

Token = 1 } superscript { n } b { j }
Label O O O summation upper bound O O O O O O O O

Tables 4, 5, 6 show the number of samples for each of our three groups, the
classes per group, and their labels and sizes.

Table 4. Data distribution of Gamma

Label Explanation Samples

multivariate gamma function The multivariate Gamma function 50

q gamma function The q-gamma function 21

incomplete gamma function The incomplete gamma function 57

gamma function The gamma function 1577

Total size 1705

96 R. Shan and A. Youssef

Table 5. Data distribution of superscript

Label Explanation Samples

integral upper bound Indicates the upper bound of integration 864

summation upper bound Indicates the upper bound of summation 86

part of name The part of name of a variable or function 923

power The power of a variable or function 7014

Total size 8887

Table 6. Data distribution of Prime

Label Explanation Samples

derivative Derivative of a function 352

part of name The part of name of a variable or function 35

Total size 387

4 Machine Learning Approach

Figure 1 shows the basic architecture of our approach to Math Term Disambigua-
tion. The main stages of this project are: Data Prepossessing, Feature Engineer-
ing, Training the Models, and Evaluation. The Data Prepossessing stage per-
forms the pre-processing of the dataset which makes it easier for computation,
where we tokenize the equations, apply a placeholder to duplicate tokens in an
equation (as will be explained shortly), and perform under-sampling to balance
the different classes. The Feature Engineering stage computes the feature vector
of every equation (explained later). The Training stage performs the training
of our machine learning models and the tuning of the hyperparameters. The
Evaluation stage gives the test results in different performance metrics.

4.1 Data Prepossessing

4.1.1 Place Holding
In some equations, the target math term appears more than once. In this paper,
we only select one of the duplicate terms as target, and replace all the other
occurrences of the same term with a placeholder. In future work, our models
will label all occurrences, but in this paper, we limit the classifier scope to just
one occurrence of a term, on the assumption that all occurrences of the same
term in the same equation have the same sense. Figure 2 shows an example of
the place-holding process.

Towards Math Terms Disambiguation Using Machine Learning 97

Fig. 1. Basic architecture of the system

4.1.2 Data Under-Sampling
In Sect. 3, the data distributions were presented, where the class imbalance is
obvious. The imbalance would wrongly lean the models towards the majority
classes, that is, the trained classifiers would more likely predict the class of a
test data instance as the majority class.

We perform random under-sampling on the data set to reduce the number
of samples of certain classes and yet keep its majority position, to a mitigated
extent.

Tables 7, 8, 9 show the statistics for each of the 3 groups after under-sampling.

Table 7. Data distribution of Gamma after under-sampling

Label Explanation Samples

multivariate gamma function The multivariate Gamma function 50

q gamma function The q-gamma function 21

incomplete gamma function The incomplete gamma function 57

gamma function The gamma function 200

Total size 328

98 R. Shan and A. Youssef

Table 8. Data distribution of superscript after under-sampling

Label Explanation Samples

integral upper bound Indicates the upper bound of integration 864

summation upper bound Indicates the upper bound of summation 86

part of name The part of name of a variable or function 923

power The power of a variable or function 1500

Total size 3373

Table 9. Data distribution of prime after under-sampling

Label Explanation Samples

derivative Derivative of a function 100

part of name The part of name of a variable or function 35

Total size 135

Fig. 2. An example of place holding

4.2 Feature Engineering

First we use the CountVectorizer function provided by scikit learn2 on the tok-
enized sequence of math terms to form the feature space. An encoded vector
is returned with a length of the entire vocabulary and an integer count for the
number of times each word appeared in the document.

After obtaining the count-vector representations, we then apply the TF-IDF
(Term Frequency - Inverse Document Frequency) algorithm to further enhance
the features. TF-IDF is a statistical measure that evaluates how relevant a word
is to a document in a collection of documents. It is the product of: how many

2 https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.
\penalty-\@MCountVectorizer.html.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.penalty -@M CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.penalty -@M CountVectorizer.html

Towards Math Terms Disambiguation Using Machine Learning 99

times a word appears in a document, and the log of the inverse document fre-
quency of the word across a set of documents.

The TF-IDF is calculated via this formula:

tfidf (t, d,D) = tf (t, d) × idf (t,D)

Where:
tf (t, d) = log (1 + freq (t, d))

idf (t,D) = log

(
N

count (d ∈ D | t ∈ d)

)

Here, t stands for a math term; d is a document, which in this paper is
an equation; D is the equation corpus; N is the total number of equations;
freq (t, d) is the term frequency of a term t in a document (i.e., equation) d;
count (d ∈ D | t ∈ d) is the number of documents that contain the term t.

4.3 Training the Models

4.3.1 Models
We train and test 4 different machine learning models for math term disam-
biguation. The first three are from classical machine learning, and the fourth is
from deep learning. The four models are described next.

Decision tree (DT) [19] is used to denote classification rules in a tree
structure that recursively divides the training data set. Each internal node of
the decision tree denotes a test which is applied on a feature value, and each
branch denotes an output of the test. When a leaf node is reached, the sense of
the word is represented (if possible).

Random forest (RF) [20] is an ensemble of decision trees, usually trained
with the “bagging” method. The general idea of the bagging method is that a
combination of learning models increases the accuracy of the overall result.

Support Vector Machine (SVM) [21] depends on the idea of learning
a hyperplane using a training dataset. The hyperplane separates positive and
negative examples. It maximizes the distance between the closest positive and
negative examples (called support vectors). The Support Vector Machine imple-
ments optimization to find a hyperplane that separates training examples.

Deep Learning (LSTM) We used the LSTM neural network [15] to per-
form Sequence-to-Sequence disambiguation. The network structure is shown in
Fig. 3. One of the biggest benefits of this approach is that we do not need any
feature engineering; all we need is the sentences (or equations) and their labeled
words (or math terms); the rest of the work is carried in by the embedding layer.
For this specific task, the output shape of the Dense layer equals the length of
the label sequence, for each token has a corresponding label.

100 R. Shan and A. Youssef

4.3.2 Tuning
When data sets are small, K-fold cross-validation is the method of choice for
training, tuning, and testing of a model. In K-fold cross-validation, the data
is divided into K subsets. Now the holdout method is repeated K times. Each
time, one of the K subsets is used as the test-set, the other K −1 subsets are put
together to form a training set; after the training is completed, the test accuracy
is computed on the holdout dataset, and recorded. The overall test accuracy of
the model is taken (i.e. approximated) to be the average of the K test accuracies
so computed.

Tuning of the hyperparameters refers to finding the best combination of
hyperparameyter values, i.e., the combination that yields the highest test accu-
racy. This is done by trying all possible combinations of hyperparameter values.
For each combination, the K-fold cross-validation method is performed on the
dataset, and the average test accuracy is computed. The combination that yields
the highest test accuracy is taken to be the best combination of hyperparameter
values, and those values are adopted for the model.

In this research, because our datasets are small in each of the three disam-
biguation problems, we used 10-fold cross-validation for training+tuning+testing
of each of our models. Again, we emphasize that this is standard practice when
datasets are quite small, i.e., when the dataset is not large enough to be split
into separate disjoint training set, validation set and testing set.

For SVM, we tuned the C value (with candidates 0.5, 0.75, 1.0, 1.25 and 1.5)
and the kernel type (where the candidate values are: candidates linear, poly, rbf
and sigmoid). For DT, we tuned the max depth (where the candidate values
are auto, sqrt and log2) and max features (where the candidate values are “all
features”, 10 and 100). For RF, we tuned the number of estimators, which is
the number of decision trees inside the forest (with candidate values 50, 75, 100,
125, 150, 175 and 200)

Table 10 shows the optimal hyperparameters of each model for each classifi-
cation problem.

Note that, for lack of adequate training data, we did not tune the LSTM
model. Instead, we took the hyperparameter values that have been optimized in
the literature for similar tasks.

Figure 4 shows the learning curve of SVM on the Gamma problem using the
optimal hyperparameters. Similar learning curves are obtained for all the models
and all three classification tasks, but are not included for lack of space.

Towards Math Terms Disambiguation Using Machine Learning 101

Fig. 3. Structure of The Neural Network. Using example of a′ = −a +
∑n

j=1 bj . Here
SOS and EOS are the placeholders for the start and end of the equation sequence

102 R. Shan and A. Youssef

Table 10. Optimal hyperparamters selected by K-fold cross validation

Model Math Term

Gamma Prime Superscript

Decision Tree max depth=all

#features= sqrt

max depth=100

#features= sqrt

max depth=10

#features= sqrt

Random Forest #estimators= 125 #estimators= 100 #estimators= 200

SVM C=1.5 kernel=poly C=1.25

kernel=poly

C=1.5 kernel=poly

Fig. 4. SVM learning curve for Gamma

4.4 Evaluation Metric

We use accuracy, precision, recall and F1 score to evaluate the performance of
models.

Accuracy = TP+TN/TP+FP+FN+TN

Precision = TP/TP+FP

Recall = TP/TP+FN

F1 Score = 2*(Recall * Precision)/(Recall + Precision)

where TP, TN, FP, FN stand for the numbers of True Positives, True Nega-
tives, False Positive and False Negative, respectively.

Towards Math Terms Disambiguation Using Machine Learning 103

5 Results

5.1 Gamma

Table 11 shows the performance of our models for the disambiguation of the term
Γ .

All the three classical ML models gave very good and comparable perfor-
mance, especially in terms of accuracy and F1 score. In terms of Precision, the
Decision Tree model (follows closely by SVM) gave much better performance
than RF; while in Recall the situation is reversed. The fact that the Decision
Tree model reaches the highest precision can be attributed to its ability to find
better (than other models) the patterns that characterize each class/label, when
the dataset size is fairly small.

Table 11. Evaluation of Gamma Γ

Model Accuracy Precision Recall F1 score

Decision Tree 0.82 0.92 0.76 0.83

Random Forest 0.83 0.83 0.79 0.81

SVM 0.82 0.91 0.76 0.82

LSTM 0.45 0.55 0.4 0.46

The LSTM model performance was predictably much lower, due to the lack
of adequate training data.

Actually, even the classical ML models can benefit from somewhat larger
training datasets. With our current dataset size, we found that those models
experienced some over-fitting, and we believe that with more training data, their
performance will increase to some extent.

5.2 Prime

Table 12 shows the performance of models for the disambiguation of the math
term prime ′. The Decision Tree model is a clear winner, and by a significant
amount, for nearly all the metrics. Here again, we attribute that to DTs’ ability
to learn better the patterns that characterize each class when the dataset is
small, whereas the other models need larger datasets. Also, one can observe the
low performance of LSTM here as well.

5.3 Superscript

Table 13 shows the performance of models for the disambiguation of the super-
script. Here, SVM delivers the best performance, while the DT gave the least
performance among the 3 classical ML models. We believe that this is due to the
much larger dataset for this particular classification problem. The LSTM model
is the least performing here too, but it performs better than in the other two
disambiguation problems due to the larger size of the dataset for superscripts.

104 R. Shan and A. Youssef

Table 12. Evaluation of Prime ′

Model Accuracy Precision Recall F1 score

Decision Tree 0.84 0.92 0.78 0.83

Random Forest 0.78 0.8 0.78 0.79

SVM 0.78 0.87 0.7 0.78

LSTM 0.56 0.57 0.51 0.54

Table 13. Evaluation of superscript

Model Accuracy Precision Recall F1 score

Decision Tree 0.72 0.75 0.66 0.7

Random Forest 0.83 0.86 0.83 0.85

SVM 0.83 0.92 0.86 0.87

LSTM 0.65 0.68 0.59 0.63

6 Conclusion and Future Work

In this paper, we examined the machine learning approach towards math term
disambiguation. The performance of different models was presented. While our
studies need extensive future experimentation, the results show the promise of
(classical) machine learning models in math-term labeling and disambiguation.

Also, we found that when the dataset size is fairly small, Decision Trees were
able to learn the differentiating patterns better than any other model we tried,
and as the datasets become larger (and cover more cases), the other models
(especially SVM) outperformed DTs.

As predicted, the deep learning model (LSTM) resulted in a much lower and
rather inadequate performance, as this approach needs a much larger dataset.

This is a stage-one study of applying machine learning and testing deep learn-
ing on math disambiguation. In our future work, we plan to expand the labeled
dataset in size and coverage to (1) achieve more disambiguation functionality,
and (2) exploit the great potential of deep learning models for this task. We
will also explore different deep learning models and different embedding tech-
niques, including contextualized embedding, to obtain higher disambiguation
performance.

References

1. Nithyanandan, S., Raseek, C.: Deep learning models for word sense disambiguation:
A comparative study (2019)

2. Olver, F.W.J., et al. (eds.): NIST Digital Library of Mathematical Functions.
https://dlmf.nist.gov/. Release 1.0.20 of 2018-09-1

https://dlmf.nist.gov/

Towards Math Terms Disambiguation Using Machine Learning 105

3. Youssef, A., Miller, B.R.: Deep learning for math knowledge processing. In: Rabe,
F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS (LNAI),
vol. 11006, pp. 271–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96812-4 23

4. Youssef, A.: Part-of-math tagging and applications. In: Geuvers, H., England, M.,
Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp.
356–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6 25

5. Youssef, A., Miller, B.R.: A contextual and labeled math-dataset derived from
NIST’s DLMF. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI),
vol. 12236, pp. 324–330. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-53518-6 25

6. Pal, A.R., Saha, D.: Word sense disambiguation: a survey. arXiv preprint,
arXiv: 1508.01346 (2015)

7. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR)
41(2), 1–69 (2009)

8. Nameh, M., Fakhrahmad, S., Jahromi, M.Z.: A new approach to word sense dis-
ambiguation based on context similarity. In: Proceedings of the World Congress
on Engineering, vol. 1, pp. 6–8 (2011)

9. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

10. Singh, R.L., Ghosh, K., Nongmeikapam, K., Bandyopadhyay, S.: A decision tree
based word sense disambiguation system in Manipuri language. Adv. Comput.
5(4), 17 (2014)

11. Faisal, E., Nurifan, F., Sarno, R.: Word sense disambiguation in Bahasa Indone-
sia using SVM. In: 2018 International Seminar on Application for Technology of
Information and Communication, pp. 239–243. IEEE (2018)

12. Miller, G.A., Leacock, C., Tengi, R., Bunker, R.T.: A semantic concordance.
In: HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop Held at
Plainsboro, New Jersey, 21–24 March 1993 (1993)

13. Pradhan, S., Loper, E., Dligach, D., Palmer, M.: SemEval-2007 task-17: English
lexical sample, SRL and all words. In: Proceedings of the Fourth International
Workshop on Semantic Evaluations (SemEval 2007), pp. 87–92 (2007)

14. Taghipour, K., Ng, H.T.: One million sense-tagged instances for word sense disam-
biguation and induction. In: Proceedings of the Nineteenth Conference on Com-
putational Natural Language Learning, pp. 338–344 (2015)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

16. Youssef, A., Miller, B.R.: Explorations into the use of word embedding in math
search and math semantics. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti
Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp. 291–305. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23250-4 20

17. Schubotz, M., Greiner-Petter, A., Scharpf, P., Meuschke, N., Cohl, H., Gipp, B.:
Improving the representation and conversion of mathematical formulae by con-
sidering their textual context. In: Proceedings of the 18th ACM/IEEE on Joint
Conference on Digital Libraries (2018)

18. Scharpf, P., Schubotz, M., Gipp, B.: Fast linking of mathematical Wikidata
entities in Wikipedia articles using annotation recommendation. arXiv preprint
arXiv:2104.05111 (2021)

https://doi.org/10.1007/978-3-319-96812-4_23
https://doi.org/10.1007/978-3-319-96812-4_23
https://doi.org/10.1007/978-3-319-62075-6_25
https://doi.org/10.1007/978-3-030-53518-6_25
https://doi.org/10.1007/978-3-030-53518-6_25
http://arxiv.org/abs/1508.01346
https://doi.org/10.1007/978-3-030-23250-4_20
http://arxiv.org/abs/2104.05111

106 R. Shan and A. Youssef

19. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. CRC Press, Boca Raton (1984)

20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
21. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar-

gin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pp. 144–152 (1992)

Heterogeneous Heuristic Optimisation and
Scheduling for First-Order Theorem Proving

Edvard K. Holden(B) and Konstantin Korovin

The University of Manchester, Manchester, UK
{edvard.holden,konstantin.korovin}@manchester.ac.uk

Abstract. Good heuristics are essential for successful proof search in first-order
automated theorem proving. As a result, state-of-the-art theorem provers offer a
range of options for tuning the proof search process to specific problems. How-
ever, the vast configuration space makes it exceedingly challenging to construct
effective heuristics. In this paper we present a new approach called HOS-ML,
for automatically discovering new heuristics and mapping problems into opti-
mised local schedules comprising of these heuristics. Our approach is based on
interleaving Bayesian hyper-parameter optimisation for discovering promising
heuristics and dynamic clustering to make optimisation efficient on heteroge-
neous problems. HOS-ML also use constraint programming to devise locally
optimal schedules and machine learning for mapping unseen problems into such
schedules. We evaluated HOS-ML on the theorem prover iProver and demon-
strated that it can discover new heuristics that considerably improve performance
and can solve problems that have not been solved previously by any other system.

Keywords: Theorem proving · Machine learning · Heuristic optimisation ·
Heuristic selection · Dynamic clustering

1 Introduction

Automated Theorem Provers (ATPs) are tools for automatically proving mathematical
theorems, and have a wide range of applications from verification of software and hard-
ware to automating interactive theorem proving in systems such as Sledgehammer [14].
ATPs have also contributed to large mathematical formalisation projects such as the
MML (Mizar Mathematical Library) through the MPTP (Mizar Problems for Theorem
Proving) [20].

State-of-the-art ATPs such as iProver [9], Vampire [10], E [18] and SPASS [22] have
large sets of parameters that can be used to guide the proof search. It is well known that
slight changes in values of these parameters can render problems from being not solved
to being instantly solved and vise versa. Unfortunately, there is no general recipe for
good parameters values or heuristics. While heuristics are essential for success, find-
ing good heuristics is a major challenge due to the vast number of possible parameter
combinations and values. Manually discovering good heuristics is time-consuming and
in most cases not feasible even for system experts. For example, iProver has over 100

c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 107–123, 2021.
https://doi.org/10.1007/978-3-030-81097-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_8&domain=pdf
http://orcid.org/0000-0002-8782-3960
http://orcid.org/0000-0002-0740-621X
https://doi.org/10.1007/978-3-030-81097-9_8

108 E. K. Holden and K. Korovin

parameters with parameter types in the domain of reals, integers, Boolean, categori-
cal and lists. These parameters govern a wide range of simplifications, clause and lit-
eral selection strategies in a combination of instantiation, resolution and superposition
calculi.

In this paper we develop a new approach, called HOS-ML, for automatically dis-
covering new heuristics and mapping problems into optimised local schedules compris-
ing of these heuristics. One of the key ingredients in our approach is Bayesian hyper-
parameter optimisation. Hyper-parameter optimisation works well when applied to a
homogeneous set of problems where it tries to find heuristics that optimise some per-
formance metric over the whole set of problems. However, in practice problem sets
are largely heterogeneous where vastly different heuristics are required to solve dif-
ferent problems. One way of dealing with this issue is to cluster similar problems and
apply hyper-parameter optimisation individually to each cluster. A major challenge is
that there is no obvious way of grouping problems into homogeneous clusters of simi-
lar problems based solely on syntactic properties. This is because even slight syntactic
changes in a problem can result in a completely different problem which requires dif-
ferent heuristics to solve. In this paper, we solve this challenge by interleaving Bayesian
hyper-parameter optimisation with dynamic clustering based on evaluation features. In
this approach hyper-parameter optimisation and clustering incrementally refine each
other: Bayesian hyper-parameter optimisation generates new heuristics that are used
for clustering similar problems and in turn clustering similar problems helps Bayesian
hyper-parameter optimisation to find diverse heuristics with good performance on each
cluster. Other ingredients of HOS-ML include: i) training an embedding model for
expanding clusters with similar unsolved problems using machine learning, ii) comput-
ing optimal local schedules for clusters using constraint programming, and iii) mapping
unseen problems into local schedules using machine learning models.

We implemented HOS-ML and applied it to a theorem prover iProver. Experimental
results show that HOS-ML can discover new heuristics that considerably increase the
number of solved problems, including problems that have not been solved so far by any
other system. Finally, we remark that the HOS-ML approach is rather general and can
be applied to other domains for heuristics optimisation over heterogeneous problems.

Related Work. Although parameter optimisation for first-order theorem proving
received considerable attention [6,7,16,21], it is primarily based on the assumption that
problems are homogeneous and optimisation is performed uniformly over the whole
problem set. In other domains, heuristic optimisation for heterougenous instances has
been approached with one-off static feature clustering [8,12,17]. One of the major dif-
ferences with our approach is that in HOS-ML hyper-parameter optimisation and clus-
tering are dynamically interleaved which strengthen both optimisation and clustering
during the run of the algorithm.

Heuristic selection is often approached by predicting the optimal heuristic for a
given problem [1,11,23]. The main drawback of this approach is that it is unclear how
to proceed when there are multiple good heuristics. A different approach was carried
out in [15], where the internal prover state was used to predict the heuristic to run in the
next time-slice. This is a promising approach but does not utilise predictive power of
Bayesian hyper-parameter optimisation nor clustering. In our approach, we leverage the

Heterogeneous Heuristic Optimisation and Selection 109

power of discovered heuristics by constructing schedules for each homogeneous cluster
and build an embedding model for mapping unseen problems into schedules.

2 Hyper-Parameter Optimisation

Let A be a target algorithm, Θ a parameter space, CA a performance cost function,
I a set of problem instances. If p is a problem in I , then CA(θ, p) ∈ R defines the
performance cost associated with the run of the algorithm A with parameters (heuristic)
θ on a problem p. Performance cost can be running time but can be a more sophisticated
function that, e.g., increases cost if the problem was not solved within the given time
limit and reduces cost if the problem was solved with this heuristic but was not solved
by previously found heuristics. In Sect. 4.2 we discuss this in more detail.

Hyper-parameter optimisation for A over a problem set I is the problem of finding
parameters θmin that minimize the cost function over all problem instances in I:

θI
min = argminθ∈ΘΣp∈ICA(θ, p).

Hyper-parameter optimisation [4] is well suited for homogeneous problem collec-
tions where we can assume that θI

min is optimal or near optimal for all instances p ∈ I .
However, in our setting we are dealing with large collections of heterogeneous prob-

lems where there is no uniform best heuristic but rather different heuristics perform
better on different classes of problems. Unfortunately, there is no simple criteria for
grouping problems into homogeneous clusters that allow for single (or just few) near
optimal heuristic(s) per cluster. We can observe that the search for optimal heuristics
and clustering are interrelated problems. This observation is at the core of our HOS-ML
approach where we interleave search for optimal heuristics with dynamic clustering
based on the performance of these heuristics on individual problems.

3 Heterogeneous Heuristic Optimisation and Scheduling

Our approach for heterogeneous heuristic optimisation and scheduling (HOS-ML) is
shown in Fig. 1. Let us first overview HOS-ML at a high-level and in later sections we
elaborate on each component. HOS-ML consists of three phases described below.

Phase 1: Heuristic Optimisation for Heterogeneous Instances. This phase is applied
to a set of training problems. The goal of this phase is to discover new heuristics that
i) solve problems which could not be solved by heuristics discovered in previous itera-
tions, and ii) improve the performance of problems that were previously solved. These
conditions can be represented by a cost function for hyper-parameter optimisation.

One of the main challenges is that problems in our setting are heterogeneous, this
prevents hyper-parameter optimisation to discover diverse heuristics which solve differ-
ent types of problems. To address this challenge we cluster problems based on dynamic
evaluation features. Dynamic evaluation features are problem features based on the
evaluation of all heuristics discovered in previous iterations. These features reflect prob-
lem similarity based on the performance of different heuristics, and they are dynamic
due to the growing number of discovered heuristics (see, Sect. 4).

110 E. K. Holden and K. Korovin

Fig. 1. HOS-ML: heuristic optimisation and selection for heterogeneous problems.

The heterogeneous heuristic optimisation loop outlined by thick arrows in Fig. 1,
interleaves re-clustering based on dynamic evaluation features and hyper-parameter
optimisation over each cluster.

Clustering based on dynamic features is suitable for problems that can be solved by
some of the available heuristics but is not applicable to unseen or unsolved problems.
We address this problem by training a machine learning model for embedding static
problem features into dynamic features. This admissible embedding model is re-trained
after each loop iteration.

By combining problem clustering and embedding, we acquire homogeneous prob-
lem clusters. Next, we perform hyper-parameter optimisation over each problem cluster
separately. This results in a set of well-performing heuristics for each cluster which we
evaluate globally on all training problems. The heuristics evaluation is used to update
the dynamic feature representation for each problem. Subsequently, we re-cluster prob-
lems based on the new evaluation features, increasing homogeneity of clusters and re-
train the admissible embedding model. This loop is repeated until the global time limit
or some other termination criterion is reached.

Phase 2: Local Schedule Computation. After Phase 1 is completed we compute
schedules for the final clusters. We use constraint programming to create a schedule
for each problem cluster based on discovered heuristics and their evaluation over the
training set (Sect. 5).

Phase 3: Schedule Selection. The final phase is the deployment of HOS-ML on unseen
problems. This is done by first mapping the problem into a cluster using the admissible
embedding model and then extracting the schedule associated with the corresponding

Heterogeneous Heuristic Optimisation and Selection 111

cluster computed in Phase 2. This phase is computationally cheap as the model and
schedules have been computed in Phases 1 and 2, respectively.

In the following sections we will detail each part of HOS-ML.

4 Heuristic Optimisation for Heterogeneous Instances

In this section we describe in detail Phase 1, which is heuristic discovery and optimisa-
tion on heterogeneous problems. This phase is applied to a set of training problems.

The heuristic discovery and optimisation loop is detailed in Algorithm 1, it takes
two inputs: initial heuristics and problems. The goal of the algorithm is to discover new
global heuristics which improve the performance over problems in local clusters, with
the initial heuristics serving as starting points. This is achieved through interleaving
homogeneous clustering and heuristic optimisation with the use of the inner and outer
loops.

The algorithm first clusters solved problems based on the current dynamic heuris-
tic evaluation features (detailed in Subsect. 4.1). Then, the algorithm trains a machine
learning model for embedding problems into clusters based on static problem fea-
tures (detailed in Subsect. 4.3). In this phase, this admissible embedding model is used
to embed unsolved problems into clusters to achieve a balance between solved and
unsolved problems in each cluster.

Next, the algorithm enters the inner loop to perform local heuristic optimisation
over each problem cluster to discover good heuristics for each cluster which are added
to local heuristics. Then, local heuristics are evaluated globally on the whole problem
set to obtain new dynamic evaluation features for each problem. In the next iteration
of the outer loop the problems are re-clustered based on these new dynamic evaluation
features. With each iteration, problem clusters become increasingly more homogeneous
with respect to accumulated heuristics performance. In the initial iterations, when there
are only few heuristics we randomly sub-sample large clusters into smaller clusters.

In the following, we describe the key parts of Algorithm 1 which are: dynamic eval-
uation clustering, local heuristic optimisation, and the admissible embedding model.

4.1 Dynamic Evaluation Clustering

One way of clustering similar problems is using syntactic features such as the number
of formulas, number of equalities, number of Horn or EPR formulas, etc. Such clus-
tering is suitable when problems fall into well-behaved fragments, e.g., Horn or EPR.
However, most problems are mixtures of formulas with different properties and do not
fall into such classes. For such problems syntactic features poorly reflect similarity as
e.g., adding a single non-Horn formula to a Horn problem can drastically change the
behaviour of the problem and similar for other types of formulas.

In this work, we propose to use dynamic evaluation features which are based on
solver performance under different heuristics. Such features directly link problem sim-
ilarity with the solver performance, moreover these features are dynamically extended
during the run of Algorithm 1 due to newly discovered heuristics by local heuristic opti-
misation.

112 E. K. Holden and K. Korovin

Algorithm 1. Heterogeneous Heuristic Optimisation
Input: initial heuristics, problems
Output: Learnt heuristics (global heuristics)

1: global heuristics ← evaluate heuristics(initial heuristics, problems)
2: repeat
3: evaluation ← get evaluation(global heuristics)
4: solved, unsolved ← split(problems, evaluation)
5: problem clusters ← compute clusters(solved, evaluation)
6: cluster model ← train model(problem clusters, solved)
7: problem clusters ← problem clusters ∪ embed(cluster model, unsolved)
8: local heuristics ← ∅
9: for cluster ∈ problem clusters do
10: incumbent ← select best heuristic(cluster, global heuristics)
11: local heuristics ← local heuristics ∪ optimise(incumbent, cluster)
12: end for
13: global heuristics ← global heuristics ∪ evaluate(local heuristics, problems)
14: until Timeout
15: return global heuristics

Given a problem p, a heuristic θ, and a time limit β, the function timeβ gives the
solving time t of θ executed on p with the time limit β, if a solution is found and ∞
otherwise. Given a set of heuristics H ⊂ Θ, we can obtain the problem’s heuristic eval-
uation vector ep by computing timeβ for each problem-heuristic pair. The evaluation
vector ep represents the relationship between p and H . By computing the evaluation
vector for the set of problems I , we obtain the heuristic evaluation matrix EIxH.

Admissible Features. The evaluation vector represents solving times of the success-
ful solving attempts. However, similar problems can have different solving times, e.g.,
problems may differ by size but not structure. We want to cluster problems so local
heuristic optimisation can transfer learning from simpler problems to more complex
problems of the same type. This is achieved using clustering based on admissible fea-
tures. First, we define when a heuristic is admissible for a problem. Assume we have
problem p and a set of heuristics H = {θ1, · · · , θn}, where at least one of the heuristics
solves p within the time limit β. Further, t∗H(p) is the fastest solution of p in H . Then,
θ is admissible in H for p if timeβ(θ, p) is approximate to t∗H(p), where the tolerance
is defined by additive and multiplicative constants εk and εp, respectively.

Admissible(H,β)(θ, p) =

{
1 if timeβ(θ, p) � t∗H(p) · (1 + εp) + εk,

0 otherwise.

In particular, a heuristic is admissible for a problem, if it yields either the fastest or
close to the fastest known solving time, and is not admissible if its performance is
considerably worse or does not solve the problem at all. We can compute admissible
heuristics based on the problem evaluation vector ep and obtain its admissible heuristic
vector ap.

Heterogeneous Heuristic Optimisation and Selection 113

Admissible Distance. Admissible heuristic vectors create a performance-based feature
representation based in the known heuristic evaluations. Next, we need a distance func-
tion that can be used to group problems with similar behavioural properties. Let us note
that Euclidean distance is poorly suited for this purpose, instead we considered Jaccard
similarity distance and Sørensen-Dice distance, the latter lead to better clustering in our
experiments. Let | · | be the L1 norm over binary vectors, which is equal to the sum of
all 1s in the vector. The Sørensen-Dice semi-metric distance can be defined as follows
(Fig. 2).

d(ap,ap′) = 1 − 2 ∗ (ap · ap′)

|ap| + |ap′ |

Fig. 2. Sørensen-Dice distance between two admissible vectors ap and ap′ .

The Sørensen-Dice distance ranges between 0 and 1, 0 if the admissible vectors are
equal and 1 if they have no admissible heuristics in common.

Admissible Clustering. We use the K-medoids algorithm (see, e.g., [13]) to cluster
problems based on their admissible heuristic vectors and Sørensen-Dice similarity dis-
tance. K-medoids clustering partitions the problems into K clusters by minimising the
sum of distances between each data point and the medoid of their cluster. The medoids
act as a cluster centre and must be a data point, making it more robust towards outliers.
K-medoid clustering tries to minimise the K-medoids cost function (Fig. 3).

Fig. 3. The K-medoids cost function is the sum over all clusters of dissimilarities between the
medoid of the cluster and members of the cluster.

The optimal number of clusters K can be computed using the elbow method. This
is done by analysing the function representing dependency between cluster distortions
and the number of clusters. The optimal number of clusters is reached at the elbow
point, which is roughly defined as the point of maximum curvature of this function.
This means that at this point, increasing the number of clusters does not result in any
significant increase in cluster quality.

4.2 Local Heuristic Optimisation

After acquiring problem clusters, we iterate local heuristic optimisation over each
homogeneous cluster to discover new heuristics. The heuristic optimisation searches
for heuristics which minimise the following cost function.

114 E. K. Holden and K. Korovin

Heuristic Cost Function. A new heuristic improves the performance of
global heuristics, if either it solves problems that were previously not solved or
improves solving times of previously solved problems.

To accommodate these requirements we define the cost function as follows. Let
H be the set of global heuristics, β the time limit, t∗H(p) the fastest solution of p by
heuristics inH . Consider a problem cluster I . Then we define the heuristic cost function
for cluster I wrt H as:

CI
H(θ, p) =

⎧⎨
⎩

timeβ(θ, p) if timeβ(θ, p) < ∞ and t∗H(p) < ∞
−β|I| if timeβ(θ, p) < ∞ and t∗H(p) = ∞

β if timeβ(θ, p) = ∞

Heuristic Optimisation. For each cluster, we first compute the incumbent, which acts
as a baseline and a starting point in the heuristic space. The incumbent is computed
as the heuristic in global heuristics with the smallest cost in the cluster. Next, we use
Bayesian hyper-parameter optimisation to discover efficient heuristics for each cluster,
as shown in Fig. 4. The Bayesian optimiser builds a statistical model for predicting the
cost of running a heuristic on the problem cluster and uses this model to find promising
heuristics. The most promising heuristics are evaluated on the problem cluster. Associ-
ated costs are used to update the model belief, which improves the prediction of heuris-
tics costs. Continuously updating the model and evaluating the most promising heuris-
tics is crucial as each evaluation demands considerable computation resources. In this
work, we use the hyper-parameter optimiser SMAC (Sequential Model-based Algo-
rithm Configuration) [5].

Fig. 4. The Bayesian optimiser creates heuristics which are evaluated over the cluster. The per-
formance is scored and returned to the optimiser as the cost.

Global Evaluation. After performing hyper-parameter optimisation, we select a subset
of locally evaluated heuristics to evaluate globally. For this we greedily compute a set
cover of the solved problems by the most effective heuristics and add them to the set
of local heuristics. Next, the local heuristics are evaluated on the global problem set,
and added to the global heuristics. Evaluations of new heuristics are used to extend
dynamic evaluation features and re-cluster problems as described in Subsect. 4.1. Dis-
covering new heuristics by local heuristics optimisation and re-clustering continues for
each iteration of Algorithm 1 until it reaches the termination condition.

Heterogeneous Heuristic Optimisation and Selection 115

4.3 Embedding Unsolved Problems

Admissible heuristic vectors are suitable for clustering problems that are solved by at
least one heuristic. However, if a problem has no solutions by global heuristics within
the time limit β, admissible heuristics can not be determined. Nevertheless, unsolved
problems should be clustered with similar solved problems, which would help heuristic
optimisation to discover heuristics that can solve these problems. We observe that, in
most cases, for some sufficiently large time limit β∗ each unsolved problem will have at
least one admissible heuristic in global heuristics. This is the case in our application
due to completeness of the underling calculi for first-order logic. Unfortunately, such
time limits could be arbitrary large and infeasible to compute in practice. Instead, we
propose to build a machine learning model to predict admissible heuristic vectors using
static problem features. This admissible embedding model is trained on solved problems
and is applied to unsolved problems to predict admissible heuristic vectors. Using this
model we can assign each unsolved problems to a nearest cluster of solved problems.
As a result, we acquire homogeneous problem clusters consisting of both solved and
unsolved problems, as shown in Fig. 5.

Fig. 5. Computing homogeneous clusters consisting of both solved and unsolved problems.

Static Problem Features. We consider two types of static features: syntactic features
and solver state features. Syntactic features include properties such as the number of
equational, Horn, EPR formulas, etc. As we noted before, such features do not always
reflect algorithmic properties of formulas. To mitigate this we consider solver state
features. During a run, the solver executes numerous function calls and applies various
simplification techniques. Solver state features include solver statistics on key function
calls, successful simplifications and corresponding timing statistics. We compute the
solver state features by attempting a problem with single heuristic for a low-timelimit
and extracting the solver statistics after termination.

Admissible Embedding Model. For a problem p, we denote its static feature vector as
sp. Let H be the set of global heuristics. The admissible embedding model E learns
the mapping between problems static features and their admissible heuristics vectors.

116 E. K. Holden and K. Korovin

As admissible heuristics vectors are binary vectors, we use a multi-label machine learn-
ing model as the embedding function. We separate the multi-label classification task
into |H| binary classification tasks, where a separate binary classification model Mθ

is trained for each heuristic θ in H . We considered different machine learning meth-
ods for building binary classification models: random forests, tree models and neural
networks. In our experiments the decision tree algorithm XGBoost [2] yielded the best
performance. Once binary models are trained for each heuristic, the admissible embed-
ding model is then defined as E(sp) = (Mθ1(sp), · · · ,Mθ|H|(sp)). The admissible
embedding model can then be used to predict the admissible heuristics vector of any
given problem.

Mapping Unsolved Problems to Clusters. The embedding model is trained on the solved
problems and used to predict the unsolved problems’ admissible heuristics vector. Next,
we need to map problems into discovered homogeneous clusters. This is achieved by
first computing the admissible distance between each predicted admissible vector and
each cluster medoid. Second we add the n closest unsolved problems to each cluster.
This results in homogeneous clusters consisting of both solved and unsolved problems.

5 Local Schedules for Heterogeneous Instances

In this section we describe Phase 2 of HOS-ML, which is the computation of heuristic
schedules for each homogeneous problem clusters.

The scheduled running time t of heuristic θ is described by the pair (θ, t). A heuris-
tic schedule is an ordered set of heuristic-time pairs [(θ1, t1), · · · , (θn, tn)] where the
total running time does not exceed the global time limit

∑n
i=1 ti ≤ β. We describe the

task of creating a schedule as the heuristic scheduling problem. Given the problem set I ,
the heuristic set H ⊂ Θ and the heuristic evaluationsEI×H, find the heuristic run-times
[t1, . . . , tn], which maximise the performance on I subject to the global time-limit β.

We solve the heuristic scheduling problem using constraint programming with the
following encoding. Let |H| = n and |I| = m. First we create the run-time variables
t1, . . . , tn which represent the running time of each heuristic in H . Next, we ensure that
the total running time of the schedule does not exceed β with the constraint

∑n
i=1 ti ≤

β. Using known evaluations EI×H we represent that heuristic hi solves problem pj

in allocated time ti as Eji ≤ ti. A problem pj is solved by the schedule if Ej1 ≤
t1 ∨ . . . ∨ Ejn ≤ tn holds. We denote this condition as sj .

The objective is to maximise the number of problems solved by the schedule. Hence,
the task of the constraint solver is to find the heuristic runtimes t1, . . . , tn which max-
imise

∑m
i=1 si.

After acquiring the solution, we discard all heuristics θi for which ti = 0 and order
the remaining heuristics in ascending order according to their run-times. The result is a
heuristic schedule that maximises the number of solved problems over the problem set
based on the known heuristic performance.

6 Schedule Selection

Phase 2 of HOS-ML computes schedules for each homogeneous problem cluster. This
results in a set of optimal local schedules.

Heterogeneous Heuristic Optimisation and Selection 117

In Phase 3, we create a mapping between unseen problems and local schedules
based on the embedding function, as shown in Fig. 6. First, we extract the static features
of the problems and predict their admissible heuristic vectors. Next, we use the pre-
dicted admissible heuristics to map the problems to their appropriate clusters. Finally,
we attempt the problems with the schedule of their assigned cluster.

Fig. 6.Mapping a problem to a local schedule.

This concludes the description of all phases of HOS-ML. In the next section we
discuss implementation and evaluation results.

7 Experimental Evaluation

HOS-ML is implemented in Python 3. Pandas and scikit-learn were used for data han-
dling and processing. The heuristic discovery phase1 uses SMAC [5] as the hyper-
parameter optimiser, while CP-SAT2 is used as the constraint solver for computing
the schedules3. To perform clustering, we use the sklearn extra implementation of K-
medoids. Kneed4 is used to compute the optimal value of K. The binary base predictor
in the embedding function is implemented using XGBoost [2].

The base prover for HOS-ML is iProver [3,9] a high performance theorem prover
for first-order logic which is based on a combination of instantiation, resolution and
superposition calculi. iProver heuristics are made up of 120 different parameters with
diverse parameter values consisting of boolean, real, ordinal, priority lists and categor-
ical values. The extensive range of values and parameters yield a vast and complex
heuristic space. Our system supports optimisation over all of iProver parameters. How-
ever, in this experimental evaluation, we restrict optimisation to the parameters related
to the newly developed superposition functionality [3]. We also use iProver to compute
the prover state features, which comprise of 170 individual statistics covering both the
problem properties and the prover behaviour. The experiments were run on a cluster of
33 machines, each with 4 Intel(R) Xeon(R) CPU L5410 @ 2.33GHz.

7.1 Discovering New Heuristics

Our first experiment evaluated the heterogeneous heuristic optimisation phase on the
TPTP library (v7.4.0) [19]. The library contains problems with varying difficulty from

1 Heuristic discovery is available at: https://gitlab.com/korovin/iprover-smac.
2 CP-SAT is available at: https://github.com/google/or-tools.
3 Schedule computation is available at: https://gitlab.com/edvardholden/scpeduler.
4 kneed is available at: https://github.com/arvkevi/kneed.

https://gitlab.com/korovin/iprover-smac
https://github.com/google/or-tools
https://gitlab.com/edvardholden/scpeduler
https://github.com/arvkevi/kneed

118 E. K. Holden and K. Korovin

different domains ranging from verifying authentication protocols to MPTP problems
from the Mizar mathematical library. The training set was created by randomly sam-
pling 4000 of the 17053 FOF and CNF problems.

We ran five iterations of the outer loop of HOS-ML, with iProver’s default heuristic
as the initial heuristic. For each iteration, we optimised iProver’s superposition options
on three sampled problem clusters. The hyper-parameter optimiser evaluated 1000 can-
didate heuristics, each with a time limit of 20 s. The algorithm ran for approximately
61 h and discovered a total of 53 new heuristics. The discovered heuristics where eval-
uated on a testing set consisting of the remaining TPTP problems (13053) with a time-
limit of 20 s.

Next, we compared the performance difference between the default iProver heuristic
and the set of heuristics discovered by heterogeneous heuristic optimisation. The results
are shown in Table 1. We can observe that the new heuristics considerably increase
the number of solved problems in both problem sets. The discovered heuristics also
decrease the average solving time of the problems solved in the intersection of both
approaches.

Table 1. The performance of the default and the global heuristics (20 s).

Training Testing Total

Solved Avg time Solved Avg time Solved Avg time

Default 1975 1.81 6774 1.53 8749 1.60

Discovered 2272 0.98 7771 0.66 10043 0.73

7.2 Revealing Homogeneity with Admissible Evaluation Clustering

One of the key ideas of HOS-ML is to discover homogeneous problem clusters by clus-
tering on admissible heuristic features. To verify this claim, we compute admissible
clusters and apply the best local heuristic of each cluster to its members. Further, we
compute the intersection between problems solved by the best global heuristic and the
set of problems solved by the best local heuristics. Next, we compute the average solv-
ing time of the problems in the intersection. If the performance of the global and local
approaches is the same, the clusters are equivalent to random sampling. However, if the
local heuristics perform better, the clusters are more homogeneous.

The global heuristics sampled at each iteration of the outer loop forms the five
heuristic sets A, B, C, D and E applied to the 4000 training problems. Next, we compute
the performance of both approaches as shown in Table 2. We can observe that the local
heuristics offer a considerable performance increase. Hence, we acquire homogeneous
problem clusters through admissible clustering.

Heterogeneous Heuristic Optimisation and Selection 119

Table 2. Performance of the best global heuristic versus the best local heuristics.

Heuristic set A B C D E

Number of heuristics 18 32 41 51 54

Number of clusters 12 18 98 119 124

Solved global 1975 1975 1975 1975 1975

Solved local 2106 2159 2254 2269 2271

Solved intersection 1958 1960 1975 1975 1975

Avg time global 1.76 1.76 1.81 1.81 1.81

Avg time local 1.45 1.35 1.29 1.22 1.22

Performance increase 17.32% 22.89% 28.60% 32.47% 32.51%

7.3 Embedding Evaluation Features

HOS-ML embeds problems into admissible heuristic features during heuristic optimi-
sation and selection. To evaluate the embedding performance we create a model for
embedding the selected 4000 TPTP problems into the evaluation data from experi-
ment 7.1, as follows. First, we compute static problem features by collecting prover
statistics of the problems with a 1-s time-limit. The prover statistics are transformed
into features through log-scaling and standardisation. Next, we remove all problems
that were either solved during processing or failed to parse within the time-limit. Fur-
ther, we remove unsolved problems and problems with solutions below five seconds.
This results in a challenging yet solvable problem set which is further divided into
training and validation sets with a 70–30% split. The multi-label model comprises of
binary classification models for each heuristic, trained using XGBoost [2].

In Table 3 we see that a single binary model is able to capture whether a heuristic is
admissible for a problem. In Table 4 we can observe that the embedding model is able
to predict admissible heuristic vectors of problems with good accuracy.

– Admissible Similarity: The Sørensen-Dice similarity between two admissible vec-
tors a and a′, which is equal to 1 − d(a,a′).

– Geometric Accuracy: The sensitivity is the true positive rate, and the specificity
is the true negative rate of the model predictions. The geometric accuracy is defined
as

√
sensitivity ∗ specificity, and by computing the average of each binary model

geometric accuracy, we obtain the average geometric accuracy.

7.4 Optimal Scheduling of Heuristics

After discovering a set of strong heuristics, we devise a strategy for applying the heuris-
tics to new problems. In this section, we evaluate three different heuristic strategies,
each with a time limit of 20 s per problem:

– Best Heuristic: The heuristic which solves the most training problems.
– Global Schedule: The global heuristic schedule computed over the problem set.

120 E. K. Holden and K. Korovin

Table 3. One of the binary XGBoost models.

Predicted

1 0

A
ct
ua
l

1 157 21

0 41 112

Metric Score

Accuracy 0.81

F1-Score 0.78

Geometric 0.80

Table 4. The multi-label model.

Heuristic set Geometric Similarity

A 0.72 0.71

B 0.71 0.68

C 0.72 0.68

D 0.72 0.68

E 0.72 0.67

– Admissible Schedule: A set of local schedules computed for each problem cluster.

We constructed schedules on the training problems and evaluated their performance on
the testing problems. The results of each approach are shown in Table 5, and Fig. 7. The
best heuristic and the global schedule perform similarly on the training set in terms of
the number of solved problems. However, on the testing set it becomes apparent that
attempting a problem with multiple heuristics is advantageous. Still, to utilise the full
potential of a heuristic set, it is essential to create schedules for problems with similar
performance. This is illustrated by the admissible schedule solving nearly one thousand
problems more than the global schedule on the test set.

Table 5. The number of solved problems of each scheduling approach (20 s).

Approach Training Testing Total

Best heuristic 1975 6774 8749

Global schedule 1976 6794 8770

Admissible schedule 2258 7637 9895

Fig. 7. The performance on the training set (left) and testing set (right).

Heterogeneous Heuristic Optimisation and Selection 121

7.5 Overall Performance Contribution

TPTP problems are rated based on their difficulty on a scale from zero to one. A problem
solved by almost all state-of-the-art ATP systems has a rating of zero, while a problem
with no recorded solutions has a rating of one. There are 3984 TPTP problems with a
rating of 0.9 or higher, and we characterise these problems as “highly challenging”.

When run with a 20 s time limit, the 54 global heuristics discovered by HOS-ML
solved 47 highly challenging problems. Nevertheless, challenging problems are likely
to require more time. While the conventional time limit in ATP is 300 s, this would
carry a substantial computational cost for 54 heuristics. Instead, we reduce the heuristic
set by computing the set cover of solved problems and select the ten most contributing
heuristics. Next, we evaluated the selected ten heuristics over all TPTP problems with
a time limit of 300 s.

The ten heuristics solved a total of 10696 problems, of which 130 problems have a
rating of 0.9 or above. These include 54 MPTP problems from the Mizar mathematical
library. When combining these results with the 20-s evaluations, the number of highly
challenging solved problems increases to 136 problems. Thirteen of these problems
have the rating one, including four MPTP problems. As a result, the new heuristics
solve MML problems with no previously recorded ATP solutions.

8 Conclusion

In this paper, we presented HOS-ML, a new method for heuristic optimisation and
scheduling over heterogeneous problem sets. HOS-ML interleaves dynamic clustering
with hyper-parameter optimisation and uses machine learning for embedding problems
into clusters and local schedules. We applied HOS-ML to iProver and demonstrated
that HOS-ML can discover new heuristics that can considerably improve prover perfor-
mance over heterogeneous instances. Our evaluation showed that HOS-ML discovered
heuristics that increase the number of solved TPTP problems by 14.8%, including prob-
lems with the rating 1, that have not been previously solved by any other system. These
heuristics also decrease the solving time of previously solved problems by 54.4%. As a
future work we will investigate applications of HOS-ML to different domains.

References

1. Bridge, J.P., Holden, S.B., Paulson, L.C.: Machine learning for first-order theorem proving -
learning to select a good heuristic. J. Autom. Reason. 53(2), 141–172 (2014)

2. Chen, T., Guestrin, C.: XGBoost. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2016)

3. Duarte, A., Korovin, K.: Implementing superposition in iProver (system description). In:
Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp.
388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1 24

4. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren,
J. (eds.) Automated Machine Learning. TSSCML, pp. 3–33. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-05318-5 1

https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1

122 E. K. Holden and K. Korovin

5. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y.,
Schoenauer, M. (eds.) LION 2012. LNCS, pp. 55–70. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34413-8 5

6. Jakubuv, J., Suda, M., Urban, J.: Automated invention of strategies and term orderings for
vampire. In: Benzmüller, C., Lisetti, C.L., Theobald, M. (eds.) 3rd Global Conference on
Artificial Intelligence, GCAI 2017. EPiC Series in Computer, vol. 50, pp. 121–133. Easy-
Chair (2017)

7. Jakubuv, J., Urban, J.: Blistrtune: hierarchical invention of theorem proving strategies. In:
Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM SIGPLAN Conference on Certi-
fied Programs and Proofs, CPP, pp. 43–52. ACM (2017)

8. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific algorithm
configuration. In: Coelho, H., Studer, R., Wooldridge, M.J. (eds.) 19th European Conference
on Artificial Intelligence, ECAI 2010. Frontiers in Artificial Intelligence and Applications,
vol. 215, pp. 751–756. IOS Press (2010)

9. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (system
description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71070-7 24

10. Kovács, L., Voronkov, A.: First-order theorem proving and VAMPIRE. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8 1

11. Kühlwein, D., Schulz, S., Urban, J.: E-MaLeS 1.1. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS (LNAI), vol. 7898, pp. 407–413. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38574-2 28

12. Lindawati, L.H.C., Lo, D.: Instance-based parameter tuning via search trajectory similarity
clustering. In: Coello, C.A.C. (ed.) 5th International Conference on Learning and Intelligent
Optimization, LION 5. Selected Papers. LNCS, vol. 6683, pp. 131–145. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25566-3 10

13. Park, H., Jun, C.: A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl.
36(2), 3336–3341 (2009)

14. Paulson, L.C.: Three years of experience with sledgehammer, a practical link between auto-
matic and interactive theorem provers. In: Schmidt, R.A., Schulz, S., Konev, B. (eds.) Pro-
ceedings of the 2nd Workshop on Practical Aspects of Automated Reasoning, PAAR-2010.
EPiC Series in Computer, vol. 9, pp. 1–10. EasyChair (2010)

15. Rawson, M., Reger, G.: Dynamic strategy priority: empower the strong and abandon the
weak. In: Konev, B., Urban, J., Rümmer, P. (eds.) Proceedings of the 6th Workshop on Prac-
tical Aspects of Automated Reasoning co-located with Federated Logic Conference 2018,
FLoC 2018. CEUR Workshop Proceedings, vol. 2162, pp. 58–71. CEUR-WS.org (2018)

16. Schäfer, S., Schulz, S.: Breeding theorem proving heuristics with genetic algorithms. In:
Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) Global Conference on Artificial Intelligence,
GCAI. EPiC Series in Computer, vol. 36, pp. 263–274. EasyChair (2015)

17. Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm config-
uration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 190–204. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8 14

18. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.)
LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-45221-5 49

19. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From CNF to TH0,
TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

20. Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reason.
37(1–2), 21–43 (2006)

https://doi.org/10.1007/978-3-642-34413-8_5
https://doi.org/10.1007/978-3-642-34413-8_5
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-38574-2_28
https://doi.org/10.1007/978-3-642-38574-2_28
https://doi.org/10.1007/978-3-642-25566-3_10
https://doi.org/10.1007/978-3-642-34413-8_14
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-642-45221-5_49

Heterogeneous Heuristic Optimisation and Selection 123

21. Urban, J.: Blistr: the blind strategymaker. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.)
Global Conference on Artificial Intelligence, GCAI 2015. EPiC Series in Computer, vol. 36,
pp. 312–319. EasyChair (2015)

22. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS
version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2 10

23. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm selec-
tion for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

https://doi.org/10.1007/978-3-642-02959-2_10

Inductive Benchmarks for Automated
Reasoning

Márton Hajdu1 , Petra Hozzová1(B) , Laura Kovács1 ,
Johannes Schoisswohl1,2 , and Andrei Voronkov2,3

1 TU Wien, Vienna, Austria
{marton.hajdu,petra.hozzova,laura.kovacs}@tuwien.ac.at,

johannes.schoisswohl@manchester.ac.uk
2 University of Manchester, Manchester, UK

3 EasyChair, London, UK
andrei@voronkov.com

Abstract. We present a large set of benchmarks for automated theo-
rem provers that require inductive reasoning. Motivated by the need to
compare first-order theorem provers, SMT solvers and inductive theorem
provers, the setting of our examples follows the SMT-LIB standard. Our
benchmark set contains problems with inductive data types as well as
integers. In addition to SMT-LIB encodings, we provide translations to
some other less common input formats.

1 Introduction

Recently, automated reasoning approaches have been extended with inductive
reasoning capabilities, for example in the context of superposition theorem prov-
ing [5,6,12] and SMT solving [13]. Evaluation of these developments prompts
comparison not only among first-order theorem provers and/or SMT solvers but
also with inductive provers (e.g., ACL2 [3], Zeno [15] or Imandra [11]). As a part
of our work on automating induction in the first-order theorem prover Vam-
pire [6], we created a benchmark set of 3516 benchmarks based on variations of
properties of inductive data types as well as integers. To facilitate comparison
of different solvers and provers, we translated our benchmarks into the input
formats of other state-of-the-art inductive reasoners, supporting for example the
SMT-LIB input format [2] and functional program encodings.

Our dataset is comparable to the TIP repository of inductive benchmarks [4],
with which it shares 9 benchmarks. We note however that TIP focuses on clas-
sic problems with inductive data types, while our dataset contains variants of
problems of increasing sizes for both inductive data types and integers. Furhter,
TIP uses a non-standard variant of SMT-LIB, and offers tools for translating the
benchmarks into standard SMT-LIB. Our dataset employs the current standard
SMT-LIB 2.6 syntax, allowing us to potentially integrate our examples in any
repository using the SMT-LIB standard. Our benchmark set is available at:

https://github.com/vprover/inductive benchmarks
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 124–129, 2021.
https://doi.org/10.1007/978-3-030-81097-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_9&domain=pdf
http://orcid.org/0000-0002-8273-2613
http://orcid.org/0000-0003-0845-5811
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0001-5550-196X
https://github.com/vprover/inductive_benchmarks
https://doi.org/10.1007/978-3-030-81097-9_9

Inductive Benchmarks for Automated Reasoning 125

2 Benchmark Format

We provide all benchmarks in the standard SMT-LIB 2.6 syntax. We chose
SMT-LIB as the main format for our benchmarks, since it is the most common
format used by automated reasoners (SMT solvers and first-order provers, e.g.,
CVC4 [1] or Vampire [8]) and verification tools (e.g., CBMC [9], Dafny [10], or
eThor [14]). In our examples, we use the SMT-LIB construct declare-fun to
declare functions and assert to axiomatize functions (see the example bench-
marks in Sect. 3). In addition to the SMT-LIB syntax, we also translated our
examples to other formats depending on the data types used in these examples:
three subsets of our benchmark set use inductively defined data types, and one
subset uses integers (see Sect. 3). For the benchmarks with inductively defined
data types, we also provide SMT-LIB encoding using the define-fun-rec con-
struct for recursive function definitions.

Besides the SMT-LIB format, we also provide our benchmarks translated
into other, less common input formats supported by state-of-the-art solvers for
automating induction. Namely, for our benchmarks with inductively defined data
types, we provide two encodings for Zipperposition [5] (using Zipperposition’s
native input format .zf with/without function definitions encoded as rewrite
rules), and when possible1 functional program encodings for ACL2 [3] (in Lisp),
Imandra [11] (in OCaml) and Zeno [15] (in Haskell). For our inductive bench-
marks over integers, we only provide translation into Lisp for ACL2. To the best
of our knowledge, in addition to Vampire [7] and CVC4 [13], ACL2 is the only
prover supporting inductive reasoning with integers.

3 Benchmark Categories

Our benchmark set consists of two categories, requiring different kinds of induc-
tive reasoning, as follows. The benchmark category dty uses structural induction
over inductively defined data types, whereas our int benchmark suite exploits
integer induction. Further, our benchmark set dty is organized within three
categories nat, list and tree, respectively collecting inductive properties over
naturals, lists and trees.

3.1 dty - Benchmarks with Inductively Defined Data Types

The 3396 problems within the category dty involve three different inductively
defined data types: natural numbers, lists of natural numbers, and binary trees
of natural numbers. These data types are defined as follows:

(declare-datatypes ((nat 0) (list 0) (tree 0))

(((zero) (s (s0 nat)))

((nil) (cons (head nat) (tail list)))

((Nil) (node (lc tree) (val nat) (rc tree)))))

1 Some concepts, like conjectures that contain existential quantification, or some unin-
terpreted functions used to model out of bounds access for list indexing, are not
straightforwardly translatable into these formats.

126 M. Hajdu et al.

The benchmark category dty collects results of [6]. It is split into three
subcategories nat, list, and tree, depending on the algebraic data types used
in the examples. The category nat uses natural numbers only, list uses lists
and natural numbers, and tree uses all three of the data types. Each of these
categories within dty contains examples defining functions and predicates on the
respective data type and a conjecture/goal to prove about these functions and
predicates, as described next. To avoid repetition in the displayed examples, we
use short descriptions of repeated content beginning with the comment sign ;-.

nat Examples. The category nat contains a set of hand-crafted benchmarks
encoding basic properties like commutativity of addition and multiplication.
Additionally, nat contains three groups of generated benchmarks. In group
add <m>var <n>occ, the conjecture of each benchmark consists of an equality
of two sums of variables, with arbitrary bracketing, and n variables on each
sides of the equality, where m distinct variables occur in the conjecture. In group
add <n>sym, the conjectures are equalities with an arbitrary combination of the
successor function, zero, addition, and variables, on both hand sides. Each side
of the equality in these benchmarks contains n symbols in total. The group
leq <m>var <n> <o>occ has a less-or-equal inequality as conjecture. It contains
m distinct variables, with a total of n variables on the left-hand side arbitrarily
added up, and a total of o variables occurring on the right-hand side, where
each variable on the left-hand side is contained on the right-hand side at least
as often as on the left one in order to ensure that the conjecture is indeed valid.

Inductive nat example from the set add 2var 4occ

(set-logic UFDT)

(declare-datatypes ((nat 0)) (((zero) (s (s0 nat)))))

(declare-fun add (nat nat) nat)

(assert (forall ((y nat)) (= (add zero y) y)))

(assert (forall ((x nat) (y nat)) (= (add (s x) y) (s (add x y)))))

(assert (not (forall ((v0 nat) (v1 nat))

(= (add (add v0 (add v1 v1)) v1) (add (add (add v1 v1) v1) v0)))))

(check-sat)

The conjecture is a combination of associativity and commutativity of addition of
natural numbers for two variables with four occurrences in total.

list Examples. These examples describe basic properties about lists, such as
relating concatenation of lists to the resulting list length. Similarly to nat, the
category list also contains two generated example sets: concat <m>var <n>occ
contains examples as in add <m>var <n> occurrences, but using list concatena-
tion instead of list addition, while pref <m>var <n> <o>occ is defined in the
same way as leq <m>var <n> <o>occ, but replacing the less-or-equal order with
the prefix relation and using list concatenation instead of natural addition.

Inductive Benchmarks for Automated Reasoning 127

Inductive list example from the set crafted

(set-logic UFDT)

;- nat and list declaration, as shown at the beginning of this Section

;- add function declaration and axiomatization, as in the example above

(declare-fun app (list list) list)

(assert (forall ((r list)) (= (app nil r) r)))

(assert (forall ((a nat) (l list) (r list))

(= (app (cons a l) r) (cons a (app l r)))))

(declare-fun len (list) nat)

(assert (= (len nil) zero))

(assert (forall ((e nat) (l list)) (= (len (cons e l)) (s (len l)))))

(assert (not (forall ((x list) (y list))

(= (add (len x) (len y)) (len (app x y))))))

(check-sat)

The conjecture asserts that addition of lengths of two lists is equal to the length
of the two lists concatenated.

tree Examples. This category has two main subcategories: one problem set
relates binary trees indirectly by flattening them to lists, the other relates them
directly to each other. The defined functions are two in-order flattening variants,
two functions that recursively rotate a tree completely to the left and to the right
at its root, one counting the number of non-leaf nodes in a tree and one checking
if two trees are mirror images of each other. Occurrences of the flattenning and
rotating functions are varied to get variants for each problem.

Inductive tree example from the set flatten0 rotate 5var

(set-logic UFDT)

;- data types declaration, as shown at the beginning of this Section

;- app function declaration and axiomatization, as in the example above

(declare-fun flat0 (tree) list)

(assert (= (flat0 Nil) nil))

(assert (forall ((p tree) (x nat) (q tree))

(= (flat0 (node p x q)) (app (flat0 p) (cons x (flat0 q))))))

(assert (not (forall ((p tree) (q tree) (r tree) (x nat) (y nat))

(= (flat0 (node (node p x q) y r)) (flat0 (node p x (node q y r))))

)))

(check-sat)

The conjecture asserts that the result of a tree flattening does not depend on the
rotation in the root.

128 M. Hajdu et al.

3.2 int - Benchmarks with Integers

The int category of our benchmark set contains 120 problems for inductive rea-
soning with integers. It is inspired by software verification problems [7] for three
programs: power, computing powers of integers, sum, computing sums of inte-
ger intervals, and val, using integers as array indices to encode array properties.
These benchmarks were used for evaluating the work from [7]. A sample problem
from power expressing that the recursively defined power function on integers
for positive exponents is distributive over multiplication, is:

Inductive int example from the set power

(set-logic UFNIA)

(declare-fun pow (Int Int) Int)

(assert (forall ((x Int)) (= (pow x 1) x)))

(assert (forall ((x Int) (e Int))

(=> (<= 2 e) (= (pow x e) (* x (pow x (- e 1)))))))

(assert (not (forall ((x Int) (y Int) (e Int))

(=> (<= 1 e) (= (pow (* x y) e) (* (pow x e) (pow y e)))))))

(check-sat)

The conjecture asserts that for positive exponents, the power function distributes
over multiplication of integers.

All variations of the int benchmarks were created by varying the constraints
and constants in the definitions and goals. For example, variations of the sample
problem above use the function pow defined starting from 0 instead of 1, or
introduce additional constraints on variables x, y and e in the goal.

4 Conclusions

We describe our benchmark set for evaluating inductive capabilities of automated
reasoners. Although we primarily provide our problems in the standard SMT-
LIB syntax, we also translated them to other input formats of state-of-the-art
reasoners.

Future work includes extending our benchmark set with further examples
coming from application domains of security and safety verification, as well as
formalization of mathematics. Another task for future work is a possible integra-
tion of our dataset with the TIP benchmark set or with the SMT-LIB repository.
One possibility for incorporating our benchmark set into SMT-LIB would be to
add a new subset or an annotation for inductive problems in SMT-LIB, since
SMT-LIB does not currently distinguish benchmarks focused on induction from
those which can be easily solved without induction. Another possibility is to
introduce subsets of the DT (data types) set from SMT-LIB for each notable
algebraic data type (natural numbers, lists, trees).

Inductive Benchmarks for Automated Reasoning 129

Acknowledgements. This work has been partially funded by the ERC CoG ARTIST
101002685, the ERC StG 2014 SYMCAR 639270, the EPSRC grant EP/P03408X/1
and the Austrian FWF research project LogiCS W1255-N23.

References

1. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

3. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, Perspectives in com-
puting, vol. 23. Academic Press (1979)

4. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM
2015. LNCS (LNAI), vol. 9150, pp. 333–337. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-20615-8 23

5. Cruanes, S.: Superposition with structural induction. In: Proceedings of FRoCoS,
pp. 172–188 (2017)

6. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with
generalization in superposition reasoning. In: Benzmüller, C., Miller, B. (eds.)
CICM 2020. LNCS (LNAI), vol. 12236, pp. 123–137. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53518-6 8

7. Hozzová, P., Kovács, L., Voronkov, A.: Integer induction in saturation. EasyChair
Preprint no. 5176 (EasyChair, 2021)

8. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Proceed-
ings of CAV, pp. 1–35 (2013)

9. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

10. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

11. Passmore, G., et al.: The imandra automated reasoning system (system descrip-
tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 464–471. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 30

12. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: Proceed-
ings of CADE, pp. 477–494 (2019)

13. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: Proceedings of VMCAI,
pp. 80–98 (2015)

14. Schneidewind, C., Grishchenko, I., Scherer, M., Maffei, M.: ethor: Practical
and provably sound static analysis of ethereum smart contracts, pp. 621–
640 (2020). https://doi.org/10.1145/3372297.3417250, https://doi.org/10.1145/
3372297.3417250

15. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: an automated prover for prop-
erties of recursive data structures. In: Proceedings of TACAS, pp. 407–421 (2012)

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250

A Heuristic Prover for Elementary
Analysis in Theorema

Tudor Jebelean(B)

RISC–Linz, JKU, Linz, Austria
Tudor.Jebelean@jku.at

https://www.risc.jku.at

Abstract. We present a plug-in to the Theorema system, which gener-
ates proofs similar to those produced by humans for theorems in elemen-
tary analysis and is based on heuristic techniques combining methods
from automated reasoning and computer algebra. The prover is able to
construct automatically natural-style proofs for various examples related
to convergence of sequences as well as to limits, continuity, and uniform
continuity of functions. Additionally to general inference rules for pred-
icate logic, the techniques used are: the S-decomposition method for
formulae with alternating quantifiers, use of Quantifier Elimination by
Cylindrical Algebraic Decomposition, analysis of terms behavior in zero,
bounding the ε-bounds, semantic simplification of expressions involving
absolute value, polynomial arithmetic, usage of equal arguments to arbi-
trary functions, and automatic reordering of proof steps in order to check
the admissibility of solutions to the metavariables. The problem of prov-
ing such theorems directly without using refutation and clausification is
logically equivalent to the problem of satisfiability modulo the theory of
real numbers, thus these techniques are relevant for SMT solving also.

Keywords: Satisfiability checking · Natural-style proofs · Computer
algebra · Symbolic computation · Satisfiability Modulo Theories

1 Introduction

In this paper we present our results on a class of proof problems which arise in
elementary analysis, namely those involving formulae with alternating quanti-
fiers. We implement the following heuristic techniques, which extend our previous
work [5,6,9]: the S-decomposition method for formulae with alternating quanti-
fiers [8], use of Quantifier Elimination by Cylindrical Algebraic Decomposition
[4], analysis of terms behavior in zero, bounding the ε-bounds, semantic simpli-
fication of expressions involving absolute value, polynomial arithmetic, usage of
equal arguments under unknown functions, and automatic reordering of proof
steps in order to check the admissibility of solutions to the metavariables.

Our prover, implemented in the frame of the Theorema system [3], aims
at producing natural-style proofs for simple theorems involving convergence of
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 130–134, 2021.
https://doi.org/10.1007/978-3-030-81097-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-81097-9_10

A Prover for Elementary Analysis 131

sequences and of functions, continuity, uniform continuity, etc. The prover does
not need to access a large collection of formulae (expressing the properties of the
domains involved). Rather, the prover uses techniques from computer algebra
in order to discover relevant terms and to check necessary conditions, and only
needs as starting knowledge the definitions of the main notions involved. The
size of this short paper does not allow an overview of the relevant literature, so
we only mention [2], which in contrast to our prover is based mostly on rewriting
of logical terms and does not handle alternating quantifiers.

2 Application of Special Techniques

Example: Product of Convergent Sequences. We illustrate the heuristics by the
proof of the theorem “The product of two convergent sequences is convergent”,
which is presented in detail together with other examples and explanations of
the techniques in [7]. The proof starts from the definitions of product of two
functions and of convergence of a function f : N −→ R:

∃
a∈R

∀
e∈R

e>0

∃
M∈N

∀
n∈N

n≥M

|f [n] − a| < e

After introducing Skolem constants f1, f2 for the arbitrary convergent
sequences and expansion of the goal and of the assumptions by the definitions
of convergence and of product of functions, the prover is left with two main
assumptions and one goal (instances of the formula above), which have parallel
alternating quantifiers.

The S-decomposition Method. The main structure of the proof (see [8]) is
as follows: the quantifiers are removed from the 3 statements in parallel, using a
combination of inference steps which decompose the proof into several branches.
When the 3 formulae are existential, first introduce the Skolem constants for the
assumptions, and then introduce a witness for the goal. The proof branches into:
a main branch with the new goal, and secondary branches for proving the sub-
goals stating that the type and the condition of the existential variable hold for
the witness. When the 3 formulae are universal, first introduce Skolem constants
for the goal, and then introduce the instantiation terms for the assumptions.
Similarly to above, separate secondary branches are created for the type and
condition checking of the instantiation terms.

Thus in this proof the prover produces, in order: Skolem constants a1, a2, wit-
ness a1 +a2; Skolem constant e0, instantiation term Min

[
1, e0

|a2|+|a1|+1

]
; Skolem

constants M1,M2, witness Max [M1,M2]; Skolem constant n0, instantiation term
n0. (The names are similar to the corresponding variables in the definition.)

At every iteration of the proof cycle one needs a witness for the existential
goal and an one or more instantiation terms for the universal assumptions: these
are the difficult steps in the proof, for which we use special proof techniques
based on computer algebra.

132 T. Jebelean

Reasoning About Terms Behavior in Zero: by polynomial arithmetic the
prover infers the value of the witness for a by equating all the expressions under
the absolute value to zero.

Use of Metavariables: the existential variable in the goal (or the universal
variable in an assumption) is replaced by a new symbol (metavariable), which is
a name for the term (solution of the metavariable) which we need to find. This
term is determined later in the proof, and the subgoals stating the type and the
condition are checked on the secondary branches. Also, one must ensure that
the solution to the metavariable does not contain Skolem constants which are
introduced later in the proof. If this condition is not fulfilled, the prover tries to
reorder the steps of the proof.

Quantifier Elimination is used in order to find the solution of the metavariable
in relatively simple situations – as for instance in this proof for Max[M1,M2],
as described in [1].

Identification of Equal Terms Under Unknown Functions. This is used
for finding the instantiation term n0.

Since f1 and f2 are arbitrary, we do not know anything about their behaviour.
In the goal f1 and f2 have argument n0, therefore the prover uses the same argu-
ment in the assumptions, otherwise it would be impossible us the assumptions
in the proof of the goal.

Algebraic Manipulations. The most challenging part in this proof is the auto-
matic generation of the instantiation term Min

[
1, e0

|a2|+|a1|+1

]
, which is per-

formed by a heuristic combination of solving, substitution, and simplifying, as
well as rewriting of expressions under the absolute value function, and it is real-
ized at the end of the proof. The goal in this moment is:

| (f1 [n0] ∗ f2 [n0]) − (a1 ∗ a2) | < e0 (1)

and the main assumptions are:

|f1 [n0] − a1| < e (2)

|f2 [n0] − a2| < e (3)

Internally the prover replaces f1[n0] and f2[n0] by x1 and x2, respectively,
both in the goal and in the assumptions. The argument of the absolute value in
the transformed goal is E0 = x1∗x2−a1∗a2 and in the transformed assumptions
E1 = x1 − a1 and E2 = x2 − a2.

First we use the following heuristic principle: transform the goal expression
E0 such that it uses as much as possible E1 and E2, because about those we
know that they are small. In order to do this we take new variables y1, y2, we
solve the equations y1 = E1 and y2 = E2 for x1, x2, we substitute the solutions
in E0 and the result simplifies to: a1 ∗ y2 + a2 ∗ y1 + y1 ∗ y2. This is the internal
representation of the absolute value argument in the goal (4).

|a1 ∗ (f2[n0] − a2) + a2 ∗ (f1[n0] − a1) + (f1[n0] − a1) ∗ (f2[n0] − a2)| < e0 (4)

A Prover for Elementary Analysis 133

Note that the transformation from (1) to (4) is relatively challenging even
for a human prover.

|a1 ∗ (f2[n0] − a2) + a2 ∗ (f1[n0] − a1) + (f1[n0] − a1) ∗ (f2[n0] − a2)| (5)
≤ |a1 ∗ (f2[n0] − a2)| + |a2 ∗ (f1[n0] − a1)| + |(f1[n0] − a1) ∗ (f2[n0] − a2)|
= |a1| ∗ |f2[n0] − a2| + |a2| ∗ |f1[n0] − a1| + |f1[n0] − a1| ∗ |f2[n0] − a2|
< |a1| ∗ e + |a2| ∗ e + e ∗ e ≤ |a1| ∗ e + |a2| ∗ e + e = e ∗ (|a1| + |a2| + 1)

=
e0

|a2| + |a1| + 1
∗ (|a1| + |a2| + 1) = e0

The formula (5) is realized by rewriting of the absolute value expressions. Namely,
we apply certain rewrite rules to expressions of the form |E| and their combina-
tion, as well as to the metavariable e. Every rewrite rule transforms a (sub)term
into one which is not smaller, so we are sure to obtain a greater or equal term.
The final purpose of these transformations is to obtain a strictly positive ground
term t multiplied by the target metavariable (here e). Since we need a value for
e which fullfils t ∗ e ≤ e0, we can set e to e0/t. The rewrite rules come from the
elementary properties of the absolute value function: (e.g. |u + v| ≤ |u| + |v|))
and from the principle of bounding the ε-bounds: Since we are interested in the
behaviour of the expressions in the immediate vicinity of zero, the bound e can
be bound from above by any positive value. In the case of product (presented
here), we also use the rule: e ∗ e ≤ e, that is we bound e to 1. This is why the
final expression of e is the minimum between 1 and the term t found as above.

Proving Simple Conditions. At certain places in the proof, the conditions
upon certain quantified variables have to be proven. The prover does not display
a proof of these simple statements, but just declares them to be consequences
of “elementary properties of R”. (Such elementary properties are also invoked
when developing formulae (4) and (5)). In the background, however, the prover
uses Mathematica functions in order to check that these statements are correct.
This happens for instance for the subgoal ∀

e0
(e0 > 0 ⇒ e > 0) and will be treated

after the instatiation term for e is found, by using QE on this formula (where e
has the found value Min[. . .]), which returns True in Mathematica.

3 Conclusion and Further Work

When applied to problems over reals, Satisfiability Modulo Theories (SMT) solv-
ing combines techniques from automated reasoning and from computer algebra.
From the point of view of automated reasoning, proving unsatisfiability of a
set of clauses appears to be quite different from producing natural-style proofs.
Indeed the proof systems are different (resolution on clauses vs. some version
of sequent calculus), but they are essentially equivalent, relaying on equivalent
transformations of formulae. Moreover, the most important steps in first order
proving, namely the instantiations of universally quantified formulae (which in

134 T. Jebelean

natural-style proofs is also present as the equivalent operation of finding wit-
nesses for existentially quantified goals), are actually the same or very similar.

The full automation of proofs in elementary analysis constitutes a very inter-
esting application for the combination of logic and algebraic techniques, which is
essentially equivalent to SMT solving (combining satisfiability checking and sym-
bolic computation). Our experiments show that complete and efficient automa-
tion is possible by using certain heuristics in combination with complex algebraic
algorithms.

Further work includes a systematic treatment of various formulae which
appear in textbooks, and extension of the heuristics to more general types of
formulae. In this way we hope to address the class of problems which are usually
subject to SMT solving.

References

1. Abraham, E., Jebelean, T.: Adapting cylindrical algebraic decomposition for proof
specific tasks. In: Kusper, G. (ed.) ICAI 2017: 10th International Conference on
Applied Informatics (2017) (in print)

2. Bauer, A., Clarke, E., Zhao, X.: Analytica - an experiment in combining theorem
proving and symbolic computation. J. Autom. Reasoning 21(3), 295–325 (1998).
https://doi.org/10.1023/A:1006079212546

3. Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theorema
2.0: computer-assisted natural-style mathematics. JFR 9(1), 149–185 (2016)

4. Collins, G.E.: Quantier elimination for real closed fields by cylindrical algebraic
decomposition. In: Automata Theory and Formal Languages. LNCS, vol. 33, pp.
134–183. Springer (1975)

5. Jebelean, T.: Techniques for natural-style proofs in elementary analysis. ACM Com-
mun. Comput. Algebra 52(3), 92–95 (2019)

6. Jebelean, T.: Techniques for natural-style proofs in elementary analysis (extended
abstract). In: Bigatti, A.M., Brain, M. (eds.) Third International Workshop on Sat-
isfiability Checking and Symbolic Computation (2018)

7. Jebelean, T.: A heuristic prover for elementary analysis in Theorema. Tech. Rep.
21–07, Research Institute for Symbolic Computation (RISC), Johannes Kepler Uni-
versity Linz (2021)

8. Jebelean, T., Buchberger, B., Kutsia, T., Popov, N., Schreiner, W., Windsteiger,
W.: Automated reasoning. In: Buchberger, B., et al. (eds.) Hagenberg Research, pp.
63–101. Springer (2009). https://doi.org/10.1007/978-3-642-02127-5 2

9. Vajda, R., Jebelean, T., Buchberger, B.: Combining logical and algebraic techniques
for natural style proving in elementary analysis. Math. Comput. Simul. 79(8), 2310–
2316 (2009)

https://doi.org/10.1023/A:1006079212546
https://doi.org/10.1007/978-3-642-02127-5_2

Search and Classification

Searching for Mathematical Formulas
Based on Graph Representation Learning

Yujin Song and Xiaoyu Chen(B)

LMIB-SKLSDE-BDBC, School of Mathematical Sciences,
Beihang University, Beijing 100191, China

chenxiaoyu@buaa.edu.cn

Abstract. Significant advances have been witnessed in the area of repre-
sentation learning. Recently, there have been some attempts of applying
representation learning methods on mathematical formula retrieval. We
introduce a new formula embedding model based on a kind of graph
representation generated from hierarchical representation for mathemat-
ical formula. Such a representation characterizes structural features in a
compact form by merging the same part of a mathematical formula. Fol-
lowing the approach of graph self-supervised learning, we pre-train Graph
Neural Networks at the level of individual nodes to learn local represen-
tations and then produce a global representation for the entire graph.
In this way, formulas can be embedded into a low-dimensional vector
space, which allows efficient nearest neighbor search using cosine similar-
ity. We use 579,628 formulas extracted from Wikipedia Corpus provided
by NTCIR-12 Wikipedia Formula Browsing Task to train our model,
leading to competitive results for full relevance on the task. Experiments
with a preliminary implementation of the embedding model illustrate the
feasibility and capability of graph representation learning in capturing
structural similarities of mathematical formulas.

Keywords: Math formula search · Graph representation learning ·
Self-supervised learning · Formula embedding

1 Introduction

Representation learning, also known as feature learning, has been demonstrated
to be effective and powerful in various application fields including computer
vision, audio, and natural language processing [3]. Its main objective is to rep-
resent data with low-dimensional dense vectors that are able to capture useful
features of data through appropriate learning models other than artificial fea-
ture engineering. While such kind of distributed representations, taking advan-
tages of excellent robustness and extensibility than symbolic representations of
data, have been well studied on words and paragraphs, the question of how to
learn continuous vector representations for mathematical formulas which play
an important role in dissemination and communication of scientific information
has become a compelling line of inquiry.
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 137–152, 2021.
https://doi.org/10.1007/978-3-030-81097-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_11&domain=pdf
http://orcid.org/0000-0001-7510-7812
http://orcid.org/0000-0003-3061-4276
https://doi.org/10.1007/978-3-030-81097-9_11

138 Y. Song and X. Chen

As for the task of information retrieval involving mathematical formulas, the
goal is to learn appropriate formula embedding capable of capturing formula
similarity. Considering the measures of formula similarity may vary in different
scenarios which heavily affects the performance and evaluation of embedding, in
this work we focus on structural similarity in isolated formula search task without
using surrounding text, the same setting as in [15]. As formulas are inherently
hierarchical and symbols therein have semantic relationships between each other
which would be implicit in sequential representations, we wonder whether graph
representation learning could enhance the embedding performance since signifi-
cant advances have been achieved by Graph Neural Networks (GNNs). To this
end, we introduce a new formula embedding model based on a kind of graph
representation generated from hierarchical representation for mathematical for-
mula. Such a representation characterizes structural features in a compact form
by merging the same part of a mathematical formula. Given isolated formulas
without meta-information, we leverage the self-supervised learning strategies at
node level proposed in [11] to produce node embeddings and then average them
to obtain a vector representation for the entire graph of a formula which allows
efficient nearest neighbor search using cosine similarity. We explore the effects of
different factors on embedding performance, including node feature initialization,
the scale of node labels and different graph neural network architectures. Our
model1 achieves competitive results on NTCIR-12 Wikipedia Formula Browsing
Task [26].

The remainder of this paper is structured as follows. We first review related
work on mathematical formula representations, similarity measures in traditional
mathematical information retrieval (MIR) and the new trend of mathematical
formula embedding in Sect. 2. In Sect. 3, we present the design of graph repre-
sentation for mathematical formulas and then briefly introduce self-supervised
learning tasks and our embedding model based on GNNs in Sect. 4. We evalu-
ate our model using two metrics for information retrieval in Sect. 5. Finally, we
conclude the paper and prospect the future work in Sect. 6.

2 Related Work

Math Formula Representation. There are two choices for representing math
formula abstractly [27]: one is Symbol Layout Tree (SLT) indicating formula
appearance, i.e., symbols’ spatial arrangement towards a writing baseline; the
other is Operator Tree (OPT) indicating formula semantics such as argument
types, operator syntax, and their logical relations. These two abstract repre-
sentations have their own specific file formats. Those for SLTs include LATEX,
a well-known markup language for typesetting, and Presentation MathML, a
markup language based on XML for displaying math on the web. SLT repre-
sentations may be ambiguous as the same symbol may be of different mathe-
matical types in different contexts. To reduce the ambiguity, sTEX [12] and con-
tent LATEX [17] provided semantic annotations for LATEX documents. Those for
1 PyTorch implementation: https://github.com/Franknewchen/MathEmb.

https://github.com/Franknewchen/MathEmb

Searching for Math Formulas Based on Graph RL 139

OPTs include Content MathML and OpenMath [5,7], both standard XML lan-
guages, which could provide semantics to Computer Algebra Systems (CAS) like
Maple and Mathematica to perform computations. Various tools allow for con-
versions between different formats. Schubotz et al. [22] presented nine tools and
performed a quantitative evaluation of them on a benchmark dataset. Greiner-
Petter et al. [9] introduced the first translation tool for special functions between
LATEX and CAS.

Similarity Measure. The matching between a query formula and indexed for-
mulas is essential in MIR systems, so how to measure similarity between formulas
is a key question. Approaches fall into two main categories, text-based and tree-
based [28]. Text-based approaches linearize expression trees to text strings with
normalization, such as using canonical orderings for commutative and associative
operators, and replacing symbols by their mathematical types, while the hierar-
chical information of formulas may be lost to some extent due to the linearization.
And then text retrieval methods can be applied, such as using term frequency-
inverse document frequency (TF-IDF) [17,23]. Kumar et al. [19] proposed an
approach to retrieve LATEX string by matching the largest common substring,
which could capture more structural information but required a quadratic algo-
rithm. Tree-based approaches use expression trees directly, aiming at matching
complete trees, subtrees or paths traversed in some order [4,6,13,31]. The more
common substructures are matched, the more similar two formulas are consid-
ered. These approaches are more effective than the text-based according to the
results of NTCIR [1,26], but often time-consuming because of the complexity
of structure matching. Zhong et al. [30] proposed a rank-safe dynamic pruning
algorithm for faster substructure retrieval.

Math Formula Embedding. At an early stage, Thanda et al. [24] explored
math formula embedding by using the distributed bag of words (PV-DBOW)
model, a variant of doc2vec algorithm. Gao et al. [8] followed the continuous bags-
of-words (CBOW), one architecture of the word2vec [16] model with negative
sampling and distributed memory model of paragraph vectors (PV-DM) to learn
vector representations for math symbols and formulas respectively. Krstovski and
Blei [14] proposed a model to embed both equations and their surrounding text
based on word embedding by treating an equation appearing in the context of
different words as a “singleton word”. The joint embedding of text and equation
is also adopted by Yasunaga and Lafferty [25]. They applied a Recurrent Neural
Network (RNN) to model each equation as a sequence of LATEX tokens. Pathak
et al. [18] conducted symbol-level embedding as in [8], and then created a For-
mula Entailment (LFE) module based on Long Short Term Memory (LSTM)
neural network to recognize entailment between formula pairs. Mansouri et
al. [15] created tuples to represent depth-first paths between pairs of symbols and
then embedded tuples using the fastText n-gram embedding model derived from
the word2vec model. The above approaches are almost based on word embedding
techniques in natural language processing tasks. Their use and effectiveness were

140 Y. Song and X. Chen

explored by Greiner-Petter et al. in five different mathematical scenarios. The
results show that math embedding holds much promise for similarity, analogy,
and search tasks [10]. To the best of our knowledge, Pfahler et al. [20] fed tree-
structured MathML formulas to GNNs for the first time. Aiming at retrieving
formulas appearing in the paragraphs or articles related to query formulas rather
than exact matches, they designed node-level masking and graph-level contextual
similarity self-supervised learning tasks to embed mathematical expressions.

Benchmark for MIR. As Aizawa and Kohlhase presented in [2], a major
obstacle to MIR research is the lack of readily available large-scale datasets with
structured mathematical formulas, carefully designed tasks, and established eval-
uation methods. Benchmarks published by NTCIR [1,26] and the latest released
benchmark ARQMath [29] have promoted the development of MIR.

3 Graph Representation for Mathematical Formula

The formula dataset we work on is obtained from Wikipedia Corpus for NTCIR-
12 Wikipedia Formula Browsing Task. The corpus contains 31,839 HTML arti-
cles in MathTagArticles directory and 287,850 HTML articles in TextArticles
directory. Each formula therein is encoded in three formats: LATEX, Presentation
MathML and Content MathML. As the amount of formulas existing in Tex-
tArticles directory only account for 2% of the total number and those formulas
are mainly in the form of isolated symbols, we construct a formula dataset by
extracting a total number of 579,628 formulas from the articles in MathTagAr-
ticles directory and converting each formula from Content MathML into OPT
representation by using tools developed in [6].

In order to make full use of the advances of GNNs, we propose a labeled
directed acyclic graph (DAG) representation based on the OPT representation by
sharing the recurring substructures therein. Such a representation characterizes
structural features in a compact form. For example, as shown in Fig. 1, the
number “1” and the part “a− b”, which occur twice in tree representation while
only occur once in graph representation respectively. In order to prevent the
emergence of multiple edges, especially in the representation of matrices, we do
not merge substructures if their parent nodes are the same. Considering the

matrix
[

x x
y z

]
shown in Fig. 2(a), the node “x” cannot be merged otherwise a

multiple edge between node “R” and node “x” will occur in the graph. In the

case of its transposed matrix
[

x y
x z

]
(Fig. 2(b)), the sharing of node “x” can be

conducted and the resulting graph is shown in Fig. 2(c).

Searching for Math Formulas Based on Graph RL 141

Fig. 1. Comparison of two representations for 1
a−b

+(a−b)2=1. (a) OPT representation;
(b) Graph representation with “1” and “a − b” shared (where edge labels are used to
declare the argument positions).

Fig. 2. Representations for matrices. “M” and “R” are abbreviations for “Matrix” and
“Row” respectively.

Node Labels. We label nodes in the form of “Type!Value” as proposed in [6].
There are 12 types extracted from Content MathML tags in total, including
number (denoted as N!), constant (denoted as C!), variable (denoted as V!),
function (denoted as F!), object with group structure (denoted as M!) like matrix,
text (denoted as T!) like “lim” and “max”, commutative operator (denoted as
U!), non-commutative operator (denoted as O!), compound operator (denoted as
+!) using a subtree to define an operation, whitespace (denoted as W!), unknown
type (denoted as -!) and error (denoted as E!), while the value of a node is its
corresponding symbols occurring in the formula. For example, the node labels
of “a” and “1” in Fig. 1 are represented as “V!a” and “N!1” respectively. In the
constructed formula dataset, there are 24,567 labels in the form of “Type!Value”
totally, among which about 50% labels only occur once and 41% occur less than
fifteen times. Since the amount of labels is so large and 91% of them only occur
a few times, we discard the labels whose occurrence frequencies are less than a
certain number δ (called discarding threshold) and the nodes with these labels

142 Y. Song and X. Chen

are relabeled with a unified artificial symbol “[unif]” in our current setting. We
compare the embedding performance when δ = 0, 5, 15 and report the results in
Sect. 5.

Edge Labels. Edge labels are used to declare argument positions as in OPT
representation [6]. For a commutative operator like “+” whose argument order
does not affect the calculation result, argument edges are all labeled with “0”.
For a non-commutative operator, argument edges are labeled with indices in the
argument order starting from 0.

For a mathematical formula, we implement an algorithm of converting its
OPT representation into the above graph representation, denoted as a quadru-
ple (V,E,LV , LE), where V is the set of nodes, E is the set of directed
edges, LV and LE are the sets of node labels and edge labels respectively.
Accordingly, the formula dataset in graph representation can be denoted as
G = {G1, G2, . . . , G579628}, where the whole set of node labels is denoted as
LV = LVG1

∪ LVG2
∪ · · · ∪ LVG579628

and |LV | = 24, 567. As for the whole set of
edge labels LE , elements are numbers indicating argument positions, where the
minimum element is 0 and the maximum element is less than 68, the maximum
degree of the nodes in G. The node with the maximum degree appears in a poly-
nomial with respect to “x” which has 69 terms and the degree of the polynomial
is 71.

4 Formula Embedding Model

4.1 Self-supervised Learning Tasks

Since we focus on the isolated formula search task without meta-information,
self-supervised learning would suit the task. In this work, we follow the strategies
for pre-training GNNs presented in [11] which have enhanced the performances
of downstream classification tasks in biology and chemistry fields. We adopt two
self-supervised learning tasks therein at node level: (1) Context Prediction is
a binary classification task of whether a particular subgraph and a particular
context graph belong to the same node. The subgraph is a k-hop neighborhood
around a randomly selected center node and the context graph is the surround-
ing graph structure that is between r1-hop and r2-hop (r1 < r2) from the center
node. The neighborhood-context pair to be predicted is obtained using a neg-
ative sampling ratio of 1. (2) Attribute Masking is a task of predicting a set
of randomly masked node labels using a linear model applied on top of GNNs,
aiming to capture the regularities of node labels distributed over different graph
structures. The masked nodes are labeled with “[mask]” during the process of
training. We train GNNs by adding the losses for both two self-supervised learn-
ing tasks.

4.2 Graph Neural Networks

We adopt three architectures, Graph Convolution Network (GCN), Graph SAm-
ple and aggreGatE (GraphSAGE) and Graph Isomorphism Network (GIN), to

Searching for Math Formulas Based on Graph RL 143

learn node representations and then produce the entire graph embedding by
averaging its node representations. As input features of GNNs, each node and
each edge with raw labels are respectively embedded by

h(0)
v = EmbNode (iv) (1)

h(0)
e = EmbEdge (je) (2)

where iv and je denote the index of node v’s raw label in LV and the index
of edge e’s raw label in LE respectively. EmbNode(·) and EmbEdge(·) can be
viewed as an initial layer for node features and edge features, mapping indices
to randomly generated d-dimensional real vectors. In general, for each node v,
GNNs update its representation at the k-th layer by

h(k)
v = Combine(k)

(
h(k−1)

v ,Aggregate(k)
({(

h(k−1)
v , h(k−1)

u , euv

)
: u ∈ N (v)

}))

where euv is the feature vector of edge between node u and v, and N (v) is a set
neighbors of node v. The representation of node v is iteratively updated by com-
bining its last representation with aggregated information from its neighboring
nodes and edges. Combine and Aggregate approaches are different in different
network architectures, for details of which refer to [11].

Considering the inherited relationships between labels exiting in formula
dataset, we also apply word2vec on the sequentialized form of formulas to extract
initial features for nodes and construct the following embedding operation:

h(0)
v = W2vNode (lv) (3)

where lv ∈ LV denotes the raw label of node v. W2vNode(·) first maps each label
in LV to a (d − 1)-dimensional real vector using word2vec. Then each vector is
expanded to a d-dimensional vector by filling with 0 at the d-th dimension. For
the label “[mask]”, the first d − 1 dimensions are all set to be 0, and the last
dimension is set to be 1. For the artificial symbol “[unif]”, the initial representa-
tion is generated randomly in each training batch to reduce manual bias caused
by unifying the discarded labels. In a word, W2vNode(·) performs as a dictio-
nary, providing initial features of fixed d-dimensional vectors for nodes that will
be fed to GNNs.

4.3 Hyperparameter Choices

We train the presented model for 100 epochs with Adam optimization, embed-
ding dimension of 300, batch size of 256, learning rate of 0.001, the number of
GNN layers of 5, mask rate of 0.15 in Attribute Masking task, and k = 5, r1 = 2
and r2 = 5 in Context Prediction task.

5 Experiments and Evaluation

In this section, we evaluate our formula embedding model in different settings
relying on 20 concrete queries provided by NTCIR-12 MathIR Wikipedia For-
mula Browsing Task.

144 Y. Song and X. Chen

5.1 Evaluation Metric

During the task, each hit from participating systems was evaluated by two
human assessors recruited by organizers of NTCIR-12. Each assessor scores a hit
with 0, 1 or 2, indicating the degree of relevance from low to high. The agree-
ment between evaluators for this task has the lowest agreement value among all
MathIR tasks since some evaluators were very concerned with formula semantics,
while others seemed to consider primarily visual similarity when rating hits [26].
The final relevance rating is a score between 0 and 4, i.e. the sum of the two
assessor scores. Scores of 3 or 4 are considered fully relevant while scores of 1 or
2 are considered partially relevant and a score of 0 is considered nonrelevant.

We use bpref on top-1000 results and precision@k for k = 5, 10, 15, 20 as
evaluation metrics. For a query with R judged relevant documents and N judged
nonrelevant documents, let r be a relevant document and n be a member of the
first R judged nonrelevant documents as retrieved by the system, then

bpref =
1
R

∑
r

1 − |n ranked higher than r|
min(R,N)

,

which is designed to evaluate IR systems only using judged documents [21].
Precision@k = s

k , where s is the number of relevant documents in the top k
retrieval results, is an effective evaluation metric to indicate whether the top
retrieval results are helpful to users.

5.2 Evaluation Results

We explore the impact of different graph neural network architectures, different
initializations for node features and different scales of node labels as shown in
Table 1. Firstly, we discard node labels with discarding threshold δ = 15, so
that the scale of node labels are reduced from 24,567 to 2,157. Then we initial-
ize node features using EmbNode in which setting GCN performs the best. As
a comparison, we adopt W2vNode to initialize node features. This setting only
slightly improves the performance of GIN and GCN but impairs the performance
of GraphSage by 2%. When the node labels are discarded with δ = 5, the scale
node labels is increased from 2,157 to 5,000. Then GCN achieves higher par-
tial and full bpref scores, while both GraphSAGE and GIN perform inconsistent
improvements on partial and full bpref scores. In both settings with different dis-
carding thresholds, GCN performs the best, 1% to 5% better than the other two
network architectures. This demonstrates that the classic GCN may be a more
suitable encoder for formula embedding in characterizing structural features.
Finally, to compare the effects of different discarding thresholds and initializa-
tion methods, we use GCN to conduct another round of experiment which shows
that discarding threshold δ = 5 helps improve the performance of GCN both in
partial and full relevance, while using W2vNode does not help.

Searching for Math Formulas Based on Graph RL 145

Table 1. Avg. bpref@1000 of NTCIR-12 results in different settings

Network architecture Size of label set Initialization method Partial bpref Full bpref

GCN 2,157 EmbNode 0.5349 0.6167

GraphSAGE 2,157 EmbNode 0.5244 0.5970

GIN 2,157 EmbNode 0.4845 0.5926

GCN 2,157 W2vNode 0.5256 0.6195

GraphSAGE 2,157 W2vNode 0.5058 0.5779

GIN 2,157 W2vNode 0.4982 0.6069

GCN 5,000 W2vNode 0.5408 0.6250

GraphSAGE 5,000 W2vNode 0.4937 0.5814

GIN 5,000 W2vNode 0.5185 0.5822

GCN 5,000 EmbNode 0.5568 0.6070

GCN 24,567 EmbNode 0.5278 0.5829

GCN 24,567 W2vNode 0.5309 0.5865

Next we compare our formula embedding model with other models, among
which Tangent-CFT [15] is an embedding model, Approach0 [31] is a tree-based
model and TanApp, the combination of Tangent-CFT and Approach0, achieves
state-of-the-art performance. As Table 2 illustrates, our model achieves a compet-
itive full bpref score. The reason for low partial bpref scores is that the top-1000
results retrieved by our model only hit a few judged formulas for some queries.
An example is query #18, for which there are 71 judged formulas, but we only
retrieve 14 of them. Another example is query #17 which had the highest har-
monic mean bpref score (0.931) over all queries in Tangent-CFT retrieval results.
The top-5 results retrieved by our model and Tangent-CFT are shown in Table 3.
The three formulas ranked from the second to the fourth in our retrieval results
are from the same article as the query is and seem more relevant than those in
Tangent-CFT retrieval results. However, they were not judged during the task,
leading to a low bpref score. In spite of this, our model can retrieve the exact
match as the top-1 formula for each query except for query #1 (ranked the third
in the retrieval results). The use of tokenizing formula tuples makes Tangent-
CFT easier to retrieve formulas containing more same symbols as queries, which
may be judged to be partially relevant, while our model focuses more on rela-
tionships between symbols and tends to retrieve formulas with similar structures
as queries, which may be judged to be fully relevant (Fig. 3).

The precision@k score is just a lower bound as some retrieved results may
be not judged. We mainly compare our model with Approach0 considering that
all or partly results of other models were judged during NTCIR-12 task and the
precision@k score of Tangent-CFT was not provided in [15]. As shown in Table 4,
our model achieves competitive scores compared to Approach0 in both full and
partial relevances. The reason why the score for query “β” (query #2) is zero
is that there are so many unjudged “β” existing in the dataset that our model
only takes the unjudged ones as top-5 results. And the zero score for query #13

146 Y. Song and X. Chen

Table 2. Avg. bpref@1000 of NTCIR-12
results of different models

Model Partial bpref Full bpref

Our model 0.54 0.63

Tangent-CFT 0.71 0.60

Approach0 0.59 0.67

TanApp 0.73 0.70

Tangent-s [6] 0.59 0.64

MCAT [13] 0.57 0.57

Fig. 3. P@5 for each query of our
model

Table 3. Top-5 results for query x − 1 − 1
2
− 1

4
− 1

5
− 1

6
− 1

9
− · · · = 1

Model Rank Retrieved results

Our model 1 x − 1 − 1
2
− 1

4
− 1

5
− 1

6
− 1

9
− · · · = 1

2 x − 1 = 1 + 1
2

+ 1
4

+ 1
5

+ 1
6

+ 1
9

+ · · ·
3 x − 1 − 1

2
= 1 + 1

5
+ 1

6
+ 1

7
+ 1

10
+ 1

11
+ 1

12
+ · · ·

4 x − 1 = 1 + 1
3

+ 1
5

+ 1
6

+ 1
7

+ 1
9

+ 1
10

+ 1
11

+ · · ·
5 1

1
+ 1

1
+ 1

2
+ 1

3
+ 1

5
+ 1

8
+ · · · = ψ

Tangent-CFT 1 x − 1 − 1
2
− 1

4
− 1

5
− 1

6
− 1

9
− · · · = 1

2 1 − 1
2
− 1

4
+ 1

3
− 1

6
− 1

8
+ 1

5
− 1

10
− 1

12
+ · · ·

3 1 − 1
2
− 1

4
+ 1

8
− 1

16
+ · · · = 1

3

4 1
18

= 1
2
− 1

3
− 1

32

5 π
4

= 1 − 1
3

+ 1
5
− 1

7
+ · · ·

in full relevance is caused by an error in the public assessment scores.2 It is
worth noting that the ideal precision@k score of full relevance is not 1 for every
query, because if there is only one formula judged to be fully relevant among
all judged formulas for some query, the ideal score is 0.2. Our model achieves
ideal scores for 8 queries in full relevance and 5 queries in partial relevance and
additionally outperforms the average P@5 score of Approach0 for 7 queries in
partial relevance.

2 When we carry out experiments, we find an error score in “NTCIR12-MathWiki-
13 xxx Mathematical morphology:24 2.0”, a line in the document that con-
tains all judged formulas with relevance scores. The query formula with name
“NTCIR12-MathWiki-13” is exactly the 24-th formula in the article “Mathemat-
ical morphology”. Therefore, the score should be 4.0 indicating full relevance.

Searching for Math Formulas Based on Graph RL 147

Remark. Because queries #1 and #2 are both isolated symbols represented as
single nodes in our graph representation which contain no structural information
to learn, we evaluate our model on the other 18 queries and achieve a partial
bpref score 0.57 and a full bpref score 0.65 respectively, and higher P@k scores.

Table 4. Avg. P@k of NTCIR-12 results of our model and Approach0

Model Partially relevant Fully relevant

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

Our model 0.5900 0.4450 0.4100 0.3800 0.3900 0.2500 0.2200 0.1875

Approach0 0.5300 0.4650 0.4100 0.3850 0.4000 0.2900 0.2233 0.1950

In order to intuitively compare our model with other models, we illustrate
some specific queries. Our model achieves ideal P@5 score in full relevance for
the following queries:

O(mn log m). (query #12)

cos α = − cos β cos γ + sin β sin γ cosh
a

k
. (query #14).

For query #12, the top-5 results retrieved by our model, Tangent-CFT and
Approach0 are shown in Table 5. It is obvious that the retrieval results by our
model are highly consistent with those by Approach0, i.e., after substituting some
single symbols, the retrieval results become the same as the query. As for query
#14, in the top-10 results Tangent-CFT missed 4 fully relevant formulas found
in that range by Approach0, including cosA = − cos B cos C + sinB sinC cosh a
and cos C = − cos A cos B + sin A sin B cosh c. Our model not only hits the two
formulas, but also hits the query itself as the first one in the top-10 results.

Table 5. Top-5 results for query O(mn log m)

Rank Our model Tangent-CFT Approach0

1 O(mn log m) O(mn log m) O(mn log m)

2 O(nk log k) O(m log n) O(nk log k)

3 O(nk log(n)) O(n log m) O(KN log N)

4 O(KN log N) O(n log m) O(V E log V)

5 O(V E log V) O(nm) O(n log n log log n)

Another example is 0 → G∧ π∧
→ X∧ ı∧

→ H∧ → 0 (query #7), for which
Tangent-CFT performed better in both partial and full bpref than Approach0.

148 Y. Song and X. Chen

Among the top-1000 results, Tangent-CFT was able to retrieve formulas such as
1 → K

i→ G
π→ H → 1 and W → X

f→ Y
g→ Z

h→ 1 which Approach0 failed to
retrieve. Our model performs better than them. The following four formulas

0 → G∧ π∧
→ X∧ ı∧

→ H∧ → 0,

0 → H
i′
→ X ′ π′

→ G → 0,

1 → K
i′
→ G′ π′

→ H → 1,

0 → H
iH→ H × G

πG→ G → 0,

are in the top-5 results. The second and the fourth formula were not judged,
which is the reason why the P@5 scores in full and partial relevances are only
0.2 and 0.4 respectively, but they are actually from the same article as the query
is.

Consider the following three queries:

τrms =

√∫ ∞
0

(τ − τ)2Ac(τ)dτ∫ ∞
0

Ac(τ)dτ
(query #16)

P x
i =

N !
nx!(N − nx)!

pnx
x (1 − px)N−nx (query #18)

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n − 1)sxsy
=

n∑
i=1

(xi − x̄)(yi − ȳ)
√

n∑
i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2
. (query #20)

The three queries have complicated structures containing more operators and
symbols. For query #16, our model can retrieve

αsun =

∫ ∞
0

αλIλsun(λ) dλ∫ ∞
0

Iλsun(λ) dλ

as Tangent-CFT did, which is ranked the sixth in our results. In addition, for-
mulas such as

1
κ

=

∫ ∞
0

(κν,es + κν,ff)−1u(ν, T)dν∫ ∞
0

u(ν, T)dν
,

(Δk)2 =

∫ ∞
−∞(k − k0)2F (k)F ∗(k) dk∫ ∞

−∞ F (k)F ∗(k) dk
,

which are also judged to be fully relevant, are ranked in top-5 in our results.
For query #18, Approach0 could retrieve two formulas judged partially relevant

Searching for Math Formulas Based on Graph RL 149

while Tangent-CFT was not able to do so. In our top-5 results, the following two
fully relevant formulas can be retrieved.

f(p) =
(n + 1)!

s!(n − s)!
ps(1 − p)n−s

pn(k) =
n!

(n − k)!k!
pk(1 − p)n−k

For query #20, the formula with the largest number of nodes and the deepest
depth, Tangent-CFT could not retrieve the second formula below based on OPT
representation, while our model could retrieve it and rank it in top-15. Besides,
the first formula below is ranked the second in our results. They are both fully
relevant.

sim(dj , q) =
dj · q

‖dj‖ ‖q‖ =
∑N

i=1 wi,jwi,q√∑N
i=1 w2

i,j

√∑N
i=1 w2

i,q

similarity = cos(θ) =
A · B

‖A‖‖B‖ =
∑n

i=1 Ai × Bi√∑n
i=1 (Ai)

2 ×
√∑n

i=1 (Bi)
2

Our model also performs well on continued fractions and matrices, such as
queries #5, #9 and #19. For query #5, the partial bpref score is 1.00, which
means that all 35 formulas judged as relevant during the task can be retrieved
by our model and no nonrelevant formulas rank above them. Queries #9 and
#19 demonstrate the strength of our model in terms of matrix formulas. For
example, for query #9 [

V1

I2

]
=

[
h11 h12

h21 h22

] [
I1

V2

]
,

formulas equivalent to the query after substituting variable names could be
retrieved in top-10 results, such as

[
I1

V2

]
=

[
g11 g12

g21 g22

] [
V1

I2

]
,

[
a1

b1

]
=

[
T11 T12

T21 T22

] [
b2

a2

]
.

Remark. For the proposed DAG representation, merging the same substruc-
tures would not change the linkage between these substructures and their parent
nodes. In other words, for each node in such a DAG, its “children nodes” and
“parent nodes” are the same as those in the OPT representation. The first rea-
son why we use DAG rather than OPT is the amount of computation of GNNs
can be reduced. For the same subexpressions, the same node embedding will
be computed repeatedly in OPT while only once in DAG. If the occurrence
times or size of the same subexpression is large in an expression, then DAG will
demonstrate its advantage in computing efficiency. The second reason is that

150 Y. Song and X. Chen

the presented self-supervised learning tasks would benefit from such a compact
form of representation as recurring substructures are ignored.

The DAG representation preserves structural differences of formulas but only
children nodes’ messages are aggregated when using GNNs to learn node embed-
dings. This is the main reason that our model performs more similarly to tree-
based models, like Approach0 and Tangent-s. If we use undirected graphs (i.e.,
add the reverse edges) to train the model, a higher partial bpref score would
be achieved. The reason is that node embedding with an undirected graph will
aggregate messages not only from children nodes but also from parent nodes.
Undirected graphs weaken the “order” information of operations in math expres-
sions and are not capable of preserving the structural differences but have more
capabilities in capturing local structures.

6 Conclusion and Future Work

We propose a new mathematical formula embedding model based on graph neu-
ral networks in this paper. A kind of graph representation is designed to be
generated from hierarchical representation for mathematical formula by merging
the same part in the formula. Following the approach of graph self-supervised
learning, we represent formulas in distributed dense vectors. The embedding
model can be applied in the task of searching for mathematical formulas and
achieve competitive full bpref and precision@k scores. The good performance in
full relevance indicates a great potential of feature-based graph representation
learning in capturing structural information of mathematical formulas. More-
over, our experiments also show that GCN may be a more suitable architecture
for this task.

For future work, optimal self-supervised learning strategies at the level of
entire graph and evaluation on ARQMath benchmark will be investigated. Con-
sidering the embedding effect of undirected graph representation, whether an
ensemble of undirected and directed graph embeddings will produce better
results is worth studying at a later stage.

Acknowledgements. This work has been supported by National Natural Science
Foundation of China (Grant No. 61702025) and State Key Laboratory of Software
Development Environment.

References

1. Aizawa, A., Kohlhase, M., Ounis, I., Schubotz, M.: NTCIR-11 Math-2 task
overview. In: Proceedings of the 11th NTCIR Conference on Evaluation of Infor-
mation Access Technologies, pp. 88–98. National Institute of Informatics (2014)

2. Aizawa, A., Kohlhase, M.: Mathematical information retrieval. In: Sakai, T., Oard,
D.W., Kando, N. (eds.) Evaluating Information Retrieval and Access Tasks. TIRS,
vol. 43, pp. 169–185. Springer, Singapore (2021). https://doi.org/10.1007/978-981-
15-5554-1 12

https://doi.org/10.1007/978-981-15-5554-1_12
https://doi.org/10.1007/978-981-15-5554-1_12

Searching for Math Formulas Based on Graph RL 151

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

4. Chen, H.: Mathematical formula similarity comparing based on tree structure. In:
Proceedings of the 12th International Conference on Natural Computation, Fuzzy
Systems and Knowledge Discovery. IEEE (2016)

5. Davenport, J.H., Kohlhase, M.: Unifying math ontologies: a tale of two standards.
In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) CICM 2009. LNCS (LNAI),
vol. 5625, pp. 263–278. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02614-0 23

6. Davila, K., Zanibbi, R.: Layout and semantics: combining representations for math-
ematical formula search. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1165–1168.
Association for Computing Machinery (2017)

7. Dewar, M.: OpenMath: an overview. SIGSAM Bull. 34(2), 2–5 (2000)
8. Gao, L., Jiang, Z., Yin, Y., Yuan, K., Yan, Z., Tang, Z.: Preliminary exploration

of formula embedding for mathematical information retrieval: Can mathematical
formulae be embedded like a natural language? ArXiv abs/1707.05154 (2017)

9. Greiner-Petter, A., Schubotz, M., Cohl, H.S., Gipp, B.: Semantic preserving bijec-
tive mappings for expressions involving special functions between computer algebra
systems and document preparation systems. Aslib J. Inf. Manag 71(3), 415–439
(2019)

10. Greiner-Petter, A., et al.: Math-word embedding in math search and seman-
tic extraction. Scientometrics 125(3), 3017–3046 (2020). https://doi.org/10.1007/
s11192-020-03502-9

11. Hu, W., et al.: Strategies for pre-training graph neural networks. In: Proceedings
of the 8th International Conference on Learning Representations (2020)

12. Kohlhase, M.: Using LaTex as a semantic markup format. Math. Comput. Sci.
2(2), 279–304 (2008)

13. Kristianto, G.Y., Topic, G., Aizawa, A.: MCAT math retrieval system for NTCIR-
12 mathir task. In: Proceedings of the 12th NTCIR Conference on Evaluation of
Information Access Technologies, pp. 323–330. National Institute of Informatics
(2016)

14. Krstovski, K., Blei, D.: Equation embeddings. ArXiv abs/1803.09123 (2018)
15. Mansouri, B., Rohatgi, S., Oard, D.W., Wu, J., Giles, C.L., Zanibbi, R.: Tangent-

CFT: an embedding model for mathematical formulas. In: Proceedings of the 2019
ACM SIGIR International Conference on Theory of Information Retrieval, pp.
11–18. Association for Computing Machinery (2019)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: Proceedings of the 1st International Conference on
Learning Representations, pp. 1–12 (2013)

17. Miller, B.R., Youssef, A.: Technical aspects of the digital library of mathematical
functions. Ann. Math. Artif. Intell. 38(1), 121–136 (2003)

18. Pathak, A., Pakray, P., Das, R.: LSTM neural network based math information
retrieval. In: Proceedings of the 2nd International Conference on Advanced Com-
putational and Communication Paradigms, pp. 1–6 (2019)

19. Pavan Kumar, P., Agarwal, A., Bhagvati, C.: A structure based approach for math-
ematical expression retrieval. In: Sombattheera, C., Loi, N.K., Wankar, R., Quan,
T. (eds.) MIWAI 2012. LNCS (LNAI), vol. 7694, pp. 23–34. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35455-7 3

https://doi.org/10.1007/978-3-642-02614-0_23
https://doi.org/10.1007/978-3-642-02614-0_23
https://doi.org/10.1007/s11192-020-03502-9
https://doi.org/10.1007/s11192-020-03502-9
https://doi.org/10.1007/978-3-642-35455-7_3

152 Y. Song and X. Chen

20. Pfahler, L., Morik, K.: Semantic search in millions of equations. In: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 135–143. Association for Computing Machinery (2020)

21. Sakai, T.: Alternatives to bpref. In: Proceedings of the 30th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
71–78. Association for Computing Machinery (2007)

22. Schubotz, M., Greiner-Petter, A., Scharpf, P., Meuschke, N., Cohl, H.S., Gipp, B.:
Improving the representation and conversion of mathematical formulae by con-
sidering their textual context. In: Proceedings of the 18th ACM/IEEE on Joint
Conference on Digital Libraries, pp. 233–242. Association for Computing Machin-
ery (2018)

23. Sojka, P., Ĺı̌ska, M.: The art of mathematics retrieval. In: Proceedings of the 11th
ACM Symposium on Document Engineering, pp. 57–60. Association for Computing
Machinery (2011)

24. Thanda, A., Agarwal, A., Singla, K., Prakash, A., Gupta, A.: A document retrieval
system for math queries. In: Proceedings of the 12th NTCIR Conference on Evalu-
ation of Information Access Technologies, pp. 346–353. National Institute of Infor-
matics (2016)

25. Yasunaga, M., Lafferty, J.D.: TopicEq: a joint topic and mathematical equation
model for scientific texts. Proc. AAAI Conf. Artif. Intell. 33, 7394–7401 (2019)

26. Zanibbi, R., Aizawa, A., Kohlhase, M., Ounis, I., Topic, G., Davila, K.: NTCIR-12
MathIR task overview. In: Proceedings of the 12th NTCIR Conference on Evalua-
tion of Information Access Technologies, pp. 299–308. National Institute of Infor-
matics (2016)

27. Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical expressions.
Int. J. Doc. Anal. Recogn. 15(4), 331–357 (2011)

28. Zanibbi, R., Davila, K., Kane, A., Tompa, F.W.: Multi-stage math formula search:
using appearance-based similarity metrics at scale. In: Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 145–154. Association for Computing Machinery (2016)

29. Zanibbi, R., Oard, D.W., Agarwal, A., Mansouri, B.: Overview of ARQMath 2020:
CLEF lab on answer retrieval for questions on math. In: Arampatzis, A., et al.
(eds.) CLEF 2020. LNCS, vol. 12260, pp. 169–193. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58219-7 15

30. Zhong, W., Rohatgi, S., Wu, J., Giles, C.L., Zanibbi, R.: Accelerating substructure
similarity search for formula retrieval. In: Jose, J.M., et al. (eds.) ECIR 2020.
LNCS, vol. 12035, pp. 714–727. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45439-5 47

31. Zhong, W., Zanibbi, R.: Structural similarity search for formulas using leaf-root
paths in operator subtrees. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff,
C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11437, pp. 116–129. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-15712-8 8

https://doi.org/10.1007/978-3-030-58219-7_15
https://doi.org/10.1007/978-3-030-58219-7_15
https://doi.org/10.1007/978-3-030-45439-5_47
https://doi.org/10.1007/978-3-030-45439-5_47
https://doi.org/10.1007/978-3-030-15712-8_8

10 Years Later: The Mathematics Subject
Classification and Linked Open Data

Susanne Arndt1, Patrick Ion1,2,3, Mila Runnwerth1, Moritz Schubotz1,2,3(B),
and Olaf Teschke3

1 TIB Leibniz Information Centre for Science and Technology, Hanover, Germany
{susanne.arndt,mila.runnwerth}@tib.eu

2 University of Michigan, Ann Arbor, MI, USA
3 zbMATH, FIZ Karlsruhe, Karlsruhe, Germany

{moritz.schubotz,olaf.teschke}@fiz-karlsruhe.de

Abstract. Ten years ago, the Mathematics Subject Classification MSC
2010 was released, and a corresponding machine-readable Linked Open
Data collection was published using the Simple Knowledge Organization
System (SKOS). Now, the new MSC 2020 is out.

This paper recaps the last ten years of working on machine-readable
MSC data and presents the new machine-readable MSC 2020. We
describe the processing required to convert the version of record, as
agreed by the editors of zbMATH and Mathematical Reviews, into the
Linked Open Data form we call MSC2020-SKOS. The new form includes
explicit marking of the changes from 2010 to 2020, some translations of
English code descriptions into Chinese, Italian, and Russian, and extra
material relating MSC to other mathematics classification efforts. We
also outline future potential uses for MSC2020-SKOS in semantic index-
ing and sketch its embedding in a larger vision of scientific research data.

Keywords: Mathematics Subject Classification (MSC) · Linked Open
Data (LOD) · Simple Knowledge Organisation System (SKOS)

1 Introduction

The Mathematics Subject Classification (MSC) is a subject-specific indexing
schema for mathematics. Like universal library classifications such as the Dewey
Decimal Classification1, the MSC can be used to assign to mathematical knowl-
edge, whether in a printed book, electronic journal article, or conference record-
ing, codes representing topics (categories or classes of mathematical items) cov-
ered within the discipline of mathematics or closely related research areas. The
MSC is well established in the community and used by scientists, publishers, and
librarians. Beyond indexing mathematical research resources, it is also employed

S. Arndt, P. Ion, M. Runnwerth, M. Schubotz and O. Teschke—All authors contributed
equally.
1 https://www.loc.gov/aba/dewey/.

c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 153–158, 2021.
https://doi.org/10.1007/978-3-030-81097-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_12&domain=pdf
https://www.loc.gov/aba/dewey/
https://doi.org/10.1007/978-3-030-81097-9_12

154 S. Arndt et al.

to describe specialties desired for academic positions or content of conference
talks. It plays a very useful role in matching papers to suitable reviewers, espe-
cially at the two major post-publication reviewing services in mathematics who
are responsible for the MSC.

In 2020, the fourth official major release was published by the executive editors
of Mathematical Reviews (MR) and zbMATH [2]. Although minor modifications
are implemented as needed by MR and zbMATH, major revisions are released
each decade. The editorial process is governed by MR and zbMATH in collabo-
ration. Suggestions from mathematicians or knowledge engineers are submitted,
both by mail and at the msc2020.orgwebsite, and their adoption is discussed sub-
sequently. As of last Friday, 7 May 2021, all open issues resulting from the feedback
on the MSC2020 revision have been resolved by MR and zbMATH, and MSC 2020
has its final form at last; a definitive SKOS form can now be made.

The MSC is organised into three hierarchical levels: The 63 top levels list all
major mathematical fields as topics. They range from the foundations of mathe-
matics to algebra, analysis, geometry and topology, and also include a wide array
of topics concerning mathematics in its applications. The MSC is fundamentally
a simple three-level tree; it can be thought of as rooted in a node for all mathe-
matics of which the top-level classes are children, and is actually a rooted labelled
planar tree in mathematical terms. The 1.037 s-level classes represent sub-fields of
each speciality. The 5.503 third-level classes reflect the intricacies of sub-fields, for
instance, the subtleties of different views on real or complex functions. In addition
there are cross-references from one topic to another of various types.

Each class is assigned a code in a notation with five characters, e.g., 68-XX
or 03B25. The first two digits indicate the top level classes numbered from 00
to 97 with gaps that leave room for future developments; the remaining three
characters of top level codes are ‘-XX’. For instance classes 19, 37 and 74 have all
been added since 1980. In practice, MR and zbMATH editors, and others, often
omit these last three characters, e.g., one uses ‘68’ as a short form for ‘68-XX’
to refer to Computer Science, or 11 for Number Theory.(categories or classes)

The second level classes are of two kinds (we are using the digits 99 as
placeholders to. illustrate the formats):

99-99 Second-level classes with codes that begin with the two digits of a top-
level class, then a hyphen “-”, and are followed by two digits; these are
used for formal meta descriptions providing special categories for such
items as textbooks, historical works, e. g., 11-03 for history of num-
ber theory or 11-06 for conference proceedings in number theory. MSC
2020 extended these facet classes in accordance with the needs of the
community, and standardized their relation with subject classes, by the
introduction of further numerical codes, e. g, ’-10’ classes for mathemat-
ical modeling and simulation, and ’-11’ for research data across the top
level classes (e. g., 11-11 for research data in number theory).

99Axx Classes whose codes have the structure of two digits, an uppercase letter,
followed by two lowercase x’s; these indicate specific mathematical areas

10 Years Later: MSC & LOD 155

within a top-level class. For example, 11Axx is the second-level category
for ‘Elementary number theory’.

Brid finally, the third-level classes are the narrowest and most specialised
categories for annotating mathematical information. Their codes can be recog-
nised from an uppercase letter in third position followed by two decimal digits,
e. g., 03B25 for “Decidability of theories and sets of sentences [See also 11U05,
12L05, 20F10]”.

Fig. 1. Example visualisations of the hier-
archical distribution within four MSC
(2010) classes provided by [8].

Figure 1 shows the inner hierar-
chical structure of four selected MSC
classes 00, 11, 31 and 45; one sees the
subtrees rooted on the major classes
displayed, and that Number Theory
has been much more finely coded than
the other three subjects.2

While no top-level class has been
changed in the MSC2020 version, sev-
eral second-level classes have been
added and reorganized, as have many
third-level classes. One may note
the large variation in the granular-
ity of the classifications provided,
which reflects the different needs of
the respective mathematical commu-
nities. Accordingly, the number of documents assigned particular third-level
classes varies a lot and is influenced by the different publication cultures within
mathematics. Hence, one must be very careful when performing quantitative sci-
entometric analysis using MSC classes – pure comparison of numbers will often
be very misleading.

Apart from the reorganization of the second-level facet classes mentioned
above, another significant feature of MSC2020 has been a complete overhaul of
the descriptive texts with the aim of more precise disambiguations. The expe-
rience from the SKOSification of MSC2010 has been extremely helpful in this
regard. Now, every single description of a third-level class is unique regardless
of its top level or second level components; this used not to be so as descrip-
tive text was reused. The relations between MSC classes have been standardized
accordingly.

Class name changes are subject to careful editorial review by zbMATH and
MR and not made lightly. The problem of shifting meaning, and community
attention, within mathematics is one of those that management of this branch
of knowledge has to deal with.

2 That this is so reflects that the AMS published three ever larger collections of
Reviews in Number Theory, edited by William J. Leveque and Richard K.Guy. As
these thousands of reviews were collected together it became possible to distinguish
nuances in sub-sub-topics, and an extension of the codes beyond 5 characters was
suggested; that is the 3-level tree was to be extended with more levels.

156 S. Arndt et al.

The first conversion of the MSC to RDF Linked Data was published in 2012
as a Turtle serialisation [4,5]. The motivation was to encourage reuse, mainte-
nance, and versatile access with a low-threshold according to the best practices
of the time [5]. The modeling decisions made then have been comprehensively
documented in [4]. SKOS Core was chosen as a point of departure and gradu-
ally extended to represent the MSC’s semantic subtleties. This resulted in an
extension mscvocab defining inter alia: related part of, see also, and see mainly.
Another subject specific characteristic is the use of the Mathematical Markup
Language (MathML)3 within a SKOS vocabulary.

The data required to represent the complete model for MSC 2010 are publicly
available4.

This approach inspired other projects tackling semantification of mathemat-
ics according to LOD principles, for example OntoMathPRO [6] or coli-conc [1].
The Encyclopedia of mathematics used to annotate its records with the SKOSi-
fied MSC 2010 via SPARQL query [7].

2 MSC 2020 SKOSification

The latest release gives us an opportunity to revisit and improve the Linked
Open Data forrn of the MSC. We challenge, and largely, confirm the concept
modeling decisions made before. Moreover, we add state-of-the-art metadata to
describe the different SKOS versions of each release, and license information to
legally describe and verify its open access use. Finally, we justify our approach
with specific use cases which rely on an RDF Linked Data representation of the
MSC 2020 (including back-links to its history).

2.1 Reasons for a New Version

The first SKOS model showed a level of sophistication that we would like to
adhere to, i. e. there will be no unnecessary modifications.

An obvious reason for a new SKOS version are the MSC modifications made
between the two releases MSC 2010 and 2020. In addition, particularly for further
reuse in German speaking countries, we are adding German labels.

Specifically for reuse in web applications we complement the literals in LATEX
syntax with consistent HTML (including MathML) syntax. We do not, however,
additionally provide plain text literals, instead for these we refer to conversion
tools like the html-to-text npm package5.

Significant reasons for a revised SKOS formalisation of the MSC are three
specific use cases in libraries:

1. Automated subject indexing of mathematical library inventories with the
toolkit annif [9]. The optimal input format for classifications and vocabularies
is a Turtle serialisation.

3 https://www.w3.org/TR/MathML3/.
4 http://msc2010.org/resources/MSC/2010/info/.
5 https://www.npmjs.com/package/html-to-text.

https://www.w3.org/TR/MathML3/
http://msc2010.org/resources/MSC/2010/info/
https://www.npmjs.com/package/html-to-text

10 Years Later: MSC & LOD 157

2. Providing a SKOS version compatible with the MSC2010s for the exten-
sive mapping project coli-conc, including its mapping editor Cocoda [1]. The
project already records the Dewey Decimal Classification, the MSC 2010, and
Wikidata and includes several mappings between classifications.

3. The Open Research Knowledge Graph (ORKG) aims at providing machine
interpretable semantic graphs for research questions and individual papers in
order to make them comparable using standardised queries [3]. The quality
of such a graph depends on the authority files or thesauri upon which it is
built. Since the ORKG follows the LOD principles a SKOS formalisation of
the MSC would be compatible and could be applied to graphs derived from
mathematical scholarly knowledge.

However, those reasons do not touch upon the structural requirements for
a sustainable MSC 2020 in the Semantic Web. In a first step, we tidied up
minor bugs, e. g. spaces in URIs to guarantee a valid and consistent serialisation.
Then, we made well-founded conceptual adjustments as shown in the following
subsection. One long-term goal is to reduce the effort of moving from one MSC
release to another.

We provide a GitHub6 repository containing the Turtle file itself and its
extensions, but also with the appropriate automation scripts.

The final public version of MSC 2020 is expected offer a number of alternate
formats for the collected data, as the MSC 2010 did on http://ms2010.org, such
as its MediaWiki form, various printable PDFs, KWIC indices, and even the
TiddlyWiki tool (done at MR but not yet public).

3 Conclusion and Future Work

Our main objective was to provide a consistent, valid, complete MSC 2020 SKOS
version for use-cases in knowledge organisation mainly motivated by uses in
libraries. The SKOS version is largely similar from its predecessor but features
some improvements with respect to the quality of the data itself and the mod-
eling. It does mean that MSC information available as LOD will be up to date.

Of course, there are still short-term requirements:
As for the MSC 2010, an infrastructure for the MSC 2020 SKOS version

needs to be provided: URIs must resolve correctly and meaningfully, an official
website must be provided with the data itself, its documentation, and a SPARQL
endpoint. This landing page should be linked to a development repository where
the SKOS model can be further refined. These are ongoing aspects fo the project
which have not been finished yet. As mentioned above, the editorial aspects of
MSC 2020 have only just been finalized.

The small number of actual changes to MSC (on the order of hundreds)
means that some of the pending additions planned, such as the descriptive text
from other languages will and relationships to DDC and UDC will carry over
relatively simply from MSC 2010. For instance, not many new translations are

6 https://github.com/runnwerth/MSC2020 SKOS.

http://ms2010.org
https://github.com/runnwerth/MSC2020_SKOS

158 S. Arndt et al.

needed. They additions have not yet been made public as of this text’s writing,
but the project continues.

In the future, we would also like to address the following desiderata:
Establish an editorial process that allows for supervised additions (e. g., more

languages or discussions) based on the SKOS model representation.
Provide a broad agreement on the modeling decisions and appropriate doc-

umentation to facilitate the transition from MSC 2020 to 2030.

References

1. Balakrishnan, U., Voss, J., Soergel, D.: Towards integrated systems for kos manage-
ment, mapping, and access: Coli-conc and its collaborative computer-assisted kos
mapping tool cocoda. In: Proceedings of the Fifteenth International ISKO Confer-
ence, Advances in Knowledge Organization, Porto, Portugal, 9–11 July 2018, pp.
693–701 (2018). ISBN 978-3-95650-421-1, https://doi.org/10.5771/9783956504211-
693

2. Dunne, E., Hulek, K.: Mathematics subject classification 2020. Not. Am. Math. Soc.
67(3) (2020). https://www.ams.org/journals/notices/202003/rnoti-p410.pdf

3. Jaradeh, M.Y., et al.: Open research knowledge graph: Next generation infrastruc-
ture for semantic scholarly knowledge. In: Proceedings of the 10th International
Conference on Knowledge Capture, K-CAP ’19, pp. 243–246. Association for Com-
puting Machinery (2019). ISBN 9781450370080, https://doi.org/10.1145/3360901.
3364435

4. Lange, C., et al.: Bringing mathematics to the web of data: the case of the mathe-
matics subject classification. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O.,
Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 763–777. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30284-8 58

5. Lange, C., et al.: Reimplementing the mathematics subject classification (MSC) as
a linked open dataset. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol.
7362, pp. 458–462. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
31374-5 36

6. Nevzorova, O.A., Zhiltsov, N., Kirillovich, A., Lipachev, E.: OntoMathPRO ontol-
ogy: a linked data hub for mathematics. In: Klinov, P., Mouromtsev, D. (eds.)
KESW 2014. CCIS, vol. 468, pp. 105–119. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11716-4 9

7. Rehmann, U.: Encyclopedia of mathematics - now enhanced by StatProb: another
invitation for cooperation. Eur. Math. Soc. Newsl. 100, 5–6 (2016). ISSN 1027–
488X, https://www.ems-ph.org/journals/newsletter/pdf/2016-06-100.pdf

8. Schreiber, M.: Mathematics subject classification graphs (2011). https://purl.org/
zb/12, Accessed 23 Mar 2021

9. Suominen, O.: Annif: diy automated subject indexing using multiple algorithms.
Liber Q. (2019). https://doi.org/10.18352/lq.10285

https://doi.org/10.5771/9783956504211-693
https://doi.org/10.5771/9783956504211-693
https://www.ams.org/journals/notices/202003/rnoti-p410.pdf
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1007/978-3-642-30284-8_58
https://doi.org/10.1007/978-3-642-31374-5_36
https://doi.org/10.1007/978-3-642-31374-5_36
https://doi.org/10.1007/978-3-319-11716-4_9
https://doi.org/10.1007/978-3-319-11716-4_9
https://www.ems-ph.org/journals/newsletter/pdf/2016-06-100.pdf
https://purl.org/zb/12
https://purl.org/zb/12
https://doi.org/10.18352/lq.10285

WebMIaS on Docker
Deploying Math-Aware Search in a Single Line of Code

Dávid Lupták(B) , Vı́t Novotný , Michal Štefánik ,
and Petr Sojka

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{dluptak,witiko,stefanik.m}@mail.muni.cz, sojka@fi.muni.cz

https://mir.fi.muni.cz/

Abstract. Math informational retrieval (MIR) search engines are
absent in the wide-spread production use, even though documents in the
STEM fields contain many mathematical formulae, which are sometimes
more important than text for understanding. We have developed and
open-sourced the WebMIaS MIR search engine that has been success-
fully deployed in the European Digital Mathematics Library (EuDML).
However, its deployment is difficult to automate due to the complexity
of this task. Moreover, the solutions developed so far to tackle this chal-
lenge are imperfect in terms of speed, maintenance, and robustness. In
this paper, we will describe the virtualization of WebMIaS using Docker
that solves all three problems and allows anyone to deploy containerized
WebMIaS in a single line of code. The publicly available Docker image
will also help the community push the development of math-aware search
engines in the ARQMath workshop series.

Keywords: Math information retrieval · WebMIaS · MIaS · Docker
virtualization · Digital mathematical libraries · Math web search ·
EuDML · ARQMath

1 Introduction

Searching for math formulae does not appear as a task for search engines
at first glance. Text retrieval is dominant among search engines, while math-
awareness is a specialized area in the field of information retrieval: Springer’s
LATEX Search, the MathWebSearch of zbMATH Open (formerly known as
Zentralblatt MATH), and the Math Indexer and Searcher (MIaS) of the
European Digital Mathematics Library (EuDML) are all examples of systems
with math-aware search deployed in production. Our MIaS search engine [9]
runs on the industry-grade, robust, and highly-scalable full-text search engine
Apache Lucene with our own preprocessing of mathematical formulae. The text
is tokenized and stemmed to unify inflected word forms whereas math is expected

The second author’s work was graciously funded by the South Moravian Centre for
International Mobility as a part of the Brno Ph.D. Talent project.

c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 159–164, 2021.
https://doi.org/10.1007/978-3-030-81097-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_13&domain=pdf
http://orcid.org/0000-0001-9600-7597
http://orcid.org/0000-0002-3303-4130
http://orcid.org/0000-0003-1766-5538
http://orcid.org/0000-0002-5768-4007
https://springerlink.bibliotecabuap.elogim.com/
https://zbmath.org/formulae/
https://eudml.org/search
https://lucene.apache.org/
https://doi.org/10.1007/978-3-030-81097-9_13

160 D. Lupták et al.

Fig. 1. The architecture of MIaS with indexing and searching phases overlapping over
Lucene index. Besides standard text processing, the math input from indexing (a doc-
ument) and searching (a query) stage is canonicalized, ordered, tokenized, and unified,
afterward returned back to the indexer and searcher module, respectively.

to be in the MathML format, which is then canonicalized, ordered, tokenized,
and unified, see Fig. 1.

To provide a web user interface for MIaS, we have developed and open-
sourced the WebMIaS [6,9] search engine. In WebMIaS, users can input their
mixed queries in a combination of text and math with a native support for LATEX
and MathML. Matches are conveniently highlighted in the search results. The
user interface of WebMIaS is shown in Fig. 2.

Although the (Web)MIaS system has been deployed in the European Digi-
tal Mathematics Library (EuDML) already, the complicated deployment process
might be an obstacle for a more wide-spread deployment to other digital mathe-
matics libraries that avail of or can extend to the MathML markup. To solve this
problem, we will describe the virtualization of WebMIaS using Docker [3] that
allows anyone to deploy WebMIaS in a single line of code. Whether you have
an open-access repository such as DSpace, or just a number of mathematical
documents, you can benefit from the math-aware search provided by WebMIaS.
For testing, we also provide the MREC dataset [4].

In the rest of our paper, we will describe our deployment process in Sect. 2,
evaluate the speed and quality of WebMIaS in Sect. 3, and conclude in Sect. 4.

https://lucene.apache.org/
https://www.w3.org/TR/MathML3/
https://duraspace.org/dspace/

WebMIaS on Docker: Math-Aware Search in a Single Line of Code 161

Fig. 2. Searching text and formulae with a single mixed query in WebMIaS.

2 Deployment Process Description

All modules of the MIaS system are Java projects, so users first need to 1) install
the Java environment prerequisites and then 2) build the respective system mod-
ules. The next step in the process is to 3) index a dataset of mathematical doc-
uments using the command-line interface of MIaS. Finally, the users can 4) run
Apache Tomcat with the WebMIaS servlet as a user interface.

Over the years, we have attempted to automate the above steps into run-
ning a single Makefile or Jupyter Notebook. However, these solutions were slow,
fragile, and hard to maintain. We propose a better solution using lightweight
virtualization via Docker with instant deployment, a short but powerful Dock-
erfile configuration, and a complete workflow that automates all the steps of the
deployment process. Moreover, GitHub Actions provide continuous integration
and automate the publishing of Docker images to Docker Hub.

Both MIaS and WebMIaS are containerized into separate Docker images
named miratmu/mias and miratmu/webmias, respectively. This allows users to
run both the indexing and the retrieval without a specific configuration of the
environment. Resolving the dependencies and building all modules is up to the
continuous integration workflow (see Fig. 3), and users receive Docker images
with everything prebuilt. After downloading a dataset to the working directory,

https://tomcat.apache.org/
https://www.gnu.org/software/make/
https://jupyter.org/
https://www.docker.com/
https://github.com/features/actions
https://hub.docker.com/
https://hub.docker.com/r/miratmu/mias/tags
https://hub.docker.com/r/miratmu/webmias/tags

162 D. Lupták et al.

Fig. 3. The continuous integration of WebMIaS and the build times of the respective
packages: MathMLCan canonicalizes different MathML encodings of equivalent formu-
lae. MathMLUnificator generalizes distinct mathematical formulae so that they can be
structurally unified. MIaSMath adds math processing capabilities to Lucene or Solr.
MIaS indexes text with math in Lucene/Solr-based full-text search engines. Finally,
WebMIaS provides a web interface for MIaS.

users can index the dataset directory into the index directory using MIaS, see
Listing 1.

1 $ wget https://mir.fi.muni.cz/MREC/MREC2011.4.439.tar.bz2

2 $ mkdir dataset ; tar xj -f MREC2011.4.439.tar.bz2 -C dataset

3 $ docker run -v "$PWD"/dataset:/dataset:ro -v "$PWD"/index:/index:rw --rm

miratmu/mias↪→
4 $ docker run -v "$PWD"/dataset:/dataset:ro -v "$PWD"/index:/index:ro --rm

--name webmias -d -p 127.0.0.1:8888:8080 miratmu/webmias↪→

Finally, the users can deploy WebMIaS in a single line of code with the
dataset and index directories in a container named webmias running at the
TCP port 8888 on the localhost. The WebMIaS system will be running at
https://www.localhost:8888/WebMIaS/.

3 Evaluation

We performed a speed evaluation of MIaS on the MREC dataset [4] (see Table 1),
and a quality evaluation on the NTCIR-10 Math [1,5], NTCIR-11 Math-2 [2,9]
(see Table 2), NTCIR-12 MathIR [8,10], and ARQMath 2020 [7,11] datasets. We
also measured the time to deploy WebMIaS without Docker (see Fig. 3).

The speed evaluation shows that the indexing time of our system is linear
in the number of indexed documents and that the average query time is 469ms.
Additionally, the dockerization of WebMIaS reduces the deployment time from

Table 1. The linear indexing speed on the MREC dataset using 448G of RAM, and
eight Intel XeonTM X7560 2.26 GHz CPUs.

Mathematical (sub) formulae Indexing time (min)

Documents Input Indexed Real (Wall clock) CPU

10,000 (2.28%) 3,406,068 64,008,762 35.75 (2.05%) 35.05

100,000 (22.76%) 36,328,126 670,335,243 384.44 (22.00%) 366.54

439,423 (100%) 158,106,118 2,910,314,146 1,747.16 (100%) 1,623.22

https://www.w3.org/TR/MathML3/
https://lucene.apache.org/
https://solr.apache.org/
https://www.localhost:8888/WebMIaS/

WebMIaS on Docker: Math-Aware Search in a Single Line of Code 163

Table 2. Quality evaluation results on the NTCIR-11 Math-2 dataset. The mean
average precision (MAP), and precisions at ten (P@10) and five (P@5) are reported
for queries formulated using Presentation (PMath), and Content MathML (CMath), a
combination of both (PCMath), and LATEX. Two different relevance judgement levels
of ≥ 1 (partially relevant), and ≥ 3 (relevant) were used to compute the measures.
Number between slashes (/·/) is our rank among all teams of NTCIR-11 Math-2 Task.

Measure Level PMath CMath PCMath LATEX

MAP 3 0.3073 0.3630 /1/ 0.3594 0.3357

P@10 3 0.3040 0.3520 /1/ 0.3480 0.3380

P@5 3 0.5120 0.5680 /1/ 0.5560 0.5400

P@10 1 0.5020 0.5440 0.5520 /1/ 0.5400

about 10 min to a matter of seconds. With respect to quality evaluation, MIaS
has notably won the NTCIR-11 Math-2 task.

4 Conclusion

An open-source environment brings reproducibility and the possibility of trying
out the projects of one’s interest without limitations. However, the installa-
tion instructions are often hard to follow with many prerequisites and possible
conflicts with the running operating environment on the go. Automation tools,
continuous integration, and package virtualization ease the development pro-
cess. With this motivation and in the hope of helping the math community, we
have dockerized our math-aware web search engine WebMIaS. As a result, any-
one can now deploy WebMIaS in a single line of code. The software is accessible
and at the fingertips of the math community, see https://github.com/MIR-MU/
WebMIaS.

References

1. Aizawa, A., Kohlhase, M., Ounis, I.: NTCIR-10 math pilot task overview. In: Pro-
ceedings of the 10th NTCIR Conference, pp. 654–661. NII, Tokyo (2013)

2. Aizawa, A., Kohlhase, M., Ounis, I., Schubotz, M.: NTCIR-11 math-2 task
overview. In: Proceedings of the 11th NTCIR Conference, pp. 88–98. NII,
Tokyo (2014). http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/
pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf

3. Boettiger, C.: An introduction to Docker for reproducible research. ACM SIGOPS
Oper. Syst. Rev. 49(1), 71–79 (2015)

4. Ĺı̌ska, M., Sojka, P., Růžička, M., Mravec, P.: Web interface and collection for
mathematical retrieval: WebMIaS and MREC. In: Proceedings of DML 2011 Work-
shop, pp. 77–84. Masaryk University (2011). https://hdl.handle.net/10338.dmlcz/
702604

https://github.com/MIR-MU/WebMIaS
https://github.com/MIR-MU/WebMIaS
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf
https://hdl.handle.net/10338.dmlcz/702604
https://hdl.handle.net/10338.dmlcz/702604

164 D. Lupták et al.

5. Ĺı̌ska, M., Sojka, P., Růžička, M.: Similarity search for mathematics: masaryk
university team at the NTCIR-10 math task. In: Proceedings of the 10th NTCIR
Conference, pp. 686–691. NII Tokyo, Tokyo (2013). https://research.nii.ac.jp/
ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/06-NTCIR10-MATH-
LiskaM.pdf

6. Ĺı̌ska, M., Sojka, P., Růžička, M.: Math indexer and searcher web interface. In:
Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014.
LNCS (LNAI), vol. 8543, pp. 444–448. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08434-3 36

7. Novotný, V., Sojka, P., Štefánik, M., Lupták, D.: Three is better than one. In:
CEUR Workshop Proceedings, Thessaloniki, Greece, pp. 1–30 (2020). http://ceur-
ws.org/Vol-2696/paper 235.pdf

8. Růžička, M., Sojka, P., Ĺı̌ska, M.: Math indexer and searcher under the hood:
fine-tuning query expansion and unification strategies. In: Proceedings of the 12th
NTCIR Conference, pp. 331–337. NII Tokyo (2016). https://research.nii.ac.jp/
ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/05-NTCIR12-MathIR-
RuzickaM.pdf

9. Růžička, M., Sojka, P., Ĺı̌ska, M.: Math indexer and searcher under the hood:
history and development of a winning strategy. In: Proceedings of the 11th NTCIR
Conference, pp. 127–134 (2014) https://is.muni.cz/auth/publication/1201956/en

10. Zanibbi, R., Aizawa, A., Kohlhase, M., Ounis, I., Topic, G., Davila, K.: NTCIR-
12 MathIR task overview. In: Proceedings of the 12th NTCIR, pp. 299–308. NII
Tokyo (2016)

11. Zanibbi, R., Oard, D.W., Agarwal, A., Mansouri, B.: Overview of ARQMath 2020:
CLEF lab on answer retrieval for questions on math. In: Arampatzis, A., et al.
(eds.) CLEF 2020. LNCS, vol. 12260, pp. 169–193. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58219-7 15

https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/06-NTCIR10-MATH-LiskaM.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/06-NTCIR10-MATH-LiskaM.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/06-NTCIR10-MATH-LiskaM.pdf
https://doi.org/10.1007/978-3-319-08434-3_36
https://doi.org/10.1007/978-3-319-08434-3_36
http://ceur-ws.org/Vol-2696/paper_235.pdf
http://ceur-ws.org/Vol-2696/paper_235.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/05-NTCIR12-MathIR-RuzickaM.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/05-NTCIR12-MathIR-RuzickaM.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/05-NTCIR12-MathIR-RuzickaM.pdf
https://is.muni.cz/auth/publication/1201956/en
https://doi.org/10.1007/978-3-030-58219-7_15
https://doi.org/10.1007/978-3-030-58219-7_15

Teaching and Geometric Reasoning

Learning to Solve Geometric
Construction Problems from Images

Jaroslav Macke1,2 , Jiri Sedlar2(B) , Miroslav Olsak3 , Josef Urban2 ,
and Josef Sivic2

1 Charles University, Prague, Czech Republic
2 Czech Technical University, Prague, Czech Republic

jiri.sedlar@cvut.cz
3 University of Innsbruck, Innsbruck, Austria

Abstract. We describe a purely image-based method for finding geo-
metric constructions with a ruler and compass in the Euclidea geometric
game. The method is based on adapting the Mask R-CNN state-of-the-
art visual recognition neural architecture and adding a tree-based search
procedure to it. In a supervised setting, the method learns to solve all 68
kinds of geometric construction problems from the first six level packs of
Euclidea with an average 92% accuracy. When evaluated on new kinds of
problems, the method can solve 31 of the 68 kinds of Euclidea problems.
We believe that this is the first time that purely image-based learning has
been trained to solve geometric construction problems of this difficulty.

Keywords: Computer vision · Visual recognition · Automatic
geometric reasoning · Solving geometric construction problems

1 Introduction

In this work, we aim to create a purely image-based method for solving geometric
construction problems with a ruler, compass, and related tools, such as a per-
pendicular bisector. Our main objective is to develop suitable machine learning
models based on convolutional neural architectures to predict the next steps in
the geometric constructions represented as images.

In more detail, the input to our neural model is an image of the scene con-
sisting of the parts that are already constructed (red) and the goal parts that
remain to be drawn (green). The output of the neural model is the next step of
the construction. An example of the problem setup is shown in Fig. 1.

Our first objective is to solve as many geometric construction problems as
possible when the method is used in a supervised setting. This means solving

This work was partly supported by the European Regional Development Fund under
the projects IMPACT and AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000468
and CZ.02.1.01/0.0/0.0/15 003/0000466) and the ERC Consolidator grant SMART
no. 714034.

c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 167–184, 2021.
https://doi.org/10.1007/978-3-030-81097-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_14&domain=pdf
http://orcid.org/0000-0001-6938-4776
http://orcid.org/0000-0002-4704-3388
http://orcid.org/0000-0002-9361-1921
http://orcid.org/0000-0002-1384-1613
http://orcid.org/0000-0002-2554-5301
https://doi.org/10.1007/978-3-030-81097-9_14

168 J. Macke et al.

(a) Input (b) Step 1: Circle tool (c) Finished construction

Fig. 1. Example solution of Euclidea level Alpha-05 (construct an equilateral triangle
with the given side). In all examples, the red channel contains the current state of the
construction and the green channel the remaining goal. (a) Initial state: one side is
given and the goal is to construct the remaining two sides. (b) State after the first
step: construction of a circle. (c) State after the last step: finished construction. (Color
figure online)

construction problems that may look very different from images in the training
problems, but are solved by the same abstract sequences of construction steps.
This setting is still hard because the neural model needs to decide where and
how to draw the next construction step in a new image. Our second objective is
to solve problems unseen during the training. This means finding sequences of
construction steps that were never seen in the training examples. We evaluate
our method in both these settings.

Table 1. Euclidea tools and their argument types. The asterisk denotes interchange-
able arguments. For a detailed description of the tools and their arguments see the
supplementary material available at the project webpage [1].

Tool Arguments

Point (coordinates)

Line (point*, point*)

Circle (point, point)

Perpendicular Bisector (point*, point*)

Angle Bisector (point*, point, point*)

Perpendicular (line, point)

Parallel (line, point)

Compass (point*, point*, point)

We train and test our models on instances of geometric problems from the
Euclidea [2] game. Euclidea is an online construction game where each level rep-
resents one kind of geometric problem. Table 1 lists the construction tools avail-
able in Euclidea. Each level specifies which of the tools can be used. Euclidea

Learning to Solve Geometric Construction Problems from Images 169

construction problems vary across a wide spectrum of difficulty. While lower
levels are relatively simple or designed specifically to introduce a new tool, more
advanced levels quickly grow in difficulty. These advanced problems are not
trivial even for reasonably trained mathematicians, including participants of the
International Mathematics Olympiad (IMO). Our high-level research objective
is to explore the question whether computers can learn to solve geometric prob-
lems similarly to humans, who may come up with solutions without knowing
any algebraic and analytic methods. Solving formally stated IMO problems has
already been considered as a grand reasoning challenge1.

Solving construction problems from input images poses several challenges.
First, the same geometric problem can have an infinite amount of different vari-
ants with a different scale, rotation or different relative position of individual
geometric primitives. The visual solver has to deal with this variability. Sec-
ond, the search space of all possible geometric constructions is very large. For
example, a construction with ten steps and (for simplicity) ten different pos-
sible construction choices at each step would require searching 1010 possible
constructions. To address these challenges we adapt a state-of-the-art convolu-
tional neural network visual recognizer that can deal with the large variability
of the visual input and combine it with a tree-search procedure to search the
space of possible constructions. We namely build on the Mask R-CNN object
detector [3] that has demonstrated excellent performance in localizing objects
(e.g. cars, pedestrians or chairs) in images and adapt it to predict next steps in
geometric constructions, for example, to draw a circle passing through a point
in the construction, as shown in Fig. 1b. Despite the success on real images, the
off-the-shelf “Vanilla” Mask R-CNN approach can solve only the very basic level
packs of the Euclidea game and adapting Mask R-CNN to our task is non-trivial.
In this work we investigate: (i) how to train the network from synthetically gener-
ated data, (ii) how to convert the network outputs into meaningful construction
steps, (iii) how to incorporate the construction history, (iv) how to deal with
degenerate constructions and (v) how to incorporate the Mask R-CNN outputs
in a tree-based search strategy.

Contributions. In summary, the contributions of this work are three-fold. First,
we describe an approach to solving geometric construction problems directly
from images by learning from example constructions. This is achieved by adapt-
ing a state-of-the-art Mask R-CNN visual recognizer and combining it with a
tree search procedure to explore the space of construction hypotheses. Second,
we demonstrate that our approach can solve the first 68 levels (which cover all
available construction tools) of the geometric construction game Euclidea with
92% accuracy. Finally, we show that our approach can also solve new problems,
unseen at training. The system as well as our modified Euclidia environment are
available online.2

1 https://imo-grand-challenge.github.io/.
2 https://github.com/mackej/Learning-to-solve-geometric-construction-problems-

from-images, https://github.com/mirefek/py euclidea/.

https://imo-grand-challenge.github.io/
https://github.com/mackej/Learning-to-solve-geometric-construction-problems-from-images
https://github.com/mackej/Learning-to-solve-geometric-construction-problems-from-images
https://github.com/mirefek/py_euclidea/

170 J. Macke et al.

The rest of the paper is structured as follows. Section 2 gives a brief overview
of related work. Section 3 presents our Euclidea environment. Section 4 describes
the methods we developed to solve problems in the supervised setting. This
includes a description of the neural image recognition methods and their modifi-
cations for our tasks. Section 5 describes our methods for solving new problems,
unseen during the training. This includes generating sets of proposed steps and
searching the tree of possible constructions. Section 6 evaluates the methods on
levels seen and unseen during the training.

2 Related Work

Visual recognition techniques can be used for interpreting a geometrical question
given by a diagram. Such a geometry solver was proposed in [4,5]. The input
problem is specified by a diagram and a short text. This input is first decoded into
a formal specification describing the input entities and their relations using visual
recognition and natural language processing tools. The formal specification is
then passed to an optimizer based on basin hopping. In contrast, we do not
attempt to convert the input problem into a formal specification but instead use
a visual recognizer to directly guide the solution steps with only images as input.

The most studied geometry problems are those where the objective is to
find a proof [6]. This contrasts with our work, where we tackle construction
problems. An algebraic approach to a specific type of construction problem is
used by Argotrics [7]. This is a Prolog-based method for finding constructions
that satisfy given axiomatically proven propositions.

Automated provers for geometry problems are mostly of two categories. They
are either synthetic [8,9], i.e., they mimic the classical human geometrical reason-
ing, and prove the problems by applying predefined sets of rules/axioms (similar
triangles, inscribed angle theorem, etc.). The other type of solvers are based
on algebraic methods such as Wu’s method [10] or the Gröbner basis method
[11]. These have better performance than the synthetic ones but do not pro-
vide a human readable solution. There are also methods combining the two
approaches. They may for example use some algebra but keep the computations
simple (the Full angle method or the Area method [12]). We cannot compare
directly with such provers because of the constructional nature of the problems
we study. However, our approach is complementary to the above methods and
can be used, for example, to suggest possible next construction steps based on
the visual configuration of the current scene.

Automated theorem provers (ATPs) such as Otter [13] and Prover9 [14] have
been used for solving geometric problems, e.g., in Tarskian geometry [15–17].
Proof checking in interactive theorem provers (ITPs) such as HOL Light and
Coq has been used to verify geometric proofs formally [18]. Both ATPs and
ITPs have been in recent years improved by using machine learning and neural
guidance [19,20]. ATPs and ITPs however assume that a formalization of the
problem is available, which typically includes advanced mathematical education
and nontrivial cognitive effort. The formal representations are also closer to text,

Learning to Solve Geometric Construction Problems from Images 171

which informs the choice of neural architectures successfully used in ATPs and
ITPs (GNNs, TNNs, Transformers). In contrast, we try to skip the formalization
step and learn solving geometric construction problems directly from images.
This also means that our methods could be used on arbitrary informal images,
such as human geometry drawings, creating their own internal representations.

3 Our Euclidea Geometric Construction Environment

Euclidea is an online geometric construction game in 2-dimensional Euclidean
space. The main goal is to find a sequence of construction steps leading from an
initial configuration of objects to a given goal configuration. The construction
steps utilize a set of straightedge and compass-based tools (see Table 1). Every
tool takes up to 3 arguments with values specified by the coordinates of clicks
on the image of the scene, e.g., circle(A,B), where A, B are points in the image.
Euclidea is divided into 15 level packs (Alpha, Beta, Gamma, . . . , Omicron)
with increasing difficulty; each level pack contains around 10 levels with a similar
focus. In Euclidea, each level has its analytical model, which is projected onto
an image and the player does not have access to this model, only to the image.
Each construction is validated with the analytical model to prevent cheating by
drawing lines or circles only similar to the desired goal.

In addition, our Euclidea environment can also generate new instances of the
levels. A new instance is generated by randomly choosing initial parameters of
the level inside Euclidea. However, some of these instances can be “degenerate”,
i.e., unsolvable based on the image data. To prevent such degenerate configura-
tions, we enforce multiple constraints, e.g., that different points cannot be too
close to each other in the image or that a circle radius cannot be too small. We
use this process of generating new problem instances for collecting examples to
train our model.

4 Supervised Visual Learning Approach

This section describes our method for learning to solve geometric problems. We
build on Mask R-CNN [3], a convolutional neural network for the detection and
segmentation of objects in images and videos. Given an image, Mask R-CNN
outputs bounding boxes, segmentation masks, class labels and confidence scores
of objects detected in the input image.

Mask R-CNN is a convolutional neural network architecture composed of two
modules. The first module is a region proposal network that proposes candidate
regions in the image that may contain the target object (e.g. a “car”). The
second module then, given a proposed candidate region, outputs its class (e.g.
“car”, “pedestrian” or “background”), bounding box, segmentation mask and
confidence score.

We adapt the Mask R-CNN model for the task of solving geometric con-
struction problems. Figure 2 shows the diagram of our approach. The main idea
is to train Mask R-CNN to predict the tool that should be used at a given

172 J. Macke et al.

step, including its arguments. For example, as shown in Fig. 2, the input is the
image depicting the current state of the construction in the red channel of the
image (three points in red) and the goal in the green channel (the three sides
of the triangle). Mask R-CNN predicts here to execute the Line tool. The pre-
dicted bounding box of the line is shown in magenta. For this purpose, Mask
R-CNN network has to recognize the two points in the input image and predict
their location, represented by the rectangular masks. The output masks are then
transformed to coordinates of the two points that need to be “clicked” to execute
the Line tool in the Euclidea environment.

Fig. 2. Diagram of our approach. The goal is to construct a triangle given three points.
The input is an RGB image with the current state of the construction in the red channel
(the three points) and the goal is given in the green channel (the three sides of the
triangle). The Mask R-CNN predicts a line between two of the three points. The dashed
rectangle denotes the bounding box of the line and the small square magenta masks
denote the two points on the line. This Mask R-CNN line detection is then converted
into a Euclidea tool action, Line(A,B), represented by the tool name and its arguments
(the locations of the two points). The process that converts the Mask R-CNN output
masks into actions in the Euclidea environment is described in Sect. 4.2. (Color figure
online)

To train Mask R-CNN to solve geometric construction problems, we have
to create training data that represent applications of the Euclidea tools and
adjust the network outputs to work with our Euclidea environment. To generate
training data for a given Euclidea level, we follow a predefined construction of
the level and transform it to match the specific generated level instances (see
Sect. 3). Each use of a Euclidea tool corresponds to one example in the training
data. We call each application of a tool in our environment an action, represented
by the tool name and the corresponding click coordinates. For example, the Line
tool needs two action clicks, representing two points on the constructed line.

The following sections show the generation of training data for Mask R-CNN
(Sect. 4.1), describe how we derive Euclidea actions from the detected masks
at test time (Sect. 4.2), present our algorithm for solving construction problems

Learning to Solve Geometric Construction Problems from Images 173

(Sect. 4.3), and introduce additional components that improve the performance
of our method (Sect. 4.4).

4.1 Action to Mask: Generating Training Data

Here we explain how we generate the training data for training Mask R-CNN
to predict the next construction step. In contrast to detecting objects in images
where object detections typically do not have any pre-defined ordering, some
of the geometric tools have non-interchangeable arguments and we will have to
modify the output of Mask R-CNN to handle such tools.

We represent the Mask R-CNN input as a 256× 256 RGB image of the scene
with the current state in the red channel and the remaining goal in the green
channel; the blue channel contains zeros. Note that for visualization purposes, we
render the black background as white. Each training example consists of an input
image capturing the current state of the construction together with the action
specifying the application of a particular tool. The action is specified by a mask
and a class, where the class identifies the tool (or its arguments, see below) and
the mask encodes the location of each point click needed for application of the
tool in the image, represented as a small square around each click location. The
Perpendicular tool and Parallel tool have a line as their argument (see Table 1),
passed as a mask of either the whole line or one click on the line.

(a) Input (b) Primary detection (c) Secondary detection

Fig. 3. An example from training data for Euclidea level Beta-02 (construct the line
that bisects the given angle). The current state is in red and the remaining goal in
green. (a) Input for the Mask R-CNN model. (b) Primary detection of the Mask R-
CNN model identifying the tool type: Angle Bisector tool (purple). (c) Three secondary
detections identifying the arguments of the tool: one angle vertex point (yellow) and
two angle ray points (purple and turquoise). (Color figure online)

Primary and Secondary Detections. Encoding clicks as in the previous
paragraph is not sufficient for tools with non-interchangeable parameters. For
example, the Circle tool has two non-interchangeable parameters: 1) the center
and 2) a point on the circle, defining the radius. To distinguish such points,
we add a secondary output of the Mask R-CNN model. For example, for the
Circle tool, we detect not just the circle itself but also the circle center and the

174 J. Macke et al.

radius point. We denote the detection of the tool (Line tool, Circle tool, ...)
as the primary detection, and the detection of its parameters as the secondary
detections. Figure 3 shows an example of primary and secondary detections for
the Angle Bisector tool, including the corresponding classes: Angle Bisector
(primary detection), Angle VertexPoint, and Angle RayPoint (secondary detec-
tions).

4.2 Mask to Action: Converting Output Masks to Euclidea Actions

To solve Euclidea levels, we have to transform the Mask R-CNN output to
fit the input of the Euclidea environment. We refer to this step as “mask-to-
action” as it converts the output of Mask R-CNN, which is in the form of image
masks specifying the primary and secondary detections (see Sect. 4.1), into tool
actions in the Euclidea environment. The mask-to-action conversion consists of
two stages. The first stage obtains locations of individual “point clicks” from the
primary detections for the predicted tool and the second stage determines the
order of parameters using the secondary detections.

First Stage: To localize individual points, we use the heat map produced by
the final Mask R-CNN layer. The heat map assigns each pixel the probability
of being a part of the mask and can be transformed into a binary mask by
thresholding. Instead, we use the heat map directly to localize the detected
points more accurately. We select points with the highest probability in the
masks using a greedy non-maximum-suppression method [21].

Second Stage: We will explain this stage on the example of the Angle Bisector
tool (see Fig. 3). A detection of this tool has 4 detection outputs from Mask
R-CNN, namely, 1 primary and 3 secondary detections. The primary detection
corresponds to the whole tool and the secondary detections to the individual
points, i.e., one angle vertex point and two angle ray points (see Fig. 3). To
use the Angle Bisector tool, we have to determine the correspondence between
the primary and secondary detections. We obtain 3 point coordinates from the
primary detection in the first stage, as described above. We can also get 3 points
from the 3 secondary detections, one point per detection. Each point in the
primary detection should correspond to one point in the secondary detection, but
these points may not exactly overlap. The point correspondence is determined
by finding a matching between the primary and secondary points that minimizes
the sum of distances between the primary and secondary points such that each
point is used exactly once.

4.3 Solving Construction Problems by Sequences of Actions

Next, we can create an agent capable of solving Euclidea construction problems.
In the previous section, we have described how to get a Euclidea action from
Mask R-CNN outputs. However, Mask R-CNN can predict multiple candidate
detections (that correspond to different actions) for one input image. Mask R-
CNN returns for each detection also its score, representing the confidence of the

Learning to Solve Geometric Construction Problems from Images 175

prediction. To select the next action from the set of candidate actions (derived
from Mask R-CNN detections) in each step, the agent follows Algorithm 1, which
chooses the action with the highest confidence score at each state.

Result: Test level inference: True if level completed, False otherwise.
Initialize a level;
while level not complete do

s ← current state of the level;
p ← model.predict(s);
if predictions p are empty then

return False;
a ← action from p with highest score;
execute a

return True;

Algorithm 1: Solving construction problems by choosing the action with the high-

est score.

4.4 Additional Components of the Approach

Here we introduce several additional extensions to the approach described above
and later demonstrate their importance in Sect. 6.

Automatic Point Detection. Our Euclidea environment requires that each
point important for the solution is identified using the Point tool. For example,
when we have to find the third vertex of the triangle in Fig. 1, we have to use
the Point tool to localize the intersections of the circles. The Automatic point
detection modification automatically adds points to the intersections of objects.

History Channel. To better recognize which construction steps have already
been done and which still need to be constructed, we add a third, history channel
(blue) to the input of Mask R-CNN, containing the construction state from the
previous step.

4+ Stage Training. Mask R-CNN is typically trained in 2 stages: first, only
the head layers are trained, followed by training of the whole network, including
the 5-block convolutional backbone. The 4+ Stage training modification splits
the training into 3 stages: first, the head layers are trained, then also the fourth
and fifth backbone blocks, and finally, the whole network.

Intersection Degeneration Rules. To decide whether a generated level can
be solved using only the image information, we apply the following rules to iden-
tify degenerate configurations: a) the radius of a circle cannot be too small, b)
the distance between points, lines, or their combinations cannot be too small.
In this modification, we add a third rule: c) any intersection of geometric primi-
tives cannot be too close to points that are necessary for the construction. This
prevents possible alternative solutions from being too close to each other and
the auxiliary intersections created during the construction from being too close
to points from the initial state and the goal.

On-the-fly Data Generation. Generating training data on-the-fly allows us
to (potentially infinitely) expand the training set and thus train better models.

176 J. Macke et al.

5 Solving Unseen Geometric Problems via Hypothesis
Tree Search

In the previous section, we have shown how to train a visual recognition model to
predict the next step of a given construction from a large number of examples of
the same construction with different geometric configurations of the primitives.
In this section, we investigate how to solve new problems, which we have not
seen at training time. This is achieved by (i) using models trained for different
construction problems (see Sect. 4) to generate a set of hypotheses for each con-
struction step of the new problem and then (ii) searching the tree of possible
constructions. These two parts are described next.

5.1 Generating Action Hypotheses

Each primary detection from the Mask R-CNN model (see Sect. 4.1) can be
transformed into an action. We denote each action, its arguments, and results as
a hypothesis. The result of an action contains a geometric primitive, constructed
during the action execution, and a reward, indicating whether the output prim-
itive is a part of the remaining goal or not. If an action constructs a part of the
goal, the reward is 1/n, where n is the total number of primitives in the initial
goal, otherwise it is equal to zero. Figure 4b shows a hypothesis that successfully
constructs one of the four lines in the goal and its reward thus equals 0.25.

We can extract multiple actions from the Mask R-CNN model output by
considering multiple output candidate detections, transform them into multiple
hypotheses, and explore their construction space. We can also utilize hypotheses
from models trained for different tasks. However, the Mask R-CNN scores are not
comparable across hypotheses from different models, so in a setup with multiple
models we have to search even hypotheses with lower scores.

5.2 Tree Search for Exploring Construction Hypotheses

We use tree search to explore the hypothesis space given by the predictions from
one or more Mask R-CNN models. The tree search has to render the input image
and obtain predictions from all considered Mask R-CNN models in each node
of the tree, which increases the time spent in one node. However, as a result,
we search only within the space of hypotheses output by the Mask R-CNN
models, which is much smaller than the space of all possible constructions. We
use iterative deepening, which is an iterated depth-limited search over increasing
depth (see Algorithm 2).

Hypotheses produced by different Mask R-CNN models increase the branch-
ing factor and thus also the search time. To speed up the tree search, we group
all mutually similar hypotheses and explore only one of them. For this purpose,

Learning to Solve Geometric Construction Problems from Images 177

we consider two hypotheses as similar if their output geometric primitive is the
same; note that such hypotheses can have different arguments, including different
tools.

(a) Current state (b) Hypothesis, reward 0.65 (c) Hypothesis, reward 0

(d) Hypothesis, reward 0 (e) Hypothesis, reward 0 (f) Hypothesis, reward 0

Fig. 4. Multiple hypotheses for the next step in Euclidea level Epsilon-03 (construct
a parallelogram whose three of four vertices are given). (a) Current state. (b) Hypoth-
esis with reward 0.25 that constructs one of the four lines in the goal (green). (c–f)
Hypotheses with reward 0. Each image contains the current state (red), remaining goal
(green), hypothesis produced by Mask R-CNN (blue), and parameters of the tool (pur-
ple). For example, hypothesis (b) selects the Parallel tool to construct the blue line as
parallel to the purple line and intersecting the purple point. A positive reward indicates
contribution to the goal, so we select the hypothesis (b), which has the highest reward.
(Color figure online)

6 Experiments

This section shows the performance of our method for both the supervised setting,
where we see examples of the specific level in both training and test time, and
the unseen setting, where we are testing on new levels, not seen during training.
We will compare the benefits of the different components of our approach and
show an example solution produced by our method.

178 J. Macke et al.

Result: Solve level with Iterative Deepening.
Function IterativeDeepening-DFS(InitialState):

SolutionMaxLength ←− 0;
Solution ←− null;
while (Solution = null) and (SolutionMaxLength < MaxIterationDepth)
do

SolutionMaxLength ←− SolutionMaxLength + 1;
Solution ←− FindSolution(InitialConfig, SolutionMaxLength);

return Solution
Function FindSolution(CurrentState,Depth):

if CurrentState.IsTheGoal then
return success // collect solution on the backtracking

if Depth = 0 then
return null // e.g., solution not found.

Hypotheses ←− Models.GetAllHypotheses(CurrentState);
// Hypotheses sorted in the order: Reward, Confidence score

foreach h ∈ Hypotheses do
NewState ←− Apply(h,CurrentState);
Solution = FindSolution(NewState,Depth − 1);
if Solution �= null then

return Solution
return null

Algorithm 2: Tree search for exploring construction hypotheses using Iterative

Deepening Depth-First Search algorithm.

6.1 Benefits of Different Components of Our Approach

As the base method we use the off-the-shelf Mask R-CNN approach (“Vanilla
Mask R-CNN”), which has a low accuracy even on simple Alpha levels. To
improve over this baseline, we have introduced several additional components,
namely, “Automatic point detection”, “History channel”, “4+ Stage train-
ing”, “Intersection degeneration rules”, and “On-the-fly data generation” (see
Sect. 4.4). Table 2 compares their cumulative benefits. These components are
crucial for solving levels in advanced level packs, e.g., the Gamma level pack,
which could not be solved without the Intersection degeneration rules.

6.2 Evaluation of the Supervised Learning Approach

We evaluated our method on the first six level packs of Euclidea with various
training setups. The results (see Fig. 5) show that models specialized to indi-
vidual level packs (“one model per level pack”) or even levels (“one model per
level”) have better accuracy than a single, more general model for multiple lev-
els/packs (“one model for all levels”). We also investigate the benefits of using
our tree search procedure (see Sect. 5.2) instead of using only the most confident
hypothesis, as in the supervised setting. We find the tree search improves the
accuracy, especially on Alpha and Gamma level packs, by searching the space of
possible candidate solutions for each step of the construction.

Learning to Solve Geometric Construction Problems from Images 179

Table 2. Performance of the base method (Vanilla Mask R-CNN) together with the
additional components of our approach. The Performance is evaluated on Euclidea
level packs with increasing difficulty (from Alpha to Zeta). We trained a separate
model for every level in each level pack and evaluated the model on 500 new instances
of that level. The table presents the accuracy averaged across all levels in each level
pack. The components are applied to the base method (Vanilla Mask R-CNN) in an
additive manner. For example, the 4+ Stage training includes all previous components,
i.e., Automatic point detection and History channel. A description of the different
components is given in Sect. 4.4.

Component/Level pack Alpha Beta Gamma Delta Epsilon Zeta

Vanilla Mask R-CNN [3] 71.0 - - - - -

+ Automatic point detection 95.1 - - - - -

+ History channel 98.1 69.3 - - - -

+ 4+ Stage training 91.7 82.3 - - - -

+ Intersection degeneration rules 91.7 82.3 79.9 73.5 - -

+ On-the-fly data generation 98.7 96.2 97.8 99.1 92.8 95.7

Fig. 5. Accuracy of our approach on Euclidea level packs Alpha to Zeta. The model uses
all components from Table 2. We compare four approaches: one model per level (blue),
one model per level pack (orange), one model for all levels (green), and one model for
all levels with hypothesis tree search (red). All were evaluated on 500 instances of each
level and the accuracy was averaged across all levels in each level pack. (Color figure
online)

6.3 Evaluation on Unseen Problems

To evaluate performance on unseen levels, we use the leave-one-out (LOO) eval-
uation. In our setup, LOO levels evaluates, e.g., level Alpha-01 using models
trained on each of the other Alpha levels, whereas LOO packs evaluates, e.g., each

180 J. Macke et al.

Alpha level using models trained on level packs Beta, Gamma, Delta, Epsilon,
and Zeta. Table 3 compares the LOO evaluation and the supervised approach,
both with the hypothesis tree search, for level pack Alpha. We ran a similar
evaluation for all 6 levels packs and were able to solve 30 out of 68 levels using
LOO levels and 31 out of 68 levels using LOO packs. The results show that our
method can solve many levels unseen during the training, although some levels
remain difficult to solve.

Table 3. Leave-one-out evaluation on the Alpha levels. Completion accuracy of the
leave-one-out evaluation across levels within a level pack (LOO levels), across level
packs (LOO packs), and, for comparison, our best supervised model trained to solve
the first six Euclidea level packs (Alpha-Zeta); the tree search was used in all three
cases. The leave-one-out evaluation was performed on 20 instances of each level, while
the supervised model was evaluated on 500 instances of each level. Using models from
all level packs except Alpha (LOO packs) works better than using models trained only
on other levels of the Alpha level pack (LOO levels). This is likely because models in
the “LOO packs” set-up have seen a larger set of different constructions.

Alpha levels LOO levels LOO packs Supervised

01 T1 Line 40.0 10.0 85.0

02 T2 Circle 5.0 45.0 100.0

03 T3 Point 100.0 90.0 100.0

04 TIntersect 100.0 100.0 99.0

05 TEquilateral 50.0 70.0 100.0

06 Angle60 55.0 100.0 94.0

07 PerpBisector 35.0 100.0 99.0

08 TPerpBisector 0.0 100.0 75.0

09 MidPoint 5.0 60.0 100.0

10 CircleInSquare 0.0 100.0 87.0

11 RhombusInRect 25.0 40.0 99.0

12 CircleCenter 10.0 0.0 100.0

13 SquareInCircle 0.0 10.0 100.0

Average 42.5 63.4 95.3

6.4 Qualitative Example

Figure 6 shows a step-by-step walk-through construction of an advanced Euclidea
level.

Learning to Solve Geometric Construction Problems from Images 181

(a) Input (b) Step 1: Circle tool (c) Step 2: Circle tool

(d) Step 3: Line tool (e) Step 4: Line tool (f) Step 5: Parallel tool

(g) Step 6: Parallel tool (h) Step 7: Perpendicular
tool

(i) Construction finished

Fig. 6. Example construction of Euclidea level Epsilon-12 (construct a regular hexagon
by the side). (a) Initial configuration of the problem. (b-h) Seven construction steps,
including Mask R-CNN detections, and an object proposed to construct in each step. (i)
Final construction step, level solved. Red denotes the current state of the construction,
green the remaining goal, blue the geometric primitive proposed by the detection, and
other colors the prediction masks, bounding boxes, class names, and scores for the next
predicted action. More examples can be found in the y material available at the project
webpage [1]. (Color figure online)

Connections Between Levels. From the leave-one-out evaluation, we can
also observe which levels are similar. We denote that level X is connected to
level Y if a model trained for Y contributes with a hypothesis to a successful
construction during the inference for level X. Note that this relation is not
symmetric, e.g., when X is connected to Y , then Y is not necessarily connected
to X. We run the hypothesis tree search during the leave-one-out evaluation and
obtain connections in the following way: If the search is successful, we collect all
models that contributed to the solution in the final backtracking of the search.
The connections for all levels in the level pack Alpha are shown in Fig. 7.

182 J. Macke et al.

Fig. 7. Connection graph created during the leave-one-out evaluation of the Alpha
level pack using models for individual levels. Models trained on more difficult levels
(indicated by higher numbers) often help construct easier levels (lower numbers). For
example, level 13 could not be solved (has no incoming connections), but its predictions
were used for solution of levels 1, 4, 5, 7, 9, 11, 12. Our method can often construct sim-
pler tasks based on more complex constructions. However, combining multiple simple
tasks into a complex construction remains a challenge.

7 Conclusion

We have developed an image-based method for solving geometric construction
problems. The method builds on the Mask R-CNN visual recognizer, which is
adapted to predict the next step of a geometric construction given the current
state of the construction, and further combined with a tree search mechanism
to explore the space of possible constructions. To train and test the method,
we have used Euclidea, a construction game with geometric problems with an
increasing difficulty. To train the model, we have created a data generator that
generates new configurations of the Euclidea constructions.

In a supervised setting, the method learns to solve all 68 kinds of geometric
construction problems from the first six level packs of Euclidea with an average
92% accuracy. When evaluated on new kinds of problems unseen at training,
which is a significantly more challenging set-up, our method solves 31 of the 68
kinds of Euclidea problems. To solve the unseen problems our model currently
relies on having seen a similar (or more complex) problem at training time.
Solving unseen problems that are more complex than those seen at training
remains an open challenge. Addressing this challenge is likely going to require
developing new techniques to efficiently explore the space of constructions as
well as mechanisms to learn from successfully completed constructions, a set-up
similar to reinforcement learning.

Although in this paper we focus on synthetically generated data, our results
open up the possibility to solve even hand-drawn geometric problems if corre-
sponding training data is provided. In real-world settings, descriptions and dis-
cussions of problems in math, physics and other sciences often contain an image
or a drawing component. Diagrams and illustrations are also an essential part of
real-world technical documentation (e.g. patents). The ability to automatically

Learning to Solve Geometric Construction Problems from Images 183

identify and combine visually defined geometrical primitives into more complex
patterns, as done in our work, is a step towards automatic systems that can
identify compositions of geometric patterns in technical documentation. Think,
for example, of an “automatic patent lawyer assistant”.

References

1. Project webpage. https://data.ciirc.cvut.cz/public/projects/2021Geometry
Reasoning

2. Euclidea. https://www.euclidea.xyz
3. He K., Gkioxari G., Dollár P., Girshick, R.: Mask R-CNN. In: 2017 IEEE Interna-

tional Conference on Computer Vision (ICCV) (2017)
4. Seo, M.J., Hajishirzi, H., Farhadi, A., Etzioni, O.: Diagram understanding in geom-

etry questions. In: American Association for Artificial Intelligence (2014)
5. Seo, M., Hajishirzi, H., Farhadi, A., Etzioni, O., Malcolm, C.: Solving geometry

problems: combining text and diagram interpretation. Association for Computa-
tional Linguistics (2015)

6. Quaresma, P.: Thousands of Geometric Problems for Geometric Theorem Provers
(TGTP). Springer, Heidelberg (2011)

7. Vesna, M.: ArgoTriCS – automated triangle construction solver. J. Exper. Theor.
Artif. Intell. 29(2), 247–271 (2017)

8. Balbiani, P., Cerro, L.F.: Affine Geometry of Collinearity and Conditional Term
Rewriting. Springer, Heidelberg (1995)

9. Chou, S.C., Gao, X.S., Zhang, J.Z.: A deductive database approach to automated
geometry theorem proving and discovering. J. Autom. Reasoning 25, 219–246
(2000)

10. Gao, X.: Transcendental functions and mechanical theorem proving in elementary
geometries. J. Autom. Reasoning 6, 403–417 (1990)

11. Deepak, K.: Using Gröbner bases to reason about geometry problems. J. Symbolic
Comput. 2(4), 399–408 (1986)

12. Chou, S.C., Gao, X.S., Zhang, J.: Machine Proofs in Geometry: Automated Pro-
duction of Readable Proofs for Geometry Theorems (1994)

13. McCune, W., Wos, L.: Otter: the CADE-13 competition incarnations. J. Autom.
Reasoning 18(2), 211–220 (1997)

14. McCune, W.: Prover9 and Mace4. http://www.cs.unm.edu/∼mccune/prover9/
15. Beeson, M., Wos, L.: Finding proofs in Tarskian geometry. J. Autom. Reasoning

58(1), 201–207 (2017)
16. Durdevic, S.S., Narboux, J., Janicic, P.: Automated generation of machine veri-

fiable and readable proofs: a case study of Tarski’s geometry. Ann. Math. Artif.
Intell. 74(3–4), 249–269 (2015)

17. Quaife, A.: Automated Development of Fundamental Mathematical Theories.
Kluwer Academic Publishers, Dordrecht (1992)

18. Beeson, M., Narboux, J., Wiedijk, F.: Proof-checking Euclid. Ann. Math. Artif.
Intell. 85, 213–257 (2019). https://doi.org/10.1007/s10472-018-9606-x

19. Jakub̊uv, J., Chvalovský, K., Oľsák, M., Piotrowski, B., Suda, M., Urban, J.:
ENIGMA anonymous: symbol-independent inference guiding machine (System
Description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12167, pp. 448–463. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51054-1 29

https://data.ciirc.cvut.cz/public/projects/2021GeometryReasoning
https://data.ciirc.cvut.cz/public/projects/2021GeometryReasoning
https://www.euclidea.xyz
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/s10472-018-9606-x
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-030-51054-1_29

184 J. Macke et al.

20. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: TacticToe: learning
to prove with tactics. J. Autom. Reasoning 65(2), 257–286 (2021)

21. Hosang, J., Benenson, R., Schiele, B.: Learning non-maximum suppression. In:
Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

Automated Generation of Exam Sheets
for Automated Deduction

Petra Hozzová(B) , Laura Kovács , and Jakob Rath

TU Wien, Vienna, Austria
{petra.hozzova,laura.kovacs,jakob.rath}@tuwien.ac.at

Abstract. Amid the COVID-19 pandemic, distance teaching became
default in higher education, urging teachers and researchers to revise
course materials into an accessible online content for a diverse audience.
Probably one of the hardest challenges came with online assessments of
course performance, for example by organizing online written exams. In
this teaching-related project paper we survey the setting we organized
for our master’s level course “Automated Deduction” in logic and com-
putation at TU Wien. The algorithmic and rigorous reasoning developed
within our course called for individual exam sheets focused on problem
solving and deductive proofs; as such exam sheets using test grids were
not a viable solution for written exams within our course. We believe
the toolchain of automated reasoning tools we have developed for hold-
ing online written exams could be beneficial not only for other distance
learning platforms, but also to researchers in automated reasoning, by
providing our community with a large set of randomly generated bench-
marks in SAT/SMT solving and first-order theorem proving.

1 Motivation

Amid the COVID-19 pandemic, higher education has moved to distance teaching.
While online lecturing was relatively fast to implement via webinars, recordings,
streaming and online communication channels, coming up with best practices
to assess course performance was far from trivial. Even with very sophisticated
technical infrastructure (use of which, on the other hand, would be unethical to
require from course participants), avoiding collusion in the virtual environment is
very hard to achieve, if possible at all. While work on online feedback generation
has already been initiated, see e.g. [7,15], not much work on online examinations
has emerged so far.

In this paper we survey our teaching-related project work in organizing online
written exams, where the exam solutions require rigorous logical reasoning and
proofs rather than using mechanized test grids. In particular, we are faced with
the challenge of organizing online written exams for our master’s level course
“Automated Deduction” in logic and computation at TU Wien1. This course
1 https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=2002&dsrid=601&

courseNr=184774&semester=2020S.
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 185–196, 2021.
https://doi.org/10.1007/978-3-030-81097-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_15&domain=pdf
http://orcid.org/0000-0003-0845-5811
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0003-0346-6749
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=2002&dsrid=601&courseNr=184774&semester=2020S
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=2002&dsrid=601&courseNr=184774&semester=2020S
https://doi.org/10.1007/978-3-030-81097-9_15

186 P. Hozzová et al.

introduces algorithmic techniques and fundamental results in automated reason-
ing, by focusing on specialised algorithms for reasoning in various fragments of
first-order logics, such as propositional logic, combinations of ground theories,
and full first-order logic with equality. As such, topics of the course cover theoret-
ical and practical aspects of SAT/SMT solving [4,5,13] and first-order theorem
proving using superposition reasoning [9,12].

By no means are we claiming that the framework we developed for online
examination is optimal. Given the time constraints of examination periods, we
aimed for an online exam setting that (i) reduces collusion among students and
(ii) requires the same workload on each participant. Note that there is a trade-
off between (i) and (ii) – very similar problems require comparable effort to be
solved, while solving very different problems requires unequal effort. Therefore
our goal was to strike a balance between (i) and (ii).

The algorithmic reasoning developed within our course called for exam sheets
focused on problem solving and deductive proofs; hence, exam sheets using test
grids were not a viable solution for written exams within our course. We have
therefore used and adapted the automated reasoning approaches introduced in
our course to automate the generation of individual exam sheets for students
enrolled in our course, by making sure that the exam tasks remain essentially
the same in each generated exam sheet. As such, we have randomly generated
individual exam problems on

– SAT solving, by imposing (mostly) syntactical constraints on randomly gen-
erated SAT formulas (Sect. 2.1);

– Satisfiability modulo theory (SMT) reasoning, by exploiting reasoning in a
combination of theories and varying patterns of SMT problem templates
(Sect. 3.1);

– First-order theorem proving, by adjusting simplification orderings in superpo-
sition reasoning and using redundancy elimination in first-order proving, both
in the ground/quantifier-free and non-ground/quantified setting (Sects. 2.2
and 3.2).

For each of the SMT and first-order problems we generated, we used respec-
tive SMT and first-order solvers to perform an additional sanity check (Sect. 4).
Our toolchain and the generated benchmarks/exams are available at https://
github.com/AutomatedDeductionTUW/exagen.

We believe our framework is beneficial not only for other distance learning
platforms, but also to researchers in automated reasoning as we provide a large
set of randomly generated benchmarks in SAT/SMT solving and first-order the-
orem proving to our scientific community. While our teaching-related project
delivery is specific to formal aspects of automated reasoning, we note that our
work can be extended with further constraints to scale it to other courses in
formal methods.

This paper is structured as follows. In Sects. 2 and 3 we discuss the high-
level approach to generating the exam problems. Section 4 surveys the main
implementation principles supporting our solution. Finally, in Sect. 5 we com-
pare the teaching outcomes of our online written exam with those coming from

https://github.com/AutomatedDeductionTUW/exagen
https://github.com/AutomatedDeductionTUW/exagen

Automated Generation of Exam Sheets for Automated Deduction 187

previous in-class examinations. Based on these outcomes, we believe our online
examination maintained the overall course quality in the study curricula.

2 Random Problem Generation

We first describe our solution for generating automated reasoning benchmarks
in a fully automated and random manner. We used this setting to generate exam
problems on SAT solving and first-order theorem proving by filtering out problem
instances that are either too hard or too easy. Throughout this paper, we assume
basic familiarity with standard first-order logic and refer to the literature [2,9]
for further details.

2.1 Boolean Satisfiability (SAT)

In our exam problem on SAT solving (Problem 1 of Fig. 1), students were asked
to (a) determine which atoms are of pure polarity in the formula, (b) compute a
polarity-optimized clausal normal form (CNF) [14], and (c) decide satisfiability
of the computed CNF formula by applying the DPLL algorithm.

Randomly generating propositional formulas in a naive setting would lead
to a huge variety of formulas, spanning both formulas for which the above ques-
tions are trivial to answer (e.g., clauses as propositional tautologies) and others
requiring much more effort (e.g., arbitrary formulas using only “↔”). More work
was thus needed to ensure comparable workload for solving exam sheets.

To this end, we identified several syntactical characteristics that the exam
problems on SAT solving should exhibit, and filtered the generated formulas by
these, as summarized partially below.

(i) The SAT formula contains exactly seven logical connectives and exactly
three different propositional variables.

(ii) There is at least one atom that appears with a pure polarity.
(iii) The connectives “↔”, “→”, and “¬” appear at least once, with “↔” appear-

ing at most twice. At least one of “∧” and “∨” appears.
(iv) Recall that the polarity-optimized clausal normal form involves a set of

definitions, each of which is of the form n ◦ ϕ with ◦ ∈ {→, ←, ↔}, a fresh
propositional variable n, and a formula ϕ. We restrict the SAT formula such
that at least two of the choices for ◦ appear in its CNF.

(v) The SAT formula has at most six models.

Our aim was to create problems of similar difficulty as in previous iterations
of the course, which is why we used exams from previous years as a reference
point. Some of the criteria, such as the number of connectives and variables,
come from this previous experience. Other criteria, such as the restrictions on
connectives and atom polarity, have been refined iteratively by checking the
output for trivial or too complicated instances.

188 P. Hozzová et al.

Fig. 1. An example of a randomly generated exam sheet of automated deduction.

Although the combination of the above conditions (i)–(v) might seem very
restrictive, we note that there are 20 390 076 different SAT formulas satisfying
the above criteria. Further, if we do not want to distinguish formulas that differ
only by a permutation of atoms, 3 398 346 formulas remain. We are thus able to

Automated Generation of Exam Sheets for Automated Deduction 189

generate a large number of unique SAT formulas to be used in online examina-
tions and beyond. Problem 1 of Fig. 1 showcases one SAT reasoning challenge
we automatically generated for one online examination sheet.

We finally note that, while experimenting with the different constraints (i)–
(v) above, we encountered the following issues that may arise if the restrictions
on the randomly generated formula are too strict:

– The sample space might be empty or very sparse. In practice, it seems to the
user as if the problem generator got stuck, usually resulting in the process
being killed by the user. For example, consider the restriction on polarities of
propositional variables. Combined with the other restrictions, it is impossible
to get a formula that contains atomic propositions of purely positive and
purely negative polarity at the same time.

– The second issue manifests less drastically but is perhaps more problematic:
the sample space may be too uniform, leading to the generation of trivial
and/or very similar formulas. In particular, we encountered this problem when
we restricted the number of models to exactly one, or zero. We note that there
simply are not that many ways to rule out eight interpretations using only
seven connectives.

2.2 Non-ground Superposition with Redundancy

Moving beyond Boolean satisfiability, we developed a random problem generator
for first-order formulas with equality, in the setting of superposition-based first-
order theorem proving with redundancy elimination [9,12]. In this problem, a
concrete inference2 was given to the students, and their task was to (a) prove
that the inference is sound and (b) that the inference is a simplification inference
(Problem 4 of Fig. 1).

We recall that a simplification inference is an inference that removes clauses
from the proof search space, whereas a generating inference adds new clauses to
the search space [9]. In our work, we considered the simplification inference of
subsumption resolution

A ∨ C ¬B ∨ D
D or

¬A ∨ C B ∨ D
D (1)

where A, B are atoms and C, D are clauses such that A and B are unifiable
with the most general unifier θ, and we have Aθ ∨ Cθ ⊆ B ∨ D. Due to the last
condition, the second premise ¬B ∨ D (or B ∨ D) of (1) is redundant and can
be deleted from the search space after applying (1) within proof search.

We randomly generated first-order instances of the inference rule (1), as
discussed next. Our setting could however be easily extended to other simplifi-
cation inferences, such as subsumption demodulation [6], and even generating
inferences.

2 I.e., an instance of an inference rule as opposed to the rule itself.

190 P. Hozzová et al.

(i) To randomly generate first-order terms and literals, we fixed a first-order
signature consisting of predicate and function symbols and specified a set
of logical variables. We controlled the shape of the generated terms by
giving bounds on the depth of the term, that is the maximal nesting level
of function calls (e.g., a constant symbol b has depth 0, while the term
g(f(x), d) has depth 2).

(ii) To obtain random instances of (1), we first generated non-ground clauses
C1 := L1 ∨ L2 corresponding to an instance of the first premise of (1). To
this end, we generated a random uninterpreted literal L1 containing exactly
one variable occurrence, and a random equality literal L2 containing at least
two occurrences of a different variable.

(iii) We next generated the clause C2 := L1θ∨L2θ∨L3 as an instance of the sec-
ond premise of (1) where θ is a randomly generated grounding substitution,
L3 is a randomly generated ground literal, and L is the complementary3

literal to L.
(iv) We set C3 := L3 ∨ L2θ as an instance of the conclusion of (1), yielding thus

the inference
C1 C2

C3 as an instance of (1).

We found that with the concrete signature used for our exam, based on
the above steps (i)–(iv), our approach can generate more than 1011 different
instances of the inference (1). Problem 4 of Fig. 1 lists one such an instance.

3 Random Variation of Problem Templates

We now describe our framework for generating random quantifier-free first-order
formulas with and without theories, that was used in the SMT reasoning and
ground superposition proving tasks of our exam. For both of these tasks, we
used quantifier-free first-order formula templates and implemented randomiza-
tion over these templates by considering theory reasoning and simplification
orderings.

Using this approach we achieved highly controlled output: exam problems
which did not require any additional filtering. However, we note that the number
of generated problems was limited, and to obtain additional problems, we would
have to modify the templates.

3.1 Satisfiability Modulo Theories (SMT)

We considered first-order formula templates in the combined, quantifier-free the-
ories of equality, arrays and linear integer arithmetic, corresponding to the logic
AUFLIA of SMT-LIB [1]. We aimed at generating SMT formulas over which
reasoning in all three theories was needed, by exploiting the DPLL(T) frame-
work [13] in combination with the Nelson-Oppen decision procedure [11] (Prob-
lem 2 of Fig. 1).
3 I.e., L = ¬L and ¬L = L.

Automated Generation of Exam Sheets for Automated Deduction 191

With naive random generation, it might however happen that, for example,
array reasoning is actually not needed to derive (un)satisfiability of the gener-
ated SMT formula. We therefore constructed an SMT formula template and
randomly introduced small perturbations in this template, so that the theory-
specific reasoning in all generated SMT instances is different while reasoning in
all theories is necessary. For doing so, we considered an SMT template with two
constants of integer sort and replaced an integer-sorted constant symbol c by
integer-sorted terms c + i, where i ∈ {−3, −2, . . . , 3} is chosen randomly. We
flattened nested arithmetic terms such as (c + i) + j to c + k, where i, j, k are
integers and k = i + j. As a result, we generated 49 different SMT problems;
we show one such formula, together with the corresponding reasoning tasks, in
Problem 2 of Fig. 1.

3.2 Ground Superposition

For generating quantifier-free first-order formulas with equalities, over which
ground and ordered superposition reasoning had to be employed (Problem 3 of
Fig. 1), we aimed at (i) generating unsatisfiable sets S of ground formulas with
uninterpreted functions symbols, such that (ii) refutation proofs of S had similar
lengths and complexities. Similarly to Sect. 3.1, we fixed a template for S and
only varied its instantiation and the Knuth-Bendix ordering (KBO) [8]
 to be
used for refuting S within the superposition calculus. To this end, we considered
variations of weight function w and symbol precedence � over S, yielding thus
different KBOs
 to be used for refuting S. The main steps of our approach are
summarized below.

Table 1. Weights and precedences for the ground superposition problem.

Weight of: f g a b Precedence Weight of: f g a b Precedence
w1,f : 1 3 2 1 p1,f : a � b � f � g w1,g : 3 1 2 1 p1,g : a � b � g � f

w2,f : 0 3 2 1 p2,f : f � a � g � b w2,g : 3 0 2 1 p2,g : g � a � f � b

w3,f : 0 1 3 1 p3,f : f � a � b � g w3,g : 1 0 3 1 p3,g : g � a � b � f

w4,f : 1 2 3 1 p4,f : g � f � a � b w4,g : 2 1 3 1 p4,g : f � g � a � b

(i) We fixed the template for S to be the following set of four clauses

E(F (X)) = a ∨ E(G(Y)) = a (2)
F (X) = a [∨ H(b) �= H(b)] (3)
G(Y) = a [∨ H(b) �= H(b)] (4)
E(a) �= a [∨ H(b) �= H(b)], (5)

where E, F, G, H ∈ {f, g}, X, Y ∈ {a, b}, and the literal in [] is added to
the clauses optionally.

192 P. Hozzová et al.

(ii) We created instances of S of this template ensuring that no clause in S is
redundant, by considering the following constraints.
• E �= H and F (X) �= G(Y);
• Either X or Y is not a. Similarly, either F or G is not E;
• The literal H(b) �= H(b) is in exactly one of the clauses (3), (4), (5).
As a result, we produced 12 instances of S satisfying the above properties.

Table 2. Assignment of KBOs to instances of the ground superposition problem.

Condition i1, I1 i2, I2 i3, I3

F �= G and X �= Y 1, E 2, E 3, E
F �= G and X = Y 1, H 2, E 4, H
F = G and X �= Y 1, H 2, H 3, E

(iii) We considered the term algebras induced by the generated instances of
S and designed KBOs
 such that refuting the respective instances of S
using
 requires ordering terms both using weight w and precedence �. In
addition, we imposed that either F (X)
 a
 G(Y) or G(Y)
 a
 F (X)
holds. With such orderings
, the shortest refutations of instances of S
are of the same length, and in at least one application of superposition, a is
replaced by either F (X) or G(Y) in the resulting clause. We generated eight
different KBOs
 fulfilling these conditions. The weights and precedences
used to generate the KBOs are displayed in Table 1. The table shows all
weight and precedence combinations, denoted as wi,I , pi,I for i ∈ {1, 2, 3, 4}
and I ∈ {f, g}.4 Each instance of S was combined with three different
KBOs, generated by pairs (wi1,I1 , pi1,I1), (wi2,I2 , pi2,I2), (wi3,I3 , pi3,I3). The
values of i1, I1, i2, I2, i3, I3 are chosen based on the values of F, G, X, Y , as
expressed by the conditions in Table 2.

Ultimately, we obtained 36 different problems (combinations of instances of
S and
) for the ground superposition reasoning task of our exam. Problem 3
of Fig. 1 shows such an instance.

4 Implementation

We implemented our approach to randomly generating SAT, SMT, and non-
ground first-order problems in Haskell, whereas our ground superposition prob-
lem generator was implemented in Python. All together, our toolchain involved
4 Note that for all values of i, wi,f (f) = wi,g(g) and wi,f (g) = wi,g(f), and the

precedences pi,f , pi,g are the same except for the precedence of f, g. However, for
convenience, the table contains both wi,f and wi,g, as well as pi,f and pi,g for all
values of i.

Automated Generation of Exam Sheets for Automated Deduction 193

about 2 300 lines of code, including additional scripts for putting parts together.
We encoded each randomly generated SMT and first-order formula into the
SMT-LIB input format [1] and, for sanity checks, ran the SMT solver Z3 [10]
and the first-order theorem prover Vampire [9] for proving the respective formu-
las. In addition, each formula has been converted to LATEX, yielding randomly
generated exam sheets – one such exam sheet is given in Fig. 1.

Regarding the filtering of generated formulas using the constraints discussed
in Sect. 2, we implemented restrictions on the shape of formulas (items (i) and (iii)
in Sect. 2.1) as constraints during formula generation, while other criteria were
realized as post-generation filters. Regarding post-generation filtering, we did
not require very efficient algorithms since the formulas under consideration are
very small. For example, for the restriction on the number of models we used
a naive satisfiability test based on evaluating the formula under each possible
interpretation. Thanks to this approach it is easy to add new filters/constraints.

For the random problem generation setting of Sect. 2, we applied design prin-
ciples of the Haskell library QuickCheck [3]. With QuickCheck, randomly gen-
erated data can easily be defined in an embedded generator language. However,
because of our many filtering criteria, we wanted the generator to additionally
support backtracking. We were also interested in determining the size of the
filtered sample space. To this end, we created a simple typeclass MonadChoose
in the style of the monad transformer library (mtl), with a single primitive oper-
ation choose for choosing an element from a list of possible choices:

class MonadPlus m => MonadChoose m where
choose :: [a] -> m a

Our generator implementations are generic over the monad, constrained by
MonadChoose. The following listing shows (a slightly simplified) part of the infer-
ence generator discussed in Sect. 2.2.

genExamInference :: MonadChoose m => m Inference
genExamInference = do
-- Define signature (partially omitted)
let vars = ["x", "y", "z"]
let opts = GenOptions{ vars = vars, ... }

-- Choose variables to appear in l1 and l2
v1 <- choose vars
v2 <- choose (filter (/= v1) vars)

-- Generate literals
-- l1: exactly one occurrence of v1
l1 <- mfilter ((==1) . length . toListOf variables)

$ genUninterpretedLiteral opts{ vars = [v1] }
-- l2: at least two occurrences of v2
l2 <- mfilter ((>=2) . length . toListOf variables)

$ genEqualityLiteral opts{ vars = [v2] }

194 P. Hozzová et al.

-- l3: ground literal
l3 <- genUninterpretedLiteral opts{ vars = [] }

-- (rest omitted)
return inference

genEqualityLiteral, genUninterpretedLiteral
:: MonadChoose m => GenOptions -> m Literal

-- (literal generators omitted)

We used two concrete implementations to evaluate generators:

1. RandomChoice, a monad that implements choose as uniform random choice
with backtracking support. Conceptually, this is like the standard list monad
where choose works like the regular monadic bind for lists except that it first
shuffles the list with a random permutation. This evaluation method is used
to generate random exams.

2. The standard list monad to enumerate the sample space. This second evalu-
ation method helps verifying that the sample space is sufficiently large.

5 Evaluation of Online Exam Outcomes

In Summer 2020, all together 31 students took the online written exam in “Auto-
mated Deduction”. We note that in Summer 2018 and Summer 2019, there have
been 17 and respectively 31 students taking the in-class exam of the course. We
believe that the online lecturing and examination in Summer 2020 did not have
negative impact on the students’ course performance.

In the online written examination of Summer 2020, the students solved their
respective unique exam assignments on paper and submitted scanned versions of
their solutions online. The types of exam problems from Summer 2020 were the
same as in previous editions of the course. However, contrary to previous years,
different students had different exam assignments, to minimise opportunity for
collusion between students.

While building the pipeline described in this paper required much more work
than creating just one exam sheet, our approach was more efficient than it would
be to create 31 different exam sheets manually. Additionally, our approach guar-
anteed that the exam problems were unique, yet required comparable effort to
solve. Also, reusing our pipeline in the future requires only minimal changes.

Further, the types of the problems in our exam are not trivial to grade, since
the solutions require applying complicated reasoning algorithms on paper, and
the grade has to take into account the whole process, not just the result. However,
the use of templates of Sect. 3 made the grading fairly similar to grading multi-
ple solutions of the same problem by providing a clear pattern to follow. This
observation extends to the problem on non-ground superposition (Subsect. 2.2),
because the argument required in the solution does not depend majorly on the
generated parts, even though we did not use an explicit template. The situation

Automated Generation of Exam Sheets for Automated Deduction 195

is different for the problem on boolean satisfiability (Subsect. 2.1). There, the
solution varies greatly with the input formula, and grading a different instance
requires mentally stepping through the problem again. One might suggest to
also generate fully worked solutions to this problem, however it is not imme-
diately clear that this would be helpful: at various points, the students may
choose among multiple correct possibilities, each of which leads to differences in
subsequent parts of the solution.

The average exam score was 79.9%, compared to 80% in 2019 and 76% in 2018.
Based on the comparable exam averages, we believe our online written exami-
nation from Summer 2020 did not bring any significant change in the overall
course performances of students enrolled in the course.

Finally, eight students filled out a feedback survey for the course in Summer
2020. All of them reported high levels of satisfaction with the course, with one
student explicitly praising the online exam format. Our course in Summer 2020
has been also nominated for the Best Distance Learning Award 2020 of the TU
Wien.

6 Conclusion

We describe a randomized approach and toolchain for generating exam problems
in automated reasoning, in particular in the setting of SAT, SMT, and first-order
theorem proving. Our approach was used to generate individual exam sheets
focused on problem solving within automated deduction, and could be adapted
to other constraints and course frameworks.

Acknowledgments. We acknowledge funding supporting this work, in particular the
ERC CoG ARTIST 101002685, the ERC StG 2014 SYMCAR 639270 and the Austrian
FWF research project LogiCS W1255-N23.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.6. Techni-
cal report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

3. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of ICFP, pp. 268–279 (2000)

4. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

5. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 175–188. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27813-9_14

www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1007/978-3-540-27813-9_14

196 P. Hozzová et al.

6. Gleiss, B., Kovács, L., Rath, J.: Subsumption demodulation in first-order theorem
proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Proceedings of IJCAR, pp.
297–315. Springer, Cham (2020)

7. Gulwani, S., Radicek, I., Zuleger, F.: Automated clustering and program repair
for introductory programming assignments. In: Proceedings of PLDI, pp. 465–480
(2018)

8. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Com-
putational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)

9. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8_1

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

11. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

12. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook
of Automated Reasoning, pp. 371–443 (2001)

13. Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo theories. In:
Proceedings of JELIA, pp. 308–319 (2002)

14. Tseytin, G.S.: On the complexity of derivation in propositional calculus. In: Stud-
ies in Constructive Mathematics and Mathematical Logic, pp. 115–1125. Steklov
Mathematical Institute (1970)

15. Wang, K., Singh, R., Su, Z.: Search, align, and repair: data-driven feedback genera-
tion for introductory programming exercises. In: Proceedings of PLDI, pp. 481–495
(2018)

https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-540-78800-3_24

Gauss-Lintel, an Algorithm Suite
for Exploring Chord Diagrams

Abdullah Khan1 , Alexei Lisitsa2(B) , and Alexei Vernitski1

1 Department of Mathematical Sciences, University of Essex, Essex, UK
{ak20749,asvern}@essex.ac.uk

2 Department of Computer Science, University of Liverpool, Liverpool, UK
a.lisitsa@liverpool.ac.uk

Abstract. Gauss diagrams, or more generally chord diagrams are a
well-established tool in the study of topology of knots and of planar
curves. In this paper we present a system description of Gauss-lintel,
our implementation in SWI-Prolog of a suite of algorithms for exploring
chord diagrams. Gauss-lintel employs a datatype which we call “lintel”,
which is a list representation of an odd-even matching for the set of inte-
gers [0,...,2n–1], for efficiently generating Gauss diagrams and testing
their properties, including one important property called realizability.
We report on extensive experiments in generation and enumeration of
various classes of Gauss diagrams, as well as on experimental testing of
several published descriptions of realizability.

1 Gauss Diagrams and Their Properties

Gauss diagrams are a mathematical construction used for expressing some prop-
erties of closed planar curves (or of projections of knots on a plane). Let us
think about a closed planar curve as the image of a (suitably smooth) mapping
γ : S1 → R2, where S1 is the circumference of a circle and R2 is the plane.
Figure 1a) presents an example of a closed planar curve. The Gauss diagram
of the curve, shown in Fig. 1b), is the circle S1 together with all chords inside
the circle which connect the two pre-images of each intersection of the curve; in
other words, a chord connects two points x and y on the circumference of the
circle if γ(x) = γ(y).

As one studies chord diagrams, that is, circles with chords, like in Fig. 1b), it
is possible to prove that not every chord diagram correspond to a closed planar
curve; those that do are called realizable.

A classical question of computational topology asked by Gauss [7] is which
of the chords diagrams are realizable. Gauss himself found a necessary (but
not sufficient) condition - in a realizable diagram every chord intersects an even
number of other chords. This is why a slight distinction is made between the
concepts of a chord diagram and a Gauss diagram; namely, a Gauss diagram
is a chord diagram in which every chord intersects an even number of other
chords. The first description of realizable Gauss diagrams was discovered in the
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 197–202, 2021.
https://doi.org/10.1007/978-3-030-81097-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_16&domain=pdf
http://orcid.org/0000-0002-3056-008X
http://orcid.org/0000-0002-3820-643X
http://orcid.org/0000-0003-0179-9099
https://doi.org/10.1007/978-3-030-81097-9_16

198 A. Khan et al.

1 2

34

1

4

2

1

4

3

3

2 1

2 4

3

a) b) c)

Fig. 1. Example of a) a planar curve; b) its Gauss diagram and c) its interlacement
graph.

1930’s by Dehn [6], and since then many descriptions of realizability and efficient
algorithms for checking the realizability of a Gauss diagram have been developed;
an incomplete list of references includes [3,5,12,14]. One of the most interesting
discoveries in this research [5,14,15] is that the realizability of a Gauss diagram
can be decided just using its interlacement graph, that is, a record of which
chords intersect within the circle. An interlacement graph of a chord diagram
is an undirected graph whose vertices are the chords of the diagram, and in
which there is an edge between two vertices, if the chords corresponding to these
vertices intersect. See Fig. 1c) for example; this is the interlacement graph of
the Gauss diagram in Fig. 1b). We will refer to a graph representing a diagram
itself, like that in Fig. 1b), as the diagram graph. We will say that two chord
diagrams are equivalent if their diagram graphs are isomorphic.

A chord diagram is called prime if its interlacement graph is connected (if
a diagram is not prime, it is called composite). For example the diagram from
Fig. 1 is composite.

Some recent studies [2,8] proposed very simple descriptions of realiziabil-
ity, expressible over interlacement graphs in terms of first-order logic extended
by parity quantifiers ∃evenx (meaning “there exists an even number of x such
that”). None of the previously published variants of realiziability criteria were
known to be expressible so simply, without using the second order quantification
or variants of transitive closure operators. The simple and declarative form of
these conditions opens an opportunity for experimental investigation of Gauss
diagrams using constraint satisfaction and related computational techniques. We
took this opportunity as a starting point of our research in experimental mathe-
matics with the primary aim to enumerate various classes of Gauss diagrams [10].

2 Even-Odd Matchings and Lintels

In our implementation, we use a convenient representation of Gauss diagrams.

Gauss-Lintel, an Algorithm Suite for Exploring Chord Diagrams 199

Let n be a positive integer. A lintel is an n-tuple of pairs of num-
bers ((a1

1, a
2
1), . . . , (a1

n, a2
n)) such that 1) the set of numbers in the lintel

{a1
i , a

2
i , . . . , a

1
n, a2

n} is equal to the set {0, 1, . . . , 2n − 1}, and 2) in each pair
(a1

i , a
2
i) the difference a1

i −a2
i is odd. The number n will be called the size of the

lintel. Each pair (a1
i , a

2
i) will be called a chord of the lintel.

Two lintels are strongly equivalent if they can be transformed into one another
by steps of the following two types: 1) swapping the positions of two numbers in
a chord; 2) swapping the positions of chords in the list. Two lintels are equivalent
if they can be transformed into one another by steps of the following types: 1)
and 2) as above; 3) shifting the value of each entry of the lintel cyclically modulo
2n; 4) inverting the value of each entry of the lintel modulo 2n.

A lintel is a sorted lintel if each pair in it is sorted, and first elements of
pairs are sorted, that is, for each i we have a1

i < a2
i , and for all i < j we have

a1
i < a1

j . In each class of strongly equivalent lintels there is exactly one sorted
lintel. In each class of equivalent lintels the sorted lintel which is the first in
the lexicographic order of lintels (we call such lintels Lyndon lintels, by analogy
with Lyndon words [13]) can serve as the canonical representative of the class,
and there is a one-to-one correspondence between Lyndon lintels and Gauss
diagrams.

For a given lintel L, we can produce the corresponding Lyndon lintel as
follows.

Algorithm 1. 1. Produce the sorted lintel M corresponding to L.
2. Applying cyclic shifts to M for all values s = 1, . . . , 2n− 1, produce lintels Ls.
3. Produce the sorted lintels Ms corresponding to Ls.
4. Applying the inverting step to L, produce the lintel L′.
5. Produce the sorted lintel M ′ corresponding to L′.
6. Applying cyclic shifts to M ′ for all values s = 1, . . . , 2n− 1, produce lintels L′

s.
7. Produce the sorted lintels M ′

s corresponding to L−
s .

8. Among the sorted lintels M,M ′, Ls, L
′
s, choose the least one relative to a lexicographic

order on lintels.

For efficient lintels generation we use the the following simple bijective map
from the symmetric group Sn to the set P2n of all even-odd matchings on V2n =
{0, . . . , 2n−1}. For σ ∈ Sn, σ : [1..n] → [1..n], β(σ) = {{2∗ i−1, 2∗σ(i)−2}|i ∈
[1..n]}.

3 Implementation

We have implemented the algorithms suite Gauss-Lintel for Gauss diagram
generation, equivalence checking, canonization, and realizability conditions using
the concept of lintels. The prototype implementation in the logic programming
language SWI-Prolog [17] is available at [11]. The choice of Prolog is justified
by the fact that it is very efficient in implementation of combinatorial search
using built-in backtracking and unification mechanisms. As we use the lintel con-
cept/data structure, all generated chord diagrams in our implementation satisfy
necessary condition for Gauss diagrams. We utilise a list of lists representation of

200 A. Khan et al.

lintels in Prolog. We use dynamic facts1 to store intermediate and final results of
computations. E.g. a dynamic fact “lintel(Size,L)” stores a generated canonical
lintel satisfying some conditions (depending on the user’s choice).

3.1 Lintel Generation and Canonization

The canonical lintel generation is based on efficient built-in Prolog predicate
permutation(X,Y) for the generation of all permutations of a given list (assigned
to) X and the use of bijection β : Sn → P2n. The generic generation process
proceeds as follows. Once a permutation σ is generated, the bijection β is applied
to it, and then Algorithm 1 is applied to β(σ). The resulting canonical lintel then
checked on

– whether it satisfies a chosen combination of conditions, for example, a lintel
which represents 1) prime Gauss diagram, 2) satisfying B conditions from [2],
3) not realizable;

– whether it has not been stored yet as a dynamic fact.

If both conditions are satisfied then the lintel is added as a dynamic fact, and
the process is backtracked to the generation of the new permutation. When no
new permutations are left, the database of dynamic facts provides a list of all
canonical non-equivalent lintels of a given size satisfying a chosen combination
of properties. In the implementation of Algorithm 1 we used an efficient built-in
Prolog predicate sort/4 for sorting lintels.

3.2 Properties/Conditions Checking

We have implemented a number of properties, including, most importantly, the
following ones: primality, a classical algorithm (CA) for realiziability checking
from [6,9], realizability conditions B, GL and STZ suggested in [2,8] and [15],
respectively.

– STZ conditions state that a prime Gauss diagram is realizable iff for the
adjacency matrix Mg of its interlacement graph there is a diagonal matrix Λg

such that Mg + Λg is an idempotent matrix (all matrices are considered over
GF (2), the finite field of two elements).

– GL conditions specify realizabilty of an interlacement graph g as 1) each
pair of non-neighbouring vertices has an even number of common neighbours
(possibly, zero); and 2) the same holds true for the reduced graph g/v [8] for
each vertex v of g.

– B conditions include first GL condition and further require that in the inter-
lacement graph any three pairwise connected vertices a, b, c ∈ V the sum of
the number of vertices adjacent to a, but not adjacent to b nor c, and the
number of vertices adjacent to b and c, but not adjacent to a, is even.

1 A dynamic fact is a Prolog fact (atomic formula) which can be added or removed
during run time. Using dynamic facts goes outside of the pure Prolog paradigm, but
it is very useful for keeping information about the global state.

Gauss-Lintel, an Algorithm Suite for Exploring Chord Diagrams 201

The implementation is extensible. In Gauss-lintel we provide many aux-
iliary predicates for manipulating lintels and checking their properties which
makes it easy to extend with further realizability criteria and other properties.

4 Experiments and Results

Using Gauss-lintel we have conducted various experiments and enumerated
the classes of non-equivalent Gauss diagrams, satisfying various combinations of
properties. Selected results are shown in Table 1. The Comments column reports
on cross-validation of the calculated sequences with the sequences found in either
OEIS (The Online Encyclopedia of Integer Sequences), or in other publications.
In the case a sequence is not found anywhere it is labelled as “new”.

Table 1. The number of non equivalent Gauss diagrams of sizes = 3, . . . , 11, satisfying
various realizability conditions

3 4 5 6 7 8 9 10 11 Comments

CA [6,9] 1 1 2 3 10 27 101 364 1610 OEIS A264759

STZ [15] 1 1 2 3 10 27 101 364 1610 OEIS A264759

B [2] 1 1 2 3 10 27 102 370 1646 new

GL [8] 1 1 2 3 10 27 102 370 1646 new

PRIME 1 1 4 8 40 183 1354 11079 . . . new

ALL 3 5 17 53 260 1466 10915 93196 . . . [16] (up to n=7)

The first two lines, found also in the OEIS article A264759 [1], together with
the fact that generated corresponding lists of Gauss diagrams are the same,
verify that STZ conditions [15] are correct and complete realizability condi-
tions up to the size 11. Next two lines show that despite the claims in [2,8]
the corresponding B and GL conditions are incomplete. Indeed, the numbers in
bold, which are different from the corresponding numbers in CA and STZ rows,
demonstrate that there Gauss diagrams satisfying B and GL conditions which
are not realizable. Explicit counterexamples can be found in [10,11]. Next line
demonstrates the numbers of non-equivalent prime Gauss diagrams (realizable
and non-realizable). The last line shows the number of all non-equivalent Gauss
diagrams (not necessarily prime or realizable), which expands on the results of
[16].

5 Related Work

Alternative implementations for chord diagrams generation include TaiteCurves
program2 by J. Betrema and GAP code presented in [4]. Unlike Gauss-lintel

2 TaitCurves.

https://github.com/j2b2/TaitCurves

202 A. Khan et al.

both implementations deal with realiziable and prime diagrams only, each using
fixed realizability conditions. On comparable tasks of the generation of realizable
diagrams, TaiteCurves and GAP code are more, and respectively, less efficient
than Gauss-lintel.

Acknowledgements. This work was supported by the Leverhulme Trust Research
Project Grant RPG-2019-313.

References

1. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/A264759
2. Biryukov, O.N.: Parity conditions for realizability of Gauss diagrams. J. Knot

Theor. Ramifications 28(1), 1950015 (2019)
3. Cairns, G., Elton, D.M.: The planarity porblem II. J. Knot Theor. Ramification

5(2), 137–144 (1996)
4. Chmutov, M., Hulse, T., Lum, A., Rowell, P.: Plane and spherical curves: an inves-

tigation of their invariants. In: Summer Mathematics Research Institute, REU 2006
Proceedings, Oregon State University (2006)

5. de Fraysseix, H., Ossona de Mendez, P.: A short proof of a Gauss problem. In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 230–235. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 65

6. Dehn, M.: Über Kombinatorische Topologie. Acta Math. 67, 123–168 (1936)
7. Gauss, C.F.: Werke, vol. VII. Tuebner, Leipzig (1900)
8. Grinblat, A., Lopatkin, V.: On realizabilty of Gauss diagrams and constructions

of meanders. J. Knot Theor. Ramifications 29(5), 2050031 (2020)
9. Kauffman, L.H.: Virtual knot theory. Eur. J. Comb. 20(7), 663–691 (1999)

10. Khan, A., Lisitsa, A., Vernitski, A.: Experimental mathematics approach to Gauss
diagrams realizability. arxiv:2103.02102 (2021)

11. Khan, A., Lisitsa, A., Vernitski, A.: Gauss-lint algorithms suite for Gauss diagrams
generation and analysis. Zenodo (2021). https://doi.org/10.5281/zenodo.4574590

12. Lovász, L., Marx, M.L.: A forbidden substructure characterization of Gauss codes.
Bull. Am. Math. Soc. 82(1), 121–122 (1976)

13. Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77, 202–215 (1954)
14. Rosenstiehl, P.: Solution algébrique du problème de Gauss sur la permutation des

points d’intersection d’une ou plusieurs courbes fermées du plan. C.R. Acad. Sci.
283(série A), 551–553 (1976)

15. Shtylla, B., Traldi, L., Zulli, L.: On the realization of double occurrence words.
Discrete Math. 309(6), 1769–1773 (2009)

16. Valette, G.: A classification of spherical curves based on Gauss diagrams. Arnold
Math. J. 2(3), 383–405 (2016). https://doi.org/10.1007/s40598-016-0049-3

17. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theor. Pract.
Logic Program. 12(1–2), 67–96 (2012)

http://oeis.org/A264759
https://doi.org/10.1007/3-540-63938-1_65
http://arxiv.org/abs/2103.02102
https://doi.org/10.5281/zenodo.4574590
https://doi.org/10.1007/s40598-016-0049-3

Logic and Systems

A New Export of the Mizar Mathematical
Library

Colin Rothgang
1(B)

, Artur Korniłowicz
2

, and Florian Rabe
3

1
Mathematics, TU Berlin, Berlin, Germany

colin.rothgang@posteo.net
2

Institute of Computer Science, Bialystok, Poland

3
Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany

Abstract. The Mizar Mathematical Library (MML) is a prime target of library

exports, i.e., translations of proof assistant libraries that make the libraries avail-

able to knowledge management systems or other deduction systems. The MML

has been exported multiple times in the past, including our own export from Mizar

to OMDoc done in 2011. But the exporters tend to be very difficult and expensive

to maintain.

We present a complete reimplementation of our previous export. It incorpo-

rates many lessons learned and leverages improvements made both on the Mizar

and the OMDoc side.

1 Introduction

The interoperability of proof assistants and the integration of their libraries is a long-

standing goal in theorem proving. One of the biggest prizes here is the Mizar Mathemat-

ical Library (MML) [BBG+18]. It has been exported multiple times [Urb03,IKRU13]

and other efforts are ongoing [KP19]. Mizar stores all kernel data structures in exter-

nally readable XML files [Urb05] so that exports are reduced to interpreting the XML

files. However, Mizar generates about a dozen XML files per MML article, and these use

ad-hoc, under-documented, and evolving XML schemas that are as complex as Mizar’s

feature-rich language and contain many parts that are only needed internally.

This was a major difficulty in our first translation of the MML to OMDoc [IKRU13],

an XML-based representation format for mathematical knowledge and made the trans-

lation, while successful, prohibitively difficult to maintain. In the ten years since then,

two things have changed. The Mizar XML data structures have been heavily improved,

both for internal reasons and in response to the woes of translation developers. And we

have developed much better routines for prover library translations [KR20]. The present

system description redoes the export from scratch.

Like [IKRU13], we manually formalize the Mizar logic as a theory 𝑀 in a logical

framework of the LF family, which is realized in MMT [RK13]. Then we generate one

MMT theory relative to 𝑀 for every article in the MML. All these MMT theories are

stored in OMDOC format [Koh06] and are available online. During the export, we aim at

both preserving all Mizar features exactly as they are (as opposed to implementing log-

ically complex feature eliminations) and simplifying the language by reducing features

to the primitives provided by the MMT framework.

c© Springer Nature Switzerland AG 2021

F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 205–210, 2021.

https://doi.org/10.1007/978-3-030-81097-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_17&domain=pdf
https://orcid.org/0000-0001-9751-8989
https://orcid.org/0000-0002-4565-9082
https://orcid.org/0000-0003-3040-3655
https://doi.org/10.1007/978-3-030-81097-9_17

206 C. Rothgang et al.

Besides rejuvenating the export, we go beyond [IKRU13] in multiple ways: (i) We

implement the relevant parts of Mizar’s XML schema as a set of Scala data types, from

which the parser is automatically generated, thus massively simplifying the mainte-

nance of the translation. (ii) Our translation is almost entirely context-free (every file

can be exported without processing its dependencies), which is critical for scalability

of the export, and we identify the last remaining context-sensitivity issues in the XML

schemas. (iii) We represent Mizar’s rich set of declarations as MMT patterns in the sense

of [HR15] and Mizar’s structures (akin to record types) as an MMT structural feature in

the sense of [MRRK20]. (iv) We cover many recondite Mizar features that were not

handled well in [IKRU13] such as redefinitions.

2 Design

2.1 Formalizing the Mizar Logic

At the object-level, we formalize Mizar’s softly-typed set theory in a logical framework

in MMT. We omit technical details that are already part of [IKRU13] and only point out

that we use LF-style HOAS with {_}_ and [_]_ representing Π and 𝜆. At the declaration-

level, we represent Mizar’s many conservative extension principles such as definitions

and registrations as MMT patterns [HKR12] and structural features [MRRK20]. The

formalization is available at https://gl.mathhub.info/MMT/LATIN2/.

For example, Mizar’s direct partial predicate definitions are formalized as the MMT

pattern below. Its header takes natural numbers n (the arity of the new predicate pred)

and m (the number of cases in its definition), a list argTps of 𝑛 argument types (each

potentially depending on the other arguments), 𝑚 cases (each consisting of a condition

𝑐𝑎𝑠𝑒𝑠
𝑖

on the 𝑛 arguments and the resulting predicate caseRes
𝑖
), a default result defRes

if no case applies, and a proof cons that the results of cases agree when their conditions

overlap (we omit the definition of consDirectPredDef). These are the argument given in

Mizar and exported in the XML files. The body of the pattern contains the elaboration

performed by Mizar: the 𝑛-ary predicate pred and its defining axiom means. Typical for

all pattern is the heavy use of MMT’s support for flexary operators such as conjunction

and mapping over argument sequences.

pattern directPartPredDef(n ∶ NAT, m ∶ NAT, argTps ∶ (term
n → tp)n,

cases ∶ (term
n → prop)m, caseRes ∶ (term

n → prop)m, defRes ∶ term
n → prop

cons ∶ consDirectPredDef n argTps m cases caseRes) =
pred ∶ term

n → prop

consistency = cons

means ∶ {x ∶ term
n} ⟨ ⊢ x.i ⦂ (argTps.i) x | i ∶ n⟩ →

⊢ nary_and m ⟨ (cases.j) x ⇒ (pred x) ⇔ (caseRes.j) x | j ∶ m ⟩

∧ nary_and m ⟨ ¬ (cases.k) x | k ∶ m ⟩ ⇒ pred x ⇔ defRes x

2.2 Exporting the MML as XML

The Mizar verifier creates several XML files per source file that store information of the

various processing phases. The most important are Weakly Strict Mizar (WSM, .wsx

https://gl.mathhub.info/MMT/LATIN2/

A New Export of the Mizar Mathematical Library 207

files) [BA12,NP16], which contain the syntax trees of statically analyzed articles and

More Strict Mizar (MSM, .msx files), which extends WSM with the resolution of vari-

ables, constants, and labels. To additionally keep the original syntax, Even more Strict

Mizar (EMSM, .msx files) is being developed, which adds semantic information about

used constructors and Mizar patterns (which store the used format, constructor, argu-

ment types, and positions of visible arguments for a definition).

For example, the definition of subset below contains the formula x in Y, which results

in EMSM in the XML fragment underneath. Here the attribute spelling gives the original

syntax. The other blue-highlighted attributes are what we can use to form identifiers

in OMDOC for the three different kinds of references: the constant in defined in the

MML, and the kinds of bound variables Y (bound by the declaration) and x (bound by

a quantifier). The other attributes (nr, formatnr, etc.) represent internally used numbers

that we ignore. The decision which attributes to use/ignore requires a Mizar expert but

is now documented in our export.

definition let X,Y; pred X c= Y means for x being object holds x in X implies x in Y;
reflexivity; end;

<Relation−Formula nr="3" formatnr="6" patternnr="3" absolutepatternMMLId=

"HIDDEN:3" leftargscount="1" spelling="in" sort="Relation-Formula"

constrnr="2" absoluteconstrMMLId="HIDDEN:2" originalnr="0" position="72\47">
<Arguments>
<Simple−Term idnr="2" spelling="x" position="72\44" origin="BoundVar"

sort="BoundVar" serialnr="29" varnr="1"/>
<Simple−Term idnr="9" spelling="Y" position="72\49" origin="ReservedVar"

sort="Constant" serialnr="8" varnr="2"/></Arguments></Relation-Formula>

2.3 Reading the XML into Scala Classes

Contrary to other parser generators, which generate the source code of the classes and

the parser from a grammar, we directly implement the classes in Scala and then gen-

erate the parser. For example, the (heavily simplified) classes below are used to pick

out the relevant attributes from the Simple_−Term element visible above. Expression is

the abstract class of all Mizar expressions, and LocalConstAttr is an auxiliary class that

groups XML attributes that often occur together.

abstract class MizTerm extends Expression
case class Simple_Term(serialnr: Int, spelling:String, sort:String) extends MizTerm
case class Arguments(_children:List[MizTerm])

This is sufficient to generate the XML parser using Scala reflection. This has the

advantage that the Scala classes, which are what the translation developer interacts with

primarily in the next step, are much more easily maintainable, can be better documented

than generated code, and can be manually tweaked better to be practical.

These classes are available at https://github.com/UniFormal/MMT/ in the package

info.kwarc.mmt.mizar. Note that this XML parsing step is independent of MMT. Thus,

other developers can easily reuse these classes and our XML parser as a starting point

for translations into other target languages.

https://github.com/UniFormal/MMT/

208 C. Rothgang et al.

2.4 Translating the Scala Classes to MMT

The logical heart of the translation is now isolated in an inductive function that traverses

the Scala classes holding the MML XML and producing corresponding MMT classes.

This happens in memory, and MMT’s existing emitters for OMDoc and MMT source

syntax can be used out of the box. Critically, it requires handling all idiosyncrasies of

the Mizar language. The resulting export of the MML is available at https://gl.mathhub.

info/Mizar/MML.

We translate each Mizar article to an MMT theory (relative to those from Sect. 2.1)

that contains include declarations for all Mizar articles it depends on. Each theorems is

translated to a single MMT declaration whose type gives the claim and whose definiens

the proof. Each scheme, functor/predicate/mode, and attribute definitions as well as

synonyms/antonyms and registrations are translated into instances of the correspond-

ing patterns mentioned in Sect. 2.1. Where applicable, they are followed by declarations

stating and proving the specially treated properties such as reflexivity for binary predi-

cates. Redefinitions are translated into fresh constants with a new definition; if only the

type is changed and no new definiens is provided, we synthesize a definition by applying

the original constant to the corresponding arguments (this works, as the new types are

required to be subtypes). Structure definitions (record types) are translated using an

MMT structural feature in the style of [MRRK20] that reimplements in MMT Mizar’s

conservative extension principle for adding named record types. Mizar’s forgetful func-

tors between structures become record subtyping.

Proofs, which Mizar does not store entirely anyway, are translated only partially by

using a special constant for a proof oracle: it takes a claim and a number of references

to used theorems and returns a proof of the claim. This way proof dependencies are

preserved in the export.

Improving on [IKRU13], our translation covers correctness conditions and proper-

ties of definitions, all registrations ([IKRU13] covered only existential registrations),

forgetful-functors between structures, and partial proofs.

For example, consider the definition of the subset predicate from Sect. 2.2, which

uses 𝑛 = 2 arguments, whose types are just set and do not depend on other arguments,

𝑚 = 0 cases, and one default case for the actual definition. Its name R1R1 is build from

a character characterizing the kind of declaration (R) and the article-scoped counters

contained in the absolutepatternMMLId and absoluteconstrMMLId, which yields a unique

identifier within the article. It is translated to the following instance of the MMT pat-

tern directPartPredDef from Sect. 2.1 (the formula true ∧ true ⇒ _ is deliberately not

simplified, to emphasize how it is derived by elaborating the directPartPredDef pattern):

https://gl.mathhub.info/Mizar/MML
https://gl.mathhub.info/Mizar/MML

A New Export of the Mizar Mathematical Library 209

instance tarski:R1R1 ?MizarPatterns/directPartPredDef(2 0 ⟨([x ∶ term
2] set), ([x ∶ term

2] set)⟩
⟨⟩ ⟨⟩ ([x ∶ term

2] for term [x/BV/29 ∶ term] x/BV/29 in x.0 ⇒ x/BV/29 in x.1)
(proof omitted))

∕∕elaborates to

pred ∶ term
2 → prop

consistency = (proof omitted)
means ∶ {x ∶ term

2} ⊢ x.0 ⦂ set →⊢ x.1 ⦂ set →⊢ true ∧ true

⇒ (tarski:R1R1/pred x) ⇔ (for term [x/BV/29 ∶ term] x/BV/29 in x.0 ⇒ x/BV/29 in x.1)

The translation is context-free except for a few cases where the EMSM files do

not quite contain enough information yet—in those cases some static analysis of Mizar

must be reimplemented in MMT and therefore the depended-upon articles must have

been processed already:

– Some functor redefinitions and functorial registrations require type inference of the

return type

– The arity of the original declaration of a redefinition without definiens must be deter-

mined.

The Mizar developers plan to address this issue with a new set of files in a new extension

of EMSM.

3 Conclusion and Future Work

We have presented a thorough overhaul
Format Size Gen. time

MML 100 MB -

XML 4.7 GB 15 min

MMT (zipped OMDoc) 18 MB 2 h

MMT (text syntax) 200 MB 30 h

of the 10-year old export of the MML

into OMDOC, leveraging all lessons

learned and improvements made since

then. Our export covers the entire

MML with the only exception being

the partial translation of proofs. The

table on the right gives an overview of the sizes and generation times of the digital arti-

facts, all of which are available online as referenced throughout the paper. The export

has so far been run only on simple hardware, and we expect shorter times when paral-

lelizing on a server as soon as all issues of context-sensitivity have been removed. The

generation time of the Mizar XML is so short because it is parallelized and Mizar only

needs to resolve identifiers, which does not require verifying the proofs. The generation

time of the MMT text syntax is excessive due to a scalability issue in MMT that was

uncovered by the present export; it is unrelated to the Mizar export and will be fixed in

a future release. The sizes of the Mizar and the MMT text are not directly comparable:

the latter lacks full proofs, but includes some longer generated variable names, includes

instances with their elaborations, and uses a less optimized syntax for conciseness and

readability.

The XML produced by Mizar has much higher quality, the representation uses mod-

ern MMT feature for declaratively mimicking Mizars’s highly idiosyncratic language,

and the export implementation is substantially more maintainable, easier to use, and

scalable. This provides promising evidence that investments into proof assistant library

210 C. Rothgang et al.

export workflows (albeit costly ones at glacial pace) are putting library translations and

the thus-enabled system integrations ever more feasible.

References

BA12. Bylinski, C., Alama, J.: New developments in parsingMizar. In: Jeuring, J., Campbell,

J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012.

LNCS (LNAI), vol. 7362, pp. 427–431. Springer, Heidelberg (2012). https://doi.org/

10.1007/978-3-642-31374-5_30

BBG+18. Bancerek, G., et al.: The role of the Mizar Mathematical Library for interactive proof

development in Mizar. J. Autom. Reason. 61(1), 9–32 (2018). https://doi.org/10.1007/

s10817-017-9440-6

HKR12. Horozal, F., Kohlhase, M., Rabe, F.: Extending MKM formats at the statement level.

In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 65–80. Springer,

Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-5_5

HR15. Horozal, F., Rabe, F.: Formal logic definitions for interchange languages. In: Kerber,

M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI),

vol. 9150, pp. 171–186. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-

20615-8_11

IKRU13. Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar Mathematical Library in

OMDoc: translation and applications. J. Autom. Reason. 50(2), 191–202 (2013).

https://doi.org/10.1007/s10817-012-9271-4

Koh06. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [ver-

sion 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006). https://doi.org/10.

1007/11826095

KP19. Kaliszyk, C., Pak, K.: Semantics of Mizar as an Isabelle object logic. J. Autom. Rea-

son. 63(3), 557–595 (2019). https://doi.org/10.1007/s10817-018-9479-z

KR20. Kohlhase, M., Rabe, F.: Experiences from exporting major proof assistant libraries

(2020). see https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf

MRRK20. Müller, D., Rabe, F., Rothgang, C., Kohlhase, M.: Representing structural language

features in formal meta-languages. In: Benzmüller, C., Miller, B. (eds.) CICM 2020.

LNCS (LNAI), vol. 12236, pp. 206–221. Springer, Cham (2020). https://doi.org/10.

1007/978-3-030-53518-6_13

NP16. Naumowicz, A., Piliszek, R.: Accessing the Mizar library with a weakly strict Mizar

parser. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F. (eds.)

CICM 2016. LNCS (LNAI), vol. 9791, pp. 77–82. Springer, Cham (2016). https://

doi.org/10.1007/978-3-319-42547-4_6

RK13. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1), 1–54 (2013)

Urb03. Urban, J.: Translating Mizar for first order theorem provers. In: Asperti, A., Buch-

berger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–215.

Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36469-2_16

Urb05. Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML

easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360.

Springer, Heidelberg (2006). https://doi.org/10.1007/11618027_23

https://doi.org/10.1007/978-3-642-31374-5_30
https://doi.org/10.1007/978-3-642-31374-5_30
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/978-3-642-31374-5_5
https://doi.org/10.1007/978-3-319-20615-8_11
https://doi.org/10.1007/978-3-319-20615-8_11
https://doi.org/10.1007/s10817-012-9271-4
https://doi.org/10.1007/11826095
https://doi.org/10.1007/11826095
https://doi.org/10.1007/s10817-018-9479-z
https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf
https://doi.org/10.1007/978-3-030-53518-6_13
https://doi.org/10.1007/978-3-030-53518-6_13
https://doi.org/10.1007/978-3-319-42547-4_6
https://doi.org/10.1007/978-3-319-42547-4_6
https://doi.org/10.1007/3-540-36469-2_16
https://doi.org/10.1007/11618027_23

A Language with Type-Dependent
Equality

Florian Rabe(B)

Computer Science, FAU Erlangen-Nuremberg, Erlangen, Germany
florian.rabe@fau.de

Abstract. In soft type systems terms and types exist independently and
typing is a binary relation between them. That allows the same term to
have multiple types, which is in particular the case in the presence of
subtyping. Thus, a soft type system may define equality in such a way
that two terms can be equal at one type but unequal at another type.

We explore the design of soft type systems with such a type-dependent
equality. The most promising application is that it yields a more natural
treatment of quotient types: if two terms can be different at the base type
but equal at the quotient type, we can use the same representation in
both types without incurring the cost of using equivalence classes. That
can help formalize mathematics, where the official definition of quotients
uses equivalence classes but practical notations usually do not. The main
drawback of such a system is that the substitution of equals by equals
becomes more complex as it now depends on the type with which the
equal terms are used.

We analyze the general problem, show examples from major soft-typed
proof assistants, and then present a simple language that allows studying
type-dependent equality in a simple rigorous setting.

1 Introduction

To work with mathematical content in computer systems, it is necessary to
represent it in formal languages. So far combining the flexibility of informal
mathematical language with strong tool support has proved challenging. All
major proof assistants are at least partially motivated by this but must make
different trade-offs to obtain tool support. And despite massive progress, no
current system is even close to mimicking the flexibility of mathematical lan-
guage [Wie07,KR20]. Arguably that is part of the reason why adoption of proof
assistants by mathematicians is much slower than hoped.

A fundamental issue is the decidability of typing and equality, which is not
a priority (arguable even a negative priority) in mathematics but often essential
in proof assistants. Therefore, features like subtyping via predicate types {x :
A|p(x)} and equating objects via quotient types A/r are very difficult to design
in formal systems.

In hard-typed systems, every term has a unique type (possibly up to
some equality on types). Examples used in proof assistants are dependent
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 211–227, 2021.
https://doi.org/10.1007/978-3-030-81097-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_18&domain=pdf
https://orcid.org/0000-0003-3040-3655
https://doi.org/10.1007/978-3-030-81097-9_18

212 F. Rabe

type theories such as the one in Coq [Coq15] and the higher-order logic fam-
ily [Gor88]. Hard typing often yields better computational properties (in par-
ticular type inference, decidable equality) but requires formalization artifacts
when mathematical operations on sets cannot be mapped direct to correspond-
ing operations on types. For examples, quotients must usually be modeled via
Setoids {A : type, r : A → A → bool} and subtypes via dependent products
Σx : A.P (x). Lean [dKA+15] uses an interesting compromise: it adds kernel-
level proof automation for those artifacts even though they are library-level
definitions and not part of the underlying logic.

Our focus here is on soft-typed systems, where terms exist independently
of types and typing is giving by a binary predicate between terms and types.
In particular, every term can have many different types, and types can be seen
as unary predicates on terms. Proof assistants using soft typing include Nuprl
[CAB+86,ABC+06] and Mizar [TB85]. These can accommodate predicate types
(both) and quotient types (Nuprl) naturally at the cost of making typing and
equality undecidable. A compromise solution is employed in PVS [ORS92]: it uses
a hard type system with a lattice of soft predicate subtypes for each hard type.

In this paper we look at one particular feature in the design of soft type
systems: type-dependent equality (TDE). With TDE, the equality operator is
defined in such a way that the derivability of the formula s =A t depends on
the type A—the same two terms might be equal at one type but unequal at a
different type. Note that TDE is not a design option in hard type systems at all
because there terms do not have multiple different types to begin with.

This paper is motivated by the observation that TDE, while used in some
systems, has received disproportionately little systematic attention relative to its
potential benefits and fundamental nature. In fact, the author coined the name
“type-dependent equality” for the occasion of this paper. Even in proof assistants
featuring (some variant of) TDE, it is not prominently advertised. This is all
the more important as some of the TDE-related language design trade-offs in
these systems are very subtle and little-known even to experts in the area of
formalized mathematics.

We take a broad approach focusing on general ideas and presenting only a
simple formal language with TDE. This is warranted because typing and equality
are cross-cutting issues that affect virtually every other language feature and
thus cannot be studied in isolation. Sect. 2 extensively discusses the benefits and
dangers of TDE and how it interrelates with other language features. It also
describes some of the subtleties of how TDE is or is not realized in current proof
assistants. Then Sect. 3 introduces the syntax and semantics of a formal language
with TDE. It serves as an example to better understand TDE and as a starting
point to develop more advanced languages with TDE. Section 4 concludes.

2 Motivating Considerations and Related Work

2.1 Type-Dependent Equality

Benefits Equality is usually seen as a binary relation on objects. Even in typed
languages, which often use a ternary equality relation s =A t, equality is often

A Language with Type-Dependent Equality 213

absolute in the sense that the derivability of s =A t does not depend on A. The
only effect of A in =A is to restrict s and t to be of type A—if s and t have both
type A and B, then either both s =A t and s =B t hold or neither.

A type-dependent equality (TDE) relation is rare, and it is instructive to
ponder why. In hard-typed languages such as HOL [Gor88] or the calculus of
constructions underlying Coq [Coq15], all types are disjoint. Equality is ternary
because it is a polymorphic family of binary relations, one for each type. The
question of TDE does not come up because terms s and t never have two different
types A and B.

Set theoretic languages are usually based on an axiomatization of set theory
in first-order logic as in Mizar [TB85] or higher-order logic as in Isabelle/ZF
[PC93]. In both cases, it is common to use a fixed base type U for the universe
of sets, and binary equality on U is a primitive notion. In these languages, soft
typing is an emergent feature: we can add the concept of types as unary pred-
icates on U . But the binary equality on U both historically and foundationally
precedes the introduction of soft types. Thus, TDE is usually not considered.

The only major system with systematic TDE that the author could find is
Nuprl [CAB+86]. It uses TDE to handle quotients naturally by changing the
equality at the quotient type. For example, it allows having both 0 �=Z 2 and
0 =Z/mod2 2 without inconsistency. The key idea is to use a different equality
relation at the quotient type than at the base type. This trick has the benefit
that no fiddling with equivalence classes is needed: the term 2 : Z can also
be used as an element of 2 : Z/mod2. Thus, the canonical projection into the
quotient is a no-op, which is far superior computationally and notationally to
the standard approach of using equivalence classes.

Mizar [TB85] uses a light variant of TDE for record types, which we discuss
in more detail in Sect. 2.4.

Arguably, TDE is how quotients are handled in practical mathematics as well.
Even though mathematics officially defines the quotient as the set of equivalence
classes, mathematical notation almost always reuses the terms of the original
types as elements of the quotient—with the implicit understanding that related
terms are equal when seen as elements of the quotient. However, this is con-
sidered a notational simplification, and the foundations of mathematics do not
include a rigorous treatment of TDE.

Analogy to Typing. There is an elegant way to fit TDE into a general framework
of formal systems if we think of typing as type-dependent definedness (TDD).
Instead of thinking of a : A as a binary predicate, we can think of it as a type-
dependent unary predicate :A applied to a.

That yields a language with a unary and a binary type-dependent predicate:
TDD :A and TDE =A. TDD regulates which values are acceptable values at
type A, and TDE regulates which of those are equal. The semantics of types can
then be given by partial equivalence relations on objects [All87]: the denotational
semantics of A is the universe U restricted to objects satisfying :A quotiented
by =A.

214 F. Rabe

It is well-known that partial equivalence relations enjoy nice closure proper-
ties. In particular, TDE makes it easy to introduce

– predicate types A|p for a unary predicate p on A: a copy of A with definedness
restricted to p

– quotient types A/r for an equivalence relation r on A: a copy of A with
equality broadened to r.

Dangers. Tweaking the equality relation at a type corresponds to changing the
introduction rule of equality to make more things equal. Consequently, the elim-
ination rule is applicable more often so that a naive version of TDE can easily
be inconsistent. The elimination rule of equality varies between languages but is
usually a substitution rule like

x : A � F (x) : bool � s =A s′ � F (s)
� F (s′)

Sub

This shows us how TDE can cause trouble: Assume in addition to the premises
of Sub, we also have x : B � F (x) and � s : B and � s′ : B—a common
situation in languages with subtyping. Then TDE+Sub is inconsistent if the
plausible situation arises where � ¬s =B s′ and � F (s) and � ¬F (s′). Intuitively,
whenever terms can have multiple types, the equality relations at those types
must be consistent with each other. At least if A is a subtype of B, then s =A s′

should imply s =B s′, i.e., the rule

� s =A s′ � A <: B

� s =B s′

should be present. Otherwise, we would no longer have a canonical embedding
of A into B, which would be an unreasonably high price to pay.

But the details subtly depend on the specific language. To understand how
Nuprl, which uses Sub, avoids inconsistency, the author had to resort to direct
communication with the developers after exhausting the documentation and
failing at reverse engineering: Nuprl prevents the above situation because x : A �
F (x) : bool would not hold, thus making Sub not applicable. In fact and maybe
surprisingly, it is possible in Nuprl to have � F (g) : bool for every closed term
g : A but still x : A �� F (x) : bool. That is because the Nuprl proof system (of
which well-formedness of propositions is a special case) privileges closed terms—
there is even a type Base of all closed terms. This unusual behavior is motivated
also by other design considerations but is critical for the soundness of TDE+Sub
in Nuprl.

2.2 Abstract Definitions and Quotient Types

Standard mathematics defines quotients via equivalence classes. It is instructive
to ask whether there are alternative definitions.

A Language with Type-Dependent Equality 215

Abstract vs. Concrete Definitions. We speak of an abstract definition of a lan-
guage feature if the operations that form sets and their elements are axiomatized
through their characteristic properties. We speak of a concrete definition if the
operations are given as abbreviations of existing expressions.

A paradigmatic abstract definition is the Cartesian product, which is usually
specified to have formation operator × , introduction form (,), elimination
forms 1 and 2, computation properties (a, b)1 = a and (a, b)2 = b (intuitively:
elimination of introduction is identity), representation property p = (p1, p2)
(intuitively: introduction of elimination is identity; or introduction is surjective),
and extensionality property p = q iff pi = qi for i = 1, 2 (intuitively: elimination
is injective). To show the consistency, at least one concrete definition must be
given, e.g., via Wiener pairs or Kuratowski pairs.

A paradigmatic concrete definition is the set of functions, which is usually
defined by formation operator A → B = {f ⊆ A × B|∀x : A.∃1y : B.(x, y) ∈ f},
introduction form λx : A.t(x) = {(a, t(a)) : a ∈ A}, elimination form f a =
the b : B.(a, b) ∈ f . For concrete constructions, the characteristic properties are
the corresponding ones but must be proved instead of being axioms: computation
(λx : A.t(x)) a = t(a), representation f = λx : A.f x, extensionality f = g iff
f a = g a for a : A.

Abstract definitions allow for more scalable reasoning, can usually be done in
simpler languages, allow defining language features orthogonally, and are more
portable across systems. Thus, mathematics and computer science often prefer
them, e.g., λ calculus is the abstract definition of function types obtained by
abstracting from the concrete one used in mathematics.

Abstract Quotient Types. It is maybe surprising that quotient types are usually
defined concretely by using equivalence classes:

A/r = {[a]r : a ∈ A}, [a]r = {a′ : A|r a a′} (∗)

Maybe this is because there is no natural competing concrete definition. Contrary
to function sets, there is no commonly used abstract specification of quotient sets
either. But we can systematically obtain an abstract specification by analogy to
the ones above:

– formation operator A/r for a binary equivalence relation r on A
– introduction form [a]r for a : A

– elimination form t(ρq) : B for q : A/r and t(x) : A
r→ B, where we write

ρq for picking an arbitrary representative of class q and t(x) : A
r→ B as a

shorthand for x : A � t(x) : B and r a a′ implies t(a) = t(a′),
– computation property t(ρ[a]r) = t(a)
– representation property []r : A

r→ B and q = [ρq]r whenever q : A/r

– extensionality property p = q iff t(ρp) = t(ρq) whenever t(x) : A
r→ B

Nuprl uses this abstract definition of quotient types that is a primitive part of
the logic. An alternative definition of quotients equivalent to the one in Nuprl is
given in [Nog02]. Introduction form []r and elimination form ρ are no-ops, which

216 F. Rabe

is critical for performance and convenience. Mizar defines quotients concretely
using (∗). Coq and Lean define quotients concretely via setoids, but that does
not satisfy the above specification as equality is not redefined. However, Lean
provides kernel-level support to eliminate that artifact.

2.3 Predicate and Quotient Types

Predicate Types. If p is a unary predicate on A, we write A|p for the predicate
subtype of A given by p. An abstract specification can be given by

– formation operator A|p
– introduction form a|p : A|p if a : A and p a
– elimination form ιs : A for s : A|p, and p (ιs)
– computation property ι (a|p) = a
– representation property s = (ιs)|p whenever s : A|p
– extensionality property s = t iff ιs = ιt for s, t : A|p

Mizar uses a concrete definition to introduce predicate types. Nuprl and PVS
use abstract ones that are primitive parts of the logics. In all three systems, intro-
duction form a|p and elimination form ι are no-ops (i.e., the introduction form
incurs a proof obligation that the system must try to discharge automatically).
Hard-typed languages such as HOL or dependent type theory usually define
set A = A → bool as the power type of A. Then p itself can be used instead of
A|p. But this does not satisfy the above specification as p is a value and not a
type. The HOL proof assistant family employ the conservative extension princi-
ple to turn the value p into a fresh type [Gor88]: essentially given p, it adds a
fresh type S, a partial function A →? S and the function ι : S → A such that S
becomes bijective to A|p. PVS uses HOL plus primitive operations correspond-
ing to the above specification. Because it supports both p : set A and the type
A|p, conversions between the two are commonly used.

Duality. The abstract definitions of predicate and quotient types are dual in the
following sense:

Property Predicate type A|p Quotient type A/r

Formation uses unary predicate p binary predicate r

Introduction requires satisfaction of p canonical projection []r

Elimination canonical injection ι requires preservation of r

Minimal predicate A|λx.false ∼= void (initial) A/λxy.false ∼= A

Total predicate A|λx.true ∼= A A/λxy.true ∼= unit (terminal)

Here, to enhance the duality, we do not require r to be an equivalence.
Instead, we allow any binary relation and assume the semantics uses the gener-
ated equivalence relation. Nuprl and the setoid encoding require an equivalence
relation.

A Language with Type-Dependent Equality 217

The duality is weaker when using standard concrete definitions. Here concrete
predicate types make it easy to use no-ops for introduction. But for concrete
quotient types, the projection []r is expensive. A guiding motivation for our
work is to retain the duality and use no-ops in both cases.

This becomes particularly practical when chaining: Using no-ops, in A|p|q,
we can use a predicate q on A as opposed to A|p. And we simply have A|p|q =
A|q|p = A|(λx.p x ∧ q x). For quotient types, we desire the corresponding chain
rule A/r/s = A/s/r = A/(λxy.r x y ∨ s x y as opposed to awkwardly defining s
on equivalence classes.

2.4 Records and Predicate/Quotient Types

Lax vs. Strict Records. For simplicity, we do not give formal rules for record types
and instead consider them by example. We use record types like R := {x : A, y :
B} with introduction form r := [x = a, y = b] : R and elimination forms r.x : A
and r.y : B. Specifically, we discuss the relation between R and S := {x : A}
as well as the forgetful functor F : R → S. Using this example, we introduce a
distinction between lax and strict records that is critical in the presence of soft
typing and TDE.

If � r : S, we speak of lax records. Intuitively, the elements of a lax record
type are all records that have at least the fields prescribed by the type. Thus,
larger record types have fewer record values. To check r : S, we only check r.x : A
and ignore the additional field r.y. Therefore, R is a subtype of S, and F is the
subtype embedding and a no-op, and the empty record type {} is the type of all
records.

This is the case in most languages with primitive record types. In this situ-
ation, TDE (possibly only for record types) is a natural feature: for s, t : R, we
can put s =R t if s.x =A t.x and s.y =B t.y, but s =S t already if s.x =A t.x.
Thus, the subtype R has the stronger equality, and more terms may be equal at
the supertype S. In particular, we might have s =S t but s �=R t.

This is how PVS records work. Mizar structures work almost the same way:
However, the type argument of the equality relation is not explicit in Mizar.
Instead, it is inferred to be the most specific type of the argument records,
i.e. if s, t : R, then s = t denotes s =R t. In addition to R being a subtype
of S, Mizar introduces explicit syntax for F to drop the additional fields, and
then the equality s =S t can be stated as F (s) = F (t). Nuprl does not have
primitive records but derives lax record types as functions from some index set
(representing the field labels) to types.

If �� r : S, we speak of strict records. Intuitively, the elements of a strict
record type are all records that have exactly the fields prescribed by the type.
F (r) explicitly removes the field y from r, and the empty record {} is a unit type.
This is common in languages that use derived record types (e.g., by generating
an axiomatic specification, via product types A × B, or via single-constructor
inductive types R = inductiveR(A,B)). Examples are Coq and Isabelle. Here
F can be an expensive operation, especially if many record fields must be copied

218 F. Rabe

or if the value of the field y must be re-inferred later on. TDE is not an option
because no two records have both type R and type S.

There is no subtyping between strict record types R and S, and the relation
between them can be better understood as a quotient. λrr′ : R. r.x =A r′.x
is an equivalence relation on R, and F is the canonical projection. Contrary to
general quotients, the equivalence relation always has canonical representatives:
we can use the elements of S because S is isomorphic to the quotient.

Record Subtypes vs. Record Quotients. We can apply the quotient intuition also
to lax records. As for strict records, we have the same equivalence relation on
R, and F is also the canonical projection. However, the quotient type cannot
be expressed: F is not surjective, and S is not isomorphic to the quotient—S is
much bigger than the quotient (a supertype of R even). For that reason, Mizar
introduces an additional operator that maps every record type S (which are lax
by default) to the corresponding strict record type Sstrict and provides syntax
for the functor F that now maps R → Sstrict.

Conversely, we can apply the subtype intuition to strict records. But F is not
a no-op and thus not a proper subtype embedding. But languages that support
implicit coercions can insert F automatically, thus creating the look and feel of
subtyping for the user.

Thus, languages have substantial freedom in how to combine record types
with subtyping and quotient typing as well as TDE.

Mathematical Records. In standard mathematics, records are not used explicitly.
But effectively, they occur frequently, e.g., when using algebraic structures such
as when S is Magma (tuple of a set and an operation) and R is Monoid (Magma
with an additional unit). We can think of them as strict records derived via
Cartesian products.

The cost of the explicit forgetful functor F is harmless here because the
representation change from r to F (r) is not done on paper and left to an implicit
coercion in the reader’s mind, i.e., we simply write r instead of F (r). Therefore,
mathematical language can flexibly switch between the subtype intuition (every
monoid is a magma) and the quotient intuition (monoids can be projected to
their magma).

3 Formal Language Definition

We develop a minimal formal language with systematic TDE.

3.1 Syntax and Inference System

Grammar. The grammar is given below. Types A are user-declared base types
a, type variables k, built-in base type bool, predicate types A|p, quotient types
A/r, and function types A → B. Simple functions are needed to give the lan-
guage practical expressivity and to form the unary/binary predicates p and r.

A Language with Type-Dependent Equality 219

Dependent functions types or polymorphic type operators can be added easily
but are not essential in the sequel. We add record types in Sect. 3.3.

Terms are user-declared constants c, bound variables x, the usual logical
connectives and quantifiers on the type bool, and the usual λ-abstraction and
application forms for A → B. A|p and A/r do not have associated term formation
rules because they are populated by the same terms as A with introduction and
elimination being no-ops. The distinction between A on the one hand and A|p
and A/r on the other hand is relegated to the judgments t : A (TDD) and
s =A t (TDE). In keeping with logical practice, the equality judgment is part of
the term syntax as a bool-valued predicate. But the typing judgment must be
a meta-level judgment because it defines which syntax is well-formed to begin
with and because of subtle soundness issues discussed below.

A,B ::= a | k | bool | A|p | A/r | A → B
s, t, p, r ::= c | x | true | false | if(s)t else t′ | (logical operators)

| λx : A.t | t t | s =A t
Γ ::= (x : type | x : A | t)∗

User-declared theories Θ (omitted in the grammar) introduce global knowl-
edge: base types a : type, constants c : A for A : type, and axioms t for t : bool.
Everything below should be understood as relative to a fixed theory, which we
do not make explicit in the notation. Correspondingly, contexts Γ collect local
(α-renamable) knowledge: type variables k : type, typed variables x : A for
A : type, and local assumptions t for t : bool.

Judgments. The judgments are given below. As usual for soft type theories, the
rules for the typing and provability judgments are mutually recursive. A sub-
typing judgment is defined below as an abbreviation. Because types can contain
terms, we also need a judgment for equality of types and a rule for substitution
of equal types for each other, but we omit those here.

Γ � Γ is a well-formed context

Γ � A : type A is a well-formed type

Γ � t : A t is well-formed at type A

Γ � t boolean t is provable

220 F. Rabe

Γ, x : A t(x) : B

Γ λx : A.t(x) : A → B

Γ s : bool Γ, s t : A Γ, ¬s t : A

Γ if(s)t else t : A

Γ s : A Γ t : A

Γ s =A t : bool
Γ s : bool Γ, s t : bool

Γ s ∧ t : bool
Γ s Γ, s t

Γ s ∧ t

Γ, x : A t(x) : bool
Γ (∀x : A.t(x)) : bool

Γ x : A.t(x) Γ s : A

Γ t(s)

Fig. 1. Selected rules for standard operators

Rules for Standard Operators. We omit most of the rules for context formation,
logical operators, and functions and only give some selected rules in Fig. 1. We
write t(x) for a term with a distinguished free variable x and accordingly t(s)
for the substitution of s for x.

The rule for λ-abstraction is as usual. Because no constraints are put on
t(x), we later on incur the proof obligation that every term t(x) respects =A.
The formation rule for equality shows that s =A t is only well-formed if s and
t already have type A. The rule for if-then-else is interesting because a local
assumption for the truth/falsity of the condition s is available to show the well-
formedness of the expression t and t′ in the then/else branch. Similarly, the rules
for the quantifiers (here shown: ∀) and binary logical operators (here shown:
∧) may use the truth of their first part to show the well-formedness of the
second part; for the binary operators, that corresponds to lazy evaluation. That
is important because the typing rules for predicate and quotient types are able
to use those assumptions.

The proof rules for the binary operators (here shown: the introduction rule for
∧) are similarly sequential. Contrary to both standard hard-typed higher-order
logic and soft-typed Mizar, we allow empty types, which is the natural choice
when working with predicate types. Therefore, some quantifier rules (here shown:
the elimination rule of the universal) only allow terms whose free variables are
from the current context; consequently, e.g., ∀x : A.t(x) ⇒ ∃x : A.t(x) is only a
theorem if A is known to be non-empty.

A Language with Type-Dependent Equality 221

Type formation:

Γ A : type Γ p : A → bool

Γ A|p : type
Γ A : type Γ r : A → A → bool

Γ A/r : type

Introduction (TDD):

Γ t : A Γ p t

Γ t : A|p
Γ t : A

Γ t : A/r

Elimination:
Γ t : A|p
Γ t : A

Γ t : A|p
Γ p t

Γ s : A/r Γ, x : A t(x) : B Γ, x : A, y : A, r x y t(x) =B t(y)
Γ t(s) : B

Equality (TDE):

Γ s : A|p Γ t : A|p Γ s =A t

Γ s =A|p t

Γ s : A Γ t : A Γ r s t

Γ s =A/r t

Fig. 2. Rules for predicate and quotient types

Rules for Predicate and Quotient Types. Figure 2 gives all rules for predicate
and quotient types. Together with the proof rules below, it is straightforward
to show that these satisfy the abstract specifications described in Sect. 2: intro-
duction and elimination forms are no-ops, and computation, representation, and
extensionality are trivial.

Note that the equality rule for quotient types does not have to construct the
equivalence closure of r. We only make all terms equal that satisfy r s t, at which
point the usual rules for equality already induce the equivalence closure.

Equality introduction and elimination:

Γ t : A

Γ t =A t

Γ s =A s Γ, x : A t(x) : bool Γ t(s)
Γ t(s)

Sub

Fig. 3. Rules for equality

Rules for Equality. Figure 3 gives the rules for equality. Reflexivity is the intro-
duction rule. As usual, symmetry and transitivity can be derived.

The elimination rule Sub is the usual substitution rule. It is deceptively
simple: its soundness is very sensitive to subtle variations in the language. The
problem is that the type A may affect the derivability of the premise s =A s′

but does not explicitly occur in the conclusion of the rule. Thus, whenever t(s)
and ¬t(s′), we can try to force an inconsistency by choosing some A at which s

222 F. Rabe

and s′ are equal, e.g., a suitable quotient of a sufficiently large type. The type
system must prevent that by allowing t(x) to use the variable x : A only in ways
that cannot distinguish A-equal terms.

For example, it may be unexpected that our syntax does not include bool-
values terms t ∈ A. We could include that, say with a formation rule

Γ � t : B Γ � A : type
Γ � t ∈ A : bool

Here the first premise is necessary to ensure that only well-typed terms t may
be used. But there is a deep problem: it would allow constructing terms that do
not preserve equality. For example, assume a theory that declares the usual type
N and constants for the natural numbers, and let modm be equivalence modulo
m and Prime be the prime number property. Then for a variable x : N/mod2,
the boolean x ∈ N|Prime would be well-formed and equivalent to Prime(x). But
that boolean would break the soundness of Sub as we have 2 =N/mod2 4 but
2 ∈ N|Prime and 4 �∈ N|Prime.
Remark 1. The author had originally included t ∈ A : bool in the syntax but
failed to obtain soundness even after trying multiple variants of the syntax and
formation rule of t ∈ A.

However, without a bool-valued predicate ∈, not much expressivity is lost: we
can still express x ∈ N|p by simply putting p x. And we can easily add syntactic
sugar to recover ∈-based notations for that. Despite the similar expressivity,
the inconsistency problem does not arise in that case: if x : N/mod2, the boolean
Primex is ill-formed because Prime : N → bool cannot be applied to x : N/mod2.

As a general language design principle, we must be careful what the syntax
lets us do with terms of quotient types. In particular, given a variable x : A/r, it
must not be allowed to inspect x via arbitrary predicates on A. The elimination
rule of the quotient type already guarantees that only equality-preserving oper-
ations can be applied. But we must also check the interaction of quotient types
with every other primitive operation in the language. This is formally established
in the soundness theorem below.

Subtyping. In soft-typed systems, subtyping A <: B is usually defined via

x : A implies x : B for all x (a)

In the presence of TDE, the following stronger condition is more practical:

x : A, y : A, x =A y implies x =B y for all x, y (b)

Note that (b) implies (a). (b) is only relevant in the presence of TDE: without
TDE, it trivially follows from (a). Therefore, we use (b) to define the subtyping
judgment � A <: B.

We can now derive the usual contra/co-variance rules for A → B as well as
A|p <: A and A <: A/r. Maybe surprisingly, the quotient type becomes a super-
type of the base type even though its semantics is a set with lower cardinality.

A Language with Type-Dependent Equality 223

For every type A, we have the following subtype hierarchy from the void type
to the unit type:

A|λx.false <: A|p <: A|λx.true = A = A/λxy.false <: A/r ⊆ A/λxy.true

On the left hand side, these capture the no-op canonical embeddings of predicate
types via increasingly inclusive predicates, on the right hand side the no-op
canonical projections of the quotient types via increasingly inclusive predicates.

3.2 Semantics

Partial Equivalence Relations. We recall the basic properties of partial equiva-
lence relations (PERs). A PER S on set U is a symmetric and transitive binary
relation on U . We write dom S = {u ∈ U |(u, u) ∈ S} = {u ∈ U |∃v ∈ U.(u, v) ∈
S} for the set of elements touched by S, and S|V = S ∩ V 2 for the restriction of
S to V ⊆ U , and PER(R) for the PER generated by the binary relation R on
U . Then S|domS is an equivalence relation on domS, and we write S/ for the
corresponding quotient (in the usual set-theoretical sense).

Overview. We assume a set-theoretical universe U and interpret syntax according
to the table below:

Syntax Semantics Intended meaning

type A �A� ⊆ U × U PER(�A�)/

terms t elements �t� ∈ U

typing � t : A �t� ∈ dom �A� equivalence class of �t� in PER(�A�)/

equality � s =A t (�s�, �t�) ∈ PER(�A�)

subtyping � A <: B �A� ⊆ �B�

Note that even though equality depends on the type, the interpretation of
terms does not. Every term has an absolute meaning defined by induction on the
language of terms, not by induction on typing derivations. The intended mean-
ing of a type is a quotient of a subset of U . Terms can have multiple types, and
the intended meaning of term t seen as an element of type A is the equivalence
class of �t� in the intended meaning of A.

Interpretation of Identifiers. A model maps every part of the theory to its inter-
pretation:

– a base type a to a PER �a� ⊆ U × U
– a constant c : A to an element �c� ∈ dom �A�
– an axiom t to a proof that t holds.

224 F. Rabe

An assignment maps every part of a context to its interpretation accordingly.
We write α, x �→ u for the extension of α with a case for x. The function �−� is
actually relative to a model of the theory (which we omit from the notation) and
an assignment α for the context. Note that the interpretation of types depends
on the assignment even in the absence of type variables because terms can occur
in types.

Interpretation Function. Given a fixed model (which we omit from the notation),
we define the interpretation function �−�α for all types and terms in context Γ
under an assignment α to Γ .

Constants a and c are interpreted according to the model, variables k and x
according to the assignment. The remaining cases are:

�bool�α = {(0, 0), (1, 1)} i.e., dom �bool�α = {0, 1}

�true�α = 1 �false�α = 0 �if(s)t else t′�α =

{
�t�α if �s�α = 1
�t′�α otherwise

�s =A t�α =

{
1 if (�s�α, �t�α) ∈ PER(�A�)
0 otherwise

�A → B�α ={
(f, g) ∈ (dom �A�α → dom �B�α)2 | (u, v) ∈ �A�α implies (f(u), g(v)) ∈ �B�α

}

�λx : A.t(x)�α =
{
(u, �t(x)�α,x�→u) : u ∈ dom �A�α

}

�f a�α = �f�α(�a�α)

�A|p�α = �A�α ∩ {
u ∈ dom �A�α | �p�α(u) = 1

}2

�A/r�α = �A�α ∪ {
(u, v) ∈ dom �A�α2 | �r�α(u)(v) = 1

}
where we abbreviate V 2 = V × V as usual.

Soundness. The soundness theorem consists of multiple statements:

– the main theorem that provable booleans hold (3)
– the well-definedness of the interpretation function (1+2)
– the usual substitution lemma that interpretation commutes with substitution

(4a)

A Language with Type-Dependent Equality 225

– a lemma specific to the PER semantics that ensures that every term with free
variables preserves equality (4b)

Theorem 1. For any theory and model, we have

1. if Γ � A : type, then �A�α ⊆ U × U
2. if Γ � t : A, then �t�α ∈ dom �A�α for all α
3. if Γ � b, then �b�α = 1 for all α
4. for any Γ, x : A � t(x) : B

(a) if Γ � s : A, then �t(s)�α = �t(x)�α,x�→�s� for all α
(b) if (u, v) ∈ �A�α, then (�t(x)�α,x�→u, �t(x)�α,x�→v) ∈ �B�α for all α

Proof. All statements are proved in a joint induction on derivations. We only
mention a few critical cases. (4b) is needed to prove (2) for the case of λ-
abstraction. (4a) and (4b) are needed to prove (3) for the case of Sub.

We have so far not investigated any completeness properties. It is reasonable
to expect those are related to the completeness of HOL for Henkin models. But
it is non-obvious how to combine Henkin and PER semantics.

3.3 Lax Record Types

There are several ways to extend the language with record types. Lax records
are particularly attractive with TDE, and we sketch one way to add them.

Syntax and Semantics. We use contexts as record types and substitutions γ as
record values. That yields relatively powerful record types, which may contain
type fields, value fields, and axioms:

A ::= {Γ} | t.k
t ::= [γ] | t.x
γ ::= (k = A | x = t | P)∗

P ::= (proof terms omitted)

A substitution γ for context Γ maps every type/term/assumption declaration
in Γ to an appropriate type/term/proof. The last case of that requires extending
the syntax with a term language for proofs, which we omit.

We omit the typing and equality rules, which are complex but routine. For
example, the equality rule for an example record type is

Γ � r.k = s.k : type Γ � r.x =r.k s.x

Γ � r ={k:type,x:k} s

where r.k = s.k : type is an instance of the type equality judgment we omitted
above. The semantics is straightforward except for the usual problem of needing
some kind of universe hierarchy because record types containing type fields are
too big to be interpreted as a set in the universe. We gloss over that issue.

226 F. Rabe

Mizar’s strictness operator is not needed because lax records with TDE allows
expressing equalities at different record types. Like with predicate and quotient
typing, applying a forgetful functor is a no-op.

Subtyping and TDE. With the addition of lax records, we can form subtypes via
record subtyping in addition to predicate subtyping. The main effect this has on
the language design is that the argument of Remark 1 becomes less compelling:
While a membership test t ∈ A|p can be replaced with p t, a similar workaround
does not exist for record subtyping.

Assume we added a bool-valued predicate r ∈ S : bool for r : R and record
types S <: R. For example, this would allow inspecting an input x : R to see
if it provides more fields than guaranteed by R. A typical application would be
to employ a more efficient semigroup algorithm if the input is a monoid. This
can also be used if the additional fields are not uniquely determined, e.g., to
check if a vector space comes with a distinguished base. Membership tests like
this are routine in soft-typed computer algebra systems such as Gap [Lin07] or
SageMath [S+13].

But attempts to add such tests to the syntax run into soundness issues. For
example, assume record types Monoid <: Semigroup, a record M : Semigroup
that happens to satisfy the monoid axioms, and M ′ : Monoid arising from M
by adding the additional fields. Then M =Semigroup M ′ and M �∈ Monoid and
M ′ ∈ Monoid, which makes Sub unsound if a naive membership test is added.

The author currently does not have a satisfactory solution for soundly testing
record membership in the presence of TDE.

4 Conclusion

We coined the term “type-dependent equality” (TDE) for an existing but not
widely known feature in soft-typed languages. We provided an overview of the
advantages and pitfalls of designing formal systems with TDE and described
their realizations in major proof assistants. We have used that to design a sim-
ple language with TDE that allows for an elegant treatment of predicate and
quotient types. Importantly, many critical operations are no-ops, which is advan-
tageous notationally and computationally.

Many aspects of the work are folklore such as the PER semantics for soft type
systems or have been implemented before such as Nuprl’s TDE and quotient
types. The main contribution is to collect and analyze all these aspects in a
simple formal language that exhibits the main characteristics while allowing a
rigorous and clear presentation. Critically, the soundness theorem clarifies the
consistency issues that must be taken care of when designing TDE-languages.
And the syntax and semantics are simple enough to make the formal verification
of the soundness theorem feasible.

Thus, the work provides an ideal starting point for designing more advanced
TDE-languages that could allow for better formalizations of mathematical prac-
tices than supported by current proof assistants.

A Language with Type-Dependent Equality 227

References

[ABC+06] Allen, S., et al.: Innovations in computational type theory using nuprl. J.
Appl. Log. 4(4), 428–469 (2006)

[All87] Allen, S.: A Non-type-theoretic Semantics for Type-theoretic Language.
Ph.D. thesis, Cornell University (1987)

[CAB+86] Constable, R., et al.: Implementing Mathematics with the Nuprl Develop-
ment System. Prentice-Hall (1986)

[Coq15] Coq Development Team: The Coq Proof Assistant: Reference Manual.
Technical report, INRIA (2015)

[dKA+15] de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The
lean theorem prover (system description). In: Felty, A.P., Middeldorp, A.
(eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 26

[Gor88] Gordon, M.: HOL: a proof generating system for higher-order logic. In:
Birtwistle, G., Subrahmanyam, P. (eds.) VLSI Specification, Verification
and Synthesis, pp. 73–128. Kluwer-Academic Publishers (1988)

[KR20] Kaliszyk, C., Rabe, F.: A survey of languages for formalizing mathematics.
In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236,
pp. 138–156. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53518-6 9

[Lin07] Linton, S.: GAP: groups, algorithms, programming. ACM Commun. Com-
put. Algebra 41(3), 108–109 (2007)

[Nog02] Nogin, A.: Quotient types: a modular approach. In: Carreño, V.A., Muñoz,
C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 263–280.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45685-6 18

[ORS92] Owre, S., Rushby, J., Shankar. N.: PVS: a prototype verification system. In:
Kapur, D. (eds.) 11th International Conference on Automated Deduction
(CADE), pp. 748–752. Springer (1992)

[PC93] Paulson, L., Coen, M.: Zermelo-Fraenkel Set Theory, 1993. Isabelle distri-
bution, ZF/ZF.thy

[S+13] Stein, W., et al.: Sage Mathematics Software. The Sage Development Team
(2013). http://www.sagemath.org

[TB85] Trybulec, A., Blair, H.: Computer assisted reasoning with MIZAR. In:
Joshi, A., (eds.) Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pp. 26–28. Morgan Kaufmann (1985)

[Wie07] Wiedijk, F.: The QED manifesto revisited. In: From Insight to Proof,
Festschrift in Honour of Andrzej Trybulec, pp. 121–133 (2007)

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-030-53518-6_9
https://doi.org/10.1007/978-3-030-53518-6_9
https://doi.org/10.1007/3-540-45685-6_18
http://www.sagemath.org

Generating Custom Set Theories
with Non-set Structured Objects

Ciarán Dunne(B), J. B. Wells, and Fairouz Kamareddine

Heriot-Watt University, Edinburgh, UK
cmd1@hw.ac.uk

Abstract. Set theory has long been viewed as a foundation of math-
ematics, is pervasive in mathematical culture, and is explicitly used by
much written mathematics. Because arrangements of sets can represent a
vast multitude of mathematical objects, in most set theories every object
is a set. This causes confusion and adds difficulties to formalising math-
ematics in set theory. We wish to have set theory’s features while also
having many mathematical objects not be sets. A generalized set theory
(GST) is a theory that has pure sets and may also have non-sets that can
have internal structure and impure sets that mix sets and non-sets. This
paper provides a GST-building framework. We show example GSTs that
have sets and also (1) non-set ordered pairs, (2) non-set natural numbers,
(3) a non-set exception object that can not be inside another object, and
(4) modular combinations of these features. We show how to axiomatize
GSTs and how to build models for GSTs in other GSTs.

1 Introduction

Set Theory as a Foundation of Mathematics. Set theories like Zermelo-
Fraenkel (ZF), and closely related set theories like ZFC and Tarski-Grothendieck
(TG), play many important roles in mathematics. ZF’s axioms allow express-
ing a vast number of mathematical concepts. For most of the last century most
mathematicians have accepted theories like ZF as suitable foundations of math-
ematics. ZF’s axioms have been rigorously evaluated for roughly a century and
have no known inconsistencies. Mathematical theories are often assessed against
the standard of whether models can be constructed for them in theories like
ZF (what Maddy [14] calls risk assessment). Much of mathematical notation
and reasoning is rooted in set theory. A significant amount of mathematics has
been formalised in set theory and computer-verified using proof assistants like
Isabelle/ZF [9,18], Mizar [2], and Metamath [15].

Mathematics varies in the kind and degree of assumptions made of the under-
lying foundation. Some mathematics explicitly specifies a set-theoretic or type-
theoretic foundation and some does not. Set theories like ZF are usually stated in
first-order logic (FOL), but are sometimes stated in higher-order logic (HOL) or
given as theories embedded in a dependent type system. In some mathematics,
functions are sets of ordered pairs while in other mathematics functions are not
c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 228–244, 2021.
https://doi.org/10.1007/978-3-030-81097-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-81097-9_19

Generating Custom Set Theories with Non-set Structured Objects 229

even sets. There is variation in how undefined terms are treated [6,19]. When
viewing ZF as the underlying foundation, it is assumed that high-level mathe-
matics has meaningful translations into ZF, or that ZF can be safely modified
to accommodate the user’s needs.

Representation Overlap in Set-Theoretic Formalisation. Translating
human-written mathematics into ZF has complications. Every object in ZF’s
domain of discourse is a pure set, so objects of human-written text must be
represented as pure sets. Objects that the mathematician views as distinct can
have the same ZF representation. For example, consider formalising a function
g : (N2∪P(N)) → {0, 1} such that g(〈0, 1〉) = 0 and g({1, 2}) = 1. Let (·)∗ be the
translation of human-written mathematical objects into the domain of ZF. Typi-
cally, N is represented using the von Neumann ordinals, so 0∗ := ∅ and (k+1)∗ :=
k∗ ∪ {k∗}. Also, ordered pairs are usually represented using Kuratowski’s encod-
ing where 〈a, b〉∗ := {{a∗}, {a∗, b∗}}. Furthermore, sets of the human-written
text usually get the näıve translation {x1, . . . , xn}∗ = {x∗

1, . . . , x
∗
n}. Using these

representations, the ordered pair 〈0, 1〉 and the set {1, 2} are represented in ZF
by the same pure set : {{∅}, {∅, {∅}}}. Thus, a näıve translation of the definition
of g will require that 0∗ = g(〈0, 1〉∗) = g({1, 2}∗) = 1∗ and there will be no value
for g satisfying its specification, i.e., the näıvely translated definition will fail to
define anything. A standard set-theoretic solution is to not use N

2 ∪P(N) as the
domain of g but instead to use ({0}×N

2)∪ ({1}×P(N)), i.e., tag every member
of N2 with 0 and every member of P(N) with 1. This works because {0} × N

2

and {1} × P(N) are disjoint. This requires complete foresight of the objects to
be used, obscures the mathematics under a layer of tagging and untagging, and
increases the costs of formalisation.

Furthermore, sometimes the mathematics needs a class (sometimes a proper
class) of objects that are distinct from all sets, adding complication. And some-
times the objects that must be distinct from all sets can contain sets. The proper
set-theoretic solution is to build a hierarchy in ZF to represent both the sets and
the non-set objects of the human-written mathematics using a construction sim-
ilar to the von Neumann cumulative hierarchy. An example of doing this is the
set theory ZFP [5] which has proper classes of both sets and non-set ordered
pairs. A model of ZFP can be built in ZF using tagged ZF sets to represent both
ZFP sets and ZFP non-set ordered pairs.

Proper classes and tagging both involve awkward reasoning. Definitions, lem-
mas, and proofs quickly become messy. The user must redefine and reprove oper-
ations and relations, leaving them with duplicate symbols and concepts (e.g., the
power set operation of ZF vs. the analogous operation on the tagged sets within
ZF that represent the sets of the human-written mathematics). How to build
these models is not obvious to most mathematicians.

Type Theory as an Alternative. Type theories typically avoid representation
overlap by preventing operations that mix types. Operating on multiple types is
done via sum types or inductive datatypes, and something equivalent to tagging
and untagging happens in a type theory’s underlying model theory, but the user
is shielded from most details.

230 C. Dunne et al.

Unfortunately, formalising mathematics in type theory is not always the best
option. Removing set-theoretic dependencies can transform a text in ways that
take it far from the author’s conception. As mathematics gets more complex,
the typing combinations push the limits of human cognition. Type error mes-
sages can be beyond human comprehension. The typing rules of proof assis-
tants can differ in significant ways from the human-readable documentation,
and immense expertise in the implementation can be needed. Typing constraints
can add proving obligations that are not relevant to the mathematics being for-
malised. Formalising mathematics in type theories can require awkward and
expensive workarounds that sometimes seem infeasible. To address these issues,
more sophisticated type systems are developed that can require more expertise
to comprehend. Finally, some type-theoretic provers focus on constructive, non-
classical reasoning, but much mathematics is non-constructive, and constructive
reasoning can be an unnecessary burden.

An Arena for Custom Set Theories. We seek to retain the useful qualities of
set theory whilst being able to have mathematical objects that are genuinely not
sets. Some set theories (e.g., ZFA, KPU) have non-set objects called urelements
which contain no set members (but are not the empty set) and can belong to
sets. Typically urelements have no internal structure (an exception is Aczel’s
GST [1]). To avoid confusion with typical structure-free urelements, we use the
phrase non-set object for members of a domain that are not sets. A set is pure
iff all of its members are pure sets; other sets are impure. A generalized set
theory (GST) is a theory that has pure sets and may also have non-sets that can
have internal structure and impure sets. ZFP (mentioned above) is a GST with
non-sets with internal structure.

If a set theory S can be shown to be consistent relative to ZF and S is a better
match for some mathematicians’ needs, it is reasonable that they use S instead
of ZF as a foundation. So we ask: Is it possible to give each mathematician
a foundation that matches their intuition and in which their mathematics is
formally true in the original human-written form rather than only becoming
formally true after substantial effort and transformation? With this aim in mind,
we propose what we call an arena in which multiple different GSTs (including
ZF) can co-exist and a toolkit to support showing relative consistency results.
Our plan and its fulfillment in later sections of this paper is as follows.

We begin in Sect. 2 with a logical framework that supplies features needed
for an arena for set theories. Our design is inspired by systems such as the com-
bination of Isabelle/Pure with Isabelle/FOL that underlies Isabelle/ZF, but we
have deliberately used a bare minimum of features. To cleanly support multiple
GSTs simultaneously, we have a countably infinite set of domain types which are
base types of individuals. We have function types to support definitions and set
theory axiom schemas. In any given derivation, one domain type is designated as
the founder domain type. We allow ∀-introduction only at the founder domain
type. We allow ∀-elimination at the founder domain type and all non-domain
types, and forbid ∀-elimination at all non-founder domain types. Reasoning in a
derivation about a domain dk other than the derivation’s founder domain di is

Generating Custom Set Theories with Non-set Structured Objects 231

intended to work via a connection from dk to a model for dk in another domain;
there should be a chain of connections from domains to their models which
terminates in the founder domain. We supply axioms for using (eliminating)
equality at all types but we only introduce equality at domain types and do so
via domain-specific axioms like ZF’s Axiom of Extensionality.

Section 3 axiomatizes example GSTs with non-set ordered pairs, non-set nat-
ural numbers, a non-set exception element that can not be inside any other
object, and the combination of all of these features. This section gives a gener-
alised specification of Zermelo-Fraenkel set theory (GZF) as a feature of GSTs.
The GZF specification differs from ZF by (1) not expecting everything to be a
set and (2) not specifying well-foundedness because this is handled by our toolkit
for combining features to build a GST. The GZF specification is also used as a
template where the ∀-quantifier may be replaced by a quantifier restricted to a
model constructed within a domain.

Section 4 provides a toolkit for building and reasoning about models of GSTs.
The user can build models of GSTs within any GST to verify the consistency of a
GST or to explore what models are possible and what axiomatizations might be
possible for those models. The main parameter of our model-building machinery
is a constant called Opsi,j which the user axiomatizes to specify the operations
used to build in di the tiers of a cumulative model intended for use as domain
dj . Models are defined using transfinite recursion, the user-supplied axioms for
Opsi,j , and tagging machinery. We show how a user can axiomatize Opsi,j to
yield a model satisfying GZF.

Section 5 defines how to connect to domain dj a model built in domain di

intended for domain dj . Connection is achieved by axiomatizing an isomorphism
between the model and the domain in the style of Gordon/HOL type definitions.

Section 6 builds models for the example GSTs given in Sect. 3 and connects
these GSTs to their models as part of showing consistency.

Related Work. Isabelle/ZF [18] is an embedding of first-order logic and ZF in
Isabelle/Pure, a simply-typed intuitionistic higher-order logic [17]. Isabelle/ZF’s
base library primarily proves theorems about set theory (functions, ordinals,
recursion). IsarMathLib [9] is a library of mathematics in areas such as abstract
algebra, analysis, and topology that is formalised in Isabelle/ZF. Mizar [2] pro-
vides a language for proving theorems in TG. A notable feature of Mizar is “weak
typing” which gives some of the advantages of types. Metamath/ZFC [15] devel-
ops ZFC in a minimal framework without much proof automation.

Many have sought a middle ground between set theory and type theory.
Krauss [10] worked on adding “soft types” to Isabelle/ZF, and this proposal
was later developed into Isabelle/Set [11], an axiomatisation of TG. Brown [4]
developed extended first-order logic (EFOL), which extends FOL with some
higher-order convenience. The Egal prover [3] axiomatizes TG within EFOL.
HOLZF [16] axiomatizes in Isabelle/HOL a type ZF of the pure sets of ZF and
supports conversion between ZF sets and HOL sets of ZF sets.

232 C. Dunne et al.

δ ε̇ Domain ::= d1 | d2 | d3 | · · · a, b, p, q, x, y, z ε̇ Var ::= v1 | v2 | v3 | · · ·
σ, τ ε̇ Type ::= � | δ | σ ⇒ τ c ε̇ Const ::= → | ∀τ | · · ·
i, j ε̇ N ν ε̇ Var ∪ Const

A, . . . , Z ε̇ Term ::= x | c | B C | λ x : τ . B (if vtyp(x) ≡ τ)

x :: vtyp(x) c :: ctyp(c)
B :: σ vtyp(x) ≡ τ

(λ x : τ . B) :: τ ⇒ σ
B :: τ ⇒ σ C :: τ

(B C) :: σ

Fig. 1. Syntax and typing rules

Aczel and Lunnon [1] worked on GSTs (and coined the phrase “GST”). It
appears that their systems assume the Anti-Foundation axiom instead of ZF’s
Axiom of Foundation. They discuss model building but identify no axioms.

Kunčar and Popescu [8,12,13] developed and proved soundness of methods
for connecting an entire abstract type τ to a subset of a concrete representation
type τ ′ given by a predicate on τ ′; our approach in Sect. 5 has a very similar
essential core. Under the slogan “little theories”, Farmer et al. [7] developed in
the IMPS prover flexible meta-level methods for automatically generating and
using theory interpretations for connecting abstract theories to concrete theories;
here the emphasis is more on using the abstract theories to prove things in the
concrete theories and less on using a trusted believed-to-be-consistent concrete
theory to prove consistency of the abstract theory.

2 Logical Framework

Syntax. Figure 1 defines the meta-level sets Domain, Type, Var, and Const. Each
type di is a domain (of FOL individuals). The function type constructor ⇒ is
right associative, i.e., (τ1 ⇒ τ2 ⇒ τ3) ≡ (τ1 ⇒ (τ2 ⇒ τ3)). The fixed variable
type function vtyp maps every x ε Var to some σ ε Type. For each τ ε Type there
are infinitely many variables y ε Var such that vtyp(y) ≡ τ . The fixed constant
type function ctyp maps every member of Const to some σ ε Type and it holds
that ctyp(→) ≡ � ⇒ � ⇒ � and for every τ ε Type that ctyp(∀τ) ≡ (τ ⇒ �) ⇒ �
and ctyp(=τ) ≡ ctyp(
=τ) ≡ τ ⇒ τ ⇒ �. For any i ε N, we abbreviate ∀di as ∀i.
Fixed meta-level names for the other constants in Const and further details of
ctyp will be revealed incrementally. Subscripts i and i, j on the meta-level names
of constants are used to indicate a constant is relevant to domain di or both
domains di and dj ; these subscripts are often light grey to help the reader not
be distracted by them. Notation of the form C :≡ (ξ1:: τ1, . . . , ξn:: τn) asserts for
each i ε {1, . . . , n} that ξi ε Const (so the meta-metavariable ξi could have been
written ci) and ctyp(ξi) ≡ τi and C ≡ {ξ1, . . . , ξn}.

The rules in Fig. 1 define the meta-level set Term. As is standard for a λ-
calculus, each abstraction λ x : σ .C binds the variable x and this is the only
way variables can be bound. We identify terms modulo α-equivalence. We then

Generating Custom Set Theories with Non-set Structured Objects 233

Fig. 2. Inference rules, initial theory, and simple definitions for quantifiers

define the free variable function FV so that FV(B) is the set of variables free in
the β-normal-form of B. We then further identify terms modulo β-equivalence
and lift FV accordingly. Substitution B[ν:=C] is defined as usual. Constants can
not be bound by λ.

Figure 1 defines the typing relation :: between Term and Type. Inside a term
expression B :: τ we allow omitting the type σ that is part of the name of an
occurrence of ∀σ, =σ, or
=σ, or that is part of an abstraction λx : σ .C, provided
that σ can be uniquely determined by the other type information in or about B
including what is known about the types of constants.

We say that a term B is a formula iff B:: �. Let ϕ,ψ, γ range over formulas,
and let Φ, Ψ, Γ range over sets of formulas. Let Γ + ϕ denote Γ ∪ {ϕ} and let
Γ − ϕ denote Γ \ {ϕ}. Let FV[Γ] be the union of all FV(ϕ) for each ϕ ε Γ . Let
Γ [ν := B] be the set of all ϕ[ν := B] for each ϕ ε Γ .

Propositional and First-Order Logic. A sequent is a syntactic object Γ �i ϕ
with founder domain di. Figure 2 give inference rules that define the entailment
relation �i. We write Γ �i Ψ iff Γ �i ϕ for every ϕ ε Ψ . Note that �i can only
do ∀-introduction for ∀i (which abbreviates ∀di) and cannot do ∀-elimination for
∀j where i
= j. We will later supply simple definitions for ∀j where i
= j that
make these rules admissible:

(allIi,j)
Γ �i ϕ x :: dj x
 ε FV[Γ]

Γ �i ∀j (λ x : dj . ϕ) (allEi,j)
Γ �i ∀j P B :: dj

Γ �i P B

We write Γ �i (allIi,j), (allEi,j) iff both (allIi,j) and (allEi,j) are admissible
using Γ . The rule (allEi) allows us to eliminate universal quantifications at di

and any non-domain type, which supports simple definitions.
Figure 2 defines the initial theory Init that defines the other logic operators (¬,

↔, ∧, ∨), and proves their usual introduction and elimination rules, establishes
classical logic, and implements equality. A simple definition is a formula of the

234 C. Dunne et al.

form c =τ B. The first axiom in Init allows eliminating equalities at all types, but
we only introduce equalities via domain-specific axioms at domain types. The
constants =τ , ∧, ∨, ↔, and → are all binary infix operators, listed in descending
order of precedence. If c is infix, an application (cX)Y may be written X c Y .
If B1, . . . , Bn, C are terms and ∼ is a binary infix operator, then we may write
B1, . . . , Bn ∼ C for B1 ∼ C∧· · ·∧Bn ∼ C. Negation (¬) and function application
take precedence over infix operators, e.g., F x =τ Gx is (F x) =τ (Gx).

If Q is a constant for a quantifier, then Q (λ x : τ . ϕ) may be written Qx .ϕ.
The notation Q x1, . . . , xn . ϕ abbreviates the nested applications of quantifiers
and abstractions Q (λx1 : τ . · · · Q (λxn : τ . ϕ)). Quantification has lower prece-
dence than all other logical constants. Thus, ∀0 x . ϕ → ψ is ∀0 x . (ϕ → ψ).

From each constant ∀i that represents a universal quantifier at type di, the
set FOLQuantsi of simple definitions in Fig. 2 defines existential (∃), at-most-one
(∃≤1), and bounded (also called restricted) quantification (∀[·],∃[·]). Formulas of
the form (∀[·]P)Q and (∃[·]P)Q may be written as ∀[P] x .Qx and ∃[P] x .Qx
respectively. If ∼ is a binary infix operator, we may write ∀ x ∼ B .ϕ and
∃ x ∼ B .ϕ for ∀[λ y . y ∼ B] x . ϕ and ∃[λ y . y ∼ B] x . ϕ respectively, where
y is fresh. If Γ �i (allIi,j), (allEi,j) and Γ �i Init ∪ FOLQuantsj , then each
quantifier satisfies its usual introduction and elimination rules on dj .

3 Example Axiomatizations of Generalized Set Theories

This section axiomatizes five example GSTs. We define four example modular
features that each characterise a kind of mathematical object. So the reader
does not mix them up, we index features by odd numbers and later in Sect. 6
we index example domains by even numbers. Feature k in domain di is given by
(1) a signature of constants sigk

i , (2) a set of formulas theoryk
i that characterizes

the constants in sigk
i , (3) an unary predicate idenk

i that identifies objects added
by the feature, and (4) a binary predicate childk

i that declares internal structure.
The Set feature provides sets. Figure 3 defines constants GZFConstsi and

formulas GZFi. The feature’s theory, signature, identification predicate, and
structure predicate are given by sig1i ≡ GZFConstsi, and theory1i ≡ GZFi, and
iden1i ≡ Seti, and child1i ≡ ∈i. The axioms in GZFi allow non-sets. The Founda-
tion axiom is missing from GZFi and will be supplied when features are combined.

The Pair feature adds non-set ordered pairs. Figure 3 defines constants
PConstsi and formulas PTheoryi. We define sig3i ≡ PConstsi, and theory3i ≡
PTheoryi, and iden3i ≡ Pairi, and child3i ≡ (λ x, p .∃i y . p =di (x, y)i ∨ p =di

(y, x)i).The axioms include the standard characteristic property of ordered pairs.
The Nat feature adds non-set natural numbers obeying Peano Arithmetic.

Figure 3 defines constants NConstsi and formulas NTheoryi. We define sig5i ≡
NConstsi, and theory5i ≡ NTheoryi, and iden5i ≡ Nat, and leave child5i undefined.

The Exception feature adds a non-set exception element •i and a definite
description operator ι

i that uses •i as its default. Figure 3 defines constants
EConstsi and formulas ETheoryi. We define sig7i ≡ EConstsi, and theory7i ≡
ETheoryi, and iden7i ≡ (λ x . x =di •i), and we leave child7i undefined. The only
object this feature adds is •i, which has no internal structure.

Generating Custom Set Theories with Non-set Structured Objects 235

Fig. 3. Signatures and theories for the Set, Pair, Nat, and Exception features

To combine features to make a GST, Fig. 4 defines formulas that state that a
combination of features is well behaved. The formula Iden(k1, . . . , kn) states that
every object in di belongs to at least one of the features k1, . . ., kn, while the
formula AllDistincti(k1, . . . , kn) states that every such object belongs to exactly
one such feature. The formula WFi(k1, . . . , kn) asserts the well-foundedness of
the union of the internal structure relations given by childk1

i , . . ., childkn
i . The

formula ExOutsidei(k1, . . . , kn) states that the exception element •i is not a direct
immediate child of any objects belonging to the features k1, . . ., kn.

We define ZF in domain di via the axioms ZFi in Fig. 4 as a GST that uses
just the Set feature. Let PureZFi be a traditional formulation of ZF obtained
by replacing all bounded ∀i[Seti] quantifiers in GZFi with unbounded ∀i quanti-
fiers and adding the Axiom of Foundation. Because Ideni(1) allows us to prove
∀i x .Seti x, it follows that ZFi �i PureZFi and also that PureZFi �i ZFi.

We define ZFP in di via the axioms ZFPi as a GST with non-set ordered
pairs that combines the Set and Pair features. Note that the non-set ordered
pairs of ZFP do not have any extraneous properties.

We define ZFN in di via the axioms ZFNi as a GST with non-set natural
numbers that combines the Set and Nat features. Because NTheoryi only pro-
vides a predicate symbol Nati , the user of ZFNi will want a set N containing

236 C. Dunne et al.

Fig. 4. Operations for combining features, and axiomatisations of various GSTs

exactly all the objects that satisfy Nati (i.e., the non-set natural numbers), and
this can be done via the axiom (rpli) and the von Neumann natural numbers.

We define ZFE in di via the axioms ZFEi as a GST with a non-set exception
element that is excluded from the domain of quantifiers and is not contained in
any set. It is intended that a ZFE user does not directly use the allI and allE
rules, but instead uses a different quantifier ∀ �=•

i (and other quantifiers derived
from it) that excludes the exception element. Note that all occurrences of ∀i are
replaced by ∀ �=•

i in the formulas GZFi and FOLQuantsi.
We define ZF+ in di via the axioms ZF+

i as a GST that combines all four
example features. Note that this uses the same ∀ �=•

i quantifier as ZFE.
Remember the example specification from Sect. 1 of a function g : (N2 ∪

P (N)) → {0, 1} such that g(〈0, 1〉) = 0 and g({1, 2}) = 1. How can g be handled
in our five example GSTs? Assume we use non-set natural numbers if we have the
Nat feature (ZFN, ZF+) and otherwise we use the von Neumann naturals, and
similarly we use non-set ordered pairs if we have the Pair feature (ZFP, ZF+)
and otherwise we use Kuratowski pairs. Represent g as the least set such that
〈x, y〉 ∈ g whenever input x should map to output y. In ZF, g is not a function
because 〈0, 1〉 = {1, 2} and the set-function application binary infix operator ‘i
can not make both g ‘i 〈0, 1〉 = 0 and g ‘i {1, 2} = 1 true. Also, depending on how
we “define” the “function” g, we might prove incorrect results or even make our
entire system inconsistent. In ZFP, ZFN, and ZF+ it holds that 〈0, 1〉
= {1, 2}, so
g is a function and we are happy. In ZFE, g is not a function but the Exception
feature makes some failure-handling options a bit easier. One option uses the
definite description operator ι

i in defining the set-function application operator

Generating Custom Set Theories with Non-set Structured Objects 237

Fig. 5. Set theoretic utilities

‘i to be (λ x, y . ι

i z . 〈y, z〉 ∈i x), which makes g ‘i x = •i if g is not functional
at x. Another option is taking a predicate gSpec specifying a function with the
desired input/output behavior for g and then defining g as (ι

i z . gSpec z), which
would evaluate to •i. The exception object •i is useful in these cases because
it can not accidentally get embedded inside larger results and can not equal a
value tested by the ∀ �=•

i quantifier.

4 Model Building Kit

This section defines tools for building within GZF-domains models of GSTs with
the Set feature that can be specified to support additional features.

Set Theory Tools. We define three variants of set comprehension notation. If
a, b
ε FV(P) ∪ FV(X), we write { b | ∃i a ∈i X .P a b } for Ri P X, and { a ∈i X |
P a } for Ri (λ a, b . a =di b ∧ a ∈i X ∧ P a)X. If F :: di ⇒ di and x, y
ε FV(B) ∪
FV(F), we write {F x | x ∈i B, P x } for { y | ∃i x ∈i B .P x ∧ y =di F x }.

Figure 5 defines the set ZFUtilsi of simple definitions for operators including
those related to ordered pairs, ordinals, and tagging. The operators π1

i and π2
i ,

called the left and right projections (resp.), are defined such that if X and Y are
sets, then 〈X,Y 〉i =di 〈π1

i 〈X,Y 〉i, π
2
i 〈X,Y 〉i〉i

. A set X is transitive iff every
set member of X is also a subset of X. A set X is an ordinal iff it is a transitive
set whose set members are all transitive sets. We say that X is a limit ordinal
iff Limiti X. The constant ωi is defined as the intersection of all subsets of Infi
that are limit ordinals. Thus, ωi is the smallest limit ordinal.

238 C. Dunne et al.

Fig. 6. Recursion equations, and simple definitions for building a model for dj in di

If X is a set and A is an object, then TagSetMemsi AX is the set whose set
members are exactly all ordered pairs 〈A, Y 〉i where Y is a set member of X.
If X =di 〈A, Y 〉i for some A and Y , then TagOfi X =di A. We say that X is
tagged with A or A-tagged iff TagOfi X =di A.

We now describe operators that use tagging to build disjoint unions and
extract partitions from disjoint unions. Let S be a term such that Γ �i A∈iωi →
Seti (S A), i.e., S has type di ⇒ di and represents a sequence of sets indexed
by von Neumann natural numbers. Then

⊎
i S is a set called the disjoint union

of S, which is the result of tagging the members of each set in the sequence S
with the set’s index and collecting all the tagged objects. Hence X ∈i

⊎
i S iff

X =di 〈A, Y 〉i where Y ∈iS A for some ordinal A. If X is a set containing objects
with many different tags, then Parti AX gives a set whose members are exactly
all of the members of X tagged with A.

For any GZF-domain, we conjecture the existence of a term Ti such that
the simple definition OrdReci =τ Ti defines OrdRec to do transfinite recur-
sion on the ordinals.1 The characterisation of OrdReci in Fig. 6 is equiva-
lent to such a definition, where A:: di and F :: di ⇒ di ⇒ di is such that
Γ �i ∀i[Ordi] b .∀i[Seti] x .Set (F bx). The set A is used for the zero case, F is
used for the successor case, and unions are taken at limit ordinals.

Model Framework. The constant Opsi,j acts as a table of operations used
for building in di the tiers of a model for dj . The constant Ignoredi,j is a set
of objects which are not to be used in building further objects. The user must
axiomatize both of these constants. For this to work, if A and B are ordinals, then
Opsi,j AB must be an operator which returns a set when given a set. We call
the A-indexed aspect of Opsi,j the slot A. Each slot is used for a different kind
of mathematical object, e.g., set, non-set ordered pair, non-set natural number,
etc. When building a model, Opsi,j AB is given the previous model tier minus
the ignored objects and returns a set of objects, each of which is then tagged by
A before being added to the next tier.

For each pair of domain types, Modeli,j in Fig. 6 is a set of simple definitions
that builds a model in di for dj and gives a membership predicate and a ∀-
quantifier restricted to the model. The operator Tieri,j :: di ⇒ di uses OrdReci to
1 Our belief is based on tracing the expansion of uses of transrec3 in Isabelle/ZF.

Generating Custom Set Theories with Non-set Structured Objects 239

Fig. 7. Definition of swapi,j on types and transi,j and formula sets for model building

map di ordinals to model tiers. The formula inModeli,j X holds if there exists an
ordinal A such that Γ �k X∈i(Tieri,j A). The quantifier ∀i,j allows quantification
over the model by restricting ∀i to objects satisfying inModeli,j .

Figure 7 defines a function transi,j for translating formulas that speak about
dj to formulas that speak about the model in di for dj . The function is defined
recursively on terms mostly by translating constants to their “model versions”.
For example transi,j(∀j) ≡ ∀i,j , and transi,j(Pj) ≡ Pi. Sets of formulas can
also be translated. For example, we use transi,j(FOLQuantsj) to generate extra
quantifiers relativized to a model.

GZF Models. We now show how to configure the set slot of Opsi,j to obtain a
model satisfying GZF. We reserve slot 1 for sets. Each model tier must contain
all subsets of all previous tiers, tagged with 1. Figure 7 defines the formula set
ZFOpsi,j that specifies that Opsi,j invokes the power set operator (Pi) in slot
1 at each successor ordinal. The formulas in ZFOpsi,j allow proving that every
1-tagged set of model sets belongs to some model tier. A crucial fact used for
demonstrating this is:

240 C. Dunne et al.

Γ �i ∀i[Ord] b . {1i} ×i (Pi (Tieri,j b)) ⊆i Tieri,j (succi b)

Figure 7 defines ZFModelDefsi as a set of simple definitions for each model
constant in transi,j(GZFConstsj). Because the definitions in ZFModelDefsi only
make use of the set slot of the model, they can be shared amongst all models
we build in di. The constants in transi,j(GZFConstsj) act on the “model sets”,
and have been shown to satisfy the formulas in transi,j(GZFj) when used in a
model. Figure 7 also defines BuildModeli,j as a set of simple definitions for (1) set
theoretic utilities for model building, including ordinal recursion, (2) specifying
slot 1 of Opsi,j to invoke (Pi) at successor ordinals (3) building model tiers,
checking model membership, quantifying over the model, (4) extra quantifiers
relativized to the model, and (5) simple definitions for transi,j(GZFConstsj).

We say that Γ builds a GZF-model in di for dj iff Γ �k transi,j(GZFj). We
have proved that if Γ �k (allIk,i), (allEk,i) and Γ �k Basei ∪ BuildModeli,j ,
then Γ builds a GZF-model in di for dj .

5 Connecting Models to Domains

Section 3 showed how to axiomatize a GST in domain di directly using di as the
founder domain. We now show how to combine an axiomatization Γi of a GST
S1 in domain di with model building definitions Ψi,j to justify an axiomatization
Γj of a GST S2 in domain dj so that Γi ∪Ψi,j �i Γj . This connects S2 to a model
for it built in S1, which supports stating that S2 is consistent if S1 is.

Start by assuming that Γ �k BuildModeli,j and we will connect the model
built in di to dj so we can prove things about dj using �k. Figure 8 defines
the set Connectioni,j that axiomatizes that the operators Absi,j :: di ⇒ dj and
Repi,j :: dj ⇒ di are an isomorphism between the objects satisfying Tieri,j and dj .
Figure 8 defines the meta-level function swapi,j that translates terms with types
involving the abstract domain dj to corresponding terms with types involving the
representation domain di, and vice versa. We also define Delegatei,j to generate
simple definitions for a set of constants for use in dj in terms of the translation
of those constants to corresponding constants for use with the model in di. In
particular, swapping ∀i,j supplies a definition for ∀j such that (allIi,j), (allEi,j)
are admissible with �i.

If Γ �k Basei ∪ BuildModeli,j , then we can give simple definitions for
GZFConstsj using Delegatei,j(GZFConstsj). Hence we define AbsModeli,j in Fig. 8
as the set of formulas which (1) axiomatizes an isomorphism between mem-
bers of di satisfying Tieri,j and dj and (2) gives simple definitions for quanti-
fiers over dj and GZFConstsj by swapping their model versions in di. To prove
that the swapped constants and quantifiers form a GZF-domain, we show that
if Γ �k (allIk,i), (allEk,i) and Γ �k Basei ∪ BuildModeli,j ∪ AbsModeli,j ,
then Γ �k GZFj . This is achieved by expanding the delegated definitions of
GZFConstsj in each formula of GZFj . In practice, the instances of Absi,j and
Repi,j in these formulas cancel each other out because the terms they are applied
to always belong to the model. We are then left with exactly the formulas of

Generating Custom Set Theories with Non-set Structured Objects 241

Fig. 8. Formulas axiomatising Absi,j and Repi,j , definitions of swapi,j on terms and
Delegatei,j , and formulas for connecting a model built in di to dj

transi,j(GZFj), which hold because Γ �k BuildModeli,j can be shown to entail
these formulas.

6 Examples of Models of GSTs

We now build models for each of the GSTs shown in Sect. 3. We use d0 as our
founder domain with ZF0 as axioms.

We build a model of ZF in d0 for d2, then of ZFP in d2 for d4, then of ZFN
in d4 for d6, then of ZFE in d6 for d8, and finally of ZF+ in d0 for d10. First we
define a meta-level function in Fig. 9 for building formulas which restrict Opsi,j
to only invoke certain slots. We then define specifications of Opsi,j in Fig. 9 for
the Set, Nat and Exception features, and simple definitions for the model
translations of each constant in their signatures. The sets of formulas ΨZF, ΨZFP,
ΨZFN, ΨZFE, and Ψ

ZF+ in Fig. 10 build models according to these specifications,
including the simple definitions for acting on these models. The case for ZFE
and ZF+ is again more complex, requiring generation of definitions for model
quantifiers using ∀ �=•

i,j . Finally, we define the sets of formulas ΨZF, ΨZFP, ΨZFN,
ΨZFE, and ΨZF+ which connect each of the models to d2, d4, d6, d8, d10 respectively,
and delegate the constants of each signature.

We now briefly explain how to prove that ΨZF �0 ZF2, ΨZFP �0 ZFP4, ΨZFN �0

ZFN6, ΨZFE �0 ZFE8, and Ψ+
ZF �0 ZF+

8 . Because ΨZF �0 (allI0,0), (allE0,0)
and ΨZF �0 BuildModel0,2, we have that ΨZF �0 trans0,2(GZF2). Then because
ΨZF �0 AbsModel0,2, we have that ΨZF �0 Base0 and ΨZF �0 (allI0,2). The same
argument can be repeated for the other instances of Ψ , with the exception of
ΨZFE and ΨZF+ for which we are required to show ΨZFE �0 Base8[∀8 := ∀ �=•

8] and
ΨZF+ �0 Base10[∀10 := ∀ �=•

10]. With some work, we can also show:

ΨZFP �0 trans2,4(PTheory4), ΨZFN �0 trans4,6(NTheory4),
ΨZFE �0 trans6,8(ETheory4),
Ψ
ZF+ �0 trans8,10(PTheory10 ∪ NTheory10 ∪ ETheory10)

242 C. Dunne et al.

Fig. 9. Specifications of Opsi,j and simple definitions for model constants

The translations of AllDistinct and WF formulas are easy to prove from the
structure of the model. After this, we have that ΨZF �0 ZF2, ΨZFP �0 ZFP4,
ΨZFN �0 ZFN6, ΨZFE �0 ZFE8, and Ψ+

ZF �0 ZF+
10.

We now argue that the reasoning above can be completed to conclude the
consistency of ZF2, ZFP4, ZFN6, ZFE8, and ZF+

10. We begin with belief in the
consistency of first-order logic and ZF, which are embedded in our system as
Base0. We now discuss why we believe consistency is preserved by our methods
of extending Base0 to ΨZF, ΨZF to ΨZFP, and so on. Most of the extensions are
done by adding simple definitions, which preserve consistency. We have not yet
written the term Ti in the simple definition for OrdReci, but we believe this can be
done because Isabelle/ZF does it. Our specifications of Opsi,j and RestrictOpsi,j
are currently not simple definitions, but we believe we know how to reformulate
them as simple definitions. The axiomatizations of Absi,j and Repi,j are not
simple definitions, but this technique is widely used in Isabelle/HOL and has
been argued to preserve consistency by Kunčar and Popescu [13].

7 Conclusion and Future Work

This paper presented methods for generating custom set theories intended to
be more suitable for the formalisation of mathematics by being closer to math-
ematical practice. Our logical framework and toolkit supports reasoning about
axiomatizations and models for a variety of GSTs. We show how to define ZF
as a GST and give four examples of how to extend ZF with non-set features.
We show how to use a GST via an axiomatization and also how to use it via a
connection to a model.

Generating Custom Set Theories with Non-set Structured Objects 243

Fig. 10. Sets of formulas for building and abstracting models for GSTs

Toward an Isabelle Implementation. We aim to mechanize the results
of this paper in Isabelle/Pure using locales and overloading with type classes.
This includes adapting the development of transfinite ordinal recursion in the
Isabelle/ZF library to our setting.

Toward User-Friendly GST Specification and Use. We aim that users
should be able to construct a structure and specify some properties of the struc-
ture and request a fresh copy of it and the system should be able to generate a
new GST domain where that structure exists as non-set objects with no other
properties than those specified. We also aim that users should be able to specify
identifications (e.g., quotienting) and then have a GST generated where those
identifications are true. Ideally, there will be support for doing this locally within
part of a formal development and the user should not need to be aware that they
are temporarily operating in a new GST.

References

1. Aczel, P.: Generalised set theory. In: Logic, Language and Computation, vol. 1 of
CSLI Lecture Notes (1996)

2. Bancerek, G., et al.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette, J.,
Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp.
261–279. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8 17

https://doi.org/10.1007/978-3-319-20615-8_17

244 C. Dunne et al.

3. Brown, C.E., Pak, K.: A tale of two set theories. In: Kaliszyk, C., Brady, E.,
Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617,
pp. 44–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4 4

4. Brown, C.E., Smolka, G.: Extended first-order logic. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 164–179.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 13

5. Dunne, C., Wells, J.B., Kamareddine, F.: Adding an abstraction barrier to ZF set
theory. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236,
pp. 89–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6 6

6. Farmer, W.M.: Formalizing undefinedness arising in calculus. In: Basin, D., Rusi-
nowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 475–489. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-25984-8 35

7. Farmer, W.M., Guttman, J.D., Javier Thayer, F.: Little theories. In: Kapur, D.
(ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55602-8 192

8. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
131–146. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 9

9. Kolodynski, S.: IsarMathLib (2021). https://isarmathlib.org/. Accessed 3 Mar
2021

10. Krauss, A.: https://www21.in.tum.de/∼krauss/publication/2010-soft-types-note/.
Adding soft types to Isabelle (2010)

11. Krauss, A., Chen, J., Kappelmann, K.: Isabelle/Set. https://bitbucket.org/
cezaryka/tyset/src/master/

12. Kunčar, O., Popescu, A.: From types to sets by local type definitions in higher-
order logic. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp.
200–218. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4 13

13. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. J. Autom.
Reasoning 62(4), 531–555 (2019)

14. Maddy, P.: What do we want a foundation to do? In: Centrone, S., Kant, D.,
Sarikaya, D. (eds.) Reflections on the Foundations of Mathematics. SL, vol. 407, pp.
293–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15655-8 13

15. Megill, N., Wheeler, D.A.: Metamath: A Computer Language for Mathematical
Proofs. LULU Press, Morrisville (2019)

16. Obua, S.: Partizan games in Isabelle/HOLZF. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.): ICTAC 2006. LNCS, vol. 4281. Springer, Heidelberg (2006).
https://doi.org/10.1007/11921240

17. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reasoning
5(3), 363–397 (1989)

18. Paulson, L.C.: Set theory for verification: I. From foundations to functions. J.
Autom. Reasoning 11(3), 353–389 (1993)

19. Wiedijk, F., Zwanenburg, J.: First order logic with domain conditions. In: Basin,
D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 221–237. Springer, Hei-
delberg (2003). https://doi.org/10.1007/10930755 15

https://doi.org/10.1007/978-3-030-23250-4_4
https://doi.org/10.1007/978-3-642-03359-9_13
https://doi.org/10.1007/978-3-030-53518-6_6
https://doi.org/10.1007/978-3-540-25984-8_35
https://doi.org/10.1007/3-540-55602-8_192
https://doi.org/10.1007/978-3-319-03545-1_9
https://isarmathlib.org/
https://www21.in.tum.de/~krauss/publication/2010-soft-types-note/
https://bitbucket.org/cezaryka/tyset/src/master/
https://bitbucket.org/cezaryka/tyset/src/master/
https://doi.org/10.1007/978-3-319-43144-4_13
https://doi.org/10.1007/978-3-030-15655-8_13
https://doi.org/10.1007/11921240
https://doi.org/10.1007/10930755_15

CICM’21 Systems Entries

Martin Ĺı̌ska1, Dávid Lupták1(B), Vı́t Novotný1, Michal Růžička1,
Boris Shminke2, Petr Sojka1, Michal Štefánik1, and Makarius Wenzel3

1 Faculty of Informatics, Masaryk University, Brno, Czechia
dluptak@mail.muni.cz

2 Université Côte d’Azur, CNRS, LJAD, Nice, France
3 Augsburg, Germany

Abstract. This consolidated paper gives an overview of new tools and
improvements of existing tools in the CICM domain that occurred since
the last CICM conference.

WebMIaS

Dávid Lupták, Vı́t Novotný,
Michal Štefánik, Petr Sojka,
Michal Růžička, Martin Ĺı̌ska,
Faculty of Informatics, Masaryk
University, Brno

Tool: WebMIaS
Version: 1.6.6-4.10.4
Impl. in: Java
License: Apache License 2.0
Download: github.com/MIR-MU/WebMIaS

Description. MIaS (Math Indexer and Searcher) is a math-aware full-
text search engine. It uses Apache Lucene under the hood; however,
its maths processing capabilities are standalone and can be easily inte-
grated into any Apache Lucene/Solr/Elasticsearch-based system, as in the
European Digital Mathematics Library (EuDML) service.

WebMIaS is a web interface for MIaS. WebMIaS accepts math queries
in the TEX or MathML format combined with text queries. Results contain
snippets of the matching text and mathematical formulae.

MIaS and WebMIaS have been containerized into separate Docker images
named miratmu/mias and miratmu/webmias, respectively. The Docker images
allow users to run both the indexing and the retrieval without a specific config-
uration of the environment. Resolving dependencies and building all modules of
the system is up to the continuous integration:

c© Springer Nature Switzerland AG 2021
F. Kamareddine and C. Sacerdoti Coen (Eds.): CICM 2021, LNAI 12833, pp. 245–248, 2021.
https://doi.org/10.1007/978-3-030-81097-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81097-9_20&domain=pdf
github.com/MIR-MU/WebMIaS
https://lucene.apache.org/
https://lucene.apache.org/
https://solr.apache.org/
https://www.elastic.co/elasticsearch/
https://eudml.org/search
https://www.w3.org/TR/MathML3/
https://www.docker.com/
https://hub.docker.com/r/miratmu/mias/tags
https://hub.docker.com/r/miratmu/webmias/tags
https://doi.org/10.1007/978-3-030-81097-9_20

246 M. Ĺı̌ska et al.

Besides MIaS, the dependencies of WebMIaS are: MathMLCan,
which canonicalizes different MathML encodings of equivalent formulae,
MathMLUnificator, which generalizes distinct mathematical formulae so that
they can be structurally unified, and MIaSMath, which adds math processing
capabilities to Lucene or Solr.

After downloading a dataset to the working directory, users can index the
dataset using MIaS and deploy WebMIaS in a single line of code:

1 $ wget https://mir.fi.muni.cz/MREC/MREC2011.4.439.tar.bz2

2 $ mkdir dataset ; tar xj -f MREC2011.4.439.tar.bz2 -C dataset

3 $ docker run -v "$PWD"/dataset:/dataset:ro -v "$PWD"/index:/index:rw --rm

miratmu/mias↪→

4 $ docker run -v "$PWD"/dataset:/dataset:ro -v "$PWD"/index:/index:ro --rm

--name webmias -d -p 127.0.0.1:8888:8080 miratmu/webmias↪→

The WebMIaS system will be running at http://localhost:8888/WebMIaS.

Applications. Any digital mathematics library or a website with mathematical
content may benefit from the added value of a math-aware search. WebMIaS
has been deployed in production on the EuDML website for almost a decade
now.

Changes from the Previous Version. We newly report the availability of
the WebMIaS Docker image with the latest versions of all components.

Python client for
Isabelle server

Boris Shminke, Université Côte
d’Azur, CNRS, LJAD, France

Tool: Python client for Isabelle server

Version: 0.2.0
Impl. in: Python

License: Apache 2.0
Download: https://pypi.org/project/isabelle-client

Description. Python client for Isabelle server gives researchers using Python
as their primary programming language an opportunity to communicate with
Isabelle server through TCP directly from a Python script. Since Python-based
tools continue to dominate the machine learning (ML) frameworks [3], this pack-
age, installable from The Python Package Index, can help researchers from the
ML community to use the power of Isabelle proof assistant in their studies. Also,
in other research domains where Isabelle can be helpful, Python as scripting
languages remains preferable [2]. Some pieces of software written in Python and
related to Isabelle (e.g. [4]) can include code for communication with the server,
but they are hard to find, not easily reusable and well-documented.

The client relies on a standard Python package asyncio for low-level com-
munication with the server. It implements wrapper methods for all commands
of Isabelle server listed in its manual [6]. The package also includes a function
for starting Isabelle server from Python script.

https://github.com/MIR-MU/MIaS
https://github.com/MIR-MU/WebMIaS
https://github.com/MIR-MU/MathMLCan
https://github.com/MIR-MU/MathMLUnificator
https://github.com/MIR-MU/MIaSMath
https://pypi.org/project/isabelle-client

CICM’21 Systems Entries 247

Applications. At the moment, the package is being used by its author for
research in AI for algebra. It helps to check hundreds of working hypotheses,
auto-generated by other Python scripts.

Acknowledgements. This work has been supported by the French government,
through the 3IA Côte d’Azur Investments in the Future project managed by the
National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.

Isabelle platform

Makarius Wenzel, Augsburg,
ORCID 0000-0002-3753-8280

Tool: Isabelle platform
Version: 2021
Impl. in: ML, Scala, and others
License: BSD, LGPL, GPL, and others
Download: https://isabelle.in.tum.de

Description. The Isabelle platform supports theory and tool development for
symbolic logic: usually simply-typed HOL, but untyped ZF is also available
(dependently-typed languages are in principle possible, but rarely used). The
core system is implemented in two distinctive languages: (1) Isabelle/ML for
mathematical logic, and (2) Isabelle/Scala for connectivity to the physical world,
e.g. editors or servers on the Java VM. The Isabelle/PIDE framework sup-
ports interactive processing of formal mathematical documents [8], consisting
of logical definitions, statements, proofs, or snippets of functional programs, or
other domain-specific formal languages. Isabelle/jEdit [7] is the best-developed
PIDE application and standard user-interface of Isabelle: it acts like a sophisti-
cated “spell-checker” for formal logic, with instantaneous feedback on user edits.
Isabelle/VSCode1 is an alternative editor front-end, but much less developed.
Another interaction mode works under program control as “headless PIDE”,
either via Scala datatypes within the Java process, or via external programs in
different languages using a JSON protocol [6, §4], for example Python.

Applications. Any language embedded into the Isabelle framework may count
as an application. It is easy to get started by implementing parsing and type-
checking in Isabelle/ML, even with Prover IDE markup for variable scopes, types,
feedback messages etc. The best-known and most-developed application of the
framework is Isabelle/HOL [5]: it provides a rich environment for specifications
and proofs for Gordon-style HOL, with various add-ons like type-classes and
heavy tooling like Sledgehammer. Applications of Isabelle/HOL are formal math-
ematical articles or books: some are distributed with Isabelle, but the majority
is collected separately in the Archive of Formal Proofs (AFP) [1]. Isabelle/AFP
is managed like a scientific journal, with fully formal checking and high-quality
presentation in LATEX. Its continued growth since 20042 usually drives further
technological development of the underlying Isabelle framework.
1 https://marketplace.visualstudio.com/items?itemName=makarius.Isabelle2021.
2 https://www.isa-afp.org/statistics.html.

https://isabelle.in.tum.de
https://marketplace.visualstudio.com/items?itemName=makarius.Isabelle2021
https://www.isa-afp.org/statistics.html

248 M. Ĺı̌ska et al.

Changes from Previous Versions. Official Isabelle releases appear every 8–
10 months. The release Isabelle2021 (February 2021) is notable for (1) integrating
Isabelle/ML and Isabelle/Scala more tightly, (2) unifying batch-mode builds and
PIDE processing more smoothly, (3) including up-to-date provers (ATPs and
SMTs) managed by Isabelle/Scala, and (4) high-quality GUI look-and-feel on
all platforms: Linux, Windows, macOS (Intel or Apple Silicon).

References

1. The Archive of Formal Proofs (AFP), 2004–2021
2. Dragomir, I., Preoteasa, V., Tripakis, S.: The refinement calculus of reactive systems

toolset. Int. J. Softw. Tools Technol. Transf. 22(6), 689–708 (2020)
3. Kaggle. State of data science and machine learning (2020). https://www.kaggle.

com/kaggle-survey-2020
4. Wimmer, S., Haslbeck, M.P.L.: Platform for interactive theorem proving competi-

tions. https://github.com/maxhaslbeck/proving-contest-backends
5. Paulson, L.C., Nipkow, T., Wenzel, M.: From LCF to Isabelle/HOL. Formal Aspects

Comput. 31, 675–698 (2019)
6. Wenzel, M.: The Isabelle System Manual. https://isabelle.in.tum.de/doc/system.

pdf
7. Wenzel, M.: Isabelle/jEdit. https://isabelle.in.tum.de/doc/jedit.pdf
8. Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.): CICM 2019.

LNCS (LNAI), vol. 11617. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-23250-4

https://www.kaggle.com/kaggle-survey-2020
https://www.kaggle.com/kaggle-survey-2020
https://github.com/maxhaslbeck/proving-contest-backends
https://isabelle.in.tum.de/doc/system.pdf
https://isabelle.in.tum.de/doc/system.pdf
https://isabelle.in.tum.de/doc/jedit.pdf
https://doi.org/10.1007/978-3-030-23250-4
https://doi.org/10.1007/978-3-030-23250-4

Author Index

Abdelghany, Mohamed 47
Arndt, Susanne 153

Blaauwbroek, Lasse 67

Černỳ, Prokop 67
Chen, Xiaoyu 137

De Lon, Adrian 19
Dunne, Ciarán 228

Edmonds, Chelsea 3
Eschen, Agnes Moesgård 32

From, Asta Halkjær 32

Hajdu, Márton 124
Holden, Edvard K. 107
Hozzová, Petra 124, 185

Ion, Patrick 153

Jebelean, Tudor 130

Kaliszyk, Cezary 67
Kamareddine, Fairouz 228
Khan, Abdullah 197
Koepke, Peter 19
Korniłowicz, Artur 205
Korovin, Konstantin 107
Kovács, Laura 124, 185

Lisitsa, Alexei 197
Líška, Martin 245
Lorenzen, Anton 19
Lupták, Dávid 159, 245

Macke, Jaroslav 167
Marti, Adrian 19

Novotný, Vít 159, 245

Olsak, Miroslav 167

Paulson, Lawrence C. 3
Piotrowski, Bartosz 67
Proroković, Krsto 84

Rabe, Florian 205, 211
Rath, Jakob 185
Rothgang, Colin 205
Runnwerth, Mila 153
Růžička, Michal 245

Schmidhuber, Jürgen 84
Schoisswohl, Johannes 124
Schubotz, Moritz 153
Schütz, Marcel 19
Sedlar, Jiri 167
Shan, Ruocheng 90
Shminke, Boris 245
Sivic, Josef 167
Sojka, Petr 159, 245
Song, Yujin 137
Štefánik, Michal 159, 245
Sturzenhecker, Erik 19

Tahar, Sofiène 47
Teschke, Olaf 153

Urban, Josef 67, 167

Vernitski, Alexei 197
Villadsen, Jørgen 32
Voronkov, Andrei 124

Wand, Michael 84
Wells, J. B. 228
Wenzel, Makarius 245

Youssef, Abdou 90

Zhang, Liao 67

	Preface
	Organization
	Invited Talks
	Logics at Work, and Some Challenges for Computer Mathematics
	Induction in Saturation-Based Reasoning
	Doing Number Theory in Weak Systems of Arithmetic
	Contents
	Formalizations
	A Modular First Formalisation of Combinatorial Design Theory
	1 Introduction
	2 Background
	2.1 Mathematical Background
	2.2 Isabelle and Locales

	3 The Basic Design Formalisation
	3.1 Pre-designs
	3.2 Basic Design Properties
	3.3 Basic Design Operations

	4 The Block Design Hierarchy
	4.1 Restricting Block Size
	4.2 Balanced Designs
	4.3 T-Designs
	4.4 Uniform Replication Number
	4.5 BIBDs and Proofs
	4.6 BIBD Extensions

	5 Extending the Formalisation
	5.1 Resolvable Designs
	5.2 Group Divisible Designs
	5.3 Design Isomorphisms
	5.4 Graph Theory

	6 The Modular Approach
	6.1 The Formal Design Hierarchy
	6.2 The Little Theories Approach
	6.3 Notational Benefits
	6.4 Reasoning on Locales
	6.5 Limitations

	7 Conclusion and Future Work
	References

	Beautiful Formalizations in Isabelle/Naproche
	1 Introduction
	2 Naproche, ForTheL, and LaTeX
	3 Example: Cantor's Theorem
	4 Example: König's Theorem
	5 Example: Euclid's Theorem
	6 Example: Furstenberg's Topological Proof
	7 Example: The Knaster–Tarski Theorem
	8 Outlook
	References

	Formalizing Axiomatic Systems for Propositional Logic in Isabelle/HOL
	1 Introduction
	2 Related Work
	3 Implication and Falsity
	3.1 Language
	3.2 Wajsberg 1937
	3.3 Wajsberg 1939
	3.4 Shortest Axiom

	4 Disjunction and Negation
	4.1 Language
	4.2 Rasiowa 1949
	4.3 Russell 1908 and Bernays 1926
	4.4 Whitehead and Russell 1910

	5 Challenges and Benefits
	6 Conclusion
	References

	Formalization of RBD-Based Cause Consequence Analysis in HOL
	1 Introduction
	2 Preliminaries
	2.1 RBD Formalization
	2.2 ET Formalization

	3 Cause-Consequence Diagram Formalization
	3.1 Formal CCD Modeling
	3.2 Formal CCD Analysis

	4 Conclusion
	References

	Automatic Theorem Proving and Machine Learning
	Online Machine Learning Techniques for Coq: A Comparison
	1 Introduction
	1.1 Contributions

	2 Tactic and Proof State Representation
	3 Prediction Models
	3.1 Locality Sensitive Hashing Forests for Online k-NN
	3.2 Online Random Forest
	3.3 Boosted Trees

	4 Experimental Evaluation
	4.1 Split Evaluation
	4.2 Chronological Evaluation
	4.3 Evaluation in Tactician
	4.4 Feature Evaluation

	5 Related Work
	6 Conclusion
	References

	Improving Stateful Premise Selection with Transformers
	1 Introduction
	2 Data
	3 Experiments
	4 Conclusion and Future Work
	References

	Towards Math Terms Disambiguation Using Machine Learning
	1 Introduction
	2 Related Works
	2.1 The DLMF Dataset
	2.2 Part-of-Math Tagger
	2.3 Word Sense Disambiguation in NLP
	2.4 Machine Learning Models
	2.5 Math Language Processing

	3 The Dataset
	4 Machine Learning Approach
	4.1 Data Prepossessing
	4.2 Feature Engineering
	4.3 Training the Models
	4.4 Evaluation Metric

	5 Results
	5.1 Gamma
	5.2 Prime
	5.3 Superscript

	6 Conclusion and Future Work
	References

	Heterogeneous Heuristic Optimisation and Scheduling for First-Order Theorem Proving
	1 Introduction
	2 Hyper-Parameter Optimisation
	3 Heterogeneous Heuristic Optimisation and Scheduling
	4 Heuristic Optimisation for Heterogeneous Instances
	4.1 Dynamic Evaluation Clustering
	4.2 Local Heuristic Optimisation
	4.3 Embedding Unsolved Problems

	5 Local Schedules for Heterogeneous Instances
	6 Schedule Selection
	7 Experimental Evaluation
	7.1 Discovering New Heuristics
	7.2 Revealing Homogeneity with Admissible Evaluation Clustering
	7.3 Embedding Evaluation Features
	7.4 Optimal Scheduling of Heuristics
	7.5 Overall Performance Contribution

	8 Conclusion
	References

	Inductive Benchmarks for Automated Reasoning
	1 Introduction
	2 Benchmark Format
	3 Benchmark Categories
	3.1 dty - Benchmarks with Inductively Defined Data Types
	3.2 int - Benchmarks with Integers

	4 Conclusions
	References

	A Heuristic Prover for Elementary Analysis in Theorema
	1 Introduction
	2 Application of Special Techniques
	3 Conclusion and Further Work
	References

	Search and Classification
	Searching for Mathematical Formulas Based on Graph Representation Learning
	1 Introduction
	2 Related Work
	3 Graph Representation for Mathematical Formula
	4 Formula Embedding Model
	4.1 Self-supervised Learning Tasks
	4.2 Graph Neural Networks
	4.3 Hyperparameter Choices

	5 Experiments and Evaluation
	5.1 Evaluation Metric
	5.2 Evaluation Results

	6 Conclusion and Future Work
	References

	10 Years Later: The Mathematics Subject Classification and Linked Open Data
	1 Introduction
	2 MSC 2020 SKOSification
	2.1 Reasons for a New Version

	3 Conclusion and Future Work
	References

	WebMIaS on Docker
	1 Introduction
	2 Deployment Process Description
	3 Evaluation
	4 Conclusion
	References

	Teaching and Geometric Reasoning
	Learning to Solve Geometric Construction Problems from Images
	1 Introduction
	2 Related Work
	3 Our Euclidea Geometric Construction Environment
	4 Supervised Visual Learning Approach
	4.1 Action to Mask: Generating Training Data
	4.2 Mask to Action: Converting Output Masks to Euclidea Actions
	4.3 Solving Construction Problems by Sequences of Actions
	4.4 Additional Components of the Approach

	5 Solving Unseen Geometric Problems via Hypothesis Tree Search
	5.1 Generating Action Hypotheses
	5.2 Tree Search for Exploring Construction Hypotheses

	6 Experiments
	6.1 Benefits of Different Components of Our Approach
	6.2 Evaluation of the Supervised Learning Approach
	6.3 Evaluation on Unseen Problems
	6.4 Qualitative Example

	7 Conclusion
	References

	Automated Generation of Exam Sheets for Automated Deduction
	1 Motivation
	2 Random Problem Generation
	2.1 Boolean Satisfiability (SAT)
	2.2 Non-ground Superposition with Redundancy

	3 Random Variation of Problem Templates
	3.1 Satisfiability Modulo Theories (SMT)
	3.2 Ground Superposition

	4 Implementation
	5 Evaluation of Online Exam Outcomes
	6 Conclusion
	References

	Gauss-Lintel, an Algorithm Suite for Exploring Chord Diagrams
	1 Gauss Diagrams and Their Properties
	2 Even-Odd Matchings and Lintels
	3 Implementation
	3.1 Lintel Generation and Canonization
	3.2 Properties/Conditions Checking

	4 Experiments and Results
	5 Related Work
	References

	Logic and Systems
	A New Export of the Mizar Mathematical Library
	1 Introduction
	2 Design
	2.1 Formalizing the Mizar Logic
	2.2 Exporting the MML as XML
	2.3 Reading the XML into Scala Classes
	2.4 Translating the Scala Classes to MMT

	3 Conclusion and Future Work
	References

	A Language with Type-Dependent Equality
	1 Introduction
	2 Motivating Considerations and Related Work
	2.1 Type-Dependent Equality
	2.2 Abstract Definitions and Quotient Types
	2.3 Predicate and Quotient Types
	2.4 Records and Predicate/Quotient Types

	3 Formal Language Definition
	3.1 Syntax and Inference System
	3.2 Semantics
	3.3 Lax Record Types

	4 Conclusion
	References

	Generating Custom Set Theories with Non-set Structured Objects
	1 Introduction
	2 Logical Framework
	3 Example Axiomatizations of Generalized Set Theories
	4 Model Building Kit
	5 Connecting Models to Domains
	6 Examples of Models of GSTs
	7 Conclusion and Future Work
	References

	CICM'21 Systems Entries
	References

	Author Index

